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Abstract: Axial symmetry and stationary properties of spacetime allow to find exact analytical
solutions of differential equations describing fields and particles in a gravitational background. The
present work is mainly devoted to derivation of exact solutions of Maxwell’s equations for magnetic
fields generated by current loops around static black holes (BHs) in Einstein-aether gravity based
on the spacetime symmetries in both regions: (i) interior and (ii) exterior to the current loop for a
proper observer. The spacetime symmetries are applied in separating variables to solve the second
order ordinary differential equation for vector potential of electromagnetic field and the equations of
motion of test particles around the aether BH. We also study effects of the aether field on innermost
stable circular orbits (ISCOs) of the test particles assuming the current loop position is placed there. It
is obtained that the ISCO radius, as well as dipole magnetic moment of the current loop decrease
with the increase of the aether parameter c14. Moreover, the performed analysis indicates that the
aether field causes a decrease in the magnetic field inside and outside the current loop due to the
change of its position.

Keywords: black holes; magnetic fields; symmetries in gravity; Einstein aether theory
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1. Introduction

General Relativity (GR) is a classical theory of gravity which was proposed by Einstein
in 1915, and was successfully tested for the first time in 1919 using solar eclipse in the
weak gravitational field and slow motion regime. However, 100 years later, there is still
no properly constructed and developed quantum gravity theory. The physical vacuum in
quantum gravity may determine a preferred rest frame at the microscopic level. Numerous
observations severely limit the possibility of Lorentz-violating physics among the standard
model gravitational fields. The constraints on Lorentz violation in the gravitational sector
are generally far weaker.

To allow for gravitational Lorentz violation without abandoning the framework of
GR, the background tensor fields breaking the symmetry are requested to have dynamical
behaviour. Einstein-aether gravity theory is also one of this type of field theories [1]. In
addition to the spacetime metric tensor, it involves a dynamical, unit timelike vector field.
Like the metric, and unlike other classical fields, the unit vector cannot vanish anywhere,
so it breaks local Lorentz symmetry down to a rotation subgroup. It defines a congruence
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of timelike curves filling the whole spacetime, similar to a fluid, and so it has been referred
to as an “aether”.

The motivation for studying the Einstein-aether gravity theory is manyfold. The first
primary goal is related to the quantum gravity suspicion already discussed. A secondary
goal is to develop a viable and reasonably natural foil against which to constrain theories
of gravity through the current gravitational and astronomical observations, in an era of
great discoveries in relativistic astrophysics when numerous alternative gravity theories
have already been either ruled out or severely constrained. The third goal of interest in the
Einstein-aether gravity theory is the theoretical laboratory it offers for studying symmetries
and diffeomorphism-invariant physics with preferred frame effects.

Geometrically, the Einstein-aether gravity theory is a vector-tensor gravity theory
where the vector field is constrained to have a unit norm. These constraints eliminate a
wrong-sign kinetic term for the length-stretching mode, providing the tested theory with a
possibility of being viable [2].

From the basic principles, general relativity is based on an inertial frame of reference
only on the local scale. Indeed, it can not behave in this way as a global inertial frame.
On the other hand, a gravitating body is considered as immersed in an aether field in the
framework of the Einstein-aether gravity theory. Accordingly, a timelike direction at a given
point of spacetime with Lorentz symmetry can be defined in the Einstein-aether gravity
while it is violated in general relativity [3]. Astrophysical and cosmological aspects of the
Einstein-aether gravity are explored in [4,5]. The paper [6] is devoted to thermodynamics
of the Einstein-aether gravity. Dynamics and motion of test particles in close vicinity of
BHs in the aether gravity are investigated in [7,8]. The constraints on the parameters
of the Einstein-aether gravity are obtained through LIGO-VIRGO gravitational waves
observations [9,10]. The first image of the supermassive black hole (SMBH) M 87* by the
Event Horizon Telescope (EHT) also provided observational constraints on the Einstein-
aether gravity parameters [11].

The main properties (including the critical mass limit) of the relativistic neutron stars
in the Einstein-aether gravity are probed in Refs. [1,12]. Using numerical studies of the
equations of state for a relativistic star assuming its inner matter as a perfect fluid are
performed in Ref. [13], and it is shown that the existence of an exterior, static aether field
can be also a cause of the stability in the density of the stars.

