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O exemplo de Mecanica Quantica Supersimétrica que apresentamos neste trabalho propde uma abordagem mais
atual para compreender sistemas quanticos complexos, utilizando métodos baseados em integrais de trajetéria.
O oscilador harmoénico é um sistema modelar amplamente estudado nos cursos introdutérios de Mecanica
Quantica, e a aplicagdo da supersimetria nesse contexto oferece uma ferramenta eficiente para explorar relacoes
néo-triviais entre diferentes estados quanticos. A combinagio da supersimetria com o formalismo de integrais
de trajetéria possibilita uma visdo clara das flutuagdes quanticas e das transi¢oes entre estados, proporcionando
consideracdes valiosas sobre a natureza intrinseca dos sistemas fisicos em sua abordagem quéantica.
Palavras-chave: Mecanica Quantica Supersimétrica, Oscilador harmoénico, Formalismo de integrais de trajetéria.

The Supersymmetric Quantum Mechanics example presented in this work proposes a modern approach to
understanding complex quantum systems using path integral methods. The harmonic oscillator is a paradigmatic
system widely studied in introductory Quantum Mechanics courses, and the application of supersymmetry in
this context provides an efficient tool for exploring nontrivial relationships between different quantum states.
The combination of supersymmetry with the path integral formalism offers a clear perspective on quantum
fluctuations and state transitions, providing valuable insights into the intrinsic nature of physical systems in their

quantum description.

Keywords: Supersymmetric Quantum Mechanics, Harmonic oscillator, Path integral formalism.

1. Introducao

A supersimetria aparece como uma extensdo natural
do grupo de Poincaré. E uma simetria que relaciona
bésons e férmions, de tal forma que a Lagrangiana
supersimetrizada de um certo sistema seja invariante
sob uma classe de transformagdes continuas relacionando
bdsons e férmions que integram um mesmo supermul-
tiplete. Adotando-se esse novo cendrio de um grupo de
Poincaré estendido, o espectro de particulas descrito pelo
Modelo-Padrao das Interagoes Fundamentais pode ser
adaptado para incorporar a supersimetria. Emergem da
formulagao novas particulas, chamadas parceiras super-
simétricas, e seus correspondentes campos relativisticos.
Uma vez quantizados, estes campos geram corregoes ra-
diativas que atenuam as divergéncias do Modelo-Padrao
([IH3]). Esse é, inclusive, um dos argumentos adotados
para defender a ideia de supersimetria em Fisica de
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Particulas. O fato dos experimentos em curso ainda nao
terem revelado as particulas parceiras supersimétricas
pode sugerir que a quebra da supersimetria ocorra em
escalas de energia mais altas do que aquelas em que os
aceleradores atuais, como o LHC, operam.

A supersimetria deve realmente ser quebrada a ener-
gias muito altas, préximas da escala de 10'6 GeV da
Grande-Unificagdo. Essa quebra é, entretanto, comu-
nicada, por argumentos baseados no grupo de renor-
malizacdo, a escalas mais baixas, como a escala TeV,
caracteristica dos experimentos com feixes de prétons
em colisao no LHC. Da ideia de uma quebra da su-
persimetria comunicada a escala TeV, combinada com
o Modelo-Padrao, emerge o chamado Modelo-Padrao
Minimamente Supersimétrico (MSSM) que adquire di-
ferentes versdes, segundo o mecanismo especifico que
comunica a quebra da supersimetria & escala TeV. Po-
rém, como mencionado anteriormente, a quebra primaria
da supersimetria ocorre em uma escala préxima da
escala de Grande-Unificagdo. Para detectar particulas
supersimétricas no regime de energias hoje acessiveis,
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deveria existir um mecanismo em que a quebra da
supersimetria ocorresse proxima as escalas de energia
nas quais os detectores operam atualmente.

Sendo assim, as massas das particulas supersimétricas
encontram-se em uma escala um pouco acima das massas
das particulas mais pesadas detectadas em conformidade
com o Modelo-Padrao. A atual falta de evidéncia de
particulas supersimétricas, como descrito pelo MSSM,
nao descarta a supersimetria, mas impoe limites as
massas e aos parametros fisicos do MSSM. Isso também
estimula a pesquisa de novos mecanismos de quebra de
supersimetria, versoes nado-minimas da supersimetria ou
ainda novas formas de manifestacdo da supersimetria;
por exemplo, através de realizacGes ndo-lineares. A au-
séncia de particulas supersimétricas nos experimentos do
LHC néo exclui a supersimetria porque esta implica algo
mais profundo do que apenas o surgimento de particulas
supersimétricas.

A supersimetria estd nas bases da simetria conforme,
que é, sim, uma simetria que tem validade em um
regime de altissimas energias, no qual as massas das
particulas do Modelo-Padrao podem ser tomadas nulas,
ou seja, estamos falando de uma simetria no regime
assintético ultravioleta. Entendemos a supersimetria, de
uma forma mais ampla, como uma simetria fundamental
da Natureza, e ndo como um modelo especifico, em vista
do argumento de que, a partir de uma supersimetria no
espago-tempo, podemos naturalmente induzir a simetria
conforme, esta tltima apoiada por experimentos, como
o espalhamento profundamente inelastico e por sistemas
em transicao de fase nas vizinhancas dos pontos criticos.

Por fim, a supersimetria é mais do que um refinamento
do Modelo-Padrao, é mais do que a existéncia de particu-
las supersimétricas; implica em uma nova concepgao do
espaco-tempo da Relatividade Especial - o superespago
- cujos pontos sdao descritos tanto por coordenadas boso-
nicas como por uma nova categoria de coordenadas, de
natureza fermionica. No superespaco, as transformacoes
de coordenadas envolvem naturalmente os dois tipos
de varidveis fermionicas e bosonicadl] Neste contexto, a
supersimetria surge como uma simetria espago-temporal
de translagao entre os dois tipos de espacos que formam
o superespaco: entre o espaco de coordenadas bosonicas e
o0 espago de coordenadas fermidnicas (também chamadas
de nimeros de Grassmann).

Em 1967, Coleman e Mandula provaram com base
em principios fundamentais das teorias quénticas de
campos, que as Unicas transformacoes de simetria permi-
tidas na descrigao das interagoes entre as particulas em
nosso Universo sao transformagoes do grupo de Poincaré
com as simetrias internas correspondentes ao Modelo-
Padréao [6] descritas por grupos unitérios. Isto significa

1 O principio de excluséo de Pauli e a estatistica de Bose-Einstein
classificam as particulas em bdésons e férmions, resultando em um
Modelo-Padrao assimétrico. No entanto, surge a questao de saber
se em outros cendrios, como um Universo mais quente, essa dis-
tingdo entre bésons e férmions ainda se mantém. A supersimetria
surge naturalmente como uma resposta a essa pergunta ([4, [5]).
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que as simetrias espago-temporais nao se misturam nao-
trivialmente com as simetrias internas. No jargao da
Teoria de Grupos, estas duas categorias de simetrias
se relacionam apenas por um produto Cartesiano. No
entanto, o teorema deixa de ser valido se geradores
fermibnicos sdo acrescentados ao setor de geradores
boso6nicos.

Em 1971, o conceito de supersimetria aparece pela
primeira vez no trabalho de Gel'fand e Likhtman.
Em [7], os autores propdem uma extensido do teorema
de Coleman-Mandula adicionando esta nova simetria,
agora representada por geradores fermionicos, e com um
espago-tempo estendido pela introducao de coordenadas
de natureza anti-comutante. Ao mesmo tempo, em 1971,
Ramond, Neveu, Schwarz, Gervais e Sakita introduziram
a supersimetria em duas dimensbdes, no contexto da
teoria das cordas ([8HIZ]). Esses trabalhos, juntamente
com o artigo de Gel-fand e Likhtman, motivaram Wess e
Zumino a construir uma teoria de campo supersimétrica
em quatro dimensdes [I3HI5].

