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1 Introduction

Many of the foundational paradoxes of gravitating quantum systems — e.g. black-hole in-

formation loss, eternal-inflation and multiverse issues — arise due to puzzling behaviour

displayed by simple systems at very late times. The simple systems used are often free quan-

tum fields evolving in gravitational backgrounds, often spacetimes with horizons, that are

chosen because explicit calculations can be made. When using these systems to make late-

time inferences an implicit assumption is that it is the interaction with the background that

always dominates, and any other neglected interactions can be treated as perturbations.
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Similarities between the physics of quantum systems in gravitational spacetimes (espe-

cially with horizons) and open systems [1–20] show that this assumption is actually unlikely

to be true. The problem is that open systems (by definition) always have an ‘environment’

whose properties are not measured (in this case, perhaps, the degrees of freedom behind

the horizon). But a perturbative treatment of the interactions with such an environment

essentially always fails at sufficiently late times. Ultimately it fails because the environment

never goes away. Given enough time the effects of any interaction — regardless of how

weak it might be — eventually accumulate to become large. Concretely, no matter how

small an interaction Hamiltonian, Hint, might be, there is eventually a time t for which the

evolution operator, U(t) := exp[−i(H0 + Hint)t], is not well-described by a finite number

of powers of Hint.

In practice this problem usually manifests itself through the phenomenon of ‘secular

growth’, where the coefficients in a perturbative expansion contain growing powers of time.

For example if an observable O(t) is computed in powers of a small coupling g � 1

O(t) =
∑
n

cn(t) gn , (1.1)

then the coefficients cn(t) typically grow without bound as t gets large. Part of the mo-

tivation for using open-system tools [4–11] is that they provide systematic ways to resum

this late-time growth, often allowing perturbative results at short times to be converted

into expressions that for large t include all orders in g2t but drop contributions of order

gnt for n > 2. They thereby promise controlled and reliable approximations for late-time

behaviour that straight-up perturbative methods cannot.

This work accompanies a companion paper [21], which uses these tools to track the

late-time evolution of an Unruh-DeWitt detector [22, 23]: a simple two-level system (or

qubit) as it uniformly accelerates in flat space while coupled to a simple quantum scalar field

(prepared in its Minkowski vacuum). Such a simple system allows these open-system tools

to be explored in a very concrete and explicit way (see also [24–35]). Ref. [21] treats the field

as an environment and integrates it out to set up the Nakajima-Zwanzig equation [36, 37]

describing its perturbative effects for the qubit. This is an integro-differential equation

that is difficult to solve, but which simplifies at late times under certain assumptions

to give an approximate late-time Markovian evolution. In particular much attention is

given to the precise parameter range that controls this approximation. Not surprisingly

the classic transition rates computed for Unruh-DeWitt detectors decades ago [22, 23, 38]

prove to break down at very late times. Evolution at much later times instead describes

thermalization and decoherence as the qubit gets heated to the Unruh temperature.

We here apply open-system tools to a similarly simple late-time question: what hap-

pens to such a qubit (again coupled to a scalar field) moving for very long times along a

co-moving trajectory in de Sitter space. We again identify the relevant master equation for

differential qubit evolution once the field is integrated out, and again find that a Markovian

approximation works at sufficiently late times, asymptotically approaching a thermal state

in much the same manner as in [21]. de Sitter space brings an important complication,

however: the length of time required for this Markovian limit to apply grows like an inverse
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power of the scalar mass if this mass is sufficiently small. That is, the qubit responds to

field self-correlations that become increasingly persistent and extraordinarily long-lived.

As a direct consequence of this, the qubit’s approach to equilibrium becomes extremely

slow in this regime (a phenomenon reminiscent of critical slowing down [39, 40]).

Another new feature of the de Sitter example is the emergence of a non-Markovian

regime for which an approximate form of the late-time evolution can nevertheless be explic-

itly integrated to give a closed-form solution. This allows us to track a portion of the mem-

ory effects that work to foil the Markovian limit, and find a more general solution that set-

tles to the expected late-time thermal state. We again develop precise conditions for when

this solution is a good approximation, and recover the earlier Markovian solution as a limit.

2 Co-moving qubits and fields in de Sitter space

This section reviews for later use some basic properties of de Sitter space, with details of the

qubit/field system to be studied. The section then closes with a statement — following [21]

— of the Nakajima-Zwanzig equation that governs qubit evolution once the scalar field is

integrated out.

The time evolution to be followed in later sections is along the coordinate direction

within the flat slicing of de Sitter space, with line-element

ds2 = gµνdxµdxν =
1

H2η2

(
−dη2 + dx2

)
= −dτ2 + e2Hτdx2 , (2.1)

where H > 0 is the Hubble constant and the conformal time η is related to comoving time

τ by η = −H−1e−Hτ [41], with the negative sign chosen to ensure dη/dτ > 0. The range

−∞ < η < 0 corresponds to −∞ < τ <∞.

This metric is maximally symmetric and so has constant Ricci curvature1

R = −12H2 . (2.2)

2.1 Scalar fields in de Sitter space

We consider a real scalar field with Lagrangian density

L(x) = −1

2

√
−g
[
gµν∂νφ ∂µφ+m2φ2 + ξRφ2

]
(2.3)

which includes a nonminimal interaction with the metric’s Ricci scalar, R, with coupling

parameter ξ. Because the Ricci scalar for de Sitter space is constant, from the point of

view of the scalar field the nonminimal coupling effectively shifts the scalar field’s mass

from m to

M2
eff = m2 − 12ξH2 . (2.4)

1We use Weinberg’s curvature conventions [41], that differ from those of Misner, Thorne and Wheeler [42]

only by an overall sign in the definition of the Riemann tensor.
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The canonical Hamiltonian that generates the scalar field’s evolution2 in τ is therefore

H =

∫
Στ

d3x e3Hτ

[
1

2
φ̇2 +

1

2
e−2Hτ |∇φ|2 +

1

2
M2

effφ
2

]
(2.5)

where Στ is a sheet of fixed comoving time τ . In what follows we take the scalar field to

be prepared in the Bunch-Davies vacuum |BD〉.
Of particular interest for later evaluation of qubit evolution is the scalar field’s Wight-

man function evaluated in this vacuum, which turns out to be given by [43–46]

〈BD|φ(η,x)φ(η′,x′)|BD〉=
H2(1

4−ν
2)

16π cos(πν)
2F1

(
3

2
+ν,

3

2
−ν;2;1+

(η−η′− iε)2−|x−x′|2

4ηη′

)
(2.6)

where 2F1 is the hypergeometric function and ε→ 0+ is an infinitesimal whose presence is

determined by the Wightman boundary conditions and which determines how integrations

should navigate around the singularity in the coincidence limit (where the points (η,x)

and (η′,x′) are lightlike separated).

The parameter ν in (2.6) is defined as the following function of ξ, m and H:

ν :=

√
9

4
−
M2

eff

H2
=

√
9

4
− m2

H2
+ 12ξ . (2.7)

In our conventions the special case of a conformally coupled scalar field is the choice m = 0

and ξ = −1
6 , in which case M2

eff = 2H2 and ν = 1
2 . A minimally-coupled massless (axion-

like) field by contrast satisfies m = ξ = Meff = 0 and so ν = 3
2 . The Wightman function in

the conformally coupled case is particularly simple, reducing to

〈BD|φ(η,x)φ(η′,x′)|BD〉 =

(
H2

4π2

)
ηη′

−(η − η′ − iε)2 + |x− x′|2
. (2.8)

2.2 Qubit/field couplings

To this field we couple a qubit, following the construction used in [21]. The result is an

Unruh-DeWitt detector coupled to a scalar field, along the lines of that first introduced

in [22, 23]. We take the qubit’s free Hamiltonian to be

h0 =
ω0

2
σ3 =

[
ω0/2 0

0 −ω0/2

]
, (2.9)

where ω0 > 0 denotes the splitting between the two qubit energies. We suppose the qubit

sits indefinitely at a fixed position y ∈ R3, and so follows the (geodesic) trajectory of a

co-moving observer

yµ(τ) = [η(τ),y] = [−H−1e−Hτ ,y] (2.10)

2This is a special instance of the Klein-Gordon Hamiltonian

H =

∫
Σt

d3x
√
γ

[
1

2
φ̇2 +

1

2
γij∂iφ∂jφ+

1

2
m2φ2

]
for a static spacetime which admits a foliation with metric ds2 = −dt2 + γij dxi dxj , with Σt a sheet of

fixed x0 = t.
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along which the coordinate τ is the proper time as measured with the spacetime metric

of (2.1).

The Hilbert space of states for the combined qubit/field system is the product of the

Fock space for the field with the qubit’s 2× 2 space of states. The free Hamiltonian acting

on this Hilbert space is then

H0 = H⊗ I + I ⊗ h0 , (2.11)

where I and I are identity operators.3 The total Hamiltonian is H = H0 + Hint 0 where

the qubit/field coupling is described by the interaction Hamiltonian

Hint 0 = g φ
[
y(τ)

]
⊗m , (2.12)

and the dimensionless coupling 0 < g � 1 is small enough to justify a perturbative treat-

ment. We follow common convention and choose m = σ1, but all that really counts is that

m and h do not commute with one another so that Hint 0 drives transitions between the

zeroeth-order qubit energy eigenstates.

Naively one would perform perturbation theory simply by expanding in powers of

Hint 0. It happens, however, that at O(g2) the qubit/field interaction shifts the qubit energy

splitting so that ω := E↑−E↓ = ω0+g2ω1 for calculable ω1. A better choice for perturbation

theory uses the physical value ω in the unperturbed Hamiltonian, and so writes

Hfree = H⊗ I + I ⊗ h with h =
ω

2
σ3 . (2.13)

With this choice H = H0+Hint 0 = Hfree+Hint and so the interaction Hamiltonian acquires

a new counter-term, with

Hint = g φ
[
y(τ)

]
⊗m + I ⊗ g2ω1

2
σ3 . (2.14)

Although not motivated by divergences, this counter-term interaction has an added benefit

inasmuch as the quantity ω1 happens to cancel an ultraviolet divergence that arises at

second order in g.

2.3 Time evolution and the Nakajima-Zwanzig equation

In principle the question of calculating the system’s time evolution perturbatively in powers

of the coupling g is a solved problem. One converts to the interaction picture, by performing

a unitary transformation, O → OI := U †(τ)OU(τ), for any operator O, with

U0(τ) = T exp

(
−i
∫ τ

0
ds H0

)
= e−iHτ ⊗ e−ihτ . (2.15)

As applied to the system’s state (described by its density matrix, ρ) this transformation

removes the ‘free’ part of the evolution, leaving ρ to be evolved by the interaction-picture

Liouville equation
∂ρI

∂τ
= −i

[
V (τ) , ρI(τ)

]
, (2.16)

3Because H0 generates translations in comoving time τ , and there is no need for a time-dilation factor

as in [21].
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where

V (τ) = U †0(τ)HintU0(τ) = g φI [y(τ)]⊗mI(τ) . (2.17)

Here φI(τ,x) := e+iHτφ(x)e−iHτ is the interaction-picture field and the interaction-picture

qubit coupling matrix is

mI(τ) := e+ihτm e−ihτ . (2.18)

Standard arguments then solve eq. (2.16) interatively to any required power of V (τ),

subject to an initial condition, ρ(0), at τ = 0. In what follows we take the field to be

initially prepared in the Bunch-Davies vacuum |BD〉, and assume the initial qubit state to

be uncorrelated with the field degrees of freedom:

ρ(0) = |BD〉 〈BD| ⊗ %0 (2.19)

where %0 is the qubit’s initial 2 × 2 hermitian density matrix, satisfying tr %0 = 1.

But a complete solution for ρ(τ) is overkill if the goal is simply to predict the behaviour

of qubit observables, with no measurements made in the scalar-field sector. For such

observables the time-evolution problem is completely solved if the time-dependence of the

reduced density matrix,

%(τ) := Tr
φ

[
ρ(τ)

]
, (2.20)

is known, with initial condition

%(0) = %0 . (2.21)

In (2.20) the partial trace is only over the field-theory sector (and not also the qubit).

