
SEARCHES FOR NEW PHYSICS USING UNSUPERVISED MACHINE
LEARNING FOR ANOMALY DETECTION AT THE ATLAS

DETECTOR AND THE DEVELOPMENT OF PARTICLE
IDENTIFICATION ALGORITHMS FOR THE HL-LHC

By
JACOB E. CROSBY

Bachelor of Science in Physics
Michigan State University

Lansing, Michigan
2019

Master of Science in Physics
Oklahoma State University

Stillwater, Oklahoma
2023

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
May, 2024

C
ER

N
-T

H
ES

IS
-2

02
4-

05
9

10
/0

4/
20

24



SEARCHES FOR NEW PHYSICS USING UNSUPERVISED MACHINE
LEARNING FOR ANOMALY DETECTION AT THE ATLAS

DETECTOR AND THE DEVELOPMENT OF PARTICLE
IDENTIFICATION ALGORITHMS FOR THE HL-LHC

Dissertation Approved:

Dr. Alexander Khanov
Dissertation Advisor

Dr. Mario Borunda

Dr. K. S. Babu

Dr. Cong Pu

ii



ACKNOWLEDGMENTS

First off, I would like to thank my advisor, Dr. Alexander Khanov. Without his guidance and
patience, my experience through graduate school could have been very different. Dr. Khanov
accepted me as an REU student 6 years ago and introduced me to particle physics. The memorable
time I had with him, and the team influenced my decision on choosing Oklahoma State University
for graduate school which has completely changed my life. He has been a pivotal role, and I cannot
thank him enough for being that. Dr. Flera Rizatdinova, thank you for your caring leadership.
You’re a vital piece that is required for the unity of our team.

I would also like to thank The High Energy Physics team at Oklahoma State University. You
all have been my physics family and have truly been a large part of this special experience. To my
fellow graduate friends and colleagues. You have all helped make OSU feel like home and I hope
you find the warmth in others as I found in all of you. Sincere thanks to Dr. Alexander Khanov, Dr.
K. S. Babu, Dr. Mario Borunda, and Dr. Cong Pu for accepting to be on my dissertation advisory
committee.

To my friends overseas at CERN, thank you for making unforgettable memories with me and
showing me how truly American I really am. Huge thanks to Luke, Chetna and Fabienne who acted
with great urgency when I had a cooking accident making gnocchi, you all get two thumbs up. I
would like to thank my colleagues in the Flavor Tagging team who helped reinforce my confidence
and supplied guidance when sought.

I would like to thank the anomaly detection analysis team, Sergei Chekanov, Rui Zhang, and
Wasikul Islam. Our synergy brought our analysis into fruition and helped pave the way for similar
techniques. May you all remain innovative and efficient.

Acknowledgments reflect the views of the author and are not endorsed by committee members or Oklahoma State
University.

iii



Not many times in one’s life do they get to experience a pandemic during their graduate degree.
I would like to give credit to all those within OSU and the physics department for their patience
and dedication to education, even through such chaos. We all certainly lived in interesting times.

Of course, my beloved family who have always been there with necessary support and have
always had my back. I Love you all. Robyn Edwards, without this nexus of choices and people, we
would never have met. I can never be thankful enough to the aligned stars that brought you into my
life.

Lastly, I want to dedicate this thesis to my cousin and best friend who has passed before his
time. Drew, I know you would be proud. This one is for you.

Acknowledgments reflect the views of the author and are not endorsed by committee members or Oklahoma State
University.

iv



Name: JACOB E. CROSBY
Date of Degree: MAY, 2024
Title of Study: SEARCHES FOR NEW PHYSICS USING UNSUPERVISED MACHINE

LEARNING FOR ANOMALY DETECTION AT THE ATLAS DETECTOR
AND THE DEVELOPMENT OF PARTICLE IDENTIFICATION
ALGORITHMS FOR THE HL-LHC

Major Field: PHYSICS
Abstract: This document contains discussions on completed and ongoing projects that have devel-
oped over the past few years while working on the ATLAS detector located at CERN in Geneva,
Switzerland. The first discussion will be on my qualification task for the ATLAS collaboration
which is on the development and future plans of the DL1d tagger that is currently used as a base-
line tagger for run 4 of the ATLAS detector. After, the discussion will transition to an analysis
that applies a novel anomaly detection technique which uses a neural network architecture called
the autoencoder. This neural network is then trained on 1% randomly selected events of run 2 data
from the ATLAS detector. Once the model and anomalous regions are defined, the model is used
to find phase spaces where events that contain physics beyond the standard model may occur. Sta-
tistical analysis is then applied to these phase spaces in order to find signatures of new physics. No
significant signatures are found. Lastly, I will discuss an ongoing search for a new massive scalar
X decaying into a new light scalar Y and the standard model Higgs boson H through the process
X→YH→bbbb in the boosted topology.

v



TABLE OF CONTENTS
Chapter Page

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

II. THE STANDARD MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 A Model of Leptons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Theoretical Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Fundamental Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Spontaneous Symmetry Breaking . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 The Higgs Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Beyond the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Unexplained Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

III. THE ATLAS DETECTOR AT THE LHC . . . . . . . . . . . . . . . . . . . . . 26

3.1 The Large Hadron collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.1 Cross Section, Luminosity and Pile-Up . . . . . . . . . . . . . . . . . . . 28

3.2 The ATLAS Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 The Coordinate System of ATLAS . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 The Inner Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.3 The Calorimeter System . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.4 The Muon System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.5 Trigger and Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . 43

vi



Chapter Page
3.3 The High-Luminosity LHC and the ATLAS Detector Upgrade . . . . . . . . . . . 44

3.3.1 The Inner Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 B-Tagging and Vertex Reconstruction for the ITk . . . . . . . . . . . . . . 47
3.3.3 High Granularity Timing Detector . . . . . . . . . . . . . . . . . . . . . . 48

IV. OBJECT RECONSTRUCTION AND EVENT SIMULATION IN ATLAS . . . 51

4.1 Track and Vertex Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Muons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.1 Jet Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.2 Small Radius Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.3 Large Radius Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.4 PFlow Object Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.5 Jet Vertex Tagger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Heavy-Flavor Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5.1 Impact Parameter Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5.2 Secondary Vertex Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5.3 JetFitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 High-Level Taggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.6.1 Working Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6.2 MV2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6.3 DL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.6.4 GN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Event Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.7.1 Monte Carlo Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

vii



Chapter Page
4.7.2 Detector Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

V. DEEP LEARNING MODEL TRAINING FOR THE HL-LHC . . . . . . . . . 81

5.1 DL1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1.1 DL1d design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Software Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4 HL-LHC Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.1 Object Selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.2 Sample Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4.3 Training DL1d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

VI. SEARCH FOR NEW PHYSICS USING UNSUPERVISED MACHINE LEARN-

ING FOR ANOMALY DETECTION . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Event Selection and Object Definitions . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.1 Photon Selection and Reconstruction . . . . . . . . . . . . . . . . . . . . 105
6.2.2 Jet Definition and Selection . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2.3 B-jet Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2.4 Final Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.1 Benchmark BSM Models . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.2 Sequential Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.3 Simplified Dark Matter Model . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.4 Kaluza-Klein Bosons Decaying to Radions . . . . . . . . . . . . . . . . . 108
6.3.5 Composite-Lepton Model . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.6 Charged Higgs Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

viii



Chapter Page
6.4 Event Input Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.5 Autoencoder Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5.1 Determination of Anomaly Region . . . . . . . . . . . . . . . . . . . . . 118
6.6 Analysis of Anomaly Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.6.1 Background Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.6.2 Statistical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.6.3 Background Fit Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.7.1 Limit Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

VII. PRELIMINARY NON-AGNOSTIC BSM MODEL ANOMALY SEARCH . . . 148

7.1 SH → 𝑏𝑏̄𝑏𝑏̄ Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.1.1 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.2 Event Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.2.1 Autoencoder Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.3 Preliminary Loss Distribution Studies . . . . . . . . . . . . . . . . . . . . . . . . 151
7.3.1 Preliminary Anomaly Region Definition . . . . . . . . . . . . . . . . . . 154

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

VIII. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

APPENDIX A: GN1 for Upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
APPENDIX B: Run2 Datasets and HLT Lepton Triggers for Anomaly Detection . . . . 171
APPENDIX C: Monte Carlo Samples for the Background Hypothesis . . . . . . . . . 173
APPENDIX D: RMM Event Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 175

ix



Chapter Page
APPENDIX E: Autoencoder Topology Studies . . . . . . . . . . . . . . . . . . . . . 181
APPENDIX F: Alternative AE Models for Systematics . . . . . . . . . . . . . . . . . 184
APPENDIX G: S/B Improvement Example . . . . . . . . . . . . . . . . . . . . . . . 186
APPENDIX H: Statistical Fit Function Studies for 1pb AR . . . . . . . . . . . . . . . 188
APPENDIX I: Statistical Fit Function Studies for 0.1pb AR . . . . . . . . . . . . . . 199
APPENDIX J: Fit Studies on 10% of Data . . . . . . . . . . . . . . . . . . . . . . . . 210

x



LIST OF TABLES
Table Page

1. The Standard Model (excluding antiparticles) particles and their relevant informa-
tion [91]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2. Specs of the Large Hadron Collider as of Run 2 [59]. . . . . . . . . . . . . . . . . 27
3. Pseudorapidity of ATLAS sub-detectors [29]. . . . . . . . . . . . . . . . . . . . . 33
4. Layout Parameters of the ITk Strip Detector barrel. Each strip is 2.8 m long. [30]. . 47
5. Main layout parameters for the strip detector end-caps. [30]. . . . . . . . . . . . . 50
6. Variables for the IP2D and IP3D taggers (3 each) . . . . . . . . . . . . . . . . . . 69
7. Input variables for DIPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8. Variable overview for the SV1 algorithm [8] . . . . . . . . . . . . . . . . . . . . . 71
9. Variable overview of JetFitter algorithm for b-tagging [8] . . . . . . . . . . . . . . 72
10. Variable overview of JetFitter algorithm for c-tagging [8] . . . . . . . . . . . . . . 73
11. Summary of b-tagging single cut WPs . . . . . . . . . . . . . . . . . . . . . . . . 75
12. Training samples used for DL1d for HL-LHC studies [39] . . . . . . . . . . . . . . 90
13. Training samples used for DL1d for HL-LHC studies . . . . . . . . . . . . . . . . 91
14. Training samples used for DL1d for HL-LHC studies . . . . . . . . . . . . . . . . 91
15. Dataset statistics used for training DL1d for the HL-LHC . . . . . . . . . . . . . . 92
16. C-hadron percentages in both training samples prior to combining . . . . . . . . . 96
17. Muon selections for this analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
18. Electron selections for this analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 105
19. Jet definitions used in this analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 106
20. Optimized Autoencoder architecture chosen for the anomaly detection analysis.

More neurons may have optimized it further but was limited due to computational
power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

21. Theoretical cross-sections times branching ratios and after 𝐴𝑐𝑐 ×𝐸𝑓𝑓 corrections
of multiple BSM models near the 400 GeV mass scale that include a single isolated
lepton in the final state. The proposed ARs of 10 pb, 1 pb and 0.1 pb covers the
cross-sections of most of these models. . . . . . . . . . . . . . . . . . . . . . . . . 120

22. Number of events after the anomaly score cut for each AR. The 10 pb BSM region
is defined by the logarithm of the loss function > -9.10, the 1 pb is defined by the
logarithm loss > -8.00, and likewise for the 0.1 pb logarithm loss > -6.50 . . . . . 120

23. Statistical quantities for SM MC+LE-CR fit for the 10 pb AR . . . . . . . . . . . . 129
24. Input features to the GN1 model. Basic jet kinematics, along with information about

the reconstructed track parameters and constituent hits are used [15]. . . . . . . . . 170

xi



Table Page
25. Sensitivity gain of the radion model with Wkk set to 2 TeV before and after applying

the 10 pb and 1 pb AR cut. Event yields counted in the 400-800 GeV range for the
invariant mass mje. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

26. Statistical quantities for SM MC+LE-CR fit for the 1 pb AR. . . . . . . . . . . . . 189
27. Statistical quantities for SM MC+LE-CR fit for the 1 pb AR. . . . . . . . . . . . . 200

xii



LIST OF FIGURES
Figure Page

1. The Standard Model of Particle Physics. This displays all three generations of
fermions in purple and green along with their antiparticle. On the right in red shows
the force carrying bosons along with the Higgs boson shown in yellow. Correspond-
ing table of values can be found in Table 1 on page 25. . . . . . . . . . . . . . . . 7

2. The pattern of weak isospin, 𝑇3, and weak hypercharge, 𝑌𝑊 , of the known elemen-
tary particles. The electric charge is shown as 𝑄 along the weak mixing angle. The
neutral Higgs field is seen being circled, this field breaks the electroweak symmetry
and interacts with other particles, giving them mass. . . . . . . . . . . . . . . . . 15

3. Graph of U(𝜙) in Eq. 2.37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4. Graph of U(𝜙1, 𝜙2) in Eq. 2.43 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5. Schematic of the Large Hadron Collider [59] showing all the accelerators and their

relative positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6. Cumulative integrated luminosity delivered and recorded by the ATLAS detector

during Run 2 of the LHC between the years 2015 to 2018 with a CME of √s =
13 TeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7. The µ distribution measured by the ATLAS detector during Run 2 [67] . . . . . . . 31
8. The ATLAS detector and its subsystems as of Run 2 [29] . . . . . . . . . . . . . . 32
9. A quarter-section of the ATLAS ID showing its major elements with their active

dimensions. [29] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10. Drawing of the ID sub-detectors and their sensors. Showing the spacing of each of

the sensor layers along with a transversed charged track at η=0.3. [29] . . . . . . . 36
11. Drawing of the ID sensors of all three sub-detectors and their structural elements

focusing on its end-caps transversed by two charged tracks. [29] . . . . . . . . . . 37
12. Sketch of a barrel module at η=0. The folds of the electrodes and each layer’s

granularity is shown [29] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
13. Sketch of the tile calorimeter showing the alternating steel plates and scintillator

material attached to PMTs. [29] . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
14. Hadronic calorimeter end-cap. Electrode readouts indicated by dashed lines . [29] . 41
15. Illustration of the entire HCAL system in ATLAS. [29] . . . . . . . . . . . . . . . 41
16. Cross-sections of the muon system in the ATLAS detector. Figure (a) shows the

three concentric cylindrical layers of 8 large and 8 small chambers. Outer diameter
being 20 m. Figure (b) shows a planar view of the muon system, non-bending muon
tracks are shown with dashed lines [29] . . . . . . . . . . . . . . . . . . . . . . . 43

17. Block diagram of the L1 trigger in the ATLAS detector showing data paths to the
front-end, L2 trigger and DAQs system. [29] . . . . . . . . . . . . . . . . . . . . . 44

xiii



Figure Page
18. The ITk layout. The pixel detectors are shown in red and the strip Detector in blue.

[30] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
19. The assembly of the HGTD detector[36] . . . . . . . . . . . . . . . . . . . . . . . 48
20. An illustration of the HGTD showing the LGAD sensors (blue) and an inactive

region off-detector (green) [36] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
21. Planar slice of the ATLAS detector showing different energy deposits of several

physics objects [83]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
22. Comparisons of simulated events and data after calibration and resolution correc-

tions applied for electrons [43]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
23. (a) Shapes and the substructures of jets formed using the anti-kT algorithm in the

𝜙 -y plane [77]. The height in the z-axis corresponds to the momentum of the hard
objects. Figure (b) Substructure of a large-radius jet containing two small-radius
jets of similar pT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

24. Diagram illustrating the LR jet trimming procedure [21]. . . . . . . . . . . . . . . 63
25. (a) Decay multiplicity of the b-hadron d0 into stable charged products with com-

pared MC generators. (b) Fragmentation of b-hadron pT . . . . . . . . . . . . . . 66
26. Diagram view of a b-jet with a first, second, and third vertex labeled. . . . . . . . . 67
27. Diagram of FTAG baseline and high-level taggers. . . . . . . . . . . . . . . . . . . 67
28. The signed IP significances variable shown for b-, c-, and light-jets for (a) transverse

and (b) longitudinal components in 𝑡𝑡 events . . . . . . . . . . . . . . . . . . . . . 68
29. The (a) light-jet and (b) c-jet rejections versus the b-jet tagging efficiency for the

baseline taggers IP3D, SV1, JetFitter and the high level taggers MV2 and DL1.
Evaluated on 𝑡𝑡 MC events [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

30. The network diagram of GN1. First, a Deep Sets architecture is used to populate
node features in a GNN. The GNN outputs are used to predict jet flavor, track ori-
gins, and track-pair vertex compatibility. [14] . . . . . . . . . . . . . . . . . . . . 78

31. Illustration of a hadron-hadron collision simulated by a MC generator. The cen-
ter red circle signifies the hard scatter collision while the purple oval represents
underlying soft-scatter events. The red and blue tree-like structures depict QCD
bremsstrahlung simulated by parton showering. The other elements are hadroniza-
tion (light green), hadron decays (dark green), and photon radiation (yellow). [70] . 80

32. Deep feed-forward architecture of DL1 with unspecified number of nodes . . . . . 83
33. Structures of the DL1 tagger family, differing in NN input variables . . . . . . . . 84
34. Architecture of DL1d combining the DIPS ϕ and F networks to the DL1 feed-

forward nodes 𝒰 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
35. (a) pT distribution of 𝑡𝑡 sample (solid lines) and a Z′ sample (dashed lines). The 𝑡𝑡

b-jet distribution is normalized to unity and all other distributions are normalized to
the b-jet distribution. (b) Samples from (a) merged into one distribution normalized
to b-jet distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

36. Hybrid sample hadron fractions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
37. Diagram of the resampling methods to ensure balanced model training. . . . . . . . 88

xiv



Figure Page
38. Resampled example flavor distributions. . . . . . . . . . . . . . . . . . . . . . . . 88
39. Diagram of hadron composition in the HL-LHC MC samples. . . . . . . . . . . . . 92
40. Deep feed-forward architecture used for preliminary Upgrade DL1d model. . . . . 93
41. (a) Shows loss per training epoch using the PDF method for both DL1d and its

associated DIPS model using the loose electron selection cut. (b) Shows loss per
training epoch using the count resampling method for both DL1d and its associated
DIPS model using the loose electron selection cut. (c) Shows the light-jet rejection
rate per training epoch using the PDF method. DL1d shows rejection at a higher
efficiency. (d) Shows the light-jet rejection rate per training epoch using the Count
resampling method. DL1d outperform DIPS but does not has a lower rejection rate
than using the PDF resampling method as seen in (c) . . . . . . . . . . . . . . . . 95

42. C-jet fraction scans for the float value fc. The balancing value chosen is marked by
X on both plots. The chosen value is 0.09, balancing the light-jet rejection and c-jet
rejection in the 𝑡𝑡 sample while favoring c-jet rejection in the Z′ sample. . . . . . . 96

43. Comparison plots of all four DL1d trained models. Plot (a) shows the performance
of each model using the 𝑡𝑡 sample. Both loose electron WPs outperform the tight
WP. Plot (b) shows all four DL1d models validated on the Z′ sample. Again, both
loose electron WPs models outperform the tight WPs while the PDF resampling
method (pink) outperforms the Count method (green). The loose DL1d model using
the PDF resampling method was chosen to be the superior trained model. . . . . . 97

44. Comparison plot for the DL1d model and the baseline DIPS. DL1d outperform
DIPS as expected. The c-jet fraction for the DIPS model was taken to be fc = 0.17
whereas this fraction was fc = 0.09 as previously stated. . . . . . . . . . . . . . . 98

45. Light-jet rejection vs b-jet rejection (c-tagging). The left plot has a floating fraction
of fb=0.24 where as the right has fb=0.45. The DL1d tagger outperforms DIPS as
expected. The small HGTD sampled as listed in Table 13 was used. . . . . . . . . 99

46. ROC curve comparing the performance of the DL1d for Run 4, the current version
of DL1d used for Run 2 and the MV2 high-level tagger. . . . . . . . . . . . . . . . 100

47. ROC curve showing the performance of the DL1d tagger for Upgrade in four eta
intervals of one. The Run 2 DL1d is also plotted for comparison in the ratio plot on
the bottom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

48. Feynman diagrams of the benchmark BSM models. . . . . . . . . . . . . . . . . . 108
49. Example of the Rapidity Mass Matrix using only two objects, jets (j) and muons (µ). 110
50. This RMM diagram shows the indices that allow values (yellow) and the zero-

padded indices (blue). The nine invariant masses of interest are removed (blue).
This diagram shows the average values of cells for 10000 events. The total of non-
zero variables is 1287. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xv



Figure Page
51. A schematic representation of the nominal AE model with an example input and its

output. It’s composed of three parts, the encoder which compress the data, the latent
layer which acts as the bottleneck and the decoder which decompresses the data in
order to recreate the original input. Due to this compression and decompression,
data is loss via the loss function calculation. This loss is used as the anomaly score.
When an event that is the model hasn’t seen goes through, the data loss is higher
and thus can be tagged as anomalous. . . . . . . . . . . . . . . . . . . . . . . . . . 115

52. Training and validation loss as a function of epochs shown both linear and log y-scale.115
53. Validation stop loss values for 50 trainings with different seeds. Seed value and

corresponding loss value is shown in the legend. “Alter training” shows different
randomly selected training data from full Run 2 ATLAS data. (ROC curves can
be found in Appendix APPENDIX F:) Consistent loss values were achieved among
different training sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

54. Distributions of the loss values for the AE trained using 1% of data. (a) The loss
distribution for SM and BSM models; (b) The loss distribution for 10% and BSM
models. The BSM models had 20,000 generated events for each mass point in the
range 0.5 – 6 TeV. The larger the mass of the resonance, the further away the line
is from the data distribution. All the distributions are normalized to the unit area. . 117

55. Distributions of the loss values for 10% Run 2 data, scaled by 10 to simulate the
actual expected distribution. Distributions from each data taking year are shown as
well (without multiplying by 10). To quantify the difference, the AE value between
individual-year and all-year shapes are computed; they are found to be ’Data 15’:
0.485, ’Data 16’: 0.491, ’Data 17’: 0.505, ’Data 18’: 0.502. Ratio pad shows the
per year shape over full data (note that colors may not be precisely matched). They
are all close to 0.5, suggesting that different data-taking conditions (e.g. pile-up) do
not have a large impact on the method. . . . . . . . . . . . . . . . . . . . . . . . 118

56. Distributions of the loss values using the trained nominal AE with different BSM
models. The mass resonance range between 0.5 - 6 TeV with higher loss values for
larger mass resonances. The data distribution uses 10% of Run 2 data that is scaled
by 10 to show the expected shape of the full Run 2 dataset. Two vertical lines shows
the max and min AR regions (10 pb and 0.1 pb) . . . . . . . . . . . . . . . . . . . 122

57. Integrated S∕B and S∕√B scans for the stack BSM models show in Figure 56. S
is calculated as the integral of the BSM signal from a given x value to +infinity; B
is calculated as the integral of the data at a give value x to +infinity. The colored
vertical lines show the positions of the AR cuts. . . . . . . . . . . . . . . . . . . . 123

58. The distribution of mjj before the 10 pb AR cut. The red dots show the MC+LE-CR
data together with the p5 fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

59. The mjj invariant masses with the p4, p5 and p6 fit functions in the BSM region
after the 10 pb AR cut is applied. Pulls shown on the right. . . . . . . . . . . . . . 130

60. The mjb invariant masses with the p4, p5 and p6 fit functions in the BSM region
after the 10 pb AR cut is applied. Pulls shown on the right. . . . . . . . . . . . . . 131

61. The mbb invariant masses with the p4, p5 and p6 fit functions in the BSM region
after the 10 pb AR cut is applied. Pulls shown on the right. . . . . . . . . . . . . . 132

xvi



Figure Page
62. The mje invariant masses with the p4, p5 and p6 fit functions in the BSM region

after the 10 pb AR cut is applied. Pulls shown on the right. . . . . . . . . . . . . . 133
63. The mjµ invariant masses with the p4, p5 and p6 fit functions in the BSM region

after the 10 pb AR cut is applied. Pulls shown on the right. . . . . . . . . . . . . . 134
64. The mj𝛾 invariant masses with the p4, p5 and p6 fit functions in the BSM region

after the 10 pb AR cut is applied. Pulls shown on the right. . . . . . . . . . . . . . 135
65. The mbe invariant masses with the p4, p5 and p6 fit functions in the BSM region

after the 10 pb AR cut is applied. Pulls shown on the right. . . . . . . . . . . . . . 136
66. The mbµ invariant masses with the p4, p5 and p6 fit functions in the BSM region

after the 10 pb AR cut is applied. Pulls shown on the right. . . . . . . . . . . . . . 137
67. The mb𝛾 invariant masses with the p4, p5 and p6 fit functions in the BSM region

after the 10 pb AR cut is applied. Pulls shown on the right. . . . . . . . . . . . . . 138
68. Distributions of anomaly scores in data and the five benchmark BSM models. (a)

shows these BSM models each at the 2 TeV mass hypotheses scaled to the expected
events for 140 fb-1. (b) shows these five BSM models at the 6 TeV mass hypothesis
also scaled to the expected events for 140 fb-1. The vertical red lines on both show
the three defined ARs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

69. BumpHunter results for full unblinded Run 2 data for all nine invariant masses of
interest before applying any of the three AR cuts. It also shows the result of the 5p
fit function to describe the background hypothesis. The lower panel shows the bin-
by-bin fit significances with the largest deviation reported by BumpHunter noted
by the vertical dashed lines with its global p-value shown. . . . . . . . . . . . . . . 141

70. BumpHunter results for full unblinded Run 2 data for all nine invariant masses
of interest after applying the 10 pb AR cut. It also shows the result of the 5p fit
function to describe the background hypothesis. The lower panel shows the bin-by-
bin fit significances with the largest deviation reported by BumpHunter noted by
the vertical dashed lines with its global p-value shown. . . . . . . . . . . . . . . . 142

71. Bin-by-bin improvement in ∆Z discovery sensitivity after applying the 10 pb AR
cut for all nine invariant masses of interest. Discovery sensitivity increases shown
for all five benchmark BSM models and all their mass hypothesis. . . . . . . . . . 144

72. The 95% CL observed upper limits on cross-section times acceptance (A), effi-
ciency (𝜖) and branching ratio (B) for Gaussian signal shapes with various widths.
Limits are calculated on events within the 10 pb AR. The ±1𝜎 and ±2𝜎 bands are
shown for 𝜎X∕mX=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

73. (a) Shows the cutflow for Run 2 events. The last cut is on (j1(j2))>450(250) GeV.
This cut equates to about 240M events. (b) Shows this 240M events that make the
base cut and then shows how many are 1bb-tagged and 2bb-tagged. This equates
to 1M events for 1bb-tagged and 6.2K for 2bb-tagged. . . . . . . . . . . . . . . . . 150

74. The Rapidity Mass Matrix representation for the SH → 4b analysis. This layout
allows up to 5 large-R jets and 4 double b-tagged large-R jets. This topology equates
to 100 variables used for training the Autoencoder (included a row and column of
zeroes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

xvii



Figure Page
75. (a) Shows a single event that contains three large-R jets using this new RMM rep-

resentation. (b) Shows all the events stacked into a single RMM. This plot shows
there are events that contain 5 large-R jets. The row and column for the second
double b-tagged large-R jet show to be almost empty, this is due to the fact that
there are only 6.2K with respect to a total of 240M events shown in the first few
rows and columns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

76. Autoencoder architecture diagram for preliminary studies for the SH→4b analysis.
The first part of this architecture consists of an encoder that compresses data into
the latent layer, the decoder then decompresses the data and attempts to reconstruct
the original input. The number of neural nodes are shown on the bottom. . . . . . . 152

77. The log(loss) distribution for all of Run 2 and its data-taking years. No yearly
dependence is observed. The ratio plot needs to be adjusted . . . . . . . . . . . . . 153

78. Diagram of data log(loss) distribution showing the origination of its four peaks. . . 154
79. Log(loss) for Run 2 data and six mass hypothesis for the large scalar boson X and

the lighter scalar boson S. The BSM events are not scaled to their expected event
count with respect to the luminosity. The y-axis is not log scaled. . . . . . . . . . . 155

80. Log(loss) for Run 2 data and the six mass hypotheses. Two AR cuts are used to
using the event count for 1bb-tagged large-R jets and 2bb-tagged large-R jets. BSM
models integrals are scaled to 1. The 1bb-tagged AR is seen as a red line and the
2bb AR is seen as a pink dashed line. . . . . . . . . . . . . . . . . . . . . . . . . . 156

81. GN1, DL1d and the MV2 high-level tagger performances on the 𝑡𝑡 and Z′ samples
list in Table 13 [15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

82. A typical data event (from 2016) shown as RMM. The event has one jet, one electron
and some (small) MET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

83. A typical 𝑡𝑡 event from a Monte Carlo simulation. The event has one jet, one 𝑏-jet,
one muon and some MET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

84. A typical the sequential standard model 𝑊 ′ → 𝑊𝑍 ′ → 𝑙𝜈𝑞𝑞 event with 𝑊 ′ at
0.75 TeV and 𝑍 ′ at 0.5 TeV decaying to 2 jets, with the leptonic decay of 𝑊 . The
event has multiple jets, leptons and some MET. . . . . . . . . . . . . . . . . . . . 177

85. A typical event for the charged Higgs production in association with a top quark,
𝑡𝑏𝐻+. The mass of 𝐻+ is set to 2 TeV. decaying to 2 jets, with the leptonic decay
of 𝑊 . The event features many jets, 𝑏−jets, leptons and some MET. . . . . . . . . 178

86. A typical event for a composite lepton 𝐸 from a decay of massive 𝑍 ′ with various
𝑍 ′ mass hypotheses. The mass of 𝑍 ′ is set to 3 TeV. The event features jets, 𝑏−jets,
2 muons and some MET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

87. A typical event for a Kaluza–Klein (KK) gauge boson, 𝑊𝑘𝑘, with a SM 𝑊 boson
and a radion. The mass of 𝑊𝑘𝑘 is set to 4 TeV. The event features many jets, 𝑏−jets,
leptons and some MET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

88. An example RMM matrix of a random event from SSM (a), from which jets beyond
the sub-leading jet are set to be photons (b) or 𝑏-jets (c). . . . . . . . . . . . . . . 181

89. The loss distributions for the original SSM with 4 TeV Z’ and for anomaly 1 and 2. 183

xviii



Figure Page
90. Background efficiency vs signal efficiency of various BSM models under different

mass hypotheses, using the nominal and alternative AE models. Note there are
some artificial lines due to plotting issues. . . . . . . . . . . . . . . . . . . . . . . 185

91. (a) 500 GeV radion model signal yields before and after the 10 pb AR cut is applied.
(b)(c) Comparison background events for the jet+electron invarint mass before and
after the 10 pb AR cut. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

92. The mjj invariant masses with the p4 and p5 fit functions in the BSM region after
the 1 pb AR cut is applied. The MC processes are scaled to their cross sections,
while the LE-CR is used to fill the missing event rate. Pulls shown on the right. . . 190

93. The mjb invariant masses with the p4 and p5 fit functions in the BSM region after
the 1 pb AR cut is applied. The MC processes are scaled to their cross sections,
while the LE-CR is used to fill the missing event rate. Pulls shown on the right. . . 191

94. The mbb invariant masses with the p4 and p5 fit functions in the BSM region after
the 1 pb AR cut is applied. The MC processes are scaled to their cross sections,
while the LE-CR is used to fill the missing event rate. Pulls shown on the right. . . 192

95. The mje invariant masses with the p4 and p5 fit functions in the BSM region after
the 1 pb AR cut is applied. The MC processes are scaled to their cross sections,
while the LE-CR is used to fill the missing event rate. Pulls shown on the right. . . 193

96. The mjµ invariant masses with the p4 and p5 fit functions in the BSM region after
the 1 pb AR cut is applied. The MC processes are scaled to their cross sections,
while the LE-CR is used to fill the missing event rate. Pulls shown on the right. . . 194

97. The mj𝛾 invariant masses with the p4 and p5 fit functions in the BSM region after
the 1 pb AR cut is applied. The MC processes are scaled to their cross sections,
while the LE-CR is used to fill the missing event rate. Pulls shown on the right. . . 195

98. The mbe invariant masses with the p4 and p5 fit functions in the BSM region after
the 1 pb AR cut is applied. The MC processes are scaled to their cross sections,
while the LE-CR is used to fill the missing event rate. Pulls shown on the right. . . 196

99. The mbµ invariant masses with the p4 and p5 fit functions in the BSM region after
the 1 pb AR cut is applied. The MC processes are scaled to their cross sections,
while the LE-CR is used to fill the missing event rate. Pulls shown on the right. . . 197

100. The mb𝛾 invariant masses with the p4 and p5 fit functions in the BSM region after
the 1 pb AR cut is applied. The MC processes are scaled to their cross sections,
while the LE-CR is used to fill the missing event rate. Pulls shown on the right. . . 198

101. The mjj invariant masses with the p4 and p5 fit functions in the BSM region after
the 0.1 pb AR cut is applied. The MC processes are scaled to their cross sections,
while the LE-CR is used to fill the missing event rate. Pulls shown on the right. . . 201

102. The mjb invariant masses with the p4 and p5 fit functions in the BSM region after
the 0.1 pb AR cut is applied. The MC processes are scaled to their cross sections,
while the LE-CR is used to fill the missing event rate. Pulls shown on the right. . . 202

103. The mbb invariant masses with the p4 and p5 fit functions in the BSM region after
the 0.1 pb AR cut is applied. The MC processes are scaled to their cross sections,
while the LE-CR is used to fill the missing event rate. Pulls shown on the right. . . 203

xix



Figure Page
104. The mje invariant masses with the p4 and p5 fit functions in the BSM region after

the 0.1 pb AR cut is applied. The MC processes are scaled to their cross sections,
while the LE-CR is used to fill the missing event rate. Pulls shown on the right. . . 204

105. The mjµ invariant masses with the p4 and p5 fit functions in the BSM region after
the 0.1 pb AR cut is applied. The MC processes are scaled to their cross sections,
while the LE-CR is used to fill the missing event rate. Pulls shown on the right. . . 205

106. The mj𝛾 invariant masses with the p4 and p5 fit functions in the BSM region after
the 0.1 pb AR cut is applied. The MC processes are scaled to their cross sections,
while the LE-CR is used to fill the missing event rate. Pulls shown on the right. . . 206

107. The mbe invariant masses with the p4 and p5 fit functions in the BSM region after
the 0.1 pb AR cut is applied. The MC processes are scaled to their cross sections,
while the LE-CR is used to fill the missing event rate. Pulls shown on the right. . . 207

108. The mbµ invariant masses with the p4 and p5 fit functions in the BSM region after
the 0.1 pb AR cut is applied. The MC processes are scaled to their cross sections,
while the LE-CR is used to fill the missing event rate. Pulls shown on the right. . . 208

