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Abstract At one loop, quantum kinks are described by a
sum of quantum harmonic oscillator Hamiltonians, and so
their spectra are known exactly. We find the first correction
beyond one loop to the quantum states corresponding to kinks
with an excited bound or unbound normal mode, and also
the corresponding two-loop correction to the energy cost of
exciting the normal mode. In the case of unbound normal
modes, this correction is equal to sum of the corresponding
nonrelativistic kinetic energy plus the usual one-loop cor-
rection to the mass of the corresponding plane wave in the
absence of a kink. We also sketch a diagrammatic method
for such calculations.

1 Introduction

The scattering of kinks is a major industry. It has a long
history, with quantum kink scattering already in Refs. [1,2].
However quantum kink scattering has proved to be cum-
bersome and so the most interesting phenomenology [3–7]
has only been revealed classically. Classically a key role in
the resonance phenomenon [8], spectral walls [5] and even
wobbling kink multiple scattering [9] appears to be played
by bound normal modes. However the exact role played by
these modes is unclear, as the resonances have been observed
in kinks with no bound normal modes [10–12]. These modes
themselves enjoy a rich phenomenology. They can be excited
by external perturbations [13] and they can store energy from
a collision [8].

Clearly it would be of interest to understand these phe-
nomena in the full quantum theory. At one loop the exact
spectrum of quantum kinks is known [14], as kinks are sim-
ply described by quantum harmonic oscillators for each nor-
mal mode together with a free quantum particle describing
the center of mass.
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Recently [15] a method was proposed which allows the
practical calculation of higher-loop states. This method, to
be reviewed in Sect. 2, constructs a kink sector Hamiltonian
H ′ and momentum P ′ via a unitarity transformation of the
defining Hamiltonian H and momentum P . Then states can
be pushed beyond one loop by first imposing perturbatively
that they be eigenstates of the momentum P ′, which fixes the
state up to a few coefficients, and then applying old-fashioned
perturbation theory in H ′ to fix these remaining coefficients.
The corresponding eigenstates of H and P are recovered
from this result via the inverse unitary transformation.

So far this method has only been applied to the kink ground
state. However, in light of the above motivation, in the present
paper we will apply it to kinks excited by a single continuum
or bound normal mode, in their center of mass frame. We will
find the first correction to the states beyond one loop and
also will find the corresponding two-loop mass correction.
With these states in hand, it will be possible in future work
to compute their form factors and matrix elements, which
in turn may be applied to compute fully quantum scattering
amplitudes. While the one-loop form factors have long been
known to be simply related to the classical kink solutions [2],
it will be clear that at next order many matrix elements that
vanish at one loop no longer vanish, presumably leading to
novel physical effects in quantum scattering.

In Sect. 3 we will construct the leading order correction
to the one-loop states corresponding to quantum kinks with
excited continuum or discrete normal modes. In Sect. 4 we
will find the corresponding two-loop mass shifts. Finally in
Sect. 5 we will sketch a diagrammatic method to perform
such calculations in general. The main notation is summa-
rized in Table 1. In 1 we check that our state satisfies the most
constraining component of the Schrodinger equation, which
summarizes the condition that it be a Hamiltonian eigenstate.
An example, the shape mode in the φ4 theory, is worked out
explicitly in the companion paper [16].
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Table 1 Summary of notation

Operator Description

φ(x), π(x) The real scalar field and its conjugate
momentum

A†
p, Ap Creation and annihilation operators in

plane wave basis

B†
k , Bk Creation and annihilation operators in

normal mode basis

φ0, π0 Zero mode of φ(x) and π(x) in normal
mode basis

::a, ::b Normal ordering with respect to A or B
operators respectively

H, P The defining Hamiltonian and
corresponding momentum

H ′, P ′ D f -transformed H and P

Hn The φn term in H ′

Symbol Description

f (x) The classical kink solution

D f Unitary operator that translates φ(x) by
the classical kink solution

gB(x) The kink linearized translation mode

gk(x) Continuum or discrete normal mode

γmn
i Coefficient of φm

0 B†n |0〉0 in order i
excited state |K〉

�mn
i Coefficient of φm

0 B†n |0〉0 in order i
Schrodinger Equation (H ′ − E)|K〉

Vi jk Derivative of the potential contracted with
various functions

I(x) Contraction factor from Wick’s theorem

p Momentum

k The analog of momentum for normal
modes

K Value of k for the normal mode considered

ωk , ωp The frequency corresponding to k or p

Qn n-loop correction to kink ground state
energy

En n-loop correction to excited kink energy

State Description

|K〉 (|K〉i ) Excited kink state as eigenvector of H ′ (at
order i)

|0〉 (|0〉i ) Kink ground state as eigenvector of H ′ (at
order i)

2 Review

We now review the formalism introduced in Refs. [17,18]
that describes quantum kinks in a 1+1d real scalar field theory
with Hamiltonian

H =
∫

dxH(x)

H(x) = 1

2
: π(x)π(x) :a +1

2
: ∂xφ(x)∂xφ(x) :a

+ 1

g2 : V [gφ(x)] :a . (2.1)

The normal-ordering ::a is defined below.
Consider a kink solution

φ(x, t) = f (x) (2.2)

of the classical equations of motion. We will assume that
V ′′[g f (−∞)] = V ′′[g f (∞)] and name this quantity M2/2.
Each prime here is a functional derivative with respect to
g f (x).

This paper will be entirely in the Schrodinger picture, and
so the quantum field φ only depends on x . One may expand
the Schrodinger picture quantum field φ(x) about its classical
solution φ(x) = f (x) + η(x). In this case φ → η = φ − f
could be interpreted as a passive transformation of the fields.
Instead, following [14,19], we employ an active transforma-
tion of the Hamiltonian and momentum functionals acting
on the fields

H [φ, π ] → H ′[φ, π ] = H [ f + φ, π ]
P[φ, π ] → P ′[φ, π ] = P[ f + φ, π ]. (2.3)

The new observation [20] is that this transformation is a uni-
tary equivalence because

H ′ = D†
f HD f , P ′ = D†

f PD f (2.4)

where the displacement operator D f is

D f = exp

(
−i

∫
dx f (x)π(x)

)
. (2.5)

It will be necessary to regularize and renormalize the
Hamiltonian. In Eq. (2.1) all UV divergences are removed
via normal ordering, but this would not be sufficient in theo-
ries with fermions or in more dimensions, and so we would
like a formalism which may be applied to a general regular-
ized Hamiltonian. We therefore adopt1 (2.4) as our definition
of H ′ and P ′ instead of (2.3), as it is well-defined for any
regularized Hamiltonian H and agrees with (2.3) when the
Hamiltonian is a functional of the unregularized fields. This
approach has the advantage that one regularizes only once.
This is in contrast with the traditional approach in which
one separately regularizes H and H ′ and so, to remove the
regulator at the end of the calculation, one requires a regula-
tor matching condition that affects the answer [22] but is in
general is unknown.2

1 This definition is sufficient to all orders in perturbation theory, how-
ever in general to eliminate tadpoles in H ′ one must include a correction
to f (x) which is exponentially suppressed in the regulator [21].
2 Some matching conditions yield the correct masses in examples at one
loop and some do not. While there are several conjectured principles that
determine which are correct [23,24], none of these have been derived
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Unitary equivalence (2.4) means that H and H ′ have the
same eigenvalues, with eigenvectors that are related by D f .
This means that we may use whichever is more convenient
to calculate any state or energy. We will see that perturbation
theory may be used to calculate vacuum sector states using
H and kink sector states using H ′.

