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Abstract A physically reasonable anisotropic stellar model
is constructed with the help of the gravitational decoupling
via complete geometric deformation (CGD) technique under
the condition of vanishing complexity factor [Contreras and
Stuchlik in Eur Phys J C 82:706 2022; Herrera, in Phys Rev
D 97:044010, 2018]. The source splits into a perfect fluid and
an anisotropic distribution. The Finch Skea metric proves a
useful seed solution to solve the Einstein sector while the
condition of vanishing complexity is invoked to solve the
remaining anisotropic system of equations. A comprehensive
battery of tests for physical significance is imposed on the
model. Through a careful choice of parameter space, it is
demonstrated that the model is regular, stable, and contains
a surface of vanishing pressure establishing its boundary.
Matching with the exterior metric is also achieved. Finally,
the energy flows between the two sectors of the source fluid
are studied graphically.

1 Introduction

The most successful theory of gravity is Einstein’s general
relativity (GR), which after decades of careful scrutiny, can
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describe a broad range of phenomena at solar system scales
and beyond. This theory extends Newton’s notion of gravi-
tational force and describes how the mass–energy distribu-
tion causes the geometry of space-time to deform. Indeed,
a plethora of new discoveries and extremely precise experi-
ments, including SNeIa, LSS, CMB and BAO [1–4], reveal
that the expansion of the universe is accelerating. Further-
more, the unknowable nature of the majority of the universe’s
substance was further proven by various recent cosmic obser-
vations at astronomical scales [5,6].

A deeper understanding of the dynamics of the universe
may also be gained by studying large-scale structures such
as stars, galaxies, and their clusters. The intricate nature of
these stellar structures has a significant effect on associated
physical variables including energy density, pressure, and
heat flow. In this context, researchers have concentrated on
the formation and properties of these stellar structures, which
are commonly applied to refer to white dwarfs, neutron stars,
and black holes. It was long ago realized by Schwarzschild,
who obtained the first exact solution to Einstein’s field equa-
tion for the interior of a compact stellar structure. The most
likely compact stellar structures have been found in pulsars,
which are rapidly rotating stars with intense magnetic fields
made completely of quark matter. Eventually, Rosat surveys
[7], performed in 2006, identified compact stellar structures
based on their X-ray emission, revealing that the gravita-
tional energy generated is emitted in X-rays. Hewish et al.
[8,9] revealed the hypothetical emergence of pulsars, which
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generate a beam of electromagnetic radiation that is truly
continuous but pulsed. Therefore, the discovery of pulsars
and X-ray bursts motivates researchers to construct theoreti-
cal models of compact stellar structures such as neutron stars
and quark stars. Several models are occasionally put out to
characterize compact stellar structures, despite the fact that
the makeup of the particles and the nature of interactions are
still unknown.

Currently, considerable efforts are being expended on
studying relativistic compact stellar structures. We investi-
gate the static spherically symmetric Einstein’s equations
solutions for object modeling under various physical cir-
cumstances. These solutions can be described as dust, ideal
fluid, and anisotropic fluid. In this context, the majority of
the approaches frequently employed by many researchers to
study these novel analytic solutions of the field equations
impose symmetry requirements such as spherical symmetry,
an equation of state relating the pressure and energy density
of the stellar fluid, the behavior of the pressure anisotropy or
isotropy, vanishing of the Weyl stresses, spacetime dimen-
sionality, and so on, in the attempt to explore exact solutions
characterizing static compact stellar structures [10–17]. In
this regard, the concept presented by Riemann known as
Riemannian geometry is also a useful tool for analyzing
the basic geometrical properties of compact stellar systems.
These hypotheses make the challenge of obtaining appropri-
ate solutions to the field equations easier and mathematically
solvable. Moreover, the relaxation of the isotropy condition
boosts the probability of discovering accurate solutions, with
the caveat of incorporating imperfect fluids. It is generally
recognized that deviations of the isotropy and fluctuations
of the local anisotropy in pressures can be induced by a
wide range of physical phenomena that we would antici-
pate to occur in compact stellar objects (see Refs. [18], for
an in-depth discussion on this point). In addition, the pres-
ence of physical factors such as dissipative fluxes, and/or
energy density inhomogeneities, and/or the emergence of
shear in the fluid flow will always tend to generate pres-
sure anisotropy, even if the system is originally claimed to
be isotropic. These physical factors were pointed out by Her-
rera in 2020 [19]. However, unequal principle stresses, also
termed as anisotropic fluids, might be expected when the self-
gravitational fluids’ densities are typically higher than the
density of nuclear matter. The concept of anisotropy arises
in self-gravitational compact stars due to the occurrence of
exotic phase transitions [20], electromagnetic fields, rota-
tions, superfluids or type-A fluids [21], pion and meson con-
densations [22], core formation and other phenomena have
also been investigated extensively by Herrera et al. [18,23–
25]. This suggests that the self-gravitational systems have
two different kinds of pressure components, namely the radial
component (pr ) and the tangential component (pt ). Con-
sequently, radial and tangential pressures become unequal

(pt �= pr ), and the concept of local anisotropy emerges in the
study of self-gravitational fluids. In this context, Herrera and
collaborators [13,26–28] explored static anisotropic stars by
looking into the effects of Newtonian and general relativistic
regimes.

A plethora of exact solutions are known in the litera-
ture for nonstatic, radiating stars, including acceleration-free
collapse, Weyl-free collapse, vanishing of shear, collapse
from/to an initial/final static configuration, and anisotropic
collapse models. According to the Buchdahl constraint of
ideal fluid distributions, the compactness factor u = 2M/R
should always be ≤ 8/9 in order to avoid gravitational
collapse and the formation of a singularity or black hole.
Andréasson [29,30] generalizes this upper constraint in u by
including charge, anisotropy, and even cosmological con-
stant. He considered a straightforward inequality relating
pressure and density, pr + 2pt < ρ, as the starting point
for deriving the new generalized upper constraint in u. More
impressively, a generic method described in [31–41] can be
attractively applied to find an algorithm for all static and
anisotropic solutions with and without charge to Einstein’s
equation for the spherically symmetric line element.

