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Chapter 1

Introduction

The maximum entropy of a gravitational region is proportional to its surface area; this is encap-

sulated in the Bekenstein bound. The Bekenstein-Hawking entropy [1] of a black hole is given

by A
4GN

, where A represents the area of the black hole horizon. The holographic principle ([2],

[3]) encapsulates this idea, suggesting that a volume in the real world can be described in the

lower-dimensional space that lives on its boundary, encoding all the necessary degrees of freedom

(information) to reconstruct a phenomenon within the volume. AdS/CFT correspondence is a real-

ization of this idea, first proposed by Juan Maldacena in 1997 [4]. There are several comprehensive

reviews on this correspondence ([5], [6], [7], [8]). AdS/CFT correspondence originally describes a

duality between N = 4 SU(N) gauge theory in four dimensions and type IIB superstring theory

on the background of AdS5× S5. This framework extends to more general asymptotically AdS

spacetimes, where (d + 1)-dimensional asymptotic AdSd+1 gravitational theory is holographically

dual to a d-dimensional Conformal Field Theory (CFTd) living on the boundary of the AdSd+1

space. This correspondence represents a strong/weak duality, where the field theory is strongly

coupled, while the dual gravitational theory is weakly coupled. The generalization of AdS/CFT

correspondence is known as the gauge/gravity duality.

AdS/CFT correspondence has numerous applications, including strongly coupled condensed

matter systems ([9], [10], [11],[12]), black-hole information paradox, and quark confinement in

QCD. It plays a crucial role in computing quantities in strongly coupled quantum field theories,

where direct computations are intractable. However, the dual gravitational theory simplifies the

problem due to its weak coupling. Conversely, the field theory provides valuable insights into the

quantum gravity.

In recent years, extensive studies have focused on resolving the black hole information paradox

([13]) using the island prescription ([14], [15], [16]), which involves Quantum Extremal Surfaces

(QES). This approach relies primarily on a quantum information tool: entanglement entropy. Fur-
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thermore, quantum information theory provides valuable insights into quantum gravity within the

framework of gauge/gravity correspondence. Several powerful tools have emerged from quantum

information theory, including entanglement, mutual information, and quantum complexity. No-

tably, entanglement entropy provides unique insights, including in quantum gravity, the black hole

information paradox, and probing cosmological singularities.

For ground states and low-lying excited states in field theory, the entanglement entropy of

a subregion is proportional to the area of its boundary. Similarly, the Bekenstein entropy of a

black hole is proportional to the area of its gravitational horizon. This realization led to the Ryu-

Takayanagi conjecture regarding the holographic entanglement entropy of boundary subregions.

According to this conjecture, the entanglement entropy of a boundary subregion is obtained holo-

graphically by minimizing the area of a codimension-two surface in the bulk, homologous to the

boundary subregion. The holographic entanglement entropy for a boundary subregion A is given by

the Ryu-Takayanagi formula [17]: SA = min∂γ=∂A [Area(γ)4GN
], where γ is the codimension-two bulk

surface that minimizes the area. For time-dependent geometries, the RT/HRT prescription [18] is

used to define holographic entanglement entropy, which involves determining a codimension-two

extremal surface in the bulk anchored to the boundary of subregion A. This surface, known as

the RT/HRT surface, extends into the time direction as well. Holographic entanglement entropies

satisfy several important properties, such as subadditivity and strong subadditivity. The RT/HRT

surface also serves as a tool to probe the bulk geometry and its interior ([19], [20]), as well as cos-

mological singularities. A notable example of a simple cosmological geometry is the AdS Kasner, a

time-dependent deformation of AdS, where the dual field theory resides on a time-dependent space

with a time-dependent gauge coupling. Time-dependent AdS deformations exhibiting cosmological

singularities have been studied extensively in ([21], [22], [23], [24]).

Holographic entanglement entropy can be used to probe the interior of a black hole. However, it

has been noted that entanglement does not encode the full spacetime, as the entanglement surface

cannot probe regions far beyond the black hole horizon [20]. From the perspective of the bound-

ary theory, entanglement entropy fails to capture the complete evolution of a quantum system

undergoing thermalization. In contrast, complexity continues to grow even after thermalization.

Complexity quantifies how difficult a task is to accomplish, defined as the minimum number of

steps required to obtain the target state from a reference state by using a set of unitary operations.

Several holographic proposals for defining complexity have been put forward, with promi-

nent conjectures including complexity=volume ([25], [26]), complexity=action ([27], [28]), com-

plexity=spacetime volume [29], and complexity=anything ([30], [31]). For an eternal black hole

dual to the thermofield double (TFD) state, complexity is proportional to the spatial volume of

the Einstein-Rosen bridge (wormhole). Moreover, complexity grows linearly with time, following

13



the relation dC
dt ∼ S T , where S is the entropy and T is the black hole’s temperature.

In this thesis, we employ the tools of quantum extremal surfaces (QES) and holographic vol-

ume complexity to investigate cosmologies exhibiting Big-Crunch singularities, all of which can

be represented as two-dimensional models. The primary objective of these investigations is to

gain insights into the behavior of these singular spacetimes through a systematic analysis of QES

and holographic complexity. Additionally, we explore the structure of timelike entanglement by

treating the time evolution operator as a density operator and investigating its connection with

pseudo-entropy, providing deeper insights into quantum systems and their entanglement properties.

In Chapter 1, we provide a comprehensive overview of the AdS/CFT correspondence and entan-

glement entropy, with a focus on holographic entanglement entropy and quantum extremal surfaces.

In Section 1.2.4 , we employ the RT/HRT surfaces to investigate AdS Kasner cosmologies for a

strip-shaped boundary subregion. In Section 1.3, we review the concept of complexity, discussing

various proposals for defining holographic complexity.

In Chapter 2, we analyze quantum extremal surfaces that are spacelike-separated from the

observer’s location in AdS Kasner cosmologies by introducing a spatial regulator. This approach

establishes a relationship between the observer’s time on the holographic boundary and the cor-

responding QES location in time. Additionally, we analyze a potential island-like solution by

examining its boundary. To this end, we first derive the extremization equations from the gener-

alized entropy and study their behavior in the vicinity of the proposed island boundary. However,

a simultaneous solution to these equations is not achieved, indicating that the potential island

solution is inconsistent. We extend our analysis to more general singularities with holographic

interpretations, identifying similar behavior. Finally, we explore certain families of null Kasner

Big-Crunch singularities, which can reach the null singularity.

In Chapter 3, we investigate the holographic volume complexity for several classes of holo-

graphic cosmologies with Kasner-like singularities, including AdS Kasner, hyperscaling-violating

geometries, and Lifshitz geometries. Our analysis involves an extensive numerical study of the

extremization equations derived from the volume functional, offering detailed insights into the be-

havior of the complexity surface. The results reveal that the complexity surface bends away from

the singularity, undergoing a transition from spacelike near the boundary to lightlike in the interior.

Notably, as the boundary anchoring time slice approaches the singularity, this transition becomes

increasingly abrupt, with the spacelike region diminishing. In the vicinity of the singularity, the

complexity approaches vanishingly small values, suggesting a dual Kasner state of minimal complex-

ity and providing evidence for the effective degrees of freedom associated with the near-singularity

region. For AdS and isotropic Lifshitz Kasner cosmologies, holographic complexity exhibits a linear

scaling behavior with the anchoring time slice, t0. In contrast, hyperscaling-violating geometries

demonstrate a nonlinear dependence of holographic complexity on t0, highlighting distinct scaling
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properties across these families. Additionally, we refine prior investigations of extremal surfaces for

holographic entanglement entropy, showing that their behavior in the infrared (IR) limit closely

resembles the patterns observed in complexity.

In Chapter 4, we explore various aspects of time entanglement and its entanglement structure,

treating the time evolution operator as a density operator. This approach has a close relation to the

transition matrix and pseudo-entropy. We analyze several examples of simple quantum systems to

investigate the time entanglement structure emerging from the time evolution operator. While the

corresponding entanglement entropy is generally complex, specific subfamilies exhibit real values.

Notably, time entanglement aligns with the finite-temperature entanglement entropy evaluated at

an imaginary temperature, with β → it, for systems characterized by time-independent interac-

tions. Furthermore, we examine the entanglement structure of the time evolution operator when

projected onto an initial state. In this case, the operator is precisely equivalent to the transition

matrix, where the final state is obtained by time-evolving the initial state. The corresponding

entanglement entropy in this context is identified as the pseudo-entropy. Finally, we extend our

analysis to quantum systems with time-dependent interactions, which introduce a more intricate

time entanglement structure.

Overall, this thesis leverages QES and holographic complexity to provide novel insights into

cosmologies with Big-Crunch singularities, alongside a related study on the time evolution operator

and pseudo-entropy in quantum systems. These investigations illuminate the interplay between

geometry, entanglement, and complexity within holographic frameworks.

1.1 AdS/CFT correspondence

In this section, we first review the original Maldacena’s derivation of AdS/CFT. We then introduce

AdS space in different coordinate systems. Finally, we discuss several key entries in the AdS/CFT

dictionary.

1.1.1 Maldacena’s derivation of AdS/CFT correspondence

N = 4, SU(N) gauge theory in D = 4 is dual to IIB superstring theory on the background AdS5

× S5.

For the derivation of the conjecture above, we consider N coincident D3-branes in type IIB su-

perstring theory. For gsN ≪ 1, the D3-branes live in 10-dimensions. For this system, open strings

end on D3-branes, which describe the dynamics of D3-branes and closed strings propagate in the

bulk. At low-energies, we only consider massless string states described by low-energy effective

action. The massless states of open string comprise N = 4 vector multiplet in four dimensions, and

their low-energy effective action is described by N = 4, U(N) super-Yang-Mills in four dimensions.
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The closed string states comprise of both massless states, represented by graviton supermultiplet,

and massive states in ten dimensions. At low-energies, massive states become irrelevant, and their

low-energy effective action is then described by IIB supergravity theory in ten dimensional flat

space. Moreover, the interaction between the brane and the bulk vanishes, which leads to two

decoupled theories: N = 4, U(N) super-Yang-Mills in four dimensions, and IIB supergravity in

ten dimensions.

We now consider a different regime gsN ≫ 1. Now the D3-branes gravitate and source an

extremal black 3-brane supergravity solution:

ds2 = f(r)−
1
2 ηµνdx

µdxν + f(r)
1
2 (dr2 + r2dΩ2

5) , f(r) = 1 + 4πgsN
l4s
r4

F5 = (1 + ∗) dtdx1dx2dx3df
−1 , (1.1)

the notation xµ, where µ = 0, 1, 2, 3, denotes coordinates along the D3-brane world-volume. dΩ5 is

the metric on a unit five sphere, and F5 is a 5-form self-dual field strength, which has flux on the S5.

There are two types of low energy excitations from the point of view of an observer at infinity.

First one is any finite energy excitation near the horizon which would appear strongly redshifted to

the asymptotic observer, and the second one is the massless excitation in the bulk. Both excitations

decouple in the low-energy limit. The massless excitations propagating in the asymptotic region

of ( 1.1) decouple from the near horizon region because the absorption scattering cross-section

vanishes as σ ∼ ω3R8, where ω is the energy of an excitation. The redshifted excitations near

the horizon can not escape to the asymptotic region due to presence of gravitational potential. So

we have two decoupled sectors: type IIB superstring theory on the near horizon geometry and

a free supergravity theory ( type IIB) in ten-dimensional flat space. We now focus on the near

horizon geometry, we see that r → 0 near the horizon. In this limit, f(r) can be approximated as

f(r) ≃ R4

r4
, where R4 = 4πgsN l4s . Now the background ( 1.1) in the near-horizon limit becomes

ds2 =
r2

R2
ηµνdx

µdxν +
R2

r2
dr2 +R2dΩ2

5 . (1.2)

This reveals that the near-horizon geometry is AdS5 × S5. The first term represents the metric

for the AdS5 geometry in Poincaré coordinates, with r = R2

z , while the last term corresponds to

the metric on the five-sphere (S5). The low-energy behavior of D3-branes reveals two decoupled

systems in both regimes: gsN ≪ 1 and gsN ≫ 1. In both cases, supergravity in ten-dimensional

flat space emerges as a common decoupled system. The other decoupled systems are N = 4 U(N)

super-Yang-Mills gauge theory and superstring theory on AdS5×S5. These systems remain decou-

pled and well-defined for any value of the coupling gsN in the low-energy limit. This establishes the

equivalence between N = 4 U(N) super-Yang-Mills theory in four dimensions and type IIB super-

string theory on the AdS5 × S5 background. Furthermore, U(N) gauge theory can be decomposed
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into SU(N) gauge theory and a U(1) vector multiplet, with some identification ZN . The SU(N)

component corresponds to the AdS theory in the bulk, while the U(1) degrees of freedom represent

zero modes that reside at the AdS boundary. Therefore, we conclude that N = 4 SU(N) super-

Yang-Mills theory in four dimensions is equivalent to type IIB superstring theory on AdS5 × S5.

We now look for the validity of a classical gravity description within AdS/CFT correspondence.

Stringy corrections should be suppressed for the gravity description. For this purpose, we rewrite

the curvature scale R in terms of string length ls as R = (4πgsN)
1
4 ls, and from D3-branes descrip-

tion we have g2YM = 4πgs. By combining these two we have R
ls

= (g2YMN)
1
4 =λ

1
4 , where λ = g2YMN

is ’t Hooft coupling. Stringy effects are suppressed for R
ls

≫ 1, which implies λ ≫ 1. Therefore,

the gauge theory must be strongly coupled in order to have a dual gravitational description. We

now write the ten dimensional Newton’s constant in terms of string coupling gs as GN = l8p ∼ g2s l
8
s .

This combined with R = (4πgsN)
1
4 ls, leads R

lp
∼ N

1
4 . To suppress any quantum corrections to the

geometry, we must have R
lp

≫ 1, which implies N ≫ 1. The large N limit (N → ∞) corresponds to

’t Hooft limit with a fixed value of λ, where the dominant contribution comes from planar Feynman

diagrams. Therefore, the classical gravity description is reliable in the regime λ ≫ 1 and N ≫ 1.

However, it is believed that AdS/CFT correspondence holds even at finite λ and N.

1.1.2 AdS space

AdSd+1 can be considered as a hyperboloid in the embedding space R2,d. The hyperboloid is given

by

−X2
0 −X2

d+1 +X2
1 +X2

2 + ...+X2
d = −R2 , (1.3)

where X0, X1...Xd+1 are embedding coordinates of the hyperboloid. This geometry ( 1.3) is invari-

ant under SO(d,2) group. The metric reads as:

ds2 = −dX2
0 − dX2

d+1 + dX2
1 + dX2

2 + ...+ dX2
d . (1.4)

One can choose the embedding coordinates in terms of the intrinsic coordinates (τ, ρ,Ωi) as follows:

X0 = R cos τ cosh ρ ; Xd+1 = R sin τ cosh ρ

Xi = RΩi sinh ρ , (1.5)

where the index i runs from 1 to d, and
∑

i Ω2
i = 1. Substituting these embedding coordinates in

( 1.4), we obtain an induced metric on the hyperboloid as

ds2d+1 = R2
(
− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2

d−1

)
. (1.6)

Here, the coordinate τ lies on a circle S1, i.e, 0 ≤ τ < 2π. To get the causal structure of AdS, we

unwrap the circle and allow −∞ < τ < ∞. The metric ( 1.6) now represents AdS space in global
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coordinates, and ρ = ∞ represents the boundary of AdS. We may choose the Poincare coordinates

as

X0 =
1

2z

(
R2 + z2 + x2

)
Xi =

R

z
xi , i = 1, 2, ..., (d− 1)

Xd =
1

2z

(
−R2 + z2 + x2

)
Xd+1 =

R

z
t . (1.7)

Subsequently, we obtain AdS metric in Poincare coordinates as

ds2d+1 =
R2

z2
(
dz2 − dt2 + dx21 + ...+ dx2d−1

)
, (1.8)

where z = 0 represents the boundary of AdS in poincare patch. This patch only covers a half of

the full AdS space. The metric solution ( 1.8) satisfies the following equation:

Rµν −
R

2
gµν = −Λgµν . (1.9)

We compute the Ricci tensor as Rµν = − d
R2 gµν . This implies that Λ = −d(d−1)

2R2 . Therefore, AdS

is the solution of Einstein’s equation of motion with negative constant curvature and negative

cosmological constant (Λ).

1.1.3 Conformal Field Theory (CFT)

Quantum field theories typically exhibit Poincare symmetry, which includes translation and Lorentz

transformation. However, some field theories possess additional symmetries, such as N = 4 super

Yang-Mills theory in four dimensions, exhibiting scale invariance. A field theory which is invariant

under conformal transformations is known as conformal field theory (CFT). Conformal transforma-

tions include translation, Lorentz transformation, scaling, and special conformal transformation.

Here, we discuss conformal transformations in higher dimensions, i.e., d > 2.

The metric remains invariant up to a scale factor under a conformal transformation xµ → x′µ,

the transformed metric is given as:

g′µν(x′) =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x) = Ω(x)gµν(x) . (1.10)

For a Minkowski space with d > 2, the metric ds2 = ηµνdx
µdxν transforms under the conformal

transformation xµ → xµ + ϵµ(x) as follows:

ds2 → ds2 + (∂µϵν + ∂νϵµ)dxµdxν . (1.11)
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For the metric ds2 to be scale invariant, the following condition must hold

∂µϵν + ∂νϵµ =
2

d
(∂ρϵ

ρ)ηµν ; Ω(x) = 1 +
2

d
(∂ρϵ

ρ) . (1.12)

The infinitesimal conformal transformations satisfying ( 1.12) are as follows:

xµ → xµ + aµ : Translation

xµ → xµ + Λµνx
ν : Lorentz transformation

xµ → λxµ : Scaling

xµ → xµ + bµx2 − 2(b · x)xµ : Special Conformal Transformation

The finite special conformal transformation is given as x → x′ = x+bx2

1+2b·x+b2x2 . The total number

of independent parameters is given by (d+2)(d+1)
2 , and the conformal group is SO(d,2). The gen-

erators for the conformal transformations (translation, lorentz transformation, scaling, and special

conformal transformation, respectively) are given as:

Pµ = −i∂µ
Mµν = i(xµ∂ν − xν∂µ)

D = −ixµ∂µ
Kµ = i(x2∂µ − 2xµx

ν∂ν) . (1.13)

A quasi-primary operator O of scaling dimension ∆ transforms under the conformal transformation

x→ x′ as follows:

O′(x′) =

∣∣∣∣ ∂x∂x′
∣∣∣∣∆d O(x) . (1.14)

In two dimensions, the conformal group is infinite dimensional, and each holomorphic transforma-

tion: z → f(z) is a conformal transformation.

1.1.4 AdS/CFT dictionary

Several entries in the AdS/CFT dictionary have been established over the years. We will discuss

some of the key entries in the dictionary.

Global symmetries

AdS5 has SO(4,2) global symmetry. This symmetry is manifest when we consider the geometry

in an embedding space, and the five-sphere has SO(6) rotational symmetry group. Therefore, the

isometry group of AdS5×S5 is SO(4,2) × SO(6). In the dual field theory, we have the SO(2,4) con-

formal group which corresponds to the isometry of AdS5. Additionally, there are six scalars which

transform in the fundamental representation of SO(6). This group represents the R-symmetry

of super-Yang-Mills theory, and it corresponds to the isometry group of five-sphere. The isometry

19



group SO(4,2) × SO(6) is the bosonic subgroup of the superconformal group for SYM theory. More

generally, AdSd+1 possesses an SO(d,2) isometry group, which coincides with the global conformal

group SO(d,2) of the CFTd.

Parameters

There are parameters g2YM and λ on the field theory side. Which are related to the parameters on

the gravity side as follows: g2YM = 4πgs and λ = R4

α′2 , where α′ = l2s .

IR/UV connection

To illustrate the IR/UV connection, consider Poincare patch for AdS. The AdS boundary is situ-

ated at z = 0, and z = ∞ represents the deep bulk of AdS. These correspond to the IR and UV

cutoffs of AdS gravity, respectively. We now consider a geodesic anchoring at the boundary of an

interval of length l in conformal field theory (CFT), the geodesic extends up to the point z = z∗(l)

in the bulk, and returns to the boundary. It turns out that z∗ ∼ l. Therefore, for a UV cutoff l = ϵ

(with the energy cutoff EYM ∼ 1/z), z∗ ∼ ϵ. This suggests that the UV regime of CFT corresponds

to the IR regime in AdS, and the IR cutoff l → ∞ corresponds to UV regime of AdS. Thus, moving

from boundary to the deep bulk (z = 0 to z = ∞) , represents transitioning from UV to IR regime

in the dual field theory (CFT). Therefore, the extra-dimension z can be interpreted as representing

the energy scale for the boundary theory.

A scalar field in AdS

We consider a free massive scalar field ϕ on AdS background in poincare corrdinates, the action

for the scalar field is given as:

Smatter = −1

2

∫
dd+1x

√
−g

(
∂Mϕ∂

Mϕ+m2ϕ2
)
. (1.15)

The equation of motion for ϕ is given as:

1√
−g

∂M
(√

−ggMN∂Nϕ
)
−m2ϕ = 0 . (1.16)

By utilising the various metric components, this simplifies to

zd+1∂z

(
z1−d∂zϕ

)
+ z2∂µ∂

µϕ−m2R2ϕ = 0 . (1.17)

The scalar field ϕ is the function of z and xµ : ϕ = ϕ(z, xµ). The Poincare metric has the translation

invariance along xµ directions, therefore, we can write an ansatz for the scalar field ϕ(z, xµ) as:

ϕ(z, xµ) =

∫
ddK

(2π)d
eiK.xϕK(z) , (1.18)

where Kµ = (ω, k⃗), and K2 = −ω2 + k⃗2 . By implementing ( 1.18) into ( 1.17), we obtain

zd+1∂z

(
z1−d∂zϕK

)
− z2K2ϕK −m2R2ϕK = 0 . (1.19)
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We now analyse this equation near the boundary z → 0, the term involving K2 vanishes. Therefore,

eq( 1.19) simplifies to

zd+1∂z

(
z1−d∂zϕK

)
−m2R2ϕK = 0 . (1.20)

We now consider the following ansatz for ϕK(z) as: ϕK(z) ∼ zβ. Eq( 1.20) along with this leads

to:

β2 − βd−m2 = 0 . (1.21)

The solution of the above quadratic equation is:

β =
d±

√
d2 + 4m2R2

2
=
d

2
± ν , (1.22)

where ν =
√

d2

4 +m2R2. Let us consider ∆ = d
2 + ν, then the solution for ϕK(z) is given as:

ϕK(z) = A(K) zd−∆ +B(K) z∆ . (1.23)

This combined with ( 1.18) gives the asymptotic behaviour of ϕ as:

ϕ(z, xµ) = A(x) zd−∆ +B(x) z∆ . (1.24)

For ν ≥ 0, ∆ ≥ d
2 is real. This constraint gives m2R2 > −d2

4 , this condition is known as BF bound.

(d − ∆) is negative for m2 > 0, this implies that the field ϕ(z, xµ) diverges as z → 0 near the

boundary.

We would now like to identify normalizable and non-normalizable modes, remember the inner

product of two scalar fields which satisfy Klein-Gordon equation, is defined as

(ϕ1, ϕ2) = −i
∫
Σt

dzddx
√
−ggtt (ϕ∗1∂tϕ2 − ϕ2∂tϕ

∗
1) . (1.25)

We focus on near the boundary region z → 0, considering the following ansatz ϕK(z) ∼ zβ near

the boundary. We now evaluate
∫
ddx

√
−ggtt (ϕ∗∂tϕ− ϕ∂tϕ

∗) ∼ z1−d+2β. Then
∫
dz z1−d+2β ∼

z2−d+2β. In order to have finite norm we must have 2− d+ 2β > 0. Let us first consider the mode

B(x) z∆, we note that β = ∆ for this mode. Then 2 − d + 2β = 2(1 + ν), this is always positive

since ν ≥ 0. Therefore, the mode B(x) z∆ is always normalizable. We now consider the another

mode A(x) zd−∆, for this mode β = d − ∆, Now 2 − d + 2β = 2(1 − ν), therefore, ν ≤ 1 for this

mode to be normalizable. This means that for −d2

4 < m2R2 < −d2

4 + 1, the mode is normalizable,

infact both modes are normalizable in this range of m2R2. Additionally, for m2R2 ≥ −d2

4 + 1,

the mode A(x)zd−∆ is non-normalizable. Normalizable modes are part of the bulk Hilbert space,

and it corresponds to a state in the holographic field theory. Non-normalizable modes are not

the part of the bulk Hilbert space, and they provide sources for the operators in the field theory.

The source modifies the state of the field theory, since it modifies the boundary action as follows:

Sbdy ∼
∫
ddxϕ0(x)O(x), where ϕ0(x) is a source for an operator O in the boundary theory. we

expect that source ϕ0(x) is finite, therefore, we remove the divergent part to obtain the finite
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quantity for source. Then the source ϕ0(x) is given as: ϕ0(x) = limz→0 z
∆−dϕ(z, x) = A(x). It

turns out that ∆ is exactly equal to the scaling dimension of the operator O in the dual conformal

field theory. The Poincare AdS metric exhibits the isometry x → x
′

= λx and z → z
′

= λz. We

now consider the fields ϕ(z, x) and ϕ̃(z
′
, x

′
) related by the above scaling isometry. Since ϕ is scalar

field : ϕ(z, x) = ϕ̃(z
′
, x

′
). This leads ϕ̃0(x

′
) = λ∆−dϕ0(x). We expect that the boundary action

Sbdy ∼
∫
ddxϕ0(x)O(x) is conformal invariant. Therefore,

∫
ddxϕ0(x)O(x) =

∫
ddx

′
ϕ̃0(x

′
)Õ(x

′
).

We now combine this with ϕ̃0(x
′
) = λ∆−dϕ0(x), leads to Õ(x

′
) = λ−∆O(x). This shows that ∆ is

the scaling dimension of the operator O(x).

States and geometries

The ground state in a Conformal Field Theory (CFT) corresponds to pure Anti-de Sitter (AdS)

geometry. Excited states in a CFT correspond to asymptotically AdS geometries, and a thermal

state in a CFT corresponds to a black hole in AdS space.

Correlators

We can utilise AdS/CFT correspondence to compute the correlation function of the field theory op-

erators by performing calculations in the bulk. AdS/CFT correspondence suggests that the generat-

ing functional of CFT is equal to the partition function of gravity, i.e., ZCFT [ϕ] = Zgravity[Φ|∂AdS =

ϕ], where ϕ(x) is the source for an operator O in CFT. As discussed earlier, the non-normalizable

modes in bulk leads to the source in the field theory, thereby modifying the boundary theory. This is

expressed as ϕ(x) = limz→0 z
∆−dΦ(z, x), where Φ(z, x) is a massive scalar field propagating in Eu-

clidean AdS background, with the matter action as Smatter = −1
2

∫
dd+1x

√
g
(
∂MΦ∂MΦ +m2Φ2

)
.

Recall that the 2-point correlation function in CFT is given by:

⟨O1(x1)O2(x2)⟩ =
δ2 logZren.CFT

δϕ1(x1)δϕ2(x2)

∣∣∣∣
ϕ=0

, (1.26)

where Zren.CFT is a renormalised generating functional of CFT. To compute the gravity partition

function, consider a scalar field Φ in the Euclidean AdS background. The classical gravity partition

function can be evaluated using the saddle point approximation, yielding Zgravity ∼ eSos[Φc]. Here,

Φc is the classical solution for the scalar field which behaves Φc(z, x) → zd−∆ ϕ(x) as z → 0,

and Sos[Φc] is the on-shell gravitational action. Therefore, using the arguments above, we find

logZCFT ∼ Sos[Φc]. We note that Sos[Φc] contains local divergences near the boundary. To

address this, we introduce a regulator z = ϵ and add a local counterterm to cancel the divergences

in the on-shell action. Following renormalisation procedure, we obtain logZren.CFT ∼ Sren.os [Φc]. The

two-point correlator ( 1.26) can be expressed as:

⟨O1(x1)O2(x2)⟩ =
δ2Sren.os [Φc]

δϕ1(x1)δϕ2(x2)

∣∣∣∣
ϕ=0

. (1.27)

The detailed computation of Sren.os [Φc] can be found in Appendix 6.1, the 2-point correlation function

22



is then expressed by:

⟨O(k)O(−k))⟩ ∼ k2ν , (1.28)

where ν = ∆ − d
2 . In the position space, the 2-point correlation function becomes

⟨O(x)O(0))⟩ ∼ 1

|x|2∆
. (1.29)

This result precisely matches the two-point correlator of the operators with scaling dimension ∆

in the conformal field theory (CFT).

Quantum information tools

Quantum information theory provides valuable insights into the study of quantum gravity within

the framework of gauge/gravity correspondence. Quantum information tools offer profound insights

into black hole physics, addressing fundamental puzzles like the black hole information paradox.

Over the years, several powerful quantum information tools have been developed, including en-

tanglement, mutual information, and quantum complexity. Entanglement plays a crucial role in

understanding the geometry of the spacetime, encapsulating an idea ’entanglement builds the space-

time’ ([32], [33] ). Holographic entanglement entropy proposal is crucial in this context. On the

other hand, complexity plays crucial role in understanding the growth of interior of the black hole

at very late times. We will discuss these topics in the next section.

1.2 Entanglement

In this section, we first introduce entangled and non-entangled states, followed by a brief discussion

of several measures used to quantify entanglement. Notable studies on these topics include ([34],

[35], [36], [37], [38], [39], [40]). We then present the RT/HRT prescription, which is used to

compute the entanglement entropy of a boundary subregion holographically. Specifically, we use

the RT prescription to compute the entanglement entropy of a strip-shaped boundary subregion in

d-dimensional Conformal Field Theory (CFTd). In a later subsection, we employ RT/HRT surfaces

to probe Big-crunch singularities in AdS Kasner cosmologies and study quantum extremal surfaces

in dimensionally reduced two-dimensional dilaton gravity backgrounds.

1.2.1 Introduction to entanglement

We consider a quantum bipartite system consists of subsystems A and B with the state |Ψ⟩ in the

Hilbert space HA⊗HB. This state is separable if it can be expressed as the tensor product of states

from subsystems A and B, i.e.,|Ψ⟩ = |Ψ⟩A ⊗ |Ψ⟩B. In this case, there is no entanglement between

subsystems A and B. Conversely, the state |Ψ⟩ is inseparable if it cannot be represented as a simple

tensor product, specifically if it takes the form |Ψ⟩ =
∑

i,j Cij |i⟩A |j⟩B ̸= |Ψ⟩A ⊗ |Ψ⟩B. In such
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cases, there is entanglement between the subsystems A and B. For instance, in a two qubit system,

the states 1√
2

(|00⟩ ± |11⟩), 1√
2

(|01⟩ ± |10⟩) are maximally entangled. These states are referred to

as Bell states.

The entanglement in a quantum system is quantified using entanglement entropy, von Neumann

measure is a prominent measure for defining entanglement entropy. Consider a quantum system

described by a pure state |Ψ⟩, the density matrix is given as ρ = |Ψ⟩ ⟨Ψ|. We now decompose the

Hilbert space as H = HA⊗HB, then reduced density matrix is obtained as ρA = trB(ρ) by tracing

out the degrees of freedoms associated with subsystem B. The von Neumann entropy of subsystem

A is then given by

SA = −trA(ρA log ρA) . (1.30)

Let us first consider a Bell state |Ψ⟩ = 1√
2

(|00⟩ + |11⟩) to perform explicit calculations. The density

matrix is given by:

ρ = |Ψ⟩ ⟨Ψ| =
1

2
(|00⟩ ⟨00| + |00⟩ ⟨11| + |11⟩ ⟨00| + |11⟩ ⟨11|) . (1.31)

The reduced density matrix ρA for the first qubit ‘A’ is obtained by tracing out the second qubit

‘B’. This yields:

ρA =
1

2
(|0⟩ ⟨0| + |1⟩ ⟨1|) . (1.32)

The von Neumann entropy of the first qubit ‘A’ is then calculated as:

SA = −
∑
i=1,2

λi log λi = log 2 , (1.33)

where λi’s are the eigenvalues of the reduced density matrix ρA. Similarly, we obtain SB = log 2.

We note that SA = SB, this is expected because the total system is in a pure state. We also observe

that both ρA and ρB represent mixed states.

Now, let’s consider another example of an entangled state, the well-known Thermo Field Double

(TFD) state, in the Hilbert space HA ⊗HB :

|TFD⟩ =
1√
Z

∑
n

e−
βEn
2 |n⟩A ⊗ |n⟩B , (1.34)

where Z = e−βEn is the partition function, and subsystem ‘B’ is identical to subsystem ‘A’. The

density matrix is given as ρ = |TFD⟩ ⟨TFD|, then the reduced density matrix ρA is obtained by

tracing out the subsystem B:

ρA =
1

Z

∑
n

e−βEn |n⟩A ⟨n|A . (1.35)

This is exactly equal to thermal density matrix 1
Z e

−βH , where En are the eigenvalues of the

Hamiltonian H. Therefore, ρA = 1
Z e

−βH describes a thermal density matrix. This indicates that a
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thermal density matrix ρA can be purified by considering a pure Thermo Field Double state |TFD⟩
in an enlarged Hilbert space HA ⊗HB, where Hilbert space HB is identical to HA.

We mention here a few important properties: The density matrix ρ = |Ψ⟩ ⟨Ψ| is a projection

operator, Hermitian, and positive semi-definite. Consequently, the von Neumann entropy is real

and non-negative. For a pure state, entanglement entropy of a subsystem ‘A’ is same as the en-

tanglement entropy of its compliment subsystem ‘B’, i.e., SA = SB, and SA∪B = 0. Besides, von

Neumann entropy satisfies the inequality SA + SB ≥ SA∪B.

There are various other measures used to quantify entanglement, such as mutual information,

relative entropy, and Rényi entropy. The mutual information of systems ‘A’ and ‘B’ is defined

as I(A,B) = SA + SB − SA∪B. Mutual information satisfies the property I(A,B) ≥ 0, this is

known as subadditivity identity. Mutual information I(A,B) measures the correlation between

subsystems ‘A’ and ‘B’. Relative entropy is defined as S(ρ||σ) = tr(ρ (log ρ− log σ)). It measure

the distance between the two states described by ρ and σ. Relative entropy is always non-negative,

i.e., S(ρ||σ) ≥ 0. The Rényi entropy is defined as Sn(A) = 1
1−n log (trA(ρnA)). Rényi entropy is the

generalisation of von Neumann entropy with replica number n, and It reduces to the von Neumann

entropy as n → 1, i.e., SA = limn→1 Sn(A). We now look at two crucial identities: subadditivity

and strong subadditivity, the subadditivity is given as

SA + SB − SA∪B ≥ 0 ⇔ I(A,B) ≥ 0 , (1.36)

and the strong subadditivity is given as

SA∪B∪C + SB ≤ SA∪B + SB∪C ⇔ I(A,B ∪ C) ≥ I(A,B) . (1.37)

1.2.2 Entanglement entropy in field theory

Consider a spatial subregion ‘A’ in a d-dimensional field theory. Decomposing the total Hilbert

space of the field theory as HA ⊗ HAC by considering the field theory on a lattice with a lattice

spacing ϵ (we recover the original field theory with the continuum limit of the lattice system, i.e.,

ϵ→ 0). When the total system in a pure state ( either in ground state or low-lying excited state),

the entanglement entropy of the subregion ‘A’ is given by the following area law

SA =
Area(∂A)

ϵd−2
+ ... . (1.38)

Here, ϵ is the UV cutoff, and Area(∂A) is the area of the entangling surface (∂A) . The first term

in SA is a leading ultraviolet divergent term which arises from the short-distance correlations, and

the dotted terms may be finite or divergent depending on the specific theory. It tuns out that area

law ( 1.38) only holds for d > 2, and the entropy SA scales as volume for the random states in field

theory.
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Figure 1.1: Left panel: Minimal surface (Ryu-Takayanagi surface) γ (blue) anchored at

the boundary of subregion A (red) in time-independent AdS geometries. Right panel: γ

represents the RT/HRT surface anchored at the boundary of subregion A at a constant time

slice t0 in time-dependent AdS geometries

For an interval l within two-dimensional Conformal Field Theory (CFT2) that is in its ground

state , the entanglement entropy of the interval is given as SA = c
3 log l

ϵ , where c is the central

charge of CFT2. This is well-known as Calabrese-Cardy formula ([36]), which can be derived using

replica trick.

1.2.3 Holographic entanglement entropy

Holographic entanglement entropy of a boundary subregion can be computed using RT/HRT pre-

scription. According to Ryu-Takayanagi’s proposal the entanglement entropy of a boundary sub-

region is obtained holographically by using a codimension-two minimal surface in the bulk which

is homologous to the boundary subregion (see Figure 1.1a). The holographic entanglement en-

tropy is given by the Ryu-Takayanagi formula [17]: SA = Area(γ)
4GN

, where γ is the codimension-two

minimal bulk surface anchoring at the boundary of subregion A. For the time dependent geome-

tries, we employ RT/HRT prescription [18] to define the holographic entanglement entropy. This

prescription involves determining a codimension-two extremal surface within the bulk, anchored at

the boundary of subregion A. This surface is known as the RT/HRT surface, extends into the time

direction as well as illustrated in Figure 1.1b. Some of notable reviews are ([41], [42]).

Consider AdSd+1 metric in Poincare coordinates:

ds2d+1 =
R2

z2
(
dz2 − dt2 + dx⃗2

)
, (1.39)
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where R is the AdS radius, z is the radial bulk coordinate, t is the time coordinate, and x⃗ represents

the spatial coordinates. To study the entanglement entropy of a subsystem in the boundary theory,

consider a strip-shaped region A with finite width l along the x1 = x direction and infinite extent

in the other spatial directions. The area functional for a codimension-two bulk surface anchored to

the boundary of the subregion ’A’ is given by:

A = Vd−2R
d−1

∫
dz

1

zd−1

√
1 + x′(z)2 , (1.40)

where Vd−2 represents the transverse IR regulated volume (along the remaining spatial directions),

and the codimension-two minimal surface lies on a constant time slice. The minimization of the

area functional ( 1.40) yields,

x′(z) =
zd−1√

z
2(d−1)
∗ − z2(d−1)

, (1.41)

where z∗ is a turning point of the minimal surface, representing the deepest point in the bulk that

the minimal surface can reach.

For the simplest case of AdS3 (d=2) space. The solution to eq.( 1.41) is:

x(z) = ±
√
z2∗ − z2 + C . (1.42)

We now require that the minimal surface anchors at the boundary z = 0, i.e., x(0) = ± l
2 . This

implies C = 0, the minimal surface then represents a semi-circle x2 + z2 = ( l2)2 with radius z∗ = l
2 .

The area functional for the minimal surface then becomes:

A = Rl

∫ z∗=
l
2

z=ϵ

dz

z

1√
( l2)2 − z2

, (1.43)

we introduce a cutoff z = ϵ to regulate the divergence near z = 0. After evaluating the integral, we

find:

A = 2R log
l

ϵ
. (1.44)

The entropy of boundary subregion is then evaluated using Ryu-Takayanagi’s formula as

SA =
A

4GN
=

R

2GN
log

l

ϵ
. (1.45)

Identifying the central charge of CFT as c = 3R
2GN

, the entropy SA can be recast as:

SA =
c

3
log

l

ϵ
. (1.46)

This result is in agreement with the known expression for the entanglement entropy of a boundary

subregion A in two-dimensional Conformal Field Theory (CFT2).
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For general values of d, we substitute Eq.( 1.41) into ( 1.40) . The area functional becomes

A = 2Vd−2R
d−1Zd−1

∗

∫ z=z∗

z=ϵ

dz

zd−1

1√
z
2(d−1)
∗ − z2(d−1)

. (1.47)

The width of the boundary subregion l along x direction is related to the turning point z∗ as follows:

l

2
=

∫ z∗

ϵ
dz

zd−1√
z
2(d−1)
∗ − z2(d−1)

= z∗
√
π

Γ
(

d
2(d−1)

)
Γ
(

1
2(d−1)

) . (1.48)

This implies

z∗ =
l

2
√
π

Γ
(

1
2(d−1)

)
Γ
(

d
2(d−1)

) . (1.49)

The area functional ( 1.47) after evaluating the integral becomes

A =
2Vd−2R

d−1

d− 2

 1

ϵd−2
−

√
π

zd−2
∗

Γ
(

d
2(d−1)

)
Γ
(

1
2(d−1)

)
 . (1.50)

Utilizing ( 1.49) into ( 1.50), we obtain the holographic entanglement entropy of boundary subregion

A as

SA =
Vd−2R

d−1

(d− 2)2GN

[
1

ϵd−2
− (l/2)

zd−1
∗

]
. (1.51)

The diverging part has a leading contribution to the entanglement entropy which scales as SA ∼
1

ϵd−2 , while the second part of SA is finite and depends on the finite width of the subregion A along

x-direction. In the IR limit of the subregion A, i.e., l → ∞ (z∗ → ∞), the finite term vanishes in

SA.

1.2.4 RT/HRT surface in AdS Kasner cosmologies

[43] explores RT/HRT surfaces in AdS Kasner cosmologies in great detail. In this section, we review

the key aspects of that study here. AdS Kasner cosmologies are time-dependent deformation of

AdS, where the dual field theory resides on a time-dependent space with a time-dependent gauge

coupling. One might expect that the RT/HRT surfaces could be used to probe the cosmological

singularities such as Big-Crunch. However, it turns out that the RT/HRT surfaces cannot probe

regions near-singularity in AdS Kasner cosmologies. Instead, they avoid near-singularity regions as

illustrated in Figure 1.2.

