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ABSTRACT 

Magnetometry plays an important role in exploring the deep sea, which is one of the Earth’s final unknown 
frontiers. However, the complexity of the marine environment and the limitations of conventional 
magnetometers restrict its in-depth application. The nitrogen-vacancy (NV) center in diamond offers a 
potential solution to encompass and transcend conventional ocean magnetometers. Its unique advantages, 
such as precise vector measurement and tolerance to extreme environments, make it well suited for deep-sea 
applications like navigation. This work introduces the first deep-sea quantum vector magnetometer based 
on NV centers. The performance of this magnetometer is effectively validated by a series of field tests on the 
manned submersible Shenhai Yongshi during a cruise in the South China Sea, including an experimental 
underwater navigation using the diamond quantum sensor as a magnetic compass. This successful deep-sea 
application marks a milestone for transforming this promising solid-state spin quantum system into a 
practical sensor for real-world marine applications. 
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remotely operated vehicles [12 ], autonomous un- 
derwater vehicles [13 ] and manned submersibles. 
The wide-range applications and sensor platforms 
in marine environments necessitate the selection of 
different marine magnetometers based on specific 
requirements. 

Marine scalar magnetometers have been well 
developed and widely used in ocean magnetometry. 
These magnetometers measure the total magni- 
tude of the magnetic field without directional 
information. Atomic vapor cell magnetometers are 
distinguished among these sensors for their high 
sensitivity, which have been increasingly used in 
oceanographic and geophysical applications in re- 
cent years [15 ]. Meanwhile, performing full-vector 
magnetometry on moving platforms sti l l appears to 
be challenging [16 ,17 ]. The resource consumption 
and system complexity strictly limit the high- 
sensitivity magnetometers like SQUID [8 ,18 ]. The 
MEMS magnetometers and fluxgate magnetometers 
have the advantage of low power consumption and 
miniaturized size, but the relatively low sensitivity 
constrains their broader adoption [9 ,19 ]. Moreover, 
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NTRODUCTION 

he ability of magnetometry to utilize Earth’s mag-
etic field and identify weak magnetic signals is es-
ential in marine exploration. This technology has
een widely applied across many scientific and engi-
eering domains, including mineral exploration [1 ],
agnetic mapping [2 ], underwater navigation [3 ],
eophysical research [4 ] and volcano observation
5 ]. The history of ocean magnetometry dates back
o the 1950s. Early ocean magnetometers were pri-
arily based on a fluxgate sensor [6 ], and mod-
rn magnetometers tend to employ various sensing
echnologies for more specific applications, such as
he proton precession magnetometer [6 ], the atomic
apor cell magnetometer [7 ], the superconduct-
ng quantum interference device (SQUID) [8 ] and
he microelectromechanical systems (MEMS) mag-
etometer [9 ]. For a typical underwater magnetic
urvey, the magnetometers need to perform mea-
urement at their own spatial positions, so various
ypes of underwater vehicles are employed as mov-
ble ocean sensor platforms, including ship-towed

ehicles [10 ,11 ], underwater gliding vehicles [7 ], 
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Figure 1. Overview of the diamond ocean magnetometer and deep-sea experiments. 
The figure showcases a deep-sea exploration in the South China Sea using the full- 
vector magnetometer based on a diamond NV center. The red icon in the figure denotes 
the experiment’s diving site, known as the Haima Cold Seep. In this setup, the diamond 
magnetometer is mounted on a deep-sea submersible and works as a realtime sen- 
sor. The device incorporates a suite of integrated subsystems designed for the control 
and readout of the quantum states of diamond NV centers, all housed within a robust, 
cylindrical, watertight compartment crafted from titanium alloy. The bathymetric data 
are obtained from the GEBCO grid [14 ]. 