The Nakajima-Zwanzig equation provides a formal solution to the problem of identi-

fying the evolution equation for %(τ) that should replace (2.16). It is obtained by pertur-

batively solving for the evolution of the scalar-field state and using this to eliminate the

scalar completely4 from (2.16), leaving an evolution equation that involves only %.

When the dust settles, a calculation identical to that in [21] shows the qubit’s

interaction-picture reduced density matrix

%I(τ) := e+ihτ%(τ) e−ihτ (2.22)

evolves — at O(g2) — according to the following Nakajima-Zwanzig equation:

∂%I(τ)

∂τ
' g2

∫ τ

0
ds

(
WBD(τ−s)

[
mI(s)%

I(s),mI(τ)
]
+WBD(τ−s)∗

[
mI(τ),%I(s)mI(s)

])
−i
[
g2ω1

2
σ3,%

I(τ)

]
. (2.23)

Here the functionWBD denotes the Bunch-Davies Wightman function 〈BD|φ(x)φ(x′)|BD〉,
evaluated along the qubit’s trajectory

WBD(τ1 − τ2) := 〈BD|φ(τ1,y)φ(τ2,y)|BD〉 . (2.24)

4See appendix A of [21] for more details of how this is done.
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It is the symmetry of the spacetime and the choice of the trajectory (2.10) that ensures

that the Wightman function depends only on the difference τ2 − τ1.

In components, after some matrix algebra (2.23) yields the equations of motion

∂%I11

∂τ
= g2

∫ τ

−τ
dsWBD(s) e−iωs − 4g2

∫ τ

0
ds Re[WBD(s)] cos(ωs)%I11(τ − s) , (2.25)

∂%I12

∂τ
= −ig2ω1 %

I
12(τ)− 2g2

∫ τ

0
ds Re[WBD(s)]e+iωs%I12(τ − s) (2.26)

+ 2g2e+2iωτ

∫ τ

0
ds Re[WBD(s)]e−iωs%I∗12(τ − s) .

where the integration variable are also switched, s→ τ −s. The properties tr%(τ) = 1 and

%†(τ) = %(τ) have also been used to eliminate %22(τ) = 1 − %11(τ) and %21(τ) = %∗12(τ).

Eqs. (2.25) and (2.26) make it clear that the diagonal and off-diagonal components of %

evolve independent of one other.

2.4 The Wightman function along the qubit trajectory

The Nakajima-Zwanzig equation boils all effects of the scalar field to the correlations en-

coded in the Wightman function WBD(τ) evaluated along the qubit trajectory (2.10).

Specializing (2.6) to this trajectory gives the explicit form

WBD(τ) =
H2(1

4 − ν
2)

16π cos(πν)
2F1

(
3

2
+ ν,

3

2
− ν; 2; 1 +

[
sinh

(
Hτ

2

)
− iHε

2

]2
)
. (2.27)

where we remind the reader that ε→ 0+ is taken at the end of any calculation. As is easy

to verify this function satisfies the identities

WBD
∗(τ) =WBD(−τ) (2.28)

and

WBD

(
τ − 2πi/H

)
=WBD(−τ) . (2.29)

This last condition — the Kubo-Martin-Schwinger (KMS) [55, 56] condition — expresses

detailed balance and ultimately ensures that %(τ) eventually asymptotes to a thermal state

with Gibbons-Hawking temperature5 [57]

T =
H

2π
. (2.30)

In the special case of a conformal scalar case — i.e. where M2
eff = 2H2 — the Wightman

function simplifies to

WBD(τ) = − H2

16π2

1[
sinh(Hτ2 )− iHε2

]2 (conformal scalar) , (2.31)

5We remark that if extending the domain of WBD(τ) within an integral to include τ < 0 then one must

choose WBD(τ) ' (Re[W0] + isgn(τ)Im[W0])e−κ|τ | so as to preserve the important property (2.28).
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ν Meff/H Re[WBD(τ)]

ν= iµ, µ> 0 Meff
H
∈
(

3
2
,∞
) H2

√
1+4µ2

√
tanh(πµ)

4π3/2
√
µ

e−
3
2
Hτ sin

(
µHτ+Arg

[
Γ( 3

2
− iµ)Γ(iµ)

])
ν ∈
[
0, 3

2

)
\{1} Meff

H
∈
(
0, 3

2

]
\
{√

5
2

}
− H2

4π5/2
sin(πν)Γ( 3

2
−ν)Γ(ν)e−( 3

2
−ν)Hτ

ν= 1 Meff
H

=
√

5
2

−3H2

8π
e−

5
2
Hτ

Table 1. Leading asymptotic behaviour of Re[WBD(τ)] in the limit Hτ � 1 for several possible

values of Meff/H (details given in appendix A). In the first row ν = iµ lies on the positive imaginary

axis with µ ≡
√
M2

eff/H
2 − 9/4 > 0 ensured because Meff/H > 3

2 . The leading coefficient in the

asymptotic expansion for ν ∈ [0, 1) ∪ (1, 3
2 ) vanishes when ν → 1± which is why there is a separate

row for the special case of ν = 1.

which (after replacing H with the acceleration parameter) agrees with the Wightman func-

tion for a massless field in Minkowski space evaluated along a uniformly accelerated tra-

jectory [21, 58, 59].

As discussed in [21], for the present purposes (late-time evolution) what is important

about expressions (2.27) and (2.31) is their asymptotic form in the limit Hτ � 1. As is

shown (for various choices of parameters) in table 1 the function Re[WBD(τ)] always falls

off exponentially, WBD ∝ e−τ/τc , for large enough τ . This falloff is important because it

makes possible the existence of a simpler Markovian limit, at least for times, τ � τc.

We see from this table that — with one exception — the time-scale τc over which

Re[WBD(τ)] is exponentially suppressed is generically of order the Hubble time. The ex-

ception is close to the massless, minimally coupled case, for which Meff → 0 and ν → 3
2 .

Writing the asymptotic form as

WBD(τ) ' W0 e
−κτ

(
when 0 < Meff <

3

2
H and Hτ � 1

)
, (2.32)

provided M2
eff 6=

5
2 H

2 the parameters W0 and κ are given by (see appendix A for details)

W0 :=
H2

4π5/2
ieiπνΓ

(
3

2
− ν
)

Γ(ν) and κ :=

(
3

2
− ν
)
H . (2.33)

For the limit Meff → 0 both W0 and κ−1 blow up, with asymptotic forms

Re[WBD(τ)] '
(

3H4

8π2M2
eff

)
exp

[
−
M2

effτ

3H

]
(when 0 < Meff � H and Hτ � 1) .

(2.34)

Evidently in the regime 0 < M2
eff . 2H2 the function Re[WBD(τ)] falls off much more

slowly, with the longer-range correlations noted in [2, 30, 60].

For later sections it is also useful to know the subdominant terms in the expansions

about the Hτ → ∞ and Meff/H → 0 limits. The next-to-leading terms in the Meff/H

– 8 –
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Figure 1. A plot of Re[WBD] versus τ for various values of Meff/H. The oscillatory component

visible for Meff/H > 3
2 disappears once Meff/H < 3

2 . The exponential damping occurs over a few

Hubble times (H−1) for M2
eff & 2H2 but becomes much longer as Meff → 0, becoming of order

H/M2
eff in the regime M2

eff � H2.

expansion are

κ '
M2

eff

3H
+

M4
eff

27H3
+ . . . (if Meff � H) , (2.35)

Re[W0] ' 3H4

8π2M2
eff

− (7− 6 ln 2)H2

24π2
+ . . . (if Meff � H) . (2.36)

For Hτ � 1, if the sub-leading corrections to the late-time asymptotic series for WBD(τ)

are defined by

f(τ) :=WBD(τ)−W0 e
−κτ , (2.37)

then f(τ) falls much faster with τ than does WBD(τ) in the limit of vanishing effective

mass. Sub-leading corrections to f(τ) in (2.37) are O(e−Hτ ) even in the Meff/H � 1

limit.6 These asymptotic properties are also visible in the numerical plots given in figure 1.

3 Late-time Markovian behaviour

This section exploits the exponential falloff of the Wightman function, WBD(τ) ' W0 e
−κτ ,

to derive an approximate form for eqs. (2.25) and (2.26) that captures well the late-time

evolution.

3.1 Markovian approximation

The idea behind the approximation is simple: to the extent that one’s interest is in slow

evolution at very late times (i.e. τ � τc) then %(τ) does not vary significantly over the com-

6The sub-leading corrections are O(e−(5/2−ν)Hτ ) ' O(e−Hτ ) when Meff/H � 1. See (A.6) in ap-

pendix A.
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paratively short time-scales over which the integrals in (2.25) and (2.26) have appreciable

support. It should be a good approximation in this regime to Taylor expand

%(τ − s) ' %(τ)− s ∂τ%(τ) + · · · , (3.1)

within the integrand [61, 62], in which case the dependence on %(τ) comes out of the

integral. Keeping only the leading term in this expansion allows (2.25) and (2.26) to be

rewritten in the form

∂%I11

∂τ
' g2

∫ τ

−τ
dsWBD(s) e−iωs − 4g2

∫ τ

0
ds Re[WBD(s)] cos(ωs)%I11(τ) , (3.2)

∂%I12

∂τ
' −ig2ω1 %

I
12(τ)− 2g2

∫ τ

0
ds Re[WBD(s)]e+iωs%I12(τ) (3.3)

+ 2g2e+2iωτ

∫ τ

0
ds Re[WBD(s)]e−iωs%I∗12(τ) .

As quantified below, the error in dropping subdominant terms in the integrand should be

of order (τc ∂τ )n%(τ), and therefore should be small when % only varies slowly over times

of order τc.

Specialization to times τ � τc allows further simplification because in this regime the

limits of integration in (3.2) and (3.3) can also be taken to infinity up to exponentially small

corrections. Switching back to the Schrödinger picture, this allows the above equations to

be written as

∂%11

∂τ
' g2RBD − 2g2CBD%11(τ) , (3.4)

∂%12

∂τ
' −iω%12(τ)− g2CBD%12(τ) + g2(CBD − i∆BD)%∗12(τ) . (3.5)

Here the coefficient functions are defined by the integrals

CBD(ω) := 2

∫ ∞
0

ds Re[WBD(s)] cos(ωs) (3.6)

=
H

4π3
cosh

(πω
H

) ∣∣∣∣Γ(3

4
+
ν

2
+ i

ω

2H

)
Γ

(
3

4
− ν

2
+ i

ω

2H

)∣∣∣∣2 ,
and [63, 64]

RBD(ω) :=

∫ ∞
−∞

ds WBD(s)e−iωs (3.7)

=
H

4π3
e−

πω
H

∣∣∣∣Γ(3

4
+
ν

2
+ i

ω

2H

)
Γ

(
3

4
− ν

2
+ i

ω

2H

)∣∣∣∣2 ,
while

∆BD(ω) := 2

∫ ∞
0

ds Re[WBD(s)] sin(ωs) . (3.8)

The function ∆BD diverges at the s → 0 end of the integration, and its form is evalu-

ated more explicitly in appendix B. We choose to regulate this divergence by making the
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small-distance regulator ε in the Wightman function (2.27) small but finite, leading to a

divergence that is logarithmic in ε whose form is derived more explicitly in appendix B.

Notice also that the disappearance of the quantity ω1 when passing from (3.3) to (3.5)

occurs because we choose ω1 = −∆BD to cancel a term i∆BD %12 in (3.5) in order to ensure

that ω appears in the same way in the evolution of % as should the physical qubit energy

splitting.

The identities (2.28) and (2.29) impose some relations amongst the above integrals.

