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Abstract: We present a scheme for realizing phase-controlled entanglement in a microwave optome-

chanical system comprising two microwave cavities and two mechanical oscillators. Under specific

driving conditions, we show that this optomechanical interface can be exploited to generate simul-

taneously the stationary cavity–cavity entanglement, mechanical–mechanical entanglement, and

cavity–mechanical entanglement. Due to the closed loop interaction, we find that the entanglement

can be controlled flexibly by tuning the phase difference between the optomechanical coupling

strengths. The dependence of the entanglement on the amplitudes of the optomechanical coupling

strengths is also explored in detail. Moreover, the bipartite entanglements are robust against tempera-

ture, and it is shown that the mechanical oscillators are cooled to the ground state in the parameter

regimes for observing entanglement.

Keywords: bipartite entanglement; optomechanical system; phase difference; ground state

1. Introduction

Entanglement, one essential feature of quantum mechanics, is an indispensable re-
source for quantum information processing. This phenomenon has been demonstrated in
various systems, such as superconducting qubits [1], atomic ensembles [2,3], individual
atoms [4] and ions [5], and electron spins [6]. In the past few decades, mechanical oscillators
with high resonance frequencies and quality factors have been extensively explored. They
can be coupled to a variety of quantum systems, including superconducting qubits [7],
quantum dots [8], a single-spin qubit [9], Bose–Einstein condensate [10], and to photons
at nearly arbitrary wavelength. Recently, entanglement between mechanical oscillator
and atomic spin ensemble [11] as well as the phonon-mediated entanglement between
two superconducting qubits [12] have been demonstrated. Therefore, hybrid mechanical
systems provide a promising platform for building quantum networks [13].

Cavity optomechanical systems, where the mechanical oscillator interacts with the
electromagnetic cavity via radiation pressure, can also serve as an excellent candidate for
the interface that connects different components in quantum networks [14–22]. Recent
milestones in this field include cooling of the mechanical oscillator to the quantum ground
state [23–25] and observation of quantum effects such as optomechanical squeezing of light
and mechanical motion [26–29]. Moreover, a myriad of schemes have been proposed to gen-
erate the entanglement based on optomechanical systems [30–48]. Recent optomechanical
experiments have successfully demonstrated the entanglement between photons and a me-
chanical oscillator [49], between two mechanical oscillators [50–53], and between photons
at both optical [54] and microwave [55] frequencies. Very recently, significant attention has
been paid to the nonreciprocal transmission in multimode optomechanical systems with
closed loop interaction [56–70], where the phase difference between the optomechanical
coupling strengths can be exploited to control the direction of light propagation. In addition,
it has been shown that the light-vibration entanglement can be controlled by the phase
difference in three-mode optomechanical systems [71,72].
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Here, we study the phase-controlled entanglement in a four-mode optomechanical
system, which consists of two cavity modes coupled via two mechanical oscillators [64–68].
To generate the entanglement quantified by logarithmic negativity, the cavities are driven by
four tones, including two blue tones and two red tones. By tuning the phase difference and
the optomechanical coupling strengths, we show that this hybrid system provides a plat-
form to generate simultaneously the cavity–cavity entanglement, mechanical–mechanical
entanglement, and cavity–mechanical entanglement. Furthermore, we find that the station-
ary entanglement is robust against the environmental temperature and both the mechanical
oscillators can be cooled to the ground state. Our scheme could be realized based on the
current experiments [64–67].

