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ABSTRACT

An analysis of the recently measured photon-proton total cross
sections is performed. Smooth fits to the cross sections are obtained and used
to calculate, by means of the forward disﬁersion relation, the real part of the
spin—éveraged forward amplitude. The resulting predictions for the real part
are given. At high energies the fits to the present total cross section data
together with the calculated real part suggest the presence in the high energy
beh#vior of an extra real constant in addition to what one would have predicted
from. Regge theory and the high enérgy behavior of the imaginary part. This
extra real coﬂstant, which is consistent in sign and magnimde with the Thomson
limit, - d/MN, could correspond to a fixed pole at J =0 in Regge pole language.

Possible ways to test the forward dispersion relation are discussed.
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I. INTRODUCTION

In the fifteen years that have passed since the introduction of dis-
persion relations into elementary particle physics, originally within the context
of quantum field theory, a large literature has grown up on their theoretical
basis, on extensions and applications to new processes, and on their comparison
with experiment. 'While first proposed for the amplitudes in forward Compton
scattering by Gell-Mann, Goldberger, and Thirringl, dispersion relations were
soon written down and provéd, with varying degrees of rigor, for forward pion-
nuclebn scattering, other forward amplitudes, various off-shell amplitudes and
vertex functions, and for non-forward amf)litudesz. These integral relationé
‘between the dispersive and absorptive parts of the scattering amplitude have
been most thoroughlj tested eicperimentally in the case of forward pion-nucleon
scattering. Starting with the work of Anderson et al. 3 in fhe resonance region
and proceeding through the recent high energy measurements of the real part
of the forward amplitude and its comparison with the predictions of the forward
dispérsion relations by Foley et al. 4, tﬁe pion-nucleon dispersion relations have
been subjected to extensive testing by comparison with both low and high energy
experiments.

While all these tests in strong interactions'have been successful,
somewhat surprisingly the first such relations to be written down, those ff)r
forward Compton scattering, are still essentially ‘untested. First, this is be-
cause the imaginary part of the forward Compton amplitude, in the form of
total photoabsorption cross Sections, haé not been systematically measured

until this past year. Previously, one only had the results of integrating the




single pion photoproduction differential cross sections over all angles to obtain
the total cross section near threshold and in the first resonance region (say,
up to 1.300 GeV center of mass énergy) and some scattered bubble chamber
measurements at higher energies. Second, the réai part of the forward ampii—
tude for Compton scattering was, and still is, unmeasured in both magnitude
and sign. ’

Within the past year this situation has changed rather dramatically.
We now have good systematic measurements of the unpolé.rized total photo-
absorption cross section (and therefore the ixnaginary part of. the spin—averaged
forward Compton amplitude) from thréshold up to laboratory photon energies
of almost 20 GeV. This permits one to calculé.te rather accurately the real
part of the spin-averaged forward amplitude using the dispersion felation
originally proposed by Gell—Mann,/ Goldberger, and Thirringl. The result of this
calculation can be compared in magnitude with forthcoming measuremenfs at SLAC
of the forward Comptdn scattering differential cross section. Furthermore; it
ndw appears possible that by observing the interference between the known
Bethe-Heitler‘ amplifude for producing electron-positron pairs and the Compton
contribution to pair production, both the sign and magnitude of the real part of
the Compton amplitude may be determined5.

With all this in mind we have done a careful analysis of, and fit to,
the total photoabsorption cfoss section measurements; and have calculated
the r‘eal. part of the fdrward Compton amplitude, both to look for places and
ways to tesf the forward dispei'sion relation and to investigate certain questions
of theoretical interest concerning the asympto;tic behavior of the real part. In
Section II we discuss kinematics, thev definition of the relevant amplitudes,

and the corresponding dispersion relations. We follow this with an analysis
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of, and fits to, the total photoabsorption cross sections at low and high energies
in Section III, in preparation for the actual calculation of the real part of the
spin—averaged forward amplitude in Section IV using the dispersion relation.
The re.sults of this calculation leéci us to a discussion of the probable existence
in the high energy behavior of the forward amplitude of an extra real constant
part in addition to what one would have predicted from Regge theory and the
beha{zior of the imaginary part. | This could be due to a fixed pole at J=0 in
Regge language; such a real constant part is deteétable both by a direct cal-
culation of the real part of the amplitude using the dispersion relation, and by
certaiﬁ sum rules discussed in Sectiqn V. Finally, conclusions and suggestions

for further experimental measurements are given in Section VI
II.  THE FORWARD COMPTON AMPLITUDES -

If the S-matrix element for the process y (k) +N(py) =¥ ky) + N(p,) is

written as
MZ
o 4. (4) N -
Sp = O+ @MT18" (py +ky=Dy k) W u(py) Tup,) » @)

where k1 and Py (k2 and pz) are the four-momenta of the initial (final) photon
and nucleon, respectively, then the differential cross section in the center of
mass frame is given by

do _ cm 2

qo— = ] 2)
Cem ,
with the center of mass scattering amplitude, fC°, being
M .
cm N -
£ = w1 ®,) Tulp) . ‘ 3)




Here W is the total center of mass energy; W2= (p1+k1)2 =Py +k2)2. I we
specialize to the case of forward scattering, then there is only one remaining
continuous variable on which the scattering depends. We take this to be W as

defined above, or instead of W, we will often use the energy of the photon in the

lahnaratary v whirh ig ralatad +n W hyy
LAVULALULY,y ¥ 3 WiliUiL 1D L C1ailCll LU v Yy
S5 v A = (4)

B will, in fact, generally be convenient to work in terms of laboratory quantities.
To this end we define the forward scattering amplitude in the laboratory, f(v),

which is related to the center of mass amplitude by a simple factor of W/MN:

f(v>=-n§v§f°m.' B (5)

Written out between the Pauli spinors of the initial and final nucleons, which

are at rest in the laboratory, f(v) must have the form1
* —k , —
f(v) = % [fl(v) g0 € +i0 (6, x €)E,(1)]x; (6)

where 61 and ¢ 5 are the polarization vectors of the initial and final photons,
respectively. Clearly, if we average over nucleon spins in the amplitude we
are left only with fl(v) which we therefore call thé spin-averaged forwérd
amplitude. The amplitudes fl(v) and f2 (v)/ are separable if we are able to do
experiments with polarized photons: fl(v) corresponds to parallel and f2 v)
to perpendicular linear polarization vectors of the initial and final photons

respectively.