109. The mb𝛾 invariant masses with the p4 and p5 fit functions in the BSM region after
the 0.1 pb AR cut is applied. The MC processes are scaled to their cross sections,
while the LE-CR is used to fill the missing event rate. Pulls shown on the right. . . 209

110. Extrapolated invariant masses in 10% data using the 5p fit functions in the 10 pb
AR cut. The data was smoothed using the Savitzy-Golay filter. Pulls shown to the
right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

111. Extrapolated invariant masses in 10% data using the 5p fit functions in the 10 pb
AR cut. The data was smoothed using the Savitzy-Golay filter. Pulls shown to the
right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

112. Extrapolated invariant masses in 10% data using the 5p fit functions in the 10 pb
AR cut. The data was smoothed using the Savitzy-Golay filter. Pulls shown to the
right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

xx



GLOSSARY

pp proton-proton. 26, 30, 34, 43, 53, 58, 64, 65, 78

AE autoencoder. 103, 107, 112–116, 121, 149, 150, 153, 155, 158, 181, 182

ALICE A Large Ion Collider Experiment. 26

AR Anomaly Region. 104, 118, 119, 121, 127, 128, 140, 143, 154, 155, 186, 188, 199, 210

ATLAS A Large Toroidal Aparatus. 3, 26, 29, 30, 33, 40, 43, 45, 51, 52, 56, 58, 65, 73, 74, 78–81,
84, 85, 93, 98–101, 103, 104, 114, 124, 148, 157, 168, 171, 174

BDT Boosted Decision Tree. 73–75, 81

BH BumpHunter. 126, 127, 140

BSM Beyond the Standard Model. 3, 9, 23, 30, 33, 78, 85, 103, 104, 106–109, 113, 116, 118, 121,
126, 140, 143, 144, 148, 149, 154, 155, 158, 181, 184, 186

CCA connected component analysis. 52

CERN Conseil Européen pour la Recherche Nucléaire", or European Council for Nuclear Re-
search. 2, 26, 30

CKM Cabibbo-Kobayashi-Maskawa matrix. 8, 9, 12, 24

CL Confidence Level. 145, 146

CME center-of-mass energy. 27–29, 44, 90, 148

xxi



CMS Compact Muon Solenoid. 26

CP Charge Parity. 24

CSC Cathode-Strip Chambers. 42

DIPS Deep Impact Parameters. 66, 68–70, 76, 81–84, 92–94, 96, 97

DL1 Deep Learning Tagger. 67, 81–86

DM Dark Matter. 108

ECAL electromagnetic calorimeter. 31, 37–40, 42, 51, 53, 54, 60, 105

EM electromagnetic. 39, 53, 54, 60

EMEC electromagnetic end-caps. 39, 40

EW Electroweak. 7, 8, 10, 12

FCal liquid-argon forward calorimeter. 40

fJVT Forward Jet Vertex Tagger. 65

FSR Final State Radiation. 78

FTAG Flavor Tagging. 65, 66, 99, 149

GN1 Graph Neural Network Tagger. 67, 77, 101, 168

GRL Good Run Lists. 104, 171

GSC global sequential calibration. 64

HCAL hadronic calorimeter. 31, 40, 51, 53, 58, 60

HEC liquid-argon hadronic end-cal calorimeter. 40

xxii



HEP High Energy Physics. 2, 103

HGTD High Granularity Timing Detector. 48, 49, 90, 97, 98

HL-LHC High Luminosity Hadron Collider. 29, 45, 47, 67, 81, 82, 89, 90, 92, 98, 101, 157

HLT High-Level Trigger. 43, 44, 171, 172

IBL insertable B-Layer. 52

ID Inner Detector. 31, 34, 35, 37, 38, 45, 48, 51–58, 60, 61, 70

IP impact parameter. 56, 66, 68, 69

IP2D Impact Parameter 2 Dimensional. 66, 69

IP3D Impact Parameter 3 Dimensional. 66, 69

ISR Initial State Radiation. 78

ITk Inner Tracker. 45–48, 81, 89, 90, 98, 99, 168

JER jet energy resolution. 64

JES jet energy scale. 64, 124

JMS jet mass scale. 64

JVT Jet Vertex Tagger. 65, 105, 106

KK Kaluza-Klein. 108, 109

LE-CR Loose Electron Control Region. 127, 128, 139, 186, 188

LGAD Low Gain Avalanche Detector. 48, 49

LHC Large Hadron Collider. 26, 27, 29–32, 34, 44, 45, 47

xxiii



LHCb Large Hadron Collider beauty. 26

LLR Log-Likelihood Ratio. 69

LR Large Radius. 58, 59, 62, 63

lwtnn LightWeight Tagger Neural Network. 85

MC Monte Carlo. 69, 74, 78, 79, 87, 103, 104, 107, 114, 116, 123, 126–128, 139, 155, 186, 188

MDT Monitored Drift Tubes. 42

MET missing transverse energy. 33, 43, 110, 111, 186

ML Machine Learning. 70, 78, 103, 104, 107, 111, 115, 149

MS Muon Spectrometer. 31, 56, 57

MSE Mean Squared Error. 113

MV2 Multivariate tagger. 67, 81, 99

NLO Next-to-Leading Order. 79

NN Neural Network. 67, 69, 73, 74, 76, 77, 81–85, 149

PDG Particle Data Group. 9

PMT photomultiplier tubes. 40

QCD Quantum Chromodynamics. 6, 15, 16, 58, 79

QED Quantum Electrodynamics. 10, 11, 15, 16

QFT Quantum Field Theory. 78

ReLU Rectified Linear Unit. 81

xxiv



RF Radio Frequency. 26

RMM Rapidity Mass Matrix. 110, 111, 149, 150, 152, 155, 175

RNNIP Recurring Neural Network Impact Parameter. 66, 68, 70, 76, 82

ROC Receiver Operating Characteristic. 96, 99

SCT Silicon Microscript Tracker. 31, 34–36, 52, 54, 56

SM Standard Model. 4–8, 12, 17, 21, 23, 24, 26, 30, 78, 104, 108, 109, 113, 116, 123, 126, 143,
148, 157, 158, 181, 186

SMT Soft Muon Tagger. 67

SR Small radius. 58–60, 64

SSB Spontaneous Symmetry Breaking. 8, 12, 13, 17–19, 21, 22

SSM Sequential Standard Model. 107, 143, 182

SV1 Secondary Vertex1. 66, 70–72

TCC track-CaloClusters. 62

TDAC Trigger and Data Aquisition. 43

TDD Training Dataset Dumper. 84

TRT Transition Radiation Tracker. 31, 34, 36, 37, 53

UFO Unified Flow Objects. 62

WP Working Point. 57, 74, 93–95, 99, 100, 105, 106, 149

xxv



CHAPTER I

INTRODUCTION

As humans we are natural explorers, there are no challenges too daunting, no sought truth to
be overwhelming. The thirst for answers about ourselves and our existence has driven the minds
of men for centuries. This drive has started to uncover the possibility of almost limitless potential.
Our ancestors have gazed into the face of the night sky for thousands of years, asking, dreaming,
and fantasizing of stories from the beginning. As we’ve evolved and developed new tools and the
footprints of society looming in the horizon, the same sky still gazed down, fueling our drive to
muster forward. The pureness of our curiosity passed through generations started bearing fruit as
new technologies were being developed. Logical reasoning and objective views of the the world
in front of us stemmed hypotheses and models for its description and developed what we know
today as science. Knowledge advanced so far that one day we split the atom, introducing a new era
of science and physics, one of underlying anxiousness and fear but also excitement. These efforts
towards understanding stretched and weaned its way into every facet of society giving us technology
and access that previous civilizations would deem godlike. Here we find ourselves, delving even
deeper into the field of physics. Searching for answers, patterns, and possibilities on every scale we
can detect. The scale in which the following studies are performed is in the scale of high energy.

All the energy in the universe was produced in a single event called the Big Bang. In the
moments after the Big Bang occurring, all of this energy was compacted in an extremely small
volume as it rapidly expanded outwards. This environment created conditions that gave particles
an enormous amount of energy, causing their relationships to be much different than what we see
today. The parameters of this environment no longer exists anywhere in the universe except in
particle accelerators here on Earth. These accelerators allow physicists to peer into this hostile

1



environment in order to gain a better understanding of the forces of nature and how they started.
These accelerators can have a range of energies. Lower energies would be considered Nuclear
Physics which is the study of the nuclei and the nucleus’s atoms. The name for the atom was given
by John Dalton in the 19th century after the Greek word atomos or "indivisible" [64]. Today we
now know that an atom is not "indivisible" but is actually composed of smaller constituents called
quarks. This scale can only be obtained with particle accelerators at higher energies. Thus, the
study of High Energy Physics (HEP), or Particle Physics, is the study of the fundamental particles
and the forces that connect them in the universe.

The leading institution of Particle Physics is the Conseil Européen pour la Recherche Nucléaire
or the European Organization for Nuclear Research (CERN) located in Geneva, Switzerland. This
institution is the world’s largest particle accelerator with the Large Hadron Collider (LHC) being
a 27 kilometer ring consisting of superconducting magnets along with a number of particle accel-
erating contraptions. During the 1950s and 1960s particle accelerators were designed for much
higher energies than accelerators at that time. Within this new energy threshold, the renaissance
of Particle Physics began. The majority of particles that exist aren’t stable and are only produced
via highly energetic events, so a perplexing amount of particles were observed for the first time in
scattering experiments. These two decades were referred to as the "particle zoo". This term was
no longer used in the early 1970s after the formulation of the Standard Model. This model is the
foundation of Particle Physics and explains that these particles were a composition of a few much
smaller and fundamental particles.

1.1 Outline

In chapter 2 we will discuss the Standard Model in much greater detail. Starting with its history
and its obvious motivation. We will delve deeper into the theory, showing its beauty and discussing
the importance of its creation. This will lead us into the physical signatures that the Standard
Model explains and also further predicts which will lead us into the exciting discoveries it has
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made decades later.
Chapter 3 follows up this discussion with explanations of tools developed in order to detect

such signatures. This leads us into the birth of the Large Hadron Collider (LHC) and one its largest
detectors, ATLAS. The inner workings of this detector will be explained along with how they paint
a beautiful picture of the chaos that occurs inside. Not only is the current status of the ATLAS
detector discussed but also its upgrade which is scheduled in 2029.

After the workings of the ATLAS detector is well established, chapter 4 will introduce object re-
construction, identification, and event simulation. From here we’ll see how energy deposits within
ATLAS leads to low level triggers and up to high level kinematic reconstruction. This will then
lead us into the next section.

Once a full, reconstructed picture of the events that happen inside the ATLAS detector is well
understood, chapter 5 will explain the complex and state of the art software tools developed and high
level in order to create order from the chaos. This will transition into my work for my qualification
task that helped create one of these tools using machine learning for the coming upgrade in run 4
for the ATLAS detector.

Now that the full picture of energy deposition in the ATLAS detector leading to high level
object reconstruction is well understood, a discussion on finding Beyond the Standard Model (BSM)
signatures can begin. Here, in chapter 6, a new and innovative technique is described that was
created to find such signatures. This technique uses an agnostic and unsupervised machine learning
approach to find anomalies within data of the ATLAS detector. This chapter covers from start to
finish an entire analysis along with its findings.

Chapter 7 will finish the thesis with the application of this innovative approach into a non-
agnostic BSM search. This analysis is still preliminary and its plots should not be taken as final
results. However, it generates interesting discussion on adapting this anomaly detection technique.
This analysis will be continued by another student.

Finally, chapter 8 will have the closing discussing and conclusions of this dissertation. Summing
up three years of hard work and marking the beginning of another chapter in life.
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CHAPTER II

THE STANDARD MODEL

"The effort to understand the universe is one

of the very few things that lifts human life

a little above the level of farce, and gives

it some of the grace of tragedy."

- Steven Weinberg, 1993

2.1 A Model of Leptons

Back in 1967 Steven Weinberg outlined the foundation of what would become the Standard Model
(SM) in a three paged Physical Review letter titled A Model of Leptons. Here he stated "What could
be more natural than to unite [leptons, photons, and their intermediate bosons] into a a multiplet
of gauge fields?" [89]. This quote could not have been more of an understatement. The model that
was predicted in this letter would later become the most successful theory ever conceived. The
SM’s articulate description of the universe predicted particles that were all later found including
the latest particle, the Higgs boson.

This theoretical formulation was not conceived by Weinberg out of nowhere. It was an inevitable
outcome from a composition of works. The first came from Yang Chen-Ning and Robert Mills, they
provided an explanation for strong interactions via gauge theory in their 1954 paper [93]. Then came
Chien-Shiung Wu demonstrating the non-conservation of parity in the weak interaction in 1957
[92]. Sheldon Lee Glashow proposed the bold SU(2) × U(1) model that showed the possibility of
symmetry between electromagnetic and weak interactions which in turn predicted the Z boson [63].
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Steven Weinberg was in close contact with Abdus Salam during the year of 1961. This led
Abdus Salam and his long time collaborator John C. Ward to proposing a very similar model to
Glashow’s SU(2) × U(1) [87]. Though both of these models still required the masses for the W
and Z bosons to be inserted by hand making the model non-renormalizable and thus non-physical.
Lastly, to put all the puzzle pieces together, Peter Higgs came in and demonstrated spontaneous
symmetry breaking via the Higgs mechanism [68]. Three years later in just three pages, Weinberg
formulated the first iteration of the SM in 1967 [89].

2.2 The Standard Model

The SM of particle physics is one of the most successful theories that has been proposed in modern
physics. It has predicted elementary and composite particles that scientists are still discovering
to this day with the latest being the Higgs boson. It has withstood countless experimental checks
as global scientific communities from all around the world have given billions towards this vast
area of research. Creating one of the largest collaborations in the world with this model at its
heart. The SM is a model of symmetries and how these symmetries break, creating elementary
particles. The elementary particles predicted by the SM can be split into two groups as seen in
Figure 1. There are the matter particles (purple and green) and the force particles (red and yellow).
The matter particles can also be called fermions and are split into three generations. There are
the quarks (up, down, strange, charm, bottom, top) and there 3 leptons (electron, muon and the tau
lepton) and their corresponding neutrino (electron neutrino, muon neutrino and tau lepton neutrino).
There are then the force carrying bosons along with the Higgs boson which is responsible for the
Higgs mechanism and is discussed later in this chapter. How these elementary particles interact
with one another is described by the force carrying particles. These particles are the photon (𝜸),
gluon,𝑾 and𝒁 bosons. Each of these force carrying particles mediate a corresponding force. All
physical phenomena are interactions of forces which include four types; the electromagnetic force,
gravitational force, the strong force and the weak force. As the SM was in its infancy, it started to
reveal the possibility that these forces were combined as a single force at one point in time. The
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current state of the SM is unable to relate the gravitational force to the other three forces, though
this problem is well known and decades of careers are being put forth to solve this hole.

Now each force has its own responsibility. The gravitational force is what everyone interacts
with everyday since it’s the reason we simply don’t float off into space. Gravity is well described on
a macro scale through the beautiful theory of General Relativity which describes the interactions
between macro objects such as planets and stars, though this is beyond the scope of this thesis
and is well described in the field of astrophysics and astronomy. Currently gravity’s interaction on
the scale of the SM is so small, it’s negligible, and has no relevance in understanding elementary
particle interactions (at least to our current knowledge). The predicted force carrying particle is
called the Graviton and it has eluded experiments since its formulation. The electromagnetic force
is used to communicate between charged particles. This force is magnitudes stronger than the
gravitational force and therefore has repercussions dictating the relationships on all scales. The
force carrying particle is called the photon which is a massless boson. This elementary particle
is a quantum of the electromagnetic field. Meaning, it’s the bare minimum particle involved in
interactions within this field. The strong force is the fundamental interaction that binds elementary
particles, creating larger composite particles called hadrons. This force is mediated by the boson
called a Gluon. Gluons are massless vector bosons and the binding of quarks are in accordance
with Quantum Chromodynamics (QCD). These bosons carry color charge which adds a layer of
complexity and is the reason gluons participate in this interaction. The strong force can also be
called the nuclear force since it’s the reason protons and neutrons (both hadrons) can be bound
together composing nuclei of various sizes. This force (as one might deduce) is the strongest of all
forces with the strength of 100 times of the electromagnetic force, 𝟏𝟎𝟔 times stronger than the weak
force and amazingly 𝟏𝟎𝟑𝟖 times stronger than the gravitational force. Lastly there’s the weak force.
The weak force is mediated by the W and Z bosons. The W boson mediates the transfer of electric
charge and therefore can be either positive or negative (𝑾 +,𝑾 −) and are each other’s antiparticle.
Whereas the Z boson is electrically neutral (𝒁𝟎) and mediates the transfer of momentum, spin and
energy. It’s also its own antiparticle. These two bosons are the reasons particles are able to undergo
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Figure 1: The Standard Model of Particle Physics. This displays all three generations of fermions in
purple and green along with their antiparticle. On the right in red shows the force carrying bosons
along with the Higgs boson shown in yellow. Corresponding table of values can be found in Table
1 on page 25.

radioactive decay. They both also participate in nuclear fission and nuclear fusion.

2.2.1 Theoretical Foundation

The SM represents a gauge theory that describes the strong, weak and electromagnetic interactions
The SM Lagrangian 𝓛𝑺𝑴 can be broken down into two Lagrangians representing the strong in-
teraction 𝓛𝑸𝑪𝑫 and the electroweak (EW)interaction 𝓛𝑬𝑾 . As in the name, the EW theory is
the combination of the electromagnetic and weak interactions. The Lagrangian 𝓛𝑺𝑴 is invariant
under local gauge transformations with the symmetry groups [84].

𝑺𝑼 (𝟑)𝑪
⏟⏟⏟

QCD

⊗𝑺𝑼 (𝟐)𝑳 ⊗𝑼 (𝟏)𝒀
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

electroweak

(2.1)
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The interactions between the strong, weak and electromagnetic forces are through the exchange of
spin-1 gauge fields. For the strong field; 8 massless gluons. For the weak; 3 massive bosons, 𝑾 ±

and𝒁𝟎. For the electromagnetic; 1 massless photon. The fermionic particles in Table 1 and Figure
1 can be represented in a 3-fold family structure:

⎡

⎢

⎢

⎣

𝝂𝒆 u

𝒆− d′

⎤

⎥

⎥

⎦

,
⎡

⎢

⎢

⎣

𝝂𝝁 c

𝝁− s′

⎤

⎥

⎥

⎦

,
⎡

⎢

⎢

⎣

𝝂𝝉 t

𝝉− b′

⎤

⎥

⎥

⎦

(2.2)

where each quark appears in three different colors:

⎡

⎢

⎢

⎣

𝝂l q𝒖

l− q𝒅

⎤

⎥

⎥

⎦

≡
⎛

⎜

⎜

⎝

𝝂l

l−

⎞

⎟

⎟

⎠𝑳

,
⎛

⎜

⎜

⎝

𝒒u

𝒒d

⎞

⎟

⎟

⎠𝑳

, 𝒍−𝑹, 𝒒u𝑹, 𝒒d𝑹 (2.3)

plus their corresponding antiparticles. Here we see that the left-handed fields are 𝑺𝑼 (𝟐)𝑳 doublets,
whereas the right-handed partners transform as 𝑺𝑼 (𝟐)𝑳 singlets.

The vacuum-induced breakdown of gauge symmetry initiates Spontaneous Symmetry Breaking
(SSB) (as discussed later in section 2.2.3) within the EW group, resulting in the emergence of the
electromagnetic subgroup.

𝑺𝑼 (𝟑)𝑪 ⊗𝑺𝑼 (𝟐)𝑳 ⊗𝑼 (𝟏)𝒀 ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑺𝑺𝑩 𝑺𝑼 (𝟑)𝑪 ⊗𝑼 (𝟏)𝑸𝑬𝑫 (2.4)

The SSB mechanism is the cause of the masses of the weak gauge bosons (𝑾 ±,𝒁𝟎) and gives rise
to the appearance of a physical scalar boson in the SM which can be seen as the yellow "Higgs" in
Figure 1. This also gives rise to the fermion masses and their mixings. These mixings keep track
of weak decays, i.e. one quark transitioning to another quark. These mixings were first formulated
into a 6-quark model by Kobayashi and Maskawa by generalizing the Cabibbo matrix, creating the
Cabibbo-Kobayashi-Maskawa (CKM) matrix. This matrix keeps track of weak decay rates in three
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generations of quarks [78].

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝒅′

𝒔′

𝒃′

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑽𝒖𝒅 𝑽𝒖𝒔 𝑽𝒖𝒃

𝑽𝒄𝒅 𝑽𝒄𝒔 𝑽𝒄𝒃

𝑽𝒕𝒅 𝑽𝒕𝒔 𝑽𝒕𝒃

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝒅

𝒔

𝒃

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(2.2.1)

Here we see on the left side are the weak interaction doublet partners of down-type quarks. On the
right side is the CKM matrix along with a vector of mass eigenstates of down-type quarks. The
CKM matrix states the probability of transitions between one quark flavor j to another quark flavor
i. These transitions are proportional to |𝑽𝒊𝒋|𝟐.

⎡

⎢

⎢

⎢

⎢

⎣

|𝑽𝒖𝒅| |𝑽𝒖𝒔| |𝑽𝒖𝒃|

|𝑽𝒄𝒅| |𝑽𝒄𝒔| |𝑽𝒄𝒃|

|𝑽𝒕𝒅| |𝑽𝒕𝒔| |𝑽𝒕𝒃|

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝟎.𝟗𝟕𝟑𝟕𝟑 ± 𝟎.𝟎𝟎𝟎𝟑𝟏 𝟎.𝟐𝟐𝟒𝟑 ± 𝟎.𝟎𝟎𝟎𝟖 𝟎.𝟎𝟎𝟑𝟖𝟐 ± 𝟎.𝟎𝟎𝟎𝟐𝟎

𝟎.𝟐𝟐𝟏 ± 𝟎.𝟎𝟎𝟒 𝟎.𝟗𝟕𝟓 ± 𝟎.𝟎𝟎𝟔 𝟎.𝟎𝟒𝟎𝟖 ± 𝟎.𝟎𝟎𝟏𝟒

𝟎.𝟎𝟎𝟖𝟔 ± 𝟎.𝟎𝟎𝟎𝟐 𝟎.𝟎𝟒𝟏𝟓 ± 𝟎.𝟎𝟎𝟎𝟗 𝟏.𝟎𝟏𝟒 ± 𝟎.𝟎𝟐𝟗

⎤

⎥

⎥

⎥

⎥

⎦

(2.6)

Here we see in Eq. 2.6 the most recent transition probabilities as stated by the Particle Data Group
(PDG) [91]. Now, we expect unitary of the CKM matrix but if we check it, even in the first row,
we see:

|𝑽𝒖𝒅|𝟐 + |𝑽𝒖𝒔|𝟐 + |𝑽𝒖𝒃|𝟐 = 𝟎.𝟗𝟗𝟖𝟓 ± 𝟎.𝟎𝟎𝟎𝟕 (2.7)

The difference from the theoretical unitary value of 1 has a standard deviation of 2.2𝝈 which this
gives an exciting strong indication of physics Beyond the Standard Model or BSM.
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2.2.2 Fundamental Interactions

The Electromagnetic Interaction

Quantum Electrodynamics (QED) is the foundational knowledge of electromagnetism. All charged
particles communicate with each other through the electromagnetic force carrier boson called the
Photon. QED is a consequence of the 𝑼 (𝟏) symmetry. It is the separated force from the EW
interactions and can be seen in Eq. 2.1 as 𝑼 (𝟏)𝒆𝒎. In order to obtain the QED Lagrangian, let’s
look at the dynamics of a free 𝟏∕𝟐 spin fermion.

𝓛𝟎 = 𝝍̄(𝒊𝜸𝝁 −𝒎)𝝍 (2.8)

In Eq. 2.8 notation-wise, 𝝍 is the Dirac Spinor, 𝒎 is the mass and the Dirac matrices are denoted
by 𝜸𝝁 ⋅ 𝝍̄ = 𝝍† 𝜸𝟎 which is also known as the Dirac adjoint. In the Lagrangian, the 𝜸𝝁 are the
Dirac 𝟒 × 𝟒 matrices and can be seen in Eq. 2.9.

𝜸𝟎 =
⎡

⎢

⎢

⎣

𝟎 𝑰

−𝑰 𝟎

⎤

⎥

⎥

⎦

, 𝜸𝒊 =
⎡

⎢

⎢

⎣

𝟎 𝝈𝒊

−𝝈𝒊 𝟎

⎤

⎥

⎥

⎦

, 𝜸𝟓 =
⎡

⎢

⎢

⎣

−𝑰 𝟎

𝟎 𝑰

⎤

⎥

⎥

⎦

(2.9)

These are written in terms of the Pauli matrices which are shown in Eq. 2.10.

𝝈𝟏 =
⎡

⎢

⎢

⎣

𝟎 𝟏

𝟏 𝟎

⎤

⎥

⎥

⎦

, 𝝈𝟐 =
⎡

⎢

⎢

⎣

𝟎 𝒊

−𝒊 𝟎

⎤

⎥

⎥

⎦

, 𝝈𝟑 =
⎡

⎢

⎢

⎣

𝟏 𝟎

𝟎 −𝟏

⎤

⎥

⎥

⎦

(2.10)

The Lagrangian in Eq. 2.8 is invariant under global gauge transformations, but is not invariant
under local 𝑼 (𝟏) transformations. In order to induce local invariance under transformations, as
shown in Eq. 2.11, an additional vectorial gauge field that is massless is required.

𝝍(𝒙) → 𝝍 ′(𝒙) = 𝒆𝒊𝜶(𝒙)𝝍(𝒙) (2.11)
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The gauge field that is required is denoted as 𝑨𝝁(𝒙) and is shown in eq 2.12. Additionally, the
covariant derivative 𝑫𝝁(𝒙) is shown in Eq. 2.13.

𝑨𝝁(𝒙) → 𝑨′
𝝁(𝒙) = 𝑨𝝁(𝒙) + 𝟏

𝒆
𝝏𝝁𝜶(𝒙) (2.12)

𝑫𝒎𝒖(𝒙) = 𝝏𝒎𝒖 − 𝒊𝒆𝑨𝝁(𝒙) (2.13)

Using these two fields, the field strength tensor can be expressed in Eq. 2.14.

𝑭𝝁𝝂 = 𝝏𝝁𝑨𝝂 − 𝝏𝝂𝑨𝝁 (2.14)

Now that local 𝑼 (𝟏) symmetry is applied, Eq. 2.11 can be used along with Eq. 2.14 to express the
QED Lagrangian. This is shown in Eq. 2.15.

𝓛 = 𝝍̄𝒊𝜸𝝁 −𝒎)𝝍 − 𝟏
𝟒
𝑭𝝁𝝂𝑭 𝝁𝝂 (2.15)

From here, the interaction term called the electromagnetic charge current density 𝒋𝝁 is added to Eq.
2.15. This equation is defined in Eq. 2.16.

𝒋𝝁 = 𝝍̄𝜸𝝁𝝍 (2.16)

putting both of these equations together we get Eq. 2.17.

𝓛 = 𝝍̄𝒊𝜸𝝁 −𝒎)𝝍
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

free Lagrangian

− 𝒆𝒋𝝁𝑨𝝁
⏟⏟⏟

interaction term

− 𝟏
𝟒
𝑭𝝁𝝂𝑭 𝝁𝝂

⏟⏞⏞⏟⏞⏞⏟
kinetic term

(2.17)

Here, Eq. 2.17 is the QED Lagrangian. According to Noether’s theorem which states that every
differentiable symmetry of the action of a physical system with conservative forces has a corre-
sponding conservation law [81]. For QED, this conserved quantity is the electromagnetic charge q.
The QED Lagrangian thus shows the relationship between the photon field 𝑨𝝁 and the Dirac fields
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𝝍 which emerged as a consequence of 𝑼 (𝟏) symmetry.

The Electroweak Interaction

The EW force is the combination of the electromagnetic interaction and the weak interaction. Both
of these forces appear differently in low energies but they happen to combine at much higher en-
ergies. Thus, this theory models them as two different aspects of the same force. The predicted
unification energy is on the order of 246 Gev or on a temperature scale of approximately 𝟏𝟎𝟏𝟓𝑲 .
This implies that the two forces coexisted at the start of the Big Bang and later diverged during the
Quark Epoch, occurring approximately 𝟏𝟎−𝟏𝟐 seconds after the inception of the Big Bang.

The mathematical formulation is found within the 𝑺𝑼 (𝟐)𝑳 symmetry group in Eq. 2.1. Weak
isospin and weak hypercharge are quantum numbers relating the electrically charged part of the
weak interaction and are labeled 𝑻i and 𝒀𝑾 respectively. These are known as generators of 𝑺𝑼 (𝟐)

and 𝑼 (𝟏) and give rise to the gauge bosons that mediate this force. Once SSB occurs, these bosons
are seen in the SM as the𝑾 ±,𝒁𝟎, and the photon. The conserved quantity within the electroweak
force is the third component of the generator 𝑻i, quantum number 𝑻𝟑. However, interaction with
the Higgs field do not conserve weak isospin 𝑻𝟑 and thus causing fermion mixings as seen in the
CKM matrix in 2.6. Though, there are specific combinations of them that do not interact with the
Higgs field and therefore are conserved, this happens to be the electric charge q. The combinations
that give rise to q are given by Eq. 2.18.

𝑸 = 𝑻𝟑 +
𝟏
𝟐
𝒀𝑾 (2.18)

The EW force is chiral, which requires treating both components of the fermionic fields 𝝍 sepa-
rately. Left-handed fermions have weak isospin of 𝑻𝟑 = ±𝟏∕𝟐 and are represented by doublets
𝝍𝑳. Whereas right-handed fermions have weak isospin of 𝑻𝟑 = 𝟎 and are represented by singlets
𝝍𝑹. Both components behave differently under 𝑺𝑼 (𝟐)𝑳 and 𝑼 (𝟏)𝜸 local transformations. A quick
formulation of the EW Lagrangian can be formulated by introducing the covariant derivative acting
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on both the left-handed fermionic field (Eq. 2.19) and the right-handed fermionic field (Eq. 2.20).

𝑫𝝁𝝍𝑳 = (𝝏𝝁 + 𝒊𝒈
𝝈𝒊
𝟐
𝑾 𝒊
𝝁 + 𝒊𝒈′

𝜸
𝟐
𝑩𝒊
𝝁)𝝍𝑳 (2.19)

𝑫𝝁𝝍𝑹 = (𝝏𝝁 + 𝒊𝒈′
𝜸
𝟐
𝑩𝒊
𝝁)𝝍𝑹 (2.20)

Here we see the Pauli matrices 𝝈 that are shown in Eq. 2.10, 𝒈 and 𝒈′ are coupling constants for
the 𝑾 𝒊 and 𝑩𝝁 boson field strength tensors which are shown in Eq. 2.21 and Eq. 2.22.

𝑩𝝁𝝂 = 𝝏𝝁𝑩𝝂 − 𝝏𝝂𝑩𝝁 (2.21)

𝑾 𝒊
𝝁𝝂 = 𝝏𝝁𝑾 𝝂

𝒊 − 𝝏𝝂𝑾
𝝁
𝒊 − 𝝐𝒊𝒋𝒌𝑾

𝝁
𝒋 𝑮

𝝂
𝒌 (2.22)

With these, the electroweak Lagrangian can be assembled as shown in Eq. 2.23 where the sum over
𝒋 covers the 𝑳 doublet and two 𝑹 singlets.

𝓛𝑬𝑾 =
𝟑
∑

𝒋=𝟏
𝝍̄𝒋[𝒊𝜸𝝁𝑫𝝁]𝝍𝒋 − 𝟏

𝟒
𝑾 𝝁𝝂
𝒊 𝑾 𝒊

𝝁𝝂 − 𝟏
𝟒
𝑩𝝁𝝂𝑩𝝁𝝂 (2.23)

Both, 𝑾 ± bosons arise from linear combinations between 𝑾𝟏 and 𝑾𝟐 as shown in Eq. 2.24.

𝑾 ± = 𝟏
√

𝟐
(𝑾𝟏 ∓ 𝒊𝑾𝟐) (2.24)

Finally, the application of a rotation by an angle 𝜽𝑾 allows the restoration of the massless vector
field 𝑨 that’s associated with the photon and the massive weak neutral 𝒁𝟎. Here, 𝜽𝑾 represents
the weak mixing angle. This rotation introduces the mismatch between the 𝑾 ± bosons and the
𝒁𝟎 boson. Through SSB, the two bosons (photon and 𝒁𝟎) become physical with different masses
given by Eq. 2.25.

⎛

⎜

⎜

⎝

𝜸

𝒁𝟎

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝒄𝒐𝒔𝜽𝑾 𝒔𝒊𝒏𝜽𝑾

−𝒔𝒊𝒏𝜽𝑾 𝒄𝒐𝒔𝜽𝑾

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝑩

𝑾𝟑

⎞

⎟

⎟

⎠

(2.25)
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where the offset of the 𝒁𝟎 mass from the 𝑾 ± bosons can be given by Eq. 2.26.

𝒎𝒁 =
𝒎𝑾

𝒄𝒐𝒔𝜽𝑾
(2.26)

A pictorial representation of this weak mixing angle showing the pattern of weak isospin, 𝑻𝟑, and
weak hypercharge, 𝒀𝑾 , of the known elementary particles can be seen in Figure 2.
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Figure 2: The pattern of weak isospin, 𝑻𝟑, and weak hypercharge, 𝒀𝑾 , of the known elementary
particles. The electric charge is shown as 𝑸 along the weak mixing angle. The neutral Higgs field
is seen being circled, this field breaks the electroweak symmetry and interacts with other particles,
giving them mass.

The Strong Interaction

The strong interaction, or the strong force, is the fundamental force that confines quarks, forming
hadrons. It is also the reason why nuclei are able to bind inside the nucleus forming atomic nuclei.
To model the strong interaction, Quantum Chromodynamics, i.e. QCD, is used. This theory was
founded on Yang-Mills theory [93], which extends QED, adding the non-abelian symmetry group
𝑺𝑼 (𝟑). Quarks interact with gluons and each other by way of a type of charge called the color
charge. Unlike the electromagnetic charge, color charges comes with three types (±red, ±green,
±blue) which dictates the rules of behavior. Due to the strength of this force, when hadrons col-
lide with high energy particles, jets of massive particles are produced instead of emitting their
constituents as separate particles.
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In the symmetry group 𝑺𝑼 (𝟑) Lie algebra, there are eight generators, therefore just as many
gauge fields need to be introduced. The associated fermionic fields are represented by three-
dimensional vectors, i.e. triplets, where each component represents color charges. Matrices called
the Gell-Mann matrices 𝒕𝒂 are used to represent the generators, having the commutation relation-
ship: [𝒕𝒂, 𝒕𝒃] = 𝒊𝒇𝒂𝒃𝒄𝒕𝒄 . Under a transformation 𝑼 (𝒙), the quark field 𝝍 behaves as stated in Eq.
2.27.

