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Chapter 1

Introduction

The topic of this thesis is dark matter, which is a type of matter that is difficult
to understand and detect due to its reduced coupling with the standard model
interactions. In general there is no need, that it couples at all. The only
fundamental force dark matter is known to interact is gravitation. From this we
know dark matter exists. One possible explanation for this phenomenon and a
candidate for dark matter is the class of weakly interacting massive particles, so
called WIMPs. In this thesis a specific type of WIMPs is considered, which is
called “quirks”, defined in [7]. In the special case of quirks they are bound due
to a strong non-Abelian “quirkcolour”; which is the hidden nonstandard model
force, to form baryonic composite states of two quirks. Although they can carry
weak and electric charges, there exist composite states, that do not. These
states are the dark matter candidates for the reason, that dark matter must
not be charged. The dark matter candidate also has to be stable, which is true
for quirks due to being the lightest particles, so they can not decay into others.
Also these quirks have a mass mg, that is bigger than the confinement scale
of the quirkcolour Agc. At last the feature, that quirks have discrete bound
states, leads to the possibility to detect the transitions of quirky dark matter
with astrophysical measurements [7, 10].

This thesis has the aim to calculate the energies of the bound states and
the energy for transitions between the states of quirky composite dark matter.
The following chapters should at first introduce the theory of how to obtain the
energy levels of a two-body system with the example of hydrogen. Then the
focus gets on the problem of quarkonia, which is a bound state of a quark and
an antiquark due to strong interaction, that is much closer to the problem of a
bound state through the new strong quirkcolour force than hydrogen. Finally
the problem of quirkonia is tackled, where a calculation of the energy splittings
in analytical and numerical ways is presented and the transitions for indirect
observation of the dark matter are calculated.



Chapter 2

The Hydrogen atom

2.1 The energy levels of the hydrogen atom

At first I will discuss the problem of the Schrédinger equation for the hydrogen
atom. First we consider the constituents of the hydrogen atom, which are

the proton and the electron. The proton mass m, is much larger than the
electron mass m, , so in good approximation the reduced mass y = ::‘Z:Zf =
e P

2
Me — —2¢— ~ m,. In this approximation only the mass and momentum of

Me+m,
the electron contribute to the Schrédinger equation. Second the force, which
keeps the electron in the proton classical orbit, is simply the electromagnetic
force between the charged particles resulting a Coulombic potential with —<
dependence, where r is the radius between the proton and the electron and o
is the fine-structure constant, which is in natural units, that means ¢ = h = 1,
a = €2 with the elementary charge e [1]. The Schrédinger equation and a way

to obtain the radial equation[1]

Rtr) % <r2;> R(r) + 2mer? (% + E) =1l(l+1) (2.1)

and the wave function ¢ (r,9,¢) = R(r)Y (9, ¢), where R (r) is the radial

and Y (¥, ) is the spherical part, and properties of the azimuthal quantum

number [ are in the appendix. So we can start to determine the bound state

energy F of the hydrogen atom by the radial equation and substitute with the

reduced wave function u(r) = rR(r) and 2 (r22)R(r) = & (r22) 4 =
82u(r)

%(Tagi(:) —u(r)) = rZ5=+, which leads to[1]
d?u(r) o I(l+1) _
g (o (Fo) w0

To solve this differential equation it is useful to look at the limits of r and
analyze the asymptotic behaviors. For r — 0 the T%—part dominates, so the
9%u(r) 1l

equation simplifies to 5~ — T%l)u(r) = 0, which has the solutions u(r) =



Art*t! 4 Br~! | with the azimuthal quantum number /, that must be an integer
to be able to well define the Laguerre polynomials explained in appendix . The
limit » — 0 forbids r—! because it cannot be normalized for I # 0, where [ = 0
provides only a solution for the limit , so that u(r) oc 't For » — oo the

simplified equation is 2 (T) +2meEu(r ) = 0. For negative energies the solution
is u(r) = AeF” 4+ Be~ i w1th k = v/—2m.E, where e*"is forbidden because it
cannot be normalized, so u(r) oc e *" . With a last substitution, p = kr , u(p)
can finally be written as

u(p) = e *p' 1 u(p) (2.3)

with a function v(p) and the differential equations for u(p) and v(p) respec-
tively are [2]

2’LL c
88;2”)+<p1l(l;21))uw)0 (2:4)

2’U (v
P ca(@en-p B v 2+ D 90 @)

with the substitution ¢ = ,/_QTma . Now I express the function v(p) as a

power series v(p) = > o~ a;p’ and insert it in the equation with leads to|2]

Zal i(i —1)p"t+2(0+ 1)ip ™t = 2ip" + (—2(1+ 1) + ) p'] =0 (2.6)

The condition that this sum is zero, can only be satisfied, if the coeflicients
of every power are zero, so that we get a recursion relation for a;[2]

aiv1 (G + 1) +2(0+ D +1)) +a;(c—2(1+1)—2i) =0 (2.7)

20+1)+2i—c

Qi -
“iti+ 1) +2(0+1)(i+ 1)
From this recursion relation the behavior for the limit ¢ — oo can be ex-
tracted, which is *= — 2 . But that is the behavior of ¢, which is in contra-
diction to the found hmlt u(r) o< e”?. That leads to the conclusion, that the
series has to be truncated, which means that ¢ = 2(I4+1+14) = 2n ,where n is an
integer, named the principal quantum number, and [ is the azimuthal quantum
number, which must be smaller than n . Now using this condition in our earlier

Aj+1 = (28)

introduced expression ¢ = 4/ %a and solving it for the energy levels E of the
hydrogen atom leads to the expression [2]

mea®

B, = — e
2n2

(2.9)