A novel method for generating anisotropic solutions to
Einstein’s field equations was recently developed [42–47].
This novel method known as gravitational decoupling via
minimal geometric deformation (MGD) which was intended
to enable solutions generated by an isotropic matter distribu-
tion to reach anisotropic domains. This approach deforms the
object’s geometry while simultaneously modifying its mate-
rial content, conserving the symmetry of the solution. The
number of studies employing this methodology that are now
available in the literature has significantly increased during
the recent past. To highlight a few instances, applications
include studying stellar interiors, black holes, and modi-
fied gravity theories [48–76,78,79]. Furthermore, in [56] the
MGD inverse problem has been developed, i.e. knowing the
isotropic counterpart of an anisotropic solution.

The MGD approach aids in the study of the key proper-
ties of compact stellar configurations, however, it has signif-
icant limitations. For example, geometric deformation can
only be achieved if the interplay involving matter sources is
purely gravitational. The metric component’s minimal trans-
formation, which only affects the radial coordinate while
maintaining the temporal metric potential as an unchanging
entity, is likely it has some drawbacks, in particular, it can
not explain a stable black hole having a well-defined hori-
zon. In this regard, by utilizing the deformation on both radial
and temporal metric functions, Casadio et al. [46] proposed
an extended version of the MGD technique and generated a
novel solution for spherically symmetric spacetime to over-
come this problem. However, the conservation law does not
apply in the presence of matter, hence this extension is lim-
ited to studying vacuum solutions. Therefore, this extended
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approach does not allow for analysis of the interior struc-
ture or intrinsic characteristics of self-gravitating objects. By
manipulating both metric functions (grr , gtt ), Ovalle [51] put
forth the innovative concept of extended geometric defor-
mation or complete geometric deformation (CGD), which
remains valid throughout all of the spacetime regardless of
the selection of matter distribution. In order to extract the
exterior charged BTZ model from the appropriate vacuum
solution, Contreras and Bargueno [77] effectively decoupled
the field equations in (1 + 2)-dimensional gravity using the
CGD approach. In this connection, some notable works using
CGD approach can be seen in Refs. [80–83].

For several years, the notion of complexity of a system has
been the topic of extensive study in all fields. Different fac-
tors are involved in analyzing the complexity of any system.
The main idea is to measure the entropy and information of
the configuration contained inside a system. The concept of
the complexity of the self-gravitating system is widely ana-
lyzed in the studying of heavy configurations. Whereas in
physics, isolated gases (which reveal disorder and the great-
est quantity of information) are somehow sophisticated sys-
tems with vanishing complexity when considering a perfect
crystal (which exhibits periodic behavior and is symmetri-
cally dispersed). The concept of disequilibrium was devel-
oped by López-Ruiz et al. [84] to analyze the complexity
of the system. In general, it is a measurement of “distance”
from the system’s achievable form’s equally likely disper-
sion. They argued that the concept of complexity dissipated
in the scenario of an ideal gas and perfect crystal by con-
sidering complexity as a mixture of both concepts of “dise-
quilibrium and information”. Next, Herrera [85] established
a novel concept of complexity based on fluid constituents
including energy density, pressure, and others after observing
deficiencies in existing notions of complexity when studying
the self-gravitating system. In summary, it is connected to
all-inclusive aspects of the fluid’s content. With the help of
the complexity factor, which is one of the structural scalars
obtained from the orthogonal division of the intrinsic curva-
ture, the complexity is in this case constructed. This concept
for dissipative fluid content was extended by Herrera et al.
[86]. They did more than only analyze the system’s complex-
ity; they also established the prerequisites for the progression
design with the least amount of complexity. They explored
that there are several solutions and that the fluid is shearing
and geodesic in terms of dissipation.

On the other hand, Herrera et al. [87] were using the axi-
ally symmetric geometry to further investigate the effect of
complexity on various geometries and identified three differ-
ent categories of complexity. They showed how complexity
and symmetry are interrelated. In this peculiar case, they
also obtained some analytical responses. The evolution of
spherically symmetric non-static geometry is also investi-
gated by Herrera et al. [88] using the concept of complex-

ity, both in terms of dissipation and non-dissipation. They
constructed some models and determined their appropriate
implications for understanding evolution by adopting the
quasi-homologous condition, which is a relationship between
areal radius velocity and areal radius. By using this approach,
Contreras and Fuenmayor [89] examined the stability of self-
gravitating configurations in terms of gravitational cracking
and performed a thorough study to look into the effects of the
source’s compactness and changes to the decoupling param-
eters on the radial force. Taking into account the Misner–
Sharp mass and the Tolman mass as well as the involvement
of various structural scalars gained via the orthogonal divi-
sion of the intrinsic curvature, Herrera et al. [90] extended the
concept of the complexity factor on the geometry with hyper-
bolic symmetry. They came to the conclusion that Tolman’s
mass in this scenario reflects negative nature. Furthermore,
many researchers have effectively employed this complexity
approach not only in GR [91–95], but also in the analysis
of findings for various geometries in the context of modified
theory of gravity [96–98].

In this paper, we develop a simple protocol for an
anisotropic generalization of the Finch–Skea model by grav-
itational decoupling satisfying vanishing complexity factor
condition. We are using the complete geometric deformation
(CGD) scheme, which transforms the gravitational poten-
tials grr and gtt for exploring the physical influence of the
generic source �i

j on seed source Ti j and decomposes the
system of non-linear field equations into two arrays. One set
of these arrays corresponds to the seed source, and the other
set provides extra source terms. We would also highlight that
the energy transfer between fluid distributions corresponding
to the new source (�i j ) and original source (T̂i j ) were ana-
lyzed based on the positive and negative values of the energy
exchange �E . To be more specific: (i) if �E is positive, then
the new source is supplying energy to the environment, (ii)
if �E is negative, then the original/seed matter distribution
is supplying energy.

The article is organized according to the following
arrangement. In Sect. 2, we derive the basic field equations
for a static sphere containing two sources which are decou-
pled through the CGD technique. by using the well-behaved
Finch–Skea metric potential for the seed spacetime geome-
try, which ensures a well-defined horizon-free spacetime, we
are able to obtain a gravitationally decoupled solution in Sect.
3. In Sect. 4, where we match the decoupled interior solution
determined by the anisotropic matter distribution to the exte-
rior Schwarzschild solution at an appropriate boundary, the
external spacetime and matching conditions are addressed.
The behavior of density, pressures, and anisotropy inside the
self-gravitating stellar system, stability of anisotropic solu-
tion using adiabatic index, Harrison-Zeldovich-Novikov sta-
bility analysis, and energy exchange, which are each covered
in Sects. 5.1, 5.2, 5.3, and 5.5, were all considered in Sect. 5
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to establish how each solution behaves physically and how
it is viable and stable. In Sect. 6, the concluding remarks are
given. The Appendix now contains some pertinent lengthy
expressions of physical quantities.

