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O exemplo de Mecânica Quântica Supersimétrica que apresentamos neste trabalho propõe uma abordagem mais
atual para compreender sistemas quânticos complexos, utilizando métodos baseados em integrais de trajetória.
O oscilador harmônico é um sistema modelar amplamente estudado nos cursos introdutórios de Mecânica
Quântica, e a aplicação da supersimetria nesse contexto oferece uma ferramenta eficiente para explorar relações
não-triviais entre diferentes estados quânticos. A combinação da supersimetria com o formalismo de integrais
de trajetória possibilita uma visão clara das flutuações quânticas e das transições entre estados, proporcionando
considerações valiosas sobre a natureza intrínseca dos sistemas físicos em sua abordagem quântica.
Palavras-chave: Mecânica Quântica Supersimétrica, Oscilador harmônico, Formalismo de integrais de trajetória.

The Supersymmetric Quantum Mechanics example presented in this work proposes a modern approach to
understanding complex quantum systems using path integral methods. The harmonic oscillator is a paradigmatic
system widely studied in introductory Quantum Mechanics courses, and the application of supersymmetry in
this context provides an efficient tool for exploring nontrivial relationships between different quantum states.
The combination of supersymmetry with the path integral formalism offers a clear perspective on quantum
fluctuations and state transitions, providing valuable insights into the intrinsic nature of physical systems in their
quantum description.
Keywords: Supersymmetric Quantum Mechanics, Harmonic oscillator, Path integral formalism.

1. Introdução

A supersimetria aparece como uma extensão natural
do grupo de Poincaré. É uma simetria que relaciona
bósons e férmions, de tal forma que a Lagrangiana
supersimetrizada de um certo sistema seja invariante
sob uma classe de transformações contínuas relacionando
bósons e férmions que integram um mesmo supermul-
tiplete. Adotando-se esse novo cenário de um grupo de
Poincaré estendido, o espectro de partículas descrito pelo
Modelo-Padrão das Interações Fundamentais pode ser
adaptado para incorporar a supersimetria. Emergem da
formulação novas partículas, chamadas parceiras super-
simétricas, e seus correspondentes campos relativísticos.
Uma vez quantizados, estes campos geram correções ra-
diativas que atenuam as divergências do Modelo-Padrão
([1–3]). Esse é, inclusive, um dos argumentos adotados
para defender a ideia de supersimetria em Física de
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Partículas. O fato dos experimentos em curso ainda não
terem revelado as partículas parceiras supersimétricas
pode sugerir que a quebra da supersimetria ocorra em
escalas de energia mais altas do que aquelas em que os
aceleradores atuais, como o LHC, operam.

A supersimetria deve realmente ser quebrada a ener-
gias muito altas, próximas da escala de 1016 GeV da
Grande-Unificação. Essa quebra é, entretanto, comu-
nicada, por argumentos baseados no grupo de renor-
malização, a escalas mais baixas, como a escala TeV,
característica dos experimentos com feixes de prótons
em colisão no LHC. Da ideia de uma quebra da su-
persimetria comunicada à escala TeV, combinada com
o Modelo-Padrão, emerge o chamado Modelo-Padrão
Minimamente Supersimétrico (MSSM) que adquire di-
ferentes versões, segundo o mecanismo específico que
comunica a quebra da supersimetria à escala TeV. Po-
rém, como mencionado anteriormente, a quebra primária
da supersimetria ocorre em uma escala próxima da
escala de Grande-Unificação. Para detectar partículas
supersimétricas no regime de energias hoje acessíveis,
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deveria existir um mecanismo em que a quebra da
supersimetria ocorresse próxima às escalas de energia
nas quais os detectores operam atualmente.

Sendo assim, as massas das partículas supersimétricas
encontram-se em uma escala um pouco acima das massas
das partículas mais pesadas detectadas em conformidade
com o Modelo-Padrão. A atual falta de evidência de
partículas supersimétricas, como descrito pelo MSSM,
não descarta a supersimetria, mas impõe limites às
massas e aos parâmetros físicos do MSSM. Isso também
estimula a pesquisa de novos mecanismos de quebra de
supersimetria, versões não-mínimas da supersimetria ou
ainda novas formas de manifestação da supersimetria;
por exemplo, através de realizações não-lineares. A au-
sência de partículas supersimétricas nos experimentos do
LHC não exclui a supersimetria porque esta implica algo
mais profundo do que apenas o surgimento de partículas
supersimétricas.

A supersimetria está nas bases da simetria conforme,
que é, sim, uma simetria que tem validade em um
regime de altíssimas energias, no qual as massas das
partículas do Modelo-Padrão podem ser tomadas nulas,
ou seja, estamos falando de uma simetria no regime
assintótico ultravioleta. Entendemos a supersimetria, de
uma forma mais ampla, como uma simetria fundamental
da Natureza, e não como um modelo específico, em vista
do argumento de que, a partir de uma supersimetria no
espaço-tempo, podemos naturalmente induzir a simetria
conforme, esta última apoiada por experimentos, como
o espalhamento profundamente inelástico e por sistemas
em transição de fase nas vizinhanças dos pontos críticos.

Por fim, a supersimetria é mais do que um refinamento
do Modelo-Padrão, é mais do que a existência de partícu-
las supersimétricas; implica em uma nova concepção do
espaço-tempo da Relatividade Especial - o superespaço
- cujos pontos são descritos tanto por coordenadas bosô-
nicas como por uma nova categoria de coordenadas, de
natureza fermiônica. No superespaço, as transformações
de coordenadas envolvem naturalmente os dois tipos
de variáveis fermiônicas e bosônicas1. Neste contexto, a
supersimetria surge como uma simetria espaço-temporal
de translação entre os dois tipos de espaços que formam
o superespaço: entre o espaço de coordenadas bosônicas e
o espaço de coordenadas fermiônicas (também chamadas
de números de Grassmann).

Em 1967, Coleman e Mandula provaram com base
em princípios fundamentais das teorias quânticas de
campos, que as únicas transformações de simetria permi-
tidas na descrição das interações entre as partículas em
nosso Universo são transformações do grupo de Poincaré
com as simetrias internas correspondentes ao Modelo-
Padrão [6] descritas por grupos unitários. Isto significa

1 O princípio de exclusão de Pauli e a estatística de Bose-Einstein
classificam as partículas em bósons e férmions, resultando em um
Modelo-Padrão assimétrico. No entanto, surge a questão de saber
se em outros cenários, como um Universo mais quente, essa dis-
tinção entre bósons e férmions ainda se mantém. A supersimetria
surge naturalmente como uma resposta a essa pergunta ([4, 5]).

que as simetrias espaço-temporais não se misturam não-
trivialmente com as simetrias internas. No jargão da
Teoria de Grupos, estas duas categorias de simetrias
se relacionam apenas por um produto Cartesiano. No
entanto, o teorema deixa de ser válido se geradores
fermiônicos são acrescentados ao setor de geradores
bosônicos.

Em 1971, o conceito de supersimetria aparece pela
primeira vez no trabalho de Gel’fand e Likhtman.
Em [7], os autores propõem uma extensão do teorema
de Coleman-Mandula adicionando esta nova simetria,
agora representada por geradores fermiônicos, e com um
espaço-tempo estendido pela introdução de coordenadas
de natureza anti-comutante. Ao mesmo tempo, em 1971,
Ramond, Neveu, Schwarz, Gervais e Sakita introduziram
a supersimetria em duas dimensões, no contexto da
teoria das cordas ([8–12]). Esses trabalhos, juntamente
com o artigo de Gel-fand e Likhtman, motivaram Wess e
Zumino a construir uma teoria de campo supersimétrica
em quatro dimensões [13–15].

Conceitos de supersimetria podem ser aplicados à
Mecânica Quântica. Esta ideia foi introduzida inicial-
mente por Witten [16] e, posteriormente, desenvolvida
por Cooper e Freedman [17] como um laboratório para
investigar métodos não-perturbativos de quebra da su-
persimetria em teoria de campos. Witten introduziu
o conceito que passou a se chamar índice de Witten
para analisar essa quebra, e em [18] apresentaram um
novo índice para teorias regularizadas na rede, marcando
o uso da supersimetria como um instrumento valioso
nesse contexto. Entretanto, à medida que exploramos os
aspectos da Mecânica Quântica Supersimétrica, torna-
se evidente que essa teoria vai além de ser apenas um
laboratório para as teorias de campo.