2.2 Relativistic corrections of the Schrodinger
equation

The Schrodinger equation is a non-relativistic equation. To calculate the rela-
tivistic corrections we have to use the Dirac equation. Here we have to decouple
the solutions for positive and negative energies of the Dirac equation, which can
be achieved with a Foldy-Wouthuysen transformation, where the Dirac Hamilto-
nian H ' = ¢*(H — 0;)e~* and the wave function 1) = e~*9¢ " are transformed
with a matrix S that makes the operators in the Hamiltonian diagonal, so that
upper and lower components do not mix[3]. In the case of electromagnetic in-
teraction the Hamiltonian H = « - p 4+ Sm gets modified via minimal coupling,
where p — (p — eA) and i% — i% — ed with the potentials A and @, so that
the Hamiltonian looks like[3]

H=oa (p—eA)+ fm+ed. (2.10)

After three transformations of the Hamiltonian you get finally all correction
terms up to order # The transformed Dirac equation for the positive energies

written with a spinor ¢ = ( Sg ) reads[3]

_ 2 4
(p—eA) e p_P .

b
<m ekt 2m 2m 8ms3

e e Oy

For the hydrogen atom the potential A =0and E = —V® (r) = —1
with V(r) = —2, so that we can rewrite ;230-E x (p — eA) = 51 <Ly (p)[3].

2m2 r_ dr
Here we can see the four corrections beyond the potentials and the kinetic en-

4
ergy, where H,,, = —g— is the relativistic mass correction. It is convenient
to write it in terms of the unperturbed state Hy = % — < and the potential
4
2. 5o that Hyp = —f5 = —5- (Ho + %)2[2] The solution of the first order

perturbation theory is

B =<y | == (Hy+ ) 190 5= —L (£2 E 2 1
= o+ | ¢ >= nt20E, < - >4a” < 5 >
2m r 2m r r

(2.12)
which leads with En = —7;&22, < 1 >= %, < % >= 23% and the
n r TpNn r r2n (l+§)
Bohr radius rp = - to[2]
ma* n 3
gL me no o) 2.1
rm 2%4 (l _'_% 4) ( 3)

The next correction Hparwin = — gz divE is the Darwin term. Here it is

useful to put in the result of the Poisson equation, that leads to Hpgrwin =




S divE = — Sy 4np(r)[4] with the charge density p(r). For hydrogen atom

T 8m?2

the charge density is p(r) = —ed® (r), which leads to the perturbation term|[2]

me? me? ma?
ElDarwin =< ¢0 | ﬁ53 (’I") | wO >= w | ¢’VOLZTVL (O) ‘2: ﬁal,O (214)

with < 9950 | 6 () [ %950 >=] 1hlg0 (0) [*= ,risB .

Then there is the spin-orbit coupling resulting from an interaction between
the electron spin and the magnetic field of the proton in the rest frame of the
electron, with the Hamiltonian[2]

1 S-Ld
H in—Orbit — . 2.1
Spin—Orbit = 5 5~ drV(T) (2.15)
For the hydrogen potential V' (r) = —% the energy correction of this term

can be solved by first order perturbation theory by[2]

a S-L

Eépin—Orbit =< ¢0 | W | ¢O > . (216)

3

Here we have to express S-L in terms of J2, L2 and S2, so we can easily put
in their known eigenvalues. The total angular momentum is written as the sum
of angular momentum and the spin J2 = (L +S)? = L2 4+ 2L - S + S2, so that
the eigenvalues of S L =4 (J2—-L2—-8%) =3 (j(j+1)—1(+1) —s(s+1)).
For our spin j-electron the correction looks like[2]

ah? (j(j+1)—1(1+1)—32 1
EépinfOrbit = ( Am?2 4) < '(/JO | ﬁ | ’Q/JO > (217)
The expectation value of < ¢0 | X | 90 >is|2]
1 1
0 0
< — >= - . 2.18
vl 3 e ndril (14 3) (1+1) (2.18)

That leads to the final correction with an a*-dependence [2]

Bl ,:a4m(j(j+1)_l(g+1)_%)
Spin—Orbit 4An3l (l + %) (l T 1)

This formula applies only for [ > 1, but diverges for [ = 0. The solution
for I = 0 can be obtained, when a spherical potential is treated, which means
we consider the proton as composite of quarks and not as point particle. Here
the expectation value of < ¢° | X | ° > for I — 0 is not divergent anymore,
but the expectation value of < % | S-L | ¥ >= 0 [2]. So the expectation
value < ¢° | H | 4° >;—o= 0 vanishes and we can finally sum up the relativistic
corrections AE,; = Erm + Eparwin + Espin—orbit t0 get the total correction [2]

173
A, =22 (2T i (2.20)
2nt \4 5+ 5

(2.19)




2.3 The hyperfine splitting with tensor- and L - S-
terms

The other splitting is the hyperfine splitting, which is caused by couplings be-
tween the electron spin and the proton spin, where the magnetic moments are
Le = fm%se and pp = %Sp and g, is the gyromagnetic ratio of the proton,
where the gyromagnetic ratio of the electron has already been considered in the
expression of the magnetic moment. The resulting field is a composite of the
dipole field between the magnetic moments of the proton and the electron and
an interaction between the proton magnetic moment and the magnetic field,
which is caused by the movement of the electron with angular momentum L, so
that the Hamiltonian in the frame of the proton looks like [4]

(r- pe) (r-pp)

(&
> — - Lopp| . (221)

8T 1
Hpp === He - ppd (1) + 5 |He Hp—3

The energy correction can again be determined by perturbation theory,
where for spherical symmetric problems the expectation value of the term be-
tween the square brackets is 0, so the energy correction for the ground state
is

4rg,e?

