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Chapter 1
Introduction

The maximum entropy of a gravitational region is proportional to its surface area; this is encap-
sulated in the Bekenstein bound. The Bekenstein-Hawking entropy [I] of a black hole is given
by ﬁ, where A represents the area of the black hole horizon. The holographic principle ([2],
[3]) encapsulates this idea, suggesting that a volume in the real world can be described in the
lower-dimensional space that lives on its boundary, encoding all the necessary degrees of freedom
(information) to reconstruct a phenomenon within the volume. AdS/CFT correspondence is a real-
ization of this idea, first proposed by Juan Maldacena in 1997 [4]. There are several comprehensive
reviews on this correspondence ([5], [6], [7], [8]). AdS/CFT correspondence originally describes a
duality between N = 4 SU(N) gauge theory in four dimensions and type IIB superstring theory
on the background of AdSsx S°. This framework extends to more general asymptotically AdS
spacetimes, where (d + 1)-dimensional asymptotic AdS;,1 gravitational theory is holographically
dual to a d-dimensional Conformal Field Theory (CFTy) living on the boundary of the AdSzyq
space. This correspondence represents a strong/weak duality, where the field theory is strongly
coupled, while the dual gravitational theory is weakly coupled. The generalization of AdS/CFT

correspondence is known as the gauge/gravity duality.

AdS/CFT correspondence has numerous applications, including strongly coupled condensed
matter systems ([9], [10], [11],[12]), black-hole information paradox, and quark confinement in
QCD. It plays a crucial role in computing quantities in strongly coupled quantum field theories,
where direct computations are intractable. However, the dual gravitational theory simplifies the
problem due to its weak coupling. Conversely, the field theory provides valuable insights into the

quantum gravity.
In recent years, extensive studies have focused on resolving the black hole information paradox

([13]) using the island prescription ([14], [15], [16]), which involves Quantum Extremal Surfaces

(QES). This approach relies primarily on a quantum information tool: entanglement entropy. Fur-
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thermore, quantum information theory provides valuable insights into quantum gravity within the
framework of gauge/gravity correspondence. Several powerful tools have emerged from quantum
information theory, including entanglement, mutual information, and quantum complexity. No-
tably, entanglement entropy provides unique insights, including in quantum gravity, the black hole

information paradox, and probing cosmological singularities.

For ground states and low-lying excited states in field theory, the entanglement entropy of
a subregion is proportional to the area of its boundary. Similarly, the Bekenstein entropy of a
black hole is proportional to the area of its gravitational horizon. This realization led to the Ryu-
Takayanagi conjecture regarding the holographic entanglement entropy of boundary subregions.
According to this conjecture, the entanglement entropy of a boundary subregion is obtained holo-
graphically by minimizing the area of a codimension-two surface in the bulk, homologous to the
boundary subregion. The holographic entanglement entropy for a boundary subregion A is given by
the Ryu-Takayanagi formula [17]: S4 = mingy—aa [Afgiajsw], where ~ is the codimension-two bulk
surface that minimizes the area. For time-dependent geometries, the RT/HRT prescription [18] is
used to define holographic entanglement entropy, which involves determining a codimension-two
extremal surface in the bulk anchored to the boundary of subregion A. This surface, known as
the RT/HRT surface, extends into the time direction as well. Holographic entanglement entropies
satisfy several important properties, such as subadditivity and strong subadditivity. The RT/HRT
surface also serves as a tool to probe the bulk geometry and its interior ([19], [20]), as well as cos-
mological singularities. A notable example of a simple cosmological geometry is the AdS Kasner, a
time-dependent deformation of AdS, where the dual field theory resides on a time-dependent space
with a time-dependent gauge coupling. Time-dependent AdS deformations exhibiting cosmological
singularities have been studied extensively in ([21], [22], [23], [24]).

Holographic entanglement entropy can be used to probe the interior of a black hole. However, it
has been noted that entanglement does not encode the full spacetime, as the entanglement surface
cannot probe regions far beyond the black hole horizon [20]. From the perspective of the bound-
ary theory, entanglement entropy fails to capture the complete evolution of a quantum system
undergoing thermalization. In contrast, complexity continues to grow even after thermalization.
Complexity quantifies how difficult a task is to accomplish, defined as the minimum number of

steps required to obtain the target state from a reference state by using a set of unitary operations.

Several holographic proposals for defining complexity have been put forward, with promi-
nent conjectures including complexity=volume ([25], [26]), complexity=action ([27], [28]), com-
plexity=spacetime volume [29], and complexity=anything ([30], [31]). For an eternal black hole
dual to the thermofield double (TFD) state, complexity is proportional to the spatial volume of

the Einstein-Rosen bridge (wormhole). Moreover, complexity grows linearly with time, following
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the relation % ~ ST, where S is the entropy and T is the black hole’s temperature.

In this thesis, we employ the tools of quantum extremal surfaces (QES) and holographic vol-
ume complexity to investigate cosmologies exhibiting Big-Crunch singularities, all of which can
be represented as two-dimensional models. The primary objective of these investigations is to
gain insights into the behavior of these singular spacetimes through a systematic analysis of QES
and holographic complexity. Additionally, we explore the structure of timelike entanglement by
treating the time evolution operator as a density operator and investigating its connection with

pseudo-entropy, providing deeper insights into quantum systems and their entanglement properties.

In Chapter we provide a comprehensive overview of the AdS/CFT correspondence and entan-
glement entropy, with a focus on holographic entanglement entropy and quantum extremal surfaces.
In Section , we employ the RT/HRT surfaces to investigate AdS Kasner cosmologies for a
strip-shaped boundary subregion. In Section [1.3] we review the concept of complexity, discussing
various proposals for defining holographic complexity.

In Chapter 2| we analyze quantum extremal surfaces that are spacelike-separated from the
observer’s location in AdS Kasner cosmologies by introducing a spatial regulator. This approach
establishes a relationship between the observer’s time on the holographic boundary and the cor-
responding QES location in time. Additionally, we analyze a potential island-like solution by
examining its boundary. To this end, we first derive the extremization equations from the gener-
alized entropy and study their behavior in the vicinity of the proposed island boundary. However,
a simultaneous solution to these equations is not achieved, indicating that the potential island
solution is inconsistent. We extend our analysis to more general singularities with holographic
interpretations, identifying similar behavior. Finally, we explore certain families of null Kasner
Big-Crunch singularities, which can reach the null singularity.

In Chapter [3] we investigate the holographic volume complexity for several classes of holo-
graphic cosmologies with Kasner-like singularities, including AdS Kasner, hyperscaling-violating
geometries, and Lifshitz geometries. Our analysis involves an extensive numerical study of the
extremization equations derived from the volume functional, offering detailed insights into the be-
havior of the complexity surface. The results reveal that the complexity surface bends away from
the singularity, undergoing a transition from spacelike near the boundary to lightlike in the interior.
Notably, as the boundary anchoring time slice approaches the singularity, this transition becomes
increasingly abrupt, with the spacelike region diminishing. In the vicinity of the singularity, the
complexity approaches vanishingly small values, suggesting a dual Kasner state of minimal complex-
ity and providing evidence for the effective degrees of freedom associated with the near-singularity
region. For AdS and isotropic Lifshitz Kasner cosmologies, holographic complexity exhibits a linear
scaling behavior with the anchoring time slice, tg. In contrast, hyperscaling-violating geometries

demonstrate a nonlinear dependence of holographic complexity on ¢y, highlighting distinct scaling
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properties across these families. Additionally, we refine prior investigations of extremal surfaces for
holographic entanglement entropy, showing that their behavior in the infrared (IR) limit closely
resembles the patterns observed in complexity.

In Chapter 4] we explore various aspects of time entanglement and its entanglement structure,
treating the time evolution operator as a density operator. This approach has a close relation to the
transition matrix and pseudo-entropy. We analyze several examples of simple quantum systems to
investigate the time entanglement structure emerging from the time evolution operator. While the
corresponding entanglement entropy is generally complex, specific subfamilies exhibit real values.
Notably, time entanglement aligns with the finite-temperature entanglement entropy evaluated at
an imaginary temperature, with § — it, for systems characterized by time-independent interac-
tions. Furthermore, we examine the entanglement structure of the time evolution operator when
projected onto an initial state. In this case, the operator is precisely equivalent to the transition
matrix, where the final state is obtained by time-evolving the initial state. The corresponding
entanglement entropy in this context is identified as the pseudo-entropy. Finally, we extend our
analysis to quantum systems with time-dependent interactions, which introduce a more intricate
time entanglement structure.

Overall, this thesis leverages QES and holographic complexity to provide novel insights into
cosmologies with Big-Crunch singularities, alongside a related study on the time evolution operator
and pseudo-entropy in quantum systems. These investigations illuminate the interplay between

geometry, entanglement, and complexity within holographic frameworks.

1.1 AdS/CFT correspondence

In this section, we first review the original Maldacena’s derivation of AdS/CFT. We then introduce
AdS space in different coordinate systems. Finally, we discuss several key entries in the AdS/CFT

dictionary.

1.1.1 Maldacena’s derivation of AdS/CFT correspondence

N =4, SU(N) gauge theory in D = 4 is dual to IIB superstring theory on the background AdSs
x S5,

For the derivation of the conjecture above, we consider N coincident D3-branes in type I1B su-
perstring theory. For g; N < 1, the D3-branes live in 10-dimensions. For this system, open strings
end on D3-branes, which describe the dynamics of D3-branes and closed strings propagate in the
bulk. At low-energies, we only consider massless string states described by low-energy effective
action. The massless states of open string comprise A/ = 4 vector multiplet in four dimensions, and

their low-energy effective action is described by N = 4, U(N) super-Yang-Mills in four dimensions.
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The closed string states comprise of both massless states, represented by graviton supermultiplet,
and massive states in ten dimensions. At low-energies, massive states become irrelevant, and their
low-energy effective action is then described by IIB supergravity theory in ten dimensional flat
space. Moreover, the interaction between the brane and the bulk vanishes, which leads to two
decoupled theories: N = 4, U(N) super-Yang-Mills in four dimensions, and ITB supergravity in

ten dimensions.

