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The e- e+ DA<I>NE collider is designed to reach a luminosity of the order of 1032-1033 sec-1 cm- 2 at 510 MeV,
by storing high current. Such a current, few amperes per beam, can in principle be achieved by filling many RF
buckets in the machine. One of the main beam dynamics problems concerns the multibunch instabilities caused
by the strong coupling between the beam and the parasitic higher-order mode (HOM) resonances of the RF cavity.
Due to the high current, the instability is very fast, so it is impossible to stabilize the beam with a feedback system
alone. An effort has to be made to reduce the shunt impedance of the cavity HOMs so that a feedback system
can be effective. This task is accomplished by properly designing the RF cavity and by coupling out the HOMs
through loops or wave-guides to extract energy from the resonant fields, thus reducing at the same time the quality
factor Q and the shunt impedance R. The residual excitation of beam oscillations is damped by a bunch-by-bunch
digital feedback system.
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DEFINITIONS OF SYMBOLS USED IN THIS PAPER

ac Momentum compaction.

a 1 Dipole oscillations growth rate (1 j t'1).

aeff Effective dipole oscillations growth rate (ljt'eff).

af HOM filling rate.

afb Feedback damping rate.

f3 Natural angular frequency for a single HOM.

~E Energy deviation.
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Feedback energy correction.

Phase angle of synchrotron oscillations.

Electron charge.

Nominal electron energy.

Waveguide electric field.

Magnetic Green function for a rectangular waveguide (3 x 3 matrix ).

Stationary longitudinal phase space distribution.

Harmonic number.

Cavity unperturbed magnetic field.

Waveguide magnetic field.

Induced wake current in the inductance of a single HOM.

Beam current.

Beam average current.

Beam current amplitude of mth harmonic.

Current density.

Bessel function of the first kind of mth order.

HOM loss factor.

Number of bunches.

Relative oscillation mode number.

Single mode dissipated power.

Total dissipated HOM power.

Totalpower dissipated in the waveguide loads.

Cavity quality factor.

Bunch charge.

Cavity shunt resistance.

RMS bunch duration.

Longitudinal phase space amplitude.

HOM filling time.

Dipole rise time.

Longitudinal radiation damping time.

Effective dipole rise time.

Asymptotic effective rise time (for high Q).

Damping time of the energy of the nth HOM.

Time distance between two adjacent bunches.

Total energy of a single HOM.

Energy loss for the broad band impedance.
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Uo Energy loss by radiation for the synchronous particle.

Ur Energy loss by radiation.

v(t) Induced wake voltage for a single HOM.

Vg Generator voltage.

Z(w) HOM impedance.

W o Revolution angular frequency.

We Coherent synchrotron angular frequency.

W r Resonance angular frequency for a single HOM.

W S Incoherent synchrotron angular frequency.

1 INTRODUCTION.

215

In the <I>-Factory DA<I>NE,l a 510 MeV e+e- twin-ring collider under construction at
Frascati Laboratories (see Table 1), the luminosity goal is achievable by storing a high
current in many bunches. This has required a strong effort on the study of the control of
multibunch instabilities. The instability problem can be addressed both by reducing the
causes and by applying cures.

Analysis of the interaction of the beam spectrum with the parasitic modes of the RF
cavity shows that the instability growth rates depend on the strength of the "stable" and
"unstable" sidebands and their position with respect to the HOMs.2,3

TABLE 1: DA4>NE single ring parameter list.

Machine length 97.69

Revolution freq. 3.069

RF frequency 368.26

Harmonic number 120

Number of Bunches 30 + 120

VRF 254

Energy 510

Radiation loss/tum 9.32

Momentum compaction 5.8*10-3

Synchrotron frequency 22.88

RMS bunch duration 100

Longitudinal damping time 17.8

(m)

(MHz)

(MHz)

(KV)

(MeV)

(KeV)

(KHz)

(psec)

(msec)
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For HaMs with very high Qs, it is really unlikely that a sideband couples to an HOM.
The shunt impedance of these HaMs also is very high, but is hannless as long as the HOM
is not excited by a sideband. Unfortunately, the HOM frequency can drift during machine
operation because of thermal excursions or as a side effect of tuning the fundamental mode,
leading to a strong coupling and very fast instability.4,s

A careful design of the cavity shape can lead to HaMs with rather low shunt impedances
R/ Q < 1 Q, but these values are not low enough to maintain stability in the case of full
coupling.

Recent development ofHOM damping techniques have shown that, for normal-conducting
cavities, it is possible to achieve Qs less than 100, thereby obtaining a strong reduction of
the beam-HOM coupling.6- 8 This would make it possible to damp the residual multibunch
instabilities by means of a feedback system.9- 13

This paper describes the results obtained at the design stage for DA<I>NE. In Section
2 the theoretical estimates of the growth rates are presented. The optimum design of an
RF cavity with low HOM content is briefly described in Section 3. The HOM damping
techniques, which have been investigated, are treated in Section 4. Section 5 illustrates the
bunch-by-bunch feedback system. The time domain simulation code, which is able to show
the beam dynamics behavior and the effectiveness of the feedback system, is described in
Section 6.

