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Abstract
General Relativity predicts that black holes (BHs) do not possess an internal
structure and consequently cannot be excited. This leads to a specific prediction
about the waveform of gravitational waves (GWs) which they emit during a
binary BH inspiral and to the vanishing of their Love numbers. However, if
astrophysical BHs do possess an internal structure, their Love numbers would
no longer vanish, and they could be excited during an inspiral by the transfer of
orbital energy. This would affect the orbital period and lead to an observable
imprint on the emitted GWs waveform. The effect is enhanced if one of the
binary companions is resonantly excited. We discuss the conditions for res-
onant excitation of a hypothetical internal structure of BHs and calculate the
phase change of the GWs waveform that is induced due to such resonant excit-
ation during intermediate- and extreme-mass-ratio inspirals. We then relate the
phase change to the electric quadrupolar Love number of the larger companion,
which is resonantly excited by its smaller companion. We discuss the statistical
error on measuring the Love number by LISA and show that, because of this
phase change, the statistical error is small even for values of the Love number
as small as 10−4 for moderate values of the spin parameter. Our results indicate
that, for extreme-mass-ratio inspirals with moderate spin parameter, the Love
number could be detected by LISA with an accuracy which is higher by up
to two orders of magnitude than what can be achieved via tidal deformation
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effects. Thus, our results indicate that resonant excitation of the central BH
during an extreme- or intermediate-mass-ratio inspirals is the most promising
effect for putting bounds on, or detecting, non-vanishing tidal Love numbers
of BHs.

Keywords: black holes, alternative gravity theories, gravitational waves

1. Introduction

General Relativity predicts that black holes (BHs) do not possess an internal structure. They
are ‘bald’ and can be characterize solely by their mass, angular momentum and charge [1].
Coalescing BHs radiate gravitational waves (GWs) which are being detected by the LIGO
and VIRGO observatories since September 2015 [2]. The calculational efforts for improving
the accuracy of the general relativity (GR) predictions for the emitted GW waveform, could
hopefully provide an opportunity for testing the baldness of BHs. Particularly, the inclusion
of tidal interactions may allow us to probe the hypothetical interior structure of the binary
companions and quantitatively test the predictions of GR [3–8].

In spite of the increasing precision of ground-based detectors, their limited frequency band
enables observations of only a few cycles in the inspiral phase of a binary-BH (BBH) coales-
cence event for a limited range of masses. The LISA space detector [9, 10], whose design
sensitivity is maximal in the mHZ region, is expected to be able to detect and track many
BBH coalescence events from the early stages of the inspiral through the merger to the late
post-merger ringdown.

In GR, the interior of BHs is vacuum, except for a possibly singular core. But is this their
true description? First, a seemingly necessary condition for evading the singularity theorems
[11, 12] and the closely related ‘Buchdahl-like’ bounds [13–16] is that the geometry is sourced
by matter that has the maximal negative radial pressure permitted by causality, pr =−ρ, all
the way to the surface of the star [17]. Furthermore, if one also considers the emitted Hawking
radiation from such a quantum-regularized BH, one finds an untenable violation of energy con-
servation:When the scale of resolution is parametrically smaller than that of the Schwarzschild
radius, the emitted energy of Hawking particles will greatly exceed the original mass of the
collapsing matter [18, 19]. Thus, our tentative conclusion is that deviations from GR must
extend throughout the object’s interior, that is, horizon-scale deviations from GR.

The static quadrupolar Love number k2 identically vanishes for GR BHs in four spacetime
dimensions [20–26], making it a key observable. Measuring non-zero values will indicate a
deviation from theGR predictions [27–32]. If indeed horizon scale deviations from theGR pre-
dictions occur, then the expectation is that the Love numbers will be small, but not extremely
small, suppressed only by some additional perturbative parameter that quantifies the strength
of the deviations. The reason for such expectation is that the Love numbers are normalized
such that they are order unity if all the dimensional scales are of order of their radius [29, 30].

Previous studies have primarily focused onmeasuring the Love numbers using tidal deform-
ability, which constitutes a subleading correction to the emitted GW waveform and enters at
5PN order compared to the dominant point-particle term. Tidal-deformability effects are more
pronounced at the late inspiral phase. This makes the measurement of the Love number more
challenging, since other finite-size effects are also of similar magnitude, requiring the con-
struction of more accurate GW waveforms and detectors with better sensitivity. [3, 33–37].

For GR BHs the inspiral evolution is dominated by the point-particle GW emission. If BHs
possess an internal structure, they can be excited. This is reflected by BHs having a spectrum
of internal excitations, or internal modes, which can be characterized by their wavelength and
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frequency, just as in the case of interior fluid modes of compact relativistic stars. These modes
are distinct from the spacetime modes, for example W-modes, which are modes in which the
metric is excited as opposed to modes for which the fluid is excited. When the star becomes
ultra compact, meaning that the redshift at the horizon is parametrically large, the two branches
decouple, and the spacetime modes become very similar to the standard quasinormal modes
of the object.

