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Chapter 1

Introduction

The topic of this thesis is dark matter, which is a type of matter that is di�cult
to understand and detect due to its reduced coupling with the standard model
interactions. In general there is no need, that it couples at all. The only
fundamental force dark matter is known to interact is gravitation. From this we
know dark matter exists. One possible explanation for this phenomenon and a
candidate for dark matter is the class of weakly interacting massive particles, so
called WIMPs. In this thesis a speci�c type of WIMPs is considered, which is
called �quirks�, de�ned in [7]. In the special case of quirks they are bound due
to a strong non-Abelian �quirkcolour�, which is the hidden nonstandard model
force, to form baryonic composite states of two quirks. Although they can carry
weak and electric charges, there exist composite states, that do not. These
states are the dark matter candidates for the reason, that dark matter must
not be charged. The dark matter candidate also has to be stable, which is true
for quirks due to being the lightest particles, so they can not decay into others.
Also these quirks have a mass mq, that is bigger than the con�nement scale
of the quirkcolour ΛQC . At last the feature, that quirks have discrete bound
states, leads to the possibility to detect the transitions of quirky dark matter
with astrophysical measurements [7, 10].

This thesis has the aim to calculate the energies of the bound states and
the energy for transitions between the states of quirky composite dark matter.
The following chapters should at �rst introduce the theory of how to obtain the
energy levels of a two-body system with the example of hydrogen. Then the
focus gets on the problem of quarkonia, which is a bound state of a quark and
an antiquark due to strong interaction, that is much closer to the problem of a
bound state through the new strong quirkcolour force than hydrogen. Finally
the problem of quirkonia is tackled, where a calculation of the energy splittings
in analytical and numerical ways is presented and the transitions for indirect
observation of the dark matter are calculated.
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Chapter 2

The Hydrogen atom

2.1 The energy levels of the hydrogen atom

At �rst I will discuss the problem of the Schrödinger equation for the hydrogen
atom. First we consider the constituents of the hydrogen atom, which are
the proton and the electron. The proton mass mp is much larger than the
electron mass me , so in good approximation the reduced mass µ =

me·mp

me+mp
=

me − m2
e

me+mp
≈ me. In this approximation only the mass and momentum of

the electron contribute to the Schrödinger equation. Second the force, which
keeps the electron in the proton classical orbit, is simply the electromagnetic
force between the charged particles resulting a Coulombic potential with −αr
dependence, where r is the radius between the proton and the electron and α
is the �ne-structure constant, which is in natural units, that means c = ~ = 1,
α = e2 with the elementary charge e [1]. The Schrödinger equation and a way
to obtain the radial equation[1]

1

R (r)

∂

∂r

(
r2 ∂

∂r

)
R (r) + 2mer

2
(α
r

+ E
)

= l(l + 1) (2.1)

and the wave function ψ (r, ϑ, ϕ) = R (r)Y (ϑ, ϕ), where R (r) is the radial
and Y (ϑ, ϕ) is the spherical part, and properties of the azimuthal quantum
number l are in the appendix. So we can start to determine the bound state
energy E of the hydrogen atom by the radial equation and substitute with the

reduced wave function u(r) = rR(r) and ∂
∂r

(
r2 ∂
∂r

)
R (r) = ∂

∂r

(
r2 ∂
∂r

) u(r)
r =

∂
∂r (r ∂u(r)

∂r − u(r)) = r ∂
2u(r)
∂r2 , which leads to[1]

∂2u(r)

∂r2
+

(
2me

(α
r

+ E
)
− l(l + 1)

r2

)
u(r) = 0. (2.2)

To solve this di�erential equation it is useful to look at the limits of r and
analyze the asymptotic behaviors. For r → 0 the 1

r2 -part dominates, so the

equation simpli�es to ∂2u(r)
∂r2 − l(l+1)

r2 u(r) = 0, which has the solutions u(r) =
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Arl+1 +Br−l , with the azimuthal quantum number l, that must be an integer
to be able to well de�ne the Laguerre polynomials explained in appendix . The
limit r → 0 forbids r−l because it cannot be normalized for l 6= 0, where l = 0
provides only a solution for the limit , so that u(r) ∝ rl+1. For r → ∞ the

simpli�ed equation is ∂
2u(r)
∂r2 +2meEu(r) = 0. For negative energies the solution

is u(r) = Aekr + Be−kr , with k =
√
−2meE, where e

kris forbidden because it
cannot be normalized, so u(r) ∝ e−kr . With a last substitution, ρ = kr , u(ρ)
can �nally be written as

u(ρ) = e−ρρl+1v(ρ) (2.3)

with a function v(ρ) and the di�erential equations for u(ρ) and v(ρ) respec-
tively are [2]

∂2u(ρ)

∂ρ2
+

(
c

ρ
− 1− l(l + 1)

ρ2

)
u(ρ) = 0 (2.4)

ρ∂2v(ρ)

∂ρ2
+ 2 ((l + 1)− ρ)

∂v(ρ)

∂ρ
+ v(ρ) (−2(l + 1) + c) = 0 (2.5)

with the substitution c =
√
−2m
E α . Now I express the function v(ρ) as a

power series v(ρ) =
∑∞
i=0 aiρ

i and insert it in the equation with leads to[2]

∞∑
i=0

ai
[
i(i− 1)ρi−1 + 2(l + 1)iρi−1 − 2iρi + (−2(l + 1) + c) ρi

]
= 0 (2.6)

The condition that this sum is zero, can only be satis�ed, if the coe�cients
of every power are zero, so that we get a recursion relation for ai[2]

ai+1 (i(i+ 1) + 2(l + 1)(i+ 1)) + ai (c− 2(l + 1)− 2i) = 0 (2.7)

ai+1 = ai
2(l + 1) + 2i− c

i(i+ 1) + 2(l + 1)(i+ 1)
(2.8)

From this recursion relation the behavior for the limit i → ∞ can be ex-
tracted, which is ai+1

ai
→ 2

i . But that is the behavior of e
2ρ, which is in contra-

diction to the found limit u(r) ∝ e−ρ. That leads to the conclusion, that the
series has to be truncated, which means that c = 2(l+1+ i) = 2n ,where n is an
integer, named the principal quantum number, and l is the azimuthal quantum
number, which must be smaller than n . Now using this condition in our earlier

introduced expression c =
√
−2me

E α and solving it for the energy levels E of the

hydrogen atom leads to the expression [2]