f  

t  

s  

t  

a  

c  

s  

t  

p  

n  

h  

m  

v
 

(  

c  

n  

r  

s  

t  

t  

h  

a  

T  

f  

a  

t  

m  

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/12/4/nw

ae478/7954761 by guest on 16 April 2025
ull-vector measurement based on these magne-
ometers cannot normally be achieved using a single
ensor. Instead, it requires the integration of mul-
iple sensors, each positioned at different locations
nd orientations, which is sensitive to slight attitude
hanges and sensor vibrations. This setup introduces
ystematic errors such as misalignment and inconsis-
ency, which limits the full-vector magnetometry in
ractical applications [19 ,20 ]. Besides, ocean mag-
etometers also face general challenges such as high
ydrostatic pressure, varying attitude in the Earth’s
agnetic field and electromagnetic noise from the
ehicle itself [10 ]. 
Facing these challenges, the nitrogen-vacancy

NV) center in diamond emerges as a competitive
andidate of the next-generation general ocean mag-
etometer. The diamond lattice provides intrinsic di-
ectional reference that allows for full-vector mea-
urements with a single sensor, thereby overcoming
he common challenge faced by vector magnetome-
ers [21 ,22 ]. The diamond NV center also possesses
igh dynamic range [23 ], high sensitivity [24 ,25 ]
nd compatibility in extreme environments [26 ].
hese features position it as a well-suited sensor
or full-vector marine magnetometry. Compared to
tomic vapor cell magnetometers, diamond magne-
ometers could directly provide directional infor-
ation of the magnetic field with a single sensor.
Page 2 of 9
Besides, the diamond magnetometers do not have 
the dead zone that disables the output in certain ori- 
entations [15 ], which is a common issue for vapor 
cell magnetometer devices in marine sensing. Re- 
search on atomic vapor cell magnetometers has led to 
some laboratory setups that achieve similar capabil- 
ities with increased system complexity [27 ,28 ], but 
they have not been used in applications like marine 
sensing. Furthermore, the solid-state feature of NV 

center sensors allows for a potentially miniaturized 
design on chip [29 ], enabling their compact inte- 
gration into various underwater vehicles without the 
severe trade-off between performance, power con- 
sumption and size in conventional magnetometers. 

In this work, we report a quantum sensor using 
NV centers in diamond for deep-sea applications, as 
shown in Fig. 1 . The diamond quantum magnetome- 
ter is installed on a manned deep submersible vehicle 
named Shenhai Yongshi in the strapdown configura- 
tion [30 ]. During a cruise in the South China Sea,
the device’s capability of dynamic vector magnetom- 
etry was validated through a series of field tests. In the
development of the device, we craft a compact quan- 
tum control and readout system for the NV center, 
and integrate the system into independent functional 
modules. These components, along with the dia- 
mond probe and electronic devices, are encapsulated 
within a watertight cylinder. This sensor integra- 
tion is specifically designed for deep-sea full-vector 
magnetometry applications. An integrated optical 
system with light-trapping diamond waveguide is de- 
signed to excite the NV centers and effectively col- 
lect the fluorescence carrying physical quantity in- 
formation [31 ]. A multi-channel microwave system 

is developed to manipulate the NV centers align- 
ing along all four crystallographic axes in the di- 
amond lattice. Quantum states of the NV centers 
along these directions are readout simultaneously us- 
ing a frequenc y-div ision multiplexing scheme and a 
proportional–integral–derivative (PID) frequency- 
locking algorithm. A miniaturized lock-in amplifier 
device developed in previous work is employed in 
the system [32 ]. By further exploiting the potential 
of this innovative quantum sensor, we could extend 
our capabilities in underwater exploration and ele- 
vate our understanding of the ocean’s depths to a new 

level in the future. 