Eif = _3memp < Y000 | Se - Spd (r) | ¥go > - (2.22)

Here we have again to express Se - Sp by their eigenvalues, so the total spin
S% = (S + Sp)2 =82 +2Sc - Sp 4 S2 and the eigenvalue of Se - Sp is Se - Sp =
%(SQ—Sg—S%) = %[s(s—l—l)—se(se+1)—sp(sp+1)], where s, = s, = %

1
and the total spin s can be s = 0 which leads to an energy difference
between these two possible states of

4rgye?
3memy,

The delta function gives us the solution of the integrand at zero, which leads
2

AEpp = — <00 1 0(r) | oo > - (2.23)

to a =qa*-dependent energy correction[4]
4g,m2a*
AEy; = — -2 (2.24)
3my,

For a non spherical term with [ > 0 the tensor and L - S term cause also an
energy splitting with can be written in perturbation theory by

82

4mm?2

€

AEp = —

<40] g[S+ L8] 4>, (2.25)



where S1o = 2 (r-S.)(r-Sp) — Sc - Sp. Inserting the expectation value
<0 | & |y >= W and the equation for the eigenvalues S - L =

$(J2-L2-8%)=1(G(+1)—1(1+1)—s(s+1)) it writes finally

meat 1
AEp = — = <Se>4+=(GGU+)—1(l+1)—s(s+1
= e i (<S> 450G -1 ) s )
(2.26)
4 -1
with < 1815 >= 1, j=1 for I > 0 and s = 1]9].



Chapter 3

Quarkonia

3.1 Static potential

Quarkonia are pairs of a heavy quark and a heavy antiquark of the same flavour,
which are bound by the strong interaction. Here we can see an analogy to the
hydrogen atom, where we have the proton and electron, which are bound by the
electromagnetic interaction. But to write down the potential we have to think
about the differences between the interactions[5]. The first difference is that the
quarks and antiquarks have the same and much bigger mass then the electron
and proton, so they have a different reduced mass. For the heavier quarks it
is m,. =~ 1.297099GeV, my, = 4.677) (GeV and m; ~ 172.940.6 + 0.9GeV [15].
The second difference is that the coupling constant « is much more energy
dependent than a.,, for hydrogen. Where ., (0) =~ % 1ncreases only about
5% between @ = 0 and Q = 30GeV [6], as(Q) = > is much

(33— 2nf)1n< Q2

bigger and diverging for small ), where Agcp is the QCD scale and ny is
the number of light quarks [5]. But there are also important analogies between
quarkonia and hydrogen like they both are non relativistic systems, which means
they have the same hierarchy of scales m > ma > ma?, where the coupling
constant « for hydrogen can be substituted with the velocity v of the quark for
quarkonia and the mass m is the electron or quark mass[16]. Due to the non
relativistic behavior they can be both described by the Schrédinger equation.
From this quarkonia can only be treated with perturbation theory, when the
energy scale ma? ~ mv? is much bigger then Agcp, which makes oy < 1,
where a typical value for ag ~ 0.15 — 0.25 [5]. Also the coupling constant is
now affected with an extra factor &« — Cpray the so called colour factor Cg
, which changes With the number of colours in the theory. The colour factor

is Cp = ;\71 for quarks, where N, is the number of colours, which is 3
[6, 5]. At last there is the phenomenon that quarks are confined, which mean
they can not be detected as free particles like the electrons, which results in a
linear attracting part in the potential additionally to the Coulombic part, so



the quarkonium potential reads [5]

as(r)

Vo (r)=—Cr +or, (3.1)

Cﬁ‘: is the string tension which keeps the quarks confined. For the

typical radius of the ground states, which is for the J/v r, ~ 0.2fm and also
smaller for heavier quarks, the Coulombic term dominates and the potential is
given by the pure Coulombic term, so that the energy is calculated the same
way like for hydrogen and we get[5]

where o0 ~ 1

2
_ 1 (Cras(r))
EQ’n — _T (3.2)
where yu = ﬂfx2 is the reduced mass which is for quarkonia p = %.

3.2 One loop-correction

The energy derived from the static potential for quarkonia looks similar to
hydrogen and has the order pa?. For hydrogen the next corrections are of the
order ua* due to the fact, that the components of hydrogen are the lightest
particles and so are stable. But for quarkonia there are also contributions of
pa®, which results from the fact, that lighter quarks then the bound ones exist,
so they are not stable and loops of lighter quarks are possible. In the same
way gluons can couple to each other and also form loops, which in both cases
leads to additional terms in the potential [5]. The full a4(r) and the additional
potential AV for the one loop correction read[12, 13, §]

s (1) = (1) (1 + “1(7’;1’) (co e 1n(7”))> (3.3)

Ty
a?(ry) r
AV(T) =-Cr—=——(Cy+C1 hl(f) (34)
477 Tp
with the constants
31 20
Co = KCA - ngnf +2B0vE
C1 = 2B
11 4
Bo = gcA ~3 fny,

where now r, = m is the Bohr radius of quarkonium , Ty = 3, C4 = N, is
the Casimir operator of the adjoint representation which is equal to the number

10



of colours , ny is the number of light fermion flavours and yg ~ 0.577216 is the
Euler constant. The energy calculated by first order perturbation theory reads