Conceitos de supersimetria podem ser aplicados a
Mecanica Quantica. Esta ideia foi introduzida inicial-
mente por Witten [I6] e, posteriormente, desenvolvida
por Cooper e Freedman [I7] como um laboratério para
investigar métodos nao-perturbativos de quebra da su-
persimetria em teoria de campos. Witten introduziu
0 conceito que passou a se chamar indice de Witten
para analisar essa quebra, e em [I8] apresentaram um
novo indice para teorias regularizadas na rede, marcando
o uso da supersimetria como um instrumento valioso
nesse contexto. Entretanto, a medida que exploramos os
aspectos da Mecanica Quantica Supersimétrica, torna-
se evidente que essa teoria vai além de ser apenas um
laboratério para as teorias de campo.

Um de seus aspectos notaveis é a capacidade de fatorar
operadores, como a Hamiltoniana, usando o conceito de
invaridncia de forma. Isso permite a solucao analitica de
problemas em categorias especificas, alguns dos quais ja
eram conhecidos, mas agora sao vistos sob a perspectiva
da supersimetria. O oscilador harménico supersimétrico
representa o exemplo mais simples da Mecanica Quén-
tica Supersimétrica, e sua energia é E,p ,,5) = w[(np +
1)+ (np — 3)], em que cada nivel é caracterizado pelos
numeros de ocupagdo ng = 0,1,2,... e np = 0,1,
bosoOnicos e fermidnicos, respectivamente, que pode ser
visto em [I9-21]. E importante notar que o estado fun-
damental possui energia nula, devido ao cancelamento
da energia de vibracdo de ponto-zero do bdson e da
energia de vibracao negativa de ponto-zero do férmion.
Esse fenomeno peculiar da supersimetria tem atraido
grande interesse, pois difere das teorias de campo nao-
supersimétricas, nas quais a energia de vacuo é forcada
a zero através do ordenamento normal de operadores
de criagdo e destruigdo. O ponto-zero de vibragdo nao é
arbitrario e tem implicagoes reais, afetando as corregoes
radiativas nos niveis de energia dos dtomos, o chamado
“Lamb shift”. Esse cancelamento natural da energia de
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vacuo também se aplica a teorias supersimétricas com
interacoes.

Em teorias supersimétricas, as divergéncias na teoria
de perturbacbes sdo em grande parte naturalmente
canceladas quando as contribui¢oes infinitas dos loops
bosonicos e fermionicos sdo somados. No entanto, a
supersimetria sozinha nao elimina completamente as
divergéncias, mas as reduz, atenuando as divergéncias
quadraticas para divergéncias logaritmicas. Quando a
supersimetria é combinada com simetrias internas adici-
onais, € possivel eliminar as divergéncias remanescentes.
Um exemplo notével ocorre em teorias de campos em
(1 + 3) dimensoes, como a teoria supersimétrica de
campos de gauge do tipo NV = 4, que é completamente
livre de divergéncias ultravioleta.

Neste ponto, cabe um breve esclarecimento sobre o que
se conhece como a supersimetria estendida N = 4. Em
quatro dimensées espago-temporais, foi demonstrado, no
importante trabalho de Haag, Lopuszansky e Sohnius
[22] que é possivel ter um nimero méximo de N = 8
supersimetrias independentes. A uma unica supersime-
tria, nos referimos como supersimetria simples, como é o
caso do modelo aqui discutido. A particular importancia
da supersimetria N = 4 reside no fato de que esta
corresponde a uma teoria de Yang-Mills maximamente
supersimétrica, descrevendo a propagagao e a interacio
entre particulas com spins 0, 1/2 e 1. A supersimetria
N = 8 descreve uma teoria de gravitagdo maximamente
supersimétrica, a qual nos referimos como supergravi-
dade N = 8, incorporando a propagacao de particulas
com spins 0, 1/2, 1, 3/2 e 2. E oportuno destacar que hé
um amplo espectro de questoes de natureza matemaética
associadas as supersimetrias estendidas.

Nossa meta central neste artigo é reproduzir o oscila-
dor harmonico supersimétrico e investigar sua estrutura
e parametros em comparac¢ao com o oscilador harmonico
tradicional, que é bem conhecido. Para trabalhar com
um oscilador harmonico supersimétrico, que acomoda
férmions e bésons, precisamos introduzir as varidveis de
Grassmann, que nao sao outra coisa que os férmions de
nosso modelo. A novidade é que sempre trabalharemos
dentro da estrutura tedrica do formalismo de Feynman
para a acdo. Supersimetrizar a Mecanica Quantica pode
ser, pensando em um contexto de campos quanticos,
um interessante “toy model”, ja que modelos mecanicos
podem ser encarados como teorias de campo unidimen-
sionais.

Antes de iniciarmos a apresentacao dos conceitos
e desenvolvimentos técnicos, gostariamos de destacar
que o nosso esfor¢o nesta contribuicdo é trazer, para
um publico de graduandos e professores atuando no
ensino de Fisica, as primeiras nogdes sobre supersime-
tria, o método da integral de caminho e o conceito
de propagador, adotando um modelo mecanico simples:
o oscilador harménico unidimensional. Nossa proposta
tem como objetivo preparar os tdépicos citados acima
para seu posterior estudo no ambito das teorias de
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campo. Modelos mecanicos nada mais sao do que teorias
de campo unidimensionais, no sentido de que todos os
graus de liberdade sdo funcdo unicamente do tempo.
Apesar de termos, neste trabalho, adotado o oscilador
harmonico para motivar a ideia de supersimetria, o mé-
todo da integral de caminho e o conceito de propagador,
gostariamos de sublinhar que, em principio, estes trés
tépicos sdao independentes.

A supersimetria baseia-se em uma nova concepcao de
espago-tempo, em que este é estendido para um novo es-
paco, o superespago. Por sua vez, o método da integral de
caminho é um dos métodos, entre outros existentes, para
se quantizar sistemas classicos. Ja os propagadores estao
intimamente ligados as chamadas fungoes de Green, que
sdo a expressdo matematica de como conectar um efeito
a causa que o gerou. Um propagador é uma funcéo
de Green causal e é objeto fundamental no estudo das
teorias de campo. Em geral, os topicos de supersimetria
e o método da integral de caminho ndo constam dos
programas dos cursos de Graduacao. Funcgoes de Green
avancadas e retardadas sdo estudadas nos cursos de
Eletromagnetismo e Métodos Matemdticos da Fisica.
Porém, a nocao de propagador é trabalhada nos cursos
de teorias quanticas de campo. O que tentamos mostrar
neste trabalho é como esses topicos podem ser antecipa-
dos para Graduandos, em Bacharelado e Licenciatura,
através de um conceito quase arquetipico da Fisica, o
oscilador harmonico simples.

A organizagdo de nosso artigo é descrita a seguir:
Na Secédo II, trabalhamos as integrais de trajetéria em
Mecénica Quéntica e sua aplicacdo ao oscilador harmo-
nico classico; na Se¢ao III, introduzimos os conceitos de
superespago e supercampos e apresentamos o oscilador
harmonico supersimétrico (N = 1) no contexto das inte-
grais de trajetéria. Concluimos, na Secao IV, fazendo as
nossas consideragées finais. Um Apéndice é desenvolvido
para ilustrar em detalhes um importante mecanismo
que aparece recorrentemente em Fisica de Particulas, a
oscilagdo de campos/particulas, que ja aparece em nossa
discussao do oscilador harmoénico supersimétrico.

