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Abstract

This thesis investigates quantum error mitigation methods applied to quantum routing
applications with state tomography on Noisy Intermediate-Scale Quantum (NISQ) de-
vices, specifically superconducting quantum devices provided by IBM. Quantum routing
is a process that directs a single quantum signal to be simultaneously present in a su-
perposition of multiple output paths and will be a critical component of future quantum
networks.

Before the investigation of quantum error mitigation, we first implement quantum
error correction with the assumption of statistical knowledge on quantum communication
channels and a five-qubit quantum error-correcting code, which permits corrections of
generic single-qubit errors via encoding a one-qubit quantum signal to five qubits. Our
experimental results demonstrate the limitations of quantum error correction and inspire
the utilization of quantum error mitigation for current quantum devices.

We then explore multiple quantum error mitigation methods, including Zero-Noise
Extrapolation (ZNE), Probabilistic Error Cancellation (PEC) and Clifford Data Re-
gression (CDR). Beyond exploring the improved performance of quantum routing via
ZNE and PEC separately, we also investigate the routing performance provided by the
concatenation of these two error-mitigation methods. Such concatenation yields sig-
nificant performance enhancements, paving the way for practical quantum routing. A
new quantum error mitigation method, named extrapolated CDR (eCDR), that builds a
conceptual bridge between ZNE and CDR, is proposed to mitigate errors for multi-layer
quantum routers on NISQ devices. We also propose a variant of ZNE, which is applied
to quantum random access memory, a key application of quantum routing.

Overall, this thesis contributes novel and important insights into the development
and implementation of quantum error mitigation as applied to quantum routing, laying
the foundation for the realization of near-term quantum communication networks.
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Chapter 1

Introduction

1.1 Overview

Current quantum devices are commonly referred to as Noisy Intermediate-Scale Quan-

tum (NISQ) devices due to their high intrinsic error rates [1–5]. Sources of the intrinsic

error include quantum gate errors, measurement errors, decoherence errors, and cross-

talk errors. Quantum gate errors include 1 and 2-qubit gate errors, accumulating over

a long sequence of quantum gates. Measurement errors incorrectly determine a qubit

in the |0⟩ state as the |1⟩ state, and vice versa. Decoherence errors are caused by the

short thermal relaxation and dephasing times of qubits. Cross-talk errors occur when

multiple quantum operations are executed in parallel and corrupt the quantum states

of qubits. To eliminate these errors and construct fault-tolerant quantum devices capa-

ble of conducting practical large-scale quantum computations, numerous quantum error

correction protocols, such as the Shor code [6–8], Quantum Error-Correcting Codes

(QECCs) [9–11], and surface codes [12–15], have been proposed.

However, current quantum devices are restricted not only by intrinsic errors but

also by limited physical connections between qubits. These restrictions lead to quantum
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error correction being typically ineffective on NISQ devices [16–18]. As an alternative,

quantum error mitigation is proposed as a potential pathway to near-term quantum

advantages on NISQ devices [19–29].

Quantum error mitigation methods aim to reduce the effects of system errors rather

than completely eliminate them [21,30]. In general, a quantum error mitigation method

generates a number of ancillary quantum circuits and applies classical post-processing

to the measurement outcomes of the circuits in an attempt to deduce zero-noise results.

The most common methods discussed for quantum error mitigation include Zero-Noise

Extrapolation (ZNE) [31, 32], Probabilistic Error Cancellation (PEC) [28, 33], Clifford

Data Regression (CDR) [34–36], and Measurement Error Mitigation (MEM) [37–40].

In ZNE, the zero-noise expectation value of an operator is extrapolated from artifi-

cially noise-scaled circuits [28, 31, 32, 41, 42]. In PEC, a target (ideal) circuit is approxi-

mated by averaging over distinct noisy circuits which consist of noisy, but implementable,

quantum gates. The expectation values of the operator for the noisy circuits are com-

bined to approximate the zero-noise expectation value for the target circuit [25,28,33,43].

CDR executes a group of near-Clifford circuits on a simulator and a quantum device,

where the near-Clifford circuits are quantum circuits (collectively similar to the target

circuit) composed largely of Clifford gates (gates that map Pauli operators to Pauli

operators). It then utilizes linear regression or machine-learning methods to infer the

zero-noise expectation value for the target circuit via the expectation values obtained

from the near-Clifford circuits [34–36]. MEM aims to reduce measurement errors by gen-

erating a calibration matrix, whose inverse is utilized to compensate for the measurement

errors [21].

Currently, quantum devices can be manufactured with various qubit types: e.g., su-

perconducting [44–47], trapped ions [48–50], photonic [51–53], or silicon-based qubits [54–

56]. Of particular interest to the wider community are the superconducting quantum

devices developed by IBM [57–65]. Presently, these superconducting quantum devices
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are made available to the wider community through a cloud platform called IBM Quan-

tum platform [66]. Quantum Information Science toolKit (Qiskit) [67], an open-source

toolbox for quantum computing, was developed alongside the cloud platform, allowing

us to directly test the performance of quantum error correction and mitigation on these

NISQ devices.

We focus on quantum routers with Quantum State Tomography (QST), a funda-

mental technology we employed to reconstruct quantum states [68–70], as the specific

application to evaluate the performance of quantum error correction and mitigation

on superconducting quantum devices. Quantum routers are considered a critical ele-

ment of quantum networks, playing an essential role in quantum communications and

computations [71–74]. A classical router allows multi-directional broadcasting in clas-

sical networks, whereas this broadcasting is impossible for quantum signals due to the

no-cloning theorem [75]. As a counterpart to the classical router, the quantum router

transmits the quantum signal from a singular input path to a coherent superposition

of multiple output paths [73, 74, 76]. Note that the quantum router in this thesis indi-

cates a quantum-only phenomenon and is different from the concept of classical-routing

decisions for entanglement distribution [77,78].

Beyond the unique routing functionality, the quantum router also provides the only

known technique that enables Quantum Random Access Memory (QRAM) [79–84].

More specifically, the technique of the quantum router provides the foundation of expo-

nential speedup in large data processing [81], such as quantum Fourier transform [85],

discrete logarithm [86], and pattern recognition [87] algorithms. The critical advantage

of QRAM is that multiple classical and/or quantum data stored in memory cells can be

queried in superposition [80], demonstrating competitive strength in quantum searching

of classical databases [88]. In addition, when it comes to loading classical data into the

quantum Hilbert space, QRAM demonstrates advantages in handling the complexities

of a dataset compared to quantum embedding [89].
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In this thesis, we investigate various quantum error correction and mitigation meth-

ods, including two modified error mitigation methods that we proposed, applied to

quantum routing applications with QST on current superconducting quantum devices

provided by the IBM Quantum platform. The specific quantum routing applications

we considered include single-layer quantum routers, multi-layer quantum routers, and

QRAMs. The experimental results presented in this thesis contribute critical insights

into the construction of near-term quantum communication networks.

1.2 Thesis Structure

We now summarize the structure of this thesis. In Chapter 2, we present the background

knowledge required for the thesis. Chapter 3 investigates how error correction in the

context of quantum routing can be fruitful for near-term networks, provided there is

sufficient a priori statistical knowledge of errors. In this chapter, we introduce the

concept of quantum routing to the generic networking community, discussing how its

inclusion in near-term quantum networks may be possible even for more general noise

conditions. From an experimental perspective, we design a novel quantum circuit for

quantum-error-corrected quantum routing, where the circuit is experimentally executed

on a 7-qubit superconducting quantum device. We verify the quantum nature of the

quantum router by identifying the generation of the path entanglement via QST. The

main contents of Chapter 3 have been presented in the following publication:

• W. Shi and R. Malaney, “Quantum Routing for Emerging Quantum Networks,”

IEEE Network, vol. 38, no. 1, pp. 140-146, 2024, doi: 10.1109/MNET.2023.3317821.

In Chapter 4, we explore a more general scenario of quantum-error-corrected routing:

a 5-qubit QECC that is able to correct any single-qubit error is embedded within the

quantum router. The quantum signal is transmitted to the quantum router from a

sender via a noisy quantum channel, and during this transmission process, various errors

4



1.2. THESIS STRUCTURE

may be introduced to the signal qubit by the environment. Under this circumstance,

we investigate the use of the 5-qubit QECC within the context of quantum routing

involving noisy quantum channels. We also explore the performance of error-corrected

QRAM on current NISQ devices under such noisy channels. With regard to the quantum

error-corrected routing performance of NISQ devices, we experimentally demonstrate

the significance of minimizing the number of control gates utilized, and identify the

importance of the qubit-coupling map of superconducting quantum devices for realizing

a quantum routing process over noisy channels. The results of Chapter 4 have been

presented in the following publication:

• W. Shi and R. Malaney, “Entanglement of Signal Paths via Noisy Supercon-

ducting Quantum Devices,” Entropy, vol. 25, no. 1, 153, 2023, doi: 10.3390/

e25010153.

In Chapter 5, we redirect our study to quantum error mitigation from quantum error

correction, in the context of quantum routing, due to the ineffective performance of error

correction on current NISQ devices. In this chapter, we apply two quantum error miti-

gation methods, namely ZNE and PEC, to the quantum routing problem individually, as

well as in a concatenated form of these two methods. We find that these error mitigation

methods significantly improve the entanglement fidelity of the quantum router - to the

point that quantum applications based on quantum routing become effective on current

devices. The results of Chapter 5 have been presented in the following publication:

• W. Shi and R. Malaney, “Error-Mitigated Quantum Routing on Noisy Devices,”

in 2023 IEEE Global Communications Conference, 2023, pp. 5475-5480, doi:

10.1109/GLOBECOM54140.2023.10437807.

In Chapter 6, we extend our study to multi-layer quantum routers from the single-

layer quantum router, which is investigated in Chapters 3 to 5. The multi-layer quantum
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router allows for further superposition of paths to extend the scalability of quantum net-

works. Based on this multi-layer routing application, we propose a new method named

extrapolated CDR (eCDR). We benchmark the performance of multi-layer quantum

routers implemented on current superconducting quantum devices instantiated with the

ZNE, CDR, and eCDR methods. Our experimental results show that the new eCDR

method improves the fidelity result of the 2-layer quantum router. Our work highlights

how new mitigation methods built from different components of pre-existing methods,

and designed with a core application in mind, can lead to significant performance en-

hancements. The results of Chapter 6 have been presented in the following publication:

• W. Shi, N. K. Kundu, and R. Malaney, “Error-Mitigated Multi-Layer Quantum

Routing,” arXiv:2409.14632, 2024, doi: 10.48550/arXiv.2409.14632.

In Chapter 7, we introduce a modified version of ZNE, namely selected-ZNE (sZNE).

We allow sZNE to select the optimal extrapolation function for each measurement out-

come with the assistance of estimated noisy simulation results. We experimentally de-

ploy both methods (ZNE and sZNE) in the context of a specific application, which

is QRAM, to investigate the performance of error-mitigated QRAM. We find that an

eight-memory-cell QRAM moves from a low-fidelity (non-functional) outcome to a high-

fidelity (functional) outcome if the most accurate extrapolation function is chosen for

each measurement in sZNE. The results of Chapter 7 have been presented in the following

publication:

• W. Shi, N. K. Kundu, M. R. McKay, and R. Malaney, “Error-Mitigated Quantum

Random Access Memory,” arXiv:2403.06340, 2024, doi: 10.48550/arXiv.2403.06340.

Finally, Chapter 8 summarizes the main contributions of this thesis and outlines

future work. Additionally, based on a conventional QST method [69], we further present

an optimized version of QST aimed at saving time and resources with a marginal expense

of accuracy. We experimentally apply the conventional and optimized methods to several
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quantum states on a current NISQ device to evaluate the performance of these methods.

Our experiments provide additional focus on the actual use of QST as well as additional

performance insights. The results of Appendix A have been presented in the following

publication:

• W. Shi and R. Malaney, “Signal Processing and Quantum State Tomography

on Noisy Devices,” in 2023 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), 2023, pp. 1-5, doi: 10.1109/ICASSP49357.2023.

10094890.
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Chapter 2

Background

The properties of quantum mechanics, such as superposition and entanglement, promise

that quantum computers can overcome challenges that classical computers cannot. In

this chapter, we introduce the basic notations with background knowledge of qubits, as

well as quantum hardware and software that we will use in the following chapters. We

also present basic quantum error correction and mitigation methods in this chapter.

2.1 Quantum States, Operations and State Tomography

2.1.1 Quantum States

One key difference between quantum and classical computers is that quantum comput-

ers encode information in qubits, which are two-level quantum systems, while classical

computers encode information in classical bits [90]. A classical bit represents one of two

binary values (0 and 1), while a qubit represents a superposition of the |0⟩ and |1⟩ states,
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which are two orthonormal states in the form of

|0⟩ =

1

0

 and |1⟩ =

0

1

 . (2.1)

This superposition property leads to an exponential speedup in information processing

for the quantum computers compared to the classical computers. The |0⟩ and |1⟩ states

are known as the Z-basis states, and the two X-basis states are given by

|+⟩ = 1√
2
(|0⟩+ |1⟩) and |−⟩ = 1√

2
(|0⟩ − |1⟩) . (2.2)

Moreover, the Y -basis states are expressed as

|R⟩ = 1√
2
(|0⟩+ i|1⟩) and |L⟩ = 1√

2
(|0⟩ − i|1⟩) , (2.3)

where i is the imaginary unit.

Typically, an arbitrary pure single-qubit state |ϕ⟩ is expressed as a linear combination

of the two Z-basis states in the form of

|ϕ⟩ = α|0⟩+ β|1⟩, (2.4)

where α, β ∈ C and |α|2 + |β|2 = 1. If the Z-basis measurement is applied to |ϕ⟩, the

probabilities of |ϕ⟩ collapsing to the states |0⟩ and |1⟩ after the measurement are |α|2

and |β|2, respectively. Since |ϕ⟩ is a pure state, |ϕ⟩ can also be represented as a density

matrix ρ1 in the form of

ρ1 = |ϕ⟩⟨ϕ|. (2.5)

If ρ1 is a mixed state, ρ1 can be expressed as

ρ1 =
∑
l

pl|ϕl⟩⟨ϕl|, (2.6)

where each pure state |ϕl⟩ occurs with probability pl.
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2.1.1.1 Superposition and Entanglement

Superposition and entanglement are two critical quantum properties that form the foun-

dation for the development of quantum computing. Superposition allows n qubits to

represent a maximum of 2n states simultaneously. A 2-qubit quantum state |ϕ2⟩, for

example, has the ability to represent four quantum states at the same time. The |ϕ2⟩

state is given by

|ϕ2⟩ = α00|00⟩+ α01|01⟩+ α10|10⟩+ α11|11⟩, (2.7)

where α00, α01, α10, and α11 ∈ C and |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1. If |ϕ2⟩

can be expressed as a tensor product of two single-qubit states, |ϕ2⟩ is a product state;

otherwise, |ϕ2⟩ is an entangled state.

The simplest examples of entanglement are the Bell states [91–93], which are given

by

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩) , |Φ−⟩ = 1√

2
(|00⟩ − |11⟩) ,

|Ψ+⟩ = 1√
2
(|01⟩+ |10⟩) , and |Ψ−⟩ = 1√

2
(|01⟩ − |10⟩) .

(2.8)

For a n-qubit system, the maximally entangled state is the Greenberger-Horne-Zeilinger

(GHZ) state [94], which is in the form of

|GHZ⟩ = 1√
2

(
|0⟩⊗n + |1⟩⊗n

)
. (2.9)

With entanglement, secure communications, such as quantum key distribution [95, 96],

and various quantum protocols, including quantum dense coding [97, 98] and quantum

teleportation [99,100], become possible.
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2.1.2 Quantum Operations

2.1.2 Quantum Operations

2.1.2.1 Single-Qubit Operations

Quantum gates are unitary operators, which are reversible, and can be represented by

unitary matrices. Since a single qubit is a two-level quantum system, a single-qubit

gate is a 2× 2 unitary matrix. The most commonly used single-qubit gates include the

Hadamard gate, identity gate, Pauli gates (X, Y , and Z gates), and phase gates.

The Hadamard gate H is generally utilized for generating a superposition, since

it converts the states |0⟩ and |1⟩ to the states |+⟩ and |−⟩, respectively. The matrix

representation of H is given by

H =
1√
2

1 1

1 −1

 . (2.10)

The identity gate is the identity matrix, i.e.,

I =

1 0

0 1

 , (2.11)

and I applies no effect to a qubit. The Pauli gates conducts π rotations along axes, and

their matrix representations are

X =

0 1

1 0

 , Y =

0 −i

i 0

 , and Z =

1 0

0 −1

 . (2.12)

The commonly used phase gates include S, S†, T , and T † gates, which introduce phases

of π/2, −π/2, π/4, and −π/4, respectively, to single qubits, i.e., they conduct rotations

along the z-axis. Their matrix representations are

S =

1 0

0 i

 , S† =

1 0

0 −i

 , T =

1 0

0 eiπ/4

 , and T † =

1 0

0 −eiπ/4

 . (2.13)

Beyond quantum gates, another commonly used quantum operation is measurement.

Measurement is necessary for obtaining quantum computing results and is not a uni-

tary operation, meaning it cannot be reversed once performed. In this thesis, we conduct
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experiments on superconducting quantum devices, which only supports the Z-basis mea-

surement. To implement the X-basis measurement, we should perform a Hadamard gate

before the Z-basis measurement. The Y -basis measurement requires an S† gate and a

Hadamard gate sequentially before the Z-basis measurement. Note that the Z-basis

measurements are single-qubit operations and can be applied in parallel to multiple

qubits.

2.1.2.2 Multi-Qubit Gates

Multi-qubit gates are essential for realizing effective quantum commuting tasks, since

they are required for generating entanglement. The most important 2-qubit gate is the

Controlled-X (CX) gate, which converts the |10⟩ state to the |11⟩ state (or vice versa)

and leaves the states |00⟩ and |01⟩ unchanged. Typically, the first and second qubits

(e.g., the first and second qubits in the |10⟩ state are |1⟩ and |0⟩, respectively) applied

by the CX gate are referred to as the control and target qubits, respectively. Therefore,

it can be summarized that CX gate actually applies a X gate to the target qubit if the

control qubit is in the |1⟩ state. When the control qubit is in a superposition, applying

a CX gate to the control and target qubits generates an entangled state. The matrix

representation of the CX gate is

CX =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (2.14)

Similar to the CX gate, the Controlled-Z (CZ) gate applies a Z gate to the target

qubit when the control qubit is in the state |1⟩. The matrix representation of the CZ
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gate is

CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 . (2.15)

Moreover, the SWAP gate has the ability to swap the states of the two qubits applied

by it, where its matrix representation is

SWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 . (2.16)

There are two frequently used 3-qubit gates, which are the Controlled-Controlled-X

(CCX) and Controlled-SWAP (CSWAP) gates. For the three qubits applied by the

CCX gate, the third qubit (regarded as the target qubit) is applied by a X gate when

the first two qubits (regarded as the control qubits) are in the state |11⟩. For the three

qubits applied by the CSWAP gate, the last two qubits (regarded as the target qubits)

are applied by a SWAP gate when the first qubit (regarded as the control qubit) is in

the state |1⟩.

Quantum gates and measurements are essential components for a quantum circuit,

which is a model for quantum computing [101]. Typically, all qubits in the quantum

circuit are initialized to the |0⟩ state, followed by quantum gates and measurements

on some or all of the qubits. An important metric to calculate the complexity of the

quantum circuit is circuit depth, which counts the time steps required to perform all

operations in the quantum circuit. Although the execution time of quantum gates may

vary, each quantum gate is counted as one time step. If quantum gates are performed

in parallel, only one time step is counted. In the NISQ era, circuit depth serves as an

indicator of whether current quantum devices can output effective results after executing

a quantum circuit.
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2.1.3 Quantum State Tomography

QST is a fundamental tool to reconstruct quantum states [69, 102], and in this thesis,

QST is realized via Qiskit [67]. Three projective measurements are required to recon-

struct ρ1, a single-qubit density matrix, where the three projective measurements are the

X, Y , and Z-basis measurements, which are the measurements with the Pauli operators.

Note that projective measurements are quantum measurements whose measurement op-

erators are all Hermitian, orthogonal projectors [101]. The single-qubit density matrix,

ρ1, can be expressed as

ρ1 =
1

2

3∑
j=0

Sj σ̂j =
1

2
(σ̂0 + S1σ̂1 + S2σ̂2 + S3σ̂3) , (2.17)

where σ̂0 = I, σ̂1 = X, σ̂2 = Y , and σ̂3 = Z. Note that Sj = Tr [σ̂jρ1] is a real value

with S0 = 1 due to normalization (Tr stands for the trace operation). If ρ1 represents a

pure state, then
∑3

j=1 S
2
j = 1. However, if

∑3
j=1 S

2
j < 1, then ρ1 is a mixed state. From

the operational perspective, the values of {Sj}3j=0 are determined by the results of the

three projective measurements, and the relations are given as

S0 = PZ+1 + PZ−1 = 1, S1 = PX+1 − PX−1 ,

S2 = PY +1 − PY −1 , and S3 = PZ+1 − PZ−1 ,
(2.18)

where PZ+1 and PZ−1 represent the probabilities of obtaining the eigenvalues +1 (the

|0⟩ state) and −1 (the |1⟩ state) in the Z-basis measurement, respectively. Similarly,

PX+1 , PX−1 , PY +1 , and PY −1 represent similar probabilities in the X and Y -basis mea-

surements [69]. Once Si are determined, ρ1 is reconstructed. Clearly, QST is a state-

estimation process in nature.

The quantum state of a n-qubit state can be expressed by a density matrix ρn in the

form of

ρn =
1

2n

3∑
j1,j2,··· ,jn=0

Sj1,j2,··· ,jn (σ̂j1 ⊗ σ̂j2 ⊗ · · · ⊗ σ̂jn) , (2.19)
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where Sj1,j2,··· ,jn = Tr [(σ̂j1 ⊗ σ̂j2 ⊗ · · · ⊗ σ̂jn) ρn] is a real value and jν ∈ {0, 1, 2, 3} is

an index (ν = 1, 2, · · · , n) [69]. Normalization requires that S0,0,··· ,0 = 1, leaving 4n − 1

unknowns Sj1,j2,··· ,jn , which are determined by projective measurements (tensor products

of n Pauli operators). However, due to some redundancy, only 3n different projective

measurements are needed for the n-qubit state’s reconstruction. In a 2-qubit state’s

reconstruction, for example, the results of the {X ⊗X,X ⊗Y,X ⊗Z, Y ⊗X,Y ⊗Y, Y ⊗

Z,Z ⊗X,Z ⊗ Y,Z ⊗ Z} projective measurements are sufficient to determine the values

of the 42 − 1 unknown values since any Sj1,j2 with j1 = 0 and/or j2 = 0 is determined

by the same projective measurements results. The redundancy can also be verified in

Eq. (2.18), where S0 and S3 are both determined by the Z-basis measurement results.