AFE| =< wO | —CF% (CO + C4 h’l( )) ‘ '(/)O >=

oy <o Ly —OF“S(;“”)%(I)<¢°|1|¢°>
s Ty r

a3(rp)Ch
4

where v is a cut off parameter. The first two expectation values can be solved
easily with < >= so that

1
—Cp <40 | @ |40 >=AEN 4+ AEP 4 AEP) . (3.5)

a3 (rs) Co as (r) Co

2
1
AE(l):— as(rb) 0 = 0 _ — E n
! Cr 47 Co<v |r|w = Cr 47 ryn? Q 2
(3.6)

AE® = ¢ =
1 g r A7 rpn2

EQ,an (1) .37

27 128

a?(rp)Ch In (Vl ) <0 | 0 = —Cp a?(ry)Ch In (i) _

The third expectation value with the ln(” dependence has to be solved
explicitly with the hydrogen wave function (5 10), so it reads

In(vr) a?(ry)Cy
T F 47

AE(Y = —Cp (”’)C <y° |40 >=—C

co m 2T

/1] B0t 1 ok 0 22
0 0

(2k)* (n —1—1)! ok oLt - .
\/ 2 ((n+1)]] BT (2kr) LY (2kr) Y9, 0)r® sin(9)drddde  (3.8)

This can be simplified with the orthogonal relation of the spherical harmonics[1]

T 2
/ sin(9)dv / deY™ * (0, )Y (9, ©) = 01,106 (3.9)
0 0

so it writes

< a2(r)Cy [ @6 (n—1=1)! 2
AE3 — —Cp T/Hn(w) CES]] e 25" (2kr) ! [L21+1 (2kr)|” dr.

(3.10)

11



Here a substitution with R = 2kr and dR = 2kdr and the Euler I'-gamma
function[17] cleans the notation a bit up, so that

o0

2
(3) _ .~ O (rb)Cl I‘ (n=1) / R p2ltl [r2itl 9
AR = —Cp = e [ WG ke R LA (R)dR

0
(3.11)

where like for hydrogen k = /—2uF = ”C%(”’) = %b To solve this
integral the identity[8]
/ e BR™[L" (R)]* dR =

0

Fm+n+1)

T(m+1) (3.12)

can be used and the In(R) can simply be transformed by introducing an
auxiliary parameter ¢, so that In(R)R?+1 = L R2I+1+e | __ After substituting
with eq.(3.2) the energy reads

C; T'(n-=1)
AE® _ g as(ry)C1
1 @r o T(n+l+1)

vnry d r —R p2l+1+te [72l+1+e 2
(ln( 5 >+de)/ R [L —1-1 (R)] dR

0

R (E P RS

as(ry)Ch

2

e=0

Eon [hl (W;”’) SO+ 1)] (3.13)

where U(z) = L In (' (z)) = dlﬂi( ) is the polygamma function[18]. Finally
the expression for the whole energy difference is given by[9]

AEy = Eg, %2(:’) [CO +C (1n (g) S+ 1))} . (3.14)

3.3 Corrections of pa*-order

Like in the hydrogen case for quarkonium also the same higher order corrections
in the potential apply, which can be obtained through a non relativistic effective
field theory of QCD, that provides a definition of the potential. Some of these
terms in the potential, which have appeared for hydrogen before and will be
needed for later calculations , read

Crag(r 1(1 1?2
A(Q)V(’I“):FWLQ(b)|:—2{T7p2}+2T3+7T(S(3)(T)+

ATy s 3 1,

12



with S12(r) = 3(7-01) (7 - 02) — 0102 and S = G + %2, where the matching
coefficients are only considered to the ua*-order [11]. The energy corrections
due to hyperfine, tensor and L-S coupling are calculated equally to the hydrogen

case, so that

Cras(rp) 4 o 3 1 )
AE — ZETs\ o) 27 g2503) 2 1. L _
hf, T 2 < 3 S=6 (7‘)+2r3L S+4r3512(7“) | ¢ >
1 (Cros(ry))’ 1 (Cpag(ry))* y .
1) 3 H—-I({l+1)-2 S
3 0t 165 0+ 1) (l+1)[ GG+ =1(1+1)—2)+ < Si2(F) >]
(3.16)
A
with < %512 >= 1, ji=1 for I > 0 and s = 1|[9].
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Chapter 4

Quirkonia

4.1 Bound state energies of quirkonia

The topic of this thesis is the calculation of the energy levels of quirkonia, which
are bound states of weakly interacting massive particles named quirks. They are
a dark matter candidate, which was proposed in [7]. The simplest model for a
bound state of quirks consists of two quirk flavours « and d transforming under
a SU(2)q group, which is the so called quirkcolour [7]. They also form a weak
isospin doublet, where foru the third component of the isospin I has I3 = % and
d has I3 = f% as isospin. They carry the hyper charge U(1)y, which is % for u
and f% for d, and a quirky baryon number U(1)gpn, that is % for both u and
d [7]. So a suitable choice for a quirk bound state, which can also be a dark
matter candidate, is the bound state of a u and d quirk. This is, due to the
quirkcolour and baryon number, a baryonic state, which is stable and electric
neutral, but has a small electric dipole element, which is small enough to not
have an effect to rule it out as dark matter[7]. Another reason for this choice
is, that the considered ground state should be scalar, where a mesonic ground
state, e. g. ut, would be pseudoscalar[7]. The mass m, 4 of the quirks, which
is generated through the Higgs mechanism, is in the range of 100 — 500GeV [7].

