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LECTURE I 

I. Introduction 

The traditional picture of the nucleus in low energy nuclear physics is that of an inter- 

acting many-body system of structureless, pointlike protons and neutrons. Here low energy 

nuclear physics is understood to be the region of excitation energies bE smaller than 

the Fermi energy (~F ~ 30 - 40 MeV) and momentum transfers Aq ~ I/R, where R is the 

nuclear radius. 

The situation changes as bE and/or ~q is increased up to several hundreds of MeV, the 

domain of intermediate energy physics. At this point explicit mesonic degrees of freedom 

become directly visible. The pion, in particular, is of fundamental importance. With 

its small mass of m = 140 MeV it is by far the lightest of all mesons. It is the 

generator of the long range nucleon-nucleon interaction. The pion Compton wavelength, 

= ~/m c = 1.4 fm, defines the length scale of nuclear physics. 

As mesons become important, nucleons begin to reveal their intrinsic structure. Inse- 

parably connected with pionic degrees of freedom is the role of the 4(1232), the spin 

3/2-isospin 3/2 isobar reached from the nucleon by a strong spin-isospin transition at 

an excitation energy bE = M~ - M ~ 300 MeV, the b-nucleon mass difference. 

In these lectures, the position will be taken that the nucleus consists of nucleons and 

their excited states (primarily the 4(1232)) which communicate by exchange of mesons 

(in particular: the pion). Such a description has turned out to be quite successful in 

correlating various phenomena and data at intermediate energies, remarkably though 

without the need, so far, for explicit reference to underlying quark degrees of freedom. 

This progress has gone parallel with the similarly successful meson exchange phenomeno- 

logy of nucleon-nucleon forces at long and intermediate distances (r ~ 0.8 fm). A sur- 

vey of the rapid experimental and theoretical progress in meson-nuclear physics can be 

obtained by consulting the conference proceedings [I] and [2], and recent reviews in 

ref. [3-6]. 

While there may not be a need for explicitly invoking quark degrees of freedom in nuclei 

up to a few hundred MeV of excitation energy, there is an obvious necessity to under- 

stand the phenomenological input into nuclear forces froma more fundamental (qua rk-gluon 

dynamical) point of view. Attempts to establish relationships of this kind are still 

at their very beginning, but there is little doubt that activities in this direction 

will constitute a substantial part of intermediate energy physics research in coming 

years. Some of the developments will be touched in these lectures, though not at a 

very detailed level. 
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2.1 Survey: Mesons and the Nuclear Force 

The nucleon-nucleon interaction has been a problem of fundamental interest and 

challenge ever since Yukawa's pioneering work in 1935. The problem is still unsolved: 

it is yet impossible to derive nuclear forces directly from Quantum Chromodynamics, 

the theory of strong interactions. However, over the years, meson exchange models 

have established a highly successful phenomenology. 

A schematic picture of the nucleon-nucleon potential in the IS state is shown in 
o 

Fig. I. At distances of the order of the pion Compton wave length and beyond, the one- 

pion exchange interaction dominates. At intermediate distances two-pion exchange 

mechanisms become important. The lowest angular momentum carried by the exchanged pion 

pair is J~ = 0 +, together with isospin I = 0 in accordance with the symmetry of the 

(~) state. The corresponding (~) mass spectrum has a broad distribution. In one- 

boson exchange models, this is usually prametrized in terms of an effective "q" boson 

with a mass between 400 and 600 MeV. 

Furthermore, two interacting pions in a J~ = I- and isospin I = I state resonate 

strongly to form the p meson with a mass m = 770 MeV. 
p 

Down to about r ~ 0.8 fm, two-pion exchange processes can be treated rather accurately 

using dispersion relation methods, such as in the Paris [7] or Stony Brook [8] NN-inter. 

action, or in refined versions of the Bonn potential [9]. At shorter distances 

(r ~ 0.8 fm), the understanding of the NN force is more or less on phenomenological 

grounds only. In a one-boson exchange description (e.g. of the Bonn [10] or Nijmegen 

[11] groups), the short-range repulsion is simulated by exchange of a strongly coupled 

meson (J~ = 1-, I = O) with a mass m = 783 MeV. 

Both p and m exchange take place primarily at distances comparable to their Compton 
-I -1 

wavelengths m ~ m N I/4 fm, which is the same order of magnitude as the nucleon 
P 

size itself. It is therefore difficult to imagine how a p or ~ meson can travel freely 

between two nucleons. One has to expect that there is a massive influence of finite- 

size cutoffs. In any case, one probably has to interpret these short-range vector meson 

exchanges as phenomenological representations of complex mechanisms taking place at 

the level of quarks and gluons, once two nucleons approach each other at distances so 

small that their quark cores most likely overlap. 

Nevertheless, the one- and two-boson exchange phenomenology provides a quantitatively 

successful description of NN scattering data and deuteron properties. We summarize 

properties of the exchanged mesons and meson-nucleon coupling constants in table I. The 

coupling constants refer to meson-nucleon effective Lagrangians of the following types: 

Scalar: ~ = ~ ~ )  ~(x) ~J~) J (2.1a) 
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Figure I: 
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to phase shift analysis of NN data. OPE: 
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Pseudoscalar: ~ p  = ~p ~(K~ ~ ~ ~5~x) ~ p ( x ) ,  (2.1b) 

Here ~(x) are the nucleon Dirac spinor fields, and we follow the Bjorken and Drell 

conventions for metric and Dirac-Tmatrices +). The ~s " ~p and V ~refer to scalar, 

pseudoscalar and vector meson fields. For isovector mesons the isospin dependence 

enters in the form T-¢ or T.V , respectively, where ~ = (TI,T2,T3) are the three 

Pauli isospin matrices for nucleons. 

meson JU I 

+ 

O- 1 
o 

n O- 0 

p 1- 1 

I- 0 

mass g2/4~ 
m[MeV] Bonn GK 

139.6 

135.0 

548.8 

770 

783 

14.4 14.3 

4.95 0 

0.48 (6.0) 0.55 (6.1) 

10.6 8.1 + 1.5 

table I: Properties and coupling constants of mesons commonly used in Boson 
exchange models of the NN interaction. The Bonn [9] results refer to 
vertex functions modified by monopole form factors 

=) : ) • C = 
with ~ = 1.5 GeV. Also shown are the coupling constants obtained by a 
dispersion theoret ic  analysis of Grein and Kro l l  (GK) [12] ;  For the 
vector mesons, the coupling constant g~/4~ is given and the ra t io  gT/gV 
shown in parantheses ( th is  ra t io  is  small for the m meson). 

Fig. 2 shows a representative selection of nucleon-nucleon phase shifts in low and 

higher partial waves calculated with the recent one- and two-boson exchange interaction 

of the Bonn group [9]. This calculation includes a selected set not only of (~) 

exchange, but also (~p), (~a) and (~m) exchange processes. The results obtained with 

the Paris potential [7] are of similar quality. 

Note that the higher partial waves up to laboratory energies Ela b ~ 100 MeV are 

dominated by one-pion exchange, because of their peripheral nature. 

+) We use conventions such that 

Yo = - " ~ = ~ " Y 5  = " 

+ 
gij : - 6ij; ~ = ~ To 

{Yp'Yv } = 2g~ with go0 = I, 
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2.2 Reminder of the One-Pion Exchange interaction 

The best known part of the nuclear force is one-pion exchange (OPE). It is the proto- 

type of spin-isospin dependent interactions and plays a most important role in all 

subsequent di scussi ons. 

For a static, pointlike nucleon, the pion-nucleon interaction Hamiltonian derived from 

eq. (2.1a) by a non-relativistic reduction is 

H~-,,N - ~" V 'c- ('~'), (2.2) 
P~'~rr 

÷ ~(r) is where ~ and T are nucleon spin and isospin and ÷ ÷ the isovector pionfield. Second 

order perturbation theory with H N N gives the static one-pion exchange (OPE) potential 

(see Fig. 3). In momentum space 

 2.3) 

where q is the momentum transfer carried by the exchanged pion. The coupling constant 

is 

= ~ -~ ~÷ (see table ~) 
~ ~hl ; w~ (2.4) 

where m 

eq. (2.3) can be sp l i t  into a spin-spin and tensor piece, 

and M are the pion and the nucleon mass, respectively, i.e. f ~ 1. The V of 

with 

, 

where ~ = q/[~l- In r-space, one obtains the familiar form: 

~7 C~) = -~ ~'% 
~,~ ~.~ e 

(2.5) 

(2.6) 

(2.7) 

The characteristic feature of OPE is its strong tensor force. The 6-function piece is 

obviously an artifact of the assumed pointlike nature of the nucleon source. Nucleons 

are, of course, far from being pointlike objects, and we shall examine how their size 

and intrinsic structure modifies the properties of OPE at short distances. 
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Figure 3: 
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2.3 Isovector Two-Pion Exchange 

At shorter distances, the spin-isospin dependent nucleon-nucleon interaction receives 

contributions from the exchange of two interacting pions in the channel with (J~ = 1-, 

I = I), the one carrying the quantum numbers of a p meson. (See Fig. 4) 

I _ -  

N N 

Figure 4: Exchange of a (~) pair coupled to (J~ = I-, I = I) including p exchange. 

If the (~) mass distribution is approximated by a single 6-function located at 

mp = 770 MeV, and for infinitely heavy, pointlike nucleons, the p exchange interaction 

obtained by non-relativistic reduction from eq. (2.1b) becomes: 

We note that the ~ x ~ type interaction comes from the dominant tensor coupling 

q v~p~ of the p meson to the nucleon. Here fo P/m = (gT)pNN/2M. Empirically, one 

finds f2/m2 ~ 2 f2/m2 ~ 2m-~ In r-space, 
p P  ~ 

,3 A --m - (1 + . z .  
"t '  

(2.9) 

Thep exchange tensor force has opposite sign as compared to ~ exchange and therefore 

tends to reduce the pathologically strong OPE tensor force at short distance. However, 
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a picture like this is probably only of limited relevance, since the p meson Compton 
-1 . 

wavelength m p ms comparable to the nucleon size, as mentioned before. That is, one 

has to expect that V is cut down massively by form factors. 
P 

LECTURE 2 

3. Pion-Nucleon Coupling in Relativistic Quark Models 

Given the fact that nucleons have their own intrinsic quark structure, it is necessary 

to address the question why a description of nuclei in terms of nucleon quasi particles 

and mesons instead of quarks is successful even at momentum transfers where one would 

expect the size of nucleons to play a substantial role. There is, of course, no satis- 

factory answer to this question. It is nevertheless useful to obtain some insight into 

the relevant length scales involved in pion-nucleon interactions, and in particular to 

see how the magnitude of the phenomenological pion-nucleon coupling constant g~NN 

can be related to the underlying quark dynamics. 

3.1 Facts from QCD 

Non-strange hadrons are composed uf u- and d-quarks which form a flavour-SU(2) (isospin) 

doublet. In this flavour subsector, the QCD Lagrangian is 

where q(x) are the quark fields and m is the mass matrix: 

Here 

- "~"  3 

(3.2) 

(3.3) 

where Ga(x) is the gluon field with color indices a = 1, ..., 8; F a is the correspond- 

ing field tensor, and X a are the SU(3) color matrices. 

Now, there are many hints that the (current) quark masses m u and m d are very small 

compared to typical hadron masses. The important point is that for m u = m d = O, ~QCD 

of eq. (3.1) is invariant under the chiral transformation 

~ ~ s  ~-. 8 
t ( × )  --> e 

That is, chiral symmetry is a fundamental symmetry of QCD with massless quarks. This 

symmetry combines the conservation of helicity for massless, free Fermions, with the 

(u,d) iso-doublet structure of the quark fields. 



260 

Invariance under the chiral transformation, eq. (3.4), implies that the quark axial 

current, ..~ 

is conserved for free quarks, i.e. 

~'~/~/~ ~X~ = 0 . (3.6) 

On the other hand, the solutions of the equations of motion derived from Kc D_ are ex- 

pected to generate confinement for individual quarks. Once confinement sets in, chiral 

symmetry is necessarily broken. To illustrate this, consider for example a single, 

massless quark whose motion is partly confined by a reflecting wall. Reflection at the 
÷ 

wall implies that the quark momentum changes from ~ to -p, whereas the quark spin 
÷ ÷ ÷ 

remains unaffected. Thus the helicity h = q'P/IPl changes sign, i.e. the quark wave- 

function is not an eigenfunction of helicity any more. In more general terms, chiral 

symmetry is spontaneously (or rather: dynamically) broken. This can be cast into simple 

phenomenological terms as shown in the following section. 

3.2 Confining Potentials and Chiral Symmetry breaking 

The phenomenology of confined quarks has been developed quite successfully in terms of 

Bag Models [13] and their extension to incorporate Chiral Symmetry [14-16]. We shall 

follow here a slightly different path, though with a similar physical picture in mind, 

by assuming that non-strange baryons are composed of massless u- and d-quarks confined 

by a scalar potential M(r) [17,18]. This potential is to be interpreted as the mean 

field experienced by individual quarks and generated by the confining forces which are 

probably due to non-perturbative gluon interactions. Soliton models [19,20] simulate 

these degrees of freedom in terms of a scalar soliton field q(r), so that the local 

quark mass becomes M(r) = gq(r), where g is a coupling constant. The quark Hamiltonian 
÷ ): in such a picture is (~ = Yo Y, ~= Yo 

H /sM( c3.7) 
÷ 

and the quark fields q(x) = q(r,t) satisfy the Dirac equation 

?C ,J = o 

The confining potential M(r) should have some of the qualitative features suggested 

by QCD, assuming that M(r) represents a mean field primarily of gluonic origin: in 

the hadron center, M(r) should be small, so as to allow quarks to move freely, in 

accordance with asymptotic freedom. Towards the surface, M(r) should grow rapidly to 

yield confinement. Absolute confinement requires M(r) ÷ ~ beyond some distance from 

the hadron center. 