2. Model and Theory

We consider the optomechanical system schematically shown in Figure 1a, where two
cavity modes are, respectively, coupled to two mechanical oscillators via radiation pressure.
The Hamiltonian of the system is given by

H/h̄ =
2

∑
i=1

ωia
†
i ai +

2

∑
i=1

Ωib
†
i bi +

2

∑
i=1

2

∑
j=1

g0,ija
†
i ai(b

†
j + bj)

+
2

∑
i=1

2

∑
j=1

εij[aie
i(ωd,ijt+φij) + a†

i e−i(ωd,ijt+φij)], (1)

where the first term describes the energy of the cavity modes with creation (annihilation)
operators a (a†) and resonance frequency ωi; the second term represents the mechanical
modes with creation (annihilation) operators b (b†) and resonance frequency Ωi; the
third term denotes the optomechanical coupling between the cavity modes ai and the
mechanical modes bj with g0,ij being the vacuum optomechanical coupling strength; and
the last term corresponds to the interaction between the cavity modes and the driving
fields with amplitude εij, frequency ωd,ij, and phase φij. We linearize the Hamiltonian
by expanding cavity modes as the sum of their steady-state field amplitudes and the

small fluctuations, i.e., ai → ai + ∑
2
j=1 αije

−iωd,ijt, where αij is the coherent state amplitude
produced in cavity i due to the drive with detuning ∆ij = ωi − ωd,ij. Here, we choose
∆11 = Ω1 + δ1, ∆12 = −(Ω2 + δ2), ∆21 = −(Ω1 + δ1), and ∆22 = Ω2 + δ2 with δi being
the extra detuning from the exact red (blue) sidebands to study the entanglement in this
system, as shown in Figure 1b. Moving into the rotating frame with respect to H0/h̄ =

∑
2
i=1 ωia

†
i ai + (Ωi + δi)b

†
i bi and neglecting the counter-rotating and off-resonant terms

under the condition of Ωi, |Ω1 − Ω2| > {κi, G11, G22, J12, J21}, the linearized Hamiltonian
can be derived as (see details in Appendix A)

H/h̄ = −
2

∑
i=1

δib
†
i bi + (G11eiφ11 a†

1b1 + J12eiφ12 a†
1b†

2 + J21eiφ21 a†
2b†

1 + G22eiφ22 a†
2b2 + H.c), (2)

where G11 = g0,11|α11|, G22 = g0,22|α22|, J12 = g0,12|α12|, and J21 = g0,21|α21| are the
field-enhanced optomechanical coupling strengths. Here, we denote Gij(Jij) as the red
(blue) sidebands of cavity ai on the mechanical mode bj. Due to the loop interaction
in this optomechanical system, only the phase difference between the optomechanical
coupling strengths has physical effects. By redefining the operators a1 → a1eiφ11 , b2 →
b2ei(φ12−φ11), a2 → a2eiφ21 , the Hamiltonian Equation (2) becomes

H/h̄ = −δ1b†
1b1 − δ2b†

2b2 + G11(a†
1b1 + a1b†

1) + J12(a†
1b†

2 + a1b2) + J21(a†
2b†

1 + a2b1)

+G22(a†
2b2e−iφ + a2b†

2eiφ), (3)

with φ = φ11 + φ21 − φ12 − φ22 being the phase difference.
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Figure 1. (a) Schematic of the optomechanical system. Two cavity modes a1 and a2 are, respectively,

coupled to two mechanical modes b1 and b2 with the effective optomechanical coupling strengths

G11, J12, J21, and G22. (b) Frequency domain schematic of the four-tone driving scheme. Cavity mode

a1 with resonance frequency ω1 is driven by two tones at frequencies ωd,11 = ω1 − (Ω1 + δ1) and

ωd,12 = ω1 + (Ω2 + δ2). Cavity mode a2 with resonance frequency ω2 is driven by two tones at

frequencies ωd,21 = ω2 + (Ω1 + δ1) and ωd,22 = ω2 − (Ω2 + δ2).