In a 4-qubit state’s reconstruction, for example,

S0,1,2,3 =
(
PZ+1

1
+ PZ−1

1

)
·
(
PX+1

2
− PX−1

2

)
·
(
PY +1

3
− PY −1

3

)
·
(
PZ+1

4
− PZ−1

4

)
, (2.20)

where PZ+1
1

and PZ−1
1

are the probabilities of obtaining the +1 and −1 eigenvalues,

respectively, when the Z-basis measurement is applied to the qubit labeled by 1. Other

symbols representing probabilities have similar meanings. Based on the expression of

S0,1,2,3, it can be found that the parameters S0,1,2,3, S0,1,2,0, S3,1,2,0, and S3,1,2,3 are all

determined by the results of the projective measurement with the operator Z⊗X⊗Y ⊗Z.

2.2 Quantum Hardware and Software

2.2.1 Superconducting Qubits

Among various types of qubits, superconducting qubits are leading candidates to con-

struct the first fault-tolerant quantum computer in the future [45,103]. Multiple world-

leading quantum computing companies, such as IBM and Google, have constructed

quantum devices with hundreds of superconducting qubits [103].

Josephson junctions form the foundation of superconducting quantum devices. The
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Josephson junction is constructed by two superconducting electrodes separated by an

insulating barrier, allowing the tunneling of Cooper pairs. The Cooper pairs are two

electrons bonded together and can tunnel across the barrier without resistance at low

temperatures, an effect called quantum tunneling [104]. The Josephson junction is non-

dissipative and non-linear, and when shunted with a capacitor, the Josephson junction is

functioned as a non-linear inductor and forms an anharmonic oscillator. The anharmonic

oscillator provides quantized energy levels with different gaps between each other, where

the ground state of the energy spectrum corresponds to the |0⟩ state and the excited

state is regarded as the |1⟩ sate. With superconducting qubits, microwave pulses are

utilized to implement quantum operations, including measurements [105,106].

Compared to other types of quantum devices, superconducting qubits exhibit short

coherence times and require to be operated at extremely low temperatures. However, su-

perconducting qubits also have remarkable advantages, including short operation times

and compatibility with existing semiconductor manufacturing technologies. Moreover,

a superconducting qubit is easier to couple with other superconducting qubits, enabling

higher scalability. With these advantages, superconducting quantum devices are re-

garded leading candidates for practical and scalable quantum computing [44].

In this thesis, multiple superconducting quantum devices are utilized, including a

7-qubit device named ibmq jakarta, a 27-qubit device named ibm cairo, and a 127-qubit

device named ibm sherbrooke. Note that currently, the smallest superconducting quan-

tum devices have 127 qubits. Although the number of available qubits in the quantum

devices has increased with the development of IBM hardware, the transpilation pro-

cess (see Section 2.2.2.2) is always required to execute quantum circuits. Moreover,

mid-circuit measurements and applying quantum gates based on these mid-circuit mea-

surement results were not possible for low-complexity devices.
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Figure 2.1: Quantum circuit with measurements generated via Qiskit. This quantum
circuit has a quantum register containing two qubits and a classical register, which can
store two classical bits. Note that H stands for the Hadamard gate, and the 2-qubit gate
is the CX gate, which is applied to a control (denoted by the solid circle) and a target
qubit (denoted by the larger circle with a plus sign). The quantum circuit prepares the
|Φ+⟩ state, one of the Bell states, followed by the Z-basis measurements, denoted by the
black boxes at the end of the circuit.

2.2.2 Qiskit Software

Qiskit is software that provides access to utilize the IBM quantum devices at the levels

of pulses, quantum circuits, and algorithms. Qiskit allows for manipulating qubits and

construing quantum circuits, as well as calculating on quantum simulators [67]. Users

of Qiskit can construct and send a quantum circuit for executions on a specific quantum

device provided by the IBM Quantum platform. After the executions, the measurement

outcomes of the circuit will return back to the users. In summary, Qiskit and the IBM

Quantum platform together allow users to remotely access and execute quantum circuits

on superconducting quantum devices.

2.2.2.1 Quantum Circuits

Via Qiskit, a quantum circuit is constructed in three main steps: (i) Firstly, generate a

quantum register with n′ qubits, which are all initialized in the |0⟩ state, and a classical

register with n ≤ n′ bits. (ii) Apply a sequence of quantum gates to some or all of
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the qubits in the quantum register. (iii) The Z-basis measurements are applied to n

qubits in the quantum register, whose measurement outcomes are stored in the classical

register. Generally, measurements are conducted at the end of the quantum circuit. An

example quantum circuit generated via Qiskit is demonstrated in Fig. 2.1.

After an execution of the quantum circuit on a quantum device, the measurement

outcome should be one of the 2n possible states. However, if the quantum circuit is

executed again, a different outcome might occur due to the superposition property of

quantum mechanics. Suppose the quantum circuit is executed on the quantum device

thousands of times. After the executions, the frequency (or probability) of each possible

state occurring becomes the corresponding performance metric, rather than the specific

measurement outcome.

In Qiskit, the measurement outcome is printed in little endian order, meaning that

the classical register stores the measurement outcomes of the n qubits sequentially from

right to left. The matrix representations of quantum gates are also in little endian order

in Qiskit. Note that the typical convention is to use big-endian order, and, except where

specified, this thesis follows big-endian order.

2.2.2.2 Transpilation Process

Any quantum circuit should be transpiled via Qiskit before being executed on a specific

IBM quantum device. Transpilation is a process that maps all qubits in the quantum

register to physical qubits of the quantum device and optimize all operations in the

quantum circuit for execution. The significance of the transpilation process is also em-

phasized by the fact that not all quantum gates can be conducted directly on the IBM

quantum devices, which supports only specific 1-qubit and 2-qubit gates, referred to as

basis gates. Transpilation guarantees that the transpiled quantum circuit only includes

basis gates before execution.
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Figure 2.2: Partial topology of ibm sherbrooke, a 127-qubit superconducting device pro-
vided by the IBM Quantum platform. Each circle labeled by a number represents a
physical qubit of ibm sherbrooke. The 2-qubit basis gate (typically the CX gate) can
only be applied to pairs of physical qubits connected by a solid line.

As an example, a partial layout of the physical qubits on a 127-qubit quantum device

named ibm sherbrooke [66] is shown in Fig. 2.2. Each circle represents a physical qubit,

which can be connected to at most three other physical qubits. The 2-qubit basis gate

(typically the CX gate) can only be applied to two physical qubits that are connected

to each other. Since the quantum device does not have an all-to-all structure (where

all physical qubits are connected to each other), applying the 2-qubit basis gate to any

two unconnected physical qubits becomes a problem. To overcome this connectivity

constraint, the SWAP gates are required to route quantum states to the appropriate

physical qubits, enabling the application of the 2-qubit basis gate to the desired quantum

states. During the transpilation process, the SWAP gate is decomposed into three CX

gates, as shown in Fig. 2.3, since the SWAP gate cannot be conducted directly on the

quantum device. Due to the fact that the quantum device is noisy, the addition of the

SWAP gates introduces extra noise, especially gate errors and decoherence errors. To

minimize the introduced noise, the transpilation process needs to optimize the routing

of quantum states to reduce the number of the SWAP gates required. The transpilation

process is not deterministic and can be summarized in six main steps as follows [107,108].

(i) Initialization. An arbitrary quantum circuit may involve various quantum oper-

ations, including multi-qubit gates. The first step of the transpilation is to convert all
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Figure 2.3: SWAP gate and its equivalent basis gates. The SWAP gate can be decom-
posed into three CX gates.

quantum gates into 1-qubit and 2-qubit gates.

(ii) Layout. All qubits in the quantum circuit are then mapped to the physical qubits

on a chosen quantum device.

(iii) Routing. Next, the SWAP gates are inserted to complement the connectivity of

the chosen quantum device.

(iv) Translation. Then, all quantum operations, including the inserted SWAP gates,

are converted to the basis gates and the Z-basis measurements, which can be conducted

directly on the quantum device.

(v) Optimization. In this step, an optimization process is conducted to find more

efficient decompositions of quantum gates and routing processes to meet any given re-

quirements, such as a specified circuit depth.

(vi) Scheduling. The final step is to optionally account for all the idle time in the

transpiled quantum circuit. This step can be considered as inserting delays for qubits

that are waiting for operations to be conducted on other qubits.
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2.3 Quantum Error Correction and Mitigation

2.3.1 Quantum Error Correction

Current quantum devices are considered NISQ devices due to their intrinsic errors and

limited connectivity between physical qubits. These drawbacks prevent quantum devices

from executing efficient quantum algorithms and practical quantum computing tasks. To

address this challenge, quantum error correction was introduced to detect and correct

errors, protecting quantum information from decoherence and noise and paving the way

for fault-tolerant quantum computing. [109].

Since qubits are restricted by the no-cloning theorem [110], quantum information

cannot be duplicated, resulting in the fact that classical error correction cannot be

directly applied to qubits. Therefore, the development of quantum error correction

requires adaptation.

2.3.1.1 Repetition Codes

One typical classical error correction method is the repetition code, which encodes in-

formation from one bit to multiple bits to correct errors. Since qubits cannot be copied,

quantum repetition code encodes information by entangling it with ancillary qubits.

The simplest quantum repetition code is the three-qubit repetition code, which encodes

a 1-qubit state to an entangled 3-qubit state [111–114].

In classical encoding, the only error type to consider is the bit-flip error, while

quantum error correction must detect and correct both bit-flip and phase-flip errors [115–

118]. The three-qubit repetition code applies different encoding strategies for each error

type and is able to correct only a single bit or phase-flip error. To correct a single bit-flip

error, the three-qubit repetition code maps the Z-basis states to two logical codeword
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Figure 2.4: Quantum circuit of the three-qubit repetition code designed for correcting a
single bit-flip error. Syndrome qubits are two ancillary qubits utilized for error detection.
The operations for correction are conducted based on the measurement outcomes of the
syndrome qubits (bits stored in the classical register).

states following

|0⟩L = |000⟩ and |1⟩L = |111⟩. (2.21)

For encoding, an arbitrary single-qubit state, |ϕ⟩, which contains quantum information,

is entangled with two ancillary qubits initialized in the |00⟩ state. The encoding logic is

given by

|ϕ⟩ = α|0⟩+ β|1⟩ −→ |ϕ⟩L = α|000⟩+ β|111⟩. (2.22)

After encoding, |ϕ⟩L is sent to a receiver via a noisy quantum channel, during which

we assume that a single bit-flip error occurs on one of the three qubits in |ϕ⟩L. Another

two ancillary qubits, denoted as the syndrome qubits, are needed for error detection. The

syndrome qubits are used to extract syndrome information, which informs the location of

the single bit-flip error, and provide guidance for correction. Specifically, the syndrome

information is the measurement outcomes of the syndrome qubits. The entire process of

encoding, error detection, and correction is shown in Fig. 2.4. The specific operations

for correction with the corresponding syndrome information are provided in Table 2.1.
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Table 2.1: Syndrome Table of Three-Qubit Repetition Code

Syndrome Information Noisy |ϕ⟩L Correction

|00⟩ α|000⟩+ β|111⟩ I ⊗ I ⊗ I

|10⟩ α|100⟩+ β|011⟩ X ⊗ I ⊗ I

|11⟩ α|010⟩+ β|101⟩ I ⊗X ⊗ I

|01⟩ α|001⟩+ β|110⟩ I ⊗ I ⊗X

|00⟩ α|+++⟩+ β| − −−⟩ I ⊗ I ⊗ I

|10⟩ α| −++⟩+ β|+−−⟩ Z ⊗ I ⊗ I

|11⟩ α|+−+⟩+ β| −+−⟩ I ⊗ Z ⊗ I

|01⟩ α|++−⟩+ β| − −+⟩ I ⊗ I ⊗ Z

After correction, |ϕ⟩L is converted back to |ϕ⟩ by decoding, which applies the operations

from the encoding process in reverse order.

To correct a single phase-flip error, the three-qubit repetition code maps the X-basis

states to two logical codeword states following

|+⟩L = |+++⟩ and |−⟩L = | − −−⟩. (2.23)

Therefore, the encoding logic of |ϕ⟩ turns to

|ϕ⟩ = α|0⟩+ β|1⟩ −→ |ϕ⟩L = α|+++⟩+ β| − −−⟩. (2.24)

The quantum circuit of encoding, error detection, and correction for the three-qubit

repetition code correcting a single phase-flip error is shown in Fig. 2.5, and the operations

for correction are provided in Table 2.1.

To correct both bit and phase-flip errors, the Shor code [6] was proposed. The

encoding logic of the Shor code is given by

|0⟩L =
1

2
√
2
(|000⟩+ |111⟩)⊗ (|000⟩+ |111⟩)⊗ (|000⟩+ |111⟩)

and |1⟩L =
1

2
√
2
(|000⟩ − |111⟩)⊗ (|000⟩ − |111⟩)⊗ (|000⟩ − |111⟩) .

(2.25)
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Figure 2.5: Quantum circuit of the three-qubit repetition code designed for correcting a
single phase-flip error.

The encoding process of the Shor code is illustrated in Fig. 2.6. The Shor code is

developed based on the three-qubit repetition code and able to correct any single-qubit

errors. The drawback of the Shor code is that it encodes a 1-qubit state into a 9-qubit

state, requiring eight ancillary qubits.

2.3.1.2 The Stabilizer Code

At least four ancillary qubits are required to encode a single qubit and correct an ar-

bitrary single-qubit error. One of the well-known smallest quantum error correction

codes is the [[5,1,3]] stabilizer code [119], which uses five qubits to encode one qubit with

distance three. Note that three is the minimum distance required for a quantum error

correction code to detect up to two errors and correct one error. The generators of the

[[5,1,3]] code are

M1 = X ⊗ Z ⊗ Z ⊗X ⊗ I, M2 = I ⊗X ⊗ Z ⊗ Z ⊗X,

M3 = X ⊗ I ⊗X ⊗ Z ⊗ Z, and M4 = Z ⊗X ⊗ I ⊗X ⊗ Z,
(2.26)
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Figure 2.6: Quantum circuit for encoding in the Shor code. The single-qubit state, |ϕ⟩,
is encoded into nine qubits.

and the encoding logic is given by |ϕ⟩ = α|0⟩+ β|1⟩ −→ |ϕ⟩L = α|0⟩L + β|1⟩L, where

|0⟩L =
1

4
(|00000⟩+ |10010⟩+ |01001⟩+ |10100⟩+ |01010⟩

− |11011⟩ − |00110⟩ − |11000⟩ − |11101⟩ − |00011⟩

−|11110⟩ − |01111⟩ − |10001⟩ − |01100⟩ − |10111⟩+ |00101⟩) and

(2.27)

|1⟩L =
1

4
(−|11111⟩ − |01101⟩ − |10110⟩ − |01011⟩ − |10101⟩

+ |00100⟩+ |11001⟩+ |00111⟩+ |00010⟩+ |11100⟩

+|00001⟩+ |10000⟩+ |01110⟩+ |10011⟩+ |01000⟩ − |11010⟩) .

(2.28)

An example of a quantum circuit [120] that encodes the [[5,1,3]] code is illustrated in

Fig. 2.7. Similar to the three-qubit repetition code, the [[5,1,3]] code requires four ad-

ditional ancillary qubits, known as syndrome qubits, to provide information for error

detection and correction [120,121]. The quantum circuit of the error detection and cor-

rection in the [[5,1,3]] code is shown in Fig. 2.8. A total of eight ancillary qubits are

needed: four for encoding and four serving as the syndrome qubits. The quantum circuit
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Figure 2.7: Quantum circuit for encoding in the [[5,1,3]] code. The single-qubit state,
|ϕ⟩, is encoded into a five-qubit state, |ϕ⟩L. Note that S is a single-qubit phase gate,
which induces a π/2 phase.

for error detection in Fig. 2.8 is employed to measure the observables M1, M2, M3, and

M4. The measurement outcome of each syndrome qubit indicates the corresponding

eigenvalue of these observables [101]. To correct a single-qubit error, the syndrome in-

formation (measurement outcomes of the four syndrome qubits) is required to determine

the specific correction operations, as shown in Table 2.2.

Table 2.2: Syndrome Table of the [[5,1,3]] Code

Syndrome
Information

Correction
Syndrome
Information

Correction

|0000⟩ I ⊗ I ⊗ I ⊗ I ⊗ I |0010⟩ I ⊗ I ⊗ Z ⊗ I ⊗ I

|0001⟩ X ⊗ I ⊗ I ⊗ I ⊗ I |1001⟩ I ⊗ I ⊗ I ⊗ Z ⊗ I

|1000⟩ I ⊗X ⊗ I ⊗ I ⊗ I |0100⟩ I ⊗ I ⊗ I ⊗ I ⊗ Z

|1100⟩ I ⊗ I ⊗X ⊗ I ⊗ I |1011⟩ Y ⊗ I ⊗ I ⊗ I ⊗ I

|0110⟩ I ⊗ I ⊗ I ⊗X ⊗ I |1101⟩ I ⊗ Y ⊗ I ⊗ I ⊗ I

|0011⟩ I ⊗ I ⊗ I ⊗ I ⊗X |1110⟩ I ⊗ I ⊗ Y ⊗ I ⊗ I

|1010⟩ Z ⊗ I ⊗ I ⊗ I ⊗ I |1111⟩ I ⊗ I ⊗ I ⊗ Y ⊗ I

|0101⟩ I ⊗ Z ⊗ I ⊗ I ⊗ I |0111⟩ I ⊗ I ⊗ I ⊗ I ⊗ Y

2.3.2 Quantum Error Mitigation

Quantum error correction utilizes additional qubits to encode quantum information for

error correction, laying the foundation for fault-tolerant quantum computing in the fu-

ture. However, current quantum devices are limited by their intrinsic error rates and the
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Figure 2.8: Quantum circuit for error detection and correction in the [[5,1,3]] code. The
correction operations are performed based on the measurement outcomes of the four
syndrome qubits.

connectivity of physical qubits, making them unsuitable for quantum error correction.

To address this challenge, quantum error mitigation was proposed to decrease the effects

of errors instead of correcting them [20,21,30].

Quantum error mitigation requires additional executions of quantum circuits and

classical post-processing to realize near-term quantum advantages on NISQ devices [19–

21]. The noise introduced to a quantum circuit that is executed on a quantum device

increases with the circuit size (the number of qubits) and depth (the number of quantum

operations). The effectiveness of quantum error mitigation is affected by the introduced

noise, meaning that, given a specific hardware error rate, quantum error mitigation is

only practical within a range of circuit complexity (circuit sizes and depths). Differ-

ent mitigation methods have varying overheads due to the execution of the additional

quantum circuits. A suitable mitigation method should be determined based on circuit
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complexity and accuracy requirements for effective error mitigation to achieve optimal

performance.

One promising quantum error mitigation method is ZNE [31, 32, 41, 122], which ex-

trapolates zero-noise results from noisy results obtained from ancillary quantum circuits

executed on a quantum device. These ancillary circuits are constructed by artificially

introducing noise to a quantum circuit of interest (denoted as the original circuit), with

each ancillary circuit possessing a distinct noise level (see details in Section 5.1.1). An-

other promising mitigation method is PEC [28,33,43], in which noiseless quantum gates

are represented as linear combinations of noisy, implementable quantum gates. Then,

the original circuit is represented as a linear combination of noisy quantum circuits,

each consisting of noisy but implementable gates (see details in Section 5.1.2). To ob-

tain higher accuracy in estimated zero-noise results, more sampling is required; that is, a

greater number of the noisy quantum circuits (ancillary circuits) should be executed on a

quantum device. Yet another promising method is CDR [34–36,123], a learning-based er-

ror mitigation technique. CDR involves executing a group of near-Clifford circuits both

on a noiseless simulator and a quantum device, generating a linear regression model

based on the noiseless and noisy results. The experimental results collected from the

original circuit run on the quantum device are then mitigated using the linear regression

model (see details in Section 6.2.1).

The ZNE, PEC, and CDR methods are effective in mitigating intrinsic errors in

quantum devices, such as quantum gate and decoherence errors. However, measurement

errors, typically introduced during the final step of quantum circuit execution, cannot

be eliminated by these methods. To address this, MEM methods [37, 38, 124, 125] have

been proposed specifically to mitigate these errors.
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2.3.2.1 Measurement Error Mitigation

Measurement errors mistakenly read a qubit in the |0⟩ state as the |1⟩ state, and vice

versa. In this thesis, we choose a MEM method [126] provided by Qiskit to reduce

measurement errors. This protocol requires ancillary quantum circuits, which we call

calibration circuits. One needs 2n calibration circuits to construct a 2n × 2n calibration

matrix M , where n is the number of qubits that are measured. Each calibration circuit

prepares the n qubits to one of 2n Z-basis states before using the Z-basis measurements

to measure them. If 3 qubits are measured, for example, the MEM protocol generates

eight calibration circuits, where each circuit prepares one of the eight 3-qubit Z-basis

states i.e., {|000⟩, |001⟩, · · · , |111⟩}. The measurement results of the calibration circuits

determineM , andM−1 is then applied to experimental results to eliminate measurement

errors.

Other promising quantum error mitigation methods, including ZNE, PEC, and CDR,

are also utilized in this thesis. The specific working principle of these methods will be

introduced in the following chapters.

29



Chapter 3

Quantum Routing for Emerging

Quantum Networks

In near-term quantum networks, quantum routers can be deployed using NISQ devices.

In principle, such noisy devices can create, receive, transmit, and route qubits over quan-

tum channels. However, noisy quantum channels that connect NISQ devices introduce

unwanted errors, largely through the entanglement between the information qubit and

the environment [115, 127]. This unwanted entanglement causes the leakage from the

defined two-level qubit space into a larger Hilbert space [128]. Multiple quantum error

correction protocols have been proposed to eliminate the errors caused by noisy quantum

channels, e.g. [129–134].