Another way of discussing the relationship between fl and fz is to relate
them to the two independent helicity amplitudes for forward sdattering. If the
photon and proton Spins are parallel (i. e. , photon helicity = + 1, hucleon helicity =

i

(N2

the center of mass

_ W .cm _ _ : |

fp(v) = 'IVI_N- fl-%,l-% vy = fl(v) fz(v) ; (7a)
while if the spins are anti-parallel (i. e., photon hélicity =+ 1, nucleon helicity =
+ 3 in the center of mass) we have

L®) = 5 GG ® = 50+ 50) . (7h)

1
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It is the amplitudes fp and fa which are then related simply by the optical
theorem to the total cross sections for photon + nucleon — hadrons (we shall
work only to order e2 in the amplitude) when the photon spin is parallel or anti-

parallel to the nucleon spin:

» v
Imfp(v) = I op(v) } (8a)
= X
) hnfa(v) = I aa(v) . ' (8b)
Thus we have
: o (v)+o (v)
= _V_ —._.____._._..a p = .1}__ )
Ilnfl(l/) T 4r | ) 4 GT(V) ’ (Qa)
where ch(v) is the spin-averaged total cross section, and _
. oa(v) - 0_(v)
CImfy) = 2= ——-—P-_z (9b)




Again, in the absence of both a circularly polarized photon beam and a polarized

proton target, 1t is only the combination of cross sections corresponding'to
Imf, (v) which is measured experimentally. Note also that While Enf, Imf,,
and therefore Im f1 are pbsitive abqve threshold for pion photoproduction, Imf2
may be either positive or negative there.

In the absence of polarized targets or beams one simply measufes

the differential cross section

(ggzléb)é=o° - lvf(v” “- 'fl("”2+ 5 '? | (10a)
or
do LS 2 [OT(V) : T 2 7 2
dt|,_o ) 2 L Z I Refi(n) |~ + z i) | (10b)

where t is minus the square of the four-momentum transfer. We have ex_pl‘icitly
isolated the term proportional to [O'T(V)]Z, which has now been syst'emav-
tically measured experimentally, to emphaSiZe the remaining terms on the right
hand side of Eq. ’(10b), which are uncalculated ‘and unmeasured up to now.

Jid Wé know their imaginary parts, we may calculate Re fl(v) and
Re fz(v) by means of dispersion i'elatiohs. Using fhe fact that fl(v) is even and

fz (») is odd under crossing (i.e., v— -v) we ha,vee1

o0
2 f 2 Imf@?')
_ v dv! 1
Refl(v) = f1<0) + T P '2 5 '2 , (lla)
: v, V' -v v
0 .
and ’ .
2y d |
Ref,(v) = = Pf 2” 5 nf,(') . (l1b)




Both _integrais start at vy =m, + mi/ZMN, the threshold for photoproducing
single pions. In hopes that we can get away without a subtraction, and since
we know of no experimental or theoretical reason for one, we have written an
unsubtracted dispersion relation for f5 (v). The ainplitude f,(v) on the other
hand requires a subtraction, both because of the observed behavior of Imfl(v)
for large v and because an unsubtraéted dispersion relation for fl(v) would‘
pfedict £,(0) > 0, contradicting the Thomson limit, f(0) = - oe/MN. We in fact

know from rather general theOrems6 ’7th'at as v — 0

fl(V) - fI(O) = ‘OI/MN ’ (12a)
the Thomson limit, while
2
o ) _
fo(0)/v = £3(0) = - --2-"‘-‘-’32932— . (2b)
, MN :

The second result, Eq. (12b), together with the dispersion relation (1lb) gives

rise to the sum rule

2 0 2 ©
4M M
2 N dv! dv!
Hanom! = - Ta f vi Im £, (¥") = 2N -/ :" {Gp(v) -aa(v)] - @
Yo p! 2r « VO

This is just the Drell-Hearn-Gerasimov sum ru1e8, which appears to be
satisfied when saturated with low lying resonéncesg. Unfortunately, the lack
of direct experimental measurements of Im fz(v) means that one must construct
it from partial wave analees of 7N (and if one is brave enough, 7A) photo-

productions’g. While this is probably adequate for calchlating fé(O), the




difficulties and ambiguities in this procedure even in the resonance regionpresently
make evaluatioh of the dispersion relation for -fz(v) a meaningless exercise for
values of v greater than a few hundred MeV.v’ We will return to the question of
measuring f2 (v) in the final section, and turn our attention now to the evaluation

of the dispersion relation for fl(v), which, with the low energy theorem value

for fl(O) now reads

2 P (P
Ref,(v) = - —=— + L P _dv
1 My 7 -[:2 I
or - (14)
2
efh) = 'Mg‘ ;‘2‘ -[—“"2‘ O

ITL FITS TO THE TOTAL PHOTOABSORPTION CROSS SECTIONS .

