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LECTURE 1

1. Introduction

The traditional picture of the nucleus in low energy nuclear physics is that of an inter-
acting many-body system of structureless, pointlike protons and neutrons. Here low energy
nuclear physics is understood to be the region of excitation energies AE smaller than
the Fermi energy (sF =~ 30 - 40 MeV) and momentum transfers Aq S 1/R, where R is the

nuclear radius.

The situation changes as AE and/or Aq is increased up to several hundreds of MeV, the
domain of intermediate energy physics. At this point explicit mesonic degrees of freedom
become directly visible. The pion, in particular, is of fundamental importance. With
its small mass of mn = 140 MeV it is by far the lightest of all mesons. It is the
generator of the long range nucleon-nucleon interaction. The pion Compton wavelength,

%“ = ﬁ/mnc = 1.4 fm, defines the length scale of nuclear physics.

As mesons become important, nucleons begin to reveal their intrinsic structure. Inse-
parably connected with pionic degrees of freedom is the role of the A(1232), the spin
3/2-isospin 3/2 isobar reached from the nucleon by a strong spin-isospin transition at

an excitation energy AE = MA - M =~ 300 MeV, the A~nucteon mass difference.

In these lectures, the position will be taken that the nucleus consists of nucleons and
their excited states (primarily the A(1232)) which communicate by exchange of mesons

(in particular: the pion). Such a description has turned out to be quite successful in
correlating various phenomena and data at intermediate energies, remarkably though
without the need, so far, for explicit reference to underlying quark degrees of freedom.
This progress has gone parallel with the similarly successful meson exchange phenomeno-
logy of nucteon-nucleon forces at long and intermediate distances (r 2 0.8 fm). A sur-
vey of the rapid experimental and theoretical progress in meson-nuclear physics can be
obtained by consulting the conference proceedings [1] and [2], and recent reviews in
ref. [3-6].

While there may not be a need for explicitly invoking quark degrees of freedom in nuclei
up to a few hundred MeV of excitation energy, there is an obvious necessity to under-
stand the phenomenological input into nuclear forces froma more fundamental (quark-gluon
dynamical) point of view. Attempts to establish relationships of this kind are still

at their very beginning, but there is Llittle doubt that activities in this direction
will constitute a substantial part of intermediate energy physics research in coming
years. Some of the developments will be touched in these lectures, though not at a

very detailed level.



254

2. The Nucleon-Nucleon Interaction

2.1 Survey: Mesons and the Nuclear Force

The nucleon-nucleon interaction has been a problem of fundamental interest and
challenge ever since Yukawa's pioneering work in 1935. The problem is still unsolved:
it is yet impossible to derive nuclear forces directly from Quantum Chromodynamics,
the theory of strong interactions. However, over the years, meson exchange models

have established a highly successful phenomenology.

A schematic picture of the nucleon-nucleon potential in the 150 state is shown in

Fig. 1. At distances of the order of the pion Compton wave length and beyond, the one-
pion exchange interaction dominates. At intermediate distances two-pion exchange
mechanisms become important. The lowest angular momentum carried by the exchanged pion
pair is J" = 0+, together with isospin I = 0 in accordance with the symmetry of the
() state. The corresponding (wn) mass spectrum has a broad distribution. In one-

boson exchange models, this is usually prametrized in terms of an effective "g" boson
with a mass between 400 and 600 MeV.

Furthermore, two interacting pions in a J" =17 and isospin I = 1 state resonate

strongly to form the p meson with a mass mp = 770 Mev.

Down to about r 2 0.8 fm, two-pion exchange processes can be treated rather accurately
using dispersion relation methods, such as in the Paris [7] or Stony Brook [8] NN-inter-
action, or in refined versions of the Bonn potential [9]. At shorter distances

(r £ 0.8 fm), the understanding of the NN force is more or less on phenomenological
grounds only. In a one-boson exchange description (e.g. of the Bonn [10] or Nijmegen
[11] groups), the short-range repulsion is simulated by exchange of a strongly coupled
@ meson (J7 = 17, I =0) with a mass mw = 783 MeV.

Both p and w exchange take place primarily at distances comparable to their Compton
wavelengths m;1 o m;1 ~ 1/4 fm, which is the same order of magnitude as the nucleon
size itself. It is therefore difficult to imagine how a p or w meson can travel freely
between two nucleons. One has to expect that there is a massive influence of finite-
size cutoffs. In any case, one probably has to interpret these short-range vector meson
exchanges as phenomenological representations of complex mechanisms taking place at

the level of quarks and gluons, once two nucleons approach each other at distances so

small that their quark cores most Likely overlap.

Nevertheless, the one- and two-boson exchange phenomenology provides a quantitatively
successful description of NN scattering data and deuteron properties. We summarize
properties of the exchanged mesons and meson-nucleon coupling constants in table.1. The

coupling constants refer to meson-nucleon effective Lagrangians of the following types:

Scalar: ‘xs = 95 'y7()<) ?(x) ¢s<") , (2.1a)
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Figure 1 Schematic picture of the NN interaction in the SO channel
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Figure 2: Representative selection of NN
phase shifts calculated with a one- and
two-boson exchange model [9], as compared
to phase shift analysis of NN data. OPE:
one-pion exchange only.
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Pseudoscalar: xp = 3;: 1]’—(x)£3/5, z/’(x) ¢P(x), 2.1
Vector: o =[a, #oo Yo Y6 #(gp/12m) %oo;, Y6 [Vig @10

Here ¢ (x) are the nucleon Dirac spinor fields, and we follow the Bjorken and Drell
conventions for metric and Dirac-y matrices +). The oo 79 and V ¥refer to scalar,
pseudoscalar and vector meson fields. For isovector mesonspthe isospin dependence
enters in the form 7+¢ or 7-V", respectively, where 7 = (11,12,13) are the three

Pauli isospin matrices for nucleons.

- mass g?/4m
meson| J I] m{MeV] Bonn GK
+
A 139.6 14.4 14.3
i 135.0
n 0 o] 548.8 4.95 0
o 17 1] 770 0.48 (6.0) 0.55 (6.1)
w 1 o 783 10.6 8.1 & 1.5

table 1: Properties and coupling constants of mesons commonly used in Boson
exchange models of the NN interaction. The Bonn [9] results refer to
vertex functions modified by monopole form factors

Flq) = (-nt/CA*-4") | q*=q7-F7,

with A = 1.5 GeV. Also shown are the coupling constants obtained by a
dispersion theoretic analysis of Grein_and Kroll (GK) [12]. For the

. 2 . - .
vector mesons, the coupling constant gV/4ﬂ is given and the ratio gT/gV
shown in parantheses (this ratioc is small for the w meson).

Fig. 2 shows a representative selection of nucleon-nucleon phase shifts in low and
higher partial waves calculated with the recent one- and two-boson exchange interaction
of the Bonn group [9]. This calculation includes a selected set not only of (wm)
exchange, but also (ﬁp); (o) and (mw) exchange processes. The results obtained with

the Paris potential [7] are of similar quality.

Note that the higher partial waves up to laboratory energies ELab =~ 100 MeV are

dominated by one-pion exchange, because of their peripheral nature.

+) We use conventions such that

{1 o) 2_fo @ o 1 - . -
Yo‘(o —1]""[—'5 oJ' Ys‘(1 o]' {Yu"fv} = 28y, With g0 = 1/

= -8 -_=+
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2.2 Reminder of the One-Pion Exchange interaction

The best known part of the nuclear force is one-pion exchange (OPE). It is the proto-
type of spin-isospin dependent interactions and plays a most important role in all

subsequent discussions.

For a static, pointlike nucleon, the pion-nucleon interaction Hamiltonian derived from

eq. (2.1a) by a non-relativistic reduction is

R .
Heww = OV T- P, (2.2)

> >
where o and t are nucleon spin and isospin and $(?) is the isovector pionfield. Second
order perturbation theory with HTTNN gives the static one-pion exchange (OPE) potential

(see Fig. 3). In momentum space
- -
V(?) =.-i2-_i&-7 ‘Z-‘.,'i'. 2.3)
™ mz ?‘*”‘: 1 "2 .

> . . . .
where q is the momentum transfer carried by the exchanged pion. The coupling constant

is
2
i = ?mm ; Frun ~ 14 (see table 1)
my 2_/\1 4 (2.4)

where me and M are the pion and the nucleon mass, respectively, i.e. f =~ 1, The Vn of

eq. (2.3) can be split into a spin-spin and tensor piece,

& 72 A - -
V@ ='3:= [(",7:7)@% + ;%,,3 S.p]TE, e

with

313(7) =39, 7 27 "% % (2.6

2 2z e "
=) = - v .
w
-1 £ " - 2% 5658, -
3 4w ¥ M @.7
3 3 il a } g
+ S, () rT,- T,
(1 m.r m,:'ra') r 2 T

The characteristic feature of OPE is its strong tensor force. The 6-function piece is
obviously an artifact of the assumed pointlike nature of the nucleon source. Nucleons
are, of course, far from being pointlike objects, and we shall examine how their size

and intrinsic structure modifies the properties of OPE at short distances.
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Figure 3: Static one-pion exchange interaction between nucleons

2.3 Isovector Two-Pion Exchange

At shorter distances, the spin-isospin dependent nucleon-nucleon interaction receives
contributions from the exchange of two interacting pions in the channel with W = 1_,

1 = 1), the one carrying the quantum numbers of a o meson. (See Fig. &)

- e

N N

Figure 4: Exchange of a (wm) pair coupled to T = 17, I =1) including p exchange

If the (mum) mass distribution is approximated by a single &8-function located at
m, = 770 MeV, and for infinitely heavy, pointlike nucleons, the p exchange interaction

obtained by non-relativistic reduction from eq. (2.1b) becomes:
Cf x ) (17 x ) — -
V@) = fP 7 7 T, T, . 2.8
P p 7 +-I1P

We note that the g x 3 type interaction comes from the dominant tensor coupling

w gdp of the p meson to the nucleon. Here f /m /2M. Empirically, one

= (90 N
f1nds f2/m§ ~ 2 f2/m2 o~ 2m "2 In r-space,

Mt — -
- _ 1 15 e T #m 53] 3-8 -
A {’2[ 7 me 1<

- — Q.9
(12 2 e T 5, }TE

The o exchange tensor force has opposite sign as compared to n exchange and therefore

tends to reduce the pathologically strong OPE tensor force at short distance. However,
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a picture like this is probably only of limited relevance, since the p meson Compton

p
has to expect that Vp is cut down massively by form factors.

wavelength m = is comparable to the nucleon size, as mentioned before. That is, one

LECTURE 2

3. Pion-Nucleon Coupling in Relativistic Quark Models

Given the fact that nucleons have their own intrinsic quark structure, it is necessary
to address the question why a description of nuclei in terms of nucleon quasi particles
and mesons instead of quarks is successful even at momentum transfers where one would

expect the size of nucleons to play a substantial role. There is, of course, no satis-
factory answer to this question. It is nevertheless useful to obtain some insight into
the relevant length scales involved in pion-nucleon interactions, and in particular to
see how the magnitude of the phenomenological pion-nucleon coupling constant g

TNN
can be related to the underlying guark dynamics.

3.1 Facts from QCD

Non-strange hadrons are composed uf u- and d-quarks which form a flavour-SU(2) (isospin)

doublet. In this flavour subsector, the QCD Lagrangian is
= 56 [cv D -1 Fe (aid
OZQCJ = 7(x)[caztu.D —mJ7(x) z F{:v (x) F'a (), (3.1

where q(x) are the quark fields and m is the mass matrix:

(x) m,2 O
7(x) - [t , m= “ . (3.2)
9400 0 my
Here
Ay e
'Dl* = B,u -} = G’l*(x)' (3.3)

a

v is the correspond-

where Gi(x) is the gluon field with color indices a =1, ..., 8; F

ing field tensor, and Aa are the SU(3) color matrices.

Now, there are many hints that the (current) quark masses m, and my are very small
compared to typical hadron masses. The important point is that for m, = my = o, éﬁQCD

of eq. (3.1) is invariant under the chiral transformation
e 43 <Y T
< - _ _ s T-
6'760 e ?(x) 5 7(x) - g0 e . (3.4)

)

That is, chiral symmetry is a fundamental symmetry of QCD with massless quarks. This
symmetry combines the conservation of helicity for massless, free Fermions, with the

(u,d) iso-doublet structure of the gquark fields.
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Invariance under the chiral transformation, eq. (3.4), implies that the quark axial

current, - —
(x) = glx T a(x
A{‘ ) = 300 p.¥s 5 9 (3.5
is conserved for free quarks, i.e.
("' e d
P} At‘od =0. (3.6)
On the other hand, the solutions of the equations of motion derived from JECD are ex—

pected to generate confinement for individual quarks. Once confinement sets in, chiral
symmetry is necessarily broken. To illustrate this, consider for example a single,
massless quark whose motion is partly confined by a reflecting wall. Reflection at the
wall implies that the quark momentum changes from 3 to —3, whereas the quark spin
remains unaffected. Thus the helicity h = 3-3/]3[ changes sign, i.e. the quark wave-
function is not an eigenfunction of helicity any more. In more general terms, chiral
symmetry is spontaneously (or rather: dynamically) broken. This can be cast into simple

phenomenological terms as shown in the following section.