If the orbital frequency becomes comparable to a characteristic frequency of a particular
mode, this internal mode can be resonantly excited. This results in a rapid energy transfer
from the orbit to the internal mode. The loss of orbital energy effectively advances the inspiral
evolution, bringing the companions to a closer and faster orbit. The abrupt energy transfer
changes significantly the emittedGWwaveform compared to the point particle waveform since
it leads to an instantaneous phase jump and a secondary subleading accumulated dephasing due
to the differences in orbital velocities. Such resonant energy transfer can only be realized when
the BH internal mode is nonrelativistic. By nonrelativistic, we mean modes whose wavelength
is comparable to the radius of the compact object λ∼ R and whose frequency ω ≪ c/R, c
being the speed of light. The reason is that the Keplerian orbital frequency is much smaller
than the relativistic frequency c/R when the two objects are far from each other, so the orbital
frequency and the frequency of the internal mode can be equal only if the frequency of the
mode satisfies ω ≪ c/R.

Tidal resonant excitations were first discussed in the context of ordinary polytropic stars
[38], then, much later, for binaries with at least one of the companions being a neutron star
[39–54]. The case in which companion is a generic compact object was discussed in [54–57].
In [58–63], the effect was related to the tidal Love numbers. However, as already mentioned,
since the corrections enter the GWs waveform at 5PN order, the effect becomes significant
during the late inspiral phase, where additional effects are also significant, making it difficult
to detect the Love number with high confidence.

More recent studies related to BHmimickers [64–67], treat the BBH as if theywere horizon-
less ultracompact objects (UCOs). In [64, 66, 67], the tidal field was exciting some additional
spacetime modes of a hypothetical spacetime structure outside the UCO.We view these modes
as external modes which are distinct from the internal fluid modes, which we discuss. In [67],
cavity modes are discussed and derived from solving Teukolsky equations outside a horizon-
less object. These modes are distinct from the fluid modes that we discuss. In [66], the resulting
phase shift due to the resonant excitation of these additional spacetime modes was related to
the tidal Love numbers, and the detectability of the quadrupolar Love number k2 using obser-
vations of ground-based GW detectors and the proposed Einstein telescope was discussed. In
[65], the detectability prospects of the resonance effects were discussed, but without connect-
ing the effect to the tidal Love numbers. In this study, no evidence for resonance was found in
the observations of the first two runs of Advanced LIGO and Advanced Virgo.

Here, in contrast to previous studies, we discuss the tidal excitation of hypothetical nonre-
lativistic internal modes of the BH, relate the resulting phase shift to the Love numbers and dis-
cuss the possible detectability of k2 in LISA observations of IMRIs and EMRIs.We find that the
Love number that can be detected through resonance effects is up to two orders of magnitude
smaller than the Love number that can be detected through tidal resonant effects. Thus, we
conclude that resonant excitation of the central BH during an extreme- or intermediate-mass-
ratio inspirals is the most promising effect for putting bounds on, or detecting, non-vanishing
tidal Love numbers of BHs.

We express the model quantities in terms of the dimensionless tidal Love number. We fol-
low the discussion in [29, 66], to relate the resonance phase shift of the excited modes to the
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quadrupolar tidal Love number k2, and their relation to internal modes frequencies of quantum
BHs [29–31, 68] and recent frozen star model results [69–71].

We then estimate the statistical error in themeasurement of k2 through resonance excitations
during the inspiral of slowly rotating EMRIs and IMRIs, using the design noise spectrum of
LISA [9, 72]. We find that the statistical error is small for values of the Love number as small
as 10−4 for intermediate values of the spin parameter. We end with an explicit comparison
between the detection prospects of the Love numbers with tidal deformability and tidal reson-
ance, and conclude that resonance excitations are the most promising effect for detecting the
Love numbers.

2. Theoretical framework

In the following, we treat the BH as a UCOwhose interior is not empty, rather it has an internal
structure that supports nonrelativistic fluid modes, similar to relativistic stars. The underlying
mechanism providing the pulsation spectrum can be either quantum, for example [73–79],
or classical, for example, [69, 70, 80]. In [68], the case was made for UCOs possessing a
branch of nonrelativistic internal modes. There, the polymer model [78, 79] of a UCO was
discussed. A classical counterpart of the polymer model was later discussed in [69, 70, 80].
A somewhat similar model was also previously discussed in [81] and later in many papers.
In [80] it was shown that the frequency of the internal fluid modes is governed by the small
parameter γ = 1− |pr|/ρ≪ 1, such that the modes are indeed nonrelativistic ω ∼ γc/R .

Making the assumption that the pulsation spectrum does include nonrelativistic fluidmodes,
we may proceed by using our discussions in [29, 30] about the effect of having such spectrum
on the magnitude and sign of the Love numbers, in particular k2. The discussion is formally
similar to the discussions about Love numbers of neutron stars, but the details differ. It follows
that once the spectrum is known, we can use the same methods that are used in the standard
calculation of Love numbers of neutron stars, irrespective of the origin of the spectrum, be it
quantum or classical. For an external observer, the whole interior information can be integ-
rated out to a single quantity—the Love number—which governs the resonance dynamics.
Therefore, the parametrization in terms of the Love number employed below, is more general
and could apply also to other models of UCOs.