In order to carry out the principal value integral in Eq. (14) we need

the total cross section measurementsm’u’12 13,14

shown in Figurel. I fgct,
we need them in a locally smoothed form in order to carry out the limiting
procedure inherent in the definition of a principal valué integral, and further-
more, at least in principle, we néed to know the cross sections out to infinite
values of the energy. |

At least this last difficulty is notdifficulftoovercome if we are wvilling
to assume that at high energies the behévior of total cross sections with energy is

smooth (say, a sum of powers of v to good approximation). In partigular, this

is the éase in Regge pole theory where at high energies one'writes for the imaginary
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part of the amplitude at t=0:

I

'ci ai'(O) . .
It () Z(Zﬁ) v | 15)

so that

o) = Do , | 6)

s
1
S

where the c; are constants and the ai(O)_ are the t=0 intereepts of the Regge
traj ectories, ozi(t), which can be éxchanged in the t-channel. Such parametriza-
tions give very good fits to the energy dependence of purely hadfonic total crose
sections (like 'IT:I:p, K:Ep,, ete. » Thereit is foﬁnd that the leading isospin =0 and 1
trajectories (those With'di(O) > 0) are th‘e Pomeron (corresponding to dif-
fraction scattering and constant total cross sections) which has aP(O) =1 and
the P, A, p and w trajectories, all of which have oz(O) =~ 0,5 as determined
either from drawing the usual linear Regge trajectories (with slope ~ 1/ GeVz)
through the observed physical paﬁicle positions or from fits to the hadron-
hadron tbtal cross sections at high energiesl5. ‘ ‘For Compton scattering only
t—channel trajectories withC = + ylicentribute, S0 we can restrict our attention
here to only the P' and A2 trajectories in addition to the Pomeron. -We take
ap(0) = 1 and the effective intercept at t=0 of the P' and A, to be %, e,
ap,(0) = aAz'(O) =1, | |

We have therefore made fits to the high energy data (v > 2 GeV) of

the form:

oT(v) = ¢ +’c2/v% . an




In Figure 2 we see the high energy total cross section data from the extra-
polation of electron scattering to q2= 0. They are plotted against 1/ v% so that
if Eq. (I7) is to be a good fit to the data points, they should fall on a straight
line. In Figure 2 the solid line represents O'T(V) '=107.5 + 64,Q/v% , which is

a best fit statistically of the form of Eq. (17) to the data from the extrapolation
of elerctron‘scattering. In Figure 3vwe have the data from the direct measure-
" ‘ments of the counter and bubble chamber experiments. The solid line is a

best fit to these counter and bubble chamber experiments of the form (V)
99.2 + 59.6/1)%. Also shown in Figures 2 and 3 is a dashed 11ne, corresponding
to a best fit to all the high energy data of the form o (v) 96. 6 +170.2 /v2

\ It seems from the figures that the data from electron scattering is
systemancally and/or statistically h1gh by about 8 ub compared to the other data,
but has about the same slope as a function of energy. This is all well within
the quoted10 + 8% overall systemaitic error alone of the electron scattering extra-;
polation. If is difficult to know, hoWever, whether the "true" total dross
sections should agree with one of ktﬁe preseﬁtv set of meésurements or another
since each inethod of measurementk has different kinds of systemafic'errors
associated with it and an estimate of thése, érrors is not always quoted in the
experimental pépers. For this reason we have kept three different fits of ihe
form of Eq. (17) to the high enefgy v > ‘2 GeV) tbtal .cross sections in doing
the dispersion integral: a fit tdtthe electfon scattering extrapolatién Cross
sections alone (labell.ed A), a fit to the counter and bubble chamber measure-

-ments alone (labelled B), and a fit to all the total crossv section measqrements
(labelled A & B). ¥ we were to show a prejudice for one fit over anothef it

would be in favor of the fit (B) to the countér and bubble chamber measurements




which, when extrapolated to lower energies, joins on better to the total cross
section measurements at the end of the resonance region coming from both the
electron scattering extrapolation to q2= 0 and from the counter and bubble
chamber measurements.

Tt is also to be noted that fhe size of the present experimental error
bars does not permit one accurately to determine «(0) in a fit to the total photo—

(-1 While values of

absorptmn cross sections of the form oT(v) =¢; + Cy ¥
(0) equal to zero or one are probably already ruled out by the present data,

fits with values of a(0) ranging from 0.3 to 0.7 were tried and the resulting

values of chi squared of the best fit for each value of a(0) were not significantly

different. We thus have to rely on the much more accurate hadromc total cross

section data to determine a(0). This is no great tragedy since: (1) the strong

interaction data is accurate enbﬁgh to show that in a fit of the form oT(v) =
@(0)-1 '

¢ty ¥ that 0.3= a(0) = 0.7 for the P' and AZ; @) there is no reason to
assyume, in contradiction to Regge pole theory, that the valué of aP,(O) or o A2(0)
changes in going from one process to another; (3) a fit of the form. of Eq. (17) is
an excellent fit to the photoproduction daté, particularly the counter and bubble
chamber data with small error bars in Figure 3. In any case, the exact value
of a(0) makes little,dif_fer.enc.em the calculated values of Re fl(v) at low energy
and we shall return to the question of the sensitivity of the calculation‘at high
energy to the value of a(0) in Sectioh V.

Once we have a fit of the form of Eq. (17) to the high ehergy'data, we
use it to give us the total cross sectioh over the entire high energy region for

use in doing the dispersion integral. We also join on to it the data in the low

energy region, which we take to be from threshold, W =1.08 GeV (v = 0.150 GeV),
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to a center of mass energy W = 2.01 GeV (v =1.68 GeV), where the systematic
measurements of ch(v) in steps of 0.015 Ge.V in center of mass energy by the
electrdn scattering group end. This includes the region of the four prominent
resonances in pion-nucleon scattering at W= 1.256, 1.520, 1.690, and 1.920 GeV,
respectively. To the total cross sections determined by extrai)olation of electron
scattering we have added the total cross section data up to W = 1.32 GeV obtained
by iﬁtegrating single pion photoproduction datam.