3.2 Confining Potentials and Chiral Symmetry breaking

The phenomenology of confined quarks has been developed quite successfully in terms of
Bag Models [13] and their extension to incorporate Chiral Symmetry [14-16]. We shall
follow here a slightly different path, though with a similar physical picture in mind,
by assuming that non-strange baryons are composed of massless u~ and d-quarks confined
by a scalar potential M(r) [17,18]. This potential is to be interpreted as the mean
field experienced by individual gquarks and generated by the confining forces which are
probably due to non-perturbative gluon interactions. Soliton models [19,20] simulate
these degrees of freedom in terms of a scalar soliton field o(r), so that the local
quark mass becomes M(r) = go(r), where g is a coupling constant. The quark Hamiltonian

- - - > >
in such apicturedis (@ =YY, 3= Y):

H=&7F+@Mm, G.7)
and the quark fields qg(x) = q(?,t) satisfy the Dirac equation
<y ' -Mr] o) =0o. (3.8)
¢ 7

The confining potential M(r) should have some of the qualitative features suggested
by QCD, assuming that M(r) represents a mean field primarily of gluonic origin: in
the hadron center, M(r) should be small, so as to allow quarks to move freely, in
accordance with asymptotic freedom. Towards the surface, M(r) should grow rapidly to
yield confinement. Absolute confinement requires M(r) - « beyond some distance from

the hadron center.

An ansatz for M(r) can be made as a power series in r, or simply by a single power law
M(r) = cr’'. For such potentials and the Dirac equation eq. (3.8) a virial theorem can

be derived [21]: The potential energy,
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EPo't = fds'r <7+X°MCr)7>

is related to the total energy E in a given quark orbit by

E
Efot = —’;':—1—' . (3.9

3

For n = 3 the confining potential M(r) = cr® essentially replaces the volume part of

the energy in the standard MIT bag model, where the energy per quark is

EMR _ x 4 3
= = & SN BR~” 3.10)

The first term in eq, (3.10) is to be interpreted as the quark kinetic energy, with

x = 2.04 for the lowest S1/2 orbit. The condition dE/dR = O implies that the volume
term, (4n/3NIBR3, is 1/4 of the total energy, just as for the r3-potential. The para-
meter ¢ for n = 3 plays the role of an energy density, which we expect to be of the
order of 1 GeV/fm>.

Consider now the axial current of a single quark satisfying the Dirac equation, eq.(3.8)

We take the divergence and find, using the Dirac equation:

B"A:; (x) = M) gx)<yg 7“7(x) : G

This result tell us that the breaking of chiral symmetry, measured by the nonzero
divergence of the axial current, is directly related to the confining potential. The
limit of free, massless quarks would be obtained with M(r) = 0. The right hand side
of eq. (3.11) acts as a pseudoscalar-isovector source function. This source function
obviously peaks at the baryon surface, since M(r) rises Like a power, whereas the
quark wave functions q(r) decrease exponentially beyond a distance comparable to the

baryon size.

3.3 Introducing the Goldstone Pion

If QCD has an underlying SU(2) x SU(2) chiral symmetry, then the dynamical breaking of
this symmetry by confinement at the quark level must be restored by a compensating
field carrying the quantum numbers of a pion. The Goldstone theorem requires the
existence of such a Boson field with zero mass. To demonstrate this, one generalizes

the axial current,
_ a . .
A:t(") = 7(")7#7;13‘:70‘) - fx % ¢A(") + terms non-Linear in o' (3.12)

by introducing the pseudoscalar-isovector field ¢A(x) just mentioned. Here fn is a
constant. Restoring chiral symmetry means to require that the divergence of eq. (3.12)

vanishes.

. . R A . . .
Suppose now that we can omit the terms non-linear in ¢ as a first approximation [16].
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Then together with eq. (3.11), the condition 3% Ai = 0 implies the following field

equation for ¢A:

£ O ¢a<x) = M) 7"(x)4575 r“y(x). (3.13

The suggestion is, of course, to identify ¢A with the pion. This pion has zero mass
according to eq.(3.13). We refer to it as the Goldstone Boson associated with the

breaking of chiral symmetry at the quark level.

The step from a conserved axial current to PCAC can be made by introducing a finite
pion mass, mTr = 140 MeV. Furthermore, f1T should be identified with the pion decay
constant, f1T = 93 MeV, since the pionic part of the axial current determines the

decay rate for m » pv. Eqg. (3.13) is then replaced by
A M>) 60 < 2
(O +m2) ¢'x) = a g (x) <ys T 9k), (3.14)
™

and the divergence of the axial current becomes
2 A
'a"‘At: (x) = m2 frr $00). (3.15)

In chiral bag models, the source function on the right hand side of eq. (3.14) is

proportional to a §-function at the bag boundary.

The pion is introduced here on purely phenomenological grounds, as in chiral bag
models. There is no obvious relation to the pion as a bound qa pair at this level. A
more profound approach can be based on the Nambu and Jona-Lasinio model [22]. This
model starts from a chiral invariant effective Lagrangian for massless quarks and
demonstrates that if the guarks acquire a non-zero effective mass by sufficiently
strong self-interactions, at which point chiral symmetry is spontaneously broken,

a bound quark=-antiquark mode carrying pion gquantum numbers develops with zero mass.
The physical pion mass is then obtained by starting from finite, but small guark
masses of order 10 MeV. The pion in such a picture is a cohe;ent superposition of
qa states [23] and has properties analogous to low-lying collective particle-hole
states in many body systems. The pion core must be small (rﬂ 2 0.4 fm) in order to

obtain the correct decay constant . [24,25].

The very special nature of the pion as compared to other mesons is clearly one of the
most fundamental aspects of nuclear forces, although we cannot go into further details
here. Some interesting features of pion-nucleon dynamics can however be discussed

already at the present Llevel.
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3.4 Pion=Nucleon Coupling and the Axial Form Factor

Suppose that nucleons are described by three massless + qguarks occupying the lowest
orbit of the confining potential M(r). Eq. (3.13) tells that the coupling of a pion

to quarks in the nucleon is given by the source function

A MCr
J.;_(x) = 2 Z 7JCX) °2’5T 9% (x) . (3.16)
*% F=1
In the static limit, we define a pion-nucleon form factor G NN(qZ) by

-4 G (9 <FTF > = 2M <N/fdsre- /N> (3.17)

- - . - -
where <0TA> refers to matrix elements taken with nucleon spin and isospin operators,

and |N> is the SU(4) three-quark wave function of the nucleon. The 7N coupling constant

-— 2.=
3mwv - van (7 °). (3.18)

(It is actually defined as G

is

(q2 = mz), but we ignore this minor detail.)
7NN T

Another form factor of interest is the one related to the quark axial current. The
axial form factor measures the spin distribution of quarks insjde the nucleon . At

momentum transfers q2 << 4M2, it is given by
L e d
; QY AAr '
G, G <o+ > = (N/fal’re.q AZ@IIN>, G.19)

where AA is one of the three-vector components (i1 = 1,2,3) of the A = q ¥ s (t? /2)?

summed over the three valence quarks. The G (q ) is normalized accord1ng to
= (g*=0
9, = G, (9%=0), (3.20)

where 9 is the axial charge. (Empirically, 9y = 1.26). Now, it can be shown [25,26]
that G (qz) does not receive contributions from a pionic term proportional to f“8u¢ of
the ax1aL current as long as ¢ is a continuous function. This makes G (q2) a particu-
Llarly suitable quantity to d1scuss the quark core size. For a conf1n1ng potential

MCr) = or® with ¢ = 1 GeV/fm® , we find the result, Fig. 5. The axial charge comes out
to be 9, = 1.21. Center-of-mass correctjons, obtained by projection of the quark
momenta onto good total momentum, turn out to be small, if the projection procedure is
constrained by the gauge invariance requirement for the corresponding electromagnetic

172
current [26]. The rms radius associated with GA(qz) js <r?s / ~ 0.6 fm.

It is straightforward to show by using the Dirac equation that gnNN and 9, are

connected by the Goldberger-Treiman relation,

+) We could add at this point small current quark masses of about 10 MeV, consistent
with a finite, but small pion mass.
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Figure 5: The nucleon axial form factor calculated for three quarks confined
in the potential M(r) = cr3 with ¢ = 0.95 GeV/fm® [26].

= M
Qern = 3 2, - : (3.21

For 9, = 1.21 obtained with the cr3 potential = 12 results, to be compared with

’ gnNN
the empirical value 9NN = 13.
The pion-nucleon source function is shown in Fig. 6. It exhibits the characteristic

surface peaking. The resulting form factor G 2) [26] is slightly softer than the

N
axial form factor GA(qz). Similar conclusions have been drawn in ref. [25].

Unlike the nucleon electromagnetic form factors, GA(qz) receives practically no con-
tribution from the pion cloud in this model. Effects from 37 states could be present
in principle, but they would probably change the picture very Little, the dominant

contribution in this channel being the A with a mass of no less than 1.3 GeV.

In chiral quark models, the difference in radius between the axial form factor, which
measures essentially the spin distribution within the nucleon, and the charge radius

2
1z 0.83 fm is assigned to the charged pion cloud surrounding the quark core. We

<r‘2>
c
present in Fig. 7 the results of such a calculation [17] where the quark core is the
same as used to obtain GA(qz) of Fig. 5. The calculation includes approximate center-
of-mass corrections. It shows that the proton charge radius is in fact determined

Largely by the pion cloud which represents about 1/3 of the total charge.
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Figure 6: Pion-nucleon source function <N|Jé(r)]N> (left) and the corresponding

Figure 7:

pion-nucleon form factor G;ny(gq2) evaluated according to egs.(3.16,17)
with a confining potential M(r) = cr3 with ¢ = 0.95 GeV/fm3.
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Proton charge form factor calculated according to ref. [27]. The
contribution of the quark core and of the pion cloud are shown
separately; the sum of both is compared to data. The quark core
is the same as the one giving the GA(qz) of Fig. 5.
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3.5 Constraints on the OPE Tensor Force: the deuteron asymptotic D/S-ratio

A quark core of about 1/2 fm radius will introduce substantial modifications as compared

to OPE with pointlike nucleon sources. The static OPE potential with form factors
becomes

-y Grrmv(qz) 637 O-i-? bt
V;r(7) == 4 M* %”'-rm: "3"‘1 . (3.22)

For GWNN(QZ) as obtained from a quark core following the preceeding discussjon, we show

. . . . . 1/2 L s
the resulting tensor potential in Fig. 8, for a core radius <r2> 2 2 0.5 fm. The finite
size of the core effectively weakens the tensor force, by an amount determined by the
rms radius.

One of the best possibilities to examine the tensor force is by investigating the

asymptotic D/S-ratio in the deuteron. We follow here the discussion of ref. [28]. The
D/S~ratio n is defined in terms of the asymptotic S~ and D-state components of the

deuteron wave function (u(r) and w(r), respectively) as follows

-0r ;3 -aAr
ulr) —— Ne | W0 —— 7N(’I+m, e ) EY &
v-»oa

where o2 = €M and ¢ is the deuteron binding energy. The

value of n is determined to
such high accuracy that it allows for a detailed test of

the tensor potential at

v, (r)
m, |
A \ -
1
\\
03 \ 7
\
\
\\
02} \ .
\
\
\
01+ 1
0 1 1 1 1 g i L l L
0 1 r[fm] 2

Figure 8: The one-pion exchange tensor potential w1th point—~Like nucleons (dashed

curve) and modified by form factors GnNN(q ) calculated with a quark
confining potential M(r) = cr3, c =1 GeV/fm3 (solid curve).
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distances r R 0.6 fm, the unknown short distance behaviour being suppressed [28].

We show in Fig. 9 a calculation of n following the method of Ericson and Rosa-Clot,
using the quark core 7N form factor G“NN(qZ) as inpdt, and varying the quark core
density radius <r2>1/2. The result indicates that the measured value of n sets an upper
Limit to <r2>1/2 of about 0.6 fm. This result does not depend on the precise form of
GnNN(qz)’ the essential parameter being just <r2> [29]. It may well be, of course, that
GwNN(qz) in such an analysis represents a variety of complicated short-distance pro-
cesses, so that the immediate relation to the quark core size is obscured. In any case,
the data tell that deviations from pointlike OPE should effectively not extend beyond

a distance r 2 0.6 fn.

asymptotic
D/S ratio
n

0030

exp.
S R

T

0.025

] 1
05 10 <r>\2 [fm]

Figure 9: Deuteron asymptotic D/S-ratio calculated according as in [28], with
Gryn€a?) from eq. (3.17). The radius <r251/2 pefers to the density
distribution of the quark core as calculated with confining potential
M(r) = cr3 (see text).

3.6 Nucleonic Spin-Isospin Transitions, the A(1232), and nNA —Coupling

Three u or d quarks in a (1s y3 configuration of a bag or confining potential can

be coupled either to a spin 1;2, isospin 1/2 state (the nucleon) or a spin 3/2,
isospin 3/2 state (the A). The mass splitting between N(938) and A(1232) is due to
spin~dependent residual forces. The most important mechanisms contributing to this
splitting are supposed to be chromomagnetic interactions from gluon exchange and the
spin~isospin dependent self=-interactions of the nucleon or A via the surrounding pion

cloud (see e.g. refs. [15,16]).

Such a model, together with the pion-quark interaction developed before, necessarily
implies a strong nNA coupling. The reason is that the transition from nucleon to
A(1232) is made by a single spin—isospin flip on one of the quarks, without changing
their spatial s? configuration.