The phase shift result first appeared in [40] in the context of neutron star oscillations, then,
much later in [66] in a more relevant context. The purpose of this section is to establish the
relevant theoretical framework. So that our novel results, which can be found in sections 3
and 4, could be understood. There, we make the link between the Love number of BH mim-
ickers equations (19) and (20), the resonance phase shift equation (12), and the main result in
the detectability section equation (25), which shows how these Love numbers are imprinted in
the GW waveform phase.

2.1. Tidal-resonance interaction

Here, we examine the tidal interaction in a binary system, focusing on the central object that
is subjected to the weak periodic tidal force exerted by the smaller companion, following the
ideas presented in [39, 43, 59, 61] and more recently in [30]. The idea is that the object pos-
sesses a set of nonrelativistic fluid modes which are driven by the tidal force and can be there-
fore described as a collection of driven harmonic oscillators.

The frequencies of the interior fluid modes ωnlm, depend on the radial number n and the
angular numbers l,m. We are interested in the dominant effect which is due to the excitation of
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the fundamental n= 1 mode by the quadrupolar tidal field, so we focus on the case l= m= 2
[43]. As for the other modes; the spherically symmetric static m= 0 mode cannot generate
pressure gradients that are needed for resonance excitation and therefore is not relevant to our
discussion. The m= 1 mode can be resonantly excited in the case that the spin-orbit config-
uration is misaligned [43, 45]. Here, we restrict our attention to spin vectors that are aligned
with the orbital angular momentum and assume that ω122 ≪ c/R.

When the frequency of one of the interior modes of the central, larger, object, matches
the orbital frequency of the companion, it is resonantly excited and efficiently absorbs energy
from the orbital motion. The instantaneous energy absorption increases the orbital velocity
and shortens the inspiral duration, thus leading to a phase difference in the emitted GW wave-
form, when compared to the emitted waveform in the absence of a resonance. To calculate the
dephasing of the GWwaveform, we adopt the derivation in [40, 44], resulting in the following
phase evolution,

{
Φ(t) = ΦPP (t) t< tR
Φ(t) = ΦPP (t+∆t)−∆Φ t> tR +∆t,

(1)

where ΦPP(t) is the point particle phase, tR is the time at which the resonance starts, ∆t is the
resonance duration and ∆Φ is the instantaneous resonance phase difference, which in general
depends on the object’s properties as demonstrated below. The point particle phase ΦPP, is
independent, by definition, on the object’s composition. In particular, it has the same value for
a GR BH and one endowed with an internal excitation spectrum, such as the objects we are
discussing.

The number of orbits at resonance scales as [40, 44]. The resonance time scales as
∆Tres ∼

√
trrtorb. For small mass ratios, t−1

rr ∼ qM5/3
1 ω8/3 is the gravitational radiation reac-

tion time scale that governs the mode time evolution and torb ∼ Ω−1 ≃ ω−1 is the orbital
period that characterizes the typical resonance lifetime. The result is that∆Tres ∼ 1/

√
(q)torb.

For q∼ 10−3 − 10−4 with frequencies f = 10−2 − 10−3Hz, the resonance time scale∆Tres ∼
N/f ∼ 104 − 105sec∼ 0.1-1 days. It follows that ∆Tres is short compared to the duration of
the inspiral, as typical inspirals last from months to years. Assuming that the resonance dura-
tion is short compared to the inspiral duration and under adiabatic evolution, we arrive at the
frequency domain resonance phase [40, 44],

Φ( f) = Φ( f)PP +Θ( f− fR)

(
f
fR

− 1

)
∆ΦRes , (2)

where fR is the internal mode frequency which satisfies the resonance condition 2π fR = mΩ,
Ω being the orbital angular velocity. Resonance corrections to the phase∆ΦRes, are composed
of two terms; a dominant term that enters at 2.5PN order higher than the leading order point-
particle term and a subleading 4PN-higher contribution. The dominant contribution, which
is frequency independent and proportional to ∆Φ, originates from the instantaneous energy
absorption during resonance. The subleading term, which is proportional to the frequency, is
a secular effect that increases towards the late stages of the inspiral.
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2.2. The phase shift

Fluid perturbations of compact objects are described by the displacement vector ξi, of a fluid
element from its unperturbed position, which is given by the orthonormal basis decomposition,

ξi =
∑
n

anξ
i
n, (3)

ξn being the normal displacement vectors, and an are the dimensionless displacement amp-
litudes3. In the presence of tidal forces, the fluid modes satisfy the damped-driven harmonic
oscillator equation [39, 45],

änlm+ 2γnȧnlm+ω2
nanlm = F (t)nlm , (4)

where γn =−Im ωn is the damping rate of the mode. The source of the damping and its precise
magnitude are irrelevant for the resulting resonant excitation and dephasing. So, γ can be
neglected altogether (see below equation (12) and appendix).