Consider the (d+ 2)-dimensional Isotropic AdS Kasner metric:

ds2d+2 =
ef

ϕ
(d−1)

d

(−dt2 + dr2) + ϕ
2
d dx2i . (1.52)
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The dimensionally reduced 2-dim background is given by:

ds2 =
t
(d−1)

d

rd+1
(−dt2 + dr2) ; ϕ =

t

rd
. (1.53)

We notice that ef = t
(d−1)

d

rd+1 , and the geometry described by the metric ( 1.52) possess Big-crunch

singularity at t = 0.

t

t=0  singularity

extremal surface

holographic dimension
boundary

time slice 0

anchoring

t

Figure 1.2: Cartoon of extremal surfaces in AdS

Kasner spacetime, anchored on a boundary time

slice t0. The extremal surface (red) bends away from

the singularity at t = 0 (dotted line), i.e. t∗ > t0,

with (t∗, r∗) the turning point.

Now, consider a strip-shaped spatial subregion A with finite width along x1 = x and infinite

extent along the remaining spatial directions, situated on the regulated boundary of ( 1.52) at the

boundary time slice t = t0. We note that the geometry is time-dependent, therefore, we utilze

RT/HRT prescription to find a codimension-two extremal surface in the bulk, the surface anchors

on the boundary of subregion A. The codimension-two surface can be specified by (x(r), t(r)), the

area functional of the codimension-two surface is then given by:

A = Vd−1

∫
dr ϕ

(d−1)
d

√
ef

ϕ
(d−1)

d

(1 − t′(r)2) + ϕ
2
d x′(r)2 , (1.54)

where t′(r) ≡ dt
dr , x′(r) ≡ dx

dr , and Vd−1 =
∫
dx2...dxd is the regulated volume. The above expression

simplifies to:

A = Vd−1

∫
dr ϕ

√
ef

ϕ
(d+1)

d

(1 − t′(r)2) + x′(r)2 . (1.55)

Extremizing the area functional ( 1.55) with respect to x(r) yields x-extremization equation as:

x′(r)2 = A2 ef

ϕ
(d+1)

d

(1 − t′(r)2)

(ϕ2 −A2)
, (1.56)

here, A is a constant. Utilising the above equation in ( 1.55), the area functional becomes:

A = Vd−1

∫
dr e

f
2
ϕ(3− 1

d)/2√
ϕ2 −A2

√
1 − t′(r)2 . (1.57)
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The extremal surface possess a turning point (r∗, t∗) as x′(r)2 → ∞. At the turning point, ϕ∗ = A,

therefore the constant A is given by:

A = ϕ∗ =
t∗
rd∗
, (1.58)

where t∗ = t(r∗). The turning point (r∗, t∗) depends on the values of t0 (anchoring time) and the

width l for a fixed value of A. The relation between r∗ and the width of the subregion A is:

l

2
=

∫ r=r∗

r=0
dr x′(r) = A

∫ r∗

0
dr

e
f
2

ϕ
(d+1)
2d

√
(1 − t′(r)2)

(ϕ2 −A2)
= r∗

∫ 1

0
du t(u)−

1
d

√
(1 − t′(u)2)

ϕ2

A2 − 1
. (1.59)

We observe the scaling as l ∼ r∗, therefore A ∼ t∗
ld

. This indicates that for a small subregion width

l, r∗ is small, the extremal surface returns to the boundary after approaching the turning point.

However, for a larger subregion width, r∗ is large, this indicates that the extremal surface can go

deeper into the bulk. Moreover, r∗ → ∞ (the surface dipping deeper into the bulk) in the IR limit

of the subregion (l → ∞).

We observe that the factor ef

ϕ(d+1)/d in (1.56) includes a term proportional to t−#, which suggests

the presence of a distinct turning point localized at the singularity t∗ = 0. However, this branch of

extremal surfaces appears to be disconnected from the branch that remains continuously connected

to the AdS-like branch in the region far from the singularity. Notably, such a branch with t∗ = 0

exists only in the limit of infinite strip width, i.e., the infrared (IR) limit, where no parameter (such

as A) enables deformation away from the t∗ = 0 locus. This implies that the branch is inaccessible

from the classical region far from the singularity. Moreover, the vicinity of the singularity at t = 0

is a regime where quantum gravity effects are expected to dominate. A classical RT/HRT extremal

surface localized in this region, with no means of deformation toward a well-defined classical region,

is therefore unreliable. For this reason, we discard this branch of extremal surfaces. Additionally,

for (∂rx)2 > 0 to be well-defined, we require (∂rt)
2 < 1, ensuring that |∂rt| remains bounded. For

small strip widths, the extremal surface lies on an almost constant-time slice, i.e., (∂rt)
2 ≪ 1. This

condition, (∂rt)
2 < 1, is consistent with the surface being spacelike everywhere under our boundary

conditions.

The above analysis does not reveal the full characteristics of the solution t(r) and the turning

points t∗ and r∗. To address this, we derive the differential equation for t(r) by extremizing the

area functional, as discussed below. Extremizing the area functional (1.55) with respect to t(r) and

utilizing the x-extremization equation (1.56) yields the t-extremization equation:

(1 − t′(r)2)

(
d2t′(r) +

r(t(r)2 −A2r2d)

t(r)3
− dr

t(r)

)
−
(
t(r)2 −A2r2d

) drt′′(r)

t(r)2
= 0 . (1.60)

Consider an ansatz for t(r) as:

t(r) = t0 +
∑
n≥1

cnr
n ; cn ∼ 1

tn−1
0

→ t∗ > t0 . (1.61)
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The perturbative solution for t(r) reads as:

t(r) = t0 +
r2

12t0
− r4

432t30
+

r6

7776t50
+

(
A2

160t30
− 17

7776.240t70

)
r8 + . . . (1.62)

This indicates that t(r) ≥ t0, meaning the extremal surface dips away from the anchoring time slice

t0, avoiding the near-singularity region, as depicted in Figure 1.2. Next, we examine the validity

of the perturbative solution (1.62). The condition r ≤ t0 must hold to ensure the perturbative

solution is well-defined. Thus, the perturbative solution is valid for small subregions with l ≤ t0.

Additionally, we observe that the condition t′(r) ≪ 1 is satisfied for the perturbative solution.

The IR limit, where the strip width is large, corresponds to t∗
rd∗

= A ∼ 1
ld

→ 0. In this limit,

Eq. (1.60) becomes:

d2t3t′ + rt2 − drt2 − t2drt′′ = 0.

Analyzing this via a power series in Mathematica for AdS5 Kasner (d = 3), we find:

t(r) = t0 +
1

12 t0
r2 − 1

432 t30
r4 +

1

7776 t50
r6 − 17

1866240 t70
r8 +

247

335923200 t90
r10 + . . . (1.63)

The series here is more delicate, as the surface extends fully into the bulk with r∗ → ∞. Thus, the

entire r-series becomes significant. The limit A→ 0 implies A ≲ 1
t20

when compared with the scale

t0, which further requires:

r∗ → ∞ , t0 → ∞ ,
t0
r∗

≲ 1 . (1.64)

This describes the reliable semiclassical regime far from the singularity. In this regime, the series

defining the time behavior of the surface remains well-defined, though delicate: the surface is

anchored on a slice far from t = 0. While it dips deep into the bulk, its time dependence is mild,

with t′2 ≪ 1 everywhere. The perturbative solution (1.63) breaks down beyond a certain r, and

therefore it does not capture the full RT/HRT surface in the region r > t0. For this regime,

numerical methods must be employed to solve the t-extremization equation (1.60) directly. In [44],

we perform a numerical analysis of the IR limit of the boundary subregion. Our results indicate

that the codimension-two extremal surface originates from the boundary, bending away from the

singularity region, and eventually becomes light-like beyond a certain r. The extremal surface

extends up to r → ∞.

1.2.5 Entanglement wedge

The RT/HRT proposal suggests that the codimension-2 extremal surface γ is homologous to the

boundary subregion A, meaning there exists a bulk region R such that ∂R = A∪γ. The surface R,

referred to as the homology surface, is a codimension-one surface in the bulk. The entanglement

wedge of the boundary subregion A is defined as the domain of dependence of the homology surface

R, denoted as D[R] = Wγ [A]. This entanglement wedge corresponds to a codimension-zero region

in the bulk.
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A

γ b

Figure 1.3: The figure shows a minimal surface γ anchoring at the boundary of the subregion

’A’ and b represents the bulk region surrounded by γ and A

1.2.6 Corrections to the holographic entanglement entropy

The holographic entanglement entropy obtained using Ryu-Takayanagi (RT) or Hubeny-Rangamani-

Takayanagi (HRT) prescription only holds at order O( 1
GN

) (or O(N2) in the boundary theory). This

entropy can receive corrections from quantum mechanical effects in the bulk. Faulkner, Lewkowycz

and Juan Maldacena ([45]) found that the quantum corrections at O(G0
N ) (or O(N0) in the bound-

ary theory) to the holographic entanglement entropy are given by incorporating the bulk entan-

glement entropy. The corrected holographic entropy of the boundary subregion A is then given

by:

SA =
Area(γ)

4GN
+ Sbulk(b) + counterterms , (1.65)

where the first term represents a classical term: area of the codimension-two minimal surface,

while the second term represents a quantum term: bulk entanglement entropy of the region b (

surrounded by the boundary subregion and the minimal surface γ as illustrated in Figure 1.3).

The term Sbulk is UV divergent, but these divergences can be absorbed by adding counterterms.

The combination (Sbulk + counterterms) is then finite.

1.2.7 Quantum extremal surfaces

The von Neumann entropy of a boundary subregion at all orders in 1/N2 (or GN ) can be holo-

graphically obtained by extremizing generalised entropy ([46]). The generalised entropy is defined

as:

Sgen =
Area(γ)

4GN
+ Sbulk , (1.66)
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where γ is a codimension-two bulk surface that anchors at the boundary of the subregion A,

and Sbulk is entanglement entropy of the bulk region surrounded by boundary subregion A and

the surface γ. The extremization of ( 1.66) provides quantum extremal surface (QES), and the

generalised entropy evaluated at the quantum extremal surface gives the von Neumann entropy of

the boundary subregion A. If there are multiple quantum extremal surfaces, the one that provides

minimum Sgen is considered. This can be summarized as

SA = min

{
ext

[
Area(γ)

4GN
+ Sbulk

]}
. (1.67)

The term Sbulk involves area-like UV divergences in d-dimensions (d > 2), these divergences can

be absorbed by the renormalisation of Newton’s constants. The renormalised Newton’s constant is

given by:
1

4GrN
=

1

4GN
+

1

ϵd−2
. (1.68)

The explicit computation of Sbulk is challenging in general dimensions. However, for two-dimensional

conformal field theories (CFT2), it can be calculated explicitly using the Cardy-Calabrese formula.

Therefore, we focus on theories in two dimensions or those obtained by dimensionally reducing

higher-dimensional theories to two dimensions. Additionally, we assume that the bulk matter is

described by two-dimensional conformal field theory (CFT2) in its ground state, especially for the

explicit computations. We further assume that 1
GN

≫ c≫ 1 to avoid back-reaction on the classical

geometry due to strong quantum effects, where c is the central charge of CFT2. For two-dim dila-

ton gravity theories the QES and boundary subregions are just points. Therefore, the generalised

entropy is given by:

Sgen =
ϕ

4GN
+

c

12
log
(

∆2ef
)
, (1.69)

where ϕ represents dilaton profile, and ef is the conformal factor appearing in the conformally flat

two-dimensional metric background. Here, ∆2 = r2 − (t − t0)
2, where t0 is the time slice at the

location of boundary subregion.

The entropy functional involved in the RT/HRT prescription under the IR limit of a boundary

subregion of a higher-dimensional theory (d > 2) gives the classical term (dilaton ϕ term) in

the generalised entropy (1.69). This can be seen explicitly by considering the higher-dimensional

AdSd+2 background as

ds2 = ϕ
2
d (−dt2 + dr2) + ϕ

2
ddx⃗2 , (1.70)

where ϕ = 1
rd

. We first assume that the boundary subregion has finite length l along x1 = x

direction. Later, we consider the IR limit as l → ∞. The entropy functional for the boundary

subregion is:

S =
Vd−1

4Gd+2

∫
dr ϕ(r)

√
1 + x′(r)2 , (1.71)
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In the IR limit, S is given as:

S =
Vd−1

4Gd+2

∫
dr ϕ(r)x′(r) ∼ ϕ(r)

4G2
, (1.72)

where two-dimensional Newton’s constant is given as 1
G2

∼ Vd
Gd+2

.

Quantum extremal surface in AdS2-dilaton gravity theory

The 2-dimensional dilaton gravity solution is given by:

ds2 =
1

r2
(
−dt2 + dr2

)
; ϕ =

ϕr
r
. (1.73)

The generalised entropy is then given as:

Sgen =
ϕr

4GN

1

r
+
c

6
log

(
r

1

r

)
, ∂rSgen = − ϕr

4GN

1

r2
. (1.74)

The extremization of the generalised entropy, as shown in ( 1.74), gives the quantum extremal

surface at r∗ → ∞. This indicates that the entanglement wedge is the entire Poincaré patch, as

expected.

Quantum extremal surfaces in AdSd+2 dimensionally reduced theories

The 2-dimensional background is given by:

ds2 =
1

rd+1

(
−dt2 + dr2

)
; ϕ =

ϕr
rd
. (1.75)

The generalised entropy is given as:

Sgen =
ϕr

4GN

1

rd
+
c

6
log

(
r

r
(d+1)

2

)
, ∂rSgen = − ϕr

4GN

d

rd+1
− c

6

(d− 1)

2r
. (1.76)

The extremization of the generalised entropy gives the location of quantum extremal surface (QES)

at r∗ → ∞ again. This suggest that the entanglement wedge is the entire Poincaré patch, as

expected. The generalised entropy ( 1.76) can be recast as:

Sgen =
ϕ

4G
+

c

12

(d− 1)

d
log ϕ . (1.77)

In summary, for the simple 2-dimensional dilaton gravity backgrounds considered, the QES is

located at infinity, i.e., r∗ → ∞, and the entanglement wedge is the entire Poincaré patch, as

expected.
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1.3 Complexity

In computer science, computational complexity measures the difficulty of performing a task, often

in terms of the resources required, such as the amount of time needed to complete a task or the

memory necessary to store information. As computing evolved, this concept naturally extended to

quantum systems, where representing and processing quantum information posed unique challenges.

The transition from classical to quantum circuit complexity builds upon the foundational work of

early computing pioneers. Claude Shannon’s introduction of Boolean circuits [47] in 1948 laid the

groundwork for representing logical operations, a concept that would later be adapted to quantum

systems. Richard Feynman [48] and David Deutsch [49] took this further by proposing that quantum

systems could be simulated using quantum circuits. Deutsch also formalized the concept of a

quantum Turing machine, which provided a theoretical framework for quantum computation. This

led to the introduction of quantum gates—unitary operations that form the building blocks of

quantum circuits. The power of quantum circuits was dramatically illustrated by Peter Shor’s

quantum factoring algorithm [50] in 1994, which showed that quantum circuits could outperform

classical circuits for certain problems. In 1995, Adriano Barenco and colleagues [51] demonstrated

that a universal set of quantum gates, such as Hadamard and CNOT, could generate any quantum

operation, solidifying the idea that arbitrary quantum states could be represented as circuits. These

ideas culminated in Michael Nielsen and Isaac Chuang’s Quantum Computation and Quantum

Information [52], which provided a comprehensive framework for quantum circuits. Their work

formalized the use of quantum gates to represent arbitrary unitary transformations, demonstrating

that any quantum operation, and by extension any quantum state, could be represented by a

quantum circuit. Mathematically, this is expressed as |ψ⟩ = U |ψ⟩I , where |ψ⟩I denotes the initial

state and U is a unitary operator implemented via quantum gates. This integrated approach

became the standard model for quantum computation, illustrating how complex quantum systems

could be simulated and manipulated through the careful arrangement of quantum gates.

With these developments, the computational complexity landscape expanded, and the concept

of quantum circuit complexity emerged as a critical framework for understanding the power and

limitations of quantum computation.

Beyond computation, quantum circuit complxity is used in studying the dynamics of quantum

systems, including quantum chaos and black hole physics. In this section, we review circuit com-

plexity for states and operators in quantum mechanics and quantum field theories. Additionally, we

examine various holographic proposals to compute circuit complexity. The textbook [52] provides

a comprehensive introduction to quantum information and quantum computation, encompassing

topics such as classical and quantum computational complexity. Furthermore, numerous studies

[25], [53]–[75] have investigated complexity in the contexts of quantum field theory (QFT) and

holography. A comprehensive review of circuit complexity can be found in [76].
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1.3.1 K qubits and size of the space of states

For K qubits, the dimension of Hilbert space is 2K . A general state can be expressed by:

|Ψ⟩ =

2K∑
i=1

αi|i⟩ (1.78)

In general, the coefficients αi are arbitrary complex numbers, which result in an infinite number

of state vectors (distinct from the basis vectors). To regulate the space of states, each αi can be

constrained to take m-discrete values. Under this restriction, the total number of states is given

by:

Ω = m2K . (1.79)

The logarithm of this quantity is:

log Ω = 2K logm. (1.80)

For K = m = 4, the total number of states is Ω = 4, 294, 967, 296, illustrating the immense

state space, with log Ω ∼ 22.18. Furthermore, the expression in Eq. 1.80 demonstrates that log Ω

depends strongly on the number of qubits K, while its dependence on the regulating parameter m

is comparatively weak, varying only logarithmically.

1.3.2 Circuit complexity

Circuit complexity is defined as the minimum number of elementary gates (unitary operations) to

construct a target state |ψ⟩T from a reference state. The target state is obtained as |ψ⟩T = U |ψ⟩R,

where the unitary operator U is constructed from a simple set of elementary gates. There could

be many circuits to construct U using the same set of elementary gates, we consider the one with

minimum number of elementary gates. We can introduce a tolerance ϵ for constructing the target

state |ψ⟩T with a desired precision:

∥|ψT ⟩ − U |ψR⟩∥ ≤ ϵ . (1.81)

For n qubits, the maximum complexity scales as Cmax ∼ 2n. The circuit complexity C(U) of a

unitary operator U is defined as the minimum number of elementary gates Ui to construct U with

a tolerance ϵ, expressed as ∥∥∥∥∥U −
n∏
i=1

Ui

∥∥∥∥∥ < ϵ . (1.82)

1.3.3 Circuit complexity for coupled harmonic oscillators

[72] investigates circuit complexity in the context of coupled harmonic oscillators and quantum

field theories. In this section, we review the key aspects of circuit complexity for a system of two

coupled harmonic oscillators with the Hamiltonian:

H =
1

2
(p21 + p22) +

ω2

2
(x21 + x22) +

Ω2

2
(x1 − x2)

2 . (1.83)
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We can recast the above Hamiltonian ( 1.83) in a different basis {y1, y2}, as follows:

H =
1

2
(P 2

1 + P 2
2 ) +

Ω2
1y

2
1

2
+

Ω2
2y

2
2

2
,

y1 =
1√
2

(x1 + x2) ; y2 =
1√
2

(x1 − x2) (1.84)

where Ω1 = ω, and Ω2 =
√
ω2 + 2Ω2.

The ground state wave function in this new basis is given by:

Ψ(y1, y2) =
(Ω1Ω2)

1
4

π
1
2

e
−
(

Ω1y
2
1

2
+

Ω2y
2
2

2

)
. (1.85)

Transforming back to the original coordinates (x1, x2), the ground state wave function becomes:

Ψ(x1, x2) =
(ω1ω2 − β2)

1
4

π
1
2

e
−
(

ω1x
2
1

2
+

ω2x
2
2

2
+βx1x2

)
, (1.86)

where ω1 = ω2 = (Ω1+Ω2)
2 , and β = (Ω1−Ω2)

2 .

Assuming the target state is the ground state (1.86), i.e., ΨT = Ψ(x1, x2), and the reference

state is:

ΨR =
(ω0)

1
2

π
1
2

e−
ω0
2 (x21 +x22) . (1.87)

The target state ΨT can be constructed by applying a sequence of elementary gates to the reference

state, such that ΨT = UΨR. Here, U is a unitary operator composed of the following elementary

gates:

H = eiϵx0p0 ; Ja = eiϵx0pa ; Ka = eiϵxap0

Qab = eiϵxapb (a ̸= b) ; Qaa = eiϵ
(xapa+paxa)

2 = e
ϵ
2 eiϵxapa , (1.88)

where x0 and p0 are constants, and a, b ∈ 1, 2. The action of these gates on a wave function

ψ(x1, x2) is as follows:

Hψ(x1, x2) = eiϵx0p0 ψ(x1, x2) Constant phase change

J1ψ(x1, x2) = ψ(x1 + ϵx0, x2) Shifting x1 by ϵx0

Kaψ(x1, x2) = eiϵxap0 ψ(x1, x2) Shifting momentum pa by ϵp0

Q21ψ(x1, x2) = ψ(x1 + ϵx2, x2) Shifting x1 by ϵx2 (entangling gate)

Q11ψ(x1, x2) = e
ϵ
2 ψ(eϵx1, x2) Scaling x1 by eϵx1 (scaling gate) (1.89)

Consider a circuit defined as ΨT = Qα3
22Q

α2
21Q

α1
11 ΨR, where Q11 acts on ΨR for α1 times, followed

by Q21 and Q22 for α2 and α3 times respectively. The total number of elementary gates defines the
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depth of the circuit (each depth has a single elementary gate), given by

D = α1 + α2 + α3 =
1

ϵ

[
1

2
log

(
ω1ω2 − β2

ω2
0

)
+

√
ω0

ω1

|β|√
ω1ω2 − β2

]
, (1.90)

where the parameters are

α1 =
1

2ϵ
log

(
ω1

ω0

)
, α2 =

1

ϵ

√
ω0

ω1

|β|√
ω1ω2 − β2

, α3 =
1

2ϵ
log

(
ω1ω2 − β2

ω0ω1

)
. (1.91)

To determine the circuit complexity for the given reference state ΨR, target state ΨT , and the set

of elementary gates, we seek the optimal circuit—the one that uses the fewest elementary gates to

construct ΨT from ΨR. Neilsen’s geometric approach ([77], [78], [79]) can be employed to find the

optimal circuit.

1.3.4 Circuit complexity in quantum field theories

We now aim to compute the circuit complexity in quantum field theories (QFT). For simplicity, we

consider a free scalar field theory with the Hamiltonian:

H =

∫
dd−1x

[
π2

2
+

1

2
(∇ϕ)2 +

1

2
m2ϕ2

]
. (1.92)

The QFT can be reformulated as an infinite set of coupled harmonic oscillators by discretizing

space into a lattice. In this formulation, each lattice point corresponds to a degree of freedom,

behaving as a harmonic oscillator, as illustrated below. This approach transforms the problem

of computing the complexity in QFT into that of coupled harmonic oscillators. For a scalar field

ϕ(x) in d-dimensional spacetime, the Hamiltonian in Eq. (1.92) can be rewritten in the discretized

lattice with spacing δ as follows:

H = δd−1
∑
i

π2i
2

+
1

2
m2ϕ2i +

1

2δ2

∑
j∈neighbor(i)

(ϕi − ϕj)
2

 , (1.93)

where πi is the conjugate momentum at lattice site i, m is the mass of the field, and δ is the lattice

spacing.

In the continuum limit (δ → 0), the discrete sum transitions to an integral over the (d − 1)-

dimensional spatial coordinates, and the Hamiltonian reduces to Eq. (1.92).

To further simplify, we redefine the scalar field and parameters as follows:

Φi = δ
d
2ϕi, M =

1

δ
, ω = m, Ω =

1

δ
.

Under this redefinition, the Hamiltonian in Eq. (1.93) becomes:

H =
1

2M

∑
i

Π2
i +

Mω2

2

∑
i

Φ2
i +

MΩ2

2

∑
i,j∈neighbor(i)

(Φi − Φj)
2, (1.94)
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where Πi is the conjugate momentum associated with Φi. This Hamiltonian describes an infinite

set of coupled harmonic oscillators.

To calculate the circuit complexity, the ground state of the uncoupled oscillators is chosen as

the reference state, while the ground state of the full coupled Hamiltonian is selected as the target

state. Using Nielsen’s geometric approach [77, 78, 79], the complexity is determined by considering

a path in the space of unitary transformations that connects the reference and target states.

The complexity is defined as the geodesic distance along this path:

C =

∫ 1

0
ds

√
Gab

dY a

ds

dY b

ds
, (1.95)

where Y a(s) parameterizes the path in the space of unitary transformations, and Gab represents

the metric on the space of unitaries (a Riemannian manifold). For detailed computations, refer to

[72].

1.3.5 SU(2K), unitaries, and complexity

Consider a quantum system of K qubits, where the Hilbert space is 2K dimensional. A special

unitary operator can be expressed as:

U =
∑
ij

Uij |i⟩ ⟨j| , (1.96)

where indices i and j takes values from 1 to 2K , and the unitary operator U has 4K−1 independent

real parameters. If each independent parameter is restricted to take m discrete values, the total

number of distinct unitary operators is given by:

n = m4K−1 → log n = (4K − 1) logm. (1.97)

This result reveals a similar pattern to that of the states (discussed in 1.3.1), but with a 4K factor

instead of the 2K .

The volume of SU(N) 1 is given by:

V (SU(N)) = 2
π

(N−1)(N+2)
2

1!2!...(N − 1)!
. (1.98)

For N ≫ 1, this can be approximated using Stirling’s formula as:

V (SU(N)) ∼ π
N2

2

N
N2

2

. (1.99)

1 The formula for the volume of SU(N) is derived by calculating its invariant volume, leveraging its

recursive relationship with spheres (S2N−1) and the subgroups SU(N − 1). This formula encapsulates the

intricate geometric and topological structure of SU(N), as thoroughly examined in the iterative approach

presented in arXiv:math-ph/0210033. It provides a foundational measure of SU(N)’s compact manifold,

with significant applications in representation theory, quantum physics, and related fields.
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The volume of (N2 − 1)-dimensional ball of radius ϵ is given by:

V (ϵ) =
π

N2−1
2 ϵN

2−1

Γ(N
2+1
2 )

∼ π
N2

2 ϵN
2

NN2 , (1.100)

where Stirling’s approximation for N = 2K ≫ 1 has been used. The number of unitaries n =
V (SU(N))

V (ϵ) is then given by:

n ∼
(
N

ϵ2

)N2

2

→ log n = K
4K

2
log 2 + 4K log

(
1

ϵ

)
. (1.101)

We now introduce K-local, all-to-all circuits. A K-local circuit involves up to K qubits at once.

τ τ + 1 τ + 2

Figure 1.4: Standard architecture for a K-local all-to-all circuit. The first depth is labeled

with the circuit time τ , and the time increases by one unit with each subsequent depth

All-to-all connectivity means that any qubit can pair with any other qubit. The Figure 1.4 shows

the standard architecture of a K-local all-to-all circuit with 6 qubits and K = 2.

Let’s now discuss a circuit graph, which is a graph describing a circuit. For the illustration, we

assume elementary gates acting on two qubits, with K
2 gates operating at a particular depth. The

total number of ways to construct K
2 pairs from K qubits is given by:

d =
K!

2
K
2

(
K
2 !
) ∼ K

K
2 . (1.102)

Therefore, there are d possible circuits/configurations at each depth, each corresponding to a uni-

tary operator in SU(2K) space. This suggests that each depth may yield one of these d unitary
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operators. For the visualisation, the decision-tree is embedded in SU(2K) space, as shown in Figure

1.5. The Figure 1.5a illustrates a depth one tree with a central vertex representing the identity

operator I. Eight branches emerge from this vertex, each corresponding to one of d = 8 circuit

configuration choices. Each leaf of the tree represents a unitary operator. By adding another depth,

we obtain the embedded graph shown in Figure 1.5b , where each vertex and leaf represents a

unitary operator. At the second depth, we consider only (d−1) circuit configurations, as discussed

in [76]. For large K, this approximation does not significantly impact the results but simplifies the

technical details.

I

SU(2K)

(a)

I

SU(2K)

(b)

Figure 1.5: Tree graph with d = 8 and depth D = 1. Right panel: Tree graph with d = 8

and depth D = 2.

The circuit time, denoted by τ , increases as the circuit depth D increases, expressed as τ ∝ D

. The rate of complexity with respect to circuit time τ is given by:

dC
dτ

=
K

2
. (1.103)

This shows the linear growth of the circuit complexity C with respect to circuit time τ . The total

complexity at depth D is C = KD
2 , and the number of unitaries at depth D is:

N = dD ∼ K
KD
2 . (1.104)

According to the no-collision theorem, different circuits at each depth generate distinct unitary

operators, meaning two circuits do not produce the same operator. However, collisions may occur

after the system reaches the maximum complexity, Cmax. The total number of unitaries Ntotal

corresponds to this maximum complexity, implying Ntotal ∼ KCmax . Using equation (1.101), the

maximum complexity evaluates to Cmax ∼ 4K . After reaching maximum complexity, loops may

form. See [76] for further details.
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1.3.6 Holographic complexity

It is well known that the black hole interior grows with time, while the entanglement entropy satu-

rates after thermalization. This naturally raises the question: which boundary quantity represents

the growth of the black hole interior? Susskind provided an answer in [25], suggesting that com-

plexity is the boundary dual representing this growth. We review Susskind’s arguments on how

complexity captures the black hole interior’s growth and various conjectures about holographic

complexity.

The black hole interior growth

Consider an eternal AdS black hole geometry, which is dual to the Thermo Field Double (TFD)

state. In this context, the maximum volume spatial slice connecting the two asymptotic boundaries

is diffeomorphism invariant (coordinate-independent). This spatial slice Σt is a codimension-one

surface that represents the growth of the black hole interior as follows:

dV

dt
∼ AHT lads , (1.105)

where t denotes the anchoring time, AH represents the horizon area of the black hole , T is the tem-

perature, and lads is AdS length scale. The maximal slice Σt represents the Einstein-Rosen bridge

connecting the two boundaries at anchoring time t as illustrated in Figure 1.6 with tL = tR = t.

We define a dimensionless quantity as follows:

C =
V (Σt)

GN lads
, (1.106)

where V (Σt) is the volume of the maximal spatial slice Σt, and GN is the Newton’s constant. The

growth of C with respect to time t is given by:

dC

dt
∼ S T . (1.107)

where S is the entropy and T is the temperature of the black hole. The Rindler time τ is related

to t as τ = 2π T t, the growth of C with respect to the Rindler time τ is:

dC

dτ
∼ S . (1.108)

The black hole-quantum circuit correspondence

To describe a black hole in terms of a qubit system, the first question is: how many qubits are

required? The answer is simple: a minimum of S qubits, where S represents the black hole’s entropy.
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tL tR

Figure 1.6: Illustration of the maximal spatial slice (blue), anchored at times tL and tR on

the left and right boundaries, respectively, in an eternal AdS black hole

Thus, the number of qubits K can be identified with the entropy, i.e., K ∼ S. In this context, a K-

local all-to-all quantum circuit corresponds to a K-local Hamiltonian2. This means that any qubit

in the system can interact with any other qubit at any given time. This behaviour is consistent

with the black hole’s scrambling properties, where information becomes rapidly distributed across

the system. To complete the analogy, we need a dimensionless time parameter in the black hole’s

geometry that corresponds to the circuit time. In the context of black holes, the Rindler time

τ serves as this dimensionless parameter, as discussed in detail in Appendix 6.2. Therefore, we

identify the circuit time τ with the Rindler time τ . The correspondence between the quantum

circuit and the black hole can be summarized as follows:

Number of qubits K ↔ Black hole entropy S

K-local circuit ↔ K-local Hamiltonian

Circuit time τ ↔ Rindler time τ (1.109)

2 A K-local Hamiltonian refers to a quantum Hamiltonian that consists of a sum of terms, each of which

involves interactions between at most K qubits. The ”K-local” property indicates that the interactions

described by each term are limited to subsets of at most K qubits. This terminology arises because the

interaction is limited to smaller subsets of qubits, and the interactions are ”localized” within these subsets,

as opposed to acting globally on the entire system. Formally, a K-local Hamiltonian can be written as

H =
∑

i1<i2<···<iK

Hi1i2...iK ,

where each Hi1i2...iK represents an interaction term acting on the subset of qubits i1, i2, . . . , iK .
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Complexity representing black hole interior growth

Applying the black hole-quantum circuit correspondence ( 1.109) to the black hole, we find that the

quantity C appearing in ( 1.108) corresponds to the circuit complexity C appearing in eq. ( 1.103).

Additionally, eq.( 1.106) defines the holographic complexity according to complexity=volume pro-

posal. The complexity C represents the circuit complexity of the boundary state ΣCFT with

ΣCFT = ∂Σt.

Classically, the Einstein-Rosen bridge grows indefinitely, as described by Eq. ( 1.105). However,

quantum mechanics imposes a bound on this growth. Consider the equal-time two-point correlation

between the left and right CFTs living on the boundaries, expressed in terms of the wormhole length

L(t) as follows:

⟨ϕLϕR⟩ = e
− L(t)

lAdS , (1.110)

where ϕL and ϕR are operators associated with the left and right CFTs, respectively. As the

Einstein-Rosen bridge (wormhole) grows, the wormhole length L(t) increases, leading to a decrease

in the correlation between the left and right CFTs. This decrease corresponds to a linear growth in

the complexity. When the correlation between the CFTs approaches zero, the complexity saturates.

This occurs at a time on the order of t ∼ eS , at which point all elementary gates have been used

to construct a new state. At this time, the wormhole has stretched to its maximal length, and

further evolution results in small fluctuations around this maximum. It is important to note

that the saturation of the wormhole length ultimately arises from the finite nature of black hole

entropy, a quantum effect. This contrasts with classical entropy S, which is theoretically infinite.

Consequently, the finiteness of black hole entropy is the underlying reason for the saturation of

complexity.

Moreover, according to the quantum recurrence theorem3, the system’s state is quasi-periodic.

After a doubly exponential time t ∼ exp(expS), the system will return to a state that is nearly

identical to its initial configuration.

Holographic complexity: conjectures

Several proposals aim to define complexity holographically, prominent conjectures include complex-

ity=volume (CV), complexity=action (CA), complexity=spacetime volume (CV2.0), and complex-

ity=anything. Complexity=volume conjecture embrace the formula for the complexity of the dual

quantum state, which is given by

CV ∼ V (Σt)

GNR
, (1.111)

where Σt is the codimension-one maximal surface in the bulk with the property: ∂Σt = ΣCFT ,

where ΣCFT represents the boundary time slice and V (Σt) represents the volume of the surface

3The Quantum Recurrence Theorem states that for a finite quantum system evolving under unitary time

evolution, the system returns arbitrarily close to its initial state after a long time.
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Σt. Here GN is Newton’s constant, and R is AdS curvature radius. For eternal black hole dual

to thermo field double state, holographic complexity is proportional to the spatial volume of the

Einstein-Rosen bridge connecting the two boundaries. Figure 1.6 illustrates the maximal spatial

surface Σt, anchored at the two boundaries, with tL = tR = t.

Let’s now explore the original motivation for the complexity=action (CA) proposal. The com-

plexity obtained using the volume proposal can be rewritten as:

C ∼ V (tL, tR)R

GNR2
, (1.112)

where tL and tR represents anchoring time slices of the wormhole at the left and right boundaries,

respectively. To obtain this expression, we multiply both the numerator and denominator of the

complexity=volume conjecture by the AdS curvature scale R. At late times, the spatial volume of

the Einstein-Rosen bridge can be approximated as V (Σt) ∼ GS (tR + tL), where GS represents the

cross-sectional area of the wormhole. Hence, the world volume of the wormhole can be approximated

as |W| ∼ GS (tR + tL)R, where the AdS curvature scale R represents the time duration. This world

volume can be interpreted as a tube of length (tL + tR). By combining this approximation with

the expression for complexity, we obtain:

C ∼ |W|
GNR2

. (1.113)

Since 1
R2 is proportional to the cosmological constant Λ, this expression suggests that complexity

corresponds to a gravitational action in the presence of a negative cosmological constant. This

observation motivates the complexity=action proposal.

The Complexity=action proposal postulates that holographic complexity is defined as the on-

shell gravitational action evaluated on the Wheeler-DeWitt patch (WDW), divided by πℏ , ex-

pressed as

CA =
IW
πℏ

, (1.114)

where IW represents the on-shell gravitational action evaluated on the WDW patch. This patch is

bounded by the null rays emerging from the boundaries as illustrated in Figure 1.7 and is the union

of all space-like surfaces anchored at the boundary time slice ΣCFT . Unlike the complexity=volume

proposal, which selects a single space-like surface, the complexity=action proposal requires the

action to be evaluated on the entire WDW patch, encapsulating all space-like surfaces anchored at

ΣCFT .

Consider a D-dimensional AdS black hole metric given by:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

D−2 , (1.115)
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tL tR

Figure 1.7: Illustration of Wheeler-DeWitt patch enclosed by null rays (blue) , anchored at

times tL and tR on the left and right boundaries, respectively, in an eternal AdS black hole

where dΩ2
D−2 represents the metric on a (D−2)-dimensional unit sphere and the blackening function

f(r) reads as:

f(r) = 1 − 16πGDM

(D − 2)ΩD−2rD−3
+
r2

L2
, (1.116)

with ΩD−2 denoting the volume of (D − 2)-dimensional unit sphere.

The Gravitational action for the eternal AdS black hole geometry is given by:

Sgrav =
1

16πGD

[∫
M
dDx

√
−g (R− 2Λ) + 2

∫
∂M

dD−1x
√
−hK

]
, (1.117)

where the first term represents the bulk Einstein-Hilbert action, and the second term is the Gibbons-

Hawking-York boundary term. For a charged black hole, the geometry is described by the Reissner-

Nordström-AdS metric, and an additional term, Maxwell’s action, contributes to the gravitational

action:

SMaxwell = −1

4

∫
M
dDx

√
−g FµνFµν . (1.118)

The WDW patch is anchored at the boundaries with tL = tR = t, computing the gravitation

action ( 1.117) on this patch leads to:

dIW
dt

= 2M → dCA
dt

=
2M

πℏ
. (1.119)

This expression for the complexity CA holds for an uncharged AdS black hole of any size. However,

for a charged black hole, the action complexity is bounded by this value. The result (1.119) reflects

the expected linear growth of complexity, consistent with the linear growth of the wormhole in the

AdS black hole geometry.
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The Complexity= spacetime volume (CV2.0) proposal suggests that the holographic complex-

ity is defined as the volume of Wheeler-DeWitt (WDW) patch divided by GNR
2, represented as

CSV = VW
GNR2 .

Complexity involves inherent ambiguities stemming from the choice of a reference state and the

set of unitary gates used to prepare a target state. [30, 31] highlight that these ambiguities are

expected to manifest in the gravitational bulk as well. The authors argue that there is an infinite

class of gravitational observables in AdS black hole geometry that exhibit universal features: linear

growth with time at late times and switchback effect, making them plausible candidates for defining

holographic complexity. These gravitational observables are defined in a diffeomorphism-invariant

manner and may be associated with either codimension-zero or codimension-one regions. This

approach to defining holographic complexity is known as the complexity=anything proposal. A

number of studies have explored this proposal in detail [80, 81, 82, 83, 84, 85, 86, 87, 88, 89].

The codimension-one observables [30] are defined as:

OF1,ΣF2
=

1

GNR

∫
ΣF2

ddσ
√
hF1(gµν ;Xµ) , (1.120)

where F1 and F2 are scalar functions of the metric gµν and the embedding coordinatesXµ(σa). Here,

σa denotes the intrinsic coordinates on a codimension-one hypersurface, and h is the determinant

of the induced metric hab on this hypersurface. The integral is evaluated over the codimension-one

hypersurface ΣF2 , which is determined by extremizing the generalized volume functional:

Vgen =

∫
ddσ

√
hF2(gµν ;Xµ) , (1.121)

with the condition that the extremal hypersurface anchors at the boundary time slice ΣCFT , mean-

ing ∂ΣF2 = ΣCFT . For F1 = F2 = F , the gravitational observables are referred to as generalized

complexity ([30]):

Cgen =
1

GNR

∫
ΣF

ddσ
√
hF (gµν ;Xµ) . (1.122)

Generalized complexity extends the CV proposal, where setting F = 1 reduces to the holographic

complexity defined in the CV proposal.

In the context of the thermofield double (TFD) state dual to an eternal black hole, the observ-

ables OF1,ΣF2
exhibit two universal characteristics:

1. Linear growth at late times: As time progresses towards infinity, these observables grow

linearly:

lim
t→∞

OF1,ΣF2
(t) ∝ t . (1.123)

2. Switchback effect: These observables also exhibit a universal time delay in response to pertur-

bations or shockwaves. This phenomenon, known as the switchback effect, has been identified
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in studies of holographic complexity, where a characteristic delay in the growth of complexity

is observed following a perturbation.

These properties make OF1,ΣF2
(defined by 1.120) plausible candidates for holographic com-

plexity.
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Chapter 2

Cosmologies, singularities and

quantum extremal surfaces

Recent years have witnessed significant progress on the black hole information paradox [14, 15, 16,

90, 91]. These advancements rely on the island prescription, embracing the study of entanglement

and quantum extremal surfaces. Several papers have appeared on various aspects of these issues,

as reviewed in, e.g., [92, 93, 94, 95]. Quantum extremal surfaces are the extrema of the generalized

entropy [45, 46], obtained by incorporating the bulk entanglement entropy of matter and the classi-

cal area of the entangling RT/HRT surface [17, 42, 96, 97]. These developments have led to various

new insights on black holes. Explicit calculations can be performed in effective two-dimensional

models, where the bulk entanglement entropy is studied through two-dimensional CFT techniques.