According to the well-known no-hair theorem, BHs do not have their own intrinsic
magnetic fields. However, there are two astrophysical scenarios when the magnetic fields
can exist around BHs: (i) an external magnetic field generated by the companion gravita-
tional object (e.g., binary systems of a BH and neutron star), (ii) an electromagnetic field
can be produced by the charged particles orbiting the BHs which can be modelled as a
current loop.

The exact analytical solutions of the general relativistic Maxwell equations for the
magnetic field of the gravitating object has been pioneered by Ginzburg and Ozernoi in
1964. Wald in 1974 [14] assumed a Schwarzschild BH is embedded in an asymptotically
uniform magnetic field and presented the exact analytical solution for the electromagnetic
field. Petterson in Ref. [15] presented exact solution for the dipolar electromagnetic field
produced by the electric current loop around the Schwarzschild BH. Later, the related
problems of the electrodynamics in the curved spacetime are extended to the alternative
theories of gravity [16,17].

The electromagnetic fields of a magnetized sphere, which has a dipole magnetic
moment, have been studied in Ref. [18]. Electrodynamics of the relativistic magnetised
neutron stars is explored in the frame of various gravity theories, including GR in [19-24].

Estimations of magnetic field strength around stellar and supermassive BHs have
shown that their values can be maximum in the order of ~108 G near stellar BHs and
~10% G in the vicinity of SMBHs (see, for example, [25]). Observational data of the SMBH
M87* show that magnetic field strength around the BH is around B~1-30 G [26]. The
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magnetic field near the SMBH Sgr A*, determined by the dispersion measure of the plasma
medium around it, is a few milli Gs [27].

We organize the paper as follows: Section 2 is devoted to the analysis of a BH solution
in Einstein-aether gravity. The circular motion of test particles around the aether BH is
studied in Section 3. Exact analytical solutions for multipolar magnetic fields generated by
the current loop around an aether BH are obtained in Section 4 where a detailed analysis of
the aether field effects on the magnetic fields is provided. The main results are summarized
in Section 5.

Throughout this work, we use the space-like signature (—, +, +, +) and geometrized
units of the system where G = 1 = c. Moreover, we let run the Latin (Greek) indices from 1
(0) to 3.

2. Black Holes in Einstein-Aether Gravity

It is requested to add to the well-known Einstein-Hilbert action an Einstein-aether
gravity term, being responsible for a dynamical and unit timelike aether field [1,3,28,29].
The action of Einstein-aether theory cannot vanish anywhere, breaking Lorentz symmetry
locally. The complete form of its action has the following form,

1
S= / d*x/—g(R+ Lap) , )

where ¢ = [g,v| is the determinant of the spacetime metric around the BH in the aether
gravity. The Lagrangian density for the aether field reads as,

Lo = _M”‘ﬁyv(Dau”)(Dﬁuv) +A(guufu” +1), 2)

where A is the Lagrangian multiplier which is responsible for the Zther four-velocity u*
always to be timelike, D, is the covariant derivative with respect to the coordinate x*, and

M*P v is defined as

M, = c1gug™® + 02658 + 36800 — cautuPgy, 3)
where ¢; (i = 1,2,3,4) are gravitational coupling constants of the aether field being di-
mensionless. The gravitational constant in the aether field theory can be described by the
gravitational constant in Newtonian gravity Gy in the following form,

Gn
G=—73—, @)
1-— §C14
where c14 = 1 + ¢4, is a new coupling parameter of the aether field.
The special class BH solution of the field equation within the Einstein-aether theory (1)
has the line element in the spherical coordinates [30]:

dr? 20902 | ain 2
—— +r°(d6” +sin” 0d¢p”) , (5)

2 — _f(r\df?
as? = —f(Nde* + 25

where 5
2M 2C13 —C14 M
prm— 1 —_— — JE—
£ a 2(1—cy3) 27 ©

with the new coupling constant ¢13 = ¢ + ¢3 and. itis cj3 # 1. In two different cases, the
metric (5) reflects properties of static metric, Schwarzschild BH spacetime metric, when, (i)
c13 = c14 = 0 and (ii) 2c13 = c14. Moreover, one can see from Equation (4)

Figure 1 shows the dependence of the radius of outer horizon of an aether BH from
the aether field parameter cy4, for the different values of c;3. It is observed from the figure
that an increase of c14 causes the decrease in the radius.
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Figure 1. Radius of outer horizon of static BHs in Einstein Aether BHs.