Um de seus aspectos notáveis é a capacidade de fatorar
operadores, como a Hamiltoniana, usando o conceito de
invariância de forma. Isso permite a solução analítica de
problemas em categorias específicas, alguns dos quais já
eram conhecidos, mas agora são vistos sob a perspectiva
da supersimetria. O oscilador harmônico supersimétrico
representa o exemplo mais simples da Mecânica Quân-
tica Supersimétrica, e sua energia é E(nB,nF ) = ω[(nB +
1
2 ) + (nF − 1

2 )], em que cada nível é caracterizado pelos
números de ocupação nB = 0, 1, 2, . . . e nF = 0, 1,
bosônicos e fermiônicos, respectivamente, que pode ser
visto em [19–21]. É importante notar que o estado fun-
damental possui energia nula, devido ao cancelamento
da energia de vibração de ponto-zero do bóson e da
energia de vibração negativa de ponto-zero do férmion.
Esse fenômeno peculiar da supersimetria tem atraído
grande interesse, pois difere das teorias de campo não-
supersimétricas, nas quais a energia de vácuo é forçada
a zero através do ordenamento normal de operadores
de criação e destruição. O ponto-zero de vibração não é
arbitrário e tem implicações reais, afetando as correções
radiativas nos níveis de energia dos átomos, o chamado
“Lamb shift”. Esse cancelamento natural da energia de

Revista Brasileira de Ensino de Física, vol. 47, e20240383, 2025 DOI: https://doi.org/10.1590/1806-9126-RBEF-2024-0383



Roldán-Domínguez et al. e20240383-3

vácuo também se aplica a teorias supersimétricas com
interações.

Em teorias supersimétricas, as divergências na teoria
de perturbações são em grande parte naturalmente
canceladas quando as contribuições infinitas dos loops
bosônicos e fermiônicos são somados. No entanto, a
supersimetria sozinha não elimina completamente as
divergências, mas as reduz, atenuando as divergências
quadráticas para divergências logarítmicas. Quando a
supersimetria é combinada com simetrias internas adici-
onais, é possível eliminar as divergências remanescentes.
Um exemplo notável ocorre em teorias de campos em
(1 + 3) dimensões, como a teoria supersimétrica de
campos de gauge do tipo N = 4, que é completamente
livre de divergências ultravioleta.

Neste ponto, cabe um breve esclarecimento sobre o que
se conhece como a supersimetria estendida N = 4. Em
quatro dimensões espaço-temporais, foi demonstrado, no
importante trabalho de Haag, Lopuszansky e Sohnius
[22] que é possível ter um número máximo de N = 8
supersimetrias independentes. A uma única supersime-
tria, nos referimos como supersimetria simples, como é o
caso do modelo aqui discutido. A particular importância
da supersimetria N = 4 reside no fato de que esta
corresponde a uma teoria de Yang-Mills maximamente
supersimétrica, descrevendo a propagação e a interação
entre partículas com spins 0, 1/2 e 1. A supersimetria
N = 8 descreve uma teoria de gravitação maximamente
supersimétrica, à qual nos referimos como supergravi-
dade N = 8, incorporando a propagação de partículas
com spins 0, 1/2, 1, 3/2 e 2. É oportuno destacar que há
um amplo espectro de questões de natureza matemática
associadas às supersimetrias estendidas.

Nossa meta central neste artigo é reproduzir o oscila-
dor harmônico supersimétrico e investigar sua estrutura
e parâmetros em comparação com o oscilador harmônico
tradicional, que é bem conhecido. Para trabalhar com
um oscilador harmônico supersimétrico, que acomoda
férmions e bósons, precisamos introduzir as variáveis de
Grassmann, que não são outra coisa que os férmions de
nosso modelo. A novidade é que sempre trabalharemos
dentro da estrutura teórica do formalismo de Feynman
para a ação. Supersimetrizar a Mecânica Quântica pode
ser, pensando em um contexto de campos quânticos,
um interessante “toy model”, já que modelos mecânicos
podem ser encarados como teorias de campo unidimen-
sionais.

Antes de iniciarmos a apresentação dos conceitos
e desenvolvimentos técnicos, gostaríamos de destacar
que o nosso esforço nesta contribuição é trazer, para
um público de graduandos e professores atuando no
ensino de Física, as primeiras noções sobre supersime-
tria, o método da integral de caminho e o conceito
de propagador, adotando um modelo mecânico simples:
o oscilador harmônico unidimensional. Nossa proposta
tem como objetivo preparar os tópicos citados acima
para seu posterior estudo no âmbito das teorias de

campo. Modelos mecânicos nada mais são do que teorias
de campo unidimensionais, no sentido de que todos os
graus de liberdade são função unicamente do tempo.
Apesar de termos, neste trabalho, adotado o oscilador
harmônico para motivar a ideia de supersimetria, o mé-
todo da integral de caminho e o conceito de propagador,
gostaríamos de sublinhar que, em princípio, estes três
tópicos são independentes.

A supersimetria baseia-se em uma nova concepção de
espaço-tempo, em que este é estendido para um novo es-
paço, o superespaço. Por sua vez, o método da integral de
caminho é um dos métodos, entre outros existentes, para
se quantizar sistemas clássicos. Já os propagadores estão
intimamente ligados às chamadas funções de Green, que
são a expressão matemática de como conectar um efeito
à causa que o gerou. Um propagador é uma função
de Green causal e é objeto fundamental no estudo das
teorias de campo. Em geral, os tópicos de supersimetria
e o método da integral de caminho não constam dos
programas dos cursos de Graduação. Funções de Green
avançadas e retardadas são estudadas nos cursos de
Eletromagnetismo e Métodos Matemáticos da Física.
Porém, a noção de propagador é trabalhada nos cursos
de teorias quânticas de campo. O que tentamos mostrar
neste trabalho é como esses tópicos podem ser antecipa-
dos para Graduandos, em Bacharelado e Licenciatura,
através de um conceito quase arquetípico da Física, o
oscilador harmônico simples.

A organização de nosso artigo é descrita a seguir:
Na Seção II, trabalhamos as integrais de trajetória em
Mecânica Quântica e sua aplicação ao oscilador harmô-
nico clássico; na Seção III, introduzimos os conceitos de
superespaço e supercampos e apresentamos o oscilador
harmônico supersimétrico (N = 1) no contexto das inte-
grais de trajetória. Concluímos, na Seção IV, fazendo as
nossas considerações finais. Um Apêndice é desenvolvido
para ilustrar em detalhes um importante mecanismo
que aparece recorrentemente em Física de Partículas, a
oscilação de campos/partículas, que já aparece em nossa
discussão do oscilador harmônico supersimétrico.

2. Integrais de Trajetória em Mecânica
Quântica e Aplicação ao Oscilador
Harmônico

Um dos nossos objetivos principais é o cálculo dos
propagadores da teoria. Isso pode ser feito usando o
formalismo canônico [23], ou a partir do formalismo
das integrais de trajetória de Feynman [24]. Embora
neste trabalho nos concentremos no estudo do segundo
método, ambas abordagens são usadas na teoria quân-
tica de campos; portanto, o que faremos aqui será uma
preparação para o estudo dessa teoria. Vamos introduzir
a ideia básica e o leitor poderá ver outros materiais mais
completos para se entender os procedimentos ([25–33]).
A troca de informações em física, de uma forma geral, é
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feita a partir da ideia de propagadores

ψ(xf , tf ) =
∫
G(xf , tf ;xi, ti)ψ(xi, ti)dxi, (1)

onde ψ(xi, ti) é uma função de onda definida em um
espaço-tempo com coordenada espacial bosônica, (x).
O propagador, G(xi, ti;xf , tf ), também chamado função
de Green2, ou função de dois pontos, transmite a
informação da causa ao receptor do efeito. Se tivermos
um evento intermediário, considerando, por exemplo, o
ponto inicial com ψ(xi, ti) passa por ψ(x, t) até ψ(xf , tf )

ψ(xf , tf )

=
∫
dx dxi dtG(xf , tf ;x, t)G(x, t;xi, ti)ψ(xi, ti),

=
∫
dxi U(tf , xf ; ti, xi)ψ(xi, ti). (2)

onde U é o operador de evolução temporal3. Podemos,
então, generalizar paraN pontos dividindo o intervalo de
tempo entre o tempo inicial e o final em N espaçamentos
fixos de igual comprimento infinitesimal τ onde τ = (tf −
ti)/N . No final, tomaremos o limite contínuo τ → 0 e
N → ∞. Os tempos intermediários são dados por: tk =
ti − kτ onde k = 1, 2, ldots,N − 1. Com isso, o operador
de evolução temporal assume a forma

U(tf , xf ; ti, xi) =
∫
dx1 . . . dxN−1 G(xf , tf ;xN−1, tN−1)

× G(xN−1, tN−1;xN−2, tN−2)
. . . G(x2, t2, x1, t1)G(x1, t1;xi, ti).