𝝍(𝒙) → 𝝍 ′(𝒙) = 𝑼 (𝒙)𝝍 = 𝒆𝒊𝜶𝒂(𝒙)𝒕𝒂𝝍 (2.27)

Similarly to the QED’s case, new fields are introduced: the gluon field𝑮𝒂
𝝁 and a covariant derivative,

as seen in Eq. 2.28.
𝑫𝝁 = 𝝏𝝁 + 𝒊𝒈𝒔𝒕𝒂𝑮𝒂

𝝁 (2.28)

The gluon field behavior has requirements under the transformation 𝑼 (𝒙). These requirements are
shown in Eq. 2.29.

𝑮𝒂
𝝁 → 𝑮′𝒂

𝝁 = 𝑼 (𝒙)𝑮𝒂
𝝁𝒕
𝒂𝑼 †(𝒙) + 𝒊

𝒈 𝒔
(𝒅𝝁𝑼 (𝒙))𝑼 †(𝒙) (2.29)

The field strength tensor for the gluon field 𝑮𝒂
𝝁 that follows the requirements as stated in Eq. 2.29

is shown in Eq. 2.30.
𝑮𝝁𝝂
𝒂 = 𝝏𝝁𝑮𝝂

𝒂 − 𝝏𝝂𝑮
𝝁
𝒂 − 𝒈𝒔𝒇𝒂𝒃𝒄𝑮

𝝁
𝒃𝑮

𝝂
𝒄 (2.30)

Lastly, the QCD Lagrangian density, using the previously shown equations, can be derived and is
shown in Eq. 2.31.

𝓛𝑸𝑪𝑫 = 𝝍̄(𝒊𝜸𝝁𝑫𝝁 −𝒎)𝝍 − 𝟏
𝟒
𝑮𝝁𝝂
𝒂 𝑮

𝒂
𝝁𝝂 (2.31)

Here, we see a noteworthy aspect of the QCD Lagrangian which is the self interaction between
gluons due to having color charge.
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2.2.3 Spontaneous Symmetry Breaking

The gauge symmetries of the SM (𝑺𝑼 (𝟑)𝑪 , 𝑺𝑼 (𝟐)𝑳, 𝑺𝑼 (𝟏)𝜸) have proven to be successful in
predicting interactions between its particles. But particles have masses (besides the photon)! So
far, there has been no references to any mass terms within these symmetries. Another mechanism
was needed in order to allow generation of masses within these gauge theories. This mechanism is
called spontaneous symmetry breaking (SSB).

Suppose there is a scalar field 𝝓 with a corresponding Lagrangian.

𝓛 = 𝟏
𝟐
(𝝏𝝁𝝓)(𝝏𝝁𝝓) + 𝒆−(𝜶𝝓)

𝟐 (2.32)

There is no obvious mass term within this Lagrangian, but if the exponential is expanded, we get:

𝓛 = 𝟏
𝟐
(𝝏𝝁𝝓)(𝝏𝝁𝝓) + 𝟏 − 𝜶𝟐𝝓𝟐 + 𝟏

𝟐
𝜶𝟒𝝓𝟒 − 𝟏

𝟔
𝜶𝟔𝝓𝟔 + ... (2.33)

Here, the 1 is irrelevant, but the second term is close to the known mass term within the Klein-
Gordon equation, with 𝜶𝟐 = 𝟏

𝟐
(𝒎𝒄∕ℏ)𝟐, while the higher order terms correspond to coupling terms.

The Lagrangian describes a particle of mass:

𝒎 =
√

𝟐𝜶ℏ∕𝒄 (2.34)

Now that the hidden mass term can be found within a Lagrangian for a field, suppose there’s a
Lagrangian that takes the form:

𝓛 = 𝟏
𝟐
(𝝏𝝁𝝓)(𝝏𝝁𝝓) +

𝟏
𝟐
𝝁𝟐𝝓𝟐 − 𝟏

𝟒
𝝀𝟐𝝓𝟒 (2.35)

Here the second term looks like the mass term as previously discussed be we see that the sign is
flipped and therefore would be imaginary. In order to properly understand this, Feynman calculus
must be used which treats this more like a perturbation procedure which is started from the ground
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state, or vacuum. We must represent this Lagrangian classically, as seen in 2.36, in order to obtain
the minimum.

𝓛 = T − U (2.36)

We obtain the minimum:
U(𝝓) = −𝟏

𝟐
𝝁𝟐𝝓𝟐 + 𝟏

𝟒
𝝀𝟐𝝓𝟒 (2.37)

We see that the minimum occurs at:
𝝓 = ±𝝁∕𝝀 (2.38)

A new variable, 𝜼, must be introduced which represents a perturbation around this ground state.

𝜼 ≡ 𝝓±
𝝁
𝝀

(2.39)

Now, to rewrite the Lagrangian in Eq. 2.35 in terms of 𝜼.

𝓛 = 𝟏
𝟐
(𝝏𝝁𝜼)(𝝏𝝁𝜼) − 𝝁𝟐𝜼𝟐 ± 𝝁𝝀𝜼𝟑 − 𝟏

𝟒
𝝀𝟐𝜼𝟒 + 𝟏

𝟒
(𝝁𝟐∕𝝀)𝟐 (2.40)

The second term is now the correct sign for the mass term! The mass of the particle from the
Lagrangian is:

𝒎 =
√

𝟐𝝁ℏ∕𝒄 (2.41)

Where the third and fourth term are corresponding coupling terms. Figure 3 shows the shape of
the potential𝑼 (𝝓) and its minima. This example illustrates SSB, though it may not be too obvious.
The Lagrangian in Eq. 2.40 is the same as Eq. 2.35 except for one thing, its symmetry is broken.
The Lagrangian in Eq. 2.35 is even in 𝝓, as in, it’s invariant (𝝓 → −𝝓). Whereas the Lagrangian
in 2.40 is not, thus SSB. This happens due to the fact that the chosen state, i.e. the ground state,
does not share this symmetry. However, the collection of all states does share this symmetry. This
example shows a broken discrete symmetry, i.e left or the right side in Figure 3. To make this more
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Figure 3: Graph of U(𝝓) in Eq. 2.37

physical, let’s consider a Lagrangian containing continuous symmetries that demonstrates SSB.

𝓛 = 𝟏
𝟐
(𝝏𝝁𝝓𝟏)(𝝏𝝁𝝓𝟏) +

𝟏
𝟐
(𝝏𝝁𝝓𝟐)(𝝏𝝁𝝓𝟐) +

𝟏
𝟐
𝝁𝟐(𝝓𝟐

𝟏 + 𝝓
𝟐
𝟐) −

𝟏
𝟒
𝝀𝟐(𝝓𝟐

𝟏 + 𝝓
𝟐
𝟐)

𝟐 (2.42)

Now this has two fields, 𝝓𝟏 and 𝝓𝟐, and only contains sum of squares, therefore it is invariant under
rotations in 𝝓𝟏, 𝝓𝟐 space. The potential 𝑼 (𝝓𝟏, 𝝓𝟐) is then:

U(𝝓𝟏, 𝝓𝟐) = −𝟏
𝟐
𝝁𝟐(𝝓𝟐

𝟏 + 𝝓
𝟐
𝟐) +

𝟏
𝟒
𝝀𝟐(𝝓𝟐

𝟏 + 𝝓
𝟐
𝟐)

𝟐 (2.43)

and the minima lie on the circle of radius 𝝁∕𝝀:

𝝓𝟐
𝟏 + 𝝓

𝟐
𝟐 = 𝝁𝟐∕𝝀𝟐 (2.44)

Now in order to apply Feynman calculus as we did previously, we must expand around a particular
ground state or vacuum.

𝝓𝟏 = 𝝁∕𝝀 ∶ 𝝓𝟐 = 𝟎 (2.45)
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Following the steps shown above, we introduce new fields that represent fluctuations around the

Figure 4: Graph of U(𝝓𝟏, 𝝓𝟐) in Eq. 2.43

vacuum.
𝜼 ≡ 𝝓𝟏 − 𝝁∕𝝀; 𝝂 ≡ 𝝓𝟐 (2.46)

Rewriting the Lagrangian from Eq. 2.42 using these new fields:

𝓛 =[𝟏
𝟐
(𝝏𝝁𝜼𝝏𝝁𝜼) − 𝝁𝟐𝜼𝟐] + [𝟏

𝟐
(𝝏𝝁𝝂𝝏𝝁𝝂)] −

[𝝁𝝀(𝜼𝟑 + 𝜼𝝂𝟐) + 𝝀𝟐
𝟒
(𝜼𝟒 + 𝝂𝟒 + 𝟐𝜼𝟐𝝂𝟐)] +

𝝁𝟒

𝟒𝝀𝟐

(2.47)

The first term is the free Klein-Gordon Lagrangian for the field 𝜼, carrying a mass of:

𝒎𝜼 =
√

𝟐𝝁ℏ∕𝒄 (2.48)

The second term is a free Lagrangian for the field 𝝂, which is massless:

𝒎𝝂 = 𝟎 (2.49)

The third and fourth term show five different couplings. An important phenomena that occurs here
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is that one of the two fields is massless. This is to be expect since SSB of a continuous symmetry is
always accompanied by one or more massless scalar (spin-0) particles, these are called Goldstone
Bosons. At first glance this may seem like an issue since there are no massless scalar bosons within
the SM. At this point, another mechanism is needed to extract masses. This mechanism is called
the Higgs Mechanism [68].

2.2.4 The Higgs Mechanism

This mechanism has been one of the most influential additions to the SM and is embodied by the
Higgs boson. The combination of SSB and local gauge invariance has given way to the mechanism
that has since accurately predicted masses for gauge fields, explaining the massive bosons𝑾 ± and
𝒁𝟎.

To start, the Lagrangian in Eq. 2.35 must be written with the combination of two fields, 𝝓𝟏 and
𝝓𝟐 into a complex field:

𝝓 ≡ 𝝓𝟏 + i𝝓𝟐 (2.50)

It is written like this so that its minima lie on a circle as seen in Figure 4:

𝝓∗𝝓 = 𝝓𝟐
𝟏 + 𝝓

𝟐
𝟐 (2.51)

The Lagrangian in Eq. 2.35 can be rewritten as:

𝓛 = 𝟏
𝟐
(𝝏𝝁𝝓)∗(𝝏𝝁𝝓) +

𝟏
𝟐
𝝁𝟐(𝝓∗𝝓) − 𝟏

𝟒
𝝀𝟐(𝝓∗𝝓)𝟐 (2.52)

Now the trick here is to not only introduce a massless gauge field𝑨𝝁, but the partial derivatives are
replaced with covariant derivatives.

𝕯 = 𝝏𝝁 + 𝒊
𝒒
ℏ𝒄
𝑨𝝁 (2.2.2)
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Rewriting Eq. 2.52:

𝓛 =𝟏
𝟐
[(𝝏𝝁 − 𝒊

𝒒
ℏ𝒄
𝑨𝝁)𝝓]∗[(𝝏𝝁 + 𝒊

𝒒
ℏ𝒄
𝑨𝝁)𝝓] +

𝟏
𝟐
𝝁𝟐(𝝓∗𝝓) − 𝟏

𝟒
𝝀𝟐(𝝓∗𝝓)𝟐 − 𝟏

𝟏𝟔𝝅
𝑭 𝝁𝝂𝑭𝝁𝝂

(2.53)

Now to define two new fields in order to fluctuate about the ground state.

𝜼 = 𝝓𝟏 − 𝝁∕𝝀; 𝝃 = 𝝓𝟐 (2.54)

Once these fields are substituted and the Lagrangian is expanded, it will output a mass term but will
also include a bilinear interaction and a massless Goldstone boson. To do away with the useless
nonsense, a clever trick can be implemented. The complex field can be rewritten in terms of its real
and imaginary parts as shown:

𝝓 → 𝝓′ = (𝒄𝒐𝒔𝜽+ i𝒔𝒊𝒏𝜽)(𝝓𝟏 + i𝝓𝟐)

𝝓′ = (𝝓𝟏𝒄𝒐𝒔𝜽− 𝝓𝟐𝒔𝒊𝒏𝜽) + i(𝝓𝟏𝒔𝒊𝒏𝜽+ 𝝓𝟐𝒄𝒐𝒔𝜽)
(2.55)

If 𝜽 is picked as:
𝜽 = − 𝐭𝐚𝐧−𝟏(𝝓𝟐∕𝝓𝟏) (2.56)

It will ensure that 𝝓′ is real and that the second field, 𝝃, is dropped. Now the Lagrangian in Eq.
2.53 can be expanded out to get the final result.

𝓛 =[𝟏
𝟐
(𝝏𝝁𝜼)(𝝏𝝁𝜼) − 𝝁𝟐𝜼𝟐] + [− 𝟏

𝟏𝟔𝝅
𝑭 𝝁𝝂𝑭𝝁𝝂 +

𝟏
𝟐
(
𝒒
ℏ𝒄

(
𝝁
𝝀
)𝟐)𝑨𝝁𝑨𝝁] +

[
𝝁
𝝀
(
𝒒
ℏ𝒄

)𝟐𝜼(𝑨𝝁𝑨𝝁) +
𝟏
𝟐
(
𝒒
ℏ𝒄

)𝟐𝜼𝟐(𝑨𝝁𝑨𝝁) − 𝝀𝝁𝜼𝟑 −
𝟏
𝟒
𝝀𝟐𝜼𝟒] + (

𝝁𝟐

𝟐𝝀
)𝟐

(2.57)

The top two terms within this Lagrangian shows a massive scalar 𝜼 on the left, which happens
to be the Higgs boson, and a massive gauge field 𝑨𝝁 on the right. While the other terms refer
to unique interactions. Here we see that through the extraordinary combination of SSB and local
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gauge invariance, the SM is able to generate masses for gauge fields.

2.3 Beyond the Standard Model

Despite the immense success of the SM with its ability to explain fundamental interactions and
predict particle masses, it is still an incomplete model. There are quite a few natural phenomena
that the SM does not explain. Though, it is worthy noting that there is currently no experimental
result that contradicts the SM up to 5𝝈 [75]. Physics that is not adequately explained by the SM is
called Beyond the Standard Model or BSM.

2.3.1 Unexplained Phenomena

Some fundamental physical phenomena not explained by the SM are:
Gravity This fundamental force is not explained within the SM. There have been theories that have

tried to explain it by adding its own particle called the graviton which is yet to be discovered.
Also, the best theory to explain gravity called General Relativity, which was formulated by
Albert Einstein, is incompatible with the SM.

Neutrinos Mass Neutrinos do not have mass within the SM, but experimental data and astronomi-
cal observations have shown that neutrinos oscillate between flavors, i.e. lepton family num-
ber, which is a process requiring them to have non-zero mass [2]. The mechanism in which
allows neutrinos to have mass within the SM has yet to be discovered.

Dark Matter Cosmological observations have shown hints of the existence of dark matter. If dark
matter does exist, the ordinary matter that the SM explains only makes up 5% of the universe
whereas dark matter would make up 26%. Dark matter is predicted to behave like ordinary
matter but it interacts with SM fields weakly. Currently, there are no fundamental particles
that are well explained and there have been no experimental evidence of such.

Dark Energy Just as dark matter, dark energy has yet to be discovered experimentally but is the-
oretically predicted within General Relativity. Dark energy theoretically makes up 69% of
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the universe. This energy is considered the energy density of the vacuum, using the SM to
determine this energy density, the calculated value is mismatched by 120 magnitudes.

Matter and Anti-matter Asymmetry In Cosmological observations, it is seen that the universe
has a vastly disproportionate amount of matter to anti-matter. The so-called Sakharov-conditions
[86] state how this asymmetry may occur through the violation of Charge-Parity (CP)-symmetry.
CP-violation can be observed through meson mixing [20] and is related to the CP-violating
phase in the CKM-matrix. The amount of violation is insufficient to explain the large dis-
crepancy of matter to anti-matter.
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The Standard Model
Category Particle Name Symbol Mass Spin Electric Charge Weak Isospin
Quarks up u 2.2 MeV 1/2 +2/3 +1/2

down d 4.7 MeV 1/2 -1/3 -1/2
charm c 1.3 GeV 1/2 +2/3 +1/2
strange s 93.4 MeV 1/2 -1/3 -1/2
bottom s 4.2 GeV 1/2 +2/3 +1/2

top t 173.2 GeV 1/2 -1/3 -1/2
Leptons electron e 0.511 MeV 1/2 -1 -1/2

muon 𝝁 105.7 MeV 1/2 -1 -1/2
tau 𝝉 1776.9 MeV 1/2 -1 -1/2

electron neutrino 𝝂e 0 1/2 0 +1/2
muon neutrino 𝝂𝝁 0 1/2 0 +1/2

tau neutrino 𝝂𝝉 0 1/2 0 +1/2
Gauge Bosons gluon g 0 1 0

photon 𝜸 0 1 0 0
Z boson Z 91.2 GeV 1 0 0
W boson W± 80.4 GeV 1 ±1 ±1/2

Higgs Higgs boson H 125.2 GeV 0 0 0
Table 1: The Standard Model (excluding antiparticles) particles and their relevant information [91].
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CHAPTER III

THE ATLAS DETECTOR AT THE LHC

In order to study the SM and all of its parameters, the experiments require an immense amount
of energy that is close to the levels of the Big Bang. This is no simple feat to say the least. Located
at the facility of CERN is the world’s most powerful particle accelerator called the Large Hadron
Collider (LHC) [59]. Data from proton-proton (pp) collisions occurring at the LHC are recorded
by the A Large Toroidal Apparatus (ATLAS) detector [29]. This chapter provides an overview of
the LHC, the ATLAS detector and the detector’s next upgrade.

3.1 The Large Hadron collider

The LHC is the world’s largest machine spanning a 27 kilometer long circular tunnel buried 100
meters underground located at CERN near the border of France and Switzerland. This massive
human feat accelerates protons (sometimes other hadrons) close to the speed of light in two beam
pipes in opposing directions around its circular tunnel, giving them energy levels that closely re-
semble the Big Bang. There are four crossing points along the circumference where some of the
world’s largest particle detectors are located in order to collect collision data from the beam cross-
ings. These are the ATLAS detector [29], the Compact Muon Solenoid CMS detector [32], the
Large Hadron Collider beauty experiment (LHCb) [33], and the A Large Ion Collider Experiment
(ALICE) [28]. Currently, there are in total 9 detectors located at the LHC. Billions of collisions
occur every second within these beam crossings, creating an immense amount of stored data. The
CERN Data Centers store more than 30 petabytes of data per year. The LHC succeeds this by using
superconducting radio frequency (RF) cavities for particle acceleration and 1232 superconducting
NbTi dipole magnets for controlling the particles circular path that operate at temperatures lower
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LHC Specs as of Run 2
Quantity Number

circumference 26.658 km
Number of Magnets 9593

Number of Main Dipoles 1232
Dipole Operating Temperature 1.9K (-271.3°C)
Number of Main Quadrupoles 392

Number of RF Cavities 8 per beam
Nominal Energy (protons) 6.5 TeV

Nominal Energy (ions) 2.56 TeV/u (energy per nucleon)
Nominal Center-of-Mass Energy 13 TeV
No. of bunches per proton beam 2808

No. of protons per bunch 1.2 × 1011
No. of turns per second 11245

No. of collisions per second 1 billion
Table 2: Specs of the Large Hadron Collider as of Run 2 [59].

than 2K with magnetic field strengths of up to 8.33T. A number of specs can be found about the
LHC in table 2.

The LHC complex incorporates several smaller accelerators and subsystems to achieve the high
energies used for state-of-the-art physics. Protons gain energies from smaller accelerators that lead
up to the main ring of the LHC as seen in Figure 5.

Initially, the protons are produced by ionizing hydrogen atoms and then are fed into the LINAC
2 which raises their kinetic energy to 50 MeV [59]. Subsequently, the Proton Synchrotron Booster
up to energies 1.4 GeV, the Proton Synchrotron to 25 GeV then the Super Proton Synchrotron up to
450 GeV. These are then injected into the LHC using the SPS where the protons are then accelerated
to their final stages. Protons and heavy ions are accelerated in groups of particles, or bunches [59].
A proton bunch contains approximately 1.2 × 1011 protons at center-of-mass energy (CME) of 13
TeV as of Run 2 of the LHC. These proton bunches are 1.06 ns long. Up to 2808 proton bunches
are circulating at one time during peak luminosity and are separated by at least 24.95 ns, distributed
in about 3654 positions.
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Figure 5: Schematic of the Large Hadron Collider [59] showing all the accelerators and their relative
positions

3.1.1 Cross Section, Luminosity and Pile-Up

All physics processes have a calculated rate in which they may occur. The probability that two pro-
tons will collide and interact a certain way is called the cross section 𝝈X(

√

𝒔) which is a function of
the CME √

𝒔. Particles in which have larger cross sections are more likely to occur. The calculated
rate is based on the number NX of collisions yielding some final state X. This rate RX of production
can be calculated by Eq. 3.1:

𝑹𝑿 =
𝒅𝑵𝑿

𝒅t
= 𝑳 ⋅ 𝝈𝑿(

√

𝒔) (3.1)

28



Where L is the integrated luminosity. The kinematics of any process is heavily dependent on
the CME √

𝒔. The LHC has undertaken a few campaigns in its lifetime. What is considered Run
1 had a CME of √𝒔 = 7 TeV in 2010 and in 2011, while in 2012 it was √𝒔 = 8 TeV [56]. Run 2
obviously proceeded after once the LHC underwent a few upgrades. The campaign of Run 2 took
place between the years of 2015 to 2018 with a CME of √𝒔 = 13 TeV [90], corresponding to a
kinetic energy of 6.5 TeV per proton beam. Currently, as of 2022, the LHC has started Run 3 which
has an increased CME of√𝒔= 13.6 TeV. There are plans of having a technical upgrade of the LHC
for Run 4 in 2029, making it the High Luminosity Large Hadron Collider (HL-LHC). This upgrade
aims to have a CME of √𝒔 = 14 TeV. Studies within this thesis contain preliminary development
of machine learning tools using simulated HL-LHC data along with an extensive physics search
using data taken during Run 2.

Luminosity is a significant metric which is crucial in finding very rare physics processes. It
is constructed of beam parameters: the number of proton bunches Nb, the number of protons per
bunch, N1 and N2, (there are two since two bunches are colliding), the revolution frequency fr of
the bunches, and lastly the overlap in both x and y directions, 𝝈x and 𝝈y [67]. Giving Eq. 3.2.

⟹  =
𝑵𝒃𝑵𝟏𝑵𝟐𝒇𝒓
𝟒𝝅𝝈𝒙𝝈𝒚

(3.2)

This equation shows two Gaussian beam bunches colliding head-on. The LHC is designed to have
a peak instantaneous luminosity of 1.0 × 1034 cm-2s-1 which Run 2 was able to surpass. In order to
get the total number of collisions over a period of time, instantaneous luminosity is integrated over
time to get the total integrated luminosity L.

𝑳 = ∫  (3.3)

By the end of Run 2, the LHC was able to deliver a total of 156 fb-1 of integrated luminosity. The
ATLAS detector was only able to record a total of 147 fb-1 and qualified 140 fb-1 suitable for physics
analysis [67]. The integrated luminosity recorded by ATLAS is shown in Figure 6.
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Figure 6: Cumulative integrated luminosity delivered and recorded by the ATLAS detector during
Run 2 of the LHC between the years 2015 to 2018 with a CME of √s = 13 TeV

Dense proton bunches collide in the LHC beam line interaction points, meaning there are mul-
tiple pp interactions at one time. Not all interactions are considered and therefore are not saved.
Typically, the most energetic collision per bunch crossing, called the hard-scatter, is analyzed. The
symbol denoting the average number of pp collisions per bunch crossing is µ and is termed pile-up.
The average pile-up for Run 2 is calculated to be ⟨µ⟩ = 33.7. The average pile-up over each data
taken year of Run 2, along with the total average, can be seen in Figure 7 [67].

3.2 The ATLAS Detector

The ATLAS detector is a general purpose detector located 100 meter below CERN at interaction
point 1 on the LHC ring. The purpose of this detector is to probe the SM using pp collisions and
Nucleus-Nucleus collisions. Many types of physics analyses have been conducted using the ATLAS
detector, such as testing predictions for BSM within the SM as well as precision measurements for
its physical parameters such as particle mass and lifetimes. The high energies provided by the LHC
allows physicists to probe very heavy particles such as the top quark and the Higgs boson. ATLAS
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Figure 7: The µ distribution measured by the ATLAS detector during Run 2 [67]

is the largest detector located at CERN. The detector extends 25 meters in height, 44 meters in
length and weighs 7000 tons. Figure 8 shows an overview of the detector.

The orange center of Figure 8 is the first of the sub-detectors called the Inner Detector (ID).
Approximately 1000 particles are released every 25 ns, therefore high granularity is essential to
differentiate the tracks of these particles. The ID is comprised of several parts, pixel and sili-
con microstrip (SCT) trackers, these are used in conjunction with the Transition Radiation Tracker
(TRT.). The ID’s main goal is to obtain the trajectories and paths of the particles that travel through
it. Outside of the ID is a 2T solenoid magnet that bends the trajectories of the particles, which al-
lows the momentum to be calculated. After the 2T magnet are the calorimeters which function as
energy deposition detectors. There are two types of calorimeters used, an electromagnetic calorime-
ter (ECAL) in which electrons deposit their energy, the second is called the hadronic calorimeter
(HCAL) where hadrons deposit their energy. Outside of these two calorimeters is the muon spec-
trometer (MS) which is needed for precise muon momentum measurements. All of these systems
form a large cylindrical shape around the LHC beam pipe. End-caps are placed on the left and right
side of the barrel which consist of wheel-shaped detectors.
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Figure 8: The ATLAS detector and its subsystems as of Run 2 [29]

3.2.1 The Coordinate System of ATLAS

A cylindrical and a right-handed Cartesian coordinate system are used in junction within the detec-
tor with the origin placed at the collision point. The x-axis points towards the center of the LHC,
the y-axis points straight up and is used for the basis of the cylindrical coordinate system. The
z-axis points directly down the beam-pipe. Two angles are used to define positions in the detector,
the azimuthal angleϕ and pseudorapidity defined as η. Pseudorapidity is defined in Eq. 3.4:

η = −ln(tan(θ2 )) (3.4)

Where θ is the longitudinal angle measured between the z-axis and the trajectory of the particle.
Pseudorapidity is an approximation of the variable rapidity and is commonly used due to its ease of
calculation from the Cartesian coordinate system and is equivalent to rapidity for massless particles.

32



Rapidity, y, is defined as:
y = 1

2ln(E + pz
E − pz

) (3.5)

Rapidity, ∆y, is invariant under Lorentz boosts. A benefit of using these variables is that η and ϕ
provide a Lorentz invariant coordinate system with a distance measurement ∆R, defined as:

∆R =
√

(∆η)𝟐 + (∆ϕ)𝟐 (3.6)

Due to the physical design of ATLAS, it is impossible to cover the entire η range where highly
boosted particles are able to leave through the beam-pipe, traveling very close to the z-axis. Table
3 shows the total pseudorapidity, η, range of all the sub-detectors.

sub-detector η coverage
Inner Detector ± 2.5

Electromagnetic Calorimeter ± 3.2
Hadronic Calorimeter

Barrel and end-cap ± 3.2
Forward Calorimeter 3.1 < |η| < 4.9
Muon Spectrometer ± 2.7

Table 3: Pseudorapidity of ATLAS sub-detectors [29].

Protons from the collision point only have momentum in the z-direction. Therefore the sum of
the momentum in the transverse plane ⃖⃗PT = (Px, Py)t of particles from the collision point must
yield zero. Some particles, such as neutrinos or BSM particles, can escape the detector without
depositing energy. The transverse momentum sum of all escaping particles can be determined
from knowing that the total transverse momentum sum of all escaping particles must be zero. If a
particle leaves without depositing energy, then the sum of the total transverse momentum will be
negative and can be shown in the form ⃖⃗Pmiss

T = −∑i
detected ⃖⃗P

i
T. The absolute value of ⃖⃗Pmiss

T is denoted
as ETmiss = |

⃖⃗Pmiss
T |. This value is referred to as missing transverse energy (MET).
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3.2.2 The Inner Detector

The ID consists of three independent sub-detectors that are contained within a cylindrical sleeve
with measurements of ±3512 mm and a radius of 1150 mm within a solenoid magnet of 2T. The
ID has a pseudorapidity range of |η| ≤ 2.5 and a pT threshold of 0.5 GeV [29]. The pp collision
points are contained within the ID. The collision point that contains the highest pT is considered
the primary vertex. As the decay products travel from the primary vertex, after some time, decay
themselves, creating a secondary vertex point. The ID was uniquely designed to provide robust
pattern recognition and momentum resolution for both primary and secondary vertex measurements
for charged particle’s tracks. The three sub-detectors provide complimentary data acquisition. A
decay product is first met by the pixel detector, containing discrete space-points from silicon pixel
layers. It is then met with stereo pairs of silicon micorstrip (SCT) layers. Just beyond this is the
TRT, containing many layers of gaseous straw tubes interwoven with transition radiation material.
Figure 9 shows a layout of the ID, mapping its pseudorapidity coverage and the locations of each
sub-detector.

The pp collisions impose a high-radiation environment which require stringent requirements
for material composition and sensors of the ID sub-detectors. With the designed life-time of 10
years of operation during Run 2 at the LHC, the pixel inner vertexing layer must be replaced every
three years. In order to subvert radiation damage over time, the silicon sensors are kept at low
temperatures, about -5°C to -10°C resulting in coolant temperatures of -25°C [29]. The TRT is
kept at room temperature. Figure 10 shows a drawing of each sub-detector and their sensors along
with a transversed track of a charged particle.

The Pixel Detector

The pixel detector consists of three concentric layers of sensors in the ID barrel and three end-cap
discs with sensors parallel to the transverse plane. The barrel layers are placed at a radii of 50.5 mm,
88.5 mm, and 122.5 mm as shown in Figure 10. The end-cap discs are located |z| = 495 mm−650
mm and cover r = 88.8 mm−149.6 mm giving an eta coverage of |η| < 2.5. Silicon sensors are
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Figure 9: A quarter-section of the ATLAS ID showing its major elements with their active dimen-
sions. [29]

pixelated with a pixel pitch of 50×400 µm2 ( 90%) with the remaining being 50 µm × 600 µm2.
Equaling 47232 pixels per sensor. The short side of the pixel sensors are orientated along r −ϕ in
both the barrels and the end-caps. The pixel orientation are 10 µm along the r −ϕ and 115 µm in
the z (r) in the barrel (end-caps).

The SCT Detector

As shown in Figure 10, the SCT uses silicon strips distributed along four layers in the ID barrel
and nine discs in each end-cap [29]. These layers cover ranges from r = 299 mm to r = 514 and
cover z < 749 mm. The end-cap discs are placed at |z|= 853.8 mm and |z|= 2720.2 mm allowing
up to |η| ≤ 2.5 as seen in Figure 11. The strip modules are rectangularly shaped with 12 cm strips
aligned in the z-direction. Trapezoidal strips are implemented in the barrel end-caps. The SCT
strip pitch is 80 µm. Three-dimensional coordinates are found by setting two strips back-to-back
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Figure 10: Drawing of the ID sub-detectors and their sensors. Showing the spacing of each of the
sensor layers along with a transversed charged track at η=0.3. [29]

with an offset of 40 mrad. The intrinsic position of the SCT is 17 µm in the r −ϕ and 580 µm in
z (r) in the barrel (end-caps)

The TRT Detector

The TRT is composed of 4 mm diameter polyimide drift straws containing a gas mixture of 70%
Xe, 27% CO2 and 3% O2 set to 5−10 mbar over-pressure. The straws are made of two 35 µm thick
multi-layer films bonded back-to-back. The bare 25 µm thick polyimide film is coated on one side
with a 0.2 µm Al layer which is protected by a 5-6 µm thick graphite-polyimide layer [29]. The
straws are stabilized using carbon fibers and cut to length of 144 cm for the barrel and 37 cm for
the end-caps. For the these drift tubes, 31 µm diameter tungsten anode wires plated with 0.5−0.7
µm gold are used and are supported by the straw ends and the end plug. These are connected to the
electronics and kept at ground potential. Cathodes operate at −1530V to give a gain of 2.5 × 104.
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Figure 11: Drawing of the ID sensors of all three sub-detectors and their structural elements focus-
ing on its end-caps transversed by two charged tracks. [29]

The gas within the straws are ionized as a charged particle interacts with it, releasing drift electrons.
These electrons are collected at a time of 48 ns. The Xe-based gas mixture requires a re-circulating
gas system with continuous monitoring of its quality. The TRT offers a particle position resolution
of 130 µm which is much less than the previous two sub-detectors. The TRT also aids in the
identification of charge particles by exploiting transition radiation.

3.2.3 The Calorimeter System

Surrounding the ID solenoid are both of the calorimeters that are responsible for measuring charged
particles Energy. Each calorimeter consists of a number of sampling detectors that cover a full ψ-
symmetry and coverage around the beam axis. The first calorimeter is the ECAL which detect
depositions of electromagnetic particles such as electrons and photons. Outside of the ECAL sits
the hadronic calorimeter, its responsible for measuring energy of any hadronic products from the
collision. Both calorimeter systems use liquid argon as the medium for detecting. These calorime-
ters have alternate between two types of layers, an active layer and a sampling layer. The active
layer interacts with charged particles, releasing secondary particles that the sampling layer then
measures. A calibration is done and converts the deposited energy within the sampling layer to the

37



parent-collision particle’s energy.

Electromagnetic Calorimeters

Figure 12: Sketch of a barrel module at η=0. The folds of the electrodes and each layer’s granularity
is shown [29]

The ECAL is just outside the solenoid of the ID and has a barrel shape with two end-caps. Inside
this detector are plates of lead laid inside two sheets of stainless steel that act as an absorber, while
liquid-argon acts as the sampling material. Three conductive copper layers are located in the gaps
between the absorbers and act as electrodes. These electrodes and absorbers inside this calorimeter
are folded in an accordion style. The folding radius varies in length to keep the liquid-argon gap
constant. Both, the electrodes and absorbers, vary in radius with respect to the liquid-argon gap
with the end-caps due to being parallel to the radial direction. There are two barrels that cover
positive and negative η and are centered at the z axis, called the LAr electromagnetic barrel. One
half of the barrel covers 0 < η < 1.475 while the second half covers -1.475 < η < 0. The length
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of each barrel is 3.2 m, the inner and outer diameter are 2.8 m and 4 m respectively, weighing a
total of 57 tons. Figure 12 shows a sketch of a barrel module at η = 0 showing each of the three
layers and their granularity.

The end-caps of the EM calorimeters (EMEC) consist of two wheels, one on each side of the
barrels. Each wheel is 63 cm thick and weighs 27 tons. These wheels have an η coverage of
1.375 < |η| < 3.2. A liquid-argon sampler is placed in the region between the wheels of the EMEC
and the ECAL to improve the energy measurement within the region which has an η coverage of
1.5 < |η| < 1.8. Each EMEC consists of two co-axial wheels located in between the inner and
outer wheel. These are 3 mm wide and located at |η| = 2.5.