We have then smoothed, again with the use of some physics: We fit
this low energy data to a sum of Breit-Wigner resonance forms plus a poly-
nomial background, demanding that at W = 2.01 GeV the fit join on smoothly to
one of the high energy fits discussed above. Specifically, we used five Breit-
Wigner resonance forms and a sixth order polynomial in (W'Wthreshol d) to
- obtain our best fits to the data. The masses of the first three resonance forms
were only roughly constrained (to within + 0.100 GeV) to lie in the vicinity of the
prominent resonance bumps, and their widths were also only roughly constrained
(to be less than 0.5 GeV). The fourth resonance was fixed with a mass and width
of 1.920 and 0.200 GeV, réspectively, since it otherwise had a tendency to wander
to lower energies. The fits were improved if the fifth resonance mass was con-
strained to lie between 1.400 and 1.470 GeV, i.e., in the region of the Roper
resonance, in order to fit the shoulder in the data on the low energy side of the
second resonance. Otherwise all masées, widths and strengths of the resonances
were left free to vary, as were all the coefficients in the "polynomial in
W-Wihreshold" , |
 Thefittothe low energy data which joins on to . O'T(V) =96.6 +70.2/ V%Q

the best fit to all the high energy data,f at w.=2.01 GeV (where Op= 151 ub) is
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shown in Figure 4. Obviously we have a very good (as statistical tests also
show) smooth fit to the total cross section data. Its stability is shown by the
fact that changing the form of the high energy cross section from one of our
fits to another (so that at W =2.01 GeV, the energy at which we join the low
energy to high energy cross sections, O'T(W ='2.01 GeV) changes by ~ 3% or.
~ 5 ub) does not change the fit by more than 1% at any point up to W =1.95 GeV.
~ The ‘fit is stable as well agaiﬂst taking a lowerrdegree polynomial to describe

" the background. Also the values of the resonance widths which come out of the
fit are in good agreement with the accepted ones. Armed with ;aur smooth fits
to bofh the low and high energy totalr cross sections, we are ready to do the

dispersion integral.
IV. CALCULATION OF THE REAL PART OF f) (v)

For each of our three fits to the high energy data we have made a fit
to the low energy data which joins on smoothly at W = 2.01 GeV, and then haveused
the total smoothed fit over the whole energy range from threshold to infinite
energy as input to a computer calculation of the dispersion integral for Re f1 ®).
We have tested our program for doing the principal value integrals by taking
explicit forms for the fot’al cross section for which we were capable of doing
the principal value integral analytically and then comparing the analytic solution

with the computer calculation. I particular

v

oV 2 a/2 ,
%—}E () = on () —(—;Q') (__1/_2__ ) : for v = v,

18y

]

0 for v<,v0,
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where ¢ is a constant leads to

| VO ra v2 a/2 1
Refl(v) = fl(O) = -cot (T) :—2-1 ( +— : (19a)
0 sin 5=
for v >'v0 and
Ref,(v) = £ (0) + Pl |1 ;. ? a/2+' 1 | (19b)
1 fl 4ar sin T2\ ;7 oin T2
2 0 2

for v < vy For a= 3 we find that our program gives Re fl(v) in ag'reemént
with the analytic solution to better than 1% accuracy from v = 0 to 50 GeV with
the exception of a small region near threshold (0.9 VoS V= 11lv 0) where
dfl(v)/dv is discontinuous for the analytic solution and where the finite step
size (= 0.1 vo) in our integration routine gives a computed real part which is
20% less than the exact analytic solution.

The actual results for Re fl(W), computed from the fits to the mea-
sured total cross sections (where at high energies we use the fit (A & B) to
all the high energy data of the form ch(v) = 96.6 + 70.2/11%) is shown in Figure 5
for W < 2.2 GeV in the form of an Argand diagram. Clear circles due to the
first, second, third and fourth resonances are seen. A close inspection also
reveals a "wiggle' near W =1.430 GeV due to the shoulder on the low energy
side of the second resonance, which could be due to the Roper resonance. A
similar, but smaller, wiggle appears near thresholci due to the large s-wave
shoulder on the low energy side of the first resonance. Using a different fit

to the high energy total cross sections leaves Figure 5 essentially unchanged —

the only noticeable change is in the size of the loop due to the fourth resonance
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and involves changes m Re fl(v) of less than 10% for any given value of v. The
numerical va,lues of the input total crosé sections, Imfl(W), and the resulting
values of Re f; (W) appear in Table I in steps of 0.015 GeV in W up to W = 2.01
GeV, and then in steps of 1.0 GeVin v up to v =20 GeV.

Near v = 0, we have from the dispersion relation that

[+ 00
f,(v) - £(0) f 2 /
. 1 1 1 dp' 1 dm
vLil’I:) -——-2-'——-— = .'I-T. _—'Tf Imfl(v') = -—-—2 -—2- O'T (V') . (20)
- v v, v . 27 v,V
0 0
From our fit to the data we find
25 J Ly ogen = 1 ub/cev @
27 Yo pY , .

with a 2% variation depending on exactly which combination of low and high
energy data we use for the total cross section. Clearly the integral converges
quickly and its magnitude depends very weakly on the high energy data. Near

v = 0 we thus have for forward photon-proton scattering:

do 2 2
= f@I™ + £,
(dﬂlab) o° 1 2

, 2 m ) M
(‘ﬁq‘) 1+_£_ (”anom Nmnf_z_ o) +0(v)

T 4MN an

2,
[1-0.88(-’-’-) +0(v )].
ARy

At high energies calculated values of Refl(v) are shown by the solid

’ @2)

S )
v—0 MN

lines in Figure 6 for the three cases of high energy fits to ch(v) of the form:
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i

o) = 107.5 + 64.0/v2  (labelled A) 3 (23a)
' 1
Op(r) = 99.2 + 59.6/v2 (labelled B) ; (23Db)
N _
oT(v) = 96.6 + 70.2/v? (labelled A & B). (23¢)

In addition, the ratio of real to iniagimry parts at high energies is shown in
Figure 7. Also shown in Figure 6 by the dashed lines are the real parts we
might have naively expected on the basis of the imaginary part of the amplitude
(the total cross sections) and Regge behavior for the whole amplitude. In other

words, if we have that
o, (O)—l :
ﬂlmf(v)=aT(v) ch asy — o,

we expeét that such an Imfl(v) came from a Regge expression for the full ampli-

tude of the form:

-0\ e\ a.(0)
1 1
hey —~ Z(m‘)(ﬁ) Voo @4

where'we have simply restored the signature factors due to the exchange of even

signature (P, P' and Az)_ trajectories. Thus we expect:

T, (0) i d (0) ‘
Ref;(v) — Z - cot —— | |- . 25)

Y ~» 00
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For our particular fits, which are of the form O'T(V) el +c, /v% , we then

expect that
. : c\ 1

Ref)(v) — -(ﬁ) V2, ; (26)

which is represented by the dashed lines in Figure 6 for each of our high

energy fits. For our high energy fits of the form (17) this is clearly not the

. case, there being always a constant difference of about -3 pb-GeV between

the real part calculated from the dispersion relation and the real part in Eq.