The external periodic force F(t)nlm excites the nth mode interior fluid mode is given by

F (t)nlm = Nlm
ElQnl

MR2
e−imϕ(t) , (5)

where M and R are the mass and radius of the central object. The order unity factor N lm is
proportional to the Wigner function and is specified below. The tidal field of the l mode is
denoted by El, which for the l= 2,m=±2 satisfies Eijxixj = Er2Y2±2. The mass moment of
the quadrupolar nth mode Qn is given by the overlap integral [40],

Qn =−
ˆ

d3rδρnr
2 , (6)

where δρn is the corresponding energy density perturbation.
Next, we aim to find the instantaneous phase shift ∆Φ and the corresponding phase evolu-

tion in equation (1). We start by solving equation (4) for the amplitudes an, which at resonance
is given by [45],

an (t) =

(
π

mϕ̈

)1/2 F (t)nlm
γnl− iωnl

e−iωnlt, (7)

where ϕ̈ denotes the rate of change of the orbital frequency at resonance. The transferred
energy to the mode nlm during the resonance is a sum of kinetic and potential terms [39, 45],

Enlm (t) =

(
1
2
ȧnlm (t)

2
+

1
2
ω2
nla

2
nlm (t)

)
MR2 . (8)

The total energy absorbed by the mode, neglecting γnl, is given by

∆Enlm = N2
lm

π

4mϕ̈

(ElQnl)
2

MR2
, (9)

3 We use relativistic units G,c= 1.
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whereNnlm is the numerical factor we get when writing the spherical harmonics in STF tensor
base and is given by [82]

Nlm =
(−1)l 2m−1

Γ
(−l−m+1

2

)
Γ
(
l−m
2 + 1

)√8π (2l− 1)!!
2l!

Γ(l−m+ 1)
Γ(l+m+ 1)

. (10)

The resonance excitations lead to a phase shift, since the orbital energy decreases as it
excites the interior modes. Accordingly, the orbital velocity increases and the inspiral duration
decreases by a time ∆t. To estimate ∆t, we follow [44]. The energy absorbed by the central
objects decreases the energy of the orbit by the same amount. In the absence of resonance, such
a decrease in energy can only occur by the emission of GW and the time that it would take the
orbit to emit GW with such energy ∆t would be determined by the equality ĖGW∆t=∆Enlm.
The rate of GW emission ĖGW is, to a very good approximation, the same rate as in the absence
of resonance, which to leading order is given by ĖGW = 32

5 (Mc Ω)
10/3, with Mc being the

chirp mass. The resulting phase shift ∆Φ = mΩ∆t is the following,

∆Φnlm = mΩ
∆Enlm
ĖGW

=
5
32

mΩ
∆Enlm

(Mc Ω)
10/3

. (11)

For IMRIs or EMRIs Mc ≈Mq3/5 and ĖGW ∼ v10.
Using equation (9), we may calculate the phase shift induced by the leading order quadru-

polar mode l= m= 2 [40, 66],

∆Φn22 =
25π

1024q(1+ q)
1

R5
1

|Qn2|2

M1ω2
22R

2
1

=
25π

2048q(1+ q)
1

R5
1

|Qn2|2

∆Eint
, (12)

where we used that N22 =
√

3/32. Here q=M2/M1 is the mass ratio and ∆Eint = 1
2M1ω

2
22R

2
1

is the internal energy of oscillations which is related to the energy stored in the nth mode by
∆Eint =

∑
n
∆En22, [59].

We wish to justify our estimate of ∆t using only ĖGW and neglecting other dissipation
effects. In general, the time difference ∆t should include all types of dissipation channels,
mainly the dominant dissipation due to tidal friction and the subleading tidal deformation.
However, the rate of work of tidal friction is given by [83, 84] ĖTF =

1
2QijĖ ij ∼ k2v15ν/M,

where ν is the kinematic viscosity giving rise to viscous dissipation. In [84], it is demonstrated
that, under reasonable assumptions, the contribution of viscous dissipation is negligibly small
compared to the leading order GW emission and, therefore, can be ignored. For example, for
cold neutron stars, considered to be highly viscous ν/M≈ 10−7, whereas for BHs ν/M= 1
[85]. During the inspiral, when the orbital velocity is nonrelativistic the ratio of the different
emission rates scales as ĖTF/ĖGW ∼ v5 ≪ 1, which shows that the internal dissipation effects
can indeed be neglected.