We now consider a different regime g;/N > 1. Now the D3-branes gravitate and source an

extremal black 3-brane supergravity solution:

l4
ds? = f(r) % mudatda’ + ()3 (dr® +12%d02), () = 1+ 4mg,N %

Fs = (1 + %) dtdzdrodzsdf (1.1)

the notation x*, where 1 = 0, 1,2, 3, denotes coordinates along the D3-brane world-volume. d§)° is

the metric on a unit five sphere, and Fj is a 5-form self-dual field strength, which has flux on the S°.

There are two types of low energy excitations from the point of view of an observer at infinity.
First one is any finite energy excitation near the horizon which would appear strongly redshifted to
the asymptotic observer, and the second one is the massless excitation in the bulk. Both excitations
decouple in the low-energy limit. The massless excitations propagating in the asymptotic region
of ( decouple from the near horizon region because the absorption scattering cross-section
vanishes as o ~ w3R®, where w is the energy of an excitation. The redshifted excitations near
the horizon can not escape to the asymptotic region due to presence of gravitational potential. So
we have two decoupled sectors: type IIB superstring theory on the near horizon geometry and
a free supergravity theory ( type IIB) in ten-dimensional flat space. We now focus on the near
horizon geometry, we see that » — 0 near the horizon. In this limit, f(r) can be approximated as
flr) ~ f—:, where R* = 47g,N 4. Now the background ( in the near-horizon limit becomes

742

v B
(M:ﬁmmwx+ﬁw+ﬁmg (1.2)

This reveals that the near-horizon geometry is AdS; x S°. The first term represents the metric
for the AdSs geometry in Poincaré coordinates, with r = R;, while the last term corresponds to
the metric on the five-sphere (S®). The low-energy behavior of D3-branes reveals two decoupled
systems in both regimes: gV < 1 and gsN > 1. In both cases, supergravity in ten-dimensional
flat space emerges as a common decoupled system. The other decoupled systems are ' = 4 U(N)
super-Yang-Mills gauge theory and superstring theory on AdSs x S°. These systems remain decou-
pled and well-defined for any value of the coupling gsV in the low-energy limit. This establishes the
equivalence between N' = 4 U(N) super-Yang-Mills theory in four dimensions and type IIB super-

string theory on the AdSs x S° background. Furthermore, U(N) gauge theory can be decomposed
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into SU(N) gauge theory and a U(1) vector multiplet, with some identification Zx. The SU(N)
component corresponds to the AdS theory in the bulk, while the U(1) degrees of freedom represent
zero modes that reside at the AdS boundary. Therefore, we conclude that N' = 4 SU(N) super-
Yang-Mills theory in four dimensions is equivalent to type IIB superstring theory on AdSs x S°.

We now look for the validity of a classical gravity description within AdS/CFT correspondence.
Stringy corrections should be suppressed for the gravity description. For this purpose, we rewrite
the curvature scale R in terms of string length I5 as R = (4dwgs N )ils, and from D3-branes descrip-
tion we have g3, = 47gs. By combining these two we have % = (g%MN)i:Ai, where A = g ,,N
is 't Hooft coupling. Stringy effects are suppressed for % > 1, which implies A > 1. Therefore,
the gauge theory must be strongly coupled in order to have a dual gravitational description. We
now write the ten dimensional Newton’s constant in terms of string coupling gs as Gy = lg ~ g2I8.
This combined with R = (4wgs N )%ls, leads % ~ Ni. To suppress any quantum corrections to the
geometry, we must have % > 1, which implies N > 1. The large N limit (N — 00) corresponds to
't Hooft limit with a fixed value of A, where the dominant contribution comes from planar Feynman
diagrams. Therefore, the classical gravity description is reliable in the regime A > 1 and N > 1.

However, it is believed that AdS/CFT correspondence holds even at finite A and N.

1.1.2 AdS space

AdSg, 1 can be considered as a hyperboloid in the embedding space R%?. The hyperboloid is given
by
~ X3 - X  +XT+ X5+ +X]=-R%, (1.3)

where Xg, X;...X4y1 are embedding coordinates of the hyperboloid. This geometry ( is invari-
ant under SO(d,2) group. The metric reads as:

ds® = —dX§ — dX7 4 +dX{+dX3+ ... +dX]. (1.4)
One can choose the embedding coordinates in terms of the intrinsic coordinates (7, p, €2;) as follows:

Xo=Rcostcoshp ; Xg41 = RsinTcoshp
Xi = RQZ sinhp, (15)

where the index 4 runs from 1 to d, and ), QZQ = 1. Substituting these embedding coordinates in
(11.4), we obtain an induced metric on the hyperboloid as

ds?lﬂ = R? (- cosh? pdr? + dp* + sinh? deﬁ_l) . (1.6)

Here, the coordinate 7 lies on a circle S!, i.e, 0 < 7 < 2. To get the causal structure of AdS, we

unwrap the circle and allow —oo < 7 < co. The metric ( [1.6)) now represents AdS space in global
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coordinates, and p = oo represents the boundary of AdS. We may choose the Poincare coordinates

as
Xo= 1 (R* + 2> +2%)
2z
Xizga:i . i=1,2.,(d-1)
X4 = % (=R*+ 2% +2%)
Xygp1 = gt. (1.7)

Subsequently, we obtain AdS metric in Poincare coordinates as

R2
dsg+1 =3 (d22 —dt* +dz2 + ... + dmé,l) , (1.8)

where z = 0 represents the boundary of AdS in poincare patch. This patch only covers a half of
the full AdS space. The metric solution ( satisfies the following equation:

R
R, — 5 Juw = —Aguw - (1.9)

We compute the Ricci tensor as R, = —%gw. This implies that A = —%. Therefore, AdS
is the solution of Einstein’s equation of motion with negative constant curvature and negative

cosmological constant (A).

1.1.3 Conformal Field Theory (CFT)

Quantum field theories typically exhibit Poincare symmetry, which includes translation and Lorentz
transformation. However, some field theories possess additional symmetries, such as N' = 4 super
Yang-Mills theory in four dimensions, exhibiting scale invariance. A field theory which is invariant
under conformal transformations is known as conformal field theory (CFT). Conformal transforma-
tions include translation, Lorentz transformation, scaling, and special conformal transformation.

Here, we discuss conformal transformations in higher dimensions, i.e., d > 2.

The metric remains invariant up to a scale factor under a conformal transformation z* — z'#,

the transformed metric is given as:

oxf 0x°
g:w(fbl) = O/h nga(x) = Q(x)guu(l‘) . (1'10)

For a Minkowski space with d > 2, the metric ds? = Nudxtdx” transforms under the conformal

transformation x# — z# + e (z) as follows:

ds? — ds* 4 (Ouey + Ope,)dat da” . (1.11)
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For the metric ds? to be scale invariant, the following condition must hold
2 2
Ou€y + 0pe, = p (0p” ) 5 Q) =1+ p (0p€) . (1.12)

The infinitesimal conformal transformations satisfying ( [1.12)) are as follows:

at — at + at : Translation
at — at + A :  Lorentz transformation
xt — ¥ : Scaling
o — ot +b'2® —2(b-x)x"  :  Special Conformal Transformation
The finite special conformal transformation is given as x — 2’ = %. The total number

(d+2)(d+1)
2

erators for the conformal transformations (translation, lorentz transformation, scaling, and special

of independent parameters is given by , and the conformal group is SO(d,2). The gen-

conformal transformation, respectively) are given as:

P, = —id,

M = (2,0, — x,0,)

D = —iz"0,

K, = i(2*0, — 2x,2"0,) . (1.13)

A quasi-primary operator O of scaling dimension A transforms under the conformal transformation
x — x' as follows: N
Or |4
ox'

In two dimensions, the conformal group is infinite dimensional, and each holomorphic transforma-

O'(z) = O(x). (1.14)

tion: z — f(z) is a conformal transformation.

1.1.4 AdS/CFT dictionary

Several entries in the AdS/CFT dictionary have been established over the years. We will discuss

some of the key entries in the dictionary.

Global symmetries
AdS; has SO(4,2) global symmetry. This symmetry is manifest when we consider the geometry
in an embedding space, and the five-sphere has SO(6) rotational symmetry group. Therefore, the
isometry group of AdSs x S° is SO(4,2) x SO(6). In the dual field theory, we have the SO(2,4) con-
formal group which corresponds to the isometry of AdS5. Additionally, there are six scalars which
transform in the fundamental representation of SO(6). This group represents the R-symmetry

of super-Yang-Mills theory, and it corresponds to the isometry group of five-sphere. The isometry
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group SO(4,2) x SO(6) is the bosonic subgroup of the superconformal group for SYM theory. More
generally, AdS;11 possesses an SO(d,2) isometry group, which coincides with the global conformal
group SO(d,2) of the CFT.

Parameters
There are parameters g% o and A on the field theory side. Which are related to the parameters on
the gravity side as follows: g% v = 4mgs and A = C%, where o/ = [2.

IR/UV connection
To illustrate the IR/UV connection, consider Poincare patch for AdS. The AdS boundary is situ-
ated at z = 0, and z = oo represents the deep bulk of AdS. These correspond to the IR and UV
cutoffs of AdS gravity, respectively. We now consider a geodesic anchoring at the boundary of an
interval of length [ in conformal field theory (CFT), the geodesic extends up to the point z = z,.(I)
in the bulk, and returns to the boundary. It turns out that z, ~ [. Therefore, for a UV cutoff [ = ¢
(with the energy cutoff Eyp; ~ 1/z), z, ~ e. This suggests that the UV regime of CFT corresponds
to the IR regime in AdS, and the IR cutoff [ — oo corresponds to UV regime of AdS. Thus, moving
from boundary to the deep bulk (z =0 to z = o) , represents transitioning from UV to IR regime
in the dual field theory (CFT). Therefore, the extra-dimension z can be interpreted as representing

the energy scale for the boundary theory.