En = −meα
2

2n2
. (2.9)
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2.2 Relativistic corrections of the Schrödinger

equation

The Schrödinger equation is a non-relativistic equation. To calculate the rela-
tivistic corrections we have to use the Dirac equation. Here we have to decouple
the solutions for positive and negative energies of the Dirac equation, which can
be achieved with a Foldy-Wouthuysen transformation, where the Dirac Hamilto-
nian H´ = eiS(H − ∂t)e−iS and the wave function ψ = e−iSψ´ are transformed
with a matrix S that makes the operators in the Hamiltonian diagonal, so that
upper and lower components do not mix[3]. In the case of electromagnetic in-
teraction the Hamiltonian H = α · p+ βm gets modi�ed via minimal coupling,
where p → (p − eA) and i ∂∂t → i ∂∂t − eΦ with the potentials A and Φ, so that
the Hamiltonian looks like[3]

H = α · (p− eA) + βm+ eΦ. (2.10)

After three transformations of the Hamiltonian you get �nally all correction
terms up to order 1

m2 . The transformed Dirac equation for the positive energies

written with a spinor ψ´ =

(
ϕ
0

)
reads[3]

(
m+ eΦ +

(p− eA)
2

2m
− e

2m
σ ·B− p4

8m3
+

− e

4m2
σ ·E× (p− eA)− e

8m2
∇ ·E

)
ϕ = i

∂ϕ

∂t
(2.11)

For the hydrogen atom the potentialA = 0 andE = −∇Φ (r) = − 1
r
d
drV (r)x

with V (r) = −αr , so that we can rewrite
1

4m2σ·E× (p− eA) = 1
2m2

σ·L
r

d
drV (r)[3].

Here we can see the four corrections beyond the potentials and the kinetic en-

ergy, where Hrm = − p4

8m3 is the relativistic mass correction. It is convenient

to write it in terms of the unperturbed state H0 = p2

2m −
α
r and the potential

α
r , so that Hrm = − p4

8m3 = − 1
2m

(
H0 + α

r

)2
[2]. The solution of the �rst order

perturbation theory is

E1
rm =< ψ0 | −1

2m

(
H0 +

α

r

)2

| ψ0 >=
−1

2m

(
E2
n + 2αEn <

1

r
> +α2 <

1

r2
>

)
(2.12)

which leads with En = −mα
2

2n2 , <
1
r >= 1

rbn2 , <
1
r2 >= 1

r2
bn

3(l+ 1
2 )

and the

Bohr radius rB = 1
mα to[2]

E1
rm = −mα

4

2n4

(
n

l + 1
2

− 3

4

)
. (2.13)

The next correction HDarwin = − e
8m2 divE is the Darwin term. Here it is

useful to put in the result of the Poisson equation, that leads to HDarwin =
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− e
8m2 divE = − e

8m2 4πρ(r)[4] with the charge density ρ(r). For hydrogen atom
the charge density is ρ(r) = −eδ3 (r), which leads to the perturbation term[2]

E1
Darwin =< ψ0 | πe

2

2m2
δ3 (r) | ψ0 >=

πe2

2m2
| ψ0

nlm (0) |2=
mα4

2n3
δl,0 (2.14)

with < ψ0
100 | δ (r) | ψ0

100 >=| ψ0
100 (0) |2= 1

πr3
B
.

Then there is the spin-orbit coupling resulting from an interaction between
the electron spin and the magnetic �eld of the proton in the rest frame of the
electron, with the Hamiltonian[2]

HSpin−Orbit =
1

2m2

S · L
r

d

dr
V (r) . (2.15)

For the hydrogen potential V (r) = −αr the energy correction of this term
can be solved by �rst order perturbation theory by[2]

E1
Spin−Orbit =< ψ0 | α

2m2

S · L
r3
| ψ0 > . (2.16)

Here we have to express S ·L in terms of J2, L2 and S2, so we can easily put
in their known eigenvalues. The total angular momentum is written as the sum
of angular momentum and the spin J2 = (L + S)

2
= L2 + 2L · S + S2, so that

the eigenvalues of S·L = 1
2

(
J2 − L2 − S2

)
= 1

2 (j (j + 1)− l (l + 1)− s (s+ 1)).
For our spin 1

2 -electron the correction looks like[2]

E1
Spin−Orbit =

α~2
(
j (j + 1)− l (l + 1)− 3

4

)
4m2

< ψ0 | 1

r3
| ψ0 > . (2.17)

The expectation value of < ψ0 | 1
r3 | ψ0 >is[2]

< ψ0 | 1

r3
| ψ0 >=

1

n3r3
Bl
(
l + 1

2

)
(l + 1)

. (2.18)

That leads to the �nal correction with an α4-dependence [2]

E1
Spin−Orbit = α4m

(
j (j + 1)− l (l + 1)− 3

4

)
4n3l

(
l + 1

2

)
(l + 1)

. (2.19)

This formula applies only for l ≥ 1, but diverges for l = 0. The solution
for l = 0 can be obtained, when a spherical potential is treated, which means
we consider the proton as composite of quarks and not as point particle. Here
the expectation value of < ψ0 | 1

r3 | ψ0 > for l → 0 is not divergent anymore,
but the expectation value of < ψ0 | S · L | ψ0 >= 0 [2]. So the expectation
value < ψ0 | H | ψ0 >l=0= 0 vanishes and we can �nally sum up the relativistic
corrections ∆Erel = Erm+EDarwin+ESpin−Orbit to get the total correction [2]

∆Erel =
mα4

2n4

(
3

4
− n

j + 1
2

)
(2.20)
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2.3 The hyper�ne splitting with tensor- and L · S-
terms

The other splitting is the hyper�ne splitting, which is caused by couplings be-
tween the electron spin and the proton spin, where the magnetic moments are
µe = − e

me
Se and µp =

gpe
2me

Sp and gp is the gyromagnetic ratio of the proton,
where the gyromagnetic ratio of the electron has already been considered in the
expression of the magnetic moment. The resulting �eld is a composite of the
dipole �eld between the magnetic moments of the proton and the electron and
an interaction between the proton magnetic moment and the magnetic �eld,
which is caused by the movement of the electron with angular momentum L, so
that the Hamiltonian in the frame of the proton looks like [4]

