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1 Introduction

Many of the foundational paradoxes of gravitating quantum systems — e.g. black-hole in-
formation loss, eternal-inflation and multiverse issues — arise due to puzzling behaviour
displayed by simple systems at very late times. The simple systems used are often free quan-
tum fields evolving in gravitational backgrounds, often spacetimes with horizons, that are
chosen because explicit calculations can be made. When using these systems to make late-
time inferences an implicit assumption is that it is the interaction with the background that
always dominates, and any other neglected interactions can be treated as perturbations.



Similarities between the physics of quantum systems in gravitational spacetimes (espe-
cially with horizons) and open systems [1-20] show that this assumption is actually unlikely
to be true. The problem is that open systems (by definition) always have an ‘environment’
whose properties are not measured (in this case, perhaps, the degrees of freedom behind
the horizon). But a perturbative treatment of the interactions with such an environment
essentially always fails at sufficiently late times. Ultimately it fails because the environment
never goes away. Given enough time the effects of any interaction — regardless of how
weak it might be — eventually accumulate to become large. Concretely, no matter how
small an interaction Hamiltonian, Hi,, might be, there is eventually a time ¢ for which the
evolution operator, U(t) := exp[—i(Ho + Hin)t], is not well-described by a finite number
of powers of Hipt.

In practice this problem usually manifests itself through the phenomenon of ‘secular
growth’, where the coefficients in a perturbative expansion contain growing powers of time.
For example if an observable O(t) is computed in powers of a small coupling g < 1

0) =Y ealt)g", (1.1)

then the coefficients ¢, (t) typically grow without bound as ¢ gets large. Part of the mo-
tivation for using open-system tools [4-11] is that they provide systematic ways to resum
this late-time growth, often allowing perturbative results at short times to be converted
into expressions that for large ¢ include all orders in g?t but drop contributions of order
g"t for n > 2. They thereby promise controlled and reliable approximations for late-time
behaviour that straight-up perturbative methods cannot.

This work accompanies a companion paper [21], which uses these tools to track the
late-time evolution of an Unruh-DeWitt detector [22, 23]: a simple two-level system (or
qubit) as it uniformly accelerates in flat space while coupled to a simple quantum scalar field
(prepared in its Minkowski vacuum). Such a simple system allows these open-system tools
to be explored in a very concrete and explicit way (see also [24-35]). Ref. [21] treats the field
as an environment and integrates it out to set up the Nakajima-Zwanzig equation [36, 37]
describing its perturbative effects for the qubit. This is an integro-differential equation
that is difficult to solve, but which simplifies at late times under certain assumptions
to give an approximate late-time Markovian evolution. In particular much attention is
given to the precise parameter range that controls this approximation. Not surprisingly
the classic transition rates computed for Unruh-DeWitt detectors decades ago [22, 23, 38|
prove to break down at very late times. Evolution at much later times instead describes
thermalization and decoherence as the qubit gets heated to the Unruh temperature.

We here apply open-system tools to a similarly simple late-time question: what hap-
pens to such a qubit (again coupled to a scalar field) moving for very long times along a
co-moving trajectory in de Sitter space. We again identify the relevant master equation for
differential qubit evolution once the field is integrated out, and again find that a Markovian
approximation works at sufficiently late times, asymptotically approaching a thermal state
in much the same manner as in [21]. de Sitter space brings an important complication,
however: the length of time required for this Markovian limit to apply grows like an inverse



power of the scalar mass if this mass is sufficiently small. That is, the qubit responds to
field self-correlations that become increasingly persistent and extraordinarily long-lived.
As a direct consequence of this, the qubit’s approach to equilibrium becomes extremely
slow in this regime (a phenomenon reminiscent of critical slowing down [39, 40]).
Another new feature of the de Sitter example is the emergence of a non-Markovian
regime for which an approximate form of the late-time evolution can nevertheless be explic-
itly integrated to give a closed-form solution. This allows us to track a portion of the mem-
ory effects that work to foil the Markovian limit, and find a more general solution that set-
tles to the expected late-time thermal state. We again develop precise conditions for when
this solution is a good approximation, and recover the earlier Markovian solution as a limit.

2 Co-moving qubits and fields in de Sitter space

This section reviews for later use some basic properties of de Sitter space, with details of the
qubit/field system to be studied. The section then closes with a statement — following [21]
— of the Nakajima-Zwanzig equation that governs qubit evolution once the scalar field is
integrated out.

The time evolution to be followed in later sections is along the coordinate direction
within the flat slicing of de Sitter space, with line-element

ds? = g datda” = <—d772 n dx2) — —dr? 4 2HTax2 (2.1)

H2772
where H > 0 is the Hubble constant and the conformal time 7 is related to comoving time
7 by n = —H 'e HT [41], with the negative sign chosen to ensure dn/dr > 0. The range
—00 < 1 < 0 corresponds to —oo < 7 < 00.

This metric is maximally symmetric and so has constant Ricci curvature!

R = —12H?. (2.2)

2.1 Scalar fields in de Sitter space

We consider a real scalar field with Lagrangian density

1
‘C(x) = _5 V=g g‘“’&,,gb a,ud) + m2¢2 + f'R,qb2 (2'3)
which includes a nonminimal interaction with the metric’s Ricci scalar, R, with coupling
parameter £. Because the Ricci scalar for de Sitter space is constant, from the point of
view of the scalar field the nonminimal coupling effectively shifts the scalar field’s mass
from m to

M2 =m? — 12¢6H? . (2.4)

€

1We use Weinberg’s curvature conventions [41], that differ from those of Misner, Thorne and Wheeler [42)
only by an overall sign in the definition of the Riemann tensor.



The canonical Hamiltonian that generates the scalar field’s evolution? in 7 is therefore

1. 1 1
H — d3x €3HT 7¢2 + *6_2HT‘V¢’2 + 7Me2ff¢2 (25)
5. 2 2 2
where Y. is a sheet of fixed comoving time 7. In what follows we take the scalar field to
be prepared in the Bunch-Davies vacuum |BD).

Of particular interest for later evaluation of qubit evolution is the scalar field’s Wight-
man function evaluated in this vacuum, which turns out to be given by [43-46]

H?(;—0%) (3 3 (n—1' —ie)® — [x—x?

BD 'x)BD) = —2— L oF | = ——v;2;1

(2.6)
where o F} is the hypergeometric function and ¢ — 0T is an infinitesimal whose presence is
determined by the Wightman boundary conditions and which determines how integrations
should navigate around the singularity in the coincidence limit (where the points (7, x)
and (n,x’) are lightlike separated).

The parameter v in (2.6) is defined as the following function of &, m and H:

2
Meff —

9 9 m?
2 2o e, .
4 4 H2+ 2 (27)

In our conventions the special case of a conformally coupled scalar field is the choice m = 0

and & = —%, in which case M 623 =2H? and v = % A minimally-coupled massless (axion-
like) field by contrast satisfies m = £ = Meg = 0 and so v = % The Wightman function in

the conformally coupled case is particularly simple, reducing to

2 /
(BD}o( X0 K)BD) = (113 ) = 23)

472 —ie)? 4+ |x —x/|2°

2.2 Qubit/field couplings

To this field we couple a qubit, following the construction used in [21]. The result is an
Unruh-DeWitt detector coupled to a scalar field, along the lines of that first introduced
in [22, 23]. We take the qubit’s free Hamiltonian to be

(,U(]/2 0
0 —wo/2 7

wo

. 20

2
where wy > 0 denotes the splitting between the two qubit energies. We suppose the qubit
sits indefinitely at a fixed position y € R?, and so follows the (geodesic) trajectory of a
co-moving observer

yH(r) = [n(r),y] = [-H e "T.y] (2.10)

2This is a special instance of the Klein-Gordon Hamiltonian

= [ a7y g0 0000+ pme?
s, 2% T2 2

for a static spacetime which admits a foliation with metric ds? = —dt® + Yij dz? dxj, with ¥; a sheet of
fixed z° = ¢.



along which the coordinate 7 is the proper time as measured with the spacetime metric
of (2.1).

The Hilbert space of states for the combined qubit/field system is the product of the
Fock space for the field with the qubit’s 2 x 2 space of states. The free Hamiltonian acting
on this Hilbert space is then

Hy=H®I+I®h, (2.11)

where I and Z are identity operators.? The total Hamiltonian is H = Hy + Hinio where
the qubit/field coupling is described by the interaction Hamiltonian

Hinto = g¢[y(r)] ®m, (2.12)

and the dimensionless coupling 0 < g < 1 is small enough to justify a perturbative treat-
ment. We follow common convention and choose m = o1, but all that really counts is that
m and § do not commute with one another so that Hj,;¢ drives transitions between the
zeroeth-order qubit energy eigenstates.

Naively one would perform perturbation theory simply by expanding in powers of
Hingo. It happens, however, that at O(g?) the qubit/field interaction shifts the qubit energy
splitting so that w := Ey—E| = wo+ g%wy for calculable wy. A better choice for perturbation
theory uses the physical value w in the unperturbed Hamiltonian, and so writes

Hyee =H@I+T®h with b:%ag,. (2.13)

With this choice H = Hy+ Hint o = Hfree + Hing and so the interaction Hamiltonian acquires
a new counter-term, with

g*w

2

Hiy=goly(r)) @m + I® Los. (2.14)

Although not motivated by divergences, this counter-term interaction has an added benefit
inasmuch as the quantity w; happens to cancel an ultraviolet divergence that arises at
second order in g.

2.3 Time evolution and the Nakajima-Zwanzig equation

In principle the question of calculating the system’s time evolution perturbatively in powers
of the coupling g is a solved problem. One converts to the interaction picture, by performing
a unitary transformation, O — O’ := Ut (1) O U(r), for any operator O, with

Uo(r) = T exp (—2/ ds Ho) =e M Re ™. (2.15)
0

As applied to the system’s state (described by its density matrix, p) this transformation
removes the ‘free’ part of the evolution, leaving p to be evolved by the interaction-picture

Liouville equation
op’ ,
S = —i|v(m).e'm)]. (2.16)

3Because Hy generates translations in comoving time 7, and there is no need for a time-dilation factor
as in [21].




where
V(1) = U (1) HinUo(7) = 9 &' [y(r)] @ m' (7). (2.17)

Here ¢,(7,%) := eT™M7¢(x)e~"" is the interaction-picture field and the interaction-picture
qubit coupling matrix is
m!(7) := e Tme N7 (2.18)

Standard arguments then solve eq. (2.16) interatively to any required power of V (1),
subject to an initial condition, p(0), at 7 = 0. In what follows we take the field to be
initially prepared in the Bunch-Davies vacuum |BD), and assume the initial qubit state to
be uncorrelated with the field degrees of freedom:

p(0) = [BD) (BD| © o (2.19)

where gg is the qubit’s initial 2 x 2 hermitian density matrix, satisfying tr gg = 1.