2 Einstein’s field equations in the framework of
gravitationally decoupled system

In this section, we consider a static fluid with spherical sym-
metry. This fluid is hypothesized to be anisotropic and con-
strained by the surface designated by the symbol �. The
analogous line element is represented in Schwarzschild-like
ansatz as

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(sin2 θdφ2 + dθ2), (1)

where ν(r) and λ(r) are functions depending only on the
radial coordinate r . Furthermore, the above-mentioned met-
ric complies with the gravitationally decoupled Einstein field
equations provided by

Ri
j − 1

2
δij R = T i

j , (2)

where

T i
j = T̂ i

j + β�i
j , (3)

in which a new source induced by gravitational decoupling is
denoted by the symbol �i

j . We consider that the space’s phys-
ical content consists of an anisotropic distribution of matter
with energy density ε, radial pressure Pr , and tangential pres-
sure P⊥, in order to characterize and explain the underlying
structure of the self-gravitating system associated with the
source T i

j . Furthermore, the matter sector may be expressed
by the following energy-momentum tensor,

T i
j = (ρeff + peff

t ) ui u j − peff
t δij + (peff

r − peff⊥ )χ iχ j , (4)

where the index i = 0, 1, 2, 3. Moreover, ui is called the
fluid’s four-velocity vector, and χ i denotes the radial unit
space-like vector that satisfies

ui = (e−ν/2, 0, 0, 0) and χ i = (0, e−λ/2, 0, 0), (5)

such that ξ i u j = 0 and χ iχ j = −1. Following that,
using the spherically symmetric line element (1), the energy-
momentum tensor components become as

T 0
0 = ρeff, T 1

1 = −peff
r , T 2

2 = T 3
3 = −peff

t . (6)

Thus, the gravitationally decoupled Einstein field equations
(2) are stated as

ρeff = 1

8π

[
1

r2 − e−λ

(
1

r2 − λ′

r

)]
, (7)

peff
r = 1

8π

[
− 1

r2 + e−λ

(
1

r2 + ν′

r

)]
, (8)

peff
t = 1

8π

[
e−λ

4

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

)]
, (9)

where ′ indicates the derivative with respect to the r coordi-
nate.

Next, using the conservation law ∇i T i j = 0 or by employ-
ing Einstein’s equations (7)–(9), we can readily derive the
generalized Tolman–Opphenheimer–Volkoff (TOV) (hydro-
static equilibrium) equation [99,100] for anisotropic matter
distribution which reads

dpeff
r

dr
= −ν′

2

(
ρeff + peff

r

)
+ 2(peff

t − peff
r )

r
. (10)

Alternatively, using the formula for ν′ as

ν′ = 2m + 8π r3 peff
r

(r − 2m)
, (11)

Here, the mass function m(r) for the spherically symmetric
distribution can be defined by

R3
232 = 1 − e−λ = 2m

r
, (12)

or, equivalently [101]

m(r) = 4π

∫ r

0
x2ρeff(x)dx . (13)

Furthermore, it is necessary to define the nature of original
energy-momentum tensor T̂ i

j whether this describes either
perfect fluid matter distribution or anisotropic matter distri-
bution. Here, we assume T̂ i

j denotes a perfect fluid matter
distribution with spacetime geometry μ and ξ and matter
variables ρ (energy density) and p (pressure), is defined as

T̂ i
j = ρ αi α j − pζ i ζ j , (14)

with αi (four-velocity vector) and ζ i are given by

αi = (e−ξ/2, 0, 0, 0) and ζ i = (0,
√

μ, 0, 0), (15)

where αiζi = 0 and ζ iζi = −1.
Then effective quantities are written as

ρeff = ρ + β�0
0, peff

r = p − β�1
1, peff

t = p − β�2
2. (16)

and the effective anisotropy depends on,

�eff = β(�1
1 − �2

2). (17)

It is clearly noticed from the above equation that anisotropy
can only be introduced in the system when β �= 0. Now, we
employ the extended gravitational decoupling approach [51]
to modify the gravitational potentials eλ and eν for exploring
the physical influence of the generic source�i

j on seed source

Ti j . The metric functions eν and eλ are effectively deformed
via a linear transformation given by

ν(r) = ξ(r) + β h(r), (18)

e−λ(r) = μ(r) + β f (r), (19)
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where f (r) and h(r) stand for the geometric deformation
functions subject to the radial and temporal coordinates,
respectively. The coupling constant β is a real number. Fur-
thermore, the aforementioned transformation includes both
the radial and temporal components of the line element and is
the extended case of minimal geometric deformation (MGD),
also known as an extended geometric deformation or a com-
plete geometric deformation (CGD). The CGD requires that
both deformation functions be non-zero, i.e., f (r) �= 0 and
h(r) �= 0. Therefore, using these transformations, we get the
two sets of equations. The first set of equations for the seed
source is

8πρ = 1 − μ

r2 − μ′

r
, (20)

8πp = μ − 1

r2 − μη′

r
, (21)

8πp = μ

(
ξ ′′

2
+ ξ ′2

4
+ ξ ′

2r

)
+

(
ξ ′μ′

4
+ μ′

2r

)
, (22)

whose solution can be described by the following line ele-
ment,

ds2 = eξ(r)dt2 − μ−1(r) dr2 − r2(sin2 θdφ2 + dθ2). (23)

The second set of equations for the extra gravitational source
can be given by,

8π�0
0 = −

(
f ′

r
+ f

r2

)
, (24)

8π�1
1 = −

[
f

(
ν′

r
+ 1

r2

)
+ μ h′

r

]
, (25)

8π�2
2 = −

[
f

2

(
ν′′ + ν′2

2
+ ν′

r

)
+ β f ′

2

(
ν′

2
+ 1

r

)

−μ

4

(
2h′′ + βh′2 + 2 h′

r
+ 2ξ ′h′

)
+ μ′ h′

4

]
. (26)

The corresponding hydrostatic equilibrium equations take
the following forms

dpr
dr

= −ms + 4π r3 p

(r − 2ms)
(ρ + p) , (27)

and

− d�1
1

dr
= −m + 4π r3 peff

r

(r − 2m)

(
�0

0 − �1
1

)
− 2(�2

2 − �1
1)

r

−h′

2
(p + ρ) . (28)

The mass function ms is determined by

ms(r) = r

2
(1 − μ) = 4π

∫ r

0
x2 ρ(x)dx . (29)