Sem mostrar os passos, que podem ser encontrados nas
referências [25–28], pode-se chegar a expressão,

U (xf , tf ;xi, ti) = ⟨tf , xf |ti, xi⟩ = N
∫ +∞

−∞
Dxe i

ℏ S[x].

(3)
onde ℏ refere-se a constante de Planck reduzida. Esta
quantidade se conhece como a integral de caminho de
Feynman para a amplitude de transição na mecânica
quântica não relativística em uma dimensão. Com Dx
denota-se a integração sobre todos os caminhos. Na
Figura (1) podemos entender melhor o significado dessa
integral. A quantidade N é uma constante independente
dos parâmetros dinâmicos da teoria e S[x] é a ação do
sistema4

S =
∫
dtL[x(t), ẋ(t), J(t)]. (4)

2 Neste caso, x é uma variável bosônica e, portanto, as funções
de Green são simétricas sob a troca: G(x′, t′;x, t) = G(x, t;x′, t′).
Isto não se cumpre para variáveis fermiónicas.
3 O operador de evolução temporal gera a translação temporal do
sistema: |ψ (t1)⟩ = U (t1, t2) |ψ (t2)⟩; onde, para um Hamiltoniano
não-dependente do tempo, a equação de Schrodinger diz que:
U (t1, t2) = e− i

h
(t1−t2)H . O operador evolução temporal é a

função de Green da equação de Schrödinger dependente do tempo.
4 A ação S é o que se conhece como um funcional: uma função
escalar cuja variável independente é uma função do tempo. Na
referência [28] o leitor encontrará um capítulo dedicado à descrição
detalhada dos funcionais e suas propriedades.

Figura 1: Aqui representamos apenas três, mas há infinitas
trajetórias do ponto inicial ao ponto final. A contribuição de um
caminho é proporcional a e

i
ℏ S[x]. A amplitude da probabilidade

é dada pela soma das contribuições de todos os caminhos
no espaço de configuração. Como os pontos finais/iniciais das
trajetórias são fixos as flutuações satisfazem η(tf ) = η(ti)=0.
Para uma melhor compreensão, consulte [25].

Antes de iniciar a apresentação do estudo do Oscilador
Harmônico supersimétrico, seguiremos a referência [28]
para estudar o caso puramente bosônico, descrito pela
Lagrangiana abaixo,

L[x(t), ẋ(t), J(t)] = 1
2mẋ(t)2 − 1

2kx(t)2 + J(t)x(t),
(5)

onde k, conforme nos livros-texto [34, 35], é a constante
de oscilação da mola, que fica em termos da frequência
angular e da massa da partícula k = mω2. Além disso,
existe a influência de uma fonte externa J(t). Em-
bora estejamos trabalhando em uma dimensão espacial,
nosso estudo está concentrado na estrutura da teoria
quântica de campos, portanto, entendemos J(t) como
possíveis perturbações no espaço-tempo (por exemplo,
em 4 dimensões, elas poderiam estar relacionadas com
partículas virtuais). Em uma teoria clássica, a corrente
pode representar uma força externa do tipo que é usada
em oscilações forçadas [35, 36], em que a corrente pode
ser escrita como uma “pancada” súbita, ou seja, uma
força externa que existe só num pequeno intervalo,
descrita pela distribuição delta de Dirac, F (t) = F0δ(t).
Existem muitas trajetórias x(t) que vão do ponto do
espaço-tempo (xi, ti) ao ponto do espaço-tempo (xf , tf ),
mas há apenas uma que minimiza a ação. Essa é a tra-
jetória clássica que é determinada pela minimização da
ação, δS[x]

δx(t)

∣∣∣
x=xcl

= 0. Frisamos essa palavra, trajetória
clássica, pois uma das características do formalismo de
integrais de trajetória é separar bem o que é um campo,
ou no nosso caso coordenada, clássica e quântico, onde
o quântico se refere flutuações não triviais em torno
do campo clássico. Aplicando essa condição a (4) e
substituindo a Lagrangiana (5), obtemos a equação de
Euler-Lagrange

mẍcl +mω2xcl = J. (6)

Entretanto, aqui pretendemos estudar todas as possíveis
trajetórias, x(t), que poderia seguir a partícula no
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caminho de (xi, ti) a (xf , tf ). Isso se traduz em uma
amplitude quântica, que, como já vimos é dada pelo
propagador de Feynman normalizado

Kx = ⟨tf , xf |ti, xi⟩ = N
∫ xf

xi

Dx e i
ℏ S[x]. (7)

Para avaliar a integral funcional (7), vamos expandi-la
usando o desenvolvimento em série de Taylor na ação
sobre o caminho clássico, levando em conta que a ação
clássica é no máximo quadrática na variável x(t),

S[x] = S[xcl + η],

= S[xcl] +
∫
dt η(t) δS[x]

δx(t)

∣∣∣∣
xcl

+ 1
2!

∫
dt1 dt2 η(t1) η(t2)

× δ2S[x]
δx(t1)δx(t2)

∣∣∣∣
x=xcl

+ · · · ,

= S[xcl] + 1
2!

∫
dt1dt2η(t1)η(t2) δ2S[x]

δx(t1)δx(t2)

∣∣∣∣
xcl

,

onde levamos em conta o princípio da mínima ação5.
A variável η(t) representa as flutuações quânticas em
torno da trajetória clássica, x(t) = xcl(t) + η(t). Usando
a definição da ação como uma função da Lagrangiana
podemos calcular a diferencial da ação de segunda
ordem,

S[x] = S[xcl] + 1
2

∫ tf

ti

dt(mη̇2 −mω2η2).

Portanto substituindo em (7),

⟨tf , xf |ti, xi⟩ = N
∫

Dη e[ i
ℏ S[xcl]+ i

2ℏ

∫ T

0
dt(mη̇2−mω2η2)]

,

(8)

onde levamos em conta que somar para todos os ca-
minhos é equivalente à somar para todas as flutuações
quânticas possíveis Dx = Dη. Por outro lado, definindo
T = tf − ti, as condições de contorno para as flutuações
são η(T ) = η(0)=0 que são as satisfeitas pela expansão
senoidal de Fourier para η(t),

η(t) =
∑

n

an sin
(
nπt

T

)
, n = 1, 2, ldots,N − 1,

onde dividimos a trajetória em N intervalos, com N →
∞, ou seja, há N − 1 pontos de tempo intermediários,
onde pode haver uma flutuação do caminho clássico.