First, (2.28) implies that Re[WBD(τ)] and Im[WBD(τ)] are even and odd functions in τ ,

respectively, and so

RBD(ω) = CBD(ω) + SBD(ω) , (3.9)

where

SBD(ω) := 2

∫ ∞
0

ds Im[WBD(s)] sin(ωs) . (3.10)

Furthermore, (2.29) implies RBD satisfies

RBD(ω)− e−2πω/HRBD(−ω) = 0 , (3.11)

which is the detailed-balance relation [58] (and so underlies the thermal nature of many

of the late-time equilibrium properties). Because CBD and SBD are even and odd in ω

respectively, the detailed-balance relation also implies

SBD(ω)

CBD(ω)
= − tanh

(πω
H

)
, (3.12)

from which we see

RBD(ω) =
2

e2πω/H + 1
CBD(ω) =

2

e2πω/H − 1
SBD(ω) . (3.13)

3.2 Late-time evolution

The quantity RBD appears throughout the literature on Unruh-DeWitt detectors [23, 38,

58, 59] because it governs the perturbative excitation rate of a qubit that is initially pre-

pared in its ground state: %0 = %vac, where

%vac := |↓〉 〈↓| = (I − σ3)/2 . (3.14)

With this choice %11(0) = %12(0) = 0 and so both %11(τ) and %12(τ) are at most of order g

at later times. Consequently any appearance of these quantities on the right-hand-side of

eqs. (3.4) and (3.5) can be dropped if we wish to compute ∂τ%(τ) only to order g2. This

leads to the standard lowest-order prediction for the rate of accumulation of probability

into the excited qubit state:

∂%11(τ)

∂τ
' g2RBD . (3.15)

As is clear from the above derivation, this rate strictly only applies at times τ � τc
and in this sense is usually interpreted as the qubit’s late-time transition rate. However it
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is also clear that the prediction (3.15) cannot apply at asymptotically late times. Eq. (3.15)

must break down at sufficiently late times because unitarity requires 0 ≤ %11(τ) ≤ 1 for all

τ and so forbids eternally accumulating probability into the state |↑〉 with constant rate.7

What happens at these later times? This is where eqs. (3.4) and (3.5) prove their

worth, because their domain of validity can extend to much later times than their derivation

naively would indicate [5, 21]. Their extended domain of validity arises because — unlike

for (say) eqs. (2.25) and (2.26) or eqs. (3.2) and (3.3) — neither of (3.4) or (3.5) make

explicit reference to the initial time at which the evolution starts. This means that although

they were derived starting from an assumed initial state at τ = 0, they could have equally

well been derived starting at some other initial time, τ1 or τ2. Although the derivation that

starts from τ = τn is only valid over a limited window of time, τ ∈ Sn, to the future of τn,

since it is the same differential equation that is derived for all n, the differential equations

themselves — i.e. eqs. (3.4) and (3.5) — remain valid for the union of all of these intervals:

S = ∪nSn.

This argues that at much later times it is eqs. (3.4) and (3.5) that govern the evolution

of %(τ), and it is the presence of the other terms on their right-hand-side beyond the g2RBD

term that build in the constraints of unitarity that are missing in (3.15). Furthermore, keep-

ing only terms to O(g2) in (3.4) and (3.5) implies that their solutions can be trusted to all

orders in g2τ as g → 0 and τ →∞, though they do not properly capture terms of order gnτ

with n > 2. This is most easily seen by scaling τ → τ̂ := g2τ in eqs. (3.4) and (3.5). We re-

turn to a more careful determination of the domain of validity of eqs. (3.4) and (3.5) below.

What do these equations imply for late-time evolution? Eq. (3.4) has the solution

%11(τ) =
1

e2πω/H + 1
+

[
%11(0)− 1

e2πω/H + 1

]
e−2g2CBDτ (3.16)

where the relation (3.13) has been used to eliminate RBD. Eq. (3.5) similarly integrates to

give

%12(τ) = e−g
2CBDτ

{
%12(0)

[
cos(Στ)− iω

Σ
sin(Στ)

]
+ %∗12(0)

g2CBD − ig2∆BD

Σ
sin(Στ)

}
(3.17)

where

Σ =
√
ω2 − g4(C2

BD + ∆2
BD) . (3.18)

As later sections show, the domain of validity of (3.17) is slightly more complicated

to justify in detail because of the potential disparity in scale between the qubit gap ω and

the O(g2) factors. The discussion is simplest in the ‘non-degenerate’ regime, for which

ω � g2
√
C2

BD + ∆2
BD , (3.19)

however, because then O(ω) and O(g2) effects do not interfere with one another. We

therefore assume (3.19) to be true in what follows (though the limit of smaller ω goes

7In this qubit evolution differs from standard discussions of exponential decays of unstable states. Decays

can proceed indefinitely with constant rate because decay daughters can escape to infinity and so do not

accumulate probability in the same way as does a qubit.
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through similarly, as described in [21]). With this choice we may use Σ ' ω and the

solution (3.17) becomes

%12(τ) ' e−g2CΩτ
{
%12(0)e−iωτ + %∗12(0)

g2CΩ − ig2∆Ω

ω
sin(ωτ)

}
. (3.20)

which is valid for times as late as ωτ ∼ O(ω/(g2CBD)). Note in particular that (3.19)

implies that both g2CBD/ω � 1 and g2∆BD/ω � 1, which are small but not necessarily

as small as O(g2). The assumption (3.19) also implies that the oscillations of (3.20) are

underdamped, in that they are very fast compared to the solution’s decay time.

Because CBD > 0 (see (3.6)) these solutions describe relaxation towards a late-time

static state

lim
τ→∞

%(τ) =

 1

e2πω/H + 1
0

0
1

e−2πω/H + 1

 , (3.21)

which is clearly a thermal state — of the form e−βh/Tr[e−βh] — with temperature given

by the Gibbons-Hawking formula

T =
1

β
=
H

2π
. (3.22)

The relaxation is predicted to be exponential — proportional to e−τ/ξ — with a char-

acteristic time-scale that differs for the diagonal and off-diagonal components of %:

2ξ11 = ξ12 = ξM , where

ξM :=
1

g2CBD
=

4π3

g2H
sech

(πω
H

) ∣∣∣∣Γ(3

4
+
ν

2
+

iω

2H

)
Γ

(
3

4
− ν

2
+

iω

2H

)∣∣∣∣−2

. (3.23)

Asymptotic forms for this expression are given in subsequent sections.

3.3 Validity of the Markovian limit

We next quantify the domain of validity of the Markovian approximation as a function of

the problem’s parameters: H, Meff (or m and coupling ξ), ω, and g.

As emphasized above, the Markovian evolution eqs. (3.4) and (3.5) rely on two con-

ditions. First, the focus must be on late times, τ � τc, compared to the correlation (or

fall-off) time defined by WBD(τ); second, higher terms in the Taylor expansion of %I(τ −s)
in powers of s within the integrand should be negligible. Since Re[WBD(s)] falls off expo-

nentially with s for s� τc, after integration the neglect of derivatives relies on τc∂τ% being

small compared with %.

It is this second condition whose validity imposes constraints on the system parameters.

To see how, recall that the Markovian solutions found above for %I11(τ) and %I12(τ) are linear

combinations of exponentials of the form exp [(−1/ξ + iΦ) τ ], where 1/ξ ∼ g2CBD and the

phase Φ is either zero or ω. Consistency therefore requires | − 1/ξ + iΦ| � 1/τc. Chasing

through the definitions this turns out to imply (see appendix C or [21] for details) the

conditions

g2|∆′BD| � 1 , g2|C′BD| � 1 ,

∣∣∣∣2ωC′BD

CBD

∣∣∣∣� 1 and

∣∣∣∣2ω∆′BD

CBD

∣∣∣∣� 1 , (3.24)
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CBD(ω) C′BD(ω) ∆BD(ω) ∆′BD(ω)

ω
H
� κ

H
' M2

eff
3H2 �1

9H5

4π2M4
eff

− 81H7ω

2π2M8
eff

ω log(Hε)

2π2
+

27H6ω

4π2M6
eff

log(Hε)

2π2
+

27H6

4π2M6
eff

κ
H
' M2

eff
3H2 � ω

H
�1

H3

4π2ω2
− H3

2π2ω3

ω log(Hε)

2π2
+

3H4

4π2ωM2
eff

log(Hε)

2π2
− 3H4

4π2ω2M2
eff

Meff
H
�1� ω

H

ω

4π

1

4π

ω log(eγωε)

2π2

log(eγ+1ωε)

2π2

ω
H
�1 & Meff

H
=
√

2
H

4π2

ω

6H

ω log(Hε)

2π2

log(Hε)

2π2

1� ω
H

& Meff
H

=
√

2
ω

4π

1

4π

ω log(eγωε)

2π2

log(eγ+1ωε)

2π2

ω
H
�1� Meff

H

H

π
e−πMeff/H

πω

H
e−πMeff/H

ω log(Hε)

2π2

log(Hε)

2π2

1� ω
H
� Meff

H

Meff

4π
eπω/He−πMeff/H

Meff

4H
eπω/He−πMeff/H

ω log(eγωε)

2π2

log(eγ+1ωε)

2π2

1� Meff
H
� ω

H

ω

4π

1

4π

ω log(eγωε)

2π2

log(eγ+1ωε)

2π2

Table 2. Asymptotic behaviour of the functions CBD, C′BD, ∆BD and ∆′BD in various regimes

differing in the relative sizes of ω, Meff and H (see appendix B for the ε-dependence for ∆BD and

∆′BD). To illustrate the behaviour of the functions for intermediate values of mass, we provide the

behaviour for the conformal scalar case with Meff =
√

2H. Here ε is the short-distance regulator

for the divergence in ∆BD. In the limit where ω/H � 1 and Meff/H � 1 the functions become

parametrically large (due to a singularity at ω = Meff = 0) — the sub-leading terms in these

asymptotic series are either O(ω/κ) or O(κ/ω) (e.g. in the very first cell 9H5

4π2M4
eff

[1 +O(ω/κ)]) (see

appendix D). Note that in this regime the functions ∆BD and ∆′BD both acquire parametrically

large terms which compete with the ε-divergences.

where primes denote differentiation with respect to ω. We explore the implications of these

conditions in the non-degenerate special case when (3.19) is satisfied, and so∣∣∣∣g2CBD

ω

∣∣∣∣ , ∣∣∣∣g2∆BD

ω

∣∣∣∣� 1 . (3.25)

Similar conditions for validity of the Markovian approximation can also be made

when (3.19) is not satisfied but for simplicity we do not pursue these further here (see,

however, [21]).

To explore the implications of (3.24) for the parameters ω, H, Meff and g it helps

to have asymptotic expressions for the integrals CBD and ∆BD in various limits. These

are summarized for convenience8 in table 2. Since the first two conditions in (3.24) are

proportional to g they tend to be satisfied once g is chosen deep enough in the perturbative

regime. How deep depends on the relative sizes of the other parameters, as can be seen

from Columns 2 and 4 of table 2.

8These functions prove to be very singular in the limit where ω and Meff both vanish, and so their asymp-

totic forms depend in an important way on the relative size of ω/H and Meff/H. See appendix D for details.
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2ωC′BD

CBD

2ω∆′BD

CBD
Markovian Limit?

ω
H �

κ
H '

M2
eff

3H2 � 1 −36H2ω2

M4
eff

4ωM4
eff log(Hε)

9H5
+

6Hω

M2
eff

3

κ
H '

M2
eff

3H2 � ω
H � 1 −4

4ω3 log(Hε)

H3
− 6Hω

M2
eff

7

Meff
H � 1� ω

H 2
4 log(eγ+1ωε)

π
7

ω
H � 1 & Meff

H =
√

2
4π2ω2

3H2

2ω log(Hε)

H
33

1� ω
H & Meff

H =
√

2 2
4 log(eγ+1ωε)

π
7

ω
H � 1� Meff

H

2π2ω2

H2

ω log(Hε)

2πH
e+πMeff/H 3

1� ω
H �

Meff
H

2πω

H

4ω log(eγ+1ωε)

πMeff
e+π(Meff−ω)/H 7

1� Meff
H � ω

H 2
4 log(eγ+1ωε)

π
7

Table 3. Asymptotic forms in different parameter regimes for the two g-independent conditions

for the validity of the Markov approximation, as computed using the asymptotic forms provided in

table 2. The third column indicates whether parameters exist that make the previous two terms

small, without checking whether or not (3.25) is also satisfied. Two checks indicate cases where

ω/H is not required to be small in an Meff/H-dependent way. (Notice in particular that checks

only appear in regimes where ω/H is small).