Given the pion—-quark source function Jé of eq. (3.16), we can define a 7#NA transition
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form factor GFNA(qZ) by A
>, . -
-4 Grpna 697 <,S+-7 7';>=,2 MM, <A{[d3'rejq T3 185, 5.20

where |N> and |A> are the quark model wave functions of nucleon and A(1232),

- . T .
respectively, and the matrix element <§ T > on the left hand side refers to transition
matrix elements taken between spin~isospin - 1/2 and spin-isospin - 3/2 states. The

transition operators are defined as
<amy | Spllem>= (Fam,1plhm),
Tl TElk o> = (Bt /e oTy)

A property of the spin transitijon operators which will be used frequently in practical

(3.25)

applications is

3.5 £
i‘Sj = 54:]' ~3%9, (3.25a)
where i and j denote Cartesian components (i = 1,2,3). Since the orbital parts of

the three-quark-wave functions |N> and ]A> are the same as long as the N-A mass
splitting is treated in first order perturbation theory, the ratio of GnNA and GWNN
is determined entirely by spin-isospin coupling cecefficients, i.e. by the underlying

SU(2) x SU(2) symmetry of the problem. More precisely [30]:

<alT2IN> _ [72
NITEIN> |25

The resulting model of 7NN and nNA couplings can be summarized in terms of the

(3.26)

interaction Hamiltonians

_ 4 'F(z) 2> > =2 z (3.27)
Heww = 4 —'—”7; c-q z- ¢,
B g
Huna = 4 Mo S-q T ¢ +he., (3.28)
where 7[_'(73) = ;;; G"-(7a.) ,
(3.29)

() = me Cq2)

falq™) ZmquA'? ’
with (g2 = 0) = f =1, fi/f2 = 72/25. This gives already a reasonable description of
p-wave pion-nucleon scattering and one-pion exchange forces. More detailed quantita-
tive agreement can be obtained by adding relativistic corrections and readjusting fA

to the Chew-Low value, f, = 2 [5], the model we shall adopt in many-body applications.

A
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3.7 Summarz

Chiral symmetry is a fundamental symmetry of QCD with massless u and d quarks. Confine-
ment necessarily breaks chiral symmetry at the quark level and implies the existence of
a massless Goldstone pion. The finite pion mass is probably related to finite, but small
current quark masses m.s My of order 10 MeV. Chiral bag or confinement potential models
are a convenient way to introduce the coupling of pions to quarks at the baryon sur-

face. In such models, the 7NN or 7NA form factor can be calculated; for a crd confining

potential it turns out to be well approximated by
=
5
2) = -2
f&q*) = [2 {a4%) f exp [ /L"J, (3.30)

where A_1 is related to the quark core rms radius. For example, one obtains A = 750 MeV
for <r2>1/2 = 0.5 fm. Such relatively soft pion-nucleon form factors are consistent

with the nucleon axial form factor (although the experimental uncertainties are unfortu-~
nately too large at present to draw more quantitative conclusions). It would be diffi-
cult, however, to accomodate such a A with the existing one-boson exchange phenomeno-
logy of the nucleon-nucleon interaction [10] which suggests cutoffs A of about 1 GeV

or larger. To establish connections between boson exchange models and the underlying

quark dynamics at short distance remains as a key problem.

LECTURE 3

4. Virtual Pions in Nuclei

4.1 Pion Exchange Currents

Some of the strongest evidence for pionic degrees of freedom in nuclei comes from in-
vestigations with electromagnetic probes. The exchange of virtual charged pions between
nucleons contributes genuine two-body pieces to the total nuclear current. Effects of
these socalled exchange currents have been studied in great detail [31,32], especially

for simple systems like the deuteron.

We recall that the static pion-nucleon interaction Hamiltonian (with pointlike nucleons)
is
-y

HWNN = _£ (6?'6) (‘,i._"_¢)'

e _ %1

Now, the rule for introducing the photon field in a gauge invariant way is to replace

—y - . -
V > V zieA, 4.2

-

- - + - -
where A is the vector potential, and % refers to a m or 7 meson, respectively. This

generates an interaction of the form
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4.3

_ .zi . —».'*
H;{nw = mr1e£ Ta d); o-A.

Furthermore, the pion itself carries a current
— X - _ —'p¢
J;r= 1e,[¢+V¢_ ¢.V +], 4.

which interacts with the photon, the corresponding term of the interaction being
. (.5)
HTTF = J,,. A 4

To lowest order in the two-body one-pion exchange interaction, perturbation theory

'l = + + i i i
with Hint HTrNN HY1TN HYTT generates the Feynman diagrams shown in Fig. 10.

§ A->- <A 3§ ~<-->-
1 2 1 9

2 1
(a) (b)

Figure 10: Two—bbdy exchange currents from OPE, (a) Pair current;
(b) pionic current.

The two diagrams (a) contain the point interaction H together with H ,,, connected

ynN N
by the propagator of the exchanged pion. This part is called the pair current because
it derives a non-relativistic reduction of a process which relativistically (with Yg

coupling) involves the virtual excitation of a particle-antiparticle pair. The corres

ponding two-nucleon current is

0;(0'k) 0. (0, &,)
J- (k,,k)=-1e_(’c )[z-mxtm] { "+m'} .t

The isospin dependence reflects the fact that the nucleon isospins always come in the
combination r (1)7,(2) - ¢, (D7_(2) = 2i [T(1) x ?(2)]3.

The term Fig. 10b represents the coupling of the photon to the exchanged pion. The

- -
pion current, eq. (4.4), gives a factor (k1 - k2). The 7NN vertex H appears twice.

7NN
There are two pion propagators, one for each pion of momentum k; and k,, respectively
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/c k- -E)GE,
J (k4}k ) 4&({ )[T(‘DXTCZJ (Ea. :)(ka_"'m:) . 4.7

> >
Note that the sum of pionic and pair current, if multiplied by 3 = k; + k,, becomes

?‘ (fair + \-7-:-1-)

™ ™ 4.8)
k,

Oy k Ei —"'Aa. aiiz
= —-fe (f )[Ta)x'Z‘(z)] { - o;_’

ks +my

This demonstrates that the pionic and pair currents have always to be taken together

in order to satisfy current conservation (or equivalently, gauge invariance).

It is useful also to present the currents in r-space

J-(.,_» - dsk d’é e_lk (r-x)ef,k (’i’-x)f(_, [)).

X,%,7% .z. (27‘_); C27r)3 7572 (4.9
This yields
= -
Dpaip (BTG,T) = - (L) [Ta) x 'Z‘(z):[ Y, Gaepe?) -
= . 4 2/, > L 4 /7> -
[o; (6,:7) 6~#-%X) + ¢, (c;-#) S (');_—x)] 3 (4.10a)
~y 2 -y
> 5 -» _ £ —
(T,,. (<, 2,h) = —e (’3-'1?) [T0)x T'(z)]s
~N
-y - =™ - = - - -
(V-9 (&-V)(E.- ) VolmelG-RDY, tnpelZ-2D)
This illustrates most clearly the way in which the photon couples to the charged pion
-z
at the point X between the two nucleons located at points ?1 and —r)z. Here Yo(z) = _ez_
and Y, () = (1 + by .

The above expressions are obtained for pointlike nucleons and pions. At high momentum
transfers, modifications due to the finite size of nucleons and pions should be intro-
duced. This is not a trivial procedure since the introduction of form factors has to be

done such that gauge invariance is strictly satisfied.

4.2 The Exchange Magnetic Moment

Pion exchange currents have substantial influence on magnetic properties of nuclei in
general, and on magnetic moments in particular. We recall that the magnetic moment

- - =
density is related to the total current J by

-
B2 = 2 XxJR), %D
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where J contains both s1ngLe—nucLeon currents and two-body exchange currents,
\T(?) Z J(X) + J;x(") %.12)
t=t

The exchange magnetic moment is given by

(uex = f [x x U_ Cx)] (4.13)

By far the dominant contribution comes from the pair current. Using eq. (4.10a) one

obtains
2
e
B (1,20 = 8—7:; [TctyxTa],

(4.14)

L8 FIEA) + G [E=FT] Y, ner),

where ¥ = ?1 - ?2. The exchange magnetic moment gives a characteristic correction to

gk, the orbi:at g-factor of a nucleon in a nucleus. For example, an odd proton can
exchange a ¢ with neutrons in the core. The corresponding correction sgﬁ(p) is positive
Similarly, if the odd particle is a neutron, the corresponding 59 (n) arises from a

ﬂ_ exchanged with protons in the core. Hence 59 (n) is negative, and these considera-

tions lead to

0,00 Z (4.15)

for pion exchange corrections to 92' The above arguments are summarized in the form [33]:

5}‘,’ = ZT},, (4.16)

where actual calculations yield 7 = 0.1 - 0.2. The isovector character of 59 is of

d2p) _ _ N

course related to the isovector nature of the pionic current. The 592 due to pion
exchange effects is a substantial fraction of the measured 592 in various nuclei (see
T. Yamazaki in ref. [33]), but a detailed discussion of higher order configuration

mixing effects is necessary to make the discussion guantitative.

4.3 The A(1232) Exchange Current

The A(1232) 1is reached from the nucleon by a spin-flip isovector transition which can
be induced either by a pion or by the isovector M1 part of a photon field. The yNA
coupling is of the type

f N, - +
Hb’NA a,A (S"' ): A Ts 4.17)

>y Ty
where K is the electromagnetic vector potential and S , T refer to the (1/2 5> 3/2)

spin and isospin transition operators, eqg. (3.25). The coupling strength can be deter-
mined from the photoproduction of neutral pions (¥N - noN) which is strongly dominated

by the M1 excitation of the A(1232) via eq. (4.17). One obtains fYNA = 0.116 and notices
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that the following ratio holds to good accuracy:

erA = e

— v (4.18)
f
nna FTNN
where gzNN/4w = 14.4 and vy is the isovector magnetic moment of the nucleon,
"
=4 -
v = 2 Cpp-tn),
with up = 2.79 and My 7 ° 1.91. Eq. (4.18) represents the ratjo of electromagnetic to

strong interaction scales, the additional M, arising because of the isovector magnetic

dipole nature of the transition.

The virtual excitation of a A(1232) followed by pion exchange contributes to the two-

body exchange current, as shown in Fig. 11. Following standard rules, one obtains for

fferA 7C‘D(Ma
m3 (M-M)

this part of the current:

4.19

The AN mass difference MA - M appearing in the denominator corresponds to virtual
A-excitation after photon absorption. The reverse ordering is also possible as shown

in Fig. 11, but involves the energy denominator in the form (MA + 7! and is therefore
suppressed. The interpretation of the isospin structure of the different terms in

edq. (4.19) is straightforward. The first two terms which do not change the charge of
either nucleon 1 or nucleon 2 correspond to the exchange of a 7°. The other terms

+
proportional to [?(1) X ?(2)]3 represent the exchange of charged (7=) pions.

Figure 11: Exchange current involving the virtual excitation of a A(1232).
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4.4. Exchange €urrents in Few-Nucleon Systems

4,4.1 Deuteron Electrodisintegration

A classical example of evidence for pion exchange currents is the backward inelastic
electron-deuteron scattering process

e+d = e +p+hn
near threshold. The basic process is the same as in the np » dy reaction at threshold,
but now taken at high momentum transfers. There the only possibility for the final pn
pair is to be in a lSo state which is then reached from the 351 - 3D1 deuteron ground

state by an M1 transition.

In the one-photon approximation close to threshold, the double differential cross

section at large momentum transfers is given by

A -

2 B A Ay = . 2é
2T - Cml T kT kT kT ¢ 2 Tl "8 § 4.20

> >
where C(8,E) contains the Mott cross section and kinematic factors, and (E,k), (E’,k”)

are the in- and outgoing electron four-momenta.

The matrix elements J,, receive contributions from one-body C(impulse approximation)

and two-body (exchang:; currents. The one-body transition form factor has a character-
istic minimum at q2 ~ 12 fm™? due to interference between 3D-— 1S and s - 1S transi-
tions. The matrix elements due to different parts of the current operator are shown in
Fig. 12, taken from ref. [34]. We note that the pair current jpair dominates at+Large
momentum transfers, with negligible additional effects from the pionic current J"; the

>
A(1232) current JA also contributes, but much less than the pair current.

The comparison with data taken at Saclay [35] is shown in Fig. 12, where pionic exchange
currents are incorporated following ref. [36]. Similar results have been obtained in
ref. [37].

The agreement of the theory with data at relatively low q2 is essentially a conseguence
of chiral symmetry and soft pion theorems which are implicit in the q2 + 0 limit of

the exchange current. The interesting feature is the validity of this simplest possible
description of exchange currents exclusively in terms of pions even at large momentum
transfers. It seems then that the short range nuclear forces suppress short distance

corrections to this picture rather efficiently.
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Figure 12: Contributions to the Figure 13: Differential cross section
deuteron electrodisintegration matrix for d(e,e")np close to threshold. Dashed
element [34] from pair, pionic and curve: impulse approximation; solid
A(1232) exchange currents as compared curve: inclusion of pair current;
to the impulse approximation. calculations: [36,37]; data from [35].

3
4.4.2 The He Magnetic Form Factor

Another example of the influence of mesonic exchange currents is the magnetic form
factor of 3He. From our previous discussion, one naturally expects that the dominant

M1 structure of the pair current should show up most pronouncedly in magnetic observ=-
ables. This is demonstrated here for the form factor related to the spin distribution
of nucleons in 3He, measured by high resolution elastic electron scattering at backward

angles.

‘

This form factor is related to the magnétic moment density 3(;) of egs. (4.11, 4.12) by
-y
19X
= 3 7 <
R(?z) —fa' X e <=0 2>, .21

where <ﬁ> is the expectation value taken with the 3He ground state. Theoretical uncer-
tainties in the treatment of the three-nucleon wave function are considerable greater
than in the deuteron case. Nevertheless, there is general agreement that one-body
currents alone evaluated with different types of three-body wave functions (Faddeev,

Variational or '"realistic" phenomenological wave functions) badly fail [38] when
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confronted with data [3%2]. With inclusion [40] of pion exchange currents of the form
discussed previously except for modifications due to nucleon form factors, the result

is shown in Fig. 14, in remarkable agreement with data.

10-3:. 3He -
10"‘_— 7
S} N 0BC .
[Fe3 - \\
oL \
105 N p
[ \ ]
L \ 4
$
. |
0 i § \%\ .
A \
\
[ [
-7 [l 1 1
075 0 2

30
q?[fmY

Figure 14: Magnetic form factor of 3He. The dashed curve is calculated with one-
body currents only. The solid lLine includes the effect of meson
exchange currents [40]; data from [39].