A scalar field in AdS
We consider a free massive scalar field ¢ on AdS background in poincare corrdinates, the action

for the scalar field is given as:

Smater =~ [ @*av/=g (0216019 + m?e?) (1.15)

The equation of motion for ¢ is given as:
1
—— 0w (V=ggM™Noyp) —m?p=0. (1.16)
= o )

By utilising the various metric components, this simplifies to
LA+, (zl_dﬁzq§> + 20,0 — m2R% = 0. (1.17)

The scalar field ¢ is the function of z and z# : ¢ = ¢(z, x*). The Poincare metric has the translation

invariance along x* directions, therefore, we can write an ansatz for the scalar field ¢(z, z") as:

d .
bz, a") = / éﬂl)(d e (2), (1.18)

where K# = (w, k), and K? = —w? + k2 . By implementing ( [1.18) into ([1.17), we obtain

2419, <zl_d8Z¢K) — 22K?¢p —m?R%¢pr = 0. (1.19)
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We now analyse this equation near the boundary z — 0, the term involving K2 vanishes. Therefore,

eq([1.19) simplifies to
LA+, (zlfdazgﬁK) — m?R2¢5 = 0. (1.20)

We now consider the following ansatz for ¢ (2) as: ¢x(z) ~ 25. BEq([1.20) along with this leads
to:
B?—pd—m*=0. (1.21)

The solution of the above quadratic equation is:

dEVE+ AR d

15} 5 3 T, (1.22)

where v = \/% + m2R2. Let us consider A = % + v, then the solution for ¢x(z) is given as:
br(z) = A(K) 292 + B(K) 22 (1.23)
This combined with ( [1.18]) gives the asymptotic behaviour of ¢ as:
P(z,2") = A(z) 2572 4+ B(xz) 22 . (1.24)

Forv>0,A> % is real. This constraint gives m?R? > —%, this condition is known as BF bound.

(d — A) is negative for m?

> 0, this implies that the field ¢(z,x*) diverges as z — 0 near the
boundary.
We would now like to identify normalizable and non-normalizable modes, remember the inner

product of two scalar fields which satisfy Klein-Gordon equation, is defined as
(61, 02) = =i | dzde/=gg" (610162 — $20:61) - (1.25)
t

We focus on near the boundary region z — 0, considering the following ansatz ¢x(z) ~ 2P near
the boundary. We now evaluate [ d%x\/—gg' (¢*0ip — ¢p9i¢*) ~ 21725, Then [dz2z!~4+20 ~
22-4+28 Tn order to have finite norm we must have 2 —d + 23 > 0. Let us first consider the mode
B(z) 2%, we note that 3 = A for this mode. Then 2 — d + 28 = 2(1 + v), this is always positive
since v > 0. Therefore, the mode B(z) 22 is always normalizable. We now consider the another
mode A(z) 242, for this mode 8 = d — A, Now 2 — d + 28 = 2(1 — v), therefore, v < 1 for this
mode to be normalizable. This means that for —% <m?R? < —% + 1, the mode is normalizable,
infact both modes are normalizable in this range of m?R?. Additionally, for m?R? > —% + 1,
the mode A(gv)zd*A is non-normalizable. Normalizable modes are part of the bulk Hilbert space,
and it corresponds to a state in the holographic field theory. Non-normalizable modes are not
the part of the bulk Hilbert space, and they provide sources for the operators in the field theory.
The source modifies the state of the field theory, since it modifies the boundary action as follows:
Spay ~ [ d%x ¢o(x)O(x), where ¢o(x) is a source for an operator O in the boundary theory. we

expect that source ¢g(x) is finite, therefore, we remove the divergent part to obtain the finite

21



quantity for source. Then the source ¢g(z) is given as: ¢o(x) = lim, .o 227 % (z,2) = A(x). Tt
turns out that A is exactly equal to the scaling dimension of the operator O in the dual conformal
field theory. The Poincare AdS metric exhibits the isometry z — 2' = Az and z — z' = Az. We
now consider the fields ¢(z, ) and &(z/, :cl) related by the above scaling isometry. Since ¢ is scalar
field : ¢(z,z) = é(z',2'). This leads ¢~0(a:/) = A2 4pg(z). We expect that the boundary action
Say ~ [ d%x ¢o(x)O(x) is conformal invariant. Therefore, [ d%x do(x)O(x) = [ d%x do(x')O(z").
We now combine this with ¢o(z') = A2 ~9¢g(z), leads to O(z') = A~2O0(z). This shows that A is

the scaling dimension of the operator O(x).

States and geometries
The ground state in a Conformal Field Theory (CFT) corresponds to pure Anti-de Sitter (AdS)
geometry. Excited states in a CFT correspond to asymptotically AdS geometries, and a thermal

state in a CFT corresponds to a black hole in AdS space.

Correlators

We can utilise AdS/CFT correspondence to compute the correlation function of the field theory op-
erators by performing calculations in the bulk. AdS/CFT correspondence suggests that the generat-
ing functional of CFT is equal to the partition function of gravity, i.e., Zcrr[¢] = Zgravity[Ploads =
¢], where ¢(x) is the source for an operator O in CFT. As discussed earlier, the non-normalizable
modes in bulk leads to the source in the field theory, thereby modifying the boundary theory. This is
expressed as ¢(x) = lim,_,q 2279®(z, x), where ®(z, ) is a massive scalar field propagating in Eu-
clidean AdS background, with the matter action as Syatter = —% J ddﬂx\/ﬁ (8MCI>8M d + mQCDZ).
Recall that the 2-point correlation function in CFT is given by:

Pl
dp1(1)0¢2(22) | 4=g

(O1(21)O2(x2)) (1.26)

where Z7; is a renormalised generating functional of CFT. To compute the gravity partition
function, consider a scalar field ® in the Euclidean AdS background. The classical gravity partition

function can be evaluated using the saddle point approximation, yielding Zgrquvity ~ Sos[®e]

Here,
®. is the classical solution for the scalar field which behaves ®.(z,2) — 2972 ¢(z) as z — 0,
and Sys[®.] is the on-shell gravitational action. Therefore, using the arguments above, we find
log Zopr ~ Sos[®c]. We note that S,s[®.] contains local divergences near the boundary. To
address this, we introduce a regulator z = € and add a local counterterm to cancel the divergences
in the on-shell action. Following renormalisation procedure, we obtain log Z7 iy ~ Spe™ [®.]. The
two-point correlator ( can be expressed as:
255" (@]

(O1(z1)0n(@2)) = 001(21)0p2(72) | 4—g (1.27)

The detailed computation of S5¢"™ [®.] can be found in Appendix[6.1] the 2-point correlation function
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is then expressed by:
(O(k)O(=k))) ~ k>, (1.28)

where v = A — g. In the position space, the 2-point correlation function becomes

(0()0(0))) ~ mlA (1.29)

This result precisely matches the two-point correlator of the operators with scaling dimension A
in the conformal field theory (CFT).

Quantum information tools
Quantum information theory provides valuable insights into the study of quantum gravity within
the framework of gauge/gravity correspondence. Quantum information tools offer profound insights
into black hole physics, addressing fundamental puzzles like the black hole information paradox.
Over the years, several powerful quantum information tools have been developed, including en-
tanglement, mutual information, and quantum complexity. Entanglement plays a crucial role in
understanding the geometry of the spacetime, encapsulating an idea ’entanglement builds the space-
time’ ([32], [33] ). Holographic entanglement entropy proposal is crucial in this context. On the
other hand, complexity plays crucial role in understanding the growth of interior of the black hole

at very late times. We will discuss these topics in the next section.

1.2 Entanglement

In this section, we first introduce entangled and non-entangled states, followed by a brief discussion
of several measures used to quantify entanglement. Notable studies on these topics include ([34],
[B5], [B6], [37], [38], [39], [40]). We then present the RT/HRT prescription, which is used to
compute the entanglement entropy of a boundary subregion holographically. Specifically, we use
the RT prescription to compute the entanglement entropy of a strip-shaped boundary subregion in
d-dimensional Conformal Field Theory (CFTy). In a later subsection, we employ RT/HRT surfaces
to probe Big-crunch singularities in AdS Kasner cosmologies and study quantum extremal surfaces

in dimensionally reduced two-dimensional dilaton gravity backgrounds.

1.2.1 Introduction to entanglement

We consider a quantum bipartite system consists of subsystems A and B with the state |¥) in the
Hilbert space H 4 ®Hp. This state is separable if it can be expressed as the tensor product of states
from subsystems A and B, i.e.,|¥) = |¥) 4, ® |V) 5. In this case, there is no entanglement between
subsystems A and B. Conversely, the state |¥) is inseparable if it cannot be represented as a simple
tensor product, specifically if it takes the form |¥) = 3, . Ci;li) o [7)p # V)4 ® [¥)p. In such
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cases, there is entanglement between the subsystems A and B. For instance, in a two qubit system,
the states —= (]00> +(11)), 12 (|01) £ |10)) are maximally entangled. These states are referred to

as Bell states

The entanglement in a quantum system is quantified using entanglement entropy, von Neumann
measure is a prominent measure for defining entanglement entropy. Consider a quantum system
described by a pure state |¥), the density matrix is given as p = |¥) (¥|. We now decompose the
Hilbert space as H = H4 ® Hp, then reduced density matrix is obtained as pg = trg(p) by tracing
out the degrees of freedoms associated with subsystem B. The von Neumann entropy of subsystem

A is then given by
Sa = —tra(palogpa). (1.30)

Let us first consider a Bell state |U) = % (]00) 4 |11)) to perform explicit calculations. The density

matrix is given by:

p=|W) (T| = = (]00) (00| + |00) (11| + [11) (00] + |11) (11]) . (1.31)

[\.')M—t

The reduced density matrix pa for the first qubit ‘A’ is obtained by tracing out the second qubit
‘B’. This yields:
1
pa =5 (10) O] +[1) (1)) - (1.32)

The von Neumann entropy of the first qubit ‘A’ is then calculated as:

— ) Ailog A =1log2, (1.33)

i=1,2
where \;’s are the eigenvalues of the reduced density matrix p4. Similarly, we obtain Sp = log2.
We note that S4 = Sp, this is expected because the total system is in a pure state. We also observe

that both p4 and pp represent mixed states.