The calculation of the energy of the bound states will be done perturbative
like for quarkonia. This can be done for quirkonia due to the hierarchy of the
scales mg > mgv > mqv2 with the quirk mass m, and the coupling ag ~ v
similar to the quirk velocity v in a non relativistic bound state. So for quirkonia
ag < 1 is small and calculations can be done perturbative [7]. So the only
difference to quarkonia is, that the coupling constant for quirkcolour changes
the colour factor due to the different number of colours. For obtaining the
energy levels of the quirk bound state, similar to quarkonia, we have to start
with the quirkcolour static potential[7]

V(r)=—- , (4.1)

where a(r) = Crag(r) = 2ag(r) with a colour factor Cr for two colours

14



and a perturbative but large coupling constant ag(r) = ag(ry) at the Bohr
radius 7. The potential can be inserted in the Schrodinger equation and can be
solved. So we obtain the same wave function like for hydrogen and the binding
energies for the static potential, which read|7]

a’(ry)p
Ey=— 4.2
0 2’[7,2 ) ( )
where p = ;e is the reduced mass of the bound state and the Bohr radius

= m Next the energy levels for the one-loop potential can be calculated.
Therefore we write down the potential of the one-loop correction potential AV
and the coupling constant ag(r), like shown in the quarkonia part, with the
new values of the constants Cy and Cy for quirkonia. The expressions read

than[7, 12, 13, 8]
ol (GRS S0 R L]
6

aq(r) = aq(rs) {

2 44 44 r
AV(r) = 2.4 g R 4.4
vin=-c S0 (2L ) + End). s
where the values C; = % and Cp = & + 2!yp are obtained, when the number

of colours N, is 2, resultlng from the SU(2)g quirkcolour, and the number of
light quirks ny is 0, which is reasonable for a model, where there are no light
quirks. This potential can be evaluated now and is written with a factor k,;
compared to the unperturbed pure Coulombic state like [7]

a’(rp)p
2n2
First the energy levels are obtained by an analytical approach, where the
energy for the potential AV has been calculated by first order perturbation
theory, like for quarkonia, which leads to the energy difference[8, 9]

AE, = E, 0‘6225:”) KG; + 4347E> + % (ln (g) FU(n 41+ 1))] (4.6)

Eoi=—kuy (4.5)

and the total energy

E:E0{1+0@2(7:b) [(692+4347E) + 434 (1n(2) +\Il(n+l+1)>” — Eokny.
(@.7)

The only value in the energy we still do not know is the value of the coupling
constant @, that is unknown, but there is the constraint to be small enough to
be perturbative. With this condition the results of the analytical calculation
are shown in table(4.1), which gives the values of k,; for some values of a(ry) =
(0.1,0.2,0.3,0.4) .

15



[ & [ ko | koo | kot | kso | ks | ks2 |
0.1 | 1.24 | 1.61 | 1.72 | 1.84 | 1.92 | 1.98
0.2 | 1.48 | 2.23 | 2.43 | 2.69 | 2.84 | 2.97
0.3 | 1.73 | 2.84 | 3.15 | 3.53 | 3.76 | 3.95
0.4 ]197 | 345 | 3.87 | 4.37 | 4.68 | 4.93

Table 4.1: analytical energy coefficient k,,; for the full potential

To check the results, the Schrédinger equation with the perturbative poten-
tial can also be solved exactly by a numerical calculation. For the same values
of a(ry) = (0.1,0.2,0.3,0.4) and n = (1,2, 3) following numerical values have
been obtained and a diagram of the energy splitting is given in figure(4.1).

[ @ [ ko | koo | kot | kso | ks1i | ksa |
0.1 | 1.25 | 1.63 | 1.76 | 1.91 | 2.00 | 2.08
0.2 | 1.50 | 2.30 | 2.57 | 2.90 | 3.14 | 3.32
0.3 | 1.75 | 3.00 | 3.42 | 3.98 | 4.39 | 4.69
0.4 | 2.01 | 372|432 | 5.12 | 5.71 | 6.16

Table 4.2: numerical energy coefficient k,,; for the full potential

0 —
-0.2 —
E -0.4 —
a i
d i
= i
0.6 — 01
= i 0.2
o
= E 0.3
c-0.8 4 — 0.4
E i .
_1 —
] 5 states p states d states
1.2 -

Figure 4.1: Here the energy splitting of the quirkonium states due to the one
loop potential is shown in terms of ua?. The splittings are shown in different
colours for the values of alpha and the lowest three s states, the lowest two p
states and the lowest d state.
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Here we can see that the numerical and analytical values for the bound states
with a lower & are very close together, while the two results differ for bigger
values. This results from the way the analytical values are calculated, where
only first order perturbations theory was used. So the energy values for higher
values of @&, which are not so perturbative anymore, have to be calculated with
higher orders for better coincidence with the exact values.

In general the binding energies increase for a larger coupling constant @,
where the excited states are more affected by the change of the value of the
coupling constant. So the energy of the ground state increases only about 60%,
where the energy of the excited state E3o increases nearly about its double
value, when the coupling constant & is increased from 0.1 to 0.4. This is a
result of the bigger contribution of the perturbation to the whole energy for
excited states. The ground state has a smaller energy correction term, so the
term grows slower with the coupling constant. For the bigger corrections of
excited states this terms grow faster and the whole binding energy increases
also faster.

Second the binding energies of states with a higher azimuthal quantum num-
ber [ are always slightly higher for a fixed principal quantum number n. In the
analytical approach we can see, that this [ dependence comes from the logarith-
mic potential in the perturbation, where the Coulombic potential only depends
on n.