According to the linearized Hamiltonian (3) and Heisenberg equation of motion, the
quantum Langevin equations (QLEs) can be derived by adding the damping and input
noise terms phenomenologically [64,65,67,68], which yields

ȧ1 = −κ1

2
a1 − iG11b1 − i J12b†

2 +
√

κ1a1,in,

ȧ2 = −κ2

2
a2 − i J21b†

1 − iG22b2e−iφ +
√

κ2a2,in,

ḃ1 = −
(γ1

2
− iδ1

)

b1 − iG11a1 − i J21a†
2 +

√
γ1b1,in,

ḃ2 = −
(γ2

2
− iδ2

)

b2 − i J12a†
1 − iG22a2eiφ +

√
γ2b2,in, (4)

where κi (i = 1, 2) is the decay rate of cavity mode ai with zero-mean noise operator
ai,in, and γi is the damping rate of mechanical mode bi with zero-mean operator bi,in.
Defining the quadratures Ui = (ai + a†

i )/
√

2, Vi = (ai − a†
i )/i

√
2, Xi = (bi + b†

i )/
√

2,

Pi = (bi − b†
i )/i

√
2, and the corresponding input noise operators Ui,in = (ai,in + a†

i,in)/
√

2,

Vi,in = (ai,in − a†
i,in)/i

√
2, Xi,in = (bi,in + b†

i,in)/
√

2, Pi,in = (bi,in − b†
i,in)/i

√
2, the linearized

QLEs can be written in the following compact matrix form:

µ̇(t) = Aµ(t) + n(t), (5)

where µ(t) = (U1(t), V1(t), U2(t), V2(t), X1(t), P1(t), X2(t), P2(t))
T is the vector of the fluc-

tuation operators, n(t) = (
√

κ1U1,in(t),
√

κ1V1,in(t),
√

κ2U2,in(t),
√

κ2V2,in(t),
√

γ1X1,in(t),√
γ1P1,in(t),

√
γ2X2,in(t),

√
γ2P2,in(t))

T is the vector of the corresponding noises, and the
coefficient matrix
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A =

























−κ1/2 0 0 0 0 G11 0 −J12

0 −κ1/2 0 0 −G11 0 −J12 0
0 0 −κ2/2 0 0 −J21 −G22 sin φ G22 cos φ

0 0 0 −κ2/2 −J21 0 −G22 cos φ −G22 sin φ

0 G11 0 −J21 −γ1/2 −δ1 0 0
−G11 0 −J21 0 δ1 −γ1/2 0 0

0 −J12 G22 sin φ G22 cos φ 0 0 −γ2/2 −δ2

−J12 0 −G22 cos φ G22 sin φ 0 0 δ2 −γ2/2

























. (6)

The formal solution of Equation (5) is

µ(t) = M(t)µ(0) +
∫ t

0
dsM(s)n(t − s), (7)

where
M(t) = exp{At}. (8)

The system is stable when all of the eigenvalues of A have negative real parts, which
can be derived from the Routh–Hurwitz criterion [73]. When the stability conditions are
fulfilled, one can obtain M(∞) = 0 in the steady state.

The steady state of the system is a zero-mean Gaussian state due to the linearized
dynamics and the Gaussian nature of the input quantum noises, which is fully characterized
by an 8 × 8 correlation matrix (CM) V, with its components

Vij = [〈µi(∞)µj(∞) + µj(∞)µi(∞)〉]/2. (9)

When the system is stable, by substituting Equation (7) into Equation (9), we can obtain

Vij = ∑
k,l

∫ ∞

0
ds

∫ ∞

0
ds′Mik(s)Mjl(s

′)Φkl(s − s′), (10)

where Φkl(s − s′) = (〈nk(s)nk(s
′) + nl(s

′)nk(s)〉)/2 = Dklδ(s − s′). According to the
correlation functions that the noise operators satisfy,