An ansatz for M(r) can be made as a power series in r, or simply by a single power law 

M(r) = cr n. For such potentials and the Dirac equation eq. (3.8) a virial theorem can 

be derived [21]: The potentia~ energy, 
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Ero, : f • < ?+ yo MI( ) 9 > 

is related to the tota l  energy E in a given quark orbi t  by 

E 
EFo~ : - -  (3.9) 

For n = 3 the confining potential M(r) = cr 3 essentially replaces the volume part of 

the energy in the standard MIT bag model, where the energy per quark is 

(3.10) 

The first term in eq. (3.10) is to be interpreted as the quark kinetic energy, with 

x = 2.04 for the lowest Sl/2 orbit. The condition dE/dR = 0 implies that the volume 

term, (4~/3N)BR 3, is 1/4 of the total energy, just as for the r3-potential. The para- 

meter c for n = 3 plays the role of an energy density, which we expect to be of the 

order of 1GeV/fm 3. 

Consider now the axial current of a single quark satisfying the Dirac equation, eq.(3.8) 

We take the divergence and find, using the Dirac equation: 

) C A  e " (3.11) 

This result tell us that the breaking of chiral symmetry, measured by the nonzero 

divergence of the axial current, is directly related to the confining potential. The 

limit of free, massless quarks would be obtained with M(r) ~ O. The right hand side 

of eq. (3.11) acts as a pseudoscalar-isovector source function. This source function 

obviously peaks at the baryon surface, since M(r) rises like a power, whereas the 

quark wave functions q(r) decrease exponentially beyond a distance comparable to the 

baryon size. 

3.3 Introducing the Goldstone Pion 

If QCD has an underlying SU(2) x SU(2) chiral symmetry, then the dynamical breaking of 

this symmetry by confinement at the quark level must be restored by a compensating 

field carrying the quantum numbers of a pion. The Goldstone theorem requires the 

existence of such a Boson field with zero mass. To demonstrate this, one generalizes 

the axial current, 

=  ¢x;tFeyr-   cxJ + terms non-Linear in ~t (3.12) 

by introducing the pseudoscalar-isovector field ~1(x) just mentioned. Here f is a 

constant. Restoring chiral symmetry means to require that the divergence of eq. (3.12) 

vanishes. 

Suppose now that we can omit the terms non-linear in ~I as a first approximation [16]. 
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Then together with eq. (3.11), the condition ~ A % = 0 implies the following field 

equation for ¢~: 

The suggestion is, of course, to identify ¢~ with the pion. This pion has zero mass 

according to eq.(3.13). We refer to it as the Goldstone Boson associated with the 

breaking of chiral symmetry at the quark level. 

The step from a conserved axial current to PCAC can be made by introducing a finite 

pion mass, m = 140 MeV. Furthermore, f should be identified with the pion decay 

constant, f = 93 MeV, since the pionic part of the axial current determines the 

decay rate for ~ + pv. Eq. (3.13) is then replaced by 

f~ (3.14) 

and the divergence of the axial current becomes 

A ~)a(x ) "~ A i (~) = ~'~ f ,r  • (3.15) 

In c h i r a l  bag models, the source f unc t i on  on the r i g h t  hand s ide of  eq. (3.14) is 

p r o p o r t i o n a l  to  a ~ - f u n c t i o n  at  the bag boundary. 

The p ion i s  in t roduced  here on pu re l y  phenomenological  grounds, as in c h i r a l  bag 

models. There is  no obv ious r e l a t i o n  to  the p ion as a bound qq p a i r  a t  t h i s  Level .  A 

more profound approach can be based on the Nambu and Jona-Las in io  model [ 22 ] .  This 

model s t a r t s  from a c h i r a l  i n v a r i a n t  e f f e c t i v e  Lagrangian fo r  massless quarks and 

demonstrates t ha t  i f  the quarks acqu i re  a non-zero e f f e c t i v e  mass by s u f f i c i e n t l y  

s t rong s e l f - i n t e r a c t i o n s ,  at which po in t  c h i r a l  symmetry is  spontaneous ly  broken,  

a bound q u a r k - a n t i q u a r k  mode ca r r y i ng  p ion quantum numbers develops wi th  zero mass. 

The phys i ca l  p ion mass is  then ob ta ined  by s t a r t i n g  from f i n i t e ,  but smal l  quark 

masses of  o rder  10 MeV. The p ion in  such a p i c t u r e  is a coherent s u p e r p o s i t i o n  of  

qq states [23] and has properties analogous to low-lying collective particle-hole 

states in many body systems. The pion core must be small (r % 0.4 fm) in order to 

obtain the correct decay constant f [24,25]. 

The very special nature of the pion as compared to other mesons is clearly one of the 

most fundamental aspects of nuclear forces, although we cannot go into further details 

here. Some interesting features of pion-nucleon dynamics can however be discussed 

already at the present level. 
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3.4 Pion-Nucleon Coupling and the Axial Form Factor 

+) 
Suppose that nucleons are described by three massless quarks occupying the lowest 

orbit of the confining potential M(r). Eq. (3.13) tells that the coupling of a pion 

to quarks in the nucleon is given by the source function 

3 

= Mc ) Z 

In the static limit, we define a pion-nucleon form factor G+NN(q m) by 

Ira +'??-""; _+ ++. c+") f = 2M <+ +++ us In>, (3.13) 

where <~T)t> refers to matrix eLements taken with nucLeon spin and isospin operators, 

and IN> is the SU(4) three-quark wave function of the nucleon. The ~N coupLing constant 

is 

(It is actually defined as G NN(q 2 = m2), but we ignore this minor detail.) 

Another form factor of interest is the one related to the quark axial current. The 

axial form factor measures the spin distribution of quarks inside the nucleon . At 

momentum transfers q2 << 4M 2, it is given by 

ru/AC? "+) <"o'":~/2> = <',v//d""','eJg''A2OP)IN>., (3.19) 
where A %.+ is one of the three-vector components (i = 1,2,3) of the A ~J = ~ y ys(+~/2)(~, 

summed over the three valence quarks. The GA(q2) is normalized according to 

~A = GA C~-'O) " (3.20) 

where gA is  the a x i a l  charge. ( E m p i r i c a l l y ,  gA = 1 .26) .  Now, i t  can be shown [25,26] 

tha t  GA(q2) does not receive c o n t r i b u t i o n s  from a p ion i c  term p r o p o r t i o n a l  to f ~ ~ of  

the a x i a l  cur rent  as long as ~ is  a continuous func t i on .  This makes GA(q2) a p a r t i c u -  

l a r l y  s u i t a b l e  q u a n t i t y  to  discuss the quark core s ize .  For a con f in ing  p o t e n t i a l  

M(r) = cr ~ w i th  c ~ 1 GeV/fm 3, we f i nd  the r e s u l t ,  Fig. 5. The a x i a l  charge comes out 

to be gA = 1.21. Center-of-mass c o r r e c t i o n s ,  obta ined by p r o j e c t i o n  of  the quark 

momenta onto good t o t a l  momentum, tu rn  out to be smal l ,  i f  the p r o j e c t i o n  procedure is  

const ra ined by the gauge invar iance requirement fo r  the corresponding e lec t romagnet ic  

cur rent  [26 ] .  The rms radius associated w i th  GA(q2) is  <r2> I /2  -- 0.6 fm. 

I t  is  s t r a i g h t f o r w a r d  to show by using the Dirac equat ion tha t  g~NN and gA are 

connected by the Goldberger-Treiman r e l a t i o n ,  

+) We could add at this point small current quark masses of about 10 MeV, consistent 
with a finite, but small pion mass. 
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Figure 5: The nucleon axial form factor calculated for three quarks confined 
in the potential M(r) = cr ~ with c = 0.95 GeV/fm 3 [26]. 

M ~ = ~ ~A (3.21) 

For gA = 1.21 obtained with the cr 3 potential, g~NN ~ 12 results, to be compared with 

the empirical value g~NN ~ 13. 

The pion-nucleon source function is shown in Fig. 6. It exhibits the characteristic 

surface peaking. The resulting form factor G NN(q2) [26] is slightly softer than the 

axial form factor GA(q2). Similar conclusions have been drawn in ref. [25]. 

Unlike the nucleon electromagnetic form factors, GA(q2) receives practically no con- 

tribution from the pion cloud in this model. Effects from 3~ states could be present 

in principle, but they would probably change the picture very little, the dominant 

contribution in this channel being the A I with a mass of no less than 1.3 GeV. 

In chiral quark models, the difference in radius between the axial form factor, which 

measures essentially the spin distribution within the nucleon, and the charge radius 

<r2> ~/2 = 0.83 fm is assigned to the charged pion cloud surrounding the quark core. We 
c 

present in Fig. 7 the results of such a calculation [17] where the quark core is the 

same as used to obtain GA(q2) of Fig. 5. The calculation includes approximate center- 

of-mass corrections. It shows that the proton charge radius is in fact determined 

largely by the pion cloud which represents about I/3 of the total charge. 
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is the same as the one giving the GA(q2) of Fig. 5. 



VT(r) 
m~ 

3.5 Constraints on the OPE Tensor Forte: the deuteron asymptotic D/S-ratio 

A quark core of about I/2 fm radius will introduce substantial modifications as compared 

to OPE with pointlike nucleon sources. The static OPE potential with form factors 

becomes 

~ ' ) 9  %'~ ~ ' 7  - ,  -, 

For G NN(q 2) as obtained from a quark core following the preceeding discussion, we show 

the resulting tensor potential in Fig. 8, for a core radius <r2> I/2 = 0.5 fm. The finite 

size of the core effectively weakens the tensor force, by an amount determined by the 

rms radius. 

One of the best possibilities to examine the tensor force is by investigating the 

asymptotic D/S-ratio in the deuteron. We follow here the discussion of ref. [28]. The 

D/S-ratio q is defined in terms of the asymptotic S- and D-state components of the 

deuteron wave function (u(r) and w(r), respectively) as follows: 

- o ( 1 "  3 ~ -wmrr 

where ~2 = cM and ~ is the deuteron binding energy. The value of q is determined to 

such high accuracy that it allows for a detailed test of the tensor potential at 

Figure 8: 
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The one-pion exchange tensor potential with point-like nucleons (dashed 
curve) and modified by form factors G~NN(q 2) calculated with a quark 
confining potential M(r) = cr 3, c = I GeV/fm 3 (solid curve). 
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distances r ~ 0.6 fm, the unknown short distance behaviour being suppressed [28]. 

We show in Fig. 9 a calculation of q following the method of Ericson and Rosa-Clot, 

using the quark core ~N form factor G NN(q 2) as input, and varying the quark core 

density radius <r2> I/2. The result indicates that the measured value of q sets an upper 

limit to <r2> I/2 of about 0.6 fm. This cesult does not depend on the precise form of 

G NN(q2), the essential parameter being just <r2> [29]. It may well be, of course, that 

G NN(q2) in such an analysis represents a variety of complicated short-distance pro- 

cesses, so that the immediate relation to the quark core size is obscured. In any case, 

the data tell that deviations from pointlike OPE should effectively not extend beyond 

a distance r ~ 0.6 fm. 

Figure 9: 

asymptotic DiS ratio 

0.030 I7//_~ 

0.025 L 

/ ~ exp.  

/Z, 

I I - 

0.5 1.0 < rY>1/2 [fm] 

Deuteron asymptotic D/S-ratio calculated according as in [28], with 
G~NN(q2) from eq. (3.17). The radius <r2~I/2 refers to the density 
distribution of the quark core as calculated with confining potential 
M(r) = cr 3 (see text). 

3.6 Nucleonic Spin-Isospin Transitions r the A(1232)t and ~NA -Coupling 

u or d quarks in a (Isi/2)3 configuration of a bag or confining potential can Three 

be coupled either to a spin I/2, isospin I/2 state (the nucleon) or a spin 3/2, 

isosp!n 3/2 state (the A). The mass splitting between N(938) and A(1232) is due to 

spin-dependent residual forces. The most important mechanisms contributing to this 

splitting are supposed to be chromomagnetic interactions from gluon exchange and the 

spin-isospin dependent self-interactions of the nucleon or & via the surrounding pion 

cloud (see e.g. refs. [15,16]). 

Such a model, together with the pion-quark interaction developed before, necessarily 

implies a strong ~NA coupling. The reason is that the transition from nucleon to 

A(1232) is made by a single spin-isospin flip on one of the quarks, without changing 

their spatial (Is) 3 configuration. 

Given the pion-quark source function J~ of eq. (3.16), we can define a ~NA transition 
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form factor G N~(q2) by 

where IN> and [A> are the quark model wave functions of nucleon and 6(1232), 

respectively, and the matrix element <S+T+> on the Left hand side refers to transition 

matrix elements taken between spin-isospin - I/2 and spin-isospin - 3/2 states. The 

transition operators are defined as 

<~z~ m~/,S~ lY~ " . >  = f -~  r.~/tt., ~ N ) ,  (3.25) 

Aproperty of the spin transition operators which will be used frequently in practical 

applications is 

4 

where i and j denote Cartesian components (i = 1,2,3). Since the orbital parts of 

the three-quark-wave functions IN> and ]~> are the same as long as the N-A mass 

splitting is treated in first order perturbation theory, the ratio of G N A and G N N 

is determined entirely by spin-isospin coupling coefficients, i.e. by the underlying 

SU(2) x SU(2) symmetry of the problem. More precisely [30]: 

<,~ I,.T~ IN> F 
<N I,,T~ /IV> - " (3.26) 

The resulting model of ~NN and ~N~ couplings can be summarized in terms of the 

interaction Hamiltonians 

,,/"/ , ~  ,~ ~ ~ ( 3 . 2 z )  

",r 

/~. (3.28) 

where = 

wi th  f (q2  = O) ~ f = 1, f ~ / f 2  = 72/25.  Th is  g i v e s  a l r e a d y  a reasonable  d e s c r i p t i o n  of  

p-wave pion-nucleon scattering and one-pion exchange forces. More detailed quantita- 

tive agreement can be obtained by adding relativistic corrections and readjusting fA 

to the Chew-Low value, fA = 2 [5], the model we shall adopt in many-body applications. 
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3.7 Summary 

Chiral symmetry is a fundamental symmetry of QCD with massless u and d quarks. Confine- 

ment necessarily breaks chiral symmetry at the quark level and implies the existence of 

a massless Goldstone pion. The finite pion mass is probably related to finite, but small 

current quark masses mu, m d of order 10 MeV. Chiral bag or confinement potential models 

are a convenient way to introduce the coupling of pions to quarks at the baryon sur- 

face. In such models, the ~NN or ~N~ form factor can be calculated; for a cr 3 confining 

potential it turns out to be well approximated by 

- A . ~ J ,  (3 .3o)  

where A -I is related to the quark core rms radius. For example, one obtains A = 750 MeV 

for <r2> I/2 = 0.5 fm. Such relatively soft pion-nucleon form factors are consistent 

with the nucleon axial form factor (although the experimental uncertainties are unfortu- 

nately too large at present to draw more quantitative conclusions). It would be diffi- 

cult, however, to accomodate such a A with the existing one-boson exchange phenomeno- 

logy of the nucleon-nucleon interaction [10] which suggests cutoffs A of about I GeV 

or larger. To establish connections between boson exchange models and the underlying 

quark dynamics at short distance remains as a key problem. 