Now, let’s consider another example of an entangled state, the well-known Thermo Field Double
(TFD) state, in the Hilbert space Ha ® Hp :

BEn
ITFD) = f Ze_i In) , ® ) | (1.34)

where Z = e PFn is the partition function, and subsystem ‘B’ is identical to subsystem ‘A’. The
density matrix is given as p = |T'FD) (T'FD|, then the reduced density matrix p4 is obtained by
tracing out the subsystem B:
1 —BE
pA= - Ze B n) 4 (nl 4 - (1.35)

n

This is exactly equal to thermal density matrix %e‘ﬂH , where E,, are the eigenvalues of the

Hamiltonian H. Therefore, pa = - e —BH describes a thermal density matrix. This indicates that a
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thermal density matrix p4 can be purified by considering a pure Thermo Field Double state |T'F D)
in an enlarged Hilbert space Ha ® Hp, where Hilbert space Hp is identical to H 4.

We mention here a few important properties: The density matrix p = |¥) (¥| is a projection
operator, Hermitian, and positive semi-definite. Consequently, the von Neumann entropy is real
and non-negative. For a pure state, entanglement entropy of a subsystem ‘A’ is same as the en-
tanglement entropy of its compliment subsystem ‘B’ i.e., S4 = Sp, and Squp = 0. Besides, von

Neumann entropy satisfies the inequality Sa4 + Sg > Saus.

There are various other measures used to quantify entanglement, such as mutual information,
relative entropy, and Rényi entropy. The mutual information of systems ‘A’ and ‘B’ is defined
as I(A,B) = Sa + Sp — Saup. Mutual information satisfies the property I(A, B) > 0, this is
known as subadditivity identity. Mutual information I(A, B) measures the correlation between
subsystems ‘A’ and ‘B’. Relative entropy is defined as S(p||o) = tr(p (log p —log o)). It measure
the distance between the two states described by p and o. Relative entropy is always non-negative,
i.e., S(p|lc) > 0. The Rényi entropy is defined as S, (A) = 1= log (tra(p7)). Rényi entropy is the
generalisation of von Neumann entropy with replica number n, and It reduces to the von Neumann
entropy as n — 1, i.e., Sy = limy,1 .S,(A). We now look at two crucial identities: subadditivity

and strong subadditivity, the subadditivity is given as
Sa+Sp—Saup>0 < I(A,B)>0, (1.36)
and the strong subadditivity is given as

SauBuc +SB < Saup+ Spuc & I(A,BUC)>1I(A,B). (1.37)

1.2.2 Entanglement entropy in field theory

Consider a spatial subregion ‘A’ in a d-dimensional field theory. Decomposing the total Hilbert
space of the field theory as H4 ® H 4c by considering the field theory on a lattice with a lattice
spacing € (we recover the original field theory with the continuum limit of the lattice system, i.e.,
¢ — 0). When the total system in a pure state ( either in ground state or low-lying excited state),
the entanglement entropy of the subregion ‘A’ is given by the following area law

_ Area(0A) n

Sa
-2

(1.38)

Here, € is the UV cutoff, and Area(0A) is the area of the entangling surface (0A) . The first term
in S4 is a leading ultraviolet divergent term which arises from the short-distance correlations, and
the dotted terms may be finite or divergent depending on the specific theory. It tuns out that area
law ([1.38]) only holds for d > 2, and the entropy S4 scales as volume for the random states in field
theory.
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Figure 1.1: Left panel: Minimal surface (Ryu-Takayanagi surface) v (blue) anchored at
the boundary of subregion A (red) in time-independent AdS geometries. Right panel: ~
represents the RT /HRT surface anchored at the boundary of subregion A at a constant time

slice ¢y in time-dependent AdS geometries

For an interval [ within two-dimensional Conformal Field Theory (CFTs2) that is in its ground
state , the entanglement entropy of the interval is given as S4 = § log é, where ¢ is the central
charge of CFT9. This is well-known as Calabrese-Cardy formula ([36]), which can be derived using

replica trick.

1.2.3 Holographic entanglement entropy

Holographic entanglement entropy of a boundary subregion can be computed using RT/HRT pre-
scription. According to Ryu-Takayanagi’s proposal the entanglement entropy of a boundary sub-
region is obtained holographically by using a codimension-two minimal surface in the bulk which
is homologous to the boundary subregion (see Figure . The holographic entanglement en-
tropy is given by the Ryu-Takayanagi formula [I7]: Sy = Aél%a]s;’), where v is the codimension-two
minimal bulk surface anchoring at the boundary of subregion A. For the time dependent geome-
tries, we employ RT/HRT prescription [18] to define the holographic entanglement entropy. This
prescription involves determining a codimension-two extremal surface within the bulk, anchored at
the boundary of subregion A. This surface is known as the RT/HRT surface, extends into the time

direction as well as illustrated in Figure Some of notable reviews are ([41], [42]).

Consider AdS;11 metric in Poincare coordinates:

2
ds3y, = % (dz? — dt* + di®) | (1.39)
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where R is the AdS radius, z is the radial bulk coordinate, t is the time coordinate, and Z represents
the spatial coordinates. To study the entanglement entropy of a subsystem in the boundary theory,
consider a strip-shaped region A with finite width [ along the x1 = x direction and infinite extent
in the other spatial directions. The area functional for a codimension-two bulk surface anchored to

the boundary of the subregion A’ is given by:

1
A=V, R /dz S VIF PR, (1.40)

where V;_o represents the transverse IR regulated volume (along the remaining spatial directions),

and the codimension-two minimal surface lies on a constant time slice. The minimization of the

area functional ( [1.40]) yields,
d—1

\/Zf(d—l) _ 52(d-1)

where z, is a turning point of the minimal surface, representing the deepest point in the bulk that

7' (z) = : (1.41)

the minimal surface can reach.

For the simplest case of AdSs (d=2) space. The solution to eq.( [1.41)) is:

x(z) =+£\/22-22+C. (1.42)

We now require that the minimal surface anchors at the boundary z = 0, i.e., (0) = i%. This
implies C' = 0, the minimal surface then represents a semi-circle 22 4 22 = (%)2 with radius z, = %

The area functional for the minimal surface then becomes:

A:Rl/*_ =1 (1.43)
z=e z (%)2_22

we introduce a cutoff z = € to regulate the divergence near z = 0. After evaluating the integral, we
find:

N~

l
A=2Rlog-. (1.44)
€
The entropy of boundary subregion is then evaluated using Ryu-Takayanagi’s formula as
A R l
Sp=—= log - . 1.45
Te N 2GpN 08 € ( )

Identifying the central charge of CFT as ¢ = %, the entropy S4 can be recast as:

l
SAzglog

5 log—. (1.46)

This result is in agreement with the known expression for the entanglement entropy of a boundary

subregion A in two-dimensional Conformal Field Theory (CFT3).
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For general values of d, we substitute Eq.(|1.41]) into (|1.40) . The area functional becomes

(1.47)

A =2V, Rz /zz dz 1
_ a " .
z=c % \/Zf(dfl) — »2(d-1)

The width of the boundary subregion [ along x direction is related to the turning point z, as follows:

L Ld-1 - F(W‘%)
2 /e a2 \/zf(d_l) _ 2(d-1) =V %' s

This implies
1
1 T ( 2(d—1) )

Ze = (1.49)
2 d
VT (i)
The area functional ( [1.47)) after evaluating the integral becomes
d
2V, d—1 1 F( — )
= Vi—oR NZ3 2(d—1) (1.50)

d—2 =2 ,d-2 F( 1 )

Utilizing ([1.49)) into (|1.50]), we obtain the holographic entanglement entropy of boundary subregion
A as

Sa =

Vao R4 Ll (1/2)]_ (1.51)

(d—2)2GN |ed2 B 2d-1

The diverging part has a leading contribution to the entanglement entropy which scales as S4 ~
ed%Q, while the second part of Sy is finite and depends on the finite width of the subregion A along
x-direction. In the IR limit of the subregion A, i.e., | — 0o (2« — 00), the finite term vanishes in
Sa.

1.2.4 RT/HRT surface in AdS Kasner cosmologies

[43] explores RT/HRT surfaces in AdS Kasner cosmologies in great detail. In this section, we review
the key aspects of that study here. AdS Kasner cosmologies are time-dependent deformation of
AdS, where the dual field theory resides on a time-dependent space with a time-dependent gauge
coupling. One might expect that the RT/HRT surfaces could be used to probe the cosmological
singularities such as Big-Crunch. However, it turns out that the RT/HRT surfaces cannot probe
regions near-singularity in AdS Kasner cosmologies. Instead, they avoid near-singularity regions as
illustrated in Figure

Consider the (d + 2)-dimensional Isotropic AdS Kasner metric:

/
ds3yy = qb(i_l) (—dt? + dr?) + ¢ da?. (1.52)
d
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The dimensionally reduced 2-dim background is given by:

(d—1)

ds® = (—dt? +dr?) ; ¢=—. (1.53)

pd+1

(d—1)

We notice that ef = %, and the geometry described by the metric (|1.52)) possess Big-crunch

singularity at t = 0.

t=0 singularity

Figure 1.2: Cartoon of extremal surfaces in AdS
Kasner spacetime, anchored on a boundary time

slice tg. The extremal surface (red) bends away from

-------- the singularity at ¢ = 0 (dotted line), i.e. t. > to,

anchoring
time slice t . . .
extremal surface with (t*, ’I‘*) the turmng pOlIlt.

holographic dimension

boundary

Now, consider a strip-shaped spatial subregion A with finite width along x1 = z and infinite
extent along the remaining spatial directions, situated on the regulated boundary of ( at the
boundary time slice ¢ = t5. We note that the geometry is time-dependent, therefore, we utilze
RT/HRT prescription to find a codimension-two extremal surface in the bulk, the surface anchors
on the boundary of subregion A. The codimension-two surface can be specified by (z(r),t(r)), the

area functional of the codimension-two surface is then given by:

d—1 f 9
A=V [dro' ’\/ S (L) 4ot e, (1.5

where t'(r) = %, x(r) = %, and Vy_1 = [ dws...dz4 is the regulated volume. The above expression

simplifies to:

A=Viq /drgb \/quil) (1—t(r)?) 4+ a'(r)%. (1.55)

Extremizing the area functional ([1.55)) with respect to x(r) yields x-extremization equation as:

el (1-t(r)?)
o (P A7)

2’ (r)? = A? (1.56)

here, A is a constant. Utilising the above equation in ([1.55)), the area functional becomes:

f ¢(3_é)/2 3
L VITTGE, (157
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The extremal surface possess a turning point (7, t.) as z'(r)? — co. At the turning point, ¢, = A,
therefore the constant A is given by:
A:(;S*:t—z, (1.58)
/r*
where ¢, = t(r,). The turning point (r.,t,) depends on the values of ¢y (anchoring time) and the

width [ for a fixed value of A. The relation between 7, and the width of the subregion A is:

l:/::r*drx'(r):A/r* " b 1—t’ /d )b (1—75'())_ (1.50)

Fa)
-0 0 ¢% d’ —1

We observe the scaling as [ ~ r,, therefore A ~ 'lf—;. This indicates that for a small subregion width

[, ry is small, the extremal surface returns to the boundary after approaching the turning point.
However, for a larger subregion width, r, is large, this indicates that the extremal surface can go
deeper into the bulk. Moreover, r, — oo (the surface dipping deeper into the bulk) in the IR limit
of the subregion (I — 00).