Which implies

m = ms − β r

2
f (r). (30)

Moreover, it should be mentioned that the energy exchange
between the two sources T̂i j and �i j is necessary, to suc-
ceed in decoupling between them. The equivalent energy
exchange between these sources, denoted by �E , may be
provided by [51]

�E = h′

2
(p + ρ) . (31)

Next, the gravitationally decoupled mass function m(r),
as defined by Herrera [85], may be expressed in terms of
the homogeneous energy density and the change caused by
density inhomogeneity as

m(r) = 4π

3
ρeff − 4π

3

∫ r

0
r̂3 [ρeff]′dr̂ . (32)

Then from Eq. (19), we can get the following relation,

m(r) = ms(r) + β m�(r), (33)

where

ms(r) = 4π

3
ρ r3 − 4π

3

∫ r

0
x3 ρ′dx, (34)

m�(r) = 4π

3
�0

0 r
3 − 4π

3

∫ r

0
x3

[
�0

0

]′
dx . (35)

The formulation of the mass function for a spherically
symmetric static spacetime characterizing the energy con-
tent of a fluid stellar structure was also introduced by Tol-
man [103] as

mT = 4π

∫ r
�

0
x2 e(ν+λ)/2 (T 0

0 − T 1
1 − 2T 2

2 ) dx . (36)

It may be also expressed1 as

mT = (mT )�

(
r

r�

)3

− r3
∫ r

�

r

e(ν+λ)/2

x

[
8π(peff

t − peff
r )

+4π

r3

∫ r

0
x3 [ρeff]′dx

]
dx . (37)

Now we move on to the process of finding the solution for
both systems, which requires some points that need to be
clarified about what we have so far:

(i). We have two systems that depend on the nine unknowns
{ξ, μ, f, h, ρ, p,�0

0,�
1
1 & �2

2} with five independent
equations. Therefore, we need four auxiliary conditions
to solve the system completely.

(ii). Whenever spacetime geometry ξ and μ are provided,
then it can be seen that Eqs. (20)–(22) are automati-
cally fulfilled. Then, for solving Eqs. (24)–(26), only
two auxiliary conditions must be specified in order to
close the system of differential equations. These two

1 This subject is thoroughly explained in Ref. [85].
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conditions could be: The mimic constraints for the pres-
sure (�1

1 = pr ), density (�0
0 = ρ), an equation of state

(EoS) operating between the�-sector, or any other well-
known condition. The first three conditions are widely
applied to build the interior solutions under the gravita-
tional decoupling system. Furthermore, it is mentioned
that the solution of differential equations under the con-
straints �1

1 = pr is more difficult here because this
mimic constraint incorporates the high non-linear term
in h and involves both functions f and h together. There-
fore, this condition is not suitable to build the solution.
Due to this, we need a particular EoS that gives a lin-
ear differential equation and involves only the radial
deformation function. The best condition is the mimic
constraint of the density i.e ρ = �0

0 approach.
(iii). Finally, we need another condition to close the sec-

ond system completely. For this purpose, we use the
recent condition known as the vanishing complexity fac-
tor condition proposed by Herrera [85]. In accordance
with Herrera’s concept [85], we define the complexity
factor (YT F ) formula in the context of Einstein’s field
equations (7)–(9) system as

YT F = 8π(peff
r − peff

t ) − 4π

2r3

∫ r

0
x3[ρeff]′(x)dx . (38)

Then, using Einstein’s set of Eqs. (7)–(9), we can express,
YT F , as

YT F = ν′ [r(λ′ − ν′) + 2
] − 2rν′′

4reλ
. (39)

Then vanishing of the complexity factor condition, i.e.,
YT F = 0 provides

ν′ [r(λ′ − ν′) + 2
] − 2rν′′ = 0. (40)

In terms of total derivative, the aforementioned equation
may thus be expressed as

d

dr

(
log

ν′

r
+ ν − λ

2

)
= 0, (41)

which leads to

log
ν′

r
+ ν − λ

2
= log A, (42)

where log A1 denotes the integration constant.
In this case, the simplified aforementioned equation

becomes

ν′ eν/2 = A r eλ/2. (43)

According to the aforementioned equation, ν and λ have
the following relationship

eν =
(
A1

∫
reλ/2dr + B1

)2

(44)

with B as an integration constant. It is worth mentioning that
the Eq.(43) enables us to derive the deformation function h
in terms of the radial deformation function f and the seed
metric functions {ξ, μ} using equations (19) and (44) as [102]

h(r) = 1

β

[
2 ln

(
A1

∫
r√

μ + β f
dr + B1

)
− ξ(r)

]
. (45)

In order to accomplish this, we must identify the radial defor-
mation function by a particular EoS that only includes f
and its derivatives i.e. the mimic constraint of the density
(ρ = �0

0) approach, as discussed earlier. It is emphasized
that the choice of the seed solution influences the analytical
solutions of Eq. (45). In light of the reasoning above, we will
employ the following process to obtain the anisotropic inte-
rior solutions in the presence of vanishing complexity under
gravitational decoupling via extended MGD as:

(i). Select the most appropriate seed metric functions: ξ and
μ.

(ii). Start executing the mimic constraint for the density based
on a specific EoS ρ = �0

0.
(iii). By substituting μ and f into Eq. (45), one may get the

solution for the variable h. once we get f and h, then we
can find e−λ = μ + β f and ν = ξ + βh directly, which
is our final aim.

Now we are going to present the whole approach mentioned
above to find the new anisotropic solution to Einstein’s field
equations (7)–(9) having zero complexity by taking the well-
known Finch–Skea perfect fluid model and energy exchange
between relativistic matter distributions in the next section:

3 Anisotropic generalization of Finch–Skea perfect
fluid model

When there are no handy evidences for the source and nature
of particle interactions, one must develop a model of the
stable content of relativistic compact stellar configurations
by formulating the analytical solutions of Einstein’s field
equations characterizing the static internal core of relativistic
stellar configurations. However, due to the highly non-linear
second-order field equations, generating the exact solutions
to the gravitational field equations is not at all an easy task.
To overcome the issue in this case, a variety of appropriate
techniques are frequently applied. In this regard, we specify
an explicit metric function corresponding to Finch and Skea
[104] spacetime which was employed to model the interiors
of relativistic stellar configurations. In this connection, when
Duorah and Ray [105] first developed this type of ansatz
in 1987, they did not guarantee that it would be fine-tuned
to satisfy Einstein’s field equations governing the content
of stellar relativistic astrophysical models. Such a form of
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Finch–Skea solution has aroused great curiosity in the con-
struction of relativistic compact stellar stars since the find-
ings have been well-proven and validate all of the basic and
adequate requirements of physical viability [106]. The astro-
physical and cosmological backgrounds in GR and as well as
higher-order modified gravity theories have been discussed in
several outstanding explorations relating to this ansatz [107–
112]. Motivated by the preceding discussion, we consider
the spacetime geometry corresponding to Finch–Skea per-
fect fluid solution as