Hhf = −8π

3
µe · µpδ (r) +

1

r3

[
µe · µp−3

(r · µe) (r · µp)

r2
− e

m
L · µp

]
. (2.21)

The energy correction can again be determined by perturbation theory,
where for spherical symmetric problems the expectation value of the term be-
tween the square brackets is 0, so the energy correction for the ground state
is

E1
hf = − 4πgpe

2

3memp
< ψ0

100 | Se · Spδ (r) | ψ0
100 > . (2.22)

Here we have again to express Se · Sp by their eigenvalues, so the total spin

S2 = (Se + Sp)
2

= S2
e + 2Se · Sp + S2

p and the eigenvalue of Se · Sp is Se · Sp =
1
2

(
S2 − S2

e − S2
p

)
= 1

2 [s (s+ 1)− se (se + 1)− sp (sp + 1)], where se = sp = 1
2

and the total spin s can be s =

{
1

0
, which leads to an energy di�erence

between these two possible states of

∆Ehf = − 4πgpe
2

3memp
< ψ0

100 | δ (r) | ψ0
100 > . (2.23)

The delta function gives us the solution of the integrand at zero, which leads

to a
m2

e

mp
α4-dependent energy correction[4]

∆Ehf = −4gpm
2
eα

4

3mp
. (2.24)

For a non spherical term with l > 0 the tensor and L · S term cause also an
energy splitting with can be written in perturbation theory by

∆ET = − e2

4πm2
e

< ψ0 | 1

r3
[S12 + L · S] | ψ0 >, (2.25)
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where S12 = 3
r2 (r · Se)(r · Sp)− Se · Sp. Inserting the expectation value

< ψ0 | 1
r3 | ψ0 >= 1

n3r3
Bl(l+

1
2 )(l+1)

and the equation for the eigenvalues S · L =

1
2

(
J2 − L2 − S2

)
= 1

2 (j (j + 1)− l (l + 1)− s (s+ 1)) it writes �nally

∆ET = − meα
4

n3l
(
l + 1

2

)
(l + 1)

(
< S12 > +

1

2
(j (j + 1)− l (l + 1)− s (s+ 1))

)
(2.26)

with < 1
2S12 >=


− l+1

2l−1 , j = l − 1

1, j = l

− l
2l+3 , j = l + 1

for l > 0 and s = 1[9].
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Chapter 3

Quarkonia

3.1 Static potential

Quarkonia are pairs of a heavy quark and a heavy antiquark of the same �avour,
which are bound by the strong interaction. Here we can see an analogy to the
hydrogen atom, where we have the proton and electron, which are bound by the
electromagnetic interaction. But to write down the potential we have to think
about the di�erences between the interactions[5]. The �rst di�erence is that the
quarks and antiquarks have the same and much bigger mass then the electron
and proton, so they have a di�erent reduced mass. For the heavier quarks it
is mc ≈ 1.29+0.05

−0.11GeV, mb ≈ 4.67+0.18
−0.06GeV and mt ≈ 172.9±0.6± 0.9GeV [15].

The second di�erence is that the coupling constant αs is much more energy
dependent than αem for hydrogen. Where αem(0) ≈ 1

137 increases only about
5% between Q = 0 and Q = 30GeV [6], αs(Q) = 12π

(33−2nf ) ln

(
Q2

Λ2
QCD

) is much

bigger and diverging for small Q, where ΛQCD is the QCD scale and nf is
the number of light quarks [5]. But there are also important analogies between
quarkonia and hydrogen like they both are non relativistic systems, which means
they have the same hierarchy of scales m � mα � mα2, where the coupling
constant α for hydrogen can be substituted with the velocity v of the quark for
quarkonia and the mass m is the electron or quark mass[16]. Due to the non
relativistic behavior they can be both described by the Schrödinger equation.
From this quarkonia can only be treated with perturbation theory, when the
energy scale mα2

s ∼ mv2 is much bigger then ΛQCD, which makes αs < 1,
where a typical value for αs ≈ 0.15 − 0.25 [5]. Also the coupling constant is
now a�ected with an extra factor α → CFαs the so called colour factor CF
, which changes with the number of colours in the theory. The colour factor

is CF =
N2

c−1
2Nc

= 4
3 for quarks, where Nc is the number of colours, which is 3

[6, 5]. At last there is the phenomenon that quarks are con�ned, which mean
they can not be detected as free particles like the electrons, which results in a
linear attracting part in the potential additionally to the Coulombic part, so
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the quarkonium potential reads [5]

VQ (r) = −CF
αs(r)

r
+ σr, (3.1)

where σ ≈ 1GeVfm is the string tension which keeps the quarks con�ned. For the

typical radius of the ground states, which is for the J/ψ rb ≈ 0.2fm and also
smaller for heavier quarks, the Coulombic term dominates and the potential is
given by the pure Coulombic term, so that the energy is calculated the same
way like for hydrogen and we get[5]

EQ,n = −µ (CFαs(rb))
2

2n2
(3.2)

where µ = m1m2

m1+m2
is the reduced mass which is for quarkonia µ =

mQ

2 .

3.2 One loop-correction

The energy derived from the static potential for quarkonia looks similar to
hydrogen and has the order µα2. For hydrogen the next corrections are of the
order µα4 due to the fact, that the components of hydrogen are the lightest
particles and so are stable. But for quarkonia there are also contributions of
µα3, which results from the fact, that lighter quarks then the bound ones exist,
so they are not stable and loops of lighter quarks are possible. In the same
way gluons can couple to each other and also form loops, which in both cases
leads to additional terms in the potential [5]. The full αs(r) and the additional
potential ∆V for the one loop correction read[12, 13, 8]

αs (r) = αs(rb)

(
1 +

αs(rb)

4π

(
C0 + C1 ln(

r

rb
)

))
(3.3)

∆V (r) = −CF
α2
s(rb)

4πr

(
C0 + C1 ln(

r

rb
)

)
(3.4)

with the constants

C0 =
31

9
CA −

20

9
Tfnf + 2β0γE

C1 = 2β0

β0 =
11

3
CA −

4

3
Tfnf ,

where now rb = 1
Cfαsµ

is the Bohr radius of quarkonium , Tf = 1
2 , CA = Nc is

the Casimir operator of the adjoint representation which is equal to the number
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of colours , nf is the number of light fermion �avours and γE ≈ 0.577216 is the
Euler constant. The energy calculated by �rst order perturbation theory reads