We observe that the factor ﬁfl)/d in (1.56) includes a term proportional to t~#, which suggests

the presence of a distinct turning point localized at the singularity ¢, = 0. However, this branch of
extremal surfaces appears to be disconnected from the branch that remains continuously connected
to the AdS-like branch in the region far from the singularity. Notably, such a branch with ¢, =0
exists only in the limit of infinite strip width, i.e., the infrared (IR) limit, where no parameter (such
as A) enables deformation away from the ¢, = 0 locus. This implies that the branch is inaccessible
from the classical region far from the singularity. Moreover, the vicinity of the singularity at ¢t =0
is a regime where quantum gravity effects are expected to dominate. A classical RT/HRT extremal
surface localized in this region, with no means of deformation toward a well-defined classical region,
is therefore unreliable. For this reason, we discard this branch of extremal surfaces. Additionally,
for (0,2)? > 0 to be well-defined, we require (9,t)? < 1, ensuring that |9,t| remains bounded. For
small strip widths, the extremal surface lies on an almost constant-time slice, i.e., (9,t)2 < 1. This
condition, (0,t)% < 1, is consistent with the surface being spacelike everywhere under our boundary

conditions.

The above analysis does not reveal the full characteristics of the solution ¢(r) and the turning
points t, and r.. To address this, we derive the differential equation for ¢(r) by extremizing the
area functional, as discussed below. Extremizing the area functional (|1.55)) with respect to ¢(r) and

utilizing the z-extremization equation (|1.56|) yields the t-extremization equation:

t(r)? — A2p2d) dr drt” (r)
1—¢(m2) [ a2 r( N ()2 — A2 -0, 1.
(1o (e + TS ) (w2 - ) S 0. o)
Consider an ansatz for ¢(r) as:
1
=t + et 5 ep o~ —  ty >ty (1.61)
nzz:l 5
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The perturbative solution for ¢(r) reads as:

r2 ré 76 A2 17 ]
fr) — ¢ ~ _ 1.62
() =to+ 13~ 1328 T 7rrey <160t3 7776.240¢] ) T (1.62)

This indicates that ¢(r) > to, meaning the extremal surface dips away from the anchoring time slice
to, avoiding the near-singularity region, as depicted in Figure Next, we examine the validity
of the perturbative solution (1.62)). The condition » < ¢ty must hold to ensure the perturbative
solution is well-defined. Thus, the perturbative solution is valid for small subregions with [ < ¢y.
Additionally, we observe that the condition ¢'(r) < 1 is satisfied for the perturbative solution.
The IR limit, where the strip width is large, corresponds to f,—j; =A~ l% — 0. In this limit,

Eq. (1.60) becomes: )
3 + rt? — drt? — 2drt’ = 0.

Analyzing this via a power series in Mathematica for AdSs; Kasner (d = 3), we find:

1, 1, 1 17 247

tHr) =t T - — 0 (163
=t 7T766 | 186624077 33502320080 (1.63)

r— T
12 g 4323

The series here is more delicate, as the surface extends fully into the bulk with r, — oo. Thus, the

entire r-series becomes significant. The limit A — 0 implies A < t% when compared with the scale
0

to, which further requires:

t
T« =00, top— 00, L <. (1.64)
T

This describes the reliable semiclassical regime far from the singularity. In this regime, the series
defining the time behavior of the surface remains well-defined, though delicate: the surface is
anchored on a slice far from ¢ = 0. While it dips deep into the bulk, its time dependence is mild,
with > < 1 everywhere. The perturbative solution breaks down beyond a certain r, and
therefore it does not capture the full RT/HRT surface in the region r > to. For this regime,
numerical methods must be employed to solve the ¢t-extremization equation directly. In [44],
we perform a numerical analysis of the IR limit of the boundary subregion. Our results indicate
that the codimension-two extremal surface originates from the boundary, bending away from the
singularity region, and eventually becomes light-like beyond a certain r. The extremal surface

extends up to r — oc.

1.2.5 Entanglement wedge

The RT/HRT proposal suggests that the codimension-2 extremal surface v is homologous to the
boundary subregion A, meaning there exists a bulk region R such that 0R = AU~. The surface R,
referred to as the homology surface, is a codimension-one surface in the bulk. The entanglement
wedge of the boundary subregion A is defined as the domain of dependence of the homology surface
R, denoted as D[R] = W, [A]. This entanglement wedge corresponds to a codimension-zero region
in the bulk.
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Figure 1.3: The figure shows a minimal surface v anchoring at the boundary of the subregion

A’ and b represents the bulk region surrounded by v and A

1.2.6 Corrections to the holographic entanglement entropy

The holographic entanglement entropy obtained using Ryu-Takayanagi (RT) or Hubeny-Rangamani-
Takayanagi (HRT) prescription only holds at order O(ﬁ) (or O(N?) in the boundary theory). This
entropy can receive corrections from quantum mechanical effects in the bulk. Faulkner, Lewkowycz
and Juan Maldacena ([45]) found that the quantum corrections at O(G%;) (or O(N?) in the bound-
ary theory) to the holographic entanglement entropy are given by incorporating the bulk entan-
glement entropy. The corrected holographic entropy of the boundary subregion A is then given
by:

Sy = M + Spuik (b) + counterterms, (1.65)

4G Ny

where the first term represents a classical term: area of the codimension-two minimal surface,
while the second term represents a quantum term: bulk entanglement entropy of the region b (
surrounded by the boundary subregion and the minimal surface v as illustrated in Figure .
The term Sy is UV divergent, but these divergences can be absorbed by adding counterterms.

The combination (S, + counterterms) is then finite.

1.2.7 Quantum extremal surfaces

The von Neumann entropy of a boundary subregion at all orders in 1/N? (or Gy) can be holo-
graphically obtained by extremizing generalised entropy ([46]). The generalised entropy is defined
as:

_ Area(y)

Sgen == W + Sbulk ) (166)
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where v is a codimension-two bulk surface that anchors at the boundary of the subregion A,
and Sy is entanglement entropy of the bulk region surrounded by boundary subregion A and
the surface 7. The extremization of ( provides quantum extremal surface (QES), and the
generalised entropy evaluated at the quantum extremal surface gives the von Neumann entropy of
the boundary subregion A. If there are multiple quantum extremal surfaces, the one that provides

minimum Sye, is considered. This can be summarized as

A
S = min< ext m + Sputk | ¢ - (1.67)
4G N

The term Spy involves area-like UV divergences in d-dimensions (d > 2), these divergences can
be absorbed by the renormalisation of Newton’s constants. The renormalised Newton’s constant is

given by:
1 1 1

4G 4Gy edm2

The explicit computation of Sy, is challenging in general dimensions. However, for two-dimensional

(1.68)

conformal field theories (CFT3), it can be calculated explicitly using the Cardy-Calabrese formula.
Therefore, we focus on theories in two dimensions or those obtained by dimensionally reducing
higher-dimensional theories to two dimensions. Additionally, we assume that the bulk matter is
described by two-dimensional conformal field theory (CFT32) in its ground state, especially for the
explicit computations. We further assume that - T > > 1 to avoid back-reaction on the classical
geometry due to strong quantum effects, Where c is the central charge of CFTy. For two-dim dila-
ton gravity theories the QES and boundary subregions are just points. Therefore, the generalised
entropy is given by:

¢ 2 f
Spen = 10 T 13 log (A ) (1.69)

where ¢ represents dilaton profile, and e/ is the conformal factor appearing in the conformally flat
two-dimensional metric background. Here, A? = 72 — (t — ()2, where t( is the time slice at the

location of boundary subregion.

The entropy functional involved in the RT/HRT prescription under the IR limit of a boundary
subregion of a higher-dimensional theory (d > 2) gives the classical term (dilaton ¢ term) in
the generalised entropy . This can be seen explicitly by considering the higher-dimensional
AdSg. 2 background as

ds® = pi (—dt> + dr?) + ¢padi?, (1.70)

where ¢ = %d. We first assume that the boundary subregion has finite length [ along x; = =z

direction. Later, we consider the IR limit as I — oco. The entropy functional for the boundary

subregion is:
§ = Vi1 /drqb( W1+ 2'(r)?, (1.71)
4G g2
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In the IR limit, S is given as:

V-1 / / o(r)
S = dro(r)x’(r) ~ —=, 1.72
s [ o) ~ 52 (1.72)
where two-dimensional Newton’s constant is given as G% ~ G:i -

Quantum extremal surface in AdS,-dilaton gravity theory

The 2-dimensional dilaton gravity solution is given by:

1 ¢
2 _ 2 2 . _ rr
The generalised entropy is then given as:
o 1 ¢ 1 or 1
Sgen = -+ -1 - ,  OrSgen = — . 1.74
g 4GNr+6 08 rr 9 4Gy 12 ( )

The extremization of the generalised entropy, as shown in ( [1.74), gives the quantum extremal
surface at r. — oo. This indicates that the entanglement wedge is the entire Poincaré patch, as

expected.