μ(r) = 1

1 + Cr2 , (46)

ξ(r) = 2 ln
[
(B − A

√
1 + Cr2) cos(

√
1 + Cr2)

+(A + B
√

1 + Cr2) sin(
√

1 + Cr2)
]
. (47)

We can easily get the formula for thermodynamic variables
like density and pressure by employing these metric functions
μ(r) and ξ(r) as

ρ(r) = C
(
Cr2 + 3

)
(
Cr2 + 1

)2 , (48)

p(r) = C

(Cr2 + 1) ξ(r)

[
− ξ(r) + 2

(
A sin

(√
Cr2 + 1

)

+B cos
(√

Cr2 + 1
) )]

. (49)

Let us now proceed to the subsequent stage, where we first
apply the appropriate EoS, which only contains the defor-
mation function f (r) as an unknown function, in order to
identify the deformation function f (r). The mimic constraint
for density is, mathematically, the most straightforward EoS
involving the deformation function f (r),

ρ(r) = �0
0(r). (50)

This gives rise to the differential equation shown below

d f

dr
+ f

r
= −C(3 + Cr2)

(1 + Cr2)2 . (51)

The foregoing equation yields the solution for the deforma-
tion function f (r) as

f (r) = − Cr2

Cr2 + 1
+ D

r
, (52)

where D is an arbitrary constant of integration. This arbi-
trary integration constant D was selected to be zero in order
to achieve a non-singular solution and fulfill the constraint
f (0) = 0. The new metric potential, denoted by the symbol
eλ(r), is then known as the deformed metric potential and
may be expressed as

e−λ(r) = 1 − βCr2

1 + Cr2 . (53)

Now, plugging the Eq. (53) into Eq. (44) and integrating, we
arrive at the following form of potential eν ,

e
ν(r)

2 = A1

2β3/2C
√

Cr2+1
1−βCr2

√
1 − βCr2

[√
β
(
Cr2 + 1

)

×
√

1 − βCr2 + (β + 1)
√
Cr2 + 1

× tan−1

( √
1 − βCr2

√
β
√
Cr2 + 1

)]
+ B1, (54)

Now the generalized spacetime geometry for the Finch–Skea
model having vanishing complexity factor can be given as

ds2 = −1 − βCr2

1 + Cr2 dr2 − r2(sin2 θdφ2 + dθ2) + eν(r)dt2,

(55)

where, ν(r) is given by Eq. (54). Now from Eq. (45), we can
directly find the second deformation function h(r) as

h(r) = 1

β

[
2 ln

{
A1

2β3/2C
√

Cr2+1
1−βCr2

√
1 − βCr2

(
(β + 1)

×
√
Cr2 + 1 tan−1

( √
1 − βCr2

√
β
√
Cr2 + 1

))
+ √

β

×
(
Cr2 + 1

)√
1 − βCr2 + B1

}

−
{

2 ln
[
(B − A

√
1 + Cr2) cos(

√
1 + Cr2)

+(A + B
√

1 + Cr2) sin(
√

1 + Cr2)
] }]

, (56)

Now the components of �-sector are determined by plugging
the expressions of f (r) and h(r) along with μ and ξ into the
Eqs. (24)–(26) as,

�0
0(r) =

C
(
Cr2 + 3

)
(
Cr2 + 1

)2 , (57)

�1
1(r) = C

�1(r)

[√
β

√
1 − βCr2

(
sin

(√
Cr2 + 1

)

×
{
A

[
A1(5β + 2)

(
Cr2 + 1

)

+2β(β + 2)B1C

√
Cr2 + 1

1 − βCr2

]

+βB
√
Cr2 + 1

[
5A1

(
Cr2 + 1

)
+ 2βB1C

√
Cr2 + 1

1 − βCr2

]}

+ cos
(√

Cr2 + 1
){

A1

(
Cr2 + 1

)
((5β + 2)B

× −5Aβ
√
Cr2 + 1

)
+ 2βB1C

√
Cr2 + 1

1 − βCr2
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×
[
(β + 2)B − Aβ

√
Cr2 + 1

] })

+A1(β + 1) tan−1

( √
1 − βCr2

√
β
√
Cr2 + 1

)

×
{

sin
(√

Cr2 + 1
) [

A(β + 2)
√
Cr2 + 1

+βB
(
Cr2 + 1

)]
+ cos

(√
Cr2 + 1

)(
(β + 2)B

√
Cr2 + 1

−Aβ
(
Cr2 + 1

))}]
, (58)

�2
2(r) = C

2β�2
2 (r)

(
Cr2 + 1

)5/2

×
[

1

y2(r)

{√
Cr2 + 1

(
A2�2

2 (r)
(

1 − C2r4
)

+ 2βy2(r)

×
{

2A1β
(
Cr2 + 1

) (
βCr2 − 1

) [
Cr2

×
(
βCr2 − 2

)
− 1

]⎛⎝A1Cr
2 + A1 + 2βB1C

√
Cr2 + 1

1 − βCr2

⎞
⎠

−2A1
√

β�2(r)
(
Cr2 + 1

) (
βCr2

(
Cr2 + 2

)
− 1

)

+�2
2 (r)

}
+ B2�2

2 (r)
(

1 − C2r4
) )

+�2
2 (r)

[ (
Cr2 + 1

)
sin

(
2
√
Cr2 + 1

)

×
(

−A2 + 2AB
(
Cr2 + 1

)3/2 + B2
)

+2Ay(r)
√
Cr2 + 1 sin

(√
Cr2 + 1

) ]

−
[
�2

2 (r)
(
Cr2 + 1

)
cos

(
2
√
Cr2 + 1

)

×
(
A2

(
Cr2 + 1

)3/2 + 2AB

−B2
(
Cr2 + 1

)3/2
)]

+ 2B�2
2 (r)y(r)

√
Cr2 + 1

× cos
(√

Cr2 + 1
)}

−4β3/2(β + 1)
(
A1Cr

2 + A1

)2 √
1 − βCr2

×
[
Cr2

(
βCr2 − 2

)
− 1

]
cot−1

(√
β
√
Cr2 + 1√

1 − βCr2

)]
. (59)

The flow chart of this simple protocol for generalizing
the perfect fluid solution to the anisotropic domain under the
vanishing complexity factor is mentioned in the Fig. 1.