3. Dynamics of Test Particles around Aether BHs

Now, we investigate the dynamics of electrically neutral test particles around an aether
BH, paying our attention to considering only circular stable orbits.
The Lagrangian for test particles with rest mass m, orbiting a BH reads as

1 i
L, = imgwxyx". (7)

It is difficult to find analytical solutions of the equations of motion unless integrals
of motion are introduced. Fortunately, in axial symmetric and stationary spacetime, it is
possible to introduce the Killing vectors generated by the symmetry of the spacetime which
is responsible for the conservation of energy and angular momentum of the particle along
the geodesic motion.

The corresponding conserved quantities can be calculated using the Killing vectors

where Cﬁ) =(1,0,0,0)and ffl; 0 = (0, 0, 0, 1), which are corresponding to the energy and
angular momentum of the particles £ = E/m and £ = L/m, respectively, with equations,

E : L

=<, =2
gt 899

)

Here, we derive the equations of motion using the following normalization condition,
guulut = —1. (10)

Equations of motion for test particles which are around a static BH take the following
form using Equations (9) and (10),

K
? = &2 +gtt<1 + 1’2) , (11)
2
= (k-5 (12)
Soo sin” 6

with the Carter constant K.
In this work, we investigate the particle’s motion in the constant plane pg = 0. At the
equatorial plane, the constant K will be K = £2 and one can obtain,

2 = E% — Vg (13)
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where Vi is the effective potential, and it has the following form,
£2
Vet = f(r) |1+ ———= ). 14
ett = f )< r2s1n29) (14)

To study the circular motion of the test particle, consequently, we consider the condi-
tions that imply there are no radial motions (# = 0) and no forces in the radial direction
(# = 0) [31,32]. Using this condition, one can obtain expressions for the specific angular
momentum and a specific energy for circular orbits in the equatorial plane (6 = 71/2) where
the effective potential as given in Equation (14) is maximal

M2 4+ 2Mr — 12)?
g2y = LM L 2Mr ) (15)
r2(—2aM? — 3Mr +1?)

M2 (aM +7)
- —2aM? —3Mr+1r2’

L2(r)

where
2013 —C14

-~ 2(1—c13)

is a new constant.

ISCOs around an Aether BH

Basically, the stability of a test particle’s circular orbits in axially symmetric spacetime
defines the condition Ve’gf > 0, and ISCO radius is found as a solution of the equation
91+ Vegr = 0, and in our case i.e., in the equatorial plane around the Einstein aether BH, we
have,

risco = % (1 - i\@) {/a\/m\/ATJrSM3 — (x(2a +9) + 8) M3
(1+iv3) (3u + 4)M?
2{/av/a+ 1v/Aa +5M — (a(20+9) + 8) M

The relationships between the ISCO radius for test particles around the aether BH
and the aether field parameters c14 are presented in Figure 2, for positive and negative
values of ¢y3. It is obtained that the ISCO radii increase (decrease) when the parameter c13 is
positive (negative) at values of the parameter c14 near zero. Furthermore, as c14 approaches
2, the effects of c13 on the ISCO radius vanish, and at cy4 = 2 the radius takes the value
risco = 4M.

+

+2M (16)

6.0

557
: 0
v 5.

4.5

40 ]

0.0 0.5 1.0 1.5 2.0

Ci4

Figure 2. Dependence of the ISCO radius of test particles around the aether BHs from the aether
parameter cy4, for the different values of cy3.
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4. Magnetic Field Solutions of Maxwell Equations in Spacetime around BHs in
Einstein-Aether Gravity

In the present section, we plan to find the solution of the Maxwell equations for the
magnetic field of the current loop around static BHs in the aether theory. Petterson was the
first to consider the problem in Schwarzschild spacetime in Ref. [15].

Maxwell’s equations in the curved spacetime take the form

Ou(y/=gF") = 4m/=g]", (/=8 +F") =0 (17)

where F' is the electromagnetic field tensor and its dual one is ,F/' = 3el1° Eyp, the
tensor 17,p, is expressed through the antisymmetric symbol of Levi-Civita €5, as

1
Hapoy = \/ —8€apoy + 77’1‘607 = —ﬁea‘&m ’ (18)
and the determinant of the metric tensor (5) is § = —r*sin? 6, J* is a four-current vector

as a source of the magnetic field around the BH. Here, is assumed that the loop carrying
an electric current is placed at an equatorial plane near ISCO (ry = r15c0), and the electric
current has only an azimuthal component (J! = J" = | 9-0):

]9 = riz\/f(r)(i(r —10)d6(cosb) . (19)

Finding analytical solutions to the Maxwell equations requires the symmetry of the
spacetime metric. In order to separate variables in the differential equation. For example,
R. Wald in his pioneering study of BH electrodynamics, obtained the exact solutions of
Maxwell equations using the time-like and space-like Killing vectors responsible for the
axial symmetry of the spacetime.