4.2 Bound state energies of quirkonia with differ-
ent conditions
Additionally to the calculation with the full potential for quirk bound states

in the chapter before now calculations are presented with a different potential
considered in [7]. The coupling constant reads there[7]

3 Ty

ag(r) = ag(ry) (1 L oel) gy an“)) , (4.8)

where they have ignored the Cy = 0 term and just considered the term Cy =
3(11 — ny)[12, 13]. Also they did not fix the number of light flavours n; at 0,
but considered it is 2[7]. The potential for this coupling constant can also be
treated with first order perturbation theory, so analytical values for the binding
energies are obtained by the formula[9]

E=E, {1 + 0@@375:0 (22 — 2n) (m (g) FU(n A+ 1))} = Bukn. (4.9)

Again an exact numerical solution of the Schréodinger equation has been done
to compare with the results of the first order perturbation theory. The energy
will always be given by the value of k,; for the strength of the binding energy.
The energy values have been obtained for n = (1,2,3), I = (0,1,2), a(ry) =
(0.1,0.2,0.3,0.4) and n; = 2, which are presented in the tables(4.3),(4.4).
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[ & [ ko | koo | kot | kso | ks | ks2 |
0.1 | 093 | 1.23 | 1.32 | 1.42 | 1.49 | 1.54
0.2 | 0.86 | 1.47 | 1.64 | 1.85 | 1.97 | 2.08
0.3 |10.79 | 1.70 | 1.96 | 2.27 | 2.46 | 2.61
0.4 072 | 1.94 | 2.28 | 2.69 | 2.95 | 3.15

Table 4.3: analytical energy coeflicient k,; for ny =2

[ & [ ko [ koo | kot | kso | ka1 | ksa |
0.1 1096 | 1.24 | 1.33 | 1.43 | 1.49 | 1.56
0.2 | 095 | 1.48 | 1.65 | 1.87 | 2.02 | 2.15
0.3 1097 | 1.72 | 1.97 | 2.31 | 2.56 | 2.75
0.4 | 1.01 | 1.97 | 2.30 | 2.77 | 3.12 | 3.38

Table 4.4: numerical energy coefficient k,,; for ny = 2

Additional to the calculation done in [7] here we consider also a only running
potential without light flavours for the reason, that the bound state quirks are
already the lightest quirks. So the values of the factor k,; have been calculated
again with the values for a(r) = (0.1,0.2,0.3,0.4) and the number of light
fermion flavours ny = 0 and presented in tables(4.5),(4.6).

[ & [ ko | koo | kor | kso | ka1 | ks2 |
0.1 1092|129 | 1.39 | 1.52 | 1.60 | 1.66
0.2 | 083 | 1.57 | 1.78 | 2.03 | 2.19 | 2.31
0.3 | 0.75 | 1.86 | 2.17 | 2.55 | 2.79 | 2.97
0.4 | 0.66 | 2.15 | 2.56 | 3.07 | 3.38 | 3.63

Table 4.5: analytical energy coeflicient £,; for ny =0

[ & [ Ko | koo | kor | kso | ks | ksa |
0.1 1095|129 139|153 | 162 | 1.69
0.2 |1 096 | 1.58 | 1.79 | 2.06 | 2.26 | 2.41
0.3 | 1.00 | 1.88 | 2.19 | 2.62 | 2.93 | 3.17
0.4 | 1.05 | 2.19 | 2.60 | 3.19 | 3.62 | 3.95

Table 4.6: numerical energy coefficient k,,; for ny =0

Here can be seen that the ground state of quirkonium is less bound than
its analog. This is a result of the repelling logarithm term in the perturbation,
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which shortens the depth of the potential, so that such deep energies can not
be reached. There is also a difference in the results between the numerical and
the analytical calculations, so that the binding in the numerical approach gets
slightly stronger with an increasing coupling constant, but in the analytical way
it keeps falling constantly. This is caused by the analytical formula of the first
order perturbation theory, where we get for fixed numbers n and [ a constant
term times the coupling constant for the perturbation. In the ground state we
simply do not have a behavior, that can be approximated linear. Here we have
to use higher order perturbation theory to obtain more exact values. For the
most perturbative coupling constant @ = 0.1 we get analytical results, that fit
to the numerical solutions very well, so we can trust at least these results. For
the excited states the results of both calculations are always very close together,
so there we have a nearly linear behavior and the values make sense.

The general behavior of the binding energy for these types of quirkonia
with only the running term in the potential is similar to the one considered in
the previous chapter. So the binding energies also increase for larger coupling
constants & faster for excited states and the binding energies for states with fixed
n increase with larger [. The only difference is the strength of the binding in
the different models. Where the strength increases with a larger constant term
in the coupling constant, that makes a larger difference to the pure Coulombic
binding energies. The constant in the model considered in the previous chapter
has the additional factor Cy, which makes it much larger so we get the largest
values for the binding energy. In the models of this chapter Cy is considered
to be 0 and the only difference in the potential comes from the number of light
quirks considered. When we consider no light quirks the potential is larger, so
the binding energy is larger. We see this behavior also in the results.

4.3 Transition lines of quirks

After the energy levels have been calculated, which are shown in figure (4.2),
the energy of transitions between two states can also be easily calculated. In
the following calculations only the quirkonium type with the full potential from
chapter 4.1 is considered. At first the energy of the Lyman transitions, which
are transitions between an excited p-state and the ground state, are given by
the energy difference|7]

k kn1\ _
Ep =Ewn — By = (;0 - 2n;> ap, (4.10)

where some values for (% - kl) are given in Table (4.7).
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[ @ [ Koy [ ka1 |
0.1 | 0.41 | 0.51
0.2 | 0.43 | 0.58
0.3 ] 0.45 | 0.63
0.4 | 0.47 | 0.69

Table 4.7: values for (&0 —

[NIES
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N

S—

The values here don’t depend much on the coupling constant, so that the
transition energy is merely &2 pu-dependent.
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Figure 4.2: Here the energy splitting of quirkonium with the coupling constant
@ = 0.1 is shown in units of the reduced mass p for some well-chosen states.
The notation of the states is nLL , where n is the principal quantum number and
L is the azimuthal quantum number.