Figure 13: Sketch of the tile calorimeter showing the alternating steel plates and scintillator material
attached to PMTs. [29]
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Hadronic Calorimeters

There are three sub-detectors within the HCAL system, the tile calorimeter, the liquid-argon hadronic
end-cap calorimeter (HEC), and the liquid-argon forward calorimeter (FCal). The tile calorimeter
is a sampling calorimeter that uses steel as the absorber and an active medium as a scintillator. It’s
located just outside the ECAL and covers an η region of |η| < 1.7 and is divided into three parts,
the center barrel extends 5.8 m in length while the two outer barrels extend 2.8 m. The orientation
of the scintillator tiles are radial and normal to the beam line. Attached are wavelength-shifting
fibers that extend into readout photomultiplier tubes (PMT). A sketch of the tile calorimeter can be
seen in Figure 13. The output from the PMTs are what’s recorded.

The HEC schematic is shown in Figure 14. This module is an end-cap calorimeter consisting
of copper and liquid-argon sampling with a flat plate design, cover a range of 1.5 < |η| < 3.2.
These end-caps share the cryostats with the EMEC and the FCal. It consists of two wheels in each
end-cap, front wheel (HEC1) and the back wheel (HEC2). Each wheel contains two longitudinal
sections constructed of 32 identical wedge-shaped modules. The FCal provide an η coverage of
3.2 < |η| < 4.9. These modules are located at high η, approximately 4.7 m from the collision
point, exposing them to high particle fluxes. This fact resulted in much smaller liquid-argon gaps
to avoid ion build-up and faster signal readout. Figure 15 shows an illustration of the entire HCAL
section in ATLAS.
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Figure 14: Hadronic calorimeter end-cap. Electrode readouts indicated by dashed lines . [29]

Figure 15: Illustration of the entire HCAL system in ATLAS. [29]
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3.2.4 The Muon System

The final system is the muon spectrometer which is designed to detect charged particles exiting the
calorimeters and to measure their momentum. Muons lose minimal energy when traversing through
matter and therefore are depositing minimal energy in the ECAL. The muon system triggers on
particles with the pseudorapidity of |η| < 2.4 and can track up to |η| < 2.7. The system consists
of three concentric cylindrical shells of gas-filled detectors around the beam axis with radii of 5 m,
7.5 m, and 10 m. The two end-caps of the muon chambers form large wheels, perpendicular to the
z-axis and are located at |z| ≈ 7.4 m, 10.8 m, 14 m and 21.5 m from the collision point [29]. Figure
16 shows the overall arrangements in two cross-sections of the muon system. The muon trajectories
are bent using large superconducting toroidal magnets with a generated field mostly perpendicular
to the traversing muons.

The muon gas chambers are filled with 93% Argon gas and 7% carbon dioxide, inside the cham-
bers are Monitored Drift Tubes (MDT) that perform the precision momentum measurements. The
layers consist of three to eight layers of MDTs and can achieve an average drift resolution 80 µm
per tube. In the forward region, 2 < |η| < 2.7, Cathode-Strip Chambers (CSC) are installed within
the innermost tracking layer. These are used for their high rate capability and time resolution due
to the increase of particle flux. The CSC have cathodes perpendicular to the MDTs and the charge
induced on the cathode is measured for the signal. The resolution of each chamber is 40 µm in the
bending plane (due to the toroidal magnet) and 5 mm in the transverse plane. The muon system is
completed with a high precision optical alignment system and is paired with track-based alignment
algorithms.
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(a) Cross-section of muon system
perpendicular to the beam-axis

(b) Cross-section of muon system in a plane with the
beam-axis

Figure 16: Cross-sections of the muon system in the ATLAS detector. Figure (a) shows the three
concentric cylindrical layers of 8 large and 8 small chambers. Outer diameter being 20 m. Figure
(b) shows a planar view of the muon system, non-bending muon tracks are shown with dashed lines
[29]

3.2.5 Trigger and Data Acquisition

pp collision rate inside ATLAS occurs at a very high frequency. Bunch crossings occur every 25
ns which equates to a rate of approximately 40 Mhz [29]. The amount of data produced in these
pp collisions exceeds the storage capabilities, additionally, most bunch crossings feature only low
pp momentum transfers and are therefore not interesting to analyze, let alone store. Therefore a
complex selection system is implemented within ATLAS called the Trigger and Data Acquisition
(TDAC) system [12]. This system is necessary to only store events that are of interest, reducing the
necessity for storage facilities.

The trigger system consists of three levels of trigger systems. They are Level-1 (L1), Level-2
(L2), and event filter. The L2 and event filter triggers compose the High-Level Trigger (HLT). The
L1 trigger is implemented using custom-made hardware, while the HLT is based on the latest soft-
ware algorithms. The highest acceptance rate of the L1 trigger is 75 kHz and the decision making
must reach the front-end electronics within 2.5 µs. This trigger mainly searches for signatures from
high-pT muons, electrons, photons, jets, 𝝉-leptons that decay into hadrons, and MET using infor-
mation collected by the calorimeters and muon spectrometer. Figure 17 shows a diagram for the L1
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trigger. This information is passed to the L2 trigger which reduces the event rate to below 3.5 kHz.
The L2 separates this information into Regions-of-Interest (RoI) based on coordinates, energy and
types of signatures. The event filter uses offline analysis procedures to further reduce the dataset
by down to approximately 200 Hz by making decisions on fully built events. However, the average
acceptance rate of the HLT is 1.2 kHz, corresponding to a data rate of 1.2 GBs-1 to be written to
disc [12].

Figure 17: Block diagram of the L1 trigger in the ATLAS detector showing data paths to the front-
end, L2 trigger and DAQs system. [29]

3.3 The High-Luminosity LHC and the ATLAS Detector Upgrade

There are two crucial factors in defining rare physics searching capabilities, one is the CME and
the other is integrated luminosity. The CME dictates the production cross-section for each physics
process, allowing for the produced particle to shift from off-shell (produced at a non-theorized
mass) to on-shell (produced at theorized mass). Increasing the luminosity equates to increasing the
total data production, therefore increasing the amount of rare events one may be looking for. The
LHC was initially designed to run at a CME of 14 TeV in which it has obtained a value of 13.6 TeV
during Run 3. The current luminosity obtained as been 140 fb-1 during Run 2 and an estimated 300
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fb-1 during the course of the ongoing Run 3.
The HL-LHC is aimed to fully utilize the capabilities of the LHC with a running lifetime of 12

years (called Run 4). It is designed to increase the number of collisions per bunch crossing from
⟨µ⟩= 33.7 to ⟨µ⟩= 200. The expected peak luminosity achieved by the HL-LHC is 5×1034 cm-2s-1

The expected integrated luminosity of each year is 250 fb-1, with a total of 3000 fb-1 after the 12
year run time [18]. This massive upgrade to the LHC requires systems to be upgraded and some
to be fully exchanged since these systems are vulnerable to breaking down due to high radiation
exposure. This increase in radiation is also taken into account within the ATLAS detector, realizing
the current infrastructure within the detector is unable to withstand this amount of radiation for
the running time of Run 4. This high information dense environment now imposes a few new
challenges, such as maintaining high granularity data readout and the ability for the electronics to
maintain this operative power under such high radiation doses. In order to obtain this new feat,
the ID will be completely replaced with a new detector sub-system called the Inner Tracker (ITk)
as a part of the ATLAS Upgrade. Part of the work in this thesis focuses on preliminary studies
of the latest particle identification algorithms implementing the new geometry imposed by the ITk
through computer simulations.

3.3.1 The Inner Tracker

The new tracking detector is designed for a 10 year life span of operation at instantaneous luminosity
of 7.5×1034cm-2s-1, 25 ns per bunch crossing and a total integrated luminosity of 3000 fb-1 over the
entire lifetime [30]. The current solenoid magnet being used will remain in place and provide
a magnetic field of 2T as per the previous runs. One of the major improvements (besides being
radiation hard) is that the new design will allow data collection of quality events of up to |η| < 4.0.
This is achieved through a complex system of silicon barrel layers and disks or rings along with
inclined pixel modules to have better coverage between the barrel and the end-caps of the ITk. The
barrel will extend η ≈ ±1 in which the current ID barrel only has a η ≈ ±0.6 coverage.
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ITk Layout

In the central area in the ITk barrel, sensors are arranged in cylinders around the beam axis. The
first five layers are pixel modules followed by two short-strip layers of stereo modules then followed
by two even longer strip stereo modules. The forward η regions will be covered using six strip disks
on either side and several pixel rings.

Figure 18: The ITk layout. The pixel detectors are shown in red and the strip Detector in blue. [30]

The strip detectors seen in blue in Figure 18 consists of four-layer barrel sections and one end-
cap on each side containing six disks. This strip system covers η ≈ ±2.7 in the barrel region and
sits ± 1400 mm along the z-axis. The inner layer strips extend a length of 24.1 mm while the outer
layer strips are 48.2 mm. All strips within the ITk have a pitch of 75.5 µm. Table 4 shows layout
parameters of the strip detectors within the detector barrel.

The strips in the six end-cap wheels on each side are radially distributed, pointing towards the
z-axis. The strips vary in length within these end-caps to optimize total strip occupancy, starting
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ITk Barrel Strip Detector Layout Parameters
Layer Radius [mm] Channels inϕ Strip Pitch [mm] Strip Length [mm] Tilt Angle [◦]

0 405 28×1280 75.5 24.1 11.5
1 562 40×1280 75.5 24.1 11.5
2 762 56×1280 75.5 48.2 10
3 1000 72×1280 75.5 48.2 10
Table 4: Layout Parameters of the ITk Strip Detector barrel. Each strip is 2.8 m long. [30].

at 19.0 mm closer to the beam axis, varying up to 60.1 mm in the outermost regions. The exact
locations of the end-cap disks and strips are shown in table 5.

Aside from the strip detectors within the ITk, there are pixel detectors as shown in red in Figure
18. The pixel detector consists of five barrel layers and four end-cap ring layers. The layout provides
a full eta coverage of |η| = 4. The design of the pixel detector allows it to be operating the full
lifetime of 12 years. The barrel layer of pixel sensors are placed tangentially of the constant radius
of the cylindrical barrel shape. The sensors in the forward parts of the barrel are inclined at an
angle of 56◦. Currently, each pixel size is nominally set to 50×50 µm2 with a thickness of 100 µm
for the two most inner barrel layers and 150 µm for the outer two for simulation.

3.3.2 B-Tagging and Vertex Reconstruction for the ITk

Event reconstruction is crucial to the integrity of all physics conducted at the LHC. In order to
effectively reconstruct events, the energy deposition and associated tracks must be recorded for the
specified event to be rebuilt. As stated earlier, at the HL-LHC it is expected to obtain a pile-up of
⟨µ⟩ = 200. This means the mean separation of primary vertices will be approximately less than 1
mm within the space of the ITk barrel. Meaning it’s not possible for all primary vertices of each
event to be reconstructed independently. Therefore, it’s crucial that all high energetic events coming
from a common vertex must be identified to a high efficiency. Vertex reconstruction within such
an environment imposed strict requirements on tracking resolution close to the particle interaction
points. The goal is to have reconstructed vertices for 𝒕𝒕 events to be greater than 0.95 and that
the 𝒕𝒕 decay product is associated to the correct vertex at a rate greater than 0.90. The b-tagging
versus light-jet rejection should be optimized for each layout and at minimum should match the
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performance of the ID. There is a much more in depth discussion on particle identification and
event simulation in chapters 4.1 and 4.7 respectively.

3.3.3 High Granularity Timing Detector

The High Granularity Timing Detector (HGTD) is a disc shaped detector that will be placed outside
the ITk. It will be added in front to the end cap and forward calorimeters at |z|= 3.5m. It is
composed of two forward and backwards disks with central half rings and stave concepts with a
total area of 6 m2 of silicon sensors. The HGTD offers a new and powerful technique to overcome
the obstacle of pile-up. It takes advantage of the time spread of interactions that occur close in
space but spread apart over time. This provides a time resolution with a precision measurement of
up to 30 ps and will cover an 2.4 < |η| < 4.0 where pile-up is rejected [36]. Figure 19 shows the
assembly diagram of the HGTD

Figure 19: The assembly of the HGTD detector[36]

The sensors that are built within the HGTD are referred to as Low Gain Avalanche Detectors
(LGADs). These sensors will have an active thickness of 50 µm and the pixel area covers 1.3 ×

1.3 mm2. The sensors will be integrated to an electronic circuit that is currently being developed to
meet the requirements of the necessary timing resolution and radiation hardness [36]. The LGAD
sensors are n-on-p silicon detectors with an internal gain. To obtain this gain, a highly doped, p-
layer is added just below the p-n junction. This doped region creates a very high electric field and
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will induce an avalanche of the electrons and thus creating additional electron-hole pairs. Figure 20
shows an illustration of the HGTD. The blue represents the active LGAD region and the green is
an inactive off-detector region.

Figure 20: An illustration of the HGTD showing the LGAD sensors (blue) and an inactive region
off-detector (green) [36]
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ITk Barrel Strip Detector Layout Parameters
Ring/Row Inner Radius [mm] Strip Pitch [mm] Strip Length [mm]

Ring 0 Row 0 384.5 75.0 19
Ring 0 Row 1 403.5 79.2 24
Ring 0 Row 2 427.5 74.9 29
Ring 0 Row 3 456.4 80.2 32
Ring 1 Row 0 489.8 69.9 18.1
Ring 1 Row 1 507.9 72.9 27.1
Ring 1 Row 2 535 75.6 24.1
Ring 1 Row 3 559.1 78.6 15.1
Ring 2 Row 0 575.6 75.7 30.8
Ring 2 Row 1 606.4 79.8 30.8
Ring 3 Row 0 638.6 71.1 32.2
Ring 3 Row 1 670.8 74.3 26.2
Ring 3 Row 2 697.1 77.5 26.2
Ring 3 Row 3 723.3 80.7 32.2
Ring 4 Row 0 756.9 75.0 54.6
Ring 4 Row 1 811.5 80.3 54.6
Ring 5 Row 0 867.5 76.2 40.2
Ring 5 Row 1 907.6 80.5 60.2

Table 5: Main layout parameters for the strip detector end-caps. [30].
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CHAPTER IV

OBJECT RECONSTRUCTION AND EVENT SIMULATION IN ATLAS

The previous chapter went into detail on how the ATLAS detector works through its various
sub-detectors and and systems. Collisions occur at the beam axis, creating a shower of particles
into the detector, depositing energy on an object’s corresponding detector and having its tracks
mapped by several systems within the ID. These recorded signals from triggered events are used to
reconstruct the event using complex algorithms.

Figure 18 shows a slice of the ATLAS sub-detectors with several different objects from a single
event depositing energy in corresponding sensors. The trajectories of charged particles (tracks)
are reconstructed using the ID [29]. Muons are reconstructed using associated tracks measured
within the muon spectrometer and tracks left within the ID [61]. Electrons are reconstructed using
tracks detected within the ID along with energy deposits within the ECAL [31]. Photons will also
deposit their energy within the ECAL, but do not leave any tracks, thus being able to separate both
electromagnetic objects.

From these collision events are objects known as jets, i.e., hadron cones due to hadronization
of quarks and gluons as seen in Figure 21 as the red deposits in the blue HCAL. Due to hadroniza-
tion, multiple tracks are associated with jets which is why jets are reconstructed and not individual
hadrons. Jets can be caused by several different hadrons and so we separate these types into, what
we call, flavors. Jets caused by b-hadrons are called b-jets, and likewise, c-hadrons cause c-jets. The
lighter quarks (up, down and strange as discussed in Section 2.2) are difficult to differentiate due to
their similar size in mass. We group these hadrons into a single category of jets called light-jets. As
jets propagate outward they create a cone like shape within the HCAL, covering an angular area.
Jets that cover a large angular area are considered large-radius jets [13] which contain interesting
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physics and are a focused object for the preliminary analysis in the last chapter of this thesis.

Figure 21: Planar slice of the ATLAS detector showing different energy deposits of several physics
objects [83].

4.1 Track and Vertex Reconstruction

Almost all physics objects detected by ATLAS deposit small amounts of energy within the ID
sensors, each hit is then used to reconstruct the object’s track(s). Tracks are seeded by groups of
three, one from the IBL, another from the pixel detector and lastly the SCT [9]. Within the pixel
and SCT detectors, the track association begins with clustering raw measurements. A connected
component analysis (CCA) [1] groups pixels and strip detectors together that share a common edge
or corner if energy has deposited on them above a certain threshold. These combined clusters
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are then referred to as space-points. The average size of a pixel cluster is about 2 pixels in the
r-𝝓 plane and 1 to 3 pixels in the longitudinal direction with increasing η. Clusters from single
charged particles are single-particle clusters, clusters from multiple charged particles are referred
to as merged clusters and clusters from multiple tracks that are not compatible are called shared

clusters. A Kalman filter [60] is applied to these merged clusters to maximize track purity for
objects of interest. Particles often share a hit, in this case a quality score is assigned to each track
candidate. The score is determined by the number of ID layers with a hit, a track fit 𝝌2 and the
logarithm of the track momentum to suppress low pT track objects [9, 58]. For clusters assigned
to multiple tracks in the merged clusters category, an ambiguity solver is applied. For the track
selection criteria, a track cannot be associated to no more than two shared clusters, cannot be over
pT > 400 MeV and |η| < 2.5. Using the hits in the TRT, the final track candidates are mapped out
and a final selection occurs through track fitting.

Through the multiple pp collisions in a bunch crossing, there is typically a single collision that
yields objects of interest, this is called the hard-scatter. The main vertex of the hard-scatter and the
secondary vertices from its decay products are mapped through the tracking procedure by applying
track criteria. Multiple vertices are found on the z-axis from luminous peaks, called seed vertices.
Here is where the track algorithm and its criteria are applied to find the primary vertex of the hard-
scatter.

4.2 Electrons

Electrons are reconstructed using the energy deposits within the ECAL and tracks within the ID.
The reconstruction comes in several steps. The first is combining the energy clusters within the
ECAL into EM-topo clusters. Tracks are then matched to these clusters, creating superclusters.
Electrons are then defined from these superclusters [43].

Proto-clusters are first defined within the ECAL and HCAL using a set of noise thresholds to
discriminate from background noise. The clusters found in the HCAL are not used in the electron
reconstruction process, but are used to reduce background noise from pile-up. The cell clusters are
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required to have a significance |𝜻EM
cell | ≥ 4 as defined in Eq. 4.1 [43]:

𝜻EM
cell =

EEM
cell

𝝈EM
noise,cell

(4.1)

EEM
cell is the cell energy deposition and 𝝈EM

noise,cell is the expected cell noise. This noise is the known
electronics noise and an estimate of the pile-up noise corresponding to the instantaneous luminosity
of Run 2. The algorithm then iterates through these clusters, ignoring the first of the ECAL in order
to suppress noise. These proto-clusters are then paired with neighboring clusters with a significance
of |𝜻EM

cell | ≥ 2. These neighbors are then used as seed clusters of the next iteration to further find
neighboring cells within the cluster. Once all the neighboring clusters with |𝜻EM

cell | ≥ 2 are found,
they are then merged into a larger cluster. Proto-clusters with more than two or more local energy
maxima, they are split into separate clusters. A maxima is considered when it has EEM

cell > 500 MeV
and at least four neighbors with smaller signal.

Tracks are then matched to the proto-clusters using information from the ID as described in
Section 4.1 [4]. Electrons lose a significant portion of their energy within the ID compared to other
charged particles. To ensure efficiency in electron reconstruction, a loose track association criteria
is applied. The conditions are |ηtrack −ηcluster| < 0.05 and −0.10 < q(𝝓track −𝝓cluster) < 0.05 where
q refers to the charge of the track. An ordering is applied to cases when multiple tracks are matched
to a single cluster. Tracks found in the pixel detector are the most preferred, then tracks within the
SCT with none in the pixel detector. Then the best ∆R between the tracks and the cluster chosen.
The track with the best score is then matched to the ECAL cluster and is used in the further steps
of electron reconstruction.

Superclusters are then defined from these chosen EM topo-clusters. The seeds chosen to form
the superclusters are selected by requiring ET =

√

m2 + p2
T ≥ 1 GeV and matched track fulfilling

quality criteria. These superclusters are then extended by adding topo-clusters within ∆η × ∆𝝓 =

0.075 × 0.125, these are considered satellite clusters and are assumed to be secondary EM showers
from the initial electron or photon. But for electrons, this distance is extended to ∆η × ∆𝝓 =
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0.125 × 0.3 and the seed and the adjacent topo-cluster must share a matched track. These steps rely
heavily on tracking information to discriminate between radiative photons or low energy electrons
from pile-up or noise.

Once the superclusters are built, an initial energy calibration and position correction are applied
to them. Tracks are matched to these supercluster while conversion vertices are matched to photons
since they do not leave tracks within the ID. There are events with clear cut identification of electrons
and photons, i.e., superclusters with defined tracks (electrons) and superclusters with no defined
tracks (photons). But there are cases when there is ambiguity between both objects, when this
occurs a classification process is applied to determine the type of object. The initial suepercluster
calibration occurs before the track matching and relies on energy calibrations of the electrons and
photons to simulations [3]. This process is referred to as energy scale calibration. The energy
resolution of electrons found in data are used to calibrate simulations of Z → ee events. These
simulated events are then used to derive the energy scale and resolution calibration factors. The
invariant mass of two electrons in data and within these simulated events after the energy resolution
is applied can be found in Figure 22 with good agreement.

Figure 22: Comparisons of simulated events and data after calibration and resolution corrections
applied for electrons [43].
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4.3 Muons

Muons deposit little energy as it transverses the ATLAS detector, thus its reconstruction relies heav-
ily on associated tracks left within the ID and the (MS) along with characteristic energy deposits in
the calorimeters. The track reconstruction is for the MS is independent of the track reconstruction
in the ID as described in section 4.1, though the reconstructed muon depends on both [61].

Tracks within the MS are identified as short straight-line local segments reconstructed from hits
in individual stations. These segments are identified through a process known as a Hough transform
[71]. These segments are combined into preliminary track candidates using a loose constraint of
the impact parameter (IP, discussed in Section 4.5.1) and a parabolic trajectory that includes the
first-order approximation of the track bending due to the magnetic field. These calculations are
combined with precision information of a second coordinate from the trigger detectors, creating a
three-dimensional track. This track then has a global fit 𝝌2 fit of the muon trajectory through the
magnetic fields within the MS. The hits that are not contained within the fit of the muon trajectory
are removed. Hits are added onto the fit trajectory that were not originally there, from these aligned
hits, another 𝝌2 fit is applied. Less quality tracks are removed when they share a fraction of hits
with a high quality track in order to resolve ambiguities. The final track is then re-fitted with a IP
constraint that takes into account the energy loss in the calorimeters and an extrapolated trajectory
back to the beam line [61].

This fitting procedure using hits within the MS and ID are applied in several different recon-
struction strategies.

• Combined (CB): Combined muons are identified by matching MS to ID tracks and applying
a combined fit as previously discussed. For muons with |η| > 2.5, MS track segments are
combined with hits from the pixel detector and SCT detector. These boosted muons are
considered a subset called silicon-associated forward (SiF) muons

• Inside-Out Combined (IO): Muons reconstructed using this method uses an algorithm which
extrapolates the ID hits to the MS and searches for at minimum three loosely associated hits.
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Between these loosely associated hits, the small energy loss within the calorimeters are used
to verify. A Combined track fit is then applied.

• Muon-Spectrometer Extrapolated (ME): These are muon tracks within the MS but cannot be
associated with any hits within the ID. If this is the case, the tracks are extrapolated all the
way back to the beam line. Because of this, this extends the MS coverage to |η| = 2.7.

• Segment-Tagged (ST): ST requires at least one MS segment to be associated with an extrap-
olated ID track.

• Calorimeter-Tagged CT: These muons are identified by taking the extrapolated tracks in the
ID through the calorimeters. Muons deposit minimum-ionizing energy in the calorimeters.
If CT was used to identify the muon, the parameters are obtained directly through the track
fit.

After reconstruction, high quality muon candidates are then selected using criteria utilizing the
sub-detectors. The set of requirements on the identified muons given its type as stated above is
referred to as its selection working point (WP). The definition of muon WPs depends on the type of
analysis involving final state muons. The standard WPs designed to cover needs of most analyses
vary in increasing purity and decreasing muon tagging efficiency. The WPs are loose, medium, and
tight. Here, muons passing the medium WP is a subset of the loose WP. These were defined to help
optimize different physics analyses. The medium WP is suitable for most general analyses where
the loose was optimized for Higgs boson decays into a four muon final state [61].

Muon correction factors are obtained through simulation events of Z → µµ and J∕𝝍 → µµ.
The momenta in the simulation are corrected to those obtained through data. Multiplicative cor-
rection factors are obtained to correct for reconstruction, identification, and isolation efficiencies of
simulation to data.

57



4.4 Jets

Most pp collision events result is quarks or gluons. Due to quark confinement within QCD, these
partons cannot exist independently and undergo a process called hadronization, resulting in color-
less cone-like sprays of hadrons. The cones, or jets, are reconstructed using tracks from the ID and
energy depositions with the HCAL. The energy deposition and correlated tracks undergo the same
topo-cluster algorithm defined for electrons that was discussed in section 4.2. Two types of jets are
defined depending on the radii of the cone. There are small-radius (SR) jets and large-radius (LR)
jets. Figure 21 shows two jets deposited in the blue colored HCAL, one from a proton, the other
from a neutron.

4.4.1 Jet Definition

Since quarks cannot exist independently due to quark confinement, jet reconstruction must rely on
complex algorithms exploiting jet kinematics in order to identify the initial quark. The jet recon-
struction algorithm must allow for reliable comparison to theory and experiment [77]. In order to
identify jets associated to the hard-scatter event, the jet algorithm must be insensitive to soft (low
momentum) and collinear (low angle) hadrons.

The current ATLAS standard of such algorithms is called the anti-kT algorithm [77]. This
process identifies hadronic energy depositions as inputs and forms jets through sets of criteria.
First it chooses some object i in a list of objects, calculates the distance dij between two objects
within the list and then it calculates the distance diB between object i and the beam (B). This is
shown in Eq. 4.2 .

dij = min(p2p
T,i, p

2p
T,j)

∆2
i,j

R2 ,

diB = p2p
ti

(4.2)

Where:
∆2

i,j = (yi − yj)2 + (𝝓i − 𝝓j)2 (4.3)
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and pT,i, yi and 𝝓i are respectively the momentum, rapidity, and azimuthal angle of object i. The
radius of the jet cone is denoted as R and the parameter p is to help govern relative power of the
energy. For the anti-kT algorithm the parameter p is set to −1. The algorithm then finds the mini-
mum between dij and diB. if the minimum is the distance between the two objects i and j, then the
four momenta of the objects are combined. Whereas, if the diB is the minimum, object i is regarded
as a jet. This procedure continues as long as objects remain on the list.

Due to the inverse dependence on pT, soft objects are combined with close-by hard objects
(high momentum) before two soft objects are combined [77]. Jets tend to have a conical shape
around the hardest object i when using anti-kT algorithm for reconstruction. However, when two
hard objects are within a relative distance of ∆(i, j) ≤ 2R of one another, it’s difficult to differentiate
the jet substructure of either jet. If the two hard objects are within R < ∆(i, j) ≤ 2R then the anti-
kT algorithm forms two jets. The shapes of these two hard object jets depends on the transverse
momenta of both, ending in one shape to be conical where the other is partially cone-shaped. If
two hard objects are found within ∆(i, j) < R, a single jet is formed and the shape is defined by the
momenta of the two hard objects. If the momenta are similar, the jet is can be constructed of two
cones (with radii lower than R) inside one larger cone. Figure 23 shows several jets classified using
the anti-kT algorithm, along with a large-radius jet containing two small-radius jets.

Two types of jets are presented in this thesis. Both are the previously stated SR and LR jets.
The cone radii for these types correspond to R = 0.4 for SR and R = 1.0 for LR. More about these
two types are explained in the following sections.
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(a) (b)
Figure 23: (a) Shapes and the substructures of jets formed using the anti-kT algorithm in the 𝝓 -y
plane [77]. The height in the z-axis corresponds to the momentum of the hard objects. Figure (b)
Substructure of a large-radius jet containing two small-radius jets of similar pT

4.4.2 Small Radius Jets

There are several approaches to defining a SR jet. The jets used in this thesis, and are currently
ATLAS standard objects, are called particle flow or PFlow. PFlow objects are the building blocks of
PFlow jets. These objects are clusters within the calorimeters and their constituted tracks [23, 25].
Proto-clusters as previously defined in Section 4.2 are standard PFlow objects [43]. The energy
depositions in the ECAL and HCAL used to form these proto-clusters are calibrated to the EM scale
in order to get a correct measurement of the showers [25]. A weighted mean of the cluster cells is
calculated. This value is used to assign 𝝓 and η coordinates, as well as the energy deposited [27].
From here, it’s assumed this cluster points to the origin of the coordinate system of the detector.
The proto-cluster is taken as a particle of zero mass and has its four-momentum calculated [27]. All
the weighted clusters are assumed to be produced from objects originating from the hard-scatter, an
origin correction is then applied [25], altering the momentum values to point towards the primary
vertex.

SR are defined as these corrected calorimeter proto-clusters with their associated tracks. A pre-
viously used jet class called EMTopo jets was used. But this class only utilized the proto-cluster
energy depositions and didn’t use the track information from the ID. The ID has very precise mo-
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mentum resolution for low momentum tracks, combining these to the calorimeter energy deposi-
tions greatly increased jet energy resolution in low energy jets. Giving jets improvements in its
energy and direction while also lessening dependence on the number of pile-up interactions [25].

Tracks defined as PFlow objects but adhere to a tighter criteria than previous cases. A crucial
energy subtraction procedure is performed to prevent double counting of energy contributions of
charged particles leaving tracks in the ID and energy deposited in the calorimeters [23, 25]. Energy
that can be associated to a PFlow track is subtracted out of the clusters. A distance metric is applied
between the center of the cluster and its possibly associated track as defined in Eq. 4.4.

∆R’ =

√

(∆𝝓
𝝈𝝓

)2
+
(∆η
𝝈η

)2
(4.4)

Where 𝝈𝝓 and 𝝈η represent the angular topo-cluster width, calculated as the standard deviation
of the displacements, 𝝓 and η, of the cluster cell center [23]. Taking the smallest ∆R’ to be matched
to a track succeeds in virtually all particles with pT > 5 GeV. If no topo-cluster is found in a
cone with ∆R’ = 1.64, it is assumed the particle did not form a cluster in the calorimeter and no
momentum procedure is applied [23].

For each track matched to a cluster, the energy deposited by the particle is evaluated using
simulated events. After a charged particle traversed the ID, it is possible that it would leave more
than one topo-cluster in the calorimeters. If this is the case and the topo-cluster has energy below
the expected amount, clusters within ∆R’ = 0.2 of the track are combined. Once the track-to-cluster
matching occurs, energy is subtracted from the calorimeter topo-clusters. Energy deposits around
the subtracted clusters that are found within reasonable shower fluctuations are also subtracted. The
final PFlow object is considered the total subtracted energy from the calorimeter and the matched
tracks that are compatible to the primary vertex.

4.4.3 Large Radius Jets

As the momentum of massive particles (e.g. W, Z, Higgs, or the top-quark) increases, they become
more Lorentz boosted. When these particles decay, their decay products are also highly Lorentz
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boosted, collimating them in a single direction. It is advantageous, in this case, to adjust the radius
parameter R from the small-R jets and to increase it in order to contain all the collimated decay
products. The parameter for large-R jets is increased to R = 1.0. By increasing the radius param-
eter, multi-pronged jet substructure from two-body or three-body decays is much more effectively
captured [26].

The reconstruction of LR jets is complicated due to the presence of soft radiation, i.e. en-
ergy deposition from underlying pile-up and uncorrelated jets. These degrade the reconstruction
performance, LR jet mass resolution and other sub-structure quantities. LR jets are typically recon-
structed using the anti-kT algorithm and historically have been based solely on calorimeter energy
measurements which have provided excellent energy resolution. By only using energy depositions
in the calorimeters, it is difficult to reconstruct separate particles within the LR jet radius of R =
1.0, especially where the calorimeter resolution is coarse. It is important to distinguish the LR jet
sub-structure and therefore several PFlow algorithms are implemented to extract this information.
A variant of the PFlow algorithm called Track-CaloClusters (TCC) was designed to reconstruct
jet sub-structure even at the highest transverse momenta. The structures identified using TCCs
and PFlow is called Unified Flow Objects, or UFOs. Pile-up mitigation techniques are also im-
plemented such as constituent subtraction, Voroni subtraction, SoftKiller, and pile-up per particle
identification (PUPPI).

A trimming procedure is enacted inside the LR jet to reduce the sub-structure constituents that
may be related to soft radiation. Several criteria are implemented in this trimming procedure, such
as using the ratio of the pT of the sub-jet constituents. This trimming procedure uses the kt algorithm
to create sub-jets inside the large radius, creating jet objects with a radius parameter Rsub. Any sub-
jets with pTi∕pjet

T < fcut. Where pTi is the transverse momentum of the ith sub-jet, and fcut is the cut
parameter. The optimized parameters used for this trimming procedure are fcut = 0.3 and Rsub =
0.2. Figure 24 shows a diagram of a trimmed jet.

Mass is then assigned to each trimmed jet according to their four-momentum squared. To im-
prove trimmed jet mass resolution for high-pT LR jets, an additional mass (mTA) is added based on
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Figure 24: Diagram illustrating the LR jet trimming procedure [21].

tracks associated with the jet, calculated using Eq. 4.5. Tracks are associated to sub-jets through
a technique called ghost-association. A pseudo-particle is reconstructed for each track, having the
same coordinates and direction as the track. These pseudo-particles are input into the anti-kT algo-
rithm along with the energy clusters in the calorimeter. These pseudo-particles are very soft and
therefore do not alter the resulting sub-jets. A track is associated to a sub-jet if a corresponding
pseudo-particle is clustered into the sub-jet. This technique of using ghost-association allows for
irregular shaped jets, resulting in an occasional non-cone shaped jet.

mTA =
pjet

T
ptrack

T
mtrack (4.5)

Where pjet
T is the transverse momentum of the LR jet, ptrack

T is the transverse momenta of a
trimmed anti-kT LR jet formed from the tracks associated to the jet and mtrack is the mass of the
track jet. The mtrack is multiplied by this ratio to include energy from the track of the sub-jet. To
further improve the jet mass resolution, a combined mass is calculated from a weighted average of
the two masses as shown in Eq. 4.6

mcomb = a ⋅ mjet + b ⋅ mTA (4.6)

The weights of a and b must satisfy a + b = 1 and are derived from resolutions of mjet and mTA.
The final calculated value of mcomb is the mass of the LR jet.