LECTURE &4

5. Pion-Nucleon Scattering

In order to gain more insight into the role of the A(1232), and also for later purposes
in treating pion-nucleus scattering, it is necessary to discuss pion~nucleon scattering,

in some detail,

5.1 7N Scattering Amplitude

> - -
We write the 7N elastic scattering amplitude as f(qia ), where g and q° denote in- and
outgoing center-of-mass (c.m.) momenta. The differential cross section is given by
2
%% = 1/2XKfl , where the summation is over nucleon spins. The partial wave decomposi-

tion of f(;’,a) is
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F9 =2 { zlent,® «£f,, @] F Cse)
-i o (ET\I”%)%[{IQ(E)-ﬂg_(E>JB,C@39), 5.1

where E is the c.m. energy, cos 6 = d.84’, Q. projects onto the possible isospins

1

I
_ 3
teg, 3 °nd 2

+ refers to channels with total angular momentum j = 3 £ 1/2,
respectively. The partial wave f (g = Igj) are related to the phase shifts § by

o o
200,

Ziifx(s) = [,5;(5)—1] , S“ =e . (5.2
A useful quantity to work with is the K matrix,

B 4 +-£7/C‘ _ /<;
Ka=7;'fa“5""s"‘—7‘f7—k« ;7@’3,-;7/(“‘ (5.3

The threshold behaviour is described by scattering lengths (aZI) for s-waves and

scattering volumes (aZI 2j) for p-waves, defined by
,2

a, = tn K,/7%° (5.4)
g=>o

We summarize their experimental. values in table 2 :

sS-wave p-wave

. -1 ; -3
scattering lengths [mTT 1 scattering volumes [m1T 1

a;l 0.173 £ 0.003 a;; | -0.081 t 0.002
ag| -0.101 % 0.004 a3 {-0.030 + 0.002

CES -0.045 + 0.002
asg -0.214 k3 0.002

table 2: Empirical nN s-wave scattering lengths and p-wave scattering volumes,
taken from ref. [41].

Note that there is a strong cancellation in the s-wave isospin-even combination aj+ 2a;
We mention that this combination vanishes in soft pion theories. Note also that the
only strong channel in the p-wave is the one with spin and isospin 3/2, where ajz;
indicates strong attraction which, as we already know, supports the formation of the

A(1232) resonance.

5.2 The Isobar Model of p-wave pN Scattering

To illustrate how the A(1232) enters in the p-wave 7N émpLitude, let us derive fj;

in a model with nucleon, A(1232) and pion-baryon couplings given by eqs. (3.27 - 28).
Furthermore, the simplifying assumption of static nucleons will be made. The K matrix,
still keeping its operator structure in terms of nucleon spins and isospins, is then
derived as follows. [5,30]:



where  is the pion c.m. energy (E = M +w in the static Limit). Eq. (5.5) summarizes
all direct and crossed terms with nucleon and A(1232) intermediate states. Note that

in the K matrix, the poles appear on the real axis at the physical masses of the inter-
mediate particles in the absence of inelasticities. The crossing symmetry is evident

in eq.(5.5) by examining the invariance under the replacements ¢ <« = w, 3 > —'a'

and i <> j, where i and j refer to the pion (cartesian) isospin indices. The energy

denominator related to the A(1232) contains the NA mass difference w, = MA -M=2.1 m“.

Projecting into the P33 channel and neglecting the small crossed A~isobar term propor-

\ -1 .
tional to [wA + w] , we obtain

[4# s ]

1
Ku (w) = é- tan ‘Ezs 4_,,-,,,2. - (5.6)

If the Chew-Low value fv = 2f is used, we find

2
i3s3 L5 - Yo Ch2 /2 m2 ) 9% (w,y /o)
33 Wy —w -< (/2

I...A f:— £ (UA) .7

’

fas(“’) = % e

Here FA is the A » 7N decay width. At resonance (y = wA) where q = 1.64 m_, one obtains
FA = 130 MeV which is not far from the experimental width (FA =115 &£ 5 MeW.

For a quantitative description of the p-wave 7N phase shifts, the static limit is not
accurate enough. Relativistic kinematics has to be treated appropriately, and inclusion
of the N*(1470) in the spin—isospin 1/2 channel is necessary to reproduce the correct
energy dependence of the P,; phase shift. Details are given in ref. [5]. Relativistic
corrections can effectively be absorbed in the wNN and 7NA coupling Hamiltonians,

egs. (3.27 - 28) by multiplying a factor (2M/M + 1-:)1’2 and (2M /M + 8172, respectively
The experimental A » gN width is then obtained with f /41 = 0. 37

The p-wave phase shifts obtained in such a refined isobar model are shown in Fig. 15. We

conclude that a p-wave m-nucleon K matrix with masses of the free nucleon, 4 and N*, is

an appropriate starting point for subsequent discussions of pion-nucleus interactions.
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LECTURE 5

6. Pions in Nuclear Matter

6.1 Introduction: the Pion Propagator

This section .is intended to prepare some of the basic concepts for. the treatment of

the pion-nucleus many-body problem, following ref. [5 ) The framework to start with
is defined by a Hamiltonian

H = HN + HA+ He + Heww * Hewa 5 6.1
where HN’ HA and H, correspond to free nucleons, A(1232) and pions, HTrNN and HTrNA are
the n~nucleon and m"NA-coupling Hamiltonians, eq. (3.27-28).

The pion field in the medium obeys the equation
- =
(O +m2) @) = I (Ft), 6.2)

>
where J5 is the isovector, pseudoscalar pion source function. In the absence of sources,

the free pion field is written in second quantized form as
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. > .

Gy REN e £
3 [ t+ta Ae (6.3)

CZn') %. ‘/2 ?

where = w(a) =1132 + mi and ) denotes isospin. For a pion in a nuclear medium, the

spectrum w(a) will change due to the interactions with the medium.

¢Crt)

The pion propagator D is defined by

i 8, D7) = ol T $#e) $'@F 000>, (.6

where T denotes the time-ordered product, and the vacuum refers to the many-body ground

state. It is convenient to work in momentum space and express D in terms of the free

pion propagator.

~D (v, 7) dx_ ‘:7.X_Do(i':0;t) = [co"— ?z— m:+1‘JJ—1 6.5)

Cz2n)4

D, (w,?) + D, (w,7) TT(w,?)D(w, ?J 6.6)

by Dlw, )

~1

2 s .

[*- ?z_ mZ - TT(w,?)* uf]

This defines the pion self-energy n(m,a) which can be interpreted as the "potential"
experienced by the pion due to the interactions with the medium.

The singularities of D(w,a) determine the spectrum w(a) of excitations carrying the
quantum numbers of the pion. The pionic response function, or pseudoscalar-isovector

current correlation function, is defined by
—'-‘ '\ !
g, R(F#:t) = <o T T3 @) I} (,0) 0> 6.7
In momentum space, the response function is obtained from the pion self-energy by

R(w,7 TT(w,7) + TTw,3) D, (w,3) R(w,7)

]

(6.8)

TT(w,3) +« TTw,3) D(w,3) TT(w,7).

The quantity of primary interest is clearly the pion self-energy H(w,a) which summarizes

all (irreducible) interactions of the pion with the medium.

6.2. Pion-Selfenergy and related guantities

We consider now the pionic response of an infinite medium with equal number of protons
and neutrons. The pion field has energy w and momentum a. Following the discussion of
previous chapters, we expect that the pion field will polarize the medium primarily via

the p-wave 7N interaction by exciting either nucleon-hole or A(1232)-hole states.
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A first order picture of the response is then given by the pion self~energy U(O)

illustrated in Fig. 16. We write it, somewhat schematically, as

”(O)Q;),?) - - Z 1<) | Hyn | NA>1* o Crossed
Nb

éEA,- Eaa -w term
(6.9
Z /<7T[f),H-n-NA/AA>/L " crosced
—Ah én _64."‘" +erm .

Here |Nh> and 1Ah> denote a nucleon-hole or A-hole state carrying pion guantum numbers,

and ¢ are the corresponding single particle energies.

/" //’
P -~
,/
/I’ ,/
I, /’
hole N . hole A ~
” ,”
/’ -~
P> -
a

W,
Figure 16: Lowest order p-wave pion selfenergy through nucleon~hole and A(1232)-
hole excitations.

A 5N Eh

We rewrite eq. (6.9) as

TT(O)CM,?) = —?")?(w,“’) , (6.10)

where the factor 32 is due to the p-wave nature of the interaction. This defines the
lowest order pionic susceptibility ‘ﬁ of the medium. Because of the spin-dependence
of the underlying interaction it is useful to point out [42] the analogy between the
pionic response problem and the one encountered in magnetic materials. In that sense,
£ has a "diamagnetic" part iA which involves high-lying A-hole excitations and a

""‘paramagnetic’ component iN related to low Lying nucleon-hole excitations.

(-]
The explicit form of X = £N + X, for symmetric nuclear matter is as follows:

A

4£2G° (d> n(p"}[j—n(ls‘.«c'f)] , Crossed
me zry? 5.(/?4—?")—6('5")—40-2[ term (611

)CN(w,y) =

where the factor of 4 comes from the spin-isospin sum, n(g) is unity for ISI < kF’ the
Fermi momentum, and zero otherwise, and E(;) = EQ/ZM*, where M* is the nucleon effective
mass. The crossed term is obtained from the direct one by the replacements w > - w

and aA+ - 3} The integral eq. (6.11) can be worked out analytically. The result is

given in ref. [43]. For large pion frequencies w and low nuclear densities p, one finds
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X ’ FE)r e .

©,9) =z 72/ 2M 0o 7‘/.2M*+w]- €6.12)
Note that iN (w,q) »~ 0 as m* -+ =, so that in this limit the pionic response for
symmetric nuclear matter is completely determined by A(1232) excitations. This applieés,
in particutar, for wZ,mﬂ,the kinematic region of pionic atoms and low energy pion-

nucleus scattering. At w = 0 and g < k £ one finds

2 2
X (w=o’7) 7c (73).2/‘4 kF[ 12.1; _,_] 6.13)

e kp

To leading order, fN(w =0, a -+ 0) is then determined by the density of states at the

Fermi surface, ZM*kF/nz.

The A(1232)~hole susceptibility >‘2A is

A‘Z(w ) = 1 f:(‘?z) d%p nw(@ , Crossed
7 3 mz J @ f‘ 7) E@-w terms - (6.14)

In the absence of A-interactions other than those responsible for free A » N decay,
g) = P: _ i
E(w,B) =M, ~M+ L .2 [ (w). (6.15)

At large pion energies (w >> g2/2M), one obtains

x(w’7) i’:fA )[w £ - % , 6.16)

3 mZ -—w =12 Wy + W

where w, = MA - M= 2.1 m_- At w =0, § dominates the pionic susceptibility, but

A N

6.17)

¥, (w=0,9) = £ ﬂhf"ri’ £

still gives a contribution of about 35 % to the total X.

6.3 The Optical Potential and the Diamesic Function

For w 2 L the "pion optics" domain explored by pion elastic scattering, it is con-
venient to work with an optical potential. The lowest order p-wave optical potential

is related to the pion self-energy simply by

(o) (o) 4
Uo',t @, ) '2wTT (w,9) = - 35 ? Co - 6.1
The guantity < is the spin-isospin averaged scattering volume;at threshold (w = m“),
-3
1 = 0,21 m
Co =3 [4-a_,3 +2a,,+2Q3, * an] " 6.19)

in terms of the p-wave scattering volumes, table 2. Recalling from egs. (6.12, 6.16)

that only ?A contributes at w = m, , q + 0, one finds
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2
a fA La (6.20)

Co (w=m,,9=0) =

which is quite close to eq. (6.19).

The response function in this simplest possible model is obtained by iteration of H(O)

Wwith pure one-pion exchange:

R(w,q) = 7T‘°’(w,7) + TTw,4) S A— Rw,q). .20

60"-'?=“'h4"
It is convenient to summarize the medium effects in a diamesic function e(w,q) [5,44]:
O,
ﬁ?(}L,,ii) = l[Zf;:fEZLZZ .
& (w,9)

From egs. (6.21), (6.10) one obtains the standard RPA result

(6.22)

7 X
= o— w . e
E (w,7) 1 oFogEomE ;?). 6.23)
The zeros of ¢ determine the spectrum w(q) of pion-like excitations.
In the optical part of the spectrum, a complex index of refraction n for pions can be
defined by
2
wr-mgy = X(w,9) (6.24)

The pion scattering T-matrix is simply given by T = R/2yw. This T matrix, with eq.
(6.21, 22) represents the multiple scattering expansion with the first order p-wave

optical potential.

The properties of the diamesic function €(w,q) have been discussed in great detail in
the literature. One particularly interesting question is whether the nuclear medium
can act as an amplifier for the pion field at no cost of energy. To find this out, let
us discuss the diamesic function at zero frequency. By examining eq. (6.23) one sees
that e{w = 0, g) can approach values small compared to unity at sufficiently Large q
and sufficiently high density. In fact, as €~+0 for w = 0 a pionic soft mode develops

which indicates a phase transition into a pion condensate [45, 46].

For the simple model described above the particle~hole interaction which drives pionic
modes is entirely given by one-pion exchange. The OPE tensor force is sufficiently
attractive at high momentum transfers (qc ~ 2-3 mw) so that in the absence of repulsive
correlations, the condition €~>0 is actually met at crit;cat densities pc which are
only a fraction of nuclear matter density, o = 0.17 fm . Obviously, the picture is
much oversimplified up to this point, since there seem to be no traces of criticat

pionic phenomena in nucled.
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LECTURE 6

6.4 Spin-l1sospin dependent Particle-Hole Interaction

We proceed now to discuss spin-isospin correlations other than one~pion exchange. For
later purposes, we shall not only consider here pionic modes of excitation, those driven
by spin-tongitudinal interactions of the type 31.3 ZZ-E, but also spin-transverse ones.
The particle-hole interaction in spin-isospin excitatibn channels must be of the general

form (in momentum space, and in direct particle-hole channels):
- A =N

V. (,7)=[W,(,9)53 7§ + W, )@= (G ]T 5. 62

We ignore spin-orbit interactions which are empirically small in isovector channels.