It is the second two conditions of (3.24) that cannot be ensured simply by making g

small. The implications of the estimates in table 2 for these two quantities are summarized

in table 3. The final column indicates with checks or crosses whether these quantities can

be small enough to allow a Markovian approximation. The first observation emerging from

these tables is that a Markovian approximation necessarily requires ω/H � 1. (That is,

the Markovian approximation can be satisfied only if ω is much smaller than the Gibbons-

Hawking temperature. This result is intuitive because, if ω were much bigger than the

temperature, interactions with the field (which is for the qubit effectively a thermal bath)

become very inefficient at erasing the correlations whose absence underlies the qubit’s

thermalization and Markovian evolution.) Inspection of the last two rows of table 3 shows

that it is the condition |ωC′BD/CBD| � 1 that generically fails if ω � H.

More generally, once ω � H is satisfied conditions (3.24) can also be satisfied at

sufficiently late times for any value of Meff/H by choosing ω and g to be sufficiently small.

In practice, for some choices for Meff the allowed value of ω can be small enough to push
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ω
H �

κ
H '

M2
eff

3H2 � 1 ω
H � 1 & Meff

H =
√

2 ω
H � 1� Meff

H

g2|C′BD(ω)| 81g2H7ω

2π2M8
eff

g2ω

6H

πg2ω

H
e−πMeff/H

g2|∆′BD(ω)|
∣∣∣∣g2 log(Hε)

2π2
+

27g2H6

4π2M6
eff

∣∣∣∣ g2| log(Hε)|
2π2

g2| log(Hε)|
2π2∣∣∣∣2ωC′BD

CBD

∣∣∣∣ 36H2ω2

M4
eff

4π2ω2

3H2

2π2ω2

H2∣∣∣∣2ω∆′BD

CBD

∣∣∣∣ ∣∣∣∣g2 log(Hε)

2π2
+

6Hω

M2
eff

∣∣∣∣ 2ω log(Hε)

H

πω

H
e+πMeff/H

∣∣∣ log(Hε)
2π2

∣∣∣
∣∣∣∣g2CBD(ω)

ω

∣∣∣∣ 9g2H5

4π2ωM4
eff

g2H

4π2ω

g2H

πω
e−πMeff/H

∣∣∣∣g2∆BD(ω)

ω

∣∣∣∣ ∣∣∣∣g2 log(Hε)

2π2
+

27g2H6

4π2M6
eff

∣∣∣∣ g2| log(Hε)|
2π2

g2| log(Hε)|
2π2

Table 4. Leading-order behaviour for the quantities appearing in conditions (3.24) and (3.25)

for the three parameter regimes that receive checks in table 3. Although the first four rows here

duplicate information in table 3 about the size of terms appearin in (3.24), the last two rows compare

this information with the asymptotic form for the combination appearing in condition (3.25).

it to the point where (3.25) is no longer true. In such a case the above formulae need not

hold and a separate analysis must be done (along the lines given in [21]). Two check marks

in table 3 indicate that the required value for ω/H is not parametrically small in a way

that depends sensitively on Meff/H.

Table 4 displays the asymptotic behaviour of all of the conditions in both (3.24)

and (3.25) to see how restrictive condition (3.25) is for situations that have only one

check mark in table 3. We note that satisfying all conditions in (3.24) and (3.25) can

be done in all three cases by making g and ω small enough. The allowed range for ω/H

for which the Markovian limit applies becomes smaller and smaller for Meff/H � 1 and

ω/H . e−πMeff/H is exponentially small when Meff/H � 1.

By contrast no obstruction seems to arise to a Markovian limit when Meff/H is O(1).

We remark that in the regimes of both large and small Meff/H inspection of table 2

shows that the relaxation time-scale ξ = (g2CBD)−1 also becomes parametrically long. For

large Meff/H this seems due to the inefficiency of thermal interactions due to the Boltzmann

suppression of excited field states. For small Meff/H we think the system instead displays

critical slowing down due to the large fluctuations that become possible as Meff → 0.

Positivity of the Markovian limit. A reality check for these approximation schemes is

to verify that the Markovian limit preserves the hermiticity and normalization of the qubit

density matrix. The argument given here to this end closely parallels the one given in [21].
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The simplest way to establish preservation of hermiticity and normalization is to

rewrite the Schrödinger-picture version of eqs. (3.4) and (3.5) as a Lindblad equation [47–

54, 65–68], which has the form

∂%(τ)

∂τ
= −i

[
h +

g2

2
(ω1 + ∆BD)σ3,%(τ)

]
+

3∑
j,k=1

cjk

(
Fj%(τ)Fk

† − 1

2

{
Fk
†Fj ,%(τ)

})
,

(3.26)

for a basis of 2× 2 matrices, Fj = 1
2σj , and a collection of coefficients c = [cjk] (called the

Kossakowski matrix). The utility of writing the evolution in this form is that it is known

to preserve hermiticity and normalization so long as the Kossakowski matrix is positive

semi-definite.

Eqs. (3.4) and (3.5) can indeed be written in the form of (3.26) provided that the

Kossakowski matrix is given by

c =


4g2CΩ 2g2(∆BD − iSBD) 0

2g2(∆BD + iSBD) 0 0

0 0 0

 , (3.27)

where the identity RBD = CBD + SBD from (3.13) has been used. The eigenvalues of the

Kossakowski matrix (3.27) are

λc1 = 0 ,

λc2 = 2g2(CBD +
√
C2

BD + S2
BD + ∆2

BD ) , (3.28)

and λc3 = 2g2(CBD −
√
C2

BD + S2
BD + ∆2

BD ) .

At first sight the third eigenvalue is a problem because it is negative. We now briefly argue

why this is not a problem: we show that within the domain of validity of the Markovian

limit the eigenvalue λc3 is actually consistent with zero.

To see why this is so, consider for illustrative purposes the simplest regime, for which

ω/H � 1 and Meff/H '
√

2. Table 2 shows that in this regime CBD ' H/(4π2) is

systematically larger than is ∆BD ' ω log(Hε)/(2π2). The same is also true for SBD =

−CBD tanh(πω/H) ' −ω/(4π)� CBD — see eq. (3.12). As a consequence the two nonzero

eigenvalues can be approximated by

λc2 = 2g2

(
CBD +

√
C2

BD + S2
BD + ∆2

BD

)
' 2g2CBD (3.29)

and λc3 = 2g2

(
CBD −

√
C2

BD + S2
BD + ∆2

BD

)
' −

g2(S2
BD + ∆2

BD)

CBD
∼ O(g2ω2/H) .

The negative eigenvalue is therefore comparable to terms that were neglected when deriving

the Markovian limit, and is consistent with zero at the order being studied. This also makes

sense: unitarity and hermiticity are properties of the full theory’s density matrix, and

cannot be ruined by any approximation that accurately captures this underlying physics.
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4 Solved non-Markovian evolution when Meff � H

The previous section argues that the Markovian limit only exists when ω � H, and is

most robust in this regime when Meff ∼ H. The Markovian approximation got harder to

achieve in the critical-slowing-down regime where Meff � H.

Fundamentally, Markovian evolution becomes harder to achieve for small Meff because

the Markovian approximation requires a hierarchy between the correlation time τc → κ−1

of the Wightman function and the longer time ξ over which the qubit evolves. As Meff is

decreased the correlation time κ−1 ∝ H/M2
eff grows larger and for generic choices of the

parameters the qubit does not evolve slowly enough for the derivative expansion in the

Nakajima-Zwanzig equation to be a good approximation.

In this section we focus on this Meff � H regime, and show how to solve for the

system’s evolution without requiring access to the Markovian limit. This allows us to track

explicitly the memory effects coming from the very long tail of the Wightman function.

By doing so, we widen the regime of parameter space for which solutions for the late-time

evolution of %(τ) are explicitly known.

4.1 Non-Markovian evolution

We first recall the form of the subleading tail f(τ) defined in (2.37),

f(τ) =WBD(τ)−W0 e
−κτ (4.1)

for τ > 0, with W0 and κ defined in (2.33). In the Meff/H � 1 regime of interest the

leading-order normalization W0 and time-scale 1/κ admit the expansions

1

κ
' 3H

M2
eff

− 1

3H
+ . . . . . . , (4.2)

W0 = Re[W0] + iIm[W0] '
[

3H4

8π2M2
eff

− (7− 6 ln 2)H2

24π2
+ . . .

]
+ i

[
− H2

8π2
+ . . .

]
. (4.3)

In particular the sub-leading tail f(τ) ∼ O(e−Hτ ) falls off exponentially on the much

faster time-scale 1/H than does WBD(τ). Our strategy for solving the Nakajima-Zwanzig

equation is to include the memory effects contained in W0 e
−κτ explicitly and use the

Taylor-expansion argument only for integrals containing the much more quickly-falling

function f(τ).

In doing so, it will be convenient to define two integral transforms (closely related to

CBD and ∆BD) which will prove useful in the critical slowing-down regime. In analogy

to (3.6) and (3.8) we define

C̃BD := 2

∫ ∞
0

ds Re[f(s)] cos(ωs) = CBD −
2Re[W0]κ

κ2 + ω2
, (4.4)

∆̃BD := 2

∫ ∞
0

ds Re[f(s)] sin(ωs) = ∆BD −
2Re[W0]ω

κ2 + ω2
. (4.5)

As can be seen in table 5 these functions along with their ω-derivatives, C̃′BD and ∆̃
′
BD,

are notably better behaved in the Meff/H � 1 regime (as opposed to their counterparts in

table 2 which have singularities at Meff = ω = 0).
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C̃BD(ω) C̃′BD(ω) ∆̃BD(ω) ∆̃
′
BD(ω)

ω
H �

κ
H '

M2
eff

3H2 � 1
(π2 + 3)H

12π2

(15− π2)ω

90H

ω log(Hε)

2π2

log(Hε)

2π2

κ
H '

M2
eff

3H2 � ω
H � 1

(π2 + 3)H

12π2

(15− π2)ω

90H

ω log(Hε)

2π2

log(Hε)

2π2

Meff
H � 1� ω

H

ω

4π

1

4π

ω log(eγωε)

2π2

log(eγ+1ωε)

2π2

Table 5. Leading-order behaviour for the functions C̃BD, C̃
′
BD, ∆̃BD and ∆̃

′
BD in various regimes of

relative sizes of ω, Meff and H, where Meff/H � 1. These functions are markedly better behaved

near (Meff , ω) = (0, 0) than the functions listed in table 2.