2. Integrais de Trajetoria em Mecanica
Quantica e Aplicacao ao Oscilador
Harmonico

Um dos nossos objetivos principais é o calculo dos
propagadores da teoria. Isso pode ser feito usando o
formalismo canénico [23], ou a partir do formalismo
das integrais de trajetéria de Feynman [24]. Embora
neste trabalho nos concentremos no estudo do segundo
método, ambas abordagens sdo usadas na teoria quan-
tica de campos; portanto, o que faremos aqui serd uma
preparacao para o estudo dessa teoria. Vamos introduzir
a ideia basica e o leitor podera ver outros materiais mais
completos para se entender os procedimentos ([25H33]).
A troca de informagdes em fisica, de uma forma geral, é
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feita a partir da ideia de propagadores

Y(xy, ty) = /G(ﬂcf»tf;%ti)iﬂ(%tz‘)dfvu (1)

onde ¥(x;,t;) é uma funcdo de onda definida em um
espago-tempo com coordenada espacial bosoénica, (z).
O propagador, G(x;,t;; 2, ty), também chamado fungéo
de Greerﬂ ou funcdo de dois pontos, transmite a
informacao da causa ao receptor do efeito. Se tivermos
um evento intermediario, considerando, por exemplo, o
ponto inicial com ¥ (z;, ;) passa por ¢ (z,t) até ¥ (xy,ty)

Y(xp,ty)
= /dx dr; dt G(x g, tr;x, )G, 6z, )Y (x, ),

:/da:i U(tf,a:f;ti,xi)lb(xi,ti). (2)

onde U é o operador de evolugao temporaﬂ Podemos,
entdo, generalizar para N pontos dividindo o intervalo de
tempo entre o tempo inicial e o final em N espacamentos
fixos de igual comprimento infinitesimal 7 onde 7 = (¢ —
t;)/N. No final, tomaremos o limite continuo 7 — 0 e
N — oo. Os tempos intermediarios sdo dados por: t; =
t; — k7T onde k = 1,2, ldots, N — 1. Com isso, o operador
de evolucao temporal assume a forma

U(tf7l'f;ti,l'i) Z/d.’ﬂl o.dry_1 G(l’f,tf;:CNfl,thl)

X G(zn_1,tN—1;TN-2,tN_2)
G, b, 21, 11)G (21, tr @, ).

Sem mostrar os passos, que podem ser encontrados nas
referéncias [25H28], pode-se chegar a expressio,

+oo )
U (es,tyiaits) = {tg, 2plts, @) =N/ DurehSlal,
—0o0
(3)

onde h refere-se a constante de Planck reduzida. Esta
quantidade se conhece como a integral de caminho de
Feynman para a amplitude de transicdo na mecéanica
quantica nao relativistica em uma dimensdo. Com Dz
denota-se a integracdo sobre todos os caminhos. Na
Figura podemos entender melhor o significado dessa
integral. A quantidade N é uma constante independente
dos pardmetros dindmicos da teoria e S[z] é a agdo do
sistemall]

S= / AL(t), #(t), T (1)), ()

2 Neste caso, x é uma varidvel bosénica e, portanto, as funcdes
de Green sdo simétricas sob a troca: G(z/,t';z,t) = G(z, t;z',t').
Isto ndo se cumpre para varidveis fermiénicas.

3 O operador de evolugio temporal gera a translacio temporal do
sistema: |9 (t1)) = U (¢1,t2) | (t2)); onde, para um Hamiltoniano
nao-dependente do tempo, a equagdo de Schrodinger diz que:

U (t1,t2) = e~ w(t—t2)H O operador evolugio temporal é a
fun¢do de Green da equagao de Schrédinger dependente do tempo.
4 A agdo S é o que se conhece como um funcional: uma fungio
escalar cuja varidvel independente é uma fungdo do tempo. Na
referéncia [28] o leitor encontrard um capitulo dedicado & descri¢do
detalhada dos funcionais e suas propriedades.
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(Xf,y{)

(*1,y1)

Figura 1: Aqui representamos apenas trés, mas ha infinitas
trajetérias do ponto inicial ao ponto final. A contribuicdo de um

caminho é proporcional a en Sl A amplitude da probabilidade
é dada pela soma das contribuicdes de todos os caminhos
no espaco de configuracdo. Como os pontos finais/iniciais das
trajetérias sdo fixos as flutuacdes satisfazem n(ty) = n(t;)=0.

Para uma melhor compreens3o, consulte [25].

Antes de iniciar a apresentagio do estudo do Oscilador
Harménico supersimétrico, seguiremos a referéncia [2§]
para estudar o caso puramente bosonico, descrito pela
Lagrangiana abaixo,

Lla(t), (1), J(1)] = gma(t)? — Ske(t)? + (1)),

(5)

onde k, conforme nos livros-texto [34) [35], é a constante
de oscilagao da mola, que fica em termos da frequéncia
angular e da massa da particula k = mw?. Além disso,
existe a influéncia de uma fonte externa J(¢). Em-
bora estejamos trabalhando em uma dimensao espacial,
nosso estudo estd concentrado na estrutura da teoria
quéntica de campos, portanto, entendemos J(t) como
possiveis perturbagdes no espago-tempo (por exemplo,
em 4 dimensoes, elas poderiam estar relacionadas com
particulas virtuais). Em uma teoria cldssica, a corrente
pode representar uma forca externa do tipo que é usada
em oscilagdes forgadas [35] [36], em que a corrente pode
ser escrita como uma “pancada” subita, ou seja, uma
forga externa que existe s6 num pequeno intervalo,
descrita pela distribui¢do delta de Dirac, F(t) = Fyd(t).
Existem muitas trajetérias x(¢) que vao do ponto do
espaco-tempo (z;,t;) ao ponto do espaco-tempo (zf,%y),
mas hé apenas uma que minimiza a acdo. Essa é a tra-

jetoria classica que é determinada pela minimizacao da
~ 45 [x]

agdo, T

cl

classica, pois uma das caracteristicas do formalismo de
integrais de trajetéria é separar bem o que é um campo,
ou no nosso caso coordenada, cldssica e quantico, onde
o quantico se refere flutuagdoes ndo triviais em torno
do campo classico. Aplicando essa condicdo a e
substituindo a Lagrangiana , obtemos a equacao de
Euler-Lagrange

= (. Frisamos essa palavra, trajetoria

Mmie + mwlag = J. (6)

Entretanto, aqui pretendemos estudar todas as possiveis
trajetérias, xz(t), que poderia seguir a particula no
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caminho de (z;,t;) a (xf,tf). Isso se traduz em uma
amplitude quéntica, que, como ja vimos é dada pelo
propagador de Feynman normalizado

Ko = (ty,oyltia) =N [ Dot (@

Para avaliar a integral funcional , vamos expandi-la
usando o desenvolvimento em série de Taylor na acao
sobre o caminho cléssico, levando em conta que a acéo
cldssica é no méximo quadrética na variavel x(t),

Slz] = Sz + 1),

= sfeal + [arnw) 20

S
ox(t)

1
+ 5/dtl dta n(t1) n(tz)
52S[z]

+...7

()0 (t2)

T=Tcl
§2S[x]
5$(t1)6$(t2) Ze ’

= S[l’cl] + % /dtldtQU(tl)ﬂ(tz)
1
onde levamos em conta o principio da minima agédﬂ
A varidvel n(t) representa as flutuagbes quénticas em
torno da trajetdria cléssica, z(t) = z(t) +n(t). Usando
a definicdo da agdo como uma funcao da Lagrangiana
podemos calcular a diferencial da acdo de segunda
ordem,

1 [
Slz] = S[za) + 5/ dt(mn? — mw?n?).
t.

i

Portanto substituindo em ,

i i [T :
(tp,wplti, xi) :N/Dn el Slzaltay [ dtmii? —mawn®)]
(8)

onde levamos em conta que somar para todos os ca-
minhos é equivalente & somar para todas as flutuagoes
quanticas possiveis Dx = Dn. Por outro lado, definindo
T =t¢ —t;, as condicoes de contorno para as flutuagoes
sao n(T) = n(0)=0 que sdo as satisfeitas pela expansao
senoidal de Fourier para 7(t),

t
n(t) =Y aysin <”;> . n=1,2,ldots, N — 1,

onde dividimos a trajetéria em N intervalos, com N —
o0, ou seja, ha N — 1 pontos de tempo intermediarios,
onde pode haver uma flutuacdo do caminho cléssico.