Since the current loop is at the equatorial plane, due to axial symmetric behavior of the
spacetime, one may consider that the vector potential depends on only r and 0 coordinates
(Ag(r,0)). The Maxwell equation for the axial symmetry and stationary electromagnetic
fields in Equation (17) takes the following form in the spacetime (5),

L 9 1 3,1 3
smaor (a0 0) + gan (Gmpas o)

= —4nl\/f(r)é(r —ro)d(cos@) . (20)
Here, we look for the solution of Equation (20) as a separable form,
Ag(r,0) = R(NO(), e1)

and we can immediately get the following two independent equations:

sinG%(sm%dGZGw)) +(+1)(1+2)©(0) =0, 22)
A2 (rn Y 1) 2mitr) =0, 3)

where [ is a multipole number which can only be an integer. It is quite a long way to solve
Equations (22) and (23) for arbitrary numbers of /. For simplicity, we find the solutions of
the equations for the case of | = 0. From this point, we call Ry(r) as R(r) and @y (0) as
@(6), and in this case the regular solution of Equation (23) is @(#) = sin’ 8, so we have a
simplified equation for the radial function as,

[(r — M)? - M2(1— a)} R (r) +2M (1 + zfo) R'(r) —2R(r) = 0. (24)
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Now, an exact solution of Equation (22) can be obtained in the form,
R(r) = aR1(r) + 2Ra(r), (25)
where,
Ri(r) = r*+aM?, (26)
Ro(r) = % [ZM(r +M)VIta
8(1+a)2M3
+ (P +aM?)In (1— r—]\Z/IA(/Il%)ﬂ . (27)
Thus, we have obtained an expression for Ay, in the following form,
Ap(r,0) = (11 R1(r) + a2 Ra(r)) sin? 6 . (28)

Now, we aim to find the regular solution for the electromagnetic four-potential (28)
in the interior of the current loop, as well as exterior regions. In the interior region where
2M < r < rp, only Rq(r) function can be a solution, due to non-regularity of the function
R (r) at the horizon r = ry, it implies that the constant a; = 0.

For r > ry regions, R1(r) may be the solution for Ay, when a; = 0, due to non-
regularity of R, (r) at r — oo. Thus, we use the boundary condition for the potential to be
continuous at r = g, so Ay takes the following form,

Ag(r,0) = a1 F (r)sin’0, (29)
where,

F(r)= {Rl(V)RZ(Vo)r ry <r<rp, (30)

Ri(r0)Ra(r), r > 1g.

Now, we get a new differential equation for F(r) by inserting Equation (29) into the
Maxwell’s Equation (20) in the following form,

a1sin6 [% (f(r) d];r)) — 2];2(0} = —4nl sinQW(S(r —79)d(cosh).  (31)

First, one can multiply left hand and right hand sides of Equation (31) with term sin 6,
then integrate it over cos §, and get,

ol (105G?) -5 = s e

From the solution of Equation (32) at ISCO (r = r(), considering the current loop is an
infinitesimal thin disk, we get,

ay\/ f(r)F' (ro) = —3nl, (33)

where’ denotes the derivative with respect to r, and F’(r) is the value of the first derivative
of the function F(r) atr = ry.
It is easy to find using Equations (30) and (32) the following relation,

Fl(ro) = (34)

f(ro)
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One may find the unknown integral constant using Equations (33) and (34) as,

ay = =3/ f(r). (35)

Taking into account, Equations (31) and (35), we may have the following exact solution
of the Maxwell equation with respect to the azimuthal component of the electromagnetic
vector potential,

3usin? 0
Ay = —ysims(r2 + aM?)
8(1+a)2 M3
2¢/T4+aM(rg+2M) __ 2MV/1ta
bz 1D (2 rofM(lfx/Hia))’ resSr<to,
2¢/T+aM(r+2M) __ 2MV1+a
r2+aM? +in (1 r—M(1—v/1+a) )’ r=ro,

(36)

where the current loop around the aether BH is responsible for the magnetic moment p:

2
= nr(% f(ro)1<1 —l—zx—]ﬁ ) . (37)
0

In Figure 3 we test the aether field effects on the magnetic moment of a current loop
around an aether BH with the comparison of the magnetic moment of the Schwarzchild BH.
It is obtained that the magnetic moment decreases quasilinearly with the increase of the
parameter c14. As it is obtained in ISCO radius, the magnetic moment increase (decrease)
when c13 take positive (negative).