∆E1 =< ψ0 | −CF
α2
s(rb)

4πr

(
C0 + C1 ln(

r

rb
)

)
| ψ0 >=

− CF
α2
s(rb)

4π
C0 < ψ0 | 1

r
| ψ0 > −CF

α2
s(rb)C1

4π
ln

(
1

νrb

)
< ψ0 | 1

r
| ψ0 >

− CF
α2
s(rb)C1

4π
< ψ0 | ln(νr)

r
| ψ0 >= ∆E

(1)
1 + ∆E

(2)
1 + ∆E

(3)
1 , (3.5)

where ν is a cut o� parameter. The �rst two expectation values can be solved
easily with < 1

r >= 1
rbn2 , so that

∆E
(1)
1 = −CF

α2
s(rb)

4π
C0 < ψ0 | 1

r
| ψ0 >= −CF

α2
s(rb)

4π

C0

rbn2
= EQ,n

αs(rb)C0

2π
(3.6)

∆E
(2)
1 = −CF

α2
s(rb)C1

4π
ln

(
1

νrb

)
< ψ0 | 1

r
| ψ0 >= −CF

α2
s(rb)C1

4π

ln
(

1
νrb

)
rbn2

=

EQ,n
αs(rb)C1

2π
ln

(
1

νrb

)
. (3.7)

The third expectation value with the ln(r)
r dependence has to be solved

explicitly with the hydrogen wave function (5.10), so it reads

∆E
(3)
1 = −CF

α2
s(rb)C1

4π
< ψ0 | ln(νr)

r
| ψ0 >= −CF

α2
s(rb)C1

4π
∞̂

0

π̂

0

2πˆ

0

√
(2k)

3
(n− l − 1)!

2n [(n+ l)!]
e−kr (2kr)

l
L2l+1
n−l−1 (2kr)Y m∗l (ϑ, ϕ)

ln(νr)

r√
(2k)

3
(n− l − 1)!

2n [(n+ l)!]
e−kr (2kr)

l
L2l+1
n−l−1 (2kr)Y ml (ϑ, ϕ)r2 sin(ϑ)drdϑdϕ (3.8)

This can be simpli�ed with the orthogonal relation of the spherical harmonics[1]

π̂

0

sin(ϑ)dϑ

2πˆ

0

dϕY m
′∗

l′ (ϑ, ϕ)Y ml (ϑ, ϕ) = δl,l′δm,m′ (3.9)

so it writes

∆E
(3)
1 = −CF

α2
s(rb)C1

4π

∞̂

0

r ln(νr)
(2k)

3
(n− l − 1)!

2n [(n+ l)!]
e−2kr (2kr)

2l [
L2l+1
n−l−1 (2kr)

]2
dr.

(3.10)
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Here a substitution with R = 2kr and dR = 2kdr and the Euler Γ-gamma
function[17] cleans the notation a bit up, so that

∆E
(3)
1 = −CF

α2
s(rb)C1

4πn

Γ (n− l)
Γ (n+ l + 1)

∞̂

0

ln(
νR

2k
)ke−RR2l+1

[
L2l+1
n−l−1 (R)

]2
dR

(3.11)

where like for hydrogen k =
√
−2µE = µCFαs(rb)

n = 1
nrb

. To solve this

integral the identity[8]

∞̂

0

e−RRn [Lnm (R)]
2
dR =

Γ(m+ n+ 1)

Γ(m+ 1)
(3.12)

can be used and the ln(R) can simply be transformed by introducing an
auxiliary parameter ε, so that ln(R)R2l+1 = d

dεR
2l+1+ε |ε=0. After substituting

with eq.(3.2) the energy reads

∆E
(3)
1 = EQ,n

αs(rb)C1

2π

Γ (n− l)
Γ (n+ l + 1)(ln

(νnrb
2

)
+

d

dε

) ∞̂

0

e−RR2l+1+ε
[
L2l+1+ε
n−l−1 (R)

]2
dR

 ∣∣∣∣∣
ε=0

=

EQ,n
αs(rb)C1

2π

Γ (n− l)
Γ (n+ l + 1)

[(
ln
(νnrb

2

)
+

d

dε

)
Γ(n+ l + 1 + ε)

Γ(n− l)

] ∣∣∣∣∣
ε=0

=

EQ,n
αs(rb)C1

2π

[
ln
(νnrb

2

)
+ Ψ(n+ l + 1)

]
(3.13)

where Ψ(x) = d
dx ln (Γ (x)) =

d
dx Γ(x)

Γ(x) is the polygamma function[18]. Finally

the expression for the whole energy di�erence is given by[9]

∆E1 = EQ,n
αs(rb)

2π

[
C0 + C1

(
ln
(n

2

)
+ Ψ(n+ l + 1)

)]
. (3.14)

3.3 Corrections of µα4-order

Like in the hydrogen case for quarkonium also the same higher order corrections
in the potential apply, which can be obtained through a non relativistic e�ective
�eld theory of QCD, that provides a de�nition of the potential. Some of these
terms in the potential, which have appeared for hydrogen before and will be
needed for later calculations , read

∆(2)V (r) =
CFαs(rb)

m2

[
− 1

2

{
1

r
,p2

}
+

L2

2r3
+ πδ(3)(r)+

4π

3
S2δ(3)(r) +

3

2r3
L · S +

1

4r3
S12(r̂)

]
(3.15)
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with S12(r) = 3 (r̂ · σ1) (r̂ · σ2) − σ1 · σ2 and S = σ1

2 + σ2

2 , where the matching
coe�cients are only considered to the µα4-order [11]. The energy corrections
due to hyper�ne, tensor and L·S coupling are calculated equally to the hydrogen
case, so that

∆Ehf,T =
CFαs(rb)

m2
< ψ | 4π

3
S2δ(3)(r) +

3

2r3
L · S +

1

4r3
S12(r̂) | ψ >=

µ (CFαs(rb))
4

3
δl0+

µ (CFαs(rb))
4

16n3l
(
l + 1

2

)
(l + 1)

[3 (j (j + 1)− l (l + 1)− 2) + < S12(r̂) >]

(3.16)

with < 1
2S12 >=


− l+1

2l−1 , j = l − 1

1, j = l

− l
2l+3 , j = l + 1

for l > 0 and s = 1[9].
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Chapter 4