Energy and mass for the trimmed LR jets are calibrated in data and simulation to equal values
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found at particle level in simulated di-jet events [21]. These calibrations are referred to as jet energy
scale (JES) and jet mass scale (JMS). The JES is corrected first and subsequently the JMS. In-situ
calibrations are taken to account for imperfect detector simulations are derived for JES, JER, and
JMS [24]. These are performed on all three values of mass from Eq. 4.6, mjet, mTA and mcomb

4.4.4 PFlow Object Calibration

The built PFlow objects are used as input into the anti-kT algorithm as discussed in Section 4.4.1
[77] with R = 0.4 to define SR jets. These jets undergo a multi-step calibration. The energy of
a reconstructed jet is corrected to match the reconstructed jet at particle level [25]. This step is
known as jet energy scale (JES).

Pile-up particles produced in pp collisions can deposit energy that may alter the kinematics of
the defined SR jet. These contributions are subtracted in the first step of the JES calibration. The
energy is compared to di-jet events at particle level from simulation, correcting the four-momentum
vectors [25]. The next step is referred to as the global sequential calibration (GSC). This step
corrects dependent parameters such as particles initiating a jet, shower fluctuations, and possible
showers not detected by the calorimeters or caught in the muon spectrometer. These corrections
are evaluated again by using simulated di-jet events. The final step is to find additional correction
factors to mitigate remaining discrepancies to jets from data. The corrections are called in-situ
JES calibration factors and are obtained by evaluating events that contain jets and well calibrated
objects, such as electrons, muons or photons. Using momentum balance between these objects,
correction factors and calculated and applied [25]. Systematic uncertainties associated with these
correction factors arise from modeling in the simulation

The jet energy resolution (JER) is also calibrated. The resolution of an object in the detector
depends on background noise of the electronics and energy deposits from pile-up. The corrections
are found comparing the JER from simulated di-jet events to that of data. The correction factors
are derived from these di-jet events and are applied by smearing the energy distribution to match
that of data. Systematic uncertainties are obtained in this calibration step.
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4.4.5 Jet Vertex Tagger

Taggers are tools developed by the ATLAS Flavor Tagging (FTAG) group to help identify which
hadron flavor reconstructed jets originate from. The jet vertex tagger (JVT) is a tagger used to help
identify if tracks are associated to the primary vertex of the hard-scatter [6]. There are many pp

collision that occur in a bunch crossing which is the reason for pile-up. So to correctly identify
tracks of the collision of interest is crucial. The JVT is a multivariate tagger algorithm that uses
the jet pT and its associated tracks. It uses the likelihood of the track being associated to a different
collision vertex as a discriminating variable. This tagger is only used on jets within |η| < 2.5, for
any object that are more forward, a different algorithm is used called the forward jet vertex tagger
(fJVT) [7].

The JVT and fJVT efficiencies are measured in data and simulation [6, 7]. These are determined
through simulated events of Z → a + jets, employing a tag and probe method. Scale factors are
derived to correct for discrepancies in the efficiency measurements of data and simulation.

4.5 Heavy-Flavor Tagging

Identifying heavy flavors of quarks plays a crucial role in particle physics analyses. Many interesting
physics analyses have b- or c-quarks in their final state. Such as the SH → 𝒃𝒃̄𝒃𝒃̄ final state which
is discussed in the final part of this thesis. Flavor tagging (FTAG) helps discriminate background
processes from signal events. Therefore, this process has an important role in not just finding new
physics, but also precision measurements. Since quarks undergo hadronization and cannot exist
independently, the quarks themselves cannot be tagged, but rather a color neutral states, b- and
c-hadrons. The b-hadrons have a lifetime of around 1.5 ps [53], thus decaying after traversing the
length of 2.5 mm when it has about 30 GeV. The b-hadron is also associated with a high decay
multiplicity of an average of five charged particles. Figure 25 (a) shows the charged particle decay
count from a b-hadron (B0), where (b) shows the pT fraction the b-hadron carries within the jet
which peaks at about 70%. This results in another important property of a b-jet, it has a high semi-
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leptonic decay fraction. The typical b-jet looks like Figure 26. The b-hadron has a decay length L
and is indicated by the red dotted line. This leads to a secondary vertex. The decay products from
the secondary vertex may lead to a tertiary vertex, especially if it’s a c-hadron. The displacement
of the secondary vertex with respect to the primary vertex is given by a parameter called the decay
length. The displacement of a track with respect to the primary vertex is parameterized with impact
parameters (IPs) denoted as d0 in the figure. This d0 IP tends to be large for b-hadrons due to the
long decay lifetime and large mass (5 GeV).

(a) (b)
Figure 25: (a) Decay multiplicity of the b-hadron d0 into stable charged products with compared
MC generators. (b) Fragmentation of b-hadron pT

C-hadrons tend to have less stable charged particle multiplicity, shorter decay lengths (resulting
in a smaller d0) and are lighter. This results in similar jet topologies, but not identical. Light-jets
originate from lighter quarks which results in tracks being associated with the hadronization it-
self. These properties of c- and light-jets make them separable from b-jets. All these unique b-jet
properties are targeted by FTAG tools developed to tag a b-hadron. There are several b-tagging
algorithms, all attempting to extract specific features of the b-hadron’s information. These baseline
algorithms can be categorized into three categories: the IP based algorithms called Impact pa-
rameter 2(3) Dimensional (IP2D, IP3D), Recurrent Neural Network IP (RNNIP) and Deep Impact
Parameters (DIPS); the vertex-based algorithms of Secondary Vertex (SV1) and JetFitter; lastly the
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Figure 26: Diagram view of a b-jet with a first, second, and third vertex labeled.

soft-muon tagger (SMT).
These baseline taggers are then combined high-level taggers such as a multivariate boosted-

decision tree (MV2), deep-learning based DL1 (DL1), and a graph neural network (NN) tagger
(GN1). DL1 is studied for the HL-LHC in chapter V and the following sections will describe its
related baseline taggers. Figure 27 is a diagram showing the baseline input for each of the high-level
taggers.

Figure 27: Diagram of FTAG baseline and high-level taggers.
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4.5.1 Impact Parameter Algorithms

A b-hadron has the longest lifetime of any quarks which results in a long decay length and a dis-
placed secondary vertex. The IP is the point of closest approach of tracks from the b-hadron decay
to the primary vertex. This parameter can be split into two parts, the d0 as seen in Figure 26, and a
longitudinal part z0sin𝜽. A variable of the IP is the signed lifetime significances sd0 = d0

𝝈d0
and sz0 =

z0sin𝜽
𝝈z0sin𝜽

. are calculated corresponding to the IP divided by its uncertainty, as shown in Figure 28. The
sign of this variable is assigned by extrapolating the track back to the primary vertex. This value is
negative if the jet axis has to be extended backwards from the primary vertex to cross the track or
its projection, otherwise it’s positive. The IP algorithms are used to satisfy certain criteria such as:
track
T > 1 GeV, the IPs have to fulfill |d0| < 1 mm, and |z0sin𝜽| < 1.5 mm. Additional requirements
are required for the number of hits in the silicon layers: NSi

hits ≥ 7 as well as an upper limit of silicon
and pixel layer holes NSi

holes ≤ 2 and Npixel
holes ≤ 1. The following sections briefly describes the IPxD

baseline taggers and the DIPS tagger. The RNNIP tagger will not be described as it is outside the
scope of this thesis.

(a) (b)
Figure 28: The signed IP significances variable shown for b-, c-, and light-jets for (a) transverse
and (b) longitudinal components in 𝒕𝒕 events
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IPxD Discriminating Variables
Variable Description

LLR based on signed significance
IPxDl b- from light flavor jets
IPxDc b- from c-jets
IPxDcl c- from light flavor jets

Table 6: Variables for the IP2D and IP3D taggers (3 each)

IPxD

The IPxD taggers comprise of two algorithms: the IP2D which only uses the transverse IP d0 vari-
able which tends to be less sensitive to pile-up, and the IP3D tagger which uses both the transverse d0

and z0sin𝜽 variables [8]. The track categorization is based on pixel layer hit patterns as pre-defined
by reference templates for b, c, and light hadrons. The final discriminant is a Log-Likelihood ratio
(LLR) of probabilities of being any of the three hadrons. This LLR is described by Eq. 4.7.

IPxDl,c,cl =
∑

i∈tracks
log

(Pi
b,b,c

Pi
l,c,l

)

(4.7)

The probability density functions to calculate Pb, Pc and Pl are extracted from MC simulations.
Table 6 shows the six different variables for the IPxD tagger used to tag jets. The IPxD baseline
taggers are used as input into the high-level taggers such as MV2 and DL1.

DIPS

The DIPS is a machine-learned algorithm that uses the IP variables as input for a Deep Sets archi-
tecture [54], treating the elements as a set without any specific order. The formalism of DIPS has
pi which is the vector representation of the inputs associated with the ith track in the jet, then the
Deep Sets architecture applies its weight 𝝓 to each track. Tracks are then summed over and has
additional processing in the form of a feed forward NN (F) as described in Eq. 4.8.

(p1, ..., pn) = F

( n
∑

i=1
𝝓(pi)

)

(4.8)
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where (p1, ..., pn) represents the b-, c-, and light- class probabilities. The architecture bisects the
problem into operations over the inputs and over the sets. The track network 𝝓 extracts the relevant
track information and the forwarding jet-network F accounts for the correlations between the tracks
[11]. Permutation invariance of the set is encoded using the sum operation. Since DIPS encodes
this permutation invariance, a much more natural representation of the data is made, allowing the
machine learning (ML) algorithm to be trained more effectively. This algorithm outperforms IPxD
and RNNIP algorithms.

The ML model of DIPS outputs class probabilities of b-, c- and light-jets (pb, pc, pl). A discrim-
inant is made from a combination of these three probabilities dictating whether a jet is b-tagged or
not, this discriminant is given by Eq. 4.9.

Db = log pb

(1 − fc)pl + fcpc
(4.9)

where fc is a free parameter that helps balance the rejection rate between light-jets and c-jets for
a given b-tagging efficiency. This is optimized post-training. A few input variables for DIPS are
scaled and shifted due to a mean that is not close to zero, this process is described in reference
[11]. A list of DIPS input features can be seen in Table 7. The features that required additional
preprocessing are noted.

4.5.2 Secondary Vertex Algorithm

The secondary vertex SV1 algorithm reconstructs a single displaced vertex in a jet using tracks.
Due to hardware constraints, sometimes the track resolution in the ID is not always able to resolve
the entire decay cascade of a hadron in every jet. Therefore the criteria of reconstruction is only a
single vertex, which is a good approximation for a b-jet. The first step matches all two-track ver-
tices, rejecting vertices that are compatible with tracks associated with long-lived particles, photon
conversions or hadronic interactions with detector material. The next step is combine each accepted
two-tracks into secondary vertices while removing all rejected tracks. Important information can
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DIPS Input Features
Input Description Preprocessed
sd0 d0/𝝈d0: Transverse IP significance
sz0 z0sin𝜽/𝝈z0sin𝜽: Longitudinal IP significance
logpfrac

T logpfrac
T /pjet

T : Logarithm of fraction of the jet pT ✓

carried by the track
log∆R Logarithm of opening angle between the track ✓

and the jet axis
IBL hits Number of hits in the IBL: could be 0, 1, or 2
PIX1 hits Number of hits in the next-to-innermost pixel layer: could

be 0, 1. or 2
shared IBL hits shared IBL hits
split IBL hits Number of split hits in the IBL ✓

nPixHits Combined number of hits in the pixel layers
shared pixel hits Number of shared hits in the pixel layers
split pixel hits Number of split hits in the pixel layers
nSCTHits Combined number of hits in the SCT layers ✓

shared SCT hits Number of shared hits in the SCT layers
Table 7: Input variables for DIPS

be extracted from SV1 such as the vertex mass, decay length and its significance, number of associ-
ated tracks as well as the ∆R between the jet and the secondary vertex. Table 8 shows an overview
of the variables for SV1.

SV1 Variables
Variable Description
NSV1

trkAtVtx Number of tracks associated to the SV
NSV1

2trkAtVtx Number of reconstructed two-track vertices candidates within the jet
mSV1

inv Invariant mass of the SV calculated from the associated tracks
fSV1
E Energy fraction of the SV associated tracks with respect to all tracks of the jet
∆R(jet, SV) ∆R between the jet axis and the secondary vertex relative to the primary vertex
LSV1

xy Reconstructed SV transverse decay length
LSV1

xyz Reconstructed SV decay Length
SSV1

xyz Decay Length significance
Table 8: Variable overview for the SV1 algorithm [8]
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4.5.3 JetFitter

The decay chain multi-vertex reconstruction algorithm, a.k.a. JetFitter, is the second displaced ver-
tex finder algorithm behind SV1 [8]. This algorithm aims to reconstruct the decay cascade topology
of weakly decaying b- and c- hadrons. It assumes the primary, secondary, and the tertiary vertices
are aligned in one line in the direction of the hadron’s trajectory. The goal of this assumption is to
cope with the finite track resolution. After an initial track selection of removing tracks associated
to the primary vertex using a Kalman Filter [60]. The resulting variables of JetFitter are shown in
Table 9.

This algorithm allows for special variables for the c-hadron exploiting the fact that the JetFitter
vertex would be close to the primary vertex. These are chosen to differentiate the topologies be-
tween the b- and c- hadron. C-hadrons have lower decay multiplicity than the b-hadron due to their
lower mass, thus decay products carry a larger momentum percentage along with a larger rapidity
with respect to the jet axis. These variables are shown in Table 10.

JetFitter Variables
Variable Description
mJF

inv Invariant mass of tracks associated to one or more displaced vertices
fJF
E Charged jet energy fraction in the secondary vertex

SJF
xyz Decay length significance of the displaced vertex

NJF
1-trk vertices Number of 1-track displaced vertices

NJF
≤2-trk vertices Number of vertices with more than one track

∆RJF(Pjet,Pvtx) ∆R between jet axis and the vectorial sum of all track momenta
NJF

trks Number of tracks associated to SV
NJF

vertices Number of reconstructed vertices
Table 9: Variable overview of JetFitter algorithm for b-tagging [8]
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JetFitter C-Hadron Variables
Variable Description
LJF

xyz Displacement of SV from the primary vertex
LJF

xy Transverse displacement of SV from the primary vertex
min(YJF

trk) Minimal rapidity of tracks within the jet
max(YJF

trk) Maximum rapidity of tracks within the jet
avg(YJF

trk) Average rapidity of tracks within the jet
min(YJF

trk, SV) Minimal rapidity of SV tracks
max(YJF

trk, SV) Maximum rapidity of SV tracks
avg(YJF

trk, SV) Average rapidity of SV tracks
mJF

inv Invariant mass of tracks associated to the SV
∆EJF Energy of tracks associated to SV
fJF
E Charged jet energy fraction of SV

NJF
trks Number of tracks associated to the SV

Table 10: Variable overview of JetFitter algorithm for c-tagging [8]

4.6 High-Level Taggers

Baseline taggers are optimized for single properties of b-hadron decays. High-level taggers are
multivariate taggers comprised of the baseline taggers previously described and as seen in Figure
27. There are three high-level taggers that are currently deployed in ATLAS: the boosted decision
tree (BDT) based tagger MV2, the deep learning based DL1 and the graph NN GN1. Currently,
DL1 is the standard tagger within ATLAS, but GNN based taggers have proven to be more effective
and are currently being developed to replace it. DL1 is explored in higher detail in chapter V.
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4.6.1 Working Points

As briefly discussed in Section 4.3, WPs are deployed for the high-level taggers to cover various
needs in physics analyses. These WPs are defined using the b-tagging efficiency on 𝒕𝒕MC samples.
These single cut WPs are used since having a full continuous b-tagging discriminant would require
a continuous calibration in extremely fine efficiency bins. This task would take enormous time and
require immense complexity. The tagging efficiency is described in Eq. 4.10

𝜺j =
Nj

pass( > Tf)

Nj
total

(4.10)

where Nj
pass( > Tf) are the number of jets of flavor j passed the cut Tf on the tagger discriminant

 and Nj
total are all jets of flavor j before the cut. The WPs are defined based on b-jet efficiency 𝜺j

evaluated on 𝒕𝒕MC samples. In ATLAS there are four WPs defined as seen in Table 11. The inverse
of each WP characterizes the c- and light- jet rejection rate. Misidentification improves with lower
signal efficiency, therefore rejecting more background, trading off lower signal statistics. Within
a physics analysis, every jet that passes a WP is considered a b-jet. Each high-level tagger that
is described in the following sections have different rates of b-tagging efficiencies, meaning the
number of tagged b-jets in an analysis will depend on which tagger is used. Therefore high tagging
efficiencies are sought after, encouraging physicists to use the latest technological advances. The
BDT based MV2 was the standard tagger until Deep Sets architectures overtook and shown to be
much more efficient, thus DL1 has now become the new standard. Recent developments in the past
year has shown that graph NNs can exploit track information much more profoundly, resulting in
much higher tagging efficiencies than the DL1 tagger and is expected to take its place.

4.6.2 MV2

The high-level tagger MV2 used to be the recommended tagger for EMTopo jets for Run 2 of
ATLAS. This tagger used 24 inputs from the baseline taggers as input for the BDT training as well
as pT and |η|. Training the MV2 tagger used what is called a hybrid sample which is a mixture of 𝒕𝒕
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Working Points for B-Tagging in ATLAS
Cut b-tagging efficiency
loose 85%
medium 77%
tight 70%
very tight 60%

Table 11: Summary of b-tagging single cut WPs

and Z’ events. This is to ensure there is a large coverage of the pT spectrum. The BDT used b-jets
as the signal class and c- and light- jets as a background class. To balance the performance between
the c-jet and light-jet rejection, a c-jet fraction fc was set to 7% and therefore a light jet fraction of
93%. The end result was named MV2c10. Figure 29 shows the performance of the MV2, DL1 and
baseline taggers in terms of background rejection as a function of b-tagging efficiency.

(a) (b)
Figure 29: The (a) light-jet and (b) c-jet rejections versus the b-jet tagging efficiency for the baseline
taggers IP3D, SV1, JetFitter and the high level taggers MV2 and DL1. Evaluated on 𝒕𝒕 MC events
[10]
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4.6.3 DL1

The high-level DL1 tagger is a deep feed-forward NN with three output nodes that correspond to the
b-, c-, and light- flavor jet probabilities. The ReLU activation function is used for each layer while
the last layer uses the softmax activation function. Using the softmax function for the output layer
allows the output to be interpreted as probabilities. The final b-tagging log-likelihood discriminant
score is calculated from the multi-class output using Eq. 4.11.

b(fc) = log
( pb

fc ⋅ pc + (1 − fc) ⋅ pl

)

(4.11)

where pb, pc and pl are the output scores of DL1 representing the probabilities for the jet to be a b-jet,
c-jet or a light-jet, respectively. The c-jet fraction fc allows tuning to balance the performance of the
c-jet and light-jet rejection. The c-jet rejection increases as a function of fc and light-flavor decreases
as a function of fc. An advantage of using the DL1 compared to MV2 is that the discriminant can
be rewritten to perform c-jet tagging with b-jet rejection. This new rewritten discriminant can be
seen in Eq. 4.12

c(fb) = log
( pc

fb ⋅ pb + (1 − fb) ⋅ pl

)

(4.12)

where fb is a floating value for the b-jet fraction. DL1 has shown many positives over MV2. The
tagger is effectively maintained with much less person power, while also fewer variables have to
be calculated and stored, saving computing power. The DL1 tagger is a family of high-level multi-
variate taggers. These taggers differ from the baseline tagger inputs, they are as follows: baseline
DL1, DL1r, DL1rmu, and DL1d. The DL1 baseline uses the same variables as MV2 with the addi-
tional JetFitter variables for c-jet identification. DL1r configuration uses the RNNIP instead of the
baseline IPxD taggers. The DL1rmu exploits the soft-muon information. Lastly, the DL1d uses the
baseline taggers SV1, JetFitter but uses the DIPS instead of the baseline IPxD. More information
is given on the DL1d tagger in Chapter V.
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4.6.4 GN1

The GN1 tagger is currently the latest and greatest particle identification algorithm. It differs from
the previously described high-level taggers in a few ways. GN1 does not make use of the underlying
baseline taggers but instead exploits the internal structure of the jet through the use of two auxiliary
training objectives: the grouping of tracks originating from a common vertex, and the prediction
of the underlying physics processes [14]. The graph neural network takes 2 kinematic and 21 track
variables as training input. Using auxiliary tasks removes the need to add the baseline taggers,
therefore simplifying the training process and allowing the tagger to be more versatile in training
phase space. The algorithm is trained on truth-information obtained through simulations.

The GN1 combines a graph neural network architecture with auxiliary training objectives. Ini-
tially, the two jet inputs (transverse momentum and signed pseudorapidity) are fed into a per-track
initialization network with three hidden layers, each containing 64 neurons. These three layers are
a Deep Sets architecture such as the technique used by DL1. A fully connected graph is built from
the outputs of these three Deep Set layers. Each node hi in the graph represents a single track in
the jet, characterizing a feature vector. The output nodes from the Deep Set architecture are used
to populate the graph. Outputs from each graph layer are aggregated features of each node hi and
neighboring nodes N i. The feature vectors of each node are fed into a fully connected NN layer
that produces updated values of the vector. These updated features are used to compute edge scores
of each node (scores calculated from neighboring nodes). A non-linear activation function is used
while a softmax function calculates weights for each pair of nodes using the edge scores. Finally, an
updated node representation is computed by taking the weighted sum over each updated node rep-
resentation. After the graph network is implemented, these outputs are used in a node classification
network to predict track truth origin. A diagram of the entire network architecture is seen in Figure
30. The track and jet kinematic input variables for the GN1 tagger are listed in Table 24 within
the Appendix APPENDIX A:. The next version of GN1 is called GN2 and is currently expected to
replace its predecessor.
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Figure 30: The network diagram of GN1. First, a Deep Sets architecture is used to populate node
features in a GNN. The GNN outputs are used to predict jet flavor, track origins, and track-pair
vertex compatibility. [14]

4.7 Event Simulation

Simulated pp events are used in every physics analysis while also being vital in event reconstruction
calibrations. They also play an important role in simulating BSM models which are used to help
define new phases spaces for the chance of detecting new physics. Simulated events are used later in
this thesis as ML input and are vital in deploying efficient particle identification algorithms. BSM
simulations are also used in the Anomaly Detection analysis in Chapter VI to show separation
between standard SM events and the anomalous BSM events.

Event simulations not only simulate kinematics of particles within the SM (or beyond of it) but
are also used to show how simulated particles would interact with the ATLAS detector. Due to the
complexity of integral emerging from QFT calculations, Monte Carlo MC techniques are used in
the simulations [91].

4.7.1 Monte Carlo Generators

Every event generation is typically divided into two parts: the matrix element generation that de-
scribes the hard scatter and secondly the parton showering and hadronization modeling which in-
cludes the initial state radiation (ISR) and the final state radiation (FSR). The matrix element and
the parton shower can be calculated mostly perturbatively, other calculations cannot. There are
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several common mathematical models used to simulate hadronization: the Lund string model and
the cluster model. In the Lund string model, the connection between a quark and an antiquark is
modeled as a string, assuming the potential between the two to be linearly increasing with distance.
These strings then split according to a Fragmentation function forming a new quark-antiquark pair.
This process continues until only stable hadrons remain [17]. The cluster model is based on QCD
confinement where neighboring partons build color clusters which then decay into two hadrons who
also will decay until stable hadrons are formed [73]. Figure 31 shows a simplified MC simulation.

The steps of calculated the matrix elements, parton showers, hadronization and the underly-
ing soft radiation can all be simulated by the common generators PYTHIA8 [88], HERWIG7 [52],
SHERPA [46], POWHEGBOX [66], and MADGRAPH5_@aMCNLO [74]. A few drawbacks to some of these
generators are: PYTHIA8 provides mainly leading order calculations which are typically not suffi-
cient since next-to-leading order (NLO) corrections would have to be applied and these can be fairly
large. HERWIG7 is only used for parton showering even though it does include NLOs, the fraction of
negative event weights can be very large. The generators of POWHEGBOX and MADGRAPH5_@aMCNLO

are used to provide higher order calculations while also being able to be interfaced into PYTHIA8

and HERWIG7 to calculate the parton showering. To describe models that use non-perturbative
processes, parameters must be tuned using collision data. The most common used parameters in
ATLAS are the A14 [22] parameters for PYTHIA8 or the H7UE [50] parameters for HERWIG7.

4.7.2 Detector Simulation

The last step of simulation is to simulate the ATLAS detector. MC generators don’t take into account
the detector, the final state output needs to be translated to a signal that represents the detector’s
output. A full ATLAS detector simulation is done in two parts. The first step is to incorporate
the detector geometry, this is done by a program called GEANT4 [57], this provides highly precise
modeling of particle interactions with each sub-detector. This process is so precise that it takes a
large fraction of computing power that ATLAS uses. Therefore techniques have been developed to
decrease this computational power by mimicking the output of GEANT4 in the use of fast simulator
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algorithms [35]. These algorithms use thousands of individual parametrizations of calorimeter
response. This process uses a lot less computational resources with a trade-off of precision. These
fast simulations are widely used by ATLAS.

Figure 31: Illustration of a hadron-hadron collision simulated by a MC generator. The center red
circle signifies the hard scatter collision while the purple oval represents underlying soft-scatter
events. The red and blue tree-like structures depict QCD bremsstrahlung simulated by parton show-
ering. The other elements are hadronization (light green), hadron decays (dark green), and photon
radiation (yellow). [70]
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CHAPTER V

DEEP LEARNING MODEL TRAINING FOR THE HL-LHC

The high-level tagger DL1 was introduced during Run 2 of the ATLAS detector as the second high-
level tagger beside MV2 and originally used EMPTopo jets. The tagger was designed to combine
the base-line taggers as discussed in 4.5 into a final discriminant score as seen in Eq. 5.1. Introduc-
ing the human-designed detector level base-line taggers into a machine learned algorithm brought
several benefits such its multi-class output of the probabilities for each flavor of jet (b-jet, c-jet and
light-jet). Creating a NN brings flexibility and customization which is why they are preferred over
BDTs.

This next chapter discusses the training of the DL1 tagger using the DIPS base-line tagger,
creating the DL1d high-level tagger. This model was trained using simulations of the ATLAS
detector with its new geometry after its upgrade to transition into Run 4. Implementing the ITk
detector as discussed in Chapter 3, Section 3.3. These simulations include the increased pile-up
from the HL-LHC of ⟨µ⟩ = 200. The jet structure used are the PFlow discussed in Section 4.4.2.

5.1 DL1 Design

The underlying structure the the DL1 tagger is a deep feed-forward NN with three output nodes
corresponding to b-, c-, and light-flavor probabilities as seen in Figure 32. The ReLU activation
function is used for each hidden layer while the output layer utilizes the softmax activation function
to ensure the output can be interpreted as probabilities. These multi-class outputs are then used
to calculate a final discriminant score as seen in the reintroduced DL1 discriminant log-likelihood
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function 5.1.
b(fc) = log

( pb
fc ⋅ pc + (1 − fc) ⋅ pl

)

(5.1)

Here pb, pc, and pl are the multi-class probability outputs for b-, c-, and light-flavor jets. The fc

is an introduced c-jet fraction tunable parameter which can give emphasis to the c-jet or light-jet
rejection performance. This parameter is expected to be tuned for each tagger as its value depends
on the needs of the physics analyses. As previously discussed, this fraction can gives rise to the
ability to flip the DL1 tagger to focus on b-jet and light-jet rejection, requiring the reintroduced
log-likelihood discriminant equation 5.2.

c(fb) = log
( pc

fb ⋅ pb + (1 − fb) ⋅ pl

)

(5.2)

Here there are the same multi-class probability scores as seen in 5.1 but the tunable parameter has
now changed to a b-jet fraction, fb. Due to its ease of training and maintainability, the DL1 tagger
requires less man-power and creates reliable tagging scores that reduce the amount of necessary
stored information, saving on memory. As discussed previously, the DL1 family contains four
different types of taggers that utilize different baseline information. The first is the baseline DL1 that
uses the same input baseline tagger variables as MV2 (as seen in 6, 8,9) with the additional JetFitter
variables for c-tagging as seen in table 10. From there the baseline DL1 is used with additional NN
inputs. DL1r uses the baseline DL1 with additional flavor probabilities from the RNNIP algorithm.
DL1rmu exploits the soft-muon information from the muon spectrometer while also including the
inputs from the DL1r. Lastly, the latest tagger is the DL1d which is the baseline dl1 that includes an
additional feed-forward NN called DIPS that was previously discussed in Section 4.5.1. A diagram
of the DL1 family is seen in Figure 33.

5.1.1 DL1d design

In the following sections, training of the DL1d model for the HL-LHC is described. Since the
DL1d utilizes the deep learning model DIPS, its design if fairly more complex than the other DL1
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Figure 32: Deep feed-forward architecture of DL1 with unspecified number of nodes

models in the family. The architecture design can be seen in Figure 34. Notice there are two sub-
networks ϕ and F which correspond to the DIPS architecture. The DIPS model is trained using
track variables described in Table 7. Each track in a jet is first processed through the network ϕ.
In the next step, all n track networks, corresponding to the number of tracks in a jet, are summed
up and further processed via the network F. This can be summarized via an equation as seen:

⃖⃗Pi = F

( 𝒏
∑

𝒊=𝟏
ϕ( ⃖⃗𝒙t

i)
)

(5.3)

where ⃖⃗𝒙t
i are the track input features and ⃖⃖⃗Pi is the vector of the b-, c-, and light flavor jet class

probabilities corresponding to the DIPS output.
The DIPS networks,ϕ and F, are joined to the DL1d feed-forward architecture denoted as 𝓤.

A joint architecture allows the passing of more information into the DL1 NN 𝓤. In the case of
Figure 40, a layer of 30 nodes is concatenated with the other jet features that are processed through
a network containing 72 nodes. A full back-propagation up to all the track NNsϕ is done during the
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Figure 33: Structures of the DL1 tagger family, differing in NN input variables

training allowing a joint optimization of all three networks. The DIPS networks have intermediate
losses which are used to determine the performance and optimization of the DIPS model prior to
being used as input to the DL1 network. The final feed-forward DL1 architecture 𝓤 has three
output nodes to calculate the multi-class probabilities. Both networks have dedicated losses. While
the loss of the final 𝓤 network L(𝓤) is sensitive to track features and jet kinematics, the loss of F

network L(F) is only sensitive to tracks. The overall optimization is performed over the combined
loss, as shown:

L(comb.) = L(𝓤) + 𝝀 ⋅ L(F) (5.4)

5.2 Software Chain

The software chain from training the DL1 tagger to validation and deployment in the ATLAS soft-
ware ATHENA are unassociated. The training of the NN is based on the industry-standard open-
sourced coding language Python3.6 [85]. The packages numpy [44] and pandas [82] are used for
data handling while it’s formatted in the HDF5 format [65]. The ATLAS software package de-
veloped to convert root datasets into HDF5 format is called the Training Dataset Dumper (TDD)
The code structure is configured using human-readable formats such as JSON [48] and yaml to
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Figure 34: Architecture of DL1d combining the DIPSϕ and F networks to the DL1 feed-forward
nodes 𝓤

ensure user compatibility. For the NN training, Tensorflow [55] is used with a Keras2 [49] fron-
tend. These packages are used to create a user-friendly framework for deep learning training called
Umami which handles the preprocessing and training steps. For visualization, the package mat-
plotlib [69] and tools from scikit-learn [47] are included in the training scripts. These tools are
compiled into a convenient tool in the Umami family named Puma. The full workflow (Umami and
Puma) can be performed using a Docker image [80] which allows the software to be ran from any
computer without the need to install the necessary environment. The output model is then trans-
formed into a format called LightWeight Tagger Neural Network [45] (lwtnn) which integrates the
model into the ATLAS software ATHENA.

5.3 Preprocessing

The first step before training a DL1 model is preparing the input in a step called preprocessing. To
ensure robustness of a model to perform properly over a large pT spectrum, two simulated samples
are combined into a hybrid sample. One sample is of 𝒕𝒕 events and the other is of a BSM particle
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called Z′. An example pT spectrum of these two samples can be seen in Figure 35 in (a). The
Z′ allows a flat pT spectrum of up to 4.5 TeV with a total range up to 6 TeV. This Z′ sample is
known as an extended Z′ sample since the normal distribution of a Z′ is up to about ≈4 TeV. The
𝒕𝒕 sample populates the lower pT spectrum, ensuring there are enough statistics for a proper model
to be trained while the Z′ populates larger pT to increase tagging efficiencies for heavier particles.
This sample, along with all that is included in this thesis, are using PFlow objects. The object
selection within the 𝒕𝒕 sample is of the following:

𝒕𝒕 selection :

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

b-jets b-hadron T < 250 GeV
c-jets jet pT < 250 GeV
light-jets jet pT < 250 GeV

As noted here, the b-jet selection uses b-hadron pT. The sample fraction of 𝒕𝒕 and Z′ can be adjusted,
in the following example plots, the fraction is adjusted to 70% 𝒕𝒕 and 30% Z′. The merged hybrid

sample can be seen in (b) of Figure 35.

(a) (b)
Figure 35: (a) pT distribution of 𝒕𝒕 sample (solid lines) and a Z′ sample (dashed lines). The 𝒕𝒕 b-jet
distribution is normalized to unity and all other distributions are normalized to the b-jet distribution.
(b) Samples from (a) merged into one distribution normalized to b-jet distribution

The goal of the DL1 tagger is to differentiate between hadron flavors. As seen in Figure 36, the
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flavor composition is imbalanced towards light-flavor jets. In order to avoid kinematic and count
biases within the tagger, a resampling step must be applied. This also helps mitigate discontinuity
between the two combined samples. Kinematic correlations are important for the baseline taggers,
the goal for the high-level tagger is to avoid differences in kinematics and attempt to tag hadrons by
jet-by-jet classification. Instead of weighting each sample fraction to match a chosen distribution,
a resampling method is deployed to avoid instabilities in the model training steps. There are two
methods of resampling. There is undersampling where single jets are removed from the majority
classes to fit a distribution of a minority class or there is oversampling where jets from minority
classes are duplicated to match a given distribution. Figure 37 shows a diagram of both meth-
ods. A combined method called Importance Sampling with Replacement, also referred to as PDF

sampling, undersamples and oversamples distributions to match a middle target distribution while
enforcing the same shape. As seen in Figure 36, b-jets are a middle distribution, therefore the PDF
sampling is used in the preprocessing step of the following work.

Figure 36: Hybrid sample hadron fractions.

The obvious issue that is present in these sampling methods is the duplication of events during
oversampling a minority distribution. This may cause a bias due to the lack of diversity of statistics
in the minority groups. Luckily, the samples are MC produced and therefore the statistics can be
simply increased by producing more samples through event generators. However, a resampling pro-
cedure referred to as the count method was studied as a comparison to the PDF method. The count
method strictly only undersamples to the lowest distribution, thus drastically decreasing statistics in
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Figure 37: Diagram of the resampling methods to ensure balanced model training.

favor of bias possibilities. The pT and |η| b-jet distributions are taken as reference and the c-jet and
light-jet flavor are resampled to match them. The binning used for the undersampling procedure
tends to be more granular, especially in the lower pT region where the sample transition bins are,
while at higher pT the bins are wider. This can be seen by resampling the example distribution from
Figure 35 in Figure 38.