2 THEORETICAL GROWTH RATES

2.1 Coherent frequency shift

The analysis of the dynamics of kb equally spaced bunches interacting with the long-range
wake fields is performed by computing the coherent frequency shift predicted by Sacherer's
theory.2

The spectrum of the bunches executing free dipole oscillations exhibits lines at angular
frequencies

(1)

-00 < p < +00, 0::; n ::; kb - 1, p, n integers,

where n is the number of the relative mode of oscillation and W s the synchrotron angular
frequency.

In DA<I>NE, due to the high revolution frequency, the unstable sidebands corresponding
to a given n, are quite far apart. A single HOM with high Q can at most excite a single
sideband. For a damped HOM, with Q ~ 100, the resonator can significantly couple to a
few unstable sidebands. However, the bandwidth is such that, apart from n ~ kb /2, there
will not be compensation of stable and unstable sidebands.

In the following analysis we consider the effect of a single HOM coupling to the relative
bunch motion n. Let W r , Rand Q be the resonator parameters. In this simple case the
coherent frequency shift is3
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(2)

(3)

where /0 is the beam current, ae the momentum compaction, q = pkb + n, Z(qwo + we)
the resonator impedance, and go (r) the stationary phase space distribution.

In the realistic case We « W r , the impedance can be approximated by:

(4)

(6)

(7)

where

af =~ and tg(<I>r) = Q (qWO
_ Wr ) (5)

2Q W r qwo

are the filling rate of the resonant mode (rf = 1/af = filling time) and the detuning of the
resonant mode with respect to the line q of the bunch spectrum, respectively.

The coherent tune shift is obtained by solving the following equation:

2 [ .] [ 01 (q)R/o .]We + aftg(<Pr ) - Ws - Jaf We - af wstg(<Pr ) - q - JWs = O.

The customary way of computing the coherent frequency shift4,5 considers the bunch
spectrum at angular frequencies wp , Le., the spectrum of a bunch with dipole perturbation
executing free oscillations in the absence of growth or damping. Once the impedance
spectrum is known, this procedure leads to the solution for the unknown We. This is not
exactly what is prescribed in Equation (2), where the impedance has to be computed at
the shifted frequencies. As a matter of fact, Equation (2) is an eigenvalue problem for We.

Computing the impedance at the bunch spectrum sidebands (1) leads to an estimate of the
growth rates that is not exact, especially in the case of high Q resonances.14, 15

2.2 Dipole mode, on resonance

Assuming a resonator at wr = qwo + We, we get:

_ +.af[l_ 1+401 (q)R/o]
We - Ws ] 2 .

qaf

As expected, in the full coupling condition there is no real shift of the synchrotron
frequency, whereas the imaginary shift gives the growth rate of the instability. We recognize
in the term



218 s. BARTALUCCI et ale

q
---='l'l
01 (q)Rlo

the instability rise time usually obtained from Equation (2).
It is interesting to analyze two different regimes.

For 'l'l » 'l'f' we get

(8)

1
We ~ W s - j - . (9)

'l'l

In this case the rise time given by Equation (8) can be considered a fairly good
approximation.

Quite different results are obtained in the other case, namely when 't'l « 'l'f' for which
we get:

We ~ W s - _J_.- . (10)
J'l'l'l'f

The effective rise time 'l'eff = J'l'l'l'f is the geometric mean of 'l'l and 'l'f. One could
conclude from the above equation that cavities characterized by an extremely long filling
time should be preferred from the standpoint of the multibunch instabilities. Using the
explicit expression of the two terms in the rise time of Equation (10), we have:

T:eff=Ch(q)W~~(R/Q))!. (11)

Therefore, in the regime 'l'l « 'l'f the effective rise time is inversely proportional to the
square root of the ratio R / Q. By increasing Q and keeping R / Q constant, the effective rise
time reaches an asymptotic value and is no longer dependent on the cavity filling time.

As an example we plot in Figure 1, as a function of Q, the growth rates al = 1/'l'!
and Cleff = 1/ 'l'eff computed for DA<PNE. The plot assumes a parasitic resonance with
R/Q = In, at W r = 500wo + ws , exciting the motion of 30 bunches of 3 cm RMS length
for a total current of '1.4 A. The upper curve is the growth rate al (Q) while the lower one
is aeff(Q). Note that at high Qs the difference between the two curves becomes larger and
larger. To verify the correctness of Equation (7), we show on the. same plots the instability
growth rates (dots) obtained from the time domain simulation code16 described in Section
6. The numerical results agree quite well with those computed from Equation (7).