〈ai,in(s)a†
i,in(s

′)〉 = δ(s − s′), 〈a†
i,in(s

′)ai,in(s)〉 = 0,

〈bi,in(s)b
†
i,in(s

′)〉 = (nm,i + 1)δ(s − s′), 〈b†
i,in(s

′)bi,in(s)〉 = nm,iδ(s − s′), (11)

where nm,i = {exp[h̄Ωi/(kBT)]− 1}−1 denotes the thermal phonon number of the mechani-
cal mode bi with kB being the Boltzmann constant and T being the environment temperature,
we can obtain D = Diag[κ1/2, κ1/2, κ2/2, κ2/2, (2nm,1 + 1)γ1/2, (2nm,1 + 1)γ1/2, (2nm,2 +
1)γ2/2, (2nm,2 + 1)γ2/2], and Equation (10) becomes V =

∫ ∞

0 dsM(s)DM(s)T . The time

evolution of the correlation matrix V satisfies V̇(t) = AV(t) + V(t)AT + D [36]. In the
steady state, the correlation matrix V fulfills the Lyapunov equation [30]:

AV + VAT = −D, (12)

which is a linear equation for V and can be straightforwardly solved for given parameters
in matrix A and matrix D; but the general analytical expression is too cumbersome to be
reported here. The bipartite entanglement between different modes can be quantified by
the logarithmic negativity [30,31,74]

EN = max[0,− ln 2η−], (13)

where η− ≡ 2−1/2{Σ(Vbp)− [Σ(Vbp)
2 − 4 det Vbp]

1/2}1/2, with Σ(Vbp) ≡ det B + det B′ −
2 det C. The reduced CM Vbp contains the entries of V, and it can be obtained by selecting
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the rows and columns of the interesting mode in V. By writing the reduced CM Vbp in a
2 × 2 block form, we have

Vbp ≡
(

B C

CT B′

)

. (14)

Note that matrix A in Equation (6) contains the phase difference φ; hence, the correla-
tion matrix V and the logarithmic negativity EN depend on φ. We will study how to control
the entanglement quantified by Equation (13) in this optomechanical system by tuning the
phase difference φ.

Furthermore, based on the correlation matrix V, the final average phonon numbers in
the mechanical modes b1 and b2 can be calculated by

〈b†
1b1〉 = n

f
1 =

V5,5 + V6,6 − 1

2
,

〈b†
2b2〉 = n

f
2 =

V7,7 + V8,8 − 1

2
, (15)

which affect the quantum entanglement in the hybrid system.

3. Results and Discussion

In this section, we choose the parameters from a recent experiment to demonstrate the
numerical results about the phase-controlled entanglement in this system. The parameters
are [65] Ω1/2π = 4.34 MHz, Ω2/2π = 5.64 MHz, κ1/2π = 2.42 MHz, κ2/2π = 1.98 MHz,
γ1/2π = 40 Hz, γ2/2π = 80 Hz, and T = 20 mK. The system works in the resolved
sideband regime and the rotating-wave approximation is valid.

In Figure 2, we plot the logarithmic negativity EN between (a) the two cavity modes as
well as (b) the two mechanical modes versus the optomechanical coupling strength G22/2π

and the phase difference φ/π. At G22 = 0, the optomechanical interactions cannot form
a closed loop and the phase-dependent effect is absent. With the increase in the coupling
strength G22, it is evident that the quantum entanglement depends on the phase difference
φ. Note that cavity mode a1 is driven on the blue (red) sideband of the mechanical mode
b2 (b1), while cavity mode a2 is driven on the blue (red) sideband of the mechanical mode
b1 (b2). Therefore, the parametric-amplifier interaction J12(a†

1b†
2 + a1b2) entangles a1 and

b2, and the interaction J21(a†
2b†

1 + a2b1) entangles a2 and b1. Moreover, the beam-splitter
interaction G11(a†

1b1 + a1b†
1) swaps a1 and b1, and the interaction G22(a†

2b2e−iφ + a2b†
2eiφ)

swaps a2 and b2. Consequently, the two cavity modes can be entangled via the routes
a1 ↔ b1 ↔ a2 and a1 ↔ b2 ↔ a2, and the two mechanical modes can also be entangled
via the routes b1 ↔ a1 ↔ b2 and b1 ↔ a2 ↔ b2, where the phase difference φ plays a
vital role. At φ = π, we can see that both the cavity–cavity and mechanical–mechanical
entanglement firstly decrease from an initial value to zero when G22 increases. With further
increasing G22 above a critical value, it is shown that the quantum entanglement starts to
increase again. This phenomenon is closely related to the quantum interference between
the eigenmodes of the system [34].