DIAMOND MAGNETOMETRY 

The NV center is a photoluminescent defect in the 
diamond lattice, composed of a nitrogen atom sub- 
stituting a carbon site and an adjacent vacancy in 
the lattice structure [33 –35 ]. The negatively charged 
NV center is sensitive to multiple physical quan- 
tities and can be readout by an optically detected 
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Figure 2. Schematic of vector magnetometry performed by the NV centers in diamond. (a) Energy level diagram of the NV 
center in diamond. The zero-field splitting Dgs denotes the energy gap between the ground electronic spin levels |ms = 0 〉 and 
|ms = ±1 〉 . When a magnetic field is applied, the degeneracy of the |ms = ±1 〉 states is lifted, causing Zeeman splitting, 
which enables vector magnetic field sensing. A 520-nm green laser can be used to excite the NV center from the ground state 
to the excited state, while the resultant red photoluminescence (PL) from spontaneous radiation serves as an optical readout 
for magnetic resonance. By applying a microwave field that matches the NV center’s transition frequency, its state can be 
manipulated. (b) The four crystalline structure figures demonstrate the different NV centers along all four crystallographic 
orientations. (c) The first-order derivative ODMR spectrum of the NV centers obtained by simultaneous microwave (MW) 
frequency sweeping with different orientations, each denoted by corresponding colors as in (b). The black line represents the 
fitted spectrum using Lorentzian profile. The hyperfine energy levels are simultaneously manipulated to enhance the signal 
contrast. The four resonant frequencies f1–4 utilized in full-vector magnetometry are highlighted in the figure with a gray 
background. 
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agnetic resonance (ODMR) method. The extraor-
inarily long spin lifetime of the NV center at room
emperature makes it a unique choice for quantum
nformation and quantum sensing [24 ]. These fea-
ures of the NV center position it as a promising
agnetometer, offering high sensitivity and intrin-
ic crystallographic axes for full-vector measurement
apability [36 –38 ]. The stable property of diamond
lso allows it to work in extreme environments [39 ].
As demonstrated in Fig. 2 a, the NV center

eatures a ground-state electronic spin in the form
f triplet 3 A . The energy levels |ms = 0 〉 and
ms = ±1 〉 are split by zero-field splitting, Dgs ≈
 . 87 GHz . This splitting results from spin-spin in-
eractions within the color center and is dependent
n temperature. The effective Hamiltonian describ-
ng the NV center’s spin system is given by 

He f f = Dgs hS2 z + gμB � B0 · � S , 
here � S = (Sx , Sy , Sz ) is the dimensionless elec-
ronic spin-1 operator with ̂  z parallel to the NV axis,
is the electronic g factor of the NV center and μB is
he Bohr magneton. 
In the presence of an external magnetic field � B0 

ligned with the direction of the NV center, the
ransition between |ms = ±1 〉 and |ms = 0 〉 expe-
Page 3 of 9
riences a Zeeman splitting and the degeneracy is 
lifted. By measuring both the transition frequen- 
cies of |ms = 0 〉 ↔ |ms = +1 〉 and |ms = 0 〉 ↔ 

|ms = −1 〉 , the magnetic field and zero-field split- 
ting can be simultaneously extracted. The tempera- 
ture dependence of zero-field splitting dDgs /dT ≈
−74 kHz/K can also be utilized to detect the 
temperature change from the transition frequencies 
[40 ,41 ]. After the NV center is excited to state 3 E by
a 520-nm green laser as in Fig. 2 a, its spin state can
be optically readout by the red fluorescence emitted 
during the NV center’s spontaneous emission to the 
ground state. The NV center emits red fluorescence 
at a higher rate in the |ms = 0 〉 state compared to the 
|ms = ±1 〉 states. This is due to the increased prob- 
ability of non-radiative transitions through the inter- 
mediate singlet states 1 A and 1 E at the |ms = ±1 〉 
states. Therefore, the quantum states of this spin sys- 
tem can be identified from the intensity of the red
fluorescence. 

To implement vector magnetometry with a 
diamond sensor, it is necessary to separately ex- 
tract the photoluminescence (PL) signal from 