Quantum extremal surfaces in AdS,,, dimensionally reduced theories

The 2-dimensional background is given by:

1 ¢
2 _ 2 2\ . _ Y
ds” = A+ (=dt* +dr®) ; ¢= ek (1.75)
The generalised entropy is given as:
o 1 c T ¢ d c(d-1)
en — - -1 5 rdgen — T - = . 1.
Soen = 4o rd T 6 8\ O 4Gy T 6 2r (1.76)

The extremization of the generalised entropy gives the location of quantum extremal surface (QES)
at r, — oo again. This suggest that the entanglement wedge is the entire Poincaré patch, as
expected. The generalised entropy ( |1.76|) can be recast as:

¢ ¢ (d=-1)

Sen =161 4

log ¢ . (1.77)

In summary, for the simple 2-dimensional dilaton gravity backgrounds considered, the QES is
located at infinity, i.e., 7. — 00, and the entanglement wedge is the entire Poincaré patch, as

expected.
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1.3 Complexity

In computer science, computational complexity measures the difficulty of performing a task, often
in terms of the resources required, such as the amount of time needed to complete a task or the
memory necessary to store information. As computing evolved, this concept naturally extended to
quantum systems, where representing and processing quantum information posed unique challenges.
The transition from classical to quantum circuit complexity builds upon the foundational work of
early computing pioneers. Claude Shannon’s introduction of Boolean circuits [47] in 1948 laid the
groundwork for representing logical operations, a concept that would later be adapted to quantum
systems. Richard Feynman [48] and David Deutsch [49] took this further by proposing that quantum
systems could be simulated using quantum circuits. Deutsch also formalized the concept of a
quantum Turing machine, which provided a theoretical framework for quantum computation. This
led to the introduction of quantum gates—unitary operations that form the building blocks of
quantum circuits. The power of quantum circuits was dramatically illustrated by Peter Shor’s
quantum factoring algorithm [50] in 1994, which showed that quantum circuits could outperform
classical circuits for certain problems. In 1995, Adriano Barenco and colleagues [51] demonstrated
that a universal set of quantum gates, such as Hadamard and CNOT, could generate any quantum
operation, solidifying the idea that arbitrary quantum states could be represented as circuits. These
ideas culminated in Michael Nielsen and Isaac Chuang’s Quantum Computation and Quantum
Information [52], which provided a comprehensive framework for quantum circuits. Their work
formalized the use of quantum gates to represent arbitrary unitary transformations, demonstrating
that any quantum operation, and by extension any quantum state, could be represented by a
quantum circuit. Mathematically, this is expressed as |¢)) = U [¢);, where [¢); denotes the initial
state and U is a unitary operator implemented via quantum gates. This integrated approach
became the standard model for quantum computation, illustrating how complex quantum systems
could be simulated and manipulated through the careful arrangement of quantum gates.

With these developments, the computational complexity landscape expanded, and the concept
of quantum circuit complexity emerged as a critical framework for understanding the power and

limitations of quantum computation.

Beyond computation, quantum circuit complxity is used in studying the dynamics of quantum
systems, including quantum chaos and black hole physics. In this section, we review circuit com-
plexity for states and operators in quantum mechanics and quantum field theories. Additionally, we
examine various holographic proposals to compute circuit complexity. The textbook [52] provides
a comprehensive introduction to quantum information and quantum computation, encompassing
topics such as classical and quantum computational complexity. Furthermore, numerous studies
[25], [63]-[75] have investigated complexity in the contexts of quantum field theory (QFT) and

holography. A comprehensive review of circuit complexity can be found in [76].
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1.3.1 K qubits and size of the space of states

For K qubits, the dimension of Hilbert space is 2. A general state can be expressed by:

2K
T) = aili) (1.78)
=1

In general, the coefficients «; are arbitrary complex numbers, which result in an infinite number
of state vectors (distinct from the basis vectors). To regulate the space of states, each «; can be
constrained to take m-discrete values. Under this restriction, the total number of states is given
by:

Q=m (1.79)

The logarithm of this quantity is:
log Q = 2K logm. (1.80)

For K = m = 4, the total number of states is €} = 4,294,967,296, illustrating the immense
state space, with log Q2 ~ 22.18. Furthermore, the expression in Eq. demonstrates that log (2
depends strongly on the number of qubits K, while its dependence on the regulating parameter m

is comparatively weak, varying only logarithmically.

1.3.2 Circuit complexity

Circuit complexity is defined as the minimum number of elementary gates (unitary operations) to
construct a target state |¢), from a reference state. The target state is obtained as 1), = U [1)) s,
where the unitary operator U is constructed from a simple set of elementary gates. There could
be many circuits to construct U using the same set of elementary gates, we consider the one with
minimum number of elementary gates. We can introduce a tolerance e for constructing the target

state |¢)), with a desired precision:

[[vr) = Ulr)|| < €. (1.81)

For n qubits, the maximum complexity scales as Cpqr ~ 2". The circuit complexity C(U) of a
unitary operator U is defined as the minimum number of elementary gates U; to construct U with

a tolerance €, expressed as
n

U—HUZ-

=1

<e. (1.82)

1.3.3 Circuit complexity for coupled harmonic oscillators

[72] investigates circuit complexity in the context of coupled harmonic oscillators and quantum
field theories. In this section, we review the key aspects of circuit complexity for a system of two

coupled harmonic oscillators with the Hamiltonian:

2

_ 1. 2 w? 2 2 Q 2
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We can recast the above Hamiltonian ( [1.83)) in a different basis {y1,v2}, as follows:

Qfy; | Bys

1
:7P2 P2 2M1d1 80292
1 1
=—(x1+z ; =—(r1—x 1.84
Y1 \/5(1 2) Y2 ﬂ(l 2) ( )

where 1 = w, and Qs = Vw? + 202,

The ground state wave function in this new basis is given by:

1 Q102 Qo v2
Q) — 24 2%
U(y1,y2) = %6 ( ’ ’ ) (1.85)

T2
Transforming back to the original coordinates (z1,z2), the ground state wave function becomes:
(wiwg — 7)1 *(T +=52 +5x1ff2)

U(xy,20) = —F—e , (1.86)

T2

where w; = wy = (91—592)7 and = ng%).

Assuming the target state is the ground state (1.86)), i.e., U7 = ¥(z1,x2), and the reference

state is:

1
Wy = G0 () (1.87)

The target state U1 can be constructed by applying a sequence of elementary gates to the reference
state, such that W = UWpg. Here, U is a unitary operator composed of the following elementary

gates:

__ ,l€T0PO . __ _iexg . _ _ieTapo
H = g evop i J, = etFPa - [ = tTaP

Qab = eierapb (a 7& b) ; Qaa =e€

ie (xapatpaza)

= e% 6iemapa , (188)

where xy and pg are constants, and a,b € 1,2. The action of these gates on a wave function

P(x1,x2) is as follows:

Hp(xq, 29) = PP 4)(1, 29) Constant phase change

J(x1, xe) = Y(x1 + €xo, x2) Shifting x1 by exq

Ko(zy,29) = ei€TaPo U(xy,x2) Shifting momentum p, by epg

Q21v(x1,22) = Y(11 + €x2, T2) Shifting =1 by exs (entangling gate)

Quu (1, 22) = e2 Y(ex1, T2) Scaling =1 by e“z; (scaling gate) (1.89)

Consider a circuit defined as ¥ = Q55Q57 Q71 ¥r, where Q11 acts on Wp for a; times, followed

by Q21 and Q99 for as and ag times respectively. The total number of elementary gates defines the
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depth of the circuit (each depth has a single elementary gate), given by

1 1 w1w2—52> wo |,8‘
D=aj4+as+az3=—-|zlog| ——— | + /| — ——| , 1.90
1 2 3= ¢ [2 g( w% w1 ng—@ ( )

where the parameters are

1 1 w1 1 wo ‘ﬁ‘ 1 1 wWiwg — 52 (1 91)
a1 = — 10, — a9y = — I a3 = — 10, — . .
! 2¢ & wo /)’ 2 €V w1 Jwiws — (2 P08 2e & wow1

To determine the circuit complexity for the given reference state Up, target state W, and the set
of elementary gates, we seek the optimal circuit—the one that uses the fewest elementary gates to
construct Uy from Up. Neilsen’s geometric approach ([77], [78], [79]) can be employed to find the

optimal circuit.

1.3.4 Circuit complexity in quantum field theories

We now aim to compute the circuit complexity in quantum field theories (QFT). For simplicity, we

consider a free scalar field theory with the Hamiltonian:
S| 1
H = /dd_lx [7; + 5(v¢)2 + §m2¢2 : (1.92)

The QFT can be reformulated as an infinite set of coupled harmonic oscillators by discretizing
space into a lattice. In this formulation, each lattice point corresponds to a degree of freedom,
behaving as a harmonic oscillator, as illustrated below. This approach transforms the problem
of computing the complexity in QFT into that of coupled harmonic oscillators. For a scalar field
¢(x) in d-dimensional spacetime, the Hamiltonian in Eq. can be rewritten in the discretized

lattice with spacing ¢ as follows:

202 ,
j€neighbor(7)

2
_ s 1 1
H=0"13 | S +om’sitos D (6i—¢)|, (1.93)
i
where 7; is the conjugate momentum at lattice site ¢, m is the mass of the field, and ¢ is the lattice
spacing.
In the continuum limit (6 — 0), the discrete sum transitions to an integral over the (d — 1)-
dimensional spatial coordinates, and the Hamiltonian reduces to Eq. (1.92)).

To further simplify, we redefine the scalar field and parameters as follows:

d 1 1
(bi:(sngi, M:g, W =1m, ng
Under this redefinition, the Hamiltonian in Eq. (1.93) becomes:
i i i,jE€neighbor(7)
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where II; is the conjugate momentum associated with ®;. This Hamiltonian describes an infinite
set of coupled harmonic oscillators.

To calculate the circuit complexity, the ground state of the uncoupled oscillators is chosen as
the reference state, while the ground state of the full coupled Hamiltonian is selected as the target
state. Using Nielsen’s geometric approach [77, [78] [79], the complexity is determined by considering
a path in the space of unitary transformations that connects the reference and target states.

The complexity is defined as the geodesic distance along this path:
dYa dYb
C / ds ab d (195)
S

where Y?(s) parameterizes the path in the space of unitary transformations, and G, represents
the metric on the space of unitaries (a Riemannian manifold). For detailed computations, refer to
[72].