We proceed to study the effect of the entangling-interaction strength J12 on the en-
tanglement in Figure 3, assuming J21 = J12 for simplicity. Figure 3a and Figure 3c plot,
respectively, the dynamics of the cavity–cavity entanglement and mechanical–mechanical
entanglement for φ = 0, π/2, and π. It is shown that stationary entanglement can be
achieved after t ≈ 2 µs, which depends on the phase difference φ. Moreover, Figure 3b
and Figure 3d plot the stationary cavity–cavity entanglement and mechanical–mechanical
entanglement as functions of the entangling-interaction strength J12/2π for different values
of phase difference φ. At φ = 0, both the cavity–cavity entanglement and the mechanical–
mechanical entanglement are enhanced monotonically with the increase in the coupling
strength J12 in the parameter regimes. When the phase difference φ is tuned to be π/2
or π, the stationary logarithmic negativity EN becomes larger and reaches the maximum
with the increase of J12. With further increasing J12, the entanglement will decrease and be
zero above a critical value of J12. On one hand, it is straightforward that the entanglement
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can be enhanced by increasing the coupling strengths J12 (J21), which are strengthened
by the blue-detuned driving fields. On the other hand, increasing J12 (J21) can suppress
the cavity-cooling effect for given G12 (G21) and increase the effective temperature of the
cavity and mechanical modes, which will reduce the entanglement. In addition, when the
coupling strengths J12 and J21 are too strong, the system will become unstable. Therefore,
the maximum entanglement is achieved by balancing these two competing effects [35].
Throughout this work, we have checked numerically that the chosen parameters satisfy the
stability condition.

Figure 2. Contour plots of the logarithmic negativity EN between (a) the two cavity modes and (b) the

two mechanical modes as functions of the coupling strength G22/2π and the phase difference φ/π.

Parameters are Ω1/2π = 4.34 MHz, Ω2/2π = 5.64 MHz, κ1/2π = 2.42 MHz, κ2/2π = 1.98 MHz,

γ1/2π = 40 Hz, γ2/2π = 80 Hz, δ1 = δ2 = 0, G11/2π = 0.5 MHz, J21 = J12 = 2π × 0.15 MHz, and

T = 20 mK.

Furthermore, we study the phase dependence of the optomechanical entanglement in
Figure 4. The logarithmic negativity EN between the two cavity modes is plotted as a func-
tion of the phase difference φ for different values of J12 in Figure 4a. At J12/(2π) = 0.1 MHz,
the maximum cavity–cavity entanglement is achieved around φ = π and the minimum
value locates at φ = 0 (2π). However, when the value of J12 is increased to be 0.2 MHz and
0.25 MHz, the peak around φ = π turns into a dip. Especially, the cavity–cavity entangle-
ment in the vicinity of φ = π is absent for J12 = 0.25 MHz. Therefore, the phase difference
φ can be exploited as a switch of the cavity–cavity entanglement between zero and nonzero
value. Similarly, Figure 4b plots the logarithmic negativity EN between the two mechanical
modes versus the phase difference φ. It is shown that the mechanical–mechanical entangle-
ment reaches the minimum at φ = π and the maximum at φ = 0 (2π) for J12/2π = 0.1, 0.2,
and 0.25 MHz. Moreover, the entanglement can be strengthened monotonically by increas-
ing the coupling strength J12 at φ = 0 (2π). Consequently, the quantum entanglement can
be controlled by the phase difference in this optomechanical system.
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Figure 3. Logarithmic negativity EN affected by the phase difference φ. (a) Time evolution of the