LECTURE 3 

4. Virtual Pions in Nuclei 

4.1Pion Exchange Currents 

Some of the strongest evidence for pionic degrees of freedom in nuclei comes from in- 

vestigations w~th electromagnetic probes. The exchange of virtual charQed pions between 

nucleons contributes genuine two-body pieces to the total nuclear current. Effects of 

these socalled exchange currents have been studied in great detail [31,32], especially 

for simple systems like the deuteron. 

We recall that the static pion-nucleon interaction Hamiltonian (with pointlike nucleons) 

is 

- _  _ 

o 

~ (4.1) 

Now, the rule for introducing the photon field in a gauge invariant way is to replace 

- -~ ~ ~ 4 e . A  ~ (4.2) 

÷ 
where A is the vector potential, and ~ refers to a ~ or ~ meson, respectively. This 

generates an interaction of the form 
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(4.3) 

Furthermore, the pion itself carries a current 

(4.4) 

which interacts with the photon, the corresponding term of the interaction being 

/-,'~,,,. = ,7",,.-A . (4.~ 

To lowest order in the two-body one-pion exchange interaction, perturbation theory 

with Hin t = H N N + Hy~ N + Hy~ generates the Feynman diagrams shown in Fig. 10. 

4- -t 
1 2 

I, 4 
1 2 1 2 

( a )  ( b )  

Figure 10: Two-body exchange currents from OPE, (a) Pair current; 
(b) pionic current. 

The two diagrams (a) contain the point interaction Hy~ N together with H N , connected 

by the propagator of the exchanged pion. This part is called the pair current because 

it derives a non-relativistic reduction of a process which relativistically (with Y5 

coupling) involves the virtual excitation of a particle-antiparticle pair. The corres • 

ponding two-nucleon current is 

..., ~ . f ~  c~.kZ) -" -"-"  

The isospin dependence reflects the fact that the nucleon isospins always come in the 

combination~l)~+(2) - ~+(I)T_(2) = 2i [~(1) X ~(2)] 3. 

The term Fig. 10b represents the coupling of the photon to the exchanged pion. The 

pion current, eq. (4.4), gives a factor (k~ - k~). The ~NN vertex H ~ appears twice. 

There are two pion propagators, one for each plon of momentum k~ and k2, respectlvely 
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_)_ 

Note that the sum of pionic and pair current, i f  multiplied by ~ = ~i + k2, becomes 

-" C j  r 
q .  ,,.~. *,T,,.) = 

~.z,.,. o:,..(, (, 
k,, ÷ ,~ -  J 

(4.8) 

This demonstrates that the pionic and pair currents have always to be taken together 

in order to satisfy current conservation (or equivalently, gauge invariance). 

It is useful also to present the currents in r-space 

This yields 

(4.9) 

(4.10a) 

~ c~ ~, ~, ,  ~ )  _- - ~ £~c,~ ~ ~-c~]~ 

(4.10b) 

This illustrates most clearly the way in which the photon couples to the charged pion 
e-Z 

at the point ~ between the two nucleons located at points ~I and ~2- Here Yo(Z) - z 

and YI (z) = (I + f) Yo(Z). 

The above expressions are obtained for pointlike nucleons and pions. At high momentum 

transfers, modifications due to the finite size of nucleons and pions should be intro- 

duced. This is not a trivial procedure since the introduction of form factors has to be 

done such that gauge invariance is strictly satisfied. 

4.2 The Exchange Magnetic Moment 

Pion exchange currents have substantial influence on magnetic properties of nuclei in 

general, and on magnetic moments in particular. We recall that the magnetic moment 

density is related to the total current J by 

(4.11) 
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where J contains both single-nucleon currents and two-body exchange currents, 

= J ~  × )  ÷ 

The exchange magnetic  moment i s  g iven by 

- -  J 
~ x  - -  x • ( 4 . 1 3 )  

By far the dominant contribution comes from the pair current. Using eq. (4.10a) one 

obtains 

ge,, O,2) = '8~ 
(4.14) 

where ~ = ~i - ~2" The exchange magnetic moment gives a characteristic correction to 

g~, the orbital g-factor of a nucleon in a nucleus. For example, an odd proton can 
+ 

exchange a ~ with neutrons in the core. The correspondin~ correction ~g1(p) is positive 

Similarly, if the odd particle is a neutron, the corresponding Ggz(n) arises from a 

exchanged with protons in the core. Hence ~g (n) is negative, and these considera- 

tions lead to 

ce )  _ i v  

for pion exchange corrections to g . 

(4.15) 

The above arguments are summarized in the form [33]: 

~ = ~ ,  (4.16) 

where actual calculations yield C = 0.1 - 0.2. The isovector character of Gg I is of 

course related to the isovector nature of the pionic current. The ~g~ due to pion 

exchange effects is a substantial fraction of the measured ~g~ in various nuclei (see 

T. Yamazaki in ref. [33]), but a detailed discussion of higher order configuration 

mixing effects is necessary to makethe discussion quantitative. 

4.3 The 4(1232) Exchange Current 

The 4(1232) is reached from the nucleon by a spin-flip isovector transition which can 

be induced either by a pion or by the isovector M1 part of a photon field. The yNA 

coupling is of the type 

÷÷ ÷÷ 
where ~ i s  the  e l e c t r o m a g n e t i c  v e c t o r  p o t e n t i a l  and S , T r e f e r  to  the  (112 + 3/2)  

sp in  and i s o s p i n  t r a n s i t i o n  o p e r a t o r s ,  eq.  (3 .25 ) .  The coup l ing  s t r e n g t h  can be d e t e r -  

mined from the  pho top roduc t i on  of n e u t r a l  p ions  (~N ÷ nON) which i s  s t r o n g l y  dominated 

by the MI excitation of the 4(1232) via eq. (4.17). One obtains f = 0.116 and notices 
~NA 
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that the following ratio holds to good accuracy: 

~yN~ = e 

where g~NNI4~ = 14.4 and Pv is the isovector magnetic moment of the nucleon, 

(4.18) 

with Up = 2,79 and Pn = - 1.91. Eq. (4.18) represents the ratio of electromagnetic to 

strong interaction scales, the additional Pv arising because of the isovector magnetic 

dipole nature of the transition. 

The virtual excitation of a A(1232) followed by pion exchange contributes to the two- 

body exchange current, as shown in Fig. 11. Following standard rules, one obtains for " 

this part of the current: 

- "  4- f ('r-= 

÷ C t  ~ a . )  - 

- (I.-.2.)~ 
(4.19) 

The AN mass difference M A - M appearing in the denominator corresponds to virtual 

A-excitation after photon absorption. The reverse ordering is also possible as shown 

in Fig. 11, but involves the energy denominator in the form (M A + M) -I and is therefore 

suppressed. The interpretation of the isospin structure of the different terms in 

eq. (4.19) is straightforward. The first two terms which do not change the charge of 

either nucleon I or nucleon 2 correspond to the exchange of a n °. The other terms 

proportional to [~(1) x ~(2)] 3 represent the exchange of charged (~±) pions. 

Figure 11: Exchange current involving the virtual excitation of a A(1232). 
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4.4. Exchange ~urrents i N Few-Nucleon Systems 

4.4.1 Deuteron Electrodisinte~ration 

A classical example of evidence for pion exchange currents is the backward inelastic 

electron-deuteron scattering process 

e÷d --~ e' +p+n 
near threshold. The basic process is the same as in the np ÷ dy reaction at threshold, 

but now taken at high momentum transfers. There £he only possibility for the final pn 

pair is to be in a IS state which is then reached from the 3S I - 3D I deuteron ground 
o 

state by an M1 transition. 

In the one-photon approximation close to threshold, the double differential cross 

section at large momentum transfers is given by 

dE'd~ (4.20) 

where C(O,E) contains the Mott cross section and kinematic factors, and (E,k), (E ,k ) 

are the in- and outgoing electron four-momenta. 

The matrix elements ~fi receive contributions from one-body (impulse approximation) 

and two-body (exchange) currents. The one-body transition form factor has a character- 

istic minimum at q2 ~ 12 fm -2 due to interference between 3D- IS and 3S - IS transi- 

tions. The matrix elements due to different parts of the current operator are shown in 

Fig. 12, taken from ref. [34]. We note that the pair current Jpair dominates at÷large 

momentum transfers, with negligible additional effects from the pionic current J ; the 

A(1232) current ~ also contributes, but much less than the pair current. 
A 

The comparison with data taken at Saclay [35] is shown in Fig. 12, where pionic exchange 

currents are incorporated following ref. [36]. Similar results have been obtained in 

ref. [37]. 

The agreement of the theory with data at relatively low q2 is essentially a consequence 

of chiral symmetry and soft pion theorems which are implicit in the q2 ÷ 0 limit of 

the exchange current. The interesting feature is the validity of this simplest possible 

description of exchange currents exclusively in terms of pions even at large momentum 

transfers. It seems then that the short range nuclear forces suppress short distance 

corrections to this picture rather efficiently. 
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FiQure 12: Contributions to the 
deuteron electr~disintegration matrix 
element [34] from pair, pionic and 
A(1232) exchange currents as compared 
to the impulse approximation. 
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Figure 13: Differential cross section 
for d(e,e')np close to threshold. Dashed 
curve: impulse approximation; solid 
curve: inclusion of pair current; 
calculations: [36,37]; data from [35]. 

3 
4.4.2 The He Magnetic Form Factor 

Another example of the influence of mesonic exchange currents is the magnetic form 

factor of 3He. From our previous discussion, one naturally expects that the dominant 

M1 structure of the pair current should show up most pronouncedly in magnetic observ- 

ables. This is demonstrated here for the form factor related to the spin distribution 

of nucleons in 3He, measured by high resolution elastic electron scattering at backward 

angles. 

This form factor is related to the magnetic moment density ~(x) of eqs. (4.11, 4.12) by 

where <~> is the expectation value taken with the 3He ground state. Theoretical uncer- 

tainties in the treatment of the three-nucleon wave function are considerable greater 

than in the deuteron case. Nevertheless, there is general agreement that one-body 

currents alone evaluated with different types of three-body wave functions (Faddeev, 

Variational or "realistic" phenomenological wave functions) badly fail [38] when 
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confronted with data [39]. With inclusion [40] of pion exchange currents of the form 

discussed previously except for modifications due to nucleon form factors, the result 

is shown in Fig. 14, in remarkable agreement with data. 

Figure 14: 
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Magnetic form factor of 3He. The dashed curve is calculated with one- 
body currents only. The solid line includes the effect of meson 
exchange currents [40]; data from [39]. 

LECTURE 4 

5. Pion-Nucleon Scattering 

In order to gain more insight into the role of the A(1232), and also for later purposes 

in treating pion-nucleus scattering, it is necessary to discuss pion-nucleon scattering, 

in ~ome detail. 

5.1 ~N Scattering Amplitude 

We write the ~N elastic scattering amplitude as f(q,q ), where q and q denote in- and 

outgoing center-of-mass (c.m.) momenta. The differential cross section is given by 
dq 2 
d-~ = 1/2Zlfl , where the summation is over nucleon spins. The partial wave decomposi- 

tion of f(q ,q) is 
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T 

where E i s  the  c.m. energy ,  cos 0 = ~ . ~ s  QI p r o j e c t s  o n t o t h e p o s s i b l e  i sosp ins  
1 3 

I = ~ ,  ~ and ~+ r e f e r s  to  channels w i th  t o t a l  angu la r  momentum j = Z + 1 /2 ,  

r e s p e c t i v e l y .  The p a r t i a l  wave f (~ = I ~ j )  are r e l a t e d  to  the phase s h i f t s  ~ by 
c~ C~ 

Z 4 ¢ & ( e )  = f S ~  ( e ) -- ~ ] ' S [  1 ~I ( 5 [ 2 ) 

A useful  quant i ty  to work with is  the K matrix,  

-- ± ÷o. .  s,,, s , ,  = + /<,, ~ ' "/- ¢ f k , , '  ~ ; #-~'fK. " { 5 . 3 )  

The threshold behaviour is described by scattering lengths (a2i) for s-waves and 

scattering volumes (a21,2 j) for p-waves, defined by 

• (5.4) 

We summarize their experimental values in table 2 : 

s-wave 
-i 

sca t t e r ing  lengths [m ] 

a I 0.173 ± 0.003 

a~ -0.101 ± 0.004 

p-wave 
-3 

scattering volumes [m ] 

a11 -0.081 ± 0.002 

a13 -0 .030 ± 0.002 

a31 -0 .045 + 0.002 

a33 -0 .214 ± 0,002 

table 2: Empirical ~N s-wave scattering lengths and p-wave scattering volumes, 
taken from ref. [41]. 

Note that there is a strong cancellation in the s-wave isospin-even combination a I~2a 3 

We mention that this combination vanishes in soft pion theories. Note also that the 

only strong channel in the p-wave is the one with spin and isospin 3/2, where a33 

indicates strong attraction which, as we already know, supports the formation of the 

A(1232) resonance. 

5.2 The Isobar Model of p-wave ~N Scatterin~ 

To illustrate how the A(1232) enters in the p-wave ~N amplitude, let us derive f33 

in a model with nucleon, A(1232) and pion-baryon couplings given by eqs. (3.27 - 28). 