Note that an equivalent formulation of eqg. (6.25) is:
_fr4 2 2.5 LIW,-4iW.] “)}%"-?.
Vo_z_—{[s%f'gwt]o; o;_ + [3 We 3wt 513_(7 1 "2 * (6.26)
Egs. (6.25, 26) have been written down for nucleons; for A°s the appropriate replace-

>+ >4
ments $»8 and 75T have to be made.

The prototype of the longitudinal interaction w2 is one-pion exchange. As in the
previous section,for large energy transfers y, one has to go beyond the static approxi-
mation and include retardation:

2/, 2 2
W, Cw,q) = @ 9

mz  w*-9*-mi+id

s 6.27)

with f replaced by fA if N-~A transitions are involved. This is how far one can go in a
model based on the Hamiltonian, eq. (6.1). In the hierarchy of interactions, W of

eq. (6.27) represents the well established long-range part; the less well estaglished
shorter range contributions will now have to be discussed in some detail. In fact,

much of the presently ongoing debate is about uncertainties at the level of short-range

spin-isospin correlations.

The prototype of the transverse coupling interaction wt is isovector two-pion exchange,

usually in its simplified p-exchange version, following eq. (2.8):

Fo® 9>
W (w,g) = 2F

2 2 2 2
”ﬂP w -? -'mP

(6.28)

We have mentioned previously that the short range behaviour of eq. (6.28) is too
simplistic because of strong cutoff corrections at high momentum transfers [47] which
act differently in spin-spin and tensor channels. In actual calculations, such cutoffs
have been introduced phenomenologically [48,49]. In any case, one expects the prototype
interactions to be accompanied by screening effects at short distances from several
possible sources:

(a) repulsive short-range correlations, or alternatively: effects from quark-gluon
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dynamics at short distances;

(b) many-body vertex corrections, e.g. from exchange terms.

Within the framework of Landau-Migdal theory [50,51], these screening effects are

altogether summarized in terms of a phenomenological repulsive Fermi-liquid interaction,
-

J - w
g’ 6,0, 7,'T, (6.29

2
to be added to the prototype interactions. Actually, g’= g”(w,q) is a function of y and

g as well; if the underlying interactions are short ranged, one expects this dependence

to be smooth.

Additional tensor correlation pieces of the type h’(w,q) 812(q5¥1-?2 have also been
discussed in the literature and found to be small compared to the leading pieces from
m and p exchange [53] but the guestion might have to be reopened in the light of

more complete many-body calculations [54].

The magnitude of g’ will turn out to be of crucial importance in all subsequent
discussions. Note that g’ acts in the same way in longitudinal and transverse channels,
since El-éé = El.& 32.6 + (31 X a).(éz X a). Hence for the static interaction VOT(w=O),
the following ansatz results:

2. = ’ .Fz' 72 . 2z = ’—f—é—?z._
W£(7 )= F " wE EiaE W, G =9 mE PEemE (6.3

7"+ m=

The static lLong-wavelength spin-isospin response is entirely determined by g’, since
-l

-— - 4 = jou 'F
Vop(w=0,9=0) =87 0,0, T, T,, (6.31
and g’ is related, up to a constant, to the Landau-Migdal Fermi liquid parameter Gé.
If this identification is made, g’ already includes exchange terms of the particle-
hole interaction by definition, so that only direct particle~hole matrix elements

should be calculated with VGT.

Information about g’ for nucleons is obtained from investigations of various magnetic
nuclear properties within the Landau-Migdal framework. Commonly accepted values are "
g’ = 0.6 - 0.7 [52,53]. Reaction matrix calculations starting from realistic nucleon-
nucleon interactions come close to such numbers, and they also show that g’ is a
smooth function of momentum transfer q [54]. At a more phenomenological Llevel [51,
similar values of g’ can be obtained in a model where VOT is made of m and p exchange
times a two-body cerrelation function which approximates Brueckner reaction matrix

calculations.

6.5 The Lorentz-Lerenz Correction, and g’ from a Chiral Bag Model point of view

The Lorentz-Lerenz (LL) correction [55] has always been subject to a great deal of

interest as a prototype many-body effect in pion-nucleus interactions. The classical

+) We give values of g* in pionic units, f.e. in units of (f/mn)z.
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LL effect is equivalent to g’ = 1/3; it simply corresponds to the removal of the
§~function piece from vTr of eq. (27) in the presence of a repulsive core [56]. This
effect can be given a simple interpretation [57]) from the point of view of chiral bag
models. In the simplest version of such models, the space inside the bag is occupied
by quarks, but no pions, while the pion field exists outside the bag and joins to the
quark axial current at the boundary such as to make it continuous across the boundary.

The axial current is

-— — - A = KA
Ar = s 3’5%7 OR-7) + £V §" 8(r-R), ( 1,

where the q are quark fields and R is the bag radius. For zero pion mass, the axial

current is conserved, 3-3 = 0, which imples that on the bag boundary,
— - -c-a a_ = A' ==
77)'53_-7'0/5‘an¢ ds (6.33)
for each surface element normat to the bag sphere.

Let us consider now a medium of well separated bags. We wish to rederive the classical
Lorentz-Lorenz correction assuming that the average distance between the bags is large
at the boundary of a given bag differs from the field in free space by the spin-isospin
polarizability of the medium. Therefore, in the space between bags, the pion field
equation v ¢ = 0 is modified in first order according to K14 ! 'X)$¢ = 0, where X is the

pionic susceptibility, eq. (6.10). Consequently the boundary condition, eg. (6.33),

becomes
1 — = A = _ = 44 4
)2.;. 7 7 XSZ_ 7'd5 = (1—x)v¢ 'ds . (6.34)
R > < >
The tocal field correction, 5$¢ « dS = -XV$.dS, has to be averaged over angles which

gives a factor 1/3. Performing the correction to all orders yields the local field at

the bag boundary

s -0

e 41+% (6.35)

where ¢ is the pion field in free space. The factor (1 + X370 s equivalent to a
Landau-Migdal parameter g’ = 1/3, the classical Lorentz-Lorenz correction, obtained
here simply because of the total screening of medium polarization effects from the
baryon interjor due to the confining forces keeping the quarks inside. Eq. (6.35) still
holds if qa components carrying pion quantum numbers are allowed inside the bag, such
as in the Cloudy Bag model (A.W. Thomas [16]), as long as the confining boundary
provides a perfect screening of the baryon interior against the spin-isospin polariza-

tion effects in the many-body medium surrounding this baryon.

The significance of this simple model is that it obviously provides a universal g’ for
both nucleons and A-isobars (after separating trivial spin-isospin factors), thereby
maintaining the underlying SU(4) symmetry of the problem. We regard this g’ as the

"minimal" one, expected to be present in any nuclear medium with non-~overlapping bags.
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Additional contributions to g’ are expected to come from short-range dynamics involving

overlapping bags.

In discussions of the Landau-Migdal parameter gAfor A’s, two different positions are

presently taken:

(a) the universality hypothesis, based in one or another form on the above quark model
considerations and their underlying spin-isospin SU(4) symmetry. In this picture,
g& = gé is assumed;

(b) arguments based on one-boson exchange NA-interactions with phenomenological cutoffs,
but otherwise treating nucleon and A(1232) as elementary particles. In such models,
exchange terms of the short-range NA~interactions tend to cancel direct terms [58],

such that the resulting 9; is substantially smaller than g&.

Both approaches are probably too simple to be realistic. The universality argument may
well hotd for the classical LL correction, g’ = 1/3, which represents one half of the
empirical g’ for nucleons. The question is whether the other half, e.g. from overlapping
bags, follows the same universality rule. On the other hand, the treatment of the short-
distance exchange terms of the Na force as if N and A were elementary particles is
similarly questionable. In a situation like this, we shall strictly follow the Landau-

Migdal framework and treat 9; as phenomenological parameter.

6.6 Summary: Spectrum of Pion~like Excitations in Nuclear Matter

With incorporation of correlations other than one-pion exchange, pion self-energy is
turned into o
T L av 2
1.,.?’)% ’ (6.36)

and the diamesic function becomes
9* $ Ty
56"’:7) =17+ [wz__?z_mz + ?‘ X . (6.37)
"

The presence of a positive (repulsive) g’ raises the critical density Perit for a

pionic instability. We show this in Fig. 17. For g’ = 0.6 ~ 0.7, o is raised beyond

crit
three to five times nuclear matter density, which moves both pion condensates and its

precursors far away from experimentally explorable domains.

To summarize this section, we present in Fig. 18 a schematic picture of the spectrum
wlg) of pionic excitations in nuctear matter determined by the condition ¢(w,q) = 0,
i.e. by the singularities of the pion-nuclear response function R{w,q). The following

domains are of particular interest:

(I) The area of low-energy w-nucleus scattering and pionic atoms. The issue there is
to Llearn about many-body corrections to the first order pion-nucleus optical po~

tential (such as the Lorentz-Lorenz correction and other effects).
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Figure 17: The inverse static Figure 18: Schematic picture of the
diamesic function ™ (y= 0,9). various pionic modes of excitation in
Shown 1is the dependence on the nuclear matter, as explained in the
Landau parameter g’. text.

{II) The region of A(1232) propagation. Here the interest is in the interactions of the
A with surrounding nucleons, resulting in a change of its mass and decay width
(indicated by the broad band associated with the A(1232) branch in Fig. 18).

(1I1) The domain of possible pionic soft-modes embedded into the continuum of low
frequency pion-Like nucleon-hole excitations. For sufficiently large g’, such
soft mode behaviour is essentially ruled out, as mentioned before.

(IV) The low frequency, long wavelength Llimit where according to Fig. 17 one expects
of spin-isospin dependent response. The amount of quenching is determined by
g'w=0,q=0.

LECTURE 7

7. Nuclear Spin-Isospin Response

7.1 Introduction

We wish now to follow the conceptual framework developed for nuclear matter and adapt
it to finite nuclei. At the same time we generalize the scheme to describe spin-isospin

response problems not only of pionic type, but also with spin-transverse operators.

Following previous discussions, we recall that there exist two basic types of spin-iso-

spin excitation mechanisms in nuclei:
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(1) Nucleonic transitions involving the excitation of the A(1232) by spin-isospin flip
at the quark level (see Fig. 19a). In many-body language, these are A-hole excitations.

(2) Nuclear spin-isospin transitions involving spin-flip, AT = 1 nucleon-hole excitations

(see Fig. 19b).

At first sight, these two types of excitations would appear to be rather unrelated,

because of the very different energy scales involved: the scale for A hole excitations
is determined by the A-N mass difference of about 300 MeV, whereas the characteristic
energy of the relevant nucleon-hole states is given by the energy spacing between j,

and j_ spin-orbit partners or their analogues, typically of order 10 MeV.

_L AE ~
A01232) 9 Mev

3°QTMEV N(938) T

e~ ~1fm —4

Figure 19: Illustration of spin-isospin excitation mechanisms
(a) N+ A transition at the quark level;
(b) Isovector-spinflip nucleon-hole excitation

On the other hand, one must keep in mind that N-A transitjons are strong, following
developments in previous chapters, and that the suppression by a large energy deno-
minator can be partly compensated by a large coupling strength. One expects therefore
that there will be a coupling between nucleon-hole and A-hole modes, even at Llow
energy. The degree to which this coupling occurs will depend on the strength of N-A

interactions.

The main problem in discussing the role of the A(1232) in low energy nuclear spin-iso-

spin transitions is to discriminate its effects from standard core polarization induced
by strong tensor correlations [59]. These core polarization mechanisms involve virtual

nuclear excitations at similar energy scale (i.e. several hundred MeV) as A-hole

excitations, hence one expects that both effects have to be discussed at the same level.

7.2 Spin-lsospin Response Function

We shall consider two basic types of spin-isospin operators :

- = A A 4‘?1.‘7 . .
Fpb=2 037 e , (longitudinal) (7.1)
7% AT
= P =G 2 o (transverse) (7.2
Fo =2, (o;x9), T; e :
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The terms "longitudinal” and "transverse" indicate the preferred alignment between spin
and mementum transfer q. For N-A-transitions the replacements g +.§+ and ? +'?+ are to
be made. Excitations driven by FZ are called "pijon-Like" because of their pseudoscalar-
isovector nature. Transverse excitations via Ft are encountered in magnetic isovector-

spin transitions. The (p,n) and (p,p’) reactions involve combinations of both Fy andFt.

It is convenient to introduce the response function (or susceptibility) of the nuclear
many-body system with respect to a perturbing spin-isospin operator F, in close analogy
with developments in section 6.1:
+ 2
o 2 b <ol FT (@) In><n| F(G) o>
( ,7 ;cu) = -

(A)"'E,,"'t:J

F
(7.3)

<o I F DIn><nI FEF) 0>
W + EEA ‘} 7

where lO> and ]n> are the nuclear ground state and excited states, respectively, and
En are the excitation energies. For a finite nucleus, the in~ and outgoing momenta 3
and a" can be different, unlike the situation in nuclear matter.

The strength function is defined by
2

S, (G,@) =% Im R(§,§;0) = g‘écw-e,,)/mrci)/w/.(7_4)

In scattering experiments Llike (e,é!, (p,p”) or (p,n), the differential cross section

is proportional to SF:

d*a >
J0de = SFCq,w). (7.5

In pion or photon scattering, the scattering amplitude is directly proportional to RF'

For example, the pion-nucleus amplitude f is obtained by identifying F =8H =HTTNN +HnNA:

15 <0I8H*@) In><n| SHE) [0>
4w &

f(e,w) =- o-E. +<3 + crossed term, (7.6)
-E,+4
and the total cross section is
4 (6= 7.7
olw) = 7?— Imf o, w). .