Figure 38: Resampled example flavor distributions.

Lastly before training, the ranges of the input variables need to be balanced so that they’re
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all in the same order of magnitude, otherwise certain variables would carry more weight in the
model training procedure. Therefore, all the variables are shifted to a mean of zero and a standard
deviation of one, with the exception of binary check variables. Also, extremely anomalous events
originating from obscure phase spaces within the samples are removed to secure an undisturbed
training process.

5.4 HL-LHC Samples

The current versions of these heavy-flavor taggers have been trained using simulated samples from
Run 2. The latest versions that are being implemented as of 2023 have been optimized for Run 3
and are trained on the latest Run 3 samples. In the scope of this thesis, preliminary trainings for the
DL1 tagger have been conducted using samples simulated using the ITk from Run 4 that starts in
2029 in order to see how well the new geometry can increase tagging efficiency with the main focus
on the increase of |η| ≤ 4. All objects simulated in these samples are PFlow objects as discussed
in Section 4.4.2.

5.4.1 Object Selections

The most important features for training effective taggers are tracks, therefore it’s vital to simulate
tracks through the new ITk detector with precision. These tracks represent trajectories of charged
particles reconstructed from hits in the ITk pixels and strip sensors. The η-dependent variables
underwent a combination of selections based on general track quality criteria and requirements
specific to flavor tagging algorithms. The variables used in the baseline taggers (found in tables
6, 8, 9) have adjusted criteria due to the pseudorapidity extension of the ITk detector. Only jets
with pT > 20 GeV and |η| ≤ 4 are considered. A generator-level overlap removal with electrons
and muons from W boson decays are also applied. Pile-up jet rejection algorithms are still under
development for the HL-LHC, so the selected jets are required to be matched within ∆R > 0.3
with truth-jets built from hard-scatter stable particles that are clustered with the anti-kT algorithm
with R=0.4. The selected reconstructed primary vertex is required to be within 1 mm of the hard
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scatter vertex. Tracks are associated to jets using pT-dependent matching criteria, with a cone size
of ∆R ≈ 0.45 for jets with pT = 20 GeV to ∆R ≈ 0.25 for jets with pT > 200 Gev. In cases where
multiple tracks pass the criteria, the closest track is chosen. Jet flavor labels are assigned based
on generator-level presence of b- or c-hadrons, or 𝝉 hadronic decays. If a b-hadron with pT > 5
GeV is found within ∆R = 0.3, the jet is labeled a b-jet. This procedure is repeated for c-hadrons
and 𝝉 hadronic decay products. Jets that have no labels by the end of this iteration are assumed to
originate from light-flavor quarks and are labeled light-jets. Table 12 shows the new requirements
imposed on the jets due to the implementation of the ITk detector.

New Flavor Tagging Requirements for ITk
Requirements Pseudorapidity interval

|η| < 2 2.0 < |η| < 2.6 2.6 < |η| < 4.0
pixel + strip hits ≥ 9 ≥ 8 ≥ 7

pixel hits ≥ 1 ≥ 1 ≥ 1
pixel + strip holes ≤ 2 ≤ 2 ≤ 2

pT [MeV] > 900 > 500 > 500
|d0| [mm] ≤ 2.0 ≤ 2.0 ≤ 3.5

|z0sin𝜽| [mm] ≤ 5.0 ≤ 5.0 ≤ 5.0
Table 12: Training samples used for DL1d for HL-LHC studies [39]

5.4.2 Sample Preprocessing

The following samples consist of the necessary 𝒕𝒕 and Z′ samples for training with a CME of 14 TeV
which aligns with the predicted HL-LHC beam energy. A small sample of only 100,000 events is
also used that include thes HGTD (briefly discussed in Section 3.3.3) detector within the simulation
step and is used for a few studies that are mentioned later in this chapter. These three samples are
listed in table 13.

The values corresponding to the letters in the latter half of the container names correspond to
certain production versions. Table 14 shows the nomenclature for these values.
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HL-LHC DL1 Training Samples
Sample Container ⟨µ⟩ # of Events
𝒕𝒕 mc15_14TeV.600012.PhPy8EG_A14_ttbar_hdamp258p75 200 4,374,000

_nonallhad.recon.AOD.e8185_s3654_s3657_r12573
Z′ mc15_14TeV.800030.Py8EG_A14NNPDF23LO_flatpT 200 1,605,205

_Zprime_Extended.recon.AOD.e8185_s3654_s3657_r12574
HGTD mc15_14TeV.600012.PhPy8EG_A14_ttbar_hdamp258p 200 100,000

75_nonallhad.recon.AOD.e8185_s3770_s3773_r13618
Table 13: Training samples used for DL1d for HL-LHC studies

Sample Production Nomenclature
Prod. Step Name Prod. Step Tag Definition

evgen e Event generation tag. MC generation of quark-gluon
interactions to parton showering and hadronization

simul s Simulation tag corresponds to simulated detector
hits when using MC simulations

digit d Digitization tag is turning the simulated energy
deposits into detector response that resembles raw data

recon r Reconstruction tag corresponds to the offline reconstruction
algorithm release used to build physics objects

deriv p Derivation p-tag refers to a derivation framework used
to obtain useful physics objects

Table 14: Training samples used for DL1d for HL-LHC studies

In order to finalize the preparation of these samples, they had to be prepared and resampled due
to their imbalance of hadron flavors. The imbalance in both of the upgrade samples are shown in
Figure 39. In order to prepare these samples, both of them were combined into a hybrid sample
consisting of 70% 𝒕𝒕 and 30% Z′ events. Next, the dataset is split into three different sets. The first
is the training set, this one is the largest of the three in order to maximize training statistics. The
other two sets are the validation set used to validate the model and lastly is the testing set which tests
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the model afterwards. The resampling process of PDF, as previously described in the last section,
was used to match the b-hadron distribution whereas the count method undersamples to the lowest
distribution which happens to be c-jets. Table 15 breaks down the sample statistics for each dataset
and resampling method.

Figure 39: Diagram of hadron composition in the HL-LHC MC samples.

Dataset Compositions and Statistics
Dataset Total Types of Jets From: 𝒕𝒕 From: Z′

Training set 4.75M b-jets 4.1M 650K
1.6M c-jets 900K 700K

6.6M light-jets 5.1M 1.1M
Validation set 2.6M 1.1M
Testing sets 2.6M 1.1M

PDF Resampling Method Count Resampling Method
15M Training Jets 4.8M Training Jets

Table 15: Dataset statistics used for training DL1d for the HL-LHC

5.4.3 Training DL1d

The training of the DL1d tagger for the HL-LHC is only preliminary where the final version will
have more of a dedicated optimization and increased statistics. The DIPS tagger that is used as input
for this preliminary version of DL1d for Upgrade was trained by a fellow graduate student and was
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trained using two electron selections. Within ATLAS, four fixed values of the electron discriminant
are defined (similar to the WP defined for b-tagging). These WPs for the electron selection cuts
are referred to as VeryLoose, Loose, Medium, Tight cuts. These cuts are set by the efficiencies for
identifying a prompt electron with ET = 40 GeV are 93%, 88%, 80% for Loose, Medium, Tight

respectively [37]. One DIPS model contains a tighter WP selection cut, and the other a loose WP
selection cut. Therefore, four DL1d models are trained in total, two models trained using both of
these cuts and being resampled via the count method and the other two using the PDF method. The
DL1d architecture follows the deep feed-forward architecture shown in Figure 32 but with specified
nodes. A diagram showing the specified node architecture can be seen in Figure 40.

Figure 40: Deep feed-forward architecture used for preliminary Upgrade DL1d model.

Using the loss function described in Eq. 5.4, the loss value is recorded per training epoch and
plotted in Figure 41 while also showing the loss of the associated DIPS model used in the DL1d
architecture. The loss is shown for the 𝒕𝒕 sample, Z′ sample and the combined hybrid sample.
Since the training is done on the hybrid sample, the loss function converges much quicker than
just on the single samples. Figures 41a and Figure 41b shows the loss per epoch for both the PDF
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method and Count method, revealing that loss convergence stabilizes faster in the PDF method
than the count. This is due to the increase of statistics, letting the model training being able to
reliably find underlying patterns at a faster rate. Figures 41c and 41d shows the light-jet rejection
rate with respect to the training epoch. This reveals the increase of effectiveness between the DIPS
model and the DL1d. Adding jet kinematic information from the baseline taggers to the underlying
track structures from DIPS massively increases light-jet rejection rate. Using the PDF resampling
increases this rejection rate as seen between plots (c) and (d) in Figure 41. The convergence in the
undersampling method Count takes about 100 more epochs, substantiating that the PDF resampling
method is the superior approach. All these figures used the 77% WP for b-tagging.
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(a) Loss per training epoch using PDF (b) Loss per training epoch using Count

(c) PDF light-jet rejection rate per epoch (d) Count light-jet rejection rate per epoch
Figure 41: (a) Shows loss per training epoch using the PDF method for both DL1d and its associated
DIPS model using the loose electron selection cut. (b) Shows loss per training epoch using the count
resampling method for both DL1d and its associated DIPS model using the loose electron selection
cut. (c) Shows the light-jet rejection rate per training epoch using the PDF method. DL1d shows
rejection at a higher efficiency. (d) Shows the light-jet rejection rate per training epoch using the
Count resampling method. DL1d outperform DIPS but does not has a lower rejection rate than
using the PDF resampling method as seen in (c)

In order to calculate the final discriminant scores, a fraction scan is implemented to find an
effective c-jet fraction value for the float fc shown in Eq. 5.2. Since light-jet rejection and c-jet
rejection are both affected by the chosen floating value, it’s optimized to have a balanced effect in
the 𝒕𝒕 sample while favoring c-jet rejection in the Z′ sample. The fractions are taken at the 77%
WP. The scan can be seen in Figure 42. Table 16 shows the actual percentage value of c-hadrons
within each sample. The value of 9% was chosen for fc and can be seen in Figure 42 at the point
marked by the red X.
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C Hadron Percentage
Dataset percentage
𝒕𝒕 7%
Z′ 9%

Table 16: C-hadron percentages in both training samples prior to combining

(a) (b)
Figure 42: C-jet fraction scans for the float value fc. The balancing value chosen is marked by X
on both plots. The chosen value is 0.09, balancing the light-jet rejection and c-jet rejection in the
𝒕𝒕 sample while favoring c-jet rejection in the Z′ sample.

Since four models were trained using both resampling methods (PDF and Count) while using
two different DIPS models that use different electron cuts, they had to be compared to see which
model outperforms the other three. While holding the optimized value of fc = 0.09, the b-jet tagging
efficiency was checked for all the models. Figure 43 shows a Receiver Operating Characteristic
(ROC) curve. This shows background rejection vs b-tagging efficiency. The goal for these models
is to have the highest rate of b-tagging efficiency while rejecting the most amount of background.
The bottom two plots below the ROC curve are two ratio plots showing the efficiency of the DL1d
models with respect to the DL1d using the Count resampling method. The left plot validates the
models on the 𝒕𝒕 sample while the right validates them on the Z′ sample. It’s quite noticable on
the 𝒕𝒕 sample plot that using the loose electron cut dramatically increases the DL1d performance
b-tagging efficiency. As seen in pink on the right plots in Figure 43, the model DL1d + the loose
electron cut DIPS model outperforms the other three while being comparable in the 𝒕𝒕 plot on the
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left. Therefore, the DL1d model with the loose electron selection cut was taken as the best model
and was used in the following comparison plots for the rest of this section.

(a) (b)
Figure 43: Comparison plots of all four DL1d trained models. Plot (a) shows the performance
of each model using the 𝒕𝒕 sample. Both loose electron WPs outperform the tight WP. Plot (b)
shows all four DL1d models validated on the Z′ sample. Again, both loose electron WPs models
outperform the tight WPs while the PDF resampling method (pink) outperforms the Count method
(green). The loose DL1d model using the PDF resampling method was chosen to be the superior
trained model.

Once the optimum model was chosen, the next step was to check on how the performance of
it compares to the baseline DIPS model. It is expected for the DL1d model to greatly outperform
the DIPS model simply due to the fact that the jet kinematics are added after the training of DIPS,
increasing the underlying pattern recognition from the excess of available information. This per-
formance can be seen in Figure 44. As expected, the DL1d model outperforms the baseline DIPS
model by approximately 25% in c-jet rejection vs b-tagging efficiency.

Just as in testing the model’s b-tagging efficiency, the c-tagging efficiency can also be checked
using the discriminant seen in Eq. 5.2. The following plots show the performance of both the DL1d
and the baseline DIPS tagger for c-tagging efficiency. The DL1d tagger outperforms the DIPS as
expected just as in the b-tagging study. For these plots, the HGTD sample was used as listed in
Table 13. Two performances are shown for two different floating b-jet fractions fb as seen in Eq.

97



Figure 44: Comparison plot for the DL1d model and the baseline DIPS. DL1d outperform DIPS
as expected. The c-jet fraction for the DIPS model was taken to be fc = 0.17 whereas this fraction
was fc = 0.09 as previously stated.

5.2. The left plot has a floating b-jet value of fb=0.24 and the right plot has a value of fb=0.45.
This DL1d tagger was the first of its kind to be trained on samples with the geometry of ATLAS

in Run 4. With the increase of luminosity within the HL-LHC and the upgrades in timing resolu-
tion and granularity within the ITk and HGTD, tagging efficiencies is expected to increase. It has
proved to be difficult to train a preliminary tagger to outperform the current state-of-the-art tag-
gers. Though, at the current state, this is to be expected for several reasons. One would expect the
tagging efficiency to increase with the amount of available statistics to train on. This preliminary
DL1d using Upgrade samples had a total of ≈15 million jets to train on that include jets between
the newly included eta range of 2.4 < |η| < 4.0 (total range of 0 < |η| < 4.0) which may not
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(a) (b)
Figure 45: Light-jet rejection vs b-jet rejection (c-tagging). The left plot has a floating fraction
of fb=0.24 where as the right has fb=0.45. The DL1d tagger outperforms DIPS as expected. The
small HGTD sampled as listed in Table 13 was used.

include well resolved jets. The current state-of-the-art DL1d tagger was trained using 120 million
jets simulated using Run 2 ATLAS geometry with well resolved jets between the eta range of 0
< |η| < 2.4. The comparison of these two versions of DL1d can be seen in Figure 46. This figure
also includes the old high-level tagger of MV2 that was validated on samples with the inclusive eta
range of 0< |η| < 4.0. In this comparison ROC plot, it is seen that the DL1d for Run 2 outperforms
the preliminary DL1d for Upgrade up to the 77% WP but starts to under perform at the 85% WP in
the light-jet rejection. This result is highly promising knowing the robustness of the Run 2 version.
If a more refined DL1d for Upgrade model is trained using an increase in statistics, it would be
expected to outperform the Run 2 DL1d at the 77% WP.

Adding the newly available eta region of 2.4< |η| < 4.0 through the calculated power of the ITk
detector has physicists excited about the new aspects that this adds to their analyses and possible
innovations in the future. Though, in order to effectively probe this region, the available FTAG
high-level taggers must be trained with robustness. Due to the decreasing resolution as particles
become highly boosted in a more forward region of the detector, it is expected for particle tagging
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Figure 46: ROC curve comparing the performance of the DL1d for Run 4, the current version of
DL1d used for Run 2 and the MV2 high-level tagger.

efficiency to drop. Thus, requiring newer innovative tools and techniques to be implemented with
the hopes to obtain the maximum efficacy of this new phase space. The high-level tagger DL1d has
been state-of-the-art through the end of Run 2 and into Run 3 of the ATLAS detector’s campaign
lifetimes. The question is how well will this tagger perform during Run 4 within the extended eta
region. Figure 47 shows its current performance in increasing eta intervals of one. The performance
in the highly boosted region between 3< |η| < 4.0 shows the poorest performance but this is to be
expected. The Upgrade DL1d model was also validated on jets that are only contained in the eta
region 0 < |η| < 2.5 to have a proper comparison between the current implemented Run 2 DL1d
tagger. The ratio plot on Figure 47 shows the performance between these two taggers. Similar
performance is seen at the 77% WP with an increasing performance above this value. This result
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is very promising since the Run 4 version of the DL1d tagger was trained on a magnitude less of
statistics.

Overall, this first preliminary study of the high-level tagger DL1d using samples that simulate
the Upgrade geometry of the ATLAS detector during Run 4 and the first implementation of the
HL-LHC shows very promising results. There are currently active efforts to develop a new state-
of-the-art high-level tagger using a graph neural network on tracking information called GN1. The
architecture was briefly discussed in Section 4.6.4. Preliminary studies of this new tagger were
done using the same samples that were used in this study of Run 4 for DL1d. The results of this
study are discussed in Appendix APPENDIX A:. As seen from the results of this GN1 tagger, it
outperforms the DL1d tagger. Due to this, a graph neural based tagger is planned to be considered
the new industry used tagger after the upgrade in 2029. Therefore, further studies of the DL1d
tagger using larger Upgrade samples is not planned for and the model trained in this dissertation
will be used at the DL1d baseline model for Upgrade.
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Figure 47: ROC curve showing the performance of the DL1d tagger for Upgrade in four eta intervals
of one. The Run 2 DL1d is also plotted for comparison in the ratio plot on the bottom.
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CHAPTER VI

SEARCH FOR NEW PHYSICS USING UNSUPERVISED MACHINE LEARNING FOR

ANOMALY DETECTION

Anomaly detection methods are in their infant stages within the HEP community. This analysis
was the first published general search using an unsupervised machine learning method within the
ATLAS collaboration. This method searches for new physics in two-body invariant masses in events
with a single isolated lepton using all data from Run 2 (140fb-1) of √s = 13 TeV collision data
recorded by the ATLAS detector. The invariant mass distributions are a phase space defined by an
unsupervised deep-learning machine learning algorithm called the autoencoder (AE). The di-object
invariant masses, mjX, are constructed from a leading jet j and X is a second jet, a b-jet, lepton, or a
photon. Similarly, mbX, is looked at where b is a b-jet and X is a jet, b-jet, lepton or a photon, totaling
in nine different invariant mass combinations. A search for di-object resonances was applied in the
invariant mass range between 0.3 TeV to 6 TeV. The AE was trained using a data-driven technique,
therefore did not rely on MC calculations. The invariant masses in the outlier phase space was set
to a 95% confidence level upper limits on cross-section times branching ratios for the production
of decays of resonances as predicted by several new physics scenarios.

6.1 Strategy

Due to the fact that this analysis was still paving the way to normalize anomaly detection methods
and techniques, a few choices were fairly ambiguous and had to be thoroughly thought through
in order to establish credibility. This method searching for signatures of BSM physics is model
agnostic, meaning no theory for new physics influenced any of the model training and therefore any
signatures detected is purely data-driven. The idea is to perform unsupervised training on a ML
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model that will be able to detect events that differ from the “average” SM events, i.e. anomalous
events. The input representation and training procedure should not bias the signatures and create
artificial peaks. The strategy is this:

• Prepare the events into an input feature space that is general enough to cover a large range of
possible BSM signatures while also providing an unbiased depth in data representation and

• Train an optimized ML model with metrics that can be used to define an anomaly score in
order to show separation between “average” SM events and outliers.

• Define anomalous events using a chosen anomaly score and use a cut on this score to obtain
an anomalous region of interest.

• Study these anomaly regions (ARs) for possible new physics signatures.

The last step suggests that new two-body states may be produced within these ARs and can be
seen as excesses in these distributions, which can be found without using any MC simulations for
background modeling.

6.2 Event Selection and Object Definitions

All the data used in this analysis is originated from the ATLAS detector during the Run 2 period
between the years 2015 to 2018. The data was recorded during stable beam conditions while all
relevant subdetectors were fully operational. The event candidates selected was done by either
single-electron triggers or single-muon triggers which range in transverse momenta, transverse en-
ergy, and quality and isolation thresholds. These GRL files, datasets and used triggers can be found
within the appendix section APPENDIX B:.

Muon and electron criteria are key to this analysis since they are the trigger for event selections.
The Muon and electron selection criteria are summarized in Table 17 and Table 18, respectively.
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Muon Selection
Criteria Value
Selection WP medium
Isolation WP PflowTight_FixedRad
Momentum Calibration Sagitta Correction Not Used
pT Cut > 20 GeV
|η| Cut < 2.7
d0 Significance Cut < 3
z0 Cut < 0.5

Table 17: Muon selections for this analysis
Electron Selection

Criteria Value
Pseudorapidity Range (|η| < 1.27) || (1.52< |η| < 2.47)
Energy Calibration “es2018_R21_v0” (ESModel)
Transverse Momentum pT > 20 GeV
Track-to-Vertex Association |dBL

0 (𝝈)| < 5
|∆zBL

0 𝒔𝒊𝒏𝜽| < 0.5 mm
Selection WP Tight
Isolation WP FCTight

Table 18: Electron selections for this analysis

6.2.1 Photon Selection and Reconstruction

Photon energy depositions are found within the ECAL which have a pT > 20 GeV and have |η| <
2.37. The transition region between the ECAL and the barrel, 1.37 < ‖η| < 1.52, are excluded.
There are two types of photons, one is a converted photon which are formed from ECAL clusters
which are matched to a conversion vertex and then there are unconverted photons which are clusters
that are not matched to any vertex. The energy depositions, i.e. shower shapes, undergo a strict
criteria to pass selections that correspond to the Tight identification WP and Tight isolation. These
photons are used in the invariant masses, mj𝜸 and mb𝜸 .

6.2.2 Jet Definition and Selection

Jets are constructed using the anti-kT algorithm with a distance parameter of R = 0.4. They are
reconstructed from PFlow objects. In order to suppress pile-up, the JVT technique is used, requiring
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at least 60% of the tracks momentum to be associated with the hard scatter. The JVT algorithm is
applied to jets with pT < 60 GeV and |η| < 2.4. The final jet cut selection requires pT > 20 GeV
and |η| < 2.4. Table 19 shows the definition of jets used in this analysis.

Jet Reconstruction Parameters
Parameter Value
algorithm anti-kTR-parameter 0.4
input constituent PFlow
Analysis Release Number 21.2.177

Selection Requirements
Observable Requirement
Jet Cleaning LooseBad
BatMan Cleaning No
pT > 20 GeV
|η| < 2.47
JVT WP Medium

Table 19: Jet definitions used in this analysis

6.2.3 B-jet Selection

The AntiKt4EMPFlow b-jets were selected from the 77% WP using the DL1r algorithm. The
minimum jet pT for pre-selection was 20 GeV. No optimizations of the WPs were made based on
the BSM models used.

6.2.4 Final Selection

After all the pre-selection requirements and stated in the previous sections were made, a final se-
lection is applied to define our signal region. This region requires at least one isolated lepton with
pT > 60 GeV and at least one jet with pT > 30 GeV. The pseudorapidity requirement is |η| < 2.4
for jets, |η| < 2.5 for muons and |η| < 2.47 for electrons. The FCTight and PFlowTight isolation
WPs were used for electrons and muons respectively. This tight criteria imposed on leptons allows
for consistent candidate definitions. The invariant masses, mjj, mjb, mbb, are reconstructed using
two jets from each event, either with a leading and sub-leading (b-)jets, or with a b-jet or anti-b-jet.
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The minimum value of the invariant mass was chosen to be 400 GeV. This decision was made, in
short, because the lepton cut of pT > 60 GeV is expected to distort the mass distributions of mje

and mjµ between the range of 200 and 400 GeV.

6.3 Monte Carlo Simulations

Even though this technique is considered a data-driven approach in order to not rely on MC simula-
tions. Simulations were still used to describe the background hypothesis for a proper fit procedure.
MC simulations were also produced for several benchmark BSM models that were used to show
how well the trained AE could identify anomalous events that originate from new physics. A more
in depth discussion on the types of MC samples used for the background hypothesis can be found
in appendix APPENDIX C:.

6.3.1 Benchmark BSM Models

The following BSM models are used as benchmark signals to evaluate the efficacy of the unsu-
pervised anomaly detection ML model. The Feynman diagrams are shown in Figure 48. The
motivation of choosing these specific models are discussed in the following.

6.3.2 Sequential Standard Model

The Sequential Standard Model (SSM) is an extended gauge model [5] which proposes heavy gauge
bosons which are commonly denoted as W′ and Z′. The emission of a W boson was considered
from the s-channel production

𝒒𝒒 → W′ → W Z′ → (l𝝂)(qq) (6.1)

where Z′ is a new dijet resonance that is produced in association of the W boson [94]. The
branching ratio W′ to Z′W was set to 50%, while 100% branching from𝒁 → 𝒋𝒋 was set to increase
the efficiency of MC production.
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(a) Sequential Standard Model (b) Simplified DM Model

(c) Radion Model (d) Composite-lepton Model

(e) Charged Higgs Model
Figure 48: Feynman diagrams of the benchmark BSM models.

6.3.3 Simplified Dark Matter Model

The simplified dark matter (DM) models contain one or more stable, long-lived DM particle along
with an unstable mediator particle that interacts between DM and the SM. The model used in this
analysis consists of a single spin-1 mediator denoted as Z′ created through a new U(1) gauge sym-
metry. The final states contain one or more leptons/

6.3.4 Kaluza-Klein Bosons Decaying to Radions

In order to solve the elector-weak hierarchy problem and flavor structure origin, some BSM theories
predict warped higher dimensional compactifications with bulk SM. In the model used for this
analysis, a Kaluza-Klein (KK) excitation gauge boson may decay into a particle called the radion
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and a SM gauge boson [76, 51].

Wkk → W + 𝝋→ l𝝂 + gg (6.2)

where Wkk denotes the KK boson and the 𝝋 is a radion decaying into two gluons.

6.3.5 Composite-Lepton Model

Composite resonances breaking lepton flavor universality predicts a Z′ particle that decays into a
composite lepton (E) and a SM lepton [19]. The composite lepton then decays into a lepton and a
Higgs boson or Z boson.

Z′ → l + E;E → e + Z/h;Z/h → qq̄ (6.3)

6.3.6 Charged Higgs Model

Many BSM models predict the existence of a charged Higgs boson. For this analysis, the simu-
lated process assumes the charged Higgs boson is produced along with a top quark and a bottom
quark [79]. It then decays itself into a top and bottom quark. In the very boosted regime, such as
H+ masses above 1 TeV, a b-jet and a jet originated from a top quark form almost back-to-back,
which would be reconstructed via the mjj distributions. For lower, non-boosted masses, the leading
and non-leading jets lead to an approximate invariant mass of the H+ and end in a rather broad
resonance due to incomplete reconstruction of the decay products.

6.4 Event Input Representation

Now that the pre-selection has been chosen, the question is how to represent this as input for a
machine learning model in order to maximize underlying correlations and pattern recognition. The
overall goal of this analysis is to find anomalous dijet resonances, but the input must ensure that
the model is not biased towards only kinematic anomalies. The approach that was taken for this
analysis was to represent the input as a matrix that contains correlations between each object within
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the event. This matrix is called the Rapidity Mass Matrix, or RMM. Figure 49 shows an example of
the RMM with two object types, jets (j) and muons (µ). The maximum amount of objects is set to
N. The position (1,1) contains the event’s missing transverse energy, or MET, and is scaled by the
center of mass energy (1/√s) where √s is the center-of-mass energy. The diagonal cells contain
the ratio 𝒆𝑻 (𝒊𝒏) = ET(i1)/

√s, where ET(i1) is the transverse energy of a leading object i (a jet or µ),
and transverse energy imbalances

𝜹𝒆𝑻 (𝒊𝒏) =
𝑬𝑻 (𝒊𝒏−𝟏) − 𝑬𝑻 (𝒊𝒏)
𝑬𝑻 (𝒊𝒏−𝟏) + 𝑬𝑻 (𝒊𝒏)

, 𝒏 = 𝟐,… ,𝑵, (6.4)

for a given object type i. All objects are strictly order in transverse energy, i.e. E𝑻 (𝒊𝒏−𝟏) >
E𝑻 (𝒊𝒏). The top row are the particle’s transverse masses M𝑻 (𝒊𝒏) for two-body decays, scaled by
1/√𝒔, i.e. m𝑻 (𝒊𝒏) = M𝑻 (𝒊𝒏)∕

√

𝒔. The upper-right quadrant shown in red are the non-diagonal
values of m(𝒊𝒏, 𝒋𝒌) = M𝒊,𝒏, 𝒋,𝒌∕

√

𝒔, where M𝒊,𝒏, 𝒋,𝒌 are two-particle invariant masses. The first col-
umn vector s 𝒉𝑳(𝒊𝒏) = 𝑪(cosh(𝒚) − 𝟏), where 𝒚 is the rapidity of a particle 𝒊𝒏, and 𝑪 is a constant
defined such that the average values of 𝒉𝑳(𝒊𝒏) can correspond to certain algorithms that may re-
quire values to have similar weights. The values in the bottom-left quadrant highlighted in green
𝒉(𝒊𝒏, 𝒋𝒌) = 𝑪(cosh(𝚫y∕2)−1) are constructed from the rapidity differences𝚫𝒚 = 𝒚𝒊𝒌−𝒚𝒋𝒏 between
i and j.

Figure 49: Example of the Rapidity Mass Matrix using only two objects, jets (j) and muons (µ).

Applying this idea to this analysis expounds this example RMM into a larger representation. In
the end, nine invariant masses were studied, therefore the RMM had to contain all the objects that
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were used in combination for the invariant masses. The total objects per event varies event to event.
In order to deal with this variable sizing, the events were “mapped” to a fixed data-structure and
therefore implement zero-padding for missing data. The the standard topology of reconstructed
objects was used while setting a maximum number for each object. In total, up to 10 jets, 10 b-jets,
5 electrons, 5 muons, 5 photons and MET were allowed (total of 36 objects). In order to reduce
biasing the ML model on the di-object invariant masses of interest, the values that correspond these
nine invariant masses are zero-padded for every event. This gives us a total amount of variables to
feed the model of 1287 (362-9=1287). Figure 50 shows an example RMM with all indices allotted
for objects to be filled and shown as yellow, whereas the zero-padded indices are shown in blue. The
indices corresponding to the nine invariant masses of interest are removed to reduce bias. Appendix
shows examples of single events converted to RMMs.
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Figure 50: This RMM diagram shows the indices that allow values (yellow) and the zero-padded
indices (blue). The nine invariant masses of interest are removed (blue). This diagram shows the
average values of cells for 10000 events. The total of non-zero variables is 1287.

6.5 Autoencoder Training

The AE model was trained using TensorFlow [55] with a Keras backend [49]. The AE architecture
is a deep-learning algorithm that is used for high-dimensionality reconstruction. The architecture
is split into three parts. The first part is called the “encoder” which is the initial compression
neurons which compresses the input into lower dimensionality. The second part of this architecture
is referred to as the “latent layer” and is considered the bottleneck. This is a single layer of neurons
that holds the compressed input. The final stage of this architecture is called the “decoder” which
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decompresses the latent layer in order to reconstruct the original input. The neural-network of the
decoder typically mirrors that of the encoder. The chosen amount of neurons should for these layers
are optimized for the goal of anomaly detection.

The AEs purpose is to reconstruct its input. When the input gets compressed and then decom-
pressed by the AE, there is a certain amount of data lost within the process. This value is determined
by the loss function that the model is trained to minimize. The loss function used for this model is
the mean squared error function (MSE) which can be seen in Eq. 6.5

Loss = 𝟏
n

𝒏=𝟏𝟐𝟖𝟕
∑

𝒊=𝟏
(xi − 𝒙̂i)2 (6.5)

It is known for AEs that it’s possible to have exactly zero loss when decompressing the input.
This zero loss is not the goal of this architecture for the value of the loss is chosen to be the score
in which indicates anomalous events. Therefore, the optimized architecture must have a range of
loss values while maximizing the separation between SM events and BSM events. The architecture
topology studies for this optimization can be found in Appendix APPENDIX E:. The resulting op-
timized architecture chosen is seen in Table 20. The total number of trainable weights is 2,863,087,
the activation function used is the “leakyReLU” and the loss function is minimized by the Adam
Optimizer. The reconstruction loss is used as the anomaly score.
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_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

input_1 (InputLayer) [(None, 1287)] 0

_________________________________________________________________

dense (Dense) (None, 800) 1030400

_________________________________________________________________

dense_1 (Dense) (None, 400) 320400

_________________________________________________________________

dense_2 (Dense) (None, 200) 80200

_________________________________________________________________

dense_3 (Dense) (None, 400) 80400

_________________________________________________________________

dense_4 (Dense) (None, 800) 320800

_________________________________________________________________

dense_5 (Dense) (None, 1287) 1030887

=================================================================

Total params: 2,863,087

Trainable params: 2,863,087

Non-trainable params: 0

Table 20: Optimized Autoencoder architecture chosen for the anomaly detection analysis. More
neurons may have optimized it further but was limited due to computational power.

Figure 51 shows a schematic of the nominal AE model with a sample input and output. 1% of
ATLAS Run 2 data is randomly selected from different data-taking periods were used for training.
70% were used for training while 30% were used for validation. Early stopping was set to 30 epochs.
MC samples nor labels were used for training, thus making this approach a data-driven unsupervised
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learning. Figure 52 shows the training loss per epoch for both the training and validation sets.

Figure 51: A schematic representation of the nominal AE model with an example input and its
output. It’s composed of three parts, the encoder which compress the data, the latent layer which
acts as the bottleneck and the decoder which decompresses the data in order to recreate the original
input. Due to this compression and decompression, data is loss via the loss function calculation.
This loss is used as the anomaly score. When an event that is the model hasn’t seen goes through,
the data loss is higher and thus can be tagged as anomalous.
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(b) Loss per epoch (log)
Figure 52: Training and validation loss as a function of epochs shown both linear and log y-scale.

Training ML models have dependencies on several factors such as random seed values used for
AE initialization, the processing computer architecture, training/validation dataset splitting, etc.
In order to accommodate for these factors, 50 separate trainings were conducted with different
random seed values. Figure 53 shows these 50 trainings and the validation value in which the AE
was stopped training. The median value of this validation loss is ln(loss) is -10.554. The trained
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Alter train 1 1.04154E-08
Alter train 2 1.05714E-08
Alter train 3 8.43490E-09

(a) Using 1% of data for training

Figure 53: Validation stop loss values for 50 trainings with different seeds. Seed value and cor-
responding loss value is shown in the legend. “Alter training” shows different randomly selected
training data from full Run 2 ATLAS data. (ROC curves can be found in Appendix APPENDIX
F:) Consistent loss values were achieved among different training sets.

model that stopped at this median value then became the nominal model used for the rest of the
analysis. The two ±RMS models are used for systematic studies in Appendix APPENDIX F:.