For the DA<I>NE cavity, only a few undamped HOMs with a relatively high shunt
impedance give a 'l'eff significantly higher than 'l'I. In Table 2 we show the results relative to
the HOMs of the DA<I>NE cavity given by URMEL.17 The rise times computed with Equation
(7) are given for wp = W r (on resonance). Analogous results for the measured HOMs of the
cavity prototype are shown in Table 3. One can see that when the HOM beats on resonance,
the instability is extremely fast and incurable, whereas for damped HOMs the rise time is
much longer and easily curable with a feedback system.

It must be said that Landau damping could noticeably affect the instability once the HOMs
have been damped. In Figure 2 we show the Q required for the 0-MM-1a cavity mode versus

a We follow the HOM nomenclature as given by the URMEL C9de.
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FIGURE 2: QL vs. bunch length for O-MM-l Landau stability.

the bunch length. The damping time depends almost on the square of the bunch length, and
for bunches shorter than 3 cm, much stronger damping of the HOM would be required.
Moreover, the real coherent shift could make it ineffective.

For the sake of completeness, we point out that the growth rates have been worked out
assuming an individual coupling ofone sideband with a single resonator. These calculations
neglect the superposition of the shunt impedance of several HOMs on the same relative
mode. This effect can enhance·. the coupling (sum of shunt impedances) or reduce it
(difference of shunt impedances). The time simulation code shows that for DA<I>NE these
effects are generally negligible, even in the presence of the HOM damping system.
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TABLE 2: URMEL Monopolar Cavity Modes

MODE TYPE FREQ. [MHz] (R/Q) [Q] Qo 'l'efdJLs]

O-EM-l 367.38 61.38 49100

0-MM-1 695.97 15.81 49800 8

0-EM-2 794.85 0.01 81900 1850

0-MM-2 987.18 0.01 65900 2100

0-EM-3 1069.79 0.25 66900 96

0-EM-4 1119.92 2.11 57500 20

0-MM-3 1138.40 0.09 56800 270

0-EM-5 1203.83 0.79 67600 37

0-MM-4 1283.84 0.17 56200 150

0-EM-6 1318.43 0.77 72400 35

0-MM-5 1390.57 0.33 57800 81

0-EM-8 1481.07 0.85 55400 38

0-MM-7 1570.06 0.55 62200 51

0-EM-9 1574.96 0.88 61000 35

0-EM-10 1665.50 0.17 68200 136

0-MM-8 1672.18 1.12 63100 29

0-MM-9 1717.68 0.22 68500 109

0-EM-11 1742.33 0.21 57300 133

0-MM-10 1774.36 1.53 62400 24

0-EM-12 1796.49 0.13 56400 217

0-MM-11 1866.16 0.47 63300 62

0-EM-14 1955.71 0.15 91400 133

0-EM-15 2011.62 0.23 59500 132

0-MM-13 2038.39 0.24 64400 120

2.3 Some considerations regarding high Q cavities

The shortest rise time given by the "on resonance" asymptotic value of Teff, which we call
ieff, is reached for Tf » Tl, i.e., for HOMs characterized by very high Qs. It might happen
that the machine parameters are such that ieff > Td (damping time).

Therefore, at the design stage, it is interesting to compare the effective rise time ieff with
the damping time Td due to radiation effect or to the Landau damping. If ieff > Td, the beam
is stable without any changes to the RF cavity. As an example we give the condition for a
beam stabilized by the radiation damping.
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TABLE 3: Measured modes of the cavity prototype

UNLOADED MODES LOADED MODES

MODE Freq. R/Q Qo Teff Freq. QL, Calc. QL, Meas. Teff

[MHz] [Q] [jls] [MHz] [ms]

0-EM-1 357 61 25000 349.5 22000

0-MM-1 747.5 16 24000 9 745.7 75 70 1.37

0-EM-2 796.8 0.5 40000 90 796.5 550 230 12.9

0-MM-2 1023.6 0.9 28000 60 1024.9 190 150 10.0

0-EM-3 1121.1 0.3 12000 370 1125.4 240 18.3

0-MM-3 1175.9 0.6 5000 440 1172.0 65 100 21.9

0-EM-4 1201.5 0.2 9000 730 1194.3 220 130 50.5

0-EM-5 1369.0 2.0 5000 135 1361.6 115 300 2.2

0-MM-4 1431.7 1.0 2000 670 1423.2 750 1.8

0-EM-6 1465.0 0.1 2000 6670 1467.6 190 71.2

For short Gaussian bunches, it is useful to write down the effective rise time in the form

1

ieff = (4(E/e)Ws ) 2 1 l'

Iocxc wr(R/Q)2

The condition il « if requires that

(12)

QJR/Q »

and ieff > id gives

(13)

(14)wrJR/Q < wo(Uo/e) W
s

JT:2Iocxc (E/e) .