The width of the Lyman transitions is given by][7]

4
r, = §q2aemE,§ |< Ry | 7| Rio >/ (4.11)

where the charge ¢ = % for quirks and numerical calculated values for the dipole
matrix element for quirkonia are given in Table (4.8).
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’ «@ ‘<R21|T‘R10>/Tb‘<R31|T|R10>/Tb‘

pure Coulombic 1.29 0.52
0.1 1.45 0.59
0.2 1.51 0.52
0.3 1.56 0.48
0.4 1.59 0.43

Table 4.8: In this table the radial part of the dipole matrix element between the
ground state and the lowest p states is shown in terms of r, for different values
of @ in numerical calculation and a value for the pure Coulombic potential.

The obtained values for the dipole matrix elements of the alpha transitions
are larger then in pure Coulombic approximation and increasing for bigger al-
pha. Where for beta transitions the value for weak coupling is larger then the
Coulombic, it is decreasing and smaller for stronger coupling. This comes from
the effect, that the wave functions form sharper peaks under the perturbative
potential, so that the overlap of different wave functions gets bigger for wave
functions with same number of nodes, but decreases for different number of
nodes. In the case of very strong coupling the peaks of different wave functions
can on the other hand be so sharp, that the overlap decreases, when the peaks
are not very near together. This case does not apply here for a perturbative
potential.

The other transition, that should be calculated, is the hyperfine transition
between the ground states with total spin 1 and 0. Its energy can be obtained
in the same way used for quarkonia, see eq. (3.16), with the only difference that
the wave function of quirkonium differs to the pure Coulombic wave function
due to it’s Cy and C; potential terms. This leads to a correction factor c,;, so
that wave function and hyperfine energy are defined by][7]

— 3
| Yt (0) [P= Cnlw (4.12)

™

2
Epny = 0105074/% (4.13)

where the values of ¢19, which were obtained numerically, for different & are in
table(4.9).

[ a [co]

0.1 |0.71
0.2 | 0.46
0.3 | 0.33
0.4 | 0.25

Table 4.9: In this table the constant c; o, which indicates the difference between
the square of the static and perturbed wave function at the origin, is given for
specific & .
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Figure 4.3: This graphs show the difference of the reduced normalized wave
functions of the Coulombic (blue) and one loop potential (red), where the cou-
pling constant in the upper picture is @ = 0.1 and in the lower @ = 0.4 .

Comparing the results for c¢1o with figure (4.3) we see, that the reduced
wave function concentrates around 7, for bigger @. This also applies to the
wave function and gives it a different normalization factor, which decreases
with higher peaks at larger values. This lower normalization factor causes lower
values at the origin of the wave function. The obtained numbers also fit in their
behavior with the results of [7], but they are always little smaller, which comes
from the additional Cy term considered here.

The decay rate is given by the formula[7, 14]

4 E} 8 _
Thny = ngaemM—Qf = Qaemci’oalzu (4.14)

with the quirk charge ¢ = %
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4.4 Conclusion

In this thesis the energy levels of the quirkonium have been calculated, where
a potential induced by a new type of strong interaction has been consider to
one loop. Also the quirks, which couple to quirkonium, are considered to be the
lightest quirks of the theory. To get the energy the Schréodinger equation for the
pure Coulombic static potential has been solved, which is possible for the non
relativistic system of quirkonia. After obtaining the unperturbed energy and
wave function, the energy of the one loop potential has been solved analytically
by first order perturbation theory, where the unknown coupling constant & of
the new interaction must be small enough to be perturbative. Additionally the
Schrédinger equation for the full potential has been solved numerically to com-
pare the obtained results and to get the accuracy of the first order perturbation
theory for different a.

In the second part the original type of quirkonium, which has been considered
in [7], has been treated the same way. This type of quirkonia differs to the type
considered before only in its coupling constant. The coupling constant does only
run with In(* ) but it has no constant part. The number of light quirk flavour
there has been considered to be 2, which changes also the coupling constant.
So the energy values have been calculated for the original potential with 0 and
2 light quirk flavours numerically and analytically by first order perturbation
theory.

In the third part some transition lines of quirkonium have been calculated
only for the potential, that has been considered here. At first the transition
energies and widths of Lyman transitions have been calculated, which are tran-
sitions between the ground state and excited p-states. Second the energies and
decay rates of the hyperfine transition between the ground state with spin 1 and
0 have been calculated.