Quirkonia

4.1 Bound state energies of quirkonia

The topic of this thesis is the calculation of the energy levels of quirkonia, which
are bound states of weakly interacting massive particles named quirks. They are
a dark matter candidate, which was proposed in [7]. The simplest model for a
bound state of quirks consists of two quirk �avours u and d transforming under
a SU(2)Q group, which is the so called quirkcolour [7]. They also form a weak
isospin doublet, where foru the third component of the isospin I has I3 = 1

2 and
d has I3 = − 1

2 as isospin. They carry the hyper charge U(1)Y , which is 1
2 for u

and − 1
2 for d, and a quirky baryon number U(1)QBN , that is

1
2 for both u and

d [7]. So a suitable choice for a quirk bound state, which can also be a dark
matter candidate, is the bound state of a u and d quirk. This is, due to the
quirkcolour and baryon number, a baryonic state, which is stable and electric
neutral, but has a small electric dipole element, which is small enough to not
have an e�ect to rule it out as dark matter[7]. Another reason for this choice
is, that the considered ground state should be scalar, where a mesonic ground
state, e. g. uū, would be pseudoscalar[7]. The mass mu,d of the quirks, which
is generated through the Higgs mechanism, is in the range of 100− 500GeV [7].

The calculation of the energy of the bound states will be done perturbative
like for quarkonia. This can be done for quirkonia due to the hierarchy of the
scales mq � mqv � mqv

2 with the quirk mass mq and the coupling αQ ∼ v
similar to the quirk velocity v in a non relativistic bound state. So for quirkonia
αQ � 1 is small and calculations can be done perturbative [7]. So the only
di�erence to quarkonia is, that the coupling constant for quirkcolour changes
the colour factor due to the di�erent number of colours. For obtaining the
energy levels of the quirk bound state, similar to quarkonia, we have to start
with the quirkcolour static potential[7]

V (r) = − ᾱ(r)

r
, (4.1)

where ᾱ(r) = CFαQ(r) = 3
4αQ(r) with a colour factor CF for two colours
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and a perturbative but large coupling constant αQ(r) = αQ(rb) at the Bohr
radius rb. The potential can be inserted in the Schrödinger equation and can be
solved. So we obtain the same wave function like for hydrogen and the binding
energies for the static potential, which read[7]

E0 = − ᾱ
2(rb)µ

2n2
, (4.2)

where µ = mumd

mu+md
is the reduced mass of the bound state and the Bohr radius

rb = 1
µᾱ(rb) . Next the energy levels for the one-loop potential can be calculated.

Therefore we write down the potential of the one-loop correction potential ∆V
and the coupling constant αQ(r), like shown in the quarkonia part, with the
new values of the constants C0 and C1 for quirkonia. The expressions read
than[7, 12, 13, 8]

αQ(r) = αQ(rb)

{
1 +

αQ(rb)

4π

[(
62

9
+

44

3
γE

)
+

44

3
ln(

r

rb
)

]}
(4.3)

∆V (r) = −CF
α2
s(rb)

4πr

((
62

9
+

44

3
γE

)
+

44

3
ln(

r

rb
)

)
, (4.4)

where the values C1 = 44
3 and C0 = 62

9 + 44
3 γE are obtained, when the number

of colours Nc is 2, resulting from the SU(2)Q quirkcolour, and the number of
light quirks nf is 0, which is reasonable for a model, where there are no light
quirks. This potential can be evaluated now and is written with a factor knl
compared to the unperturbed pure Coulombic state like [7]

Enl = −knl
ᾱ2(rb)µ

2n2
. (4.5)

First the energy levels are obtained by an analytical approach, where the
energy for the potential ∆V has been calculated by �rst order perturbation
theory, like for quarkonia, which leads to the energy di�erence[8, 9]

∆E1 = E0
αQ(rb)

2π

[(
62

9
+

44

3
γE

)
+

44

3

(
ln
(n

2

)
+ Ψ(n+ l + 1)

)]
(4.6)

and the total energy

E = E0

{
1 +

αQ (rb)

2π

[(
62

9
+

44

3
γE

)
+

44

3

(
ln
(n

2

)
+ Ψ(n+ l + 1)

)]}
= E0knl.

(4.7)
The only value in the energy we still do not know is the value of the coupling
constant ᾱ, that is unknown, but there is the constraint to be small enough to
be perturbative. With this condition the results of the analytical calculation
are shown in table(4.1), which gives the values of knl for some values of ᾱ(rb) =
(0.1, 0.2, 0.3, 0.4) .
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ᾱ k10 k20 k21 k30 k31 k32

0.1 1.24 1.61 1.72 1.84 1.92 1.98
0.2 1.48 2.23 2.43 2.69 2.84 2.97
0.3 1.73 2.84 3.15 3.53 3.76 3.95
0.4 1.97 3.45 3.87 4.37 4.68 4.93

Table 4.1: analytical energy coe�cient knl for the full potential

To check the results, the Schrödinger equation with the perturbative poten-
tial can also be solved exactly by a numerical calculation. For the same values
of ᾱ(rb) = (0.1, 0.2, 0.3, 0.4) and n = (1, 2, 3) following numerical values have
been obtained and a diagram of the energy splitting is given in �gure(4.1).

ᾱ k10 k20 k21 k30 k31 k32

0.1 1.25 1.63 1.76 1.91 2.00 2.08
0.2 1.50 2.30 2.57 2.90 3.14 3.32
0.3 1.75 3.00 3.42 3.98 4.39 4.69
0.4 2.01 3.72 4.32 5.12 5.71 6.16

Table 4.2: numerical energy coe�cient knl for the full potential

Figure 4.1: Here the energy splitting of the quirkonium states due to the one
loop potential is shown in terms of µα2. The splittings are shown in di�erent
colours for the values of alpha and the lowest three s states, the lowest two p
states and the lowest d state.
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Here we can see that the numerical and analytical values for the bound states
with a lower ᾱ are very close together, while the two results di�er for bigger
values. This results from the way the analytical values are calculated, where
only �rst order perturbations theory was used. So the energy values for higher
values of ᾱ, which are not so perturbative anymore, have to be calculated with
higher orders for better coincidence with the exact values.