4 Matching conditions

Besides the above, on the boundary surface r = R, the inte-
rior metric should be smoothly connected to the exterior met-
ric, hence we need the continuity of the first and second

Fig. 1 The flow chart shows a simple protocol for generalizing the
perfect fluid solution to the anisotropic domain under the vanishing
complexity factor

fundamental forms over the boundary surface. The exterior
spacetime is described by the exterior Schwarzschild solu-
tion, which is

ds2 =
(

1 − 2M

r

)
dt2 − dr2(

1 − 2M
r

) − r2(dθ2 + sin2 θdφ2). (60)

In order to achieve the above requirements, the first and sec-
ond fundamentals forms (Israel–Darmois junction conditions
[113,114]) are mathematically expressed as,

1 − 2M

R
= eν(R), (61)

1 − 2M

R
= e−λ(R), (62)

peff
r (R) = 0. (63)

The matching of two spacetime metrics and vanishing of
effective pressure (peff) at the boundary surface r = R, the
aforementioned requirements (61)–(63) are not independent.
These are however sufficient to determine all necessary inte-
gration constants involved in the solution. Using the above
conditions, we find the expressions for the following con-
stants,

A1

B1
= −

[
2β3/2(β + 1)C

√
CR2 + 1

1 − βCR2

(
βCR2 − 1

) ]/[√
β

×(5β + 1)
(
CR2 + 1

) (
βCR2 − 1

) − (β + 1)2

×
√
CR2 + 1

√
1 − βCR2 tan−1

( √
1 − βCR2

√
β
√
CR2 + 1

)]
, (64)

M = (β + 1)CR2R

2CR2 + 2
, (65)
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B1 =
√

(1 − β CR2)

(1 + CR2)

[
A1

B1

(√
β
(
Cr2 + 1

)√
1 − βCr2

+(β + 1)
√
Cr2 + 1 tan−1

( √
1 − βCr2

√
β
√
Cr2 + 1

))/(
2β3/2

×C

√
Cr2 + 1

1 − βCr2

√
1 − βCr2

)
+ 1

]−1

. (66)

5 Physical behavior of anisotropic solution

It is generally recognized that a theoretically well-behaved
compact star model must meet some fundamental physical
and mathematical criteria. The salient characteristics of the
anisotropic stellar solution discovered by incorporating the
well-known Finch–Skea perfect fluid model with vanishing
complexity factor are very helpful in describing the composi-
tion of the relativistic compact star. This will be employed to
analyze the necessary criteria in the subsections as follows:

5.1 The behavior of physical quantities such as density,
pressures, and anisotropy inside the self-gravitating
stellar system

In this subsection, based on the graphical plots shown here,
we give an in-depth physical analysis of our findings with
an emphasis on viability related to the anisotropic general-
ization of Finch–Skea contributions satisfying the vanish-
ing complexity factor via gravitational decoupling. Figure 2
illustrates the energy density’s behavior. In this graph, we
can see how the density profile changes as the deformation
parameter β rises. The density, as we can observe, is a mono-
tonically decreasing function with respect to the radial coor-
dinate, r . It is evident that the density of the compact stellar
configuration grows gradually when the deformation param-
eter, β, is increased from 0.05 to 0.18. The radial pressure
at every inside point of the stellar configuration is shown in
Fig. 3. As one goes from the core towards the stellar sur-
face, the radial pressure falls off smoothly until it vanishes
at the boundary, as we would expect since there is no energy
flux to the surrounding spacetime. The effect caused by the
deformation parameter β demonstrates that the radial pres-
sure increases as β grow. The same finding holds true for
the tangential pressure with a little change when β assumes
tiny values. Additionally, we note that, throughout the stellar
configuration, the tangential pressure consistently outweighs
its radial counterpart with very small deviations.

In Fig. 4, we present the behavior of the anisotropy param-
eter with respect to the radial coordinate, r . We note that at
every inside point of the stellar structure, the anisotropy, �eff,
is positive. A repulsive force comes from anisotropy when
the tangential pressure dominates the radial stress. By pre-
venting the stellar configuration from being pulled inward by

Fig. 2 The above figure show the behavior of the effective energy
density (ρeff × 10−4 [km−2]) with respect to r for different β

Fig. 3 The above figure show the behavior of the effective radial pres-
sure (peff

r × 10−4 [km−2]) with respect to r for different β

the gravitational force, this repulsive force aids in stabilizing
it. Additionally, we emphasize that the degree of anisotropy
can be governed by the deformation parameter β, where an
increase in β is accompanied by an increase in anisotropy,
�eff. Generally, we see that when one gets closer to the com-
pact stellar configuration’s surface layers, the anisotropy is
the greatest.

5.2 Stability of anisotropic solution using Adiabatic Index

We are mainly interested in discussing the stability of the
compact stellar object model using the adiabatic stability cri-
terion defined by Chandrasekhar for isotropic pressure gra-
dients (see [115,116]). The formula for this adiabatic sta-

bility criterion is � =
(

1 + ρ
p

) (
dp
dρ

)
S
, where dp

dρ is the

sound speed and the subscript S indicates a constant specific
entropy. It establishes that � > 4/3 for stellar configurations
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Fig. 4 The above figure show the behavior of the effective tangential
pressure (peff

t × 10−4 [km−2]) with respect to r for different β

Fig. 5 The above figure shows the behavior of the effective anisotropy
(�eff × 10−4 [km−2]) with respect to r for different β

with isotropic pressures, p. It has been shown by Herrera
et al. [117,118] that this criterion modifies when pressure
anisotropy is involved, and takes the following form,

� <
4

3
+

[
−4

3

(pr − pt )

|(pr )′|r
]

, (67)

where differentiation with respect to radial coordinate, r is
shown by the prime. The Newtonian limit, � < 4

3 , for unsta-
ble areas, emerges from the vanishing of the second compo-
nent in (67), which originates from relativistic contributions.
The adiabatic index can be modified by radial heat flux dis-
sipation or the existence of density inhomogeneities. In this
context, stability versus radial perturbations is maintained
whenever � > �cri t , where the critical value for the adia-
batic index, �cri t is defined as �cri t = 4

3 + 19
21u [119], and

u = M/R indicates the stellar model’s compactness. The
behavior of the stability criterion for our model is shown in

Fig. 6 The above figure shows the behavior of the adiabatic index (�r )
with respect to r for different β

Fig. 6, and their corresponding central values are shown in
Table 1 for all chosen values of β. It is noteworthy to note that
an increase in the deformation parameter β tends to stabilize
the stellar configuration as can be ascertained from Fig. 6.
This demonstrates that our model meets the Chandrasekhar
stability criterion and is stable under radial adiabatic infinites-
imal perturbations, since the adiabatic index (�) is growing
and greater than 4/3 at the stellar surface for all chosen values
of β.