It is interesting to ask whether quantum extremal surfaces might be used to probe cosmological

singularities—whether of the Big-Crunch or Big-Bang type. While the vicinity of the singularity

is expected to be dominated by severe stringy or quantum gravity effects, one may hope to gain

some insight into how these extremal surfaces probe such singularities. [43] examines aspects of

entanglement and quantum extremal surfaces (QES) in various families of holographic spacetimes

that exhibit cosmological singularities. Some interesting recent work on QES and cosmologies

appears in [98]–[127].

The investigations in [43] focused on various Big-Crunch singularities, in particular the isotropic

AdS Kasner spacetime. These spacetimes lack horizons and significant entropy, distinguishing them

from black hole horizons. Moreover, the authors consider closed universes that are not entangled

with any external regions (e.g., other universes). One of the objectives here is to understand

how quantum extremal surfaces probe such spacetime singularities in closed universes that do not

possess horizons or external entanglement. The time-dependence implies that the classical extremal

RT/HRT surface dips into the bulk radial and as well as time directions. Explicitly analysing the

extremization equations in the semiclassical region far from the singularity can be carried out in

detail: we find the surface bends in the direction away from the singularity. In the 2-dim cosmologies
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[113] obtained by dimensional reduction of these and other singularities, quantum extremal surfaces

can be studied by extremizing the generalized entropy, with the bulk matter taken to be in the

ground state (which is reasonable in the semiclassical region far from the singularity). The resulting

extremization shows the quantum extremal surfaces to always be driven to the semiclassical region

far from the singularity. In sec. 1.2.7, we reviewed the analysis in [43]. The 2-dim dilaton gravity

theories in these cases are somewhat more complicated than Jackiw-Teitelboim gravity and are

not “near JT” in essential ways. The cosmological solutions here are sourced by an extra scalar

which descends from the scalar in the higher dimensional theory. These theories capture a subset

of the observables of the higher dimensional theory and so are best regarded as models of “effective

holography” [112], UV-incomplete in totality but adequate for capturing various aspects including

entanglement. Since the quantum extremal surfaces are driven to the semiclassical region far from

the singularity, the approximation of using the 2-dimensional theory is consistent and the other

higher dimensional modes do not make any significant contribution.

This chapter is based on [127] and builds upon the investigations of [43]. We further develop

these studies by analyzing quantum extremal surfaces (QES), with a particular focus on those

that remain spacelike-separated from the observer’s location whenever possible. We begin with a

detailed analysis of QES in AdS Kasner cosmologies (Section 2.2), introducing a spatial regula-

tor. This approach allows us to relate the temporal positions of the observer on the holographic

boundary and the QES to the bulk matter central charge and the regulator. In the semiclassical

regime, our analysis reveals that the quantum extremal surface lags behind the observer (in the

direction away from the singularity). A potential island-like region, upon analysing in detail near

the island boundary, turns out to be inconsistent. We then generalize our investigation to include

other singularities with holographic interpretations, which exhibit similar behavior. In Section 2.3,

we analyze certain families of null Kasner Big-Crunch singularities. These display a form of “holo-

morphy” due to special properties of null backgrounds, and they also differ in the behavior of the

QES, which can now reach the singularity (although the generalized entropy remains singular).

2.1 Review of quantum extremal surfaces in AdS Kas-

ner cosmologies

Various families of cosmologies with Big-crunch singularities and their dimensional reduction have

been studied in [113]. Consider the higher dimensional space and its reduction ansatz as:

ds2D = g(2)µν dx
µdxν + ϕ

2
d dσ2d , gµν = ϕ

d−1
d g(2)µν , D = d+ 2 . (2.1)

d is the number of the transverse dimensions. The two dimensional action after the Weyl transfor-

mation, is given by:

S =
1

16πG2

∫
d2x

√
−g
(
ϕR− U(ϕ, ψ) − 1

2
ϕ(∂ψ)2

)
. (2.2)
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The dilaton potential U(ϕ, ψ) is the function of the dialton field ϕ and an extra scalar field ψ.

The scalar field ψ controls the gauge coupling as g2YM = eψ. The power-law scaling ansatz for the

two-dimensional fields and the corresponding higher-dimensional spacetimes can be expressed as:

ϕ = tkrm, ef = tarb, eΨ = tαrβ → ds2D =
ef

ϕ(di−1)/di

(
− dt2 + dr2

)
+ ϕ2/didx2i . (2.3)

The solution of the two-dimensional dilaton gravity theory described in [113] (see Eq. 2.2) is given

by:

ds2d+2 =
R2

r2
(−dt2 + dr2) +

t
2
dR2

r2
dx2i ,

ϕ =
tRd

rd
, ds2 =

t
d−1
d Rd+1

rd+1
(−dt2 + dr2) , eψ = t

√
2(d−1)

d . (2.4)

R is the AdS length scale. Consider a scenario where the bulk matter is described by a conformal

field theory (CFT2) in its ground state. This is a reasonable assumption far from the singularity at

t = 0 in the semi-classical regime. Additionally, we assume that the quantum extremal surface lies

on the same time slice as the observer, i.e., t = t0. The generalized entropy is then derived using

Eqs. (1.69) and (2.4), expressed as:

Sgen =
ϕr
4G

tRd

rd
+

c

12
log

(
t
(d−1)

d

rd−1

)
=
ϕr
4G

ϕ+
c

12

d− 1

d
log(ϕ) . (2.5)

The extremization equations are given by:

∂rSgen = −
[
ϕr
4G

dtRd

rd+1
+

c

12

(d− 1)

r

]
= 0 ,

∂tSgen =
ϕr
4G

Rd

rd
+

c

12

(d− 1)

dt
= 0 . (2.6)

We observe that both terms in the extremization equations have the same sign for c > 0 and d > 1.

Therefore, each term must individually equal zero in both extremization equations. This leads to

the quantum extremal surface (QES) solution [43], denoted as (r∗, t∗), given by:

t∗ = t0 , r ≡ r∗ → ∞ , t ≡ t∗ → ∞ , t∗ ≤ r∗ . (2.7)

This suggests that the quantum extremal surface (QES) is driven to the semi-classical region, away

from the singularity at t = 0. Consequently, island solutions are absent in AdS Kasner cosmologies

under the assumption t = t0.

2.2 AdS Kasner, quantum extremal surfaces, regulated

We study various two-dimensional backgrounds characterized by the dilaton and the two-dimensional

metric , analyzing quantum extremal surfaces obtained from extremizing the generalized entropy

(1.69):

Sgen =
ϕ

4G
+

c

12
log
(

∆2ef |(t,r)
)
, ∆2 = r2 − (t− t0)

2. (2.8)
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The extremization equations, retaining only the relevant terms, are given by:

∂rϕ

4G
+
c

6

r

∆2
+

c

12
∂rf = 0 ,

∂tϕ

4G
− c

6

t− t0
∆2

+
c

12
∂tf = 0 . (2.9)

We seek to understand the dependence of the quantum extremal surface (t∗, r∗) on the observer’s

location (t0, r0) ≡ (t0, 0) . Specifically, we focus on an observer at the holographic boundary. Our

analysis considers the AdS Kasner case, where we explicitly restore the AdS scale and the Kasner

scale from (2.4) to ensure that length scales remain manifest. The dilaton and two-dimensional

metric then take the form:

ϕ =
t/tK

(r/R)di
, ds2 =

(t/tK)(di−1)/di

(r/R)di+1
(−dt2 + dr2) . (2.10)

Towards understanding quantum extremal surfaces, let us study (2.8) with the scales put in explic-

itly as in (2.10). If we assume t = t0, we obtain (2.6), (2.7), which are structurally similar to the

AdS case (1.76). We will instead attempt solving for t as a function of t0. Then the extremization

equations are (introducing ϕr as bookkeeping for now)

c

6

r

∆2
=
ϕr
4G

di t/tK
rdi+1/Rdi

+
c

12

di + 1

r
,

c

6

t− t0
∆2

=
ϕr
4G

1/tK
rdi/Rdi

+
c

12

di − 1

di t
. (2.11)

Note that each term now has dimensions of inverse length manifestly. In the parametrization of

these cosmologies (2.4), the singularity is at t = 0: regarding this as a Big-Crunch, we take the

time coordinate t to represent |t| so that t > 0 in our entire discussion.

We require that the QES is spacelike-separated from the observer, consistent with the interpre-

tation of these extremal surfaces as holographic entanglement. This implies

∆2 > 0 ⇒ t∗ > t0 , [∆2 = r2 − (∆t)2] (2.12)

from the t-equation in (2.11). This means that the QES always lags behind the observer, in the

direction away from the singularity (t = 0).

Let us now look in more detail at QES solutions near the semiclassical solution (2.7), where

∆t ∼ 0 and r, t→ ∞. Let us first rewrite the r-extremization equation in (2.11) as

3ϕr
Gc

di t/tK
rdi+1/Rdi

+
(di + 1

r
− 2r

∆2

)
=

3ϕr
Gc

di t/tK
rdi+1/Rdi

+
di + 1

r

( di−1
di+1r

2 − (∆t)2

r2 − (∆t)2

)
= 0 (2.13)

As long as ∆t is small, i.e. ∆2 ∼ r2, the second term is positive: thus both terms are positive, the

only solution to this being r ≡ r∗ → ∞. This is very similar to the time-independent AdS case in

(1.76), giving the entire Poincare wedge as the entanglement wedge: there are no islands.

Analysing the t-extremization equation is rendered tricky with r∗ → ∞ strictly. Towards

obtaining insight into the t0 dependence of t∗, let us regulate as r∗ = Rc ∼ ∞ with some large

but finite spatial cutoff Rc that represents the boundary of the entanglement wedge. Then the

t-equation in (2.11) becomes

∆t

R2
c − (∆t)2

=
1

2Kc
+
di − 1

2di t
,

1

Kc
=

3ϕr
Gc

1/tK

Rdic /Rdi
. (2.14)
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This expression is manifestly satisfied semiclassically as in (2.7). Taking these regulated equations

as containing finite terms we can solve for t∗ : with ∆t≪ Rc, we obtain the approximate regulated

expression
∆t

R2
c

∼ 1

2Kc
+
di − 1

2di t0
, ∆t = t∗ − t0 , (2.15)

where we have approximated ∆2 ∼ R2
c and set t ∼ t0 in the last expression (with t0 large, as

in (2.7)). We see that the QES (2.15) lags behind the observer, in the direction away from the

singularity. We now see that as t0 decreases, ∆t increases, i.e. the lag of the QES is increasing: see

the top part of Figure 2.1 for a heuristic depiction (the lag is exaggerated!).

AdS Kasner

*

QES (t  ,0)0

r=0
boundary

observer

t=t K

singularity t=0

far region
time independent

region

*
(t  ,r )

Figure 2.1: Cartoon of the 2-dim AdS Kasner geometry

(singularity at t = 0), the holographic boundary at r = 0

and the QES at (t∗, r∗), with a time-independent AdS

space appended for t > tK . The boundary observer (t0, 0)

moves in time from the time-independent region to the

AdS Kasner region. The QES lags behind in time, i.e.

t∗ > t0, when t0 is in the Kasner region.

The on-shell generalized entropy (2.8) in the semiclassical regime where ∆2 ∼ R2
c becomes

So.s.gen ∼ ϕr
4G

t∗/tK
(Rc/R)di

+
c

12
log

(
R2
c

ϵ2UV

(t∗/tK)(di−1)/di

(Rc/R)di+1

)
, (2.16)

with t∗ in (2.15). Since t∗ ≳ t0 and Rc is large, So.s.gen is not dramatically different structurally from

the AdS value (1.76), without the t∗/tK factors. In more detail, we see that the on-shell AdS

expression (1.76) with r∗ = Rc and ϕ|r∗ = ϕ∗ becomes So.s. = ϕ∗
4G + c

12 log
(
R2

ϵ2UV
(ϕ∗ϕr )

(di−1)/di
)

so

the log vanishes when its argument becomes O(1), i.e. when ϕ∗ is sufficiently small. At this point,

So.s. ∼ ϕ∗
4G ∼ 0, in accord with the physical expectation that the AdS ground state has zero entropy.

In this sense the spatial regulator Rc has physical meaning as the effective physical boundary of the

entanglement wedge, where ϕ∗ becomes small enough to be comparable with ( ϵUV
R )

#
. Note that

we can recast So.s. as (1.77) exactly setting 1

ϕ
(di−1)/di
r

R2

ϵ2UV
∼ 1 thus fixing ϕr, which can possibly

be regarded as renormalizing ϕr
G ≡ 1

Gr
(and rendering Sgen finite). The above expression (2.16) is

similar when the t∗/tK factors are O(1) so the above arguments apply, and the overall entropy is

not appreciable.

As a further check, note that this QES solution vindicates the maximin property1.

1In the semiclassical regime, the second derivatives ∂2t Sgen|∗ ∼ − c
12

di−1
di t2∗

− c
6

1
∆2

∗
− c

3
(t∗−t0)

2

∆4
∗

< 0 and
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Naively it appears that ∆t
R2

c
∼ 1

t0
shows a growth as t0 decreases. Rewriting (2.14) and solving

as a quadratic, taking ∆t > 0, gives

∆t

Rc
=

1

Rc

(√
1

( 1
Kc

+ di−1
di t

)2
+R2

c − 1
1
Kc

+ di−1
di t

)
, (2.17)

showing a slow growth in ∆t as t decreases, for fixed regulator Rc. Extrapolating and setting t0 = 0

shows that t = 0 is not a solution (this can also be seen in (2.11)).

We consider our analysis to be most valid within the semiclassical regime, far from the singu-

larity, where bulk matter is approximated to be in its ground state. Nevertheless, the qualitative

behavior of the quantum extremal surfaces and the associated entanglement wedge—excluding the

near-singularity region (schematically depicted in the top AdS Kasner part of Figure 2.1)—may

persist as a reliable result even with improved near-singularity bulk entropy models.

We observe that the semiclassical generalized entropy, (2.16), decreases over time as the sin-

gularity is approached. This behavior is reminiscent of findings in [128, 129], which suggest low

complexity in such singularities. Expressing this semiclassical value in the form (1.77), we find that

as long as ϕ remains sufficiently large, the bulk entropy term remains subleading to the area term.

Consequently, the Bekenstein bound is upheld, preventing the formation of spatially disconnected

islands akin to those found in black holes. From a qualitative perspective, one might interpret the

excluded near-singularity region as a timelike-separated, island-like domain. Further investigation

into this interpretation could provide deeper insights.

2.2.1 Searching for islands

Examining (2.13), we observe that in the regime

di − 1

di + 1
r2 < (∆t)2 < r2, (2.18)

a spacelike-separated island appears to emerge. This behavior contrasts with the semiclassical

region with ∆t≪ r (where both terms are the same sign), as the numerator in the bracketed term

of (2.13) changes sign, leading to a large but finite r ∼ ( ϕrGc)
# solution, indicating a disconnected

region. This bears some structural resemblance to the discussion in [125].

To explore this in detail, we rewrite the ∂r-equation in (2.11) as:

∆2 =
2r2

di + 1

1

1 + di
di+1

t
K

,
1

K
=

3ϕr
Gc

1/tK
rdi/Rdi

, (2.19)

so

∆2 = r2 − (∆t)2 ⇒ ∆t

r
=

√√√√ di−1
di+1 + di

di+1
t
K

1 + di
di+1

t
K

. (2.20)

∂2rSgen|∗ ∼ ϕr

4G
di (di+1) t∗ Rd

i

tk R
di+2
c

+ c
12

di+1
R2

c
+ c

6
1
∆2

∗
(1 − 2R2

c

∆2
∗

) > 0 confirm time-maximization and spatial mini-

mization, with the regulator Rc finite.
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The potential island arises at large finite r in (2.13) when

(∆t)2 ≳
di − 1

di + 1
r2 (2.21)

so that ∆t is not small but in fact scales as r which is large. Expanding (2.20) in the vicinity of

(2.21) gives

∆t

r2
∼
√
di − 1

di + 1

1

r

(
1 +

di
d2i − 1

t

K
+ . . .

)
. (2.22)

Now the ∂t-equation (2.11) as an exact quadratic can be solved to obtain (choosing ∆t > 0)

∆t

r
=

√√√√ d2i
(di−1)2

t2

r2

( di
di−1

t
K + 1)2

+ 1 −
di
di−1

t
r

di
di−1

t
K + 1

, (2.23)

with K defined in (2.19). For a nontrivial island-like solution, this expression for ∆t
r must match

that in (2.20) in the vicinity of the island boundary (2.21). With t
K ∼ ϵ being small, we expand

and obtain at leading order√
1 + x2 − x =

√
di − 1

di + 1

solving−−−−→ x ≡ di
di − 1

t

r
=

1√
d2i − 1

(2.24)

This gives

∆t ≳

√
di − 1

di + 1
r ∼ di t . (2.25)

The last condition ∆t ≳ di t is clearly impossible with ∆t = t− t0 for any di > 1.

In addition, using the leading term matching condition (2.25) and expanding (2.23) about the

potential island boundary (2.21) shows that the first subleading term in t
K is 1

di

√
di+1
di−1

t
K which

does not match the first subleading term in (2.22).

We have investigated an island-like solution near the potential island boundary (2.21), emerging

continuously from the semiclassical region where r∗ → ∞, as discussed after (2.13). However, a

simultaneous solution to the extremization equations (2.11), rewritten as (2.20) and (2.23), is

not achieved near (2.21). Consequently, this potential island solution is inconsistent. One might

question whether nontrivial islands exist further towards the singularity (though they may not be

physically reliable). Expressing and expanding the extremization equations (2.13) and (2.14) yields

two cubic equations in t. However, solving these equations simultaneously (e.g., by eliminating the

term t3) suggests the absence of consistent finite solutions, implying that no islands exist.

Moreover, our current treatment of potential island-like solution is semiclassical, based on a

fixed classical background geometry and a quantum field theory in the bulk. In this framework,

the generalized entropy includes only the leading-order quantum correction term, Sbulk, at O(G0
N ),

and does not account for higher-order quantum gravitational corrections. Nonetheless, the general-

ized entropy formula encapsulates results—such as the quantum extremal surfaces (QES) and the

emergence of island-like regions—at all orders in GN , provided the background geometry is held
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fixed. This approach, while not fully non-perturbative, may be regarded as a semi-non-perturbative

framework, as it extends beyond leading-order perturbation theory but still fundamentally relies on

the semiclassical description. A genuinely non-perturbative formulation of quantum gravity must

incorporate both all-order perturbative corrections in GN and intrinsically non-perturbative effects,

such as those arising from stringy dynamics or gravitational instantons. Establishing a rigorous,

fully non-perturbative derivation of island phenomena would require computing the full quantum

gravity path integral within a more complete framework—such as string theory. This remains an

open problem and is left for future investigation.

2.2.2 Appending a time-independent far region

Let us now consider appending the AdS Kasner space with a time-independent AdS region far

from the singularity, joined at the Kasner scale t = tK . See Figure 2.1. Thus, we have AdS Kasner

region for t < tK and a time-independent AdS space for t > tK , i.e.,

ϕ =
t/tK

(r/R)di
, ds2 =

(t/tK)(di−1)/di

(r/R)di+1
(−dt2 + dr2) [t < tK ] ,

ϕ =
1

(r/R)di
, ds2 =

1

(r/R)di+1
(−dt2 + dr2) [t > tK ] . (2.26)

The two regions are continuously joined at t = tK , though the joining is not smooth. The extrem-

ization equations must now be analyzed separately as the observer at t0 moves through each region.

Applying the generalized entropy and its extremization (2.8) to the background profiles (2.26) in

both regions yields:

t0 > tK :
c

6

r

∆2
=
ϕr
4G

di
rdi+1/Rdi

+
c

12

di + 1

r
,

c

6

t− t0
∆2

= 0 ; (2.27)

t0 < tK :
c

6

r

∆2
=
ϕr
4G

di t/tK
rdi+1/Rdi

+
c

12

di + 1

r
,

c

6

t− t0
∆2

=
ϕr
4G

1/tK
rdi/Rdi

+
c

12

di − 1

di t
.

In the time-independent region t > tK , it is physically reasonable to set t∗ = t0, i.e., the QES lies

on the same time slice as the observer. This follows from time-translation invariance in that region,

at least for t0 ≫ tK (sufficiently far from the junction at tK). Since the joining slice t = tK lies in

the semiclassical region, far from the singularity, it is appropriate to use (2.15) with the regulator

to study the QES’s time evolution in the Kasner region. The lagging (or repulsive) behavior of the

QES thus begins when the observer enters the Kasner region. However, due to the sharp transition

at tK , this lag does not evolve smoothly.

To see this in more detail, consider the time t0 = tK − δt0 when the observer is just entering

the Kasner region: then we expect that the quantum extremal surface is just a little away from the

observer time slice t0. To quantify this, let us compare δt∗ in (2.15) with δt0 (and Kc defined in

(2.14)): we have

δt0 = tK − t0 > 0 ;
δt∗
R2
c

=
t∗ − t0
R2
c

∼ 1

2Kc
+
di − 1

2di tK

(
1 +

δt0
tK

)
, (2.28)
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so that for small δt0 i.e. t0 ∼ tK , the quantum extremal surface ends up being pushed to the time-

independent region (t∗ > tK). Of course as the observer moves in time further, the QES enters the

Kasner region as well. To see this further, let us compare the QES location with the Kasner scale:

with t0 ≲ tK , we have

t∗ ≲ tK ⇒ tK − t0
R2
c

≳
1

2Kc
+
di − 1

2di t0
(2.29)

In other words, the quantum extremal surface is within the Kasner region if the observer is suffi-

ciently further within. The cross-over of the QES to the Kasner region occurs when t∗ ∼ tK , i.e.

when the above inequality is saturated (giving t0−tK
R2

c
∼ − 1

2Kc
− di−1

2ditK
).

The model (2.26) serves as a simple toy model to gain insight into the evolution of the quan-

tum extremal surface as the observer moves from the time-independent far region into the time-

dependent AdS Kasner region toward the singularity. The presence of the time-independent far

region suggests that the initial state can be prepared as a ground state via a Euclidean continua-

tion. However, placing this on firmer footing is more subtle. A discontinuity arises at the t = tK

slice, likely reflecting that the Kasner time dependence does not simply switch off at tK . This

raises potential concerns regarding smooth time evolution into the Kasner region, particularly in

the absence of any external energy-momentum inflow. A more detailed analysis would require a

careful examination of the junction conditions governing the transition at tK . Rather than a sharp

time slice at tK , it may be more physical to consider a thickened spacetime region that interpolates

smoothly between the time-independent far region and the Kasner region. In such a scenario, the

QES lag would likely evolve more smoothly. We leave these questions for future investigation.

2.2.3 More general 2-dim cosmologies, QES, regulated

In the previous subsections, we examined AdS-Kasner cosmologies, their 2-dimensional reductions

(2.4), and quantum extremal surfaces. We now extend this analysis to more general 2-dimensional

cosmologies:

ϕ = tkrm , ef = tarb , ds2d+2 =
ef

ϕ
(d−1)

d

(−dt2 + dr2) + ϕ
2
d dx2i . (2.30)

The corresponding 2-dimensional dilaton and metric fields take the form:

ϕ = trm , ef = tarb , a > 0, m < 0, b < 0 . (2.31)

Note that we have taken the time exponent of the dilaton in accord with the universality of the

near singularity region found in [113]. We take a > 0 to simulate a Big-Crunch singularity at t = 0.

Further we assume m, b < 0 in accord with the intuition that the dilaton and the 2-dim metric

grow towards the holographic boundary at r = 0.

The generalized entropy (2.8) and its extremization with r, t, give

c

6

r

∆2
=
ϕr
4G

|m|t
r|m|+1

+
c

12

|b|
r
,

c

6

t− t0
∆2

=
ϕr
4G

1

r|m| +
c

12

a

t
, (2.32)
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analogous to (2.11), except that we have suppressed length scales analogous to R, tK here. Firstly,

requiring the spacelike condition ∆2 > 0 implies t∗ > t0, analogous to (2.12): this means the QES

lags behind the observer, in the direction away from the singularity at t = 0.

As noted already in [43], it is clear that the QES solution to these extremization equations is

again of the form (2.7), i.e. r∗ → ∞, t∗ ∼ t0 → ∞ with t∗ ≲ r∗. In the vicinity of the semiclassical

region, analogous to the AdS Kasner case (2.13) we can recast the r-equation as

3ϕr
Gc

|m|t
r|m|+1

+
( |b|
r

− 2r

∆2

)
=

3ϕr
Gc

|m|t
r|m|+1

+
|b|
r

( |b|−2
|b| r2 − (∆t)2

r2 − (∆t)2

)
= 0 . (2.33)

As in that case, with ∆t small, i.e. ∆2 ∼ r2, both terms are positive and the only solution to this

is r∗ → ∞, giving the entire Poincare wedge as the entanglement wedge: there are no islands. Now,

the t-equation becomes
∆t

R2
c − (∆t)2

=
3ϕr
2Gc

1/tK

Rdic /Rdi
+
di − 1

2di t
, (2.34)

analogous to (2.14). As before, we are regulating the QES solution as r∗ = Rc ∼ ∞ with some

large but finite spatial cutoff Rc representing the boundary of the entanglement wedge. Taking

these regulated equations as containing finite terms we can solve for t∗ , obtaining an approximate

regulated expression analogous to (2.15) after setting ∆2 ∼ R2
c and t ∼ t0. The resulting semiclas-

sical picture is similar to the discussion in the AdS Kasner case, with the QES lag increasing as t0

decreases.

Now let us look for island-like solutions in these more general holographic cosmologies, analogous

to Sec. 2.2.1. The corresponding island boundary here, analogous to (2.21), is

(∆t)2 ≳
|b| − 2

|b|
r2 . (2.35)

Analogous to (2.20) and (2.23) in the AdS Kasner case, we obtain, respectively,

∆2 = r2 − (∆t)2 ⇒ ∆t

r
=

√√√√√ |b|−2
|b| + |m|

|b|
t
K

1 + |m|
|b|

t
K

,
1

K
=

3ϕr
Gc

1

r|m| , (2.36)

rearranging (2.33), and

∆t

r
=

√√√√ 1
a2

t2

r2

( 1a
t
K + 1)2

+ 1 −
1
a
t
r

1
a
t
K + 1

, (2.37)

from the ∂t-equation in (2.32) regarded as a quadratic, choosing ∆t > 0.

For a nontrivial island-like solution emerging in the vicinity of (2.35), these two expressions for
∆t
r must match: expanding, the leading order terms give

x ≡ 1

a

t

r
:
√

1 + x2 − x =

√
|b| − 2

|b|
solving−−−−→ t

r
=

a√
|b|(|b| − 2)

, (2.38)
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while matching the first subleading terms requires

1

a
√
|b|(|b| − 2)

(
1 − 1√

|b|(|b| − 2) + 1

) t

K
=

|m|/|b|√
|b|(|b| − 2)

t

K
(2.39)

i.e.
a|m|
|b|

= 1 − 1√
|b|(|b| − 2) + 1

(2.40)

For the AdS Kasner values a = di−1
di

, m = −di , b = −(di + 1), these agree with the conditions

obtained in Sec. 2.2.1, which were not consistent as we saw. The condition (2.38) gives ∆t =
|b|−2
a t : this is impossible in the AdS Kasner case (2.25) as we saw. For the hyperscaling violating

cosmologies (6.33), this condition can again be shown to be impossible to satisfy (a takes its

maximum value for γ = 0). The hyperscaling violating Lifshitz cosmologies in [113] require a =

|b|−2 , m = −1 (reviewed very briefly after (6.33)). This gives ∆t = |b|−2
a t = t , which is satisfied for

t0 = 0, but this is the location of the singularity which is unreliable (the condition (2.40) becomes
2
b = 1√

|b|(|b|−2)+1
giving b = −2, a = 0). Thus overall, these more general holographic cosmologies

appear qualitatively similar to the AdS Kasner case.

The conditions (2.31) on the exponents are motivated by the broader investigations of 2-

dimensional cosmologies in [113]. These studies adopt fairly general and minimal assumptions about

the effective action governing such cosmological spacetimes, revealing a remarkably rich space of so-

lutions. This includes cosmologies with nonrelativistic asymptotics, such as hyperscaling-violating

Lifshitz spacetimes, and various boundary conditions—all of which satisfy the conditions (2.31).

However, it would be interesting to further explore this landscape of cosmologies, potentially ex-

tending it beyond those that reduce to two dimensions. A broader classification could provide

deeper insights into the behavior of quantum extremal surfaces, particularly in relation to the

Big-Crunch (or Big-Bang) singularities they may exhibit.

2.3 Null cosmologies and quantum extremal surfaces

In this section, we consider cosmological spacetimes with null time dependence, drawing parallels

with the discussions in [22, 115, 116] as well as, for example, [130, 131, 132, 133, 134]. If we further

impose that the higher-dimensional spacetime allows for dimensional reduction via (2.1) to two

dimensions, the resulting backgrounds take a restricted form:

ds2 = −dx+dx− , ϕ = ϕ(x+) , Ψ = Ψ(x+) , x± = t± r . (2.41)

Since the two-dimensional metric depends only on x+, it can always be transformed to a flat form

via a coordinate redefinition, provided that ϕ and ef in the reduction ansatz (2.1) also depend

solely on x+. This leads to the simplified expression above. Consequently, the higher-dimensional

spacetime corresponding to (2.30) takes the form:
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ds2 = −ϕ−(di−1)/didx+dx− + ϕ2/didy2i , xi = {r, yi} . (2.42)

This comprises various higher dimensional backgrounds with null singularities e.g.

ds2 = (x+)a(−dx+dx−) + (x+)bdy2i (2.43)

which however are somewhat special, given the restriction to the 2-dimensional reduction ansatz

(2.1): thus it also does not include the null holographic AdS cosmologies in [22, 115, 132, 133] which

are of the form ds2 = R2

r2
[ef(x

+)(−dx+dx− + dx2i ) + dr2] . There are qualitative parallels however.

The exponents a, b in (2.43) are related by the Einstein equations. These are a bit similar to the null

Kasner backgrounds considered in [116], except that the 2-dim restriction implies that ef ≡ (x+)a

can be absorbed by redefining the null time variable x+ → X+ =
∫
efdx+. In writing the 2-dim

backgrounds (2.41) we have effectively redefined the lightcone variables x± in this manner. These

backgrounds are likely supersymmetric.

Now the equations of motion (6.29) simplify tremendously since there is only null-time de-

pendence in the background ansatze (2.41): for instance all nontrivial contractions of the form

gµν∂µΨ∂νΨ ∼ g+−∂+Ψ∂−Ψ vanish since there is no x−-dependence. We also have R = 0 since the

2-dim space is flat. Thus the equations of motion give

(++) : −∂2+ϕ− ϕ

2
(∂+Ψ)2 = 0 ; (2.44)

(ϕ) :
∂U

∂ϕ
= R− 1

2
(∂Ψ)2 = 0 ; (Ψ) :

∂U

∂Ψ
= ∂µ(ϕgµν∂νΨ) = 0 .

These imply that the dilaton potential is trivial and give a single nontrivial condition from the

(++) equation relating ϕ,Ψ. We want to consider a Big-Crunch singularity arising at x+ = 0 as a

future null singularity, so we take x+ < 0 in our entire discussion below. Then

ϕ = (−x+)k , Ψ = Ψ(x+) ⇒ (∂+Ψ)2 = −2
∂2+ϕ

ϕ
= −2k(k − 1)

(x+)2
,

⇒ 0 < k ≤ 1 , ϕ = (−x+)k , eΨ = (−x+)±
√

2k(1−k) . (2.45)

While k > 0 gives vanishing dilaton as x+ → 0, the exponent of eΨ could have either sign. The

single ϕ,Ψ-relation allows extrapolating ϕ,Ψ above to asymptotically constant functions i.e. flat

space. This 2-dim background implies the upstairs background (2.42) with ϕ as above: this is of

the form (2.43) with a = −k(di−1)
di

and b = 2k
di

. These have Ri+i+ = k(1−k)
di (x+)2

so tidal forces diverge

(all curvature invariants vanish due to the null nature of the backgrounds). To see this in more

detail, consider a null geodesic congruence propagating along x+ with cross-section along some

yi-direction: the geodesic equation then gives

dx+

dλ2
+ Γ+

++

(dx+
dλ

)2
= 0 → λ =

(x+)a+1

a+ 1
, (2.46)
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where Γ+
++ = a

x+
is the only nonvanishing Γ+

ij component. Solving this leads to the affine parameter

above and the tangent vector becomes ξ = ∂λ = (dx
+

dλ )∂+ so ξ+ = (x+)a. The relative acceleration

of neighbouring geodesics then is aM = RMCDBξ
CξDnB with n = nB∂B the unit normalized cross-

sectional separation vector. Then it can be seen that ai = Ri+i+(ξ+)2ni so |ai|2 diverges for all

0 < k < 1 leading to diverging tidal forces, somewhat similar to the corresponding discussion in

[116]. For k = 1 the spacetimes (2.42) have all Riemann components vanishing: these can be recast

as ds2 = −dX+dx− + (X+)2dy2i which can be shown to be flat space in null Milne coordinates

(redefining Yi = X+yi , y
− = x− + y2iX

+).

Now we analyze quantum extremal surfaces. These cosmologies have no holographic boundary:

introducing a bookkeeping ϕr, the generalized entropy (Appendix 6.4) is

Sgen =
ϕr
4G

(−x+)k +
c

6
log
(
−∆x+∆x−

)
, (2.47)

where ∆x± = x± − x±0 characterizes the spacetime interval between the observer O and the QES

(see Figure 2.2). Strictly speaking, there is a null Kasner scale tN here appearing as ϕ = (−x
+

tN
)k so

ϕ is dimensionless: however since the 2-dim metric is flat in these variables, tN can be absorbed into

the definition of ϕr above: so we will suppress this (unlike the spacelike cases in sec. 2.2 earlier).

The extremization with respect to x− and x+ gives

∂−Sgen =
c

6

−∆x+

−∆x+∆x−
= 0 , ∂+Sgen = − ϕr

4G

k

(−x+)1−k
+
c

6

∂+∆2

∆2
= 0 . (2.48)

With 0 < k < 1, the classical extremization (c = 0) gives x+ → ∞ : in full, we have

∆2 = −∆x+∆x− > 0 , ∆x− = x− − x−0 → −∞ , − 1

(−x+)1−k
+

2Gc

3ϕrk

1

x+ − x+0
= 0 , (2.49)

so

∆x+ > 0, x+∗ = x+0 +
2Gc

3kϕr
(−x+∗ )1−k > x+0 ; ∆x− < 0, x−∗ → X−

c ∼ −∞ . (2.50)

This is best visualized as in Figure 2.2 : we describe this further below. From (2.8), we have

Gc≪ 1 so that x+ ∼ x+0 upto small corrections (with k ̸= 0). Thus employing perturbation theory

in Gc, we obtain

x+∗ ∼ x+0 +
2Gc

3kϕr
(−x+0 )1−k , (2.51)

i.e. the QES is almost on the same null-time (x+) slice as the observer, but just a little towards the

null singularity (using absolute values gives |x+| − |x+0 | ∼ − 2Gc
3kϕr

|x+0 |1−k). The location of the QES

as being towards the singularity rather than away as in the spacelike cases may look surprising at

first sight. However from Figure 2.2, drawing constant x+ and x− slices, it is clear that the location

of the QES with ∆x+ > 0 and ∆x− → −∞ is geometrically reasonable and expected if the QES

and the observer are to be spacelike separated (∆x+ < 0 gives timelike separation between the

QES and the observer). In terms of the (t, r)-coordinates (2.41), Figure 2.2 can be taken to depict
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entanglement
wedge

Figure 2.2: Cartoon of the 2-dim geometry with the

null singularity at x+ = 0, the worldline (x+0 , x
−
0 ) of a

timelike observer (vertical trajectory, representing for

simplicity a fixed spatial location), and the quantum

extremal surface at (x+∗ , x
−
∗ ). As can be seen, the

QES is spacelike separated from the observer (∆2 > 0)

if ∆x+ > 0 and ∆x− ∼ −∞, and lies towards the

singularity in terms of x+-slices. The entanglement

wedge defined by the QES is shown as the blue wedge.

the region with x+ = t + r < 0 in the (t, r)-plane, with the singularity locus being t + r = 0 and

the timelike observer worldline having some fixed r0 with t0 < 0. The description in Figure 2.2

continues to hold as long as the observer remains timelike: it also holds if the observer is moving

along a null trajectory along x+ with fixed x−. As a further check, we see that this extremization

exhibits time-maximization with null time (x+): we have, using (2.50),

∂2+Sgen = −k(1 − k)
ϕr
4G

(−x+)k−2 − c

6

1

(x+ − x+0 )2
→ ∂2+Sgen|∗ < 0 . (2.52)

Note however that ∂2−Sgen = − c
6

1
(∆x−)2

→ 0− from (2.48). This should not be surprising: the

2-dim space here is flat and the absence of the bulk gravitational field makes it quite different from

AdS-like spaces (e.g. an expression like S ∼ log r gives ∂2rS ∼ − 1
r2

→ 0−).

As examples of (2.47), we see that for a nearly smooth space e.g. with k = ϵ ≪ 1, (2.50) gives

x+∗ ∼ (1 − 2Gc
3ϵϕr

)x+0 . The case k = 2
3 gives the cubic

x+∗ = −t3 : t3 +
Gc

ϕr
t− |x+0 | = 0 , (2.53)

which can be shown to have one real root which satisfies ∆x+ > 0 and agrees with (2.51) in

perturbation theory in Gc. For generic k values, recasting using x+ = −y
1

1−k , it can be seen

numerically that there is one real root satisfying ∆x+ > 0. Along these lines, for values such as

k = 1
2 we choose the positive root of the resulting quadratic in continuity with neighbouring k

values, which then again gives ∆x+ > 0.

Note that these null cosmological singularities differ somewhat from spacelike ones. In partic-

ular, the extremization (2.50) shows that the singularity locus x+ = 0 is an allowed QES solution

when x+0 = 0. The behavior near x+ = 0 can be explicitly examined in examples such as (2.53),

e.g., numerically. Thus, these null singularities do not appear to be excluded from the observer’s
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entanglement wedge. However, the on-shell generalized entropy (2.47) remains singular in the

vicinity of the singularity:

So.s.gen =
ϕr
4G

(−x+∗ )k +
c

6
log

(
2Gc

3kϕr

(−x+∗ )1−k |X−
c |

ϵ2UV

)
. (2.54)

Thus although formal extrapolation to the singularity appears possible, the above implies that

the QES (2.50) is only reliable in the semiclassical regime with large x+∗ and Gc ≪ 1 (where the

Bekenstein bound does not appear violated). Also since So.s.gen appears singular, further subleading

contributions beyond the bulk entropy term presumably also must be considered. It was observed

in [116] that strings become highly excited in the vicinity of a null Kasner Big-Crunch singularity

(see also [130, 134]). It is likely that this will be true for (2.43) as well. In this regard, note

that the backgrounds (2.41) necessarily require the extra scalar eΨ to be nontrivial: interpreting

this as the string coupling gs = eΨ and choosing the negative sign exponent for eΨ in (2.45)

suggests large string interactions in the vicinity of the singularity x+ = 0. It is conceivable however

that in some appropriate double-scaling limit x+∗ → 0, X−
c → −∞, with 2Gc

3kϕr

(−x+∗ )1−k |X−
c |

ϵUV
held

fixed, the generalized entropy can be rendered nonsingular. It would be nice to explore this more

carefully, perhaps dovetailing with the positive sign exponent for eΨ in (2.45) and suppressed string

interactions.

It is interesting to note that there exists an entire function-worth of nontrivial null backgrounds

in (2.41), as shown by (2.44). This is a special feature of 2-dimensional spacetimes with a “holo-

morphic” structure, as is the case here with sole dependence on x+. For instance, the backgrounds

(2.43) can be recast by redefining the null-time variable to obtain (2.41), such that the 2-dimensional

metric becomes flat in these x±-coordinates.2 In contrast, spacelike cosmological singularities gen-

erally do not exhibit such “holomorphy” and cannot typically be recast in flat coordinates—hence,

the metric factor ef persists. This holomorphicity manifests in the extremization equations (2.48),

(2.50), where the x± sectors decouple—unlike, for instance, (2.11) in the AdS Kasner case and, more

generally, (2.8). Indeed, for generic 2-dimensional backgrounds (2.41), extremizing the generalized

entropy yields

∂+Sgen = 0 → ∂+ϕ+
2Gc

3ϕr

1

x+ − x+0
= 0 → x+ − x+0 = −2Gc

3ϕr

1

∂+ϕ
, (2.55)

once again reflecting this holomorphicity. From the reasoning in Figure 2.2, with ∆2 > 0 and

∆x+ > 0, we find ∆x− → −∞, implying that the quantum extremal surface must lie in the di-

rection of decreasing dilaton, i.e., ∂+ϕ < 0. This is consistent with our earlier discussion since the

2Instead of these “flat” variables, had we taken the background to be

ef = (X+)α , ϕ = (X+)K , → (∂+Ψ)2 =
2K(α−K + 1)

(X+)2
→ 0 < K ≤ α+ 1 .

In other words, the exponent k from earlier relates as k = K
α+1 . Now, the generalized entropy contains the

metric factor ef/2|∗, thus appearing singular.
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dilaton undergoes a crunch toward decreasing x+.