Furthermore, the simplifying assumption of static nucleons will be made. The K matrix, 

still keeping its operator structure in terms of nucleon spins and isospins, is then 

derived as follows [5,30]: 
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0". o'-~ o'. ~" 
I K  +; > = 4~'m"---~ -<,-> ,~ ~ 

,_ _,...-,+_,, , j  
f£ [ ~ " t ' ~ ' 9  * 

<.,,,,-<,> <<>,,+<,, 
(5.5) 

:l 

where ~ is the pion c.m. energy (E = M +m in the static limit). Eq. (5.5) summarizes 

all direct and crossed terms with nucleon and A(1232) intermediate states. Note that 

in the K matrix, the poles appear on the real axis at the physical masses of the inter- 

mediate particles in the absence of inelast~citles. The crossing symmetry is evident 

in eq.(5.5) by examining the invariance under the replacements ~-~ - ~, ~ ~ -~" 

and i ~-~ j, where i and j refer to the pion (cartesian) isospin indices. The energy 

denominator related to the A(1232) contains the NA mass difference ~A = MA - M = 2.1 m~. 

Projecting into the P33 channel and neglecting the small ceossed A-isobar term propor- 
-i 

tional to [~A + m] , we obtain 

If the Chew-Low value f = 2f is used, we find 
A 

2~ q~ (5.7) 

Here £ A is the A ÷ ~N decay width. At resonance (~ = ~A ) where q = 1.64 m~, one obtains 

£ A ~ 130 MeV which is not far from the experimental width (r 6 = 115 ± 5 MeV). 

For a quantitative description of the p-wave ~N phase shifts, the static limit is not 

accurate enough. Relativistic kinematics has to be treated appropriately, and inclusion 

of the N*(1470) in the spin-isospin I/2 channel is necessary to reproduce the correct 

energy dependence of the PII phase shift. Details are given in ref. [5]. Relativistic 

corrections can effectively be absorbed in the ~NN and ~NA coupling Hamiltonians, 

eqs. (3.27 - 28) by multiplying a factor (2M/M + E) I/2 and (2M^/MA + E) I/2, respectively 

The experimental A + ~N width is then obtained with f~/4~ = 0.37. 

The p-wave phase shifts obtained in such a refined isobar model are shown in Fig. 15. We 

conclude that a p-wave ~-nucleon K matrix with masses of the free nucleon, Aand N*, is 

an appropriate starting point for subsequent discussions of pion-nucleus interactions. 
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Figure 15: The p-wave ~N phase 
shifts obtained from the isobar 
model K matrix including relati- 
vistic corrections, as described 
in ref. [5] (solid curve). The 
dashed curve is a fit to the 
experimental data. 
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LECTURE 5 

6. Pions in Nuclear Matter 

6.1 Introduction: the Pion Propagator 

This section is intended to prepare some of the basic concepts for the treatment of 

the pion-nucleus many-body problem, following ref. [5 ]. The framework to start with 

is defined by a Hamiltonian 

H : H~ + 14., + t - I~ .  H ~ .  ÷ H,,.N~, (6.1) 
where HN, H& and H~ correspond to f ree nucleons, &(1232) and pions,  H N N and H N & are 

the ~-nucleon and ~NA-coupling Hamil tonjans, eq. (3.27-28).  

The pion f i e l d  in the medium obeys the equation 

( [ ]  . ) - -  ( 6 . 2 )  

where 7 5 is the i sovec to r ,  pseudoscalar pion source func t ion .  In the absence of  sourcesl 

the free pion field is written in second quantized form as 
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where ~ = ~(~) = ~ a n d  ~ denotes i sosp in .  For a pion in a nuclear medium, the 
~T 

spectrum ~(~) wiLL change due to the i n t e r a c t i o n s  w i th  the medium. 

The pion propagator D is defined by 

(6.4) 

where T denotes the time-ordered product, and the vacuum refers to the many-body ground 

state. It is convenient to work in momentum space and express D in terms of the free 

pion propagator. 

_Pod ,o;t) = " 
d C2~)4 

This def ines the pion se l f -energy  ]l(~0,q) which can be i n t e r p r e t e d  as the "po ten t i aL "  

experienced by the pion due to the i n t e r a c t i o n s  wi th  the medium. 

-+ 
The s i n g u l a r i t i e s  of D(~,q) determine the spectrum ~(~) of e x c i t a t i o n s  car ry ing  the 

quantum numbers of the p ion.  The p ion ic  response func t i on ,  or  pseudosca la r - i sovec to r  

current  c o r r e l a t i o n  func t i on ,  is  def ined by 

, ,is ~ - , o )  I o ~ .  {6.7) 

In momentum space, the response func t ion  is  obtained from the pion se l f -energy  by 

 c o,f .) - n c , . , , f f  . rrr ,?) o T) 
_~ (6.8) 

The quantity of primary interest is clearly the pion self-energy ~(~,q) which summarizes 

all (irreducible) interactions of the pion with the medium. 

6.2. Pion-Selfenergy and related quantities 

We consider now the pionic response of an infinite medium with equal number of protons 

and neutrons. The pion field has energy ~ and momentum ~. Following the discussion of 

previous chapters, we expect that the pion field will polarize the medium primarily via 

the p-wave ~N interaction by exciting either nucleon-hole or A(1232)-hole states. 
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A first order picture of the response is then given by the pion self-energy I-I (°) 

illustrated in Fig. 16. We write it, somewhat schematically, as 

TTc°~(co,~ ") = - Z I < ~ c ~ I  H , ~ . . I N ~ > I  ~ • c . o ~  

(6.9) 

- Z I < , ,q )  I H , , . , , l a ~ . > l ' -  + o~o~.~,+~,~ 

Here INh> and IAh> denote a nucleon-hole or A-hole state carrying pion quantum numbers, 

and ~A" ON" Ch are the corresponding single par t ic le  energies. 

s "  $1 SS 
ss s 

~p 
h o l  h o l  

• #s 

Figure 16: Lowest order p-wave pion selfenergy through nucleon-hole and A(1232)- 
hole excitations. 

We rewrite eq. (6.9) as 

0 

÷2 where the factor q is due to the p-wave nature of the interaction. This defines the 

lowest order pionic susceptibility ~ of the medium. Because of the spin-dependence 

of the underlying interaction it is useful to point out [42] the analogy between the 

pionic response problem and the one encountered in magnetic materials. In that sense, 

has a "diamagnetic" part ~A which involves high-lying A-hole excitations and a 

"paramagnetic" component ~N related to low lying nucleon-hole excitations. 

The explicit form of ~ = ~N + ~A for symmetric nuclear matter is as follows: 

~'N cw' ~) = ~ JC2~P  cF+ f )  + (6.,,) 

where the factor of 4 comes from the spin-isospin sum, n(p) is unity for IPl ~ k F, the 

Fermi momentum, and zero otherwise, and c(p) = p /2M*, where M * is the nucleon effective 

mass. The crossed term is obtained from the direct one by the replacements ~ ÷ - w 

and q ÷ - q. The integral eq. (6.11) can be worked out analytically. The result is 

given in ref. [43]. For large pion frequencies ~ and low nuclear densities p, one finds 
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o i ' f f ' v l  e e ]. 
ZN dI.O,f ) ~.-- ~ L,$z/,,~/vl~. ~ "1" f 2 1 2 l l ~ t l . # . ¢ ,  ' " (6 .12)  

Note that ~N (~'q) ÷ 0 as M* ÷ ~, so that in this limit the pionic response for 

symmetric nuclear matter is completely determined by A(1232) excitations. This applies, 

in particular, for c0~m ~the kinematic region of pionic atoms and low energy pion- 

nucleus scattering. At c0 = 0 and q < kF, one finds 

C~.o,¢2 -- ,.~ ,... 

0 "Y 
To leading order, XN(~ = O, q ÷ O) is then determined by the density of states at the 

Fermi surface, 2M*kF/~2. 

The A(1232)-hole susceptibility ~A is 

(6.14) 

In the absence of b-interactions other than those responsible for free A ÷ ~N decay, 

At Large p ion  e n e r g i e s  (w >> q2 /2M) ,  one o b t a i n s  

.~ #,/~# OpA-O0-4~)/2 "P t.OA ~'cO a (6.16) 

where ~A = MA - M = 2.1 m . At co = O, ~N dominates the pionic susceptibility, but 

,~,,,, ~ /2(q')  P 
('00 " O, ?) = .9 #~ #.~0~ (6.17) 

still gives a contribution of about 35 % to the total ~. 

6.3 The Optical Potential and the Diamesic Function 

For ~ > the "pion optics" domain explored by pion elastic scattering, it is con- _ m, 
venient to work with an optical potential. The lowest order p-wave optical potential 

is related to the pion self-energy simply by 

..)Co) 4 ) = TTc=c~,  ~) = _ 4 ~  ~-~ 2--g e P . = C o  . (6.1~) Ca~, 

The quantity c o is the spin-isospin averaged scattering volume~at threshold (~ = m ), 

C o = ~" nj~ ~ (6.19) 

in terms of the p-wave scattering volumes, table 2. Recalling from eqs. (6.12, 6.16) 

that only ~A contributes at ~ = m~, q + O, one finds 
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a " (6 .2o)  

which is q u i t e  c lose to  eq (6 .19 ) .  

The response f unc t i on  in  t h i s  s imp les t  poss i b l e  model is  ob ta ined  by i t e r a t i o n  of  9 (0) 

w i th  pure one-p ion  exchange: 

~(oo, f )  (6.21) RCo~, f )  = TT~°~r~,f) + TT"~(~,f )  w ' - f ' - m ~  
I t  is  conven ient  to  summarize the medium e f f e c t s  i n a d i a m e s i c  f unc t i on  e (~ ,q )  [ 5 , 4 4 ] :  

/2C~, f )  = TT~°'(~'7) 
E Co~,f) (6.22) 

From eqs. ( 6 . 2 1 ) ,  (6.10) one ob ta ins  the standard RPA r e s u l t  
¢- 

(oo, T ) = ~ ÷ ~'Cw,?). (6.23) 

The zeros of g determine the spectrum m(q) of pion-like excitations. 

In the optical part of the spectrum, a complex index of refraction n for pions can be 

defined by 

The pion scattering T-matrix is simply given by T = R/2~. This T matrix, with eq. 

(6.21, 22) represents the multiple scattering expansion with the first order p-wave 

optical potential. 

The properties of the diamesic function ~(m,q) have been discussed in great detail in 

the literature. One particularly interesting question is whether the nuclear medium 

can act as an amplifier for the pion field at no cost of energy. To find this out, let 

us discuss the diamesic function at zero frequency. By examining eq. (6.23) one sees 

that E(m = O, q) can approach values small compared to unity at sufficiently large q 

and sufficiently high density. In fact, as c+O for m = 0 a pionic soft mode develops 

which indicates a phase transition into a pion condensate [45, 46]. 

For the simple model described above the particle-hole interaction which drives pionic 

modes is entirely given by one-pion exchange. The OPE tensor force is sufficiently 

attractive at high momentum transfers (qc ~ 2-3 m ) so that in the absence of repulsive 

correlations, the condition c+O is actually met at critical densities p which are 
-3 c 

only a fraction of nuclear matter density, Po = 0.17 fm . Obviously, the picture is 

much oversimplified up to this point, since there seem to be no traces of critical 

pionic phenomena in nuclei. 
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LECTURE 6 

6.4 Spin-Isospin dependent Particle-Hole Interaction 

We proceed now to discuss spin-isospin correlations other than one-pion exchange. For 

later purposes, we shall not only consider here pionic modes of excitation, those driven 

by spin-£ongitudinal interactions of the type Ol. q q2.q, but also spin-transverse ones. 

The particle-hole interaction in spin-isospin excitation channels must be of the general 

form (in momentum space, and in direct particle-hole channels): 

. 

We ignore spin-orbit interactions which are empirically small in isovector channels. 

Note that an equivalent formulation of eq. (6.25) is: 

we *  6.26) 

Eqs. (6 .25,  26) have been w r i t t e n  down fo r  nucleons; fo r  A's the appropr ia te  rep lace-  

ments ~+~+  and ~ ÷ } +  have to be made. 

The p ro to type  of the l o n g i t u d i n a l  i n t e r a c t i o n  W is  one-pion exchange. As in the 

previous s e c t i o ~  fo r  la rge energy t r ans fe rs  w, one has to go beyond the s t a t i c  app rox i -  

mation and inc lude r e t a r d a t i o n :  

w i th  f replaced by f i f  N-6 t r a n s i t i o n s  are invo lved.  This is  how fa r  one can go in a 
A 

model based on the Hamiltonian, eq. (6.I). In the hierarchy of interactions, W of 

eq. (6.27) represents the well established long-range part; the less well established 

shorter range contributions will now have to be discussed in some detail. In fact, 

much of the presently ongoing debate is about uncertainties at the level of short-range 

spin-isospin correlations. 

The prototype of the transverse coupling interaction W t is isovector two-pion exchange, 

usually in its simplified p-exchange version, following eq. (2.8): 

fe 
(6.28) 

We have mentioned previously that the short range behaviour of eq. (6.28) is too 

simplistic because of strong cutoff corrections at high momentum transfers [47] which 

act differently in spin-spin and tensor channels. In actual calculations, such cutoffs 

have been introduced phenomenologically [48,49]. In any case, one expects the prototype 

interactions to be accompanied by screening effects at short distances from several 

possible sources: 

(a) repulsive short-range correlations, or alternatively: effects from quark-gluon 
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dynamics at short distances; 

(b) many-body vertex corrections, e.g. from exchange terms. 

Within the framework of Landau-Migdal theory [50,51], these screening effects are 

altogether summarized in terms of a phenomenological repulsive Fermi-liquid interaction, 

tobeadded to the prototype interactions. Actually, g'= g'(w,q) is a function of m and 

q as well; if the underlying interactions are short ranged, one expects this dependence 

to be smooth• 

^- ~ -~ 

Additional tensor correlation pieces of the type h'(m,q) SI2(q)TI.T 2 have also been 

discussed in the literature and found to be small compared to the leading pieces from 

and p exchange [53] but the question might have to be reopened in the light of 

more complete many-body calculations [54]. 