The trained nominal AE model was used to process MC events and BSM events and is shown in
Figure 54. The ln(loss) value is taken to show anomalous separation. 10% of randomly chosen data
events from Run 2 were used to check the loss distribution to ensure that there is good separation
between data and BSM. It can be seen that in both (a) and (b) in Figure 54 that there is good
separation between SM and BSM events. The year dependence is also checked since all of Run 2 is
taken over several years. Figure 55 shows that there is no shape dependence on data-taking years.
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Figure 54: Distributions of the loss values for the AE trained using 1% of data. (a) The loss dis-
tribution for SM and BSM models; (b) The loss distribution for 10% and BSM models. The BSM
models had 20,000 generated events for each mass point in the range 0.5 – 6 TeV. The larger the
mass of the resonance, the further away the line is from the data distribution. All the distributions
are normalized to the unit area.
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Figure 55: Distributions of the loss values for 10% Run 2 data, scaled by 10 to simulate the actual
expected distribution. Distributions from each data taking year are shown as well (without multi-
plying by 10). To quantify the difference, the AE value between individual-year and all-year shapes
are computed; they are found to be ’Data 15’: 0.485, ’Data 16’: 0.491, ’Data 17’: 0.505, ’Data
18’: 0.502. Ratio pad shows the per year shape over full data (note that colors may not be precisely
matched). They are all close to 0.5, suggesting that different data-taking conditions (e.g. pile-up)
do not have a large impact on the method.

6.5.1 Determination of Anomaly Region

The definition of an anomaly region (AR) is ambiguous and can be determined depending on the
logical needs of the analysis. Within this analysis, the decision was based on the example BSM
models using their theoretical cross-sections times their branching ration (after their acceptances
time efficiency corrections). The 𝝈 × 𝑩𝑹 × 𝑨𝒄𝒄 × 𝑬𝒇𝒇 were calculated for these models and
can be seen in Table 21. The range of these values are within a few hundredths to a few pico-barn.
Three ARs were defined to ensure sensitivity to a wide range of BSM models. These three regions
are event count bases ranging from 10 pb to 0.1 pb.

• 10 pb region: This 10 pb AR corresponds to 10 pb ×140fb-1=1.4M events. This region has
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the largest acceptance and is a reasonable choice for many models with leptons in the final
state.

• 1 pb region: This 1 pb AR corresponds to 0.14M events of data. This region is less sensitive
due to the decrease in statistics but it was expected that the same fit function as the 10 pb AR
could be used. This assumption is justified since this region has less events and therefore an
equation with the same amount or less parameters as the first region should work.

• 0.1 pb region: This is the third and last AR definition and only corresponds to 14K events.
This region was included since it corresponds to the upper bound on published experimental
limits for dijet mass (including masses with associated lepton or photons). The same fit
function will be used for this region as was used in the previous regions.

Since these ARs were defined using a count-based assumption, it was possible to define the
anomaly score cut numerically. The values were found scanning the amount of events bin by bin
on the log(loss) anomaly score distribution. The cut values for the 10 pb, 1 pb and the 0.1 pb ARs
are -9.10, -8.00 and -6.5 respectively and be seen within Table 22.
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Theoretical Cross Sections times Branching ratios for BSM Models
𝝈 × 𝐁𝐑 (pb) 𝝈×𝐁𝐑×𝑨𝒄𝒄×𝑬𝒇𝒇 (pb) Model Reference
10 2.5 Sequential Standard Model ATLAS [38]
1.5 0.2 Charged Higgs (hMSSM, 𝐭𝐚𝐧(𝜷) = 𝟏) ATLAS [38]
6 0.3 Charged Higgs (hMSSM, 𝐭𝐚𝐧(𝜷) = 𝟎.𝟓) ATLAS [38]
0.5 0.14 Simplified dark matter model ATLAS [38]
8 (extr) 1 (extr) Composite lepton model (E=250 GeV) ATLAS [40]
1.5 0.4 (extr) Composite lepton model (E=500 GeV) ATLAS [40]
0.12 0.05 Technicolor model ATLAS [38]
4.5 (extr) 0.7 (extr) Radion model ATLAS [40]

Table 21: Theoretical cross-sections times branching ratios and after 𝑨𝒄𝒄 × 𝑬𝒇𝒇 corrections of
multiple BSM models near the 400 GeV mass scale that include a single isolated lepton in the
final state. The proposed ARs of 10 pb, 1 pb and 0.1 pb covers the cross-sections of most of these
models.

Cut values Number of events
−𝟗.𝟎𝟎 1146820.0
−𝟗.𝟎𝟒 1286950.0
−𝟗.𝟏𝟎 1382880.0
−𝟗.𝟏𝟐 1626590.0
−𝟗.𝟏𝟓 1828930.0
−𝟗.𝟐𝟎 1828930.0

Cut values Number of events
−𝟕.𝟗𝟓 132090.0
−𝟖.𝟎 143730.0
−𝟖.𝟎𝟐 157050.0
−𝟖.𝟏𝟎 171040.0

Cut values Number of events
−𝟔.𝟒𝟎 11260.0
−𝟔.𝟒𝟓 12450.0
−𝟔.𝟓𝟎 13520.0
−𝟔.𝟓𝟓 14770.0
−𝟔.𝟔𝟎 16020.0
−𝟔.𝟔𝟓 17600.0

Table 22: Number of events after the anomaly score cut for each AR. The 10 pb BSM region is
defined by the logarithm of the loss function > -9.10, the 1 pb is defined by the logarithm loss >
-8.00, and likewise for the 0.1 pb logarithm loss > -6.50
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Multiple mass hypotheses of each example BSM model was observed using these defined AR
regions in order to test the S∕√B after the anomaly score cut. Figure 56 shows comparisons for
each five BSM model previously described. These mass hypotheses of Z′∕W′∕H+ range from 0.5−
6 TeV. The larger the mass resonance (closer to 6 TeV), the larger the loss from the AE is expected.
The number of events for each model were estimated using their cross-sections and the luminosity.
Figure 57 shows the integrated S∕B and S∕√B for all the BSM signals stacked. The 10 pb cut
happens to be near the most optimal S∕√B meaning the signal in the calculation is dominated by
lower mass resonances. It is worthy to note that this optimal cut would adjust towards the right
from its current position if this calculation only includes higher mass resonances. The fact that the
optimal cut is found to be at 10 pb for an inclusive mass resonance range indicates this method with
the addition of the other two defined ARs is a robust strategy.
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(e) Sequential SM
Figure 56: Distributions of the loss values using the trained nominal AE with different BSM models.
The mass resonance range between 0.5 - 6 TeV with higher loss values for larger mass resonances.
The data distribution uses 10% of Run 2 data that is scaled by 10 to show the expected shape of the
full Run 2 dataset. Two vertical lines shows the max and min AR regions (10 pb and 0.1 pb)
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(b) S∕√B for stacked BSM models
Figure 57: Integrated S∕B and S∕√B scans for the stack BSM models show in Figure 56. S is
calculated as the integral of the BSM signal from a given x value to +infinity; B is calculated as
the integral of the data at a give value x to +infinity. The colored vertical lines show the positions
of the AR cuts.

6.6 Analysis of Anomaly Regions

The objects of interest are nine di-object invariant masses. These masses are:

1. Invariant mass of 2-jets (mjj)

2. Invariant mass of a jet and a b-jet (mjb)

3. Invariant mass of two b-jets (mbb)

4. Invariant mass of a jet and an electron (mje)

5. Invariant mass of a jet and muon (mjµ)

6. Invariant mass of a jet and photon (mj𝜸)

7. Invariant mass of a b-jet and an electron (mbe)

8. Invariant mass of a b-jet and a muon (mjµ)

9. Invariant mass of a b-jet and a photon (mj𝜸)

The approach here is to use MC simulations of 𝒕𝒕 and W+jets (samples listed in Appendix AP-
PENDIX C:) combined with a data-driven multi-jet for SM background estimations. With this
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background a fit function is applied to establish the estimated shape of this background. The func-
tion is then tested further using a variety of statistical tests and then finally cross-checked with a
10% data sample (separate events from training) in a step called a stage-1 unblinding before being
fully unblinded.

6.6.1 Background Modeling

The bin widths of the invariant masses are chosen to match the JES of the ATLAS detector. The
bin widths are approximately equal to the theorized model width at a given mass with increasing
bin size that widen with increasing invariant mass from 13 GeV to 120 GeV. The fit procedure and
function in this analysis follows the procedure outlined in [42]. This fit hypothesis (Eq. 6.6) is used
to establish the background shape.

𝒇 (𝒙) = 𝒑𝟏(𝟏 − 𝒙)𝒑𝟐𝒙𝒑𝟑+𝒑𝟒 𝐥𝐧𝒙+𝒑𝟓 𝐥𝐧
𝟐 𝒙, (6.6)

where 𝒙 ≡ mjj∕
√

𝒔 and the 𝒑𝒊 are five free parameters to be estimated. Having fit function with
up to five parameters allows for more flexibility at low mjj. This fit function from herein is referred
to as “p5”. In addition, in addition “p4” (𝒑𝟓 = 𝟎) and “p6” functions (after multiplying the function
by 𝒙𝒑𝟔 𝐥𝐧𝟑 𝒙) are studied. Using a function with more parameters, such as the p6 can be dangerous
as high parameter functions are more likely to absorb possible signal. Therefore, statistical tests
are utilized to ensure the optimized amount of parameters are found while also testing the function
on each invariant mass distribution since it’s possible the fit could fail on a distribution with low
statistics.

An alternative fit function is proposed to evaluate the systematic uncertainties related to the
function to fit the background. The chosen alternative function can be seen in Eq. 6.7 as it resembles
the used p5 fit function that is later used to estimate the background. This function has shown to
give an alternative description of the tail in the mjjdistribution, compared to the p5 function [41].

𝒇 (𝒙)𝒂𝒍𝒕 = 𝒑𝟏(𝟏 − 𝒙)𝒑𝟐𝒙𝒑𝟑+𝒑𝟒 𝐥𝐧𝒙+𝒑𝟓∕
√

𝒙, (6.7)
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To fit the binned histograms, the Minuit/ROOT program was used. histograms with event yields
were divided by the bin width, this was fed as inputs into the Minuit/ROOT program to obtain fit
parameters. To ensure the most optimal minimization of the fit function, the following procedure
was used. First, the fit parameters are initialized randomly and the fit is performed. The fit criteria
requires a 𝝌2∕ndf <1.4 to be considered as the correct parameter space. If the fit doesn’t converge
to this criteria, a new fit trial begins starting from the parameters as the previous fit. 100 of these
trials are then performed, if a fit cannot be found with a 𝝌2∕ndf <1.4, the parameters are then
randomly initialized and the procedure starts over. This iterative fitting procedure is then repeated
a maximum of 100 times to obtain correct parameter space. If the criteria of 𝝌2∕ndf <1.4 is
never obtained, then the claim is that this fit function is unable to describe the background shape.
/par Additional tests are performed once reasonable fitting parameters are found via this method.
To ensure the function isn’t “too flexible”, one of these tests are spurious signal tests which are
conducted to help verify the chosen form of the function. This procedure is non-trivial due to the
fact that the chosen number of parameters must work for all nine invariant mass background shapes.
If there are not enough parameters, the shapes won’t converge into a viable fit, whereas if there are
too many variables, it’s possible that an hints of resonances may be hidden within the fit.

6.6.2 Statistical Tests

Several statistical tests are ran to ensure the quality of fit. These tests are ran on the normality of
distributions of scaled residuals,𝑺𝒊 = yields−pred

𝚫yields , or commonly referred as “pulls”. These pull values
are then tested to verify that they follow a normal distribution with 𝝈=1 and mean of 0. Seven tests
are ran in all. These tests and their criteria are:

1. 𝝌2∕ndf <1.4

2. Kolmogorov-Smirnov (KS) test has a probability > 0.3

3. Gaussian fit of the pulls has a mean of 0 within the 1𝝈 statistical uncertainty
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4. Gaussian fit of the pulls has a standard deviation with the value of 1 (within the 1𝝈 uncer-
tainty)

5. Skewness value is 0 within the 1𝝈 uncertainty

6. Kurtosis value is 0 within the 1𝝈 uncertainty

7. Shapiro-Wilk’s test shows the probability above 0.7

First, as Gaussian fit to the pulls 𝑺𝒊 is performed to make sure that the peak and the width of
the fitted Gaussian has a mean of 0 with a width of 1. A 𝝌2 test is ran to verify that the Gaussian
fit of the 𝑺𝒊 is acceptable. The Shapiro-Wilk’s test is used to detect all departures from normality
without using the Gaussian fit. The Kolmogorov-Smirnov test is used to determine if the pull data
is normally distributed. In addition, skewness is checked that measures the relative size of both tails
along with the kurtosis test that measures whether if the distribution is heavy-tailed relative to the
normal distribution. The skewness and Kurtosis tests are equal to zero for an normal distribution,
so if the pull’s tests are not close to zero then the test is considered failed.

To determine whether the number of chosen parameters for the function is optimized, the F-
test is utilized. This test verifies if the default function against alternative, more complex options
[16]. If no significant improvements are seen for the MC control regions, the function with lower
complexity is prioritized since lower parameter functions lead to more stable fits and less likely to
lead to spurious signals. All tests described here are performed on the SM MC plus the data-driven
multi-jet background. In addition, the F-test is performed on real data in the 1 pb and the 0.1 pb to
reduce parameters.

Once a fit function is tested and has proved to be viable for background estimation, a Bum-
pHunter (BH) statistical test is performed to check if there are any significant deviations from the
background, i.e. possible BSM resonances. This test is calculated by looking at the discrepancy in
windows of varying width for all data bins and is sensitive to whether discrepancies in neighboring
bins have sign outcome. This test also reports a final p-value as all possible locations for an ex-
cess is considered, choosing the lowest value. The frequentist approach that is used in this analysis
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involves calculating this BH statistic for many pseudo-experiments, having the lowest p-value out-
come originate from different locations. The final p-value is formed from the union of the smallest
p-values calculated from these pseudo-experiments.

When applying the BH test to our ARs, the procedure looks for each N possible intervals of
mjj, a local p-value is calculated from a unique hypothesis test statistic. BH then combines each of
the N hypotheses for form a new hypothesis test, calculating the minimum p-value amongst all the
tests. These are then combined into a global p-value and transformed into a significance assuming
that the bin-by-bin distribution follows a Poisson distribution. Pseudo-experiments as described
above are then used to determine the most significant local excess and a global significance. This
test is used after a reasonable fit function is found to describe the background estimation in order
to find any deviances after unblinding.

6.6.3 Background Fit Studies

The background estimation in these studies are a combination of 𝒕𝒕, W+jets and the LE-CR. These
figures show all nine invariant mass distributions in the 10 pb AR (fit studies looking at the other
ARs, 1 pb and 0.1 pb, can be found in Appendices APPENDIX H: and APPENDIX I:). Three fit
functions were tested, a p4, p5 and a p6. The statistical tests and discussed in the previous section
for the pull values are shown in Table 23 for the 10 pb AR (Table 26 and Table 27 in Appendix for
the other two ARs). These studies show that the p5 performs the best. The three fit functions tested
are:

• 𝒑𝟒: 𝒇 (𝒙) = 𝒑𝟏(𝟏 − 𝒙)𝒑𝟐𝒙𝒑𝟑+𝒑𝟒 𝐥𝐧𝒙;

• 𝒑𝟓: 𝒇 (𝒙) = 𝒑𝟏(𝟏 − 𝒙)𝒑𝟐𝒙𝒑𝟑+𝒑𝟒 𝐥𝐧𝒙+𝒑𝟓 𝐥𝐧
𝟐 𝒙;

• 𝒑𝟔: 𝒇 (𝒙) = 𝒑𝟏(𝟏 − 𝒙)𝒑𝟐𝒙𝒑𝟑+𝒑𝟒 𝐥𝐧𝒙+𝒑𝟓 𝐥𝐧
𝟐 𝒙+𝒑𝟔 𝐥𝐧𝟑 𝒙.

To construct the MC+LE-CR, the distribution of the LE-CR was scaled such that it fills the gap
between data (before AR cut) and the MC predictions for 𝒕𝒕 and W+jets. The data used was 10%
of Run 2 and then scaled by 10 to show the full dataset shape as seen in Figure 58. The scaling
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factor applied to the LE-CR is (data-MC)/a, where a is the value of the integral of the LE-CR. After
applying the 10 pb AR cut to the combination of the MC+LE-CR, the fitting procedure for all the
tested functions was performed on each invariant mass. The results of the statistical tests for these
three functions on the 10 pb AR can be seen in Table 23. The studies on the 1 pb and 0.1 pb can
be found in AppendixAPPENDIX H:-APPENDIX I:.
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Figure 58: The distribution of mjj before the 10 pb AR cut. The red dots show the MC+LE-CR
data together with the p5 fit.

• Figure 59 10pb mjj

• Figure 60 10pb mjb

• Figure 61 10pb mbb

• Figure 62 10pb mje

• Figure 63 10pb mjµ

• Figure 64 10pb mj𝜸

• Figure 65 10pb mbe

• Figure 63 10pb mbµ

• Figure 67 10pb mb𝜸
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Mass region p Fit 𝝌𝟐 Pull 𝝁 𝚫𝝁 𝝈 𝚫𝝈 Gaus 𝝌𝟐 KS Shapiro
mjj 10 pb 4 1.350225 0.188249 0.118766 1.000243 0.118738 0.668667 0.838354 0.967003
mjb 10 pb 4 1.654758 0.288073 0.174609 1.184496 0.190722 1.266895 0.204681 0.947339
mbb 10 pb 4 1.339481 0.259308 0.184551 1.060607 0.198495 1.115230 0.030365 0.931438
mje 10 pb 4 1.882063 0.181406 0.190882 1.402343 0.218868 0.983200 0.122363 0.938806
mjµ 10 pb 4 0.954052 0.267345 0.109163 0.742488 0.134621 0.777527 0.349305 0.945133
mj𝜸 10 pb 4 0.773106 0.002398 0.130570 1.014041 0.135647 0.469318 0.798588 0.983349
mbe 10 pb 4 0.972373 0.545587 0.291598 1.414412 0.274838 0.768124 0.610562 0.970631
mbµ 10 pb 4 1.494746 0.706422 0.423572 1.646267 0.487647 0.663357 0.103588 0.967773
mb𝜸 10 pb 4 0.824516 0.218063 0.156917 0.965077 0.163884 0.914854 0.200394 0.962123
mjj 10 pb 5 1.009592 0.145683 0.122463 0.986835 0.109409 0.841748 0.915870 0.978346
mjb 10 pb 5 1.195392 0.167570 0.169755 1.194622 0.210126 1.141865 0.449203 0.991612
mbb 10 pb 5 0.903178 0.314245 0.105781 0.800464 0.094230 0.515502 0.302650 0.954691
mje 10 pb 5 1.226098 0.185050 0.126940 0.989509 0.112932 1.166452 0.455442 0.975749
mjµ 10 pb 5 0.969384 0.402821 0.135216 0.923938 0.133419 0.808335 0.061480 0.936338
mj𝜸 10 pb 5 0.781334 0.028170 0.130375 1.004669 0.138376 0.590685 0.630669 0.983825
mbe 10 pb 5 0.795931 0.331966 0.188702 1.092156 0.177057 0.671857 0.931749 0.973960
mbµ 10 pb 5 1.115614 0.594871 0.411939 1.518365 0.440538 0.744476 0.365553 0.976348
mb𝜸 10 pb 5 0.696946 0.063387 0.120639 0.860113 0.104889 0.402123 0.926549 0.987653
mjj 10 pb 6 0.954477 0.166474 0.114638 0.936988 0.106383 0.956339 0.974623 0.985057
mjb 10 pb 6 1.397667 0.326289 0.174342 1.299782 0.192943 0.643885 0.614734 0.989053
mbb 10 pb 6 0.950991 0.385546 0.109464 0.771136 0.096318 0.869510 0.236613 0.958079
mje 10 pb 6 1.128457 -0.030160 0.149119 1.124779 0.143738 0.824662 0.615372 0.983419
mjµ 10 pb 6 0.978938 0.399265 0.135440 0.926759 0.147424 0.757382 0.061480 0.942393
mj𝜸 10 pb 6 0.796370 0.034736 0.125878 1.017938 0.116741 0.414805 0.798588 0.986012
mbe 10 pb 6 0.833591 0.058978 0.135988 1.002012 0.120313 0.532795 0.882231 0.976117
mbµ 10 pb 6 1.146550 0.162036 0.209187 1.297957 0.215131 0.492555 0.230690 0.979333
mb𝜸 10 pb 6 0.757415 0.081991 0.131751 0.905731 0.117748 0.488251 0.867562 0.983667

Table 23: Statistical quantities for SM MC+LE-CR fit for the 10 pb AR
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Figure 59: The mjj invariant masses with the p4, p5 and p6 fit functions in the BSM region after
the 10 pb AR cut is applied. Pulls shown on the right.
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(d) pulls of mjb in p5
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Figure 60: The mjb invariant masses with the p4, p5 and p6 fit functions in the BSM region after
the 10 pb AR cut is applied. Pulls shown on the right.
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Figure 61: The mbb invariant masses with the p4, p5 and p6 fit functions in the BSM region after
the 10 pb AR cut is applied. Pulls shown on the right.
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Figure 62: The mje invariant masses with the p4, p5 and p6 fit functions in the BSM region after
the 10 pb AR cut is applied. Pulls shown on the right.
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Figure 63: The mjµ invariant masses with the p4, p5 and p6 fit functions in the BSM region after
the 10 pb AR cut is applied. Pulls shown on the right.
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Figure 64: The mj𝜸 invariant masses with the p4, p5 and p6 fit functions in the BSM region after
the 10 pb AR cut is applied. Pulls shown on the right.
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Figure 65: The mbe invariant masses with the p4, p5 and p6 fit functions in the BSM region after
the 10 pb AR cut is applied. Pulls shown on the right.
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Figure 66: The mbµ invariant masses with the p4, p5 and p6 fit functions in the BSM region after
the 10 pb AR cut is applied. Pulls shown on the right.
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Figure 67: The mb𝜸 invariant masses with the p4, p5 and p6 fit functions in the BSM region after
the 10 pb AR cut is applied. Pulls shown on the right.
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The p4 fit shows several failures in the statistical tests. However, the p5 fit function shows good
agreement for most of the invariant masses, though there are a few that should be pointed out.

• mbb- Failed 4 tests (mean, sigma, skewness, kurtosis) while the other three tests are good.
This is due to problems in MC background that use the LE-CR. Though, this region shows
good agreement with the p5 function when using stage-1 10% unblinded data as seen in
Appendix APPENDIX J: (only fails two tests).

• mjµ- Failed 4 tests (mean, KS, skewness, kurtosis), while the other three are good. This is
mainly because the LE-CR does not contribute to the µ-channel, essentially the fit is only
applied to the MC simulations. The stage-1 10% unblinded data in Appendix APPENDIX J:
passes all test but one.
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6.7 Results

Now that the ARs are defined and a reasonable, well tested fit function has been selected to describe
the background hypothesis, results can be obtained by unblinding 100% of the Run 2 data to see
if any anomalous resonant signatures are found using the BH strategy. Figure 68 shows two plots
using the full 100% unblinded Run 2 data along with the five BSM models (Figure56 shows the
analogous 10% of data with scaling).
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Figure 68: Distributions of anomaly scores in data and the five benchmark BSM models. (a) shows
these BSM models each at the 2 TeV mass hypotheses scaled to the expected events for 140 fb-1.
(b) shows these five BSM models at the 6 TeV mass hypothesis also scaled to the expected events
for 140 fb-1. The vertical red lines on both show the three defined ARs.

Figure 69 shows the results of the likelihood fit on 100% unblinded Run 2 data for each of the
nine invariant masses of interest. This figure is before any of the three AR cuts are applied. The
largest deviation found using the BH strategy is in the mjµchannel in the mass range of 0.44-0.48
TeV. The global p-value is 0.057 which corresponds to Z = 1.5𝝈. The local significance of this
mass range is found to be p-value = 0.00022, corresponding to Z = 3.5𝝈. The yellow bands show
the fit uncertainty (±𝝈). Figure 70 shows the BumpHunter results for the fully unblinded Run 2
data within the 10 pb glsar.
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Figure 69: BumpHunter results for full unblinded Run 2 data for all nine invariant masses of interest
before applying any of the three AR cuts. It also shows the result of the 5p fit function to describe
the background hypothesis. The lower panel shows the bin-by-bin fit significances with the largest
deviation reported by BumpHunter noted by the vertical dashed lines with its global p-value shown.
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Figure 70: BumpHunter results for full unblinded Run 2 data for all nine invariant masses of interest
after applying the 10 pb AR cut. It also shows the result of the 5p fit function to describe the
background hypothesis. The lower panel shows the bin-by-bin fit significances with the largest
deviation reported by BumpHunter noted by the vertical dashed lines with its global p-value shown.
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The largest deviation that’s worth discussing can be found in Figure 70 in the mjµdistribution on
the bottom right. This deviance is found near the mass point 4.6-4.8 TeV. This has a local p-value
of 3.8×10-5 corresponding to a significance of Z = 3.9𝝈. Accounting for the look-elsewhere effect
for the mjµdistribution, the global p-value is 0.013, corresponding to a global significance of Z =
2.2𝝈

The metric of discovery sensitivity [34] is briefly discussed in the Appendix APPENDIX G: and
is defined in Eq. .1. This value was calculated for each BSM model and all their mass hypothesis.
These values are and plotted in Figure 71 in the bin that’s associated to its mass. This figure shows
the increase of discovery sensitivity after the 10 pb AR cut is applied. Some increases are as large
as 200% for some models. Some models, such as SSM, show little (if any) improvement. This
is due (in case of SSM) to the fact that the signatures of these models are nearly identical to the
SM background. The two plots that involve a photon (mj𝜸and mb𝜸) show almost no increase nor
decrease. This is because none of the chosen BSM benchmark models require a photon in the final
state. There is also a noticeable trend that the discovery sensitivity generally increases as the mass
hypotheses of these BSM models increase. This makes sense since high mass particles tend to
decay into more anomalous events and therefore will pass the AR cuts.
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Figure 71: Bin-by-bin improvement in ∆Z discovery sensitivity after applying the 10 pb AR cut for
all nine invariant masses of interest. Discovery sensitivity increases shown for all five benchmark
BSM models and all their mass hypothesis.

6.7.1 Limit Setting

Most analyses are non-generic and have a specific BSM model with a range of possible heavy
masses that are studied. Limits are then able to be set on these masses generated from the model of
interest once the background hypotheses is used to find deviations. This analysis is unique in the
case that it is a generic search and only used BSM models for benchmark metrics. It was decided
in the end to set limits using Gaussian shapes placed at a large range of possible mass hypotheses.

The limits found in this analysis uses the frequentist method that is based on a profile likelihood
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ratio between the fit function, the estimated background, and the possible signature. In the case of
upper limits, the statistical model f (data|µ, 𝜶), where µ is the parameter representing a signal yield
and 𝜶 are the nuisance parameters. The profile likelihood from the fit function is used to generate
different statistics to test alternative signal+background and background hypotheses. To reduce
sensitivity, the confidence level (CL) procedure adds an additional test statistic 𝒒𝝁 used for upper
limits [62]. The p-values for the µ(s+b) and µ=0 (background only) hypotheses are analyzed by a
large ensemble of pseudo-experiments.

The mean signal Gaussian shapes implemented for limit setting are defined as a hypothetical
mass and have values in GeV at:

• 300, 320, 340, 360, 380,

• 500, 530, 560, 590,

• 400, 420, 440, 460, 480,

• 620, 650, 680,

• 710, 750, 790,

• 830, 870,

• 910, 960,

• 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900,

• 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900,

• 3000, 3200, 3400, 3600, 3800,

• 4000, 4200, 4400, 4600, 4800,

• 5000, 5300, 5600, 5900,

• 6200, 6500, 6800,
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• 7100, 7500, 7900

The CL level was set to 95% for the observe upper limits on the 𝝈 × 𝑩𝑹 × 𝑨𝒄𝒄 × 𝑬𝒇𝒇 for
Gaussian shaped signal with various widths are seen in Figure 72.
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Figure 72: The 95% CL observed upper limits on cross-section times acceptance (A), efficiency (𝝐)
and branching ratio (B) for Gaussian signal shapes with various widths. Limits are calculated on
events within the 10 pb AR. The ±1𝝈 and ±2𝝈 bands are shown for 𝝈X∕mX=0
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CHAPTER VII

PRELIMINARY NON-AGNOSTIC BSM MODEL ANOMALY SEARCH

After the success of the agnostic anomaly detection search discussed in Chapter VI, it was
decided to try to adapt this technique to look for a specific BSM signal. The frameworks for the
anomaly detection were already set in place, all they needed was to be adjusted for a different
analysis. This short chapter discusses very preliminary plots for another anomaly detection study.
Unfortunately, this analysis started on the last part of my degree and I didn’t have the time to properly
obtain results. Though, the frameworks have been adapted and preliminary anomaly detection
studies were conducted. This analysis is expected to be continued by a graduate colleague after my
graduation.

7.1 SH → 𝒃𝒃̄𝒃𝒃̄ Anomaly Detection

This is a search for a massive scalar boson that decays to a light scalar and a Higgs boson in the four
b-quark boosted topology. This model expects a massive scalar boson X decay into a lighter scalar
boson Y and a SM Higgs boson H through the process X→SH→ 𝒃𝒃̄𝒃𝒃̄. This search uses proton-
proton collision data taken by the ATLAS detector during Run 2 at a CME of 13 TeV corresponding
to a luminosity of 138 fb-1. The search is dedicated to a range of mass hypotheses. For the massive
X scalar, a range of 0.3-6 TeV is set, and for the lighter Y scalar, the range of 70-5000 GeV. Both the
lighter scalar and the SM Higgs boson are Lorentz-boosted and therefore their b quark-antiquark
pair are collimated and are reconstructed using a single large-R jet structure. The invariant mass
of one pair of the b quark-antiquark pairs is required to be compatible with the Higgs boson of
125 GeV. The approach to find possible resonances and to set limits on these masses will be very
similar to the previous anomaly detection technique that was applied in Chapter VI for agnostic
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BSM signals.

7.1.1 Event Selection

Since the final topology requires 2 b quark-antiquark pairs, the ideal boosted large-R events con-
tain two double b-tagged large-R jets. The choice of minimum PT must be sufficient to contain
the possibility of having a heaviest massive scalar boson mass hypotheses of 4 TeV. Due to the
uniqueness of the required topology, it is crucial to ensure there is enough training statistics for
a proper ML model while also not biasing it on signal events. The minimum chosen PT for the
leading large-R jet is taken to be 450 Gev while the second leading large-R jet is required to have
a minimum of 250 GeV (PT(j1(j2))>450(250) GeV), an |η| < 2.0, and a jet mass of m𝒋 >50 GeV.
These large-R jets undergo a b-tagging criteria using the FTAG Xbb2020v3 tagger at the 70% WP.
This tagger is much like the DL1d tagger than can identify between b-, c-, and light-quarks up
to a certain efficiency, but instead of a single quark, the Xbb tagger can identify large-R jets that
may contain two b-jets up to a certain efficiency. These events that contain a single large-R jet that
is double b-tagged as a 1bb-tagged and events with two large-R jets that are both double-tagged
as 2bb-tagged (events may contain other non-b-tagged jets). Figure X shows the cutflow and the
chosen NN training sample statistics. Using events that just contain a single 1bb-tagged large-R jet
would lead to insufficient statistics to train a proper AE model, therefore the training sample was
chosen using the PT(j1(j2))>450(250) GeV cut.

7.2 Event Representation

Following the example in the anomaly detection analysis, a modified RMM representation was
chosen as the input to the deep-learning autoencoder (AE) architecture. Since the events only
contain x amount of large-R jets and y amount of double b-tagged large-R jets, the amount of input
variables allowed within this representation decreases from the original layout. It was chosen to
allow up to 5 large-R jets and up to 4 double b-tagged large-R jets. This layout contains a total
of 100 input variables for the AE (including one row and column of zeroes separating the large-R
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(a) (b)
Figure 73: (a) Shows the cutflow for Run 2 events. The last cut is on (j1(j2))>450(250) GeV. This
cut equates to about 240M events. (b) Shows this 240M events that make the base cut and then
shows how many are 1bb-tagged and 2bb-tagged. This equates to 1M events for 1bb-tagged and
6.2K for 2bb-tagged.

jets and the double b-tagged large-R jets). Figure X shows a diagram of this representation. The
information layout is the same as the previous version discussed in Section 6.4. Figure X shows
two examples of this RMM representation. The left figure shows a single event containing three
large-R jets and no double b-tagged large-R jets. The right plot shows all the events stacked into a
single matrix. This plot reveals there are events with 5 large-R jets.

Figure 74: The Rapidity Mass Matrix representation for the SH → 4b analysis. This layout allows
up to 5 large-R jets and 4 double b-tagged large-R jets. This topology equates to 100 variables used
for training the Autoencoder (included a row and column of zeroes).

7.2.1 Autoencoder Training

The preliminary AE architecture can be seen in Figure 20. Just as previously discussed, this ar-
chitecture contains an encoder, latent layer, and a decoder. This architecture compresses data from
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(a) (b)
Figure 75: (a) Shows a single event that contains three large-R jets using this new RMM represen-
tation. (b) Shows all the events stacked into a single RMM. This plot shows there are events that
contain 5 large-R jets. The row and column for the second double b-tagged large-R jet show to be
almost empty, this is due to the fact that there are only 6.2K with respect to a total of 240M events
shown in the first few rows and columns.

the input into the latent, then decompresses it using the decoder. The loss value calculated by the
loss function is recorded and used for the anomaly score as the form of log(loss). This model was
training using 1% of Run 2 large-R jet data, equating to 2.4M events with a 7:3 ratio for training
and validation respectively. There requires many more studies in order to optimize this architecture
but this was used for preliminary loss distribution studies.

7.3 Preliminary Loss Distribution Studies

The data sample contains a total of 240M events consisting of large-R jets with that made the cut
of PT(j1(j2))>450(250) GeV. This dataset consists of the entire Run 2 data-taking campaign that
was taken over the years of 2015-2018. This dataset was then split into their respective years and
plotted in order to see if there are any year dependence due to pile-up conditions. This can be seen
in Figure 77 (the ratio plot needs to be adjusted).