5 Percebe-se que a fonte J é eliminada pela derivada segunda na
posicao.
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Portanto, s6 pode haver N — 1 coeficientes indepen-
dentes na expansao de Fourier,

[ i = | " dtanan (22 (1)

y me mmt
cos T Ccos T )

T nmw\2 4
=32 (F)
n

T T
t t
/0 dtn? = T;/o dta, a., sin <n;> sin (mzzr>7
T 2
= 52%7
n

onde usamos as propriedades de ortonormalidade das
fungoes senoidais. Fazemos a substituicao na integral da
exponencial de (g),

(tr,xplts, i) :A}EHOOAS%S[%Z]

/da1 ...dan_1 ei?’? :;11 [(%)27‘”2]’13@
(9)

onde adotamos que integrar sobre todas as flutuagoes
quénticas possiveis 1)(t) é equivalente a integrar sobre to-
dos os valores possiveis dos coeficientes da expansao, a,.
Observe também que qualquer fator possivel decorrente
do Jacobiano na mudanca de varidveis de n para a,, é
incluido em A. Observa-se que a amplitude da transicdo
@ é um produto de integrais Gaussianas cujo valor é
conhecido,

/dan B ()" -)al

(e (- ()

de modo que,

N-1 T\ 2 —1/2
. D\ — 3 / Ls[mc] ==
<tf)mf‘t27ajz> - NIE}looA en ! H <1 (’]’L’]‘(‘) ) )

n=1
onde
A — A (E)—l
mT T ’
e usand(ﬂ,
_ —1/2
. N Wl 2 sinwT
lim 1—|— = ,  (10)
N—oo i nim wT

6 Essas relagdes sio tabuladas em [37].
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chegamos a,

<tf7xf|ti7xi> =

. ~1/2
lim At Skl sinwT\ ™ .
N—o0 wT

Para calcular A’ consideramos o caso de uma particula
livre (w = 0), ver [28],

m \/2 g
<tf’xf|ti7xi>livre = (27‘(th) eﬁs[ cl].
1/2
lim A = (L) .
N A omiliT

Portanto, chegamos & expressdo final da amplitude
quantica de transi¢do para um oscilador harmoénico in-
teragindo com uma fonte externa dependente do tempo,

m N2 [sinwT\ ig
t ti,x;) = | ——— e 7 Szel
(trs @ plts, i) (27rihT) ( WT ) N ’

(11)

= — T Skl 12
Imihsinwl© ’ (12)

onde a dependéncia da fonte reside no termo S[zy].
Com o surgimento do novo termo, y/5—="—=, vemos
que todas as trajetérias possiveis contribuem para a
evolugdo do sistema, ndo apenas a trajetoria classica.
Isso revela a natureza intrinsecamente probabilistica
e nao-deterministica da Mecénica Quantica. Podemos
observar também que esse propagador tem uma forma
oscilatoria, refletindo a natureza do oscilador harménico
quantico.

Nos concentramos no céalculo dos propagadores da
teoria, pois este é um ingrediente fundamental para
entender como o sistema quantico evolui no espago-
tempo. No entanto, também pode ser interessante calcu-
lar as probabilidades, que sdo fisicamente mensuraveis.
A densidade de probabilidade pode ser calculada a
partir do propagador, tal que, P (zf,tf) = ¥* (x¢,t5) -
Y (xp,ty) =0 (a?f,tf)\2, onde, como vimos em

+oo
w@mn:/ (g, wpltirl) 6 (o 1) da.

Assim, para determinar completamente a amplitude
quantica em ([12]), precisamos calcular a agdo classica.
Para isso, de (6],

maq(t) + mw?zy (t) = J(t),

— <d2 + w2> za(t) = % (13)

dt?

A solugao para essa equagdo é composta por uma parte
homogénea e outra nao-homogénea,

r(t) = xp(t) +21(t), (14)

respectivamente, onde, a homogénea tem a forma,
xh(t) = Ae™t 4+ Be~™! de modo que A e B podem ser

Revista Brasileira de Ensino de Fisica, vol. 47, €20240383, 2025

A Mecéanica Quantica e a supersimetria

calculadas usando as condi¢des de contorno do problema
e a solucao nao-homogénea se define como,

zr(t) = /ttf Gt —t")J(t)dt, (15)

i

onde G(t,t') é a funcdo de Green que satisfaz,

dt?

(d2 N w2> Gt—t)=—8(t—t),  (16)

que, no espago de Fourier, lé—seﬂ
1

N 1
Lo 2 __ 1
27r( K* 4+ w?)G (k) 5

1

K2 — w2
(17)

— é(n) =

onde usamos as relagoes abaixo para obter a fungao de
Green, bem a distribuicdo delta de Dirac no espago de
fase,

+oo
Gt —t') = / 5 &y e=intt=1)

oo 27

4 (18)

' R

ot—t) = —e ,

oo 2m
que quando substituimos , obtemos,
00 Jhe e—ir(t—t')
t—t) = —_— . 1

O (19)
Essa integral tem dois polos (k = 4w) de ordem 1,

portanto, para avaliar essa integral, devemos utilizar
o teorema dos residuosﬂ especificando um contorno no
plano x complexo. Nesse contexto quantico, é interes-
sante calcular a funcdo de Green causal (ou fungdo de
Green de Feynman [25]) que corresponde a escolher os
polos da seguinte forma,

G(t—t’)=/+oo dr

oo 2T (R~ w2 ) (i w—45)

. ’
e—m(t—t )

(20)

Aplicando o teorema dos residuos para t — t' < qu

%dn e—in(t=t)
2 (K=t E)n e = 5
/R_+°° dr e—ir(t—t')
C JRemoo 2T (K—w A ) (K +w— LE)

= 2mi liH(l) Res(f(k),k = —w + i€/2),
€E—>

7 Representamos a varidvel de Fourier pela letra grega x para nio
confundir com a constante k de restauragido do oscilador.

8 O teorema dos residuos [38]|, [36] afirma que fc f(s)ds =
+27i th Res(f(s), s0) onde o sinal ¢ positivo quando o contorno
é percorrido no sentido anti-horario e negativo quando é percorrido
no sentido horério. Res(f(s), so) é o residuo da func¢éo f no polo sg
e é dado por Res(f(s),s0) = lims_s, ﬁ%[(s —50)"f(s)]
onde n é o ordem do polo.