5.3 Harrison–Zeldovich–Novikov stability analysis

We also need to investigate the Harrison-Zeldovich-Novikov
(HZN) stability criterion in order to confirm the stability of
the stellar model. To that end, we analyze the stability of the
stellar model corresponding to the relationship between total
mass M and central energy density ρeff

0 at the point when
dM/dρeff

0 = 0. According to the HZN stability criterion’s
definition, [120,121], which reveals

dM

dρeff
0

> 0 → stable configuration (68)

dM

dρeff
0

< 0 → unstable configuration (69)

to be satisfied along with every relativistic compact stellar
object. Figure 7 demonstrates that, for our model, dM

dρeff
0

> 0,

showing that we have a stable stellar configuration when the
deformation parameter is moving from 0.05 to 0.18. In con-
trast, we show the stellar configuration in Fig. 8 as a function
of stellar mass M and the effective central density ρeff

0 , which
increases with increasing values of β in accordance with the
gradient profile shown in Fig. 7. Furthermore, the stellar con-
figuration on the segments dM/dρeff

0 > 0 is always stable
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Table 1 Numerical values of the physical parameters such as: the central density, surface density, central pressure, mass (M/M	), M/R, �cri t ,
central value of adiabatic index (�r0) and surface redshift Zs for C = 0.018 km2, and R = 11 km

β Central density (g/cm3) Surface density (g/cm3) Central pressure (dyne/cm2) M/M	 M/R �cri t �r0 Zs

0.05 3.04479 × 1015 4.71076 × 1014 1.73139 × 1035 2.68145 0.359802 1.65887 0.27804 0.888486

0.10 3.18978 × 1015 4.93508 × 1014 4.84595 × 1035 2.80914 0.376935 1.67437 0.82871 1.01566

0.15 3.33477 × 1015 4.93508 × 1014 1.12032 × 1036 2.93683 0.394069 1.68987 1.6913 1.17256

0.18 3.42176 × 1015 4.93508 × 1014 1.92785 × 1036 3.01344 0.404349 1.69917 2.25963 1.28633

Fig. 7 The above figures show the behavior of dM
dρeff

0
for different β

Fig. 8 The above figure show the behavior of the mass (M/M	) versus
central density (ρeff

0 ) for different β

under radial oscillations, as can be seen from the M − ρ(0)

plot in Fig. 8.

5.4 Compactness and surface redshift

According to the formula u(r) = m(r)/r , the compact-
ness factor [122,123] of a stellar configuration is the ratio of

Fig. 9 The above figure describes the compactness (u = M/R) versus
radius (R)

the active gravitational mass to the constraining radius. The
upper bound for the maximum possible value permitted for
the compactness factor is defined by Buchdahl [124], which
is u(r)|max ≤ 8/9 for a gravitationally confined spherically
symmetric fluid. In this connection, Fig. 9 describes the u(r)
profile; it is intriguing to notice that u(r) rises with the equi-
librium radius, r, for each branch of the deformation param-
eter, β ∈ [0.05, 0.18], and u(r) stays significantly under the
Buchdahl bound.

The surface redshift, Zs(R), at r = R is then derived using
the radial component of the line element as,

Zs(R) = eλ(R/2) − 1. (70)

The redshift spectrum is shown in Table 1, it is clearly
seen that the surface redshift increases significantly with any
increase in β and also Buchdahl bound [124–126], Zs < 2
holds for the surface, r = R for each branch of the defor-
mation parameter, β ∈ [0.05, 0.18]. Furthermore, we plotted
the equi-mass contour diagram (10) on r−β plane to observe
the effect of β on mass with r . As we can see from Fig.10
that if we fix radius R between 0 to 7.5 and increase β, then
no effect in mass is observed. But if R ≥ 7, then we found
that mass (M/M	) is increasing with β and the maximum
increment is found near the boundary. On the other hand, if
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Fig. 10 The equi-mass contour diagram shows the mass distribution
on R − β plane for C = 0.018 km2

fix β, then mass (M/M	) increases with increasing radius R.
Finally, we conclude that the decoupling constant (β) intro-
duces an extra packing of mass to the stellar models.

5.5 Energy exchange

In this section, we discuss the energy exchange between the
sources Ti j and �i j . Now using Eq. (31), we find the expres-
sion for Energy exchange,

�E = C(
1 + Cr2

)2

[ (
Cr2 + 1

) ( 1

�E1

[
2
{
A2 sin

(√
Cr2 + 1

)

+ cos
(√

Cr2 + 1
) }] − 1

)
+ Cr2 + 3

]
× f�E (r), (71)

with

�E1(r) =
(

1 − A2

√
Cr2 + 1

)
cos

(√
Cr2 + 1

)

+
(
A2 +

√
Cr2 + 1

)
sin

(√
Cr2 + 1

)
,

where constant A2 denotes A/B. The interesting physi-
cal feature of an anisotropic solution is the exchange of
energy between the relativistic fluids corresponding to the
new source (�i j ) and original source (T̂i j ). The energy trans-
fer between fluid distributions can be analyzed based on the
positive and negative values of �E . More specifically:

(i) If �E is positive, then the new source is giving energy
to the environment.

(ii) If �E is negative, then the original/seed matter distribu-
tion is giving the energy.

Since the constant A2 is independent of the gravitationally
decoupled solution but it appears in expression �E . There-
fore, it is necessary to see the effect of this constant on the
Energy exchange along with the decoupling constant β. For
this purpose, we plot Figs. 11 and 12 to observe the tran-
sitions of the energy exchange between the sources on the
β − r plan for different values of constant A2.