At last a comparison with the result of [7] will be given. The obtained
binding energy values of the quirkonium type with the full potential are always
larger then the values of the type without the constant. But the here obtained
results for the binding energies of their type of quirkonium are in comparison
with the results of [7] always significantly smaller, where here the accuracy of
the calculations is higher and also analytical calculations have been performed.
The Lyman transition, which was there solved only in Coulombic approximation
for Lyman alpha, has been calculated here also with numerically solved dipole
matrix elements. The second calculated transition was the hyperfine transition,
where energy values were calculated, which are little smaller then in [7], which
comes from the additional considered Cy term, so the results are consistent.
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Chapter 5

Appendix

5.1 The wave function of the hydrogen atom

The Schrodinger equation looks like[1]

_ R a _
Hip = (—2mev —r>¢_E¢ (5.1)

: 2 _ 109 (.20 10 (g 9 1 22\ ;
and with V= = &= (r E) + =99 (s1n198—19) + =y (3—@2) in spherical

coordinates it changes to

L0 (whY, L (oY, 1 (RN]
2m, |12 Or " or 2sind 09 \> V99 r2sin? 9 \ Op2
a
:(E+;)¢. (5.2)

The next step is to make a separation of variables, which means to split
¥ (r,9, ) in a radial and a spherical function ¢ (r,9,¢) = R(r)Y (9, ¢) and to
split the whole equation into a radial and a spherical part|[1]

R(r) o (. 0 R(r) (0
7“2 sin9 09 (Slnﬁa,&) Y (19’ ‘P) + 2 Sin2 9 8%02 Y (193 QD)

_ _Ywa‘P) K (72;) R(r)— 2m. (% + E) R(rY (9,p). (5.3)

r2  Or h?

2me

Here I transferred the potential to the right side, multiplied with —=5
and inserted ¢ (r,9,9) = R(r)Y (9,¢). When the equation gets multiplied

with Wiﬂm it can finally be split in two parts, where the first part is only

dependent on r the second on (¢, ¢)[1]
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L 0(.0 2mer? (o B
R(r)ar(r ar>R<7‘>+ wo (G E) =
—1 0 0 1 62
Y (0.0 sing o9 V55 1Y - |53 ]|Y . A4
Y (9, ) sind 09 <Sm19319) ) V0 e o (8902> B.0). (34)

If T change r with keeping (9, ¢) constant, the right side is still constant, so
the left side must also be constant for all  and vice versa, so I can split it in two
parts with a constant (I 4+ 1), where [ is here the azimuthal quantum number
and it appears, that [(I + 1) is eigenvalue of the angular momentum square L2,
like seen later in the appendix, so that[1]

! 9 (im0 ) v (9,0) + ! P \y w.0)
S S < ) IS S S
Y (0,¢)sind 89 " a0 TV (0, 0)sin2 0 \ 0 ¥

= —I(1+1) (5.5)

1 0 /(5,0 2mer?
Z (2R (%+E) =+, 5.6
R(r)8r<r 8r> A T (t+1) (56)

To determine the wave function ¢ (r,9,¢) = R(r)Y (9,¢) I solve at first
R(r) . So we need the solution of v(p) = 350, a;p’, which is v(p) = L1 | (2p)
the so called Laguerre polynomial, which is defined by the formula L7 (x) =
L (—lﬁ)m e’ (d%)n (e=*x™)[17]. Inserting this into the earlier substitutions
leads to Ry, (r) = @ = e R L2 (2kr) with k = v/—2mE.

To determine Y (¢, ) we have to go back to equation (5.5) and make a
separation of variables again with Y (¢, ) = ©(9)®(y), which leads to[1]

sinﬁaaﬁ) O(9) +sin® V(1 +1) = #;) (;:02> D(p). (5.7)

This is again an equation, which is dependent on differentials of different
variables on each side, so I can split it with an constant m?, where m is the

magnetic quantum number, which is an eigenvalue to the z-component of the
angular momentum, like seen in the appendix[1].

sind 0
O(v) 09

3%9);9 (sinﬁa{;) O(W) + sin? 91l + 1) = m?, (58)
1 0? 2
517 (772) 2690 = o

The solution of equation (5.9) is simply ®(p) = Ae™™? + Be™ "%, but with
a positive or negative | m | and a later done normalization it can be also be
simplified to ®(p) = e™®,
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The solution of equation (5.8) is ©(J) = AP/™(cosv), where

[m| .
P () = 5 (1 —22)lml/2 ()™ (L)l (32 — 1)l is the so named Legendre poly-
nomial, here we can see that the polynomial is only nonzero, if | m |< [, so
the magnetic quantum number must not be bigger than the azimuthal to get a
physical solution.

Finally the spherical harmonics Y (¥, ¢) = (2”1) 8+I$B: e'™? P (cos )
are the solution of the whole angular equation and the normahzed wave function

of the hydrogen atom by the condition [ | ¢ (r,9, ) |[* r?sinddrdidde = 1 is[1]

B (2k) (n—1- ) —kr 20+1 ym
wnzm\/ A CEN] kT (2kr)! L2 | (2kr) Y (0, ). (5.10)

5.2 Eigenfunctions and eigenvalues of the angu-
lar momentum

The angular momentum L = (r x V) in quantum mechanics is an operator
with eigenvalues and elgenfunctlons To find the elgenfunctlons we write the

operator in spherical coordinates with V = rd + 19r 55 T cprsmﬂ%, so that
L=272 (goa—ﬁfﬁﬁ%)[l]. Here we can split the angular momentum again
in parts of Cartesian coordinates with ¢ = — (sin (p)X + (cosp)y and ¥ =

(cospcos) x + (cos¥sinp)y — (sin?) z, so that L, = 8¢ In equation (5.9)

we have exactly this operator with the eigenfunction ® (¢), which is the -

dependent part of the spherical harmonics, with the eigenvalue Am. So we can

say the spherical harmonics are the eigenfunctions of L, with eigenvalues fim/[1].
In the same way we can determine the value of the square

L2 = —hp? (Shllﬁ % sin 19% + ﬁaa—;), which has already appeared in equation
(5.5). There we had as solution the spherical harmonics as eigenfunctions and

R?L (I + 1) as eigenvalues. So the spherical harmonics are also eigenfunctions to
L? with the eigenvalues h2l (I + 1)[1].
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