(26) which is predicted naively from Regge theory and the behavior of the ima~

ginary part of the amplitude. That we should have expected (as in actuality we

did) such a constant difference between the calculated real part and the real

part predicted from Regge theory and the high energy behavior of the imaginary

part of the amplitude is shown in the next section.

V. ASYMPTOTIC BEHAVIOR OF Ref, (»)

~ Suppose we have an amplitude f(v) which has the high energy behavior

—iwai(O)

~l-e °\ ¢
f(V) — By 7oy v e (-—-—) v
i, ai(ZO) > o  Sinma,(0) 4r :

@7)

+ C + (terms which go to zeroas v — =),

where we have expliciﬂy separated the term C (which is a real constant)
which corresponds to a term in the sum with ozi(O) =0. The behavior of the

real and imaginary parts following from Eq. (27) is
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Ref(v) (ci) ( t("?“mi(m» o
ef(r) = , w—— - COTt\ 4
i,2,00)= 0 4
+ C + (terms which go to zero at v — =),
ci ai(O)
mfE) = (21"7?) v
i, ai(O) >0

"+ (terms which go to zero as v — ®) .

Now let us define f(R)(v) for all v as:

| —iwai(())
W) = T 5

c, a.(0)
———————————ea— (.—1_) v 1 + C
sin 'n'ai(O) \4m *

Clearly, f(R) (v) differs from f(v) only in terms which go to zero as v — .

This new function obeys the dispersion relation

2 £ 2 (R),,s
o) = ¢+ L f LU mt®ey
. 0 pi-y —i€ !

(28a)

(28b)

(29)

(89)

as is easily verified by explicit calculation, while it is assumed that the original

amplitude f(v) obeys a dispersion relation of the form:

o0

2 2
_ v dv’ mf(v')
fv) = §(0) +—+ ./ 33 )
0 ANES RS 13 p!

14

(31)
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Now, from the way in which f(R) (v) was defined and Eq. (27) we
have that

f(v) - f(R)(v) - 0 agy — >,

Subtracting Eq. (30) from Eq. (31), and letting v — «, we then obtain

‘ f o’ r av? |
0 =10 -2 f —V?-Imf(v') -C+ %fﬁl-”—z- m By | (32)
- Vo ¥ LU
or |
VO o
2 2
c=10+z ) L mi®uy+ f L m ([ ®e) - 1) . 33)
0 v! ' v, v

0
The last term in Eq. (33) involves a convergent integral because f(R)(v) - f(v)
goes to zero is ¥ — «, In fact; in an actual cglculation one usually assumes
that forl sufficiently large values of v, say v = N, one has Imf(v) = Imf(R)(v)
to arbitrarily high accuracy if N is chosen large enough. This is, of course,
just what we have done in our calculation of Re fl(v) when we used our Regge fits
to the high energy total cross sections above W = 2,01 GeV in evaluatingr the .
dispersion relation. If we use the assumbtion that Imf(R) (v) = lmmf(v) for

v =z N in Eq. (33), then it becomes

N ' N
c = f(0)+%_0/d—:j;'-1mf(m(w)_ 2 [ & i (34a)
0
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or ai(o)

N |
1 ‘ : i\ N

dv' o, (v = £(0) - C+ Z( ) , (34b)
. ‘1{; T ' T \22) 4O

so that it has the form of a finite energy sum rulé”. Eq. (33) for the case
f(v) = fl(v) was first derived in this form by Creutz, _Drell and Paschosls.

Eq. (33) or (34) tells us that purely from a knowledge of the imaginary
part of f(v) and £(0), we can determine C, i.e., from the behavior of Imf(v) at
high energies we can determine Imf(R) (v) and thén an integral over all energies
of Im(f(v-)-f(R) (v)) gives us C if we know f(O).‘ All this of course should be no
surprise - given the imaginary part of f() and f(O); the dispersion relation
gives us Ref(v) and we can then determine the constant C by comparison with
Re f(R) (v). This in fact is just what we did in the last section. What all the
above manipulation does for us is to bypass the actual calculation of the principal
value integral and to give us a simple sum rule, Eq. (34), from which we can
calculate C immediately by doing an ordinary integral over total cross sections.

For the particular amplitude we are interested in, we have fl(O) =
-af MN =~ 3.0 ub-GeV. Furthermore, from the measured total cross sections
we see that above W= 2 GeV I;nfl(v-) appears to be rather smooth. This .is also
the point at which systematic measurements in small steps of W stop at the
present time and at which we have joined the pdwer law fits to the high energy
data onto the low energy data in doing our ggg;ulation of the dispersion integral.
Weare thus assuming that above W = 2.01 GéV the power law fits are a good
representation of the tbtal cross sections, i.e., ab(_)ve W =2,01 GeV (v =
1.68 GeV) we are assﬁming' Imf(y) - Imf(R)_(v) =(, The sum rule, Eq. (34),

thus becomes:




=22~

(1.68 GeV) (1.68 GeV)
2 dv! R 2 dv
c=-3+2 &t ®py - 2 mf,(v) . 35)
N 0 , Yo ,
For the quantity,
(1.68 GeV)
a 2 dV
- _M-_ - ; e Imf (V') ’
N Yo

which just involves performing an integral over the total cross section data, we
obtain -19.9 + 0.1 ub. The error’ inciudes the answers obtained by taking d
ferent computer smoqthed fits to the low energ'y data (which join onto different
high energy behaviors), taking the unsmoothed data, or taking hand sméothed
fits to the data. The value of

1.68 GeV)

dvt

d f(m(,,,)

SIS

depends on exactly what kind of power law fit we make to which subset of the

high energy data. We list the parameters for fits to the high energy data sub-

sets A, B, and A & B of the form O'T(V) =c + cz(v/GeV)oz(o)"1 for a(0) = 0.6,
o 168GV, ®)
0.5, and 0.4 in Table II, together with the values of — f () £ (v")

0
and C which they imply.