5 Percebe-se que a fonte J é eliminada pela derivada segunda na
posição.

Portanto, só pode haver N − 1 coeficientes indepen-
dentes na expansão de Fourier,∫ T

0
dtη̇2 =

∑
n,m

∫ T

0
dtanam

(nπ
T

)(mπ
T

)
× cos

(
nπt

T

)
cos
(
mπt

T

)
,

= T

2
∑

n

(nπ
T

)2
a2

n,

e ∫ T

0
dtη2 =

∑
n,m

∫ T

0
dtanam sin

(
nπt

T

)
sin
(
mπt

T

)
,

= T

2
∑

n

a2
n,

onde usamos as propriedades de ortonormalidade das
funções senoidais. Fazemos a substituição na integral da
exponencial de (8),

⟨tf , xf |ti, xi⟩ = lim
N→∞

Ae i
ℏ S[xcl]∫

da1 . . . daN−1 e
imT

4ℏ

∑N−1
n=1

[
( nπ

T )2−ω2
]

a2
n,

(9)

onde adotamos que integrar sobre todas as flutuações
quânticas possíveis η(t) é equivalente a integrar sobre to-
dos os valores possíveis dos coeficientes da expansão, an.
Observe também que qualquer fator possível decorrente
do Jacobiano na mudança de variáveis de η para an é
incluído em A. Observa-se que a amplitude da transição
(9) é um produto de integrais Gaussianas cujo valor é
conhecido,∫

dan e
imT

4ℏ

(
( nπ

T )2−ω2
)

a2
n

=
(

4πiℏ
mT

)1/2 (nπ
T

)−1
(

1 −
(
ωT

nπ

)2
)−1/2

,

de modo que,

⟨tf , xf |ti, xi⟩ = lim
N→∞

A′e
i
ℏ S[xcl]

N−1∏
n=1

(
1 −

(
ωT

nπ

)2
)−1/2

,

onde

A′ =
(

4πiℏ
mT

)1/2 (nπ
T

)−1
,

e usando6,

lim
N→∞

N−1∏
n=1

(
1 −

(
ωT

nπ

)2
)−1/2

= sinωT

ωT
, (10)

6 Essas relações são tabuladas em [37].
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e20240383-6 A Mecânica Quântica e a supersimetria

chegamos a,

⟨tf , xf |ti, xi⟩ = lim
N→∞

A′e
i
ℏ S[xcl]

(
sinωT

ωT

)−1/2
.

Para calcular A′ consideramos o caso de uma partícula
livre (ω = 0), ver [28],

⟨tf , xf |ti, xi⟩livre =
( m

2πiℏT

)1/2
e

i
ℏ S[xcl].

lim
N→∞

A′ =
( m

2πiℏT

)1/2
.

Portanto, chegamos à expressão final da amplitude
quântica de transição para um oscilador harmônico in-
teragindo com uma fonte externa dependente do tempo,

⟨tf , xf |ti, xi⟩ =
( m

2πiℏT

)1/2
(

sinωT
ωT

)−1/2
e

i
ℏ S[xcl],

(11)

=
√

mω

2πiℏ sinωT e
i
ℏ S[xcl], (12)

onde a dependência da fonte reside no termo S[xcl].
Com o surgimento do novo termo,

√
mω

2πiℏ sin ωT , vemos
que todas as trajetórias possíveis contribuem para a
evolução do sistema, não apenas a trajetória clássica.
Isso revela a natureza intrinsecamente probabilística
e não-determinística da Mecânica Quântica. Podemos
observar também que esse propagador tem uma forma
oscilatória, refletindo a natureza do oscilador harmônico
quântico.

Nos concentramos no cálculo dos propagadores da
teoria, pois este é um ingrediente fundamental para
entender como o sistema quântico evolui no espaço-
tempo. No entanto, também pode ser interessante calcu-
lar as probabilidades, que são fisicamente mensuráveis.
A densidade de probabilidade pode ser calculada a
partir do propagador, tal que, P (xf , tf ) = ψ∗ (xf , tf ) ·
ψ (xf , tf ) = |ψ (xf , tf )|2, onde, como vimos em (2),

ψ (xf , tf ) =
∫ +∞

−∞
⟨tf , xf |ti, x′

i⟩ψ (x′
i, ti) dx′

i.

Assim, para determinar completamente a amplitude
quântica em (12), precisamos calcular a ação clássica.
Para isso, de (6),

mẍcl(t) +mω2xcl(t) = J(t),

→
(
d2

dt2
+ ω2

)
xcl(t) = J(t)

m
. (13)

A solução para essa equação é composta por uma parte
homogênea e outra não-homogênea,

xcl(t) = xH(t) + xI(t), (14)

respectivamente, onde, a homogênea tem a forma,
xH(t) = Aeiωt +Be−iωt, de modo que A e B podem ser

calculadas usando as condições de contorno do problema
e a solução não-homogênea se define como,

xI(t) = −
∫ tf

ti

G(t− t′)J(t′)dt′, (15)

onde G(t, t′) é a função de Green que satisfaz,(
d2

dt2
+ ω2

)
G(t− t′) = −δ(t− t′), (16)

que, no espaço de Fourier, lê-se7,

1
2π (−κ2 + ω2)Ĝ(κ) = − 1

2π , → Ĝ(κ) = 1
κ2 − ω2 ,

(17)

onde usamos as relações abaixo para obter a função de
Green, bem a distribuição delta de Dirac no espaço de
fase,

G(t− t′) =
∫ +∞

−∞

dκ

2π Ĝ(κ) e−iκ(t−t′), e

δ(t− t′) =
∫ +∞

−∞

dκ

2π e
−iκ(t−t′),

(18)

que quando substituímos (17), obtemos,

G(t− t′) =
∫ +∞

−∞

dκ

2π
e−iκ(t−t′)

κ2 − ω2 . (19)

Essa integral tem dois polos (κ = ±ω) de ordem 1,
portanto, para avaliar essa integral, devemos utilizar
o teorema dos resíduos8 especificando um contorno no
plano κ complexo. Nesse contexto quântico, é interes-
sante calcular a função de Green causal (ou função de
Green de Feynman [25]) que corresponde a escolher os
polos da seguinte forma,

G(t− t′) =
∫ +∞

−∞

dκ

2π
e−iκ(t−t′)

(κ− ω + iϵ
2ω )(κ+ ω − iϵ

2ω )
. (20)

Aplicando o teorema dos resíduos para t− t′ < 09,∮
c

dκ

2π
e−iκ(t−t′)

(κ− ω + iϵ
2ω )(κ+ ω − iϵ

2ω )

=
∫ R=+∞

R=−∞

dκ

2π
e−iκ(t−t′)

(κ− ω + iϵ
2ω )(κ+ ω − iϵ

2ω )
,

= 2πi lim
ϵ→0

Res(f(κ), κ = −ω + iϵ/2),

7 Representamos a variável de Fourier pela letra grega κ para não
confundir com a constante k de restauração do oscilador.
8 O teorema dos resíduos [38], [36] afirma que

∮
c
f(s) ds =

±2πi
∑

int
Res(f(s), s0) onde o sinal é positivo quando o contorno

é percorrido no sentido anti-horário e negativo quando é percorrido
no sentido horário. Res(f(s), s0) é o resíduo da função f no polo s0

e é dado por Res(f(s), s0) = lims→s0
1

(n−1)!
dn−1

dsn−1 [(s− s0)nf(s)]
onde n é o ordem do polo.
9 Escolhendo o contorno específico representado na Figura (2), a
integral ao longo do semicírculo superior do contorno é cancelada.

Revista Brasileira de Ensino de Física, vol. 47, e20240383, 2025 DOI: https://doi.org/10.1590/1806-9126-RBEF-2024-0383



Roldán-Domínguez et al. e20240383-7

Figura 2: Inserimos a quantidade ϵ → 0 para deslocar os polos
fora do eixo real. Isso é chamado de prescrição de Feynman.
Para t − t′ > 0, escolhemos o contorno simétrico abaixo do eixo
real que contém o outro polo interno.

nos dando,

lim
ϵ→0

Res(f(κ), κ = −ω + iϵ/2) = −eiω(t−t′)

4πω . (21)

Fazemos o mesmo procedimento para t−t′ > 0, a função
de Green torna-se

G(t−t′) = 1
2ωi

[
Θ(t− t′)e−iω(t−t′) + Θ(t′ − t)eiω(t−t′)

]
,

(22)
onde Θ é a função de Heaviside. Substituindo essa função
em (15) a solução (14) fica,

xcl(t) = Aeiωt +Be−iωt − 1
2ωmi

[∫ t

ti

e−iω(t−t′)J(t′)dt′

+
∫ tf

t

eiω(t−t′)J(t′)dt′
]
. (23)

Usando as condições de contorno: xcl(ti) = xi e
xcl(tf ) = xf , chegamos a,

xcl(t)

= 1
sinωT xf sin [ω (t− ti)] + 1

sinωT xi sin [ω (tf − t)]

+ 1
sinωT

1
2mω

∫ tf

ti

dt′J (t′) e−iωT cos [ω (t− t′)]

− 1
sinωT

1
2mω

∫ tf

ti

dt′J (t′) cos [ω (tf + ti − t− t′)]

− 1
2imω

[∫ t

ti

dt′J (t′) e−iω(t−t′)

+
∫ tf

t

dt′J (t′) eiω(t−t′)
]
, (24)

e substituindo (4) na ação, fica,

S [xcl] = mω

2 sinωT
[(
x2

i + x2
f

)
cosωT − 2xixf

]
+ xi

sinωT

∫ tf

ti

dtJ(t) sinω (tf − t)

+ xf

sinωT

∫ tf

ti

dtJ(t) sinω (t− ti)

− 1
mω sinωT

∫ tf

ti

dt
∫ t

ti

dt′J(t) sinω (tf − t)

× sinω (t′ − ti) J (t′) .
Portanto, fica completamente determinada a amplitude
quântica em (12).