9 Escolhendo o contorno especifico representado na Figura , a
integral ao longo do semicirculo superior do contorno é cancelada.
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Im(K)

— W+ i€/2w
L]

Re(k)

°
w - ig/20

Figura 2: Inserimos a quantidade ¢ — 0 para deslocar os polos
fora do eixo real. Isso é chamado de prescricio de Feynman.
Parat —t' > 0, escolhemos o contorno simétrico abaixo do eixo
real que contém o outro polo interno.

nos dando,

_ez’w(t—t’)
lim Res(f(k), k = —w +i€/2) = ——

e—0 4w

(21)

Fazemos o mesmo procedimento para t—t > 0, a fungao
de Green torna-se

o b o —iw(i—t") I e (t—t')
Glt—t) = 5~ [@(t t)e + O —te (2;),

onde O é a funcao de Heaviside. Substituindo essa funcao

em a solugao fica,

T (t) = Ae™t + Be ™t —

1 t
|:/ e—iw(t—t’)J(tl)dt/
tq

2wmi

tf ) ,
- / e“’(t”J(t’)dt’] (23)
t

Usando as condigbes de contorno: xq(t;)) = x; e
ze(ty) = xy, chegamos a,

xcl(t)
1 . .
= Sooptssin [w(t—1t)]+ o sin [w(ty —1t)]
L 1 /tf dt'J (') e ™7 cos [w (t — t')]
sinwT 2mw J,
1 1

ty
e dt'J (¢ te+t;—t—t
sinwT' 2mw /t (#) cosfuw (s + )

1 t , /
dt/J t, —m)(t—t )
2imw {/t (t)e

/t Y t) ei“’(tt,)} : (24)

+
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e substituindo na acao, fica,

mw
S [xcl] = m [(3312 + 1‘?) coswl — 2$Z‘l‘f]
I L,
tJ(t)si tr—1t
dp [ At ey~

ty
i / dtJ(t) sinw (t — t;)

sinwT Jy,

1 ty t
- dt dt’ J(t) si ty—t
mw sinwT' ‘/ti /ti J(t)sinw (¢ = 1)
x sinw (¢ —t;) J ().

Portanto, fica completamente determinada a amplitude
quantica em .

Um dos objetivos deste trabalho é estender esse
calculo projetado de um oscilador puramente bosoénico
a um oscilador supersimétrico descrito por varidveis
bosoénicas e fermionicas. E exatamente isso que faremos
na proxima se¢ao. Primeiro, propomos uma expressao
para um Lagrangiana supersimétrico que descreve um
oscilador harmonico. Os célculos seguirdo a mesma
légica desta secao, mas levando em conta que agora
também trabalhamos com varidveis fermidnicas que tém
uma natureza diferente das variaveis bosonicas. Por
exemplo, uma propriedade importante a levar em conta
nos calculos serd a anticomutatividade das varidveis
fermibnicas.

3. Oscilador Harmonico Supersimétrico
no Contexto das Integrais de
Trajetoria

Nesta Secao, estendemos o cédlculo do propagador do
oscilador harménico, feito na segdo anterior, para um
cenario supersimétrico. Para isso, vamos descrever bre-
vemente esse cenario. A algebra de Poincaré é formada
por geradores de rotacao e translagao no espago-tempo
de Minkowski. Com a introducdo da supersimetria,
amplia-se a algebra de Poincaré, inserindo geradores de
translagdes no superespago. Assim como P* é o gerador
das translagoes das coordenadas bosdnicas espaciais no
espago de Minkowski (z'#* = z* 4 a*). Q. é o gerador
das translagoes das varidveis Grassmannianas (0, =
0o + €o). Podemos imaginar entdo um superespago de
varidveis (z#,0,) onde estudar a Mecinica Quéntica,
neste caso, supersimétrica. Este superespaco é composto
por coordenadas bosbénicas que comutam e obedecem
a estatistica de Bose-Einstein (¢,2,...) e coordenadas
fermibnicas que anti-comutam e obedecem a estatistica
de Fermi-Dirac (61,0s,...). O espago comutante estu-
damos desde o nivel béasico de ensino. Porém o espago
anti-comutante é conhecido como espago de Grassmann
e obedece a dlgebra de Grassmann. Em poucas palavras,
uma algebra de Grassmann G,, de dimensdo n é gerada
por um conjunto de geradores 6, com a = 1,...,n que
satisfazem,

0n,08} = 0,05 + 050, =0— 62 =0. 25
B B B @
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Esta condicdo, #2 = 0, sugere, j4 no nivel cléssico,
o principio de exclusdo de Pauli. A varidvel € nao
é uma variavel fisica, como o tempo ou a posicao
mas sim uma varidvel auxiliar para trabalhar com
férmions. A parametrizacdo das coordenadas de um
superespaco, entao, pode assumir a seguinte estru-
tura (¢, z1,x2,ldots, 61,02, ...). Tomando como exemplo
apenas duas coordenadas bosOnicas e grasmaniannas
(t,z1,22,601,02) uma funcdo das coordenadas deste su-
perespago pode sempre ser expandida de forma fatorada,
através do produto de fungoes das coordenadas do setor
espacial por monoémios constituidos pelas coordenadas
Grassmannianas. Isto é realizado por meio da expressao
que segue abaixo,

F(t,$1,$2791792)

= fo(xu) + fi(w,)01 + fa(,)02 + f3(2,)0102.
(26)

onde z, = (t,x1,22) e 07 = 603 = 0, sendo que
os outras combinagoes nao sdo contempladas pois elas
sdo eliminados pela relacdo de anticomutacao. Para o
desenvolvimento do nosso problema, consideremos o caso
mais simples, com duas varidveis independentes, ¢ e 6,
onde tomamos a supercoordenada bosénica X(¢,0) =
z(t) + i0A(t), que envolve a coordenada bosonica, x(t),
e a coordenada fermibnica, A(t). X(¢,0) e x(t) sao
varidveis reais: z(t)* = x(t). Para assegurar que a
grandeza seja real, como as varidveis 6 e A anticomutam
entre si, é necessario introduzir a unidade imaginaria
“” no produto Af. Dizemos que A(t) é um campo ou
coordenada a parceira supersimétrica de z(t) e vice-
versa. A Lagrangiana que define a teoria fica, entao,
em funcao desta nova supercoordenada. Uma proposta
que oferece uma dinimica e dimensées corretadl] é a
densidade super-lagrangiana [39],

L(X, W) = S mXDyX - %u WDy + V(X)U, (27)

onde i tem dimensoes de massa e a superderivada se
define como Dy = 9y —i00;. Notamos a presencga de uma
nova supercoordenada neste caso fermionica, W(t,0) =
o(t) + Os(t) . ¢(t) tem natureza fermibnica e s(t) é um
escalar bosbénico. De novo, queremos que ¥ seja real.
Porém, nao é preciso introduzir a unidade imaginaria
“¢” no segundo termo de ¥, porque as variaveis 6 e s
comutam. A introdugdo desta nova supercoordenada é
necessaria para gerar o termo do potencial: V(X) = aX
que vai reproduzir corretamente o potencial do oscilador
harmoénico. A acdo supersimétrica contém a integracéo
da Lagrangiana supersimétrica (super-lagrangiana) no
elemento de “volume” (na verdade, aqui, temos um
elemento de linha temporal e outro grassmanniano) do

10 A agdo deve ser uma quantidade adimensional. Escolhemos o
sistema de unidades naturais (¢ = 1 e h = 1) que implica, por
tanto, [E] = [m] e assim [z] = [t], logo [z] = [m] L.
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superespaco (dtdf), tal que,

S

/ dtdo L(X, D),

Mo UG }
/dt[Qx 2)\)\ 2¢¢+23 + axrs + aiA@|,

onde desenvolvemos as supercoordenadas X e ¥ e
integramos na variavel grassmannianaﬂ Eliminamos
a coordenada s(t) via Euler-Lagrange, pois nao tem
dindmica, portanto é uma coordenada auxiliar,

oL d (OL ax
ag—(ﬁ((%)—o, = s=——. (28)

Substituindo na agdo obtemos,

_ Mo VMg W X 2
5= /dt[2x g M= od—ou +mx¢>]
(29)

E interessante chamar a atencao para um fato nao muito
comum em sistemas classicos e quéanticos: a presenca de
um termo misto (“mizing term”) nas duas coordenadas
fermibnicas A e ¢. Termos desta natureza requerem
um tratamento especial ao se derivar as funcoes de
Green. Considerando que esta nao é uma situacao usual,
procuramos esclarecer ao leitor sobre estes detalhes no
Apéndice.