In this chapter, we develop and experimentally test a quantum router with a non-

general error correction protocol - a protocol well suited to noise conditions with simi-

larities to the amplitude damping channel [135–137]. There are two main aims in this

study:

(i) First, we wish to point out how error correction in the context of quantum routing

may still be fruitful for near-term networks - if enough a priori statistical knowledge on
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errors are known. the errors intrinsic to a NISQ device are known. We investigate

channels with characteristics similar to the amplitude damping channel to make this

point.1

(ii) Second, we wish to introduce the concept of quantum routing to the generic

networking community, discussing how its inclusion in near-term quantum networks

may be possible even for more general noise conditions.

With these two aims in mind, we summarize our three main contributions as follows.

(i) We design a novel quantum circuit for quantum-error-corrected quantum routing,

based on noisy superconducting qubits.

(ii) We experimentally execute the quantum circuit on a 7-qubit NISQ device,

ibmq jakarta, accessed through the IBM Quantum platform.

(iii) We verify the quantum nature of the quantum router by identifying the gen-

eration of the path-entanglement via QST. We also discuss possible applications of

path-entanglement for networks and the use of enhanced error mitigation techniques

in improving quantum routing.

3.1 Quantum Routing with Error Correction

3.1.1 Quantum Routing in Future Networks

An overview of a large-scale quantum communication network is depicted in Fig. 3.1.

A signal qubit is transmitted from a sender to the two end users simultaneously via

quantum routers. Only one end user will receive the signal qubit upon collapse of the

1We do not claim such channels are representative of any current NISQ device - we
simply wish to show how some knowledge on a quantum channel can sometimes greatly
assist the error correction.
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Figure 3.1: An overview of a possible future quantum communication network with
embedded quantum routers.

superposition of the paths. Although not discussed in any detail here, Fig. 3.1 also in-

cludes an important component of any future quantum network - a quantum repeater.

Due to the short coherence time of qubits, and the loss/noise inherent in most quan-

tum channels, quantum repeaters will be needed to realize long-distance transmission of

quantum signals. We anticipate quantum routers and quantum repeaters to co-exist in

emerging quantum networks, complementing and enhancing each other’s functionality

(but one does not require the other).

A simple model of the quantum router is depicted in the bottom of Fig. 3.1. Here,

the control qubit |ϕ⟩c is a superposition state and contains the control information that

directs the path of a signal qubit |ϕ⟩s, which carries the signal information and is received
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by the quantum router via path 1. Specifically, |ϕ⟩c and |ϕ⟩s are given by

|ϕ⟩c = αc|0⟩c + βc|1⟩c =
1√
2
(|0⟩c + |1⟩c) and

|ϕ⟩s = αs|0⟩s + βs|1⟩s = cos
(π
4

)
|0⟩s + eiπ/4 sin

(π
4

)
|1⟩s,

(3.1)

where αc, βc, αs, and βs are complex numbers satisfying |αc|2 + |βc|2 = 1 and |αs|2 +

|βs|2 = 1. We define that αc = βc = 1/
√
2, αs = cos(π/4), and βs = eiπ/4 sin(π/4).

The quantum router requires an ancillary qubit |ϕ⟩n, which is initially in the |0⟩ state

at path 2 and contains no signal information. The output of the quantum router |Φ⟩f is

an entanglement between the control qubit and the two paths, where |Φ⟩f is given by

|Φ⟩f = αc|0⟩c|ϕ⟩p1s |ϕ⟩p2n + βc|1⟩c|ϕ⟩p1n |ϕ⟩p2s , (3.2)

where the superscripts p1 and p2 denote that the corresponding qubit is in the path 1

and 2, respectively. The signal qubit is routed to path 1 when |ϕ⟩c is in the |0⟩c state

and to path 2 when |ϕ⟩c is in the |1⟩c state. When |ϕ⟩c is a superposition state, the two

paths both “possess” the signal qubit.

3.1.2 Noisy Quantum Channel

While the quantum router protocol outlined above assumes zero channel noise, we wish

to consider in this chapter the more realistic situation where noise channels are present.

That is, we assume the states |ϕ⟩c and |ϕ⟩s are prepared at some sender, and then passed

through noisy quantum channels. We build a parameterized noisy quantum channel that

has similar characteristics to the amplitude damping channel. The details of the noisy

channel are not important in this work, we simply require that we have an effective

method within the NISQ device to add arbitrary noise to the qubits, and that the level

of that noise can be parameterized with a single parameter.

The qubits that transmitted through the noisy quantum channel can be regarded as

an open system that interacts with the environment during the transmission. We add
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Figure 3.2: Schematic diagram of a quantum router with noisy quantum channels and
error correction. Note, |0⟩E is an auxiliary qubit that simulates the environment, and
|0⟩a stands for an ancillary qubit.

an auxiliary qubit to simulate the environment, which starts in a pure state |0⟩E , as

shown in the green boxes of Fig. 3.2. The amplitude damping channel models energy

relaxation from an excited state to the ground state, and we define U as the amplitude

damping channel in this chapter. The evolution of |ϕ⟩s with the environment under U

can be expressed as

U |ϕ⟩s|0⟩E = αs|0s0E⟩+ βs
√
γ|0s1E⟩+ βs

√
1− γ|1s0E⟩, (3.3)

where γ ∈ [0, 1] is a tunable parameter, representing the strength of the noise in U .

Specifically, U is a unitary matrix written as

U =


1 0 0 0

0
√
1− γ

√
γ 0

0 −√
γ

√
1− γ 0

0 0 0 1

 . (3.4)

There is no noise when γ equals to 0, and with the increase of γ, the strength of the

noise in U grows.

Next, and different from amplitude damping,2 we make a Z-basis measure on the

2To realize the amplitude damping channel on a NISQ device, we would not imple-
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3.1.2 Noisy Quantum Channel

Figure 3.3: Quantum circuit of the quantum router with the error correction and QST.H
represents the Hadamard gate, and T the 1-qubit phase gate, which induces a π/4 phase.
The 3-qubit gate in purple is the CSWAP gate, which exchanges the two quantum states
(represented by the two crosses) when the control qubit (represented by the solid circle)
is in the |1⟩ state. c0 and c1 are classical registers used for storing the measurement
results in the post-selection and the state tomography, respectively.
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auxiliary qubit and only keep the resulting state if the measurement outcome is |0⟩E ,

and at this point, the resulting state is

|ϕ⟩s1 =
1

N1

(
αs|0⟩s + βs

√
1− γ|1⟩s

)
, (3.5)

where N1 =
√

|αs|2 + |βs|2(1− γ) is a normalization factor. This process, which delivers

our required parameterized noisy channel, has a success probability of p1 = N2
1 [129].

To run our experiments (see Section 3.2), we first must “imprint” the noisy quan-

tum channel onto the device, since in the current devices no such channel exists. This

imprinted channel mimics noise that would be added to the qubits as they traversed a

wider network before entering the router. After imprinting the noise, we “forget” we

know the exact channel parameter, γ, when we attempt the error correction. This is a

means to model the realistic situation where we do not know exactly the noise in the

channel, only some general characteristics, but must still attempt some form of error

correction.

In this work, we imprint the noisy channel by U , which requires us to set a specific

value of γ, as shown in Fig. 3.3. We assume the noisy quantum channel to possess a

γ in the range 0 − 1, with a uniform distribution. At the error correction phase, we

assume only knowledge of the distribution of γ, not its specific value in any realization.

We set our estimate of γ , which we refer to as γg = 0.5, by setting it at the mean

of the distribution. Although some real-world channels could be approximated by this

process, we do not claim we have truly modeled a real-world channel. We use our channel

scheme to simply illustrate that when statistical information on a channel is available,

quantum error correction on quantum routing within a NISQ device becomes possible.

Other, more complicated, channels will likely exist in the wide range of NISQ devices

now being produced via multiple technology implementations. While we expect similar

ment the post-selections (Z-basis measurements) on the auxiliary qubits. Mathemati-
cally, following the unitary evolution of the combined system, the “environment” qubits
would be traced out before executing the error correction.
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outcomes to those reported here for some of these other channels, we should be clear that

the explicit results we show are specific to the statistical noise model we have assumed.

3.1.3 The Error Correction Protocol

The correction protocol [129] we adopt is not designed for an arbitrary error on a qubit,

but one which develops for a specific noise model. Our adopted scheme applies to

scenarios where some access to the entangled environment may be available [138] or

where a weak measurement is done to detect leakage from the system [129], and the loss

rate can be estimated.

We first apply a special Hadamard gate Hθ with a parameter θ to |0⟩a, which is an

ancillary qubit. The representation of Hθ is

Hθ =

cos θ − sin θ

sin θ cos θ

 . (3.6)

Then, a CX gate is performed on |ϕ⟩s1 and the ancillary qubit (performed on the control

and target qubit, respectively), as illustrated in the orange dashed box of Fig. 3.2. The

resulting transformation can be expressed as

|ϕ⟩s1 |0⟩a =
1

N1

(
αs|0⟩s + βs

√
1− γ|1⟩s

)
⊗ |0⟩a

I⊗Hθ−−−→ 1

N1

(
αs|0⟩s + βs

√
1− γ|1⟩s

)
⊗ (cos θ|0⟩a + sin θ|1⟩a)

CX−−→ 1

N1

(
αs cos θ|0s0a⟩+ αs sin θ|0s1a⟩

+ βs
√

1− γ cos θ|1s1a⟩+ βs
√
1− γ sin θ|1s0a⟩

)
.

(3.7)

The last step of the error correction requires a post-selection method applied to the

ancillary qubit. This method involves the retention of the post-selected state only when

the Z-basis measurement result of the ancillary qubit is |0⟩a. The resulting post-selected

state by this process can be written,

|ϕ⟩s2 =
1

N1N2

(
αs cos θ|0⟩s + βs

√
1− γ sin θ|1⟩s

)
, (3.8)
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where N2 is a normalization factor expressed as

N2 =
1

N1

√
|αs cos θ|2 + |βs sin θ|2(1− γ). (3.9)

When we set θ = arctan(1/
√
1− γ), giving cos θ/ sin θ =

√
1− γ, |ϕ⟩s2 = |ϕ⟩s with the

success probability of the error correction p2 = N2
2 [129]. Note that we only used |ϕs⟩

as an example for demonstrating the derivations, and when the noisy quantum channel

and the error correction are applied to |ϕ⟩c, the process is similar.

Our adopted correction protocol is different from the quantum error correction proto-

cols introduced in Section 2.3.1. These latter protocols encode a logical qubit to multiple

physical qubits and rely on syndrome information for error correction. In contrast, our

adopted correction protocol employs post-selections, terminating the entire procedure if

the auxiliary or ancillary qubits yield undesired outcomes. Due to this distinction, the

adopted correction protocol can also be regarded as a noise-adapted error detection or

mitigation protocol.

3.2 Experiments

3.2.1 Experimental Setup

Our experiments are implemented on the IBM quantum device, ibmq jakarta, which has

seven superconducting qubits in a horizontal H-shaped geometry [66]. This quantum

device only supports five basis gates, namely the single-qubit gates I, RZ,
√
X, and X,

and the two-qubit gate CX, as shown in Table. 3.1. The quantum circuit of the router

(alongside the noisy quantum channel and the error correction) is shown in Fig. 3.3.

The three router qubits, (i.e., counting from the top - the first, fourth, and last

qubit in the quantum circuit of Fig. 3.3), are prepared as |ϕ⟩c, |ϕ⟩s, and |ϕ⟩n via single

qubit gates. The two qubits initialized in the |0⟩E state are two auxiliary qubits that

simulate the environment, and the two qubits initialized in the |0⟩a state stand for the
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3.2.1 Experimental Setup

Table 3.1: Basis Gates of ibmq jakarta

Basis Gates Matrix Representation

single-qubit gate I I =

[
1 0
0 1

]
single-qubit gate RZ

(single-qubit rotation about the z-axis)
RZ(φ)1 =

[
e−iφ

2 0

0 ei
φ
2

]

single-qubit gate
√
X

√
X =

1

2

[
1 + i 1− i
1− i 1 + i

]

single-qubit gate X X =

[
0 1
1 0

]

two-qubit gate CX CX2 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


1φ is a phase term.
2 Qiskit uses little-endian order.
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ancillary qubits used in the error correction protocol. As discussed earlier, to realize

the noisy channel and the error correction on the quantum device, post-selections are

performed on these four qubits, as illustrated in Fig. 3.3. The classical registers c0

contains the measurement outcomes of the four qubits. In our experiments, we set

γ ∈ {0, 0.1, 0.2, · · · , 0.9} for the noisy channel, and for the error correction θ is set

based on γg, i.e., θ = arctan(1/
√

1− γg). The CSWAP gate is performed to realize the

quantum routing process, which is the core part of the router. The CSWAP gate acts on

the three router qubits: the positions of |ϕ⟩s2 and |ϕ⟩n would be swapped and unchanged

when |ϕ⟩c2 is in the |1⟩ and |0⟩ state, respectively. The classical register c1 contains the

measurement outcomes of QST, which is utilized to identify the router output.

We choose the fidelity F between ρ′ and ρ as one of our performance metrics, where

ρ′ = |Φ⟩f ⟨Φ| is the “theoretical” density matrix of the router output, and ρ is the

“experimental” density matrix of the router output. Note that ρ is reconstructed via

QST (see Subsection 2.1.3). The fidelity, F , is given by

F =

(
Tr
√√

ρ ρ′
√
ρ

)2

. (3.10)

Note that F estimates the similarity between ρ′ and ρ, and ranges from 0 to 1. When ρ′

and ρ are identical to each other, F equals 1, and when ρ′ and ρ are orthogonal to each

other, F equals 0.

The whole experimental procedure to determine F is depicted in Fig. 3.4. The

quantum circuit should first be transpiled to a circuit that only includes basis gates

- i.e., gates that can be implemented on the quantum device directly (more details

of the transpilation process are provided in Subsection 2.2.2.2). For conducting QST,

different types of measurements are attached at the end of the transpiled circuit and

27 tomography circuits (the 27 measurements {X ⊗ X ⊗ X,X ⊗ X ⊗ Y, · · · , Z ⊗ Z ⊗

Z} are required for rebuilding the 3-qubit state) are generated. We then send these

tomography circuits with γg and a chosen γ to the quantum device, which executes each

tomography circuit 100,000 times. Due to the fact that the quantum device is noisy, we
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apply the MEM method introduced in Subsection 2.3.2.1 to reduce errors implicit in the

measurement process within the device. The MEM method is applied to three physical

qubits of the quantum device, where these physical qubits will be utilized as the three

router qubits in the transpiled circuit. After the application of the MEM, we implement

QST to reconstruct ρ; with the known ρ and ρ′ we then calculate the fidelity F .

3.2.2 Experimental Results

Each circle in Fig. 3.5 represents an outcome averaged over ten repetitions, with an error

bar indicating two standard deviations from the mean. Note that we have checked the

experiments with more repetitions and found that the results are effectively the same.

The experimental F indicates the difference between the theoretical density matrix of the

router output and the corresponding experimental density matrix, as mentioned above.

The state of the router output is fixed by the chosen state of the signal qubit and the

fixed state of the control qubits. We see from Fig. 3.5(a) that the quantum router with

the error correction is feasible when γ ≥ 0.5 on the quantum device. Note, a baseline is

the case where no noisy channel and no error correction is applied, for which the fidelity

of the quantum routing is 0.85 (non-unity as a consequence of intrinsic errors within

the device). For current NISQ devices, quantum error correction introduces more qubits

and quantum operations, incurring higher intrinsic errors within the device and making

error correction unfeasible. However, we note that the error correction improves the

performance of the quantum routing within the range of γ ≥ 0.5, as the error-corrected

results in this range are significantly above the ones without the error correction. We

do emphasize, that in this range where the error correction partially works, we are not

eliminating the noise in the channel, just reducing it. That is, we do not correct fully

back to the baseline case. When γ < 0.5, the experimental F is decreased after the

error correction. The reason of this phenomenon is that the noise induced by our noisy

quantum channel is smaller than the noise accumulated from the quantum gates. We

note that there remains a small probability that this situation observed at low γ is an

42



3.2.2 Experimental Results

(a)

(b)

Figure 3.5: Fidelity, F , as a function of γ with γg = 0.5, where the noisy quantum
channel and the error correction are performed on |ϕ⟩c and |ϕ⟩s (a); or only performed
on |ϕ⟩s (b). Note, EC represents error correction.
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artifact of experimental noise as evidenced by the error bars shown. The observed overall

trend of F with γ is as expected - the quantum channel introduces more noise for larger

γ and the device performs the error correction less efficiently as the noise increases.

Beyond fidelity, we utilize success probability P of the whole procedure (quantum-

error-corrected quantum routing) as another performance metric, as shown (right-hand

scale) in Fig. 3.5(a). As the noisy quantum channel and the error correction are im-

plemented on two qubits (|ϕ⟩c and |ϕ⟩s), P should be square of p2. Remind that p2

is the success probability of the error correction for a noisy qubit derived earlier and

the quantum routing process is deterministic. We can observe that higher γ results in

lower P and F , where the experimental P is consistent with the theory. The success

probability, P , decreases with the increase of γ and approaches 0 as γ → 1, which indi-

cates a tradeoff between P and the error correction. We also consider the scenario where

the noisy quantum channel and the error correction are implemented only on |ϕ⟩s, the

results of which are shown in Fig. 3.5(b). We can see that the error correction appears

feasible when γ is larger than 0.6.

Finally, the quantum nature of the router is demonstrated by the entanglement

generated at the output. We verify the entanglement by reconstructing its density

matrix via QST, the results of which are in Fig. 3.6. The theoretical density matrix,

ρ′, is demonstrated in Fig. 3.6(a) and Fig. 3.6(b), and the experimental ρ with the

noisy quantum channel and error correction implemented on |ϕ⟩s only, with γ = 0.6

and γg = 0.5, is illustrated in Fig. 3.6(e) and Fig. 3.6(f). For comparison, we also

demonstrated ρ without the error correction after the noisy quantum channel performed,

with γ = 0.6, on |ϕ⟩s (Fig. 3.6(c) and Fig. 3.6(d)). From the comparison of these

figures, the good performance of the error-corrected quantum routing is verified - the

corrected state clearly being closer in its matrix elements to the theoretical density

matrix elements. Detailed information on the values of these elements can be seen from

the range of values shown, and fidelities between the matrices determined. It can be

found that F improves from 0.48 to 0.61 after the error correction.
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3.2.2 Experimental Results

(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Theoretical and experimental density matrices of |Φ⟩f , the entanglement
generated at the output of the quantum router. (a), (b) represent the real and imaginary
parts of the theoretical density matrix, ρ′, respectively. (c), (d) together represent ρ
without the error correction after the noisy quantum channel performed on |ϕ⟩s only.
Similarly, (e) and (f) depict ρ with the noisy quantum channel and error correction
applied on |ϕ⟩s.
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3.3 Summary

In this chapter, we designed and experimentally demonstrated a quantum router em-

bedded with a quantum error correction scheme. Via QST, we verified the quantum

nature of the router and the impact of the error correction on the routing performance.

Our results demonstrate that quantum routing with embedded quantum error correc-

tion is viable in near-term noisy devices - pointing the way toward the inclusion of

quantum routing in quantum networks. Although we have used a specifically designed

noisy channel, our work demonstrates that with the use of statistical information only,

quantum-error-corrected routing is viable in NISQ devices. The inclusion of quantum

routing within near-term quantum networks will enhance the functionality of such net-

works, allow for the deployment of RAM, and provide a pathway to the development of

additional network functionality.
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Chapter 4

Error-Corrected Quantum

Routing

In Chapter 3, we have experimentally implemented a quantum router with an error

correction technique designed for a specific noise model. The experimental results have

showed, however, that the error correction technique, in the context of quantum routing,

was only useful for very specific quantum channels—rendering it of no value for generic

(or unknown) channel conditions. In this chapter, we utilize a more sophisticated error

correction technique. Specifically, we embed a robust QECC within the quantum router

that can correct for any single qubit error, independent of the quantum noise model.

As we shall see, although such error correction is not viable on current low-complexity

NISQ devices provided by the IBM Quantum platform, our work highlights the pathway

forward to more robust error-corrected quantum routing. Our novel contributions in

this chapter are as follows.

(i) We benchmark quantum routing performance using a currently available 7-qubit

NISQ device, assuming noiseless quantum signals.

(ii) Using such quantum routing, we then implement a viable QRAM.
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Figure 4.1: Schematic diagram illustrating the principle of a quantum router. A sender
prepares and sends a quantum signal to the quantum router via a quantum channel, and
a control qubit directs the quantum signal’s path based on the control information it
stores. The output of the quantum router is an entanglement between the control qubit
and the two paths.

(iii) We then evaluate the performance of a quantum router embedded within a 5-

qubit QECC suitable for any single-qubit error channel. In doing this, we consider the

intrinsic errors as well as errors that mimic the effects of a noisy quantum channel.

(iv) With regard to the quantum error-corrected routing performance of NISQ de-

vices, we experimentally demonstrate the significance of minimizing the number of con-

trol gates utilized, and identify the importance of the qubit-coupling map of supercon-

ducting quantum devices for realizing a quantum routing process over noisy channels.

4.1 Quantum Routing with an Error-Correcting Code

4.1.1 Quantum Routing

A schematic diagram of the principle of a quantum router with a sender is shown in

Fig. 4.1, and a quantum circuit of the quantum router with QST is shown in Fig. 4.2—

henceforth, we refer to this circuit as the “router circuit.” The working principle of the

quantum router and the specific states we utilized for |ϕ⟩c, |ϕ⟩s and |ϕ⟩n are provided in

Subsection 3.1.1. We still use the fidelity, F , between ρ and ρ′ as our performance metric,

as shown in Eq. (3.10). Note that ρ′ = |Φ⟩f ⟨Φ| is the theoretical density matrix of the
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Figure 4.2: Quantum circuit of a quantum router with QST. H stands for the Hadamard
gate, and T is the phase gate that introduces a π/4 phase. All qubits start from the |0⟩
state, and the second qubit initially is |ϕ⟩n = |0⟩n. The 3-qubit gate in purple is the
CSWAP gate, which exchanges the two quantum states (represented by the two crosses)
when the control qubit (represented by the solid circle) is in the |1⟩ state. The density
matrix of the quantum router’s output is reconstructed via the QST. Rc represents a
classical register that contains the quantum measurement results of the QST.

router output, and ρ is reconstructed via QST (see Subsection 2.1.3) in experiments.