But a complete solution for p(7) is overkill if the goal is simply to predict the behaviour
of qubit observables, with no measurements made in the scalar-field sector. For such
observables the time-evolution problem is completely solved if the time-dependence of the
reduced density matrix,

o(r) := rl(;r [p(T)] , (2.20)

is known, with initial condition
0(0) = go. (2.21)

In (2.20) the partial trace is only over the field-theory sector (and not also the qubit).
The Nakajima-Zwanzig equation provides a formal solution to the problem of identi-
fying the evolution equation for g(7) that should replace (2.16). It is obtained by pertur-
batively solving for the evolution of the scalar-field state and using this to eliminate the
scalar completely* from (2.16), leaving an evolution equation that involves only .
When the dust settles, a calculation identical to that in [21] shows the qubit’s

interaction-picture reduced density matrix
o' (1) = eto(r) e " (2.22)

evolves — at O(g?) — according to the following Nakajima-Zwanzig equation:

6%17(_7) ~ ¢? /Tds (WBD(T—S) [m;(s) @' (s),m;(7)] +WBD(T—8)*[m,(r),g%s)m,(s)])
0
2w
i [9 : 103,91(7)] . (2.23)

Here the function Wgp denotes the Bunch-Davies Wightman function (BD|¢(x)¢(z)|BD),
evaluated along the qubit’s trajectory

Wep (71 — 72) := (BD|¢(71,¥)¢(72,¥)[BD) - (2.24)

*See appendix A of [21] for more details of how this is done.




It is the symmetry of the spacetime and the choice of the trajectory (2.10) that ensures
that the Wightman function depends only on the difference 7 — 7.
In components, after some matrix algebra (2.23) yields the equations of motion

6 I T . T

% =g° 3 ds Wgp(s) e "* — 492/0 ds Re[Wgp(s)] cos(ws)oii (T —s), (2.25)
8 1 . T WS

571_2 = —ig%w; 015(7) — 292/0 ds Re[Wgp(s)]e™™*olo(T — 5) (2.26)

-

+ 2g26+2“‘”/ ds Re[Wgp(s)le " oi5(1 — s).
0

where the integration variable are also switched, s — 7 —s. The properties tr o(7) = 1 and

of (1) = o(7) have also been used to eliminate g22(7) = 1 — 011(7) and 021(7) = 0}5(7).

Egs. (2.25) and (2.26) make it clear that the diagonal and off-diagonal components of g

evolve independent of one other.

2.4 The Wightman function along the qubit trajectory

The Nakajima-Zwanzig equation boils all effects of the scalar field to the correlations en-
coded in the Wightman function Wgp(7) evaluated along the qubit trajectory (2.10).
Specializing (2.6) to this trajectory gives the explicit form

H?(3 —v?) 3 3 Hr Hel?
== T R[S — 21 [sinh | ) —i| ). (22
Wen(7) 167 cos(mv) 2L\ Ty TS {sm < 2 > ' ] (2.27)

where we remind the reader that e — 07 is taken at the end of any calculation. As is easy
to verify this function satisfies the identities

Wgp* (1) = Wip(—T1) (2.28)

and
WgD (7’ — 27Ti/H) = Wsp(—7). (2.29)

This last condition — the Kubo-Martin-Schwinger (KMS) [55, 56] condition — expresses
detailed balance and ultimately ensures that o(7) eventually asymptotes to a thermal state
with Gibbons-Hawking temperature® [57]

T = (2.30)

H
21

In the special case of a conformal scalar case — i.e. where M, e2ff = 2H? — the Wightman
function simplifies to

H? 1

1672 [ginh(Hr) — j2¢)?

Wap(T) = (conformal scalar) , (2.31)

5We remark that if extending the domain of Wap (7) within an integral to include 7 < 0 then one must
choose Wap (1) =~ (Re[Wo] + isgn(r)Im[Wo])e"!"! so as to preserve the important property (2.28).



v Mes/H Re[Wsp(7)]
. H?\/1+4u2+/tanh(w ETT ) .
v=ipu, p>0 Mett ¢ (2,00) v 47r§/2\\//ﬁ (1) e 2" sin (uHT+ Arg [T'(2 —ip)D(ip)] )
2
o . —(3—v T
ve [0\ {1} | Mg e 0,3\ { £} ~ e sn(m )L (G — )T ()e (77
2 5
r=1 A%ffzg _Sgr e~ SHT

Table 1. Leading asymptotic behaviour of Re[Wpp(7)] in the limit H7 > 1 for several possible
values of Mg/ H (details given in appendix A). In the first row v = iy lies on the positive imaginary
axis with p = \/M2;/H? —9/4 > 0 ensured because Mz/H > 3. The leading coefficient in the
asymptotic expansion for v € [0,1) U (1, %) vanishes when v — 1% which is why there is a separate
row for the special case of v = 1.

which (after replacing H with the acceleration parameter) agrees with the Wightman func-
tion for a massless field in Minkowski space evaluated along a uniformly accelerated tra-
jectory [21, 58, 59].

As discussed in [21], for the present purposes (late-time evolution) what is important
about expressions (2.27) and (2.31) is their asymptotic form in the limit H7 > 1. As is
shown (for various choices of parameters) in table 1 the function Re[Wpp(7)] always falls
off exponentially, Wgp o e~7/7, for large enough 7. This falloff is important because it
makes possible the existence of a simpler Markovian limit, at least for times, 7 > 7.

We see from this table that — with one exception — the time-scale 7. over which

Re[Wsp(7)] is exponentially suppressed is generically of order the Hubble time. The ex-

3

ception is close to the massless, minimally coupled case, for which Mg — 0 and v — 3.

Writing the asymptotic form as
3
Wep(T) = Wy e 7 <When 0< Mg < iH and HT > 1> , (2.32)

provided Mesz #* %H 2 the parameters W, and x are given by (see appendix A for details)

H2 . 1TV 3 3
Wo := 15 r <2 - V> I'(v) and k:= <2 - 1/) H. (2.33)

For the limit M.g — 0 both Wy and x~! blow up, with asymptotic forms

3H*

Re[Wgp(7)] ~ <87r2M2ﬁ> P [_

(when 0 < Meg < H and HT > 1).

(2.34)
Evidently in the regime 0 < MZ% < 2H? the function Re[Wsp(7)| falls off much more
slowly, with the longer-range correlations noted in [2, 30, 60].

MezﬁT
3H

For later sections it is also useful to know the subdominant terms in the expansions
about the HT — oo and Meg/H — 0 limits. The next-to-leading terms in the Meg/H
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Figure 1. A plot of Re[Wgp] versus 7 for various values of Meg/H. The oscillatory component
visible for Meg/H > % disappears once Mog/H < % The exponential damping occurs over a few
Hubble times (H~') for M2 > 2H? but becomes much longer as Mg — 0, becoming of order
H/M?Z; in the regime MZ% < H?.

expansion are

fmzﬂf 1”4&
~ ¢ fl ... if Moz < H), 2.
Y + 5 173 + (if Megg < H) (2.35)
3H* (7—6In2)H?
~ — if M, H). 2.
Re[Wo] ~ < > o (if Mog < H) (2.36)

For HT > 1, if the sub-leading corrections to the late-time asymptotic series for Wgp(7)
are defined by

F(7) = Wan(r) = Wo e, (2.37)
then f(7) falls much faster with 7 than does Wgp(7) in the limit of vanishing effective
mass. Sub-leading corrections to f(7) in (2.37) are O(e H7) even in the Mg/H < 1
limit.® These asymptotic properties are also visible in the numerical plots given in figure 1.

3 Late-time Markovian behaviour

This section exploits the exponential falloff of the Wightman function, Wgp (1) ~ Wy e "7,
to derive an approximate form for egs. (2.25) and (2.26) that captures well the late-time

evolution.

3.1 Markovian approximation

The idea behind the approximation is simple: to the extent that one’s interest is in slow
evolution at very late times (i.e. 7 > 7.) then o(7) does not vary significantly over the com-

SThe sub-leading corrections are O(e~/2HT) ~ O(e™H7) when M.s/H < 1. See (A.6) in ap-
pendix A.



paratively short time-scales over which the integrals in (2.25) and (2.26) have appreciable
support. It should be a good approximation in this regime to Taylor expand

o(r —s) = o(r) —sdro(r) + -+, (3.1)

within the integrand [61, 62], in which case the dependence on g(7) comes out of the
integral. Keeping only the leading term in this expansion allows (2.25) and (2.26) to be
rewritten in the form

I T T
o1, ~ g2/ ds Wap(s) e 5 — 492/ ds Re[Wgp(s)] cos(ws)oiy(T), (3.2)

or -7 0
% ~ _in2 I _ 2 T +iws I
5y = w1 012(7) — 29 ; ds Re[Wsp(s)]e™ " 015(T) (3.3)

+ 9g2etier / ds Re[Wpp(s)le™*ol5(r).
0

As quantified below, the error in dropping subdominant terms in the integrand should be
of order (7.0;)"o(7), and therefore should be small when g only varies slowly over times
of order 7.