Gostariamos também de antecipar um aspecto que
serd importante ao realizarmos a quantizagao do sistema
da agao pelo método das integrais de caminho. O as-
pecto em questao diz respeito a existéncia de eventuais
vinculos existentes no modelo a ser quantizado. O pro-
cesso de integragdo sobre todas as possiveis trajetérias
fermionicas pede um esclarecimento, se atentarmos para
o fato de que a acao de Dirac para coordenadas (ou para
campos) fermidnicas ndo é quadratica na velocidade, o
que poderia indicar a presenca de um vinculo, e isto
implicaria em uma restricdio no processo de integrar
sobre as possiveis trajetorias. Entretanto, a equagao de
movimento para a coordenada (ou para o campo) fermi-
Onica possui derivada temporal, o que, entdo, significa
que se pode integrar sobre todas as trajetorias sem a
imposigao de vinculos. No caso do campo de Maxwell, a
simetria de calibre estd associada ao vinculo implicito na
lei de Gauss para o campo elétrico, o que, entdo, requer
o procedimento de fixacdo do calibre. Isto ndo ocorre
com a acao de Dirac, pois a equagao de movimento que
segue desta acdo apresenta explicitamente uma derivada
temporal da coordenada fermionica [40], o que néo a
caracteriza como um vinculo, como é o caso da Lei de
Gauss para o campo elétrico nas equacoes de Maxwell.

11O célculo diferencial levando-se em conta coordenadas fer-
midnicas difere do caso bosénico. No caso fermidnico: §2 = 0,
[d0 =089, 990 =1, [d66 =1, [df1 =0, g1 = 0. Estas sio
relagbes fundamentais da integracao e diferenciacdo das varidveis
de Grassman. Isso é detalhado em vérias referéncias fornecidas
neste documento.
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A equacao de Euler-Lagrange para a coordenada =z
que segue da agdo fornece o valor da constante
do oscilador harmoénico supersimétrico como func¢ao dos
novos parametros,

a2
——2x—mi =0, = mx + kx =0,
I
o2 (30)
= k=—.
I

Essa é exatamente a dindmica de um oscilador harmo-
nico e a frequéncia de oscilacdo da coordenada bosonica
fica w = /k/m = 2r/T, e por conseguinte, k =
0‘72 = mw?. O primeiro termo em descreve o termo
cinético na coordenada x, o segundo o termo tipo-Dirac
para o férmion A, “parceiro” supersimétrico de z; o
terceiro também descreve um termo tipo-Dirac para
o férmion ¢, “parceiro” supersimétrico do escalar s;
o quarto termo descreve o potencial do tipo oscilador
harmoénico e o tltimo termo é uma interagdo entre os
férmions A e ¢ . O termo A\ se relaciona A acdo de
Dirac em uma dimensao, o que dé a \ carater de spiIfEl,
ou seja, em nossa teoria de um oscilador harmoénico
supersimétrico, aparece um novo grau de liberdade de
spin, o que indica que a supersimetria estd, de alguma
forma, descrevendo o spin. Esta construgao que usamos
para obtencao de um potencial, com a introduc¢ao de uma
nova supercoordenada fermidnica ¥ trouxe a necessidade
de se ter dois férmions na teoria, condi¢do necessaria
para que pudéssemos ter os termos de interagdo. Desta
forma, concluimos que uma teoria supersimétrica com-
pleta com um supercampo sé, requer no minimo duas
coordenadas de Grassmann para poder reproduzir o
termo potencial do oscilador na Lagrangiana.

Podemos ver que as variaveis fermionicas estao acopla-
das, mas a variavel bos6nica permanece independente,
ou seja, os caminhos das varidveis fermidnicas (A e ¢) ndo
podem ser tratados separadamente. O superpropagador,
K, que leva em conta o setor bosdnico e fermionico da
teoria vem dado por,

K (Jff, >‘fa (bfvtfa L, Aia (biati)
= KZ ($f7tf7xzatz) . K)«j) ()‘f7 ¢fatf> )\ia d)i;t’i) )

onde K, é o propagador bosénico dado por e,

Kxg (Nf, 05,t5; Niy dis i) ZN/D/\(t)DQS(t) efSel
(31)

12 Quando se diz que a coordenada fermiénica A\ poderia ser
interpretada como spin, é preciso esclarecer que a dlgebra de spin
é a dlgebra de Lie do grupo SU(2). A coordenada A, portanto, é
uma coordenada tnica; para descrever o spin seriam necessédrias
trés coordenadas fermibnicas anti-comutantes. Isto serd possivel
no caso do oscilador tridimensional, no qual ha trés coordenadas A
anti-comutantes, podendo, entdo, ser identificadas com as matrizes
de Pauli. Dizer que X\ tem caréter de spin é apenas uma analogia
para antecipar que o oscilador tridimensional supersimétrico inclui
o grau de liberdade de spin.
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é o propagador fermidnico. E importante esclarecer,
que as medidas bosonica e fermi6nica sdo muito dis-
tintas. A medida bosonica, identificada com o Dx, é
uma diferencial genuina. Por outro lado, a medida
DA (ou Dg¢), associada a uma varidvel Grassmanni-
ana, comporta-se nado mais como uma diferencial, mas
como uma derivada em relagdo a prépria coordenada
Grassmanniana. O leitor interessado podera consultar a
Referéncia [I5] para um melhor entendimento do que é
a medida de integracdo Grassmanniana. A integral de
caminho soma todas as configuracoes possiveis dos
campos fermidnicos acoplados. O propagador descreve
a transicdo entre os estados do sistema levando em
conta as interagdes entre essas componentes. Comegamos
desenvolvendo uma expansao em série de Taylor da
acao em torno as posigoes classicas para cada
coordenada fermidnica:
¢:¢cl+pa )‘:)\cl+€a

tal que, a expansao da agao fica,

Sle, Al
= bl + gy [ i)t
s g [andnpt e oA
n %/dtldtzﬁ (t1) p(t2) m
+;/ﬁ@gmm%u§3%ﬂﬁ o

(32)

O termo de interagdo mistura as varidveis fermionicas
A e ¢, ou seja, na propagacao de ¢ pode ser criado um
campo A e vice versa. Existe portanto uma tolerancia
ao transito nos diferentes estados A e ¢. Vamos agora
fazer as diferentes derivadas funcionais que aparecem no
desenvolvimento da acao,

3S[¢, A i OB(t) i Sp(t)
ma =] S0 - S F
i) 5‘;“?((2)} . (33)
Levando em conta que,
5o(t) _ 5ot _
5¢(t1) _a(t_tl)’ ¢(t)5¢(t1) - _¢(t)6(t_t1)7
a equagao fica,
Solts) —ipp(t2) — iaA(t2), (34)
62S[p, N ; d B
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Fazemos agora a variacdo da acao com relacao a A,