Fig. 4.3 shows a distribution of the fidelity between ρ and ρr, determined from

Eq. (3.10), where ρr is a 3-qubit system uniformly sampled from the space of all possible

3-qubit systems. Here, we used the fact that a generic 3-qubit state can be expressed

with only 5 terms with the help of the canonical 5-term decomposition, that is,

|∆⟩ = α0|000⟩+ α1e
iϑ|100⟩+ α2|101⟩+ α3|110⟩+ α4|111⟩, (4.1)

where
∑4

j=0 α
2
j = 1 and αj , ϑ ∈ R. Note that ϑ ∈ (0, π) is a phase term [139]. From

this, we see that the probability of randomly selecting a state with F > 0.5 is less than

1.25%. As an additional comparison, we note the averaged fidelity between ρ and a

3-qubit product state uniformly sampled from {|000⟩, |001⟩, · · · , |111⟩}, is F = 0.125.

4.1.2 Quantum Random Access Memory

The quantum router directs the signal qubit along the two paths in a coherent superpo-

sition, a process that can be utilized for QRAM. As opposed to classical RAM, QRAM
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Figure 4.3: Probability density function of F between ρ and ρr obtained from 100,000
samples.

can access the information stored in memory in superposition. There are mainly two

QRAM structures: the conventional fanout structure [140] and the “bucket brigade”

structure [79]. In the fanout QRAM, each “address” qubit changes the states of all

“routing nodes” that constitute a binary tree architecture.1 The routing nodes are

qubits used for the decision-making in the binary tree architecture to access memory

elements (see [141]). The fanout QRAM is vulnerable to decoherence errors due to its

working principle, limiting its scalability. In contrast, the bucket brigade QRAM has a

higher noise resistance than the fanout QRAM since the address qubits only change the

states of the routing nodes needed for accessing memory elements [81,82]. The structure

of a bucket brigade QRAM with two memory cells is illustrated in Fig. 4.4(a). Each

memory cell can store either a classical bit or a qubit. The binary tree node makes a

binary decision based on the address qubit received: the left (right) memory cell will be

1The binary tree architecture is a widely used data structure for RAM and it main-
tains binary relationships among memory elements.
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(a) (b)

Figure 4.4: (a) Illustration of the structure of bucket brigade QRAM with two memory
cells, D0 and D1. (b) Quantum circuit of the QRAM that includes two memory cells
with QST. The 2-qubit gate is the CX gate, the 3-qubit gate is the CSWAP gate, and
the dashed blue outline indicates the QST process.

accessed if the address qubit is |0⟩ (|1⟩).

Based on the circuit for the bucket brigade QRAM in [141], we design a quantum

circuit of our QRAM (the “QRAM circuit”) with one address qubit and two memory

elements, as shown in Fig. 4.4(b). In our QRAM, what was termed previously as the

control qubit and is now referred to as the address qubit, |ϕ⟩c, which is a superposition

of two addresses (|0⟩ and |1⟩). The two qubits initialized to the |1⟩ and |0⟩ states are

the routing nodes (referred to above) that help to access the memory elements, |D0⟩

and |D1⟩, storing bits or qubits. We use the last qubit initialized as |0⟩in in the QRAM

circuit to store the accessed memory elements. We define that the input and the output

of our QRAM is |Ψ⟩in and |Ψ⟩f , respectively, which can be expressed as

|Ψ⟩in = |ϕ⟩c|0⟩in
QRAM−−−−→ |Ψ⟩f = |ϕ⟩c|ψ⟩out = αc|0⟩c|D0⟩out + βc|1⟩c|D1⟩out. (4.2)
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4.1.3 Five-Qubit Quantum Error-Correcting Code

The QECC code we adopt is that of [142], which encodes the quantum signal by 5 qubits,

requires no post-selections or stabilizer measurements. The best-known 5-qubit QECC

is the [[5,1,3]] code (see Subsection 2.3.1.2), which requires not only 5 qubits for encoding

but also four ancillary qubits for stabilizer measurements (requires nine qubits in total).

The 5-qubit QECC [142] utilized for this research only requires 5 qubits in total, and it

permits corrections of generic single-qubit errors. A quantum circuit of the QECC (the

“QECC circuit”) embedded within the quantum router is demonstrated in Fig. 4.5. The

first five qubits (counting from the top) in the QECC circuit are utilized for an encoding

logic given by

|0⟩L =
1√
8
(|00000⟩ − |01111⟩ − |10011⟩+ |11100⟩

+|00110⟩+ |01001⟩+ |10101⟩+ |11010⟩) and

|1⟩L =
1√
8
(|11111⟩ − |10000⟩+ |01100⟩ − |00011⟩

+|11001⟩+ |10110⟩ − |01010⟩ − |00101⟩) .

(4.3)

The encoded qubit is the third qubit in the QECC circuit, which is prepared as |ϕ⟩s

before the encoding. After the encoding, the five qubits are sent to the quantum router

via a noisy quantum channel, which introduces a generic single-qubit error. We utilize

a unitary transformation to represent this single-qubit error, and in this chapter, we

redefine U as this transformation, where U is given by

U =

c0 c1

c2 c3

 =
c0 + c3

2
I +

c1 + c2
2

X +
c2 − c1

2i
Y +

c0 − c3
2

Z, (4.4)

where c0, c1, c2, and c3 are complex numbers and satisfy the requirements of a unitary

matrix.

Once the quantum router receives the qubits, it realizes the error-finding, error-

correction, and quantum-routing processes. After the error-finding process, quantum

measurements should be applied to the first, second, fourth, and fifth qubits to find
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Figure 4.5: Quantum circuit of the 5-qubit QECC embedded within the quantum router
with QST. The first part of this quantum circuit is the state preparation of |ϕ⟩s on
the third qubit (counting from the top), followed by the encoding, error-finding, error
correction, and quantum routing. The first five qubits, except for the third qubit, are
ancillary qubits for encoding, the sixth qubit is |ϕ⟩n, and the last qubit is prepared as
|ϕ⟩c. Note that Z stands for the Z gate, the 2-qubit gate with two solid circles is the CZ
gate. The 3-qubit and the 5-qubit gates are either a multi-CX or a multi-CZ gate, whose
solid and hollow circles indicate that the control state is the |1⟩ or |0⟩ state, respectively.
Note that the row being continued across the three blocks is the continuation of the
previous row.
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syndromes that indicate the exact error that occurred on any of the five qubits, as sum-

marized in Table 4.1. However, due to the limitations of current 7-qubit superconducting

quantum devices, we cannot apply quantum gates based on the quantum measurement

results. Instead, we implement multi-controlled gates conditioned on the states of those

four qubits, as shown in Fig. 4.5. Note that the multi-controlled gates realizing the

error correction process are equivalent to applying the X and Z gates on the third qubit

conditioned on the measurement results of the four qubits [143].

The sixth qubit is |ϕ⟩n, and the last qubit is prepared as |ϕ⟩c by the Hadamard gate.

Upon completing the quantum routing process, we implement QST (see Subsection 2.1.3)

on the third and the last two qubits to reconstruct ρ, thereby allowing us to determine F .

4.2 Experimental Results

4.2.1 Quantum Routing without Error Correction

Our experiments are implemented on the 7-qubit ibmq jakarta, and all the above quan-

tum circuits are designed via Qiskit [67]. Executing a circuit on a quantum device

requires the transpilation process (see Subsection 2.2.2.2), and we refer to the circuit af-

ter the transpilation as a “transpiled” circuit. The general transpilation process includes

steps which are stochastic in nature, e.g., the number of gates resulting from the tran-

spilation. However, it is possible to generate reproducible and deterministic transpiled

circuits, and we adopt this approach here (ensuring the minimum number of CX gates

are used). In addition, all measurement results returned from the quantum device are

first processed the MEM method (see Subsection 2.3.2.1) so as to mitigate measurement

errors, one type of intrinsic error.

To benchmark the performance of the quantum router on ibmq jakarta, we imple-

ment two quantum routing experiments that verify the quantum nature of the quan-
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CHAPTER 4. ERROR-CORRECTED QUANTUM ROUTING

Figure 4.6: A transpiled circuit of the router circuit. Note that QST is not included
here, and 9 CX gates are involved. The quantum gates included in this transpiled circuit
are basis gates that can be physically operated on ibmq jakarta.

tum router and the preservation of |ϕ⟩s, respectively. We refer to these experiments

as “Experiment-1” and “Experiment-2,” respectively, and we assume that the quantum

channel introduces zero noise in these two experiments, which means that only the intrin-

sic errors of ibmq jakarta are included. In Experiment-1, we execute the router circuit

to confirm the quantum nature by experimentally demonstrating the generation of |Φ⟩f .

The transpiled circuit of the router circuit is demonstrated in Fig. 4.6, and it includes

9 CX gates. To conduct QST, 27 copies of the transpiled circuit are generated, each

with a distinct projective measurement (see Subsection 2.1.3). We refer to one single

execution of a circuit as one “shot”. That is, when a circuit executes 100 shots, say,

the circuit is executed 100 times. The transpiled circuit executes 100,000 shots for each

projective measurement, which is the maximum number of shots for ibmq jakarta. The

results of the projective measurements returned from ibmq jakarta are first processed by

the MEM method and then utilized for calculating F . The entire procedure from the

transpilation to the calculation of F is referred to as a “run.” Several runs with the same

transpiled circuit are taken, from which the averaged F is adopted as our performance

metric.

The comparison of ρ and ρ′ is demonstrated in Fig. 4.7. Here, after ten runs, an

average F = 0.85 is determined. Note that this fidelity result is calculated with the
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4.2.1 Quantum Routing without Error Correction

(a) (b)

(c) (d)

Figure 4.7: Theoretical and experimental density matrices of |Φ⟩f . (a), (b) represent
the real and imaginary parts of ρ′, the theoretical density matrix of |Φ⟩f , respectively.
(c), (d) show the real and imaginary parts of ρ, the experimental density matrix of |Φ⟩f ,
respectively. The entanglement fidelity, F , between ρ and ρ′ is 0.85.

specific output state of the quantum router, as we have selected a specific state for the

signal qubit. We have tested other signal states and observed similar experimental out-

comes. Therefore, although the experimental result is state-dependent, the fidelity result

remains representative. We conclude that the two output paths of the quantum router

are entangled, and the quantum nature is verified on the quantum device. We empha-

size that four specific experimental setups help improve the performance of ibmq jakarta.

These are the following: (i) We chose three physically connected qubits (qubits labeled

by 0, 1, and 3 in Fig. 4.8(a)) of the quantum device with the lowest 1-qubit and 2-qubit
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CHAPTER 4. ERROR-CORRECTED QUANTUM ROUTING

(a) (b) (c)

Figure 4.8: Coupling maps of ibmq jakarta (a), ibmq quito and ibmq belem (b), and
ibmqx4 (c). The two-way arrows in (a) and (b) represent that the CX gate can be
implemented between the two pointed qubits in both directions. The one-way arrows in
(c) indicate that the CX gate can only be implemented in one direction (the arrowheads
point to the target qubits). In the connected qubit pair labeled by 0 and 1 in (c), for
example, qubit 1 can only act as the control qubit of the CX gate with the qubit 0 as
the target qubit.

error rates to implement Experiment-1.2 (ii) We utilized the transpiled circuit with the

lowest number of CX gates. (iii) We executed the transpiled circuit with the maximum

shots. (iv) The MEMmethod was applied to the data returned from the quantum device.

As the errors in 2-qubit gates and 1-qubit gates are of the order 10−2 and 10−4,

respectively, optimizing the number of CX gates is a helpful way to reduce quantum

gate errors [144]. We implement the quantum router with another transpiled circuit

which includes 14 CX gates instead of 9 CX gates, and with other experimental setups

unchanged, we find that F decreases to 0.68. This phenomenon emphasizes the signifi-

cance of lowering the number of CX gates with regard to routing performance. We also

note that F drops from 0.85 to 0.79 if the MEM method is removed, highlighting the

importance of this step.

We now review the preservation of the quantum signal. Experiment-2 utilizes the

router circuit but with a slight modification: the control qubit is set as |ϕ⟩c′ = |1⟩c by

applying an X gate instead of the Hadamard gate on the |0⟩ state. Moreover, a 1-qubit

2The quantum device, ibmq jakarta, is calibrated daily, and the error rates may
change over time.
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4.2.1 Quantum Routing without Error Correction

(a) (b)

(c) (d)

Figure 4.9: Theoretical and experimental density matrices of |ϕ⟩s after the quantum
routing process with |ϕ⟩c′ = |1⟩c. (a), (b) represent the real and imaginary parts of ϱ′,
the theoretical density matrix of |ϕ⟩s, respectively. (c), (d) show the real and imaginary
parts of ϱ, the experimental density matrix of |ϕ⟩s, respectively. The state fidelity, Fs,
between ϱ′ and ϱ is 0.89.

QST is applied to the qubit in path 2 to check whether its state is |ϕ⟩s. We use the state

fidelity Fs as our performance metric, where Fs is given by

Fs =

(
Tr
√√

ϱ ϱ′
√
ϱ

)2

. (4.5)

We refer to ϱ′ = |ϕ⟩s⟨ϕ| as the theoretical density matrix of |ϕ⟩s and ϱ as the experimental

density matrix of |ϕ⟩s reconstructed by 1-qubit QST. Similar to our previous discussion,

the modified router circuit is transformed into a transpiled circuit with 9 CX gates. Note

that Fs is averaged from ten runs and is found to be 0.89, as demonstrated in Fig. 4.9.

This result implies that the quantum signal is well preserved after the quantum routing
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CHAPTER 4. ERROR-CORRECTED QUANTUM ROUTING

process on ibmq jakarta.

We return to the full implementation of the quantum router (Experiment-1 ) on

ibmq jakarta, whose coupling map is illustrated in Fig. 4.8(a), and where we obtained

an averaged result of F = 0.85. However, Behera et al. [74] demonstrated a quantum

router on the ibmqx4 (its coupling map is shown in Fig. 4.8(c)) and obtained an F of

approximately 0.98. We name their router the “BRGP” router to differ from our router

shown in Fig. 4.2, as these two routers utilize different quantum states and devices.

The BRGP router sets the control and signal qubits in states (|0⟩c − eiπ/4|1⟩c)/
√
2 and

cos(π/8)|0⟩s + sin(π/8)|1⟩s, respectively. The control qubit is prepared by sequentially

applying the H, S, T , and S gates on the |0⟩ state. Similarly, the signal qubit is

prepared by sequentially implementing the H, T , H, and S gates on the |0⟩ state. The

BRGP router defines that |ϕ⟩n is in the (|0⟩n + |1⟩n)/
√
2 state. In contrast, in the

router of Fig. 4.2, we set |ϕ⟩n = |0⟩n, meaning that it is an ancillary qubit without any

information in the quantum router. As ibmqx4 is retired, we reproduce the BRGP router

on ibmq quito and ibmq belem, which are 5-qubit quantum devices sharing a coupling

map (as shown in Fig. 4.8(b)) close to ibmqx4 ’s map. The experimental results we

obtained from ibmq quito and ibmq belem were F = 0.85 and 0.79, respectively. Thus,

we conclude that F = 0.85 obtained in Experiment-1 is close to the best outcome for

a quantum router built using currently available small-qubit superconducting quantum

devices.

The disparity of F between 0.85 and 0.98 likely demonstrates the importance of

the coupling map for the quantum device acting as the quantum router. The coupling

map of ibmqx4 ensures that every qubit is connected to two or four qubits, and we

can find that qubits 0, 1, and 2 (same for qubits 2, 3, and 4) are connected to each

other. The CSWAP gate is a 3-qubit quantum gate that realizes the quantum routing

process, which therefore benefits from this topology. We also note that in this topology,

the CX gate can only be implemented in one way on ibmqx4 (see Fig. 4.8). However,

this disadvantage is somewhat compensated by the fact that on ibmqx4 topology, an
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4.2.1 Quantum Routing without Error Correction

inverse-CX gate can be implemented (by adding 4 Hadamard gates [145]). Even though

ibmq quito and ibmq belem can implement the CX gate in both directions, they do

not have a similar 3-qubit topology, which leads to the implementation of the CSWAP

gate requiring multiple swap gates during the transpilation. The introduction of swap

gates causes extra quantum gate errors, thus decreasing the performance of the quantum

router. In summary, having a coupling map with at least 3 qubits physically connected

is significant for a superconducting quantum device that hopes to act as the quantum

router.

Additionally, we implement another experiment ( “Experiment-3”) that executes the

QRAM circuit. We first consider the case where the memory stores quantum information,

which means that |D0⟩ and |D1⟩ are set as two arbitrary qubits. We utilize the fidelity F ′

as our performance metric, where F ′ is given by

F ′ =

(
Tr

√√
κ κ′

√
κ

)2

. (4.6)

We refer to κ′ = |Ψ⟩f ⟨Ψ| as the theoretical density matrix (no errors) of |Ψ⟩f and κ as

the experimental density matrix of |Ψ⟩f reconstructed by QST. The experimental result

is F ′ = 0.86, which is an averaged result from ten runs. This result indicates that QRAM

with quantum memory is feasible on current small-qubit NISQ devices. We next consider

the case where the memory stores classical information. In this case, the experimental

result is slightly higher (F ′ = 0.88) than the quantum case since fewer basis gates are

required for initializing the memory elements |D0⟩ = |1⟩ and |D1⟩ = |0⟩. Entanglement

distillation protocols are designed so that higher entanglement can be created from an

ensemble of states possessing lower entanglement [146,147]. The experimental results for

our QRAM, F ′, are all above 0.5, which is high enough to implement a viable distillation

process. Therefore, we conclude that our QRAM is viable.
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Figure 4.10: F of the quantum router without and with the QECC.

4.2.2 Quantum Routing with the Error-Correcting Code

We now implement an experiment that executes the QECC circuit—we refer to this

experiment as “Experiment-4.” Although we will find, not surprisingly, that full-blown

QECC for quantum routing is not feasible on current small-qubit superconducting NISQ

devices, our results highlight the pathway towards error-corrected versions of quantum

routing.

The transpiled circuit of the QECC circuit has thousands of CX gates and is too

complex to illustrate here. Due to the long run time in the quantum device for the QECC

circuit, we take F averaged from only four runs as our performance metric. While

Experiment-1 implemented the quantum router on the quantum device with intrinsic

errors only, Experiment-4 considers the QECC applied to generic single-qubit errors.

We consider a noise model in which a noisy quantum channel introduces one generic

single-qubit error that can be represented by U , as explained in Eq. (4.4). In this noise
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model, U ∈ {G,X, Y, Z}, where in this chapter, G is a 2 × 2 unitary matrix randomly

generated (different in each of the runs). In Experiment-4, U is manually applied to

|ϕ⟩s when the QECC is not considered. When the QECC is considered, U is randomly

applied to any of the five qubits by codes after the encoding.

The results of Experiment-4 are demonstrated in Fig. 4.10, where each bar shows

the averaged F from four runs (the error bars represent the standard deviation). As we

can see, only when U = Z do we find that F is improved after considering the QECC.

Indeed, we see that F is effectively constant with the QECC included, no matter which

type of errors are included. Focusing on the intrinsic-errors-only bars, this demonstrates

that F decreases substantially after introducing the QECC even when only intrinsic

errors are present. The reason for this phenomenon is that thousands of basis gates are

introduced after the transpilation due to the QECC, and thus, the intrinsic errors (mainly

quantum gate errors) accumulate. The transpilation decomposes all of the 5-qubit gates

in Fig. 4.5 (those gates taking five qubits as an input) into thousands of basis gates,

while the remaining quantum gates only transpile to hundreds of basis gates. Beyond

the accumulation of quantum gate errors, decoherence errors also increase due to the

introduction of the QECC. The additional execution of the quantum gates required by

the QECC extends the time for the signal qubit to be contaminated by the environment,

leading to a further loss of quantum information. We conclude that the adopted QECC is

not effective when working on current small-qubit superconducting NISQ devices. This

is, in part, evidenced by noticing that after introducing the QECC F is only 0.24. The

probability of the “comparison” fidelity, discussed earlier, being larger than 0.24 is 27%,

as shown in Fig. 4.3.

4.3 Discussion and Summary

Let us summarize our findings regarding QECC. We have shown how quantum routing

can be performed, with useful fidelity, on currently available small-qubit NISQ devices—
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under the assumption that the quantum signals traversing the network arrive at the

router in a noiseless condition. However, we have also shown how correction of arriving

noisy quantum signals within the router is plagued by the very large number of CX gates

that arise from the transpilation process required to run the QECC circuits alongside

the routing circuits. We have provided evidence that a reduction in the number of these

gates is the pathway to full-blown QECC quantum routing. In this regard, we note the

correction techniques based on self-mitigation via Trotter circuits that several groups

have proposed, which indicate that up to 400 CX gates can be run while still retaining

useful quantum information in the signal [148–150]. Measurement-conditioned quantum

gates are allowed in some higher qubit (≥27) “exploratory” devices provided by the IBM

Quantum platform. In these devices, therefore, the 5-qubit gates of our circuits can be

removed, leading to a transpilation with much fewer CX gates. Our future work will

investigate the use of these techniques within the quantum routing process.

In the experiments of this work, we focused on low-complexity devices since they

are likely to be the first to be deployed in real-world quantum networks. However, with

a quantum device possessing more qubits, we could potentially bring more benefits for

quantum routing schemes. We discuss two of these potential benefits: (i) The quantum

router can be extended and generalized to one with more paths. (ii) Different quan-

tum error correction techniques that require a larger number of ancillary qubits can be

considered.

Considering (i) above: For a quantum router with N paths, n control qubits are

required, where N ≤ 2n; and instead of CSWAP gates, multi-CSWAP gates are needed.

For example, for a quantum router with four paths, ten qubits are required, including

two control qubits, one signal qubit, three ancillary qubits, and four ancillary qubits

for the QECC. The principle of a four-path quantum router is similar to the one shown

in Fig. 4.1. The quantum signal is injected into the quantum router via path 1, while

the output of the quantum router is entangled with the two control qubits and the

four paths. To generate the required entanglement, the quantum router applies three
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different two-CSWAP gates: an anti-controlled-CSWAP gate, a controlled-anti-CSWAP

gate, and a controlled-CSWAP gate.

In this work, we experimentally demonstrated an emerging application of quantum

entanglement in the communication space. Specifically, we implemented a quantum

router on a low-complexity superconducting quantum device. We first bench-marked

the quantum router’s performance with all errors being intrinsic to the quantum device

only. In comparison with quantum routing on historical NISQ devices, we found that it

is critical to have a coupling map that has at least three qubits inter-connected. We also

investigated an application of quantum routing—a QRAM implementation—showing

its feasibility for both classical and quantum memory states. We then considered noisy

quantum signals for evaluating the performance of a five-qubit QECC embedded within

the quantum router showing the challenges faced by such error correction. Our research

enlightens the usage of QECCs for today’s quantum devices and points the way forward

to the near-term error-corrected quantum routing within real-world quantum networks.
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Chapter 5

Error-Mitigated Quantum

Routing

In Chapters 3 and 4, we have demonstrated that quantum error correction is, in gen-

eral, ineffective on the current IBM quantum devices in the context of quantum routing.