Specialization to times 7 > 7. allows further simplification because in this regime the
limits of integration in (3.2) and (3.3) can also be taken to infinity up to exponentially small
corrections. Switching back to the Schrédinger picture, this allows the above equations to
be written as

0

% ~ ¢°Rap — 29°Ceponi(7), (3.4)
0 . ) §

75;2 ~ —iwe12(T) — ¢°Cepo12(T) + ¢°(CeD — iABD)0}2(T) - (3.5)

Here the coefficient functions are defined by the integrals

Cpp(w) := 2/000 ds Re[Wsp(s)] cos(ws) (3.6)

= on (Z) [ (Bt e (Bt i
T 7] 49T 4 2 "oH

)

and [63, 64]
Rep(w) = ds Wgp(s)e ** (3.7)
_OH w3 v w3 v w
473 4 2 2H 4 2 2H ’
while o
App(w) =2 / ds Re[Wpp (s)] sin(ws) - (3.8)
0

The function App diverges at the s — 0 end of the integration, and its form is evalu-
ated more explicitly in appendix B. We choose to regulate this divergence by making the

~10 -



small-distance regulator e in the Wightman function (2.27) small but finite, leading to a
divergence that is logarithmic in € whose form is derived more explicitly in appendix B.

Notice also that the disappearance of the quantity w; when passing from (3.3) to (3.5)
occurs because we choose w3 = —App to cancel a term iApp g12 in (3.5) in order to ensure
that w appears in the same way in the evolution of g as should the physical qubit energy
splitting.

The identities (2.28) and (2.29) impose some relations amongst the above integrals.
First, (2.28) implies that Re[Wgp(7)] and Im[Wgp(7)] are even and odd functions in T,
respectively, and so

RBD(w) = Cgp (w) + SBD((,U) , (3.9)

where

Spp(w) = 2/ ds Im[Wgp(s)] sin(ws) . (3.10)
0
Furthermore, (2.29) implies Rpp satisfies
RBD(W) — 6727Tw/HRBD(—w) =0, (3.11)

which is the detailed-balance relation [58] (and so underlies the thermal nature of many
of the late-time equilibrium properties). Because Cpp and Spp are even and odd in w
respectively, the detailed-balance relation also implies

SBD(W> W
= —tanh [ — 12
CBD(W) tan (H) ’ (3 )
from which we see
B 2 B 2
Rpp(w) = o 1 Cep(w) = Tl Spp(w) - (3.13)

3.2 Late-time evolution

The quantity Rpp appears throughout the literature on Unruh-DeWitt detectors [23, 38,
58, 59] because it governs the perturbative excitation rate of a qubit that is initially pre-
pared in its ground state: gg = 0y,., Where

Ovac =~ ‘\L> <¢| = (I - 0-3)/2' (314)

With this choice p11(0) = 012(0) = 0 and so both p11(7) and p12(7) are at most of order g
at later times. Consequently any appearance of these quantities on the right-hand-side of
eqgs. (3.4) and (3.5) can be dropped if we wish to compute 0, 0(7) only to order g?. This
leads to the standard lowest-order prediction for the rate of accumulation of probability
into the excited qubit state:
doun (1) _
———~ ~ g°RED . 3.15
7 9" Rsp (3.15)
As is clear from the above derivation, this rate strictly only applies at times 7 > 7,
and in this sense is usually interpreted as the qubit’s late-time transition rate. However it

- 11 -



is also clear that the prediction (3.15) cannot apply at asymptotically late times. Eq. (3.15)
must break down at sufficiently late times because unitarity requires 0 < p11(7) < 1 for all
7 and so forbids eternally accumulating probability into the state |1) with constant rate.”

What happens at these later times? This is where eqgs. (3.4) and (3.5) prove their
worth, because their domain of validity can extend to much later times than their derivation
naively would indicate [5, 21]. Their extended domain of validity arises because — unlike
for (say) egs. (2.25) and (2.26) or egs. (3.2) and (3.3) — neither of (3.4) or (3.5) make
explicit reference to the initial time at which the evolution starts. This means that although
they were derived starting from an assumed initial state at 7 = 0, they could have equally
well been derived starting at some other initial time, 7 or 7. Although the derivation that
starts from 7 = 7, is only valid over a limited window of time, 7 € S, to the future of 7,,
since it is the same differential equation that is derived for all n, the differential equations
themselves — i.e. egs. (3.4) and (3.5) — remain valid for the union of all of these intervals:
S =UpSp.

This argues that at much later times it is egs. (3.4) and (3.5) that govern the evolution
of o(7), and it is the presence of the other terms on their right-hand-side beyond the g>Rgp
term that build in the constraints of unitarity that are missing in (3.15). Furthermore, keep-
ing only terms to O(g?) in (3.4) and (3.5) implies that their solutions can be trusted to all
orders in ¢?7 as ¢ — 0 and 7 — o0, though they do not properly capture terms of order g™t
with n > 2. This is most easily seen by scaling 7 — 7 := g7 in egs. (3.4) and (3.5). We re-
turn to a more careful determination of the domain of validity of egs. (3.4) and (3.5) below.

What do these equations imply for late-time evolution? Eq. (3.4) has the solution

1

Qll(T) = 627rw/H +1

1 _
+ [911(0) ) 1] ¢~20°ConT (3.16)

where the relation (3.13) has been used to eliminate Rgp. Eq. (3.5) similarly integrates to
give

9°Cep — ig*App
>

012(T) = e~9°CepT {ng(O) [COS(ZT) — z% sin(ET)] + 075(0) sin(ET)}

(3.17)

where

T = \/w2 — g4 (CEp + A%p). (3.18)

As later sections show, the domain of validity of (3.17) is slightly more complicated
to justify in detail because of the potential disparity in scale between the qubit gap w and
the O(g?) factors. The discussion is simplest in the ‘non-degenerate’ regime, for which

w > g%\ /C3p + AL, (3.19)

however, because then O(w) and O(g?) effects do not interfere with one another. We
therefore assume (3.19) to be true in what follows (though the limit of smaller w goes

In this qubit evolution differs from standard discussions of exponential decays of unstable states. Decays
can proceed indefinitely with constant rate because decay daughters can escape to infinity and so do not
accumulate probability in the same way as does a qubit.
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through similarly, as described in [21]). With this choice we may use ¥ ~ w and the
solution (3.17) becomes

9*Ca —ig*Ag

g2 i .
ora(r) 2 e a0 4 g1y(0) T

Sin(wT)} . (3.20)
which is valid for times as late as wr ~ O(w/(¢g*Cep)). Note in particular that (3.19)
implies that both ¢?Cpp/w < 1 and g?App/w < 1, which are small but not necessarily
as small as O(g?). The assumption (3.19) also implies that the oscillations of (3.20) are
underdamped, in that they are very fast compared to the solution’s decay time.

Because Cpp > 0 (see (3.6)) these solutions describe relaxation towards a late-time
static state

1
—_— 0
lim o(r) = | €™/ +1 ) , (3.21)
T—00 0
e—2mw/H 4 q
which is clearly a thermal state — of the form e=#Y/Tr[e#%] — with temperature given
by the Gibbons-Hawking formula
1 H
T=—-=—. 3.22
T (3.22)
The relaxation is predicted to be exponential — proportional to e /¢ — with a char-

acteristic time-scale that differs for the diagonal and off-diagonal components of p:
2811 = €12 = §ur, where

¢ 1 473 h(mu)r 3+V+iw r 3 1/+iw
= 55— = —w—sech | — -+ -+ == ST
M g2Cgp  ¢2H H 4 2 2H 4 2 2H

Asymptotic forms for this expression are given in subsequent sections.

-2
(3.23)

3.3 Validity of the Markovian limit

We next quantify the domain of validity of the Markovian approximation as a function of
the problem’s parameters: H, Mg (or m and coupling &), w, and g.

As emphasized above, the Markovian evolution egs. (3.4) and (3.5) rely on two con-
ditions. First, the focus must be on late times, 7 > 7., compared to the correlation (or
fall-off) time defined by Wgp(7); second, higher terms in the Taylor expansion of @' (7 —s)
in powers of s within the integrand should be negligible. Since Re[Wgp(s)] falls off expo-
nentially with s for s > ., after integration the neglect of derivatives relies on 7.0, 0 being
small compared with p.

It is this second condition whose validity imposes constraints on the system parameters.
To see how, recall that the Markovian solutions found above for o, (7) and p{,(7) are linear
combinations of exponentials of the form exp [(—1/¢ + i®) 7], where 1/¢ ~ ¢?Cpp and the
phase @ is either zero or w. Consistency therefore requires | — 1/€ 4 i®| < 1/7.. Chasing
through the definitions this turns out to imply (see appendix C or [21] for details) the
conditions

!/

2wC
g’lAgpl <1, ¢*lChp| <1, ‘CBD <1, (3.24)
BD

2wA!
<1 and ‘WBD
CeD
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Cop(w) Cop(w) App (w) Bp (W)
o r My g 9H° _ 81H'w wlog(He) | 27HSw | log(He) , 27H®
H ™ H™ 3H% A2 M2 22 ME; 27?2 A2 M 272 4Am2 M5
o M2 <2<l H3 B H? wlog(He) 3H*  |log(He) B 3H*
H™3H> ™H 4m2w? 2m2w3 272 Am2wM?Z, | 2m? Am2w2 M2,
7 log(e” T we)
Mgt ] 0 w 1 wlog(ewe) og
i SI<E 4 4 272 272
H w wlog(He) log(He)
@ o] & Mett — /9 kel el i =2 S/t
< H V2 472 6H 272 272
1 wlog(ewe) log(e? ™t we)
1w & Metr — . /9 w il
<u A=v2 4 4 2?2 22
H _ v W _ . wlog(He) log(He)
w Megr = wMegr ) H i wMegs/ H
<< . ! HC ' 272 272
M, _ M, _ wlog (e we) log(e” ™ we)
M, f rw/H  —nMeg)H f  rw/H  —nMege/H g g
I A e 22 272
1 wlog (e we) log(e?twe)
1< Mett o w W il
ST <H A 4 272 272

Table 2. Asymptotic behaviour of the functions Cgp, Chp, Asp and AfLp in various regimes
differing in the relative sizes of w, Mg and H (see appendix B for the e-dependence for Agp and

5p)- To illustrate the behaviour of the functions for intermediate values of mass, we provide the
behaviour for the conformal scalar case with Meg = /2H. Here € is the short-distance regulator
for the divergence in App. In the limit where w/H < 1 and M.g/H < 1 the functions become
parametrically large (due to a singularity at w = Meg = 0) — the sub-leading terms in these
asymptotic series are either O(w/k) or O(k/w) (e.g. in the very first cell M%LMS‘L__ 1+ O(w/k)]) (see
appendix D). Note that in this regime the functions App and Ajp both agguire parametrically
large terms which compete with the e-divergences.

where primes denote differentiation with respect to w. We explore the implications of these
conditions in the non-degenerate special case when (3.19) is satisfied, and so

9*Cp g*App

w

<1. (3.25)

Similar conditions for validity of the Markovian approximation can also be made
when (3.19) is not satisfied but for simplicity we do not pursue these further here (see,
however, [21]).