2.4 Discussion

We have examined quantum extremal surfaces in a variety of cosmological spacetimes exhibiting

Big-Crunch singularities, building upon the investigations in [43]. In this context, the generalized

entropy is analyzed within two-dimensional cosmologies that can, in part, be derived from the

dimensional reduction of higher-dimensional cosmologies. The bulk matter is assumed to be in

the ground state, which is a reasonable approximation in the semiclassical regime far from the

singularity. We first focused on the isotropic AdS Kasner spacetime and its reduction to two

dimensions. In [43], the quantum extremal surfaces were found to be driven into the semiclassical

region, located infinitely far from the Big-Crunch singularities present in these backgrounds (the

classical RT/HRT surfaces for finite subregion sizes bend away from the singularity, as illustrated in

Figure 1.2). Furthermore, an analysis of the spatial extremization equation (2.13) reveals that, in

the semiclassical region, the QES location extends over the entire Poincaré wedge, leaving no room

for island-like regions. Introducing a spatial regulator in the time extremization equation (2.14)

enables understanding the dependence of the QES on the observer’s location in time. This shows

that the QES lags behind the observer location, in the direction away from the singularity, as in

Figure 2.1. The lag can be seen to increase slowly as the observer evolves towards the singularity:

extrapolating shows that the singularity t = 0 is not a solution to the extremization equations. Thus

the entanglement wedge appears to exclude the near singularity region. Removing the regulator

recovers the results in [43]. The spatial extremization equation (2.13) shows an island-like region

emerging for (2.21). However analysing carefully the extremization equations recast as (2.20),

(2.23), in the vicinity of this island boundary reveals that the potential island-like solution is in

fact inconsistent. Appending a time-independent far region joined with the AdS Kasner region at

the time slice t = tK as in (2.26) gives further insight on the QES behaviour. This QES analysis in

the AdS Kasner case extends to more general singularities admitting a holographic interpretation,

with similar QES behaviour (2.33), (2.34), in the semiclassical region, and inconsistencies near

a potential island boundary (2.35). These cosmologies include nonrelativistic asymptotics: the

assumptions on the exponents (2.31) are fairly general.

In Section 2.3, we investigated families of null Big-Crunch singularities that exhibit a form

of holomorphy owing to the unique properties of null backgrounds. Notably, the behavior of the

quantum extremal surfaces in these cases (see Figure 2.2) is distinct, as they can now reach the

singularity. However, the on-shell generalized entropy remains singular, rendering the vicinity of

the singularity unreliable. In all instances, the QES is clearly spacelike-separated from the observer

(e.g., see (2.12) and (2.49)), which is consistent with its interpretation as holographic entanglement.

Our investigation focused on employing quantum extremal surfaces to gain insights into cosmo-
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logical spacetimes that contain Big-Crunch singularities. These spacetimes can all be expressed as

two-dimensional cosmologies, thereby excluding more general cosmologies that do not allow such

a reduction. Our discussion primarily considers the bulk matter in its ground state—a reasonable

assumption in regions far from the singularities encountered in these cosmologies. Overall, the

cosmologies examined are closed universes with no horizons, negligible entropy, and no additional

non-gravitating bath regions; consequently, islands are not generic in these settings (see, e.g., [126]).

This observation aligns with previous studies of closed universes that lack entanglement with ex-

ternal regions, which could act as purifiers for mixed states. As a result, the Bekenstein bound

is not violated, meaning that the bulk entropy does not overwhelm the classical area term in the

generalized entropy.

Perhaps the most intriguing question involves exploring more sophisticated models for bulk

matter in the near-singularity spacetime region, where the matter is expected to become highly

excited. Incorporating analogs of more ”stringy” physics or quantum entanglement may provide

deeper insights into how the near-singularity region becomes accessible via entanglement (with the

null singularities perhaps more tractable).

At a broad level, cosmological singularities in holography are, in several respects, qualitatively

different from black holes. They seem to require nontrivial, non-generic initial conditions: generic

time-dependent deformations of the CFT vacuum are expected to thermalize over long timescales,

leading to black hole formation in the bulk rather than a Big-Crunch. This observation is consistent

with our finding that, for example, the AdS Kasner and other holographic cosmological singular-

ities remain inaccessible via entanglement with conventional ground state bulk matter—perhaps

corroborating the expectation of non-generic holographic dual states (see the discussion following

(3.13) and related studies such as [128, 129] on these singularities and complexity). It would be

interesting to further explore the roles of holographic entanglement, quantum extremal surfaces,

and islands in cosmology more broadly.
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Chapter 3

Cosmological singularities,

holographic complexity and

entanglement

Building on our analysis of quantum extremal surfaces in cosmological backgrounds with Big-

Crunch singularities in Chapter 2, we now turn to another key aspect of holography—holographic

complexity. The QES framework provides valuable insights by incorporating the structure of en-

tanglement; however, studies suggest that entanglement may not probe the deep interior of a black

hole at very late times. In contrast, complexity-based approaches have proven effective in capturing

the late-time dynamics of black holes and their interior growth. Consequently, it is natural to ask

what insights holographic complexity can offer for cosmologies exhibiting Big-Crunch singularities.

Recent advancements in quantum information theory have further enriched our understanding

of black hole physics and holography, especially in addressing the black hole information paradox.

Within this framework, complexity emerges as a fundamental tool that quantifies the difficulty

of preparing a target quantum state from a given reference state. In the context of holography,

complexity is intimately connected with the growth of the black hole interior. For eternal black

holes dual to thermofield double states, the ER=EPR conjecture [135] suggests that the linear

growth of the spatial volume of the Einstein-Rosen bridge over time corresponds to the linear

time growth of complexity in the dual field theory [25, 26, 136, 137, 138]. This relationship is

encapsulated in the expression:

C(t) ∼ Vol(Σt)

GNR
, (3.1)

where C(t) denotes the holographic complexity, Σt is a codimension-1 spacelike extremal slice

anchored at time t, GN is the Newton constant, and R is the AdS scale. The precise proportionality

factors are not canonical and depend on the specific details of the system. In time-independent

scenarios, the extremal codimension-1 surface volumes receive dominant contributions from the
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near-boundary region, leading to the scaling:

C(t) ∝ Rdi+1

Gdi+2R

Vdi
ϵdi

≡ NdofVdiΛ
di
UV, (3.2)

where ϵ is a cutoff, di represents the spatial dimensions, Ndof corresponds to the number of degrees

of freedom in the dual field theory, and ΛUV is the UV cutoff scale. This reflects that complexity

scales with both the number of degrees of freedom in the dual field theory and the spatial volume

(measured in units of the UV cutoff). Extensive studies of holographic complexity, including alter-

native proposals such as complexity-equals-action, complexity-equals-anything, and path integral

complexity, have been explored, with particular relevance to cosmological contexts [139]–[197]. For

a comprehensive review of complexity, see Sec. 1.3 and [70].

The application of quantum information tools to investigate cosmological singularities is a cap-

tivating pursuit, as these singularities continue to pose profound and enigmatic challenges. In

this work, we employ the “complexity equals volume” proposal (3.1) to study these phenomena.

It is natural to expect significant stringy and quantum effects to play a critical role in this con-

text. Within the framework of holography, severe time-dependent deformations of the conformal

field theory (CFT) may provide insights into Big Bang or Big Crunch singularities. A prototyp-

ical example is the AdS5 Kasner background, where the dual Super Yang-Mills CFT undergoes

severe time-dependent deformations affecting both the gauge coupling and the spatial manifold

on which the CFT resides [22, 23, 24, 115]. Further discussions on this subject can be found

in [117, 118, 119, 120], as well as reviews on Big Bang/Crunch singularities and string theory

in [121, 122]. These cosmological singularities are likely qualitatively distinct from bulk black

holes, which, being dual to thermal states, are often regarded as natural endpoints of generic time-

dependent perturbations that thermalize over long timescales. In contrast, the dual state to a Big

Bang or Big Crunch singularity appears to be highly non-generic. For instance, studies on volume

complexity in AdS-Kasner singularities indicate that complexity becomes vanishingly low [128]

(see also [129]). This observation aligns with investigations of classical and quantum codimension-2

extremal surfaces and holographic entanglement entropy in AdS-Kasner and other singular back-

grounds [43, 127]. Specifically, for spacelike singularities, entangling surfaces are driven away from

the near-singularity region. These results suggest that the effective number of qubits corresponding

to the near-singularity region is vanishingly small, resulting in low complexity for the “dual Kasner

state,” independent of the reference state, as well as low entanglement. The bulk singularity in these

cases corresponds to a Big Bang or Big Crunch scenario, where spatial volumes—and consequently,

the number of degrees of freedom—become vanishingly small. This contrasts with the colloquial

perception of a Big Bang as a “hot dense mess” and instead reflects that these holographic singu-

larities correspond to low-entropy configurations. It is worth noting that, in the eternal AdS black

hole, the extremal surfaces associated with complexity avoid the black hole singularity. Instead,

they approach a limiting surface as time progresses to infinity, t→ ∞, analogous to the behavior of

holographic entanglement entropy surfaces described in [20] (see also [17, 42, 96, 97]). This aligns
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with the observation that the black hole interior itself is a cosmological region with a spacelike Big

Crunch singularity.

This study is based on [44] and builds upon previous investigations to study holographic com-

plexity and entanglement in greater depth. As detailed in Sec. 3.2.1 and Sec. 3.2.4, we find that the

codimension-1 complexity extremal surface anchored at a boundary time slice t, located at a finite

temporal distance from the singularity at t = 0, initially emerges as a spacelike surface near the

boundary. This surface bends away from the singularity and transitions towards a lightlike trajec-

tory in the (t, r)-plane, where r represents the bulk holographic direction. As the anchoring time

slice t decreases, moving closer to the singularity, the surface transitions more rapidly from space-

like to the lightlike limit. The lightlike portion of the surface has a vanishing volume, causing the

complexity volume functional to diminish as t approaches zero. Eventually, this functional becomes

vanishingly small as t → 0, nearing the singularity. This behavior appears to be universal across

various classes of Big Bang/Crunch singularities, including AdS Kasner, hyperscaling-violating

Kasner, and Lifshitz-Kasner geometries. For AdS-Kasner and Lifshitz-Kasner backgrounds, the

complexity decreases linearly with the boundary anchoring time slice t as t → 0. In contrast, for

hyperscaling-violating Kasner backgrounds, the decrease in complexity is nonlinear with respect

to t, reflecting the nontrivial effective spatial dimension of the dual field theories. Overall, our

results on complexity corroborate previous findings on AdS Kasner complexity discussed in [128].

However, our analysis, particularly the extensive numerical studies, adds greater detail to these

discussions. The complexity results for other cosmological backgrounds presented here are new but

align with those observed for AdS Kasner geometries.

Our technical analysis of complexity exhibits several parallels with the study of holographic en-

tanglement entropy presented in [43], which builds on foundational work in [17, 42, 96, 97]. Specif-

ically, in the semiclassical regime far from the singularity. We extend this analysis numerically,

applying the methods used for volume complexity, as described above, to the study of entangle-

ment. The codimension-2 area functional associated with holographic entanglement entropy shares

many technical similarities with the codimension-1 volume complexity functional. Consequently,

we observe analogous results in the infrared (IR) limit, where large subregions effectively covers

the whole space. In this regime, the extremal surfaces transition from spacelike near the boundary

to lightlike deeper in the interior. As the anchoring time slice t approaches the singularity, this

transition becomes increasingly rapid. Ultimately, as t → 0, the entanglement entropy diminishes

and asymptotically approaches zero.

The vanishingly low complexity and entanglement observed as time approaches the singularity

reflects the fact that spatial volumes crunch at the singularity, resulting in an effectively negligible

number of degrees of freedom near this region. From the perspective of constructing the dual

“Kasner” state from a reference state, this behavior suggests that the number of effective qubits

in the vicinity of the singularity becomes vanishingly small, irrespective of the choice of the initial

reference state. Consequently, the complexity is low in this regime.
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The cosmological backgrounds under consideration are predominantly isotropic. As a result, the

complexity volume functional can be reformulated in an effective two-dimensional framework, con-

sistent with the dimensional reduction of all boundary spatial dimensions. This reformulation yields

a relatively simple expression for complexity in terms of the variables characterizing the effective

two-dimensional dilaton gravity theory. Specifically, these variables include the two-dimensional

metric and the dilaton, the latter corresponding to the transverse area in the higher-dimensional

spacetime. It may be of interest to interpret this effective two-dimensional holographic complexity

in the context of suitable dual effective one-dimensional qubit models.

This Chapter is organized as follows: In Sec. 3.1, we argue that volume complexity in higher-

dimensional theories can be reformulated as complexity in effective two-dimensional theories, which

can be understood as arising via dimensional reduction. Sec. 3.2 focuses on the holographic com-

plexity of AdS Kasner spacetimes. Specifically: In Sec. 3.2.1, Sec. 3.2.2, and Sec. 3.2.3, we derive

solutions to the equations of motion for complexity surfaces in AdS5,4,7 Kasner spacetimes. In

Sec. 3.2.4, we numerically compute the holographic complexity of these spacetimes. Sec. 3.3 explores

holographic complexity in hyperscaling-violating cosmologies: We focus on the cases di = 2, θ = −1
3

(Sec. 3.3.1) and di = 4, θ = −1 (Sec. 3.3.2). Numerical computations of holographic complexity for

these cosmologies are presented in Sec. 3.3.3. In Sec. 3.4, we compute the holographic complexity

of isotropic Lifshitz-Kasner cosmologies. Sec. 3.5 provides a review of holographic entanglement

entropy studies from [43], focusing on RT/HRT surfaces in AdS Kasner spacetimes: Sec. 3.6.1

addresses AdS5 Kasner, and Sec. 3.6.2 discusses AdS7 Kasner. Numerical results for holographic

entanglement entropy in AdS5,7 Kasner spacetimes are presented in Sec. 3.6.3.

Appendices provide supplementary material: In Appendix 6.5, we briefly review prior studies

on holographic cosmologies and their two-dimensional reductions. Appendix 6.6 lists coefficients

appearing in the perturbative solutions for AdS-Kasner and hyperscaling-violating cosmologies. In

Appendix 6.7, we outline our numerical methods for entanglement entropy calculations in finite

subregions, with results that support our overall analysis.

3.1 Higher dim volume complexity→ 2-dims: general-

ities

The metric for an eternal AdSdi+2 Schwarzschild black hole (with transverse space dσ2di) is given

by

ds2 =
R2

r2

(
−H(r)dt2 +

dr2

H(r)
+ dσ2di

)
. (3.3)

Then, the complexity volume functional given by the volume of the Einstein-Rosen bridge is

CD =
Vdi

Gdi+2R

∫
dr
Rdi+1

rdi+1

√
1

H(r)
−H(r)t′(r)2 . (3.4)
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Since the transverse space (which the codimension-1 extremal surface wraps) appears in a straight-

forward manner in this expression, the complexity functional effectively reduces to a 2-dimensional

form. This allows it to be explicitly recast in terms of the complexity of an effective 2-dimensional

dilaton gravity theory, obtained via dimensional reduction over the transverse space dσ2di . This

formulation is quite general and applies to a broad class of backgrounds that are predominantly

isotropic. The 2-dimensional dilaton gravity theory, in many cases, serves as an effective descrip-

tion encapsulating the essential features of the higher-dimensional gravity theory [112]. We will

find this perspective particularly useful in the following sections, where we investigate holographic

backgrounds featuring cosmological singularities, with a focus on those examined in [113]. A brief

review of these studies and holographic cosmologies is provided in App. 6.5.

Consider the general ansatz for a D = di + 2 dimensional gravity background

ds2D = g(2)µν dx
µdxν + ϕ2/didσ2di =

ef

ϕ(di−1)/di
(−dt2 + dr2) + ϕ2/didσ2di ,

ds2 = gµνdx
µdxν = ef (−dt2 + dr2) , gµν = ϕ(di−1)/dig(2)µν . (3.5)

Reviewing [112] and [113], performing a dimensional reduction over the transverse space dσ2di gives

rise to a 2-dim dilaton gravity theory. With the given parametrization, the higher-dimensional

transverse area corresponds to the 2-dimensional dilaton ϕ. The Weyl transformation gµν =

ϕ(di−1)/dig
(2)
µν absorbs the dilaton kinetic energy into the curvature R(2) and the 2-dim action be-

comes

S =
1

16πG2

∫
d2x

√
−g
(
ϕR− U(ϕ,Ψ) − 1

2
ϕ(∂Ψ)2

)
, (3.6)

with the dilaton potential U(ϕ,Ψ) potentially coupling ϕ to another scalar Ψ which is a minimal

massless scalar in the higher dimensional theory (see App. 6.5). The dilaton factor in the Ψ

kinetic energy arises from the reduction to 2-dimensions. These models with various kinds of

dilaton potentials encapsulate large families of nontrivial higher dimensional gravity theories with

spacelike Big-Bang/Crunch type cosmological singularities. In the vicinity of the singularity, the

2-dim fields have power-law scaling behaviour of the form (setting dimensionful scales to unity)

ϕ = tkrm , ef = tarb , eΨ = tαrβ , (3.7)

and the forms of ef , ϕ then translate to the higher dimensional cosmological background profile

containing the singularities. The 2-dimensional formulation simplifies the structure of these back-

grounds and highlights certain noteworthy features. In particular, the severe time dependence near

the singularity implies that time derivative terms dominate, while other terms, especially those

related to the dilaton potential, become negligible. This leads to the emergence of a ”universal”

subsector with k = 1,

ϕ ∼ t , ef ∼ ta , eΨ ∼ tα ; a =
α2

2
. (3.8)
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A prototypical example is AdS Kasner [22] and its reduction to 2-dimensions,

ds2 =
R2

r2
(−dt2 + dr2) +

t2/di R2

r2
dx2i , eΨ = t

√
2(di−1)/di , Λ = −di(di + 1)

2R2
,

→ ϕ =
tRdi

rdi
, ds2 =

t(di−1)/di Rdi+1

rdi+1
(−dt2 + dr2) , U = 2Λϕ1/di . (3.9)

The isotropic restriction from general AdS Kasner (A1) alongwith the Kasner exponent relation∑
i pi = 1 implies a single Kasner exponent p = 1

di
. R is the AdS length scale. We are suppressing

an implicit Kasner scale tK : e.g. t2p → (t/tK)2p. We will reinstate this as required. There are

several more general families of such backgrounds with Big-Bang/Crunch singularities, including

nonrelativistic ones such as hyperscaling violating (conformally AdS) theories, and those with

nontrivial Lifshitz scaling, as we will discuss in what follows, and summarized in the Table 3.1.

Cosmologies k m a = α2

2
b

AdS Kasner cosmology 1 −di
di−1
di

−(di + 1)

Hv cosmology (z = 1, θ ̸= 0) 1 −(di − θ)
(√

di−θ−1
di−θ −

√
(−θ)

di(di−θ)

)2
− (di−θ)(1+di)

di

Lif cosmology (z = di, θ = 0) 1 −1 di−1
di

−3 + 1
di

Table 3.1: Exponents for 2-dim cosmologies.

The time dependence in these backgrounds does not switch off asymptotically, making simple

interpretations in terms of deformations of a vacuum state challenging. Instead, these backgrounds

are likely best understood as dual to a nontrivial, nongeneric state in the dual field theory. This

aligns with the expectation that generic, severe time-dependent CFT deformations will lead to ther-

malization and, consequently, correspond to black hole formation in the bulk. Further discussions

on this perspective appear throughout the study, building on [22, 23, 24, 115] and [43, 127].

We now turn to complexity. We mostly consider the transverse space to be planar, so dσ2di =∑
i dx

2
i . Then, in terms of 2-dim variables (3.5) the complexity volume functional becomes

C =
1

Gdi+2R

∫ di∏
j=1

(
ϕ1/didxj

)√ ef

ϕ(di−1)/di
(−dt2 + dr2)

=
Vdi

Gdi+2R

∫
ϵ
dr ϕ

(di+1)

2di ef/2
√

1 − t′(r)2 =
1

G2R

∫
ϵ
dr ϕ

(di+1)

2di ef/2
√

1 − t′(r)2 , (3.10)

with G2 =
Gdi+2

Vdi
the 2-dimensional Newton constant after reduction, and r = ϵ the holographic

boundary. The higher dimensional curvature scale (e.g. R in (3.9)) continues as the 2-dim curvature

scale. Also, t′ ≡ dt
dr is the r-derivative of the time coordinate as a function t(r) of the holographic

radial coordinate.
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The last expression in (3.10) above can be interpreted as the complexity volume functional in the

2-dim dilaton gravity theory intrinsically. It would then be interesting to ask for dual 1-dimensional

effective qubit models whose complexity can be understood as this.

Sticking in the power-law ansatze (3.7) above, we obtain

C =
Vdi

Gdi+2R

∫
ϵ
dr t(r)

(
k
(

(di+1)

2di

)
+a

2

)
r

(
m
(

(di+1)

2di

)
+ b

2

) √
1 − t′(r)2 ≡ Vdi

Gdi+2R

∫
ϵ
drL , (3.11)

with L ≡ L (r, t(r), t′(r)) the effective Lagrangian. Extremizing for the complexity surface t(r)

leads to the Euler-Lagrange equation d
dr

(
∂L
∂t′(r)

)
− ∂L

∂t(r) = 0 . Simplifying this gives the equation of

motion for the complexity surface t(r) in (3.11)

2dir t t
′′ + r (adi + di + 1)

(
1 − (t′)2

)
+ (bdi + dim+m) t t′

(
1 − (t′)2

)
= 0 , (3.12)

abbreviating notation with t ≡ t(r), t′ ≡ dt
dr , t

′′ ≡ d2t
dr2

, and we have used the universality result

k = 1 in (3.8).

Now we solve equation (3.12) perturbatively and numerically for AdS Kasner, hyperscaling vio-

lating and Lifshitz cosmologies, and thereby compute holographic complexity for these cosmologies

in sections 3.2 and 3.3.

Methodology: We outline our techniques and methods here:

1. For a given background, first, we solve (3.12) semiclassically in perturbation theory using an

ansatz of the form t(r) =
∑

n∈Z+
cnr

n for the complexity surfaces t(r), as functions of the

radial coordinate r for various anchoring time slices t0 which define boundary conditions at

r = 0. The perturbative solutions are valid only in a certain r-regime, i.e. upto a cut-off rΛ

(roughly rΛ ≲ t0). Thus these cannot encapsulate the entire bulk geometry.

2. To overcome this and obtain a global picture of the bulk, we solve (3.12) numerically (in

Mathematica). For this purpose, we need two initial conditions which we extract from the

perturbative solutions for t(r) above and their derivatives t′(r), setting the boundary value

r = ϵ = 10−2 and t0 as the numerical value of a specific anchoring time slice (with all

other dimensionful scales set to unity). This allows us to obtain numerical solutions for

the complexity surfaces, which then reveal nontrivial bulk features such as lightlike limits

and the transition thereto, from spacelike regimes near the boundary. This then allows us

to numerically evaluate holographic volume complexity and plot it against t0 for various

backgrounds.

3. We then employ similar algorithms more broadly for holographic entanglement entropy.

4. Some numerical issues persist for certain backgrounds, as we outline below, and we omit

detailed discussions in these cases.
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3.2 Complexity: AdS Kasner

The isotropic AdSdi+2 Kasner spacetime (3.9), expressed in terms of the reduction ansatz (3.5)

along with its 2-dimensional exponents (3.7), is:

ds2 =
R2

r2
(−dt2 + dr2) +

t2/di R2

r2
dx2i , eΨ = t

√
2(di−1)/di , Λ = −di(di + 1)

2R2
,

ϕ =
tRdi

rdi
, ds2 =

t(di−1)/di Rdi+1

rdi+1
(−dt2 + dr2) , U = 2Λϕ1/di ,

k = 1 , m = −di , a =
di − 1

di
, b = −(di + 1) , α =

√
2(di − 1)

di
. (3.13)

The single Kasner exponent p = 1
di

arises due to the isotropic restriction in (A1). R is the AdS

length scale. We are suppressing an implicit Kasner scale tK : e.g. t2p → (t/tK)2p.

Then the t(r) extremization equation (3.12) becomes

r t(r) t′′(r) − (di + 1) t(r) t′(r)
(
1 − t′(r)2

)
+ r

(
1 − t′(r)2

)
= 0 . (3.14)

We discuss the solution of (3.14) for AdS5,4,7-Kasner spacetimes in sec. 3.2.1, 3.2.2, and 3.2.3.

3.2.1 AdS5-Kasner spacetime

For AdS5-Kasner spacetime, we have di = 3: then (3.14) simplifies to

r t(r) t′′(r) − 4t(r) t′(r)
(
1 − t′(r)2

)
+ r

(
1 − t′(r)2

)
= 0 . (3.15)

First we note that with t′, t′′ = 0, the equation above is not satisfied except for r ∼ 0, so that

t(r) = const is not a solution: the surface always bends in the time direction due to the time

dependence of the background. When the complexity surface t(r) has weak r-dependence, i.e. it is

almost constant with t(r) ∼ t0, we can analyze the above equation in perturbation theory in r, by

considering the following ansatz for t(r):

t(r) = t0 +
∑
n∈Z+

cnr
n . (3.16)

Inputting this ansatz (3.16) in (3.15) and solving for the coefficients iteratively, we found the

solution up to O(r30). Up to O(r4), this is

t(r) = t0 +
r2

6t0
− 7r4

216t30
. (3.17)

We have truncated the solution (3.17) up to O(r4) here for brevity of the series expansion (this

is O(r3) in t′(r) in (3.23)). A more detailed iterative version of (3.17) up to O(r30) appears in

(B1). Likewise, truncated solutions are displayed elsewhere in the paper, e.g. (3.19), (3.31), (3.42),
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(3.44), (3.49), (3.51) and (3.61). The numerical analysis described in what follows is based on the

more detailed expansion up to O(r30). However we find that the numerical plots do not change

much with the truncated solutions such as (3.17): the qualitative features of the extremal surfaces

are the same. So we will continue to display the truncated solutions alone in the rest of the paper

for compactness.

The solution t(r) in (B1) and its derivative t′(r) are plotted in Fig. 3.1 for various t0-values1.
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Figure 3.1: Variation with r of the semiclassical (perturbative) complexity surfaces t(r) and

their derivatives t′(r) for various values of the anchoring time slice t0.

1We obtain similar qualitative behaviour for the variation of complexity surfaces and their derivatives in

other backgrounds, so we will not display them, in favour of the plots of numerical solutions which are more

instructive.
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From Fig. 3.1, we see that the complexity surface varies approximately linearly with r in the

regime roughly r ∼ t0 and t′(r) reaches its maximum value about t′(r) ≲ 0.2, which vindicates the

mild bending of the surface t(r) in the radial direction. Of course this perturbative solution has

clear limitations, expressed as it is here by a finite power series. However it is of great value to

display the behaviour of the complexity surface near the boundary r = 0.

We expect that when the anchoring time slice t0 is far from the singularity at t = 0, the above

perturbative solution remains reasonable, at least in the vicinity of the boundary. A closely related

analysis was performed in [43], demonstrating that the RT/HRT surface in the semiclassical regime

far from the singularity bends away from it. We will later study this numerically to extract further

insights.

A further check of the above series solution is that in the semiclassical limit, when we ignore

the higher order terms in t′(r) (i.e. t′(r) ≪ 1), then (3.15) reduces to

t(r)
(
rt′′(r) − 4t′(r)

)
+ r = 0 . (3.18)

Solving (3.18) with the ansatz (3.16), we obtain up to O(r4):

t(r) = t0 +
r2

6t0
− r4

24t30
. (3.19)

Plotting (3.19) and its r-derivative reveals that the behaviour of the complexity surface t(r) and

its derivative is qualitatively similar to that in Fig. 3.1. This vindicates the fact that t′(r) is indeed

small in this regime.

Holographic complexity of AdS5-Kasner spacetime: The holographic volume complexity

(3.11) for the AdS5-Kasner spacetime (3.13) with di = 3 simplifies to

C =
V3R

3

G5

∫
ϵ
dr

(
t(r)

√
(1 − t′(r)2)

r4

)
. (3.20)

Now we compute this for the solutions (3.19) and (3.17).

The semiclassical solution (3.19) was obtained with t′(r) ≪ 1 so we can approximate the

complexity functional (3.20) as:

C ∼ V3R
3

G5

∫ rΛ

ϵ
dr

 t(r)
(

1 − t′(r)2

2

)
r4

 . (3.21)

We have inserted a cut-off rΛ in (3.21) because the perturbative solution is only valid upto some

rΛ ≲ t0, and so this only covers part of the full complexity surface. Beyond this we require

additional analysis, which we carry out numerically later.

Substituting the semiclassical solution t(r) from (3.19) into (3.21) and integrating gives com-

plexity as (writing only terms up to next-to-leading order in t0 for simplicity)

C(t0, rΛ, ϵ) ≈
V3R

3

G5

[
t0

(
0.3

ϵ3
− 0.3

r3Λ

)
+

1

t0

(
0.1

ϵ
− 0.1

rΛ

)
+O

((
1

t0

)3
)]

. (3.22)
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For the more general solution (3.17) obtained retaining all the nonlinear terms in (3.15), we find

t′(r) as:

t′(r) ≈ 0.3r

t0
− 0.1r3

t30
. (3.23)

Thus we see that t′(r) ≪ 1 provided r ≲ t0. In this approximation, we can evaluate complexity as

(3.21) with the solution (3.17). Then holographic complexity is the same as (3.22) upto next-to-

leading-order in t0.

Going beyond perturbation theory fascinatingly shows that the complexity surface becomes

lightlike in the interior, as first noted in [128]. This can be seen right away by noting that (3.15)

is in fact satisfied identically when t′(r) = 1 and t′′(r) = 0, i.e. with t(r) ∼ r being lightlike

independent of the anchoring time slice t0.

Towards identifying this in the AdS5-Kasner spacetime, consider the following ansatz for t(r)

around the lightlike limit with f(r) a small deviation:

t(r) = t0 + r + f(r) . (3.24)

This ansatz simplifies (3.15) to

−r
(
f ′(r) + 1

)2
+ (f(r) + r + t0)

(
rf ′′(r) + 4f ′(r)

(
f ′(r) + 1

) (
f ′(r) + 2

))
+ r = 0 . (3.25)

Linearizing the above equation, i.e. ignoring higher order terms in f ′(r), gives

r2f ′′(r) + rt0f
′′(r) + 8t0f

′(r) + 6rf ′(r) = 0 , (3.26)

which can be solved as

f(r) = c1

(
− t20

7r7
− t0

3r6
− 1

5r5

)
+ c2 , (3.27)

where c1, c2 are constants. This gives the solution for t(r) as

t(r) = t0 + r + c1

(
− t20

7r7
− t0

3r6
− 1

5r5

)
+ c2 . (3.28)

The above solution is not well-behaved when extrapolated all the way to the boundary r = 0 but

it indicates the existence of the neighbourhood of a lightlike surface. We now look for the lightlike

solution numerically.

Lightlike limits of complexity surfaces, numerically

Now we solve equation (3.15) numerically. Since this is a second-order nonlinear differential equa-

tion, we need two initial conditions for a numerical solution. One trivial initial condition is

t(r = 0) = t0, leaving the question of the initial condition for t′(r = 0). Since we have solved

(3.15) perturbatively obtaining (3.17), we can obtain the initial condition t′(r = 0) by evaluating
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the r-derivative thereof. We regulate the holographic boundary r = ϵ ∼ 0 by choosing ϵ = 10−2

as the boundary point. For a specific slice t0, we can obtain initial conditions t(r = 0.01) and

t′(r = 0.01) by substituting r = 0.01 and the value of t0 in the solution (3.17) and its r-derivative2.

The numerical computations were performed using Mathematica, with careful tuning of parameters

such as setting WorkingPrecision to MachinePrecision and PrecisionGoal to Infinity in NDSolve

to ensure stable solutions for the chosen initial conditions. The results have also been partially

cross-validated using independent Python implementations. The Mathematica files are available

upon request.
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Figure 3.2: Numerical plots of the complexity surface versus r in AdS5-Kasner spacetime for

different slices of t0. In the right Figure, we have extended the range of radial coordinate.

The numerical solutions of (3.15) for the complexity surface t(r) and their derivatives t′(r) for

different t0 slices are plotted in Fig. 3.2 and Fig. 3.3 respectively. Some striking points to note are:

• In Fig. 3.2, we remind the reader that t(r) corresponds to |t(r)| so the singularity is at

t = 0 (the horizontal axis at the bottom). Thus all complexity surfaces bend away from the

neighbourhood of the singularity, which correlates with t′(r) > 0.

• From Fig. 3.2, the complexity surfaces become lightlike after a certain value of r for any

anchoring time slice t0.

• The surfaces with lower t0 (i.e. closer to the singularity) become lightlike earlier (at smaller

r) than those with larger t0. This is also vindicated in Fig. 3.3, where we have numerically

plotted t′(r) with r. All the complexity surfaces t(r) approach t′(r) = 1 eventually, i.e. a

lightlike regime.

• The lightlike regime t′(r) = 1 implies vanishing holographic complexity here from the
√

1 − t′(r)2

factor in (3.20). Thus, numerically we see that complexity picks up finite contributions only

2We have used this method in obtaining the numerical solution of the equation of motion associated with

complexity/entanglement surfaces throughout the paper for different backgrounds. Therefore, we will not

repeat this again: we will simply quote the results for different backgrounds.
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Figure 3.3: Numerical plots of t′(r) versus r in AdS5-Kasner spacetime for different t0 slices.

In the right Figures, we have extended the range of the radial coordinate.

79



from the near-boundary spacelike part of the complexity surfaces, beyond which it has neg-

ligible value where the complexity surfaces are lightlike.

• The above two points imply that as the anchoring time slice approaches the singularity

location t0 → 0, the complexity surface is almost entirely lightlike: thus as t0 → 0 the

holographic volume complexity becomes vanishingly small. We verify this later by numerical

evaluation of the volume complexity integral in sec. 3.2.4.

• These numerical plots and this analysis only makes sense for t0 not strictly vanishing (e.g.

we require t0 ≳ ϵ). In close proximity to the singularity, the semiclassical gravity framework

here and our analysis breaks down.

In Figs. 3.2 and 3.3, we have shown the behaviour of t(r) and t′(r) with r for both limited range

(left side plots) and extended range of the radial coordinate in these Figures (right side plots). We

obtain similar behavior for other cases later. So we will not show the counterparts of the right side

plots (extended r-range) in Figs. 3.2-3.3 in order to display our results succinctly in subsequent

data

3.2.2 Holographic complexity of AdS4-Kasner spacetime
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Figure 3.4: Plots of t(r) with r and t′(r) with r in AdS4-Kasner spacetime for various t0

slices.
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For the AdS4-Kasner spacetime with di = 2, the equation of motion (3.14) for the complexity

surface t(r) becomes

r t(r) t′′(r) − 3t(r) t′(r)
(
1 − t′(r)2

)
+ r

(
1 − t′(r)2

)
= 0 . (3.29)

Numerical results: The perturbative solution of (3.29) is obtained only up to O(r2) unfortunately,

i.e. t(r) = t0 + r2

4t0
, beyond which the numerics appear problematic. However, we find that this

O(r2) perturbative solution is adequate in extracting the initial conditions for numerical solutions.

Using these initial conditions, the numerical solution of (3.29) for t(r) and its derivative t′(r)

are obtained along the same lines as in AdS5-Kasner. These are plotted in Fig. 3.4, which reveal

that the behaviour of the complexity surfaces t(r) and their derivatives are similar to those in

AdS5-Kasner.

3.2.3 Holographic complexity of AdS7-Kasner spacetime

The equation of motion for the complexity surface t(r) for AdS7-Kasner spacetime using di = 5 in

(3.14) becomes

r t(r) t′′(r) − 6t(r) t′(r)
(
1 − t′(r)2

)
+ r

(
1 − t′(r)2

)
= 0 . (3.30)

As in AdS5-Kasner spacetime, we solve this perturbatively and numerically.

Perturbative results: The perturbative solution of (3.30) for the ansatz t(r) = t0+
∑

n∈Z+
cnr

n

is given as:

t(r) = t0 +
r2

10t0
− 23r4

3000t30
. (3.31)

The solution (3.31) for t(r) and its derivative t′(r) for AdS7-Kasner are qualitatively similar to

those in AdS5-Kasner.

Numerical results: Using the above, we can pin down boundary conditions near the boundary

and then solve (3.30) numerically. This is similar to the analysis in AdS5-Kasner and the solution

t(r) of (3.30) and its derivative t′(r) are plotted in Fig. 3.5. We see that the AdS7-Kasner spacetime

gives similar results.

3.2.4 Numerical computation of complexity, AdS Kasner

We evaluate holographic complexity of AdS5,4,7-Kasner spacetime numerically using the numeri-

cal solutions discussed above and performing the numerical integration in C. The expression of

holographic complexity for AdS5, AdS4 and AdS7-Kasner spacetimes are given as:

(AdSdi+2 Kasner) C =
VdiR

di

Gdi+2

∫
ϵ
dr

(
t(r)

√
1 − t′(r)2

rdi+1

)
. (3.32)
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Figure 3.5: Plots of t(r) with r and t′(r) with r in AdS7-Kasner spacetime for different t0

slices.

To perform the integrals numerically, we set the lengthscales Vdi , R
di , Gdi+2 to unity and take

ϵ = 10−2 at the lower end. The upper end of the integration domain is irrelevant since the com-

plexity surfaces become lightlike eventually as r increases so the complexity integral has negligible

contribution there, as stated in sec. 3.2.1. Then as an order-of-magnitude estimate, t0 ∼ 100 gives

C ∼ t0
ϵdi

∼ 102di+2 which corroborates with the scales in Fig. 3.6 which displays the variation of

complexity with t0 in AdS-Kasner spacetime. From the Figure, we see that holographic volume

complexity decreases linearly as the anchoring time slice approaches the vicinity of the singularity,

i.e. as t0 → 0. Thus the dual Kasner state appears to be of vanishingly low complexity, independent

of the reference state.

It is worth making a few comparisons on holographic complexity across AdS5,7,4 Kasner space-

times, based on the numerical results in Fig. 3.2, Fig. 3.3 (AdS5-K), Fig. 3.5 (AdS7-K), and Fig. 3.4

(AdS4-K). Relative to AdS5-Kasner, we see that the complexity surfaces become lightlike at smaller

r-values in AdS7-Kasner. Thus complexity of AdS7-Kasner acquires vanishing contributions at

smaller r-values relative to AdS5-Kasner. Likewise, we see that the AdS5-Kasner displays the

lightlike regime at smaller r-values than AdS4-Kasner. Thus complexity surfaces in higher dimen-

sional AdS-Kasner acquire lightlike regimes earlier than those in lower dimensional ones. However

it is clear that the leading divergence behaviour is larger for higher dimensions, since the extremal

codim-1 surface volumes have dominant contributions from the near boundary region. With cutoff
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Figure 3.6: Numerical plots of holographic volume complexity with t0 in AdS4,5,7-Kasner

spacetimes.

ϵ ≡ Λ−1
UV we have the scaling

C ∼ Rdi+1

Gdi+2R

Vdi
ϵdi

t0 ≡ Ndof VdiΛ
di
UV

t0 , (3.33)

reflecting the fact that complexity scales with the number of degrees of freedom in the dual field

theory and with spatial volume in units of the UV cutoff. Some intuition for this can be obtained

from the form of the complexity volume functional (3.32) where the
√

1 − (t′)2 factor is amplified

by the 1
rdi

-factor. Both the spacelike part (t′ ≪ 1) of the complexity surface and the transition

to the lightlike part (where t′ is changing) are amplified by the 1
rdi

-factor to a greater degree at

larger di. Thus higher dimensional AdS-Kasner hits the lightlike regime and vanishing complexity

at smaller r-values relative to lower dimensions.

Overall from (3.33) we see that

dC

dt0
∼ Ndof VdiΛ

di
UV

. (3.34)

This arises from the near-boundary UV part of the complexity surface, with the lightlike component

contributing negligibly. This is consistent with complexity scaling as the number of microscopic

degrees of freedom in (a lattice approximation of) the CFT. In this context, it appears that near

the singularity, there is a reduction in the effective number of degrees of freedom. As t0 → 0, space

completely crunches, and there are no effective qubits, leading to the vanishing of complexity.
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3.3 Complexity: hyperscaling violating cosmologies

Various cosmological deformations of conformally AdS or hyperscaling-violating theories were iden-

tified in [113] (see Appendix 6.5). The two-dimensional form of these backgrounds can be described

using the two-dimensional dilaton gravity action (3.6), along with the corresponding dilaton po-

tential, parameters, and the (t, r)-scaling exponents in (3.7). Additionally, the higher-dimensional

cosmology is:

U = 2Λϕ1/di eγΨ , 2Λ = −(di + 1 − θ)(di − θ) , γ =
−2θ√

2di(di − θ)(−θ)
,

ds2 =
R2r

2θ
di

r2

(
−dt2 + dr2

tγα
+ t2/didx2i

)
, eΨ = tαr

√
2(di−θ) (−θ)

di ,

k = 1 , m = −(di − θ) , a =
α2

2
, α = −γ ±

√
γ2 +

2(di − 1)

di
,

b = −(di − θ)(di + 1)

di
, β =

√
2(di − θ)(−θ)

di
. (3.35)

With α taken positive, eΨ → 0 as t→ 0 and we obtain

α = −γ +

√
γ2 +

2(di − 1)

di
→ a =

(√
di − θ − 1

di − θ
−

√
(−θ)

di(di − θ)

)2

. (3.36)

In this section, we restrict to Lorentz invariance: the Lifshitz exponent is z = 1. Then the null

energy conditions [198] implies that the hyperscaling violating exponent θ is constrained as

(di − θ)(di(z − 1) − θ) ≥ 0 , (z − 1)(di + z − θ) ≥ 0
z=1−−→ θ ≤ 0 . (3.37)

The other possibility θ > di has undesirable properties suggesting instabilities [198].