The two relations above are never fulfilled in DA<I>NE. However, for typical R / Q values,
the conditions are better satisfied for superconducting cavities at very high energy, provided
that the momentum compaction is very small.

3 A CAVITY WITH LOW HOM IMPEDANCES

RF power requirements are not highly demanding in a storage ring like DA<I>NE. At the
operating energy of 510 MeV and a beam current of 1.4 A in 30 bunches, a peak voltage
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up to 250 kV is required in the RF cavity, mainly to control the bunch length. The power
dissipation in the cavity has to be kept reasonably low to ease the mechanical and cooling
design. A shunt resistance as low as R = 2MQ (V2/2P) for the fundamental mode seems
acceptable. This enables us to consider the minimization of the R/ Q for the HOMs as the
main goal of the design process in order to reduce the beam cavity coupling.

3.1 HOM power loss

The total energy Ut delivered to the cavity HOMs by the passage of a bunch is given by:

Ut = L Un = L ~Wn(R/Q)n exp (-w;a;) q; = kpmq; , (15)
all the HOMs n

where Un, Wn and (R/ Q)n are, respectively, the energy, the resonant angular frequency and
the ratio between the shunt resistance and quality factor of the nth HOM; qb is the bunch
charge; at is the bunch rms time duration, and kpm is the cavity HOM loss factor.

The energy of the nth cavity HOM Un decays exponentially with a time constant
7:n = Qn/wn. If 7:n is much smaller than the time distance between adjacent bunches Tb,
the mode dissipates the power Pn = Un/Tb. However, this is the case only for modes that
are very heavily damped. For most modes, the fields induced by a bunch passage survive
long enough to interact with the following bunches and the total power dissipated has to be
calculated in the frequency domain.

The beam current can be expressed as a Fourier series:

+00
ib(t) = L 1m exp [jmwot] .

m=-oo

(16)

The total HOM power depends strongly on the cavity monopole spectrum and increases
when the beam lines 1m overlap the cavity spectrum. Such a power can be calculated as
follows:

+00 2(R/Q)Q1~PT=L L 2·
m=o all the HOMs 1 + Q2 (mwo _ ...!EL.-)

W r mwo

(17)

The probability that a beam spectrum line interacts with the resonator spectrum is very
small for an undamped cavity, but if this does happen, the associated power loss can be very
high. For a strongly damped cavity, as in our case, the overlap probability is much higher,
but the resultant power loss is moderate, with a limit value PT = Ut / Tb.

3.2 Procedure for designing the cavity shape

The basic idea is to "open" the beam tubes at the cavity irises to let the higher-frequency
parasitic modes propagate through them,18 and use tapers as gradual transitions from the
cavity iris to the ring vacuum pipe. This implies a strong reduction of both longitudinal and
transverse characteristic impedances (R/Q) ofall the HOMs, except for the lowest-frequency
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ones, which need special care. After a careful analysis of the longitudinal wake potentials
by means of the code TBCI,19 a design with two long tapers was proposed.2o Comparisons to
a conventional design with tubes parallel to the axis and short tapers, showed a significant
difference in the loss factor to the HOMs (kpm = 0.07 against 0.16 V/pC with a bunch of
3 cm) and a slightly larger value of R/Q at the fundamental-mode. Since the single-pass
loss factor for a cavity resonant mode is proportional to the R/Q of the mode, on the average
all the R/Qs are decreased substantially. This fact was confirmed by a frequency-domain
analysis (by means of the codes OSCAR2021 and URMEL), where the presence of some strong
HOMs above the beam tube cutoff was observed in the short tapered structure, but not in
the long tapered structure. Comparison between the total loss factor and the sum over the
resonant modes (15) shows that, for a bunch of 3 cm, less than 10% of the energy loss is
due to the high-frequency fields above the beam pipe cutoff.

The final design is quite low in power loss, broad band impedance and resonant
impedance.

We have investigated two examples of accelerating cavities: the "bell-shaped" (or
"rounded") cavity and the "nose-cone" cavity. In the latter the "nose-cones" are introduced
to concentrate the electric field in the region of the beam, thus increasing the R/Q of the
fundamental mode. For this geometry, a considerable improvement of the R/Q in the 0-MM­
1 mode and a worsening of the transverse mode l-EM-l have also been observed. In the
high-Q, "rounded" structure, on the other hand, the smooth profile is beneficial for dipole
modes but retains a large value for the O-MM-l mode, which closely follows the behavior
of the accelerating mode.

We found a significant difference only for the first HOM modes as shown in Table 4. In
fact for the other HOMs up to cutoff, the behavior of the two cavities is quite similar, as
displayed in Figures 3a and 3b.