To explore the implications of (3.24) for the parameters w, H, Mg and g it helps
to have asymptotic expressions for the integrals Cgp and Apgp in various limits. These
are summarized for convenience® in table 2. Since the first two conditions in (3.24) are
proportional to g they tend to be satisfied once g is chosen deep enough in the perturbative
regime. How deep depends on the relative sizes of the other parameters, as can be seen
from Columns 2 and 4 of table 2.

8These functions prove to be very singular in the limit where w and Mg both vanish, and so their asymp-
totic forms depend in an important way on the relative size of w/H and Meg/H. See appendix D for details.
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2wC}, 2WA]
% % Markovian Limit?
BD BD
M2, 36 H%w? 4wMllog(He) 6Hw
@l - ‘ + v
HSH 2
i o oM
M2 4w log(He) 6Hw
ey < gl —4 s e X
4log(e7 T w
Mt <1< & 2 2 - d X
422 2wlog(He)
Mg _ 8
i <LETE=V2 L 0 v
41 y+1
1< & Mt — /3 2 Alog(e™™ we) X
T
2m2w? wlog(He)
w 1 Mg +7Meg/H
W 1< M = e v
27w 4w log (e we)
1< @ Mg +m(Megr—w)/H
SHSTH H Mg X
4log(e"w
1< Mot &0 2 g(ﬂe) X

Table 3. Asymptotic forms in different parameter regimes for the two g-independent conditions
for the validity of the Markov approximation, as computed using the asymptotic forms provided in
table 2. The third column indicates whether parameters exist that make the previous two terms
small, without checking whether or not (3.25) is also satisfied. Two checks indicate cases where
w/H is not required to be small in an M.g/H-dependent way. (Notice in particular that checks
only appear in regimes where w/H is small).

It is the second two conditions of (3.24) that cannot be ensured simply by making g
small. The implications of the estimates in table 2 for these two quantities are summarized
in table 3. The final column indicates with checks or crosses whether these quantities can
be small enough to allow a Markovian approximation. The first observation emerging from
these tables is that a Markovian approximation necessarily requires w/H < 1. (That is,
the Markovian approximation can be satisfied only if w is much smaller than the Gibbons-
Hawking temperature. This result is intuitive because, if w were much bigger than the
temperature, interactions with the field (which is for the qubit effectively a thermal bath)
become very inefficient at erasing the correlations whose absence underlies the qubit’s
thermalization and Markovian evolution.) Inspection of the last two rows of table 3 shows
that it is the condition |wCfp,/Cep| < 1 that generically fails if w > H.

More generally, once w < H is satisfied conditions (3.24) can also be satisfied at
sufficiently late times for any value of M.g/H by choosing w and ¢ to be sufficiently small.
In practice, for some choices for Mg the allowed value of w can be small enough to push
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2
7
92(Ch (w)] 81g°H'w g27w 7TQQ"‘)Q*WJerff/H
BD 2m2 M 6H H
PIAL ()] g*log(He) | 27g°H° g°|log(He)| 9°|log(He)|
BD 2m2 Ar2 M5, 272 2m2
2wChp 36 H?w? 4miw? 2m2w?
Crp M2 3H? H?
2wAL g*log(He) 6Hw 2w log(He) T +mMeg/H | log(He)
CsD 272 MSH H 2n°
9°Cp(w) 99°H® g*H L
w Am2wM 42w w
2App(w) 2log(He) = 27g°HS 2| log(He)| 2|log(He)|
g ABD g~ log 9 91108 91108
w 272 472 M5, 272 272

Table 4. Leading-order behaviour for the quantities appearing in conditions (3.24) and (3.25)
for the three parameter regimes that receive checks in table 3. Although the first four rows here
duplicate information in table 3 about the size of terms appearin in (3.24), the last two rows compare
this information with the asymptotic form for the combination appearing in condition (3.25).

it to the point where (3.25) is no longer true. In such a case the above formulae need not
hold and a separate analysis must be done (along the lines given in [21]). Two check marks
in table 3 indicate that the required value for w/H is not parametrically small in a way
that depends sensitively on Meg/H.

Table 4 displays the asymptotic behaviour of all of the conditions in both (3.24)
and (3.25) to see how restrictive condition (3.25) is for situations that have only one
check mark in table 3. We note that satisfying all conditions in (3.24) and (3.25) can
be done in all three cases by making ¢ and w small enough. The allowed range for w/H
for which the Markovian limit applies becomes smaller and smaller for M.g/H < 1 and
w/H < e~™Mes/H s exponentially small when Meg/H > 1.

By contrast no obstruction seems to arise to a Markovian limit when Mg/ H is O(1).

We remark that in the regimes of both large and small Mcg/H inspection of table 2
shows that the relaxation time-scale ¢ = (¢?Cpp)~! also becomes parametrically long. For
large Mg/ H this seems due to the inefficiency of thermal interactions due to the Boltzmann
suppression of excited field states. For small M.g/H we think the system instead displays
critical slowing down due to the large fluctuations that become possible as M g — 0.

Positivity of the Markovian limit. A reality check for these approximation schemes is
to verify that the Markovian limit preserves the hermiticity and normalization of the qubit

density matrix. The argument given here to this end closely parallels the one given in [21].
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The simplest way to establish preservation of hermiticity and normalization is to
rewrite the Schrodinger-picture version of egs. (3.4) and (3.5) as a Lindblad equation [47—
54, 65—68], which has the form

) ’ :
gf) = —i|h+ %(Oﬂ + App)os, Q(T)] +j%::1 Cj <FJ~Q(T)F:~zT - % {FkTFja Q(T)}> )

(3.26)
for a basis of 2 x 2 matrices, F; = 30, and a collection of coefficients ¢ = [c;x] (called the
Kossakowski matrix). The utility of writing the evolution in this form is that it is known
to preserve hermiticity and normalization so long as the Kossakowski matrix is positive
semi-definite.

Egs. (3.4) and (3.5) can indeed be written in the form of (3.26) provided that the

Kossakowski matrix is given by

492(39 292(ABD —iSpp) 0
c = |2¢*(App + iSpD) 0 0|, (3.27)
0 0 0

where the identity Rgp = Cpp + Spp from (3.13) has been used. The eigenvalues of the
Kossakowski matrix (3.27) are

AS =0,
X§ = 26°(Cap +\/Chp + S3p + Al ). (3.28)

and  \§ = 2¢*(Cep — \/C]%D + 82, + A% ).

At first sight the third eigenvalue is a problem because it is negative. We now briefly argue
why this is not a problem: we show that within the domain of validity of the Markovian
limit the eigenvalue A§ is actually consistent with zero.

To see why this is so, consider for illustrative purposes the simplest regime, for which
w/H < 1 and Myg/H ~ +/2. Table 2 shows that in this regime Cpp ~ H/(47?) is
systematically larger than is Agp ~ wlog(He)/(272). The same is also true for Sgp =
—Cgp tanh(rw/H) ~ —w/(47w) < Cep — see eq. (3.12). As a consequence the two nonzero
eigenvalues can be approximated by

S = 2¢° <CBD + \/C%D + S3p + A > ~ 2¢°Cpp (3.29)

92(5]23]) + A2BD)
Cp

~ O(g*w?/H).

The negative eigenvalue is therefore comparable to terms that were neglected when deriving
the Markovian limit, and is consistent with zero at the order being studied. This also makes
sense: unitarity and hermiticity are properties of the full theory’s density matrix, and
cannot be ruined by any approximation that accurately captures this underlying physics.
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4 Solved non-Markovian evolution when Mg < H

The previous section argues that the Markovian limit only exists when w <« H, and is
most robust in this regime when Mg ~ H. The Markovian approximation got harder to
achieve in the critical-slowing-down regime where Mg < H.

Fundamentally, Markovian evolution becomes harder to achieve for small Mg because
the Markovian approximation requires a hierarchy between the correlation time 7. — =1
of the Wightman function and the longer time £ over which the qubit evolves. As Mg is
decreased the correlation time = oc H /]\462fir grows larger and for generic choices of the
parameters the qubit does not evolve slowly enough for the derivative expansion in the
Nakajima-Zwanzig equation to be a good approximation.

In this section we focus on this Mg < H regime, and show how to solve for the
system’s evolution without requiring access to the Markovian limit. This allows us to track
explicitly the memory effects coming from the very long tail of the Wightman function.
By doing so, we widen the regime of parameter space for which solutions for the late-time
evolution of g(7) are explicitly known.

4.1 Non-Markovian evolution

We first recall the form of the subleading tail f(7) defined in (2.37),
f(T) =Wsap(T) = Woe ™" (4.1)

for 7 > 0, with Wy and & defined in (2.33). In the M.g/H < 1 regime of interest the
leading-order normalization W, and time-scale 1/x admit the expansions

1 30 1

Kk Mgff 3H

3H* (7—61In2)H> } [ H?
ot

— -——+...|. 4
8w M2, 242 82 * ] (43)

TR : (4.2)

Wo = Re[Wp] + iIm[Wy]| ~

In particular the sub-leading tail f(7) ~ O(e~17) falls off exponentially on the much
faster time-scale 1/H than does Wgp(7). Our strategy for solving the Nakajima-Zwanzig

equation is to include the memory effects contained in Wye "

explicitly and use the
Taylor-expansion argument only for integrals containing the much more quickly-falling
function f(7).