Um dos objetivos deste trabalho é estender esse
cálculo projetado de um oscilador puramente bosônico
a um oscilador supersimétrico descrito por variáveis
bosônicas e fermiônicas. É exatamente isso que faremos
na próxima seção. Primeiro, propomos uma expressão
para um Lagrangiana supersimétrico que descreve um
oscilador harmônico. Os cálculos seguirão a mesma
lógica desta seção, mas levando em conta que agora
também trabalhamos com variáveis fermiônicas que têm
uma natureza diferente das variáveis bosônicas. Por
exemplo, uma propriedade importante a levar em conta
nos cálculos será a anticomutatividade das variáveis
fermiônicas.

3. Oscilador Harmônico Supersimétrico
no Contexto das Integrais de
Trajetória

Nesta Seção, estendemos o cálculo do propagador do
oscilador harmônico, feito na seção anterior, para um
cenário supersimétrico. Para isso, vamos descrever bre-
vemente esse cenário. A álgebra de Poincaré é formada
por geradores de rotação e translação no espaço-tempo
de Minkowski. Com a introdução da supersimetria,
amplia-se a álgebra de Poincaré, inserindo geradores de
translações no superespaço. Assim como Pµ é o gerador
das translações das coordenadas bosônicas espaciais no
espaço de Minkowski (x′µ = xµ + aµ). Qα é o gerador
das translações das variáveis Grassmannianas (θ′

α =
θα + ϵα). Podemos imaginar então um superespaço de
variáveis (xµ, θα) onde estudar a Mecânica Quântica,
neste caso, supersimétrica. Este superespaço é composto
por coordenadas bosônicas que comutam e obedecem
a estatística de Bose-Einstein (t, x, . . .) e coordenadas
fermiônicas que anti-comutam e obedecem a estatística
de Fermi-Dirac (θ1, θ2, . . .). O espaço comutante estu-
damos desde o nível básico de ensino. Porém o espaço
anti-comutante é conhecido como espaço de Grassmann
e obedece a álgebra de Grassmann. Em poucas palavras,
uma álgebra de Grassmann Gn de dimensão n é gerada
por um conjunto de geradores θα com α = 1, . . . , n que
satisfazem,

{θα, θβ} = θαθβ + θβθα = 0 → θ2
α = 0. (25)
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e20240383-8 A Mecânica Quântica e a supersimetria

Esta condição, θ2
α = 0, sugere, já no nível clássico,

o princípio de exclusão de Pauli. A variável θ não
é uma variável física, como o tempo ou a posição
mas sim uma variável auxiliar para trabalhar com
férmions. A parametrização das coordenadas de um
superespaço, então, pode assumir a seguinte estru-
tura (t, x1, x2, ldots, θ1, θ2, . . .). Tomando como exemplo
apenas duas coordenadas bosônicas e grasmaniannas
(t, x1, x2, θ1, θ2) uma função das coordenadas deste su-
perespaço pode sempre ser expandida de forma fatorada,
através do produto de funções das coordenadas do setor
espacial por monômios constituídos pelas coordenadas
Grassmannianas. Isto é realizado por meio da expressão
que segue abaixo,

F (t, x1, x2, θ1, θ2)
= f0(xµ) + f1(xµ)θ1 + f2(xµ)θ2 + f3(xµ)θ1θ2.

(26)

onde xµ = (t, x1, x2) e θ2
1 = θ2

2 = 0, sendo que
os outras combinações não são contempladas pois elas
são eliminados pela relação de anticomutação. Para o
desenvolvimento do nosso problema, consideremos o caso
mais simples, com duas variáveis independentes, t e θ,
onde tomamos a supercoordenada bosônica X(t, θ) =
x(t) + iθλ(t), que envolve a coordenada bosônica, x(t),
e a coordenada fermiônica, λ(t). X(t, θ) e x(t) são
variáveis reais: x(t)∗ = x(t). Para assegurar que a
grandeza seja real, como as variáveis θ e λ anticomutam
entre si, é necessário introduzir a unidade imaginária
“i” no produto λθ. Dizemos que λ(t) é um campo ou
coordenada a parceira supersimétrica de x(t) e vice-
versa. A Lagrangiana que define a teoria fica, então,
em função desta nova supercoordenada. Uma proposta
que oferece uma dinâmica e dimensões corretas10 é a
densidade super-lagrangiana [39],

L(X,Ψ) = i

2mẊDθX − 1
2µΨDθΨ + V (X)Ψ, (27)

onde µ tem dimensões de massa e a superderivada se
define como Dθ = ∂θ − iθ∂t. Notamos a presença de uma
nova supercoordenada neste caso fermiônica, Ψ(t, θ) =
ϕ(t) + θs(t) . ϕ(t) tem natureza fermiônica e s(t) é um
escalar bosônico. De novo, queremos que Ψ seja real.
Porém, não é preciso introduzir a unidade imaginária
“i” no segundo termo de Ψ, porque as variáveis θ e s
comutam. A introdução desta nova supercoordenada é
necessária para gerar o termo do potencial: V (X) = αX
que vai reproduzir corretamente o potencial do oscilador
harmônico. A ação supersimétrica contém a integração
da Lagrangiana supersimétrica (super-lagrangiana) no
elemento de “volume” (na verdade, aqui, temos um
elemento de linha temporal e outro grassmanniano) do

10 A ação deve ser uma quantidade adimensional. Escolhemos o
sistema de unidades naturais (c = 1 e ℏ = 1) que implica, por
tanto, [E] = [m] e assim [x] = [t], logo [x] = [m]−1.

superespaço (dtdθ), tal que,

S =
∫
dtdθ L(X,Ψ),

=
∫
dt
[m

2 ẋ
2 − im

2 λλ̇− iµ

2 ϕϕ̇+ µ

2 s
2 + αxs+ αiλϕ

]
,

onde desenvolvemos as supercoordenadas X e Ψ e
integramos na variável grassmanniana11. Eliminamos
a coordenada s(t) via Euler-Lagrange, pois não tem
dinâmica, portanto é uma coordenada auxiliar,

∂L

∂s
− d

dt

(
∂L

∂ṡ

)
= 0, ⇒ s = −αx

µ
. (28)

Substituindo na ação obtemos,

S =
∫
dt
[m

2 ẋ
2 − im

2 λλ̇− iµ

2 ϕϕ̇− α2

2µx
2 + iαλϕ

]
.

(29)

É interessante chamar a atenção para um fato não muito
comum em sistemas clássicos e quânticos: a presença de
um termo misto (“mixing term”) nas duas coordenadas
fermiônicas λ e ϕ. Termos desta natureza requerem
um tratamento especial ao se derivar as funções de
Green. Considerando que esta não é uma situação usual,
procuramos esclarecer ao leitor sobre estes detalhes no
Apêndice.