Time-independent backgrounds of this sort appear in the dimensional reduction [198] over

the transverse spheres of nonconformal Dp-branes [199], and the θ-exponent is then related to

the nontrivial running of the gauge coupling. Reductions of nonconformal Dp-branes over the

transverse spheres and over the brane spatial dimensions leads to 2-dim dilaton gravity theories

[200] with dilaton potentials as in (3.35) above, and the 2-dim dilaton then leads to a holographic

c-function encoding the nontrivial renormalization group flows. Some of the analysis there, as well

as in [198], may be helpful to keep in mind in our discussions here. In particular, the D2-brane and

D4-brane supergravity phases give rise to di = 2, θ = −1
3 and di = 4, θ = −1, respectively, both

with z = 1. In these cases, the Big-Bang/Crunch singularities may be interpreted as appropriate

Kasner-like deformations of the nonconformal Dp-brane backgrounds, although again the time-

dependence does not switch off asymptotically with corresponding difficulties in interpretation as

severe time-dependent deformations of some vacuum state.
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We will focus on studying the Big-Bang/Crunch hyperscaling-violating cosmological back-

grounds in (3.35) above and explore the holographic complexity associated with them. The calcu-

lations are broadly similar to those in AdS Kasner spacetimes earlier, but with noteworthy detailed

differences. Using the exponents in (3.35), (3.36), the holographic volume complexity (3.11) sim-

plifies to

C =
VdiR

di

Gdi+2

∫
ϵ
dr

r (di+1)(θ−di)

di t(r)

1
2

((√
di−θ−1

di−θ
−
√

(−θ)
di(di−θ)

)2

+ 1
di

+1

) √
1 − t′(r)2

 . (3.38)

Extremizing with t(r), we obtain the Euler-Lagrange equation of motion for the complexity surface

t(r) as

r

di(√di − θ − 1

di − θ
−

√
(−θ)

di(di − θ)

)2

+ di + 1

(1 − t′(r)2
)

+ 2di r t(r) t
′′(r) − 2(di + 1)(di − θ) t(r) t′(r)

(
1 − t′(r)2

)
= 0 . (3.39)

In the semiclassical limit (t′(r) ≪ 1), we can ignore terms like t′(r)2, t′(r)3 in the equation of motion

(3.39), which then simplifies to

t(r)
(
2(di + 1)(di − θ)t′(r) − 2dirt

′′(r)
)
− r

di(√di − θ − 1

di − θ
−

√
(−θ)

di(di − θ)

)2

+ di + 1

 = 0.

(3.40)

Now, we solve equations (3.39) and (3.40) perturbatively using ansatze similar to those in the AdS-

Kasner spacetime, i.e. t(r) = t0+
∑

n∈Z+
cnr

n . We illustrate this in detail by analysing holographic

volume complexity for two cases: (i) di = 2, θ = −1/3 in sec. 3.3.1, and (ii) di = 4, θ = −1 in

sec. 3.3.2. Analysing other cases reveals similar results. To differentiate between the different

solutions, we will use different coefficients for the different cases, e.g., gn, sn etc.

3.3.1 di = 2, θ = −1
3

This case is related to the D2-brane supergravity phase as stated earlier, and we analyze the

perturbative and numerical solutions now.

The equation of motion (3.39) with exponents (3.35), (3.36), for this case simplifies to

14r t(r) t′′(r) −
(

2
√

2 − 15
)
r
(
1 − t′(r)2

)
− 49t(r) t′(r)

(
1 − t′(r)2

)
= 0 . (3.41)

The solution t(r) up to O(r4) is given as

t(r) = t0 + g2r
2 + g4r

4 , (3.42)
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with gi in (B2). The behaviour of the complexity surfaces (3.42) with r for different t0 values is

qualitatively similar to those in AdS-Kasner (see Fig. 3.1) so we will not display the plots.

When t′(r) ≪ 1, we can ignore the higher order terms in (3.41) to obtain

2
(

2
√

2 − 15
)
r − 14t(r)

(
2rt′′(r) − 7t′(r)

)
= 0. (3.43)

This has solution up to O(r4) given as

t(r) = t0 + s2r
2 + s4r

4 , (3.44)

with si in (B3). The behaviour of (3.44) is qualitatively similar to that in AdS-Kasner.

Solving (3.41) numerically along similar lines as in AdS-Kasner, we obtain the variation of the

complexity surfaces and their derivatives with r: this is shown in Fig. 3.7.
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Figure 3.7: Numerical plots of t(r) versus r and t′(r) versus r for di = 2 and θ = −1/3 in

hv cosmology.

Holographic complexity: With di = 2, θ = −1
3 in (3.38) gives

C =
V2R

2

G4

∫
ϵ
dr

(
t(r)

15
14

−
√
2

7

√
1 − t′(r)2

r7/2

)
. (3.45)

Restricting to the regime t′(r) ≪ 1, we perform this integral rewriting as

C =
V2R

2

G4

∫ rΛ

ϵ
dr

 t(r) 15
14

−
√
2

7

(
1 − t′(r)2

2

)
r7/2

 . (3.46)
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Then using (3.44) truncating to t(r) = t0 + s2r
2 + s4r

4 using (B3), the complexity (3.46) up to

next-to-leading-order in t0 is obtained as

C =
V2R

2

G4

2

5
t
15
14

−
√
2
7

0

(
1

ϵ5/2
− 1

r
5/2
Λ

)
−

2883
(

1
t0

) 13
14

+
√
2
7
(

1√
rΛ

− 1√
ϵ

)
50
(
233 + 60

√
2
)

 . (3.47)

3.3.2 di = 4, θ = −1

This is related to the D4-brane supergravity phase as stated earlier.

For di = 4 and θ = −1, the equation of motion (3.39) becomes

20 r t(r) t′′(r) + 17 r
(
1 − t′(r)2

)
− 125 t(r) t′(r)

(
1 − t′(r)2

)
= 0 . (3.48)

Using the ansatz t(r) = t0 +
∑

n∈Z+
ynr

n, we obtain the following solution to (3.48):

t(r) = t0 + y2r
2 + y4r

4 , (3.49)

with yi given in (B4). The plots of the solution (3.49) and its derivatives are qualitatively similar

to those in AdS-Kasner spacetimes and the di = 2, θ = −1
3 hv-cosmology. Ignoring higher order

terms in (3.48), we obtain

−34r + 5t(r)
(
−8rt′′(r) + 50t′(r)

)
= 0 . (3.50)

Solving this with the ansatz t(r) = t0 +
∑

n∈Z+
vnr

n gives the qualitatively similar complexity

surface (with vi in (B5)):

t(r) = t0 + v2r
2 + v4r

4 . (3.51)

Solving the nonlinear equation (3.48) numerically as in AdS-Kasner gives numerical solutions for

the complexity surfaces t(r) and their derivatives. These are shown in Fig. 3.8.

Holographic complexity: Substituting di = 4, θ = −1 in (3.38) gives

C =
V4R

4

G6

∫
ϵ
dr

(
t(r)17/20

√
1 − t′(r)2

r25/4

)
∼ V4R

4

G6

∫ rΛ

ϵ
dr

 t(r)17/20
(

1 − t′(r)2

2

)
r25/4

 . (3.52)

Similar to the discussion for di = 2, θ = −1
3 , we approximate as t(r) = t0 + v2r

2 + v4r
4 (with v2,

v4 in (B5)) and simplify (3.52). The calculations are similar to the earlier case: complexity up to

next-to-leading-order in t0 is

C =
V4R

4

G6

[
t
17/20
0

(
4

21ϵ21/4
− 4

21rΛ21/4

)

+

(
1

t0

)23/20
(

4913

525
(√

715 − 13
) (

13 +
√

715
)
ϵ13/4

− 4913

525
(√

715 − 13
) (

13 +
√

715
)
rΛ13/4

)]
.

(3.53)
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Figure 3.8: Plots of complexity surface versus r and t′(r) versus r for di = 4 and θ = −1 in

hyperscaling violating cosmology.

{di = 2, θ = −1
3} vs {di = 4, θ = −1} hv-cosmologies: Comparing Fig. 3.7 and Fig. 3.8,

we see that the numerical solution of di = 4, θ = −1 hv-cosmology becomes lightlike for a smaller

r-value relative to that for di = 2, θ = −1
3 . The

√
1 − t′(r)2 factor in the volume complexity

expression implies di = 4, θ = −1 complexity vanishing earlier relative to that in di = 2, θ = −1
3 .

These theories have effective space dimension deff = di− θ so the effective dimensions are deff = 5

and deff = 7
3 respectively: so the larger effective dimension case acquires vanishing complexity at

smaller r-values. This is similar to the observations in AdS-Kasner discussed in sec. 3.2.4.

Let us summarize the results for complexity in AdS5-Kasner and hyperscaling violating cos-

mologies up to next-to-leading-order in t0 (the results to this order are the same whether we use
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the linearized equation ignoring higher order terms in t′(r), or the full nonlinear one):

(AdS5 − Kasner) C ≈ V3R
3

G5

[
t0

(
0.3

ϵ3
− 0.3

r3Λ

)
+

1

t0

(
0.1

ϵ
− 0.1

rΛ

)
+O

((
1

t0

)3
)]

,

(
di = 2, θ = −1

3

)
C ≈ V2R

2

G4

2

5
t
15
14

−
√
2

7
0

(
1

ϵ5/2
− 1

r
5/2
Λ

)
−

2883
(

1
t0

) 13
14

+
√
2

7
(

1√
rΛ

− 1√
ϵ

)
50
(
233 + 60

√
2
)

 ,

(di = 4, θ = −1) C ≈ V4R
4

G6

[
t
17/20
0

(
4

21ϵ21/4
− 4

21rΛ21/4

)

+

(
1

t0

)23/20
(

4913

525
(√

715 − 13
) (

13 +
√

715
)
ϵ13/4

− 4913

525
(√

715 − 13
) (

13 +
√

715
)
rΛ13/4

)]
.

(3.54)

The leading divergence of complexity from above is C = V2R2

G4ϵ5/2
t
15−2

√
2

14
0 for di = 2, θ = −1

3 , and

C = V4R4

G6ϵ21/4
t
17/20
0 for di = 4, θ = −1. Overall, at leading order in (3.54), we see that the holographic

complexity of AdS5-Kasner spacetime is linearly proportional to t0 whereas in hyperscaling violating

cosmologies, complexity is proportional to t0.90 and t0.850 summarized below:

(AdS5 − Kasner) C ∝ t0 ,(
di = 2, θ = −1

3

)
C ∝ t0.90 , (di = 4, θ = −1) C ∝ t0.850 . (3.55)

The complexity scaling in hyperscaling-violating cosmologies reflects the fact that the dual theories

reside in an effective space dimension, deff = di − θ. It may be interesting to investigate the

underlying effective lattice qubit models that simulate this behavior, which could potentially differ

from relativistic CFTs, considering the general arguments in [25].

3.3.3 Numerical computation of complexity in hv cosmologies

We now compute holographic complexity of hyperscaling violating cosmologies, for di = 2, θ = −1
3 ,

and di = 4, θ = −1, as for AdS-Kasner spacetimes in sec. 3.2.4. For this purpose, we use the

numerical solutions of the cosmologies as discussed earlier, and numerically perform the integrations

appearing in the complexity expressions in (3.45) for di = 2, θ = −1
3 , and (3.52) for di = 4, θ = −1

(using the full nonlinear expression). The variation of holographic complexity with t0 in these

backgrounds is shown in Fig. 3.9.

As shown in (3.55), the complexity of hyperscaling-violating cosmologies does not scale linearly

with t0 , in contrast to the scaling observed in AdS Kasner spacetimes. However, the exponents

remain positive, so complexity continues to decrease as t0 approaches the singularity, becoming

vanishingly small as t0 → 0. Thus, the dual Kasner state continues to exhibit low complexity, as

illustrated in Fig. 3.9.
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Figure 3.9: Numerical plots of holographic complexity versus t0 for di = 2, θ = −1/3 and

di = 4, θ = −1 cosmologies.

3.4 Complexity: isotropic Lifshitz Kasner cosmologies

The 2-dim dilaton gravity formulation [113] led to new Kasner cosmologies with Lifshitz asymp-

totics. The equations of motion are rather constraining however admitting only certain values for

the various exponents: in particular the cosmological solutions turn out to have θ = 0 so γ = 0 with

Lifshitz exponent z = di. In 2-dim form, they are described by the 2-dim dilaton gravity action

(3.6) with dilaton potential, parameters, and the (t, r)-scaling exponents in (3.7) below. Also given

below is the higher dimensional Lifshitz Kasner cosmology:

U = ϕ1/di
(
− c1 +

c2
ϕ2
eλΨ
)
, λ = −

√
2di
di − 1

, c1 =
2(2di − 1)

di
c2 =

2(di − 1)

di
,

ds2 = R2

(
−dt

2

r2z
+
dr2

r2
+ t2/di

dx2i
r2

)
, eΨ = tαr−α , z = di , (3.56)

k = 1, m = −1 , a =
di − 1

di
, b = −3 +

1

di
, −β = α = −

√
2(di − 1)

di
.

Here R is the analog of the AdS scale, and we are suppressing an additional scale in gtt arising

due to the nontrivial Lifshitz scaling. The nonrelativistic time-space scaling implies that lightlike

trajectories have dt2 = r2z−2dr2 so to identify lightlike limits it is convenient to use (t, ρ) coordinates

with ρ ∼ rz. To illustrate this and study complexity, we will focus on the Lifshitz Kasner cosmology

with z = di = 2 and exponents a = 1
2 , b = −5

2 with metric

ds2 = R2

(
−dt

2

r4
+
dr2

r2
+

t

r2
(
dx21 + dx22

))
. (3.57)

Redefining r2 ∼ ρ and appropriately absorbing numerical factors redefining the various lengthscales

makes lightlike trajectories have dt2 = dρ2, with the metric (3.57) recast as

ds2 = R2

(
−dt

2

ρ2
+
dρ2

ρ2
+
t

ρ
(dx21 + dx22)

)
. (3.58)
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Parametrizing the complexity surface by t(ρ) gives the complexity volume functional

C =
V2R

3

G4R

∫
ϵ
dρ

(
t(ρ)

ρ2

√
1 − (t′(ρ))2

)
, (3.59)

with V2 =
∫
dx1dx2. Extremizing for the complexity surface t(ρ) gives the equation of motion

ρ t(ρ) t′′(ρ) − 2t(ρ) t′(ρ)(
(
1 − t′(ρ)2

)
+ ρ

(
1 − t′(ρ)2

)
= 0 . (3.60)

The perturbative solution of (3.60) for the ansatz t(ρ) =
∑

n∈Z+
cnρ

n similar to the previous cases

up to O(ρ4) is given by

t(ρ) = t0 +
ρ2

2t0
− ρ4

8t03
. (3.61)

The behavior of this perturbative solution is qualitatively similar to that in AdS-Kasner and

hv-cosmologies, so we suppress these plots here.
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Figure 3.10: Variation of volume complexity surfaces t(ρ) and their derivative t′(ρ) with

radial distance ρ for 4-dim Lifshitz Kasner cosmology.

As in the earlier cases, it is instructive to study the complexity surface equation numerically, so

we solve (3.60) with boundary conditions for t(ρ) and t′(ρ) at the boundary ρ = ϵρ with appropriate

numerical values for ϵρ, along similar lines as described earlier. The numerical results are shown

in Fig. 3.10 which display the variation of the complexity surfaces and their derivatives with ρ for
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various t0 values. The plots show that the transition to the lightlike regime is slower with nontrivial

Lifshitz z-exponent (relative to AdS, z = 1).

Perturbatively we can compute holographic complexity in the regime ρ ≲ t0 where t′(ρ) < 1,

approximating complexity (3.59) as

C ∼ V2R
2

G4

∫ ρΛ

ϵρ

dρ

[
t(ρ)

ρ2

(
1 − t′(ρ)2

2

)]
. (3.62)

For the perturbative solution (3.61), holographic complexity after truncating (3.62) up to next-to-

leading-order in t0 is given by

C ≈ V2R
2

G4

[
t0

(
1

ϵρ
− 1

ρΛ

)
+

(
ρ3Λ − ϵ3ρ

)
24t30

+ O
(

1

t0

)5
]
. (3.63)

We have described the z = 2 Lifshitz Kasner cosmology so far: other z = di cases in (di + 2)-dims

exhibit similar behaviour. The (t, ρ) coordinates with ρ ∼ rz in Lifshitz Kasner cosmologies allow

us to conveniently see that the complexity surfaces become lightlike in the bulk. The metric in

(3.56) is recast as

ds2 = R2

(
−dt

2

ρ2
+
dρ2

ρ2
+

t2/z

ρ2/di
dx2i

)
→ C =

Vdi R
di

Gdi+2

∫
dρ

t(ρ)

ρ2

√
1 − (t′(ρ))2 . (3.64)

The leading divergence in C is

C ∼ Rdi

Gdi+2

Vdi

ϵdir
t0 , ϵρ = ϵzr = ϵdir . (3.65)

The above equation shows the linear time growth of complexity in Lifshitz Kasner. Further, from

(3.65), we can show that
dC

dt0
∼ Ndof VdiΛ

di
UV

, (3.66)

where ϵρ ∼ ϵdir ≡ Λdi
UV

. The observations in sec. 3.2.1 and sec. 3.2.4 thus apply here as well upon

analysing (3.64), and the dual state appears to have vanishingly low complexity as one approaches

the singularity. This is vindicated in Fig. 3.11 which shows holographic complexity plotted against

t0 which reveals a linear decrease as the anchoring time slice approaches the singularity, i.e. t0 → 0.

3.5 Holographic entanglement entropy: AdS Kasner etc

We will review the discussion in [43] here. Classical extremal surfaces in cosmological backgrounds

are parametrized by (t(r), x(r)), ∆x = l, and t(r)
r→0−−−→ t0. The time function t(r) exhibits nontrivial

bending due to the time-dependence. This extremal surface is located at a constant t slice on the

boundary denoted by t = t0 and dips into the bulk up to the turning point and returns to t0. Here
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Figure 3.11: Variation of complexity with t0 for 4-dim Lifshitz Kasner cosmology.

l is the width of the strip along the x direction (taking some x1 = x), and the extremal surface

wraps the other xj ̸=1 directions. The holographic entanglement entropy is then given by:

SEE =
1

4Gdi+2

∫ j=1,2,...,(di−1)∏
xj ̸=x

(
ϕ1/didxj

)√ ef

ϕ(di−1)/di
(−dt2 + dr2) + ϕ2/didx2 . (3.67)

The absence of x(r) in (3.67) leads to a conserved conjugate momentum: solving for x′(r) gives

(x′(r))2 = A2

ef

ϕ(di+1)/di

(
1 − t′(r)2

)
ϕ2 −A2

. (3.68)

Substituting back into (3.67) gives

SEE =
Vdi−1

4Gdi+2

∫
dr

(
ef/2ϕ(3−1/di)/2√

ϕ2 −A2

)√
1 − t′(r)2. (3.69)

At the turning point, x′(r) → ∞ implying A = ϕ∗ = t∗
r
|m|
∗

(in the approximation ϕ is nonvanishing

and t′(r) ≪ 1) where t∗ = t(r∗) (since, ϕ = tkrm, k = 1, m = −|m| < 0).

For the AdS Kasner spacetime, (3.68), (3.69), simplify to

x′(r)2 = A2

(
1

t2/di

)
1 − t′(r)2

t2

r2di
−A2

, SEE =
Vdi−1

4Gdi+2

∫
dr

(
t2−1/di

r2di

) √
1 − t′(r)2√
t2

r2di
−A2

. (3.70)

Using A = ϕ∗, u = r
r∗

, we find the width scaling

l

2
=

∫ r∗

0
drx′(r) = r∗

∫ 1

0

du

t1/di

√
1 − t′(r)2√

(ϕ/ϕ∗)2 − 1
⇒ l ∼ r∗ , A = ϕ∗ =

t∗

rdi∗
. (3.71)

For a subregion anchored at a time slice t0 ≫ 0 far from the singularity, the RT/HRT surface

bends in time mildly away from the singularity. The turning point is (t∗, r∗), with A > 0 as

above for finite size subregions. The IR limit where the subregion becomes the entire space is
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defined as l → ∞ and we expect r∗ → ∞ so the surface extends deep into the interior: here

A = 0. In the semiclassical region far from the singularity t0 → ∞, solving the extremization

equation perturbatively for t(r) = t0 +
∑

n∈Z+
cnr

n shows that t∗ ≳ t0 with t′(r) ≪ 1 for finite

subregions [43] (reviewed numerically in App. 6.7). This perturbative analysis is similar to the one

for the complexity surface discussed earlier (see Fig. 3.1). Analyzing this in the IR limit is more

challenging. In the following, we will analyze this numerically for the entangling RT/HRT surfaces

and find results similar to those for the complexity surfaces.

3.6 Entanglement, AdS Kasner: numerical results

In this section, we will numerically analyze the codim-2 RT/HRT surfaces for entanglement entropy,

building on the studies in [43], following the same approach as for complexity. First, we obtain

the perturbative solution of the equation of motion for t(r) and then use this perturbative solution

for boundary conditions to solve numerically. The extremization equation for t(r) following from

the entanglement area functional (3.70) is (there is a typo in one of the corresponding equations in

[43], but the analysis there is correct):

(
1 − t′(r)2

)(
d2i t

′(r) +
r
(
t(r)2 −A2r2di

)
t(r)3

− dir

t(r)

)
−
(
t(r)2 −A2r2di

)
dirt

′′(r)

t(r)2
= 0 . (3.72)

We will focus on solving (3.72) in the IR limit A = 0 (3.71) for infinitely wide strip subregions in

AdS5,7-Kasner spacetimes in sec. 3.6.1 and sec. 3.6.2 respectively. The above equation in the IR

limit A = 0 becomes

di r t(r) t
′′(r) −

(
1 − t′(r)2

) (
d2i t(r) t

′(r) − (di − 1)r
)

= 0 . (3.73)

3.6.1 Holographic entanglement entropy in AdS5-Kasner

For AdS5-Kasner with di = 3, the IR limit (3.73) becomes

3 r t(r) t′′(r) −
(
1 − t′(r)2

) (
9 t(r) t′(r) − 2r

)
= 0 . (3.74)

The perturbative solution of (3.74) using the ansatz t(r) = t0 +
∑

n∈Z+
cnr

n, after truncating, is

t(r) ∼ t0 +
r2

6t0
. (3.75)

The numerical solutions of (3.74) and their derivatives are shown in Fig. 3.12. This shows that

the behaviour of RT/HRT surfaces is similar to complexity surfaces, as discussed earlier. In par-

ticular, the RT/HRT surface for lower t0 (closer to the singularity) becomes lightlike earlier in

comparison to RT surfaces with higher t0 values. Thus as we approach the singularity with t0 → 0,

entanglement entropy becomes vanishingly small. In particular near the singularity, entanglement
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Figure 3.12: Variations of the RT/HRT surface t(r) vs r and t′(r) vs r in AdS5-Kasner

spacetime for various t0 slices.

entropy vanishes as did complexity. There is an extreme thinning of the degrees of freedom near

the singularity.

For AdS4-Kasner, the results are qualitatively similar but the numerics turn out to not be as

clean for just technical rather than physics reasons so we do not discuss this.

3.6.2 Holographic entanglement entropy, AdS7-Kasner

The t(r) equation of motion in the IR limit (3.73) for AdS7-Kasner spacetime with di = 5 is:

5 r t(r) t′′(r) −
(
1 − t′(r)2

) (
25 t(r) t′(r) − 4r

)
= 0 . (3.76)

The perturbative solution of (3.76) using the ansatz t(r) = t0 +
∑

n∈Z+
cnr

n is obtained as:

t(r) = t0 +
r2

10t0
− 9r4

1000t30
. (3.77)

The numerical solutions of (3.76) and their derivatives are shown in Fig. 3.13: we find the entangling

surfaces t(r) have qualitatively similar behaviour as in AdS5-Kasner.
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Figure 3.13: Numerical plots of the RT/HRT surfaces t(r) versus r and t′(r) versus r in

AdS7-Kasner spacetime for different t0 slices.

3.6.3 Numerical computation of holographic entanglement entropy

The holographic entanglement entropy (3.70) in the IR limit (A = 0) for the AdSdi+2-Kasner

spacetime is given by

SEE =
RdiVdi−1

4Gdi+2

∫
ϵ
dr

(
t(r)(di−1)/di

rdi

)√
1 − t′(r)2 . (3.78)

We evaluate the integrals in (3.78) numerically for AdS5,7-Kasner spacetimes, setting ϵ = 0.01 and

normalizing the length scales R, Vdi−1, Gdi+2 to unity. As an order-of-magnitude estimate with

t0 ∼ 1000, we obtain

SEE ∼ t
2/3
0

ϵ2
∼ 106. (3.79)

The variation of entanglement entropy in the IR limit for AdS5,7-Kasner spacetimes as a function

of t0 is shown in Fig. 3.14. This indicates that the entanglement entropy in AdS Kasner spacetime

decreases as t0 decreases, eventually vanishing as t0 → 0. This behavior aligns with our observations

in Fig. 3.12, where the entangling surfaces t(r) become lightlike earlier for anchoring time slices t0

closer to the singularity.

We now compare the IR entangling RT/HRT surfaces for AdS5-Kasner (Fig. 3.12) and AdS7-

Kasner (Fig. 3.13), as we had done for complexity surfaces in Sec. 3.2.4. We observe that the
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Figure 3.14: Numerical plots of holographic entanglement entropy versus t0 for AdS5,7-

Kasner.

surfaces approach the lightlike regime earlier in AdS7-Kasner relative to AdS5-Kasner, similar to

the complexity surfaces. Once again, this behavior appears to stem from the amplification factor
1

rdi−1 of the lightlike term
√

1 − (t′)2 in entanglement entropy, leading to a more rapid effective

thinning of the degrees of freedom in higher dimensions.

As a mathematical observation, by comparing the t(r) plots in AdS Kasner, we see that the

complexity surfaces become lightlike earlier than the entangling RT/HRT surfaces. This follows

from the equations of motion, which share a similar structure but differ in the numerical factors

that appear. For AdS5-Kasner, we obtain from (3.74) and (3.15),

1 − (t′)2 =
3
2r t t

′′

9
2 t t

′ − r
[EE] ; 1 − (t′)2 =

r t t′′

4t t′ − r
[complexity] . (3.80)

Since the denominator factors are comparable, the relative factor of 3
2 makes (1 − (t′)2) larger,

resulting in a smaller t′(r) for the entangling surface t(r).

Explicit expressions for holographic entanglement entropy (3.69) can be obtained for hyperscal-

ing violating cosmologies using (3.35). The exponents for t(r) are fairly nontrivial. The r-scalings

give the leading divergence as SEE ∼ Vdi−1

Gdi+2

Rdi−θ

ϵdi−θ−1 where we have reinstated the dimensionful bulk

scale R (which can be done simply on dimensional grounds). This can be recast as

SEE ∼ Vdi−1

Gdi+2

Rdi−θ

ϵdi−θ−1
∼ Neff (ϵ)

Vdi−1

ϵdi−1
, Neff (ϵ) =

Rdi−θ

Gdi+2
ϵθ , (3.81)

where Neff is the effective scale-dependent number of degrees of freedom evaluated at the UV cutoff

length ϵ (see [96], [201]). In concrete gauge/string realizations of hyperscaling violating theories

obtained by dimensional reduction of nonconformal Dp-branes, it can be seen that the lengthscales

in the Dp-brane description reorganize themselves as the above and also match various expectations,

including from considerations of the holographic c-function from a 2-dim dilaton gravity point of

view [200]. For instance, the di = 2, θ = −1
3 case corresponding to the D2-brane supergravity

phase with G4 ∼ G10
R6 after the transverse sphere reduction gives Neff = N2 (g2YMNϵ)

−1/3 which
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ends up being consistent with the regime of validity of the D2-supergravity phase. By comparison

the complexity scalings then are less obvious. The leading divergence of complexity in hyperscaling

violating theories can be expressed as

C ∼ Vdi
Gdi+2

(R
ϵ

)di−θ− θ
di ∼ Neff (ϵ)

Vdi
ϵdi

(R
ϵ

)− θ
di

, (3.82)

using Neff in (3.81). The extra factor (Rϵ )
−θ
di arising from the extra metric factor for codim-1

surfaces (relative to codim-2) cannot be obviously recast in terms of field theory parameters once

Neff is pulled out (see [150, 152, 174, 186] for other complexity studies). Of course this can be

expressed in terms of some effective UV cutoff Λ̃
di− θ

di R
− θ

di . The scalings of complexity with time

are also nontrivial. It would be interesting to understand this better.

The numerical plots of the entangling RT/HRT surfaces for the hyperscaling violating cosmology

with di = 4, θ = −1 are qualitatively similar to the above for sufficiently high t0: away from this,

there appear to be some numerical issues (as well as for the di = 2, θ = −1
3 case), similar to the

AdS4 Kasner case stated earlier. So we do not discuss these in detail.

3.7 Discussion

We have examined holographic volume complexity and entanglement entropy in various families of

cosmologies featuring Big-Bang/Crunch singularities, some of which have been previously studied

(e.g., [22, 23, 24, 115, 117, 118, 119, 120]). These include AdS Kasner, hyperscaling-violating,

and Lifshitz asymptotics. By focusing on isotropic Kasner-like singularities, we demonstrated that

higher-dimensional complexity and entanglement can be reformulated in terms of those in two-

dimensional dilaton gravity theories obtained via dimensional reduction [113], with the resulting

expressions elegantly expressed solely in two-dimensional variables.

Figure 3.15: Cartoon of complexity and IR entanglement surfaces at

various anchoring time slices t on the boundary (r = 0) in holographic

cosmologies with Kasner-like Big-Crunch singularities. The extremal sur-

faces bend away from the singularity (dotted line, t = 0) and approach

lightlike regimes eventually (approaching faster as t→ 0).

The equations of motion governing complexity and IR entangling surfaces, derived from the ex-

tremization of the respective functionals, can be solved perturbatively near the holographic bound-

ary. This approach allows us to extract boundary conditions for numerical solutions of the surfaces.

In the numerics, we impose a near-boundary cutoff ϵ: the interior end approaches a lightlike regime
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so no interior regulator is required. The complexity plots appear in Figs. 3.2-3.3, 3.4, 3.5 for AdS5,4,7

Kasner, Figs. 3.7, 3.8 for hyperscaling violating cosmologies, and Fig. 3.10 for Lifshitz Kasner, and

those of entanglement appear in Fig. 3.12, Fig. 3.13 for AdS5,7 Kasner.

Overall this shows that the surfaces begin spacelike near the boundary, bend in the direction

away from the location of the singularity and transition to lightlike in the interior (sec. 3.2.1). For

instance in (3.80), (i) with (t′)2 ≪ 1 (spacelike), we see by using a series expansion for t(r) that

t′(r) > 0, and (ii) with 1 − (t′)2 ∼ 0+ (lightlike), we see that t′′ > 0. As the anchoring time slice

is moved towards the singularity, the spacelike part shrinks and the transition to lightlike is more

rapid. The overall picture depicting a future Big-Crunch singularity is shown in Fig. 3.15 above

(which is top-bottom reflected relative to the plots): note that t ≡ |t| here so our analysis applies

equally well to past Big-Bang singularities (e.g. in (3.80), t→ −t is a symmetry). The complexity

and entanglement functionals contain a
√

1 − (t′)2 factor so that the lightlike regimes give vanishing

contributions: see Figs. 3.6, 3.9, 3.11 (complexity) and Fig. 3.14 (EE). Thus the near singularity

region has vanishingly low complexity and entanglement and the “dual Kasner state” in all these

theories corresponds to the effective number of qubits being vanishingly low, consistent with spatial

volumes undergoing a Crunch. Our results corroborate those in [128] for volume complexity, and

in [129] from holographic path integral optimization, in AdS Kasner. However our analysis (in

particular numerically) is more detailed and applies to various families of cosmologies which are in

the same “universality class” in the scaling behaviour (3.8) near the singularity. Our entanglement

analysis develops further the semiclassical perturbative study in [43], where the entangling surfaces

were shown to bend away from the singularity (and quantum extremal surfaces are driven far away).

Our numerics is consistent with the behaviour of entangling surfaces for finite subregions which

only bend mildly (App. 6.7).

This vanishing of holographic complexity and entanglement can be naturally understood from

a renormalization group (RG) perspective. As the singularity is approached, the dual field theory

undergoes RG flow toward a trivial infrared (IR) fixed point, resulting in a negligible number of

effective degrees of freedom. This, in turn, leads to vanishing complexity. The contribution of soft

modes to the overall complexity is minimal, as these low-energy excitations dominate in the IR

and contribute insignificantly to the complexity. This perspective aligns with the work of Swingle

and McGreevy [202], who provided a rigorous RG-based argument for the area law of entanglement

entropy in gapped phases of matter. Their framework offers a conceptual foundation for under-

standing both entanglement and complexity through RG flow. For field theories dual to crunching

geometries, the renormalization group (RG) flow traverses all intermediate energy scales—including

potential gaps—and ultimately terminates at a trivial infrared (IR) fixed point. This results in a

complete suppression of both entanglement and complexity, providing a particularly sharp and

illustrative realization of RG-driven vanishing complexity. A more rigorous treatment, including

detailed computations and mathematical analysis, is deferred to future work.

It is important to note that in the region very close to the singularity, where the transition to
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a lightlike regime occurs rapidly, the anchoring time slice t0 eventually becomes comparable to the

cutoff ϵ, i.e., t0 ∼ ϵ. At this stage, the semiclassical gravity framework employed here likely becomes

unreliable. Consequently, when concluding that complexity approaches a vanishingly small value as

t0 → 0, we are effectively extrapolating the observed trend of decreasing complexity into the near-

singularity regime. While this extrapolation appears reasonable, a more detailed understanding of

the very near-singularity region remains an important open question. At a fundamental level, our

analysis of holographic volume complexity and entanglement—building on the work of [43, 127]

and [128, 129], as well as studies of the limiting surface in the black hole interior [20]—indicates

that such spacelike Kasner cosmological singularities are excluded from the entanglement wedge

of observers. This exclusion, determined by extremal surfaces in a self-consistent manner, ensures

that they avoid the vicinity of the singularity. We refer to this phenomenon as “entanglement

wedge cosmic censorship” (thanks to Sumit Das for coining the phrase). In a sense, this

is reassuring, since the opposite scenario would imply a breakdown of the semiclassical gravity

framework and lead to inconsistencies. It is plausible that the study of null singularities will reveal

qualitatively new behavior, particularly in light of the investigations of holographic duals in [115]

and quantum extremal surfaces in [127], which tend to bend toward the singularity. The behavior

of extremal surfaces bending away from the singularity is reminiscent of the absence of spacelike

surfaces anchored at the future boundary in de Sitter space [213]: perhaps more general structures

[223, 224] may be of value as near singularity probes.

We have focused on the isotropic Kasner subfamily, which naturally arises in the context of

reduction to two dimensions. However, it is likely that more general spacetimes with hyperscaling-

violating and Lifshitz asymptotics exist, exhibiting general anisotropic Kasner singularities—analogous

to the fully anisotropic Kasner spacetimes in AdS. The constraint
∑

i pi = 1 suggests that holo-

graphic volume complexity would remain the same as in our analysis. However, entanglement

entropy, which depends on the choice of the boundary spatial subregion, would be sensitive to its

spatial orientation.

More general AdS-BKL-type singularities were also studied in [24]. In these cases, spatial

curvatures force BKL oscillations between various Kasner regimes (starting with some Kasner ex-

ponent negative), which continue indefinitely in the absence of external scalars [203, 204, 205]. In

the presence of the scalar Ψ as we have, the BKL oscillations lead to attractor-type basins even-

tually (with all Kasner exponents positive). Holographic entanglement requires defining a spatial

subregion and thus would appear to evolve along BKL oscillations. Since the volume complexity

functional for anisotropic AdS-Kasner backgrounds is similar, the evolution of complexity naively

appears insensitive to these BKL oscillations, but it would be interesting to explore complexity

more carefully to see the role of spatial curvatures.

The effectively 2-dimensional nature of our bulk analysis suggests the existence of effective dual

1-dimensional qubit models governing complexity. In AdS and Lifshitz Kasner spacetimes, the

decrease in complexity with time is linear, whereas in hyperscaling-violating theories, it is not.
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These latter theories, characterized by a nonzero hyperscaling violation exponent θ, have effective

spatial dimensions given by deff = di− θ. It would be interesting to explore effective 1-dimensional

qubit models that simulate this behavior, recalling the general arguments presented in [25].

Finally, it is worth noting that the Kasner singularities we have discussed exhibit time depen-

dence that does not switch off asymptotically. This is reflected in the persistence of the nontrivial

Kasner scale tK appearing in our expressions: for instance (3.33) after reinstating tK is really

C ∼ Ndof VdiΛ
di
UV

t0
tK

so this perhaps cannot be extrapolated to asymptotically large timescales

t0 ≫ tK . The main merit of these models is the simplicity of the bulk in the vicinity of the

singularity. Perhaps, as in [127] for quantum extremal surfaces, asymptotic regions with no time-

dependence can be appended beyond t0 > tK with appropriate boundary conditions. In this case,

the extremal surfaces becoming lightlike hitting the past horizon here (Fig. 3.15) must instead pre-

sumably be extended to these asymptotic far-regions (translating the question of the behaviour at

the past horizon to the behaviour asymptotically). This hopefully will lead to better understanding

of the (non-generic) initial conditions in the asymptotic regions that give rise to this “dual Kasner

state” and its low complexity.
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Chapter 4

Time entanglement and

pseudo-entropy

Our earlier studies focused on extremal surfaces—both quantum extremal surfaces (QES) and

complexity surfaces—in the context of AdS/CFT, providing insights into cosmologies exhibiting

Big-Crunch singularities. We now turn our attention to a different holographic framework: de

Sitter holography, which has been extensively studied in the literature [209]-[226].

In de Sitter space, the holographic dual is a non-unitary Euclidean CFT residing on the future

boundary I+. This departure from AdS/CFT brings fundamentally new challenges in defining and

interpreting extremal surfaces [213]. Notably, extremal surfaces anchored at the future boundary

(I+) do not have turning points that connect I+ to itself. The absence of such I+ → I+ returns

implies that these surfaces extend inward toward the past. Consequently, they require additional

input—either through specifying data in the interior of the spacetime or imposing boundary con-

ditions in the far past—to be properly characterized. One notable scenario involves future-past

extremal surfaces [217, 220] that extend from I+ (the future boundary) to I− (the past boundary)

in fully Lorentzian de Sitter space. These surfaces are entirely timelike, with their area acquiring

a factor of −i that reflects their timelike nature. Alternatively, by invoking the Hartle-Hawking

no-boundary proposal, one can construct a modified de Sitter geometry, often referred to as no-

boundary de Sitter. Here, the extremal surface (no-boundary dS extremal surface) comprises a

timelike segment anchored at I+ and a spacelike segment emerging from a smoothly attached

Euclidean hemisphere, resulting in a complex-valued surface [223, 224] (see also [221, 222] for dis-

cussions on dS3/CFT2) with both real and imaginary contributions to its area. We review the key

aspects of extremal surfaces in de Sitter space in Sec. 4.1.

Unlike AdS, where specifying boundary data resolves the extremization problem,

dS extremal surfaces that originate at late times on I+ do not return. This necessitates the inclusion

of additional data for boundary conditions in the far past. As a result, two distinct scenarios arise:
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future-past extremal surfaces in entirely Lorentzian dS, and no-boundary dS extremal surfaces, as

discussed above. dS extremal surfaces necessarily involve a timelike component, which encodes a

novel structure termed ‘timelike entanglement’, as proposed in [224]. This gives rise to two possible

aspects of time-like entanglement: the first is rooted in the thermo-field double state inspired by the

timelike future-past surfaces, while the second is based on the time-evolution operator, motivated

by the behavior of dS extremal surfaces that require additional boundary conditions in the far

past. This behavior is reminiscent of scattering amplitudes, where final states arise from initial

states, or equivalently, time evolution. It is thus intriguing to explore entanglement-like structures

emerging from the time evolution operator, U(t), after performing a partial trace over a subsystem.

The time evolution operator yields complex-valued entanglement structures. We review various

aspects of timelike entanglement in Sec. 4.2. Furthermore, [223] suggests that the entanglement

entropy derived from the complex-valued extremal surfaces in no-boundary de Sitter space should

be interpreted as pseudo-entropy.

Pseudo-entropy is a generalization of entanglement entropy, defined in terms of a transition

matrix rather than a density matrix. The transition matrix is expressed as:

TF |I =
|F ⟩ ⟨I|
⟨I|F ⟩

, (4.1)

which reduces to the density matrix for |F ⟩ = |I⟩. We now decompose the Hilbert space as HA⊗HB.

The reduced transition matrix TAF |I is obtained by tracing out HB:

TAF |I = TrB(TF |I) . (4.2)

Notably, the transition matrix is non-Hermitian, and its reduced transition matrix may possess

complex eigenvalues. The entropy associated with the reduced transition matrix is referred to as

pseudo entropy and is defined as:

S(TAF |I) = −TrA(TAF |I log TAF |I) . (4.3)

Pseudo-entropy can generally take complex values. Unlike de Sitter space with its non-unitary CFT

dual, the entanglement entropy of a timelike interval, even in unitary CFTs, is complex-valued and

should be interpreted as pseudo entropy.