3. Fluid-origin Love numbers

Here we follow [29, 30] to determine the relationship between the Love number and the spec-
trum of internal fluid modes. We focus on the static tidal Love number, ignoring dissipative
effects.
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Following [30] (see also [39, 43, 59, 61]), we wish to find the static response of the object to
an external tidal field. At low frequencies, away from resonance, the amplitude in equation (7)
reduces to

an =
EQn

Mω2
nR2

. (13)

Then, we apply the normal mode decomposition identities Q=
∑

n anQn, and δρ=∑
n anδρn , and relate the asymptotic moment to the overlap integral equation (6)

Q=−
∑
n

an

ˆ
d3rδρnr

2 =−
ˆ

d3rδρr2 . (14)

Accordingly, using equation (13), the asymptotic moment can be written by

Q=
∑
n

Q2
n

Mω2
nR2

E . (15)

Then, from the definition of the Love number, Q= 2
3k2R

5E , we obtain

k2 =
∑
n

3
2R5

Q2
n

Mω2
nR2

. (16)

We now approximate k2 by the first term in the sum in equation (16) relying on a physically
motivated assumption. The sum in equation (16) is dominated by the fundamental n= 1 mode.
The justification is that the number of nodes in the overlap integral in equation (6) increases
as n increases. It follows that the contribution of Qn decreases as n increases. Using the l= 2-
mode excitation energy ∆Eint

n = 1
2Mω2

n2R
2, the sum in equation (16) can be approximated as

k2 ≃ 3
4R5

Q2
1

∆Eint
1

. (17)

We now observe that a similar expression to the one in equation (17), appears in
equation (12) which determines the phase shift∆Φ122. This allows to express∆Φ122 in terms
of k2,

∆ΦRes =
25π
1536

k2
q(1+ q)

. (18)

We are interested in the case of small mass ratios, q≲ 1/1000 and a small but not extremely
small k2, k2 ≲ 1/10. Then we can parameterize the resonance dephasing by

∆ΦRes ≃ 5×
(

k2
10−1

)( q
10−3

)−1
. (19)

The resonance-induced dephasing is governed by the dimensionless tidal Love number and the
companion’s mass ratio. Generally, the detection threshold for the instantaneous phase jump
requires∆ΦRes ≳ 1 [86]. Thus, for typical values of Love numbers k2 ≲ 10−1, it is more likely
to observe resonances for moderate to extreme mass-ratio binaries 10−3 ⩽ q⩽ 10−5.
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We can also express k2 in terms of the frequency ω12 ≡ ω2 of the n= 1, l= 2 mode. At
resonance, from equation (6), Q∼∆Eint, where ∆Eint = 1

2Mω2
2R

2 is the energy of the oscil-
lating star at resonance. Thus, on dimensional grounds, we get Q∼∆EintR2. For example,
for a constant energy density perturbation Q= 3

5∆E
intR2, while typical non-constant energy

density profiles result in a numerical prefactor ≲ 1 [61] (see also [29]). During resonance,
the typical frequency of excitation ω ≈

√
M/b3, where b≫ R is the orbital separation dis-

tance. Thus, the internal energy of excitation constitutes a fraction of the UCO typical energy
Mω2R2 ≈MR3/b3 ≪M.

Substituting the expressions for Q and ∆Eint, we arrive at our final result for the Love
number

k2 ≃ Nω2
2R

2 , (20)

where N is an order unity dimensionless number that depends on the object’s energy density
profile and contains the numerical factors in the definition of the Love number [29]. We will
use equation (20) to determine the detectability of k2 in the next section.

Remarkably, in [29], it is shown that the gravitational polarizability of objects which pos-
sess a discrete spectrum of quantum mechanical energy levels is similar to that of classical
stars. This follows from the fact that the wavelength of the oscillation is of order of the star
radius. We shall refer these objects as ‘quantum black holes’ (QBHs) to mean the quantum
state that corresponds to a classical BH. The idea is justified on the grounds of the Bohr cor-
respondence principle, where at macroscopic excitations, expectation values are replaced by
classical observables. Therefore, an excited quantum macroscopic object can be treated as
a semi-classical oscillating fluid-like object that satisfy equation (4). Using standard time-
independent quantum perturbation theory, the Love number of QBHs is given by [29, 30]

k2 ≃
3

4R5

|⟨Ψ0|Q̂|n= 1, l= 2⟩|2

∆E int
1

. (21)

where Ψ0 is the QBH ground state, Q̂ is the mass moment operator that obeys the no-
hair theorem; ⟨Ψ0|Q̂|Ψ0⟩= 0. The definition of equation (17) is restored by applying the
Bohr correspondence principle and replacing expectations values with classical observables,
⟨Ψ0|Q̂|n, l= 2⟩ ↔ Qn. In this form, equation (21) can be treated in a similar way to the clas-
sical treatment of equations (17) and (20), which eventually recovers the result k2 ≃Nω2

2R
2.

The result is valid for any object of radius R, quantum or classical, which has a quadrupole
internal mode whose nonrelativistic frequency is ω2.

4. Detectability

In this section, using the Fisher method, we give a quantitative estimation of the statistical error
in measuring the Love number. We discuss the prospects for detection of a non-vanishing Love
number with the future space LISA detector and demonstrate that during the inspiral, it is more
likely to detect the Love number with resonances rather than tidal deformability.Wewould like
to stress that the results of our statistical analysis should be viewed as a preliminary evaluation
of the detection prospects, indicating that it is indeed worthwhile to perform a more accurate
analysis.