Gostaríamos também de antecipar um aspecto que
será importante ao realizarmos a quantização do sistema
da ação (29) pelo método das integrais de caminho. O as-
pecto em questão diz respeito à existência de eventuais
vínculos existentes no modelo a ser quantizado. O pro-
cesso de integração sobre todas as possíveis trajetórias
fermiônicas pede um esclarecimento, se atentarmos para
o fato de que a ação de Dirac para coordenadas (ou para
campos) fermiônicas não é quadrática na velocidade, o
que poderia indicar a presença de um vínculo, e isto
implicaria em uma restrição no processo de integrar
sobre as possíveis trajetórias. Entretanto, a equação de
movimento para a coordenada (ou para o campo) fermi-
ônica possui derivada temporal, o que, então, significa
que se pode integrar sobre todas as trajetórias sem a
imposição de vínculos. No caso do campo de Maxwell, a
simetria de calibre está associada ao vínculo implícito na
lei de Gauss para o campo elétrico, o que, então, requer
o procedimento de fixação do calibre. Isto não ocorre
com a ação de Dirac, pois a equação de movimento que
segue desta ação apresenta explicitamente uma derivada
temporal da coordenada fermiônica [40], o que não a
caracteriza como um vínculo, como é o caso da Lei de
Gauss para o campo elétrico nas equações de Maxwell.

11 O cálculo diferencial levando-se em conta coordenadas fer-
miônicas difere do caso bosônico. No caso fermiônico: θ2 = 0,∫
dθ = ∂θ, ∂θθ = 1,

∫
dθθ = 1,

∫
dθ1 = 0, ∂θ1 = 0. Estas são

relações fundamentais da integração e diferenciação das variáveis
de Grassman. Isso é detalhado em várias referências fornecidas
neste documento.
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A equação de Euler-Lagrange para a coordenada x
que segue da ação (29) fornece o valor da constante
do oscilador harmônico supersimétrico como função dos
novos parâmetros,

−α2

µ
x−mẍ = 0, ⇒ mẍ+ kx = 0,

⇒ k = α2

µ
.

(30)

Essa é exatamente a dinâmica de um oscilador harmô-
nico e a frequência de oscilação da coordenada bosônica
fica ω =

√
k/m = 2π/T , e por conseguinte, k =

α2

µ = mω2. O primeiro termo em (29) descreve o termo
cinético na coordenada x, o segundo o termo tipo-Dirac
para o férmion λ, “parceiro” supersimétrico de x; o
terceiro também descreve um termo tipo-Dirac para
o férmion ϕ, “parceiro” supersimétrico do escalar s;
o quarto termo descreve o potencial do tipo oscilador
harmônico e o último termo é uma interação entre os
férmions λ e ϕ . O termo λλ̇ se relaciona à ação de
Dirac em uma dimensão, o que dá a λ caráter de spin12,
ou seja, em nossa teoria de um oscilador harmônico
supersimétrico, aparece um novo grau de liberdade de
spin, o que indica que a supersimetria está, de alguma
forma, descrevendo o spin. Esta construção que usamos
para obtenção de um potencial, com a introdução de uma
nova supercoordenada fermiônica Ψ trouxe a necessidade
de se ter dois férmions na teoria, condição necessária
para que pudéssemos ter os termos de interação. Desta
forma, concluímos que uma teoria supersimétrica com-
pleta com um supercampo só, requer no mínimo duas
coordenadas de Grassmann para poder reproduzir o
termo potencial do oscilador na Lagrangiana.

Podemos ver que as variáveis fermiônicas estão acopla-
das, mas a variável bosônica permanece independente,
ou seja, os caminhos das variáveis fermiônicas (λ e ϕ) não
podem ser tratados separadamente. O superpropagador,
K, que leva em conta o setor bosônico e fermiônico da
teoria vem dado por,

K (xf , λf , ϕf , tf ;xi, λi, ϕi, ti)
= Kx (xf , tf ;xi, ti) ·Kλϕ (λf , ϕf , tf ;λi, ϕi, ti) ,

onde Kx é o propagador bosônico dado por (7) e,

Kλϕ (λf , ϕf , tf ;λi, ϕi, ti) = N
∫

Dλ(t)Dϕ(t) e i
ℏ S[λ,ϕ],

(31)

12 Quando se diz que a coordenada fermiônica λ poderia ser
interpretada como spin, é preciso esclarecer que a álgebra de spin
é a álgebra de Lie do grupo SU(2). A coordenada λ, portanto, é
uma coordenada única; para descrever o spin seriam necessárias
três coordenadas fermiônicas anti-comutantes. Isto será possível
no caso do oscilador tridimensional, no qual há três coordenadas λ
anti-comutantes, podendo, então, ser identificadas com as matrizes
de Pauli. Dizer que λ tem caráter de spin é apenas uma analogia
para antecipar que o oscilador tridimensional supersimétrico inclui
o grau de liberdade de spin.

é o propagador fermiônico. É importante esclarecer,
que as medidas bosônica e fermiônica são muito dis-
tintas. A medida bosônica, identificada com o Dx, é
uma diferencial genuína. Por outro lado, a medida
Dλ (ou Dϕ), associada a uma variável Grassmanni-
ana, comporta-se não mais como uma diferencial, mas
como uma derivada em relação à própria coordenada
Grassmanniana. O leitor interessado poderá consultar a
Referência [15] para um melhor entendimento do que é
a medida de integração Grassmanniana. A integral de
caminho (31) soma todas as configurações possíveis dos
campos fermiônicos acoplados. O propagador descreve
a transição entre os estados do sistema levando em
conta as interações entre essas componentes. Começamos
desenvolvendo uma expansão em série de Taylor da
ação (29) em torno as posições clássicas para cada
coordenada fermiônica:

ϕ = ϕcl + ρ, λ = λcl + ξ,

tal que, a expansão da ação fica,

S[ϕ, λ]

= S [ϕcl, λcl] + 1
2!

∫
dt1dt2ρ(t1)ρ(t2) δ2S [ϕ, λ]

δϕ (t1) δϕ (t2)

+ 1
2!

∫
dt1dt2ρ (t1) ξ (t2) δ2S[ϕ, λ]

δϕ (t1) δλ (t2)

+ 1
2!

∫
dt1dt2ξ (t1) ρ (t2) δ2S [ϕ, λ]

δλ(t1)δϕ (t2)

+ 1
2!

∫
dt1dt2ξ (t1) ξ (t2) δ2S [ϕ, λ]

δλ (t1) δλ (t2) + . . . .

(32)

O termo de interação mistura as variáveis fermiônicas
λ e ϕ, ou seja, na propagação de ϕ pode ser criado um
campo λ e vice versa. Existe portanto uma tolerância
ao trânsito nos diferentes estados λ e ϕ. Vamos agora
fazer as diferentes derivadas funcionais que aparecem no
desenvolvimento da ação,

δS[ϕ, λ]
δϕ(t2) =

∫
dt

[
iµ

2 ϕ(t) δϕ̇(t)
δϕ (t2) − iµ

2
δϕ(t)
δϕ (t2) ϕ̇(t)

− iαλ(t) δϕ(t)
δϕ (t2)

]
. (33)

Levando em conta que,

δϕ(t)
δϕ (t1) = δ(t− t1), ϕ(t) δϕ̇(t)

δϕ (t1) = −ϕ̇(t)δ(t− t1),

a equação (33) fica,

δS[ϕ, λ]
δϕ(t2) = −iµϕ̇(t2) − iαλ(t2), (34)

e

δ2S[ϕ, λ]
δϕ(t1)δϕ(t2) = iµ

d

dt2
δ(t1 − t2). (35)
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Fazemos agora a variação da ação com relação a λ,

δS[ϕ, λ]
δλ(t2) =

∫
dt

(
im

2 λ(t) δλ̇(t)
δλ(t2)

− im

2
δλ(t)
δλ(t2) λ̇(t) + iαϕ(t) δλ(t)

δλ (t2)

)
,

= − imλ̇(t2) + iαϕ(t2),

e novamente, temos

δ2S[ϕ, λ]
δλ(t1)δλ(t2) = −im d

dt2
δ(t1 − t2). (36)

As derivadas mistas ficam,

δ2S[ϕ, λ]
δϕ(t1)δλ(t2) = iαδ(t1 − t2),

δ2S[ϕ, λ]
δλ(t1)δϕ(t2) = −iαδ(t1 − t2).

(37)

Substituindo em (32), obtemos,

S[ϕ, λ] = S [ϕcl, λcl] + iµ

2

∫
dtρ(t)ρ̇(t) + im

2

∫
dtξ(t)ξ̇(t)

+ iα

2

∫
dtρ(t)ξ(t) − iα

2

∫
dtξ(t)ρ(t),

= S [ϕcl, λcl] + iµ

2

∫
dtρ(t)ρ̇(t)

+ im

2

∫
dtξ(t)ξ̇(t) + iα

∫
dtρ(t)ξ(t).