For ordinary unitary two-dimensional conformal field theories (CFTs), the entanglement en-

tropy is given by

S =
c

6
log

∆2

ϵ2
=
c

6
log

−(∆t)2 + (∆x)2

ϵ2
. (4.4)

For ordinary spacelike intervals with ∆2 > 0, this reduces to the familiar expression S = c
3 log ∆x

ϵ .

On the other hand, if we rotate the subsystem to be entirely timelike, with a width ∆t = T0 along

the time direction, we obtain [224]

S =
c

3
log

T0
ϵ

+
c

6
(iπ) . (4.5)
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The imaginary part arises from the term log(−1) due to the timelike separation in the interval.

More generally, the real part of the entanglement entropy incorporates the condition ∆2 < 0.

This result can also be derived by identifying the complex-valued extremal surface in AdS3. For

a detailed discussion, see [223]. Furthermore, pseudo entropy in holographic CFTs can be computed

as the area of a minimal surface in a time-dependent Euclidean asymptotically AdS geometry, as

illustrated in Figure 4.1. Numerous studies on pseudo-entropy can be found in [227]-[239] (see

also [240]). Moreover, recent works [241]-[254] explore various aspects of time entanglement and

pseudo-entropy.
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.
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.
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 O(x3)

E
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Final state ⟨ϕ∣

Initial state ∣ψ⟩
τ=0

Figure 4.1: A schematic representation of the setup for holographic pseudo-entropy. The

minimal surface ΓA is anchored at the boundary of subregion ‘A’ in a time-dependent Eu-

clidean asymptotically AdS geometry. The dots denote excitations arising from external

sources or conformal field theory (CFT) operators.

This Chapter is based on [239] and builds upon the work in [224], exploring the time evolution

operator and its associated entanglement-like structures in various quantum systems, treating the

operator as a density operator. These structures, involving timelike separations, generally lead

to complex-valued entropy, though notable real subfamilies also emerge. This has many parallels

and close relations with reduced transition matrices and pseudo-entropy, which we discuss in this

study. We also consider time evolution operator along with a projection onto some initial state,

which amounts to pseudo-entropy for the initial state and its time-evolved final state. In the time-

independent cases studied, the structure of time entanglement exhibits similarities to conventional

finite-temperature entanglement but analytically continued to an imaginary temperature, β = it.
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In Sec. 4.8, we extend the analysis to time-dependent interactions, focusing on simple two-qubit

systems with δ-function potentials and the resulting time entanglement.

4.1 Review of extremal surfaces in de Sitter space

This section presents a review of the key aspects of dS extremal surfaces discussed in [224, 226].

4.1.1 dS extremal surfaces from I+, and boundary conditions

The absence of I+ → I+ turning points is evident in the Poincaré slicing with planar foliations

[213]. The metric in this slicing is given as:

ds2d+1 =
R2
dS

τ2
(
−dτ2 + dy2i

)
=
R2
dS

τ2
(
−dτ2 + dw2 + dx2i

)
. (4.6)

Here, w ∈ yi is singled out as the boundary Euclidean time. This choice is made without loss

of generality.

To analyze extremal surfaces, we consider a constant w slice. At I+, we take a strip-shaped

subregion. This subregion is natural for planar symmetries, with its width along x ∈ xi. Extremal

surfaces are anchored at the boundary interfaces of the strip.

The corresponding area functional is:

SdS = −i
Rd−1
dS Vd−2

4Gd+1

∫
dτ

τd−1

√
1 − (∂τx)2. (4.7)

Here, Vd−2 is the transverse volume, and Gd+1 is the gravitational constant in (d+ 1) dimensions.

Extremizing this functional yields:

(∂τx)2 =
B2τ2d−2

1 +B2τ2d−2
, (4.8)

where B2 is a constant.

A key observation is the sign difference compared to the AdS case. This difference reflects the

absence of turning points that would return to I+. Near the boundary, where τ → 0, the behavior

is:

(∂τx)2 ≪ 1. (4.9)

This derivative remains bounded throughout, with (∂τx)2 < 1, for any real B2 > 0.

For B2 < 0, the surfaces correspond to analytic continuations from AdS Ryu-Takayanagi (RT)

surfaces [213, 214, 215, 216].

The absence of I+ → I+ turning points implies that the surfaces extend inward. In a purely

Lorentzian de Sitter space, these surfaces naturally end at I−. This gives rise to future-past

extremal surfaces [217, 220]. These are timelike codimension-2 surfaces stretching from I+ to I−.
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Alternatively, one can modify the Lorentzian de Sitter geometry using the Hartle-Hawking

no-boundary proposal. This replaces the bottom half of dS space with a Euclidean hemisphere.

Extremal surfaces then satisfy a no-boundary type condition. These alternatives are discussed in

detail in subsequent sections.

4.1.2 Future-past extremal surfaces in dS

In static coordinates, the metric describes static patches with time translation symmetry. These

patches allow analytic extensions to the entire de Sitter space. The metric takes the form:

ds2 = −
(

1 − r2

l2

)
dt2 +

dr2

1 − r2

l2

+ r2dΩ2
d−1. (4.10)

In the Northern and Southern diamond regions (N and S), these static patches exhibit time trans-

lation symmetry, with t serving as the time coordinate. Observers in these regions encounter event

horizons at r = l, where the area of these cosmological horizons corresponds to the de Sitter entropy.

To study the future boundary, we employ the coordinate transformations:

τ =
l

r
, w =

t

l
, (4.11)

which recast the metric as:

ds2 =
l2

τ2

(
− dτ2

1 − τ2
+ (1 − τ2)dw2 + dΩ2

d−1

)
. (4.12)

Here, τ serves as the bulk time, with τ = 0 representing the future and past boundaries. The

future and past universes are described by 0 ≤ τ < 1, and the boundary at I+ is R × Sd−1. The

boundary Euclidean time slice can be chosen as any Sd−1 equatorial plane or as a w = const slice.

Let us define a subregion on the boundary I+ as ∆w × Sd−2, with a corresponding subregion

at I−. The area functional is then:

S = −i l
d−1VSd−2

4Gd+1

∫
dτ

τd−1

√
1

f
− f(w′)2, (4.13)

where f = 1 − τ2. Extremizing this functional leads to:

(1 − τ2)2(w′)2 =
B2τ2d−2

1 − τ2 +B2τ2d−2
, (4.14)

where B2 > 0 is a constant. The total area is:

S = −i2l
d−1VSd−2

4Gd+1

∫ τ∗

ϵ

dτ

τd−1

1√
1 − τ2 +B2τ2d−2

. (4.15)

Here, τ∗ denotes the turning point, satisfying:

1 − τ2∗ +B2τ2d−2
∗ = 0. (4.16)
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Figure 4.2: dS future-past extremal surfaces stretching between I± on an Sd−1 equatorial

plane. The left panel schematically depicts the extremal surface (shown in magenta) for a

generic subregion, whereas the right panel illustrates the extremal surface corresponding to

the entire space.

The turning point τ∗ lies within the N and S diamond regions, where the extremal surface

remains timelike. The surface from I+ can be joined to an equivalent surface from I−, resulting

in a full, timelike future-past surface [217, 220] stretching from I+ to I−, as shown in Figure 4.2.

These surfaces are rotated analogs of Hartman-Maldacena surfaces in the eternal AdS black hole

[20]. For ∆w → ∞, the subregion becomes the entire space I±. For dS4, the turning point occurs

at τ∗ =
√

2, corresponding to B → 1
2 . The area of these surfaces exhibits an area-law divergence

and a finite part:

Sdiv ∼ −iπl
2

G4

l

ϵc
, Sfin ∼ −iπl

2

G4
∆w [dS4]. (4.17)

The divergence scales with the de Sitter entropy, πl2

G4
, akin to the number of degrees of freedom in

the dual CFT.

Alternatively, we can consider cap-like subregions defined by θ = const latitudes on Sd−1 at

I+, with corresponding ones at I−. The area functional is:

S = −i2l
d−1VSd−2

4Gd+1

∫
dτ

τd−1
(sin θ)d−2

√
1

1 − τ2
− (θ′)2. (4.18)
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While analyzing this explicitly for general θ is challenging, for θ = π
2 , we obtain a future-past

extremal surface stretching from a hemispherical cap on Sd−1 at I+ to the corresponding cap at

I−. The area in dS4 is:

S = −i2πl
2

G4

∫ 1

ϵ

dτ

τ3
√

1 − τ2
∼ −iπl

2

G4

1

ϵ
. (4.19)

This result contains no finite part.

In global coordinates, the metric is written as:

ds2d+1 = −dτ2 + l2 cosh2
(τ
l

)
dΩ2

d. (4.20)

The boundary Euclidean time slice can be chosen as any Sd equatorial plane, all of which are

equivalent. The area functional, including a factor of 2 for the top and bottom parts, is:

S = −i2l
d−2VSd−2

4Gd+1

∫
dτ (cosh τ)d−2(sin θ)d−2

√
1 − cosh2 τ(∂τθ)2. (4.21)

For θ = π
2 , the future-past extremal surface stretches from I+ to I−. In dS4, the area is:

S = −iπl
2

G4

∫ τc/l

0
cosh τ dτ ∼ −i πl

2

2G4
eτc/l ∼ −i πl

2

2G4

l

Tc
. (4.22)

The result exhibits an area-law divergence, similar to the static coordinate case.

4.1.3 dS no-boundary surfaces

In accordance with the Hartle-Hawking no-boundary prescription [255] (see also [256]), global de

Sitter space can be split along the τ = 0 time slice. The top half is then joined to a hemisphere in

the bottom half, defined by the Euclidean continuation

ds2 = l2dτ2E + l2 cos2 τE dΩ2
d ; τ = ilτE , 0 ≤ τE ≤ π

2
. (4.23)

Now, consider an Sd equatorial plane and the timelike extremal surface from (4.21) at θ = π/2,

which represents the IR limit of such surfaces. The top portion of this surface originating from

I+ intersects the τ = 0 mid-slice vertically. This is smoothly joined at τ = 0 with a surface

extending over the bottom hemisphere, ensuring consistency with the Hartle-Hawking prescription,

as schematically illustrated in Figure 4.3. The IR surface in this configuration is

ds2 = l2dτ2E + l2 cos2 τE(dθ2 + sin2 θ dΩ2
d−2)

∣∣
θ=π/2

= l2dτ2E + l2 cos2 τEdΩ2
d−2 ,

with the corresponding area given by

ld−1

4Gd+1
VSd−2

∫ π/2

0
dτE (cos τE)d−2 =

ld−1

4Gd+1
VSd−2

√
π Γ
(
d−1
2

)
2 Γ
(
d
2

) =
1

2

ld−1 VSd−1

4Gd+1
. (4.24)
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Figure 4.3: A schematic representation of a global dS no-boundary surface. The top portion

(timelike) anchored at the future boundary I+, is smoothly joined to the spatial component

that wraps around the hemisphere in the bottom half. In this figure, the no-boundary dS

surface corresponds to the IR limit (θ = π
2
) on an Sd equatorial plane ( This figure is adapted

from [224], which holds the original credit).

Here, VSd = 2π(d+1)/2

Γ((d+1)/2) is the volume of a d-sphere. Notably, the real part of the area of this spacelike

surface on the hemisphere is precisely half of the de Sitter entropy. This recovery of entropy differs

from the interpretation as the area of the cosmological horizon observed in static patches. In this

context, one of the hemisphere directions corresponds to the Euclidean continuation of the time

direction in the future universe. For dS4, the total area for the no-boundary surface is the sum of

the top timelike part (half of the future-past area from (4.22)) and the hemisphere contribution:

S = −i πl
2

4G4

l

Tc
+
πl2

2G4
. (4.25)

This bears some resemblance to the semiclassical wavefunction ΨdS = eiScl for no-boundary dS4,

where Scl represents the action. The Lorentzian top half contributes a real Scl, yielding a pure phase

in ΨdS . In contrast, the bottom hemisphere results from the Euclidean continuation (4.23), with

iScl becoming the Euclidean gravitational action −
∫
nbp

√
g (R−2Λ) , evaluated on the hemisphere.

For dS4, this gives 1
2

l4VS4

16πG4
· 6
l2

= πl2

2G4
, as is well known (see, e.g., [257, 258]).

A similar calculation can be performed for the timelike future-past surface in static coordinates.

Here, the boundary is Rw × Sd−1, allowing for either Sd−1 equatorial planes or w = const slices as

boundary Euclidean time slices. The Euclidean continuation in this case is

ds2 = l2(cos2 ψ dτ2E + dψ2 + sin2 ψ dΩ2
d−1) , t = iτE , r = l sinψ , (4.26)
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where τE ∈ [0, 2πl] and 0 ≤ ψ ≤ π/2.

For Sd−1 equatorial plane surfaces, there is a limiting surface at τ∗ > 1 (e.g., τ∗ =
√

2 for dS4),

corresponding to a limiting ψ∗ with sinψ∗ = r∗/l = 1/τ∗:

ds2 = cos2 ψ∗ dτ
2
E + sin2 ψ∗ dΩ2

d−2 .

The area evaluates to ∫ πl

0
cosψ∗ dτE (sinψ∗)

d−2 VSd−2

ld−2

4Gd+1
.

For dS4, with sinψ∗ = 1/
√

2, this yields an area

1

2
(πl)

2πl

4G4
=
π2l2

4G4
.

For w = const slices (equivalently, τE = const), the timelike surface from the θ = π/2 cap on

Sd−1 leads to

ds2 = dψ2 + sin2 ψ dΩ2
d−2 ,

giving an area identical to that in global de Sitter space (4.24). For dS4, adding the top timelike

part from (4.19), the total area becomes

S = −i πl
2

2G4

1

ϵ
+
πl2

2G4
.

Finally, note that these no-boundary surfaces turn only in the bottom hemisphere. The top

timelike half remains identical to the corresponding future-past surface, with no I+ → I+ turning

point. For two disjoint subregions, the corresponding no-boundary surfaces are unique, with no

additional connected surfaces. As a result, the entropies satisfy

S[A ∪B] = S[A] + S[B] ,

implying that mutual information vanishes, similar to the case of future-past surfaces [220]. Fur-

thermore, the entropy for no-boundary de Sitter space is complex-valued, as evident from (4.25).

This suggests that it should be interpreted as a pseudo-entropy, as proposed in [223].

4.1.4 dS3 no-boundary surfaces, and pseudo entropy

Let us now turn our attention to dS3, which holds special significance for various reasons. In fully

Lorentzian global de Sitter space, the future-past surfaces on an S2 equatorial plane slice (see

Eq. 4.21) yield the area:

S = −i l
G3

log
l

Tc
.

In the context of no-boundary dS3, the total area arises as the sum of contributions from the top

timelike segment and the bottom hemisphere (Eq. 4.24), resulting in:

SdS3 = −i l

2G3
log

l

Tc
+

πl

4G3
.
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This expression can be reformulated as:

SdS3 =
cdS
3

log
l

Tc
+ iπ

cdS
6
, (4.27)

where cdS = −i3ldS2G3
. The second term, which is real, corresponds to half of the dS3 entropy,

πl
2G3

. This formulation can be obtained by making the substitutions l2

ϵ2
→ − l2

T 2
c

and c → cdS in

the familiar expression c
6 log l2

ϵ2
[36, 37, 259]. Here, the CFT2 dual to dS3 has the central charge:

cdS = −i3ldS2G3
, as established in [211]. One striking feature of Eq. 4.27 is the presence of a real part,

originating from the hemisphere contribution. This real part necessitates an additional factor of

i, which is a novel characteristic of the Euclidean CFTdS3 dual. This is in contrast to ordinary

Euclidean CFTs, which involve purely real spatial lengths and lack temporal components.

4.2 Review of time-entanglement in quantum mechan-

ics

In the previous section, We have reviewed future-past extremal surfaces extending from I+ to I−.

These surfaces are entirely timelike, resulting in an area that is purely imaginary, differing by an

overall factor of −i from the areas of the familiar spacelike RT/HRT surfaces in AdS. Despite this

imaginary factor, the magnitude of the area remains real and positive, with −i acting as a uniform

multiplier for any subregion at I+. This is reminiscent of the relationship between the lengths of

timelike and spacelike geodesics, where the timelike geodesic length acquires an overall −i factor

relative to its spacelike counterpart. Motivated by this analogy, the areas of these timelike future-

past extremal surfaces are interpreted as encoding a novel object, time-entanglement, as introduced

in [224].

The no-boundary surfaces, which are closely related to the timelike future-past surfaces, also

exhibit complex-valued areas. These consist of two components: a timelike segment (identical to

the top half of the future-past surfaces) contributing a purely imaginary part, and a spacelike

segment (arising from the hemisphere) contributing a real part. Together, these components form

a complex area.

This notion of time-entanglement can be further explored through two perspectives in quantum

mechanics, independent of the de Sitter framework. The first perspective involves the thermofield-

double-type state discussed in [217, 220]. The second perspective treats the timelike surfaces as

representing some form of transition amplitude, related to the time-evolution operator.

A future-past thermofield double state

The entirely timelike future-past surfaces, analogous to the rotated Hartman-Maldacena surfaces

[20], suggest a form of entanglement between I+ and I−. Consider the state

|ψ⟩fp =
∑

ψi
F
n ,i

P
n |in⟩F |in⟩P , (4.28)
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as introduced in [217]. This state was proposed as an entirely positive object, entangling identical F

(future) and P (past) components, inspired by the thermofield-double (TFD) state for the eternal

black hole [260]. A partial trace over the second (P ) copy yields a reduced density matrix with

nontrivial entanglement entropy.

To illustrate, consider a simple two-state system in ordinary quantum mechanics. The Hamil-

tonian H acts on the orthogonal basis eigenstates, leading to the time evolution:

H|k⟩ = Ek|k⟩ , k = 1, 2 ; |k⟩F ≡ |k(t)⟩ = e−iEkt|k⟩P . [⟨1|2⟩ = 0] (4.29)

The F and P slices are separated by time t, and the F state is obtained from the P state via time

evolution through t.

The future-past TFD state in this toy example is given by:

|ψ⟩fp =
1√
2
|1⟩F |1⟩P +

1√
2
|2⟩F |2⟩P =

1√
2
e−iE1t|1⟩P |1⟩P +

1√
2
e−iE2t|2⟩P |2⟩P . (4.30)

The coefficients are normalized for maximal entanglement at t = 0. For nonzero t, additional phases

arise due to time evolution. However, these phases cancel in the reduced density matrix obtained

by tracing over the second copy (P ):

ρfp = TrP
(
|ψ⟩fp⟨ψ|fp

)
=

1

2
|1⟩F ⟨1|F +

1

2
|2⟩F ⟨2|F . (4.31)

As a concrete analogy, consider a two-spin system where |1⟩ = | + +⟩ and |2⟩ = | − −⟩,
representing the two-state subspace | ± ±⟩ of two spins with states |±⟩. A partial trace over the

second spin yields the reduced density matrix:

Tr2ρfp =
1

2
|+⟩F ⟨+|F +

1

2
|−⟩F ⟨−|F , (4.32)

with an entirely positive structure and entropy log 2.

This future-past TFD state, characterized by timelike separation, exhibits a fundamentally

distinct nature compared to the standard TFD state. Notably, its positive structure, despite the

timelike separation, bears a resemblance to the areas of entirely timelike surfaces when the universal

overall factor of −i is disregarded.

Time-evolution and reduced transition amplitudes

Unlike AdS, where specifying boundary data resolves the extremization problem, dS extremal

surfaces that start at late times on I+ do not return. This necessitates additional data for boundary

conditions in the far past. Such behavior is reminiscent of scattering amplitudes, i.e., final states

arising from initial states, or equivalently, time evolution. It is therefore interesting to explore

entanglement-like structures emerging from the time evolution operator U(t) after performing a

partial trace over an environment. In other words, we seek a “reduced transition amplitude” and

its associated entropy. Specifically, for a subregion A and an environment B, we define:

ρt(t) ≡
U(t)

TrU(0)
⇒ ρAt = TrB ρt ⇒ SA = −Tr

(
ρAt log ρAt

)
. (4.33)
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The normalization ensures that ordinary entanglement structures are recovered at t = 0, as we will

explicitly demonstrate.

To illustrate, consider the simple toy example described earlier. For this case, since all compo-

nents are diagonal, the normalized time evolution operator simplifies to:

U(t) = e−iHt ⇒ ρt(t) =
1

2
e−iE1t|1⟩P ⟨1|P +

1

2
e−iE2t|2⟩P ⟨2|P =

1

2
|1⟩F ⟨1|P +

1

2
|2⟩F ⟨2|P . (4.34)

Using the two-spin analogy, where |1⟩ = | + +⟩ and |2⟩ = | − −⟩, a partial trace over the second

components results in:

ρAt =
1

2
e−iE1t|+⟩P ⟨+|P +

1

2
e−iE2t|−⟩P ⟨−|P . (4.35)

The entropy associated with this is:

SA = −
∑
i

1

2
e−iEit log

(
1

2
e−iEit

)
=

1

2
log 2 (e−iE1t + e−iE2t) +

1

2
iE1t e

−iE1t +
1

2
iE2t e

−iE2t. (4.36)

Normalizing U(t) by its trace at time t ensures that Tr ρt(t) = 1 for all t (not just t = 0), which

modifies (4.80)–(4.36) to:

ρt(t) ≡
U(t)

TrU(t)
⇒ ρt(t) =

∑
i

pi|i⟩P ⟨i|P , pi =
e−iEit∑
j e

−iEjt
,

ρAt =
∑
i

p′i|i′⟩P ⟨i′|P ⇒ SA = −
∑
i

p′i log p′i, (4.37)

where H|i⟩ = Ei|i⟩. The second line follows after taking a partial trace. These structures

share similarities with pseudo-entropy [227], though their details differ. The time entanglement

(entanglement-like structures derived from the time evolution operator treated as a density op-

erator) and pseudo-entropy exhibit intriguing interrelations, which we explore in the subsequent

sections.

At t = 0, ρAt resembles an ordinary maximally entangled state. For t ̸= 0, the entropy SA

generally becomes complex-valued. However, certain cases, such as (4.38) for the two-state system,

involve a single phase e−i(E2−E1)t, yielding a real entropy. Additionally, different normalizations

yield varying results, as demonstrated in the examples above. Overall, these structures bear a

resemblance to mixed-state entanglement at finite temperature, but with an imaginary temperature,

i.e., β = it. Several related quantities can also be constructed. For instance, the time evolution

operator U(t), combined with a projection operator onto a generic state |I⟩, leads to:

U(t)|I⟩⟨I| = |FI(t)⟩⟨I|,

where |FI(t)⟩ is the future state obtained by time-evolving the initial state |I⟩. Normalizing at time

t and performing a partial trace yields a reduced transition matrix, resembling that in pseudo-

entropy [227], but specifically tied to the time-evolved future state. Similarly, normalizing at

t = 0 produces different structures. For instance, projections onto Hamiltonian eigenstates |EI⟩,
followed by a partial trace, result in simple phases for ρA,It (essentially components of (4.35)), with

corresponding entropy forms such as iEIt e
−iEI t.
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4.3 Summary: time evolution and pseudo-entropy

Our investigations, following [224], are based on treating the time evolution operator as a den-

sity operator, performing partial traces over subsystems, and evaluating the corresponding von

Neumann entropy. The time evolution operator U(t) = e−iHt for a system with Hamiltonian H

(time-independent) can be written in terms of Hamiltonian eigenstates |i⟩, which are defined on

some past time slice P . The time evolution operator normalized at an arbitrary time t gives:

U(t) = e−iHt =
∑
i

e−iEit|i⟩⟨i| =
∑
i

|i⟩t ⟨i|P , |i(t)⟩ ≡ |i⟩t = e−iEit|i⟩P ;

ρt(t) ≡
U(t)

TrU(t)
⇒ ρt(t) =

∑
i

pi |i⟩P ⟨i|P , pi =
e−iEit∑
j e

−iEjt
,

→ ρAt = TrBρt =
∑
i

p′i |i′⟩P ⟨i
′|P → SA = −

∑
i

p′i log p′i . (4.38)

As is evident, there are striking parallels with ordinary finite-temperature entanglement structures,

except with imaginary temperature β = it . This connection will repeatedly emerge as a recurring

theme throughout much of what follows.

A related quantity involves the time evolution operator with projection onto some state |i⟩,

ρ
|i⟩
t =

ρt|i⟩⟨i|
Tr(ρt|i⟩⟨i|)

=
|f [i](t)⟩⟨i|

Tr(|f [i](t)⟩⟨i|)
, |f [i](t)⟩ = e−iHt|i⟩ ; ρ

|i⟩,A
t = TrB ρ

|i⟩
t . (4.39)

The state |f [i]⟩ is the final state obtained by time-evolving the initial state |i⟩. We obtain

|i⟩ =
∑

cn|n⟩ ; ρ
|i⟩
t =

1∑
k e

−iEkt|ck|2
∑
k,m

e−iEktckc
∗
m|k⟩⟨m| (4.40)

for a general (non-eigen)state |i⟩. At t = 0, the time evolution operator is just the identity

operator, a sum over all the eigenstate projection operators, while the time evolution operator

with projection becomes simply the density matrix for the initial state |i⟩. For any nonzero time

t, there is timelike separation between the initial states |ψ⟩P and the eventual states |ψ⟩t. These

entanglement structures involving timelike separations and time evolution have close parallels with

pseudo-entropy [227] obtained from the reduced transition matrix for two arbitrary states |i⟩, |f⟩ :

T A
f |i = TrB

(
|f⟩⟨i|

Tr(|f⟩⟨i|)

)
. (4.41)

To summarize in generality, consider a bipartite system where the Hilbert space is characterized

by Hamiltonian eigenstates |i, i′⟩ with energies Ei,i′ . The normalized time evolution operator (4.38)

and its partial trace over B ≡ {i′} are

ρt =
1∑

i,i′ e
−iEi,i′ t

∑
i,i′

e−iEi,i′ t |i, i′⟩⟨i, i′| → ρAt =
1∑

i,i′ e
−iEi,i′ t

(∑
i′

e−iEi,i′ t
)
|i⟩⟨i| . (4.42)
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The time evolution operator with projection onto state |I⟩ is

|I⟩ =
∑
k,k′

ck,k′ |k, k′⟩ , ρ
|I⟩
t =

1∑
i,i′ |ci,i′ |2e

−iEi,i′ t

∑
i,i′,j,j′

ci,i′c
∗
j,j′e

−iEi,i′ t|i, i′⟩⟨j, j′| ,

ρ
|I⟩,A
t =

1∑
i,i′ |ci,i′ |2e

−iEi,i′ t

∑
i,j

(∑
i′

ci,i′c
∗
j,i′e

−iEi,i′ t
)
|i⟩⟨j| . (4.43)

The reduced transition matrix for pseudo-entropy is obtained as

|I⟩ = ci,i′ |i, i′⟩, |F ⟩ = c′i,i′ |i, i′⟩ ; TF |I =
1∑

i,i′ c
′
i,i′c

∗
i,i′

∑
i,i′,j,j′

c′i,i′c
∗
j,j′ |i, i′⟩⟨j, j′| ,

T A
F |I =

1∑
i,i′ c

′
i,i′c

∗
i,i′

(∑
i′

c′i,i′c
∗
j,i′
)
|i⟩⟨j| . (4.44)

It is clear that the time evolution operator with projection (4.43) is derived from the pseudo-entropy

reduced transition matrix (4.44) by restricting the final state to be the time-evolved initial state,

i.e. |F ⟩ = U(t)|I⟩.

4.3.1 The time evolution operator and the transition matrix

With a single Hilbert space, the structure of the reduced transition matrix appears different in

detail from that of the reduced time evolution operator. This distinction is evident in bipartite

systems from (4.42), (4.43), and (4.44). However, there should be a close connection between the

time evolution operator and the transition matrix, as both pertain to time evolution—particularly

when focusing on final states as time-evolved initial states.

Towards studying this, let us first recall that a special class of states comprises thermofield-

double type states |I⟩TFD =
∑

k ck,{k}|k, {k}⟩, with only diagonal components (a further special

subclass comprises maximally entangled TFD states, with all ck,{k} equal).

Towards mapping time evolution and the transition matrix, consider doubling the Hilbert space

at both initial and final times: i.e. extend the Hilbert state H ≡ H1 to H1⊗H2, where the Hilbert

space H2 is an identical copy of H1. Now consider thermofield-double type initial and final states:

|ψI⟩ =
∑
i

cIi |i⟩1|i⟩2 , |ψF ⟩ =
∑
i

cFi |i⟩1|i⟩2 , (4.45)

where {|i⟩} is a basis of states. The (un-normalized) transition matrix is

TF |I = |ψF ⟩⟨ψI | =
∑
i,j

cFi c
I ∗
j |i⟩1|i⟩2 ⟨j|1⟨j|2 . (4.46)

Performing a partial trace over copy-2 gives

Tr2 TF |I =
∑
i

cFi c
I ∗
i |i⟩1⟨i|1 . (4.47)
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For this to equal the time evolution operator, we require

Tr2 TF |I = U(t) =
∑
i

e−iEit |i⟩⟨i| ⇒ cFi c
I ∗
i = e−iEit . (4.48)

A “symmetric” solution is

cIi = eiEit/2 : |ψI⟩ =
∑
i

eiEit/2 |i⟩1|i⟩2 ,

cFi = e−iEit/2 : |ψF ⟩ =
∑
i

e−iEit/2 |i⟩1|i⟩2 . (4.49)

These can be regarded as obtained from a continuation β → it of the usual finite temperature

thermofield-double type states e−βEi/2|i⟩|i⟩. There are of course less symmetric solutions cIi , c
F
i ,

describing the initial and final states. However the symmetric solution reduces to ordinary en-

tanglement when the initial and final states are the same, i.e. |ψI⟩ = |ψF ⟩ (i.e. at t = 0), the

transition matrix becomes the usual density matrix TF |I = |ψI⟩⟨ψI | = ρI for the state |ψI⟩. Thus

the time evolution operator can be regarded as a particular reorganization of the transition matrix

appearing in pseudo-entropy.

It is worth noting that for systems with infinite towers of states, the trace of the time evolution

operator contains highly oscillatory terms and therefore requires a regulator to be well-defined.

This will be seen explicitly in the case of the harmonic oscillator later; see (4.70).

Single qubit: This simple case serves to illustrate the above. In this case (described by (4.53)),

we have H |1⟩ = E1 |1⟩ , H |2⟩ = E2 |2⟩, with H the Hamiltonian. Let us take

|ψF ⟩ =
∑
n=1,2

e−
i Ent

2 |n⟩1 ⊗ |n⟩2 , |ψI⟩ =
∑
m=1,2

e
i Emt

2 |m⟩1 ⊗ |m⟩2 . (4.50)

Here the subscript 2 stands for the second auxiliary system with the identical Hilbert space H2.

Then the unnormalised transition matrix T = |ψF ⟩ ⟨ψI | is

TF |I = |ψF ⟩ ⟨ψI | =
∑

n,m=1,2

e
−i(En+Em)t

2 |n⟩1 |n⟩2 ⟨m|1 ⟨m|2 . (4.51)

Taking a partial trace over the second component gives

T 1
F |I = Tr2(TF |I) =

∑
n=1,2

e−i Ent |n⟩1 ⟨n|1 = e−iHt , (4.52)

thus obtaining the time evolution operator. This illustrates the general discussion earlier in this

simple case.

4.4 Time evolution operator, entanglement: examples

In this section, we study various examples of finite quantum systems to explore the entanglement

structure of the time evolution operator.
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4.4.1 2-qubit systems

For a 2-state system,

H|k⟩ = Ek|k⟩ , k = 1, 2 ; |k⟩F ≡ |k(t)⟩ = e−iEkt|k⟩P . [⟨1|2⟩ = 0] (4.53)

we obtain ρt(t) using (4.38). Now, imagining a 2-spin analogy |1⟩ ≡ |++⟩, |2⟩ ≡ |−−⟩, performing

a partial trace over the second spins gives

ρAt =
1

1 + eiθ
(
|+⟩P ⟨+|P + eiθ|−⟩P ⟨−|P

)
, θ = −(E2 − E1)t ,

SA = −tr
(
ρAt log ρAt ) = − 1

1 + eiθ
log

1

1 + eiθ
− 1

1 + e−iθ
log

1

1 + e−iθ
, (4.54)

so the von Neumann entropy, recast as α + α∗, is real-valued in this special case. We see that SAt

grows large as θ → (2n + 1)π. Further ρAt and SAt are periodic in θ and so in time t (simplifying

SAt shows terms containing log
(
eiθ/2

)
which we retain as it is, rather than iθ

2 , so as to avoid

picking specific branches of the logarithm, thereby losing manifest periodicity; within one θ-cell the

simplified expression for SAt coincides with the corresponding one in [227]).

Now consider two qubits, each being |1⟩, |2⟩, with a more general Hamiltonian

H = E11|11⟩⟨11| + E22|22⟩⟨22| + E12

(
|12⟩⟨12| + |21⟩⟨21|

)
(4.55)

that is diagonal in this basis. It is reasonable to take E12 = E21. So the normalized time evolution

operator (4.38) becomes

ρt =
∑
i,j

e−iEijt∑
kl e

−iEklt
|ij⟩⟨ij| =

(
|11⟩⟨11| + eiθ1 |22⟩⟨22| + eiθ2(|12⟩⟨12| + |21⟩⟨21|)

)
1 + eiθ1 + 2eiθ2

;

θ1 ≡ −(E22 − E11)t , θ2 ≡ −(E12 − E11)t . (4.56)

(At t = 0, the θi vanish and this is the normalized identity operator.) A partial trace over the 2nd

component gives the reduced time evolution operator,

ρAt =
1

1 + eiθ1 + 2eiθ2

((
1 + eiθ2

)
|1⟩⟨1| +

(
eiθ1 + eiθ2

)
|2⟩⟨2|

)
(4.57)

which generically has complex-valued von Neumann entropy. It is clear that this matches ordinary

finite temperature entanglement, except with imaginary temperature β = it.

Now let us impose an exchange symmetry |1⟩ ↔ |2⟩ : this occurs for instance if we consider two

spins |±⟩ with nearest neighbour interaction H = −Js1zs2z. This restriction now implies E22 = E11

thereby reducing (4.57) to (4.54) earlier, with just one nontrivial phase, giving real entropy.

Qubit chains: In Appendix 6.9, we study finite and infinite chains of qubits with nearest neighbour

interactions, towards understanding the reduced time evolution operator for a single qubit, after

partial trace over all other qubits. This also reveals interesting complex-valued entropy in general,
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obtainable as a finite temperature system but with imaginary temperature. We also find a real-

valued slice when the system enjoys |1⟩ ↔ |2⟩ exchange symmetry.

To illustrate obtaining the time evolution operator (4.56) from the doubled transition matrix

as in (4.48), (4.49), we write

|ψF ⟩ =
∑

n,m=1,2

e−
i Enmt

2 |nm⟩1 ⊗ |nm⟩2 , |ψI⟩ =
∑

n,m=1,2

e
i Enmt

2 |nm⟩1 ⊗ |nm⟩2 . (4.58)

Then the unnormalized transition matrix T = |ψF ⟩ ⟨ψI | after partial trace over the second compo-

nent gives

T 1
F |I = Tr2

( ∑
n,m,p,q=1,2

e−
iEnmt

2 e−
iEpqt

2 |nm⟩1 |nm⟩2 ⟨pq|1 ⟨pq|2
)

=
∑

n,m=1,2

e−i Enmt |nm⟩1 ⟨nm|1 ,

(4.59)

so this reduced transition matrix is the same as the unnormalized time evolution operator.

Mutual information

Mutual information defined as I[A,B] = S[A]+S[B]−S[A∪B] can be studied for the time evolution

operator as well. In the general 2-qubit case (4.55), (4.56), above, we can calculate ρ1t = Tr2ρt and

ρ2t = Tr1ρt, which then leads to the von Neumann entropies S1
t and S2

t respectively. The time

evolution operator ρt itself leads to St = −tr
(
ρt log ρt). It is straightforward to see that ρ1,2t are of

the same form as ρAt in (4.57), which alongwith ρt in (4.56) gives

S1,2
t = − 1 + eiθ2

1 + eiθ1 + 2eiθ2
log

1 + eiθ2

1 + eiθ1 + 2eiθ2
− eiθ1 + eiθ2

1 + eiθ1 + 2eiθ2
log

eiθ1 + eiθ2

1 + eiθ1 + 2eiθ2
,

St = − 1

1 + eiθ1 + 2eiθ2
log

1

1 + eiθ1 + 2eiθ2
− eiθ1

1 + eiθ1 + 2eiθ2
log

eiθ1

1 + eiθ1 + 2eiθ2

− 2eiθ2

1 + eiθ1 + 2eiθ2
log

eiθ2

1 + eiθ1 + 2eiθ2
, (4.60)

so the mutual information is

I[A,B] = S1
t + S2

t − St . (4.61)

In general this is nonzero and complex since the entropies are complex in general. However there

are special cases: for instance if all energy eigenvalues are identical, then

θ1,2 = 0 : S1,2
t = log 2 , St = 2 log 2 ⇒ I[A,B] = 0 , (4.62)

although the time evolution is nontrivial since each phase e−iEt is nonzero.

Likewise the 2-state subcase (4.53) is obtained by setting eiθ2 = 0 which gives S1,2
t , St of the same

real-valued form as in (4.54), so I[A,B] = S1
t .

These expressions above can also be viewed as arising from the finite temperature results for

inverse temperature β continued to β = it. From that point of view, the high temperature limit
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β → 0 gives vanishing mutual information: this limit has βEi → 0 which is mathematically

equivalent to the θ1,2 = 0 subcase earlier, with I[A,B] → 0. In the present context, this is t → 0,

and we again obtain vanishing mutual information, I[A,B] → 0.

4.4.2 2-qutrit systems

Consider now two qutrits, |i⟩, i = 0, 1, 2: the Hamiltonian (in eigenstate basis) and the normalized

time evolution operator are

H =
∑

Eij |ij⟩⟨ij| , Eij = {E00, E11, E22, E01, E02, E12} , (4.63)

ρt =
e−iEijt∑
ij e

−iEijt
|ij⟩⟨ij| =

e−iEijt

e−iE00t + e−iE11t + e−iE22t + 2e−iE01t + 2e−iE02t + 2e−iE12t
|ij⟩⟨ij|,

again with Eij = Eji. The reduced time evolution operator tracing over the second qutrit is

(ρAt )ij = (ρt)ijklδ
kl ; ρAt =

1∑
ij e

−iEijt

∑
i=0,1,2

(∑
j

e−iEijt
)
|i⟩⟨i| . (4.64)

In general this leads to complex-valued entropy as before, with multiple distinct phases. Imposing

exchange symmetry between the qutrits, i.e. |0⟩ ↔ |1⟩ ↔ |2⟩, this reduces to a single independent

phase controlled by −(E01 − E00)t which then gives real entropy.

4.4.3 Two uncoupled oscillators

We consider two uncoupled harmonic oscillators: the Hamiltonian is

H =
∑

En1n2 |n1, n2⟩⟨n1, n2| , En1n2 = ω(n1 + n2 + 1) . (4.65)

The normalized time evolution operator then becomes

ρt =
∑ e−iEn1n2 t∑

e−iEn1n2 t
|n1, n2⟩⟨n1, n2| (4.66)

The normalization evaluates to∑
1,2

e−iEn1n2 t = e−iωt
∑
1,2

e−iωn1t e−iωn2t =
e−iωt

(1 − e−iωt)2
. (4.67)

Now, tracing over the second oscillator, we obtain

ρAt =

∞∑
n2=0

ρt =
∑
n1

e−iωn1t

1/(1 − e−iωt)
|n1⟩⟨n1| (4.68)

with the von Neumann entropy

SAt = −
∑
n

e−iωnt

1/(1 − e−iωt)
log

e−iωnt

1/(1 − e−iωt)
= − log

(
1 − e−iωt

)
+
iωt e−iωt

1 − e−iωt
, (4.69)
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which is the usual entropy for a single oscillator at finite temperature with β = it. In general this

is complex-valued. The zero temperature limit gives S ∼ βE e−βE which here gives S ∼ itω e−iωt .

In evaluating the normalization (4.67), it is important to note that this sum over the infinite

tower of states (and similar quantities involving any infinite tower of states) is not strictly conver-

gent as an infinite series since this complex expression is highly oscillatory for high energy states,

although the sum and its closed form expression are formally true. This is also true for the single

oscillator expression (4.68) obtained as the reduced time evolution operator, whose normalization

is
∑

n1
e−iωn1t = 1/(1− e−iωt). Towards rendering this well-defined as a series, one can introduce a

small regulator either in ω or in t (giving time a tiny regulating Euclidean component) which then

makes it converge: e.g. a small Euclidean time component gives∑
n1

e−iωn1(t−iϵ) =
∑
n1

e−iωn1te−n1ωϵ =
1

1 − e−iω(t−iϵ)
, (4.70)

which defines the sum. An alternative way to view it is to start with the (convergent) finite

temperature partition function
∑

n e
−βEn and then perform analytic continuation to imaginary

temperature β = it.

It is also interesting to study two coupled harmonic oscillators with the Hamiltonian

H =
1

2
(p2A + p2B) +

k1
2

(x2A + x2B) +
k2
2

(xA − xB)2 . (4.71)

We describe this in detail in Appendix 6.10. The resulting entropy from the time evolution operator

can be interpreted as arising from an imaginary temperature.

4.5 The time evolution operator with projections

As we have seen, the entanglement structures arising from the time evolution operator involve the

entire space of states, as the time evolution operator behaves like a full density matrix. To better

understand its various components, it is desirable to isolate a “part” of the time evolution operator.