The first step is to rewrite the Nakajima-Zwanzig equation in terms of f(τ) by explicitly

expanding WBD(τ) =W0e
−κτ + f(τ) in (2.23), so that

∂%I(τ)

∂τ
' g2

∫ τ

0
ds

([
W0e

−κ(τ−s) + f(τ − s)
] [

mI(s)%I(s),mI(τ)
]

(4.6)

+
[
W∗0e−κ(τ−s) + f(τ − s)∗

] [
mI(τ),%I(s)mI(s)

])
+ i

[
g2∆BD

2
σ3,%

I(τ)

]
,

where we (as before) set the counter-term ω1 = −∆BD. In components (again using

%I22 = 1− %I11 and %I21 = %I∗12 to eliminate %22 and %21) we retrieve the equations of motion

∂%I11

∂τ
= 2g2

τ∫
0

ds [Re[f(s)] cos(ωs) + Im[f(s)] sin(ωs)]

+2g2

τ∫
0

ds e−κs [Re[W0] cos(ωs) + Im[W0] sin(ωs)]

−4g2

∫ τ

0
ds Re[f(s)] cos(ωs)%I11(τ − s)

−4g2Re[W0]

∫ τ

0
ds e−κs cos(ωs)%I11(τ − s) , (4.7)

∂%I12

∂τ
= ig2∆BD %I12(τ)− 2g2

∫ τ

0
ds Re[f(s)]e+iωs%I12(τ − s)

+2g2e+2iωτ

∫ τ

0
ds Re[f(s)]e−iωs%I∗12(τ − s)

−2g2Re[W0]

∫ τ

0
ds e(−κ+iω)s%I12(τ − s)

+2g2Re[W0]e+2iωτ

∫ τ

0
ds e(−κ−iω)s%I∗12(τ − s) . (4.8)

So far these are exactly the same equations as (2.25)–(2.26), just written in a slightly

different manner.
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The new step is to perform the same Taylor expansion of %(τ − s) as before, but only

for those integrals involving f(s). For these integrals this Taylor expansion is a much better

approximation because the function f(τ) is correlated over much shorter times, of order

H−1. Keeping only the leading term in these Taylor expansions then implies

∂%I11

∂τ
' 2g2

τ∫
0

ds [Re[f(s)] cos(ωs) + Im[f(s)] sin(ωs)]

+2g2

τ∫
0

ds e−κs [Re[W0] cos(ωs) + Im[W0] sin(ωs)]

−4g2

∫ τ

0
ds Re[f(s)] cos(ωs)%I11(τ)

−4g2Re[W0]

∫ τ

0
ds e−κs cos(ωs)%I11(τ − s) , (4.9)

∂%I12

∂τ
' ig2∆BD %I12(τ)− 2g2

∫ τ

0
ds Re[f(s)]e+iωs%I12(τ)

+2g2e+2iωτ

∫ τ

0
ds Re[f(s)]e−iωs%I∗12(τ)

−2g2Re[W0]

∫ τ

0
ds e(−κ+iω)s%I12(τ − s)

+2g2Re[W0]e+2iωτ

∫ τ

0
ds e(−κ−iω)s%I∗12(τ − s) , (4.10)

where higher derivatives in the Taylor series are now order (H−1∂τ )n%ij and have been

dropped. Note that the above equations explicitly track convolutions of %I with the slow

correlations ∼ e−κs.
Again replacing the upper limits of integration by ' ∞, but only for the integrals

involving f(s) then leads to

∂%I11

∂τ
' g2RBD−2g2 Re[W0]κ+Im[W0]ω

κ2+ω2
e−κτ cos(ωτ)−2g2 Re[W0]ω−Im[W0]κ

κ2+ω2
e−κτ sin(ωτ)

−2g2C̃BD%
I
11(τ)−4g2Re[W0]

∫ τ

0
ds e−κs cos(ωs)%I11(τ−s), (4.11)

∂%I12

∂τ
' −g2

(
C̃BD−i

2Re[W0]ω

κ2+ω2

)
%I12(τ)+g2e+2iωτ (C̃BD−i∆̃BD)%I∗12(τ) (4.12)

−2g2Re[W0]

∫ τ

0
ds e(−κ+iω)s%I12(τ−s)+2g2Re[W0]e+2iωτ

∫ τ

0
ds e(−κ−iω)s%I∗12(τ−s) ,

which uses the definitions (4.4) and (4.5) and, as before, RBD is given by (3.7). We next

solve these equations explicitly without the need for further approximations. We return

at the end to quantify the domain of validity of dropping the subdominant terms in the

Taylor expansion.

4.2 The non-Markovian off-diagonal equation

It turns out that it is simpler to first solve the off-diagonal equation of motion. Using

the relation %12(τ) = e−iωτ%I12(τ), we transform (4.12) to the Schrödinger-picture, which is
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easier to solve:

∂%12

∂τ
'
(
−g2C̃BD − iω + i

2g2Re[W0]ω

κ2 + ω2

)
%12(τ) + (g2C̃BD − ig2∆̃BD)%∗12(τ) (4.13)

−2g2Re[W0]

∫ τ

0
ds e−κs

[
%12(τ − s)− %∗12(τ − s)

]
We solve this equation by converting it to a system of first-order linear differential equa-

tions. To this end define the three functions

x1(τ) := %12(τ) (4.14)

x2(τ) := %∗12(τ) (4.15)

x3(τ) :=

∫ τ

0
ds e−κs

[
%12(τ − s)− %∗12(τ − s)

]
. (4.16)

We regard x2(τ) and x3(τ) only as auxiliary functons, and our real interest is in the solution

for x1(τ) = %12(τ).

We now show that the functions xi(τ) satisfy a set of coupled first-order differential

equations that are easily solved. In terms of these new variables the equation of mo-

tion (4.13) can be recast as

dx1

dτ
=

(
−g2C̃BD − iω + i

2g2Re[W0]ω

κ2 + ω2

)
x1(τ)+(g2C̃BD−ig2∆̃BD)x2(τ)−2g2Re[W0]x3(τ) .

(4.17)

Taking the complex conjugate of this gives a second evolution equation

dx2

dτ
= (g2C̃BD +ig2∆̃BD)x1(τ)+

(
−g2C̃BD + iω − i2g

2Re[W0]ω

κ2 + ω2

)
x2(τ)+2g2Re[W0]x3(τ) .

(4.18)

Using the property
∫ t

0 ds g(s)h(τ − s) =
∫ t

0 ds g(τ − s)h(s) of the convolution, the defini-

tion (4.16) of x3(τ) may be directly differentiated to yield the third equation,

dx3

dτ
= x1(τ)− x2(τ)− κx3(τ) (4.19)

In vector notation, defining x(τ) =
(
x1(τ), x2(τ), x3(τ)

)
, the above three equations

close as a system of differential equations of the form

dx

dτ
= Ox(τ) (4.20)

with matrix

O :=


−g2C̃BD − iω + i2g2Re[W0]ω

κ2+ω2 g2C̃BD − ig2∆̃BD −2g2Re[W0]

g2C̃BD + ig2∆̃BD −g2C̃BD + iω − i2g2Re[W0]ω
κ2+ω2 2g2Re[W0]

1 −1 −κ

 (4.21)

and initial condition

x(0) =


%12(0)

%∗12(0)

0

 . (4.22)
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Using (4.5) to relate ∆̃BD to ∆BD, the determinant of the matrix O is

detO = −κω2

(
1− 4g2Re[W0]

κ2 + ω2
+

4g2Re[W0]

κ2 + ω2

(
g2∆BD

ω

)
−
g4∆2

BD

ω2

)
6= 0 , (4.23)

which is non-zero in the regime of interest that follows (for which to good approximation

detO ' −κω2). Because O is invertible the unique static solution for the system is

xstatic = 0 . (4.24)

The general solution to (4.21) is given by

x(τ) = eτOx(0) (4.25)

where specifically solving the first component y1(τ) = %12(τ) is of interest. Although the

above matrix exponential can be exactly computed, the resulting solution is extremely

unwieldy — we will instead compute the above solution perturbatively using standard

methods [69, 70]. The above equation of motion can be used to probe various regimes of

small g, ω/H, Meff/H: we demonstrate it’s utility here by perturbing the solution in g � 1.

The dynamics of the matrix exponential are governed by the eigenvalues λO of O,

which can be computed from its characteristic polynomial

0 =
(
λO
)3

+κ

(
1+

2g2C̃BD

κ

)(
λO
)2

+ω2

(
1+

2g2κCBD

ω2
+
g2∆BD

ω

[
4g2Re[W0]

κ2+ω2
− g

2∆BD

ω

])
λO

+κω2

(
1− 4g2Re[W0]

κ2+ω2
+

4g2Re[W0]

κ2+ω2

(
g2∆BD

ω

)
−
g4∆2

BD

ω2

)
. (4.26)

where C̃BD and ∆̃BD have been related to CBD and ∆BD using (4.4)–(4.5) (although a single

factor of C̃BD has been left in the first line of the above). If the qubit-field coupling were

to vanish, the above equation becomes

0 =
(
λO
)3

+ κ
(
λO
)2

+ ω2λO + κω2 (if g = 0) (4.27)

which yields ‘free’ eigenvalues ±iω,−κ. We here seek a solution slightly deviated away from

the above free equation, as a perturbation in g � 1. In doing so, several dimensionless

quantities in (4.26) need to be bounded in order to control the proceeding expansion for

the eigenvalues. It turns out that sufficient conditions to bound the perturbation series are

g2κCBD

ω2
� 1 , (4.28)

g2∆BD

ω
� 1 , (4.29)

g2CBD

κ
' 2g2Re[W0]

κ2 + ω2
� 1 . (4.30)

In particular in the third bound, to leading order uses the fact that

g2CBD

κ
' 2g2Re[W0]

κ2 + ω2
, (4.31)
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which may be easily verified in the regimes of interest (either when κ � ω or ω � κ). In

particular, the bounds g2∆BD/ω � 1 and 2g2Re[W0]/(κ2 + ω2)� 1 ensure that the O(g4)

terms in (4.26) are negligibly small. The remaining O(g2) terms are therefore small given

that g2κCBD/ω
2 � 1 also holds.9

Satisfying these bounds and perturbing the eigenvalues λO in g yields

λO1 ' −iω [1 + . . .]− g2CBD [1 + . . .] , (4.32)

λO2 = λO∗1 , (4.33)

λO3 ' −κ
[
1− 4g2Re[W0]

κ2 + ω2
+ . . .

]
, (4.34)

where the ellipsis denote negligibly small O(g4) combinations of the dimensionless variables

in (4.28)–(4.30). Clearly the real part of each of the three eigenvalues are negative which

means that the solution sinks towards the steady state xstatic = 0. The first two eigenvalues

clearly capture information relating to the Markovian approximation (with the Markovian

time-scale ξM), while the latter eigenvalue corresponds to a novel time-scale ' 1/κ+O(g2).

The right eigenvectors rO corresponding to the eigenvalues (4.33) are

rO1 '


2(ω+ iκ)−g2 CBD(κ+iω)+∆BD(ω+iκ)

ω

−g2 (CBD+i∆BD)(κ−iω)
ω

1

 , rO2 '


−g2 (CBD−i∆BD)(κ+iω)

ω

2(ω− iκ)−g2 CBD(κ−iω)+(ω−iκ)∆BD

ω

1

 ,

rO3 '


g2 4iRe[W0]

κ−iω

−g2 4iRe[W0]
κ+iω

1

 , (4.35)

which can be used to solve for the solution. An ansatz of the form x(τ) =
∑

j cjr
O
j e

λOj τ

explicitly satisfies (4.20), with cj being coefficients that can be perturbatively solved for

using the initial condition (4.25). After a straightforward computation, the solution for

x1(τ) = %12(τ), which then transformed to the interaction-picture is found to be

%I12(τ) ' %12(0)

[
1 +

2g2Re[W0]

(κ− iω)2

]
e−g

2CBDτ (4.36)

+%∗12(0)

[
g2∆BD + ig2CBD

2ω
(1− e+2iωτ )− 2g2Re[W0]

κ2 + ω2

]
e−g

2CBDτ

+

[
−%12(0)

2g2Re[W0]

(κ− iω)2
+ %∗12(0)

2g2Re[W0]

κ2 + ω2

]
e+iωτ e

−κ
[
1− 4g2Re[W0]

κ2+ω2

]
τ
.

This solution contains much more information than the earlier Markovian solution cf. (C.6)

(or (3.20) in the Schrödinger-picture). Note that the bounds (4.28)–(4.30) ensure all

the O(g2) terms are small, as expected (in particular g2CBD/ω � 1 follows from (4.28)

and (4.30) in both regimes ω � κ and κ� ω of interest).