TABLE 4: Nose-cone vs. Rounded

Nose~cone Rounded Nose-cone Rounded

Frequency (MHz) 368.3 368.3 0-MM-1 mode:

R/Q (0) 69.9 61.7 Frequency (MHz)

Q 34000 49000 R/Q(O)

Rs (MO) 2.37 3.04 Q

k1 (V/pC) 0.101 0.129 Rs (kO)

ko (V/pC) 0.077 0.068 1-EM-1 mode:

kpm (V/pC) 0.024 0.061 Frequency (MHz)

k: (V/pC/m) 1.16 1.38 R'/Q(O)

kpm/ko 0.31 0.91 Q

k:/ko *1 mm 0.015 0.020 R: (MO)

704.7 696.8

4.2 16.0

30000 50000

128 800

565.0 532.7

30.3 13.7

42000 54000

1.28 0.74
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FIGURE 3a: Characteristic impedances of the monopole modes.
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FIGURE 3b: Characteristic impedances of the dipole modes.

Even though the R/Qs are very low, the rise time of the instability could be very
fast. Therefore damping of these modes is required. This made the choice of the cavity
independent on the particular shape; the rounded cavity was finally chosen for ease of
construction.

The final design is shown in Figure 4. Much care has been taken to keep all HOM
frequencies far away from harmonics of the bunch repetition rate in order to avoid resonant
enhancement of the parasitic power loss.
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FIGURE 4: DA<r>NE cavity shape and dimensions (rom).

4 HOM DAMPING
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The problem of parasitic mode damping in room temperature RF accelerating cavities for
high-current particle accelerators is being faced in other laboratories6,22 and the proposed
or adopted solutions depend upon the accelerator demands.

A well-known method of damping HaMs consists of coupling them out of the cavity by
means of loops or antennas that are applied to the resonator surface in correspondence of
the peaks of the parasitic fields and dissipating the extracted power on external 50 Q loads
through coaxial lines. As a rule, the transmission response of such devices must vanish at
the cavity fundamental frequency in order to avoid extracting the accelerating field energy;
therefore they require some kind of tuning. The effectiveness of a loop/antenna coupler in
damping a specific cavity mode can be excellent if its response has a maximum at the mode
frequency.

HOM coupling can also be achieved by opening slots onto the cavity surface and
conveying the fields out with waveguides. Energy must then be dissipated by means of
high-loss materials applied in the vacuum environment or external loads placed beyond a
vacuum separation window. The waveguide being a natural high-pass filter, the accelerating
field remains trapped in the cavity, provided that the waveguide cutoff is above the cavity
fundamental-mode frequency.

We have applied and tested both damping systems to some cavity models. The results
obtained with the waveguides have been more satisfactory due to the wide band waveguide
response and their capability to reject the fundamental-mode without any tuning device. We
have then considered more practical to use waveguide dampers instead of loops or antennas.
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4.1 Waveguide to Cavity HOM coupling

Thus far, the description of the electromagnetic fields in a resonant cavity loaded with
impedance-matched waveguides has not been satisfactorily made by existing simulation
codes. Therefore, different approximate techniques have been developed to solve the
problem. These methods7,8 allow to work out the most meaningful cavity parameters (such
as loaded Q values and beam longitudinal and transverse impedances) starting from the
output data of 2D and 3D computer codes.

A general rule to optimize the damping effect is to; open the waveguide slots onto the
cavity surface where the azimuthal HOM magnetic field Ho has the maximum intensity.

The loaded Q values can be approximately estimated by considering the unperturbed
field Ho as source of waves propagating in the waveguide.

The current density source Js(r) on the aperture surface S can be derived from the
unperturbed magnetic field Ho(r) as:

Js(r) = n x Ho(r) on the surface S, (18)

where n is the outward unit vector normal to S.
In a rectangular waveguide, the magnetic field Hw(r) can be obtained from the well­

known magnetic Green's function of the waveguide Gm (r, r')23 as

Hw(r) = f Gm(r, r')Js (r')d2r'

s'

(19)

The magnetic field Hw(r) can be expanded in terms of normal modes propagating in
the waveguide. As long as the cavity mode has a frequency between the cutoffs of the first
and second waveguide modes the sole non-evanescent term in Equation (19) is the TEIO
waveguide mode. Other expansion terms should be considered for mode frequencies above
the second waveguide mode cutoff. Even in this case, due to the symmetry of the source, the
term associated with the waveguide TEIO mode is the most relevant one in the expansion;
thus, we can conclude:

Hw(r) ~ HTElO(r) . (20)

Assuming a perfectly matched waveguide, the total energy associated with the Poynting
vector is dissipated in the waveguide termination load, Le.,

Pw = ~ f Re[Ew x H:]da = ~Z1ElO f IHwt l
2

da,

s' s'

(21)

where Pw is the power dissipated in the waveguide load, ZTElO is the waveguide impedance,
S' is the waveguide cross section, and Hwt is the H w transverse component.