As g
√
h̄ is dimensionless,3 we expand H ′ in powers of g

H ′ = D†
f HD f = Q0 +

∞∑
n=2

Hn

Hn(>2) = 1

n!
∫

dxV (n)[g f (x)] : φn(x) :a

H2 = 1

2

∫
dx

[
: π2(x) :a + : (∂xφ(x))2 :a

+ V ′′[g f (x)] : φ2(x) :a ] (2.6)

where Q0 is the classical kink mass andV (n) is the nth deriva-
tive of gn−2V [gφ(x)] with respect to its argument.

Consider the classical, linear wave equation correspond-
ing to H2. The constant frequency4

ωk =
√
M2 + k2 (2.7)

solutions gk(x) are continuum unbound normal modes, dis-
crete bound normal modes with 0 < ωk < M which we will
call shape modes and a zero-mode

gB(x) = f ′(x)√
Q0

, ωB = 0. (2.8)

k is real for continuum modes and imaginary for discrete
modes. The definition (2.7) of ωk fixes the parametrization of
k up to a sign. We will often need to sum over both continuum
solutions and shape modes, and so it will be implicit that inte-
grals written

∫ dk
2π

also include a sum over the shape modes∑
k . Similarly, when k represents a shape mode, 2πδ(k−k′)

should be understood as δkk′ .
Using the normalization conditions

∫
dxgk1(x)g

∗
k2

(x) = 2πδ(k1 − k2),

∫
dx |gB(x)|2 = 1

(2.9)

except in supersymmetric cases. In the case of theories with a single
mass scale, it is often possible to avoid this ambiguity [25]. At one loop
the ambiguity can also be avoided [26].
3 We set h̄ = 1.
4 There are also complex frequency solutions corresponding to quasi-
normal modes. In what follows, we will only need our modes to be
a basis of the δ-function normalizable functions, or more precisely
to satisfy the completeness relation (2.11). The real frequency modes
alone are sufficient for this goal. We do not expect the Hamiltonian
to mix quasinormal modes with real frequency modes and so quasi-
normal modes should not contribute to our perturbative calculation of
Hamiltonian eigenstates.

and conventions

gk(−x) = g∗
k (x) = g−k(x), g̃(p) =

∫
dxg(x)eipx (2.10)

the completeness relations can be written

gB(x)gB(y) +
∫

dk

2π
gk(x)g

∗
k (y) = δ(x − y). (2.11)

Recall that the Schrodinger picture fields φ(x) and π(x)
are independent of time. Therefore, even in the full interact-
ing theory, they may be expanded in any basis of functions.
We will need expansions in terms of plane waves, which
diagonalize the free part of H

φ(x) =
∫

dp

2π

(
A†
p + A−p

2ωp

)
e−i px

π(x) = i
∫

dp

2π

(
ωp A

†
p − A−p

2

)
e−i px (2.12)

and, following Ref. [27], also normal modes, which diago-
nalize H2

φ(x) = φ0gB(x) +
∫

dk

2π

(
B†
k + B−k

2ωk

)
gk(x)

π(x) = π0gB(x) + i
∫

dk

2π

(
ωk B

†
k − B−k

2

)
gk(x). (2.13)

To simplify later expressions, we have inserted factors of√
2ω into the operators so that A and A†, and similarly B

and B† are not Hermitian conjugate. For each decomposition
we define a normal ordering. Plane wave normal ordering ::a
places all A† to the left. Normal mode normal ordering ::b
places all φ0 and B† to the left. The canonical commutation
relations satisfied by φ(x) and π(x) imply

[Ap, A
†
q ] = 2πδ(p − q)

[φ0, π0] = i, [Bk1 , B
†
k2

] = 2πδ(k1 − k2). (2.14)

Our Hamiltonian H is defined in terms of plane wave nor-
mal ordering ::a . The unitary transformation (2.4) preserves
normal ordering [20] and so H ′ is also plane wave normal-
ordered. Thus H ′ is defined in terms of the plane wave oper-
ators A and A†. Inserting (2.13) into the inverse of (2.12)
one sees that the two sets of operators are related by a linear,
Bogoliubov transform. Using this to express H ′ in terms of
normal mode operators B, B†, φ0 and π0 one finds that H2

is a sum of harmonic oscillators with a free particle for the
center of mass

H2 = Q1 + π2
0

2
+

∫
dk

2π
ωk B

†
k Bk

Q1 = −1

4

∫
dk

2π

∫
dp

2π

(ωp − ωk)
2

ωp
g̃2
k (p)

−1

4

∫
dp

2π
ωp g̃B(p)g̃B(p). (2.15)
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Here Q1 is the one-loop kink mass. The ground state |0〉0 of
H2 satisfies

π0|0〉0 = Bk |0〉0 = 0 (2.16)

and corresponds to the one-loop kink ground state. The exact
spectrum of H2 is obtained by exciting normal modes with
B†
k and boosting with eiφ0k/

√
Q0 . These correspond to the

states of the one-kink sector at one loop.
More generally, the kink ground state corresponds to the

eigenstate |0〉 of H ′. It may be expanded in powers of
√
h̄

|0〉 =
∞∑
i=0

|0〉i . (2.17)

The n-loop ground state is this sum truncated at i = 2n − 2.

3 Excited kink states

3.1 The normal mode state

Let |K〉 be the eigenstate of H ′ corresponding to a kink with
a single excited continuous or discrete normal mode with
k = K. Note that D f |K〉 is the corresponding eigenstate of
the defining Hamiltonian H . We will use the semiclassical
expansion, in powers of

√
h̄

|K〉 =
∞∑
i=0

|K〉i (3.1)

which we will further decompose in terms of normal mode
creation operators acting on the state |0〉0

|K〉i =
∞∑

m,n=0

|K〉mn
i , |K〉mn

i

= Q−i/2
0

∫
dnk

(2π)n
γmn
i(K)(k1 . . . kn)φ

m
0 B†

k1
. . . B†

kn
|0〉0.

(3.2)

To avoid clutter, we will leave theK-dependence of γ implicit
from here on.

The normal mode |K〉 is the eigenstate of H ′ which, at
leading order in the semiclassical expansion, has coefficients

γ 01
0 (k1) = 2πδ(k1 − K) (3.3)

so that at one loop it is simply the harmonic oscillator eigen-
state

|K〉0 = B†
K|0〉0. (3.4)

Recall that this is an exact eigenstate of H2, and so it is the
correct starting point for our semiclassical expansion of the
corresponding eigenstate of H ′. Note that, using our compact
notation in which k runs over both real values for continuum

modes and discrete indices for shape modes, if K is a dis-
crete shape mode then the right side of (3.3) should be the
Kronecker delta δk1K. We will continue to write the Dirac
delta, reminding the reader that 2πδ is always to be read as
a Kronecker delta in the discrete case.