The magnitude of g" will turn out to be of crucial importance in all subsequent 

discussions. Note that g' acts in the same way in longitudinal and transverse channels, 
~ __ ~ ^ ^ 

since al-a 2 ol'q ~2"q + (~I x q)'(~2 x q). Hence for the static interaction V (~=0), 
aT 

the following ansatz results: 

; F- 

The static long-wavelength spin-isospin response is entirely determined by g', since 

and g" is related, up to a constant, to the Landau-Migdal Fermi liquid parameter G'. 
o 

If this identification is made, g' already includes exchange terms of the particle- 

hole interaction by definition, so that only direct particle-bolematrix elements 

should be calculated with V 
(TT 

Information about g' for nucleons is obtained from investigations of various magnetic 
*) 

nuclear properties within the Landau-Migdal framework. Commonly accepted values are 

g" = 0.6 - 0.7 [52,53]. Reaction matrix calculations starting from realistic nucleon- 

nucleon interactions come close to such numbers, and they also show that g' is a 

smooth function of momentum transfer q [54]. At a more phenomenological level [5], 

similar values of g" can be obtained in a model where V is made of z and p exchange 

times a two-body cerrelation function which approximates Brueckner reaction matrix 

calculations. 

6.5 The Lorentz-Lorenz Correction r and 9" from a Chiral Bag Model point of view 

The Lorentz-Lorenz (LL) correction [55] has always been subject to a great deal of 

interest as a prototype many-body effect in pion-nucleus interactions. The classical 

+) We give values of ge in pionic units, i.e. in units of (f/m)2. 
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LL effect is equivalent to g" = I/3; it simply corresponds to the removal of the 

8-function piece from V of eq. (27) in the presence of a repulsive core [56]. This 

effect can be given a simple interpretation [57] from the point of view of chiral bag 

models. In the simplest version of such models, the space inside the bag is occupied 

by quarks, but no pions, while the pion field exists outside the bag and joins to the 

quark axial current at the boundary such as to make it continuous across the boundary. 

The axial current is 

R~ ~ ~ ~ ~ ~ ocR-~ • £~ ~ ok" ec,.-~, (6.32) 

where the ~ are quark fields and R is the bag radius. For zero pion mass, the axial 

current is conserved, ~.~ = O, which imples that on the bag boundary, 

~ ~s a- ~ " r,~ ~ "  (6.~3) 

for each surface element normal to the bag sphere. 

Let us consider now a medium of well separated bags. We wish to rederive the classical 

Lorentz-Lorenz correction assuming that the average distance between the bags is large 

at the boundary of a given bag differs from the field in free space by the spin-isospin 

polarizability of the medium. Therefore, in the space between bags, the pion field 
2 

equation V ~ = 0 is modified in first order according to ~(1 -X)V~ = O, where × is the 

pionic susceptibility, eq. (6.10). Consequently the boundary condition, eq. (6.33), 

becomes 

The local field correction, ~ dS ×~. ÷ • = - dS, has to be averaged over angles which 

gives a factor 1/3. Performing the correction to all orders yields the local field at 

the bag boundary 

4o ~o = ~ . - ~  X (6.3~) 

where 4o is  the pion f i e l d  in f ree space. The f ac to r  (1 +)~/3) -1 is  equ iva len t  to  a 

Landau-MigdaL parameter g /  = 1/3,  the c l a s s i c a l  Lorentz-Lorenz c o r r e c t i o n ,  obta ined 

here s imply because of the t o t a l  screening of  medium p o l a r i z a t i o n  e f f ec t s  from the 

baryon i n t e r i o r  due to the con f in ing  forces keeping the quarks i ns ide .  Eq. (6.35) s t i l l  

holds i f  qq components car ry ing  pion quantum numbers are al lowed ins ide  the bag, such 

as in the CLoudy Bag model (A.W. Thomas [ 1 6 ] ) ,  as Long as the conf in ing  boundary 

provides a pe r fec t  screening of  the baryon i n t e r i o r  against  the sp in-~sospin p o l a r i z a -  

t i o n  e f f ec t s  in the many-body medium surrounding t h i s  baryon. 

The s i gn i f i cance  of t h i s  s imple model is  tha t  i t  obv ious ly  provides a un iversa l  g '  fo r  

both nucleons and ~- isobars  ( a f t e r  separat ing t r i v i a l  sp i n - i sosp in  f a c t o r s ) ,  thereby 

main ta in ing  the under ly ing SU(4) symmetry of  the problem. We regard t h i s  g" as the 

"min imal "  one, expected to be present in any nuclear medium wi th  non-over lapping bags. 
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Additional contributions to g" are expected to come from short-range dynamics involving 

overlapping bags. 

In discussions of the Landau-Migdal parameter g~ for A's, two different positions are 

presently taken: 

(a) the universality hypothesis, based in one or another form on the above quark model 

considerations and their underlying spin-isospin SU(4) symmetry. In this picture, 

g& = gN is assumed; 

(b) arguments based on one-boson exchange N6-interactions with phenomenological cutoffs, 

but otherwise treating nucleon and 4(1232) as elementary particles. In such models, 

exchange terms of the short-range NA-interactions tend to cancel direct terms [58], 

such that the resulting g~ is substantially smaller than 
gN" 

Both approaches are probably too simple to be realistic. The universality argument may 

well hold for the classical LL correction, g" = I/3, which represents one half of the 

empirical g" for nucleons. The question is whether the other half, e.g. from overlapping 

bags, follows the same universality rule. On the other hand, the treatment of the short- 

distance exchange terms of the N6 force as if N and 6 were elementary particles is 

similarly questionable. In a situation like this, we shall strictly follow the Landau- 
s 

Migdal framework and treat g6 as phenomenological parameter. 

6.6 Summary: Spectrum of Pion-like Excitations in Nuclear Matter 

With incorporation of correlations other than one-pion exchange, pion self-energy is 

turned into 

TT= -q 2 

and the diamesic function becomes 

The presence of a positive (repulsive) g• raises the critical density Pcrit for a 

pionic instability. We show this in Fig. 17. For g' = 0.6 - 0.7, Pcrit is raised beyond 

three to five times nuclear matter density, which moves both pion condensates and its 

precursors far away from experimentally explorable domains. 

To summarize this section, we present in Fig. 18 a schematic picture of the spectrum 

~(q) of pionic excitations in nuclear matter determined by the condition c(~,q) = O, 

i.e. by the singularities of the pion-nuclear response function R(~,q). The following 

domains are of particular interest: 

(I) The area of low-energy T-nucleus scattering and pionic atoms. The issue there is 

to learn about many-body corrections to the first order pion-nucleus optical po- 

tential (such as the Lorentz-Lorenz correction and other effects). 
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Figure 17: The inverse s t a t i c  
diamesic f unc t i on  , 1 ( ~ =  O,q) .  
Shown is  the dependence on the 
Landau parameter g ' .  
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Figure 18: Schematic picture of the 
various pionic modes of excitation in 
nuclear matter, as explained in the 
text. 

(II) The region of A(123~propagation. Here the interest is in the interactions of the 

A with surrounding nucleons, resulting in a change of its mass and decay width 

(indicated by the broad band associated with the A(1232) branch in Fig. 18). 

(III) The domain of possible pionic soft-modes embedded into the continuum of low 

frequency pion-like nucleon-hole excitations. For sufficiently large g', such 

soft mode behaviour is essentially ruled out, as mentioned before. 

(IV) The low frequency, long wavelength limit where according to Fig. 17 one expects 

of spin-isospin dependent response. The amount of quenching is determined by 

g'(~ = O, q = 0). 

LECTURE 7 

7. Nuclear Spin-Isospin Response 

7.1 Introduction 

We wish now to follow the conceptual framework developed for nuclear matter and adapt 

it to finite nuclei. At the same time we generalize the scheme to describe spin-isospin 

response problems not only of pionic type, but also with spin-transverse operators. 

Following previous discussions, we recall that there exist two basic types of spin-iso- 

spin excitation mechanisms in nuclei: 
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(I) Nucleonic transitions involving the excitation of the A(1232) by spin-isospin flip 

at the quark level (see Fig. 19a). In many-body language, these are A-hole excitations. 

(2) Nuclear spin-isospin transitions involving spin-flip, AT = I nucleon-hole excitations 

(see Fig. 19b). 

At first sight, these two types of excitations would appear to be rather unrelated, 

because of the very different energy scales involved: the scale for A hole excitations 

is determined by the A-N mass difference of about 300 MeV, whereas the characteristic 

energy of the relevant nucleon-hole states is given by the energy spacing between j> 

and j< spin-orbit partners or their analogues, typically of order 10 MeV. 

± 
AE = 

3 O0.~eV 

M(r) 

~Ifm -~ 

£ 
AE~ 

10 MeV 

T 
~U(r) 

Figure 19: Illustration of spin-isospin excitation mechanisms 
(a) N÷A transition at the quark level; 
(b) Isovector-spinflip nucleon-hole excitation 

On the other hand, one must keep in mind that N-A transitions are strong, following 

developments in previous chapters, and that the suppression by a large energy deno- 

minator can be partly compensated by a large coupling strength. One expects therefore 

that there will be a coupling between nucleon-hole and A-hole modes, even at low 

energy. The degree to which this coupling occurs will depend on the strength of N-A 

interactions. 

The main problem in discussing the role of the A(1232) in low energy nuclear spin-iso- 

spin transitions is to discriminate its effects from standard core polarization induced 

by strong tensor correlations [59]. These core polarization mechanisms involve virtual 

nuclear excitations at similar energy scale (i.e. several hundred MeV) as A-hole 

excitations, hence one expects that both effects have to be discussed at the same level. 

7.2 Spin-Isospin Response Function 

We shall consider two basic types of spin-isospin operators : 

./--I 

(longitudinal) (7.1) 

(transverse) (7.2) 
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The terms "longitudinal" and "transverse" indicate the preferred alignment between spin 

and momentum transfer q. For N-A-transitions the replacements q -~S+ and T ÷ T are to 

be made. Excitations driven by Fj~ are called "pion-like" because of their pseudoscalar- 

isovector nature. Transverse excitations via F t are encountered in magnetic isovector- 

spin transitions. The (p,n) and (p,p') reactions involve combinations of both F£ and F t . 

It is convenient to introduce the response function (or susceptibility) of the nuclear 

many-body system with respect to a perturbing spin-isospin operator F, in close analogy 

with developments in section 6.1: 

<oi 

(7.3) 

where I0> and In> are the nuclear ground state and excited states, respectively, and 

E are the excitation energies. For a finite nucleus, the in- and outgoing momenta 
n 

and ~" can be different, unlike the situation in nuclear matter. 

The strength function is defined by 

I 
In scattering experiments Like (e,e], (p,p') or (p,n), the differential cross section 

is proportional to SF: 

d~r 
d42 dE 

In pion or photon scattering, the scattering amplitude is directly proportional to R F- 

For example, the pion-nucleus amplitude f is obtained by identifying F~H=H N N+H NA: 

<olEH+c '; I cf'j Io> 
~(~,C~) = -~= ~. "~ : ~ ~ ~ + crossed term. (7.6) 

and the total cross section is 

(7.7) 

7.3 First Order Respons e 

The elementary mode of nuclear polarization is given by particle-hole (either nucleon- 

hole orA-hole) excitations Iph> coupled to the appropriate quantum numbers: 

INh> = ](nucleon-hole) J~,~T = I>, 

IAh> = l(~(1232)-hole) j~,~T = I>. 
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The lowest order response is described by: 

,.'b F = <o I F'+Go C~ F' Io > 

where 

(7.8) 

Here [ ~ _ _I ]<N/, /  (7.9) 

N~ 
is  the nuc leon-ho le  Green's f u n c t i o n .  We now choose CN and ~h" the s i ng l e  p a r t i c l e  

energ ies  as e igenva lues  of  an a p p r o p r i a t e  Har t ree-Fock Hami l ton ian  H . The ~-ho le  o 
Green's f unc t i on  is 

1 / 

where t h e  A-hole  en e rgy  i s  a complex f u n c t i o n  of t he  e x c i t a t i o n  energy  m, as in eq.  

( 6 . 1 5 ) ,  but  mod i f i ed  by p o s s i b l e  H a r t r e e - F o c k  type  b i n d i n g  e f f e c t s .  

7.4 Response Function in the RPA approximation 

The next step beyond single particle response is by introduction of the spin-isospin 

particle-hole interaction, see section 6.4. The frequently used RPA approximation 

corresponds to iterating the process, Fig. 20, to all orders: 

= <'ol7='*  G o ( ~ )  ~ 10~.. (7.11)  

1 -  VGo C~) 

For p ion -nuc leus  s c a t t e r i n g ,  we r e c a l l  t ha t  t h i s  is  e q u i v a l e n t  to  summing the m u l t i p l e  

s c a t t e r i n g  se r i es  wi th  the f i r s t  o rder  o p t i c a l  p o t e n t i a l .  

F 
~K 

hol~ l e ~  ~ 

X- .... ~JN F 
Figure 20: Graphical illustration of the response function within RPA 
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7.5 Two-Particle-Two-Hole Contributions 

The one-particle-one-hole RPA framework described above is not sufficient to provide 

a realistic description of the response function at large energy transfers. The Iplh 

states couple strongly to the 2p2h continuum. As we shall see, this is the leading 

mechanism for pion absorption in nuclei which proceeds mainly on nucleon pairs. 

Such corrections provide an additional width and shift to the nucleon-hole or A-hole 

states. To illustrate this, let ]ph> be a particle-hole state and i~> = ]2N2h> a 

two-nucleon-two-hole continuum state. We denote by V the interaction which couples 

these states. Second order perturbation theory leads to a complex shift of the particle- 

hole energy 

I<e  I V I >1 

where the  sum over  k i s  unde rs tood  as an i n t e g r a t i o n  ove r  E , and E i s  the  s t a r t i n g  
o 

ene rgy ,  g i ven  e s s e n t i a l l y  by the  energy  t r a n s f e r  ~ to  the  nuc leus .  I f  E i s  l a r g e r  than  
o 

the  t w o - n u c l e o n  em iss ion  t h r e s h o l d ,  we o b t a i n  an energy  dependent  w id th  

I F ea . I eA > = - 2_ 2 , ,  gEe  . 

This width contributes to the imaginary part of the response function. 

Later on we shall discuss the influence of such absorptive mechanisms on the pion- 

nucleus cross section. Here we would like to give an impression of the relative size 

of 2p2h contributions to the response function by examining the transverse structure 

function ST(m,q) derived from inclusive inelastic electron scattering. 