5S¢, Al :/dt <i72n>\(t) OA(t)

6/\(152) 5)\(t2)
im dA(t) . . IA(t)
T D oAy D Hieet) 5y (t2)> !
= —imA\(tg) + iag(ty),
e novamente, temos
528, \] . d
As derivadas mistas ficam,
R
Saltr)on(ts) ~ 0l —ta): (37
m — —ia5(t1 _ t2).
SA(t1)d¢(t2)

Substituindo em ([32)), obtemos,

(6.0 = S g hal + 2 [adtottrpt) + 5 [areréce
+ %/dtp(t)f(t) - %/dté(t)p(t),
= S(6a Ml + 5 [ dtott)st
+ 1 [ +ia [ atptoeo.
Como T =ty —t;, &(T) = £(0) =0 e p(T) = p(0) =0,

usamos o mesmo tipo de tratamento que fizemos para o
caso bosdnico para as flutuacdes quanticas, sendo que,

o) = 3 busin (”T“) ) =S casin (”T”) ,
n=1,2...,N—1.

e assim fazemos essas substitui¢oes nas integrais de (38)),
e obtemos,

T T
. nmw nmt

dtég = / dtc, cm | — ) cos <>
[nte=5 [t () o (5
. mmt _

X sin <T> = O,

onde se pode verificar facilmente que essa integral é
nula, devido & paridade das fungdes seno e cosseno em
um intervalo periédico. O termo de interagdo entre os

campos em , fica,

T T
nmt mmt
dt = dtbm n i = i T )
/0 pé ;,:n/o csm(T>sm(T>
T
t
_ zn:/o dt b, ¢, sin’ <”;>
T
= Ezann.
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Com isso em maos, substituimos no superpropaga-

dor ,
Kxg (Np,dp,tys Ny dis ty)
s

:N/Dg/pp eSO

:Ne%s[(b(‘l’)\d]/Dg/DpC%(la% Zn ann)7
ZNe%S[%“’\Cl]/dcl...ch,l

X /dbl - de_le%lﬁT(Z” bncn)_

Para a n—ésima integral, podemos escrever,

—2Lbnen _ _ g
/dbn/dcne 2k 7/dcn/dbn(1 o7 bncn),
o 0

oT
:771_77Ln7
anacn( o Onn)
_or
oK’

onde aqui desenvolvemos a expansao da exponencial em
série de Taylor e usamos a propriedade que relaciona a
integral com a derivada para as variaveis de Grassmann.
O sinal muda porque anticomutam as duas variaveis de
Grassmann,

Kxg (A, 0p.tp3 Miy iy ti) =

N—o0

) N—-1 aT
li +S[bersAet]
im ANen | I 57,
n=1
— L£S[berAel ol 38
Nen o7 (38)

Novamente, para determinar completamente a ampli-
tude quéntica em (38]), precisamos calcular a acdo
classica fermidnica

S [¢cl7>\cl] :/dt |:2>\clAcl - éugbcld)cl
+ oAb — Jg Per — In Aar| - (39)

Para isso, calculamos as equacoes de Lagrange para as
coordenadas A e ¢ do Lagrangiana da nossa teoria :
mA—ap=0, up+ar=0. (40)
Porém, podem ser desacopladas, gerando assim duas
equagoes de osciladores harmoénicos de natureza fermi6-
nic
. a2 .
mA+ —A=mA+ kX = J,, e
I

) (41)

[ + %szﬁ:uéﬂ%:%,

13 Onde adicionamos as correntes Jy e Jg mnecessarias para o
tratamento das funcées de Green pelo método da integral de
caminho.
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com k = a?/m. Apesar da coordenada ¢ ter original-
mente massa u, devido & simetria do sistema podemos
escrevé-lo com a mesma massa de A e constante de
restauracio k, reproduzindo a equagio m¢ + k¢ = 0,
cuja frequéncia é w, gerando assim a mesma equagcao
de movimento. Portanto, ambas equacoes descrevem
os mesmos modos de vibragdo. Podemos considerar ¢
como um grau de liberdade espirio ou uma coordenada
auxiliar, como o s(t). Logo, a nova supercoordenada ¥
introduzida em ([27)) seria uma supercoordenada auxiliar.
As equagoes ém a mesma forma que , logo as
solugbes terdo a mesma forma que ([24)):

/\cl(t)

1
sin w7’ Ay sin o )N+ sinwT’

11 (v ;
m% /t dt/:])\ (t,) e_MT COS [w (t — t/)]

Aisin [w (ty — t)]

1 1 ts
- de’ Jy (¢ tr+t, —t—t
sin w7 2mw /t A ( )COS [w( rt )]

i

1 ! ’ / 7iw(t7t')
S (/t At Iy () e
tf ) ,
+ / dt/J)\ (t/) ezw(t—t )) ;
t

[§]

Pa(t)
1

[ — 1 t — tl -
sin w7’ ¢ sin [w( )] + sin w7’

1 1 ts .
- dt/ tl —wT t— tl
sin w1 2mw /t'i To(E)e cos [u ( )

S B A
sinwT' 2mw /t
1 ¢ o(t—t"
. dt,J t/ —7.w(t—t )
2imw </t s(t)e
ty ) ,
+ / dt' T, () et )> .
t

Essas solugoes podem ser substituidas na acao fermio-
nica que aparece em (38)) ficando a amplitude quéntica
fermibnica completamente determinada. E importante
observar que, embora estejamos denotando as varidveis
¢ e A como classicas, por extensao com o caso bosdnico
da secdo anterior, as varidveis Grassmannianas antico-
mutantes ndo tém uma contrapartida classica. Esse nao
é o caso da coordenada bos6nica comutante x da secao
anterior, que representa a posicao, que podemos medir e
observar. Entretanto, embora as coordenadas fermioni-
cas nao sejam observaveis, as grandezas fisicas derivadas
delas sao. Por exemplo, o spin nao é observavel, o que
é observado é sua projecao ou ntimero de spin. Lembre-
se de que relacionamos essas coordenadas fermidnicas
a um possivel grau de liberdade de spin. Propomos o
célculo das solugoes Ay (t) e ¢ (t) fornecidas acima como

¢isinfw (ty —t)]

dt' Jy (t") cosw (ty +t; —t —t')]
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exercicio para o leitor. Para simplificar a tarefa podemos
considerar dois tipos de correntes: correntes nulas J = 0
e correntes da forma delta de Dirac, J(t) = Jy d(t).

4. Consideragoes Finais

Em nossos comentérios finais, gostariamos de enfatizar
que os tépicos abordados neste artigo, supersimetria,
Mecéanica Quantica Supersimétrica e o método de quan-
tizagdo via integral de caminho, nao sdo topicos geral-
mente abordados nos programas de Graduagdo. A nossa
presente contribuicao ¢é dirigida sobretudo a um ptublico
de estudantes de Bacharelado e Licenciatura, e tem como
objetivo principal trazer tépicos mais avancados para
este publico-alvo. Para os autores é, também, tarefa nao-
trivial o esforco de apresentar temas mais avancados
em uma abordagem mais pedagdgica. Aprende-se muito
com este esforco. No caso de nosso presente trabalho,
para uma melhor compreensdo, elegemos o exemplo
universal do oscilador harménico, que é um sistema, fisico
estudado em detalhes nos cursos basicos dos Programas
de Graduagao.