From Table II it appears that (at least if a(0)= 0.5) C =~ -3 ub~GeV,
i. e., it has the magnitude and sign of the Thomson limit, f1(0), a possibility
first suggested by Creutz, Drell and Paschosls. For the case a(0) = 3, the
values of C computed in Table II'agree with those found in the previous section
(see Figure 6) by direct computation of Re fl(v) and comparison with the real

part expected from Regge theory and the behavior of Imfl(v) at high energies.
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The errors contained in such a calculation of C are mainly of a
systematic kind and hence difficult to estimate. The integral over the low

L68 GeV g,

enefgy total cross section measurements, P ( )Ixnfl(v"), involves
(7

T
over 60 data points with an assigned error of a;boutﬁlo%. If these were purely
statistical errors, the error on the value of the integral would be ~ 1%.
Similarly, given a value of d(O), the errors in ¢ and Cy in the fit to the high
énergy total cross sections (induced from the quoted errors on oT) Vlead toan

. g L68GeV g, ®),. | .
uncertainty in = .{)' 7)) WiV ) of from 5% (for fits to data set B)
to 10% (for fits to data set A).

To change the value of C from -3 ub-GeV to zero requires a 20%
change in one or the othe_r (or some combination) of the two integrals discussed
above. For the integral over the low energy total cross sections this can only
happen due to a systematic overall shift (dlownward) from the present data. We
think such a large systematic shift is unlikely because the total cross sections
obtained from the extrapolation of electron scattering agree rather well in the
first resonance region with those obtained by directly integrating over single
pion photoproduction differential éross sections.

A change in the value of the integral over the Regge fit to the data
could come about either because of a systematic shift (upward, particularly at

the low energy end, in order to give more energy dependence to o, (v)) in the

or
high energy total cross section measurements or a value of ¢(0)~ 0.4. A
systematic shift in the high energy data certainly cannot be ruled out, but such
a shift upwards would be difficult to reconcile with a smooth joining on to the

low energy data, particularly if one also wants to help decrease the magnitude

of C by a systematic shift downward in that same low energy data. It should
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also be noted that fhe fits (B) to only the counter and bubble chamber experi-
ments at high energies, which have the smallest quoted errors, give the largest
magnitude for C. As for the value of @(0), which is representing here the |
effective Regge
the most important of f;hese two traj eétories for the case at hand appears19 to
be the P'. Secondly, the best fits to the hadronic data of the form o,, =

T
a(0)-1 , . 20 .
v , especially recent fits”  using both finite energy sum rules and

¢+,
the hadronic total cross section daté, show that aP,(O) =~ 0.5 or greater, not
smaller.

Thus, while the possibility exists that a combination of systematic
shifts in the data and/or a change in Regge parameters will result in making C
consisteht in magnitude with zerozl, it is suggested by the present data and our
high energy Regge fits to it that C # 0, and in fact that C =~ -3 ub-GeV, the
value of the Thomson limit. In Regge language, such a real constant term in
the high energy forward amplitude could correspond to a Regge pole with a(0) = 0.
Whether «(t) = 0, so that we are dealing with a fixed bole at J = 0, can only be
established by calculations for t # 0, which are outside the scope of this paper.
In any case, the presence of such an extra real constant term at t = 0 already
has some interesting conseduences theoretically for other calculations and sum

29
rules .
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V. CONCLUSION

Under the as'sumption that the forward dispersion relation for fl(v)
of Gell-Mann, Goldberger and Thirring is correcjc we have calculated Re fl(v)
from the measurements of the total photoabsorption cross section. In the pro-
‘cess we have made smooth fits to both the low and high energy cross sections.
Our results suggest, but do not conclusively prove, the existence of an extra
i'eal constant in the high energy behavior of fl(v) beyond what the energy de-
pendence of the imaginary part and Regge theory would predict%8 This extra
real constant fs consistent in sign and magnitude with the value of the Thomson
limit, £0) =- az/MN.

There are a number of experiments which could help settle the question
of whether the extra real constant, C, is present. Obviously more accurate
total photoabsorption cross sections even at the energies already measured will
help.” More important are systematic counter or bubble chamber measurements
in the energy range from v = 1.0 to 3.0 GeV. These are needed first of all to
make’ sure that the cross sections in the upper resonance region, which come at
present only from the electron s‘catte'ring" extrapolation, are not systematically
high or low. Secondly, suchmeasurements will show whether above v =1.68 GeV
.(where we have joined on our high energy fits) the total cross section has any
small "bumps" left in it and more generally how well our smooth fit to the high
energy data fits the total cross sections just above the resonance region.. Some
total cross section measurements of high accuracy at the other end of the ener‘gy
spectrum, namely very high energies (say, v = 30 to 150 GeV at Serpukhov or

Weston) would be very useful in tying down the other end of our high energy fits.
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Between these two additional sets of measurements we think one can settle the
question of whether C # 0 and whether if has the value of the Thorﬁson limit to
within 50% of that limit.

Of course, all this could be best sétﬂed by a good direct measure-
ment of Re fl(v). This would also test the validity of the forward dispersion
relation, which we have been assuming in our discussion of the magnitude of C.
At v =5 GeV, for example, the presence of C = fl(O) makes a 20% difference
jn the value of Re fl(v). Unfortunately, it does not appear that we will soon have
éuch a measurement. Recall that (do/dt) =0 & L f,(v) 12 + 1 £, (v) |2 for Compton
scattéring. Thus the forthcoming measurements of (do/dt) =0 will give us

| Re fl(v) I2 + | fy(¥) Iz, since we know Imfl(v) from the total cross section
measurements. Since we find | Refl/lm fll < 0.3 for v > 5 GeV, | Refl(v) |2
contributes less than 10% of (do/dt) =0 for v > 5 GeV. This is of the same order
as the error in | Imfl(v) I2 due to the errors in the total cross section mea-
surements, so the measurement of (do/dt) £=0 at high energy will only yield a
very rough upper bound23 on | Re fl(v) |. At the present time it is probably more
relevant to assume the forward dispersion relations are true and then to derive
information from (do/dt) t=0.about ] fz(v)‘l 2 at high energy, since experimentally
we know essentially nothing at present about the high energy behavior of f2 v). 24

This leaves us with trying to measure Re fl(v) at low energies where
it is large compared to Imfl(v). Because of background from %~ 2y it is ex-
tremely difficult to measure (do/dt) =0 for Compton scattering at low energies.
Our best hope of testing the dispersion relation is then the possibi_iity of mea-
suring Re fl(v) by interference of the amplitude for electron-positron production

by Compton scattering with the Bethe-Heitler amplitudeS, and then extrapolating
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to zero invariant mass electron-positron pairs. Exactly how difficult this
will prove to be experimentally remains to be seen.