7.3 First Order Response

The elementary mode of nuclear polarization is given by particle~hole (either nucleon-
hole or A ~hole) excitations Iph> coupled to the appropriate guantum numbers:

[Nh> = |Cnucleon-hole) 47, AT = 15,

[ah> = 1(sC1232)~hole) §", AT = 1s.
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The lowest order response is described by:

R <olF G )F lo> 7.8

I

F

where

G,

[

GY+ G2,

Here 7.9

N(w) Z INA>[C0 EN'PEA*W'J w+€ E*'WJ] <NAI

is the nucleon-~hole Green’s function. We now choose ¢, and € the single particle

N
energies as eigenvalues of an appropriate Hartree-Fock Hamiltonian HO. The aA-hole

Green’s function is
1 7
Ar) = hS - <Akl
GJ (@) g‘: (A [w SE @ w+ EAh(.w)] , (7.10)

where the A-hole energy is a complex function of the excitation energy w, as in eq.

(6.15), but modified by possible Hartree~Fock type binding effects.

7.4 Response Function in the RPA approximation

The next step beyond single particle response is by introduction of the spin-isospin
particle-hole interaction, see section 6.4. The frequently used RPA approximation

corresponds to iterating the process, Fig. 20, to all orders:

pFPA <ol/FY[G () + G, () VG, (w)+...]JF [0>

£
Go (w)
1- VG, @)

(7.11)

= <o|F" Flo>.

For pion-nucleus scattering, we recall that this is equivalent to summing the multiple

scattering series with the first order optical potential.

Figure 20: Graphical illustration of the response function within RPA
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7.5 Two-Particle-Two-Hole Contributions

The one-particle~one~hole RPA framework described above is not sufficient to provide
a realistic description of the response function at large energy transfers. The 1plh
states couple strongly to the 2p2h continuum. As we shall see, this is the leading

mechanism for pion absorption in nuclei which proceeds mainly on nucleon pairs.

Such corrections provide an additional width and shift to the nucleon-hole or a-hole
states. To illustrate this, let |ph> be a particle-hole state and [as = |2N2h> a
two~nucleon-two-hole continuum state. We denote by V the interaction which couples
these states. Second order perturbation theory leads to a complex shift of the particle

hole energy

5 (7.12)

I<phl VIX>)*

& E,-E, -ié

where the sum over ) 1is understood as an integration over EA’ and Eo is the starting
energy, given essentially by the energy transfer w to the nucleus. If E0 is larger than

the two-nucleon emission threshold, we obtain an energy dependent width

<ph | I';ch lph> = -2 Im JEP;, , (7.13)

This width contributes to the imaginary part of the response function.

Later on we shall discuss the influence of such absorptive mechanisms on the pion-
nucleus cross section. Here we would Llike to give an impression of the relative size
of 2p2h contributions to the response function by examining the transverse structure

function ST(w,q) derived from inclusive inelastic electron scattering.

The differential cross section for single arm (e,e’) measurement with one-photon

exchange is

2%' = KO'M"T {(%)251.(0’7) +[(—g-§-) * MngsT(w’7)}: (.14

. . . 2
where K is a kinematical factor and qi = 2 - g . At backward angles, the transverse
structure function ST can be separated from the longitudinal one, SL. This ST measures
the response due to the interaction with the nuclear current and spin-magnetization.

. > > .
The Latter one involves operators of the type ¢ x g, as discussed before.

Fig. 21 shows ST<m,q) deduced for 56Fe [60]1 and compared with a Fermi gas RPA plus 2p2h
calculation in the Local density approximation [61]. The calculation covers the nucleon-
hole excitation region and shows the substantial influence of 2p2h contributions in

filling the minimum around w =~ 200 MeV. At larger energy transfers, S. rises again

T
towards the A(1232) region.
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Figure 21: Transverse structure function deduced from inelastic electron
scattering on 56Fe [60]. The calculations [61] show the response
in 1p1h RPA, 2p2h contributions, and the effect of meson exchange
currents (MEC).

LECTURE 8

8. Pion-Nucleus Scattering and Related Processes

Pion~nucleus scattering (or: pion optics) divides naturally into the low energy region
0 < T1T % 80 MeV) and the A(1232) resonance region (80 MeV ﬁ'Tn 5 400 MeV), where TTr

is the pion kinetic energy. The characteristic features can be illustrated already by
considering the pion mean free path in nuclear matter, % = (pc)_l, where p is the den-
sity and o the isospin averaged 7N cross section. In the Aresonance region, one obtains
L =~ 0.5 fm; the interaction of a pion with the nucleus is therefore surface dominated.
This is to be seen in contrast with low energy scattering. There the 7N interaction is
weak. The mean free path is several fm, of the order of the nuclear size or larger; the
n-nucleus interaction takes place all over the nuclear volume, and specific many-body

corrections are important.

8.1 Low—-Energy m—Nucleus Elastic Scattering

The starting point of the theory of low energy x—-nucleus interactions is the optical
potential, eq. (6.18). In the local density approximation, p-+p(?), the first order
potential becomes
(o) - - S S
2w Uort (w,7) = -4'"'[bo(w) P(F) = ¢, ) VP(-;«)V] , (8.1

where we have added an s-wave part to the leading p-wave interaction. At threshold,
bo = 1/3Ca; + 2a,).
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However, first order potentials of this type fail badly when confronted with pionic

atom data and low energy cross section. Corrections of higher order in density are
required. The essential ones have already been introduced: those related to pion absorp-
tion, primarily through coupling to the two-particle-two~hole continuum, and the

Lorentz-Lorenz correction.

A consistent description of both pionic atom and low energy scattering can be obtained

with the following potential [55,62] (for spherical N = Z nuclej):

U, = US « UF (8.2)

oft N °f* o,t 2
where
s
2w Uppt (w,7) = - 4r [b, () plr) + B,(w) p*(r) ] 5309
— )+ C(r) =
P ?) = -4n T —= v
2 Uept (0, 7) 1+4mg'[car+Ca] 8.30)
where clr) = c,(w) P('r-) ) CG) = Co(w) PZ(T)J (8.3¢)

and we have omitted for simplicity kinematic corrections of order w/M which are non-

negligible in practical calculations.

A typical calculation is presented in Fig. 22 using the parameters in table 3 [62]
which also reproduce the shifts and widths of pionic atom levels. The main point to
summarize the results is that many-body corrections of order p2 are important. There
is a strong correlation between Re co, which can be interpreted as the dispersive
shift due to absorption effects together with binding effects, and the parameter g’
representing the Lorentz-~Lorenz correction. It is therefore not possible to determine

either one of these parameters directly from pion elastic scattering.

The imaginary part of the optical potential at threshold and at low energy is entirely

determined by pion absorption. The absorption cross section is

Oabs = - Qu/g) <¢q|Im U| ¢q>,

where g is the pion momentum and ¢ are the pion distorted waves evaluated with the
full Uopt

more than 1/2 of the total cross sections at Low energy. Both B0 and co have been

. Given Im By and Im c0 as in table 3, O ps COMES out to be sizeable, typically

evaluated in microscopic models, assuming that pion absorption takes place primarily
on nucleon pairs. The calculations can then be constrained by the measurements of the

wd <> NN process.
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1000 g T i
[ 3 b [m ] - 0.03
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Re B [m_"] 0.0
100E- E o :_,
% ] Im Bo[m“ 1 0.05
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£
£ wof Re ¢ [m;"] 0.04 0.14
c : Im ¢ [m=5] 0.12 0.17
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3 table 3: Best fit values of optical
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8.2 Scattering in the A-Resonance regijon

A characteristic feature of pion-nucleus scattering around TTr = 160 MeV is the strong
diffractive structure of the differential cross section dg/dQ, indicating that a large
part of the scattering at resonance is simply determined by geometry. In fact, because
of the A(1232) resonance in the elementary 7N amplitude, the imaginary part of the first
order (Born) scattering amplitude is very large at these energies. The scattering pro-
cess is qualitatively similar to scattering from a black sphere. By analogy with optics,
diffraction at the edge of the sphere of radius R leads to a characteristic pattern in

do/da, the first minimum appearing roughly at the angle where gR ~ 7.

This picture, though qualitatively correct, is too primitive however when it comes to
a mere guantitative discussion. The precision and abundance of data for some selected
nuclei is sufficient to allow for a partial wave analysis. A prototype nucleus is 160

which we shall now examine in more detail.

We denote by F(8,y) the nlﬁ)scattering amplitude where w is the pion energy in the
m-pucleus c.m. system and do/dQ = [F|2. For targets with zero spin such as 160, we

have the partial wave decomposition

F'(G,w) =Z (27+1) Fy(w) E(use). (8.4)
J=o
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that the A(1232), even in a nuclear environment, can be treated as quasiparticle,

Like the nucleon jtself, specified by an effective mass and width.

The question whether such a picture works, and where are its limits, can be regarded
as one of the primary motivations for investigating pion-nucleus scattering in the 4

region.

The A~hole model combines the basic requirement of a good first order input with a
proper many-body framework for systematic improvements in the treatments of higher
order corrections. The framework is that of the response function developed in
Chapter 7.

The Lowest order response, or optical potential, through A-hole intermediate states
is

20 <F N Upp @IF> = <G'IH L, G Hyy 17> o

where a and E' denote in- and outgoing pion momenta, and G:(w) is the first order
A-hole Green’s function, eq.(7.10). Iteration of GA to all orders with the a-hole

interaction V , , i.e. the A-hole analogue of the sp1n isospin interaction V of

Ah
eq. (6.25), gives the RPA A~hole Green’s function ¢t , which is further mod1f1ed by

coupling of the A-hole states to the two-particle-two-hole continuum etc. to account
for absorptive damping. Once this is done, the pion-nucleus T-matrix is given in the

form (see eq. (7.6)):
2w<?"'|T(w)’7> < ”"’rrNAGl (w)H“_NA[7>
=-4n F(O,w).

The full aA-hole Green’s function is a sum of terms, each characterized by a specific

(8.8)

a-hole angular momentum J™.

The actual calculations [5,64 - 66] all follow essentially the same basic RPA approach
to the response function. They differ in the detailed treatment of p-hole interactions
and in their (either microscopic [5,66] or phenomenological [64]) incorporation of
important couplings to two-nucleon-two-hole continuum states, the ones relevant for

the description df pion absorption channels.

8.4 A-Hole Doorway States

We proceed now to present an example of such a calculation. We point out that in the
+ -

partial wave expansion of the scattering amplitude, eq. (8.4), the J"=0,2,3, ...

etc. coincides with the angular momentum and parity of the A-hole excitation modes.

These modes are shown in Fig. 24 for 160 in terms of the partial cross sections,

o (w) = 4;:- (2T+1) Im Fyw) . (8.9
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The complex F, have been obtained for all partial waves 0 £ J £ 8 in ref. [63]. Except

J
for the 4" = 0 partial wave which supposedly carries a strong portion of non-resonant
s-wave interactions, all partial waves with J £ 5 show a resonant behaviour. However,

there is a massive damping in all partial waves: the inelasticities Ny, defined by

73' = /SJ_I where SJ‘ =7+.’2»€7 F\_’r} (8.5)

q being the m-nucleus c.m. momentum, come down as far as n, = 0.2 for J £ 3 in the

kinetic energy region 100 MeV < TTr < 180 MeV. The total cross section,

4 (e=0, w
=—— (8.6
qfot (w) 7 Im F:;. ’ ), )
and the inelastic cross section for m!'®0 derived from this analysis are presented in
Fig. 23.
gog Lo mbl ]
- TE 160 -
600 | g
L o’rof -
400 - g
L O ]
200 F Oel 1
4 1 i 1
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Figure 23: Total, elastic and reaction cross sections for 7160 scattering
(with Coulomb corrections removed) taken from the analysis of
ref. [63].

About one half of the reaction cross section turns out to be related to pion absorption.
The major part of the other half comes from inelastic scattering processes with knockout

of one or more nucleons (such as quasifree scattering, (m,m'N)).

The large reactive content of the total pion-nucleus cross section is an important
feature. In models where the scattering process is described by the excitation and
subsequent propagation of a A(1232) inside the nucleus, this implies that there must be a

substantial damping width experienced by the A(1232) in a many-body environment.

8.3 The A~Hole Model

The dominance of the A(1232) in the pion-nucleon spin-isospin-3/2 channel suggests
that the basic mode of excitation at pion kinetic energies between 100 - 300 MeV is

the creation of A-hole pairs. This is the asumption behind the A-hole model. It asserts
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The result can be cast into a simple form by identifying each strength distribution

for a given J" with essentially one or two A-hole doorway states [dJ>:

W - E, (@) + <l @)/2

. 8.10)

2w <G| T g > = dZ
J

Each p-~hole mode of given J" has a resonant structure, the position of the maximum

moving upward with increasing J. The width of each mode is determined by several

05
{mb]
n 0
300 :
200} ]
JJT
«h "
L €3t
100 <
;-
‘6 -
K1 +
-

50 100 150 200 250 T;[MeV]

1 1 J

[ ] 1 1 1
50 200 250 300 350 400 wiMeV)

Figure 24: Distributionof A~hole strength as seen in pion-nucleus scattering
from 160. Shown is the result of a microscopic A-hole calculation
[5,66].

factors: (i) the Ao » N decay width, partly quenched by Pauli blocking effects, and
very importantly, (ii) the absorptive channels arising from the coupling of A-hole to
the 2N2h continuum. A special feature of the longitudinal spin-isospin response such
as it is studied in pion-nucleus scattering, is the downward shift in energy of A-hole
peaks in Llower partial waves. This shift comes mainly because of the strong attraction
from non-static one-pion exchange in the (direct) A-hole interaction, or equivalently,
from the coherent multiple scattering of the pion through the nucleus. The downward
shift is partly reduced by the repulsive A-hole interaction proportional to gA, and
further influenced by dispersive shifts from absorptive channels. The latter effect

is one of the reasons why it is not possible to determine g’ directly from A-nucleus
scattering. Nevertheless the A-hole model has been remarkably successful in its

capacity to treat genuine many-body corrections to the propagation of the A(1232)
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inside a nucleus. In fact, the A-hole strength distributions, Fig. 24, are very close
to those obtained from the partial wave analysis [63] except for the J" = 0~ partiat
wave which requires a careful treatment of s-wave 7N interactions not incorporated in

H
nmNA

The downward shift of pA~hole strength in low partial waves observed in g-nucleus
scattering is absent in photonuclear cross sections in the A-region. This is easily
understood because of the dominant transverse yNp coupling proportional to §+ X 3
which suppresses the direct OPE ap~hole interaction, the latter involving longitudinal

e
operators of the type S .q [67].