3.2 Translation invariance

We will further impose that D f |K〉 is translation invariant, or
equivalently we will work in its center of mass frame. This
condition is

P ′|K〉 = 0 (3.5)

which implies the recursion relations [15,18]

γmn
i+1(k1 . . . kn)

= 
kn B

(
γ
m,n−1
i (k1 . . . kn−1) + ωkn

m
γ
m−2,n−1
i (k1 . . . kn−1)

)

+(n + 1)

∫
dk′

2π

−k′B

(
γ
m,n+1
i (k1 . . . kn, k′)

2ωk′

−γ
m−2,n+1
i (k1 . . . kn, k′)

2m

)

+ωkn−1
kn−1kn

m
γ
m−1,n−2
i (k1 . . . kn−2)

+ n

2m

∫
dk′

2π

kn ,−k′

(
1 + ωkn

ωk′

)
γ
m−1,n
i (k1 . . . kn−1, k

′)

− (n + 2)(n + 1)

2m

∫
d2k′

(2π)2


−k′
1,−k′

2

2ωk′
2

γ
m−1,n+2
i (k1 . . . kn, k

′
1, k

′
2)

(3.6)

at all m > 0. Here we have defined the matrix


i j =
∫

dxgi (x)g
′
j (x). (3.7)

Before each application of the recursion relations, γmn
i must

be symmetrized with respect to its arguments k j [18].
The first recursion gives

γ 11
1 (k1) = 1

2

k1,−K

(
1 + ωk1

ωK

)

γ 13
1 (k1, k2, k3) = ωk2
k2k3 2πδ(k1 − K)

γ 20
1 = −1

4

−KB

γ 22
1 (k1, k2) = ωk2

2

k2B2πδ(k1 − K). (3.8)

Before proceeding to the second recursion, it is necessary to
symmetrize the results of the first recursion

γ 13
1 (k1, k2, k3) = 1

6

[(
ωk2 − ωk3

)

k2k3 2πδ(k1 − K)

+ (
ωk1 − ωk3

)

k1k3 2πδ(k2 − K)

+ (
ωk1 − ωk2

)

k1k2 2πδ(k3 − K)

]

γ 22
1 (k1, k2) = 1

4

[
ωk2
k2B2πδ(k1 − K)
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+ωk1
k1B2πδ(k2 − K)
]
. (3.9)

Let us pause to interpret the divergences in these terms.
In the Sine-Gordon model, and we suspect more generally,

k1k2 contains a summand equal to −ik12πδ(k1+k2). There-
fore γ 11

1 (k1) will have a δ(k1−K) term. One can see that with
repeated recursions this is part of an exp

(−iKφ0/
√

Q0
) |0〉0

factor of |K〉. This term has a simple interpretation. The con-
dition that P ′ annihilates |K〉, implies that we are working in
the center of mass frame of the excited kink. The operator B†

K
increases the center of mass momentum by roughly K units,
and this exponential term compensates with an opposing bulk
motion of the kink. AsK/

√
Q0 is of order g, this bulk motion

is slow, reflecting the fact that the kink is nonperturbatively
heavy.

On the other hand the δ(k1 − K) appearing in γ 13
1 and

γ 22
1 reflects the fact that these terms are part of B†

K|0〉1. In
other words, they should be interpreted as corrections |0〉1

to the kink ground state |0〉. The bare normal mode B†
K is

then excited in this dressed ground state. In this sense, these
terms are not caused by the excitation of the normal mode. To
develop a theory of kink scattering, it would be desirable to
introduce a suitable LSZ reduction formula. We suspect that
this would eliminate the contributions of such terms to the
S-matrix elements in which an asymptotic state is an excited
kink |K〉.

3.3 Finding Hamiltonian eigenstates

The γ 0n
i are not fixed by translation invariance [18]. We will

now find them using old-fashioned perturbation theory.
In analogy with γmn

i (k1 · · · kn), which consists of the i th
order coefficients of |K〉 in a basis of the Fock space, we
introduce �mn

i (k1 · · · kn) consisting of i th order coefficients
of (H ′ − E)|K〉. More precisely, � is a solution of

i∑
j=0

(
Hi+2− j − E i− j

2 +1

)
|K〉 j

= Q−i/2
0

∑
mn

∫
dnk

(2π)n
�mn
i (k1 . . . kn)φ

m
0 B†

k1
. . . B†

kn
|0〉0.

(3.10)

The � matrices are clearly functions of the γ matrices, as
these determine the state |K〉 via (3.2).

The state |K〉 is defined to be an eigenvector of H ′. We
will refer to the corresponding eigenvalue equation

(H ′ − E)|K〉 = 0 E =
∑
i

Ei (3.11)

as the Schrodinger Equation. Here Ei is the i th correction to
the energy of |K〉. A sufficient condition for a solution is

�mn
i (k1 . . . kn) = 0. (3.12)

If one symmetrizes this condition over permutations of the
arguments k j , then it is also a necessary condition.

As the � are functions of the γ , this condition can be
solved for γ . We already used translation-invariance to find
γmn
i at m > 0 and so now we need only solve for γ 0n

i .
The leading order is i = 0. Recall that

H2 − Q1 = π2
0

2
+

∫
dk

2π
ωk B

†
k Bk (3.13)

and so

(H2 − Q1) |K〉0 = ωK|K〉0. (3.14)

Therefore at leading order (3.10) is

(ωK + Q1 − E1) |K〉0

=
∑
mn

∫
dnk

(2π)n
�mn

0 (k1 . . . kn)φ
m
0 B†

k1
. . . B†

kn
|0〉0.

(3.15)

The condition �0 = 0 implies

E1 = Q1 + ωK. (3.16)

This is not a big surprise, it is just the statement that at leading
order the mass E1 of a kink with an excited normal mode is
greater than the ground state kink mass Q1 by ωK.

The next order is i = 1, where we find

H3|K〉0 + (H2 − E1)|K〉1

= Q−1/2
0

∑
mn

∫
dnk

(2π)n
�mn

1 (k1 . . . kn)φ
m
0 B†

k1
. . . B†

kn
|0〉0.

(3.17)

Using (3.16) we see that

H2 − E1 = −ωK + π2
0

2
+

∫
dk

2π
ωk B

†
k Bk . (3.18)

Recall that

H3 = 1

6

∫
dxV (3)[g f (x)] : φ3(x) :a

= 1

6

∫
dxV (3)[g f (x)] : φ3(x) :b

+1

2

∫
dxV (3)[g f (x)]φ(x)I(x). (3.19)

In the second line we have used Wick’s theorem [28] where
the contraction factor I(x) is defined by

∂xI(x) =
∫

dk

2π

1

2ωk
∂x |gk(x)|2 (3.20)

with the boundary condition fixed so that I(x) vanishes
asymptotically.
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Let us calculate the entries �0n
1 one at a time. Introducing

the notation

VI m···I,α1···αn =
∫

dxV (2m+n)[g f (x)]Im(x)gα1(x) · · · gαn(x)

(3.21)

there are three contributions to �00
1

H3|K〉0 ⊃ VI−K

4ωK
|0〉0 (3.22)

π2
0

2
|K〉1 ⊃ π2

0

2
Q−1/2

0 γ 20
1 φ2

0 |0〉0 = 1

4
√
Q0


−KB |0〉0 − ωK|K〉1

⊃ − ωK√
Q0

γ 00
1 |0〉0. (3.23)

These lead to

�00
1 =

√
Q0VI−K

4ωK
+ 
−KB

4
− ωKγ 00

1 . (3.24)

Schrodinger’s equation � = 0 then yields

γ 00
1 =

√
Q0VI−K

4ω2
K

+ 
−KB

4ωK
. (3.25)

The contributions to �02
1 are similar, but there is also a

contribution from : φ3 :b |K〉0, or more precisely from terms
of the form B†B†B|K〉0. Altogether we find

H3|K〉0 ⊃ 1

2

∫
dk

2π
VIk B†

k B
†
K|0〉0

+1

2

∫
d2k

(2π)2

V−Kk1k2

2ωK
B†
k1
B†
k2

|0〉0

π2
0

2
|K〉1 ⊃ π2

0

2
Q−1/2

0

∫
d2k

(2π)2 γ 22
1 (k1, k2)φ

2
0 B

†
k1
B†
k2

|0〉0

= − 1

2
√
Q0

∫
dk

2π
ωk
kB B

†
k B

†
K|0〉0 (3.26)

and

(
−ωK +

∫
dk

2π
ωk B

†
k Bk

)
|K〉1

⊃ 1√
Q0

∫
d2k

(2π)2

(
ωk1 + ωk2 − ωK

)
γ 02

1 (k1, k2)B
†
k1
B†
k2

|0〉0.