Lors 30 |

~ g

C/;?V\O Ny
0.8¢ 1

Mae
MSchw
0.6r 1
04r 1
0.0 0.5 1.0 1.5 2.0

C14

Figure 3. Magnetic moment of current loop around aether BHs as a function of the aether parameter.

Now, it is possible to get non-zero components of the magnetic field around the
aether BH in the interior and exterior regions of the ISCO, where the current loop is
located using the expression B* = (1/ 2)17"‘/57‘7Fﬁ,yug, with respect to proper observer, where

uy = —+/f(r)(1,0,0,0), in the following form:

2
B, = Biy (1 + oc]\r/é) cosf, (38)
B = Biy\/f(r)sine, (39)

2v/1+ a)M(rg + M)
3+ aM?

2MV1 +a )

+in (1 ro— M(1—v1ta)

, (40)
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and
B = _§ pcos b [2\/1+0¢)M(1+M>
(1+0c)2M3 r r
2M+/1
T e O P - ) @)
r—M(1—+v1+n)
B0 _ 3 usind [2\/1+0c)M<1M)
“ da+aypmt r/f() r
2MV1+w
+ f(r)ln(l— )] (42)
r—M(1—+1+a)
respectively.

Now we analyse the effects of the aether field on the magnetic field around the BHs.

In Figure 4 we provide an analysis of aether field effects on the radial and angular
components of the magnetic field generated by a current loop around a static aether BH, for
different values of cy3 and fixed value of cj4 = 0.5. One can see from the figure that with
the presence of c14, the magnetic field decreases, due to the decrease of the magnetic dipole
moment (see Figure 3). Moreover, the magnetic field increases (decreases) sufficiently when
c13 is positive (negative).

0.75F 750 09}
Ay 0.70 (33 )
i 1 L
( m)ae 0.65 Cl3=0 m e 0.8
. o )
(Bm)GR 0.60 ( in GR 0.7+
055F c3<0  _ ————— " T
— —
0.6}
050f ]
2 3 4 5 6 3 7 s .
/™M oM
0757 --_-61-3->-0 ------------- 075 [ _---61-3->-0 """""""
AR 2070
(5 B,
1 e 0.65¢ c13=0 e ool o
B 001 ()
( Paw 20 *Jar 0.60F
0.55F o e ———— ]
_ = 055F ep<0 _————————]
0.50F I
8 10 12 15 1820 8 100 12 15 1820
/M ey

Figure 4. Radial profiles of magnetic field vector’s radial (left column) and angular (right column)
components in the interior (top row) and exterior (bottom row) regions of the current loop around
the aether BHs. Here, the parameter cy14 is chosen as c14 = 0.5.

5. Conclusions

In this work, we have studied the analytical solutions of the field and motion differen-
tial equations in the background of an aether BH, where symmetries of the spacetime are
provided. In particular, we have also studied the structure of the magnetic field generated
by a current loop around static BHs in Einstein’s aether gravity, assuming the electric
current loop is located at/close to ISCO. To do this, we first investigated the circular motion
of test particles, deriving effective potential for the radial motion of the particles around a
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special class of static aether BH. We have tested the effects of the aether field on the position
of ISCO of the test particles.

Then, we have derived Maxwell’s equations for electromagnetic four-potentials gen-
erated by the stationary current loop around the BH. Axial symmetry and stationary
properties of the spacetime do allow finding exact analytical equations in the given gravita-
tional background. The exact solutions of Maxwell’s equations for magnetic fields have
been found, using the spacetime symmetries in the interior and exterior regions of the
current loop for the proper observer. In order to solve the derived second-order ordinary
differential equation for the vector potential of the electromagnetic field, we have used the
spacetime symmetries to separate the variables.

We have also studied the effects of the aether field on the dipole magnetic moment
of the current loop and magnetic fields in both regions, and it is shown that the magnetic
fields decrease with the increase of the aether parameter c14. Moreover, our analyses have
shown that the aether field causes decreasing magnetic field both inside and outside the
current loop due to the shift of the ISCO position where the loop is located.

The obtained results can be applied to constrain the Einstein-aether theory through
astronomical observations of magnetic fields around astrophysical BHs.
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