1.3.5 SU(2%), unitaries, and complexity

Consider a quantum system of K qubits, where the Hilbert space is 2% dimensional. A special

unitary operator can be expressed as:
U= Uy li) (il (1.96)
ij

where indices i and j takes values from 1 to 2%, and the unitary operator U has 4% —1 independent
real parameters. If each independent parameter is restricted to take m discrete values, the total

number of distinct unitary operators is given by:
n=m*"1 - logn = (4% — 1) logm. (1.97)

This result reveals a similar pattern to that of the states (discussed in [1.3.1]), but with a 4% factor
instead of the 25X,
The volume of SU(N E|1$ given by:

(N71)2(N+2)
™
N)y=2——"—. 1.
V(SUN)) 1120 (N =1)! (1.98)
For N > 1, this can be approximated using Stirling’s formula as:
N2
V (SU(N)) ~ . (1.99)
N2

! The formula for the volume of SU(N) is derived by calculating its invariant volume, leveraging its
recursive relationship with spheres (S?V~1) and the subgroups SU(N — 1). This formula encapsulates the
intricate geometric and topological structure of SU(N), as thoroughly examined in the iterative approach
presented in [arXiv:math-ph/0210033. It provides a foundational measure of SU(N)’s compact manifold,

with significant applications in representation theory, quantum physics, and related fields.
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The volume of (N? — 1)-dimensional ball of radius ¢ is given by:

N2_1 2 N2 2
a7z N1 7z N
~Y
211 N2
D(A5H) N
2

Vie) =

(1.100)

where Stirling’s approximation for N = 2% > 1 has been used. The number of unitaries n =
V(SU(N))

%0 is then given by:

N2
N\ 7 4K 1
n ~ <€2> — logn = K? log2 + 4 log <€> . (1.101)

We now introduce K-local, all-to-all circuits. A K-local circuit involves up to K qubits at once.

l

| T

T+1 T+ 2

Figure 1.4: Standard architecture for a K-local all-to-all circuit. The first depth is labeled

with the circuit time 7, and the time increases by one unit with each subsequent depth

All-to-all connectivity means that any qubit can pair with any other qubit. The Figure shows
the standard architecture of a K-local all-to-all circuit with 6 qubits and K = 2.

Let’s now discuss a circuit graph, which is a graph describing a circuit. For the illustration, we
assume elementary gates acting on two qubits, with % gates operating at a particular depth. The
total number of ways to construct % pairs from K qubits is given by:

K!
d=——— =
22 (3)

Therefore, there are d possible circuits/configurations at each depth, each corresponding to a uni-

~ Ko (1.102)

tary operator in SU(2%) space. This suggests that each depth may yield one of these d unitary
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operators. For the visualisation, the decision-tree is embedded in SU(2%) space, as shown in Figure
[[Z5] The Figure [I.5a illustrates a depth one tree with a central vertex representing the identity
operator I. Eight branches emerge from this vertex, each corresponding to one of d = 8 circuit
configuration choices. Each leaf of the tree represents a unitary operator. By adding another depth,
we obtain the embedded graph shown in Figure [L.5b|, where each vertex and leaf represents a
unitary operator. At the second depth, we consider only (d — 1) circuit configurations, as discussed
in [76]. For large K, this approximation does not significantly impact the results but simplifies the
technical details.

(a) (b)

Figure 1.5: Tree graph with d = 8 and depth D = 1. Right panel: Tree graph with d = 8
and depth D = 2.

The circuit time, denoted by 7, increases as the circuit depth D increases, expressed as 7 o D

. The rate of complexity with respect to circuit time 7 is given by:

dc K
— =, 1.103

dr 2 ( )
This shows the linear growth of the circuit complexity C with respect to circuit time 7. The total

complexity at depth D is C = %, and the number of unitaries at depth D is:
N=dP ~ K% (1.104)

According to the no-collision theorem, different circuits at each depth generate distinct unitary
operators, meaning two circuits do not produce the same operator. However, collisions may occur
after the system reaches the maximum complexity, Cpax. The total number of unitaries Niotal
corresponds to this maximum complexity, implying Niotal ~ Kmox. Using equation , the
maximum complexity evaluates to Cpax ~ 4. After reaching maximum complexity, loops may
form. See [76] for further details.
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1.3.6 Holographic complexity

It is well known that the black hole interior grows with time, while the entanglement entropy satu-
rates after thermalization. This naturally raises the question: which boundary quantity represents
the growth of the black hole interior? Susskind provided an answer in [25], suggesting that com-
plexity is the boundary dual representing this growth. We review Susskind’s arguments on how
complexity captures the black hole interior’s growth and various conjectures about holographic

complexity.

The black hole interior growth

Consider an eternal AdS black hole geometry, which is dual to the Thermo Field Double (TFD)
state. In this context, the maximum volume spatial slice connecting the two asymptotic boundaries
is diffeomorphism invariant (coordinate-independent). This spatial slice ¥; is a codimension-one

surface that represents the growth of the black hole interior as follows:

dv
= ApT lygs 1.105
n AT lad (1.105)

where t denotes the anchoring time, A represents the horizon area of the black hole , T is the tem-
perature, and l,qs is AdS length scale. The maximal slice ¥; represents the Einstein-Rosen bridge

connecting the two boundaries at anchoring time ¢ as illustrated in Figure with t; =t =t.

We define a dimensionless quantity as follows:

_ V(S
GN lads ’

C (1.106)

where V' (X,) is the volume of the maximal spatial slice ¥;, and G is the Newton’s constant. The

growth of C' with respect to time ¢ is given by:

— ~ST. 1.1
=S (1.107)

where S is the entropy and T is the temperature of the black hole. The Rindler time 7 is related
tot as 7 = 2w T't, the growth of C' with respect to the Rindler time 7 is:

dc

The black hole-quantum circuit correspondence

To describe a black hole in terms of a qubit system, the first question is: how many qubits are

required? The answer is simple: a minimum of S qubits, where S represents the black hole’s entropy.
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Figure 1.6: Illustration of the maximal spatial slice (blue), anchored at times t;, and tg on

the left and right boundaries, respectively, in an eternal AdS black hole

Thus, the number of qubits K can be identified with the entropy, i.e., K ~ S. In this context, a K-
local all-to-all quantum circuit corresponds to a K-local Hamiltonianﬂ This means that any qubit
in the system can interact with any other qubit at any given time. This behaviour is consistent
with the black hole’s scrambling properties, where information becomes rapidly distributed across
the system. To complete the analogy, we need a dimensionless time parameter in the black hole’s
geometry that corresponds to the circuit time. In the context of black holes, the Rindler time
T serves as this dimensionless parameter, as discussed in detail in Appendix Therefore, we
identify the circuit time 7 with the Rindler time 7. The correspondence between the quantum

circuit and the black hole can be summarized as follows:

Number of qubits K <+  Black hole entropy S
K-local circuit +  K-local Hamiltonian

Circuit time 7 <> Rindler time 7 (1.109)

2 A K-local Hamiltonian refers to a quantum Hamiltonian that consists of a sum of terms, each of which
involves interactions between at most K qubits. The ”"K-local” property indicates that the interactions
described by each term are limited to subsets of at most K qubits. This terminology arises because the
interaction is limited to smaller subsets of qubits, and the interactions are ”localized” within these subsets,

as opposed to acting globally on the entire system. Formally, a K-local Hamiltonian can be written as

H= > Hiiy g

11 <t <--<ig

where each H;, i, ., represents an interaction term acting on the subset of qubits i1, 4s,...,ik.
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Complexity representing black hole interior growth

Applying the black hole-quantum circuit correspondence ( to the black hole, we find that the
quantity C' appearing in ( [L.108]) corresponds to the circuit complexity C appearing in eq. (
Additionally, eq.( defines the holographic complexity according to complexity=volume pro-
posal. The complexity C represents the circuit complexity of the boundary state ¥cpp with
Yorr = 0.

Classically, the Einstein-Rosen bridge grows indefinitely, as described by Eq. ([1.105]). However,
quantum mechanics imposes a bound on this growth. Consider the equal-time two-point correlation
between the left and right CF'Ts living on the boundaries, expressed in terms of the wormhole length
L(t) as follows:

L(t)

(pLoR) =€ laas | (1.110)

where ¢; and ¢r are operators associated with the left and right CFTs, respectively. As the

Einstein-Rosen bridge (wormhole) grows, the wormhole length L(¢) increases, leading to a decrease
in the correlation between the left and right CFTs. This decrease corresponds to a linear growth in
the complexity. When the correlation between the CF'Ts approaches zero, the complexity saturates.
This occurs at a time on the order of ¢ ~ e, at which point all elementary gates have been used
to construct a new state. At this time, the wormhole has stretched to its maximal length, and
further evolution results in small fluctuations around this maximum. It is important to note
that the saturation of the wormhole length ultimately arises from the finite nature of black hole
entropy, a quantum effect. This contrasts with classical entropy S, which is theoretically infinite.
Consequently, the finiteness of black hole entropy is the underlying reason for the saturation of
complexity.

Moreover, according to the quantum recurrence theorenrﬂ7 the system’s state is quasi-periodic.
After a doubly exponential time ¢t ~ exp(expS), the system will return to a state that is nearly

identical to its initial configuration.

Holographic complexity: conjectures

Several proposals aim to define complexity holographically, prominent conjectures include complex-
ity=volume (CV), complexity=action (CA), complexity=spacetime volume (CV2.0), and complex-
ity=anything. Complexity=volume conjecture embrace the formula for the complexity of the dual

quantum state, which is given by
V(Z¢)

“GNR

where Y; is the codimension-one maximal surface in the bulk with the property: 0¥; = Ycopr,

Cv

(1.111)

where Yo pr represents the boundary time slice and V' (X;) represents the volume of the surface

3The Quantum Recurrence Theorem states that for a finite quantum system evolving under unitary time

evolution, the system returns arbitrarily close to its initial state after a long time.
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Y. Here Gy is Newton’s constant, and R is AdS curvature radius. For eternal black hole dual
to thermo field double state, holographic complexity is proportional to the spatial volume of the
Einstein-Rosen bridge connecting the two boundaries. Figure [1.6] illustrates the maximal spatial

surface Y;, anchored at the two boundaries, with t;, = tg = t¢.