the NV centers oriented along different crystallo- 
graphic axes in the diamond lattice. Here we adopt 
a frequenc y-div ision multiplexing scheme based on 
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icrowave modulation technology. [21 ,42 ,43 ] The
pplied microwave field resonant with different NV
enters is frequency modulated by corresponding
reset square waves, which presents as a periodical
hange of the fluorescence signal in measurement.
 photodiode is used to collect the fluorescence,
nd the resulting photocurrent is subsequently
emodulated to extract the spin-state information
f the four differently oriented NV centers from
he overall photocurrent. The crystal structure of
he NV centers is depicted in Fig. 2 b, showcasing the
iamond’s face-centered-cubic crystal symmetry.
y applying an external bias magnetic field with
ppropriate projections along all diamond crystal-
ographic axes, it is possible to separate the resonant
requencies, thereby enabling simultaneous NV
enter manipulation. As demonstrated in Fig. 2 b, the
nergy diagram represents the NV centers aligning
long four orientations in the presence of an external
agnetic field of about 5 mT . As an example, a
ontinuous-wave optically detected magnetic res-
nance (CW-ODMR) spectrum of the NV color
enters in the diamond ensemble is presented in
ig. 2 (c), which includes eight sets of resonance
requencies from NV centers in four orientations.
mong these resonant frequencies, four frequencies
f1 , f2 , f3 , f4 along different crystallographic axes
re selected to perform vector measurement and
uppress common-mode temperature drift. 
The frequency-modulation method is employed

o modulate the PL signal into higher frequency
omains, thereby effectively circumventing the in-
uence of low-frequency electronic noise. When
he central frequency of the applied microwave
eld remains invariant, the dynamic range of the
agnetometer is limited by the linewidth of the
W-ODMR spectrum. Consequently, even a slight
hange in the magnetometer’s orientation within the
eomagnetic field could exceed its effective dynamic
ange. Sweeping the microwave frequency and cap-
uring a complete CW-ODMR spectrum for the
enter resonant frequency can expand the dynamic
ange, but the additional time consumption wi l l re-
trict the sensor’s real-time performance. Here we
uccessfully improved the dynamic range of mag-
etometry by employing a frequency-locking tech-
ique that utilizes a homebuilt field-programmable-
ate-array- (FPGA) based PID controller [32 ,44 ].
igh-speed switching of microwave frequencies
nd a built-in-hardware feedback algorithm are ap-
lied to track the zero-crossing points of the CW-
DMR spectrum, obtaining the resonant frequen-
ies for spin-state transitions. Subsequently, the
ull-vector magnetic field and temperature informa-
ion sensed by diamond could be simultaneously
btained from the resonant frequencies. In the
Page 4 of 9
functionality test shown in Figs. 3 a and 3 b, a
square-wave magnetic field with an amplitude of 
(4 . 5 μT , 7 . 7 μT , 5 . 3 μT ) is applied to the magne-
tometer, showcasing the full-vector measurement ca- 
pability of the diamond magnetometer. The specific 
design and operating details of the sensor system are 
provided in the supplementary materials ( SM). 

RESULTS 

Experiment environment 
The deep-sea magnetometry experiments were car- 
ried out using a 4500-m-level manned submersible 
during the TS2-18-7 cruise. The experiments were 
executed at two sites near the Haima Cold Seep. 
In each experiment, the diamond quantum magne- 
tometer carried by the submersible descended to a 
depth of approximately 1300m , and performed mag- 
netometry measurements above the seafloor. The 
environmental temperature and pressure data of the 
sensor are listed in SM Fig. S2. 

Magnetometer performance 

During the experiments, we conducted an in-field 
compensation experiment (see SM) and assessed 
the diamond sensor’s measurement capabilities both 
on land and at the sea-bottom. After the magnetome- 
ter was deployed on the submersible and descended 
to the target depth, the initial test conducted was 
the verification of the magnetic noise measurement, 
with the results showcased in Figs. 3 c and 3 d. How-
ever, due to the magnetometer’s close strapdown 
configuration near the submersible’s electrical sys- 
tem, the electromagnetic interference from the sub- 
mersible itself could not be completely eliminated. 

The diamond magnetometer conducted the mea- 
surement of the submersible’s background static 
magnetic noise by deactivating the operational elec- 
tronic devices and maintained quiescent at the bot- 
tom of the seafloor. The comparison between the 
data obtained during the submersible’s static situa- 
tion and dynamic situation is demonstrated, from 

which electromagnetic interference from the sub- 
mersible’s propulsion system and the magnetome- 
ter’s realtime capability in different motion attitudes 
can be observed. The detected magnetic noise levels 
were 11 . 4 nT /

√ 

Hz when the submersible’s electric 
propulsion engine was activated and 2 . 0 nT /

√ 

Hz 
when it was turned off. 