8.5 The A-Nuclear Effective Potential

One can think of all the above mentioned effects on the A(1232) propagation inside
the nucleus as being described by a complex optical potential for the ao. This poten-
tial will in general be non-local, because of the large distances over which the
excited nuclear many-body system can propagate in space. An equivalent local poten-
tial of the form

¢ > >
\/A(E,?') = WOCE) ;or) + .2€A-$ VLs(‘r) ¢8.11)

has been used successfully [64] in systematically reproduciné elastic pion-nucleus

data together with total absorption cross sections. (In such an approach, the Pauli
blocking terms (Fock terms) are usually calculated explicitly so that their real and

. . . . e .
imaginary parts do not appear in VA). The result obtained for 'zt and 0 is

W, & (-30-<40) Mev, (8.12)

almost independent on pion energy in the range T = 100 - 250 MeV.
T

Non-localities enter, at lLeast partly, through the spin-orbit term, where EA and ZA are
the orbital angular momentum and the spin of the propagating 4(1232). With the parametri-
zation

v ~

_ LS 2 =

A A “r e (8.13)
-2

and y = 0.3 fm  the following value has been obtained for 160:

V‘,’-S = (-10 -<4) MeV. (8.14)

The size of the spin-orbit interaction for aA’s is therefore roughly comparable with
that for nucleons. With inclusion of a spin-orbit term, the fit to differential cross
sections improves systematically, as Fig. 25 shows. In the absence of VLS the required

wo is strongly energy dependent.

The phenomenological A-nuclear potential is sometimes called spreading potential in

order to emphasize the spreading of strength from the A~hole doorway states into other
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inelastic channels. Its significance is that it sets the scale for the size of many-
body effects related to absorption and other reactive channels. A reactive width of
PR ~ 80 MeV for the central partial waves (J £ 3 at T“ = 160 MeV) emphasizes the
importance of the partial A decay into channels other than 4 -~ 7N inside the nucleus.
The imaginary part of wo is actually quite well reproduced by coupling the A-hole
states to the two-nucleon-two-hole continuum in a model constrained by the wd - pn

absorption amplitude [5].

10

10
do/d2 | dord |
[mb/sr) [mb/sr]

10’ 10°

20 60 100
5]

Figure 25: A-hole model calculation of %180 differential cross sections
(Horikawa et al. [64]) showing the influence of the A-nucleus
spin-orbit interaction (solid curve) as compared to V ¢ = 0 and
NO readjusted (dashed curve). (a) T1T = 114 MeV; (b) T7r = 240 MeV.

LECTURE 9

9. Gamow-Teller and Magnetic Isovector Transitions

Substantial experimental progress has been made in the past few years, in the systema-
tic exploration of Gamow-Teller (GT) strength by (p,n) [68] and (3He, t) [69] processes,
and in the investigation of magnetic transitions in a variety of nuclei using high
resolution inelastic electron scattering. Both the GT strength and the magnetic tran-
sitions of Low multipolarity are observed to be systematically guenched as compared to
shell model expectations. Part, but not all of the guenching can be attributed to
standard nuclear core polarization. The interesting question is then to what extent

the unexplained parts of the quenching can be interpreted as signatures of sub-nucleonic

effects, such as polarization involving virtual A excitations.

The (p,n) process takes advantage of the fact that at energies 100 — 200 MeV of the
incoming proton, the spin-isospin dependent part of the nucleon-nucleon interaction

dominates strongly over the purely isospin dependent one, thus favouring GT(ct1) tran-—
sitions over Fermi (1) transitions. The same is true for the (3He,t) reaction.
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9.1 Quenching of Gamow-Teller Transitions

GT transitions are related to the nuclear axial current operator
-’i A - + 3 -2y
-y - -
AT(¥) =g, Z_,"o;-’t:; S¥F-7). 9.1
4=
The total GT strength as seen in (p,n) reactions at forward angles can be compared with

the sum rule [68]

""5_2 {I<nIZ+C¢=o)Io>[z— /<nIZ'C?'=o)Io>Iz}=3(N-Z)
A n

where the intermediate states |n> are purely nucleonic ones. Only ér * contributes to

(9.2)

(p,n) reactions, but the - part is strongly suppressed by the Pauli principle for
nuctei with large neutron excess. The actual strength observed is greatly reduced

as compared to eq. 9.2 . If reexpressed in terms of an effective g:ff, the ratio
(ngf/gA) is obtained as shown in Fig. 26 [68]. The fraction of GT strength observed
as compared to the sum rule is (65 + 5)%. This includes a careful consideration of

background subtractions from energies above the actual GT resonance state [71].

g:ff 2 l
9

x (Free neutron)

04
19

0.2“11.| 42 58 90 208 238
] L1 | | | .

A

Figure 26: Fraction of Gamow-Teller sum rule strength observed in (p,n)
reactions [68].

The systematics of the quenching of the axijal charge 95 in nuclei for a wide range of
mass numbers is a remarkable feature. We note that with g9 = 1.26 for a free neutron,

the effective 9, in nuclei appears to be

g:ff = 4.02 £0.03 . (9.3

Similar conclusions are drawn by a systematic analysis of magnetic moments and beta

decays of mirror nuclei [72].

It is instructive to look back at the GT sum rule from a quark model point of view [73].

We recall that eq. (9.2) is derived for a nucleus consisting of nucleons only. The
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A(1232) can be introduced by writing the sumrule starting at the quark level from an

axial current
O
= Q (9.3)
.y Q=1 @,
where the 0T~ now operate on the individual u and d quarks. The corresponding quark

sum rule 1is
3A 3A
- Z {!<nlz OuTh lo>[* - !<“IQZ % Ta ’°>lz}=35’v'2).(9.4)
" =1 =1

Note that the summation over intermediate states ln> necessarily involves both nucleon
and A intermediate states, since these states just truncate all possible quark spin-
isospin transitions at zero momentum transfer. If the summation over |n> is restricted
to nucleons only, the result is (25/3)(N-Z) on the right hand side of eq. (68). By
comparison with eq. (9.2), this reveals 9, = 5/3, the familiar constituent gquark model
value for 9- We note the reduction of the quark sum rule, with A’s included, over the
nucleon sum rule (excluding A’s) by a factor 9/25. The discussion cannot be apptied to
realistic situations since the model is obviously oversimplied, giving 9, = 5/3
instead of 1.26. Nevertheless, such considerations are useful since they illustrate the
connections betweennucleons and A's in spin-isospin excitation channets. If looked at
from a quark sum rule point of view, the presence of A’s reduces the GT sum .rule,

eq. (9.2), by effectively replacing 9 by ngf = 1, in surprising coincidence with
eq. (9.3).

9.2 Quenching of Isovector Magnetic Spin Transitions

Isovector magnetic spin transitions are related to the nuclear spin current
-y —i
e g I =2 3 3/ o
J,(P) =gy 2. (G xV) T2 53(F-7), 9.5
A

A similar systematics as in GT transitions is found in M1 and M2 transitions, if the
observed strength is reexpressed in terms of an effective spin-g-factor, ggff==ygm
in eq. (9.3) [70]. The quenching factor y is shown in Fig. 27. This is not a model

independent evaluation, since an RPA calculation has been used for reference (no sum

rule of the simple type, eq. (9.2), exists for magnetic transitions).

The quenching of M1 and M2 strength by a factor y2 = 1/2 (except for light nuclei)
raises the question about common guenching mechanisms for both 9, and Iy~ the corres-

ponding operators being obtained from each other just by an isospin rotation.

Before going into a more detailed discussion of spin-isospin quenching mechanisms, it
is interesting to recall the magnetic moments situation. Arima [73] has repeatedly
emphasized that the systematics of renormalization effects observed.in magnetic moments
over a wide range of nuclei can be well accounted for by standard core polarization
and tensor correlations, with only Little room Left for polarization effects involving
the AC1232). In that respect, it is important to note [74 ,75] that there is a
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Figure 27: Quenching factor vy = gﬁff/gm associated with the reduced M1 and M2
strength observed in (e,e’) experiments (from ref. [70]).

substantial difference between magnetic moments and M1 transitions, as far as the
role of the A(1232) is concerned. The effective magnetic dipole operator can be written

as

>

- _ 1 e/t > e f; - 13
Aoy =230+ t+F 9, [&xY,] (9.6)
where the g-factors stand for

g = g + g, 9.7

The contribution of eq. (9.6) to magnetic moments and reduced M1 transition matrix

elements is (e.g. [75]):

. e £
(ug=£+’/z)=2_1{35#+2£32 +:2—£-—+?3P}7 (9.8a)

o p v 4 [28-1 £+1
pg=e- =-1 m-]{g:"—szﬂ)gzﬁ+ﬂ_, %),

(9.8b)

ol : 2+ '2-4'[ 25+1 '/3-_
Glipe 13> =< J[a’?em] Cotrghetg,).

(9.8¢c)
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The point is that contributions from 9 and gp appear with the same sign in diagonal
matrix elements, but with opposite sign in M1 transition matrix elements. Now,
A-hole polarization effects are shown [74,75] to contribute with opposite signs to
9s
whereas they add coherently in B(M1) values. Thus the place to lLook for possible

and gp, which means that A(1232) effects interfere destructively in magnetic moments,
A degrees of freedom is in spin transitions rather than moments.

6.3 Renormalization of Spin-Isospin Operators in Nuclei

We proceed now with a discussion of the possible sources for the quenching of spin-
isospin strength in the low energy, long wavelength limit. Given a repulsive spin-
isospin dependent particle-hole interaction at low momentum transfers (recall eq.
(6.31)), a substantial reduction of spin-isospin strength, as compared with indepen-
dent particle model exceptatipns, is already obtained within standard RPA with nucleons
only. This is seen by recalling from eq. (7.11) that RPA introduces a "quenching

-1
factor”" € ~, with
N
E=1-V..G, 9.9

in the response function. For finite nuclei, this & is a non-Local operator [5]. Its
analogue in nuclear matter, where longitudinal and transverse spin-isospin channels
decouple, is a simple function of w and q which is often referred to as the longitudinal

or transverse diamesic function.

For transitions to specific final states, the screening of the perturbing operator F

by the RPA polarization cloud introduces an effective operator,

E. = 5-1,:' = — . (9.10)
“f 1- \{rt G°

/NA>(NI~.I
G:(‘*’”’) =-2 Z e & -&, 9.11

Since Gg at w = 0 goes Llike

> > >

and VOT(w =0) =g 01°0p T1'T2 with g” > 0, the reduction of F with respect

to F is obvious. Part of this RPA screening can simply be interpret:gfas an effect of
ground state correlations, as shown in Fig. 28. The situation is quite different at
high momentum transfers, especially in longitudinal (3'a TA type) channels. As g
increases, the attraction from the OPE part of VOT sets in, and screening may be
turned into antiscreening, depending on the effects of cutoffs in 7NN vertex form

factors.

In practical calculations, one usually truncates the particle-hole basis (the model
space, or P space). Any polarization effect outside that model space (involving the
residual @ space, P + @ = 1) tends to introduce additional guenching. For example,

Bertsch and Hamamoto [77] find in a perturbative calculation that thére is a strong

mixing of the Gamow-Teller resonance with high-lying 2p2h configurations, so that a
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Figure 28: @Quenching of spin-isospin transitions by RPA type ground state
correlations. Note that by Pauli principle considerations, this
affects M1 transitions but not GT transitions.

large fraction of the GT strength in 90Zr is moved up to the continuum between

10 = 45 MeV, by mechanisms illustrated in Fig. 29. The tensor part of the effective
interaction becomes very important in these mixings, a fact also pointed out in

[73-75] tensor force effects. The Bertsch and Hamamoto result, namely that about half
of the GT strength is moved to the 2p2h continuum, seems to be an overestimate, though.
A careful reanalysis [76] of the GT background places upper Llimits (S 20 %) for the

strength moved.into the continuum between 20 - 40 MeV.

Figure 29: Three out of many diagrams involving mixings of 1plh states with high
Lying 2p2h excitations.

6.4 A—hole induced Screening of Spin-Isospin Operators

In addition to the screening due to conventional nuclear polarization mechanisms, we
expect that virtual A-hole excitations contribute to the quenching factor e. We have
demonstrated the existence of broad A-hole states at excitation energies around 300 MeV.
The question is now to what extent virtual A-hole excitations participate in the
nuclear spin—-isospin response even at low energy. Suppose that all relevant conventional
nucleon degrees of freedom are treated explicitly in a sufficiently large model space
(P-space), such that the remaining @-space contains all polarization effects where
intrinsic N » A transitions are involved. Within RPA reduced to P space, the effective
spin—isospin operators incorporating A~hole screening effects (see Fig. 30) will now

be
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- -1 - - A
F;Ac = &EF, E,=1-VG;, 9.12)
where V = V(Ah) is the A-hole interactjon and Gﬁ is the A~hole Green’s function, eq.
(7.10)

hole

A

W= —— —

Figure 30: Screening of spin-isospin operators by virtual A-hole excitations
within RPA.

It is instructive to discuss EA in the static long-wavelength Limit for nuclear matter.