logarithmic negativity EN between the cavity modes a1 and a2 with J12/2π = 0.2 MHz for φ = 0, π/2,

and π. (b) Stationary logarithmic negativity EN between the cavity modes a1 and a2 as a function

of J12/2π for φ = 0, π/2, and π. (c) Time evolution of the logarithmic negativity EN between the

mechanical modes b1 and b2 with J12/2π = 0.2 MHz for φ = 0, φ = π/2, and φ = π. (d) Stationary

logarithmic negativity EN between the mechanical modes b1 and b2 as a function of J12/2π for φ = 0,

π/2, and π. Here, φ = 0, π/2, π correspond to the solid line, dashed line, and dash-dotted line,

respectively. Other parameters are the same as Figure 2, except G22/2π = 1 MHz. Here, we keep

J21 = J12.
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Figure 4. Plots of the logarithmic negativity EN between (a) the two cavity modes and (b) the two

mechanical modes versus the phase difference φ/π for J12/2π = 0.1 MHz (solid lines), 0.2 MHz

(dashed lines), and 0.25 MHz (dash-dotted lines). The other parameters are the same as those

in Figure 3.
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As mentioned above, the entanglement between the two cavity (mechanical) modes
is realized via the entanglement transfer between the cavity and mechanical modes. In
Figure 5, we study the optomechanical entanglement between the cavity mode a1 (a2) and
mechanical mode b2 (b1). Figure 5a plots the time evolution of the logarithmic negativity
EN between the cavity mode a1 and mechanical mode b2 with J12/2π = 0.15 MHz for
different values of phase difference φ. It is shown that stationary entanglement can be
achieved after t ≈ 2 µs and it is strengthened when the the phase difference φ is increased
from 0 to π. The logarithmic negativity EN between a1 and b2 versus the entangling-
interaction strength J12 is plotted in Figure 5b, which shows that stationary entanglement
can be enhanced by increasing the strength J12 and reaches the maximum at some critical
value for φ = 0 and π/2. In the chosen parameter regime, the stationary entanglement
increases monotonically with the increase in J12 for φ = π. In addition, Figure 5c plots the
time evolution of the logarithmic negativity EN between a2 and b1 for φ = 0, π/2, and π,
where stationary entanglement can also be obtained. The stationary entanglement between
a2 and b1 versus J12 is plotted in Figure 5d, where the maximum entanglement is achieved
around J12/2π = 0.15 MHz for various phase differences. Figure 5 also shows that the
stationary entanglement between a2 and b1 is weaker than the entanglement between a1

and b2, which is mainly due to G22 > G11 under consideration.
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0.05
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(b)
E
N

(c)

E
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t( s)

(d)

E
N

J12/2 (MHz)

J12/2 (MHz)

Figure 5. Logarithmic negativity EN between the cavity and mechanical modes affected by the phase

difference φ. (a) Time evolution of the logarithmic negativity EN between the cavity mode a1 and

mechanical mode b2 with J12/2π = 0.15 MHz for φ = 0, π/2, and π. (b) Stationary logarithmic

negativity EN between the cavity mode a1 and mechanical mode b2 as a function of J12/2π for various

phase differences. (c) Time evolution of the logarithmic negativity EN between the cavity mode a2

and mechanical mode b1 with J12/2π = 0.15 MHz for φ = 0, π/2, and π. (d) Stationary logarithmic

negativity EN between the cavity mode a2 and mechanical mode b1 versus the J12/2π for various

phase differences. Here, the solid line, dashed line, and dash-dotted line represent φ = 0, π/2, and π,

respectively. The other parameters are the same as those in Figure 3.