(3.27)

Adding these contributions we find

�02
1 = 2πδ(k2 − K)

2

(√
Q0VIk1 − ωk1
k1B

)

+
√
Q0

2

V−Kk1k2

2ωK
+ (

ωk1 + ωk2 − ωK

)
γ 02

1 (k1, k2).

(3.28)

Schrodinger’s equation � = 0 then yields

γ 02
1 (k1, k2) = 2πδ(k2 − K)

2

(

k1B − √

Q0
VIk1

ωk1

)

+
√
Q0V−Kk1k2

4ωK

(
ωK − ωk1 − ωk2

) . (3.29)

As we will insert this into the recursion relation (3.6) later,
we will need its symmetrized form

γ 02
1 (k1, k2) = 2πδ(k2 − K)

4

(

k1B − √

Q0
VIk1

ωk1

)

+2πδ(k1 − K)

4

(

k2B − √

Q0
VIk2

ωk2

)

+
√
Q0V−Kk1k2

4ωK

(
ωK − ωk1 − ωk2

) . (3.30)

Finally, we will compute �04
1 . As γ 24

1 = 0 there are only
two contributions

H3|K〉0 ⊃ 1

6

∫
d3k

(2π)3 Vk1k2k3 B
†
k1
B†
k2
B†
k3
B†
K|0〉0 (3.31)

and
(

−ωK +
∫

dk

2π
ωk B

†
k Bk

)
|K〉1

⊃ 1√
Q0

∫
d4k

(2π)4

⎛
⎝−ωK +

4∑
j=1

ωk j

⎞
⎠ γ 04

1 (k1 . . . k4)B
†
k1

. . . B†
k4

|0〉0

(3.32)

leading to

�04
1 = 2πδ(k4 − K)

6
Vk1k2k3 +

⎛
⎝−ωK +

4∑
j=1

ωk j

⎞
⎠ γ 04

1 (k1 . . . k4).

(3.33)

Thus the last matrix element at order i = 1 is

γ 04
1 (k1 . . . k4) = −

√
Q0Vk1k2k3

6
∑3

j=1 ωk j

2πδ(k4 − K). (3.34)

This completes our determination of γmn
1 and so of the

leading correction |K〉1 to the excited kink state |K〉.

4 Mass shifts

In this section we will calculate the leading order correction
to the masses of the normal modes. More precisely, E2 will
be the two-loop correction to the energy of the excited kink.
Subtracting Q2, the two-loop correction to the ground state
energy found in Ref. [15], one obtains E2 −Q2, the two-loop
correction to the energy required to excite the kink normal
mode.
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4.1 The next order Schrodinger equation

The leading order energy correction is E2, which can be
computed from the i = 2 Schrodinger equation

(H4 − E2)|K〉0 + H3|K〉1 + (H2 − E1)|K〉2 = 0. (4.1)

As |K〉0 = B†
K|0〉0, the energy E2 is fixed by terms that are

proportional to B†
K|0〉0.

More precisely, we need only calculate �01
2 . In Sect. 3

we fixed |K〉0 and found |K〉1. The only terms in |K〉2 that
contribute to �01

2 are γ 01
2 and γ 21

2 , the first via the −ωK +∫ dk
2π

ωk B
†
k Bk term in H2 and the second via the π2

0 /2 term.
At second order, the onlym > 0 contribution to the energy

arises from γ 21
2 as the π2

0 maps it to the initial state m = 0,
n = 1. Using the recursion relation (3.6) this is given by

γ 21
2 (k1) = 
k1B

(
γ 20

1 + ωk1

2
γ 00

1

)

+2
∫

dk′

2π

−k′B

(
γ 22

1 (k1, k′)
2ωk′

− γ 02
1 (k1, k′)

4

)

+1

4

∫
dk′

2π

k1,−k′

(
1 + ωk1

ωk′

)
γ 11

1 (k′)

−3

2

∫
d2k′

(2π)2


−k′
1,−k′

2

2ωk′
2

γ 13
1 (k1, k

′
1, k

′
2). (4.2)

Inserting the coefficients γ0 and γ1 found in Sect. 3 this
becomes

γ 21
2 (k1) = 2πδ(k1 − K)

[ ∫
dk′

2π

−k′B
k′B

(
1

4
− 1

8

)

+1

8

−k′B

√
Q0VIk′

ωk′

+1

8

∫
d2k′

(2π)2

(
1 − ωk′

1

ωk′
2

)

k′

1k
′
2

−k′

1,−k′
2

]

+
[
−

(
1

4
+ 1

8

)
+

(
1

8
+ 1

4

)
ωk1

ωK

]

k1B
−KB

+
√
Q0

8ωK

(
ωk1
k1B

VI−K

ωK
+ ωK
−KB

VIk1

ωk1

)

−1

2

∫
dk′

2π

−k′B

√
Q0V−Kk1k′

4ωK

(
ωK − ωk1 − ωk′

)

−1

8

∫
dk′

2π

[ (
1 + ωk1

ωK

)
(1 − 1)

+
(

ωk1

ωk′
+ ωk′

ωK

)
(1 + 1)

]

−K,−k′
k1k′ . (4.3)

Simplifying slightly this is

γ 21
2 (k1) = 2πδ(k1 − K)

⎡
⎢⎣

∫
dk′

2π


−k′B
8

(

k′B +

√
Q0VIk′

ωk′

)

− 1

16

∫
d2k′

(2π)2

(
ωk′

1
− ωk′

2

)2

ωk′
1
ωk′

2


k′
1k

′
2

−k′

1,−k′
2

⎤
⎥⎦

+3

8

(
−1 + ωk1

ωK

)

k1B
−KB

−1

4

∫
dk′

2π

(
ωk1

ωk′
+ ωk′

ωK

)

−K,−k′
k1k′

+
√
Q0

8ωK

(
ωk1
k1B

VI−K

ωK
+ ωK
−KB

VIk1

ωk1

)

−1

2

∫
dk′

2π

−k′B

√
Q0V−Kk1k′

4ωK

(
ωK − ωk1 − ωk′

) . (4.4)

Now we will compute the various contributions to �01
2 . Let

us begin with the contributions to (H2 − E1)|K〉2 in (4.1).
The operator is given in (3.18). The contribution from γ 21

2
arises from

π2
0

2

1

Q0

∫
d1k

(2π)1 γ 21
2 (k1)φ

2
0 B

†
k1

|0〉0

= − 1

Q0

∫
d1k

(2π)1 γ 21
2 (k1)B

†
k1

|0〉0. (4.5)

The contribution of γ 01
2 is

(
−ωK +

∫
dk

2π
ωk B

†
k Bk

)
1

Q0

∫
d1k

(2π)1 γ 01
2 (k1)B

†
k1

|0〉0

= 1

Q0

∫
d1k

(2π)1

(
ωk1 − ωK

)
γ 01

2 (k1)B
†
k1

|0〉0. (4.6)

The contribution to the energy arises from k1 = K but in
that case the ωk1 − ωK vanishes and so this term does not
contribute. This is an important consistency check, as γ 01

2 (K)

can be absorbed into the arbitrary normalization of γ 01
0 (K)

and this choice should not affect an observable quantity like
the energy.