This motivates appending projections onto individual states.

With this in mind, we now consider the time evolution operator along with a projection operator

onto some state |i⟩, as in (4.39):

ρ
|i⟩
t =

ρt|i⟩⟨i|
Tr(ρt|i⟩⟨i|)

=
|f [i]⟩⟨i|

Tr(|f(i)⟩⟨i|)
, |f [i]⟩ = e−iHt|i⟩ . (4.72)

(The projection here is from the right: at the calculational level, projecting from the left is similar

but leads to complex conjugate expressions in general.) The state |f [i]⟩ is the final state obtained

by time-evolving the initial state |i⟩. If |i⟩ is a Hamiltonian eigenstate, then ρ
|i⟩
t reduces to just

a single component |i⟩⟨i| (the phase coefficient cancels upon normalizing), i.e. the usual density

matrix for |i⟩. This is also true at t = 0 for a generic state |i⟩: here ρ
|i⟩
t |t=0 = |i⟩⟨i|

Tr(|i⟩⟨i|) which gives

ordinary entanglement structures at t = 0.

120



For a generic state |i⟩, we obtain (4.43). As a simple concrete example, consider the 2-state

system (4.53) earlier with a generic initial state:

|i⟩ = c1|1⟩ + c2|2⟩ (|c1|2 + |c2|2 = 1) → |f [i]⟩ = c1e
−iE1t|1⟩ + c2e

−iE2t|2⟩ ;

ρ
|i⟩
t = N−1

(
|c1|2e−iE1t|1⟩⟨1| + |c2|2e−iE2t|2⟩⟨2| + c1c

∗
2e

−iE1t|1⟩⟨2| + c2c
∗
1e

−iE2t|2⟩⟨1|
)
, (4.73)

where N = Tr(|f⟩⟨i|) is the normalization. Now taking |1⟩ ≡ |++⟩ and |2⟩ ≡ |−−⟩ and performing

a partial trace over the second component gives

ρ
|i⟩,A
t =

1

|c1|2 + |c2|2eiθ
(
|c1|2|+⟩⟨+| + |c2|2eiθ|−⟩⟨−|

)
, θ = −(E2 − E1)t ,

S
|i⟩,A
t = − |c1|2

|c1|2 + |c2|2eiθ
log

|c1|2

|c1|2 + |c2|2eiθ
− |c2|2eiθ

|c1|2 + |c2|2eiθ
log

|c2|2eiθ

|c1|2 + |c2|2eiθ
. (4.74)

At t = 0, the von Neumann entropy above is ordinary entanglement entropy for the generic state

|i⟩ (obtained from ρA = TrB |i⟩⟨i|). For general timelike separation t, the entropy SA is real-valued

only if |c1|2 = |c2|2, i.e. maximal entanglement at t = 0 (or θ = 0).

Consider now two qubits, each |1⟩, |2⟩, with a general Hamiltonian (4.55) as before. For a

generic state

|I⟩ =
∑
ij

cij |ij⟩ , (4.75)

with the basis |ij⟩ = {|11⟩, |22⟩, |12⟩, |21⟩}, and the time evolution operator with projection can be

evaluated as (4.43). Performing a partial trace over the second component here gives

ρ
|I⟩,A
t =

1∑
ij |cij |2e−iEijt

2∑
i,k=1

(∑
j

cijc
∗
kje

−iEijt
)
|i⟩⟨k|

=
1∑

ij |cij |2e−iEijt

((
|c11|2e−iE11t + |c12|2e−iE12t

)
|1⟩⟨1|

+
(
c11c

∗
21e

−iE11t + c12c
∗
22e

−iE12t
)
|1⟩⟨2| +

(
c21c

∗
11e

−iE12t + c22c
∗
12e

−iE22t
)
|2⟩⟨1|

+
(
|c21|2e−iE12t + |c22|2e−iE22t

)
|2⟩⟨2|

)
(4.76)

At t = 0, this is ordinary entanglement for the generic state |I⟩. There are special subcases with

interesting structure, some of which we will discuss soon.

For 3-qubits with Hamiltonian (C2) with energies Eijk for eigenstates |ijk⟩ (alongwith the

symmetry-based simplifications there), we obtain

|I⟩ =
2∑

i,j,k=1

cijk|ijk⟩ : ρ
|I⟩
t =

1∑
ijk |cijk|2e−iEijkt

2∑
i,j,k,l,m,n=1

cijkc
∗
lmne

−iEijkt|ijk⟩⟨lmn| ,

ρ
|I⟩,A
t =

1∑
ijk |cijk|2e−iEijkt

2∑
j,m=1

(∑
i

∑
k

cijkc
∗
imke

−iEijkt
)
|j⟩⟨m| , (4.77)

where the last line is the reduced transition matrix for the middle qubit, arising after a partial

trace over the 1st and 3rd components (ρAt )jm = (ρt)ijk,lmnδ
ilδkn.
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4.5.1 Thermofield-double type states

It is interesting to focus on thermofield-double type initial states with only “diagonal” components:

then for 2-qubits, using (4.76) we obtain

|I⟩ =
∑
i=1,2

cii|ii⟩ : ρ
|I⟩
t =

1∑
i |cii|2e−iEiit

2∑
i,k=1

ciic
∗
kke

−iEiit|ii⟩⟨kk|,

ρ
|I⟩,A
t =

1

|c11|2e−iE11t + |c22|2e−iE22t

(
|c11|2e−iE11t|1⟩⟨1| + |c22|2e−iE22t|2⟩⟨2|

)
. (4.78)

This is identical to (4.74). To elaborate a little, the initial state is |I⟩ = c11|11⟩ + c22|22⟩ and its

time-evolved final state is |F ⟩ = c11e
−iE11t|11⟩ + c22e

−iE22t|22⟩, and the reduced time evolution

operator with projection, ρ
|I⟩,A
t above, is the normalized reduced transition matrix for |I⟩, |F ⟩,

with the corresponding (in general complex-valued) pseudo-entropy (4.41).

Now restricting further to maximally entangled states with |c11|2 = |c22|2 = 1
2 simplifies this

to just a single nontrivial phase eiθ = e−i∆E t where ∆E = E22 − E11, thereby leading to the

entanglement structure (4.54) of the time evolution operator for the 2-state case, i.e. S
|I⟩,A
t =

− 1
1+eiθ

log 1
1+eiθ

− 1
1+e−iθ log 1

1+e−iθ . The states in question here can be regarded as maximally

entangled Bell pairs and the entropy can be regarded as pseudo-entropy for the Bell pair initial

state |I⟩ and its time-evolved final state |F ⟩. As noted there, this is a real-valued entropy, oscillating

in time with periodicity set by ∆E, growing unbounded at specific time values where t = (2n+1)π
∆E .

Note also that specific time values t = 2nπ
∆E lead to the minimum value SA = log 2, which is simply

the ordinary entanglement entropy of the maximally entangled initial state. The fact that this time

entanglement entropy can be unbounded is a novel feature compared with ordinary entanglement

entropy for ordinary quantum systems.

For an n-qubit system comprising basis states |{i1, . . . , in}⟩, with ik = 1, 2, the time evolu-

tion operator with projection onto generic initial states gives complicated entanglement structure.

However projecting onto thermofield double type initial states, we obtain

|I⟩ =
∑
i=1,2

cii...i|ii . . . i⟩ : ρ
|I⟩,A
t =

1∑
i |cii...i|2e−iEii...it

2∑
i=1

|cii...i|2e−iEii...it|i⟩⟨i| , (4.79)

which is identical to the 2-qubit case. It is clear that any qubit system has identical entanglement

structure for the time evolution operator with projection onto thermofield double type states. Now

if we additionally restrict to maximal entanglement, we have both |cii...i|2 equal so |cii...i|2 = 1
2 .

This again contains just one nontrivial phase thereby leading to the entanglement structure of the

time evolution operator for the 2-state case, i.e. (4.54).
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4.6 Time evolution operator, normalized at t = 0

In this section, we will discuss aspects of the time evolution operator with normalization at t = 0

(rather than at general time t), following [224]. This gives

ρ0t (t) ≡
U(t)

TrU(0)
→ ρ0,At = trB ρt → SA = −tr(ρAt log ρAt ) . (4.80)

The normalization ensures that we obtain ordinary entanglement structures at t = 0. In this case

Tr ρt(t) = 1 at t = 0 but not at general t. This gives quite different entanglement structures, as we

will see.

Since U(0) =
∑

I |I⟩⟨I| = 1 i.e. the identity operator made up as a sum over all eigenstate

projection operators, the normalization factor is TrU(0) = N , the dimension of the Hilbert space,

constant in time. Thus for a general bipartite system we obtain

ρ0t (t) =
1

N

∑
i,i′

e−iEi,i′ t|i, i′⟩⟨i, i′| → ρ0,At =
1

N

∑
i

(∑
i′

e−iEi,i′ t
)
|i⟩⟨i| , (4.81)

differing from (4.42) only in the normalization. A general 2-qubit system (4.55) now gives

ρ0t (t) =
1

4

∑
ij

e−iEijt |ij⟩⟨ij| (4.82)

and taking a partial trace over the second component gives

ρ0,At =
1

4

((
e−iE11t + e−iE12t

)
|1⟩⟨1| +

(
e−iE21t + e−iE22t

)
|2⟩⟨2|

)
S0,A
t = −1

4

(
e−iE11t + e−iE12t

)
log
(1

4

(
e−iE11t + e−iE12t

))
− 1

4

(
e−iE21t + e−iE22t

)
log
(1

4

(
e−iE21t + e−iE22t

))
. (4.83)

In general S0,A
t is a complicated complex entropy. However there are special cases. If all energy

values are the same, this simplifies to

Eij = E0 : ρt =
e−iE0t

4

∑
ij

|ij⟩⟨ij| , ρ0,At =
e−iE0t

2

∑
i=1,2

|i⟩⟨i| ,

S0,A
t = −e−iE0t log

(1

2
e−iE0t

)
= (log 2 + iE0t) e

−iE0t . (4.84)

Appending a projection operator for a state |i⟩ as in sec. 4.5, we obtain

ρ
0,|i⟩
t =

ρ0t |i⟩⟨i|
Tr(ρ0t |i⟩⟨i|)

=
|f [i](t)⟩⟨i|

Tr (U(0)|i⟩⟨i|)
=

|f [i](t)⟩⟨i|
Tr(|i⟩⟨i|)

, (4.85)

since U(0) is the identity operator. This is similar to (4.39), but differs in normalization. So if

the initial state is unit-normalized, the normalization factor is a trivial 1. This is not ordinary
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entanglement even if the state is an eigenstate since the nontrivial time evolution phase remains.

For instance a 2-qubit system (4.55) gives

|i⟩ = |11⟩ : ρ
0,|i⟩
t =

U(t)|11⟩⟨11|
Tr(|11⟩⟨11|)

= e−iE11t|11⟩⟨11| , (4.86)

after projecting onto a simple eigenstate |11⟩. The partial trace then gives

ρ
0,|i⟩,A
t = Tr2ρ

0,|i⟩
t = e−iE11t|1⟩⟨1| ⇒ S

0,|i⟩,A
t = −e−iE11t log

(
e−iE11t

)
= iE11t e

−iE11t . (4.87)

The normalization at t = 0 distinguishes this from ordinary mixed-state entanglement structures

at finite temperature, though it still bears a resemblance to imaginary temperature structures.

Although it might seem natural to normalize at general t, part of the motivation here, following

[224], is that the time evolution only enters via the final state in (4.85), which apart from this is akin

to the pseudo-entropy (4.39), (4.72). This appears to help isolate the timelike characteristics, as in

(4.87) where the leading time-dependence is manifestly pure imaginary: it would be interesting to

explore this further.

4.7 2-dim CFTs and timelike intervals

The studies of dS3 extremal surfaces in [221, 222, 223, 224], led to studies of timelike entanglement

in ordinary 2-dim CFT (in particular (4.95)): we now elaborate on this (there are parallels with

some discussions in [236] which appeared as we were finalizing this paper).

We want to consider the time evolution operator as a density operator towards exploring

entanglement-like structures: towards this we define

ρt[{ϕ(x)}|{ϕ(x′)′}] =
1

Zt
⟨{ϕ(x)}|e−itH |{ϕ(x′)}⟩ (4.88)

with Zt = Tr e−itH . However rendering this well-defined is best done in the Euclidean path integral

formulation, defining the ground state wavefunction for the configuration ϕ(x′) as

Ψ[{ϕ(x′)}] =

∫ ϕ(tE=0,x)=ϕ(x′)

tE=−∞
Dϕe−SE =

∫ tE=0

tE=−∞
Dϕe−SE

∏
x

δ(ϕ(tE = 0, x) − ϕ(x′)) (4.89)

with SE the Euclidean action for the field ϕ(tE , x) (we model this discussion along the lines of

[36, 37, 96], and [259]). Now the reduced density matrix for the interval A is obtained from

ρt[ϕ0(x)|ϕ′0(x′)] above by performing a partial trace over the environment B setting ϕ0(x) = ϕ′0(x).

This becomes

ρ[ϕ(x)0+ |ϕ(x)0− ] =
1

Z

∫ tE=∞

tE=−∞
Dϕe−SE(ϕ)

∏
x∈A

δ(ϕ(0+, x) − ϕ(x)0+) δ(ϕ(0−, x) − ϕ(x)0−) (4.90)

In this form there is no sacrosanct meaning to what we define as Euclidean time: the differences

for a timelike interval only enter in the analytic continuation to Lorentzian signature eventually.
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For a free massless 2-dim scalar, the action is SE =
∫
dtEdx ((∂tEϕ)2 + (∂xϕ)2) and Euclidean

evolution appears symmetric between tE , x. For the usual spacelike interval, the reduced density

matrix involves Euclidean time evolution along tE : for a timelike interval on the other hand, the

reduced density matrix involves Euclidean time evolution along x which is regarded as Euclidean

time now calculationally. So we have

ρt[ϕ(tE)0+ |ϕ(tE)0− ] =
1

ZtE

∫ x=∞

x=−∞
Dϕe−SE(ϕ)

∏
tE∈A

δ(ϕ(tE , 0
+) − ϕ(tE)0+) δ(ϕ(tE , 0

−) − ϕ(tE)0−)

(4.91)

Apart from x↔ tE , this is equivalent to (4.90).

Let us now discuss this in terms of Hamiltonians for a free massless scalar: note that Euclidean

and Lorentzian times are related as tE = it. For the usual time coordinate t, the Hamiltonian

is H+
t =

∫
dx ((∂tϕ)2 + (∂xϕ)2) =

∫
dx (−(∂tEϕ)2 + (∂xϕ)2): this is positive definite. Now com-

pactifying tE can be used to obtain the reduced density matrix TrB e
−βtH at finite temperature

for an interval with width ∆x. With x taken as Euclidean time, we obtain the Hamiltonian

Hx =
∫
dtE ((∂tEϕ)2 − (∂xϕ)2). Now compactifying x with periodicity βx and considering a time-

like interval with width ∆t, the reduced density matrix becomes

Hx =

∫
dtE (−(∂xϕ)2 + (∂tEϕ)2) = −i

∫
dt ((∂xϕ)2 + (∂tϕ)2) ≡ −iH+

x ;

ρAt = TrB e
−βxHx = TrB e

iβxH
+
x , (4.92)

so that in terms of the positive definite Hamiltonian H+
x , this resembles a thermal reduced density

matrix but with imaginary temperature.

The usual replica formulation of entanglement entropy for a single interval proceeds by picking

some Euclidean time direction τE and the interval ∆x ≡ [u, v] on that slice, then constructing n

replica copies of the space glued at the interval endpoints and evaluating TrρnA. The reduced density

matrix for the ground state is formulated as above, via Euclidean time evolution, with appropriate

boundary conditions for the fields on the replica sheets. Then TrρnA in the replica space can be

mapped to the twist operator 2-point function at the interval endpoints which implement the

boundary conditions across the sheets. This finally leads to

SA = − lim
n→1

∂nTrρnA → c

6
log

(∆x)2

ϵ2
. (4.93)

The only data that enters this is the central charge of the CFT and the interval in question. When

we consider a timelike interval, the above formulation goes through with the only change being that

the Euclidean time slice we pick is the spatial slice x = const with the interval being ∆t ≡ [ut, vt].

However now when we continue back to Lorentzian time, we must rotate ut, vt accordingly, so the

spacetime interval is

∆2 = −(∆t)2 = −(vt − ut)
2 , (4.94)
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and the entanglement entropy becomes

SA =
c

6
log

∆2

ϵ2
=
c

6
log

−(∆t)2

ϵ2
=
c

3
log

∆t

ϵ
+
c

6
(iπ) , (4.95)

with the imaginary part arising as iπ = log(−1). Note that imaginary values also arise in studies

of quantum extremal surfaces in de Sitter with regard to the future boundary [98, 127], stemming

from timelike-separations.

The discussions above are formulated in terms of Euclidean path integrals with an eventual

analytic continuation to obtain timelike interval entanglement. Along the lines of our finite quantum

system descriptions, one could consider Lorentzian time evolution explicitly. Towards this consider

a CFT on a cylinder, with time running along the axis. The Hamiltonian is Hcyl = π
l (L0+L̄0− c+c̄

24 )

and the unnormalized time evolution operator becomes e−iHcylt ∼ q
∑

n nNn |Nn⟩⟨Nn| with q = e−2it/l

for both left/right modes, and the normalization becomes Tr q
∑

n nNn =
∏∞
n=1

1
1−qn (the c+c̄

24 factor

cancels with normalization). In the momentum basis, the time evolution operator is an infinite

sum of decoupled oscillators. Recalling the case of two uncoupled oscillators (4.66), tracing out

all higher mode oscillators leaving only the lowest frequency n = 1 oscillator mode naively gives

ρAt =
∑

n
qn

1/(1−q) |n⟩⟨n| and SAt = − log(1 − q) − q log q
1−q , with appropriate limits as described after

(4.68). Also, along the lines of sec. 4.5, we can study aspects of the time evolution operator along

with projection onto initial states. We leave these and related investigations for the future.

4.8 Time entanglement, time-dependent interactions

So far, we have considered time-independent Hamiltonians, where the time evolution operator can

be related to the thermal density matrix through the analytic continuation β → it. This aligns

with the expectation that time independence corresponds to thermal equilibrium. In this section,

we explore specific examples of time-dependent Hamiltonians. In such cases, we anticipate that

the time evolution operator will not admit a simple mapping to a thermal density matrix, as no

thermal equilibrium is present.

We obtain the time evolution operator in the interaction picture by solving the Schrodinger

time evolution equations, evolving the state by the time evolution operator

|α, t ; t0⟩I = UI(t, t0) |α, t0; t0⟩I =
∑

cij(t) |ij⟩ . (4.96)

This enables to determine the time evolution operator, where |ij⟩ are the eigenstates of H0 (and

t0 = 0). Our conventions are those of [261], with the interaction picture time evolution equations

of the form iℏ d
dtcN (t) =

∑
M VNMe

iωNM tcM (t) with ωNM = EN − EM .

As a toy example, consider a 2-state system with states |1⟩, |2⟩, and energies E1, E2: then a

δ-function interaction V12 = V δ(t− ϵ) (with ϵ > 0 an infinitesimal regulator) gives the interaction

126



picture evolution equations (with ċi = d
dtci)

iℏċ1 = V12e
iω12tc2 , iℏċ2 = V21e

iω21tc1 ;

iℏc1(t) = V c2(ϵ) + iℏc1(0) , iℏc2(t) = V c1(ϵ) + iℏc2(0) , (4.97)

where the second line is obtained by integrating across the interaction support at t = ϵ (and

the phases eiω12t are trivial). Since the time dependence is only nontrivial for t = ϵ, we see

that ci(t) = ci(ϵ), i.e. the coefficients remain unchanged for t ≥ ϵ. Solving for c1(t), c2(t) gives(c1(t)
c2(t)

)
= ρt,I

(c1(0)
c2(0)

)
with generic initial state c1(0), c2(0), where the interaction picture time evolution

operator is ρt,I = 1

1+V 2

ℏ2

(
|1⟩⟨1|+ V

iℏ |1⟩⟨2|++V
iℏ |2⟩⟨1|+|2⟩⟨2|

)
(this can also be seen to agree with time

dependent perturbation theory). We now generalize this sort of delta-function coupling interaction

to a system of two qubits to study time entanglement.

Consider a simple system of two qubits with the time-dependent interaction

VI(t) = V δ(t− ϵ)
(
|11⟩ ⟨12| + |12⟩ ⟨11|

)
, (4.98)

with an infinitesimal regulator ϵ > 0 (so the impulse interaction is just after t = 0). The Hamil-

tonian H0 before turning on the interaction (t ≤ 0) has eigenstates |11⟩, |22⟩, |12⟩, |21⟩, and

eigenvalues E11, E22, E12, E21 = E12, respectively. The time evolution equations for the coeffi-

cients (suppressing the phases), and their integrated versions, are (with ℏ = 1)

d

dt
c11(t) = −iV δ(t− ϵ) c12(t) ,

d

dt
c12(t) = −iV δ(t− ϵ) c11(t) ,

d

dt
c21(t) = 0 ,

d

dt
c22(t) = 0 ,

⇒ c11(t) = c11(0) − iV c12(ϵ) , c12(t) = c12(0) − iV c11(ϵ),

c21(t) = c21(0) , c22(t) = c22(0) . (4.99)

We now note that the cij(t) = cij(ϵ) for the impulse interaction, where t ≥ ϵ, since there is no

nontrivial time dependence after t = ϵ. This then gives

c11(t) =
1

1 + V 2

(
c11(0) − iV c12(0)

)
, c12(t) =

1

1 + V 2

(
c12(0) − iV c11(0)

)
,

c21(t) = c21(0) , c22(t) = c22(0) . (4.100)

This gives the interaction picture time evolution operator UI(t, t0) (with t0 = 0 and t > 0) which

maps
(c11(t)
c12(t)

)
= UI(t)

(c11(0)
c12(0)

)
in the {|11⟩, |12⟩} subspace, using (4.96). Then the time evolution

operator U(t) ≡ ρ̃t in the Schrödinger picture is (with ρt the normalized one)

ρ̃t = e−iH0t UI(t) =
1

1 + V 2

(
e−iE11t |11⟩ ⟨11| − iV e−iE11t |11⟩ ⟨12| − iV e−iE12t |12⟩ ⟨11|

+ e−iE12t |12⟩ ⟨12|
)

+ e−iE12t |21⟩ ⟨21| + e−iE22t |22⟩ ⟨22| ,

ρt = NV ρ̃t , N−1
V ≡ Tr(ρ̃t) =

1

1 + V 2

(
e−iE11t + e−iE12t

)
+ e−iE12t + e−iE22t . (4.101)
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We now find the reduced time evolution operator by tracing out a qubit. ρAt arises from tracing out

the second qubit in ρt, and ρBt from tracing out the first qubit:

N−1
V ρAt =

1

1 + V 2

(
e−iE11t + e−iE12t

)
|1⟩ ⟨1| +

(
e−iE12t + e−iE22t

)
|2⟩ ⟨2| ,

N−1
V ρBt =

1

1 + V 2

(
e−iE11t |1⟩ ⟨1| − iV e−iE11t |1⟩ ⟨2| − iV e−iE12t |2⟩ ⟨1|

+ e−iE12t |2⟩ ⟨2|
)

+ e−iE12t |1⟩ ⟨1| + e−iE22t |2⟩ ⟨2| . (4.102)

Note that ρAt = ρBt for V = 0 is in agreement with sec. 4.4 for the 2-qubit system. The entropy

associated with ρAt or ρBt is complex-valued in general.

Consider now the same 2-qubit system but a more general impulse interaction

VI(t) = V δ(t− ϵ)
(
|11⟩ ⟨12| + |12⟩ ⟨11| + |21⟩ ⟨22| + |22⟩ ⟨21|

)
. (4.103)

Using (4.96), the interaction picture time evolution equations and the integrated versions are

d

dt
c11(t) = −iV δ(t− ϵ) c12(t) ,

d

dt
c12(t) = −iV δ(t− ϵ) c11(t) ,

d

dt
c21(t) = −iV δ(t− ϵ) c22(t) ,

d

dt
c22(t) = −iV δ(t− ϵ) c21(t) ,

⇒ c11(t) = c11(0) − iV c12(ϵ) , c12(t) = c12(0) − iV c11(ϵ) ,

c21(t) = c21(0) − iV c22(ϵ) , c22(t) = C22(0) − iV c21(ϵ) . (4.104)

These are the analogs for the interaction (4.103) of (4.99) with the simpler interaction (4.98). As

before, we have cij(t) = cij(ϵ), t ≥ ϵ, since there is no nontrivial time dependence after the impulse

at t = ϵ. Solving for cij(t) leads here to the Schrödinger picture time evolution operator U(t) ≡ ρ̃t

(with ρt the normalized one)

ρ̃t = e−iH0t UI(t) =
1

1 + V 2

(
e−iE11t |11⟩ ⟨11| − iV e−iE11t |11⟩ ⟨12| − iV e−iE12t |12⟩ ⟨11|

+ e−iE12t |12⟩ ⟨12| + e−iE12t |21⟩ ⟨21| − iV e−iE12t |21⟩ ⟨22|

− iV e−iE22t |22⟩ ⟨21| + e−iE22t |22⟩ ⟨22|
)
,

ρt = NV ρ̃t N−1
V ≡ Tr(ρ̃t) =

1

1 + V 2

(
e−iE11t + 2e−iE12t + e−iE22t

)
. (4.105)

Tracing out either the second qubit or the first gives ρAt or ρBt :

ρAt = NV
1

1 + V 2

(
(e−iE11t + e−iE12t) |1⟩ ⟨1| + (e−iE12t + e−iE22t) |2⟩ ⟨2|

)
,

ρBt = NV
1

1 + V 2

(
(e−iE11t + e−iE12t) |1⟩ ⟨1| − iV (e−iE11t + e−iE12t) |1⟩ ⟨2|

− iV (e−iE12t + e−iE22t) |2⟩ ⟨1| + (e−iE12t + e−iE22t) |2⟩ ⟨2|
)
. (4.106)

Note that here the 1
1+V 2 factors cancel with that in NV (which is an accident; this would not

occur if the interaction strengths in (4.103) were not uniformly V for all matrix elements). As for
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(4.102), we see that these reduced time evolution operators are equal, ρAt = ρBt , for V = 0, in

agreement with sec. 4.4. These give complex-valued entropy in general, although there are special

cases with real entropy: e.g. for E11 = E22 = E12 we obtain ρBt = 1
2( 1

−iV
−iV
1 ) with eigenvalues

λk = 1
2(1 ± iV ) : then the entropy SBt = −

∑
k λk log λk becomes real-valued giving SBt = log 2 −

1
2(1 + iV ) log(1 + iV ) − 1

2(1 − iV ) log(1 − iV ).

We now look at this time evolution operator with projection onto some initial state, along the

lines of sec. 4.5. First consider a thermofield-double type initial state |I⟩ =
∑

i=1,2 cii|ii⟩ as in

sec. 4.5.1: this gives (with N the normalization)

Nρt|I⟩⟨I| =
N

1 + V 2

(
ρt|I⟩⟨I|

)∣∣
V=0

−N iV e−iE12t

1 + V 2

(
|c11|2|12⟩⟨11| + c11c

∗
22|12⟩⟨22|

+ c∗11c22|21⟩⟨11| + |c22|2|21⟩⟨22|
)
. (4.107)

A partial trace over the second or first qubit gives, respectively,

ρAt,I = N 1

1 + V 2
ρAt
∣∣
V=0

−N iV e−iE12t

1 + V 2

(
c11c

∗
22|1⟩⟨2| + c∗11c22|2⟩⟨1|

)
,

ρBt,I = N 1

1 + V 2
ρBt
∣∣
V=0

−N iV e−iE12t

1 + V 2

(
|c11|2|2⟩⟨1| + |c22|2|1⟩⟨2|

)
. (4.108)

This thus leads to nontrivial contributions to the complex-valued entropy stemming from the im-

pulse interaction controlled by the strength V . For special cases the entropy is real: e.g. E11 =

E22 = E12 with maximally entangled initial state c11 = c22 = 1√
2

gives ρAt,I = ρBt,I = 1
2( 1

−iV
−iV
1 )

with eigenvalues λk = 1
2(1 ± iV ) leading to real entropy SBt = −

∑
k λk log λk.

This is essentially the pseudo-entropy for the initial state |I⟩ = c11|11⟩ + c22|22⟩ and its time

evolved final state using ρ̃t in (4.105)

|F ⟩ = ρ̃t|I⟩ =
1

1 + V 2

(
e−iE11tc11|11⟩ + e−iE22tc22|22⟩ − iV e−iE12tc11|12⟩ − iV e−iE12tc22|21⟩

)
.

(4.109)

If on the other hand, one considers some initial state within the {|11⟩, |12⟩} subspace, then it

turns out that ρAt,I ∝ |1⟩⟨1| while ρBt,I has eigenvalues 0, 1 (perhaps this is not surprising since any

state in this subspace is of a factorized form |1⟩A(a|1⟩ + b|2⟩)B). This leads to vanishing pseudo

entropy for ρAt,I and ρBt,I .

We have illustrated the time evolution operator and its time entanglement structure, focusing

on simple 2-qubit examples involving an impulse δ-function interaction. We obtained the time

evolution operator by solving the time evolution Schrödinger equation for the state coefficients. The

time dependence of the interaction introduces a nontrivial dependence on the interaction strength

V , in addition to its dependence on the energy eigenvalues and the timelike separation t. Unlike the

discussions in the rest of the study, which involve time-independent quantum systems, no simple

continuation via some imaginary temperature exists here. It is likely that general time-dependent

quantum systems will exhibit similar features. Perhaps there are deeper ways to formulate timelike

entanglement that make a partial trace over time paths or histories more explicit.
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4.9 Discussion

We have explored various aspects of entanglement like structures with timelike separations arising

from the time evolution operator when regarded as a density operator, as discussed in [224]. There

are close parallels with pseudo-entropy [227] as we have seen. The entropy from the time evolution

operator alongwith projection onto some initial state as we have seen in sec. 4.5 is identical to

pseudo-entropy for the initial state and its time-evolved final state. More broadly, there are large

parallels of the investigations here and in [224] with corresponding ones in [223, 236]. In general,

the non-Hermitian structures discussed yield complex-valued entropy; however, there are several

notable real-valued subfamilies, for example, (4.54), special cases of (4.57) and (4.78), as well as

qubit chains (see App.6.9) exhibiting the |1⟩ ↔ |2⟩ exchange symmetry, and so on. The behaviour

of this entropy is quite different from usual spatial entanglement entropy: for instance, (4.54)

oscillates in time and appears to grow large at specific time values. Correspondingly at other

specific periodic time values the entropy acquires its minimum value, coinciding with ordinary

entanglement entropy for the initial state (see sec. 4.5.1 in the context of thermofield-double states,

akin to Bell pair states). Overall these appear to be new entanglement-like measures involving

timelike separations, likely with many new aspects open for exploring further. (It is also worth

noting other work e.g. [262, 263, 264, 265], which may have bearing on this broad circle of ideas.)

Although a more detailed understanding and physical interpretation of time entanglement re-

main to be developed, mapping it to pseudo-entropy establishes connections with previously studied

quantities. Pseudo-entropy originates from the transition matrix TF |I in (4.41) and (4.44), which

is treated as a generalized density operator incorporating both a preparation state and a posts-

elected state. Related quantities include weak values of operators, defined as Ow = Tr
(
TF |I O

)
.

In general, these weak values are complex-valued, which is unsurprising given that the transition

matrix is not a Hermitian object (in contrast to conventional Hermitian density matrices). See e.g.

[266, 267] for more on postselected states, conditional entropy and weak values (including some

experimental aspects). In the current context, components of the time evolution operator can be

isolated via projections onto specific initial states as we have seen in sec. 4.5: this then maps onto

the corresponding pseudo-entropy. Thus time entanglement with projection onto initial state |I⟩
dovetails with postselected states being the corresponding time-evolved states. We hope to obtain

more refined understanding of these interrelations in the future.

The finite quantum systems we have examined permit analysis through Hamiltonian eigenstates,

making them inherently straightforward. Time-independent Hamiltonians enable the mapping of

the time evolution operator to a thermal density matrix via the analytic continuation β → it,

aligning with the expectation that time independence corresponds to thermal equilibrium. We

expect that in cases with nontrivial time dependence, these time-entanglement structures will

become more intricate with no natural imaginary temperature analytic continuation: along the

lines of studies of scattering amplitudes, we expect that analogs of the interaction picture will be

useful in organizing these time entanglement structures. All these are vindicated in the simple
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2-qubit examples with δ-function impulse potentials (sec. 4.8), where we solve explicitly for the

nontrivial time evolution operator and the corresponding time entanglement structures. Related,

complementary studies (including holographic ones) appear in [223], [227]-[238]. We hope to report

further on these in the future.

Furthermore, recent studies have examined quantum entanglement in scattering processes from

both theoretical and experimental perspectives. Notably, key experimental results from the LHC

during 2023–2024 have confirmed the generation of quantum entanglement in high-energy scatter-

ing events. These include findings from the ATLAS Collaboration [268], the CMS Collaboration

[269] , and the CMS Update on the High-Mass Regime [270]. These experiments reveal spatial en-

tanglement, inferred through spin correlations among decay products. However, they have not yet

measured timelike entanglement—such as entanglement between different temporal instances—or

entanglement characterized via pseudo-entropy across time evolution. On the theoretical front, a

number of studies have investigated entanglement in scattering processes, with notable contribu-

tions spanning both spatial and temporal aspects [271]–[276]. While most of these works focus on

spatial entanglement, only a few—such as [271] and [275]—explicitly address temporal entanglement

within the scattering framework. To date, no dedicated study has directly applied pseudo-entropy

to scattering amplitude matrices. Existing analyses of temporal entanglement typically employ

standard entropy measures—such as the von Neumann and second-order Rényi entropies—defined

via density matrices, rather than pseudo-entropy derived from transition matrices or the time

evolution operator. Our work, together with related research, seeks to establish a foundational

framework for applying pseudo-entropy to scattering processes through the use of the scattering

amplitude matrix or the time evolution operator. Further investigation into this direction remains

an open and important area for future research.

It would also be of interest to explore connections between the present work and the principle

of entanglement minimization, which has recently emerged as a promising bootstrap criterion (see,

e.g., [277]). Nonetheless, a natural extension of this work would be to define a timelike entanglement

power (EP) via the Schmidt decomposition of the time-evolution operator. This would yield a real-

valued quantity that characterizes the entanglement generated as a system evolves in time. Such a

formulation could offer valuable insights into the role of entanglement minimization within S-matrix

bootstrap frameworks. Moreover, it holds the potential to track the buildup of entanglement during

scattering processes—not only between asymptotic states but also throughout the interaction itself.

A detailed investigation of this direction is left for future work.

We now make a few remarks on de Sitter extremal surfaces anchored at the future bound-

ary, which have timelike components, in particular paraphrasing some discussions in [226]. The

dS/CFT dictionary [211] ZCFT = ΨdS implies that boundary entanglement entropy is bulk pseudo-

entropy (since a replica formulation on ZCFT amounts to one on ΨdS , i.e. single ket rather than

a density matrix). Among other things this leads to novel entropy relation/inequalities based

on the complex-valued dS extremal surface areas. This is put in perspective by comparing with
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time-entanglement/pseudo-entropy in qubit systems, using the analyses in this paper, in particular

sec. 4.5: this reveals striking differences for mutual time-information, tripartite information and

strong subadditivity (see sec.2.5 in [226]). The dS areas give definite signs for these quantities

relative to those obtained from time-entanglement/pseudo-entropy for qubit systems (with the fi-

nal state being time-evolved from the initial state). Since the dS areas are analytic continuations

from AdS, these differences are perhaps not surprising in light of the studies in [278] (which reveal

definite signs the AdS RT surface area inequalities compared with those for entanglement entropy

in qubit systems), but they are striking. Overall, the entanglement structures observed here arise

from timelike separations. We anticipate that this study, along with related ongoing research, will

provide deeper insights into both quantum information and holography.
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Chapter 5

Conclusion

In this thesis, we primarily explored various aspects of quantum extremal surfaces (QES) and holo-

graphic volume complexity within cosmological models that exhibit Big-Crunch singularities, all of

which can be represented as two-dimensional cosmologies. In addition, we investigated the struc-

ture of timelike entanglement by treating the time evolution operator as a density operator and

examining its connection with pseudo-entropy. Below, we summarize the key findings and results

of our studies.

In Chapter 2, we examined various aspects of quantum extremal surfaces (QES) in cosmolo-

gies exhibiting Big-Crunch singularities. These cosmologies include isotropic AdS Kasner, general

Kasner cosmologies with holographic interpretations, and null Kasner cosmologies obtained via di-

mensional reduction from higher-dimensional spacetimes. To gain insights into these cosmologies,

we computed the quantum extremal surfaces by extremizing the generalized entropy, Sgen, whose

extrema yield the QES. The generalized entropy comprises two components: a classical term and

a quantum bulk entanglement entropy term. For simplicity, we assume that the bulk matter is in

its ground state—a reasonable approximation in the semiclassical region far from the singularity—

modeled by a two-dimensional conformal field theory (CFT2). In the AdS Kasner case, the quantum

extremal surface is consistently driven away from the near-singularity region. The QES, denoted by

(r∗, t∗), asymptotically approaches r∗ → ∞ and t∗ → ∞ with t∗ ∼ t0. To regularize the extremiza-

tion solution, we introduce a spatial cutoff r∗ = R→ ∞. This procedure allows us to associate the

temporal location of the QES with the observer’s time slice t0, implying that the QES lags behind

the observer O (situated at t0) in the direction away from the singularity. Moreover, we observed

that the generalized entropy decreases over time as the singularity is approached, a behavior that

mirrors findings in holographic complexity studies of these cosmologies and suggests a state of low

complexity near the singularity. Although an island solution initially appears to emerge, a detailed

analysis of the extremization equations reveals it to be inconsistent. This observation is consistent

with existing literature, which shows that these cosmologies lack horizons and are not entangled
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with “elsewhere.” General Kasner cosmologies exhibit similar behavior.

In the next section, we analyze a class of null cosmologies that admit a two-dimensional null

reduction. These null cosmologies encapsulate holomorphic structures, as suggested by their null

backgrounds. Interestingly, the quantum extremal surface in these cases can approach the null

singularity region. However, the on-shell generalized entropy becomes singular in this regime, ren-

dering the semiclassical analysis unreliable near the singularity. Nevertheless, the semiclassical

analysis provides an intriguing result: the quantum extremal surfaces tend to approach the singu-

larity. To probe the near-singularity regime more reliably, a more fundamental framework—such

as string theory or a complete theory of quantum gravity—is required, as the semiclassical approx-

imation breaks down in this region.

In Chapter 3, we analyzed the holographic volume complexity for various families of holographic

cosmologies with Kasner-like singularities, specifically focusing on AdS Kaner, hyperscaling vio-

lating, and Lifshitz geometries. First, we derived the extremization equations by extremizing the

codimension-1 volume functional for these cosmologies. Subsequently, we conducted an extensive

numerical analysis of these equations, employing appropriate boundary conditions. Our results

reveal that the complexity surface consistently bends away from the singularity, transitioning from

spacelike near the boundary to lightlike in the interior. Notably, as the boundary anchoring time

slice approaches the singularity, this transition to lightlike becomes more abrupt, with the spacelike

region diminishing. In the vicinity of the singularity, the complexity functional receives negligible

contributions from the lightlike region, resulting in a vanishing complexity near the singularity.

This suggests that the dual Kasner state exhibits low complexity, corresponding to an effectively

negligible number of qubits, which is consistent with the spatial volume undergoing a crunch. For

AdS Kasner and isotropic Lifshitz Kasner cosmologies, the holographic complexity exhibits linear

scaling with the anchoring time slice t0. In contrast, hyperscaling violating theories demonstrate

a nonlinear dependence of holographic complexity on the anchoring time slice. Additionally, our

study further refines prior investigations of extremal surfaces for holographic entanglement entropy,

revealing that their behavior in the IR limit aligns closely with that observed for complexity.
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In Chapter 4, we explored various aspects of entanglement like structures with timelike separa-

tions, by treating the time evolution operator as a density operator. The relationship between the

time evolution operator and the reduced transition matrix is detailed in Sec. 4.3.1. Furthermore,

this approach has a close connection to pseudo-entropy. We analyzed several examples of simple

quantum systems to investigate the time entanglement structure arising from the time evolution

operator. In general, the corresponding entanglement entropy is complex; however, certain sub-

families exhibit real values, which are explored in detail in this study. A key finding is that time

entanglement matches the usual finite-temperature entanglement entropy evaluated at an imagi-

nary temperature, with β → it, for systems with time-independent interactions. Additionally, we

examined the entanglement structure of the time evolution operator when projected onto an initial

state. This is exactly equivalent to the transition matrix, where the final state is time-evolved

from the initial state. In this case, the corresponding entanglement entropy is identified as the

pseudo-entropy. We further extended our analysis to systems with time-dependent interactions,

which introduce a more intricate time entanglement structure.
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Chapter 6

Appendix

6.1 Computation of renormalized on-shell gravitational

action for two-point correlators in AdSd+1

Consider a free scalar field Φ in Euclidean poincare AdSd+1, the action is given by

S = −1

2

∫
dd+1x

√
g gMN∂MΦ∂NΦ . (6.1)

The equation of motion is

zd+1∂z

(
z1−d∂zϕk

)
− z2k2ϕk −m2R2ϕk = 0 . (6.2)

The solution for the scalar field Φ reads as:

Φk(z) = zd/2 [B(k)Iν(kz) +A(k)Kν(kz)] ; ν =

√
d2

4
+m2R2 . (6.3)

Iν(kz) diverges as z → ∞, requiring that the solution of Φ is regular in the interior as z → ∞.