The differential cross section for single arm (e,e') measurement with one-photon 

exchange is 

aa ae, 

= ~2 _ ~2 At backward angles, the transverse where K is a kinematical factor and qp 2 

structure function S T can be separated from the longitudinal one, S L. This S T measures 

the response due to the interaction with the nuclear current and spin-magnetization. 

The latter one involves operators of the type ~ x q, as discussed before. 

Fig. 21 shows ST(m,q) deduced for 56Fe [60] and compared with a Fermi gas RPA plus 2p2h 

calculation in the local density approximation [61]. The calculation covers the nucleon- 

hole excitation region and shows the substantial influence of 2p2h contributions in 

filling the minimum around ~ ~ 200 MeV. At larger energy transfers, S T rises again 

towards the 4(1232) region. 



293 

ST(W,q } 

500 

/+00 

300 

200 

100 

Figure 21 : 

S6Fe 

Mc Carfhy q=370 MeV/c 
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- - - Ip - lh  RPA 
...... 2p-2h 
- - -  ME[ only 

50 100 150 200 
oJ (HEY) 

Transverse structure function deduced from ine las t ic  electron 
scatter ing on 5GFe [60]. The calculat ions [61] show the response 
in Iplh RPA, 2p2h contr ibut ions,  and the ef fect  of meson exchange 
currents (MEC). 

LECTURE 8 

8. Pion-Nucleus Scattering and Related Processes 

Pion-nucleus scattering (or: pion optics) divides naturally into the low energy region 

(0 < T < 80 MeV) and the A(1232) resonance region (80 MeV ~ T ~< 400 MeV), where T 
IT ~ IT ~T 

is the pion kinetic energy. The characteristic features can be illustrated already by 

considering the pion mean free path in nuclear matter, J~ = (pq)-i, where p is the den- 

sity and o the isospin averaged ~N cross section. In the6resonance region, one obtains 

;L - 0.5 fm; the interaction of a pion with the nucleus is therefore surface dominated. 

This is to be seen in contrast with low energy scattering. There the 7rN interaction is 

weak. The mean free path is several fm, of the order of the nuclear size or larger; the 

IT-nucleus interaction takes place all over the nuclear volume, and specific many-body 

corrections are important. 

8.1 Low-Energy ~-Nucleus Elastic Scattering 

The starting point of the theory of low energy H-nucleus interactions is the optical 

potential, eq. (6.18). In the local density approximation, p ÷p(~), the first order 

potential becomes 

,o, [bo 21.~ Uore C6o,~) = - 4 ~  ((,o) r(,'~.) - co  (~o) ~'p(,l~) ~7 , ( 8 . 1 )  

where we have added an s-wave part to the leading p-wave interaction. At threshold, 

b o = I/3(a I + 2a3). 
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However, first order potentials of this type fail badly when confronted with pionic 

atom data and Low energy cross section. Corrections of higher order in density are 

required. The essential ones have already been introduced: those related to pion absorp- 

tion, primarily through coupling to the two-particle-two-hole continuum, and the 

Lorentz-Lorenz correction. 

A consistent description of both pionic atom and low energy scattering can be obtained 

with the following potential [55,62] (for spherical N = Z nuclei): 

\Uo~' + U  P UOl,~, : ~ of~ ~ (8.2) 

where 

(8.3a) 

2. ,,o Uofet 0,o, ~') 
--', cC=) + CC~') 

= - ~ r r  ~" 
q . .  - -  

~; (8.3b) 

where (8.3c) 

and we have omitted for simplicity kinematic corrections of order ~/M which are non- 

negligible in practical calculations. 

A typical calculation is presented in Fig. 22 using the parameters in table 3 [62] 

which also reproduce the shifts and widths of pionic atom levels. The main point to 

summarize the results is that many-body corrections of order p2 are important. There 

is a strong correlation between Re C , which can be interpreted as the dispersive 
o 

shift due to absorption effects together with binding effects, and the parameter g" 

representing the Lorentz-Lorenz correction. It is therefore not possible to determine 

either one of these parameters directly from pion elastic scattering. 

The imaginary part of the optical potential at threshold and at low energy is entirely 

determined by pion absorption. The absorption cross section is 

Oabs = - (2~/q) <~_[Imq U[ ~q>, 

where q is the pion momentum and @q are the pion distorted waves evaluated with the 

full Uop t. Given Im B ° and Im C o as in table 3, Oab s comes out to be sizeable, typically 

more than 1/2 of the total cross sections at low energy. Both B and C have been 
o o 

evaluated in microscopic models, assuming that pion absorption takes place primarily 

on nucleon pairs. The calculations can then be constrained by the measurements of the 

~d K-+ NN process. 
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bo[m ~ ] - 0.03 

Re Bo[m; 4] 0.0 

Im Bo[m~4] 0.05 

Co[m;3] 0.23 0.23 
I 

g 0.47 0.60 

Re Co[m;6] 0.04 0.14 
Im Co[m~6] 0.12 0.17 

table 3: Best fit values of optical 
potential parameters (eq. (8.3) 
adjusted to pionic atom data. The two 
alternative sets of p-wave parameters 
give equivalent fits. 

Figure 22: Differential cross sections 
for ~-nucleus elastic scattering at 
T~ = 40 MeV. The parameters are those 
of table 3 and include a smooth varia- 
tion from pionic atoms to 40 MeV 
scattering. 

8.2 ScatterinQ in the~-Resonance region 

A characteristic feature of pion-nucleus scattering around T = 160 MeV is the strong 

diffractive structure of the differential cross section do/d~, indicating that a large 

part of the scattering at resonance is simply determined by geometry. In fact, because 

of the A(1232) resonance in the elementary ~N amplitude, the imaginary part of the first 

order (Born) scattering amplitude is very large at these energies. The scattering pro- 

cess is qualitatively similar to scattering from a black sphere. By analogy with optics, 

diffraction at the edge of the sphere of radius R leads to a characteristic pattern in 

dq/d~, the first minimum appearing roughly at the angle where qR N ~. 

This picture, though qualitatively correct, is too primitive however when it comes to 

a more quantitative discussion. The precision and abundance of data for some selected 

nuclei is sufficient to aLlow for a partial wave analysis. A prototype nucleus is 160 

which we shall now examine in more detail. 

We denote by F(e,~) the ~260scattering amplitude where ~ is the pion energy in the 

~-nucleus c.m. system and dq/d~ = IFI 2. For targets with zero spin such as 160, we 

have the partial wave decomposition 

FCo, ) = 7 ,  (8.4) 
J = o  
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that the &(1232), even in a nuclear environment, can be treated as quasiparticle, 

like the nucleon itself, specified by an effective mass and width. 

The question whether such a picture works, and where are its limits, can be regarded 

as one of the primary motivations for investigating pion-nucleus scattering in the /k 

region. 

The &-hole model combines the basic requirement of a good first order input with a 

proper many-body framework for systematic improvements in the treatments of higher 

order corrections. The framework is that of the response function developed in 

Chapter 7. 

The lowest order response, or optical potential, through &-hole intermediate states 

is 

where ~ and ~" denote in- and outgoing pion momenta, and G~(~) is the first order 

A-hole Green's function, eq.(7.10). Iteration of G ~ to all orders with the A-hole 
o 

interaction VAh , i.e. the A-hole analogue of the spin-isospin interaction V of 
q~ 

eq. (6.25), gives the RPA A-hole Green's function G A, which is further modified by 

coupling of the A-hole states to the two-particle-two-hole continuum etc. to account 

for absorptive damping. Once this is done, the pion-nucleus T-matrix is given in the 

form (see eq. (7.6)): 

- - -4-rr  F'CO,w). 
The f u l l  A-hole  G r e e n ' s  f u n c t i o n  is  a sum of  t e r m s ,  each c h a r a c t e r i z e d  by a s p e c i f i c  

&-hole angu la r  momentum J~.  

The a c t u a l  c a l c u l a t i o n s  [5,64 - 66] a l l  fo l low e s s e n t i a l l y  t he  same b a s i c  RPA approach 

to the response function. They differ in the detailed treatment of &-hole interactions 

and in their (either microscopic [5,66] or phenomenological [64]) incorporation of 

important couplings to two-nucleon-two-hole continuum states, the ones relevant for 

the description Of pion absorption channels. 

8.4 A-Hole Doorway States 

We proceed now to present an example of such a calculation. We point out that in the 

partial wave expansion of the scattering amplitude, eq. (8.4), the J~ = 0+,2-,3 + , ... 

etc. coincides with the angular momentum and parity of the A-hole excitation modes. 

These modes are shown in Fig. 24 for ~160 in terms of the partial cross sections, 

~'~.(C~O) ----- ~'~' C,2.~"+1) .~i~ vr'..TCCO) . (8 .9)  
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The complex Fj have been obtained for all partial waves 0 5 J 5 8 in ref. [63]. Except 

for the J~ = O- partial wave which supposedly carries a strong portion of non-resonant 

s-wave !nteractionsm all partial waves with J 5 5 show a resonant behaviour. However, 

there is a massive damping in all partial waves: the inelasticities nj, defined by 

~ j  = I S j I  where ,~j  = 1 "  ~ ~ ,  (8.5) 

q being the n-nucleus c.m. momentum, come down as far as qj ~ 0.2 for J ~ 3 in the 

kinetic energy region 100 MeV ~ T ~ 180 MeV. The total cross section, 

O'~o t ¢~) -- 4L~" 2~ ~ CG:o, bO), (8.6) 

and the inelastic cross section for ~160 derived from this analysis are presented in 

Fig. 23. 

Figure 23: 

800 [ 
16 0 

600 

Of of 

400 

o R 
200 Oe[ 

I;0 2;0 3;0 
TT~[MeV] 

Total, elastic and reaction cross sections for ~160 scattering 
(with Coulomb corrections removed) taken from the analysis of 
ref. [63]. 

About one half of the reaction cross section turns out to be related to pion absorption. 

The major part of the other half comes from inelastic scattering processes with knockout 

of one or more nucleons (such as quasifree scattering, (~,~'N)). 

The large reactive content of the total pion-nucleus cross section is an important 

feature. In models where the scattering process is described by the excitation and 

subsequent propagation of a A(1232) inside the nucleus, this implies that there must be a 

substantial damping width experienced by the A(1232) in a many-body environment. 

8.3 The A-Hole Model 

The dominance of the 6(1232) in the pion-nucleon spin-isospin-3/2 channel suggests 

that the basic mode of excitation at pion kinetic energies between 100 - 300 MeV is 

the creation of A-hole pairs. This is the asumption behind the A-hole model. It asserts 
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The resu l t  can be cast i n to  a simple form by i d e n t i f y i n g  each s t reng th  d i s t r i b u t i o n  

fo r  a given J~ w i th  e s s e n t i a l l y  one or two A-hole doorway s ta tes  {d j> :  

(8.10) 
d~ co ~ 

Each A-hole mode of given J~ has a resonant structure, the position of the maximum 

moving upward with increasing J. The width of each mode is determined by several 

3OO 

2oo 

i I 

50 100 150 200 250 T~ [MeV] 
I I  l I I I I I 

150 200 250 300 350 400 w[MeV] 

Figure 24: D i s t r i b u t i o n  of A-hole s t rength  as seen in p ion-nucleus sca t t e r i ng  
from 160. Shown is  the resu l t  of  a microscopic A-hole c a l c u l a t i o n  
[5 ,66 ] .  

f ac to rs :  ( i )  the A + ~N decay w id th ,  p a r t l y  quenched by Paul i  b lock ing  e f f e c t s ,  and 

very i m p o r t a n t l y ,  ( i i )  the absorp t ive  channels a r i s i n g  from the coupl ing of  A-hole to  

the 2N2h continuum. A spec ia l  fea ture  of  the l o n g i t u d i n a l  sp in - i sosp in  response such 

as i t  i s  s tud ied in p ion-nucleus s c a t t e r i n g ,  is  the downward s h i f t  in energy of  A-hole 

peaks in lower p a r t i a l  waves. This s h i f t  comes mainly because of the st rong a t t r a c t i o n  

from non -s ta t i c  one-pion exchange in the ( d i r e c t )  A-hole i n t e r a c t i o n ,  or  e q u i v a l e n t l y ,  

from the coherent m u l t i p l e  s c a t t e r i n g  of  the pion through the nucleus. The downward 

s h i f t  is  p a r t l y  reduced by the repu ls i ve  A-hole i n t e r a c t i o n  p r o p o r t i o n a l  to g~, and 

f u r t he r  in f luenced by d i spe rs i ve  s h i f t s  from absorp t ive  channels. The l a t t e r  e f f ec t  

is  one of the reasons why i t  is not poss ib le  to determine g" d i r e c t l y  frdm A-nucleus 

s c a t t e r i n g .  Nevertheless the A-hole model has been remarkably successful  in i t s  

capac i ty  to  t r e a t  genuine many-body cor rec t ions  to the propagat ion of the A(1232) 
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inside a nucleus. In fact, the A-hole strength distributions, Fig. 24, are very close 

to those obtained from the partial wave analysis [63] except for the J~ = O- partial 

wave which requires a careful treatment of s-wave ~N interactions not incorporated in 

H~N A 

The downward shift of A-hole strength in low partial waves observed in n-nucleus 

scattering is absent in photonuclear cross sections in the A-region. This is easily 

understood because of the dominant transverse yNA coupling proportional to S+ x q 

which suppresses the direct OPE A-hole interaction, the latter involving longitudinal 

operators of the type~+.~ [67]. 

8.5 The A-Nuclear Effective Potential 

One can think of all the above mentioned effects on the 6(1232) propagation inside 

the nucleus as being described by a complex optical potential for the A. This poten- 

tial will in general be non-local, because of the large distances over which the 

excited nuclear many-body system can propagate in space. An equivalent local poten- 

tial of the form 

jO ° ' (8.11) 

has been used successfully [64] in systematically reproducing elastic pion-nucleus 

data together with total absorption cross sections. (In such an approach, the Pauli 

blocking terms (Fock terms) are usually calculated explicitly so that their real and 

imaginary parts do not appear in V~). The result obtained for I~C and 160 is 

l,V'o ~ (-30 - 4 4 -o )  M ~ V  (8.12) 

almost independent on pion energy in the range T = 100 - 250 MeV. 