There are three contributions from H3|K〉1. The first is

H3|K〉00
1 = 1√

Q0
γ 00

1 H3|0〉0

⊃ 1

2
√
Q0

γ 00
1

∫
d1k

(2π)1 VIk1 B
†
k1

|0〉0

= 1

8

(
VI−K

ω2
K

+ 
−KB

ωK
√
Q0

) ∫
d1k

(2π)1 VIk1 B
†
k1

|0〉0.

(4.7)
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The second is

H3|K〉02
1 = 1√

Q0

∫
d2k

(2π)2 γ 02
1 (k1, k2)H3B

†
k1
B†
k2

|0〉0

⊃ 1√
Q0

∫
d2k

(2π)2 γ 02
1 (k1, k2)

×
[

6

6

∫
d3k′

(2π)3 V−k′
1−k′

2k
′
3

2πδ(k1 − k′
1)

2ωk′
1

2πδ(k2 − k′
2)

2ωk′
2

B†
k3

+ 2

2

∫
d1k′

(2π)1 VI−k′
1

2πδ(k1 − k′
1)

2ωk′
1

B†
k2

]
|0〉0

= 1√
Q0

∫
d1k

(2π)1

[∫
d2k′

(2π)2

γ 02
1 (k′

1, k
′
2)V−k′

1−k′
2k1

4ωk′
1
ωk′

2

+
∫

d1k′

(2π)1

γ 02
1 (k′

1, k1)VI−k′
1

2ωk′
1

]
B†
k1

|0〉0

= 1√
Q0

∫
d1k

(2π)1

⎡
⎣

∫
d2k′

(2π)2

√
Q0V−Kk′

1k
′
2
V−k′

1−k′
2k1

16ωKωk′
1
ωk′

2

(
ωK − ωk′

1
− ωk′

2

)

+
∫

d1k′

(2π)1

⎛
⎝

(
ωk′

1

k′

1B
− √

Q0VIk′
1

)
V−k′

1−Kk1

8ω2
k′

1
ωK

+
√
Q0V−Kk′

1k1
VI−k′

1

8ωKωk′
1

(
ωK − ωk′

1
− ωk1

)
⎞
⎠

+
(
ωk1 
k1B − √

Q0VIk1

)
VI−K

8ωKωk1

+2πδ(k1 − K)

∫
d1k′

(2π)1

(
ωk′

1

k′

1B
− √

Q0VIk′
1

)
VI−k′

1

8ω2
k′

1

⎤
⎦ B†

k1
|0〉0.

The third contribution is

H3|K〉04
1 = 1√

Q0

∫
d4k

(2π)4 γ 04
1 (k1 · · · k4)H3B

†
k1

· · · B†
k4

|0〉0

⊃ 1√
Q0

∫
d4k

(2π)4

[
−

√
Q0Vk1k2k3

6
∑3

j=1 ωk j

2πδ(k4 − K)

]

× 1

6

∫
d3k′

(2π)3 V−k′
1−k′

2−k′
3

×
(

6
2πδ(k1 − k′

1)

2ωk′
1

2πδ(k2 − k′
2)

2ωk′
2

2πδ(k3 − k′
3)

2ωk′
3

B†
k4

+ 18
2πδ(k4 − k′

3)

2ωk′
1

2πδ(k2 − k′
1)

2ωk′
2

2πδ(k3 − k′
2)

2ωk′
3

B†
k1

]
|0〉0

= − 1

48

∫
d1k

(2π)1

⎡
⎣3

∫
d2k′

(2π)2

Vk1k′
1k

′
2
V−K−k′

1−k′
2

ωKωk′
1
ωk′

2

(
ωk1 + ωk′

1
+ ωk′

2

)

+2πδ(k1 − K)

∫
d3k′

(2π)3

Vk′
1k

′
2k

′
3
V−k′

1−k′
2−k′

3

ωk′
1
ωk′

2
ωk′

3

(
ωk′

1
+ ωk′

2
+ ωk′

3

)
⎤
⎦ B†

k1
|0〉0.

(4.8)

The last contribution to �01
2 is from (H4 − E2)|K〉01

0 . This
is easily evaluated using Wick’s theorem [28]

H4|K〉01
0 ⊃

(
VII

8
+

∫
d2k′

(2π)2

VIk1k2

2
B†
k′

1

B−k′
2

2ωk′
2

)
B†
K|0〉0

= VII
8

|K〉01
0 +

∫
d1k

(2π)1

VIk1−K

4ωK
B†
k1

|0〉0. (4.9)

Therefore

(H4 − E2)|K〉0 ⊃
∫

d1k

(2π)1

×
[(

VII
8

− E2

)
2πδ(k1 − K)

+VIk1−K

4ωK

]
B†
k1

|0〉0. (4.10)

Summing all of these contributions, one finds

0 = �01
2 (k1)

Q0
= (Q2 − E2)2πδ(k1 − K) + μ(k1) (4.11)

for some function μ(k1). Q2 is the two-loop kink ground state
energy found in Ref. [18] and repeated here in Eq. (5.1).

While μ(k1) is somewhat lengthy, only the case k1 = K

is relevant to the discussion of mass corrections5

μ(K) =
∫

d2k′

(2π)2

(
ωk′

1
+ ωk′

2

)
V−Kk′

1k
′
2
V−k′

1−k′
2K

8ωKωk′
1
ωk′

2

(
ω2
K −

(
ωk′

1
+ ωk′

2

)2
)

−
∫

dk′

2π

V−Kk′KVI−k′

4ωKω2
k′

+ VIK−K

4ωK

+ 1

4Q0

∫
dk′

2π

(
ωK

ωk′
+ ωk′

ωK

)

−K−k′
Kk′ . (4.12)

We note in passing that the two I terms have an interesting
property. If they are integrated over K, they produce exactly
twice the first two terms in the Q2. This is reminiscent of the
quantum harmonic oscillator, where the ground state energy
is ω/2 and each excited state produces an additional ω, which
is twice the ground state contribution. Thus in a free theory
this relationship between the kink ground state energy Q2 and
the normal mode excitation energy μ(K) would be expected.
But why does it appear here? The reason is that if we normal
mode normal order the kink Hamiltonian H ′, then Wick’s
theorem implies that the interaction terms H3 and H4 con-
tribute to the linear and quadratic parts of the normal mode
normal-ordered H ′, with a contribution given by folding the
I factor from Wick’s theorem into the corresponding poten-
tial V (3) or V (4). These new contributions to the free part of
the Hamiltonian shift the oscillator frequencies by quantities
proportional to various VI , but suppressed by a power of the
coupling as they arose from H3 or H4. Then, since the lead-
ing contribution to the (kink) ground state energy is half the
integral of the normal mode frequencies, it is shifted by the
integral of half of this frequency shift, while each excitation
of a normal mode increases the energy by the frequency.

5 The fact that μ(k1) vanishes at k1 	= K fixes γ 01
2 (k1).
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4.2 Continuum modes

If K is a continuum mode then the term with the Dirac δ

in (4.11) is infinite and so, if μ(K) is finite, must vanish
separately. This implies E2 = Q2 for all continuum modes
K with μ(K) finite. This is intuitive, the continuum modes
are nonnormalizable and they only have finite overlap with
the kink. Therefore the kink cannot shift their energy. The
two-loop correction to the energy needed to excite the kink
ground state to a normal mode state is E2−Q2 = 0. Of course
the one-loop correction E1 −Q1 = ωk we have already seen
is nonzero.