In this chapter, we redirect our research to quantum error mitigation, which provides

a potential alternate pathway to application deployment - a possibility that has re-

cently attracted widespread attention. We specifically investigate two promising error

mitigation methods, ZNE and PEC, along with their concatenation embedded into the

quantum router application. We shall see that these quantum error mitigation meth-

ods significantly improve the entanglement fidelity of the quantum router - to the point

that quantum applications based on quantum routing become effective on current NISQ

devices. The main contributions of this Chapter can be summarized as follows.

(i) We use a 7-qubit superconducting quantum device to benchmark the performance

of quantum routing via ZNE and PEC separately.

(ii) We further investigate the routing performance of ZNE and PEC in a concate-

nated form.
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(iii) With the quantum error mitigation methods, we explore the performance of

QRAM on a NISQ device.

5.1 Quantum Error Mitigation

Before proceeding, let us clarify some necessary variables and notations. Suppose that O

is an operator with expectation value ⟨O⟩ and discrete eigenvalues {ax, x = 1, 2, · · · , 2n},

each associated with one of the 2n eigenvectors. Here, n is the number of some qubits

(represented by a state |ψ⟩) to be measured by the operator O. In the operational

perspective, Ctot copies of |ψ⟩ are prepared, and each copy is measured by O. The

number of times that ax is obtained as the result of the measurement is denoted as

Cx ∈ [0, Ctot]. The frequency of obtaining ax from a limited number of trials is defined

as Fx = Cx/Ctot. The probability of obtaining ax with zero finite sampling error is

obviously Px = limCtot→∞ (Cx/Ctot). Therefore, the expectation value of O with respect

to the state |ψ⟩ can be expressed as

⟨O⟩ = lim
Ctot→∞

2n∑
x=1

Cx

Ctot
ax =

2n∑
x=1

Pxax. (5.1)

In this thesis, we assume Px = Fx. When an eigenvalue or eigenvector is given, we

simply use P to represent the probability1 instead of Px. Henceforth, we redefine that

U is a unitary quantum circuit that contains n′ qubits, all of which are initialized in the

state |0⟩. Note that n ≤ n′ and n is the number of the qubits in U to be measured by

the operator O.

In this thesis, the “measurement results” of U are referred to the Z-basis measure-

ment outcomes of the n qubits, while the “experimental results” indicate the measure-

ment results obtained from the quantum device. Note that the measurement results

1Note that P was used to represent the success probability of the whole quantum
error-corrected quantum routing procedure in Chapter 3. In this chapter, P is redefined
as the probability of obtaining an eigenvector as the result of the measurement of O.
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CHAPTER 5. ERROR-MITIGATED QUANTUM ROUTING

represent the probabilities of all possible measurement outcomes occurring in Ctot mea-

surements.

5.1.1 Overview of Zero Noise Extrapolation

One promising quantum error mitigation method is ZNE [28, 31, 32, 41, 122, 151], which

extrapolates zero-noise results from noisy results obtained from ancillary quantum cir-

cuits. The main idea of ZNE is to extrapolate the zero-noise expectation value of an

operator from noise-scaled circuits at different noise levels [152]. ZNE can be divided

into analog and digital ZNE based on the noise-scaling method adopted. Analog ZNE

scales the noise by extending the microwave pulse duration (used to execute a gate),

while digital ZNE scales the noise via the insertion of additional quantum gates. In this

thesis, we consider only digital ZNE.

ZNE involves two main steps: constructing noise-scaled circuits and extrapolating

estimated values to a zero-noise level. In digital ZNE, global and local folding are the

two main methods utilized for constructing the noise-scaled circuits. Assume that in

ZNE, U is an original circuit of interest containing K unitary gates {Gk}Kk=1, where U

can be expressed as U = GK · · ·Gk · · ·G2G1. Note that Gk also indicates the specific

qubits that are to be applied. To generate the noise-scaled circuits, some of the unitary

gates are randomly selected and then noise-scaled following

Gk → Gk

(
G†

kGk

)ξ
, ξ = 0, 1, 2, · · · . (5.2)

This method artificially inserts noise without changing the effect of U since G†
kGk = I.

This noise-scaling method is known as the local folding, and the global folding applies

the same folding logic but to the entire quantum circuit: U → U
(
U †U

)ξ
.

The noise-scale factors, denoted as {λj}Jj=1, are utilized to quantify the levels of noise

present in J noise-scaled circuits. Specifically, λj is defined as the ratio of the number

of the unitary gates in the jth noise-scaled circuit to the number of the unitary gates
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CHAPTER 5. ERROR-MITIGATED QUANTUM ROUTING

in U . Note that λj ≥ 1 and typically, λ1 = 1. Suppose that the measurement of O is

applied to n qubits of the noise-scaled circuits, denoted as {Uλj
}Jj=1, which are executed

on the quantum device to collect their measurement results. Note that Uλ1 = U , when

λ1 = 1. The local folding method involves three approaches for inserting the folding

gates to generate Uλj
: from the left, from the right, or at random (see Fig. 5.1). In this

thesis, we consider local folding gates at random.

After the execution of the noise-scaled circuits on the quantum device, a total of J

noisy expectation values { ˜⟨O⟩
zne

λj
} are calculated via Eq. (5.1). Extrapolation is then

implemented as a post-processing method acting on { ˜⟨O⟩
zne

λj
}, which is the second step

of ZNE. Multiple extrapolation models, such as linear extrapolation and polynomial

extrapolation, can be considered. The extrapolation models are functions of Λ, where

Λ ∈ {λ0, λ1, · · · , λJ} and λ0 = 0. These models fit the curve plotted by { ˜⟨O⟩
zne

λj
} as

a function of Λ, and the least squares method is typically utilized to find the best-

fit parameters of this function. By evaluating the function at Λ = λ0, the zero-noise

expectation value ˆ⟨O⟩
zne

λ0
can be found, as shown in Fig. 5.2.

The critical assumption of ZNE is that the noise in the quantum device can be

described by the noise-scale factors, {λj}. This implies that incoherent errors are the

dominant type of noise and other types of errors are negligible, since only incoherent

errors can be effectively amplified by these noise-scaling methods.

5.1.2 Overview of Probabilistic Error Cancellation

The main idea of PEC is to approximate a noiseless quantum circuit by averaging over

distinct noisy circuits which consist of noisy, but implementable, quantum gates. The

key assumption in PEC is having the full tomographic knowledge of these noisy gates.

The first core step of PEC is to represent each noiseless gate, Gk, in U as a set of noisy

but implementable gates {G̃k,h}Hh=1. The total number of the noisy gates, H, required

to represent Gk at any time varies gate by gate and is dependent on k. The noisy
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5.1.2 Overview of Probabilistic Error Cancellation

Figure 5.2: Noisy and zero-noise expectation values as a function of Λ obtained via ZNE.

representation of Gk is given by

Gk =
H∑

h=1

Γk,hG̃k,h = Γk,1G̃k,1 + Γk,2G̃k,2 + · · ·+ Γk,HG̃k,H, (5.3)

where {Γk,h} are real coefficients and may take negative values. Moreover, {Γk,h} satisfy

the trace-preserving condition, i.e.,

∑
h

Γk,h = 1 and ζk =
∑
h

|Γk,h| ≥ 1, (5.4)

implying that {Γk,h} are normalized and form a quasiprobability distribution [28,33] in

terms of the index h. The constant ζk represents the one-norm of the quasiprobability

distribution and quantifies its negativity, indicating the extent of its deviation from a

true probability distribution [153].

The second core step of PEC is to estimate the noiseless expectation value, ⟨O⟩, by

sampling from the noisy representations of the noiseless gates, as shown in Eq. (5.3), via
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5.1.2 Overview of Probabilistic Error Cancellation

a Monte Carlo average [28]. Replacing each Gk in U with its noisy representation, ⟨O⟩

can be expressed as

⟨O⟩ = Tr [U(ρ0)O] =
∑
n⃗

Γn⃗
˜⟨O⟩

pec

n⃗ , (5.5)

where ρ0 is the initial state, |0⟩⊗n′
, of U and { ˜⟨O⟩

pec

n⃗ } are noisy expectation values.

Note that {Γn⃗} are real coefficients and also form a quasiprobability distribution with

one-norm ζ, i.e., ∑
n⃗

Γn⃗ = 1 and ζ =
∑
n⃗

|Γn⃗| =
K∏
k=1

ζk. (5.6)

Note that, in specific, Γn⃗ and ˜⟨O⟩
pec

n⃗ can be expressed as

Γn⃗ :=
K∏
k=1

Γk,h and ˜⟨O⟩
pec

n⃗ := Tr
[
Ũn⃗ (ρ0)O

]
, (5.7)

where Ũn⃗ is defined as

Ũn⃗ :=
K∏
k=1

G̃k,h, such that (5.8)

U =
∑
n⃗

Γn⃗Ũn⃗ = Γn⃗1
Ũn⃗1

+ Γn⃗2
Ũn⃗2

+ · · · =
K∏
k=1

( H∑
h=1

Γk,hGk,h

)
. (5.9)

The noisy representation of U , as shown in Eq. (5.9), is illustrated in Fig. 5.3. Note

that {Ũn⃗} are regarded as ancillary circuits of PEC. Since these ancillary circuits only

require implementable gates, all ˜⟨O⟩
pec

n⃗ can be obtained from the NISQ devices. In

principle, with full tomographic knowledge of {G̃k,h} and a sufficiently large number

of the ancillary circuits, an unbiased estimate of ⟨O⟩ can be obtained. However, the

required number of executions of the ancillary circuits grows exponentially with the

circuit depth in U , making PEC typically unfeasible [33]. To solve this problem, a

Monte Carlo approximation is considered [28,30,153,154].

To conduct the Monte Carlo approximation, the quasiprobability distribution in

terms of Γk,h should be converted to a positive probability distribution in the form of

pk(h) =
|Γk,h|
ζk

. (5.10)
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Therefore, the noisy representation of Gk can be rewritten as

Gk =

H∑
h=1

Γk,hG̃k,h =

H∑
h=1

pk(h)ζksgn (Γk,h) G̃k,h, (5.11)

where sgn (·) represents the sign function. Then, a noisy but implementable gate is

sampled from {G̃k,h} at random over the probability distribution, pk(h), where the

sampled gate is denoted as G̃k,ĥ. With sufficient samples, an estimation of Gk can be

represented as

Ĝk =
{
ζksgn

(
Γk,ĥ

)
G̃k,ĥ

}
avg

, (5.12)

where {·}avg represents the sampling average. After sampling each Gk in U , an unbiased

estimate of U can be expressed as

Û = ĜK · · · Ĝk · · · Ĝ2Ĝ1 = ζsgn (Γn⃗) Ũ⃗̂n
, (5.13)

where sgn (Γn⃗) =
∏K

k=1 sgn
(
Γk,ĥ

)
and Ũ⃗̂n

=
∏K

k=1 G̃k,ĥ, such that U = {Û}avg. Note

that Ũ⃗̂n
is the sampled noisy circuit (the ancillary circuit of PEC) and ζ is a constant,

as shown in Eq. (5.6). Consequently, an estimation of ⟨O⟩ is given by

ˆ⟨O⟩
pec

=
{
Tr
[
Û(ρ0)O

]}
avg

=
{
ζsgn (Γn⃗) ˜⟨O⟩

pec
⃗̂n

}
avg

, (5.14)

where ˜⟨O⟩
pec
⃗̂n = Tr

[
Ũ⃗̂n

(ρ0)O
]
.

Using the Monte Carlo approximation, a finite number of samples is required re-

gardless of the circuit depth of U . To ensure the precision of the estimation of ⟨O⟩, the

required number of samples scales as

the required number of samples ∝ ζ2

δ2
, (5.15)

where δ represents the absolute error between ˆ⟨O⟩
pec

and ⟨O⟩. It can be observed that

the required number of samples increases with ζ, which grows exponentially with the

number of gates in U , indicating that PEC is more practical for quantum circuits with

medium or small depth [33].
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5.2. EXPERIMENTS

5.2 Experiments

We now apply the mitigation methods to quantum routing realized on ibmq jakarta,

the 7-qubit superconducting quantum device. We use the quantum routing protocol

introduced in Subsection 3.1.1 as the application to benchmark the performance of the

mitigation methods. The quantum circuit used to realize the routing application is

the router circuit shown in Fig. 4.2. However, since except for the fidelity, F , we also

use the probability, P , as our performance metric, QST applied to the three qubits is

replaced by three Z-basis measurements when the evaluated performance metric is P .

The two quantum error mitigation methods, ZNE and PEC, mainly focus on quantum

gate errors, decoherence errors, and cross-talk errors - they cannot mitigate measurement

errors. Therefore, the MEM method (see Subsection 2.3.2.1) is still considered in our

experiments to eliminate measurement errors. Henceforth by the term “unmitigated”

we will mean without any ZNE or PEC included in the results - MEM is by default

included in all results we show here. The term “error mitigation” will henceforth refer

only to ZNE and/or PEC.

5.2.1 Experimental Setup

To investigate the experimental performance of the quantum routing protocol with quan-

tum error mitigation, we utilize an open-source package named Mitiq [155] to implement

ZNE and PEC. Although Qiskit recently released built-in functions for employing quan-

tum error mitigation methods (twirled readout error extinction, ZNE, and PEC) [156],

one cannot implement these methods step by step and obtain detailed data. Another

reason why we choose Mitiq instead of Qiskit’s built-in functions is that we can concate-

nate multiple mitigation methods through Mitiq. For implementing ZNE, we set the

noise scale factor {λj}J=7
j=1 = {1, 3, 5, 7, 9, 11, 13}, and we choose local folding at random

to scale the noise. Seven noise-scaled circuits are generated based on the seven values of

λj , and each noise-scaled circuit is executed Ctot = 100, 000 times (this number of exe-
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cutions applied to all experiments in this chapter). We choose polynomial extrapolation

with order 2 to obtain the zero-noise expectation value, ˆ⟨O⟩
zne

λ0
.

In principle, we need to acquire full tomographic knowledge of the quantum gates in

the transpiled circuit to implement PEC. However, to simplify our experiments, we make

two assumptions: (i) We assume we can neglect single-qubit gate errors and only focus

on two-qubit gate errors since the two-qubit gate error rates are an order of magnitude

higher. (ii) We assume that the two-qubit gates are followed by a global depolarizing

noise. The transpiled circuit only has one type of two-qubit gate, the CX gate. Based

on assumption (ii), we have

G̃CX
noisy = D ◦ P ◦GCX

ideal, (5.16)

where G̃CX
noisy is the implementable CX gate that we assumed, GCX

ideal is the noiseless CX

gate, and P ∈ {I,X, Y, Z}⊗2 is a Pauli trace-preserving completely positive map. Note

that

D(ρin) = (1− ϵ)ρin + Iϵ/4, (5.17)

represents the 2-qubit depolarizing channel [28], where ρin stands for the input state of

this channel and in this chapter, ϵ is the noise level of the CX gate. For each CX gate in

the transpiled circuit, we acquire the associated CX gate error ϵ, which varies over time,

from the calibration data reported in [66]. Based on Eqs. (5.16) and (5.17), and with

known ϵ, GCX
ideal can be represented by a group of noisy gates in the form of Eq. (5.3).

Then, using noisy representation of the noiseless CX gate, we conduct a Monte Carlo

sampling process via Mitiq with 20 samples (20 ancillary circuits are generated for PEC).

From the many executions, the measurement results of the ancillary circuits are collected

to estimate ⟨O⟩.

To concatenate ZNE and PEC, we first fold gates (from the left) of the transpiled

circuit with {λj}J=5
j=1 = {1, 3, 5, 7, 9}, generating five noise-scaled circuits. We then apply

PEC to each noise-scaled circuit with 20 samples, which means that we represent each

CX gate in the noise-scaled circuits by its noisy representation that we derived before.
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5.2.2 Experimental Results

Figure 5.4: P as a function of Λ using ZNE. The circles represent P obtained from
the quantum device, and the circles plotted on the vertical dashed lines indicate the
unmitigated results of P . The solid lines are polynomial fitted curves with order 2, and
the cross markers stand for the corresponding mitigated results of P .

From the many executions, the error-mitigated data of the noise-scaled circuits are

collected, the data will be utilized for extrapolating to the zero-noise expectation value,

again by polynomial extrapolation with order 2.

5.2.2 Experimental Results

Instead of using the expectation values, we utilize probability P as one of our perfor-

mance metrics. In this quantum routing experiment, P is the probability of measuring

ρ to be in one of the eight eigenstates, which are {|000⟩, |001⟩, · · · , |111⟩}) with the

measurement operator O = Z⊗3. The values of P as a function of λ using ZNE are

demonstrated in Fig. 5.4. In the noiseless situation, the probability of observing one of
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Figure 5.5: Results using ZNE or/and PEC obtained from the quantum device. The
green bars are noiseless results plotted for reference, and the missing green bars indicate
that the noiseless results should be 0.

the |000⟩, |001⟩, |011⟩, and |100⟩ states is 0.25, and the probability of observing one of the

remaining states is 0. We see that the noise grows with increasing Λ, and the extrapo-

lated results are closer to (or even the same as) the noiseless results, indicating that ZNE

is an effective method to mitigate quantum errors. The unmitigated and mitigated P

using different error mitigation methods are demonstrated in Fig. 5.5. One can observe

that P are closer to the noiseless results after introducing an error mitigation method.

However, some over-correction can be noticed, especially when the concatenation of ZNE

and PEC is applied.

Beyond P , we choose the fidelity, F , between ρ′ and ρ as our main performance

metric, as shown in Eq. (3.10). Recall that ρ′ = |Φ⟩f ⟨Φ| is the theoretical density matrix

of the quantum router’s output, and ρ is the corresponding experimental density matrix.

Since ρ is a 3-qubit density matrix reconstructed by QST (see Subsection 2.1.3), there
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5.2.2 Experimental Results

Figure 5.6: F of the quantum router with and without quantum error mitigation meth-
ods. The dashed horizontal line indicates the fidelity with MEM only. The inset figure
indicates the unmitigated result of the quantum routing protocol conducted on other
quantum devices, namely ibmq belem, ibm oslo, and ibm lagos. One can observe that
these machines obtained lower values of F compared to the one of ibmq jakarta, such
that we take the unmitigated value F = 0.83 as the baseline for comparing the mitigated
results.

are 33 = 27 copies of the transpiled circuits (the router circuit after the transpilation

process), each with distinct measurement operators. We apply ZNE or/and PEC to each

transpiled circuit for error mitigation.

The values of F determined with different error mitigation methods are plotted in

the main part of Fig. 5.6. Note that although F is state-dependent, we have tested other

signal states and observed similar experimental outcomes. For comparison, in the inset

of Fig. 5.6, we also demonstrate the unmitigated F values determined from other IBM’s

quantum devices, namely, ibmq belem, ibm oslo, and ibm lagos. These inset values show

that the machine we use here, ibm jakarta, offers the optimal performance in terms of
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unmitigated results and therefore forms the optimal starting point to apply mitigation

methods to. Reverting back to the main part of the figure, we can see the fidelity re-

sults for singular use of ZNE and PEC are similar, showing a minor improvement in

F compared to the unmitigated result obtained from ibm jakarta. However, interest-

ingly the concatenation method demonstrates F ≈ 1, representing an almost-perfect

performance. We should note this improvement does come at a cost - the concatena-

tion method has a higher resource requirement and demands a longer execution time

compared to the singular use of ZNE or PEC. Typically, for a transpiled circuit, ZNE

and PEC require 210 and 74 seconds for execution, respectively, while the concatenation

method requires 1116 seconds. ZNE cannot amplify coherent errors via folding gates,

i.e., only incoherent errors can be scaled and mitigated. PEC mitigates the CX gate

errors (regardless of whether coherent or incoherent errors), which compensates for the

drawback of ZNE. The almost-unity fidelity outcome of Fig. 5.6 represents the main

result of this work.

5.2.3 Quantum Random Access Memory with Error Mitigation

It is perhaps useful to close this work with a short discussion on QRAM, another appli-

cation that uses quantum-routing-like functionality. We still use the bucket-brigade style

QRAM circuit shown in Fig. 4.4(b) to conduct our experiment. However, in this chap-

ter, we define that |D0⟩ is a random qubit storing quantum information and |D1⟩ = |1⟩

stores classical information, where |D0⟩ and |D1⟩ are data stored at the two memory

cells. We again utilize F ′ as our performance metric (see Eq. (4.6)), where F ′ is the

fidelity between the theoretical density matrix of |Ψ⟩f (the output of the QRAM) and

the experimental density of |Ψ⟩f reconstructed by applying QST on the first (count from

the top) and the last qubits of the QRAM circuit illustrated in Fig. 4.4(b). However,

from our QRAM experiments we find the maximum increase in fidelity due to error

mitigation is only 4% (maximum fidelity found being 0.76). This phenomenon is caused

by the complexity of the transpiled circuits, relative to the transpiled quantum routing
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application discussed earlier. In particular, one can observe that the QRAM circuit

includes two controlled-swap gates (see Fig. 4.4(b)), while the quantum routing circuit

requires one such gate. The increase in the number of controlled-swap gates leads to

a longer time and a higher complexity for the execution of QRAM. The longer execu-

tion time amplifies the decoherence errors, and the increase of the number of gates in

the execution accumulates the gate errors. Future work for implementing QRAM on the

NISQ devices should focus on the improvement of the quantum error mitigation methods

designed for complicated quantum circuits.

5.3 Summary

In this work, we experimentally tested the performance of two quantum error mitigation

methods, ZNE and PEC, implemented in the context of a quantum routing protocol. We

found concatenating ZNE and PEC impressively increased the entanglement fidelity of

the quantum router to effectively unity. Although quantum error mitigation methods re-

quire additional executions of ancillary quantum circuits, our results show the critical role

such methods can have for applications run on current NISQ devices. More specifically,

our results provide an overview of what can be anticipated for an error-mitigated quan-

tum router in practice - illustrating that full-blown quantum error correction processes

need not be implemented on current devices for this important quantum application.
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Chapter 6

Error-Mitigated Multi-Layer

Quantum Routing

In Chapter 5, we have explored the performance of the quantum router, which has only

one layer, with quantum error mitigation on current superconducting devices. Although

the concatenation of ZNE and PEC has shown success in the quantum routing appli-

cation, it is evident that, in applications with greater circuit depth, the performance of

quantum error mitigation is limited and may, in some cases, be worse than unmitigated

circuits [33, 35, 42, 157, 158]. Therefore, room for new mitigation techniques, tailored to

specific applications, exists. In this chapter, we propose a new quantum error mitigation

method, named eCDR, that builds a conceptual bridge between the ZNE and CDR -

exploiting the characteristics of both methods best suited to the application at hand.