Additional ly, the stabi lity and robustness of the 
diamond magnetometer were qualified during the 
two 8-h deep-sea diving experiments. The mi- 
crowave signal could always follow the resonance 
frequency of the NV centers in continuous attitude 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae478#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae478#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae478#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae478#supplementary-data
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Figure 3. The performance test of the diamond magnetometer. (a) The time-domain waveform of the resonant frequency 
response in the presence of a square-wave magnetic field. Each line represents a different orientation of the NV centers in 
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agnetic compass 
he capability of the diamond magnetometer
n performing stable and continuous full-vector
agnetic field measurements was also validated.
his was achieved during the rapidly changing
onditions of the geomagnetic field by conducting
 1080 ◦ turn at the submersible’s minimum turning
adius. The successful completion of this maneuver
s i l lustrated in Fig. 4 a. The diamond magnetometer
ccurately recorded the magnetic field during the
ontinuous turning motion of the submersible
hroughout the cruise, confirming its dynamic range
xceeding the geomagnetic field level of ±40 μT . 
Throughout the entire cruise, the diamond mag-

etometer functioned as a magnetic compass experi-
entally, and its effectiveness was validated with the
uilt-in magnetic compass on the submersible. As
hown in Fig. 4 b, during the turning test, the con-
istency between the yaw angle calculated by the di-
mond magnetometer and the yaw angle measured
Page 5 of 9
by the submersible’s onboard magnetic compass was 
maintained within 5 ◦. This test validates the vec- 
tor measurement capability of the diamond magne- 
tometer in a moving condition. Also, it demonstrates 
the potential of using the diamond NV center quan- 
tum system for navigation tools such as magnetic 
compasses for the first time. 

Combined navigation 

Additionally, by utilizing the vector diamond magne- 
tometer in a deep-sea geomagnetic field, we conduct 
a short-distance experimental combined navigation 
demonstration using the diamond magnetometer as 
an attitude sensor. These results are compared with 
the submersible’s ultrasonic positioning system, vali- 
dating the system’s capability to transition from abso- 
lute navigation to offline navigation for a short time, 
as shown in Fig. 4 c. The validation experiment of
combined navigation based on the ultra-short base- 
line (USBL) underwater positioning system and the 
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(d) The geomagnetic inclination and geomagnetic field intensity’s combined distribution recorded by the diamond magne- 
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iamond magnetometer was conducted. The yel-
ow points represent positioning conducted by the
SBL system alone, while the red line represents
ombined navigation positioning carried out jointly
y the USBL system, the inertial measurement unit
IMU) system and the diamond magnetometer. As
he variation of the local magnetic field in the test
eafloor area was very small compared to the Earth’s
agnetic field, this impact of the geological sur-
oundings on the local magnetic field is neglectable
uring the navigation. The navigation algorithm was
ased on an extended Kalman filter (EKF) algorithm
ith the NV centers’ spin-state information as the
ain parameters, together with an IMU module to
easure the necessary motion data. This method

ntegrates USBL data, IMU data and attitude data
rom the diamond magnetometer with gravity ac-
elerometer results. The USBL data indicate the sub-
ersible’s position, the IMU data provide velocity
easurements in the submersible’s body coordinate
nd the diamond magnetometer provides geomag-
Page 6 of 9
netic information for attitude measurement. The ve- 
hicle’s state is encapsulated by a six-dimensional vec- 
tor encompassing position and velocity, and a rota- 
tion matrix is computed for each time step, convert- 
ing raw velocity vectors into a world reference frame. 
This multimodal data integration enhances the pre- 
cision of state estimation. The EKF algorithm op- 
erates in two primary cycles. The predicted cycle 
projects the current state estimate forward in time, 
while the update cycle adjusts this prediction based 
on new measurements from either the IMU or USBL 

system, employing a specific measurement matrix for 
different sensor types. 