Is μ(K) finite? Divergences may only arise from diver-
gences in 
 or V or from the infinite integrals over contin-
uum modes k. If the potential V is smooth then divergences
in the V symbols will not arise. However 
 has a divergence
arising from the fact that continuum modes tend to plane
waves far from a localized kink


k1k2 ⊃ iπ(k2 − k1)δ(k1 + k2). (4.13)

Via γ 21
2 (k1), this contributes

μ(k1) ⊃ K2

2Q0
2πδ(K − k1). (4.14)

If there are no other divergences in μ then, setting to zero the
coefficient of δ(K − k1) in (4.11), we find

E2 = Q2 + K2

2Q0
. (4.15)

In other words, the two-loop correction to the mass of a kink
excited by a normal mode with k = K is just the correspond-
ing nonrelativistic kinetic energy.

The appearance of the nonrelativistic kinetic energy may
be surprising as we are in the kink center of mass frame.
However this is actually the nonrelativistic energy resulting
from the fact that, as described beneath Eq. (3.9), in order to
keep a total momentum of zero the nonrelativistic kink has a
bulk motion which compensates that of the relativistic normal
mode. Due to the mass difference, the kinetic energy of the
normal mode affects the total energy at one loop while the
kinetic energy of the bulk, which has an equal and opposite
momentum, enters only at two loops.

Now let us consider potential divergences in the k inte-
grals. The corresponding eigenfunctions tend to plane waves
eikx far from the kink, up to a phase shift. In cases such as
the Sine-Gordon and φ4 models the 
 and Vi jk tend expo-
nentially to zero in the sum of their indices, as the theories
are gapped. Therefore the only divergence may arise from an
infinite domain of integration in which the sum of the indices
is within a fixed distance of zero. This requires a double inte-
gral, with k′

1 ∼ −k′
2, and so divergences may only arise in

the first term of (4.12).

At the large k′ on which these divergences are supported,
gk′(x) ∼ eik

′x . The divergence is also supported at large x ,
where V (3) tends to a constant, which on each side of the kink
is just the third derivative of the potential supported on the
corresponding vacuum. Let us say for simplicity that these
two third derivatives have the same value, W , up to a sign.
This is the case in the φ4 model, whereas in the Sine-Gordon
model the third derivatives vanish at the vacua so W = 0.
We have argued that, up to finite terms

V−Kk′
1k

′
2

∼ V−k′
1−k′

2K
∼ W

∫
dxei(k

′
1+k′

2−K)x

= W2πδ(K − k′
1 − k′

2). (4.16)

Thus there are two δ functions in the first integrand of
(4.12). The first may be used to do one of the integrals, but
then the other is a genuine δ function divergence

μ(k1) ∼ W 22πδ(k1 − K)

8ωK

∫
dk′

2π

ωk′ + ωK−ωk′

ωk′ωK−ωk′

(
ω2
K −

(
ωk′ + ωK−ωk′

)2
) .

(4.17)

It combines with the Q2 term to shift the energy E2 by

W 2

8ωK

∫
dk′

2π

ωk′ + ωK−ωk′

ωk′ωK−ωk′

(
ω2
K −

(
ωk′ + ωK−ωk′

)2
) (4.18)

which just yields the usual one-loop correction to the mass of
the plane wave in the absence of the kink. It shifts the mass
of the normal mode.

4.3 Shape modes

In the case of shape modes, one recalls that the 2πδ(k1 −K)

in γ 01
0 (k1) is to be replaced by the Kronecker delta δk1K. Thus

(4.11) evaluated at k1 = K is finite

�01
2 (K)

Q0
= (Q2 − E2) + μ(K). (4.19)

The Schrodinger equation � = 0 then yields

E2 = Q2 + μ(K). (4.20)

Againμ(K) is given by (4.12). However the divergence (4.16)
does not arise because gK(x) is a bound state of the potential
and so falls to zero at large x , exponentially in the case of
the Sine-Gordon or φ4 models. This absence of divergences
is fortunate as a divergent μ(K) would in this case have led
to a divergent E2 as a result of (4.20).
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5 A diagrammatic approach

5.1 The kink ground state

The two-loop energy of the kink ground state is [18]

Q2 = VII
8

− 1

8

∫
dk′

2π

|VIk′ |2
ω2
k′

− 1

48

∫
d3k′

(2π)3

∣∣∣Vk′
1k

′
2k

′
3

∣∣∣2

ωk′
1
ωk′

2
ωk′

3

(
ωk′

1
+ ωk′

2
+ ωk′

3

)

+ 1

16Q0

∫
d2k′

(2π)2

∣∣∣
(
ωk′

1
− ωk′

2

)

k′

1k
′
2

∣∣∣2

ωk′
1
ωk′

2

− 1

8Q0

∫
dk′

2π
|
k′B |2 . (5.1)

Recalling from Refs. [29] that

VBBk = − ω2
k√
Q0


kB, VBk1k2 = ω2
k2

− ω2
k1√

Q0

k1k2 (5.2)

the last two terms may be reexpressed in terms of |VBk′
1k

′
2
|2

and |VBBk′ |2 respectively

Q2 = VII
8

− 1

8

∫
dk′

2π

|VIk′ |2
ω2
k′

− 1

48

∫
d3k′

(2π)3

∣∣∣Vk′
1k

′
2k

′
3

∣∣∣2

ωk′
1
ωk′

2
ωk′

3

(
ωk′

1
+ ωk′

2
+ ωk′

3

)

+ 1

16

∫
d2k′

(2π)2

∣∣∣VBk′
1k

′
2

∣∣∣2

ωk′
1
ωk′

2

(
ωk′

1
+ ωk′

2

)2

−1

8

∫
dk′

2π

|VBBk′ |2
ω4
k′

. (5.3)

The first three terms in Q2 are easily calculated using
the diagrams in Fig. 1 to represent various contributions to
H ′|0〉. Operator ordering runs to the left. Each loop involv-
ing a single vertex brings a factor of I(x) and each n-point
vertex brings a V (n) which is integrated over x together with
the normal modes gk(x) arising from the attached lines and
loop factors I(x) from attached loops. Each internal line cor-
responding to a normal mode k brings a factor of 1/(2ωk ).
In addition, each vertex except for the last brings a factor(∑

i ωi − ∑
j ω j

)−1
where i runs over all outgoing k and

j runs over all incoming k. Symmetry factors are calculated
as for Feynman diagrams, for example in the first term each
loop may be inverted and the two may be interchanged lead-
ing to a symmetry factor of (1/2)3. In the second each loop

may be inverted leading to (1/2)2 while in the third the three
propagators may be exchanged leading to 1/6.

What about the fourth and fifth terms? Clearly a corre-
sponding diagram may be drawn by taking the third diagram
in Fig. 1 and replacing one or two normal mode lines k′
with a zero-mode line B. However one may choose whether
the vertices are to be constructed using H ′ or P ′. At higher
orders this distinction is important because, for example, in
the Sine-Gordon theory H ′ has an infinite number of terms
whereas in any theory P ′ has only one term for each sum-
mand in the recursion relation (3.6). Thus there are multiple
possible conventions for representing these terms diagram-
matically, and the Feynman diagram convention of allowing
each vertex to represent an interaction in H ′ is not the most
economical. We will leave the development of diagrammatic
methods using P ′ vertices to future work.

5.2 Normal modes

Next we will turn our attention to E2. Recall from Eq. (4.11)
that there are two contributions. The first is equal to Q2 and
arises from terms in H ′|K〉 which contribute to �01

2 (K) with-

out ever annihilating the B†
K in |K〉0. In other words, these

terms are contained in B†
KH

′|0〉. As a result the K line is
disconnected from the rest of the diagram, which is therefore
equivalent to the corresponding diagrams for H ′|0〉 which
were already shown in Fig. 1. These disconnected diagrams
are shown in Fig. 2.