The robustness of the quantum entanglement with respect to the environmental tem-
perature is shown in Figure 6. The value of EN decreases with the increasing temperature
for various phase differences. Figure 6a plots the logarithmic negativity EN between the
cavity modes a1 and a2 versus the temperature T. At φ = 0, the cavity–cavity entanglement
persists up to 150 mK. The entanglement vanishes at higher temperature for φ = π/2
and φ = π. The entanglement between the two mechanical modes shown in Figure 6b
is stronger than the cavity–cavity entanglement and survives at higher temperature. In
addition, the entanglement between the cavity mode a1 and mechanical mode b2 versus the
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temperature is plotted in Figure 6c, where EN ≈ 0.11 can be obtained for T = 400 mK and
φ = π. The logarithmic negativity EN between the cavity mode a2 and mechanical mode b1

is much smaller than the value in Figure 6c and survives at much lower temperature, which
results from G22 > G11. The value of EN between a2 and b1 can be increased by reducing
G22, but the entanglement between the two cavity (mechanical) modes will be absent in
some parameter regimes shown in Figure 2.

E
N

T (K)

a1-a2(a) (b)

E
N

T (K)

b1-b2

E
N

T (K)

a1-b2
(d)

E
N

T (K)

a2-b1(c)

Figure 6. Plots of logarithmic negativity EN as functions of the environment temperature T for φ = 0

(solid lines), π/2 (dashed lines), and π (dash-dotted lines). Panel (a) represents the entanglement

between the two cavity modes, panel (b) represents the entanglement between the two mechanical

modes, panel (c) corresponds to the entanglement between the cavity mode a1 and mechanical mode

b2, and panel (d) corresponds to the entanglement between the cavity mode a2 and mechanical mode

b1. The other parameters are the same as those in Figure 3, except J12/2π = J21/2π = 0.15 MHz.

Finally, the entanglement usually survives at low final phonon numbers. The beam-
splitter interaction such as G11(a†

1b1 + a1b†
1) can not only result in state transfer between

a1 and b1 but also cool the mechanical mode b1. In Figure 7, we numerically study the

final average phonon numbers n
f
1 and n

f
2 by choosing the parameters for observing the

entanglement mentioned above. Figure 7a plots the phonon numbers n
f
1 and n

f
2 as a

function of the optomechanical coupling strength J12/2π with φ = 0, which shows that both

n
f
1 and n

f
2 increase monotonically with the enhancement of J12. The parametric-amplifier

interaction J12(a†
1b†

2 + a1b2) is caused by driving the cavity mode a1 on the blue sideband
of mechanical mode b2, where a drive photon is scattered into a photon at frequency ω1

and a phonon at frequency Ω2, resulting in the monotonic increase in phonon number at
larger J12. It is noted that quantum phase transition in the two-mode Rabi model has been
recently investigated by analyzing the eigenenergy of the system [75], but quantum phase
transition of the phonon number of the mechanical mode in optomechanical systems has

seldom been reported. In addition, here, we show that both n
f
1 and n

f
2 are smaller than 1 in

the chosen parameter regime. Therefore, simultaneous cooling of the mechanical modes
and quantum entanglement can be realized in this optomechanical system. In addition, the
phase dependence of phonon numbers is plotted in Figure 7b. The final average phonon
numbers of the two mechanical modes reach the maximum at φ = π and the minimum
at φ = 0 (2π), which is contrary to the entanglement between the two mechanical modes
shown in Figure 4b.
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Figure 7. The final average phonon numbers n
f
1 (solid line) and n

f
2 (dashed line) versus (a) the

optomechanical coupling strength J12/2π with φ = 0 and (b) the phase difference φ/π with J12/2π =

J21/2π = 0.2 MHz. The other parameters are the same as those in Figure 3.