9Note that bound (4.30) necessarily implies that 2g2C̃BD/κ � 1 in the first line of (4.26), as can be

easily verified using table 5.
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Validity relations for the off-diagonal equation. Having established the above non-

Markovian solution, the validity conditions for dropping derivatives in the expansion %I12(τ−
s) ' %I12(τ) must be derived next. The interaction-picture solution (4.36) for %I12(τ) is (as

in section 3.3 before) a linear combination of factors exp
(
[−1/ξ + iΦ]τ

)
where the time-

scales and phases are (ξ,Φ) ∈ {(ξM , 0), (ξM , 2ω), (1/κ, ω)} (ignoring the small corrections

to the time-scale 1/κ for the time being). For this reason, the validity relations are

|C̃BD| �

∣∣∣∣∣∆̃
′
BD

ξ
− C̃′BDΦ

∣∣∣∣∣ and |C̃BD| �

∣∣∣∣∣ C̃
′
BD

ξ
+ ∆̃

′
BDΦ

∣∣∣∣∣ , (4.37)

which are almost the same as (C.14) derived in the Markovian limit in section 3.3 (see

also [21]). The derivation of the Markovian validity relations relies only on the exponential

form of the ansatz exp
(
[−1/ξ + iΦ]τ

)
, which is why it applies here as well. The main

difference in the above is that functions involved are the integral transforms associated

with the correlation function f (rather than WBD as in the Markovian limit).

All that remains is to insert (ξ,Φ) ∈ {(ξM , 0), (ξM , 2ω), (1/κ, ω)} into the relation (4.37)

(where we recall that the Markovian time-scale is defined by 1/ξM = g2CBD). Using (ξM , 0)

and (ξM , 2ω) leads10 to the bounds∣∣∣∣∣g2CBD∆̃
′
BD

C̃BD

∣∣∣∣∣� 1 ,

∣∣∣∣∣g2CBDC̃
′
BD

C̃BD

∣∣∣∣∣� 1 ,

∣∣∣∣∣ω∆̃
′
BD

C̃BD

∣∣∣∣∣� 1 ,

∣∣∣∣∣ωC̃
′
BD

C̃BD

∣∣∣∣∣� 1 . (4.38)

And using (1/κ, ω) (along with the latter two bounds in (4.38) above) leads to the bounds∣∣∣∣∣κ∆̃
′
BD

2C̃BD

∣∣∣∣∣� 1 ,

∣∣∣∣∣κC̃
′
BD

2C̃BD

∣∣∣∣∣� 1 . (4.39)

All six of these bounds need to be satisfied in order for the above non-Markovian solution

to be valid. Note that once again these relations only allow ω/H � 1 (as in the Markovian

case). In table 6, the functions in the above six bounds are provided in the allowed regimes

(where ω/H � 1 and of course Meff/H � 1). We also list the bounds (4.28)–(4.30) for

completeness. The bound in table 6 require less extreme values of g, ω/H and Meff/H to

be satisfied (than that required by the Markovian limit in section 3.3).

Recovery of the Markovian limit. The Markovian solution for %12(τ), which is valid

in the ω/H � κ/H 'M2
eff/3H

2 � 1 regime only (as derived in section 3), is a limit of the

more general solution (4.36). The non-Markovian solution is valid for any Hτ � 1, while

the Markovian approximation is valid for times κτ � 1. Considering times κτ � 1 the

exponentials in (4.36) with time-scales 1/κ become negligible (i.e. e−κτ ' 0), such that

%I12(τ) ' %12(0)

[
1 +

2g2Re[W0]

(κ− iω)2

]
e−g

2CBDτ (4.40)

+%∗12(0)

[
g2∆BD + ig2CBD

2ω
(1− e+2iωτ )− 2g2Re[W0]

κ2 + ω2

]
e−g

2CBDτ .

10Given |a| � 1 and |a− 2b| � 1 then |b| � 1 has been used here.
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ω
H �

κ
H '

M2
eff

3H2 � 1 κ
H '

M2
eff

3H2 � ω
H � 1∣∣∣∣∣g2CBD∆̃

′
BD

C̃BD

∣∣∣∣∣ 27
2π2(π2+3)

g2| log(Hε)|H4

M4
eff

3
2π2(π2+3)

g2| log(Hε)|H2

ω2∣∣∣∣∣g2CBDC̃
′
BD

C̃BD

∣∣∣∣∣ 3(15−π2)
10(3+π2)

g2H3ω

M4
eff

15−π2

30(3+π2)

g2H

ω∣∣∣∣∣ω∆̃
′
BD

C̃BD

∣∣∣∣∣ 6
π2+3

| log(Hε)|ω
H

6
π2+3

| log(Hε)|ω
H∣∣∣∣∣ωC̃

′
BD

C̃BD

∣∣∣∣∣ 2(15−π2)π2

15(3+π2)

ω2

H2
2(15−π2)π2

15(3+π2)

ω2

H2∣∣∣∣∣κ∆̃
′
BD

2C̃BD

∣∣∣∣∣ 2
π2+3

| log(Hε)|M2
eff

H2
2

π2+3

| log(Hε)|M2
eff

H2∣∣∣∣∣κC̃
′
BD

2C̃BD

∣∣∣∣∣ (15−π2)π2

45(3+π2)

M2
effω

H3
(15−π2)π2

45(3+π2)

M2
effω

H3∣∣∣∣g2κCBD

ω2

∣∣∣∣ 3
4π2

g2H4

ω2M2
eff

1
12π2

g2H2M2
eff

ω4∣∣∣∣g2∆BD

ω

∣∣∣∣ ∣∣∣∣g2 log(Hε)

2π2
+ 27

4π2

g2H6

M6
eff

∣∣∣∣ ∣∣∣∣g2 log(Hε)

2π2
− 3

4π2

g2H4

ω2M2
eff

∣∣∣∣∣∣∣∣g2CBD

κ

∣∣∣∣ 27
4π2

g2H6

M6
eff

3
4π2

g2H4

ω2M2
eff

Table 6. Leading-order behaviour of the functions in the validity bounds (4.38) and (4.39) (the sizes

of all which must be � 1), using information from table 5 (and also table 2). The bounds (4.28)–

(4.30) are also included, keeping in mind that g2CBD/κ ' 2g2Re[W0]/(κ2 + ω2) in the regimes

quoted. Note that some of the bounds are trivially satisfied in the quoted regimes (for example

|κC̃
′
BD/(2C̃BD)| � 1).

Furthermore when the Markovian validity relations (given in table 4) are satisfied11 then

the combination 2g2Re[W0]
κ2+ω2 is negligibly small. Using this fact it follows12 that

%I12(τ) ' %12(0)e−g
2CBDτ + %∗12(0)

g2∆BD + ig2CBD

2ω
(1− e+2iωτ )e−g

2CBDτ

which is precisely the solution for the Markovian off-diagonal equation (see (C.6) in the

interaction-picture).

11This follows for example by noting ω/κ . O(g2) when the Markovian condition |ω∆′BD/CBD| � 1 is

satisfied. In this case 2g2Re[W0]

κ2+ω2 ' g2CBD
κ

= g2CBD
ω
× ω

κ
' 0 within the approximations used.

12In the ω � κ regime, the factor 2g2Re[W0]

(κ−iω)2
= 2g2Re[W0]

κ2+ω2 [κ
2−ω2

κ2+ω2 + i κω
κ2+ω2 ] is negligible when 2g2Re[W0]

κ2+ω2 is

negligible.
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4.3 The non-Markovian diagonal equation

The solution to the non-Markovian diagonal equation (4.11) follows through in much the

same manner, so we provide a more concise overview of its derivation. As in section 4.2, the

equation can be converted to a system of first-order linear differential equations. Defining

the vector of variables y(τ) :=
(
y1(τ), y2(τ), y3(τ), y4(τ), y5(τ)

)
where

y1(τ) := %I11(τ) (4.41)

y2(τ) :=

∫ τ

0
ds e−κs cos(ωs)%I11(τ − s) (4.42)

y3(τ) :=

∫ τ

0
ds e−κs sin(ωs)%I11(τ − s) (4.43)

y4(τ) := e−κτ cos(ωτ) (4.44)

y5(τ) := e−κτ sin(ωτ) , (4.45)

and differentiating these functions makes the system of differential equations close again to

ẏ(τ) = Dy(τ) + b (4.46)

where

D :=



−2g2C̃BD −4g2Re[W0] 0 −2g2 Re[W0]κ+Im[W0]ω
κ2+ω2 −2g2 Re[W0]ω−Im[W0]κ

κ2+ω2

1 −κ −ω 0 0

0 ω −κ 0 0

0 0 0 −κ −ω
0 0 0 ω −κ


(4.47)

and b :=



g2RBD

0

0

0

0


, subject to initial condition y(0) =



%11(0)

0

0

1

0


. (4.48)

The determinant detD = −2g2CBD(κ2 + ω2)2 6= 0 implies that D is invertible. The unique

steady-state solution is then given by ystatic = −D−1b. Using (D−1)11 = −1/(2g2CBD)

means that the steady-state solution for %static
11 = ystatic

1 is

%static
11 = −(D−1)11 g

2RBD =
RBD

2CBD
=

1

e2πω/H + 1
(4.49)

reproducing the expected thermal result. The general solution to (4.46) is

y(τ) = eτD
(
y(0) + D−1b

)
− D−1b (4.50)

which shows that the matrix exponential governs the approach to the thermal steady

state. Again, the eigenvalues λD of the matrix D govern the dynamics of the matrix
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exponential, which are the roots of the characteristic equation

0 =
(

(λD)2 + 2κλD + κ2 + ω2
)(

(λD)3 + 2κ

[
1 +

g2C̃BD

κ

]
(λD)2 (4.51)

+(κ2 + ω2)

[
1 +

4g2κCBD

κ2 + ω2
− 4g2Re[W0](κ2 − ω2)

(κ2 + ω2)2

]
λD + 2g2CBD(κ2 + ω2)

)
.

As a perturbation in g � 1 the above yields eigenvalues,

λD1 ' −2g2CBD [1 + . . .] ,

λD2 ' −κ
[
1− 2g2Re[W0]

κ2 + ω2
+ . . .

]
− iω

[
1 +

2g2Re[W0]

κ2 + ω2
+ . . .

]
,

λD3 = λD∗2 , (4.52)

λD4 = −κ− iω ,
λD5 = −κ+ iω ,

where the last two eigenvalues are exact. In performing the above expansion the

bounds (4.28) and (4.30), repeated for convenience,

g2κCBD

ω2
� 1 , (4.53)

g2CBD

κ
' 2g2Re[W0]

κ2 + ω2
� 1 , (4.54)

are sufficient to control the expansion of the eigenvalues (4.52). The reason for this is that13

4g2κCBD

κ2 + ω2
= 4× g2κCBD

ω2
× 1

(κ/ω)2 + 1
� 1 (4.55)

4g2Re[W0](κ2 − ω2)

(κ2 + ω2)2
= 2× 2g2Re[W0]

κ2 + ω2
× (κ/ω)2 − 1

(κ/ω)2 + 1
� 1 (4.56)

which bounds the O(g2) terms in the second line of the characteristic equation (4.51). As

before, g2C̃BD/κ� 1 on account of (4.54).

The solution relaxes towards the thermal steady state here too with time-scales ξM/2

and ' 1/κ. A tedious calculation results in the perturbative solution for x1(τ) = %I11(τ)

where

%I11(τ) ' 1

e2πω/H + 1
+

[
%11(0)− 1

e2πω/H + 1
− 2g2Re[W0]

κ2 + ω2

(
1− 2(κ2 − ω2)

κ2 + ω2

)]
e−2g2CBDτ

+
2g2Re[W0]

κ2 + ω2

[(
1− 2(κ2 − ω2)%11(0)

κ2 + ω2

)
cos

([
1 +

2g2Re[W0]

κ2 + ω2

]
ωτ

)
(4.57)

−
(

Im[W0]

Re[W0]
− 4κω%11(0)

κ2 + ω2

)
sin

([
1 +

2g2Re[W0]

κ2 + ω2

]
ωτ

)]
e
−
[
1− 2g2Re[W0]

κ2+ω2

]
κτ

which is real-valued and again valid for Hτ � 1.