The other contributions to the energy arise from μ(K) in
(4.12). The first three terms are depicted in Fig. 3. Each dia-
gram has a symmetry factor of 1/2. Note that in both the third
and fourth graphs, the internal line begins at the first (chrono-
logically) vertex and so contributes a factor of −1/(2ωk′). As
a result, the two graphs are equal. Again graphs for the last
two terms are not given. Intuitively they correspond to the
first two graphs with k′ internal lines replaced by zero-mode
internal lines. However again one must choose whether the
vertices represent terms in P ′ or H ′.

6 Remarks

We have now found the subleading correction to the normal
mode states and their masses. Are we ready for scattering?

A few more steps are required. First of all, to calculate
matrix elements we will need normalizable states. These can
be made from wave packets of kinks at different momenta.
However, as is, our recursion relation only applies to kinks in
the center of mass frame. The generalization will be straight-
forward. Instead of implying that our states are annihilated
by P ′, we need only impose that they are annihilated by
P ′ − p for some constant p. This will add a single term to

123
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Fig. 1 Diagrams corresponding
to the first three terms in Q2.
Every vertex is an interaction in
H ′. Operator ordering runs to
the left. Each loop gives a factor
of I

Fig. 2 Diagrams corresponding to the first three terms in the
Q22πδ(k1 − K) contribution to E2. The k1 = K line is disconnected
from the diagram. Therefore these are just contributions to the ground

state energy Q2, and so they do not contribute to the energy E2 − Q2
needed to excite a normal mode in the kink background

Fig. 3 The first two diagrams give the first term in μ(K) as written in Eq. (4.12). The next two are equal and yield the second term. The last
diagram corresponds to the third term. The other term may be obtained by respectively replacing one k′ in the first two diagrams with a zero mode

our recursion relation. As our states are already written in
terms of B†, φ0 and D f , it will be straightforward to cal-
culate form factors and more general matrix elements with
arbitrary polynomials in φ(x) and π(x).

Next we will need to generalize our results to the inter-
action picture, as so far we have only considered the
Schrodinger picture. Ideally one would like a suitable Kallen-
Lehmann spectral representation and LSZ reduction formula
[30–34]. Also the Wick’s theorem of Ref. [28] should be
extended to interaction picture fields.

The easiest scattering process to approach would be
meson-kink scattering, as this can be done considering the
kink state that we have already constructed, adding the per-
turbative creation operators that create a meson. We already
know their actions on our states, as we have consistently
worked in the Fock basis. If one could prove a factoriza-
tion theorem in this context, then kink-kink scattering may
be treated in some approximation by combining kink-meson
scattering with the appropriate form factors. Here the situa-
tion may prove to be much simpler than QCD as the form
factors may be calculated perturbatively.

In the quantum theory we expect the phenomenology to
be richer than in the classical case. For example, the normal
modes are quantized. Thus one may expect interesting phe-
nomena, perhaps analogous to [35], when integral multiples

of the bound normal mode energy pass the threshold M for
escape into the continuum.

To efficiently explore such states, it would be useful to
complete our construction of a diagrammatic calculus in
Sect. 5. In particular, one should construct rules for P ′ ver-
tices in addition to H ′ vertices. In the supersymmetric case,
vertices may also represent the supercharges Q′. In the case
of rotationally-invariant solitons, vertices may also be intro-
duced for rotations.

While our perturbative expansion in P ′ is much more
economical than the exact treatment in the traditional col-
lective coordinate methods of Refs. [1,36], there is a price
to be paid. As we do not impose that the states are exactly
translation-invariant, our solutions are expansions in φ0 and
therefore cease to be reliable if φ0 is of order O(1/g) corre-
sponding to a kink center of mass position of order O(1/M).
In other words, the kink cannot be coherently treated as its
center moves by more than its size. In the kink rest frame,
this is physically reasonable for a semiclassical expansion,
it implies that the form factors are dominated by the classi-
cal kink solution and quantum corrections are subdominant
[37]. However in kink scattering it is a limitation, as the kink
may never move by O(1/M) in some frame. This may be an
obstruction to constructing an S-matrix, as even scattering
with a meson will impart some momentum to the kink which
after a time O(1/(Mg)) will bring the kink out of this range.
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Appendix A: Checking �21
2

Recall from (3.12) that our state |K〉 is an eigenstate of the
Hamiltonian if it satisfies the Schrodinger equation �mn

i = 0.
In the casesm = 0, at order i = 2, this condition was imposed
by hand to obtain the matrix elements γ 0n

2 . However in Ref.
[18] it was argued that the vanishing of �0n

i , together with
translation invariance which was imposed via the recursion
relations, is sufficient to make all components vanish. In this
Appendix we will test this claim for the most nontrivial com-
ponent at order i = 2, �21

2 =0.
We need to calculate all 12 terms that contribute to �21

2 .
(H2 − E2)|K〉2 contributes 2 terms, H3|K〉1 contributes 8
terms and H4|K〉0 contribute 2 terms. We will name these
terms �21

2, j and evaluate them one at a time.
The recursion relation yields

γ 41
2 = −ωk1
k1B
−KB

8

−γ 01
0 (k1)

16

∫
dk

′

2π

−k′ Bωk′ 
k′ B . (A.1)

This leads to the first contribution

(H2 − E1)|K〉2 ⊃ π2
0

2
|K〉41

2

= −6Q−1
0 φ2

0

∫
dk1

2π

[
− ωk1
k1B
−KB

8

−γ 01
0 (k1)

16

∫
dk′

2π

−k′Bωk′
k′B

]
B†
k1

|0〉0

(A.2)

which contributes

�21
2,1 = 3

4
ωk1
k1B
−KB + 2πδ(k1 − K)

×3

8

∫
dk′

2π

−k′Bωk′ 
k′B . (A.3)

The other contribution from (H2 − E1)|K〉2 is

(H2 − E1)|K〉2 ⊃
(

−ωK +
∫

dk

2π
ωk B

†
k Bk

)
|K〉21

2

= Q−1
0 φ2

0

∫
dk1

2π

⎡
⎣ 3

8

(ωk1 − ωK)2

ωK

k1B
−KB

−
√
Q0

8

(
ωk1 
k1BVI−K

ωK
+ ωK
−KBVIk1

ωk1

)

+
√
Q0ωk1

8ωK
(
ωk1 
k1BVI−K

ωK
+ ωK
−KBVIk1

ωk1

)

+ 1

8

∫
dk′

1

2π

Q1/2
0 Vk1k′

1−K

ωK − ωk1 − ωk′
1


−k′
1B

− 1

8

∫
dk′

1

2π

Q1/2
0 ωk1Vk1k′

1−K

ωK(ωK − ωk1 − ωk′
1
)

−k′

1B

− 1

4

∫
dk′

1

2π

k1k′

1

−k′

1,−K

ωk1 ωK + ω2
k
′
1

ωk
′
1

+ 1

4

∫
dk′

1

2π

k1k′

1

−k′

1,−K

ωk1 (ωk1 ωK + ω2
k
′
1

)

ωk
′
1
ωK

⎤
⎦ B†

k1
|0〉0

(A.4)

yielding

�21
2,2 = 3

8

(ωk1 − ωK)2

ωK

k1B
−KB

+
√
Q0

8

(
ω2
k1

ω2
K

− ωk1

ωK

)

k1BVI−K +

√
Q0

8

(
1 − ωK

ωk1

)

KBVIk1

+ 1

8

∫
dk′

1

2π

Q1/2
0 Vk1k′

1−K(
ωK − ωk1 − ωk′

1

)
−k′
1B

− 1

8

∫
dk′

1

2π

Q1/2
0 ωk1Vk1k′

1−K

ωK(ωK − ωk1 − ωk′
1
)