The application we focus on to design and test our new mitigation method is multi-

layer quantum routers (in which each router output path is input into another router).

We shall see our new method, eCDR, goes beyond a simple concatenation of different

existing methods. The main contributions of this Chapter can be summarized as follows.

(i) We propose a new quantum error mitigation method, namely eCDR, and bench-
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mark this method using a practical quantum application: multi-layer quantum routers.

(ii) We experimentally implement multi-layer quantum routers on a NISQ device

and benchmark their performance with and without ZNE, CDR, or eCDR methods.

6.1 Quantum Routers with State Tomography

6.1.1 Multi-layer Quantum Routers

The simplest structure of the quantum router consists of the signal qubit, |ϕ⟩s, the

control qubit, |ϕ⟩c, and the ancillary qubit |ϕ⟩n = |0⟩n. The output of the quantum

router, |Φ⟩f , is an entanglement of these three qubits, as explained in Subsection 3.1.1.

We denote the quantum router with two output paths as the 1-layer quantum router.

To increase the number of output paths, we concatenate quantum routers as depicted in

Fig. 6.1. The output paths of the first-layer (second-layer) quantum router serve as the

input paths for the quantum routers in the second (third) layer. The 2-layer quantum

router consists of three 1-layer quantum routers, resulting in four output paths, and

the 3-layer quantum router consists of seven 1-layer quantum routers, resulting in eight

output paths. For clarification, we denote the first output path of the 1-layer quantum

router as path 1-1, and the remaining output paths following a similar notation.

The 1-layer quantum router circuit is also demonstrated in Fig. 6.1. In this router

circuit, the signal qubit is prepared in a random quantum state using the purple single-

qubit gate. In our experiments, this purple gate transforms the signal qubit to a quantum

state with the parameters αs = 0.5 + 0.13i and βs = −0.82 − 0.22i. The control qubit

is converted to a superposition with αc = βc = 1/
√
2 using the Hadamard gate. The

controlled-swap gate, the 3-qubit gate in orange, realizes the quantum routing process.

The 2-layer router circuit is similar to the 1-layer router circuit but with 3 control qubits,

4 path qubits (1 signal qubit and 3 ancillary qubits), and 3 controlled-swap gates, as
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6.1.2 Multi-layer Quantum Routers with State Tomography

Figure 6.2: Tomography circuits utilized to reconstruct the quantum state of the signal
qubit in the 1-layer quantum router.

demonstrated in Fig.6.1. Similarly, the 3-layer router circuit has 7 control qubits, 8 path

qubits (1 signal qubit and 7 ancillary qubits), and 7 controlled-swap gates.

6.1.2 Multi-layer Quantum Routers with State Tomography

We choose the state fidelity, Fs, between ϱ
′ and ϱ as our performance metric, as shown

in Eq. (4.5). Recall that ϱ′ = |ϕ⟩s⟨ϕ| and ϱ is the reconstructed quantum state of the

signal qubit at the output of the quantum router. In other words, ϱ represents the noisy

experimental density matrix of the signal qubit and is reconstructed via QST, while ϱ′

is the noiseless density matrix used for comparison.

Since the signal information can be found in multiple output paths after the quan-

tum routing process, we apply the Z-basis measurements to the control qubits, whose

measurement result indicates the location of the signal qubit. We also apply the three

basis measurements to each path qubit and post-select only the measurement results of

the path qubit that contains the signal information to reconstruct ϱ. For the 1-layer

quantum router, there are a total of three tomography circuits, as demonstrated in

Fig. 6.2, which correspond to the 1-layer router circuit with three different measurement

operators: O = Z ⊗Z ⊗Z, Z ⊗X ⊗X, and Z ⊗ Y ⊗ Y . Since the quantum device only

supports the Z-basis measurements, we perform the X-basis measurements by adding a
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Hadamard gate before the Z-basis measurement and achieve the Y -basis measurements

by sequentially adding an S† gate (which induces a −π/2 phase) and a Hadamard gate

before the Z-basis measurement.

6.2 Quantum Error Mitigation

6.2.1 Overview of Clifford Data Regression (CDR)

The main idea of CDR involves constructing near-Clifford circuits, denoted as {Vm}Mm=1,

that can be efficiently computed by classical simulators. Note that these near-Clifford

circuits are close to U , the original circuit of interest, and evaluated both on a noiseless

simulator and the quantum device. The measurement results of {Vm} obtained from

the simulator are considered noiseless results, while those from the quantum device are

considered noisy results. Using these noiseless and noisy results, the noiseless and noisy

expectation values of O after executing the near-Clifford circuits are calculated, and a

linear regression model is constructed in the form of

ˆ⟨O⟩
cdr

= a ˜⟨O⟩+ b, (6.1)

where ˆ⟨O⟩
cdr

represents the CDR error-mitigated expectation value and ˜⟨O⟩ represents

the experimental expectation value of O after executing U . Note that a and b are real

parameters determined by

(a, b) = argmin
(a,b)

M∑
m=1

[
⟨O⟩cdrm −

(
a ˜⟨O⟩

cdr

m + b
)]2

, (6.2)

where
{
⟨O⟩cdrm

}
and

{
˜⟨O⟩

cdr

m

}
represent the noiseless and noisy expectation values of O

after executing the near-Clifford circuits, respectively. The linear regression model can

also be constructed directly from the experimental results of the near-Clifford circuits

and then applied to the experimental results of U . Note that CDR can, in principle,

perfectly mitigate the noise of a global depolarizing channel [34].
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6.2.2 The Extrapolated CDR Method

The specific working principle of ZNE is provided in Subsection 5.1.1. The concatena-

tion of ZNE and CDR denoted as “ZNE+CDR” and “CDR+ZNE,” can be considered for

potentially better results. The ZNE+CDR method first generates a group of noise-scaled

circuits and then utilizes CDR to mitigate the experimental results of each noise-scaled

circuit. These mitigated results are then utilized to extrapolate the zero-noise result.

The drawback of ZNE+CDR is that mitigating the experimental results of the noise-

scaled circuits makes it challenging to redefine the relationship between these results

and the noise scale factors of the noise-scaled circuits. The main idea of CDR+ZNE is

similar but in the opposite order: first, near-Clifford circuits close to U are generated,

and the experimental results of each near-Clifford circuit are error-mitigated by ZNE.

Afterward, this ZNE error-mitigated data is utilized to conduct the remaining steps of

CDR: constructing a linear regression model and using this model for error mitigation.

The disadvantage of CDR+ZNE is that since this method finally relies on the relation-

ship between noisy and noiseless results to mitigate errors, applying any error mitigation

to the near-Clifford data disrupts this relationship.

6.2.2 The Extrapolated CDR Method

The key idea of eCDR is that it establishes several groups of near-Clifford circuits.

Each group is evaluated at different noise levels, and their experimental results are

used to construct linear regression models. The real parameters in these models are

then extrapolated to derive a new linear regression model, which is then applied to the

experimental results of the original quantum circuit. Note that eCDR can be used to

derive error-mitigated expectation values, however, here we use the experimental results

to provide an example of the eCDR method. The schematic of eCDR is illustrated in

Fig. 6.3, and its main steps are as follows.

(i) Generation of noise-scaled circuits. Firstly, we generate J noise-scaled circuits,

denoted as {Nλj
}Jj=1, in the same manner as the initial step of ZNE.

87



CHAPTER 6. ERROR-MITIGATED MULTI-LAYER QUANTUM ROUTING

F
igu

re
6.3:

S
ch
em

atic
of

th
e
eC

D
R

m
eth

o
d
.
B
ased

on
U
,
J
n
oise-scaled

circu
its

are
gen

erated
,
an

d
M

n
ear-C

liff
ord

circu
its

are
co
n
stru

cted
fo
r
each

n
o
ise-scaled

circu
it.

A
ll
n
ear-C

liff
ord

circu
its

are
ex
ecu

ted
on

a
sim

u
lator

an
d
a
q
u
an

tu
m

d
ev
ice

to

con
stru

ct
a
to
ta
l
of
J

lin
ea
r
regression

m
o
d
els.

T
h
en

,
th
e
real

p
aram

eters
in

th
ese

m
o
d
els

are
ex
trap

olated
to

b
u
ild

a
n
ew

lin
ear

regression
m
o
d
el

fo
r
m
itigatin

g
th
e
ex
p
erim

en
tal

resu
lts

of
U
.

88



6.2.2 The Extrapolated CDR Method

(ii) Generation of near-Clifford circuits. Then, for each noise-scaled circuit, Nλj
, we

generate M near-Clifford circuits, denoted as {Tλj ,m}Mm=1. Note that the M circuits in

{Tλj ,m} are all close to Nλj
but slightly different from each other, as they are generated

by randomly converting a portion of non-Clifford gates in Nλj
to Clifford gates. There

are a total of J sets of {Tλj ,m} and a total of D = JM near-Clifford circuits.

(iii) Construction of linear regression models. We execute D near-Clifford circuits

on both the simulator and the quantum device. We denote the measurement results of

{Tλj ,m} from the simulator and the quantum device as {µecdrλj ,m
} and {µ̃ecdrλj ,m

}, respectively.

Note that {µecdrλj ,m
} and {µ̃ecdrλj ,m

} are regarded as noiseless and noisy measurement results,

respectively. We then construct a linear regression model in the form of

µ̂ecdrλj ,m
= aλj

µ̃ecdrλj ,m
+ bλj

, (6.3)

where µ̂ecdrλj ,m
is an estimated measurement result of Tλj ,m. Note that aλj

and bλj
are real

parameters determined by the least-squares method given by

(aλj
, bλj

) = argmin
(aλj ,bλj )

M∑
m=1

[
µecdrλj ,m

− (aλj
µ̃ecdrλj ,m

+ bλj
)
]2

. (6.4)

There are a total of J linear regression models corresponding to J noise-scaled circuits.

This step is proposed based on CDR, which utilizes a linear regression model to describe

the relationship between noiseless and noisy measurement results.

(iv) Extrapolations. We then collect all of the real parameters in these J linear

regression models, specifically {aλj
} and {bλj

}. We then employ curve fitting to these

parameters to extrapolate two new parameters, denoted as aλ0 and bλ0 . Similar to

ZNE, alternative extrapolation methods can be considered, we choose to use quadratic

polynomial extrapolation model in our experiments. Using {aλj
} as an example, the

quadratic polynomial extrapolation is in the form of

f(Λ) = c0 + c1Λ + c2Λ
2, (6.5)
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where c0, c1, and c2 are real parameters selected by

(c0, c1, c2) = argmin
(c0,c1,c2)

J∑
j=1

[
aλj

−
(
c0 + c1λj + c2λ

2
j

)]2
. (6.6)

This curve fitting process for {bλj
} is the same but the selected parameters, c0, c1, and

c2, are different. By setting Λ = λ0 in Eq. (6.5), we determine aλ0 and bλ0 , which can

also be expressed as

aλ0 =
J∑

j=1

γjaλj
and bλ0 =

J∑
j=1

γjbλj
, (6.7)

where {γj} are real parameters determined by the values of {λj} and the selected ex-

trapolation model.

(v) Construction of a new linear regression model for mitigation. With aλ0 and bλ0 ,

we construct a new linear regression model given by

µ̂ecdr = aλ0 µ̃+ bλ0 , (6.8)

where µ̃ is the experimental results of U and µ̂ecdr is the corresponding eCDR error-

mitigated results. Similar to CDR, the selection of this linear regression model in eCDR is

motivated by considering the effect of the global depolarizing channel (see Appendix B.1).

It can be observed that if CDR were capable of perfectly correcting errors, the additional

noise scaling in eCDR would introduce further errors. However, in practice, CDR cannot

fully correct errors on current quantum devices, a limitation that motivates the design

of eCDR.

It is worth mentioning that the eCDR method should not be confused with variable-

noise CDR (vnCDR) [35,157]. Although both vnCDR and eCDR use noise-scaled near-

Clifford data for error mitigation, the approaches to utilizing this data differ. In vnCDR,

a set of near-Clifford circuits, denoted as {Tm}Mm=1, are first generated, and then, for

each Tm, a set of noise-scaled near-Clifford circuits, denoted as {Tm,λj
}Jj=1, are gener-

ated. After the execution of D noise-scaled near-Clifford circuits, vnCDR constructs an
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6.2.2 The Extrapolated CDR Method

extrapolation model for mitigation given by

µ̂vncdr =

J∑
j=1

Aj · µ̃λj
, (6.9)

where µ̂vncdr stands for the vnCDR error-mitigated result of U and µ̃λj
represents the

experimental result of Uλj
. Note that µ̃λ1 = µ̃ with λ1 = 1 and Aj are parameters

selected by the least-squares method following

Aj = argmin
Aj

M∑
m=1

µvncdrm −
J∑

j=1

Aj · µ̃vncdrm,λj

2

, (6.10)

where µvncdrm represents the measurement results of Tm collected from the simulator and

µ̃vncdrm,λj
represents the measurement results of Tm,λj

collected from the quantum device.

The vnCDR and eCDR methods utilize the noise-scaled near-Clifford data to construct

the extrapolation model and the new linear regression model for mitigation, respectively.

By comparing Eqs. (6.8) and (6.9), it can be observed that eCDR requires fewer resources

compared to vnCDR: eCDR only requires the execution of U , while vnCDR requires the

execution of {Uλj
}, which includes J circuits.

For multi-layer quantum routers, the complexity of their circuits increases with the

number of layers (see details in the next Section). Specifically, the number of qubits and

circuit depth of a router circuit grow with the number of layers of the quantum router,

with more qubits becoming entangled in higher-layer quantum routers. To mitigate

errors in the router circuit with increased complexity, we designed eCDR, which combines

the advantages of ZNE and CDR. ZNE is mainly effective for incoherent errors, while

CDR is primarily effective for coherent errors and measurement errors. By extrapolating

the parameters within the linear regression model, eCDR demonstrates the potential to

effectively mitigate errors in the router circuits with increased complexity.

91



CHAPTER 6. ERROR-MITIGATED MULTI-LAYER QUANTUM ROUTING

6.3 Experiments of Extrapolated CDR

6.3.1 Experimental Setup of Extrapolated CDR

In this work, we utilize a 127-qubit quantum device named ibm sherbrooke [66] and a

simulator to conduct our experiments. The quantum device, ibm sherbrooke, is currently

one of the smallest quantum devices provided by IBM, and the simulator is realized

through Qiskit [67]. Our experiments utilize 3, 7, and 15 qubits to implement 1, 2, and 3-

layer quantum routers, respectively. The tomography circuits must undergo transpilation

(see Subsection 2.2.2.2), the process that converts them into transpiled circuits, prior to

their execution on the quantum device. In transpilation, the control and path qubits are

mapped to specific physical qubits of the quantum device, and each quantum gate in the

tomography circuits is decomposed into basis gates, which can be directly implemented

on the quantum devices. After the transpilation, the circuit depths of the 1, 2, and

3-layer transpiled router circuits are 54, 102, and 205, respectively. In addition, Mitiq

software package [155] is partially utilized for the implementation of ZNE and CDR.

In our experiments, U corresponds to the unitary parts of the transpiled circuit,

i.e., the transpiled circuit excluding measurements. Any quantum circuit that requires

execution on the quantum device or the simulator is executed Ctot = 20, 000 times. The

ZNE, CDR, and vnCDR methods were originally proposed to be utilized for expectation

values, while in our experiments, we implement modified versions of them for calculating

the state fidelity. Specifically, we apply these three methods to the measurement results

instead of the expectation values of O (henceforth, the terms ZNE, CDR, and vnCDR in

this chapter will refer only measurement result usage). We now discuss the experimental

setups of the six mitigation methods we investigate.

(i) For ZNE, we generate three noise-scaled circuits (with measurements reintro-

duced) with λj values of approximately 1, 3, and 5, respectively. We choose the quadratic

polynomial extrapolation model (as shown in Eq. (6.5)) to extrapolate error-mitigated
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values. Note that our experiments can also be regarded as using Richardson extrapola-

tion, as J = 3 and Richardson extrapolation is a special case of polynomial extrapolation

of order J − 1.

(ii) For CDR, we generate 50 near-Clifford circuits that approximate the transpiled

circuit to obtain adequately near-Clifford data for error mitigation. The transpiled

circuit only contains the basis gates and measurement operations, and among all of the

basis gates (see Tab. 3.1), only the RZ(φ) gate could potentially be a non-Clifford gate,

depending on the value of φ. Note that the RZ(φ) gate rotates a single-qubit along

the z-axis, where φ is a phase factor. We randomly select non-Clifford gates in the

transpiled circuit with a probability of 90% to ensure that the near-Clifford circuits can

be executed efficiently on the simulator, even for more complex transpiled circuits. The

selected non-Clifford gates are converted to the nearest Clifford gates by adjusting the

value of φ.

(iii) For eCDR, we generate the same noise-scaled circuits as in ZNE, and for each

noise-scaled circuit, we generate ten near-Clifford circuits.

(iv) For ZNE+CDR, we first generate three noise-scaled circuits, as in ZNE, for

each transpiled circuit. We then generate five near-Clifford circuits, as in CDR, for

each noise-scaled circuit. Since we aim to provide a basic comparison of the ZNE+CDR

and CDR+ZNE methods, from a resource-saving perspective we generate only five near-

Clifford circuits (as in CDR) for each noise-scaled circuit. There are a total of 45 quantum

circuits to be executed, as there are three transpiled circuits. The CDR error-mitigated

results become the new results for the noise-scaled circuits and are then further mitigated

by the quadratic polynomial extrapolation model.

(v) For CDR+ZNE, we use only the first transpiled circuit (the one with the mea-

surement operator O = Z⊗3) to generate five near-Clifford circuits. Based on each of

these, we generate three noise-scaled circuits. There are a total of 15 quantum circuits

to be executed.
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(vi) Finally, for vnCDR, we use the same approach as eCDR to generate ten near-

Clifford circuits, and for each near-Clifford circuit, we generate three noise-scaled circuits

with λj values of approximately 1, 3, and 5. The generation of the error mitigation model

in vnCDR follows its original version: the model is generated based on the expectation

values of {Tm,λj
}. However, the model is then applied to the measurement results of

{Uλj
} to obtain error-mitigated fidelity.

Due to the complexity of the quantum routers with a higher number of layers, we

simplify the 3-layer router circuit to enhance the accuracy of the measurement results.

We simplify the 3-layer router circuit by randomly selecting four control qubits to be in

the superposition while setting the remaining control qubits to be in the state |0⟩c. Based

on this setup for the control qubits, only certain path qubits are expected to contain the

signal information at the output of the quantum router (these will be measured in the

three basis). Among the control qubits, only those in superposition will be measured in

the Z-basis.

6.3.2 Experimental Results of Extrapolated CDR

The experimental results of the 1 and 2-layer quantum routers with ZNE, CDR, eCDR,

ZNE+CDR, and CDR+ZNE methods are demonstrated in Fig. 6.4. Note that although

Fs is state-dependent, we have tested other signal states and observed similar experi-

mental outcomes. The unmitigated experimental results are also illustrated for compar-

ison. Each bar shows the averaged Fs from 20 repetitions (Unmitigated, ZNE, CDR,

and eCDR), 2 repetitions (vnCDR), or 3 repetitions (ZNE+CDR and CDR+ZNE), and

the error bars represent the standard deviation. We conduct fewer repetitions for the

vnCDR, ZNE+CDR, and CDR+ZNE methods to provide a basic comparison. The pri-

mary focus of this work is the performance of eCDR in comparison to ZNE and CDR

within the context of quantum routing. Although these error mitigation methods demon-

strate similar error-mitigating performance for the 1-layer quantum routers, eCDR yields
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significantly enhanced results compared to the other four methods for the 2-layer quan-

tum router. Given the improved performance of eCDR in the 2-layer quantum router,

the reason eCDR yields a lower fidelity result for the 1-layer quantum router compared

to ZNE and CDR is that the unmitigated fidelity result is relatively high, providing

limited potential for further improvement.

For the 3-layer quantum router, the unmitigated experimental result in terms of

fidelity is approximately 0.5, and the ZNE, CDR, and eCDR methods are basically

ineffective. These 3-layer mitigation results indicate that quantum error mitigation

methods are ineffective when unmitigated results are very noisy. Mitigating errors for

quantum circuits with large circuit depths remains a significant challenge. One potential

direction in meeting this challenge could be a combination of quantum error mitigation

with quantum error correction techniques. However, any introduction of quantum error

correction will almost certainly require an advancement in current hardware to lower

noise levels.

In addition to the five quantum error mitigation methods mentioned above, we also

evaluated the performance of the ZNE+PEC method (the concatenation of ZNE and

PEC) and the vnCDR method when applied to the quantum routers. The ZNE+PEC

method slightly improves Fs for the 1-layer quantum router compared to the unmitigated

fidelity, while it reduces Fs for the 2-layer quantum router. The vnCDR error-mitigated

signal fidelities (averaged from 2 repetitions) for the multi-layer quantum routers are all

slightly lower than the corresponding unmitigated signal fidelities. We found that the

mitigation model (as described by Eq. (6.9)) generated in vnCDR varies significantly

across repetitions.

The vnCDR method generates the mitigation model using noisy expectation values,

and this model is then applied to measurement results for mitigation. The mitigation

model in vnCDR is formed from near-Clifford data and can also be identified as an

extrapolation model, which is typically employed in ZNE and constructed from noise-
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Figure 6.4: State fidelity, Fs, of the 1 and 2-layer quantum router with and without
quantum error mitigation methods realized on ibm sherbrooke device. QR stands for
quantum router. Note that the fidelity results for Unmitigated, ZNE, CDR, and eCDR
are averaged over 20 repetitions, the fidelity result for vnCDR is averaged over 2 rep-
etitions, and the fidelity results for ZNE+CDR and CDR+ZNE are averaged over 3
repetitions. The error bars represent the standard deviation.

scaled experimental data. These mismatches could be the main reasons for the poor

performance of vnCDR.