Nosso principal objetivo foi calcular o propagador de
um oscilador harmoénico supersimétrico por meio do for-
malismo de integral de trajetéria de Feynman (3)). A no-
vidade em relagao ao oscilador puramente bosénico
estd na parte fermibnica. O resultado do propagador
fermi6nico em nos diz como a informacao se propaga
entre os férmions da teoria.

Além da importdncia da integral de caminho na
teoria quantica de campos, a motivacao por tras deste
trabalho é enfatizar a importancia do uso de variaveis
Grassmannianas. Essas varidveis descrevem quantidades
anticomutantes, como os férmions. Os férmions formam
a matéria do universo, ou seja, no contexto da Me-
canica Quéntica e da teoria quéntica de campos, a
anticomutagdo é uma caracteristica fundamental. Uma
continuacao natural desse trabalho seria estender esse
desenvolvimento para duas coordenadas de Grassmann,
0 que ilustraria a construcdo de modelo supersimétrico
estendido, da categoria N = 2. Neste caso, seria possivel
reproduzir o termo potencial na Lagrangiana com um
supercampo sé, ou seja, a introducdo do supercampo
auxiliar ¥ nao seria necessaria.

Também estamos interessados na possivel extensao
deste trabalho para o estudo de osciladores harmoénicos
acoplados. Em nossa teoria, o acoplamento entre os
férmions torna a parte fermionica mais complexa e
sujeita a ser descrita por formalismos especificos, como
o apresentado no apéndice. Acreditamos que esse forma-
lismo pode ser interessante no contexto de osciladores
multidimensionais descritos por variaveis acopladas.

Por fim, também é interessante observar a importancia
do operador misto relatado no Apéndice. Dedicamos
o Apéndice a esta discussdao porque operadores mistos
como os aqui estudados aparecem em contextos como a
oscilagao de neutrinos e a transicao entre fotons e axions
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no Efeito Primakoff. Consideramos importante antecipar
este tipo de fen6meno em um sistema simples como o
oscilador harmoénico unidimensional em sua versao mi-
nimamente supersimétrica. Nesta dire¢cao, uma perspec-
tiva de aprofundamento de nossa proposta é apresentar
as chamadas supersimetrias estendidas em conexao com
a fisica de osciladores harmoénicos e anarmdnicos bi- e
tridimensionais, seja no caso em que estejam livres e no
caso em que se encontrem acoplados. Estd em nossos
planos submeter este estudo subsequente a esta revista.

Apéndice: Analise Matricial da Teoria.
Férmions Acoplados em um Multipleto
Fermionico

Neste Apéndice iremos mostrar como acoplar os campos
apresentados na secao III, em um tnico multiplete
fermidnico, de modo que a Lagrangiana supersimétrica
fique descrita em termos matriciais, mas apenas no setor
fermibénico. Entao, agora podemos considerar que os
férmions da nossa teoria (A e ¢) fazem parte de um
multiplete fermionico,

a0 =36

onde introduzimos a supercoordenada em forma de um
dublete, A. Com isto, conseguimos diagonalizar os ter-
mos fermionicos dindmicos tipo-Dirac e também agrupar
a interacgdo, assim, escrevemos a agio em como,
S:/dt [lmaﬂ Ll Iam Ao larg A,
2 2 2 2
(42)

onde M é uma matriz diagonal contendo as massas m e
u, de X e ¢, respectivamente, e R é a matriz da interagao
entre os férmions que fica definida a partir da matriz de
Pauli oy,

M:[Tg 2] R:a{? BZ] (43)

Podemos ver que a Lagrangiana fermionica em (|42))
contém um operador central:

1
L ferm = —§AT (iM 0, + R) A, (44)

com equagoes de movimento
(iMO;+R) A=(-Mr+R) A=MA=0, (45)

onde

—ia] ’ (46)

o —UK

e sua inversa tem como elementos as fungoes de Green
no espaco de Fourier,

1 —uK i
munz — a2 7’L'Oé —mMK

[ <A> < Xp>
_<<¢/\> <¢¢>>' (47)

M/—l —
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Para a coordenada A temos,

WK

<AA>= ———,
muk? — a2

(48)

Agora para voltar a o espaco das configuracoes e ter o
propagador no espaco-tempo fazemos a transformada de
Fourier:

too g —in(t—t")
< AA >e_t= / n (Mﬁe o2 ) ) (49)

2
oo 2TTMUU K o

Substituindo w = % adicionando o parametro ¢ e

miy’
tomando seu limite tendendo a zero, temos

<A >y
oo Ik uﬁe—m(t—t/)
= lim . ’
=0 ) o 2mmp \ K2 —w? +ie

/+oo dr Ml,{efin(tft')

oo 2mmp \ (k4w — Ty k—w+4) )T
Agora podemos aplicar o teorema dos residuos le-
vando em conta que os polos simples da integral sao:
ko = £(w — 2£). Vamos calcular entdo os residuos da

2w

funcao f que é o integrando em (veja a Figura ,

1 /me—m(tft/)
f(ﬁ)_QﬁmM ((/g+w_i€)(ﬁ_w+2ifd)>~ (50)

2w

i€

Calculamos o residuo no polo ko = w — 3=:
Res(f(k), ko) = HILIQO(H — ko) f(K)
(w— Qiie)efi(wfg—;)(tft’)

B 27:m(2w — L) ' (51

Como € — 0,

e—iw(t—t/)
Res(f(k), ko) = (52)

4mm

Seguindo o mesmo procedimento o residuo no polo

Ko = —w + 55 &,

eiw(tft')

Res(f(k), ko) = y— (53)
Temos entao que para t —t' < 0,
- iw(t—t")
. ie
<A > = 2mi Z Resint = o (54)
eparat—t > 0:
;L —iw(t—t')
. e
<M > 4= =270 Y Resin = o (59)
ou de uma maneira mais compacta,
<A >y
_ % (@(f _ t/)e—iw(t—t') + @(tl o t)eiw(t—t')) ,
(56)
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onde O é a funcdo de Heaviside. Se compararmos ((56)
com a funcdo de Green para a coordenada =z
veremos que ha uma grande semelhanca entre as duas
expressoes, 0 que torna essa abordagem matricial apre-
sentada neste apéndice muito confidvel. A diferenca esta
nas unidades (w = [m]?/?), o que faz sentido devido &
natureza diferente das variaveis A e ¢. Olhando agora
a equacao vamos calcular o propagador para o
campo ¢. O procedimento é o mesmo, portanto passamos
direitamente ao resultado final,

< QP >et= i (@(t — t/)e_i‘*’(t_t,) +O(t — t)ei“’(t_t,))_
(57)
Agora vamos a calcular os propagadores mistos. Aqui

o calculo muda um pouco, mas seguimos O mesmo
procedimento,

1o}
<A >= ——F—, 58
e
+oo g P o—ik(t—t)
< )\¢ >eft = / 2 ~ (Zai o2 > )
—oo 2TTMU K — o

too ke iaefm(tft')
= lim b) 2 . )
=0 [ o 2mmp \ K% —w? + i€

T dk ioe—iRt—t")
_/700 2rmp (H+w_2if)(f€—w+2%) .

(59)

Usando o teorema dos residuos e seguindo o mesmo
procedimento anterior, temos que,

< /\¢ Se—t
1

- 2. /um

(@(t . t/)efiw(tft') + @(t/ o t)eiw(tft')) )
(60)

Podemos observar que a frequéncia em todos os casos
fermionicos , , e no caso bosoénico (22)) é a
mesma. Isto é devido ao fato de todos serem parceiros
supersimétricos degenerados que pertencem ao mesmo
multiplete. Nao sendo particulas, a degeneracao esta na
frequéncia.
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