−k′

1B

− 1

4

∫
dk′

1

2π

k1k′

1

−k′

1,−K

ωk1 ωK + ω2
k
′
1

ωk
′
1

+ 1

4

∫
dk′

1

2π

k1k′

1

−k′

1,−K

ωk1

(
ωk1 ωK + ω2

k
′
1

)

ωKωk
′
1

. (A.5)

Next we calculate the 8 contributions from H3|K〉1. The
first four arise from

H3|K〉1 ⊃ 3

6

∫
dxV 3[g f (x)]φ0gB(x)I(x)|K〉11

1

H3|K〉1 ⊃ 1

6

∫
dxV 3[g f (x)]

∫
dk1

2π
3φ2

0gB(x)2gk1 (x)B
†
k1

|K〉00
1

H3|K〉1 ⊃ 1

6

∫
dxV 3[g f (x)] ×

∫
dk1

2π

1

2ωk1

B−k1

×3φ2
0g

2
B(x)gk1 (x)|K〉02

1
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H3|K〉1 ⊃ 1

6

∫
dxV 3[g f (x)]

×
∫

dk1

2π
3I(x)gk1 (x)B

†
k1

|K〉20
1 (A.6)

which respectively contribute

�23
2,3 = Q1/2

0

4

ωK + ωk1

ωK
VIB
k1,−K

�23
2,4 = −1

8

[√
Q0ω

2
k1
VI−K

ω2
K


k1B + ω2
k1


−KB

ωK

k1B

]

�21
2,5 = 2πδ(k1 − K)

1

8

∫
dk′

2π

(√
Q0
−k′BVIk′ − ωk′
k′B
−k′B

)

+1

8

(√
Q0ωKVIk1
−KB

ωk1

− ωK
k1B
−KB

)

−1

8

∫
dk′

2π

Q1/2
0 ωk′Vk1k′−K
−k′B

ωK(ωK − ωk1 − ωk′ )

�21
2,6 = − Q1/2

0

8
VIk1
−KB . (A.7)

The other four arise from

H3|K〉1 ⊃ 1

6

∫
dxV 3[g f (x)]

∫
dk1

2π

3

2ωk1

I(x)gk1 (x)B−k1 |K〉22
1

H3|K〉1 ⊃ 1

6

∫
dxV 3[g f (x)]

×3
∫

d2k

(2π)2

[
2

2ωk2

B†
k1
B−k2

]
φ0gB (x)gk1 (x)gk2 (x)|K〉11

1

H3|K〉1 ⊃ 1

6

∫
dxV 3[g f (x)]

×3
∫

d2k

(2π)2

[
1

4ωk1 ωk2

B−k1 B−k2

]
φ0gB (x)gk1 (x)gk2 (x)|K〉13

1

H3|K〉1 ⊃ 1

6

∫
dxV 3[g f (x)]

×
∫

d3k

(2π)3

[
3

4ωk2 ωk3

B†
k1
B−k2 B−k3

]
|K〉22

1 (A.8)

and are respectively

�21
2,7 = Q1/2

0

8

ωk1

ωK

k1BVI−K + 2πδ(k1 − K)

Q1/2
0

8

∫
dk′

2π

k′BVI−k′

�21
2,8 = 1

4

∫
dk′

2π

(ωK + ωk′ )

ωk′ωK

(
ω2
k1

− ω2
k′

)

k1k′
−k′,−K

�21
2,9 = −2πδ(k1 − K)

1

8

∫
d2k′

(2π)2

(
ωk

′
1
− ωk

′
2

)

ωk
′
1
ωk

′
2

×
(

ω2
k
′
1
− ω2

k
′
2

)

−k′

1−k′
2

k′

1k
′
2

−1

4

∫
dk′

2π

(
ωk1 − ωk′

)
ωk′ωK

(ω2
k′ − ω2

K)
−k′−K
k1k′

�21
2,10 = Q1/2

0

8

∫
dk′

2π

Vk1k′−K

ωK

−k′B . (A.9)

Finally we arrive at the two contributions from H4|K〉. The
first

H4|K〉0 ⊃ 1

24

∫
dxV 4[g f (x)]

×
∫

d2k

(2π)2

2

2ωk2

B†
k1
B−k2

×6φ2
0gB(x)2gk1(x)gk2(x)B

†
K|0〉0 (A.10)

contributes

�21
2,11 =Q0

4

VBBk1−K

ωK
. (A.11)

Using the identity [18]

VBBk1k2 = 1

Q0

[
−

(
ω2
k1

+ ω2
k2

)

k1B
k2B

+
∫

dk
′

2π

(
− √

Q0Vk1k2k
′ 
−k′ B

+
(
ω2
k1

+ ω2
k2

− 2ω2
k′
)


k2k′
−k′k1

)]
(A.12)

this can be written

�21
2,11 = − 1

4ωK
(ω2

k1
+ ω2

K)
k1B
−KB

−
√
Q0

4ωK

∫
dk′

2π
Vk1−Kk′
−k′B

+
∫

dk′

2π

(ω2
k1

+ ω2
K − 2ω2

k′)

4ωK

−Kk′
−k′k1 .

(A.13)

The last contribution arises from

H4|K〉0 ⊃ 1

24

∫
dxV 4[g f (x)]6I(x)φ2

0gB(x)2 × B†
K|0〉0

(A.14)

and is equal to

�21
2,12 =2πδ(k1 − K)

Q0

4
VIBB . (A.15)

The identity [18]

VIBB = 1

Q0

⎛
⎝

∫
d2k′

(2π)2

ω2
k
′
1

− ω2
k
′
2

ωk
′
1


k′
1k

′
2

−k′

1−k′
2

+
∫

dk′

2π
ωk′
Bk′
−k′B − √

Q0

∫
dk′

2π
VIk′
−k′B

⎞
⎠

(A.16)
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again allows terms involving the integrals of four g(x) to be
eliminated, leaving

�21
2,12 = 2πδ(k1 − K)

4

⎛
⎝

∫
d2k′

(2π)2

ω2
k
′
1

− ω2
k
′
2

ωk
′
1


k′
1k

′
2

−k′

1−k′
2

+
∫

dk′

2π
ωk′
Bk′
−k′B − √

Q0

∫
dk′

2π
VIk′
−k′B

⎞
⎠ .

(A.17)

Without these identities we would not be able to show that
� = 0.

Finally, summing all of the above contributions, we obtain

�21
2 =

12∑
i=1

�21
2,i = A(k1) + 2πδ(k1 − K)B(k1)

+
∫

dk
′

2π
C(k1). (A.18)

The first term is

A(k1) = 3

4
ωk1
k1B
−KB + 3

8

(
ωk1 − ωK

)2

ωK

k1B
−KB

+
√
Q0

8
(
ω2
k1

ω2
K

− ωk1

ωK
)
k1BVI−K

+
√
Q0

8
(1 − ωK

ωk1

)
KBVIk1

+Q1/2
0

4

ωK + ωk1

ωK
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4ωK
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(
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Q0ωKVIk1
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0

8
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8ωK
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where use the fact [18] that VIB = 0. The other terms are

B(k1) = 3
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and

C(k1) = 1
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−k′,−K
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√
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+ (ω2
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+ ω2
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4ωK

−K−k′
k′k1

=0. (A.21)

As all three contributions vanish, we have shown that

�21
2 = 0 (A.22)

as it must be if |K〉 is indeed a Hamiltonian eigenstate to
second order.
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