N o n - l o c a l i t i e s  en te r ,  at least  p a r t l y ,  through the s p i n - o r b i t  term, where h A and ~6 are 

the o r b i t a l  angular  momentum and the spin of  the p ropagat ingA(1232) .  With the parametr i .  

za t i on  

V ~  ~ Vo l '~  ~ -~Ix1~ 1 ~  (8.13) 

and p = 0.3 fm -2 the f o l l o w i n g  value has been obta ined fo r  160: 

The s ize  of  the s p i n - o r b i t  i n t e r a c t i o n  fo r  A'S is  t he re fo re  roughly comparable w i th  

tha t  fo r  nucleons. With i nc lus ion  of a s p i n - o r b i t  term, the f i t  to  d i f f e r e n t i a l  cross 

sect ions improves s y s t e m a t i c a l l y ,  as Fig.  25 shows. In the absence of VLS the requ i red 

W is strongly energy dependent. 
o 

The phenomenological A-nuclear potential is sometimes called spreading potential in 

order to emphasize the spreading of strength from the A-hole doorway states into other 
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inelastic channels. Its significance is that it sets the scale for the size of many- 

body effects related to absorption and other reactive channels. A reactive width of 

£R N80 MeV for the central partial waves (J ~ 3 at T~ = 160 MeV) emphasizes the 

importance of the partial A decay into channels other than A + ~N inside the nucleus. 

The imaginary part Of W is actually quite well reproduced by coupling the A-hole 
o 

states to the two-nucleon-two-hole continuum in a model constrained by the ~d ÷ pn 

absorption amplitude [5]. 
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Figure 25: 
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A-hole model calculation of ~160 differential cross sections 
(Horikawa et al. [64]) showing the influence of the A-nucleus 
spin-orbit interaction (solid curve) as compared to VLS = 0 and 
W readjusted (dashed curve). (a) T = 114 MeV; (b) T = 240 MeV. 
0 ~ 

LECTURE 9 

9. Gamow-Teller and Magnetic Isovector Transitions 

Substantial experimental progress has been made in the past few years, in the systema- 

tic exploration of Gamow-Teller (GT) strength by (p,n) [68] and (3He, t) [69] processes, 

and in the investigation of magnetic transitions in a variety of nuclei using high 

resolution inelastic electron scattering. Both the GT strength and the magnetic tran- 

sitions of low multipolarity are observed to be systematically quenched as compared to 

shell model expectations. Part, but not all of the quenching can be attributed to 

standard nuclear core polarization. The interesting question is then to what extent 

the unexplained parts of the quenching can be interpreted as signatures of sub-nucleonic 

effects, such as polarization involving virtual A excitations. 

The (p,n) process takes advantage of the fact that at energies 100 - 200 MeV of the 

incoming proton, the spin-isospin dependent part of the nucleon-nucleon interaction 

dominates strongly over the purely isospin dependent one, thus favouring GT(oT) tran- 

sitions over Fermi (~) transitions. The same is true for the (3He,t) reaction. 
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9.1 Quenching of Gamow-Teller Transitions 

GT transitions are related to the nuclear axial current operator 

A 

,~±c~) = 2"A .=, ~ " ~  ° ~ C ~ - ~  ~" (9.~) 

The total GT strength as seen in (p,n) reactions at forward angles can be compared with 

the sum rule [68] 

÷ + c o n t r i b u t e s  to  where the  i n t e r m e d i a t e  s t a t e s  in> are p u r e l y  nuc leon ic  ones. Only d t  

(p ,n )  r e a c t i o n s ,  but  the t pa r t  is  s t r o n g l y  suppressed by the Pau l i  p r i n c i p l e  f o r  

nuc le i  w i th  Large neut ron excess.  The ac tua l  s t r e n g t h  observed i s  g r e a t l y  reduced 
e f f  

as compared to  eq. 9 .2 . I f  reexpressed in terms of  an e f f e c t i v e  gA , the r a t i o  

eff, , is obtained as shown in Fig. 26 [68]. The fraction of GT strength observed 
gA IgA; 

as compared to the sum rule is (65 + 5)%. This includes a careful consideration of 

background subtractions from energies above the actual GT resonance state [71]. 

0.6 

O.l 

0.2 

(Free neufron) 

19 

/ I  I I I I I - 

A 

Figure 26: Fraction of Gamow-Teller sum rule strength observed in (p,n) 
reactions [68]. 

The systematics of the quenching of the axial charge gA in nuclei for a wide range of 

mass numbers is a remarkable feature. We note that with gA = 1.26 for a free neutron, 

the effective gA in nuclei appears to be 

~: Ff = ~ . 0 2  ~ 0 . 0 ~  (9.3) Q 

Similar conclusions are drawn by a systematic analysis of magnetic moments and beta 

decays of mirror nuclei [72]. 

It is instructive to look back at the GT sum rule from a quark model point of view [73]. 

We recall that eq. (9.2) is derived for a nucleus consisting of nucleons only. The 
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A(1232) can be introduced by writing the sumrule starting at the quark level from an 

axial current 3A 

= % , ( 9 . 3 )  
--,'- + 

where t h e  a ' r -  now o p e r a t e  on the  i n d i v i d u a l  u and d q u a r k s .  The c o r r e s p o n d i n g  qua rk  

sum rule is 
3A ~A 

£ {1<.1£ I .1£ Io>l")-sc.-z).(9.4) 

Note t ha t  the summation over  i n t e rmed ia te  s ta tes  In > n e c e s s a r i l y  i nvo l ves  both nucleon 

and A i n t e rmed ia te  s t a t e s ,  s ince these s ta tes  j us t  t r unca te  a l l  poss ib le  quark sp in -  

i sosp in  t r a n s i t i o n s  at  zero momentum t r a n s f e r .  I f  the summation over  In > is  r e s t r i c t e d  

to  nucleons o n l y ,  the r e s u l t  is  (25/3) (N-Z)  on the r i g h t  hand s ide of  eq. (68) .  By 

comparison w i th  eq. ( 9 . 2 ) ,  t h i s  revea ls  gA = 513, the f a m i l i a r  c o n s t i t u e n t  quark model 

va lue  f o r  gA" We note the reduc t ion  of  the quark sum r u l e ,  w i th  A'S i nc luded ,  over  the 

nucleon sum ru le  (exc lud ing  A'S) by a f a c t o r  9125. The d iscuss ion  cannot be app l i ed  to  

realistic situations since the model is obviously oversimplied, giving gA = 513 

instead of 1.26. Nevertheless, such considerations are useful since they illustrate the 

connections between nucleons and A's in spin-isospin excitation channels. If looked at 

from a quark sum rule point of view, the presence of A's reduces the GT sum rule, 

eq. (9.2), by effectively replacing gA by gA ff = I, in surprising coincidence with 

eq. (9.3). 

9.2 Quenching of Isovector Magnetic Spin Transitions 

Isovector magnetic spin transitions are related to the nuclear spin current 

= 

A similar systematics as in GT transitions is found in M1 and M2 transitions, if the 
eff 

observed strength is reexpressed in terms of an effective spin-g-factor, gM =~gM 

in eq. (9.3) [70]. The quenching factor y is shown in Fig. 27. This is not a model 

independent evaluation, since an RPA calculation has been used for reference (no sum 

rule of the simple type, eq. (9.2), exists for magnetic transitions). 

The quenching of MI and M2 strength by a factor y2 ~ I/2 (except for light nuclei) 

raises the question about common quenching mechanisms for both gA and gM" the corres- 

ponding operators being obtained from each other just by an isospin rotation. 

Before going into a more detailed discussion'of spin-isospin quenching mechanisms, it 

is interesting to recall the magnetic moments situation. Arima [73] has repeatedly 

emphasized that the systematics of renormalization effects observed in magnetic moments 

over a wide range of nuclei can be well accounted for by standard core polarization 

and tensor correlations, with only little room Left for polarization effects involving 

the 6(1232). In that respect, it is important to note [74 ,75] that there is a 



303 

0.8 

~ 0.~ 

u -  

.1= 

08 
(u 

0.4 

i ~ i I I i i i I I 

~ M2 - St ' rengfh 

t 
I I I I I I I I 

~ q - Sfr  engfh  

I I I I I I I I I 

20 60 100 %0 180 220 
Moss Number 

Figure 27: Quenching factor y = gMff/gM ~ associated with the reduced MI and M2 
strength observed in (e,e') experiments (from ref. [70]). 

substantial difference between magnetic moments and M1 transitions, as far as the 

role of the A(1232) is concerned. The effective magnetic dipole operator can be written 

as 

(9.6) 

where the g-factors stand for 

The contribution of eq. (9.6) to magnetic moments 

elements is (e.g. [75]): 

(9.7) 

and reduced MI transition matrix 

e+l c.~-~ ~f..~ ~ c e . , ~  . - -  ~ , } ,  k~ cy=e- ~ = - ~ - l ~ + ,  J ~  - .2~-, 
(9.8b) 

V.. 
V--" 2 j÷ f  1 " r _ ~  

(9.8c) 
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The point is that contributions from gs and g!~ appear with the same sign in diagonal 

matrix elements, but with opposite sign in N1 transition matrix elements. Now, 

&-hole polarization effects are shown [74,75] to contribute with opposite signs to 

gs and gp, which means that &(1232) effects interfere destructively in magnetic moments, 

whereas they add coherently in B(MI) values. Thus the place to look for possible 

& degrees of freedom is in spin transitions rather than moments. 

6.3 Renormalization of Spin-Isospin Operators in Nuclei 

We proceed now with a discussion of the possible sources for the quenching of spin- 

isospin strength in the low energy, long wavelength limit. Given a repulsive spin- 

isospin dependent particle-hole interaction at low momentum transfers (recall eq. 

(6.31)), a substantial reduction of spin-isospin strength, as compared with indepen- 

dent particle model exceptations, is already obtained within standard RPA with nucleons 

only. This is seen by recalling from eq. (7.11) that RPA introduces a "quenching 

factor" c -I, with 

= # -  ( 9 .9 )  

in the response function. For finite nuclei, this e is a non-local operator [5]. Its 

analogue in nuclear matter, where longitudinal and transverse spincisospin channels 

decouple, is a simple function of m and q which is often referred to as the longitudinal 

or transverse diamesic function. 

For transitions to specific final states, the screening of the perturbing operator F 

by the RPA polarization cloud introduces an effective operator, 

: (9.10) 

Since G N at m = 0 goes like 
o I N k > < N k l  

NE 

and Vo (~ = q = O) = g" al'O2 ~I'~2 with g" > O, the reduction of Fef f with respect 

to F is obvious. Part of this RPA screening can simply be interpreted as an effect of 

ground state correlations, as shown in Fig. 28. The situation is quite different at 

high momentum transfers, especiaLlyin longitudinal (~'q T type) channeLs. As q 

increases, the attraction from the OPE part of Vo~ sets in, and screening may be 

turned into antiscreening, depending on the effects of cutoffs in ~NN vertex form 

factors. 

In practical calculations, one usually truncates the particle-hole basis (the model 

space, or P space). Any polarization effect outside that model space (involving the 

residual Q space, P + Q = 1) tends to introduce additional quenching. For example, 

Bertsch and Hamamoto [77] find in a perturbative calculation that there is a strong 

mixing of the Gamow-Teller resonance with high-lying 2p2h configurations, so that a 
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F 

Figure 28: Quenching of spin-isospin transitions by RPA type ground state 
correlations. Note that by Pauli principle considerations, this 
affects MI transitions but not GT transitions. 

large fraction of the GT strength in 90Zr is moved up to the continuum between 

10 - 45 MeV, by mechanisms illustrated in Fig. 29. The tensor part of the effective 

interaction becomes very important in these mixings, a fact also pointed out in 

[73-75] tensor force effects. The Bertsch and Hamamoto result, namely that about half 

of the GT strength is moved to the 2p2h continuum, seems to be an overestimate, though. 

A careful reanalysis [76] of the GT background places upper limits (~ 20 %) for the 

strength moved into the continuum between 20 - 40 MeV. 

x- x- 

F V V 

Figure 29: Three out of many diagrams involving mixings of Iplh states with high 
lying 2p2h excitations. 

6.4 6-hole induced Screenin~ of Spin-Isospin Operators 

In addition to the screening due to conventional nuclear polarization mechanisms, we 

expect that virtual A-hole excitations contribute to the quenching factor c. We have 

demonstrated the existence of broad A-hole states at excitation energies around 300 MeV. 

The question is now to what extent virtual A-hole excitations participate in the 

nuclear spin-isospin response even at low energy. Suppose that all relevant conventional 

nucleon degrees of freedom are treated explicitly in a sufficiently large model space 

(P-space), such that the remaining Q-space contains all polarization effects where 

intrinsic N + A transitions are involved. Within RPA reduced to P space, the effective 

spin-isospin operators incorporating A-hole screening effects (see Fig. 30) will now 

be 
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P,f~ = ~:~' F '  ~:~ = f - V G o  ~ , (9.12~ 
where V = V(Ah) is the A-hole interaction and G A is the A-hole Green's function, eq. 

o 
(7 .10)  

Figure 30: 

hole~ 
x _ _ _ _ _ ~ ' A  

F 

Screening of spin-isospin operators by virtual A-hole excitations 
within RPA. 

It is instructive to discuss e 6 in the static long-wavelength limit for nuclear matter. 

The A-hole interaction in this limit becomes 

= , 

where g~ is the relevant Landau-Migdal parameter derived from the AN-interaction. 

The GA o at m = 0 is proportional to p/(MA-MN) , where p is the nuclear density and 

M A M N is the AN mass difference. Carrying out spin-isospin sums, one obtains 

9 

-3 
where the density is given in units of nuclear matter density, Po = 0.17 fm , and 

the constant X is 

~ = ~8 7~ /v~ /llm (9.15) 

The factor 72/25 is obtained if one assumes the SU(4) scaling between NN and NA spin- 

isospin transitions, in which case % ~ 0.6. (In the Chew-Low model, the 72/25 would 

be replaced by 4 and X would be increased correspondingly.) The A-induced quenching 

factor is seen to be determined by g~ in the long wavelength limit. For example, with 

g = 0.5 one obtains a A 1.3 at nuclear matter density, 0 Po" This quenching 

is obviously common to both GT and magnetic spin transitions. That is, the effective 

axial vector coupling constant and isovector spin g-factor become: 

This A-hele induced screening of spin-isospin transitions has been discussed widely 

in the literature [78]. 