A side result of our calculation is that the ratio of real to imaginary
parts of the forward Compton amplitude is much the same as that for most
strong interaction forward amplitudes2 5. In particular, if we omit the contri-
bution of the possible extra real constant, then the ratio of real to imaginary
parts is less than 20% above v = 5 GeV, much as in pion-nucleon scattering
(even keeping the real constant, the ratio is less than 30%). K We assume the
validity of the vector domi.nahce model, then the forward amplitude for
v +p — p +p should have a similar ratio of real to imaginary parts. The re-
cently Suggested26 ratio of - 0.45 at 6 GeV is then much too large compared to
our calculation or to other strong interaction processes.

| So, although the prospects still do not look very good for an early
experimental test of the forward dispersion relations, we have seen a number
of interesting consequences of our study of forward Compton scattering. In
pai-ticular, we hope that we have provided sufficient encouragement to experi-
mentalists to make further measurements of the total photoabsorption cross
sections, to measure thé magnitude of (do/dt) =0 for Compton scattering, and
to try to measure Ref, (») by interference of the Bethe-Heitler amplitude with

the Compton amplitude for pair production.
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TABLE I

Calculated values of Re f1 (v) for forward photon-proton scattering.
The input values of o,,(v) = %}f Im £, (v) (froin the smooth fit at low energy which
joins on to the fit (A & B) to all the high energy data) as well as the resulting
values of Ref1 ) - Re f1 (0) and Re f1 (v) are listed in steps of 0.015 GeV in W

up to W =2.01 GeV, and then in steps of 1.0 GeV in » up to v =20 GeV.

W v UT(V) Im fl(v) Re fl(v)—Re fl(O) Re fl(v)
(GeV) (GeV) (ub) (#b-GeV) (ub-GeV) (kb-GeV)
.945 0.005 0 0.0 +0.0018 - 3.0
.960 0.020 0 0.0 0.030 - 3.0
975 0.036 0 0.0 0.094 - 2.9
.990 : 0.051 0 0.0 0.20 - 2.8
1.005 0.067 0 0.0 0.35 - 2.7
1.020 0.083 0 0.0 0.55 - 2.5
1.035 0.100 0 0.0 0.82 - 2.2
1.050 0.116 0 0.0 1.2 - 1.8
1.065 0.133 0 0.0 1.7 - 1.3
1.080 0.150 0 0.0 2.9 - 0.3
1.095 0.168 75 1.0 3.7 + 0.7
1.110 0.185 114 1.7 4.0 + 1,0
1.125 0.203 145 2.3 4.5 ©+ 1.5
1.140 0.221 182 3.2 5.3 + 2.3
1,155 0.240 233 4.4 6.2 + 3.2
1.170 0.258 307 6.3 7.0 + 4.0
1.185 0.277 404 8.9 7.1 + 4.1
1.200 0.296 499 11.8 5.6 + 2.6
1.215 0.315 546 13.7 2.4 - 0.6
1.230 0.335 522 13.9 - 1.3 - 4.3
1.245 - 0.354 449 12.7 -4.1 - 7.1
1.260 0.374 366 10.9 - 5.4 - 8.4
1.275 0.395 292 9.2 - 5.7 8.7
1.290 0.415 235 7.8 - 5.2 8.2
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W v oT(v) Im fl(v) Re fl(v)-Re fl(O) Re fl(v)
(GeV) (GeV) (pb) (ub-GeV)- (ub-GeV) (ub-GeV)
1.305 0.436 196 6.8 - 4.3 - 7.3
1.320 0.457 172 6.3 - 3.1 - 6.1
1.335 0.478 162 6.2 - 1.9 - 4.9
1.350 0.499 164 6.5 - 0.7 - 3.7
1.365 0.521 175 7.2 + 0.3 - 2.7
1.380 0.543 190 8.2 + 0.9 - 2.1
1.395 0.565 207 9.3 + 1.2 - 1.8
1.410 0.587 220 10.3 + 1.1 - 1.9
1.425 0.610 228 11.1 + 0.9 - 2.1
1.440 0.633 234 11.8 + 0.8 - 2.2
1.455 0.656 241 12.6 + 1.0 - 2.0
1.470 0.679 253 13.7 + 1.1 - 1.9
1.485 0.703 271 15.2 + 0,8 - 2.2
1.500 0.727 288 16.6 - 0.5 - 3.5
1.5615 0.751 290 17.3 - 2.5 - 5.5
1.530 0.775 275 17.0 - 4,3 - 7.3
1.545 0.800 255 16.2 - 5.1 - 8.1
1.560 0.824 239 15.6 - 5.2 - 8.2
1.575 0.849 228 15.4 - 4.9 - 7.9
1.590 0.875 222 15.4 - 4.7 - 1.7
1.605 0.900 219 15.7 - 4,5 - 7.5
1.620 0.926 218 16.1 - 4.3 - 7.3
1.635 0.952 219 16.6 - 4.3 - 7.3
1.650 0.978 221 17.2 - 4.2 - 7.2
1.665 1.005 225 18.0 - 4.3 - 7.3
1.680 1.031 232 19.1 - 4.7 - 7.7
1.695 1.058 239 20.2 -~ 6.1 - 9.1
1.710 1.085 236 20.3 ~ 8.2 - 11.2
1.725 1.11 219 19.4 - 9.8 - 12.8
1.740 1.14 201 18.3 - 10.3 - 13.3
1.755 1.17 187 17.4 - 10,1 - 13.1
1.770 1.20 176 16.8 - 9.8 - 12.8
1.785 1.22 168 16.4 - 9.3 - 12.3
1.800 1.25 163 16.2 - 8.8 - 11,8
1.815 1.28 159 16.2 - 8.2 - 11.2
1.830 1.31 158 16.5 - 7.6 - 10.6
1.845 1.34 158 16.9 - 7.0 - 10.0
1.860 1.37 161 . 17.5 - 6.6 - 9.6
1.875 1.40 164 18.3 - 6.5 - 9.5
1.890 1.43 167 19.0 - 6.6 - 9.6
1.905 1.46 170 19.7 - 7.0 - 10.0
1.920 1.49 170 20.2 - 7.6 - 10.6
1.935 1.52 168 20.4 - 8.2 - 11.2
1.950 1.55 165 20.3 - 8.7 - 11,7
1.965 1.58 160 20.2 - 9,0 -12,0
1.980 1.62 156 20.1 - 8.9 - 11.9
1.995 1.65 153 20.0 - 8.8 - 11.8
2.010 1.68 151 20.2 8.5 - 11,5
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W v aT(u) Im fl(v) Re f1 (v)-Re fl(O) Re fl(v)
(GeV) (GeV) (ub) (ub-GeV) (#b-GeV) (ub-GeV)
2.16 2.0 146 23.4 . - 8.3 -11.2
2,55 3.0 137 32.6 - 9.8 - 12.5
2.90 4.0 132 41.9 -11.0 - 13.9
3.21 5.0 128 51.0 - 12.3 - 15.2
3.49 - 6.0 125 60,0 - 13.4 - 16,3
3.75 7.0 123 68.7 - 14.5 - 17.3
3.99. 8.0 121 . 77.3 - 15.5 - 18.3