This forces the condition B(k) = 0, Φk is then expressed as

Φk(z) = A(k)zd/2Kν(kz) . (6.4)

The scalar field ϕ takes the form

Φ(z, x) ∼
∫
dk eikxzd/2A(k)Kν(kz) . (6.5)

We now normalize the scalar field such that Φ(z = ϵ, x) = A(x), and ϕ0(k) = A(k). Φ is then

expressed as:

Φ(z, x) ∼
∫
dk eikx

ϕ0(k)zd/2Kν(kz)

ϵd/2Kν(kϵ)
. (6.6)
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( 6.1) can be recast as:

S = −1

2

∫
dd+1x

[
∂M
(√
g gMNΦ∂NΦ

)
− Φ∂M

(√
g gMN∂NΦ

)]
. (6.7)

After using the scalar equation of motion for Φ, obtaining So.s[Φc] as:

So.s[Φc] = −1

2

∫
ddx ∂M

(√
g gMNΦ∂NΦ

)
. (6.8)

Extracting the relevant part of the action (source ϕ0(x) dependent) which contributes to the two-

point function after performing the integral, So.s is then given by

So.s[Φc] = −1

2

∫
ddx [

√
ggzzΦ ∂zΦ]z=ϵz=∞ . (6.9)

After putting the metric coefficients, the above expression becomes

So.s[Φc] = −1

2

∫
ddx

[
Rd−1

zd−1
Φ ∂zΦ

]z=∞

z=ϵ

,

∼
∫
ddx

Rd−1

ϵd−1
[Φ ∂zΦ]

∣∣∣∣
z=ϵ

. (6.10)

Here, we are interested in the on-shell So.s with the source Φ0(x). Therefore, dropping a term at

z = ∞, which is not relevant in computing the two-point function. We now insert the classical

solution ( 6.6) into ( 6.10), after some simplification, So.s[Φc] takes the form as follows:

So.s[Φc] ∼
∫
ddk

Rd−1

ϵd−1
ϕ0(k)ϕ0(−k)

[
∂z

(
z

d
2 Kν(kz)

)]
z=ϵ

ϵ
d
2 Kν(kϵ)

. (6.11)

We can compute the on-shell action So.s explicitly for AdS4 using ν = 3
2 , d=3, and

K 3
2
(z) =

√
π

2z
e−z

(
1 +

1

z

)
. (6.12)

Then, the on-shell action reads as:

So.s[Φc] ∼ R2

∫
d3k ϕ0(k)ϕ0(−k)

[
−k

2

ϵ
+ k3

]
. (6.13)

First term in ( 6.13) is divergent, it can be cancelled by adding a local-counterterm in ( 6.13) of

the form, Scounterterm ∼
∫
d3x

√
γ γij∂iϕ0 ∂jϕ0. The renormalised on-shell action is given by:

Sren.o.s [Φc] ∼ R2

∫
d3k ϕ0(k)ϕ0(−k) k3 . (6.14)

Two-point correlator is then computed as:

⟨O(k)O(−k)⟩ ∼ k3 . (6.15)
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In the position space, the two-point correlator is expressed as:

⟨O(x)O(0)⟩ ∼ 1

|x|6
. (6.16)

In general dimensions, the two-point correlator is given by:

⟨O(x)O(0)⟩ ∼ 1

|x|2∆
, (6.17)

where ∆ = ν + d
2 is the scaling dimension of the operator O.

6.2 Black hole near-horizon geometry and Rindler time

Consider the metric for a 4-dimensional black hole given by:

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2dΩ2 , (6.18)

where f(r) is the black hole’s redshift factor, and f(rh) = 0 defines the horizon at r = rh. Here,

dΩ2 represents the metric of a unit 2-sphere.

Near the horizon (r ≈ rh), f(r) can be expanded as:

f(r) ≈ f ′(rh)(r − rh) . (6.19)

The surface gravity κ is defined as:

κ =
f ′(rh)

2
. (6.20)

Thus, the function f(r) can be approximated as:

f(r) ≈ 2κ(r − rh) . (6.21)

Substituting this into the metric (6.18), we obtain:

ds2 ≈ −2κ(r − rh) dt2 +
dr2

2κ(r − rh)
+ r2dΩ2 . (6.22)

To further simplify the metric near the horizon, we introduce a new radial coordinate:

ρ =

√
2

κ
(r − rh) , (6.23)

and rescale the time coordinate as τ = κt. Substituting these into the metric, we get:

ds2 ≈ −ρ2 dτ2 + dρ2 + r(ρ)2dΩ2 . (6.24)
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For the Euclidean near-horizon geometry, we perform a Wick rotation, τ → iτE , where τE is

the Euclidean time. The metric becomes:

ds2 ≈ ρ2 dτ2E + dρ2 + r(ρ)2dΩ2 . (6.25)

To avoid a conical singularity at ρ = 0, the Euclidean time τE must be periodic with a period:

τE ∼ τE +
2π

κ
. (6.26)

This periodicity implies that the surface gravity κ is related to the Hawking temperature TH

of the black hole:

TH =
κ

2π
. (6.27)

The near-horizon geometry of a black hole (non-extremal) takes the universal form (6.24), where

the two-dimensional part describes the Rindler wedge (a region of Minkowski space). In this setup,

τ corresponds to the Rindler time, and the metric:

ds2 = −ρ2 dτ2 + dρ2 , (6.28)

describes the Rindler patch, with a uniformly accelerating observer at a constant ρ.

6.3 Some details: 2-dim gravity, extremal surfaces

The equations of motion following from the 2-dim effective action (2.2) are

gµν∇2ϕ−∇µ∇νϕ+
gµν
2

(ϕ
2

(∂Ψ)2 + U
)
− ϕ

2
∂µΨ∂νΨ = 0 ,

R− ∂U

∂ϕ
− 1

2
(∂Ψ)2 = 0 ,

1√
−g

∂µ(
√
−g ϕ∂µΨ) − ∂U

∂Ψ
= 0 . (6.29)

In conformal gauge gµν = efηµν these give

(tr) ∂t∂rϕ− 1

2
f ′∂tϕ− 1

2
ḟ∂rϕ+

ϕ

2
Ψ̇Ψ′ = 0 ,

(rr + tt) −∂2t ϕ− ∂2rϕ+ ḟ∂tϕ+ f ′∂rϕ− ϕ

2
(Ψ̇)2 − ϕ

2
(Ψ′)2 = 0,

(rr − tt) −∂2t ϕ+ ∂2rϕ+ efU = 0 , (6.30)

(ϕ)
(
f̈ − f ′′

)
− 1

2
(−(Ψ̇)2 + (Ψ′)2) − ef

∂U

∂ϕ
= 0,

(Ψ) −∂t(ϕ∂tΨ) + ∂r(ϕ∂rΨ) − ef
∂U

∂Ψ
= 0 .

The severe (singular) time-dependence in the vicinity of the singularity implies that time-derivative

terms are dominant while other terms, in particular pertaining to the dilaton potential, are irrele-

vant there: solving these leads to a “universal” subsector

ϕ ∼ t, ef ∼ ta, eΨ ∼ tα; a =
α2

2
, (6.31)
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which governs the cosmological singularity. Analysing these equations in more detail can be done

using the ansatz (2.3), giving e.g. the AdS Kasner cosmology (2.4) as well as various others, some

of which have nonrelativistic (hyperscaling violating Lifshitz) asymptotics. For instance, flat space

has U = 0, giving

ϕ = t, ds2 = tα
2/2(−dt2 + dr2), eΨ = tα . (6.32)

With t = T 1−p1 , these are the reduction of “mostly isotropic” Kasner singularities ds2 = −dt2 +

t2p1dx21 + t2p2
∑

i dx
2
i . Hyperscaling violating cosmologies comprise backgrounds (2.3) with expo-

nents and parameters:

U(ϕ,Ψ) = 2Λϕ
1
di eγΨ , Λ = −1

2
(di + 1 − θ)(di − θ), γ =

−2θ√
2di(di − θ)(−θ)

,

m = −(di − θ) , b =
m(1 + di)

di
, β = −mγ ,

k = 1, a =
α2

2
, α = −γ ±

√
γ2 +

2(di − 1)

di
. (6.33)

Here θ < 0, γ > 0. The higher dimensional backgrounds here can be obtained as certain kinds of

cosmological deformations of reductions of nonconformal branes down to D dimensions.

Still more complicated hyperscaling violating Lifshitz cosmologies (with nontrivial Lifshitz ex-

ponents z as well) and their 2-dimensional avatars were also obtained in [113]: these have a

more complicated dilaton potential. These are more constrained, requiring the conditions m =

−1, a = −b − 2, as well as further relations between other exponents. A simple example has

θ = 0, z = 2, di = 2, and k = 1, m = −1, a = 1
2 , b = −5

2 , β = −α = 1, and the dilaton potential

is U = ϕ1/2(−3 + 1
ϕ2
e−2Ψ).

Extremal (RT/HRT) surfaces: The area functional

S =
Vdi−1

4Gdi+2

∫
dr ϕ

√
ef

ϕ(di+1)/di

(
1 − (∂rt)2

)
+ (∂rx)2 (6.34)

upon extremizing x(r) gives

(∂rx)2 = A2

ef

ϕ(di+1)/di

(
1 − (∂rt)

2
)

ϕ2 −A2
, S =

Vdi−1

4Gdi+2

∫
dr

ef/2 ϕ(3−1/di)/2√
ϕ2 −A2

√
1 − (∂rt)2 . (6.35)

In the above expressions, A is the turning point A = ϕ∗ = t∗
r
di
∗

for the AdS Kasner case (2.4).

Analysing these extremal surfaces is reliable in the semiclassical region far from the singularity at

t = 0. In this region, a detailed analysis of the time extremization equation leads to (1.61): the

surface lies almost on a constant time slice (t′′ ≪ 1) and can be shown to bend in the direction

away from the singularity, as depicted in Figure 1.2.
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6.4 Some details on 2d CFT and entanglement entropy

Any 2-dim metric is conformally flat so ds2 = efηµνdx
µdxν . We can then modify the Calabrese-

Cardy result [36, 37], in particular taking the ground state entanglement in flat space and then

incorporating the effects of the conformal transformation ef as in [15]. The twist operator 2-point

function scales under a conformal transformation as

⟨σ(x1)σ(x2)⟩efg = e−∆n f/2|x1 e−∆n f/2|x2 ⟨σ(x1)σ(x2)⟩g , ∆n =
c

12

n2 − 1

n
. (6.36)

Since the partition function in the presence of twist operators scales as the twist operator 2-point

function, the entanglement entropy becomes

S12
efg = − lim

n→1
∂n⟨σ(x1)σ(x2)⟩efg = S12

g +
c

6

∑
endpoints

log ef/2 . (6.37)

For a bulk interval, this gives

S12
g =

c

6
log

(
∆2

ϵ2UV

)
→ S12

efg =
c

6
log

(
∆2

ϵ2UV
ef/2|1 ef/2|2

)
(6.38)

while for a CFT with boundary, we have essentially half the flat space answer (with one end of the

interval at the boundary), thus obtaining

S10
g =

c

12
log

(
∆2

ϵ2UV

)
→ S10

efg =
c

12
log

(
∆2

ϵ2UV
ef |1

)
(6.39)

We have used the latter in the AdS cases which include the presence of the AdS boundary, while

for the bulk cases we use the former expression.

6.5 Holographic cosmologies → 2-dim

Time-dependent non-normalizable deformations of AdS/CFT were studied in [22, 23, 24, 115]

towards gaining insights via gauge/gravity duality into cosmological (Big-Bang or -Crunch) singu-

larities. The bulk gravity theory exhibits a cosmological Big-Crunch (or -Bang) singularity and

breaks down while the holographic dual field theory (in the AdS5 case) subject to a severe time-

dependent gauge coupling g2YM = eΨ (and living on a time-dependent base space) may be hoped

to provide insight into the dual dynamics: in this case the scalar Ψ controls the gauge/string cou-

pling. There is a large family of such backgrounds exhibiting cosmological singularities. Among

the simplest are AdS-Kasner theories

ds2 =
R2
AdS

r2
(−dt2 +

∑
i

t2pidx2i + dr2), eΨ = tα ;
∑
i

pi = 1 ,
∑
i

p2i = 1 − 1

2
α2 . (A1)

For constant scalar Ψ with α = 0, the Kasner space is necessarily anisotropic: the pi cannot all

be equal. In this case, the gauge theory lives on a time-dependent space but the gauge coupling is
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not time-dependent. The isotropic subfamily requires a nontrivial scalar source Ψ as well. More

general backgrounds can also be found involving AdS-FRW and AdS-BKL spacetimes [23, 24], all of

which have spacelike singularities. There are also backgrounds with null singularities [115]. Similar

Kasner deformations exist for AdS4 ×X7 and AdS7 ×X4. For generic spacelike singularities, the

gauge theory response appears singular [24] while null singularities appear better behaved [115].

Some of these spacelike singularities were further investigated in [117, 118, 119, 120]

These arise in higher dimensional theories of Einstein gravity with scalar Ψ, a potential V , and

action

S =
1

16πGD

∫
dDx

√
−g(D)

(
R− 1

2
(∂Ψ)2 − V

)
. (A2)

We allow the potential V to also contain metric data, i.e. it is a function V (g,Ψ). Under dimensional

reduction with ansatz (3.5), we obtain the 2-dim action (3.6) (see the general reviews [206, 207, 208],

of 2-dim dilaton gravity theories and dimensional reduction). In general these sorts of generic 2-

dim dilaton gravity theories encapsulate various aspects of the higher dimensional gravity theories,

and are perhaps best regarded as effective holographic models [112]. These sorts of theories were

considered in [200] towards understanding holographic c-functions from the 2-dim dilaton gravity

point of view. The 2-dim equations of motion following from (3.6) were solved in [113] with various

families of asymptotics (flat, AdS, hyperscaling violating and Lifshitz) to obtain various classes of

2-dim cosmologies with Kasner-like Big-Bang/Crunch singularities.

We now review a little more from [113]. With AdS asymptotics, we have V = 2Λ giving

the dilaton potential in (3.6) as U = 2Λϕ1/di (3.13) independent of the scalar Ψ. Hyperscaling

violating asymptotics ds2 = R2r2θ/di
r2

(−dt2 + dr2 + dx2i ) with nontrivial exponent θ arise [198] from

dimensional reductions of nonconformal Dp-branes [199]: after reduction over the transverse sphere

we obtain a (di+2)-dim action of the form (A2) with V = 2Λ eγΨ, which after reduction over the di

spatial dimensions gives (3.6) with U in (3.35), and the corresponding parameters for the on-shell

backgrounds. Lifshitz asymptotics ds2 = R2(− dt2

r2z
+ dr2

r2
+

dx2i
r2

) with nontrivial exponent z requires

a further gauge field strength, which on-shell leads to an action (A2) with effective potential of the

form V = ϕ−1/diU with U in (3.56). Hyperscaling violating Lifshitz theories contain both nontrivial

z and θ exponents.

Cosmological deformations of the isotropic Kasner kind were found in [113] by solving the 2-dim

theories obtained by reduction over the transverse di-space. The power law ansatz (3.7) for the

2-dim fields ϕ, ef , eΨ describes the vicinity of the singularity. The exponents, fixed by the 2-dim

equations, with various asymptotics are in (3.13), (3.35) and (3.56). The asymptotics are the same

as those in the absence of the time-dependence. For the AdS and hyperscaling violating cases,

the solutions for the t- and r-parts of the equations of motion end up being compatible (they are

roughly independent). In general however, the time-dependent backgrounds are more constraining,

particularly in the Lifshitz case where the equations couple the t- and r-exponents forcing θ = 0

and z = di.

As in AdS5 Kasner, the scalar eΨ controls the gauge coupling in nonconformal brane theories
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as well. Taking the exponent α > 0 in (3.35) amounts to taking the gauge coupling to vanish at

t = 0 which then leads to diverging (Ψ̇)2 ∼ 1
t#

and thence a bulk singularity.

6.6 gi, si, yi, vi

• The iterative solution of (3.15) up to O(r30) is given as:

t(r) = t0 +
r2

6t0
− 7r4

216t30
+

5r6

3888t50
− 23r8

31104t70
+

5671r10

125971200t90
− 193157r12

31744742400t110
− 1451389r14

571405363200t130

+
126271147r16

60340406353920t150
− 171499492421r18

211794826302259200t170
+

2509650528887r20

7624613746881331200t190

− 23544237318388621r22

213870415600021340160000t210
+

74037865493904302737r24

2048023099785804353372160000t230

− 27221138559698748551r26

2457627719742965224046592000t250
+

2040692465059715118445379r28

640998461863360189735832125440000t270

− 414120404436438180460454771r30

480748846397520142301874094080000000t290
. (B1)

Likewise (3.19), (3.31), (3.42), (3.44), (3.49), (3.51), (3.61) display truncated solutions anal-

ogous to (3.17). The numerical plots do not change much with the truncation.

• g2,4 appearing in (3.42) are given as:

g2 =
15 − 2

√
2

70t0
, g4 =

5036
√

2 − 25835

343000t30
. (B2)

• s2,4 appearing in (3.44) are given as:

s2 =
15 − 2

√
2

70t0
, s4 =

−233 − 60
√

2

1960t30
. (B3)

• y2,4 appearing in (3.49) are given as:

y2 =
17

210t0
, y4 = − 597941

120393000t30
. (B4)

• v2,4 appearing in (3.51) are given as:

v2 =
17

210t0
, v4 = − 289

54600t30
. (B5)

In general, the coefficients in the series expansion (3.16) (and similar other places in the paper),

scale as cn ∼ # 1
tn−1
0

, with “#” is some numerical coefficient that becomes an increasingly bigger

(more unwieldy) fraction at higher order n.
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6.7 EE, finite subregions (A ̸= 0), AdS5 Kasner

Here we give a brief description of the entangling RT/HRT surface for finite subregions, i.e. finite

A, developing numerically the studies in [43]. The equation of motion for the entangling RT/HRT

surface for finite A in AdS5 Kasner spacetime is given by (3.72) with di = 3.

The perturbative solution of this equation is the same as (3.75) for A = 0. For nonzero A,

we solve numerically for t(r) up to the turning point r∗ determined by the condition (see (3.70),

(3.71))

A = ϕ∗ =
t(r∗)

rdi∗
. (C1)

The perturbative solution (3.75) simplifies (C1) with di = 3 to

6Ar3∗t0 − r2∗ − 6t20 = 0 . (C2)

This can be solved for r∗ (with one real solution) but in perturbation theory, it is consistent to

take r∗ ∼ At
1/di
0 since t(r∗) ∼ t0, i.e. the surface is approximately on the t0 constant time slice

(the surface bends very little, as we confirm below). The t(r)-equation (3.72) with di = 3 is solved

t0=24, A=1

t0=26, A=1

t0=28, A=1

t0=30, A=1

0.5 1.0 1.5 2.0 2.5
r
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0.02

0.03

0.04

t
′(r)

t0=240, A=1

t0=260, A=1

t0=280, A=1

t0=300, A=1

1 2 3 4 5 6
r

0.002

0.004

0.006

0.008

t
′(r)

Figure 6.1: Numerical plots of t′(r) with r in AdS5 Kasner for different t0 slices with A = 1.

numerically for the boundary conditions extracted from the perturbative solution (3.75). The

numerical solution for the surface only makes sense upto the turning point r∗. We illustrate this

fixing A = 1 so r∗ ∼ t
1/3
0 here, with the results plotted in Fig. 6.1. It is clear that the bending is

always small, i.e. t′(r) ≪ 1 over the entire surface as expected: the t′(r) values in Fig. 6.1 are in

approximate agreement with the semiclassical t′ ∼ r
3t0

in (3.75). No lightlike limit arises here as

expected (see Fig. 1 of [127] for a qualitative picture of the surface). This shows consistency of our

techniques and analysis throughout the paper where the numerics for complexity and entanglement

for large subregions with A = 0 (Fig. 3.12) exhibits clear lightlike limits.
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6.8 Time evolution, pseudo-entropy: special cases

Consider now the pseudo-entropy transition matrix (4.41) for the 2-state case (4.53), with arbitrary

initial state |i⟩ and arbitrary final state |f⟩,

|i⟩ = c1|1⟩ + c2|2⟩ , |f⟩ = c′1|1⟩ + c′2|2⟩ ;

Tf |i =
1

c′1c
∗
1 + c′2c

∗
2

(
c′1c

∗
1|1⟩⟨1| + c′2c

∗
2|2⟩⟨2| + c′1c

∗
2|1⟩⟨2| + c′2c

∗
1|2⟩⟨1|

)
. (C1)

With |1⟩ ≡ | + +⟩, |2⟩ ≡ | − −⟩, a partial trace over the second component gives

T A
f |i =

1

c′1c
∗
1 + c′2c

∗
2

(
c′1c

∗
1|+⟩⟨+| + c′2c

∗
2|−⟩⟨−|

)
(C2)

as the reduced transition matrix. To compare with entanglement for the time evolution operator,

we take the final state to be time-evolved from some other initial state |i′⟩ so

|f⟩ = c′1e
−iE1t|1⟩ + c′2e

−iE2t|2⟩ → T A
f |i =

(
c′1c

∗
1|+⟩⟨+| + c′2c

∗
2e
iθ|−⟩⟨−|

)
c′1c

∗
1 + c′2c

∗
2e
iθ

, (C3)

with θ = −(E2 − E1)t. Then we see that:

• using (4.54) for the time evolution operator, T A
f |i = ρAt if c1 = c′1 = 1√

2
, c2 = c′2 = 1√

2
, i.e. the

initial and final states are identical maximally entangled states.

• using (4.74) for the time evolution operator with projection, T A
f |i = ρ

|i⟩
t if c′1 = c1, c

′
2 = c2, i.e.

|f⟩ = |f [i]⟩ i.e. the final state is time-evolved from the initial state |i′⟩ = |i⟩.
This structure of mapping T A

f |i = ρAt however is not true more generally. For instance, consider

two qubits more generally, as in (4.55). Then the pseudo-entropy transition matrix (4.41) becomes

|I⟩ =
2∑

i,j=1

cij |ij⟩ , |F ⟩ =
2∑

i,j=1

c′ij |ij⟩ ; TF |I =
1∑

ij c
′
ijc

∗
ij

2∑
i,j,k,l=1

c′ijc
∗
kl |ij⟩⟨kl| (C4)

and partial trace over the 2nd component gives the reduced transition matrix as

T A
F |I =

1∑
ij c

′
ijc

∗
ij

2∑
i,k=1

(
∑
j

c′ijc
∗
kj) |i⟩⟨k| =

1∑
ij c

′
ijc

∗
ij

(
(c′11c

∗
11 + c′12c

∗
12)|1⟩⟨1| +

(c′11c
∗
21 + c′12c

∗
22)|1⟩⟨2| + (c′21c

∗
11 + c′22c

∗
12)|2⟩⟨1| + (c′21c

∗
21 + c′22c

∗
22)|2⟩⟨2|

)
. (C5)

Towards comparing with the time evolution operator, we think of the future state as time-evolved

from some initial state, i.e. |F ⟩ =
∑

ij c
′
ije

−iEijt|ij⟩. It is then clear that pseudo-entropy via the

reduced transition matrix matches time entanglement via the normalized time evolution operator

with projection onto |i⟩, i.e. T A
f |i′ = ρ

|i⟩,A
t if the final state is taken to be time-evolved from the

initial state, i.e. |F ⟩ = U(t)|I⟩ so c′ij = cije
−iEijt. However, in contrast with (C3), the fact that

there are off-diagonal terms in (C5) makes the structure different from the reduced time evolution

operator. To set the off-diagonal terms to vanish, we could consider specializing to maximally
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entangled thermofield-double type initial and final states, and with |F ⟩ time-evolved from |I⟩, i.e.
|I⟩ =

∑
ii cii|ii⟩ with cij , c

′
ij = 0, i ̸= j, cii = cjj ∀ i, j, and |F ⟩ =

∑
ii c

′
ii|ii⟩ = U(t)|I⟩. In this case,

we find that all the off-diagonal terms vanish and we obtain the reduced transition matrix to be of

the same form as in (C3). On the other hand the reduced time evolution operator for the general

2-qubit case is (4.57), which has two distinct phases in general. Thus the reduced transition matrix

differs from the reduced time evolution operator. One can engineer special energy values Eij where

the two coincide (although this appears ad hoc).

Of course, these structures are with a single Hilbert space for constructing both initial and final

states. Doubling the Hilbert spaces directly enables a map from the transition matrix to the time

evolution operator in general, as in sec. 4.3.1.

6.9 Qubit chains

Now we consider qubit chains to understand time entanglement structures. For any nearest neigh-

bour 2-qubit pair, we impose nearest-neighbour interactions, with

s|q⟩ = aq|q⟩ , |q⟩ = {|1⟩, |2⟩} ; H = −Js1s2 ,

H[11] = E11 = −Ja21 , H[22] = E22 = −Ja22 , H[12] = H[21] = E12 = −Ja1a2 . (C1)

In the first line, we are defining operators si with action as above (the i being the site label), that

give the qubit Hamiltonian action elaborated on in the second line. This Hamiltonian generalizes

the 2-qubit case (4.55) earlier. (Imposing a |1⟩ ↔ |2⟩ exchange symmetry simplifies this to Ising-like

interactions, as we will discuss later.)

3-qubit chain: Consider now a chain of 3 qubits with Hamiltonian based on the nearest

neighbour 2-qubit interaction above. This gives the 3-qubit chain Hamiltonian as

H = −J(s1s2 + s2s3) ,

H ≡ EI |I⟩⟨I| = E1|111⟩⟨111| + E2|222⟩⟨222| + E5

(
|121⟩⟨121| + |212⟩⟨212|

)
+ E3

(
|112⟩⟨112| + |211⟩⟨211|

)
+ E4

(
|122⟩⟨122| + |221⟩⟨221|

)
,

E1 = −2Ja21 = 2E11 , E2 = −2Ja22 = 2E22 , E5 = −2Ja1a2 = 2E12 ,

E3 = −Ja21 − Ja1a2 = E11 + E12 , E4 = −Ja1a2 − Ja22 = E22 + E12 , (C2)

E4 − E3 =
1

2
(E2 − E1) , E1 + E5 = 2E3 , E2 + E5 = 2E4 .

Then the time evolution operator U(t) after normalizing becomes

ρt =
1

e−iE1t + e−iE2t + 2e−iE3t + 2e−iE4t + 2e−iE5t

∑
I

e−iEI t|I⟩⟨I| ≡ N
∑
I

e−iEI t|I⟩⟨I| . (C3)

Now tracing out the 1st and 3rd qubit states gives the reduced time evolution operator

(ρAt )11 = N
(
e−iE1t + 2e−iE3t + e−iE5t

)
, (ρAt )22 = N

(
e−iE2t + 2e−iE4t + e−iE5t

)
, (C4)
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for the middle qubit. Using the relations between the Ei in (C2) simplifies this to

(ρAt )11 = N
(
e−iE11t + e−iE12t

)2
, (ρAt )22 = N

(
e−iE22t + e−iE12t

)2
,

N−1 = TrU(t) =
(
e−iE11t + e−iE12t

)2
+
(
e−iE22t + e−iE12t

)2
. (C5)

In general, this is a function of three independent parameters E11, E22, E12 (or equivalently E1, E2, E5)

so it is a complex-valued function of three phases in general. A straightforward real slice is obtained

when there is a |1⟩ ↔ |2⟩ exchange symmetry as we will discuss later.

5-qubit chain: the configurations and their energies are

|11111⟩, 4E11; |22222⟩, 4E22; |12121⟩, |21212⟩, 4E12;

|11112⟩, |11122⟩, |11222⟩, |12222⟩, 3E11 + E12;

|22221⟩, |22211⟩, |22111⟩, |21111⟩, 3E22 + E12;

|11121⟩, |11211⟩, |12111⟩, |21112⟩, 2E11 + 2E12;

|12221⟩, |22212⟩, |22122⟩, |21222⟩, 2E22 + 2E12;

|11221⟩, |12211⟩, |22112⟩, |21122⟩, E11 + E22 + 2E12;

|11212⟩, |12112⟩, |21211⟩, |21121⟩, E11 + 3E12;

|12122⟩, |12212⟩, |22121⟩, |21221⟩, E22 + 3E12; (C6)

Tracing over all but the middle (3rd) qubit gives the reduced time evolution operator as

(ρ̃t)
(3)
11 = e−i(4E11)t + e−i(4E12)t + 2e−i(3E11+E12)t + 2e−i(3E22+E12)t + 2e−i(E11+E22+2E12)t

+ 3e−i(2E11+2E12)t + e−i(2E22+2E12)t + 2e−i(E11+3E12)t + 2e−i(E22+3E12)t ,

(ρ̃t)
(3)
22 = e−i(4E22)t + e−i(4E12)t + 2e−i(3E22+E12)t + 2e−i(3E11+E12)t + 2e−i(E11+E22+2E12)t

+ 3e−i(2E22+2E12)t + e−i(2E11+2E12)t + 2e−i(E22+3E12)t + 2e−i(E11+3E12)t , (C7)

where the tilde denotes un-normalized. The normalization of the time evolution operator here

becomes

N−1
5 = Tr ρ̃

(3)
t = TrU(t) = (ρ̃t)

(3)
11 + (ρ̃t)

(3)
22 (C8)

In general the resulting von Neumann entropy is a complicated complex-valued function of the

three energy parameters E11, E22, E12.

There are parallels between our discussions here on qubit chain configurations and those in

[279] on ghost-spin chains (although the context is different).

Infinite qubit chain: Consider now an infinite 1-dim chain of qubits, again with only nearest-

neighbour interactions, the Hamiltonian being

H = −J
∑
n

snsn+1 = . . .− Js−1s0 − Js0s1 + . . . (C9)
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We can focus on the qubit at location n = n0 as the subsystem in question, tracing over all the

other qubits in the chain. The reduced time evolution operator is

ρt =
1∑

I e
−iE[I]t

∑
n0=1,2

( ∑
I; n̸=0

e−iE[I]t
)
|n0⟩⟨n0| (C10)

This is a complicated object in general, although still simply a complex-valued function of the three

energy parameters E11, E22, E12. Since this qubit only interacts directly with its two neighbours,

the effective system has some parallels with the 3-qubit chain above: but the detailed structure is

complicated, as already evident in the 5-qubit case earlier.

|1⟩ ↔ |2⟩ exchange symmetry: In the simple subcase enjoying |1⟩ ↔ |2⟩ exchange symmetry,

there are substantial simplifications in (C1): this is when there is an Ising-like structure, with

a1 = −a2 = 1 ; E11 = E22 = −E12 = −J . (C11)

For instance the 3-qubit case (C5) simplifies to

N−1
3 = 2

(
eiJt + e−iJt

)2
, (ρAt )11 = (ρAt )22 = N3

(
eiJt + e−iJt

)2
=

1

2
, (C12)

which thus gives von Neumann entropy log 2. Likewise the 5-qubit (C7) case can be seen to simplify

to

N−1
5 = 2

(
eiJt + e−iJt

)4
, (ρAt )11 = (ρAt )22 = N5

(
eiJt + e−iJt

)4
=

1

2
, (C13)

so the middle qubit has identical structure. For an infinite qubit chain with this Ising-like Z2

symmetry, we expect translation invariance in the “bulk” so we expect that the reduced time

evolution operator has again similar structure. Considering an N -qubit chain (towards large N),

the configurations can be organized similar to (C6). It is then clear that the ground states are

|11 . . . 11⟩, |22 . . . 22⟩, with energy −(N − 1)J . The first excited states comprise “one kink” states

with exactly one 12- or 21-interface with energy −(N −3)J and degeneracy 2(N −1). The next set

of excited states contain two kinks, so the energy is −(N − 5)J with degeneracy 4(N − 2). Higher

excited states contain multiple 12- or 21-interfaces. The two highest energy states have maximally

alternating 1, 2s, i.e. |12121..⟩, |21212..⟩: there are (N − 1) interfaces giving energy (N − 1)J .

Furthermore, every energy E (with corresponding configurations) comes in pairs, i.e. there are

corresponding configurations with energy −E. This can be seen above, with the ground states and

highest energy states: likewise, corresponding to the one kink states, we have states with energy

(N − 3)J obtained by transforming one of the 12- or 21-interfaces in the highest energy states

to 11 or 22, which then lowers the energy precisely by 2J (and their degeneracy can be checked

easily). Thus the normalization of the time evolution operator (akin to the partition function) is

N−1
N = Tr ρ̃t, i.e.

N−1
N = 2

(
eiJt(N−1) +(N −1)eiJt(N−3) + . . .+(N −1)e−iJt(N−3) +e−iJt(N−1)

)
= 2
(
eiJt+e−iJt

)N−1
.

(C14)
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Each component of the reduced time evolution operator for some bulk qubit can be explicitly seen

to receive contributions equally from half these states: so we obtain

(ρAt )11 = (ρAt )22 = NN

(
eiJt + e−iJt

)N−1
=

1

2
, (C15)

which is identical to the structure of the middle qubit in the previous finite qubit cases.

Note that it is adequate to require E11 = E22 to implement this |1⟩ ↔ |2⟩ exchange symmetry:

then shifting the energies arrives at the symmetric values in (C11). However if keep E12 independent

of E11 = E22 then there are apparently two independent parameters: however it is straightforward

to see that the reduced time evolution operator, wbile non-Hermitian, nevertheless leads to real-

valued von Neumann entropy. It is likely that similar studies can be extended for “ghost-spin”

models such as those in [279, 280].

All of the above structures can be seen to match ordinary finite temperature entanglement,

except with imaginary temperature β = it.

6.10 Two coupled oscillators

We consider the following Hamiltonian H with unit masses mA = mB = 1 ,

H =
1

2
(p2A + p2B) +

k1
2

(x2A + x2B) +
k2
2

(xA − xB)2 . (C1)

This is slightly different from the coupled oscillators case discussed in [227]. We diagonalise the

Hamiltonian in a coordinate basis {y1, y2} as below. Then the hamiltonian (C1) becomes

H = (
1

2
p21 +

1

2
Ω2
1 y

2
1 ) + (

1

2
p22 +

1

2
Ω2
2 y

2
2 ) ,

y1 =
(xA + xB)√

2
; y2 =

(xA − xB)√
2

, (C2)

where Ω1 =
√
k1 , Ω2 =

√
k1 + 2k2. The energy eigenvalues and eigenfunctions of (C2) are labelled

by En1n2 , and ϕn1n2(y1, y2) respectively,

En1n2 = (n1 +
1

2
)Ω1 + (n2 +

1

2
)Ω2 = En1 + En2 ; ϕn1n2(y1, y2) = ϕn1(y1)ϕn2(y2) , (C3)

where n1,n2 take values from 0 to ∞ and En1 = (n1 + 1
2)Ω1 , En2 = (n2 + 1

2)Ω2 .

We now write the time evolution operator in its eigenbasis as follows

e−iHt = ρ(t) =
∑
n1,n2

e−i En1n2 t |ϕn1n2⟩ ⟨ϕn1n2 | . (C4)

In position space

ρ(y1, y2; y
′
1, y

′
2, t) =

∑
n1,n2

e−i En1n2 t ϕn1n2(y1, y2)ϕ
∗
n1n2

(y′1, y
′
2) ,

=
∑
n1,n2

e−i (En1+En2 )t ϕn1n2(y1, y2)ϕ
∗
n1n2

(y′1, y
′
2) ,

= ρ1(y1; y
′
1, t) ρ2(y2; y

′
2, t) . (C5)
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We have applied (C3) in the first line of (C5), and

ρ1(y1; y
′
1, t) =

∑
n1

e−iEn1 t ϕn1(y1)ϕ
∗
n1

(y′1) ; ρ2(y2; y
′
2, t) =

∑
n2

e−iEn2 t ϕn2(y2)ϕ
∗
n2

(y′2) . (C6)

(C5) shows that the time evolution operator ρ(t) is decomposed as ρ(t) = ρ1(t)⊗ρ2(t). The energy

eigenstate for a single harmonic oscillator of frequency Ω (setting m = 1) is

ϕn(x) =
1√

2nn!

(
Ω

π

) 1
4

e−
Ω x2

2 Hn(
√

Ωx) ; En = (n+
1

2
)Ω . (C7)

We now use Mehler’s formula for Hermite polynomials [281]

∞∑
n=0

(α2 )n

n!
Hn(X)Hn(Y ) =

1√
1 − α2

e
−α2(X2+Y 2)+2αXY

1−α2 . (C8)

We now consider the time evolution operator for a single harmonic oscillator of frequency Ω in

order to calculate (C5):

ρ(x;x′, t) =

∞∑
n=0

e−iEnt ϕn(x)ϕ∗n(x′) . (C9)

Applying (C7) into (C9)

ρ(x;x′, t) =
∞∑
n=0

e−i(n+
1
2
)Ωt 1

2n n!

(
Ω

π

) 1
2

e−
Ω
2
(x2+x′2)Hn(

√
Ωx)Hn(

√
Ωx′) . (C10)

We now use (C8) in (C10),

ρ(x;x′, t) =

(
Ω
π

) 1
2√

2i sin(Ω t)
e−

p (x2+x′2)
2

+q xx′ , (C11)

where

p(t) = −iΩ cot(Ω t) ; q(t) =
−iΩ

sin(Ω t)
. (C12)

We will not write the t dependence of p and q explicitly, we simply write p and q instead of p(t)

and q(t). We now define the normalised time evolution operator as P (x;x′, t) = ρ(x;x′,t)
Tr(ρ(x;x′,t)) ,

P (x;x′, t) =

√
p− q

π
e−

p (x2+x′2)
2

+q xx′ . (C13)

Note that the normalization Tr(ρ(x;x′, t)) using (C11) is
∫∞
−∞ dx ρ(x, x, t), which is oscillatory

(rather than a damped Gaussian), using (C12). To render this well-defined, we insert a small

exponentially damping regulator: this is the position space analog of the regularization in (4.70).

Similar regulators are required to define various infinite sums/integrals here.
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We now find the expressions for ρ1(y1; y
′
1, t) and ρ2(y2; y

′
2, t) appearing in (C5) using (C11),

ρ1(y1; y
′
1, t) =

(
Ω1
π

) 1
2√

2i sin(Ω1 t)
e−

p (y21+y′1
2
)

2
+q y1y′1 ,

ρ2(y2; y
′
2, t) =

(
Ω2
π

) 1
2√

2i sin(Ω2 t)
e−

r (y22+y′2
2
)

2
+s y2y′2 , (C14)

where

p = −iΩ1 cot(Ω1 t) ; q =
−iΩ1

sin(Ω1 t)
; r = −iΩ2 cot(Ω2 t) ; s =

−iΩ2

sin(Ω2 t)
. (C15)

We define the normalised time evolution operator as P (y1, y2; y
′
1, y

′
2, t) =

ρ(y1,y2;y′1,y
′
2,t)

Tr(ρ(y1,y2;y′1,y
′
2,t))

,

P (y1, y2; y
′
1, y

′
2, t) =

√
p− q

π

√
r − s

π
e−

p (y21+y′1
2
)

2
+ q y1y′1 e−

r (y22+y′2
2
)

2
+ s y2y′2 . (C16)

Writing P (y1, y2; y
′
1, y

′
2, t) in terms of original variables xA, xB (C2) gives

P (xA, xB;x′A, x
′
B = xB, t) =

√
p− q

π

√
r − s

π
e−

(p+r)
4

(x2A+x′A
2)+

(q+s)
2

xA x
′
A

e−
x2B
2

(p+r−q−s)+xB
(xA+x′A)

2
(−p−s+q+r) . (C17)

We now trace over the 2nd oscillator PA(xA;x′A, t) = TrB[P (xA, xB;x′A, x
′
B, t)]. For this we integrate

(C17) over xB, after performing the integration, we get

PA(xA;x′A, t) =

√
γ − β

π
e−

γ
2
(x2A+x′A

2)+β xA x
′
A , (C18)

where

γ =
p+ r

2
− 1

4

(p+ s− q − r)2

p+ r − q − s
; β =

q + s

2
+

1

4

(p+ s− q − r)2

p+ r − q − s
,

γ − β = 2
(p− q)(r − s)

p− q + r − s
; γ + β =

p+ q + r + s

2
. (C19)

The entropy associated with the reduced density matrix PA(xA, x
′
A, t) is given by SA = −Tr(PA logPA).

The eigenvalues λn and eigenvectors fn(x) of an operator of the form (C18) are given in [35]: we

have λn = (1 − ζ) ζn, where ζ = β
γ+α , α =

√
γ2 − β2, which gives

SA = − log(1 − ζ) − ζ

1 − ζ
log ζ . (C20)

We see that the entropy SA is complex valued, recasting ζ in terms of γ + β and γ − β,

ζ =

√
γ + β −

√
γ − β√

γ + β +
√
γ − β

. (C21)

153



The explicit expressions for (C19) in terms of original variables are given by

√
γ + β =

(
− i
(Ω1

2
cot

Ω1t

2
+

Ω2

2
cot

Ω2t

2

)) 1
2
,
√
γ − β =

( 2i
1
Ω1

cot Ω1t
2 + 1

Ω2
cot Ω2t

2

) 1
2
. (C22)

For Ω1 = Ω2 = ω (i.e. k2 = 0), we recover our result for two uncoupled oscillators. Comparing our

result with the spacelike entanglement evaluated at finite inverse temperature it, we recover the

result in [282] (in particular ζ in (C21) matches with eq.(2.22) in [282]).
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