Finally, the external Q of the cavity mode due to the loading of several waveguides is
given by:

WrU

Qext = L: P
w

(22)
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FIGURE 5: Surface field distribution of the cavity modes.

The calculation of Qext becomes less accurate as the wavelength decreases with respect
to the wider slot size. For a wavelength to slot size ratio close to unity, the computed and
measured Qext ~ Qloaded values are in the same order of magnitude as shown in Table 3.

4.2 Cavity Damper Design

The surface field has been calculated with the code OSCAR2D as a function of the curvilinear
coordinate s of the cavity profile (see Figure 5) for some HaMs. The center of the cell profile
is the curvilinear coordinate reference. The highest R/Q mode, O-MM-l, has its magnetic
field peak at s = 23 cm; some higher-frequency modes have a maximum in the tapered
tubes.

To improve the damping of the O-MM-l, without perturbing the fundamental-mode
symmetry, three waveguides can be applied 120° apart at s = 23 cm onto the cavity
surface. The waveguide cutoff frequency should be 500 MHz to allow the dipole modes
I-MM-l and l-EM-l, at 511 and 532 MHz respectively, to propagate.

Other modes can effectively be coupled by the waveguides, as shown in Figure 5. One
more waveguide with a cutoff ~t 1070 MHz can be located on each tapered tube where some
high frequency HaMs penetrate and have magnetic field peaks. The waveguides on tapers
can be rotated 90° apart to couple the dipoles also.

4.3 Cavity Prototype Tests

A low power copper cavity model has been manufactured. Due to some mechanical
imperfections, the measured frequencies differ slightly from those calculated with the codes,
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FIGURE 6: The DA<I>NE cavity low power model.

but the HOM quality factors were high enough (of order 104) to perform reliable damping
measurements.

Several kinds of waveguides have been tested on the cavity main body. A rectangular
(305 x 40 mm2) waveguide has been chosen being the best compromise between high HOM
damping and low fundamental-mode degradation.

The waveguides applied to the tapers have a 140 x 40 mm2 rectangular cross section and
do not degrade the fundamental-mode since that field vanishes at those locations (Figure 6).

A complete characterization up to 1.5 GHz of the cavity prototype fully equipped with
waveguides is given in Table 3, together with the analytical estimate of some HOM Qs.
The fundamental-mode Q degradation due to the evanescent field in the waveguides is less
than 15% and a frequency variation of about -2% has been measured; therefore the outer
diameter of the final cavity has been reduced by about 1 cm to get a 2% increase of the
unloaded fundamental-mode frequency.

A mechanical sketch ef the RF cavity proposed for DA<I>NE is shown in Figure. 7. Three
additional circular ports in the cavity main body allow insertion of loops or antennas if more
damping of particular modes will be needed.

4.4 Waveguide Termination Loads

To estimate the HOM power delivered to the cavity, the measured damped Qs of the
cavity model have been considered. The HOM frequencies and R/Qs values were taken
from the cavity code simulation. The maximum estimated total power was PT ~ 150 W,
corresponding to an asymmetrical machine filling of 27 bunches (instead of 30). The
asymmetrical filling is required in order to avoid ion trapping.
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FIGURE 7: Sketch of the DA<t>NE cavity.

The power must be dissipated by high-loss material placed either in the ultrahigh vacuum
(URV) or in air after an Al203 rf window.

Both rf and URV characteristics of an absorbing material consisting of plain ferrite
tiles have been obtained.24 The results show that the URV desorption of this material is
compatible with the machine vacuum but that the ferrite brazing to the URV side requires
some care.

With an Al203 RF window the frequency bandwidth could not be wide enough to couple
out all the ROM power up to the DA<I>NE beam pipe cutoff frequency (~2.5 GRz).

A novel and interesting solution to extract the cavity HOM power is a wideband
waveguide-to-coaxial transition that converts the waveguide TEIO mode to the TEM mode
in a large frequency range (~ 2.5 octaves) with very low power reflections (VSWR < 2).
Such a device, recently developed at LNF,25 allows the use of commercial coaxial N type
or 7/8" ceramic feedthroughs to transfer the RF power to an extemal50 n load. In this case,
the possibility of sampling the ROM beam power with a directional coupler connected to
the transition coaxial output, is a very attractive byproduct.

5 BUNCR-BY-BUNCR FEEDBACK

In this section we describe the main features of the damping feedback system adopted for
controlling the longitudinal instabilities in DA<I>NE.

5.1 The feedback layout

The system proposed for DA<I>NE is a bunch-by-bunch, time-domain feedback. This choice
is common among multibunch, high-intensity machines.9
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In a bunch-by-bunch longitudinal feedback system, kb effective loops act in parallel to
damp the synchrotron motion of-kb bunches, treated as individual, independent oscillators.
The motion of each bunch is thus effectively decoupled from that of the other bunches
independently of the nature of the driving force (e.g., in the presence of an individual
pert~rbation such as an injection error, or in the presence of bunch-to-bunch coupling by
HOMs in the RF cavity).