We evaluate the detectability of the Love numbers through resonant excitations with the
planned space telescope LISA, which according to [9], could track and observe moderate to
extreme mass-ratio binaries from the early stages of the inspiral and up to the merger with high
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SNR. Before addressing the precise statistical analysis, we wish to emphasize that for most of
the range of the binary masses and spins and for Love numbers k2 ≲ 10−1, the leading order
2.5PN resonance phase term is comparable to the other effects entering at 2.5PN, such as the
PP 2.5PN term and the leading order tidal heating term. For smaller values of q, the resonance
phase term becomes significant. Since it is established that LISA can detect the other 2.5PN
effects, we expect that LISA could be able to detect the Love numbers with high confidence.

To evaluate the statistical error, we employ the Fisher information method. Assuming a
signal s(t) = h(t,θi)+ n, with the uncorrelated noise n, a model signal h(t,θi) with model
parameters θi. For high SNR events, the posterior distribution takes the form

p
(
θi|s

)
∝ e−

1
2∆θi∆θ jΓij . (22)

where Γ ij is the Fisher matrix defined as

Γij =

(
∂h
∂θi

∣∣∣ ∂h
∂θj

)
. (23)

With the inner product defined by (h1|h2) = 4Re
´ fmax

fmin

h̃1( f )h̃
∗
2 ( f )

Sn( f )
df, and Sn( f) is LISA’s design

noise spectral density. The model parameters are θi = (lnA, lnMc,η,Φc, tc,χ1,χ2,k2), where
A is the amplitude,Mc is the chirp mass, η is the symmetric mass-ratio,Φc and tc are the phase
and time at coalescence,χi are the companions spin parameter and k2 is the Love number given
in equation (20). The statistical error in measuring k2 is related to the Fisher matrix,

σk2 =
√
⟨∆k2⟩2 =

√
(Γ−1)k2k2 . (24)

We consider quasi-circular orbits and employ the analytical frequency domain post-
Newtonian approximation TaylorF2 [87–89]. The frequency domainGWwaveform describing
the binary inspiral is of the form h̃( f,θi) =AeiΦ, whereΦ is the phase evolution in equation (2).
From equation (20), for q≪ 1, the instantaneous phase shift at resonance becomes

∆ΦRes ≈ N ω2
2R

2

20q
. (25)

In our analysis we included correction terms up to 3PN order and neglected the higher order
tidal deformability terms that depend on the Love number and enter at 5PN and 6PN order
(see section 4.1).

Additionally, since our model is valid only until the ISCO, the frequency range ω2 >
0.75ωISCO is not included in our analysis. Consequently, it is beneficial to parameterize the
oscillation frequencies in terms of the ISCO frequency ω2 = αωISCO, where 0< α⩽ 1, and
ωISCO(χ) is spin-dependent. This also means that resonance at the ISCO sets the maximal
value of the Love number that can be detected kmax

2 =Nω2
ISCOR

2.
Since PN based templates are more accurate for comparable mass ratio inspirals and less

accurate for EMRIs. We wish to justify their implementation in current analysis. The applica-
tion of the PN templates for EMRIs and IMRIs was studied in [90–92], their results describe
well slowly spinning compact objects, as we do in the current analysis [91]. They calculate
the accumulated phase error in using PN waveforms compared to full NR simulations and
demonstrate that 5.5PN results in a relative phase error of 0.1≲∆Φerror ≲ 10 for a mass ratio
of q= 10−4 and a six months observation where the lower (upper) bound corresponds to obser-
vation in the early (late) inspiral. The error increases towards the ISCO, and it is less significant
in the early inspiral where the orbital velocities are small.

10
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Figure 1. The solid blue lines correspond to a potential measurement of k2 for a given
mass ratio q, with relative error σk2/k2 = 1/3. The region above each solid line corres-
ponds potential measurement of k2 with a relative error smaller than 1/3. As anticipated
by equation (18), for a smaller mass ratio, the error on measuring a specific k2 is smal-
ler and it is possible to measure smaller values of k2. The purple region describes the
parameter space accessible to our model for values of the spin parameter between 0 and
0.5, taking into account Love-resonance-spin relation: k2 ∝ ωISCO(χ)R(χ), such that a
given Love number corresponds to a specific resonance frequency and spin parameter.
The grey region describes the parameter space which is not accessible to our model for
these values of the spin parameters.

To understand the effect of the phase error when using the PN waveforms, note that the
leading 2.5PN resonance phase is ∆ΦRes ∼ 1/q. Thus, for EMRIs, ∆ΦRes ≫∆Φerror, which
particular holds away from the ISCO. Consequently, due to the large resonance dephasing, the
effect of omitting the higher order correction terms in the PN expansion would not be signific-
ant for the evaluation of resonances. Especially for high SNR events, which according to LISA
could be observed under some favorable conditions with SNR ∼ 100 [93, 94]. The threshold
phase error required for detection ∆Φmin

Res ∼ 1/SNR, so resonances are already distinguished
at dephasing of 10 milliradians.