4. Conclusions

In conclusion, we have explored the phase-controlled entanglement in a multimode
optomechanical system, where two cavity modes are, respectively, coupled to two mechan-
ical modes via radiation pressure. Four tones are applied to the cavity modes to generate
the entanglement, where each cavity is driven on the red sideband and blue sideband
of the two mechanical modes, respectively. The dynamics of the bipartite entanglement
is studied, which shows that the stationary entanglement can be generated. We have
shown that the entanglement can be effectively modulated by the phase difference between
the optomechanical coupling strengths that form a loop interaction. By tuning the op-
tomechanical coupling strengths and phase difference in some parameter regimes, we can
realize simultaneously the entanglement between the two cavity mode, between the two
mechanical modes, and between the cavity and mechanical modes. We also find that the
entanglement is robust against temperature and the mechanical resonators can be cooled to
the ground state when the entanglement is generated.
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Appendix A. Derivation of the Linearized Hamiltonian

We can linearize the Hamiltonian Equation (1) by the following two steps:
(1) Expanding the cavity modes as the sum of their steady-state field amplitudes

and the small fluctuations [64,65,67,68], i.e., ai → ai + ∑
2
j=1 αi je

−iωd,i j t , where αi j is the
coherent state amplitude produced in cavity i due to the drive. Then, we can obtain
the following approximation:

a†
i ai ≈ a†

i

2

∑
j=1

αije
−iωd,ijt + ai

2

∑
j=1

α∗ije
iωd,ijt. (A1)

(2) Moving into the interaction picture with respect to [64,65,67,68],

H0/h̄ =
2

∑
i=1

ωia
†
i ai + (Ωi + δi)b

†
i bi, (A2)

the linearized Hamiltonian becomes

H/h̄ = −
2

∑
i=1

δib
†
i bi +

2

∑
i=1

2

∑
j=1

g0,ij



a†
i

2

∑
j=1

αije
−iωd,ij eiωit + ai

2

∑
j=1

α∗ije
iωd,ijte−iωit





[

b†
j ei(Ωj+δj)t + bje

−i(Ωj+δj)t
]

= −
2

∑
i=1

δib
†
i bi +

2

∑
i=1

2

∑
j=1

g0,ij

[

a†
i (αi1ei∆i1t + αi2ei∆i2 ) + ai(α

∗
i1e−i∆i1t + α∗i2e−i∆i2t)

][

b†
j ei(Ωj+δj)t + bje

−i(Ωj+δj)t
]

= −
2

∑
i=1

δib
†
i bi + g0,11α11a†

1b1 + g0,11α∗11a1b†
1 + g0,12α12a†

1b†
2 + g0,12α∗12a1b2 + g0,21α21a†

2b†
1 + g0,21α∗21a2b1

+g0,22α22a†
2b2 + g0,22α∗22a2b†

2 + HRWA + Hoff, (A3)

where HRWA describes the rapidly oscillating terms at frequencies ±2[Ω1(2)+ δ1(2)] and ±(Ω1 +
δ1 + Ω2 + δ2), and Hoff denotes the off-resonant terms oscillating at ±(Ω1 + δ1 − Ω2 − δ2).
Here, ∆ij = ωi − ωd,ij is the detuning of the drive tone with respect to cavity ai, and we
consider the situation where

∆11 = Ω1 + δ1, ∆12 = −(Ω2 + δ2), ∆21 = −(Ω1 + δ1), ∆22 = Ω2 + δ2. (A4)

Under the condition Ωi, |Ω1 − Ω2| > {κi, G11, G22, J12, J21}, the rotation wave ap-
proximation (RWA) can be applied and the off-resonant terms can be ignored. Defining
g0,11α11 = G11eiφ11 , g0,22α22 = G22eiφ22 , g0,12α12 = J12eiφ12 , and g0,21α21 = J21eiφ21 as the
field-enhanced optomechanical coupling strengths, the linearized Hamiltonian can be
written as

H/h̄ = −
2

∑
i=1

δib
†
i bi + (G11eiφ11 a†

1b1 + J12eiφ12 a†
1b†

2 + J21eiφ21 a†
2b†

1 + G22eiφ22 a†
2b2 + H.c), (A5)

which is Equation (2) in the main text.
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