In doing so, it will be convenient to define two integral transforms (closely related to
Cpp and App) which will prove useful in the critical slowing-down regime. In analogy

to (3.6) and (3.8) we define

Cp = 2 /000 ds Re[f(s)] cos(ws) = Cpp — W (4.4)
Agp =2 /000 ds Re[f(s)]sin(ws) = App — 2526[_?3]2(” (4.5)

As can be seen in table 5 these functions along with their w-derivatives, éigD and A%D,
are notably better behaved in the Mog/H < 1 regime (as opposed to their counterparts in
table 2 which have singularities at Meg = w = 0).
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- p - -
Cep(w) Cpp(w) App(w) Agp(w)
w oon My (n* 4+ 3)H | (15— 7*)w | wlog(He) log(He)
A H = 3HE 1272 90H 272 272
K M2 <@ <1 (72 +3)H | (15 —7¥)w | wlog(He) log(He)
o= sH? ™ H 1272 90H 272 272
+1
Mg o] o @ w 1 wlog(ewe) | log(e?we)
7 <1< 5 e . ) 92

Table 5. Leading-order behaviour for the functions Cpp, é%D, Agp and A;D in various regimes of
relative sizes of w, Meg and H, where Mog/H < 1. These functions are markedly better behaved
near (Mg, w) = (0,0) than the functions listed in table 2.

The first step is to rewrite the Nakajima-Zwanzig equation in terms of f(7) by explicitly
expanding Wap (1) = Woe ™" + f(7) in (2.23), so that

do' ()

5 (4.6)

=g [ as ([ g 9)] [0 ¢! (6)w' ()]

g*App

# e f - ] [ ). 2 O 9]) +1 | TS0 )]

where we (as before) set the counter-term w; = —App. In components (again using
059 = 1 — pf; and p4; = p}% to eliminate p22 and ga1) we retrieve the equations of motion

T

853 = 292/d8 [Re[f(s)] cos(ws) + Im[f(s)] sin(ws)]
0

+24° / ds e [Re[Wp] cos(ws) + Im[WVp| sin(ws)]
0

—44? /OT ds Re[f(s)] cos(ws)oiy (T — s)

—4g2Re[W0]/ ds e™" cos(ws)oy (T — ),
0

Doy
or

— i App 0l(7) — 207 / ds Re[f(s)]e™™* olo(7 — 8)
0

w2t [ s Relf(s)le s (r — )
0

—292R6[W0]/ ds e(_”””)SQ{Q(T —5)

0

+292Re[Wg]e+2iw/ ds el=F)sple (7 g) (4.8)
0

So far these are exactly the same equations as (2.25)-(2.26), just written in a slightly

different manner.
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The new step is to perform the same Taylor expansion of o(7 — s) as before, but only
for those integrals involving f(s). For these integrals this Taylor expansion is a much better
approximation because the function f(7) is correlated over much shorter times, of order
H~'. Keeping only the leading term in these Taylor expansions then implies

T

~ ZgQ/ds [Re[f(s)] cos(ws) + Im[f(s)] sin(ws)]

0

do1y
or

+24° / ds e [Re[Wy] cos(ws) + Im[Wp] sin(ws)]
0

_4g? /0 "ds Re[f(s)] cos(ws)ely(7)

—4g2Re[W0]/ ds €7 cos(ws)oiq (T — 5), (4.9)
0

BQ{ZNiQA I()_22 Td R[f()]-i-zwsl()

aT_g BD 0127 g . s hejjis)je 0127

+292€+2iw7 / ds Re[f(s)]e_inQiE(T)
0

*292R€[W0] / ds 6(_H+iw)sQ{2(T —3)
0

+292R6[W0]6+2iWT/0 ds e(7R@)s okt (7 — 5 | (4.10)

where higher derivatives in the Taylor series are now order (H 10;)"0;; and have been
dropped. Note that the above equations explicitly track convolutions of @' with the slow
correlations ~ e~ "%,

Again replacing the upper limits of integration by ~ oo, but only for the integrals

involving f(s) then leads to

0014 9 o ReWolk+ImWolw _,.. o ReWolw—ImWplk _,.. .
5y =9 Rep—29 PR e "Tcos(wt)—2g poR e "Tsin(wr)
—2gQéBDQ{1(T)—4gQRe[W0]/ ds e cos(ws)o1(T—), (4.11)
0
00! ~ 2ReWplw T % ¥
o =Y <CBD—Z Tor ) (T +g7e T (Cop—ilpp)oi3(7) (4.12)

—2g2Re[W0]/ ds e(“H“’)SQ{Q(T—S)+2g2Re[Wo}e+2im/ ds eTF)s pls (7 ) |
0 0

which uses the definitions (4.4) and (4.5) and, as before, Rpp is given by (3.7). We next
solve these equations explicitly without the need for further approximations. We return
at the end to quantify the domain of validity of dropping the subdominant terms in the
Taylor expansion.

4.2 The non-Markovian off-diagonal equation

It turns out that it is simpler to first solve the off-diagonal equation of motion. Using

—iwT

the relation p12(7) = e "7 p{5(7), we transform (4.12) to the Schrédinger-picture, which is
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easier to solve:

0 ~ 2¢°Re[W,
L <—Q2CBD—iw+ig 2e[ g]w
K+ w

o ) 12(0) + (5P — i B )gia(s) (4.13)

~2PRe] [ s e onalr - 5) — giar — )

We solve this equation by converting it to a system of first-order linear differential equa-
tions. To this end define the three functions

z1(7) = 012(7) (4.14)
z2(7) = 012(7) (4.15)

) i= [ ds e oatr =)~ distr ). (4.16)

We regard z2(7) and x3(7) only as auxiliary functons, and our real interest is in the solution
for z1(7) = p12(7).

We now show that the functions z;(7) satisfy a set of coupled first-order differential
equations that are easily solved. In terms of these new variables the equation of mo-
tion (4.13) can be recast as

29°Re[Wp|w
I
K2 + w?

dw = ) = 9%

diTl = (—gQCBD —w + ) xl(’i‘) —i—(gQCBD —ZQQABD)I'Q(T) —QQQRG[W()}:B?)(T) .
(4.17)

Taking the complex conjugate of this gives a second evolution equation

2g°Re[Wylw

dx ~ = - ,
—2 = (¢*Crp+ig>App)x1(T)+ <—gQCBD +iw—1i 2

T > T9(7) 4+ 2g°Re[Wo)z3(7) .

(4.18)

Using the property fot ds g(s)h(r —s) = fg ds g(7 — s)h(s) of the convolution, the defini-
tion (4.16) of z3(7) may be directly differentiated to yield the third equation,

das

dr

In vector notation, defining x(7) = (z1(7),z2(7), 23(7)), the above three equations

=21(7) — x22(7) — Ka3(T) (4.19)

close as a system of differential equations of the form

d
d—’: = Ox() (4.20)
with matrix
~ 2ReWhlw ~ . 9%
—9°Cpp — iw + i% 9%Cpp — ig*App —2g°Re[Wo]
~ ~ ~ 2
0:= 9°Crp +ig*App —g?Cpp + iw — i 5LV 9g2Rey] (4.21)
1 -1 —K
and initial condition
012(0)
x(0) = | 03,(0)] - (1.22)
0
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Using (4.5) to relate Agp to Agp, the determinant of the matrix O is

B 4g°ReWo]  49°ReWo] [ 9*Asp B g*AL
K2 4+ w? K2 + w? w w?

det O = —kw? (1 ) # 0, (4.23)
which is non-zero in the regime of interest that follows (for which to good approximation
det O ~ —kw?). Because O is invertible the unique static solution for the system is

xstatic — g (4.24)
The general solution to (4.21) is given by
x(1) = e7%%(0) (4.25)

where specifically solving the first component y;(7) = p12(7) is of interest. Although the
above matrix exponential can be exactly computed, the resulting solution is extremely
unwieldy — we will instead compute the above solution perturbatively using standard
methods [69, 70]. The above equation of motion can be used to probe various regimes of
small g, w/H, Meg/H: we demonstrate it’s utility here by perturbing the solution in g < 1.

The dynamics of the matrix exponential are governed by the eigenvalues A9 of O,
which can be computed from its characteristic polynomial

27 2 2 2 2
0= (\%)°+x (1+2g CBD) (A%)% 402 <1+29 "CED | ¢ 2BD [49 ReDVo] _g ABDDA@

K w? w K2 4w? w

(4.26)

i 1_4g2Re[W0] 49°Re[Wo] [ 9*App _g4A%D
k2 +w? K2 4w? w w2 )

where Cpp and Agp have been related to Cgp and App using (4.4)—(4.5) (although a single
factor of Cgp has been left in the first line of the above). If the qubit-field coupling were
to vanish, the above equation becomes

0= (A% + k(A9)? + w?A? + e (if g = 0) (4.27)

which yields ‘free’ eigenvalues +iw, —k. We here seek a solution slightly deviated away from
the above free equation, as a perturbation in ¢ < 1. In doing so, several dimensionless
quantities in (4.26) need to be bounded in order to control the proceeding expansion for
the eigenvalues. It turns out that sufficient conditions to bound the perturbation series are

9”kCBD
o <1, (4.28)
2A
JIBD (4.29)
w
2c 2g9°Re[W
gCep 20 RM] (4.30)
K K+ w

In particular in the third bound, to leading order uses the fact that

9°Cep _ 29°Re[Wy]
Kk K24 w?

: (4.31)
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which may be easily verified in the regimes of interest (either when x > w or w > k). In
particular, the bounds g?App/w < 1 and 2g*Re[Wy]/(k? + w?) < 1 ensure that the O(g*)
terms in (4.26) are negligibly small. The remaining O(g?) terms are therefore small given
that g?kxCpp/w? < 1 also holds.”

Satisfying these bounds and perturbing the eigenvalues Ag in g yields

A~ —iw[l+..]—¢*Cap[1+..], (4.32)
Ag = A", (4.33)
49°Re[Wy]
0 g 0
Ag ~ —g|1— m , (434)

where the ellipsis denote negligibly small O(g*) combinations of the dimensionless variables
in (4.28)—(4.30). Clearly the real part of each of the three eigenvalues are negative which

static

means that the solution sinks towards the steady state x = 0. The first two eigenvalues

clearly capture information relating to the Markovian approximation (with the Markovian
time-scale &,,), while the latter eigenvalue corresponds to a novel time-scale ~ 1/x+4O(g?).