In general the binding energies increase for a larger coupling constant ᾱ,
where the excited states are more a�ected by the change of the value of the
coupling constant. So the energy of the ground state increases only about 60%,
where the energy of the excited state E32 increases nearly about its double
value, when the coupling constant ᾱ is increased from 0.1 to 0.4. This is a
result of the bigger contribution of the perturbation to the whole energy for
excited states. The ground state has a smaller energy correction term, so the
term grows slower with the coupling constant. For the bigger corrections of
excited states this terms grow faster and the whole binding energy increases
also faster.

Second the binding energies of states with a higher azimuthal quantum num-
ber l are always slightly higher for a �xed principal quantum number n. In the
analytical approach we can see, that this l dependence comes from the logarith-
mic potential in the perturbation, where the Coulombic potential only depends
on n.

4.2 Bound state energies of quirkonia with di�er-

ent conditions

Additionally to the calculation with the full potential for quirk bound states
in the chapter before now calculations are presented with a di�erent potential
considered in [7]. The coupling constant reads there[7]

αQ(r) = αQ(rb)

(
1 +

αQ(rb)

3π
(11− nf ) ln(

r

rb
)

)
, (4.8)

where they have ignored the C0 = 0 term and just considered the term C1 =
4
3 (11 − nf )[12, 13]. Also they did not �x the number of light �avours nf at 0,
but considered it is 2[7]. The potential for this coupling constant can also be
treated with �rst order perturbation theory, so analytical values for the binding
energies are obtained by the formula[9]

E = Enl

{
1 +

αQ (rb)

3π
(22− 2nf )

(
ln
(n

2

)
+ Ψ(n+ l + 1)

)}
= Enlknl. (4.9)

Again an exact numerical solution of the Schrödinger equation has been done
to compare with the results of the �rst order perturbation theory. The energy
will always be given by the value of knl for the strength of the binding energy.
The energy values have been obtained for n = (1, 2, 3), l = (0, 1, 2), ᾱ(rb) =
(0.1, 0.2, 0.3, 0.4) and nf = 2, which are presented in the tables(4.3),(4.4).
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ᾱ k10 k20 k21 k30 k31 k32

0.1 0.93 1.23 1.32 1.42 1.49 1.54
0.2 0.86 1.47 1.64 1.85 1.97 2.08
0.3 0.79 1.70 1.96 2.27 2.46 2.61
0.4 0.72 1.94 2.28 2.69 2.95 3.15

Table 4.3: analytical energy coe�cient knl for nf = 2

ᾱ k10 k20 k21 k30 k31 k32

0.1 0.96 1.24 1.33 1.43 1.49 1.56
0.2 0.95 1.48 1.65 1.87 2.02 2.15
0.3 0.97 1.72 1.97 2.31 2.56 2.75
0.4 1.01 1.97 2.30 2.77 3.12 3.38

Table 4.4: numerical energy coe�cient knl for nf = 2

Additional to the calculation done in [7] here we consider also a only running
potential without light �avours for the reason, that the bound state quirks are
already the lightest quirks. So the values of the factor knl have been calculated
again with the values for ᾱ(rb) = (0.1, 0.2, 0.3, 0.4) and the number of light
fermion �avours nf = 0 and presented in tables(4.5),(4.6).

ᾱ k10 k20 k21 k30 k31 k32

0.1 0.92 1.29 1.39 1.52 1.60 1.66
0.2 0.83 1.57 1.78 2.03 2.19 2.31
0.3 0.75 1.86 2.17 2.55 2.79 2.97
0.4 0.66 2.15 2.56 3.07 3.38 3.63

Table 4.5: analytical energy coe�cient knl for nf = 0

ᾱ k10 k20 k21 k30 k31 k32

0.1 0.95 1.29 1.39 1.53 1.62 1.69
0.2 0.96 1.58 1.79 2.06 2.26 2.41
0.3 1.00 1.88 2.19 2.62 2.93 3.17
0.4 1.05 2.19 2.60 3.19 3.62 3.95

Table 4.6: numerical energy coe�cient knl for nf = 0

Here can be seen that the ground state of quirkonium is less bound than
its analog. This is a result of the repelling logarithm term in the perturbation,
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which shortens the depth of the potential, so that such deep energies can not
be reached. There is also a di�erence in the results between the numerical and
the analytical calculations, so that the binding in the numerical approach gets
slightly stronger with an increasing coupling constant, but in the analytical way
it keeps falling constantly. This is caused by the analytical formula of the �rst
order perturbation theory, where we get for �xed numbers n and l a constant
term times the coupling constant for the perturbation. In the ground state we
simply do not have a behavior, that can be approximated linear. Here we have
to use higher order perturbation theory to obtain more exact values. For the
most perturbative coupling constant ᾱ = 0.1 we get analytical results, that �t
to the numerical solutions very well, so we can trust at least these results. For
the excited states the results of both calculations are always very close together,
so there we have a nearly linear behavior and the values make sense.

The general behavior of the binding energy for these types of quirkonia
with only the running term in the potential is similar to the one considered in
the previous chapter. So the binding energies also increase for larger coupling
constants ᾱ faster for excited states and the binding energies for states with �xed
n increase with larger l. The only di�erence is the strength of the binding in
the di�erent models. Where the strength increases with a larger constant term
in the coupling constant, that makes a larger di�erence to the pure Coulombic
binding energies. The constant in the model considered in the previous chapter
has the additional factor C0, which makes it much larger so we get the largest
values for the binding energy. In the models of this chapter C0 is considered
to be 0 and the only di�erence in the potential comes from the number of light
quirks considered. When we consider no light quirks the potential is larger, so
the binding energy is larger. We see this behavior also in the results.

4.3 Transition lines of quirks

After the energy levels have been calculated, which are shown in �gure (4.2),
the energy of transitions between two states can also be easily calculated. In
the following calculations only the quirkonium type with the full potential from
chapter 4.1 is considered. At �rst the energy of the Lyman transitions, which
are transitions between an excited p-state and the ground state, are given by
the energy di�erence[7]

EL = En1 − E10 =

(
k10

2
− kn1

2n2

)
ᾱ2µ, (4.10)

where some values for
(
k10

2 −
kn1

2n2

)
are given in Table (4.7).
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ᾱ k21 k31

0.1 0.41 0.51
0.2 0.43 0.58
0.3 0.45 0.63
0.4 0.47 0.69

Table 4.7: values for
(
k10

2 −
kn1

2n2

)
The values here don't depend much on the coupling constant, so that the

transition energy is merely ᾱ2µ-dependent.