To improve the accuracy of the results and to avoid the significant phase error accumu-
lated towards the ISCO, we restricted the analysis to the early inspiral part where the res-
ulting error due to omitting the higher order terms is negligible. From the frequency range
of the various events we consider fmax = [3.5,5.5]× 10−3Hz and fmin is chosen to guaran-
tee an observation time of ∆Tobs ≲ 6 months. Since the error reduces when reducing the
binary mass-ratio, we consider intermediate as well as extreme mass-ratio binaries with
q= [10−2,10−3,10−4,10−5], where the central object mass is M1 = 106M⊙, and small to
moderate Kerr spin parameters χi = [0,0.1,0.2,0.3,0.4,0.5], at a typical luminosity distance
Dl = 2Gpc. We also average over the sky location parameters [89]. We assume equal spins
χ1 = χ2 that are aligned with the orbital angular velocity vector. For the model-dependent
order unity coefficient N , we use the estimation derived in [29], and consider N ∈ [0.1,1].

In figure 1, the purple region shows the analytical Love-resonance-spin relation described
in equation (20) that is determined by our model, where a given Love number corresponds
to a specific resonance frequency and a spin parameter. This region describes the parameter
space accessible to our model and is independent of the detector properties. In our analysis,
the largest accessible k2 is reached for N = 1, α= 1 and χ= 0.5, resulting in kmax

2 ≈ 0.159,

11
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larger values are inaccessible to our model. The grey region is the parameter space region that
our model cannot describe.

For the completeness of our model and the detection analysis, we wish to estimate the
impact of the gravitational tidal force exerted by the lighter companion on the primary,
and evaluate the distance at which the force applied on a fluid element at the surface of
the primary exceeds its gravitational pull, (M2/b3)R2 =M1/R2

1, which leads to a distance
b= (qR2R2

1)
1/3 ∼ q2/3R1 ≪ RISCO . Since q≪ 1, the fluid does not experience significant

changes due to companion tidal forces, and the analysis holds until the ISCO.

4.1. Comparison to Tidal-deformability

We now turn to estimate the relative magnitude of the resonance phase shift effects compared
to the magnitude of tidal deformation effects on the phase evolution. When estimating these
effects we ignore the possibility of resonant excitation. Furthermore, we focus on the adiabatic
regime during the inspiral and far enough from the merger. In this regime, static tides are more
important than dynamical tides [46, 60]. As shown there, dynamical tides become important at
higher orbital velocities and particularly before the merger (after the ISCO). These scenarios
are particularly relevant for binaries where the primary is a neutron star whose internal spec-
trum contains high-frequency modes. However, here we considered different scenarios where
resonances occur during the inspiral at low orbital velocities.

To leading PN order, the tidal deformability contribution to the phase for q≪ 1 takes the
form ΦTD( f)∼ k2v5/q, where v= (πMf)1/3 is the orbital velocity. The accumulated phase
throughout the inspiral is given by

∆ΦTD =

ˆ fISCO

fmin

f
d2ΦTD ( f)

df 2
df∼ k2

q
v5ISCO . (26)

For a case for which the central object mass is M1 = 106M⊙ and for small to moderate
spin parameters, we find v5ISCO ∼ 0.01. Comparing to the instantaneous resonance phase jump
equation (12),∆ΦTD/∆ΦRes ∼ v5ISCO. Therefore, we would expect to have a larger error in the
measurement of the Love number relying on tidal deformability.

We calculated the statistical error inmeasuring the Love number through tidal deformability
and compared it to a measurement via resonance effects and found that the previous estimate
is indeed correct. We repeated the statistical evaluation performed above, excluding resonance
effects and including the leading tidal deformation terms entering the phase at 5PN and 6PN
order [35, 95, 96]. Our estimates are comparable to previous estimates, for example, [36, 37]
in the range that we can compare them.

The results of the calculation of the ratio of the relative errors in measuring the Love num-
bers, denoted by σRes

k2 /σTD
k2 for different spin parameters 0⩽ χ ⩽ 0.5 are presented in figure 2.

5. Summary and conclusion

The future measurement of GWs produced during BBH inspirals by the planned GW detector
LISA will present an unprecedented opportunity to test GR. Hypothetical tidal interactions
between the inspiraling objects would affect the waveform of the emitted GWs in a way that
could only be possible if astrophysical BHs were actually UCOs possessing an internal struc-
ture rather than the structureless objects predicted by GR.

We discussed how the resonant excitation of the hypothetical nonrelativistic interior modes
of astrophysical BHs changes the phase of the emitted GW waveform when compared to the

12
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Figure 2. The figure displays the relative statistical errors in measuring k2 with reson-
ance excitations and tidal deformation. For a given k2 and χ we calculate σres

k2 without
tidal deformation effects and σTD

k2 without resonances. The results show a preference
for detecting k2 with resonance effects. The preference is more apparent for a smaller
mass ratio q. The colored regions enclosed by the solid and the dashed lines mark the
additional parameter space that resonances can probe compared to tidal deformation.

phase predicted by GR. The nonrelativistic nature of the modes was crucial to the possibility
of resonantly exciting them, because in this case they could be excited when the two objects
are still far apart. In this case, the resonance occurs a long time before the ISCO is reached and
leads to a significant dephasing. We find that regardless the specific details of the primary’s
interior composition, the phase shift is governed by a single intrinsic quantity—the dimen-
sionless tidal Love number k2.