For ZNE, additional errors are more prone to be introduced to the noise-scaled

circuits, {Uλj
}, with higher complexity and larger value of λj when executed on the

quantum device. As a result, λj may not accurately represent the noise ratio between

the measurement results of Uλj
and those of U , thereby decreasing the effectiveness

of error mitigation for the 2-layer quantum router. Our eCDR method employs an

extrapolated linear regression model (as shown in Eq. (6.8)) to estimate the relationship

between noisy and noiseless measurement results of U . If the linear regression model

generated by CDR can precisely describe the relationship — usually occurring when
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unmitigated measurement results of U are close to the noiseless measurement results —

further introducing extrapolations (which is the main step of eCDR) can add additional

errors, resulting in worse outcomes. However, due to the fact that the unmitigated

measurement results of the 2-layer router circuit are relatively noisy, the extrapolated

linear regression model in eCDR provides a more accurate description of the relationship,

rather than introducing additional errors.

6.4 Summary

In this work, we proposed a quantum error mitigation method, denoted as eCDR, which

conceptually combines the characteristics of two promising error mitigation methods,

ZNE and CDR. We embedded ZNE, CDR, and eCDR methods into the 1, 2, and 3-layer

quantum routers to benchmark their performance conducted on a 127-qubit quantum

device named ibm sherbrooke. For the 1-layer quantum router, the three methods demon-

strated a similar positive mitigation effect, whereas for the 2-layer quantum router, the

eCDR method demonstrated superior performance compared to the other two methods.

For the 3-layer quantum router, error mitigation was found to be ineffective. Our re-

sults indicate, in the context of quantum routing, the circuit depths below which error

mitigation will be successful using current hardware.
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Chapter 7

Error-Mitigated Quantum

Random Access Memory

In Chapters 4 and 5, we have shown the performance of a QRAM with two memory

cells on current quantum devices. In this chapter, we investigate the performance of a

QRAM with eight memory cells using a modified version of ZNE for error mitigation on

a 27-qubit quantum device named ibm cairo. The two main contributions of this chapter

are summarized as follows.

(i) We propose a modified version of ZNE, henceforth referred to as sZNE. We

consider two different methods, within sZNE, of selecting the preferred extrapolation

function, one based on some noisy estimate of the noiseless limit (from an independent

method), and one independent of such a noisy estimate. The former method allows

integration of sZNE with third-party algorithms, and the latter method provides a stand-

alone solution.

(ii) We then embed ZNE and sZNE into a quantum device and experimentally deploy

both algorithms in the context of QRAM (with quantum state tomography) in order to

show their relative real-world performance (fidelity).
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(a) (b)

Figure 7.1: (a), (b) Schematic of ZNE shows how it calculates the zero-noise probabil-
ities. The square dots between subfigures represent the intervening probabilities P2 to
P2n−1.

7.1 Overview

7.1.1 Zero Noise Extrapolation

ZNE is a quantum error mitigation method that involves running additional quantum

circuits and classical post-processing of experimental data. The main idea of ZNE is

to extrapolate the zero-noise expectation value of an operator from noise-scaled circuits

at different noise levels [152]. The detailed working principle of ZNE is provided in

Subsection 5.1.1.

Recall that O is an operator with expectation value ⟨O⟩ and discrete eigenvalues

{ax, x = 1, 2, · · · , 2n}, each associated with one of the 2n eigenvectors. The measurement

of O is applied to n qubits of the noise-scaled circuits, associated with the noise-scaling

factors λ = [λ1, λ2, · · · , λj , · · · , λJ ]. Note that the noise-scaled circuits are generated

based on the original circuit of interest, U , and the probability of obtaining ax as the

measurement outcome with zero finite sampling error is Px. After the execution of the

noise-scaled circuits on the quantum device, the measurement results of these circuits are
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collected. The measurement results of the noise-scaled circuit are probabilities denoted

as

P λ
s = [P λ1

s , · · · ,P λj
s , · · · ,P λJ

s ] = [P λ
1 , · · · ,P

λ
x , · · · ,P

λ
2n ], (7.1)

where P
λj
s = [P

λj

1 , · · · , P λj
x , · · · , P λj

2n ] and P λ
x = [P λ1

x , · · · , P λJ
x ]. We separately define

the zero-noise probabilities P λ0
s = [P λ0

1 , · · · , P λ0
x , · · · , P λ0

2n ], where λ0 = 0, and we set

Λ ∈ {λ0, λ1, · · · , λJ}. The process of finding P λ0
s via extrapolation is illustrated in

Fig. 7.1(a) and Fig. 7.1(b). Note that in the entire process of ZNE, only one extrapolation

can be considered. The least square method is typically utilized to find the best-fit

parameters of a chosen extrapolation function.

Originally, ZNE was proposed with Richardson extrapolation [28], and this remains

a commonly used extrapolation function in ongoing studies of ZNE [32, 33, 35]. Beyond

Richardson extrapolation, other functions can be used, including linear, polynomial,

poly-exponential, and exponential extrapolation [31]. Given an extrapolation function,

there are two approaches to extrapolate the zero-noise expectation value ⟨O⟩λ0 using

P λ
s . One approach is applying the extrapolation function to noisy expectation values,

denoted as ⟨O⟩λ = [⟨O⟩λ1 , · · · , ⟨O⟩λj , · · · , ⟨O⟩λJ ]. Note that ⟨O⟩λj is calculated from

P
λj
s using Eq. (5.1). Another approach involves applying the extrapolation function to

P λ
x to obtain P λ0

x , and then calculating ⟨O⟩λ0 using P λ0
s via Eq. (5.1). Both approaches

yield the same value for ⟨O⟩λ0 since the same extrapolation function is utilized.

From the working process of ZNE, it is evident that multiple assumptions must

hold true for ZNE to provide an effective error-mitigated result. In digital ZNE, a

critical assumption is that the noise in a quantum device can be amplified by folding

unitary gates in U , implying that the noise is assumed to be incoherent errors [31].

Incoherent errors are associated with independent gate errors and decoherence. The

execution time of the noise-scaled circuit increases with its circuit depth, resulting in

greater decoherence. Other types of errors, such as coherent errors and measurement

errors, may not be amplified by global and unitary folding. Coherent errors might be
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canceled by adding the inverse of a unitary gate. Other methods, including randomized

compiling and twirling [159, 160], can be considered for mitigating coherent errors. We

note measurement errors are unrelated to the circuit depth.

In ZNE, the circuit depth of the noise-scaled circuit is independent of the number

of qubits in U . In digital ZNE with global folding, the circuit depth of the noise-scaled

circuit increases linearly with the number of gates in U . In digital ZNE with local folding,

the circuit depth of the noise-scaled circuit is determined by its noise-scaling factor, λj .

In ZNE, the best choice of the extrapolation function with its best-fit parameters is

unknown a priori. The accuracy of the extrapolated values depends on the quantity

and accuracy of the input data injected into the extrapolation function. Generally,

having more noise-scaled circuits with a wider range of circuit depths can improve the

accuracy of extrapolation. This is because a greater amount of the input data across a

broader range allows for better identification of curve-fitting patterns and trends, leading

to higher accuracy in selecting the extrapolation function and its parameters. Beyond

quantity, the accuracy of the input data in demonstrating the amplification of the noise

is also crucial. Moreover, extrapolation can be unreliable when the input data have

critical fluctuations and/or the chosen function is a high-order polynomial extrapolation

function [161]. These problems limit the power of ZNE and lead to the fact that ⟨O⟩λ0

extrapolated via ZNE can be inaccurate at times [35].

7.1.2 Bucket Brigade Quantum Random Access Memory

We consider a tomography application that includes QRAM to benchmark and study

the performance of ZNE implemented on the quantum device. The critical advantage

of QRAM is that multiple classical and/or quantum data stored in memory cells can be

queried in superposition. A QRAM query can be expressed as

N−1∑
d=0

αd|d⟩|0⟩
QRAM−−−−→ |Ψ⟩f =

N−1∑
d=0

αd|d⟩|Dd⟩, (7.2)
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Figure 7.2: Bucket brigade scheme for a QRAM with eight memory cells. The binary
tree nodes are initialized to the |·⟩ state, which is a waiting state. The queried address
qubits |011⟩ are read by the tree nodes sequentially, and the nodes that receive the
address qubits will be activated and changed to the received qubits. The activated tree
nodes generate a route to the memory cell D011.

where N is the number of the memory cells, αd is the amplitude of each address |d⟩

in the superposition, and |Dd⟩ represents the data stored in the memory cell addressed

|d⟩. 1 One of the most robust designs for QRAM is the bucket brigade scheme, which

requires a binary tree for querying addresses [141]. A bucket brigade QRAM scheme

with eight memory cells is schematically depicted in Fig. 7.2. In this QRAM, the binary

tree has seven tree nodes, each of which makes a binary decision. Each binary tree node

is a three-level system (a qutrit) with states |·⟩, |0⟩, and |1⟩, where the |·⟩ state is called

the waiting state. In this three-level system, each tree node is initialized to the waiting

state. The queried address qubits are injected into the tree nodes from the root node,

and the tree nodes read the address qubits sequentially to generate routes to the queried

memory cells. If the tree node receives the |0⟩ state (the |1⟩ state), this node activates

the left (right) child, which can be either one of the next-level tree nodes or one of the

1Note that in this chapter, |Ψ⟩f represents the output of the QRAM with eight
memory cells, while in Chapters 4 and 5, |Ψ⟩f stands for the output of the QRAM with
two memory cells.
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7.1.2 Bucket Brigade Quantum Random Access Memory

memory cells. If the queried address is |011⟩, the root node reads the first address qubit,

which is in the state |0⟩. Then, the chosen second and third-level nodes read the rest of

the two qubits sequentially. After this reading process, the data stored in the memory

cell, labeled as D011, is accessed.

Based on this QRAM scheme, we construct a bucket-brigade style QRAM circuit

(with QST added), as illustrated in Fig. 7.3. The entire circuit includes 20 qubits

initialized to the |0⟩ state, including three address qubits, eight tree-node qubits, eight

memory qubits, and one output qubit. The first three qubits (read from the top) are the

address qubits that contain the addresses intended to be queried. Each address qubit is

prepared to the state |+⟩ = (|0⟩+ |1⟩) /
√
2 via a Hadamard gate, indicating the queried

addresses are |000⟩, |001⟩, · · · , and |111⟩, i.e.,

N−1∑
d=0

αd|d⟩ = (|000⟩+ · · ·+ |111⟩) /2
√
2. (7.3)

The next eight qubits are the tree-node qubits, where the second tree-node qubit is pre-

pared to the |1⟩ state, and the rest to the |0⟩ state. Since qutrits cannot be implemented

on the IBM quantum device, we utilize eight qubits instead of seven qutrits to act as the

seven tree nodes (of Fig. 7.2). The next eight qubits of Fig. 7.3 represent the memory

cells (corresponding to the memory cells D000 to D111 of Fig. 7.2), each containing a

quantum state or a classical state. The last qubit is an output qubit containing all of

the queried data after the QRAM query.

Typically, once the output qubit acquires all of the queried data, the states of the

binary tree nodes will be reversed to their initial state. This step can be done by

implementing the CX and CCX gates in the QRAM circuit in reverse order, or by

re-setting each tree node to the |0⟩ state and implementing the X gate to the second

tree-node qubit. For simplicity, we ignore this simple step in the QRAM circuit. To

benchmark the performance of the QRAM, we apply QST to the four “tomography

qubits” - the three address qubits and the output qubit - to reconstruct |Ψ⟩f . Note that

QST is represented by the gray boxes in Fig. 7.3, and the details on the implementation
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CHAPTER 7. ERROR-MITIGATED QUANTUM RANDOM ACCESS MEMORY

Figure 7.3: Quantum circuit of a bucket-brigade style QRAM with QST. The four purple
gates indicate state preparations of four random quantum states, namely, |η1⟩, |η2⟩, |η3⟩,
and |η4⟩. The H represents the Hadamard gate, and the X is the NOT gate. The
two-qubit gates in blue stand for CX gates. The three-qubit gates in orange and green
are CCX and controlled-swap gates, respectively. The four gray boxes with the dashed
line indicate that QST is applied to these four qubits.
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of QST are provided in Subsection 2.1.3. In our experiments, this QRAM tomography

application is employed with ZNE or sZNE embedded into it.

7.2 The Selected-Zero-Noise Extrapolation Method

To benchmark the performance of ZNE embedded into the bucket brigade QRAM, we

again use the fidelity, F ′, between κ′ = |Ψ⟩f ⟨Ψ| and κ as our main performance metric,

as shown in Eq. (4.6). In this chapter, κ′ is the theoretical density matrix of the output

of the QRAM with eight memory cells, and κ is the experimental density matrix of |Ψ⟩f
reconstructed by QST. In our experiments, U is the QRAM circuit which excludes QST.

For the execution of QST (see Subsection 2.1.3), 81 tomography circuits with distinct

measurement operators are generated. These measurement operators are {Og}81g=1 =

{O1 = X ⊗ X ⊗ X ⊗ X,O2 = X ⊗ X ⊗ X ⊗ Y, · · · , O81 = Z ⊗ Z ⊗ Z ⊗ Z}, and

each Og has 16 eigenvectors (i.e., 16 Px) as four qubits are measured. Transpilation

is necessary to execute the tomography circuits on the quantum device (see details in

Subsection 2.2.2.2). The 81 tomography circuits are then transformed to 81 transpiled

tomography circuits (U1 to U81).

In contrast to ZNE, which applies a chosen extrapolation function to noisy expecta-

tion values, the modified version we introduce here, sZNE, considers multiple extrapola-

tion functions to obtain zero-noise probabilities of a measurement producing a specific

eigenvalue, ax, of a quantum operator possessing 2n eigenvectors. The main steps of

sZNE are as follows.

(i) Generate J noise-scaled circuits with λ, based on U1 (for example) using global or

local folding.

(ii) Execute the J noise-scaled circuits on the quantum device and collect their measure-

ment results, which are P λ
s .
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(iii) Choose an extrapolation function for each P λ
x and perform the extrapolation ac-

cordingly, as shown in Fig. 7.1(a) and Fig. 7.1(b). Note that the extrapolation function

selected for P λ
1 and P λ

2 (for example) can be different.

(iv) From the different extrapolated probabilities, determine a final zero-noise probability

for each eigenvector.

(v) Using the calculated zero-noise probabilities, P λ0
s , compute a performance metric of

choice suited to the application under study.

As already indicated, for step (v) our application will be QRAM and our metric

will be fidelity (other applications and metrics could also be studied). In principle, an

infinite number of extrapolation functions can be used, but in practice, only a limited

number can be accessed. In our experiments, we attempt Richardson extrapolation, lin-

ear extrapolation, and polynomial extrapolation with orders two and three. Richardson

extrapolation is a special case of polynomial extrapolation with order J − 1 [31].

The fundamental idea of sZNE involves exploring various extrapolation functions for

each P λ
x , with different functions selected to calculate them. In contrast, ZNE exclu-

sively employs the same extrapolation function for each P λ
x . However, using the same

extrapolation function may result in the introduction of additional errors. Addressing

this limitation of ZNE is the main aim of the proposed sZNE. Since the expectation value

is computed based on Px, as shown in Eq. (5.1), it is intuitive that minimizing errors

in each Px should improve any performance metric of an application that involves the

use of these probabilities. Defining that the error between P λ0
x and noiseless simulation

results P sim
x as ex =

∣∣P λ0
x − P sim

x

∣∣, we seek to understand how application performance

metrics scale with ex.

The remaining task is to identify the method utilized to determine the zero-noise

probabilities in step (iv). There are many possibilities for this. Here, we focus on two

different methods: the first method involves selecting each zero-noise probability based
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on a noisy estimate of the noiseless probability (termed the noisy estimator algorithm),

and the second method uses a filter function to eliminate over-fitted solutions and cal-

culate the zero-noise probabilities based on the solutions that pass the filter (termed the

filter function algorithm). We describe these two methods in more detail.

7.2.1 Noisy Estimator Algorithm

Consider the availability of a noisy estimate, denoted as P est
g,x , of the noiseless probability

associated with measurement operator Og and eigenvalue ax. This estimate could arise

from several means, sources and techniques unrelated to ZNE - for our purpose it does

not matter. We simply assume its availability and adopt no knowledge of its reliability

(error). This represents a generic method of encapsulating a solution from a technique

independent of ZNE into a new solution partially based on ZNE. For each Og, we propose

to select the zero-noise extrapolated probability for each Px as given by

P sZNE
g,x = argmin

P∈L

∣∣P − P est
g,x

∣∣ , (7.4)

where P sZNE
g,x is the extrapolated probability with the selected extrapolation function,

and L = {P λ1
g,x, P

λ0,f1
g,x , P λ0,f2

g,x , P λ0,f3
g,x , P λ0,f4

g,x }, where f1 to f4 indicate linear, polynomial

extrapolation of orders 2 and 3, and Richardson extrapolation functions, respectively.

Note that for each Og, the values in the set {P λ0,f1
g,x }16x=1 are normalized (the same applies

to other sets with different extrapolation functions), and the values in the set {P sZNE
g,x }16x=1

are normalized again before reconstructing ρ′. We further refer to the method with the

case where L excludes P λ1
g,x as sZNE′ to distinguish it from sZNE. Various solutions,

including Clifford simulators and the CDR method, can be considered to determine

P est
x , as discussed in detail in Appendix B.2. However, for simplicity, we generate this

estimate by introducing Gaussian noise with variance σ2 to the noiseless simulation

results, P sim
g,x . That is,

P est
g,x = P sim

g,x + ϵ, (7.5)

107



CHAPTER 7. ERROR-MITIGATED QUANTUM RANDOM ACCESS MEMORY

where in this chapter, ϵ is a random variable given by a zero-mean Gaussian distribution,

i.e., ϵ ∼ N (0, σ2).

7.2.2 Filter Function Algorithm

For each Px in every Og, we obtain the set Tg,x = {P λ0,f1
g,x , P λ0,f2

g,x , P λ0,f3
g,x , P λ0,f4

g,x }. There

are a total of 81×16 Tg,x, and the values in each Tg,x are passed through a filter function.

The filter function has following requirements: (i) We delete any elements (extrapolated

probabilities) in Tg,x that are smaller than zero since probabilities cannot be negative.

(ii) If P λ1
g,x ≥ P λJ

g,x, then we delete the elements in Tg,x that are smaller than P λ1
x . (iii) If

P λ1
g,x < P λJ

g,x, then we delete the elements in Tg,x that are larger than P λ1
g,x. After the

filtering, we store the remaining extrapolated probabilities in the set T′
g,x. Finally, we

calculate the zero-noise extrapolated probabilities following

P filter
g,x =

(
maxL′ +minL′) /2. (7.6)

Note that the value of P filter
g,x is obtained by averaging the maximum and minimum values

in the set L′, where L′ = {P λ1
g,x,T′

g,x}. After obtaining P filter
g,x for each x, the values in

the set {P filter
g,x }16x=1 are normalized. Finally, we use the 81 × 16 normalized zero-noise

extrapolated probabilities to reconstruct ρ′ and then calculate F ′ (see Subsection 2.1.3).

7.3 Experimental Results

We embed ZNE and sZNE into the tomography application containing QRAM to investi-

gate their performance when implemented on ibm cairo. To be executed on this quantum

device directly, the 81 tomography circuits are transpiled to the transpiled tomography

circuits first. In our experiments, λ = [1, 1.4, 1.7, 2.1, 2.5] and we fold gates locally at

random to generate the noise-scaled circuits, where each transpiled tomography circuit is

converted to five transpiled noise-scaled tomography circuits. The transpilation process
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Table 7.1: Detailed Information of the Memory Data

Quantum State α β

|η1⟩ 0.82 + 0.26i 0.43− 0.28i

|η2⟩ −0.62 + 0.51i −0.15− 0.57i

|η3⟩ 0.25 + 0.74i 0.31 + 0.54i

|η4⟩ 0.44 + 0.56i −0.59− 0.38i

is realized via Qiskit, and Mitiq [155] is utilized to generate the noise-scaled circuits and

to implement extrapolation functions. Each transpiled noise-scaled tomography circuit

is executed Ctot = 10, 000 times on the quantum device.

Note, the eight qubits corresponding to the memory cells D000 to D111 of Fig. 7.2,

must be initialized. In the results shown here we have adopted a memory allocation

given by |η1⟩, |1⟩, |0⟩, |η2⟩, |η3⟩, |0⟩, |η4⟩, and |1⟩ (as shown in Fig. 7.3), where |η1⟩ to

|η4⟩ are four random quantum states. Each one of these four quantum states can be

represented by α|0⟩ + β|1⟩: the selected α and β of the four quantum states stored in

the memory cells are given in Table 7.1.

7.3.1 Noisy Estimator Results

We consider the results from the noisy estimator algorithm. We first consider the ϵ = 0

case in sZNE. Clearly, this case holds no value for mitigation (if we knew the zero-noise

probability exactly, there is no need for mitigation). However, we use it here merely

to evaluate the significance of employing proper extrapolation functions to the noisy

probabilities. The fidelity results of the tomography application that includes the QRAM

with eight memory cells are illustrated in Fig. 7.4, and we see that sZNE′ and sZNE

provide for enhancement in F ′, it being increased from 0.4 to 0.79 and 0.85, respectively.

The fidelity result of sZNE indicates the optimal performance of the QRAM tomography

application that ZNE can achieve if a proper extrapolation function is applied to each

Px.
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Figure 7.4: F ′ of the QRAM with eight memory cells with or without quantum error
mitigation obtained from ibmq cairo. The sZNE′ and sZNE results are calculated with
ϵ = 0 and in effect only show the importance of selecting the correct extrapolation
function - in reality, the performance shown cannot be achieved since ϵ is always non-
zero. Note that the horizontal dashed line indicates the unmitigated F ′ for reference.

We next conduct sZNE′ and sZNE with P est
g,x , which is generated by introducing

the Gaussian noise to the noiseless simulation results. This represent a more real-world

scenario in which an independent estimate of the noiseless probability value is made

available. We wish to explore what constraints must be imposed on the noisy estimation

in order for our mitigation method to offer advantages in QRAM fidelity. The results

are shown in Fig. 7.5, where each circle represents a fidelity result averaged from 1, 000

repetitions. We see that sZNE provides improved fidelity results if σ is smaller than

approximately 0.03.
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Figure 7.5: F ′ of the QRAM with eight memory cells as a function of the standard
deviation, σ, of the Gaussian noise for sZNE′ and sZNE. These results represent a more
realistic scenario with ϵ ̸= 0. The dashed line shows the unmitigated results.