- 4,22 9.0 120 88.0 - 16.5 - 19.3
4.44 10.0 119 94.6 - 17.4 - 20,2
4.64 11.0 118 103 - 18.3 -21,1
4.84 12,0 117 112 - 19.1 -21.9
5.03 13.0 116 120 - 19.9 - 22,7
522 14.0 115 129 - 20,7 - 28.5
5.39 15.0 115 137 -21.5 - 24,3
5.56 16.0 114 145 -22.2 - 25.0
5.73 17.0 114 154 - 22.8 -25.6
5.89 18.0 113 162 - 23.5 -.26.2
6.05 19.0 113 170 - 24.1 - 26.8
6.20 20.0 112 179 ‘ - 24, ~27.5

N
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TABLE II

_ Parametersufoxj fits to the high energy total Qro_ss"ls'ecﬁon mea{

" surements of the form o, (v) + Cy (v/GeV)a(O) 1.‘, corresponding values of ,'
168 GeV) g1 (R)
; f =+ MY, and resulting values of C taking
0 (.68 GeV)
‘+-°‘—+?- | i’i-lmf(v')—weyb GeV.
M T '
N vV
ST
(1,68 GeV)
2 A Imf‘R’ @)
™0 .

Experimental | Ca ( : C

Data Subset  a(0) (ub) (ub) | (ub-GeV) (ub-GeV)

10

A 0.6 100.5  68.1 16.4 - 3.5
pil12,18,14 0.6 93.5  61.7 15.1 - 4.8
A&B 0.6 89.9  72.9 16.1 - 3.8
Al0 0.5 107.5  64.0 17.5 - 2.4
pll12:18,14 0.5 99.2  59.6 16.2 - 3.7
A%B 0.5 96.6  70.2 17.4 - 2.5
Al0 0.4 112.2 62,5 19.2 - 0.7
pll-12,13,14 0.4 102.9 . 59.9 18,1 - 1.8
A&B 0.4 101.2  70.1 19.5 - 0.4
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FIGURE CAPTIONS

The total photoabsorption cross section, O'T(V), for ¥ + p — hadrons
measured in recent experiments. 10,11,12,13,14
High energy total photoabsorption c;-oss sectionsmfrom the extrapolation
of inelastic ep scattering to q2= 0 plotted versus 1/ V%. The solid line

‘ 1
is a best fit to these data of the form o,,(v) = e + cz/v2 , with ¢, =

7

- 107.5 pb, Cy = 64.0 ub, and ¥ measured in GeV. The dashed line is a

similar fit to all the high enérgy data with ¢ = 96.6 ub and Cy = 70.2 pb.

11,12,13,14 from

High energy total photoabsorption cross sections
counter and bubble chamber measurements plotted versus 1/ V% . The
solid line is a best fit to these data of the form O - ¢ + cé/vé with

c = 99.2 ub, Cy = 59.6 ub and v measured in GeV. The dashed line is

a similar fit to all the high energy data with ¢ = 96.6 ub and ¢, = 70.2 pb.
Smooth fit (solid line) to the low energy total photoabsorption cross

sections from extrapolation of inelastic ep sca.ttering10

to o® = 0 (data
points shown in the figure) and from integrating single pion photo-
production differential cross sections up to W =1.32 GeV. Above W =
2,01 GeV the fit joins smoothly on to O’T(V) =96.6 +7 0.2/v% , the best
fit to all the high energy data.

Argand diagram of fl(W) for forward photon-proton scattering where
Re fl(W) was computed using the dispersion relation, Eq. (14). The

input total cross sections are shown at low energy by the solid line in

Figure 4 and at high energy by the dashed line in Figures 2 and 3.
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Values of Re fl(v) at high energy calculated using the dispersion

‘relation, Eq. (14), are indicated by the solid lines for the three dif- .

ferent fits (A, B, and A &B) to the high energy total cross sections
(see text). The real parts expected from Regge theory and the
observed behavior of the imaginary part of the amplitude are indi-
cated by the das:hedv lines for each of fhe three high energy fits.
Ratio of real to imaginary part Qf fl(v) at high energies calculated
using the dispersion relation, Eq (14), for each of the fits to the

high energy total cross sections.
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