We performed a preliminary evaluation of the statistical error in measuring the Love num-
ber k2 by LISA using the resonance effect. We concluded that the smallness of the resulting
statistical error indicates that k2 could actually be detected by LISA with impressive accuracy
by observing intermediate and extrememass-ratio inspirals and that, therefore, it is worthwhile
to perform a more accurate analysis. Additionally, currently, there do not exist precise popu-
lation estimation for EMRIs, and their formation channels is an open question that depends on
complex astrophysical factors [97, 98]. However, these binaries are considered as a possible
source for GW emission which are expected to be observed by LISA [9, 10]. Accordingly, the
values chosen for the primary mass and the luminosity distance are considered as a typical
choices that covers various formation channels of EMRIs and IMRIs [97, 98]

We further compared the statistical error for detection of the Love number relying on
tidal deformation effects with the error when using resonance effects and concluded that pro-
spects of measuring k2 using resonance effects are much better. The results reveal additional
sensitivity-enhancement factors whose origin is the Love-resonance-spin relation. First, the
statistical error in measuring the Love number reduces for BHs with higher spin, because for
such BHs, the inspiral duration is longer. Second, the statistical error in measuring the Love
number reduces if the inspiral includes a range of higher orbital velocities, which could lead to
excitation of higher internal frequencies, which, in turn, correspond to the BH having a larger
Love number.

13
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Our conclusion is that the effects of resonant excitation of astrophysical BHs during inter-
mediate and extreme mass-ratio inspirals provide the best opportunity for putting bounds on,
or detecting, the tidal Love number of astrophysical BHs and thus providing evidence of phys-
ics beyond GR. Nevertheless, we stress that the results of our statistical analysis should be
viewed as preliminary estimates for the detection prospects. A comprehensive statistical treat-
ment requires more accurate waveform modelling and should consider LISA’s ability to track
and discriminate several EMRIs simultaneously [9] or other sources of degeneracy, such as
the effects of near by objects.

Our analysis is based on a general theoretical framework which only requires the existence
of a set of nonrelativistic internal modes and does not require specifying the detailed proper-
ties of the central object. The entire dependence on the interior composition is parameterized
in terms of the dimensionless tidal Love numbers. Our results could therefore potentially be
applied to other models of ultra-compact BH mimickers if they possess a similar spectrum.
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Appendix

A.1. The effect of viscosity

The reason for neglecting the dissipation term is because the dimensionless coefficient γ is
determined by the viscosity of the interior matter and leads to viscous dissipation. This effect
was found in [99] (see also [44, 84]) to be negligible for all physical matter configurations and
therefore is irrelevant for the dynamics of modes resonance. Moreover, we are interested in
the resonance dephasing that is determined by the total energy absorbed into a single mode,
equation (9). This is a known situation for damped driven oscillators equation (4), where the
total energy that excites the mode is determined by the external force as we show below.

Following [45], since γn ≪ ωn, the amplitude can be written as

anlm = ãnlme
−iωnt. (27)

Taking a second order time derivative

ȧnlm =
(
˙̃anlm− iωnãnlm

)
e−iωnt, (28)

änlm =
(
¨̃anlm− 2iωn ˙̃anlm−ω2

n ãnlm
)
e−iωnt, (29)
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then equation (4) becomes

¨̃anlm+ 2(γn− iωn) ˙̃anlm = F(t)nlme
−imϕ(t)). (30)

And again neglecting the damping rate compared to the mode frequency.
Integration over time interval [t1, t2] around resonance, assuming that the resonance effect

is significant enough. Neglecting the rates of change before and after the resonance
ˆ t2

t1

¨̃anlmdt=
[
˙̃anlm (t2)− ˙̃anlm (t1)

]
= 0, (31)

and assuming a significant growth of the amplitude
ˆ t2

t1

˙̃anlmdt= ãnlm (t2) . (32)

For the RHS, we expand the interval to regions where the exponent oscillates fast enough.
Therefore those regions add zero contribution to the integral

ˆ t2

t1

Nlm
ElQnl

MR2
eiωnt−imϕ(t)dt≈

ˆ −∞

∞
Nlm

ElQnl

MR2
eiωnt−imϕ(t)dt. (33)

The resonance condition is given by

|m|ϕ̇R = ωn. (34)

Using the stationary phase approximation, we find that the amplitude of the oscillator after
resonance is given by

anlm =

√
π

mϕ̈R

FR,nlme−imϕR

ωn
ie−iωnt. (35)

Which recovers equation (7) when taking the time to be the time at resonance and neglecting
the damping rate.
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