In finite nuclei, ~ becomes a non-local operator, as discussed before, and calculations 
A 

are usually performed keeping the full finite range structure of the A-hole interaction, 
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including one-pion exchange and p exchange. The non-local and finite range effects 

have two consequences, namely that the A-induced quenching effect depends on the nuclear 

mass number (quenching is less for light nuclei) and on the angular momentum J of the 

state considered (less quenching for large J; see ref. [5]). 

The essential parameter governing the A-hole screening is g~. We have already mentioned 

that, unlike g" for nucleons, g~ is subject to considerable uncertainty. In many-body 

schemes which start from a boson exchange model of the NN ÷ NA or NA ÷ NA interaction, 

exchange terms (Fig. 31b) tend to cancel direct terms (Fig. 31a) of the A-hole inter- 

action [79], the cancellation being most effective in short range pieces, like 

exchange. The resulting g~ would be small, about 0.3, hence A-hole quenching would not 

be substantial. In fact, the cancellation is complete for a zero range interaction. 

However, recent estimates [80] indicate that one has to carry on with the question 

of exchange terms along the lines of ref. [54] to include the induced interaction 

(Fig. 31c). In fact, diagrams (b) and (c) (taken to all orders) of Fig. 31 tend to 

cancel largely among themselves, leaving Fig. 31(a) as the dominant piece. In any 

case, this is just a limited set out of many more diagrams, and one has to raise 

the question how far the standard many-body framework with "elementary" nucleons and 

A exchange terms can be pushed at short distances. The Landau-Migdal framework avoids 

these problems by operating with the direct particle-hole interaction, Fig. 31(a) 

only, and assigning a phenomenological g~, including exchange, to this channel. As 

mentioned before, we shall strictly maintain this philosophy in the following. 

A hote A hole 

Figure 31: 

(o) (b) (c) 
Di rec t  (a) and exchange (b) p ieces of  the A-ho le  t r a n s i t i o n  
i n t e r a c t i o n .  The exchange terms are screened by h igher  o rder  
diagrams of  the type  ( c ) ,  the induced i n t e r a c t i o n  in  t h i s  
c hanne l .  
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9.5 A specific example: MI Transition to the 10.2 MeV State in 48Ca 

This state, seen first in (e,e') scatterimg [81~ is by now one of the best studied 

examples of quenched MI strength. According to McGrory and Wildenthal [82], this 
-i 

state has a relatively simple shell model structure dominated by a fs/~f7/2 neutron- 

hole configuration. The wave function obtained from a full fp-shell model calculation 

(which defines the model space, or P space) is 

s~ ) i+ > ) (9.17) 

plus additional small admixtures of more complicated configurations. The dominant 

neutron-hole component makes this a favourable case for studying renormalization effect~ 

of the spin g factor. A pure f7/2 ÷f5/2 single particle transition using the unrenor- 
2 

malized value for gs gives B(M1)+ = 12 pN, whereas the experimental value is 

(3.9 0.3)p~ [81]. Using the wave function, eq. (9.17), the B(MI)+ comes down to 

2 A major fraction of this quenching comes from 2p-2h ground state correlations 7.3p N. 

of the type shown in Fig. 28. Such 2p-2h correlations are also incorporated in standard 

RPA calculations (Suzuki, Krewald and Speth, 1981), where B(MI)~ = 8~ is found. The 

quenching of about lp~ is due to more complicated many-particle-many-hole additional 

effects not present in RPA. 

The effect of pionic exchange currents is small, but acts to increase the effective 

gs by ~ 10 % (Kohno and Sprung [78]). This discussion indicates that subtle cancella- 

tions are involved (Towner and Khanna [74]). It shows also, however, that it is 
2 

difficult to obtain a B(MI) much less than 7-8p N from ground state correlations and 

mesonic exchange currents. Another factor 1.5 - 2 reduction is still required. 

Now, if g~ is sufficiently large, A-hole screening is a candidate for supplying a good 

fraction of the remaining quenching. This is shown in Fig. 32 (H~rting et al. [78]; 

see also ref. [83]), where the b-hole screening (on top of the McGrory-Wildenthal 

pf-shell model space) has been calculated with a A-hole force ~onsisting of ~ and p 

exchange plus a Landau-Migdal zero range interaction proportional to g~, the parameter 

which has been varied. The full non-local structure of the diamesic function c 6 as 

well as the proper angular momentum projection is kept in this calculation. The Chew- 

Low ratio f6/f = 2 has been used here. (For comparison with calculations using the 

constituent quark model value fA/f = ~72/25, multiply g~ in Fig. 14 by a factor 1.4). 

Note that for finite nuclei such as 48Ca, there is a mixing of transverse and longitu- 

dinal parts of the A-hole interaction even though the probing M1 field is purely trans- 

verse. As a consequence the attraction from OPE reduces somewhat the quenching from 

g~ alone, an effect observable in the limit g~ = O. 

Next, we wish to consider the M1 form factor of the same 10.2 MeV state in 48Ca, which 

has been measured by Steffen et al. [84]. We do this in several steps, starting from 
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i i i i 

o11 o'.2 

- i 
Figure 32: B(MI)+ value for 48Ca(1+). IPM: result for pure (f5/2f~2) neutron- 

hole configuration. McG/W: result of full fp-shell model calcula- 
tion (McGrory and Wildenthal, [82]). A-hole: result including 
A-hole screening in addition to McG/W as a function of the A-hole 
Landau-Migdal parameter g~. 

the McGrory-Wildenthal wave function, eq. (9.17), and introducing A-hole screening as 

in Fig. 30. The calculation here is comparable to the large space RPA calculation of 

Suzuki et alo [78]). They use a similar A-hole interaction, but with inclusion of 

exchange terms for ~ and p exchange, which is equivalent to choosing a much reduced 

g~ (in the Landau Fermi Liquid picture). However, they also observe that they have to 

add in by hand a 8g~ >0 in order to fit the energy of the I + state. This ~g~ compensates 

for the reduction of g~ obtained by explicit calculation of exchange terms. In our cal- 

culation, exchange terms are systematically omitted, for reasons given earlier. 

The full fp-shell model space has the advantage that it includes many-particle-many- 

hole configurations not present in RPA. But it omits nucleon core polarization effects 

outside that model space. We have included such effects at least partly by incorporating 

all RPA type nucleon-hole polarization diagrams outside P-space to all orders. The 

different steps of the calculation are shown in Fig. 33a. Note that the quenching 

effect due to A-hole and nucleon-hole polarization is q-dependent, reflecting the 

q-dependence of the b-hole interaction from ~ and p exchange. 

Meson exchange current effects increase the MI form factor up to the first maximum 

by about 10 %. Consequently, for g~ = 0.6, there is still room for an additional renor- 

malization of the isovector spin-g factor by about 10 %. Fig. 35b shows the result 

[85] when all effects are included, together with a g~ff = 0.9 gs" This latter factor 

may represent, for example, second order core polarization processes of the type, 

Fig. 29, not included within RPA. 
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10 -~' 10 "L' 

10- 10 "'~ 

18"0 0.2 O.t, 0.6 0.8 1.0 1.2 1.4 lO"tO ' ' ' 0'/., ' 0 ' 6 '  0 ' 8 '  10 ' 1~2 ' llt~ 
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Figure 33: DWBA-calculations of the transverse form factor for 48Ca(e,e') 
(I+; 10.2 MeV). (a) Dashed curve: McGrory-Wildenthal fp-shell 
model result; dash-dotted curve: effect of A-hole screening, 
with g~ = 0.6; solid curve: additional effect of RPA-type nucleon- 
hole polarization outside the fp-shell; (b) curve obtained from 
solid curve of (a) by adding meson exchange currents and using 
g~ff = 0.9 gs (from ref. [85]; exp. data: ref. [84]). 

In summary, the above example gives indications for A(1232) induced quenching, but has 

also evinced the difficulties in discriminating such effects against "standard" 

nuclear properties, such as ground state correlations and core polarization. A b-hole 

induced reduction of the isovector gs and gA by 30 - 35 % can be obtained for values 

g~ = 0.5 - 0.6 of the b-hole Landau-Migdal parameter. We note that while this A-hole 

quenching is common to both GT and MI transitions, ground state correlations act 

differently in both cases, namely, they are reduced for 6T transitions in neutron rich 

nuclei. Meson exchange currents contribute relatively little to the renormalization of 

gs (an increase by less than 10 % for the h8Ca example). The situation here is 

different from that in very light nuclei, where pion exchange dominate and 4(1232) 

effects are relatively small (see Chapter 4). 

10. Hyperons in Nuclei 

10.1 Strangeness Exchange Reactions 

We have discussed mechanisms to create a A(1232) in a nucleus by pion-induced processes 

The main motivation for doing so was to study interactions of the A with surrounding 

nucleons. In a similar way, kaon beams have been used to implant A and ~ hyperons in 

nuclei in order to investigate their interactions with a nuclear environment. 

The A and ~ have strangeness S = - 1. They are produced in the following strangeness 

exchange reactions on nucleons: 
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(10.1) K - *  N ~ ./£ + Tr 

K - +  N -'. ~ + re. ( lo.z)  

The (K ,~ ) reac t ion  on nucle i  has been used ex tens i ve l y  to form A and ~ hypernucle i  

[87 - 89] .  

Consider f i r s t  the A product ion  process,  eq. (10 .1) .  A p a r t i c u l a r l y  i n t e r e s t i n g  fea tu re  

of the k inemat ics is  that  f o r  a K momentum of 500 MeV/c, the r e c o i l i n g  A is produced 

wi th  zero momentum ( r e c o i l l e s s  p roduc t ion ,  see tab le  4 ) ,  i f  the pion is  detected under 

forward angles.  This has impor tant  consequences fo r  A hypernucLeus produced under these 

K- momentum [MeV/c] 0 100 300 500 700 900 

A momentum [MeV/c] 250 190 70 0 40 80 

table 4: Recoil momentum in K n + ~ A with pions detected 
at angle 0 °. 

kinematical conditions. It means that the neutron in a given shell model orbit will be 

replaced preferentially by a A carrying the same orbital quantum numbers. 

10.2 Spectroscopy of A-Hypernuclei 

We consider here the A-hypernuclear excitation spectra in 12C and IGo obtained with the 
A A 

(K ,~ ) reaction and shown in Fig. 34. The spectra are plotted as a function of the mass 

difference MHy - M A of the hypernucleus and the target nucleus. Also plotted is the 

binding energy BA, and the A-nuetron mass difference is indicated for orientation. 

The interesting point to note is first that the spectrum looks very much like one which 

would follow from a simple shell model picture: the neutron is removed from the p-shell 

of carbon and oxigen and replaced by a A which occupies any one of the p- or s-shell 

orbits available to it in an assumed A-nucleus average potential. Now, in 12C, only the 

P3/2 neutron shell is occupied, whereas in 160, a neutron in either P3/2 or Pl/2 orbit 

can be replaced by a A. A comparison of IGo and 12C as in Fig. 34 therefore permits to 
A A 

extract not only the depth of the average A-nucleus potential, but also the strength of 

the A-nucleus spin-orbit interaction. A detailed phenomenological analysis [90] yields 

the following results: if the A-nucleus single particle potential is written as 

9C~J + O" (10.3) V. C ec')l s-'. " 

then 

~/o  --- C - 5  2 ~ 2 , )  /~'~e.V (10.4) 

V~ ~ = ( ~ * z )  M e v f . .  ~ (10.s) 
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Thus the central potential depth for a A is about half as deep as that of a nucleon, 

while the A spin-orbit coupling is only about I/4 or less compared to the spin-orbit 

force of nucleons in nuclei. 

~ 10C 

0 

30C 

20~ 

(.) 

MA_M n 

( a )  , , 

I 

40 -30 -20 -I0 

. _ _ . L _ _ . I . _ _ . . L  .L 
-40 -30 -20 -10 

m 2o 

B^[M,V] 

Ip~lp~) ̂  n 

0 m 2O 

e^ N,v] 

Figure 34: Spectra obtained from the (K ,~ ) reaction [88] on 12C and 160 at 
a kaon momentum of 715 MeV. 

10.3 The Hyperon-Nucleon Spin-Orbit Interaction 

The size of the spin-orbit force is evidently an interesting piece of information, 

since it reflects properties of the hyperon-nucleon effective interaction at relatively 

short distances. Several attempts have been made to relate the results, eqs. (10.4-5), 

to properties of the underlying two-body interaction. 

One such approach starts from a relativistic boson exchange model and relates the 

central potential depth to the spin-orbit force in a Dirac-Hartree-Fock calculation 

[91,92]. With constraints set by the potential well depth and spin-orbit splitting 

in nuclei, and with SU(3) applied to hyperon-nucleon interactions, one finds values of 

W and V LS in good agreement with the empirical values. 
0 0 

The smallness of the AN spin-orbit force comes as a natural result also in simple quark 

rearrangement plus gluon exchange models [93]. The A is a combination of u, d and s 

quark in such a way that (ud) couple to a spin and isospin singlet. Therefore the 

spin-orbit interaction due to exchange of u or d quarks vanishes for the diagonal 

AN ~ AN interaction where no s quark is exchanged. The contribution from AN ~ NA 
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exchange processes is small. 

However, the same naive quark model predicts a value 4/3 for ratio of ZN to NN spin- 

orbit forces in nuclei [93]. In contrast, boson exchange models generally suggest 

a small E-nucleus spin-orbit coupling [94,95]. Experimental data [89] on ~-hypernuclei 

can be interpreted assuming an average Z-nucleus potential depth of about - 30 MeV. 

Unfortunately, the data seem so far not to be sufficiently accurate to deduce an 

unambgibuous Z-nucleus spin-orbit potential; nevertheless there are claims [96] in 

favour of an interpretation with a large VLS for Z's. 

Whether this apparent discrepancy between meson exchange and simple quark models leads 

us to the limits of the boson exchange phenomenology is a question of vital importance 

In any case, one would wish that Z-hypernuclear data become available in the future at 

a level of accuracy such that this problem can be sorted out. 
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