13In (4.55) the function 0 < 1/(x2+1) ≤ 1 appears, and in (4.56) the function −1 ≤ (x2 − 1)/(x2 + 1) < 1

appears (with x → κ/ω). Since these O(1) functions come multiplied here with the small dimensionless

variables shown, these terms are bounded.
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The validity conditions are again derived with an exponential ∼ exp ([−1/ξ + iΦ] τ)

ansatz, which leads to linear combinations

%I11(τ − s) ' %I11(τ)− s%̇11(τ) + . . .→ C̃BD − ∆̃
′
BD

(
−1

ξ
+ iΦ

)
+ . . . . (4.58)

in the Nakajima-Zwanzig equation. Bounding the derivatives in the Taylor series here only

requires |C̃BD| � |∆̃
′
BD|
√

1/ξ2 + Φ2 with (ξ,Φ) ∈ { (ξM/2, 0), (1/κ,±ω)} and so this leads

to the validity relations∣∣∣∣∣2g2∆̃BDCBD

C̃BD

∣∣∣∣∣ � 1 and

∣∣∣∣∣2g2∆̃BD

√
κ2 + ω2

C̃BD

∣∣∣∣∣ � 1 (4.59)

The bounds in table 6 (that were set when solving the off-diagonal non-Markovian solution)

are sufficient to satisfy the above bounds also.

Finally, as before it is also of no surprise that the above solution simplifies to the

Markovian solution

%I11(τ)→ 1

e2πω/H + 1
+

[
%11(0)− 1

e2πω/H + 1

]
e−2g2CBDτ (4.60)

when the limit κτ � 1 is taken, and factors of g2CBD/κ ' 2g2Re[W0]/(κ2 + ω2) are

neglected (as demanded in the ω � κ Markovian regime).

4.4 Interacting field theories and secular growth

Issues of secular growth can be explored as in our study of the accelerated qubit in

Minkowski space [21, 71] by adding a λφ4 interaction to the massless theory, which we

briefly discuss here. Including an self-interaction

Hλ =
λ

4!

∫
Σt

d3x φ4 ⊗ I (4.61)

to the Hamiltonian H introduces secularly growing terms [3, 70, 72–86] that again can

be resummed by using a coupling-dependent effective mass, which for nominally massless

particles has size [2, 87–90]

M2
eff → M2

λ =

√
3λ

4π
H2 , (4.62)

which is very small in that 0 < Mλ/H � 1, and shows the characteristic non-analytic

dependence on λ expected from a resummation.

In the interacting theory the effective mass Mλ therefore lies in precisely in the regime

of parameter space associated with critical slowing down. At lowest-order in the expansion

of the kernel in the Nakajima-Zwanzig equation (see [21]), the equations of motion are

unaltered by the introduction of Hλ. For this reason, the entire earlier analysis applies

here with the mass replaced with Mλ, and in particular the non-Markovian analysis in the

critical slowing down regime. The qubit relaxes with time-scales

1

κ
→ 3H

M2
λ

' 12π√
3λH

and ξM =
1

g2CBD
'

{
λ

12g2H
, ω
H �

√
3λ

12π

4π2ω2

g2H3 ,
√

3λ
12π �

ω
H

(4.63)

where of course the time-scales must satisfy the validity relations in table 6.
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5 Conclusions

The Markovian approximation provides a simplistic description of the qubit state when

the evolution is constrained to be extremely slow compared to the scales over which the

Wightman function varies. Of great interest in this work is the critical slowing down

regime, where the effective mass Meff of the scalar field is small compared to the de Sitter

Hubble scale H. Here the correlation time for the Wightman function is ∼ H/M2
eff , which

is large compared to the Hubble time 1/H.

The Markovian regime constrains the relative sizes of the parameters in the problem

— in this case, the qubit gap ω, the qubit-field coupling g, as well as Meff and H. As

a general statement, bounding derivatives in a Taylor expansion %I(τ − s) ' %I(τ) + . . .

ensures a heirarchy ω � H so that large oscillations do not violate the assumption of slow

qubit evolution. Precise validity relations for the Markovian regime have been collected

in this study, which become stringent to satisfy in the critical slowing down regime where

Meff � H. Although a Markovian limit can be controlled in the critical slowing down

regime, it interestingly constrains a hierarchy ω � M2
eff/(3H) � H (where in particular

the regime M2
eff/(3H)� ω � H is never Markovian).

A non-Markovian analysis in the critical slowing down regime is also applied in this

work, where the memory effects introduced by the slow decay of the Wightman function

are accounted for. This allows for a more detailed solution for the qubit evolution, which

also allows access to solutions in the M2
eff/(3H)� ω � H regime. Sufficient validity rela-

tions are derived (which are slightly less stringent to satisfy than those in the Markovian

limit), and the Markovian solutions are recovered as a limit of the non-Markovian solutions

derived. The basic non-Markovian analysis in this work comes with considerable effort, so

seemingly a lesson to be learned in the larger scope of Open EFT methods is that Marko-

vianity is much easier to control than tracking even a small degree of non-Markovian effects.
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A Late-time asymptotics for the Bunch-Davies Wightman function

Here we derive the details of table 1 from section 2.4. We begin with the analytic contin-

uation of the Gauss hypergeometric function [94]

2F1 (a, b; c; z) =
Γ(b− a)Γ(c)

Γ(b)Γ(c− a)
(−z)−a 2F1

(
a, a− c+ 1; a− b+ 1;

1

z

)
(A.1)

+
Γ(a− b)Γ(c)

Γ(a)Γ(c− b)
(−z)−b 2F1

(
b, b− c+ 1; b− a+ 1;

1

z

)
,
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which is valid for a− b /∈ Z and z /∈ (0, 1). Using the first term in the series representation

of 2F1 we get the |z| → ∞ asymptotics in the case that a− b /∈ Z, where

2F1 (a, b; c; z) ' Γ(b− a)Γ(c)

Γ(b)Γ(c− a)
(−z)−a +

Γ(a− b)Γ(c)

Γ(a)Γ(c− b)
(−z)−b . (A.2)

Using the identity Γ( 3
2 − ν)Γ(3

2 + ν) = π sec(πν)(1
4 − ν

2) we write the Wightman func-

tion (2.27) as

WBD(τ) =
H2Γ(3

2 + ν)Γ(3
2 − ν)

16π2 2F1

(
3

2
+ ν,

3

2
− ν; 2; 1 +

(
sinh

(
Hτ

2

)
− iHε

2

)2
)
.

(A.3)

Then in the limit Hτ � 1 and for 2ν /∈ Z the Wightman function (2.27) takes the approx-

imate form

WBD(τ) ' H2

16π2

[
Γ(−2ν)Γ(3

2 + ν)

Γ(1
2 − ν)

(−z(τ))−
3
2
−ν +

Γ(2ν)Γ(3
2 − ν)

Γ(1
2 + ν)

(−z(τ))−
3
2

+ν

]
, (A.4)

where z(τ) = 1 +
(

sinh(Hτ2 ) − iHε2
)2 ' 1

4e
Hτ and we have used zΓ(z) = Γ(z + 1). Note

the above does not capture the asymptotics for ν ∈ {0, 1
2 , 1} (equivalently Meff/H ∈

{3
2 ,
√

2,
√

5
2 }). Simplifying this,

WBD(τ) ' H2

4π5/2

[
Γ(−ν)Γ

(
3

2
+ ν

)
e−( 3

2
+ν)(Hτ+iπ) + Γ(ν)Γ

(
3

2
− ν
)
e−( 3

2
−ν)(Hτ+iπ)

]
(A.5)

where we have used the duplication formula Γ(z)Γ(z + 1
2) = 21−2z√πΓ(2z). For ν ∈

(0, 3
2) \ {1

2 , 1}, we only need to keep the rightmost term in (A.5) (which is leading-order)

giving us

WBD(τ) ' H2

4π5/2
ieiπνΓ(ν)Γ

(
3

2
− ν
)
e−( 3

2
−ν)Hτ +O

(
e−( 3

2
+ν)Hτ) . (A.6)

Taking the real part of the above yields

Re[WBD(τ)] ' − H2

4π5/2
sin(πν)Γ

(
3

2
− ν
)

Γ(ν)e−( 3
2
−ν)Hτ + O

(
e−( 3

2
+ν)Hτ) . (A.7)

A word of caution on the above asymptotic form when the limit Meff/H � 1 is also

taken: the sub-leading corrections (coming from higher-order terms in the hypergeometric

series in (A.1)) are actually O(e−(5/2−ν)Hτ ) ∼ O(e−Hτ ) as noted in (2.37) (in the limit

Meff/H � 1 this is a slightly slower falloff than O
(
e−(3/2+ν)Hτ

)
∼ O

(
e−3Hτ

)
written in

the above).

For the case of ν = iµ where µ =
√
M2

eff/H
2 − 9/4 (when Meff/H > 3/2), we write

the relevant factors in polar form such that

WBD(τ) ' H2

4π3/2
ie−

3
2
Hτ

∣∣∣∣Γ(−iµ)Γ

(
3

2
+ iµ

) ∣∣∣∣[e−iµHτ+µπ−iArg[Γ(iµ)Γ( 3
2
−iµ)] (A.8)

+eiµHτ−µπ+iArg[Γ(iµ)Γ( 3
2
−iµ)]

]
.
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Taking the real part of the above yields the oscillatory

Re[WBD(τ)] ' H2

4π3/2

√
1 + 4µ2

µ
tanh(πµ) e−

3
2
Hτ sin

(
µHτ + Arg

[
Γ

(
3

2
− iµ

)
Γ(iµ)

])
.

(A.9)

The asymptotics for ν = 1
2 (the conformal case with Meff/H =

√
2) is trivial given

the representation (2.31). The conformal case does not require an extra row in table 1

since it agrees with the limits ν → 1
2

±
of (A.7) . For the cases ν ∈ {0, 1} (or equivilently

Meff/H ∈ {3/2,
√

5/2}) we use the analytic continuation for b− a = m ∈ Z, where

2F1 (a,a+m;c;z) =
Γ(c)(−z)−a−m

Γ(a+m)Γ(c−a)

∞∑
n=0

Γ(a+n+m)Γ(1−c+a+n+m)

Γ(a)Γ(1−c+a)n!(n+m)!
z−n (A.10)

× [log(−z)+hn]+
Γ(c)

Γ(c−a)
(−z)−a

m−1∑
n=0

Γ(a+n)Γ(m−n)

Γ(a)Γ(c−a−n)n!
z−n,

with hn ≡ ψ0(1 +m+n) +ψ0(1 +n)−ψ0(a+m+n)−ψ0(c−a−m−n) and ψ0(z) = Γ′(z)
Γ(z)

being the digamma function [94]. Taking the leading-order terms for ν ∈ {0, 1}, it follows(
ν = 0 or Meff =

3

2
H

)
WBD(τ) ' −H

2

8π
e−

3
2
Hτ (A.11)(

ν = 1 or Meff =

√
5

2
H

)
WBD(τ) ' −3H2

8π
e−

5
2
Hτ (A.12)

Note that taking ν → 0+ in the asymptotic form (A.7) results in precisely (A.11), so

this case does not require an extra row in table 1.

B ε-dependence of divergences in ∆BD and ∆′
BD

Here we derive the asymptotics for the divergent function ∆BD. Using the Wightman func-

tion (A.3), but with a small-distance regulator ε. The integral (3.8) for ∆BD is explicitly14

∆BD = 2 lim
ε→0+

∫ ∞
0

ds sin(ωs) (B.1)

×Re

H2Γ(3
2 + ν)Γ(3

2 − ν) 2F1

(
3
2 + ν, 3

2 − ν; 2; 1 + sinh(H(s−iε)
2 )2

)
16π2

 .
We cannot take the limit ε→ 0+ here, so we keep ε small (compared to the other scales) but

finite. For s approaching the coincident limit, the Wightman function has the behaviour

WBD(s) ' − 1

4π2(s− iε)2
. (B.2)

We proceed in the same manner as the analogous calculation in [21] by subtracting and

adding (B.2) in the expression for ∆BD giving

∆BD = ∆
(divergent)
BD + ∆

(finite)
BD (B.3)

14We replace sinh( as
2

)− iHε
2
→ sinh( a[s−iε]

2
) relative to the form in (A.3).
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where

∆
(divergent)
BD = 2

∫ ∞
0

ds sin(ωs) Re

[
− 1

4π2(s− iε)2

]
(B.4)

and ∆
(finite)
M = 2

∫ ∞
0

ds sin(ωs) (B.5)

×Re

[
H2Γ(3

2 + ν)Γ(3
2 − ν) 2F1

(
3
2 + ν, 3

2 − ν; 2; 1 + sinh(H(s−iε)
2 )2

)
16π2

+
1

4π2(s− iε)2

]
.