The basic scheme for each effective damping loop is the following. The phase error of the
synchrotron oscillation ofeach bunch is detected with a high-frequency longitudinal pickup,
down-converted to base-band and shifted by 1T/2 at the synchrotron frequency by means of a
proper filter. The resulting signal, which is now in quadrature with the phase oscillation and
in phase with the energy oscillation, is amplified and used to impart an energy-correction
kick proportional to the instantaneous energy error, by means of a longitudinal kicker. In
the smooth approximation the damping rate is:

1 ~Ufb
Cifb = -Wo-- ,

41T ~E
(23)

where ~Ufb is the energy correction by the feedback kicker and ~E is the instantaneous
energy error.

In order to damp kb bunches independently of each other, kb separate filters are necessary.
With a maximum number of 120 bunches, this basic approach could become very if not
prohibitively complex. The analog/digital technology available today, however, allows
considerable simplification.

The proposed system consists of a single front-end phase detector followed by a fast
analog to digital converter, capable of digitizing the phase signal of individual bunches
at the full rate, with 8-bit resolution. The filtering action is performed numerically by
Digital Signal Processor (DSP) chips. Ideally, only one processor, through which all the
data are passed, would be needed, but in practice, the data rate is too high and a digital
de-multiplexer is used to divide this task between several parallel processing modules, each
of which implements the same filter algorithm on different data. The feedback correction
information from several parallel processors is multiplexed into a fast digital to analog
converter, then amplified with a power amplifier and fed to each bunch at each traversal of
the longitudinal kicker.

The number of revolutions encompassed by a synchrotron oscillation is very high, thus
an overwhelming number of samples is available to reconstruct a synchrotron oscillation.
In order to reduce the complexity of the feedback processing (and the number of DSPs
needed), the down-sampling technique is adopted. 10 This consists ofprocessing the detected
signal only after a certain number of turns. The last computed correction kick is held in a
fast memory register and made available at each bunch passage until a new correction is
computed.

5.2 Front end

We need to measure the single bunch error with a phase detector but the use of a tuned
detector, is precluded because any signal feed-through by the preceding bunches must be
avoided.
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The bunch signal from a longitudinal pick up is fed to a microstrip comb generator!! in
which .a coherent burst of bipolar pulses is produced. The phase of this pseudo-sinusoidal
signal with respect to the RF voltage is measured by means of a double-balanced mixer in
which the local oscillator is a harmonic of the ring radio-frequency.

The phase detector output goes into a fast digitizer (input bandwidth 1.2 GHz) capable
of sampling with 8-bit resolution at 500 Msample/sec.

5.3 Digital filter

A demultiplexer distributes the digitized bunch signal to the proper DSP, which performs the
filtering algorithm, producing the feedback correction. This correction signal is calculated
by a Finite Impulse Response (FIR) filter with N taps, where N is the number of samples
with which we reconstruct a synchrotron oscillation.

The output signal is computed as the convolution sum of N preceding values of the input
signals ~CPn-i

N

y(tn) = G L ~cp(tn-i)hi ,
i=l

(24)

where hi are the filter coefficients and G is the feedback gain.
As shown in the simulations, the feedback system performs satisfactorily with a number

of taps as small as 5. A preliminary estimate of the number DSP's needed for 30 bunches
is ~ 5, assuming a DSP with an instruction time of 25 ns. Different filter algorithms
were also investigated and the best effectiveness is achieved with sinusoidal and high-pass
configurations.

The proposed architecture of the digital part exhibits good flexibility together with
reasonable hardware complexity.

5.4 Longitudinal kicker

The energy correction in terms of the output power Pfb of the final amplifiers is

(25)

where (RT2)k is the kicker shunt impedance, corrected by the transit time factor. The
bandwidth of the kicker must be at least half the bunch frequency in order to kick all
bunches separately.

In order to reduce the power requirements of the final feedback amplifiers and the
reflections due to mismatches at the power port, we are optimizing the design of the
longitudinal kicker. The present choice is a series of two AI4 strip lines with full coverage,
connected with A/2 delay lines. This arrangement provides a peak shunt impedance of
~ 400 Q and a half-power bandwidth in excess of 1/2 the maximum bunch frequency.

From the simulation results, the power needed to damp the bunch oscillations with a
maximum time displacement equivalent to the bunch length (~ 100 ps), as is expected at
the injection, is less than 500 W.
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6 TIME DOMAIN SIMULATION CODE

The theoretical analysis presented in section 2 considers the coupling of a single sideband
with a single parasitic resonance of the RF cavity. The bunches are assumed to be equally
populated and spaced.