0

The right eigenvectors r~ corresponding to the eigenvalues (4.33) are

2(w+ik) _92 CBD(H-Fiw)-:;ABD (wik) —92 (CBD—iAUBJD)(H—&-iw)
1‘? ~ _g2 (CBDHAED)(N*W) 7 I'g) ~ | 2(w—ir)— 92 CBD(H*W)Z(W*W)ABD 7
i 1 1
[ 2 4iRe[Wy]
R—iw
ry ~ | g2 dRelVol | (4.35)
1

(0]
which can be used to solve for the solution. An ansatz of the form x(7) = }_; cjr?e)‘f

explicitly satisfies (4.20), with ¢; being coefficients that can be perturbatively solved for
using the initial condition (4.25). After a straightforward computation, the solution for
x1(7) = 012(7), which then transformed to the interaction-picture is found to be
292Re[W0]] o—8%CnT

(4.36)

oha(r) = 0a(0) |14 220

27 - 9 , 9242
+07,(0) [g BD + ¢9°CBD (1— 6+2zw7) 49 Re[WO]] o—9°CBDT

2w K2 + w?
2
292R6[W0] " 292R8[W0] iwr 1—4‘(]&RQB/VO] T
+ [_QIZ(O)(/{—M)? +Q12(0)7I€2+w2 et e [ Pw? ]

This solution contains much more information than the earlier Markovian solution cf. (C.6)
(or (3.20) in the Schrodinger-picture). Note that the bounds (4.28)—(4.30) ensure all
the O(g?) terms are small, as expected (in particular ¢°Cpp/w < 1 follows from (4.28)
and (4.30) in both regimes w < k and k < w of interest).

9Note that bound (4.30) necessarily implies that 2¢g°Csp/k < 1 in the first line of (4.26), as can be
easily verified using table 5.
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Validity relations for the off-diagonal equation. Having established the above non-
Markovian solution, the validity conditions for dropping derivatives in the expansion pf,(7—
s) = p15(7) must be derived next. The interaction-picture solution (4.36) for pi,(7) is (as
in section 3.3 before) a linear combination of factors exp ([—1/€ + i®]7) where the time-
scales and phases are (£, ®) € {(&u,0), (€ar, 2w), (1/k,w)} (ignoring the small corrections
to the time-scale 1/k for the time being). For this reason, the validity relations are

~/

- A - - c _
ICep| > %—ch@ and  |Cpp| > %+A%D<I> , (4.37)

which are almost the same as (C.14) derived in the Markovian limit in section 3.3 (see
also [21]). The derivation of the Markovian validity relations relies only on the exponential
form of the ansatz exp ([—1/¢ + i®]7), which is why it applies here as well. The main
difference in the above is that functions involved are the integral transforms associated
with the correlation function f (rather than Wgp as in the Markovian limit).

All that remains is to insert (£, ®) € {(&u,0), (€, 2w), (1/k,w)} into the relation (4.37)
(where we recall that the Markovian time-scale is defined by 1/£,, = g?Cpp). Using (£,,,0)
and (&7, 2w) leads'? to the bounds

~/
*CepAgpp

<1,
CsD

<1. (4.38)

And using (1/k,w) (along with the latter two bounds in (4.38) above) leads to the bounds

~/
HCBD

CsD

~/
K}ABD

2CBp

<1, < 1. (4.39)

All six of these bounds need to be satisfied in order for the above non-Markovian solution
to be valid. Note that once again these relations only allow w/H < 1 (as in the Markovian
case). In table 6, the functions in the above six bounds are provided in the allowed regimes
(where w/H < 1 and of course Mog/H < 1). We also list the bounds (4.28)—(4.30) for
completeness. The bound in table 6 require less extreme values of g, w/H and Mcg/H to
be satisfied (than that required by the Markovian limit in section 3.3).

Recovery of the Markovian limit. The Markovian solution for g12(7), which is valid
in the w/H < r/H ~ M2% /3H? < 1 regime only (as derived in section 3), is a limit of the
more general solution (4.36). The non-Markovian solution is valid for any H7 > 1, while
the Markovian approximation is valid for times x7 > 1. Considering times k7 > 1 the
exponentials in (4.36) with time-scales 1/x become negligible (i.e. e™*" ~ 0), such that

292Re[W0]] -

i) (4.40)

21a(7) = 012(0) [1 n

g*App +i9*Crp
2w

2g°Re[Wo|

e*QQCBDT
2 2 '
K +w

+ei0)| (1) -

Given |a| < 1 and |a — 2b] < 1 then |b| < 1 has been used here.
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2 2
%<<%:2§3§<<1 %:%@«%«1
~/
QQCBDABD 27 g2| log(He) |H4 3 g2| log(He) |H2
éBD 2m2 (w2 +4-3) Mélff 212 (72 +3) w2
~/
9*CepCrp 3(15—r2) 9 H3w 15— 9°H
éBD 10(3+72) M4ﬂ" 30(3+72)
€
~/
wApp ¢ |log(He)|w ¢ |log(He)|w
éBD w243 H 243 H
~/
wCpp 2(15—n2)r? W2 2(15—n2)n? W2
éBD 15(3+72) f2 15(3+72) 772
=/
kApp 2 |10g(H6)‘Me21T 2 |10g(H6)‘MeQH
2éBD m2+3 e w243 H2
~/
’{CBD (15—72)72 M(fﬂw (15—72)m2 Mlefw
Y BB+ g3 BB+ g3
9”Cop 5 gH" 1 gH Mg
w2 472 WQMlef 1272 wh
9*App | | |g*log(He) = o g°H®| | |g*log(He) 5 g¢*H*
w 272 MG 272 A W2 M2,
9%Cep o7 9°H 5 gH
o My T WM

Table 6. Leading-order behaviour of the functions in the validity bounds (4.38) and (4.39) (the sizes
of all which must be < 1), using information from table 5 (and also table 2). The bounds (4.28)—
(4.30) are also included, keeping in mind that ¢°Cpp/r ~ 2g°Re[Wo]/(k* + w?) in the regimes
quoted. Note that some of the bounds are trivially satisfied in the quoted regimes (for example
[5Chp/(2C)| < 1).

Furthermore when the Markovian validity relations (given in table 4) are satisfied'! then

20°ReDVo] 4 negligibly small. Using this fact it follows'? that

the combination ==

g*Agp +i9%Cep

; 2
(1 e+21w7’)e—g CgpT
2w

2 .
012(T) ~ 012(0)e™ CouT 4 012(0)

which is precisely the solution for the Markovian off-diagonal equation (see (C.6) in the
interaction-picture).

"This follows for example by noting w/k < O(g?) when the Markovian condition |wAgp/Cep| < 1 is

. . 292 R 2 2 1 . .
satisfied. In this case gn2_i£1/¥°] ~ 9D _ g fJBD X % ~ 0 within the approximations used.

K
2g°Re[Wy] _ 2g°Re[Wo] [n2—u2

2g%Re[Wo]
(k—iw)2 = K24w? K2+w?2

12T the w < & regime, the factor TrwZ 18

+ i,z ] is negligible when
negligible.
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4.3 The non-Markovian diagonal equation

The solution to the non-Markovian diagonal equation (4.11) follows through in much the
same manner, so we provide a more concise overview of its derivation. As in section 4.2, the
equation can be converted to a system of first-order linear differential equations. Defining
the vector of variables y(7) := (y1(7),y2(7), y3(7), ya(7), y5(7)) where

yi(1) = en(7) (4.41)
ya(T) = /0 ds e " cos(ws) o1y (T — 8) (4.42)
ys(T) = /OT ds e " sin(ws) e} (7 — s) (4.43)
ya(T) 1= e "7 cos(wT) (4.44)
ys(7) := e " sin(wT), (4.45)

and differentiating these functions makes the system of differential equations close again to

y(r)=Dy(7)+b (4.46)
where
__QQQéBD —492R6{W0] 0 _292 Re[wofl’;igg[WO]w _292 Re[w()i;f;igl[WO]ﬁ_
1 —K —w 0 0
D:= 0 w —K 0 0 (4.47)
0 0 0 —K —Ww
.0 0 0 w —K ]
[4°Rep | [011(0) ]
0 0
and b:= 0 , subject to initial condition y(0)= 0 . (4.48)
0 1
- 0 - - 0 -

The determinant det D = —2¢%Cpp (k? + w?)? # 0 implies that D is invertible. The unique

steady-state solution is then given by y**# = —D~!b. Using (D~!);; = —1/(2¢%Csp)
means that the steady-state solution for g{Ati¢ = y5tatic jg
; R 1
static -1 2 BD
o1 (D™ )11 ¢°"Rep Crp 2l 1 (4.49)
reproducing the expected thermal result. The general solution to (4.46) is
y(r) =€ (y(0) + D 'b) —D'b (4.50)

which shows that the matrix exponential governs the approach to the thermal steady
state. Again, the eigenvalues AP of the matrix D govern the dynamics of the matrix
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exponential, which are the roots of the characteristic equation

0= (()\D)2 +2mAD 4 k2 w2> ((AD)3 + 2%

1+ QQéBD] (AD)2 (4.51)

K

49°kCBp B 4g°ReWo](k? — w?)
K2 + w? (K2 + w?)?

(k2 + w?) [1 + ] AP 4 2¢2Cpp (K% + w2)> .

As a perturbation in g < 1 the above yields eigenvalues,

)\]? ~ —292CBD l1+...],
2 2
)\DN—H[I—we[V\}O]—F...]—iw[l—l—QgReD/VO]—i-...] ,

2 K2 + w? K2 + w?

2D = D (4.52)
A=k —iw,

N = —k+i

5 = —K+ 1w,

where the last two eigenvalues are exact. In performing the above expansion the
bounds (4.28) and (4.30), repeated for convenience,

2
9°KCBD
2 <1, (4.53)
d*Cep  29°Re[Wo]
~ 5 <1, (4.54)
K K* +w
are sufficient to control the expansion of the eigenvalues (4.52). The reason for this is that!?
4¢*kCrp 9°KCBD 1
s =4 X X 1 4.55
K2 + w? w2 (k/w)? +1 < (4.5)
49°R; 2 —w? 2¢°R 21
PRV —?) _, 2°ReWo] | (/)P =1 (156)
(K2 + w?)? K2 + w? (k/w)? +1

which bounds the O(g?) terms in the second line of the characteristic equation (4.51). As
before, g?Cpp/k < 1 on account of (4.54).