Como T = tf − ti, ξ(T ) = ξ(0) = 0 e ρ(T ) = ρ(0) = 0,
usamos o mesmo tipo de tratamento que fizemos para o
caso bosônico para as flutuações quânticas, sendo que,

ρ(t) =
∑

n

bnsin

(
nπt

T

)
, ξ(t) =

∑
n

cnsin

(
nπt

T

)
,

n = 1, 2, . . . , N − 1.

e assim fazemos essas substituições nas integrais de (38),
e obtemos,∫ T

0
dt ξ̇ ξ =

∑
n,m

∫ T

0
dt cn cm

(nπ
T

)
cos
(
nπt

T

)
× sin

(
mπt

T

)
= 0,

onde se pode verificar facilmente que essa integral é
nula, devido à paridade das funções seno e cosseno em
um intervalo periódico. O termo de interação entre os
campos em (38), fica,∫ T

0
dt ρ ξ =

∑
n,m

∫ T

0
dt bm cn sin

(
nπt

T

)
sin
(
mπt

T

)
,

=
∑

n

∫ T

0
dt bn cn sin2

(
nπt

T

)
,

= T

2
∑

n

bncn.

Com isso em mãos, substituímos no superpropaga-
dor (31),

Kλϕ (λf , ϕf , tf ;λi, ϕi, ti)

= N
∫

Dξ
∫

Dρ e i
ℏ S[ϕ,λ],

= N e
i
ℏ S[ϕcl,λcl]

∫
Dξ
∫

Dρ e
i
ℏ (iα T

2

∑
n

bncn),

= N e
i
ℏ S[ϕcl,λcl]

∫
dc1 . . . dcN−1

×
∫
db1 . . . dbN−1e

−αT
2ℏ (
∑

n
bncn).

Para a n−ésima integral, podemos escrever,∫
dbn

∫
dcne

− αT
2ℏ bncn =

∫
dcn

∫
dbn(1 − αT

2ℏ bncn),

= ∂

∂bn

∂

∂cn
(1 − αT

2ℏ bncn),

= αT

2ℏ ,

onde aqui desenvolvemos a expansão da exponencial em
série de Taylor e usamos a propriedade que relaciona a
integral com a derivada para as variáveis de Grassmann.
O sinal muda porque anticomutam as duas variáveis de
Grassmann,

Kλϕ (λf , ϕf , tf ;λi, ϕi, ti) = lim
N→∞

N e
i
ℏ S[ϕcl,λcl]

N−1∏
n=1

αT

2ℏ ,

= N e
i
ℏ S[ϕcl,λcl]αT

2ℏ . (38)

Novamente, para determinar completamente a ampli-
tude quântica em (38), precisamos calcular a ação
clássica fermiônica

S [ϕcl, λcl] =
∫
dt

[
− im

2 λclλ̇cl − iµ

2 ϕclϕ̇cl

+ iαλclϕcl − Jϕ ϕcl − Jλ λcl

]
. (39)

Para isso, calculamos as equações de Lagrange para as
coordenadas λ e ϕ do Lagrangiana da nossa teoria (29):

mλ̇− αϕ = 0, µϕ̇+ αλ = 0. (40)

Porém, podem ser desacopladas, gerando assim duas
equações de osciladores harmônicos de natureza fermiô-
nica13

mλ̈+ α2

µ
λ = mλ̈+ kλ = Jλ, e

µϕ̈+ α2

m
ϕ = µϕ̈+ k̃ϕ = Jϕ,

(41)

13 Onde adicionamos as correntes Jλ e Jϕ necessárias para o
tratamento das funções de Green pelo método da integral de
caminho.

Revista Brasileira de Ensino de Física, vol. 47, e20240383, 2025 DOI: https://doi.org/10.1590/1806-9126-RBEF-2024-0383



Roldán-Domínguez et al. e20240383-11

com k̃ = α2/m. Apesar da coordenada ϕ ter original-
mente massa µ, devido à simetria do sistema podemos
escrevê-lo com a mesma massa de λ e constante de
restauração k, reproduzindo a equação mϕ̈ + kϕ = 0,
cuja frequência é ω, gerando assim a mesma equação
de movimento. Portanto, ambas equações descrevem
os mesmos modos de vibração. Podemos considerar ϕ
como um grau de liberdade espúrio ou uma coordenada
auxiliar, como o s(t). Logo, a nova supercoordenada Ψ
introduzida em (27) seria uma supercoordenada auxiliar.
As equações (41) têm a mesma forma que (13), logo as
soluções terão a mesma forma que (24):

λcl(t)

= 1
sinωT λf sin [ω (t− ti)] + 1

sinωT λi sin [ω (tf − t)]

+ 1
sinωT

1
2mω

∫ tf

ti

dt′Jλ (t′) e−iωT cos [ω (t− t′)]

− 1
sinωT

1
2mω

∫ tf

ti

dt′Jλ (t′) cos [ω (tf + ti − t− t′)]

− 1
2imω

(∫ t

ti

dt′Jλ (t′) e−iω(t−t′)

+
∫ tf

t

dt′Jλ (t′) eiω(t−t′)
)
,

e

ϕcl(t)

= 1
sinωT ϕf sin [ω (t− ti)] + 1

sinωT ϕi sin [ω (tf − t)]

+ 1
sinωT

1
2mω

∫ tf

ti

dt′Jϕ (t′) e−iωT cos [ω (t− t′)]

− 1
sinωT

1
2mω

∫ tf

ti

dt′Jϕ (t′) cos [ω (tf + ti − t− t′)]

− 1
2imω

(∫ t

ti

dt′Jϕ (t′) e−iω(t−t′)

+
∫ tf

t

dt′Jϕ (t′) eiω(t−t′)
)
.

Essas soluções podem ser substituídas na ação fermiô-
nica que aparece em (38) ficando a amplitude quântica
fermiônica completamente determinada. É importante
observar que, embora estejamos denotando as variáveis
ϕ e λ como clássicas, por extensão com o caso bosônico
da seção anterior, as variáveis Grassmannianas antico-
mutantes não têm uma contrapartida clássica. Esse não
é o caso da coordenada bosônica comutante x da seção
anterior, que representa a posição, que podemos medir e
observar. Entretanto, embora as coordenadas fermiôni-
cas não sejam observáveis, as grandezas físicas derivadas
delas são. Por exemplo, o spin não é observável, o que
é observado é sua projeção ou número de spin. Lembre-
se de que relacionamos essas coordenadas fermiônicas
a um possível grau de liberdade de spin. Propomos o
cálculo das soluções λcl(t) e ϕcl(t) fornecidas acima como

exercício para o leitor. Para simplificar a tarefa podemos
considerar dois tipos de correntes: correntes nulas J = 0
e correntes da forma delta de Dirac, J(t) = J0 δ(t).

4. Considerações Finais

Em nossos comentários finais, gostaríamos de enfatizar
que os tópicos abordados neste artigo, supersimetria,
Mecânica Quântica Supersimétrica e o método de quan-
tização via integral de caminho, não são tópicos geral-
mente abordados nos programas de Graduação. A nossa
presente contribuição é dirigida sobretudo a um público
de estudantes de Bacharelado e Licenciatura, e tem como
objetivo principal trazer tópicos mais avançados para
este público-alvo. Para os autores é, também, tarefa não-
trivial o esforço de apresentar temas mais avançados
em uma abordagem mais pedagógica. Aprende-se muito
com este esforço. No caso de nosso presente trabalho,
para uma melhor compreensão, elegemos o exemplo
universal do oscilador harmônico, que é um sistema físico
estudado em detalhes nos cursos básicos dos Programas
de Graduação.

Nosso principal objetivo foi calcular o propagador de
um oscilador harmônico supersimétrico por meio do for-
malismo de integral de trajetória de Feynman (3). A no-
vidade em relação ao oscilador puramente bosônico (2)
está na parte fermiônica. O resultado do propagador
fermiônico em (38) nos diz como a informação se propaga
entre os férmions da teoria.