However it is not practical to analytically study the beam dynamics under the conditions
of unequally spaced and unequally populated bunches, nor for large oscillations at injection
and under the effect of the bunch-by-bunch feedback. These different scenarios are better
investigated by means of a properly developed time domain simulation code.

6.1 The algorithm

The core of the algorithm can be divided into the propagation around the ring, the feedback
effect, and the beam-cavity interaction.

To describe the motion of a single bunch in the machine, we use the energy deviation
l:1 E and the phase l:1cp.

In the propagation around the ring, each bunch loses energy due to the broad band
impedance (Ubb) that does not depend on the energy of the bunch, and to synchrotron
radiation (Ur ), for which we use the following linear expression,

Ur = Uo (1 +2~EE) , (26)

where Ua is the energy lost by a synchronous particle.
It is therefore possible to correlate the quantities l:1 E and l:1cp just outside the RF cavity

with those we find at the entrance of the feedback kicker at the following tum:

( ::)K = (1 :;~: ~) (::)IT - (Uo : Ubb) , (27)

where (Xc is the momentum compaction, h is the harmonic number, the subscript k indicates
at the entrance of the kicker, and the subscript rf indicates a location outside the RF cavity.

All parts of the feedback system described in Section 5 are simulated. It is possible to
change the system configuration and the feedback gain by means of the input file. Different
digital filters such as delay lines, high and low pass, derivative and sinusoidal filters have
been investigated also.

The cavity is simulated as a series ofparallel RLC circuits that represent the HOMs. When
a charge qb crosses the cavity, it perturbs the voltage of each mode. In the simulations we
have assumed the fundamental-mode to be perfectly compensated, that is,

(28)

with Vg the peak cavity voltage.
The induced voltage for each mode is a kick ~V depending on the shunt resistance R

and the quality factor Q of that mode. In order to take into account the bunch length (we
assume that the bunch has a Gaussian distribution), the shunt resistance is corrected by the
factor exp[-(wrut )2].
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The behavior of the induced wake voltage of each mode is described by means of
a propagation matrix for the conjugated variables v(t) and i (t). Between the passage
of two bunches, the voltage of each mode executes free oscillations represented by the
homogeneous solution of the differential equation of an RLC parallel circuit. Therefore we
have26,27

(
V(t)) (COS(fJ t ) - 1- sin(fJt) -7;; sin(fJt) ) (V(to))

= exp(-aft)
i (t) a;;~ sin(fJt) cos(fJt) + 1- sin(fJt) i (to)

(29)
where fJ is the natural angular frequency and v(to) and i (to) are the starting conditions.

When a bunch crosses the cavity, we increase v(t) by the kick t:,. V and continue the
propagation. The total energy gained by the bunch in the RF cavity is therefore

Ec=e(vg + L [V(t)+~L1V]), (30)
all the HOMs

where the last term takes into account the fundamental theorem of beam loading: a bunch
sees half of the wake voltage it induces during its passage.

6.2 Application to DA<I>NE

We have performed different simulations with all the HaMs measured values of the
waveguide loaded cavity as given in Table 3.

Since the frequency may vary during the machine operation, we have chosen to simulate
the worst case, i.e., all the HaMs are in full coupling with the unstable sidebands of the
beam.spectrum.

First, we have observed the instabilities with the feedback off by simulating the injection
of the 30th bunch (with an error of 100 ps) assuming all the others to be in the equilibrium
state. Figure 8 shows the oscillations of a perturbed bunch, and Figure 9 the oscillations of
the injected bunch, during the first 5000 turns. Then we have found a feedback configuration
such as to damp the oscillations with a kicker voltage of 400 V, as we can see in Figures 10
and 11.

To be sure that the injection of the 30th bunch was the most dangerous from the stability
point of view, with the same feedback parameters we simulated the injection of the nth
bunch 'with n - 1 bunches already at the equilibrium phase. In Figure 12 we show the
maximum phase excursion of the bunch versus the number of the bunch. As expected, the
oscillations become larger when we increase the total current stored.

The code has been recently improved28 by including the effects of the time evolution of
the fundamental-mode voltage due to the beam loading and to an RF feedback system.

7 CONCLUSIONS

Multibunch instabilities are certainly one of the main problems to solve in reaching a very
high luminosity in DA<I>NE. We made a strong effort on the analysis of the methods that
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FIGURE 8: Oscillations of a perturbed bunch.
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FIGURE 9: Oscillations of the injected bunch.
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FIGURE 10: Oscillations of a perturbed bunch with the feedback on.
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FIGURE 11: Oscillations of the injected bunch with the feedback on.
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FIGURE 12: Maximum perturbation of the stored bunches.

could take these instabilities under control. We are reasonably confident that by properly
damping the resonant fields in the machine, we will be able to damp the residual instability
by means of a feedback system.
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