Figure 4.2: Here the energy splitting of quirkonium with the coupling constant
ᾱ = 0.1 is shown in units of the reduced mass µ for some well-chosen states.
The notation of the states is nL , where n is the principal quantum number and
L is the azimuthal quantum number.

The width of the Lyman transitions is given by[7]

ΓL =
4

9
q2αemE

3
L |< Rn1 | r | R10 >|2, (4.11)

where the charge q = 1
2 for quirks and numerical calculated values for the dipole

matrix element for quirkonia are given in Table (4.8).
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ᾱ < R21 | r | R10 > /rb < R31 | r | R10 > /rb

pure Coulombic 1.29 0.52
0.1 1.45 0.59
0.2 1.51 0.52
0.3 1.56 0.48
0.4 1.59 0.43

Table 4.8: In this table the radial part of the dipole matrix element between the
ground state and the lowest p states is shown in terms of rb for di�erent values
of ᾱ in numerical calculation and a value for the pure Coulombic potential.

The obtained values for the dipole matrix elements of the alpha transitions
are larger then in pure Coulombic approximation and increasing for bigger al-
pha. Where for beta transitions the value for weak coupling is larger then the
Coulombic, it is decreasing and smaller for stronger coupling. This comes from
the e�ect, that the wave functions form sharper peaks under the perturbative
potential, so that the overlap of di�erent wave functions gets bigger for wave
functions with same number of nodes, but decreases for di�erent number of
nodes. In the case of very strong coupling the peaks of di�erent wave functions
can on the other hand be so sharp, that the overlap decreases, when the peaks
are not very near together. This case does not apply here for a perturbative
potential.

The other transition, that should be calculated, is the hyper�ne transition
between the ground states with total spin 1 and 0. Its energy can be obtained
in the same way used for quarkonia, see eq. (3.16), with the only di�erence that
the wave function of quirkonium di�ers to the pure Coulombic wave function
due to it's C0 and C1 potential terms. This leads to a correction factor cnl, so
that wave function and hyper�ne energy are de�ned by[7]

| ψnl (0) |2= cnl
(ᾱ (rb)µ)

3

π
(4.12)

Ehf = c10
2

3
ᾱ4µ, (4.13)

where the values of c10, which were obtained numerically, for di�erent ᾱ are in
table(4.9).

ᾱ c1,0

0.1 0.71
0.2 0.46
0.3 0.33
0.4 0.25

Table 4.9: In this table the constant c1,0, which indicates the di�erence between
the square of the static and perturbed wave function at the origin, is given for
speci�c ᾱ .
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Figure 4.3: This graphs show the di�erence of the reduced normalized wave
functions of the Coulombic (blue) and one loop potential (red), where the cou-
pling constant in the upper picture is ᾱ = 0.1 and in the lower ᾱ = 0.4 .

Comparing the results for c10 with �gure (4.3) we see, that the reduced
wave function concentrates around rb for bigger ᾱ. This also applies to the
wave function and gives it a di�erent normalization factor, which decreases
with higher peaks at larger values. This lower normalization factor causes lower
values at the origin of the wave function. The obtained numbers also �t in their
behavior with the results of [7], but they are always little smaller, which comes
from the additional C0 term considered here.

The decay rate is given by the formula[7, 14]

Γhf =
4

3
q2αem

E3
hf

µ2
=

8

81
αemc

3
10ᾱ

12µ (4.14)

with the quirk charge q = 1
2 .

22



4.4 Conclusion

In this thesis the energy levels of the quirkonium have been calculated, where
a potential induced by a new type of strong interaction has been consider to
one loop. Also the quirks, which couple to quirkonium, are considered to be the
lightest quirks of the theory. To get the energy the Schrödinger equation for the
pure Coulombic static potential has been solved, which is possible for the non
relativistic system of quirkonia. After obtaining the unperturbed energy and
wave function, the energy of the one loop potential has been solved analytically
by �rst order perturbation theory, where the unknown coupling constant ᾱ of
the new interaction must be small enough to be perturbative. Additionally the
Schrödinger equation for the full potential has been solved numerically to com-
pare the obtained results and to get the accuracy of the �rst order perturbation
theory for di�erent ᾱ.

In the second part the original type of quirkonium, which has been considered
in [7], has been treated the same way. This type of quirkonia di�ers to the type
considered before only in its coupling constant. The coupling constant does only
run with ln( rrb ) , but it has no constant part. The number of light quirk �avour
there has been considered to be 2, which changes also the coupling constant.
So the energy values have been calculated for the original potential with 0 and
2 light quirk �avours numerically and analytically by �rst order perturbation
theory.

In the third part some transition lines of quirkonium have been calculated
only for the potential, that has been considered here. At �rst the transition
energies and widths of Lyman transitions have been calculated, which are tran-
sitions between the ground state and excited p-states. Second the energies and
decay rates of the hyper�ne transition between the ground state with spin 1 and
0 have been calculated.

At last a comparison with the result of [7] will be given. The obtained
binding energy values of the quirkonium type with the full potential are always
larger then the values of the type without the constant. But the here obtained
results for the binding energies of their type of quirkonium are in comparison
with the results of [7] always signi�cantly smaller, where here the accuracy of
the calculations is higher and also analytical calculations have been performed.
The Lyman transition, which was there solved only in Coulombic approximation
for Lyman alpha, has been calculated here also with numerically solved dipole
matrix elements. The second calculated transition was the hyper�ne transition,
where energy values were calculated, which are little smaller then in [7], which
comes from the additional considered C0 term, so the results are consistent.
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Chapter 5

Appendix

5.1 The wave function of the hydrogen atom

The Schrödinger equation looks like[1]

Hψ =

(
− ~2

2me
∇2 − α

r

)
ψ = Eψ (5.1)

and with ∇2 = 1
r2

∂
∂r

(
r2 ∂
∂r

)
+ 1

r2 sinϑ
∂
∂ϑ

(
sinϑ ∂

∂ϑ

)
+ 1

r2 sin2 ϑ

(
∂2

∂ϕ2

)
in spherical

coordinates it changes to

− ~2

2me

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+

1

r2 sin2 ϑ

(
∂2

∂ϕ2

)]
ψ

=
(
E +

α

r

)
ψ. (5.2)

The next step is to make a separation of variables, which means to split
ψ (r, ϑ, ϕ) in a radial and a spherical function ψ (r, ϑ, ϕ) = R (r)Y (ϑ, ϕ) and to
split the whole equation into a radial and a spherical part[1]