The A-hole interaction in this limit becomes
D Pt P
/ .
Vian) = ¢! 8,;S, T'To7, 9.13)

where g& is the relevant Landau-Migdal parameter derived from the AN-interaction.
The Gﬁ at w = 0 is proportional to p/(MA—MN), where p is the nuclear density and

MA - MN is the AN mass difference. Carrying out spin-isospin sums, one obtains
E. =41+ ’Ag (9.14)
a da X '

-3
where the density is given in units of nuclear matter density, Po = 0.17 fm , and
the constant A is
- 8 r¥a Lo -2
A= 3 (3-5-) o M (9.15)
A—M

The factor 72/25 is obtained if one assumes the SU(4) scaling between NN and NA spin-
isospin transitions, in which case A ~ 0.6. (In the Chew-Low model, the 72/25 would
be replaced by 4 and A would be increased correspondingly.) The A-induced quenching
factor is seen to be determined by gA in the long wavelength limit. For example, with

,

gA = 0.5 one obtains EA = 1.3 at nuclear matter density, p = Por This quenching
is obviously common to both GT and magnetic spin transitions. That is, the effective

axial vecter coupling constant and isovector spin g~factor become:
ef - a% _ -1
Ga ‘/9A = 3:4#/3" =[1+ Ag. %,] . 9.16)

This A-hele induced screening of spin-isespin transitions has been discussed widely
in the literature [78].

In finite nuclei, €, becomes a nen-Llocal operator, as discussed before, and calculations

are usually performed keeping the full finite range structure of the A~hole interaction,
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including one~pion exchange and p exchange. The non-Local and finite range effects
have two consequences, namely that the A-induced guenching effect depends on the nuclear
mass number (quenching is lLess for light nuclei) and on the angular momentum J of the

state considered (less quenching for large J; see ref. [5]).

The essential parameter governing the A-hole screening is gA. We have already mentioned
that, unlike g° for nucleons, gA is subject to considerable uncertainty. In many-body
schemes which start from a boson exchange model of the NN - NA or NA -+ NA interaction,
exchange terms (Fig. 31b) tend to cancel direct terms (Fig. 31a) of the A-hole inter=-
action [79], the cancellation being most effective in short range pieces, like
exchange. The resulting gA would be small, about 0.3, hence A-hole guenching would not
be substantial. In fact, the cancellation is complete for a zero range interaction.
However, recent estimates [80] indicate that one has to carry on with the question
of exchange terms along the lines of ref. [54] to include the induced interaction
(Fig. 31c¢). In fact, diagrams (b) and (c) (taken to all orders) of Fig. 31 tend to
cancel largely among themselves, leaving Fig. 31(a) as the dominant piece. In any
case, this is just a limited set out of many more diagrams, and one has to raise
the question how far the standard many-body framework with "elementary" nucleons and
A exchange terms can be pushed at short distances. The Landau-Migdal framework avoids
these problems by operating with the direct particle-hole interaction, Fig. 31(a)
only, and assigning a phenomenological gA, including exchange, to this channel. As
mentioned before, we shall strictly maintain this philosophy in the following.
hole
A hole A hole A

(a) (b) (c)

Figure 31: Direct (a) and exchange (b) pieces of the A-hole transition
interaction. The exchange terms are screened by higher order
diagrams of the type (c), the induced interaction in this
channel.
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LECTURE 10

9.5 A specific example: M1 Transition to the 10.2 MeV State in “8Ca

This state, seen first in (e,e’) scattering [81] is by now one of the best studied
examples of quenched M1 strength. According to McGrory and Wildenthal [82], this
state has a relatively simple shell model structure dominated by a fs/zf;}z neutron-
hole configuration. The wave function obtained from a full fp-~shell model calculation

(which defines the model space, or P space) is
~1 A+ -1 L+
[#%Ca; 1t > = 0.83|vfy, fq, 517> + o1 lvf%_-F%,i >, 9.17)

plus additional small admixtures of more complicated configurations. The dominant
neutron-hole component makes this a favourable case for studying renormalization effect:

of the spin g factor. A pure f single particle transition using the unrenor-

7/2+f5/2
malized value for 9 gives B(M1Y+ =12 Hys whereas the experimental value is

(3.9 & 0.3)u§ [81]. Using the wave function, eq. €(9.17), the B(M1)+ comes down to
7.3p§. A major fraction of this quenching comes from 2p-2h ground state correlations

of the type shown in Fig. 28. Such 2p~2h correlations are also incorporated in standard
RPA calculations (Suzuki, Krewald and Speth, 1981), where B(M1)4+ = 8u§ is found. The
additional quenching of about 1u§ is due to more complicated many-particle-many—-hole

effects not present in RPA.

The effect of pionic exchange currents is small, but acts to increase the effective
9, by £ 10 % (Kohno and Sprung [781), This discussion indicates that subtle cancella-
tions are involved (Towner and Khanna [74]). It shows also, however, that it is
difficult to obtain a B(M1) much tess than 7-8u; from ground state correlations and

mesonic exchange currents. Another factor 1.5 - 2 reduction is still required.

Now, if gA is sufficiently large, A-hole screening is a candidate for supplying a good
fraction of the remaining quenching. This is shown in Fig. 32 (Hirting et al. [78];

see also ref. [83]), where the A-hole screening (on top of the McGrory-Wildenthal
pf-shell model space) has been calculated with a A-hole force consisting of 7 and p
exchange plus a Landau-Migdal zero range interaction proportional to gA, the parameter
which has been varied. The full non-local structure of the diamesic function e, as

well as the proper angular momentum projection is kept in this calculation. The Chew-
Low ratio fA/f = 2 has been used here. (For comparison with calculations using the
constituent guark model value fA/f = vV 72725, multiply gA in Fig. 14 by a factor 1.4).
Note that for finite nuclei such as 48Ca, there is a mixing of transverse and longitu-
dinal parts of the A~hole interaction even though the probing M1 field is purely trans-
verse. As a consequence the attraction from OPE reduces somewhat the quenching from

gA alone, an effect observable in the Limit gA = 0.

Next, we wish to consider the M1 form factor of the same 10.2 MeV state in “8Ca, which

has been measured by Steffen et al. [84]. We do this in several steps, starting from
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Figure 32: B(M1)+ value for 48ca(1’). IPM: result for pure “s/zf%;) neutron-
hole configuration. McG/W: result of full fp-shell model calcula-
tion (McGrory and Wildenthat, [82]). A~hole: result including
A-hole screening in addition to McG/W as a function of the A-hole
Landau-Migdal parameter gA.

the McGrory-Wiltdenthal wave function, eq. (9.17), and introducing A-hole screening as
in Fig. 30. The calculation here js comparable to the large space RPA calculation of
Suzuki et al. [78]). They use a similar A-hole interaction, but with inclusion of
exchange terms for 7 and p exchange, which is equivalent to choosing a much reduced

gA (in the Landau Fermi Liquid picture). However, they alsi observe that they have to
add in by hand a 6gA >0 1in order to fit the energy of the 1 state. This GgA compensates
for the reduction of gA obtained by explicit calculation of exchange terms. In our cal-

culation, exchange terms are systematically omitted, for reasons given earlier.

The full fp-shell model space has the advantage that it includes many-particle-many-
hole configurations not present in RPA. But it omits nucleon core polarization effects
outside that model space. We have included such effects at least partly by incorporating
all RPA type nucleon-hole polarization diagrams outside P-space to all orders. The
different steps of the calculation are shown in Fig. 33a. Note that the quenching

effect due to aA-hole and nucleon-hole polarization is g-dependent, reflecting the

g-dependence of the A-hole interaction from 7 and p exchange.

Meson exchange current effects increase the M1 form factor up to the first maximum
by about 10 %. Consequently, for gA = 0.6, there is still room for an additional renor-
malization of the isovector spin-g factor by about 10 %. Fig. 33b shows the result

[85] when all effects are included, together with a ngf

= 0.9 9. - This latter factor
may represent, for example, second order core polarization processes of the type,

Fig. 29, not included within RPA.
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Figure 33: DWBA~calculations of the transverse form factor for “8Ca(e,e’)
(1*; 10.2 MeV). (a) Dashed curve: McGrory-wildenthal fp-shell
model result; dash~dotted curve: effect of A-hole screening,
with QA = 0.6; solid curve: additional effect of RPA~type nucleon-
hole polarization outside the fp-shell; (b) curve obtained from
solid curve of (a) by adding meson exchange currents and using
ggff = 0.9 g (from ref. [851; exp. data: ref. [84]).

In summary, the above example gives indications for A(1232) induced quenching, but has
also evinced the difficulties in discriminating such effects against "standard”
nuclear properties, such as ground state correlations and core polarization. A A-hole
induced reduction of the isovector 9, and 9 by 30 -~ 35 % can be obtained for values
gA = 0.5 - 0.6 of the A-hole Landau-Migdal parameter. We note that while this A-hole
quenching is common to both GT and M1 transitions, ground state correlations act
differently in both cases, namely, they are reduced for GT transitions in neutron rich
nuclei. Meson exchange currents contribute relatively Little to the renormalization of
g, (an increase by less than 10 % for the 48Ca example). The situation here is
different from that in very light nuclei, where pion exchange dominate and A(1232)

effects are relatively small (see Chapter 4).

10. Hyperons in Nuclei

10.1 Strangeness Exchange Reactions

We have discussed mechanisms to create a A(1232) in a nucleus by pion-induced processes
The main motivation for doing so was to study interactions of the A with surrounding
nucleons. In a similar way, kaon beams have been used to implant A and I hyperons in

nuclei in order to investigate their interactions with a nuclear environment.

The A and I have strangeness S = - 1. They are produced in the following strangeness

exchange reactions on nucleons:
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- (10.1)
K+N > A+m,
K+N = 3+, (10.2)

The (K_,ﬂ_) reaction on nuclei has been used extensively to form A and £ hypernuclei
[87 - 89].

Consider first the A production process, eq. (10.1). A particularly interesting feature
of the kinematics is that for a K momentum of 500 MeV/c, the recociling A is produced
with zero momentum (recoilless production, see table 4), if the pion is detected under

forward angles. This has important consequences for A hypernucleus produced under these

K~ momentum [Mev/c] 0 100 300 500 700 900
A momentum [Mev/c] 250 190 70 0 40 80

table 4: Recoil momentum in K n -+ n A with pions detected
at angle 0°.

kinematical conditions. It means that the neutron in a given shell model orbit will be

replaced preferentially by a A carrying the same orbital quantum numbers.

10.2 Spectroscopy of A-Hypernuclei

We consider here the A-hypernuclear excitation spectra in 1ic and 1io obtained with the
(K ,m ) reaction and shown in Fig. 34. The spectra are plotted as a functionof the mass
difference MHY - MA of the hypernucleus and the target nucleus. Also plotted is the
binding energy BA’ and the A-nuetron mass difference js indicated for orientation.

The interesting point to note is first that the spectrum looks very much like one which
would follow from a simple shell model picture: the neutron is removed from the p-shell
of carbon and oxigen and replaced by a A which occupies any one of the p~ or s-shell
orbits available to it in an assumed A-nucleus average potential. Now, in !2C, only the
P32 neutron shell is occupied, whereas in 180, a neutron in either P3sp ©OF Pyyp orbit
can be replaced by a A. A comparison of 1i0 and liC as in Fig. 34 therefore permits to
extract not only the depth of the average A-nucleus potential, but also the strength of
the A-nucleus spin-orbit interaction. A detailed phenomenological analysis [90] yields

the following results: if the A-nucleus single particle potential is written as

_ o) l-s d 9(7) ,e &
Vier) = W, Y Vo 2 ) (10.3)
then
' W, = (-32%2)Mev, (10.4)

VES = (422) MeV fm™, (10.5)
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Thus the central potential depth for a A is about half as deep as that of a nucleon,
while the A spin-orbit coupling is only about 1/4 or less compared to the spin-orbit

force of nucleons in nuclei.

My -Ma
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Figure 34: Spectra obtained from the (K ,n ) reaction [88] on 12¢ and 160 at
a kaon momentum of 715 MeV.

10.3 The Hyperon-Nucleon Spin-Qrbit Interaction

The size of the spin-orbit force is evidently an interesting piece of information,
since it reflects properties of the hyperon-nucleon effective interaction at relatively
short distances. Several attempts have been made to relate the results, eqgs. (10.4-5),

to properties of the underlying two-body interaction.

One such approach starts from a relativistic boson exchange model and relates the
central potential depth to the spin-orbit force in a Dirac-Hartree-Fock calculation
[91,92]. With constraints set by the potential well depth and spin-orbit splitting

in nuclei, and with SU(3) applied to hyperon-nucleon interactions, one finds values of

wo and Vlc')S in good agreement with the empirical values.

The smallness of the AN spin-orbit force comes as a natural result also in simple quark
rearrangement plus gluon exchange models [93]. The A is a combination of u, d and s
quark in such a way that (ud) couple to a spin and isospin singlet. Therefore the
spin-orbit interaction due to exchange of u or d quarks vanishes for the diagonal

AN > AN interaction where no s quark is exchanged. The contribution from AN - NA
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exchange processes is small.

However, the same naive quark model predicts a value 4/3 for ratio of ZIN to NN spin-
orbit forces in nuclei [93]. In contrast, boson exchange models generally suggest

a small Z-nucleus spin-orbit coupling [94,95]. Experimental data [89] on I~hypernuclei
can be interpreted assuming an average I-nucleus potential depth of about - 30 MeV.
Unfortunately, the data seem so far not to be sufficiently accurate to deduce an
unambgibuous I-nucleus spin-orbit potential; nevertheless there are claims [96] in

favour of an interpretation with a large VLs for &'s.

Whether this apparent discrepancy between meson exchange and simple guark models leads
us to the Limits of the boson exchange phenomenology is a question of vital importance
In any case, one would wish that I-hypernuclear data become available in the future at

a level of accuracy such that this problem can be sorted out.
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