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Fig. 1. Schematic diagram of a low-noise detector in the 0.1 mHz—1 Hz frequency band.
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Fig. 2. Schematic diagram illustrating the principle of static measurement in detectors.
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Fig. 3. Characterization of photodiode electronic noise test in different operating modes: (a) Date results in time-domain; (b) noise

power spectrum obtained by LPSD algorithm.
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Table 1.

Comparison of key parameters of three low-noise operational amplifier chips.

Operational Offset voltage

Input offset

Input offset Input noise voltage V.

P

Amplifier model drift/(pV-C1) voltage/pV current/nA (0.1—10 Hz)/nV
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Fig. 4. Photodetectors are characterized using different operating electronics noise tests: (a) Date results in time-domain; (b) noise

power spectrum obtained by LPSD algorithm.
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Fig. 5. Photodetector test diagram, where Laser is soild-state laser; ISO is optical isolator; A/2 is half-wave-plate: PBS is polariza-

tion beam splitter; Filter is optical attenuator; PD is photodetector; Meter is high-precision digital multimeter.
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Fig. 6. Characterization of detector input and output linearity.
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Abstract

Laser intensity noise suppression in the millihertz frequency band is essential for space-based gravitational
wave detection to ensure the sensitivity of the interferometer. Optoelectronic feedback technology is one of the
most effective methods of suppressing laser intensity noise. The noise of the photodetector that is the first-stage
component in the feedback loop, directly couples into the feedback loop, thus significantly affecting the laser
intensity noise. In this paper, starting from the requirement of suppressing laser intensity noise in the
0.1 mHz-1 Hz frequency band for space-based gravitational wave detection, the factors affecting the electronics
of photodetectors at extremely low frequencies are analyzed in detail. Using the low dark current characteristic
of photodiodes in photovoltaic mode, a zero-bias voltage scheme is adopted to reduce the dark noise of the
photodiode. A transimpedance amplification circuit is designed using an integrated operational amplifier with
zero offset voltage drift and low-temperature drift metal foil resistors, thereby optimizing the transimpedance
capacitor and follower circuit to reduce 1/f noise in the circuit. Active temperature control is employed to
stabilize the responsivity of photodiode, and additional measures such as using a homemade low-noise power
supply and shielding interference are taken to further reduce the noise. Ultimately, an ultra-low electronic noise
photodetector operating in the 0.1 mHz-1 Hz frequency band is developed. A homemade intensity noise
evaluation system is used to comprehensively assess the noise both in the time domain and in the frequency
domain. The constant noise characteristics of the homemade detector are estimated experimentally. The
experimental results show that the electronic noise spectral density of the homemade detector reaches 2x
10 V/Hz'? in the 0.1 mHz-1 Hz frequency band, and the electronic noise of the detector does not vary with
optical power. The detector achieves a gain of 35 kV/W at 1064 nm. The noise performance of the detector is
two orders of magnitude lower than the laser intensity noise requirement (1x10* V/Hz!/?) for space-based
gravitational wave detection, providing a critical component and technical support for high-gain optoelectronic
feedback control and laser intensity noise suppression in space-based gravitational wave detection.

Keywords: space-based gravitational wave detection, laser intensity noise, photodetector, millihertz band
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