The solution relaxes towards the thermal steady state here too with time-scales &,,/2
and ~ 1/k. A tedious calculation results in the perturbative solution for x;(7) = p{;(7)

where
1 2g°Re[Wo| 2(k% — w?) —242C
, . B B _ Ak mwr) 9°CBDT
011(7) =~ p T + [911(0) c2mo/H | | K2+ w2 1 <2+ w2 e
2 2R 2 2 _ 2 0 2 2R
—I-LMO] 1— (1" — )1 (0) cos | [1+ 29" Re[Wo] wT (4.57)
H2+w2 K;2_|-w2 KZ2+(.U2

2 _|1_20%ReDVo] |,
(D] drwen(©)) (], 20°ReDI] N[
Re[Wo) K2 + w? K2 + w?

which is real-valued and again valid for H7 > 1.

13Tn (4.55) the function 0 < 1/(2*+1) < 1 appears, and in (4.56) the function —1 < (z® — 1)/(z? +1) < 1
appears (with £ — k/w). Since these O(1) functions come multiplied here with the small dimensionless
variables shown, these terms are bounded.

—97 —



The validity conditions are again derived with an exponential ~ exp ([—1/§ +i®] 7)
ansatz, which leads to linear combinations

. . . 1
041 (T — 8) = 04 (7) — s611(7) + ... = Crp — App <£ +z<1>> +.... (4.58)

in the Nakajima-Zwanzig equation. Bounding the derivatives in the Taylor series here only
requires |Cpp| > \A%D]\/l/fQ + ®2 with (¢, ®) € { (£1/2,0), (1/k,+w)} and so this leads

to the validity relations
292 AppVK? + w?

29*AppCrp
CspD

CsD

< 1 and

< 1 (4.59)

The bounds in table 6 (that were set when solving the off-diagonal non-Markovian solution)
are sufficient to satisfy the above bounds also.

Finally, as before it is also of no surprise that the above solution simplifies to the
Markovian solution

1 1 2
I N — - —2g“CBpT
Qll(T) EQWW/H + 1 + |:Qll(0) 627TUJ/H + 1:| € (460)

when the limit k7 >> 1 is taken, and factors of ¢’Cpp/k ~ 2¢°Re[Wp]/(k% + w?) are
neglected (as demanded in the w < k Markovian regime).

4.4 Interacting field theories and secular growth

Issues of secular growth can be explored as in our study of the accelerated qubit in
Minkowski space [21, 71] by adding a A¢* interaction to the massless theory, which we
briefly discuss here. Including an self-interaction

Hy = )‘/ Bx gt T (4.61)
4! Js,

to the Hamiltonian H introduces secularly growing terms [3, 70, 72-86] that again can
be resummed by using a coupling-dependent effective mass, which for nominally massless

particles has size [2, 87-90]

MZ% — M;= ‘ﬁj H?, (4.62)
which is very small in that 0 < M),/H < 1, and shows the characteristic non-analytic
dependence on A expected from a resummation.

In the interacting theory the effective mass M) therefore lies in precisely in the regime
of parameter space associated with critical slowing down. At lowest-order in the expansion
of the kernel in the Nakajima-Zwanzig equation (see [21]), the equations of motion are
unaltered by the introduction of H). For this reason, the entire earlier analysis applies
here with the mass replaced with M), and in particular the non-Markovian analysis in the

critical slowing down regime. The qubit relaxes with time-scales

A V32
1. 38 12r and & = 1 ) vgem 7 < 15e (4.63)
~ - 2,2 vV ’
koMY VEAH 9°Cop F Y <4

where of course the time-scales must satisfy the validity relations in table 6.
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5 Conclusions

The Markovian approximation provides a simplistic description of the qubit state when
the evolution is constrained to be extremely slow compared to the scales over which the
Wightman function varies. Of great interest in this work is the critical slowing down
regime, where the effective mass Mg of the scalar field is small compared to the de Sitter
Hubble scale H. Here the correlation time for the Wightman function is ~ H/M?2;, which
is large compared to the Hubble time 1/H.

The Markovian regime constrains the relative sizes of the parameters in the problem
— in this case, the qubit gap w, the qubit-field coupling g, as well as M.g and H. As
a general statement, bounding derivatives in a Taylor expansion @'(7 —s) ~ o'(7) + ...
ensures a heirarchy w < H so that large oscillations do not violate the assumption of slow
qubit evolution. Precise validity relations for the Markovian regime have been collected
in this study, which become stringent to satisfy in the critical slowing down regime where
Mg < H. Although a Markovian limit can be controlled in the critical slowing down
regime, it interestingly constrains a hierarchy w < Mlef /(BH) <« H (where in particular
the regime M% /(3H) < w < H is never Markovian).

A non-Markovian analysis in the critical slowing down regime is also applied in this
work, where the memory effects introduced by the slow decay of the Wightman function
are accounted for. This allows for a more detailed solution for the qubit evolution, which
also allows access to solutions in the M2 /(3H) < w < H regime. Sufficient validity rela-
tions are derived (which are slightly less stringent to satisfy than those in the Markovian
limit), and the Markovian solutions are recovered as a limit of the non-Markovian solutions
derived. The basic non-Markovian analysis in this work comes with considerable effort, so
seemingly a lesson to be learned in the larger scope of Open EFT methods is that Marko-
vianity is much easier to control than tracking even a small degree of non-Markovian effects.
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A Late-time asymptotics for the Bunch-Davies Wightman function

Here we derive the details of table 1 from section 2.4. We begin with the analytic contin-
uation of the Gauss hypergeometric function [94]

oFy (a,b;¢;2) = M(—z)“ o Fy <a, a—c+lia—-b+1, i) (A1)
+m(—z)—b ya (b,b—c+1;b—a+1;i) ,
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which is valid for a — b ¢ Z and z ¢ (0,1). Using the first term in the series representation
of o F we get the |z| — oo asymptotics in the case that a — b ¢ Z, where

I'(b—a)l(c) I'(a—b)I'(c)

oF (a,b;¢; z2) ~ m(—z) a m(—z) b,

(A.2)

Using the identity I'(3 — v)['(2 + v) = msec(nv)(2 — v?) we write the Wightman func-

tion (2.27) as

WBD(T) = (2 +V) (2 V) o Fy (2 +1/,g —v;2;1 4+ (sinh <T> Z'6>

1672 2 2
(A.3)
Then in the limit H7 > 1 and for 2v ¢ Z the Wightman function (2.27) takes the approx-
imate form

Wap(7) , (A4)

_ H? |T(=20)0( +v) _a, T@VIE-v)
T 162 | r(L-v) o

where z(7) = 1+ (sinh(%) - z%f ~ 1efl™ and we have used 2I'(z) = I'(z + 1). Note
the above does not capture the asymptotics for v € {0, %,1} (equivalently M.g/H €
%, V2, @}) Simplifying this,

Wan(r) = 2 ror (3o et rr (3-0) e—@—”)(HT”:jﬁ)

where we have used the duplication formula I'(2)I'(z + 1) = 2'72/7['(2z). For v €
(0,2)\ {3,1}, we only need to keep the rightmost term in (A.5) (which is leading-order)
giving us

2

Wep(T) ~ 5

- 3
ie"™ T (v)T <2 — V> e~ (3—v)H | O(e_@—H/)HT) . (A.6)
Taking the real part of the above yields

H2

Re[Wgpp(7)] ~ — 5

sin(7v)T (2 - V) F(V)e_(%_”)HT + (’)(e_(%+y)HT) . (A7)
A word of caution on the above asymptotic form when the limit M.g/H < 1 is also
taken: the sub-leading corrections (coming from higher-order terms in the hypergeometric
series in (A.1)) are actually O(e=®/2=H7) ~ O(e=H7) as noted in (2.37) (in the limit
Mg /H < 1 this is a slightly slower falloff than O (e~(/2+HT) ~ O (e73HT) written in
the above).

For the case of v = iy where p = /M2 /H? — 9/4 (when Meg/H > 3/2), we write

the relevant factors in polar form such that

H? sy,
Wap(T) ~ aate 2o H

T (—ip)T (;’ + m)

|:e—iuHT+u7r—iArg[F(iM)F(g_i“)] (AS)

_i_ei,uHT—,wr—HArg [F(i,u)l"( % —i,u)]
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Taking the real part of the above yields the oscillatory

H? 1+ 4p2
Re[Wgp(7)] ~ 4713/2\/ +,u a tanh(mp) e~ 217 sin (MHT + Arg [F <Z) - i,u) F(zu)]) :

(A.9)

The asymptotics for v = % (the conformal case with M.g/H = /2) is trivial given

the representation (2.31). The conformal case does not require an extra row in table 1

since it agrees with the limits v — %i of (A.7) . For the cases v € {0,1} (or equivilently
Mg /H € {3/2,v/5/2}) we use the analytic continuation for b — a = m € Z, where

L T(e(—z)rm "T(a+n+m)[(1—ct+at+n+m) _,
2P (a,atmicz) = F(a—i—m)f‘(c—a)nz:: F(a)T(1—c+a)n!(n+m)! (4.10)
s [©)  ya§~ Dlatn)lm=-n) _,
x [los( )+hn]+f‘(cfa)( ) — T'(a)l'(c—a—n)n! ’
I'(2)

with hy, = Yo(1+m+n)+¢o(1+n) —¢o(a+m+n)—o(c—a—m—n) and Yy(z) = T
being the digamma function [94]. Taking the leading-order terms for v € {0, 1}, it follows

H2
v=0or Mg = §H Wap(T) =~ D _em2HT (A.11)
2 8T
H2
<V =1or Mg = ?H) Wap(T) =~ _38 e 3T (A.12)
T

Note that taking v — 0% in the asymptotic form (A.7) results in precisely (A.11), so
this case does not require an extra row in table 1.