R (r)

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
Y (ϑ, ϕ) +

R (r)

r2 sin2 ϑ

(
∂2

∂ϕ2

)
Y (ϑ, ϕ)

= −Y (ϑ, ϕ)

r2

∂

∂r

(
r2 ∂

∂r

)
R (r)− 2me

~2

(α
r

+ E
)
R (r)Y (ϑ, ϕ) . (5.3)

Here I transferred the potential to the right side, multiplied with − 2me

~2

and inserted ψ (r, ϑ, ϕ) = R (r)Y (ϑ, ϕ). When the equation gets multiplied

with r2

R(r)Y (ϑ,ϕ) it can �nally be split in two parts, where the �rst part is only

dependent on r the second on (ϑ, ϕ)[1]
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1

R (r)

∂

∂r

(
r2 ∂

∂r

)
R (r) +

2mer
2

~2

(α
r

+ E
)

=

−1

Y (ϑ, ϕ) sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
Y (ϑ, ϕ)− 1

Y (ϑ, ϕ) sin2 ϑ

(
∂2

∂ϕ2

)
Y (ϑ, ϕ) . (5.4)

If I change r with keeping (ϑ, ϕ) constant, the right side is still constant, so
the left side must also be constant for all r and vice versa, so I can split it in two
parts with a constant l(l + 1), where l is here the azimuthal quantum number
and it appears, that l(l+ 1) is eigenvalue of the angular momentum square L2,
like seen later in the appendix, so that[1]

1

Y (ϑ, ϕ) sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
Y (ϑ, ϕ) +

1

Y (ϑ, ϕ) sin2 ϑ

(
∂2

∂ϕ2

)
Y (ϑ, ϕ)

= −l(l + 1) (5.5)

1

R (r)

∂

∂r

(
r2 ∂

∂r

)
R (r) +

2mer
2

~2

(α
r

+ E
)

= l(l + 1). (5.6)

To determine the wave function ψ (r, ϑ, ϕ) = R (r)Y (ϑ, ϕ) I solve at �rst
R(r) . So we need the solution of v(ρ) =

∑∞
i=0 aiρ

i, which is v(ρ) = L2l+1
n−l−1(2ρ)

the so called Laguerre polynomial, which is de�ned by the formula Lmn−m(x) =
1
n!

(
−1 d

dx

)m
ex
(
d
dx

)n
(e−xxn)[17]. Inserting this into the earlier substitutions

leads to Rnl(r) = u(r)
r = e−krkl+2rlL2l+1

n−l−1(2kr) with k = 1
~
√
−2mE.

To determine Y (ϑ, ϕ) we have to go back to equation (5.5) and make a
separation of variables again with Y (ϑ, ϕ) = Θ(ϑ)Φ(ϕ), which leads to[1]

sinϑ

Θ(ϑ)

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
Θ(ϑ) + sin2 ϑl(l + 1) =

−1

Φ(ϕ)

(
∂2

∂ϕ2

)
Φ(ϕ). (5.7)

This is again an equation, which is dependent on di�erentials of di�erent
variables on each side, so I can split it with an constant m2, where m is the
magnetic quantum number, which is an eigenvalue to the z-component of the
angular momentum, like seen in the appendix[1].

sinϑ

Θ(ϑ)

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
Θ(ϑ) + sin2 ϑl(l + 1) = m2, (5.8)

1

Φ(ϕ)

(
∂2

∂ϕ2

)
Φ(ϕ) = −m2. (5.9)

The solution of equation (5.9) is simply Φ(ϕ) = Aeimϕ +Be−imϕ, but with
a positive or negative | m | and a later done normalization it can be also be
simpli�ed to Φ(ϕ) = eimϕ.
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The solution of equation (5.8) is Θ(ϑ) = APml (cosϑ), where

Pml (x) = 1
2ll!

(1− x2)|m|/2
(
d
dx

)|m|
( d
dx )l(x2− 1)l is the so named Legendre poly-

nomial, here we can see that the polynomial is only nonzero, if | m |≤ l , so
the magnetic quantum number must not be bigger than the azimuthal to get a
physical solution.

Finally the spherical harmonics Y ml (ϑ, ϕ) =
√

(2l+1)
4π

(l−|m|)!
(l+|m|)!e

imϕPml (cosϑ)

are the solution of the whole angular equation and the normalized wave function
of the hydrogen atom by the condition

´
| ψ (r, ϑ, ϕ) |2 r2 sinϑdrdϑdϕ = 1 is[1]

ψnlm =

√
(2k)

3
(n− l − 1)!

2n [(n+ l)!]
e−kr (2kr)

l
L2l+1
n−l−1 (2kr)Y ml (ϑ, ϕ). (5.10)

5.2 Eigenfunctions and eigenvalues of the angu-

lar momentum

The angular momentum L = ~
i (r×∇) in quantum mechanics is an operator

with eigenvalues and eigenfunctions. To �nd the eigenfunctions we write the
operator in spherical coordinates with ∇ = r ∂

∂r + ϑ 1
r
∂
∂ϑ + ϕ 1

r sinϑ
∂
∂ϕ , so that

L = ~
i

(
ϕ ∂
∂ϑ−ϑ

1
sinϑ

∂
∂ϕ

)
[1]. Here we can split the angular momentum again

in parts of Cartesian coordinates with ϕ = − (sinϕ)x + (cosϕ)y and ϑ =
(cosϕ cosϑ)x + (cosϑ sinϕ)y − (sinϑ) z, so that Lz = ~

i
∂
∂ϕ . In equation (5.9)

we have exactly this operator with the eigenfunction Φ (ϕ), which is the ϕ-
dependent part of the spherical harmonics, with the eigenvalue ~m. So we can
say the spherical harmonics are the eigenfunctions of Lz with eigenvalues ~m[1].

In the same way we can determine the value of the square

L2 = −~2
(

1
sinϑ

∂
∂ϑ sinϑ ∂

∂ϑ + 1
sin2 ϑ

∂2

∂ϕ2

)
, which has already appeared in equation

(5.5). There we had as solution the spherical harmonics as eigenfunctions and
~2l (l + 1) as eigenvalues. So the spherical harmonics are also eigenfunctions to
L2 with the eigenvalues ~2l (l + 1)[1].
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