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Abstract

The enormous amount of data generated at the Large Hadron Collider makes it challenging to
maintain current event selection mechanisms. There is growing interest in attempting to make use of Deep
Neural Networks for event selection with the aid of FPGAs, already employed at the selection early stages.
However, because of the constraints imposed by systems based on FPGAs, Deep Learning algorithm
design is made more difficult. We therefore investigated a pruning strategy for quickly optimizing Deep
Neural Networks under size constraints to fit the resources of FPGAs.

1 Introduction

The Large Hadron Collider (LHC) at CERN produces on average 40 million proton-proton collision
events each second. As a result of the detection of the particles produced in these events in the sensors
of detectors positioned all around the LHC ring, roughly 40k ExaBytes of raw data are generated in
one year of operation 1), Due to bandwidth restrictions, the main general-purpose particle detectors
at the LHC, ATLAS and CMS, discard the majority of collision events through a two-steps selection
mechanisms 2). The initial selection stage, known as the level-1 trigger (L1T), is where the majority of
events are discarded. Its job is to reduce the event rate by 2 orders of magnitude in a few microseconds
(O(1)ps). In the LIT algorithms are implemented as programmable logic on special electronic boards
with field-programmable gate arrays (FPGAs). The events acknowledged by the L1T are then further
processed in the so-called High Level Trigger (HLT) with selection algorithms on readily available CPUs
and GPUs.

Making sure not to discard interesting events is a big challenge, and Deep Learning algorithms
might be useful in this regard. There are several community efforts to explore the possibility to apply
Deep Learning in the selection stages, especially in the L1T, prior to the introduction of any selection
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bias. Recent developments in this field make it possible to deploy Deep Neural Networks (DNNs) on the
FPGAs mounted on the L1T boards 3), However, DNNs have to be adapted to fit the L1T infrastructure.
In this context, we investigated an effective method to resize DNNs by pruning superfluous nodes.

2 Deep Neural Networks

DNNSs are computing systems designed for non-linear learning problems 4), They are based on a collection
of connected basic units or nodes called artificial neurons that are aggregated into layers. Simple neural
network architectures are made of three kinds of layers: the input layer, the output layer, and the hidden

layer. Networks that have more than one hidden layer are called Deep Neural Networks.
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Figure 1: Schematic representation of an artificial neural network with the input layer, the output layer,
and one hidden layer. Source: hittps://commons.wikimedia.org/wiki/File: Colored_neural_network.svg
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Through a process called training, neural networks learn to recognize a pattern in the input data.
During training, nodes convert weighted inputs into outputs: each neuron performs calculations that
comprise a linear combination of the input data, which is then passed through a non-linear function
called activation function. The activation function’s primary goal is to disrupt the model’s linearity.
All these computations are carried out over the entire network: neurons receive inputs and produce a
single output that is sent to multiple other neurons of subsequent layers. The inputs to a neuron may
be the outputs of other neurons or they may be external data (such as images). The goal of recognizing
a pattern in the input data (such as identifying an object in an image, for example) is accomplished by
the outputs of the neural network’s final output neurons (that may, for instance, be the likelihood of an
object appearing in an image). The network’s performance is then evaluated in relation to the expected
output and the network’s various parameters are modified to restart the calculation process in order to
achieve an accurate result.

3 Pruning

Typically DNNs, especially the more effective ones, call for colossal amounts of computation and memory.
These demands don’t always correspond to the FPGAs’ programmable resources (like the number of logic
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units and memory slots), hence DNNs must be optimized before being implemented on FPGAs. Neural

network pruning, which consists in eliminating superfluous structures from an existing network, is a
5)

starting network without suffering too much performance loss.

popular strategy for lowering DNNs resource requirements °/. The goal is to downsize a large, accurate

There are many different strategies to prune a DNN. The most popular pruning techniques are
based on removing single parameters in accordance with a particular ranking determined after the start-
ing network has been trained to convergence 6). The pruned model is then retrained to recover from
performance loss. Typically, pruning and retraining are conducted repeatedly, gradually shrinking the
network. These techniques can be time-consuming as a result. For this reason, we investigated an al-
ternative strategy for shrinking DNNs by removing during training the number of nodes determined by
the user. This strategy works by adding a shadow network - whose neurons have just one connection to
each of the single nodes of the original network - on top of the DNN that needs to be optimized. The
layers of the shadow network contribute to training, as training is optimized for learning with precisely
the required number of nodes: the calculations performed by the shadow nodes during training are such
that their output will be zeroed when they are connected to “undesired” nodes. As a result, some nodes

will be “switched off” and only a fraction of neurons will be used for learning.

4 Tests and results

The aforementioned pruning strategy has been tested to resize a DNN used to identify jets that contain
b-quarks originating from boosted Higgs bosons decay in proton-proton collision events. The H — bb
channel accounts for 58% of all Higgs boson decays 7), and it is therefore important for the investigation
of Higgs boson properties. However, it can be difficult to identify these events in a proton-proton collision
experiment because of the massive, irreducible background coming from QCD multi-jet production. The
DNN used for tests was developed to distinguish between this background and the Higgs boson decay,
without including pile-up effects.

Different networks were pruned during training by varying the number of desired nodes to be used
for learning. Figure 2 shows the background rejection rate as a function of the Higgs tagging efficiency.
A higher rate of background rejection for each tagging efficiency value denotes better DNN performance.
Better performance is achieved with higher number of nodes required, as expected: this suggests that
only the indicated percentage of nodes is actually used for learning, while the remaining nodes have been
“turned off”.

In theory, the pruned DNNs might be retrained as independent models. The results are consistent
with those that can be achieved by pruning during training, as shown in Figure 3, and there is therefore

no need for fine-tuning following pruning.

5 Conclusion

A pruning strategy for reducing the number of DNNs nodes used for learning has been investigated. As
a result, the overall size of the neural network is reduced, with the user ultimately determining its final
dimensions. This makes it possible to adapt Deep Neural Networks to fit the resources of FPGAs used
at the early stages of event selection at the LHC, in the challenging task of making sure not to discard
interesting events.
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Figure 2: Background rejection rate versus Higgs tagging efficiency for different models pruned during
training by varying the number of desired nodes.
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Figure 3: Background rejection rate versus Higgs tagging efficiency for the original model (black), the
model pruned during training (orange) and the retrained pruned model (green).
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