B e-dependence of divergences in Agp and AL

Here we derive the asymptotics for the divergent function Agp. Using the Wightman func-
tion (A.3), but with a small-distance regulator . The integral (3.8) for App is explicitly'4

App = 2 lim ds sin(ws) (B.1)
e—=0t Jo

H7TE +0)(E —v) o B (% 21+ sinh(iH(SQ_iE))Q)

R
xRe 1672

We cannot take the limit € — 0T here, so we keep € small (compared to the other scales) but

finite. For s approaching the coincident limit, the Wightman function has the behaviour
1
4% ~ B.2
B (5) 472 (s — i€)? (B-2)
We proceed in the same manner as the analogous calculation in [21] by subtracting and
adding (B.2) in the expression for App giving

App = A](Bd]é)vergent) +Ag1£ite) (B3)

“We replace sinh(%) —if< — sinh(%) relative to the form in (A.3).
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where

. o0 1
A(dlvergent) _ 2/ . _ B4
BD ; ds sin(ws) Re 17205 — ie)? (B.4)
. oo
and Aggmte) = 2/0 ds sin(ws) (B.5)

HT(E 4+ )03 —v) o Fy (% 3 —p21 sinh(H(S;i€))2>

2
1672

xRe

1
+47r2(s — ie)2] '

(dlvergent)

The divergent part Ay was computed in [21], where'®

A(dwergem) 2w2 {cosh(we)chl (we) — sinh(we)shi (we)] ~ % [log(e'ywe) + (’)(w262)]
™ s
(B.6)
in the we < 1 limit (using the expansions chi(z) ~ y+log(z)+O(z?) and shi(z) ~ z4+0O(2?)
for 0 < z < 1). In contrast to this, the limit ¢ — 0T can be safely taken in the integral

Agi]gite) where
finite) H o . w
A](3D =52 ; ds sin (Ez> (B.7)
I3+ )T —v) 21 (3 +v,3 — v;2;cosh?(2/2
(e[ TG ot 1),

where the integration variable has also been scaled to s — z = Hs. Since the argument of
the hypergeometric function in (B.7) is greater than unity, we use the analytic continua-
tion (A.1) so that

- H [~ w
A(ﬁmte) _ . (7 ) B.
272 |, ds sin 7> (B.8)
_3_,
R D(—v)[(3+v) (—4cosh?®(2/2)) 2" o F1 (3 +v, 5 +v;1+2v;sech?(2/2))
X
e NG
34y
INCINEE) (—4(305h2(z/2))_2Jr oFy (3 —v, 5 —vi1—2v;sech?(2/2)) 1
_|_ J—
N3 22
which is valid for 2v ¢ 7Z. Relating the above hypergeometric functions to associated
Legendre polynomials of the first kind, through the formula [91] (with = > 0)

2 Fi(a,b; 2b; ) = r(\/z;) “b3(1 fx)%—zp‘”’ (;%) (B.9)

15Where chi and shi are respectively the hyperbolic cosine and sine integral functions [92], defined by

chi(z) := v + log(z / dt ——— cos(t and shi(z) := —g —/ dt SH;(t)
0
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and then computing the real part in (B.8) yields (despite the condition in (B.8), this
formula is valid for 2v € Z as well)

finite H & . w ™ 3 3 _
A](BDt ) _ 27?2/0 ds sin <ﬁz> (— \/;csch2 ()T <2 + y) P% (cothz) (B.10)

m 3 3 .y 1
—\/gcsch2 ()T <2 - 1/> P% (cothz) + 22> .

We find no way to analytically compute (B.10) here, although this form is easier to use for
numerical integration with computer algebra systems. Numerical investigation reveal the
logarithmic e-dependences (in terms of He < 1 or we < 1) given in table 2 (differentiating
these forms with respect to w leads to the e-divergences for Agp).

C Conditions for the validity of the Markovian limit

For a more detailed derivation of the Markovian limit, we direct the reader to [21]. Begin-
ning from the Nakajima-Zwanzig equation, a Taylor series o' (7 —s) ~ o'(7) —s@"(T) + ...
has been applied so that

1

do1 i —iws
571_1 g’ /_T ds Wap(s)e (C.1)

T I
—492/ ds Re[Wpp(s)] cos(ws) [g{l(r) — 388971_1 +.. ] ,
0

8912 ~ g 2A 1 —9 2 i ds R +iws 1 o 8Qi? C
~ ig°Ap012(T) — 29 s Re[Wgp(s)]e 012(7) — 5 +...] (C2)
or 0 or

) T ) dol*
+ 2926+2’w7/ ds Re[Wgp(s)]e *“* [9{3(7‘) -5 5)12 +.. ] ,
0 T
where we note that we have already specified the counter-term as w; = —App as in section 3
(so that w is the physical qubit gap). Since late times 7 > 7, are here being probed (with 7.
the correlation time of Wgp ), the limits on the integral can be approximated by ~ oo. Using
the definitions (3.7), (3.6) and (3.8) this means that the above equations are approximately

given by
00! 00}
871'1 ~ QQRBD — 292 [CBDQil(T) — i3D 8771'1 + .. :| (03)
agl ‘ 8@1
8771'2 ~ _92 |:CBDQ{2(T) + ( §3D — ZC’BD) 8771'2 + .. :| (C4)

’ ) . 00!
fgPetRieT [(CBD — iApD)01a(T) + (App + iChp) % +.. } .

where / denotes an w-derivative.
From here we note the form of the Markovian solutions in (3.16) in (3.20), and switch
to the interaction-picture via (2.22) where

o' (1) == et o(1)e M7 (C.5)

— 33 —



A short calculation reveals that ol (7) = 011(7) and ¢l5(7) = eT™7p15(7). This means that
the diagonal solution (3.16) is unchanged in the interaction-picture, while the off-diagonal
solution is

I —7/€ * QZABD . QQCBD 2iwTY ,—T7/&
012(7) = 012(0)e™ /M + 075(0) % t 2w (1 —e™T)e /oM (C.6)

which is of course given in the non-degenerate regime (where w > ¢g2/C3p + A%, ). To
bound the derivatives we use interaction-picture ansatzes of the form

001 () = Ay + Ay e727/m (C.7)
05o(T) o By e /M - By o7 T/Su 2 Zj:LQ Bje /& +i®;T (C.8)
using 1/&,, = ¢?Cpp from (3.23),and defining the phases ®; = 0 and ®; = 2w for the
off-diagonal ansatz (A;, B; € C are placeholders for the time-independent amplitudes in
the corresponding solutions). These ansatzes will be used to bound the derivative terms
n (C.3) and (C.4).
It is simpler to begin with the diagonal equation. Using the ansatz o}, (1) o e=27/¢m
results in the r.h.s. of (C.3) containing terms

0 2A]
Qll D) 292A2 e §M Csp — ~—BD + ... (Cg)
or En

To neglect the derivatives here such that of,(7 —s) ~ p{;(7) therefore means to satisfy the

bound
App

Y

To derive validity relations for the off-diagonal equation, a totally analogous proce-

2
‘CBD’ > (C.l())

dure is followed. Using the earlier ansatz (C.8) which is a linear combination of terms
o Bj e” /& +i®7 the rhus. of (C.4) contains terms

do1  _ @By e & T I Cpn + (Alp — iChp) +i®, . (C.11)
or §M

4 LT ik . , 1 .
+92€+2’LUJTB;< e &M 1P |:(CBD — ZABD) + (A%D + ZCIISD) <_§M — Z@j) + .. ] .
Dropping the derivatives in the Taylor series therefore means to satisfy the bounds

(C.12)

|CeD| > ‘(A%D — iC]'3D) ( + 1D )
€A4
|Cep — iApp| > ‘(AED + iChp) <_£M - z’@)’ : (C.13)

Since |Cpp —iApp| > |Cep|, bounding the first condition automatically bounds the second.
In addition to this, |[Cpp| is larger than each of the real and imaginary parts of the complex
number on the inside of the modulus in (C.12). This implies that

/

€ M

C;
ICep| > — Chp®, and  |Cgp| > gBD + Alp (C.14)
M
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are sufficient to bound the derivatives and end up with the desired Markovian equation of
motion. For ®; = 0, the above bounds imply

Al Cl
|Cep| > | =ER -BD
é-JV[ é-]\/f

the first of which is essentially the same as (C.10) (up to a factor of 2). These can be put

and |CD| >

, (C.15)

in the more useful form

1 C 1 C
— <K ],3D and — < ],3D (C.16)
3 ABp 3 Cep
On the other hand, for ®5 = 2w the earlier bounds imply
A/ C/
|CeD| > ‘ fBD — 2wChp and |CBD| > §BD + 2wARp| - (C.17)
M M

By explicitly using 1/&,, = ¢?Cpp in the validity relations (C.15) and (C.17), these can be
put into the simpler forms

2wCy 2wA]
“TBD| « 1 and 9*Chp + Lé BD
BD

<1,
(C.18)

FlAgpl <1, ¢*Chpl <1, |g*Afp —

which are precisely the validition relations given in (3.24) in section 3.3.

D Singularities and ordering of the limits w — 0 and M.z — 0

There is a subtlety that arises when computing the asymptotic forms for the functions Cgp
and App used in the main text. The subtlety arises because these functions diverge in the
limit that Meg and w both vanish together, and this makes the asymptotic form found in
the regime where both Mg <« H and w < H depend somewhat on the order in which
these parameters are made small.

More precisely, using the asymptotic form Wgp(7) ~ Wphe "7 in the Meg/H < 1
regime (see (2.32)) the relevant functions have the following behaviour

2ReWo|k 2ReWp|w
oo~z e ond Ao (D-1)
and s Wl Wol(s2 — w?)
4ReWp|kw 2Re[Wh|(k* —w

where x ~ MZ2;/(3H). These functions therefore have different leading-order asymptotic
behaviours near (w, Meg) = (0,0) depending on which path is chosen to explore it in the
Mg — w plane.

Because of this table 2 focusses on the leading-order behaviour for these functions in
the w/H < Meg/H < 1 regime and vice-versa. For the w/H < Mg/H < 1 regime,
it turns out that the sub-leading terms in the asymptotic series for Cgp, App and their
derivatives are O(w/k) which means that in this case we probe the w < k < 1 regime (see
table 2). For the opposite case of Mqg/H < w/H < 1 the sub-leading terms are O(x/w)
which means we actually probe the k < w < 1 regime (also given in table 2).
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