Table 7.2: Experimental Results of the Filter Function Algorithm

Fidelity {⟨Og⟩}81g=1 Performance

Filter Function Algorithm 0.48 19%

7.3.2 Filter Function Results

We consider the results from the filter function algorithm, as shown in Table 7.2. We see

that this algorithm improves the fidelity result of the QRAM tomography application

from 0.4 to 0.48, which is the main result of this paper. This represents a 20% improve-

ment in the key metric of our application, and shows the merit of our approach. Since

the expectation value of an observable is the typical performance metric used in quantum

error mitigation, we also demonstrate the performance of the filter function algorithm in

terms of ⟨Og⟩, compared to the unmitigated values. Using the filter function algorithm,
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Figure 7.6: Expectation values of Og with and without the filter function algorithm.
The noiseless expectation values calculated via P sim

g,x are shown for reference. Only 15
of the 81 expectation values, where the error-mitigated values (using the filter function
algorithm) are closer to the corresponding noiseless ones compared to the unmitigated
values, are illustrated.

we find only 15 error-mitigated expectation values (see Fig. 7.6) among the 81 ⟨Og⟩ are

closer to their corresponding noiseless values - a 19% performance level.

From the above discussion, we learn that using the unmitigated ⟨Og⟩ directly pro-

duces better results overall in determining expectation values, relative to our new filter

function algorithm. This is in contrast to the result achieved when looking at the per-

formance metric of our application directly, the fidelity. This counter-intuitive result

illustrates the advantage of our algorithm. Negating the traditional use of ZNE and its

focus on expectation values of observables, but rather bypassing these values and focus-

ing on the performance metric of the application instead can produce useful outcomes.
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7.4 Summary

In this chapter, we introduced a modified ZNE, referred to as sZNE, and applied it to

a QRAM application with quantum state tomography on a NISQ device. Novel in our

approach was a focus on application performance metrics in the design process rather

than on expectation values as in standard ZNE. A specific new element was our direct use

of extrapolated zero-noise probabilities, which are directly coupled to QRAM fidelity,

thereby circumventing the need for expectation values of operators. To implement a

QRAM with multiple memory cells on a 27-qubit quantum device, we first conducted

sZNE coupled to an algorithm based on a noisy estimate of the noiseless probability

available from an independent technique. As the error in that estimate approached zero,

our calculations reduced to a study in how a judicious choice of extrapolation function

on a per measurement basis can dramatically improve the ZNE technique. Additional

experimental results demonstrated the noise threshold below which this form of sZNE

is effective. We then coupled our sZNE method to an algorithm that did not require

an independent noisy estimate on the noiseless probability, but rather one based on

avoidance of over-fitting and subsequent use of the remaining extrapolated probabilities,

showing how significant fidelity gain in our QRAM application can be found.
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Chapter 8

Conclusions

In this thesis, we investigated the performance of quantum error correction and miti-

gation methods when applied to quantum routing applications with state tomography

on current superconducting quantum devices. Specifically, the quantum routing appli-

cations include quantum routers and QRAM, which are important elements for building

near-term quantum networks.

In Chapter 3, we investigated the performance of quantum-error-corrected routing

with the consideration of a specific noisy channel. Our experimental results first verified

the quantum nature of the router, and then demonstrated the viability of error-corrected

quantum routing with use of statistical information. Note that the quantum error cor-

rection method utilized in this chapter can only correct particular errors, as it was

designed for the specific noisy channel, which was artificially added to mimic the noisy

transmission of quantum signals.

In Chapter 4, we considered a general scenario for quantum error correction: a

five-qubit QECC capable of correcting any single-qubit errors was embedded into the

quantum router. We benchmarked the quantum router’s performance considering only

the intrinsic errors of the quantum device; that is, no artificial noisy channels were
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added. Our experimental results highlighted the challenges encountered by such error

correction when implemented on NISQ devices. In this chapter, we also demonstrated

the feasibility of QRAM, which is an application of quantum routing.

Given the unsatisfied performance of quantum error correction on current quantum

devices, we started to investigate quantum error mitigation in Chapter 5. Two promis-

ing quantum error mitigation methods, ZNE and PEC, and their concatenation were

embedded within the quantum router. The experimental result of the concatenation of

ZNE and PEC demonstrated that the fidelity of the quantum router was impressively

increased to effectively unity. Although additional executions of ancillary quantum cir-

cuits and classical post-processing are required by quantum error mitigation methods,

our results showed the critical role such methods can play for quantum applications

executed on current noisy devices.

In Chapter 6, we conceptually combined the characteristics of two well-known error

mitigation methods, ZNE and CDR, by proposing a new quantum error mitigation

method, denoted as eCDR. We investigated the performance of ZNE, CDR, and eCDR

methods by embed them into the 1, 2, and 3-layer quantum routers. The three methods

demonstrated similar positive mitigated results for the 1-layer quantum router, whereas

for the 2-layer quantum router, the eCDR method demonstrated superior performance

compared to the other two methods. We found that error mitigation was ineffective for

the 3-layer quantum router, which has a larger circuit depth compared to the circuits of

the other two layers. Our results indicate the circuit depth below which error mitigation

will be effective for multi-layer quantum routers implemented on current hardware.

In Chapter 7, we investigated the performance of QRAM, a quantum routing ap-

plication, and introduced a modified ZNE, referred to as sZNE. We applied sZNE to a

QRAM with eight memory cells with QST on a 27-qubit quantum device. We consid-

ered two different algorithms inside sZNE to select the preferred extrapolation function.

One algorithm was based on a noisy estimate of the noiseless probability, and another
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was designed to use extrapolated probabilities after excluding overfitted ones. Our re-

sults demonstrated the effect of a judicious choice of extrapolation function for each

measurement basis on the performance of ZNE.

Our work implicates that the performance and scalability of quantum routing ap-

plications are limited by the intrinsic errors of quantum hardware. Quantum error

mitigation is an effective approach for overcoming this limitation in the implementa-

tion of quantum routers on NISQ devices. Therefore, the additional resources and time

consumption required by quantum error mitigation should be considered in the design

of quantum routing applications. Moreover, quantum devices with improved character-

istics are essential for the reliable implementation of large-scale quantum routers and

QRAMs.

In this thesis, quantum error mitigation methods demonstrated their effectiveness

for quantum routing applications on current quantum devices. However, quantum error

mitigation is generally unfeasible for quantum circuits with large circuit depths and/or

a significant number of qubits. To resolve this issue, several future directions could be

considered. One potential direction for implementing workable quantum applications

on NISQ devices is the integration of quantum error mitigation with error correction

techniques. This approach could reduce the requirement of ancillary qubits and addi-

tional executions of ancillary circuits. Additionally, machine learning [145, 162] could

be employed to build the noise models of current quantum devices and optimize quan-

tum error mitigation methods designed for specific quantum applications. Moreover,

compared to superconducting qubits, photons exhibit longer coherence times [51–53].

Among photonic qubits, dual-rail qubits [163, 164] are considered robust candidates for

encoding quantum information. Therefore, employing photonic systems with dual-rail

qubits for quantum routing applications could also be a potential approach to improving

performance.

In the NISQ era, quantum error mitigation is likely to remain a critical method for
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near-term quantum applications. Improving and benchmarking error mitigation methods

will remain important tasks and will ensure near-term quantum devices continue to play a

constructive role in the path towards full fault-tolerant quantum computing. We believe

the results shown in this thesis illustrate that deviations from established pathways

for error mitigation still hold promise in this regard, especially if the focus is on the

application metrics of interest.
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Appendix A

Quantum State Tomography on

Noisy Devices

QST is a fundamental technique to reconstruct the density matrix of a quantum state

based on experimentally measurements [165] and is also considered the gold conventional

for benchmarking NISQ devices that are now available [102]. In this appendix, we present

a modification of the conventional QST algorithm (introduced in Subsection 2.1.3) to

improve the efficiency of QST execution. We experimentally apply the conventional

QST to several quantum states on ibmq jakarta, a seven-qubit superconducting quantum

device provided by the IBM Quantum platform [66]. We compare the performance of

the conventional and modified QST algorithms in terms of fidelity by applying them to a

3-qubit maximally entangled state, denoted as the |GHZ⟩3 state, on the quantum device.

We further apply QST to a practical quantum application, an entanglement distillation

protocol [166] - a protocol designed to convert a set of noisy entangled states to a smaller

set of less-noisy states (using local operations and classical communication only). This

provides additional focus on the actual use of QST as well as additional performance

insights. Note that, unless otherwise specified, all experimental results in this appendix

are first processed by the MEM method introduced in Subsection 2.3.2.1.
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(a) (b)

Figure A.1: Quantum circuits for building the |+⟩3 state (a) and the |GHZ⟩3 state (b)
with QST. All qubits start from the |0⟩ state, H stands for the Hadamard gate, the
two-qubit gate is the CX gate, and the blue boxes with a blue dashed line represent
QST.

A.1 Quantum States with State Tomography

To test the performance of QST on the quantum device, we first conduct an experiment

with five well-known states, namely, |+⟩, |+⟩2 = |+⟩|+⟩, |+⟩3 = |+⟩|+⟩|+⟩, |Φ+⟩ =

(|00⟩+ |11⟩) /
√
2, and |GHZ⟩3 = (|000⟩+ |111⟩) /

√
2. Quantum circuits constructing

|+⟩3 and |GHZ⟩3 with QST are demonstrated in Fig. A.1. Similar diagrams can be

drawn for the other states. Note that the first three states (|+⟩, |+⟩2, and |+⟩3) are

product states (non-entangled states), and the other two states (|Φ+⟩ and |GHZ⟩3)

are entangled states. We define ρ′ to be a density matrix of a quantum state under

a noise-free environment, and ρ for the density matrix of the same quantum state in

the quantum device reconstructed by QST. We refer to ρ′ and ρ as the theoretical

density matrix and the experimental density matrix, respectively.1 We chose the fidelity

F =
(
Tr
√√

ρ ρ′
√
ρ
)2

as our performance metric, which can be considered a measure of

the similarity between ρ′ and ρ.

1Note that ρ′ and ρ previously represented the density matrices of the quantum router
output (see Eq. (3.10)). In this appendix, however, ρ′ and ρ stand for the theoretical
and experimental density matrices for one of the five states or as specifically defined for
the entanglement distillation protocol.
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To reconstruct a n-qubit state, we need a minimum of 3n projective measurements,

which are the tensor products of the Pauli measurement operators (see more details

in Subsection 2.1.3). In our experiments, each of the 3n projective measurements of

the QST is conducted N ′ = {1 × 103, 1 × 104, 1 × 105} times first.2 We refer to the

procedure of conducting QST with 3nN ′ shots3 and calculating F as one “run.” Because

ibmq jakarta has the shots limit of 105, we implement five runs and take the average

for each chosen N ′ value, which means that each of the 3n projective measurements is

implemented N = 5N ′ times in total. In summary, we conduct a total of T = 3nN shots

for reconstructing ρ.

To conduct the modified QST algorithm, we first run the conventional QST for a

limited number of shots (say 1,000), and identify from these initial runs the matrix

elements associated with a value less than some small value, ε. We then remove all

measurements associated with those matrix elements. Next, we run the QST process

again for a large number of shots to provide a first estimate of ρ. We then further

optimize ρ by seeking a solution in the vicinity of our first estimate (a solution with

each modified element within some absolute perturbation-value either side of the initial

element, the value randomly selected from the range 0− ε′; some elements manually set

to satisfy state conditions). Although not formally the optimal solution, we shall see

that for many states this provides an adequate QST solution on a NISQ device, in a

reduced time-frame relative to full optimization.

We first utilize the conventional QST algorithm to calculate F of the five states, and

the experimental results are demonstrated in Fig. A.2 with solid lines (all curves flatten

out after a shot number beyond those shown). The error bar shown here is simply a

representation of the deviation of the results typically determined from each of the five

runs. It is included simply for informative purposes, and should not be considered to

2In this appendix, we redefine N , N ′, and T as different positive integers, representing
the repetitions of a single projective measurement.

3We refer to one single projective measurement as one “shot.”
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Figure A.2: F as a function of N . The solid lines are obtained via the conventional QST
algorithm. The green-dashed line represents F for |GHZ⟩3 obtained by the modified QST
algorithm. For the |GHZ⟩3 state, the conventional QST algorithm requires 27 projective
measurements, each repeated N times. However, the modified QST algorithm involves
only 11 projective measurement that is repeated N times.

represent formal error statistics on the F values. For the |+⟩, |+⟩2, and |+⟩3 states,

the F values are all approximately equal to one, independent of N . The two entangled

states, |Φ+⟩ and |GHZ⟩3, obtain relatively lower F values, approximately 0.9. The

green-dashed curve represents F calculated for |GHZ⟩3 using our modified QST with

ε = ε′ = 0.01. In the modified QST algorithm, all 27 projective measurements are

performed 1, 000 times to construct an approximate density matrix. Subsequently, only

11 projective measurements are each performed N times, whereas for the conventional

QST algorithm, all 27 projective measurements are each performed N times.

The importance in reducing the shot number arises through the run-time on the

NISQ device. For 105 shots on a three-qubit state this run-time using the conventional

QST was found to be of order 12 minutes. Our modified QST resulted in a savings
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in run-time on the NISQ device of approximately a factor two - an excellent trade-off

given the small discrepancy in the F values the modified QST provides. We also note

our modified QST provides for faster optimization (albeit a process run offline from the

NISQ device) due to the use of a good initial guess, which in gradient descent methods

leads to a linear convergence rate. Speed up factors of more than 20% can be expected

relative to arbitrary initial starting points.

A.2 Entanglement Distillation with State Tomography

We now put QST, as run on our NISQ device, in the context of an application im-

plemented on the device. We believe this shows further context, and illustrates the

importance of QST for an actual application. We choose an entanglement distillation

protocol to this end - a process that can be considered a form of quantum error cor-

rection. Although we know quantum error correction is not feasible on current NISQ

devices as shown in Chapters 3 and 4, we still illustrate the important role QST will play

when such correction techniques do become feasible. A schematic diagram of the work-

ing principle of the entanglement distillation protocol is illustrated in Fig. A.3. Suppose

Alice and Bob are two parties separated by a large distance and share two maximum

entangled pairs, which are represented by

|Φ+⟩a = |Φ+⟩ = 1√
2
(|0⟩Alice|0⟩Bob + |1⟩Alice|1⟩Bob), (A.1)

where the subscripts Alice and Bob denote that Alice and Bob hold the corresponding

qubit. In practice, the two entangled pairs are noisy, and the purpose of the entanglement

distillation protocol is to improve the fidelity of |Φ+⟩ by sacrificing |Φ+⟩a.

The distillation protocol requires local operations and classical messaging with a

post-selection. The local operations implemented by each party include a CX gate and a

Z-basis measurement, and after these operations Alice and Bob send their measurement

results to each other via a classical communication channel. If Alice and Bob find
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Figure A.3: The entanglement distillation protocol. Alice and Bob share two entan-
gled pairs |Φ+⟩a and |Φ+⟩. The black boxes indicate the Z-basis measurements. The
post-selection discards the two entangled pairs if the measurement results differ. If the
measurement results are the same, |Φ+⟩ will be kept with improved fidelity.

that they have the same measurement result, |Φ+⟩ will be kept with improved fidelity.

Otherwise, |Φ+⟩ is discarded, and the whole protocol needs to be started again.

We apply the conventional QST algorithm to the entanglement distillation protocol,

whose quantum circuit is demonstrated in Fig. A.4. The top two qubits shown are

prepared as |Φ+⟩a by a Hadamard gate followed by a CX gate. These two qubits

are measured by the Z-basis measurements at the end of the circuit for the classical

messaging and post-selection. The last two qubits are prepared as |Φ+⟩, and QST is

applied to them. Note that the top two qubits (the last two qubits) are physically

separated and shared by Alice and Bob. In this protocol we have two performance

metrics. One is F again, but this time between ρ′ = |Φ+⟩⟨Φ+| and ρ, where ρ is the

experimental density matrix associated with |Φ+⟩ (i.e. the matrix derived from QST).

The second metric is the success probability P = D/T of the post-selection, where given

T shots (T = 32N in this case), D is the number of times the Z-basis measurements
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Figure A.4: Quantum circuit of entanglement distillation protocol. The QST is done
with local operations and classical communication between Alice and Bob.

mentioned above result in equal values. The shot is only used in the reconstruction of

ρ when the Z-basis measurements results are the same (i.e. QST is realized with a shot

number less than T ).

Our results at running the protocol on the device are shown in Fig. A.5. We caution

that the initial fidelity of each entangled pair (with a perfect pair) initialized on the

device was 0.92, so the distillation protocol on the device is not working - an outcome

consistent with other attempts at full quantum error correction on current NISQ de-

vices. However, the issue we are focused on here is the QST process. Here, we see the

importance in determining the matrix ρ via the QST. In the figure it manifests itself in

the determination of the fidelity of the “corrected” entangled state (after distillation)

with the perfect entangled state. Again, we see the actual improvement does not show

up until a large number of shots has occurred (again these curves flatten out after a shot

number beyond those shown). The improvement in run-time on the NISQ device and

optimization in ρ (offline) for our modified protocol would equally apply to this protocol.

As an aside, we compare in Fig. A.5, QST with and without the MEM protocol, showing

an improvement in F of order 0.05.
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Figure A.5: F and P as a function of N for the entanglement distillation protocol.

A.3 Summary

In this work, we considered QST and its implementation on a 7-qubit superconducting

device, ibmq jakarta. The important issue regarding the number of repeated quantum

measurements required to construct several states density matrices within some required

tolerance was discussed and implemented. Our work highlights the importance of QST,

the fact that it can be implemented on real NISQ devices, and that further optimizations

that can save run-time on the devices are likely.
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Appendix B

Supplementary Materials

B.1 Motivation for Linear Functions in Extrapolated CDR

Consider a global depolarizing channel is applied to σ, which we redefined as the output

state of U in this subsection, followed by a measurement of the observable O. This

depolarizing channel E is given by

E(σ) = (1− ϵ)σ + ϵI/d, (B.1)

where d = 2n
′
is the Hilbert-space dimension and ϵ is a parameter that describes the

noise, ranging from 0 to 1. In terms of expectation value, the effect of the depolarizing

channel leads to

Tr [E(σ)O] = (1− ϵ) Tr [σO] + ϵ
Tr[O]

d
. (B.2)

The noisy expectation value of O after executing U is ˜⟨O⟩ = Tr [E(σ)O] and the corre-

sponding noiseless expectation value is ⟨O⟩ = Tr [σO], leading to

˜⟨O⟩ = (1− ϵ) ⟨O⟩+ ϵ
Tr[O]

d
. (B.3)
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The error-mitigated result of eCDR in terms of expectation value is given by

ˆ⟨O⟩
ecdr

= aλ0
˜⟨O⟩+ bλ0 =

J∑
j=1

γjaλj
˜⟨O⟩+

J∑
j=1

γjbλj
, (B.4)

where ˆ⟨O⟩
ecdr

is the eCDR error-mitigated expectation value. To completely mitigate

the effect of the global depolarizing channel, i.e., to achieve ˆ⟨O⟩
ecdr

= ⟨O⟩, eCDR needs

to satisfy

aλ0 =
J∑

j=1

γjaλj
=

1

1− ϵ
and bλ0 =

J∑
j=1

γjbλj
= − ϵTr[O]

(1− ϵ)d
. (B.5)

Assuming the global depolarizing channel is applied to the original circuit, U , ι times,

the output state, σ, then becomes

E ι(σ) = (1− ϵ)ι σ + [1− (1− ϵ)ι] I/d. (B.6)

In terms of expectation value, the above expression can also be expressed as

Tr [E ι(σ)O] = (1− ϵ)ιTr [σO] + [1− (1− ϵ)ι]
Tr[O]

d
, (B.7)

which is equivalent to

˜⟨O⟩ = (1− ϵ)ι ⟨O⟩+ [1− (1− ϵ)ι]
Tr[O]

d
. (B.8)

Therefore, the eCDR error-mitigated expectation value is given by

ˆ⟨O⟩
ecdr

=

J∑
j=1

γj

[
aλj

(1− ϵ)ι ⟨O⟩+ aλj
[1− (1− ϵ)ι]

Tr[O]

d
+ bλj

]
. (B.9)

We see that ˆ⟨O⟩
ecdr

is equivalent to ⟨O⟩ when
J∑

j=1

γjaλj
(1− ϵ)ι = 1 and

J∑
j=1

γj

[
aλj

[1− (1− ϵ)ι]
Tr[O]

d
+ bλj

]
= 0.

(B.10)

Therefore, we can state that eCDR is capable of completely mitigating global depolar-

izing noise across distinct noise levels. Note that the above analysis is provided based

on Refs. [34, 35]. However, our restrictions of the parameters, as shown in Eqs. (B.5)

and (B.10), are derived based on the eCDR method.
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B.2 Generation of Noisy Estimated Probabilities

In the above, we have simulated P est
x by adding Gaussian noise to the noiseless value

obtained from noiseless classical simulations. Other noise models could be considered,

such as Gaussian noise with the addition of a bias term and non-Gaussian noise. Clearly,

if we could always classically simulate an accurate value for all probabilities we use, there

would be no requirement for ZNE (or its variants). We emphasize again that in our

calculations, we have assumed P est
x is available from an independent technique. When

the error in P est
x approaches zero, our calculation reduce to a study in how a judicious

choice of extrapolation function on a per measurement basis can dramatically improve

the ZNE method. We offer this algorithm as a means to integrate different mitigation

methods with ZNE. This is the main message of the initial part of our study.

We have left open how to find such a reliable P est
x in practice from other methods.

A potential method is via the execution of a near-Clifford circuit that is approximately

equal to the circuit of interest, U . With fewer non-Clifford gates, the near-Clifford

circuit can be executed on the simulator, even when U cannot [35,167]. The simulation

results of the near-Clifford circuit will be regarded as {P est
x }2nx=1 and provide guidance

for selecting appropriate extrapolation functions.

Another method is CDR (mentioned in the Introduction) - a learning-based error

mitigation method using near-Clifford circuits to generate a linear regression model to

mitigate errors - an approach that has previously delivered some useful outcomes [34–36,

123]. The linear regression model will be applied to each P λ1
x to obtain P est

x . If CDR can

provide a P est
x in practice with reasonable accuracy (e.g., P est

x may not always allow us

to select the best extrapolation function but can help eliminate the least effective ones),

then the noisy estimator algorithm outlined here can provide for enhanced performance.

We suggest this approach as a possible future study not only for QRAM but also for

any application running on a NISQ device.
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B.2. GENERATION OF NOISY ESTIMATED PROBABILITIES

Clearly, many other independent methods can be directly used in our algorithm. It

is likely that, when it comes to pragmatic quantum error mitigation, no method will

always prevail in providing the optimal outcome. Rather, a combination of different

independent algorithms are likely to be of more value.
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