The navigation was achieved by utilizing the di- 
amond magnetometer as an attitude sensor, thereby 
showcasing its utility from merely magnetic field 
measurement to multi-sensor fusion area. This 
comparison underscores the system’s capability to 
perform offline navigation for short time intervals, 
which is useful for underwater vehicle navigation. 
Because of the presence of constraints such as sensor 
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rift in the IMU system, this experimental naviga-
ion system that integrates diamond magnetometers
ith the IMU system is not sufficient to enable
nderwater offline navigation for now, resulting in
eal-time positioning inaccuracies of about 20 m , as
emonstrated in Fig. 4 c. Looking forward, we aim
o further utilize the full-vector measurement capa-
ility of diamond magnetometers and incorporate
ector geomagnetic navigation into the framework
f underwater offline navigation, offering a viable
nd efficient solution for this realm. 

eomagnetic measurement 
e conducted geomagnetic field measurements at

 diving site in the South China Sea with the dia-
ond magnetometer. The geomagnetic inclination
ngle at the experiment diving site was detected and
roven to be consistent with the International Geo-
agnetic Reference Field (IGRF) model. The obser-
ation accords with the IGRF geomagnetic model,
nd the comparison is shown in Fig. 4 d. The geo-
agnetic information for this area can be calculated
sing the IGRF model, which predicts a theoreti-
al magnetic inclination of 22 . 6◦ and a theoretical
eomagnetic field strength of 43 . 3 μT . Meanwhile,
he measured central value of the magnetic inclina-
ion θI ’s distribution was approximately 23 . 6◦, and
he measured central value of the geomagnetic field
trength was 42 . 1 μT . These results demonstrate
he consistency between the geomagnetic data mea-
ured by the diamond magnetometer in the deep-sea
rea and the IGRF model, validating its capability for
ector magnetic measurements in geographical envi-
onments. The orientation reference for vertical ge-
graphic coordinates was provided by a MEMS ac-
elerometer. The geomagnetic data obtained by the
iamond magnetometer were processed to obtain
he submersible’s heading information. 

ONCLUSIONS 

n conclusion, we successfully demonstrated a vec-
or diamond quantum sensor as a deep-sea magne-
ometer. A compact quantum control and readout
ystem based on the NV centers was developed and
ptimized to achieve the sensor functionality. The
unctionality validation was carried out through a
eries of tests at the 1300-m-depth bottom of the
outh China Sea, effectively proving the capability
f the diamond sensor in comparison to previous
hipboard efforts [45 –47 ]. The diamond sensor’s
rimary functionality to perform simultaneous full-
ector magnetic field measurements underwater was
uccessfully demonstrated; it was mounted on a
Page 7 of 9
manned deep submersible vehicle and managed to 
perform electromagnetic disturbance monitoring, 
experimental navigation and geomagnetic measure- 
ment. 

We plan to further exploit the diamond sensor’s 
unique features like extreme pressure resistance in 
future works. Although the diamond probe itself 
can resist extreme pressure [26 ], the auxiliary elec- 
tronics in this setup cannot currently operate when 
exposed to the deep-sea environment. A device 
encapsulation method using pressure-resistant soft 
materials could protect the auxiliary electronics and 
further exploit the unique extreme environment 
compatibility of diamond [48 ]. This method could 
extend the diamond magnetometer’s applicability in 
extreme environments, and give rise to a new in situ
deep-sea magnetometry. 

Beyond the results we demonstrated in this 
work, the diamond magnetometer sti l l possesses 
significant potential for performance improvement 
in sensitivity, calibration-free vector magnetome- 
try [22 ,42 ,49 ,50 ], chip-level miniaturization based 
on a micro-nano machining technique, direct de- 
ployment in a high-pressure seawater environment 
[26 ,51 ,52 ] and multiple physical quantity measure- 
ments [53 –55 ]. There are also available opportu- 
nities for improvement in the sensor deployment 
method employed in this ocean experiment, consid- 
ering the electromagnetic interference observed dur- 
ing the expedition. An external rod or distant cable 
connection could be applied to the diamond sensor 
for a measurement with less magnetic disturbance 
[11 ]. We could expect continuous improvement in 
the performance of the diamond quantum magne- 
tometer and its deployment in broader fields, creat- 
ing practical magnetic sensors capable of covering a 
wide range of application scenarios than traditional 
magnetometers. 
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