Além da importância da integral de caminho na
teoria quântica de campos, a motivação por trás deste
trabalho é enfatizar a importância do uso de variáveis
Grassmannianas. Essas variáveis descrevem quantidades
anticomutantes, como os férmions. Os férmions formam
a matéria do universo, ou seja, no contexto da Me-
cânica Quântica e da teoria quântica de campos, a
anticomutação é uma característica fundamental. Uma
continuação natural desse trabalho seria estender esse
desenvolvimento para duas coordenadas de Grassmann,
o que ilustraria a construção de modelo supersimétrico
estendido, da categoria N = 2. Neste caso, seria possível
reproduzir o termo potencial na Lagrangiana com um
supercampo só, ou seja, a introdução do supercampo
auxiliar Ψ não seria necessária.

Também estamos interessados na possível extensão
deste trabalho para o estudo de osciladores harmônicos
acoplados. Em nossa teoria, o acoplamento entre os
férmions torna a parte fermiônica mais complexa e
sujeita a ser descrita por formalismos específicos, como
o apresentado no apêndice. Acreditamos que esse forma-
lismo pode ser interessante no contexto de osciladores
multidimensionais descritos por variáveis acopladas.

Por fim, também é interessante observar a importância
do operador misto relatado no Apêndice. Dedicamos
o Apêndice a esta discussão porque operadores mistos
como os aqui estudados aparecem em contextos como a
oscilação de neutrinos e a transição entre fótons e áxions
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no Efeito Primakoff. Consideramos importante antecipar
este tipo de fenômeno em um sistema simples como o
oscilador harmônico unidimensional em sua versão mi-
nimamente supersimétrica. Nesta direção, uma perspec-
tiva de aprofundamento de nossa proposta é apresentar
as chamadas supersimetrias estendidas em conexão com
a física de osciladores harmônicos e anarmônicos bi- e
tridimensionais, seja no caso em que estejam livres e no
caso em que se encontrem acoplados. Está em nossos
planos submeter este estudo subsequente a esta revista.

Apêndice: Análise Matricial da Teoria.
Férmions Acoplados em um Multipleto
Fermiônico

Neste Apêndice iremos mostrar como acoplar os campos
apresentados na seção III, em um único multiplete
fermiônico, de modo que a Lagrangiana supersimétrica
fique descrita em termos matriciais, mas apenas no setor
fermiônico. Então, agora podemos considerar que os
férmions da nossa teoria (λ e ϕ) fazem parte de um
multiplete fermiônico,

Λ(t) =
[
λ(t)
ϕ(t)

]
,

onde introduzimos a supercoordenada em forma de um
dublete, Λ. Com isto, conseguimos diagonalizar os ter-
mos fermiônicos dinâmicos tipo-Dirac e também agrupar
a interação, assim, escrevemos a ação em (29) como,

S =
∫
dt
[1

2mẋ
2 − 1

2kx
2 − i

2ΛT M Λ̇ − 1
2 ΛTR Λ

]
,

(42)
onde M é uma matriz diagonal contendo as massas m e
µ, de λ e ϕ, respectivamente, e R é a matriz da interação
entre os férmions que fica definida a partir da matriz de
Pauli σy,

M =
[
m 0
0 µ

]
, R = α

[
0 −i
i 0

]
. (43)

Podemos ver que a Lagrangiana fermiônica em (42)
contém um operador central:

Lferm = −1
2ΛT (iM ∂t +R) Λ, (44)

com equações de movimento

(iM ∂t +R) Λ = (−Mκ+R) Λ = M ′Λ = 0, (45)

onde

M ′ =
[
−mκ −iα
iα −µκ

]
, (46)

e sua inversa tem como elementos as funções de Green
no espaço de Fourier,

M ′−1 = 1
mµκ2 − α2

(
−µκ iα
−iα −mκ

)
=
(
< λλ > < λϕ >
< ϕλ > < ϕϕ >

)
. (47)

Para a coordenada λ temos,

< λλ >= µκ

mµκ2 − α2 . (48)

Agora para voltar a o espaço das configurações e ter o
propagador no espaço-tempo fazemos a transformada de
Fourier:

< λλ >e−t=
∫ +∞

−∞

dκ

2πmµ

(
µκe−iκ(t−t′)

κ2 − α2

mµ

)
, (49)

Substituindo ω = α√
mµ , adicionando o parâmetro ε e

tomando seu limite tendendo a zero, temos

< λλ >e−t

= lim
ϵ→0

∫ +∞

−∞

dκ

2πmµ

(
µκe−iκ(t−t′)

κ2 − ω2 + iϵ

)
,

=
∫ +∞

−∞

dκ

2πmµ

(
µκe−iκ(t−t′)

(κ+ ω − iϵ
2ω )(κ− ω + iϵ

2ω )

)
.

Agora podemos aplicar o teorema dos resíduos le-
vando em conta que os polos simples da integral são:
κ0 = ±(ω − iϵ

2ω ). Vamos calcular então os resíduos da
função f que é o integrando em (50) (veja a Figura 2),

f(κ) = 1
2πmµ

(
µκe−iκ(t−t′)

(κ+ ω − iϵ
2ω )(κ− ω + iϵ

2ω )

)
. (50)

Calculamos o resíduo no polo κ0 = ω − iϵ
2ω :

Res(f(κ), κ0) = lim
κ→κ0

(κ− κ0)f(κ)

=
(ω − iϵ

2ω )e−i(ω− iϵ
2ω )(t−t′)

2πm(2ω − iϵ
ω )

. (51)

Como ϵ → 0,

Res(f(κ), κ0) = e−iω(t−t′)

4πm . (52)

Seguindo o mesmo procedimento o resíduo no polo
κ0 = −ω + iϵ

2ω é,

Res(f(κ), κ0) = eiω(t−t′)

4πm . (53)

Temos então que para t− t′ < 0,

< λλ >e−t= 2πi
∑

Resint = ieiω(t−t′)

2m . (54)

e para t− t′ > 0:

< λλ >e−t= −2πi
∑

Resint = ie−iω(t−t′)

2m , (55)

ou de uma maneira mais compacta,

< λλ >e−t

= i

2m

(
Θ(t− t′)e−iω(t−t′) + Θ(t′ − t)eiω(t−t′)

)
,

(56)
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onde Θ é a função de Heaviside. Se compararmos (56)
com a função de Green para a coordenada x (22),
veremos que há uma grande semelhança entre as duas
expressões, o que torna essa abordagem matricial apre-
sentada neste apêndice muito confiável. A diferença está
nas unidades (ω = [m]9/2), o que faz sentido devido à
natureza diferente das variáveis λ e ϕ. Olhando agora
a equação (47) vamos calcular o propagador para o
campo ϕ. O procedimento é o mesmo, portanto passamos
direitamente ao resultado final,

< ϕϕ >e−t=
i

2µ
(
Θ(t− t′)e−iω(t−t′) + Θ(t′ − t)eiω(t−t′)).

(57)

Agora vamos a calcular os propagadores mistos. Aqui
o cálculo muda um pouco, mas seguimos o mesmo
procedimento,

< λϕ >= iα

mµκ2 − α2 , (58)

e

< λϕ >e−t =
∫ +∞

−∞

dκ

2πmµ

(
iαe−iκ(t−t′)

κ2 − α2

mµ

)
,

= lim
ϵ→0

∫ +∞

−∞

dκ

2πmµ

(
iαe−iκ(t−t′)

κ2 − ω2 + iϵ

)
,

=
∫ +∞

−∞

dκ

2πmµ

(
iαe−iκ(t−t′)

(κ+ ω − iϵ
2ω )(κ− ω + iϵ

2ω )

)
.

(59)

Usando o teorema dos resíduos e seguindo o mesmo
procedimento anterior, temos que,

< λϕ >e−t

= 1
2√

µm

(
Θ(t− t′)e−iω(t−t′) + Θ(t′ − t)eiω(t−t′)

)
.

(60)

Podemos observar que a frequência em todos os casos
fermiônicos (60), (57), (56) e no caso bosônico (22) é a
mesma. Isto é devido ao fato de todos serem parceiros
supersimétricos degenerados que pertencem ao mesmo
multiplete. Não sendo partículas, a degeneração está na
frequência.
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