The left panel of Fig. 11 is plotted for equi −�E contour
diagram on the β − r plane for A2 = 0.5. It can be observed
that the higher value of �E lies between 7 ≤ r ≤ 10 and
0.02 ≤ β ≤ 0.03, which shows that the new source is giving
a high amount of energy to the environment in that region.
But when we move near the core i.e. 1.5 ≤ r ≤ 2.5, the �E
achieve the highest negative value for the same range of β.
This implies that the perfect fluid matter distribution is giving
a high amount of energy. On the other hand, if we look at the
right panel of the Fig. 11, we observe that the higher value of
�E is shifting to 3 ≤ r ≤ 6 for β = 0.21 when we increase
A2 from 0.5 to 1. Furthermore, the positive range of �E is
shifting towards the boundary when A2 is increasing.

Now we move to Fig. 12, which has been plotted for the
negative values of A2 = −0.5 (left panel) and A2 = −0.75
(right panel). From the left panel, we can observe that �E
is positive between 0.0 < r ≤ 8.5 for all values of β ∈
[0.02, 0.2] which implies that the new source is giving the
energy with the above range. But when r ≥ 8.5, �E stats
negative, and values of �E are ruled out after r ≈ 9.8 at
β = 0.02. But when β increases, the negative value of �E
starts shifting near to boundary but the highest negative value
exists when β ≤ 0.065. This implies that the perfect fluid
matter distribution is giving a high amount of energy near
the boundary for all values of β ≤ 0.065. Furthermore, the
highest positive value of �E lies between 3 < r ≤ 6 at
β = 0.02. On the other, the right panel of this figure shows
that the pattern of energy exchange is the same as the left
panel but the negative value of �E is ruled out for the wide
range of r near the surface.

6 Concluding remarks

We now summarise the principal findings of our investiga-
tion. A physically viable static anisotropic spherically sym-
metric stellar model was constructed. The method of grav-
itational decoupling of the metric components enabled the
splitting of the source into a standard Einstein system and
an additional system of equations. It was deemed prudent
to make use of the well-studied Finch–Skea metric to sat-
isfy the Einstein sector which was assumed to be a perfect
fluid. A further condition was necessary to fully determine
the new source with pressure anisotropy. To accomplish this
it was assumed that the fluid distribution displayed a van-
ishing complexity factor in the sense of Herrera. The even-

123



Eur. Phys. J. C          (2022) 82:1173 Page 13 of 15  1173 

Fig. 11 The distribution of energy exchange (�E) on (r − β) plane for A2 = 0.5 (left panel) and A2 = 1 (right panel)

Fig. 12 The distribution of energy exchange (�E) on (r − β) plane for A2 = −0.5 (left panel) and A2 = −0.75 (right panel)

tual model was carefully examined to check if it satisfied
stringent regularity and stability conditions. In particular,
the adiabatic stability criteria of Chandrasekar as well as the
Harrison–Zeldovich–Novikov condition were all found to be
satisfied. Graphical plots using specified parametric values
verified that the mass-radius relationships comported with
known physical behavior. In addition, a study of the energy
exchange between the standard fluid and the anisotropic was
exhibited in the form of plots. Moreover, all integration con-
stants that appeared along the way were settled by match-
ing the interior spacetime with the exterior Schwarzschild
metric. This experiment has demonstrated the value of the
decoupling approach in devising astrophysical models that
harmonize with observed phenomena.

Acknowledgements The authors would like to thank the Deanship of
Scientific Research at Umm Al-Qura University for supporting this
work by Grant Code: (22UQU4320081DSR01N). S. H. thanks the
National Research Foundation (NRF) of South Africa for financial sup-
port through Competitive Grant no. CSRP170419227721. The authors
MKJ and SKM acknowledge that this work is carried out under the
support of TRC Project (Grant No. BFP/RGP/CBS/22/014).

Data Availability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This study developed
theoretical stellar models and no novel data is generated. The unique
parametric space used in the article to produce the plots is stated in the
text.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

Appendix

�1(r) = β
(
Cr2 + 1

) [
sin

(√
Cr2 + 1

) (
A + B

√
Cr2 + 1

)
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+ cos
(√

Cr2 + 1
) (

B − A
√
Cr2 + 1

) ][√
β

√
1 − βCr2

×{
A1Cr

2 + A1 + 2βB1C

√
Cr2 + 1

1 − βCr2

}

+A1(β + 1)
√
Cr2 + 1 tan−1

( √
1 − βCr2

√
β
√
Cr2 + 1

)]
,

�2(r) = √
β
(
1 − βCr2)

⎛
⎝A1Cr

2 + A1 + 2βB1C

√
Cr2 + 1

1 − βCr2

⎞
⎠

+A1(β + 1)
√
Cr2 + 1

√
1 − βCr2 tan−1

( √
1 − βCr2

√
β
√
Cr2 + 1

)
,

y(r) = sin
(√

Cr2 + 1
) (

A + B
√
Cr2 + 1

)

+ cos
(√

Cr2 + 1
) (

B − A
√
Cr2 + 1

)
.

f�E (r) = 1

fE1(r)

[
2Cr

(√
β

√
1 − βCr2

[
sin

(√
Cr2 + 1

)

×
(
A1

(
Cr2 + 1

) (
A2

(−2β + βCr2 − 1
)

−2β
√
Cr2 + 1

)

+2A2βB1C
(
βCr2 − 1

)√ Cr2 + 1

1 − βCr2

]

+ cos
(√

Cr2 + 1
) {

A1
(
Cr2 + 1

)

×
(
β
(

2A2

√
Cr2 + 1 + Cr2 − 2

)
− 1

)

+2βB1C
(
βCr2 − 1

)√ Cr2 + 1

1 − βCr2

})

+A1(β + 1)
√
Cr2 + 1

(
βCr2 − 1

)

× tan−1

( √
1 − βCr2

√
β
√
Cr2 + 1

){
A2 sin

(√
Cr2 + 1

)

+ cos
(√

Cr2 + 1
) })]

,

fE1(r) = β
(
βCr2 − 1

) ((
A2

√
Cr2 + 1 − 1

)

× cos
(√

Cr2 + 1
)

−
(
A2 +

√
Cr2 + 1

)

× sin
(√

Cr2 + 1
))

×
⎡
⎣√

β

√
1 − βCr2

⎛
⎝A1Cr

2 + A1 + 2βB1C

√
Cr2 + 1

1 − βCr2

⎞
⎠

+A1(β + 1)
√
Cr2 + 1 tan−1

( √
1 − βCr2

√
β
√
Cr2 + 1

)]
.
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