The divergent part ∆
(divergent)
BD was computed in [21], where15

∆
(divergent)
BD =

ω

2π2

[
cosh(ωε)chi (ωε)− sinh(ωε)shi (ωε)

]
' ω

2π2

[
log(eγωε) +O(ω2ε2)

]
.

(B.6)

in the ωε� 1 limit (using the expansions chi(z) ' γ+log(z)+O(z2) and shi(z) ' z+O(z3)

for 0 < z � 1). In contrast to this, the limit ε → 0+ can be safely taken in the integral

∆
(finite)
BD where

∆
(finite)
BD =

H

2π2

∫ ∞
0

ds sin
( ω
H
z
)

(B.7)

×

(
Re

[
Γ(3

2 + ν)Γ(3
2 − ν) 2F1

(
3
2 + ν, 3

2 − ν; 2; cosh2(z/2)
)

4

]
+

1

z2

)
,

where the integration variable has also been scaled to s→ z = Hs. Since the argument of

the hypergeometric function in (B.7) is greater than unity, we use the analytic continua-

tion (A.1) so that

∆
(finite)
BD =

H

2π2

∫ ∞
0

ds sin
( ω
H
z
)

(B.8)

×
(

Re

[
Γ(−ν)Γ(3

2 +ν)
(
−4cosh2(z/2)

)− 3
2
−ν

2F1

(
3
2 +ν, 1

2 +ν;1+2ν; sech2(z/2)
)

√
π

+
Γ(ν)Γ(3

2−ν)
(
−4cosh2(z/2)

)− 3
2

+ν
2F1

(
3
2−ν,

1
2−ν;1−2ν; sech2(z/2)

)
√
π

+
1

z2

)
,

which is valid for 2ν /∈ Z. Relating the above hypergeometric functions to associated

Legendre polynomials of the first kind, through the formula [91] (with x > 0)

2F1(a, b; 2b;x) =

√
π

Γ(b)
x−b+

1
2 (1− x)

b−a
2
− 1

4P
−b+ 1

2

a−b− 1
2

(
2− x

2
√

1− x

)
(B.9)

15Where chi and shi are respectively the hyperbolic cosine and sine integral functions [92], defined by

chi(z) := γ + log(z) +

∫ z

0

dt
cos(t)− 1

t
and shi(z) := −π

2
−
∫ z

0

dt
sin(t)

t
.
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and then computing the real part in (B.8) yields (despite the condition in (B.8), this

formula is valid for 2ν ∈ Z as well)

∆
(finite)
BD =

H

2π2

∫ ∞
0

ds sin
( ω
H
z
) (
−
√
π

8
csch

3
2 (z) Γ

(
3

2
+ ν

)
P−ν1

2

(cothz) (B.10)

−
√
π

8
csch

3
2 (z) Γ

(
3

2
− ν
)
P ν1

2

(cothz) +
1

z2

)
.

We find no way to analytically compute (B.10) here, although this form is easier to use for

numerical integration with computer algebra systems. Numerical investigation reveal the

logarithmic ε-dependences (in terms of Hε� 1 or ωε� 1) given in table 2 (differentiating

these forms with respect to ω leads to the ε-divergences for ∆′BD).

C Conditions for the validity of the Markovian limit

For a more detailed derivation of the Markovian limit, we direct the reader to [21]. Begin-

ning from the Nakajima-Zwanzig equation, a Taylor series %I(τ − s) ' %I(τ)− s%̇I(τ) + . . .

has been applied so that

∂%I11

∂τ
' g2

∫ τ

−τ
ds WBD(s)e−iωs (C.1)

−4g2

∫ τ

0
ds Re[WBD(s)] cos(ωs)

[
%I11(τ)− s∂%

I
11

∂τ
+ . . .

]
,

∂%I12

∂τ
' ig2∆BD%

I
12(τ)− 2g2

∫ τ

0
ds Re[WBD(s)]e+iωs

[
%I12(τ)− s∂%

I
12

∂τ
+ . . .

]
(C.2)

+ 2g2e+2iωτ

∫ τ

0
ds Re[WBD(s)]e−iωs

[
%I∗12(τ)− s∂%

I∗
12

∂τ
+ . . .

]
,

where we note that we have already specified the counter-term as ω1 = −∆BD as in section 3

(so that ω is the physical qubit gap). Since late times τ � τc are here being probed (with τc
the correlation time ofWBD), the limits on the integral can be approximated by ' ∞. Using

the definitions (3.7), (3.6) and (3.8) this means that the above equations are approximately

given by

∂%I11

∂τ
' g2RBD − 2g2

[
CBD%

I
11(τ)−∆′BD

∂%I11

∂τ
+ . . .

]
(C.3)

∂%I12

∂τ
' −g2

[
CBD%

I
12(τ) +

(
∆′BD − iC′BD

) ∂%I12

∂τ
+ . . .

]
(C.4)

+g2e+2iωτ

[
(CBD − i∆BD)%I12(τ) +

(
∆′BD + iC′BD

) ∂%I12

∂τ
+ . . .

]
.

where ′ denotes an ω-derivative.

From here we note the form of the Markovian solutions in (3.16) in (3.20), and switch

to the interaction-picture via (2.22) where

%I(τ) := e+ihτ%(τ)e−ihτ . (C.5)
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A short calculation reveals that %I11(τ) = %11(τ) and %I12(τ) = e+iωτ%12(τ). This means that

the diagonal solution (3.16) is unchanged in the interaction-picture, while the off-diagonal

solution is

%I12(τ) ' %12(0)e−τ/ξM + %∗12(0)

(
g2∆BD

2ω
+ i

g2CBD

2ω

)
(1− e2iωτ )e−τ/ξM (C.6)

which is of course given in the non-degenerate regime (where ω � g2
√
C2

BD + ∆2
BD ). To

bound the derivatives we use interaction-picture ansatzes of the form

%I11(τ) ' A1 +A2 e
−2τ/ξM (C.7)

%I12(τ) ' B1 e
−τ/ξM +B2 e

−τ/ξM+2iωτ =
∑

j=1,2
Bje

−τ/ξM+iΦjτ (C.8)

using 1/ξM = g2CBD from (3.23),and defining the phases Φ1 = 0 and Φ2 = 2ω for the

off-diagonal ansatz (Aj , Bj ∈ C are placeholders for the time-independent amplitudes in

the corresponding solutions). These ansatzes will be used to bound the derivative terms

in (C.3) and (C.4).

It is simpler to begin with the diagonal equation. Using the ansatz %I11(τ) ∝ e−2τ/ξM

results in the r.h.s. of (C.3) containing terms

∂%I11

∂τ
⊃ −2g2A2 e

− 2τ
ξM

[
CBD −

2∆′BD

ξM
+ . . .

]
. (C.9)

To neglect the derivatives here such that %I11(τ − s) ' %I11(τ) therefore means to satisfy the

bound

|CBD| �
∣∣∣∣2∆BD

ξM

∣∣∣∣ . (C.10)

To derive validity relations for the off-diagonal equation, a totally analogous proce-

dure is followed. Using the earlier ansatz (C.8) which is a linear combination of terms

∝ Bj e−τ/ξM+iΦjτ , the r.h.s. of (C.4) contains terms

∂%I12

∂τ
⊃ −g2Bj e

− τ
ξM

+iΦjτ
[
CBD +

(
∆′BD − iC′BD

)(
− 1

ξM
+ iΦj

)
+ . . .

]
(C.11)

+g2e+2iωτB∗j e
− τ
ξM
−iΦjτ

[
(CBD − i∆BD) +

(
∆′BD + iC′BD

)(
− 1

ξM
− iΦj

)
+ . . .

]
.

Dropping the derivatives in the Taylor series therefore means to satisfy the bounds

|CBD| �
∣∣∣∣(∆′BD − iC′BD

)(
− 1

ξM
+ iΦj

)∣∣∣∣ , (C.12)

|CBD − i∆BD| �
∣∣∣∣(∆′BD + iC′BD

)(
− 1

ξM
− iΦj

)∣∣∣∣ . (C.13)

Since |CBD− i∆BD| ≥ |CBD|, bounding the first condition automatically bounds the second.

In addition to this, |CBD| is larger than each of the real and imaginary parts of the complex

number on the inside of the modulus in (C.12). This implies that

|CBD| �
∣∣∣∣∆′BD

ξM
− C′BDΦj

∣∣∣∣ and |CBD| �
∣∣∣∣C′BD

ξM
+ ∆′BDΦj

∣∣∣∣ (C.14)
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are sufficient to bound the derivatives and end up with the desired Markovian equation of

motion. For Φ1 = 0, the above bounds imply

|CBD| �
∣∣∣∣∆′BD

ξM

∣∣∣∣ and |CBD| �
∣∣∣∣C′BD

ξM

∣∣∣∣ , (C.15)

the first of which is essentially the same as (C.10) (up to a factor of 2). These can be put

in the more useful form

1

ξM
�
∣∣∣∣ CBD

∆′BD

∣∣∣∣ and
1

ξM
�
∣∣∣∣CBD

C′BD

∣∣∣∣ . (C.16)

On the other hand, for Φ2 = 2ω the earlier bounds imply

|CBD| �
∣∣∣∣∆′BD

ξM
− 2ωC′BD

∣∣∣∣ and |CBD| �
∣∣∣∣C′BD

ξM
+ 2ω∆′BD

∣∣∣∣ . (C.17)

By explicitly using 1/ξM = g2CBD in the validity relations (C.15) and (C.17), these can be

put into the simpler forms

g2|∆′BD| � 1 , g2|C′BD| � 1 ,

∣∣∣∣g2∆′BD −
2ωC′BD

CBD

∣∣∣∣� 1 and

∣∣∣∣g2C′BD +
2ω∆′BD

CBD

∣∣∣∣� 1 ,

(C.18)

which are precisely the validition relations given in (3.24) in section 3.3.

D Singularities and ordering of the limits ω → 0 and Meff → 0

There is a subtlety that arises when computing the asymptotic forms for the functions CBD

and ∆BD used in the main text. The subtlety arises because these functions diverge in the

limit that Meff and ω both vanish together, and this makes the asymptotic form found in

the regime where both Meff � H and ω � H depend somewhat on the order in which

these parameters are made small.

More precisely, using the asymptotic form WBD(τ) ' W0e
−κτ in the Meff/H � 1

regime (see (2.32)) the relevant functions have the following behaviour

CBD '
2Re[W0]κ

κ2 + ω2
and ∆BD '

2Re[W0]ω

κ2 + ω2
, (D.1)

and so

C′BD ' −
4Re[W0]κω

(κ2 + ω2)2
and ∆′BD '

2Re[W0](κ2 − ω2)

(κ2 + ω2)2
, (D.2)

where κ ' M2
eff/(3H). These functions therefore have different leading-order asymptotic

behaviours near (ω,Meff) = (0, 0) depending on which path is chosen to explore it in the

Meff − ω plane.

Because of this table 2 focusses on the leading-order behaviour for these functions in

the ω/H � Meff/H � 1 regime and vice-versa. For the ω/H � Meff/H � 1 regime,

it turns out that the sub-leading terms in the asymptotic series for CBD, ∆BD and their

derivatives are O(ω/κ) which means that in this case we probe the ω � κ� 1 regime (see

table 2). For the opposite case of Meff/H � ω/H � 1 the sub-leading terms are O(κ/ω)

which means we actually probe the κ� ω � 1 regime (also given in table 2).
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