The distribution in Figure 78 shows cascading of four peaks. This is due to the amount of objects
allowed in the input representation. Figure X points out the origination of these peaks. The far most
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Figure 76: Autoencoder architecture diagram for preliminary studies for the SH→4b analysis. The
first part of this architecture consists of an encoder that compresses data into the latent layer, the
decoder then decompresses the data and attempts to reconstruct the original input. The number of
neural nodes are shown on the bottom.

left peak is the least anomalous events which contain two large-R jets that are not double b-tagged.
The second most left peak are events that contain three large-R jets. The third peak is then events
that contain at least one large-R jet and one 1bb-tagged large-R jet. The final peak on the right is
the events that contain 2bb-tagged large-R jets. There are other jets with odd combinations that
do exist as can see in the validation RMM plot on the right in Figure 75 which are contained in or
between these peaks.
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Figure 77: The log(loss) distribution for all of Run 2 and its data-taking years. No yearly depen-
dence is observed. The ratio plot needs to be adjusted

There are six mass hypotheses for the large scalar boson and the light scalar boson that was
chosen to help with benchmarking the AE model. These six mass hypotheses are:

1. Large Scalar Mass X: 1 TeV, Light Scalar Mass S: 500 GeV

2. Large Scalar Mass X: 3 TeV, Light Scalar Mass S: 750 GeV

3. Large Scalar Mass X: 300 GeV, Light Scalar Mass S: 70 GeV

4. Large Scalar Mass X: 6 TeV, Light Scalar Mass S: 1 TeV

5. Large Scalar Mass X: 6 TeV, Light Scalar Mass S: 5 TeV

6. Large Scalar Mass X: 750 GeV, Light Scalar Mass S: 250 GeV

The loss distributions of these six models along with data are seen in Figure 79. These models
are not scaled to their expected event count from Run 2 luminosity, but they do demonstrate the
separation power of the AE.
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Figure 78: Diagram of data log(loss) distribution showing the origination of its four peaks.

7.3.1 Preliminary Anomaly Region Definition

The previous anomaly detection analysis used a calculated BSM event count defined from the
benchmark BSM models used within the studies. That is one approach to define the anomaly
region. The two definitions that are currently used (subject to change) are based on the double
b-tagged event counts. The first AR is of those that contain a single 1bb-tagged large-R jet. A
second region is based on the event count of those that contain 2bb-tagged large-R jets. The ARs
that contain the correlated event counts can be seen in Figure X as a red line and pink dashed line.
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Figure 79: Log(loss) for Run 2 data and six mass hypothesis for the large scalar boson X and the
lighter scalar boson S. The BSM events are not scaled to their expected event count with respect to
the luminosity. The y-axis is not log scaled.

7.4 Conclusion

These studies are still in the preliminary stage and should not be taken as any final result. This work
is showing promise and should end in an interesting result, especially when it gets to set limits on
the mass hypotheses.

There needs to be many more studies on the finding the optimized AE architecture. Also, is
the current chosen RMM representation the best choice? Is it preferred to choose a topology that
won’t discriminate between the number of objects within the event? The BSM models originally
required to have 2bb-tagged large-R jets, so maybe this discrimination may work out best. Should
the AR cuts be based on the event counts of 1bb and 2bb-tagged large-R jets or should it be based
on the event counts of the BSM models themselves. MC background events were simulated but not
yet studied for this analysis which are crucial to start looking into the fit procedure. These are but
a few tasks that need to be studied.
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Figure 80: Log(loss) for Run 2 data and the six mass hypotheses. Two AR cuts are used to using
the event count for 1bb-tagged large-R jets and 2bb-tagged large-R jets. BSM models integrals are
scaled to 1. The 1bb-tagged AR is seen as a red line and the 2bb AR is seen as a pink dashed line.
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CHAPTER VIII

CONCLUSION

The SM of particle physics has proven to be one of the most successful theories that has ever
been developed, standing firm through decades of research while being solidified more through the
discovery of the Higgs boson. Even though its success is unprecedented, there are gaps that need to
be filled in order to describe phenomena such as gravity and dark matter. As the field of High Energy
Physics grows to help explain and fill these gaps, new detectors, techniques and tools are needed to
be developed. This dissertation presents two studies that help this ever needed growth, along with a
proposed non-generic anomaly detection search that is in its infant stage. One presents preliminary
studies of particle identification machine learning tools using simulated data of the ATLAS detector
with its upgrade that is being implemented in 2029 for the evolution of the HL-LHC. The second
study shows a full analysis that was the first of its kind using unsupervised machine learning for
anomaly detection. A non-generic anomaly detection analysis with very preliminary plots is also
discussed.

The DL1d tagger developed for the ATLAS Upgrade for the HL-LHC shows promising progress.
This is known to be preliminary due to the fact that the training statistics, which is crucial for its
effectiveness, has a magnitude less than the current ATLAS standard tagger for Run 2. Regardless
of this fact, the trained DL1d tagger for Upgrade shows to be as effective at higher working points
while also allowing for the tagging of particles at |η| ≥ 2.4 due to the new implemented ATLAS
geometry. The DL1d tagger is in the works of being replaced by a tagger based on a graph neural
network architecture and is planned to the standard used tagger once the Upgrade is complete in
2029. Therefore, as of right now, there is no plan to retrain the DL1d tagger for Upgrade and the
one that is trained in this dissertation will be used as the industry baseline.
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The final analysis shows a novel anomaly detection technique using unsupervised machine
learning for anomaly detection training on 1% of Run 2 data. The deep-learning architecture of
an AE is used with its reconstruction loss defining the anomaly score. From here, anomaly regions
are defined by using the anomaly score as cut on SM events. Bump hunting strategies are dis-
cussed and implemented on nine different di-object invariant mass distributions in order to find any
deviations within these anomaly regions that may hint at signatures of new physics. The largest de-
viation found is within the mjµdistribution in the mass range of 4.6-4.8 TeV. This deviation resulted
in a local significance of 3.9𝝈 and a global significance of 2.2𝝈. Frequentist limits were taken for
Gaussian shape signals with means at a ranges defined by benchmark BSM models.

The beginning of a non-generic anomaly detection search using the strategy discussed in this
analysis for a specific BSM model of a heavy scalar boson is briefly mentioned. The plots shown
are very preliminary. A fellow graduate student is expected to continue this analysis in hopes it
may discover hints of new physics.
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APPENDICES

APPENDIX A: GN1 for Upgrade

The GN1 high-level tagger is the newest and the first of the graph neural network architectures
lineage. This tagger was designed and studied for Run 2, Run 3, and Run 4 (Upgrade) of the ATLAS
detector. This tagger’s architecture was briefly described in Section 4.6.4. The input variables for
this tagger can be seen in Table 24. An even newer version of GN1 tagger has been developed
and currently being studied for its correlated scale factors that utilizes auxiliary tasks. This newer
version is called the GN2 tagger.

The GN1 tagger was studied using the same Upgrade samples listed in Table 13 and had its per-
formance comapred to the DL1d tagger that was trained for this thesis that can be found in Chapter
V. The following plots show the performance of the GN1 tagger to the DL1d and MV2 high-level
taggers. The top plots show c-jet rejection and ligh-jet rejection using the 𝒕𝒕 sample from Table 13.
The middle plots show all three taggers performances using the Z′ samples. The results show the
clear superiority using the graph neural networks, increasing b-tagging performance within c-jet
background and light-jet background of up to 2.5x. The last two plots show the performances on
jetes with the new eta range that is available from the ITk detector. Again, the GN1 tagger massively
outperforms the DL1d and MV2 taggers.
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(a)

(b)

(c)
Figure 81: GN1, DL1d and the MV2 high-level tagger performances on the 𝒕𝒕 and Z′ samples list
in Table 13 [15].
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GN1 Input Variables
Jet Input Description
PT Jet transverse momentum
η Signed jet pseudorapidity
Track Input Description
q/p Track charge divided by momentum (measure of curvature)
dη Pseudorapidity of the track, relative to the jet η
d𝝓 Azimuthal angle of the track, relative to the jet 𝝓
d0 Closest distance from the track to the PV in the longitudinal plane
z0sin𝜽 Closest distance from the track to the PV in the transverse plane
𝝈(𝒒∕p) Uncertainty on q/p
𝝈(𝜽) Uncertainty on track polar angle 𝜽
𝝈(𝝓) Uncertainty on track azimuthal angle 𝝓
s(d0) Lifetime signed transverse IP significance
s(z0sin𝜽) Lifetime signed longitudinal IP significance
nPixHits Number of pixel hits
nStripHits Number of strip hits
nInnermostPixHits Number of hits from the innermost pixel layer
nNextToInndermostPixHits Number of hits from the next-to-innermost pixel layer
nInnermostPixShared Number of shared hits from the innermost pixel layer
nInnermostPixSplit Number of split hits from the innermost pixel layer
nPixShared Number of shared pixel hits
nPixSplit Number of split pixel hits
nStripShared Number of shared strip hits
nPixHoles Number of pixel holes
nStripHoles Number of strip holes

Table 24: Input features to the GN1 model. Basic jet kinematics, along with information about the
reconstructed track parameters and constituent hits are used [15].
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APPENDIX B: Run2 Datasets and HLT Lepton Triggers for Anomaly Detection

All the data used in this analysis is originated from the ATLAS detector during the Run 2 period
between the years 2015 to 2018. The dat was recorded during stable beam conditions while all
relevant subdetectors were fully operational. The event candidates selected was done by either
single-electron triggers or single-muon triggers which range in transverse momenta, transverse en-
ergy, and quality and isolation thresholds. The preselected data derive from the Good Run Lists
(GRL) for 2015-2018 for release 21:

2015: data15_13TeV.periodAllYear_DetStatus-v89-pro21-02_Unknown_PHYS_StandardGRL_All_Good

_25ns.xml

2016: data16_13TeV.periodAllYear_DetStatus-v89-pro21-01_DQDefects-00-02-04_PHYS_

StandardGRL_All_Good_25ns.xml

2017: data17_13TeV.periodAllYear_DetStatus-v99-pro22-01_Unknown_PHYS_StandardGRL_All

_Good_25ns_Triggerno17e33prim.xml

2018: data18_13TeV.periodAllYear_DetStatus-v102-pro22-04_Unknown_PHYS_StandardGRL_All

_Good_25ns_Triggerno17e33prim.xml

The files process from these GRL lists come in a format called DAOD_STDM4 and required at
least one lepton HLT trigger for either electron or muon HLTs. All saved objects within these files
required at least a transverse momenta above 20 GeV for further preselection. The datasets in this
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STDM4 derivation format used for this analysis are:

data15_13TeV.period[D-J].physics_Main.PhysCont.DAOD_STDM4.grp23_v01_p4238

data16_13TeV.period[A-G,I,K,L].physics_Main.PhysCont.DAOD_STDM4.grp23_v01_p4238

data17_13TeV.period[B-F,H,I,K].physics_Main.PhysCont.DAOD_STDM4.grp23_v01_p4238

data18_13TeV.period[B-D,F,I,K-M,O,Q].physics_Main.PhysCont.DAOD_STDM4.grp23_v01_p4238

Mini-trees were created from these dataset containers using the framework xAODAnaHelpers (Anal-
ysisBase,21.2.177) and the Wjet framework that was developed in release 21.2.177, selecting events
with leptons that pass the HLT triggers. The triggers in which dominate consistent efficiency over
the data-taking period are the single lepton triggers with Pl

T > 60 GeV. The naming conven-
tion for these triggers follows HLT_muNN[_isoInfo], where NN specifies the PT threshold and the
isInfo is the isolation requirement. Similarly for electron, the trigger naming convention is such
HLT_eNN_IDinfo[_lhInfo][_isoInfo] where the [IDinfo] is the information on the identifica-
tion requirement, lhInfo is an option requirement that enters the identification likelihood calcula-
tion and the isoInfo is the isolation requirement. The HLT triggers used in this analysis for both
electron and muons are as following:

Muon Triggers

HLT_mu24_iloose || HLT_mu24ivarloose || HLT_24ivarmedium ||

HLT_mu26_ivarmedium || HLT_mu24imedium || HLT_mu26_imedium HLT_mu40 || HLT_mu50

Electron Triggers

HLT_e26_lhtight_nod0_ivarloose || HLT_e24_lhmedium_nod0_iverloose ||

HLT_e60_medium || HLT_e60_lhmedium_nod60
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APPENDIX C: Monte Carlo Samples for the Background Hypothesis

The dominant source of background samples used for this analysis are 𝒕𝒕 and signle-top events along
with W+jets simulated processes. Multi-jet processes are estimated using a loose lepton control
region from data. The 𝒕𝒕 events are from the sample:
mc16_13TeV.410470.PhPy8EG_A14_ttbar_hdamp258p75_nonallhad.deriv.DAOD_STDM4.%p4237

After requiring at least one lepton above 60 GeV, 25M events were left.
The single top samples used were:

mc16_13TeV.410644.PowhegPythia8EvtGen_A14_singletop_%.DAOD_STDM4.%p4237

mc16_13TeV.410646.PowhegPythia8EvtGen_A14_Wt_DR_inclusive_top.%.DAOD_STDM4.%p4237

mc16_13TeV.410647.PowhegPythia8EvtGen_A14_Wt_DR_inclusive_antitop.%.DAOD_STDM4.%p4237

mc16_13TeV.410658.PhPy8EG_A14_tchan_BW50_lept_top.deriv.DAOD_STDM4.%p4237

mc16_13TeV.410659.PhPy8EG_A14_tchan_BW50_lept_antitop.deriv.DAOD_STDM4.%p4237

These include three different processes, single-top, l+t, and W+t. All these are considered “single-
top” processes within this analysis. The total amount of events from these datasets after requiring
at least one lepton above 60 GeV is about 6M.
The W+jets samples are:

mc16_13TeV.361100.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Wplusenu.deriv.DAOD_STDM4.%p4237

mc16_13TeV.361103.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Wminusenu.deriv.DAOD_STDM4.%p4237

mc16_13TeV.361101.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Wplusmunu.deriv.DAOD_STDM4.%p4237

mc16_13TeV.361104.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Wminusmunu.deriv.DAOD_STDM4.%p4237
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After requiring at least one lepton above 60 GeV, these samples contained about 4M events. There
are 140M events from the data taken in Run2 within the defined signal region after the final selec-
tion described in section 6.2.4. The total amount of Monte Carlo simulated events after the final
selection is about 14M, so about 10% of data. Once the loose lepton control region is added from
the data, this gives sufficient amount of events to conclude a smooth falling background shape.
These samples were processed using the full ATLAS detector simulation based on Geant4 and the
pile-up conditions were matched per data-taking year.
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APPENDIX D: RMM Event Examples

Figure 82 - 87 shows single events converted to RMM. The 9 invariant masses of interest are re-
moved.
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Figure 82: A typical data event (from 2016) shown as RMM. The event has one jet, one electron
and some (small) MET.
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Figure 83: A typical 𝒕𝒕 event from a Monte Carlo simulation. The event has one jet, one 𝒃-jet, one
muon and some MET.
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Figure 84: A typical the sequential standard model 𝑾 ′ → 𝑾𝒁′ → 𝒍𝝂𝒒𝒒 event with 𝑾 ′ at 0.75
TeV and 𝒁′ at 0.5 TeV decaying to 2 jets, with the leptonic decay of 𝑾 . The event has multiple
jets, leptons and some MET.
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Figure 85: A typical event for the charged Higgs production in association with a top quark, 𝒕𝒃𝑯+.
The mass of𝑯+ is set to 2 TeV. decaying to 2 jets, with the leptonic decay of𝑾 . The event features
many jets, 𝒃−jets, leptons and some MET.
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Figure 86: A typical event for a composite lepton 𝑬 from a decay of massive 𝒁′ with various 𝒁′

mass hypotheses. The mass of 𝒁′ is set to 3 TeV. The event features jets, 𝒃−jets, 2 muons and
some MET.
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Figure 87: A typical event for a Kaluza–Klein (KK) gauge boson, 𝑾𝒌𝒌, with a SM 𝑾 boson and
a radion. The mass of 𝑾𝒌𝒌 is set to 4 TeV. The event features many jets, 𝒃−jets, leptons and some
MET.
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APPENDIX E: Autoencoder Topology Studies

Ten different topologies were studied for this analysis along with different types of AEs such as
variational AE and the convolutional AE. The optimization metrics that were focused on was the
separation power between SM and BSM events, along with loss value range. Having a larger range
of loss values indicates the every small nuance within the data representation plays a role in data
separation, which is key for anomaly detection. The separation corresponed with the number of
neurons within the dense layers of the encoder and decoder. The nominal architecture may have
been increased but was capped due to available computational power.

Hand-made anomalies were created using the W′ / Z′ BSM events with the mass of 4 TeV.
Anomaly 1 is when all jets beyond the sub-leading jet were set to he photons and anomaly 2 is
when all the jets beyond the sub-leading jet are set to b-jets. High multiplicity of photons and b-jets
are considered rare within the SM and are expected to be scored as anomalous. Figure 88 shows
each of these three cases.

8−10

7−10

6−10

5−
10

4−10

3−10

2−10

1−10

M
E

T 1j 2j 3j 4j 5j 6j 7j 8j 9j 1
0

j

1
b

2
b

3
b

4
b

5
b

6
b

7
b

8
b

9
b 1

0
b

1µ 2µ 3µ 4µ 5µ 6µ 7µ 8µ 9µ 1
0

µ
1

e 2
e

3
e

4
e

5
e

6
e

7
e

8
e

9
e 1

0
e

1γ 2γ 3γ 4γ 5γ 6γ 7γ 8γ 9γ 1
0

γ

M
E

T 1j 2j 3j 4j 5j 6j 7j 8j 9j 1
0

j

1
b

2
b

3
b

4
b

5
b

6
b

7
b

8
b

9
b 1

0
b

1µ 2µ 3µ 4µ 5µ 6µ 7µ 8µ 9µ 1
0

µ
1

e 2
e

3
e

4
e

5
e

6
e

7
e

8
e

9
e 1

0
e

1γ 2γ 3γ 4γ 5γ 6γ 7γ 8γ 9γ 1
0

γ

10
γ 9
γ8
γ7
γ6
γ5
γ4
γ3
γ2
γ 1
γ10

e 9
e8
e7
e6
e5
e4
e3
e2
e 1
e10

µ 9
µ8
µ7
µ6
µ5
µ4
µ3
µ2
µ 1
µ10

b 9
b8
b7
b6
b5
b4
b3
b2
b 1
b10
j 9
j8
j7
j6
j5
j4
j3
j2
j1
j

MET

(a) SSM model
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(b) Anomaly 1
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(c) Anomaly 2

Figure 88: An example RMM matrix of a random event from SSM (a), from which jets beyond the
sub-leading jet are set to be photons (b) or 𝒃-jets (c).

The nominal AE architecture as seen in Table 20 is “800-400-200-400-800” is used to predict
the loss values for these samples in Figure 89. The loss value take for scoring anomalies is the Log-
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arithm of the loss value in order to obtain human friendly values while also having a larger distri-
bution. Figure X shows the nominal architecture along with three others (“400-200-100-200-400”,
“200-100-50-100-200”, and “100-50-25-50-100”) for comparison. The bottom two loss plots also
show the two types of AEs (VAE and CVAE). As seen from these figures, the nominal architecture
shows the best separation between SSM events (“Before anomaly”) and the hand-made anomalies
as discussed above.
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(b) 200-* topology
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(c) 100-* topology
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(d) 20-* topology
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(e) Variational AE topology
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(f) Convolutional VAE topology

Figure 89: The loss distributions for the original SSM with 4 TeV Z’ and for anomaly 1 and 2.
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APPENDIX F: Alternative AE Models for Systematics

As discussed in Section 6.5, three models were training using the optimized architecture after 50
trainings were conducted. The nominal refers to the mean loss model, the “up” and “down” models
correspond to the slightly higher anad lower loss values. The performances of these three models
are evaluated on BSM signals in Figure 90. The outlier regions that are used will have low signal
efficiency (low x on these plots). The performances are consistent.
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Figure 90: Background efficiency vs signal efficiency of various BSM models under different mass
hypotheses, using the nominal and alternative AE models. Note there are some artificial lines due
to plotting issues.
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APPENDIX G: S/B Improvement Example

There are many factors that determine the how well the S/B increases after an anomaly score cut,
such as topology of the final states, the mass of heavy particles, the type of di-object invariant mass,
the chosen AR working point, etc. It is expected that the more “exotic” the BSM model is, the more
it deviates from the SM background. Therefore, it’s expected that the heavier the BSM resonance
is, the higher the anomaly score will be given, resulting in a large S/B calculation.

The following is an example using the radion BSM model due to its rather complex decay
topology in two-body (even three-body) mass. The radion particle decays from a Kaluza-Klein
boson Wkk into a radion denoted by 𝝋 as seen in:

𝑾 𝒌𝒌→ 𝑾 + 𝝋→ 𝒍𝝂 + 𝒈𝒈

where the events should have MET as there is a neutrino due to the W decay. The invariant mass
that’s focused on within this example is the jet+electron (mje) since the final state is a semi-leptonic
decay. The mass resonance used for the Wkk boson is 2 TeV decaying to a 𝝋 = 500 GeV. Figure
X shows the signal event yields before and after the 10 pb AR cut while also showing the MC
background yields that include the loose electron control region (LE-CR) which is a data-driven
multi-jet estimation (discussed in Section X). Table 25 shows the numerical values for these yields
after the 10 pb AR. The S∕B is increased by 5̃00%. The discovery sensitivity [34] is calculated
using the Eq. .1.

𝒁𝑨 =
√

𝟐
(

(𝒔+ 𝒃) 𝐥𝐧
(

𝟏 + 𝒔
𝒃

)

− 𝒔
)

(.1)

is improved by ZA= ∼80%. After the 1 pb cut, the S∕B is incrased by ∼1100% and ZA= ∼12%.
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(c) After AR cut
Figure 91: (a) 500 GeV radion model signal yields before and after the 10 pb AR cut is applied.
(b)(c) Comparison background events for the jet+electron invarint mass before and after the 10 pb
AR cut.

Before cut 10 pb 10 pb / Before 1 pb 1 pb / Before 0.1 pb 0.1 pb / Before
Radion 2 TeV 3356 1799 0.53 338 0.101 65 0.0193
Bkg 8999316 790230 0.087 72206 0.0080 7280 0.00081
𝑺∕𝑩 0.00037 0.0022 6.10 0.0047 12.5 0.0089 24.1
𝒁𝑨 1.11 2.02 1.80 1.25 1.12 0.76 0.68

Table 25: Sensitivity gain of the radion model with Wkk set to 2 TeV before and after applying the
10 pb and 1 pb AR cut. Event yields counted in the 400-800 GeV range for the invariant mass mje.
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APPENDIX H: Statistical Fit Function Studies for 1pb AR

Similar to Section 6.6.3, this appendix shows the studies conducted for the 1 pb AR. Since the 5p
function showed to be the reasonable out of the three tested functions int the 10 pb AR region, only
the 4p and 5p fit functions are studied for the 1 pb and 0.1 pb AR. These plots show the functions in
the MC+LE-CR. This region has noticable less statistics than the 10 pb region, therefore it’s prone
to larger statistical fluctuations within the fit functions, especially when requiring a b-jet or photon.
Due to the minimal amount of statistics, a reasonable fit function that could be used for all nine
invariant masses was unable to be found. A summary for the 1 pb statistical tests can be found in
Table X. The following figures show the fits of the p4 and p5 functions along with their pulls for
all nine invariant masses. The fit studies for the 0.1 pb region can be found in Appendix X.

• Figure 92 1pb mjj

• Figure 93 1pb mjb

• Figure 94 1pb mbb

• Figure 95 1pb mje

• Figure 96 1pb mjµ

• Figure 97 1pb mj𝜸

• Figure 98 1pb mbe

• Figure 96 1pb mbµ

• Figure 100 1pb mb𝜸
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Mass region p Fit 𝝌𝟐 Pull 𝝁 𝚫𝝁 𝝈 𝚫𝝈 Gaus 𝝌𝟐 KS Shapiro
mjj 1 pb 4 1.022132 0.105702 0.167736 1.053082 0.153271 0.839537 0.308644 0.978067
mjb 1 pb 4 0.922279 -0.074200 0.134272 0.997789 0.127777 1.371910 0.686471 0.985667
mbb 1 pb 4 0.709970 0.156393 0.119468 0.883445 0.107321 0.206520 0.162686 0.981281
mje 1 pb 4 1.111753 0.322995 0.114167 0.931633 0.147120 0.806860 0.304359 0.951957
mjµ 1 pb 4 1.555536 0.876259 0.138686 0.854421 0.265782 1.496423 0.000015 0.910287
mj𝜸 1 pb 4 1.068962 0.312716 0.180434 1.165488 0.362410 1.419774 0.493023 0.973990
mbe 1 pb 4 2.007666 0.964171 0.168553 0.979930 0.189254 1.267569 0.000000 0.898834
mbµ 1 pb 4 1.281002 0.665929 0.129382 0.751723 0.227398 1.066046 0.004606 0.966401
mb𝜸 1 pb 4 1.282447 0.404946 0.129898 0.878308 0.168753 0.566677 0.050555 0.957157
mjj 1 pb 5 0.996736 0.206397 0.123558 1.000077 0.117074 0.624787 0.407666 0.978652
mjb 1 pb 5 0.931768 0.026414 0.129550 1.018507 0.111694 0.889204 0.852813 0.988362
mbb 1 pb 5 0.740004 0.254771 0.107926 0.790410 0.099640 0.741691 0.128867 0.979232
mje 1 pb 5 1.079768 0.378016 0.095334 0.790995 0.095697 0.954058 0.223397 0.939962
mjµ 1 pb 5 1.287571 0.365692 0.193126 1.091768 0.237806 1.412079 0.001635 0.928943
mj𝜸 1 pb 5 1.081601 0.520053 0.206680 1.157502 0.409198 1.705933 0.297592 0.972306
mbe 1 pb 5 1.777508 0.801023 0.280586 1.518162 0.305243 1.128937 0.000001 0.925694
mbµ 1 pb 5 1.305168 0.650556 0.144944 0.740383 0.263902 1.202923 0.001945 0.965139
mb𝜸 1 pb 5 1.252325 0.463297 0.137670 0.828874 0.276603 1.000151 0.070159 0.968573

Table 26: Statistical quantities for SM MC+LE-CR fit for the 1 pb AR.
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Figure 92: The mjj invariant masses with the p4 and p5 fit functions in the BSM region after the 1
pb AR cut is applied. The MC processes are scaled to their cross sections, while the LE-CR is used
to fill the missing event rate. Pulls shown on the right.
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Figure 93: The mjb invariant masses with the p4 and p5 fit functions in the BSM region after the
1 pb AR cut is applied. The MC processes are scaled to their cross sections, while the LE-CR is
used to fill the missing event rate. Pulls shown on the right.
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Figure 94: The mbb invariant masses with the p4 and p5 fit functions in the BSM region after the
1 pb AR cut is applied. The MC processes are scaled to their cross sections, while the LE-CR is
used to fill the missing event rate. Pulls shown on the right.
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Figure 95: The mje invariant masses with the p4 and p5 fit functions in the BSM region after the
1 pb AR cut is applied. The MC processes are scaled to their cross sections, while the LE-CR is
used to fill the missing event rate. Pulls shown on the right.
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Figure 96: The mjµ invariant masses with the p4 and p5 fit functions in the BSM region after the
1 pb AR cut is applied. The MC processes are scaled to their cross sections, while the LE-CR is
used to fill the missing event rate. Pulls shown on the right.
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Figure 97: The mj𝜸 invariant masses with the p4 and p5 fit functions in the BSM region after the
1 pb AR cut is applied. The MC processes are scaled to their cross sections, while the LE-CR is
used to fill the missing event rate. Pulls shown on the right.
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(b) pulls of mbe in p4
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(d) pulls of mbe in p5
Figure 98: The mbe invariant masses with the p4 and p5 fit functions in the BSM region after the
1 pb AR cut is applied. The MC processes are scaled to their cross sections, while the LE-CR is
used to fill the missing event rate. Pulls shown on the right.
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(d) pulls of mbµ in p5
Figure 99: The mbµ invariant masses with the p4 and p5 fit functions in the BSM region after the
1 pb AR cut is applied. The MC processes are scaled to their cross sections, while the LE-CR is
used to fill the missing event rate. Pulls shown on the right.
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(d) pulls of mb𝜸 in p5
Figure 100: The mb𝜸 invariant masses with the p4 and p5 fit functions in the BSM region after the
1 pb AR cut is applied. The MC processes are scaled to their cross sections, while the LE-CR is
used to fill the missing event rate. Pulls shown on the right.
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APPENDIX I: Statistical Fit Function Studies for 0.1pb AR

Just as in Appendix APPENDIX H:, only the p4 and p5 fit functions are studied. The results can
be seen in Table X and the figures show the MC+LE-CR along with their pulls. This region only
has 14K events, therefore finding a reasonable fit function was inconclusive, just as in the 1 pb AR.

• Figure 101 0.1pb mjj

• Figure 102 0.1pb mjb

• Figure 103 0.1pb mbb

• Figure 104 0.1pb mje

• Figure 105 0.1pb mjµ

• Figure 106 0.1pb mj𝜸

• Figure 107 0.1pb mbe

• Figure 105 0.1pb mbµ

• Figure 109 0.1pb mb𝜸
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Mass region p Fit 𝝌𝟐 Pull 𝝁 𝚫𝝁 𝝈 𝚫𝝈 Gaus 𝝌𝟐 KS Shapiro
mjj 0.1 pb 4 1.066981 0.439052 0.154240 1.066725 0.168530 0.520639 0.114105 0.982610
mjb 0.1 pb 4 1.030326 0.478555 0.107806 0.706963 0.108466 1.092364 0.054007 0.913377
mbb 0.1 pb 4 1.104344 0.476400 0.405565 1.478379 0.507329 0.607558 0.104235 0.967501
mje 0.1 pb 4 0.988952 0.527118 0.087665 0.647729 0.091518 0.773745 0.008889 0.934337
mjµ 0.1 pb 4 1.247852 0.688118 0.120311 0.710719 0.131556 0.958169 0.012524 0.894489
mj𝜸 0.1 pb 4 0.766672 0.325899 0.104514 0.712873 0.103878 0.994939 0.093205 0.958485
mbe 0.1 pb 4 0.689806 0.222383 0.179162 0.911493 0.183285 0.341040 0.355303 0.965579
mbµ 0.1 pb 4 0.994301 0.577633 1.529995 2.193773 1.597088 1.426726 0.091036 0.934948
mb𝜸 0.1 pb 4 0.532739 0.123343 0.153080 0.761905 0.157570 0.373211 0.509120 0.982694
mjj 0.1 pb 5 0.982026 0.323078 0.147239 1.053884 0.137738 0.611454 0.178563 0.984839
mjb 0.1 pb 5 1.032755 0.424803 0.110022 0.755037 0.111329 0.853758 0.046379 0.911716
mbb 0.1 pb 5 1.115241 0.510098 0.184014 1.048742 0.241893 0.562814 0.337324 0.970615
mje 0.1 pb 5 0.996203 0.232937 0.133625 0.900851 0.117146 1.034730 0.002092 0.934982
mjµ 0.1 pb 5 1.150431 0.443298 0.176520 0.758198 0.239118 0.846013 0.017779 0.889262
mj𝜸 0.1 pb 5 0.764039 0.158883 0.118088 0.817065 0.101391 0.592739 0.412045 0.969030
mbe 0.1 pb 5 0.708264 0.186595 0.214779 0.993727 0.222814 0.713869 0.355303 0.965863
mbµ 0.1 pb 5 0.985081 0.139081 0.285717 1.249059 0.346504 0.645550 0.723507 0.950681
mb𝜸 0.1 pb 5 0.619378 0.147059 0.163189 0.805034 0.202471 0.437407 0.329640 0.988531

Table 27: Statistical quantities for SM MC+LE-CR fit for the 1 pb AR.
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Figure 101: The mjj invariant masses with the p4 and p5 fit functions in the BSM region after the
0.1 pb AR cut is applied. The MC processes are scaled to their cross sections, while the LE-CR is
used to fill the missing event rate. Pulls shown on the right.
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(b) pulls of mjb in p4
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(d) pulls of mjb in p5
Figure 102: The mjb invariant masses with the p4 and p5 fit functions in the BSM region after the
0.1 pb AR cut is applied. The MC processes are scaled to their cross sections, while the LE-CR is
used to fill the missing event rate. Pulls shown on the right.
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(d) pulls of mbb in p5
Figure 103: The mbb invariant masses with the p4 and p5 fit functions in the BSM region after the
0.1 pb AR cut is applied. The MC processes are scaled to their cross sections, while the LE-CR is
used to fill the missing event rate. Pulls shown on the right.
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(b) pulls of mje in p4
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(d) pulls of mje in p5
Figure 104: The mje invariant masses with the p4 and p5 fit functions in the BSM region after the
0.1 pb AR cut is applied. The MC processes are scaled to their cross sections, while the LE-CR is
used to fill the missing event rate. Pulls shown on the right.
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(d) pulls of mjµ in p5
Figure 105: The mjµ invariant masses with the p4 and p5 fit functions in the BSM region after the
0.1 pb AR cut is applied. The MC processes are scaled to their cross sections, while the LE-CR is
used to fill the missing event rate. Pulls shown on the right.
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(b) pulls of mj𝜸 in p4
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(d) pulls of mj𝜸 in p5
Figure 106: The mj𝜸 invariant masses with the p4 and p5 fit functions in the BSM region after the
0.1 pb AR cut is applied. The MC processes are scaled to their cross sections, while the LE-CR is
used to fill the missing event rate. Pulls shown on the right.
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Figure 107: The mbe invariant masses with the p4 and p5 fit functions in the BSM region after the
0.1 pb AR cut is applied. The MC processes are scaled to their cross sections, while the LE-CR is
used to fill the missing event rate. Pulls shown on the right.
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(d) pulls of mbµ in p5
Figure 108: The mbµ invariant masses with the p4 and p5 fit functions in the BSM region after the
0.1 pb AR cut is applied. The MC processes are scaled to their cross sections, while the LE-CR is
used to fill the missing event rate. Pulls shown on the right.
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Figure 109: The mb𝜸 invariant masses with the p4 and p5 fit functions in the BSM region after the
0.1 pb AR cut is applied. The MC processes are scaled to their cross sections, while the LE-CR is
used to fill the missing event rate. Pulls shown on the right.
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APPENDIX J: Fit Studies on 10% of Data

The 5p fit function was shown to be the best choice from the three functions studied. However, there
were few cases that strained the function and required a further step to ensure that this 5p fir function
is indeed the proper choice. It was recommended to select randomly a 10% data sample and scale it
by 10 to reproduce a realisitc event rate while also smoothing the distribution. The Savitzky-Golay
filter [72] was used for smoothing. Figures 110-112 show the smoothed and extrapolated 10% of
real data. Good agreements with the 5p fit function is observed, confirming to biases in the masses
after the 10 pb AR.
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Figure 110: Extrapolated invariant masses in 10% data using the 5p fit functions in the 10 pb AR
cut. The data was smoothed using the Savitzy-Golay filter. Pulls shown to the right.
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Figure 111: Extrapolated invariant masses in 10% data using the 5p fit functions in the 10 pb AR
cut. The data was smoothed using the Savitzy-Golay filter. Pulls shown to the right.
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Figure 112: Extrapolated invariant masses in 10% data using the 5p fit functions in the 10 pb AR
cut. The data was smoothed using the Savitzy-Golay filter. Pulls shown to the right.
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