Let’s now explore the original motivation for the complexity=action (CA) proposal. The com-

plexity obtained using the volume proposal can be rewritten as:

V(tL,tR)R

€~ GNRZ

(1.112)

where t;, and tg represents anchoring time slices of the wormhole at the left and right boundaries,
respectively. To obtain this expression, we multiply both the numerator and denominator of the
complexity=volume conjecture by the AdS curvature scale R. At late times, the spatial volume of
the Einstein-Rosen bridge can be approximated as V(3;) ~ GS (tg + t1), where GS represents the
cross-sectional area of the wormhole. Hence, the world volume of the wormhole can be approximated
as [W| ~ GS (tg + tr) R, where the AdS curvature scale R represents the time duration. This world
volume can be interpreted as a tube of length (¢t + tg). By combining this approximation with

the expression for complexity, we obtain:

W

C~ .
GnR?

(1.113)

1
R2
corresponds to a gravitational action in the presence of a negative cosmological constant. This

Since is proportional to the cosmological constant A, this expression suggests that complexity

observation motivates the complexity=action proposal.

The Complexity=action proposal postulates that holographic complexity is defined as the on-
shell gravitational action evaluated on the Wheeler-DeWitt patch (WDW), divided by 7k , ex-
pressed as ;

Cy= ?Vr: : (1.114)
where Iy represents the on-shell gravitational action evaluated on the WDW patch. This patch is
bounded by the null rays emerging from the boundaries as illustrated in Figure and is the union
of all space-like surfaces anchored at the boundary time slice X pp. Unlike the complexity=volume
proposal, which selects a single space-like surface, the complexity=action proposal requires the
action to be evaluated on the entire WDW patch, encapsulating all space-like surfaces anchored at

YOFT-

Consider a D-dimensional AdS black hole metric given by:

dr? 9 19
— 4+ Q 1.11
f(?“) rod D-2> ( 5)
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Figure 1.7: Ilustration of Wheeler-DeWitt patch enclosed by null rays (blue) , anchored at

times t7, and tg on the left and right boundaries, respectively, in an eternal AdS black hole

where d2%,_, represents the metric on a (D—2)-dimensional unit sphere and the blackening function
f(r) reads as:

16nGpM 2
=1- — 1.11
f(T‘) (D _ 2)QD72TD_3 + L2’ ( 6)
with Qp_o denoting the volume of (D — 2)-dimensional unit sphere.
The Gravitational action for the eternal AdS black hole geometry is given by:
1
Sgray = ———— / dPz /=g (R—2A) + 2/ APz V/-h K|, (1.117)
167Gp | Jm oM

where the first term represents the bulk Einstein-Hilbert action, and the second term is the Gibbons-
Hawking-York boundary term. For a charged black hole, the geometry is described by the Reissner-
Nordstrom-AdS metric, and an additional term, Maxwell’s action, contributes to the gravitational

action: )
SMaxwell = —4/ dPx /=g Fpu F* . (1.118)
M
The WDW patch is anchored at the boundaries with ¢;, = tg = ¢, computing the gravitation
action ([L.117)) on this patch leads to:
dZyy dCyn 2M
— =2M — — =
dt dt wh
This expression for the complexity C4 holds for an uncharged AdS black hole of any size. However,
for a charged black hole, the action complexity is bounded by this value. The result (1.119) reflects

the expected linear growth of complexity, consistent with the linear growth of the wormhole in the
AdS black hole geometry.

(1.119)
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The Complexity= spacetime volume (CV2.0) proposal suggests that the holographic complex-
ity is defined as the volume of Wheeler-DeWitt (WDW) patch divided by G R?, represented as

1%
Csv = aure:

Complexity involves inherent ambiguities stemming from the choice of a reference state and the
set of unitary gates used to prepare a target state. [30, B1] highlight that these ambiguities are
expected to manifest in the gravitational bulk as well. The authors argue that there is an infinite
class of gravitational observables in AdS black hole geometry that exhibit universal features: linear
growth with time at late times and switchback effect, making them plausible candidates for defining
holographic complexity. These gravitational observables are defined in a diffeomorphism-invariant
manner and may be associated with either codimension-zero or codimension-one regions. This
approach to defining holographic complexity is known as the complexity=anything proposal. A
number of studies have explored this proposal in detail [80, 8], 82} 83 [84], [85], 8], [87, [88], [89)].

The codimension-one observables [30] are defined as:

1

Or 55, = GnER

/ d%oVh Fi(guw; X7, (1.120)
Er

where F and F; are scalar functions of the metric g, and the embedding coordinates X#(c®). Here,
0% denotes the intrinsic coordinates on a codimension-one hypersurface, and h is the determinant
of the induced metric hgp, on this hypersurface. The integral is evaluated over the codimension-one

hypersurface X ,, which is determined by extremizing the generalized volume functional:
Vyen = /dda\/ﬁFQ(gW;X“), (1.121)

with the condition that the extremal hypersurface anchors at the boundary time slice Y g7, mean-
ing 0¥, = Ycpr. For F1 = Fy = F, the gravitational observables are referred to as generalized

complexity ([30]):
1

 GNR Jx -
Generalized complexity extends the CV proposal, where setting F' = 1 reduces to the holographic

Cyen AoV F(gu; X*). (1.122)

complexity defined in the CV proposal.
In the context of the thermofield double (TFD) state dual to an eternal black hole, the observ-

ables Op, x Py exhibit two universal characteristics:

1. Linear growth at late times: As time progresses towards infinity, these observables grow
linearly:
tligloOthFQ(t) xt. (1.123)

2. Switchback effect: These observables also exhibit a universal time delay in response to pertur-

bations or shockwaves. This phenomenon, known as the switchback effect, has been identified
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in studies of holographic complexity, where a characteristic delay in the growth of complexity

is observed following a perturbation.

These properties make Op, x Py (defined by [1.120) plausible candidates for holographic com-
plexity.
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Chapter 2

Cosmologies, singularities and

quantum extremal surfaces

Recent years have witnessed significant progress on the black hole information paradox [14, [15] [16,
90, OT]. These advancements rely on the island prescription, embracing the study of entanglement
and quantum extremal surfaces. Several papers have appeared on various aspects of these issues,
as reviewed in, e.g., [92] 93], 94, 05]. Quantum extremal surfaces are the extrema of the generalized
entropy [45, 46], obtained by incorporating the bulk entanglement entropy of matter and the classi-
cal area of the entangling RT/HRT surface [17, 42 96|, [97]. These developments have led to various
new insights on black holes. Explicit calculations can be performed in effective two-dimensional
models, where the bulk entanglement entropy is studied through two-dimensional CFT techniques.

It is interesting to ask whether quantum extremal surfaces might be used to probe cosmological
singularities—whether of the Big-Crunch or Big-Bang type. While the vicinity of the singularity
is expected to be dominated by severe stringy or quantum gravity effects, one may hope to gain
some insight into how these extremal surfaces probe such singularities. [43] examines aspects of
entanglement and quantum extremal surfaces (QES) in various families of holographic spacetimes
that exhibit cosmological singularities. Some interesting recent work on QES and cosmologies
appears in [98]-[127].

The investigations in [43] focused on various Big-Crunch singularities, in particular the isotropic
AdS Kasner spacetime. These spacetimes lack horizons and significant entropy, distinguishing them
from black hole horizons. Moreover, the authors consider closed universes that are not entangled
with any external regions (e.g., other universes). One of the objectives here is to understand
how quantum extremal surfaces probe such spacetime singularities in closed universes that do not
possess horizons or external entanglement. The time-dependence implies that the classical extremal
RT/HRT surface dips into the bulk radial and as well as time directions. Explicitly analysing the
extremization equations in the semiclassical region far from the singularity can be carried out in

detail: we find the surface bends in the direction away from the singularity. In the 2-dim cosmologies
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[113] obtained by dimensional reduction of these and other singularities, quantum extremal surfaces
can be studied by extremizing the generalized entropy, with the bulk matter taken to be in the
ground state (which is reasonable in the semiclassical region far from the singularity). The resulting
extremization shows the quantum extremal surfaces to always be driven to the semiclassical region
far from the singularity. In sec. we reviewed the analysis in [43]. The 2-dim dilaton gravity
theories in these cases are somewhat more complicated than Jackiw-Teitelboim gravity and are
not “near JT” in essential ways. The cosmological solutions here are sourced by an extra scalar
which descends from the scalar in the higher dimensional theory. These theories capture a subset
of the observables of the higher dimensional theory and so are best regarded as models of “effective
holography” [112], UV-incomplete in totality but adequate for capturing various aspects including
entanglement. Since the quantum extremal surfaces are driven to the semiclassical region far from
the singularity, the approximation of using the 2-dimensional theory is consistent and the other
higher dimensional modes do not make any significant contribution.

This chapter is based on [127] and builds upon the investigations of [43]. We further develop
these studies by analyzing quantum extremal surfaces (QES), with a particular focus on those
that remain spacelike-separated from the observer’s location whenever possible. We begin with a
detailed analysis of QES in AdS Kasner cosmologies (Section , introducing a spatial regula-
tor. This approach allows us to relate the temporal positions of the observer on the holographic
boundary and the QES to the bulk matter central charge and the regulator. In the semiclassical
regime, our analysis reveals that the quantum extremal surface lags behind the observer (in the
direction away from the singularity). A potential island-like region, upon analysing in detail near
the island boundary, turns out to be inconsistent. We then generalize our investigation to include
other singularities with holographic interpretations, which exhibit similar behavior. In Section
we analyze certain families of null Kasner Big-Crunch singularities. These display a form of “holo-
morphy” due to special properties of null backgrounds, and they also differ in the behavior of the

QES, which can now reach the singularity (although the generalized entropy remains singular).

2.1 Review of quantum extremal surfaces in AdS Kas-
ner cosmologies

Various families of cosmologies with Big-crunch singularities and their dimensional reduction have

been studied in [I13]. Consider the higher dimensional space and its reduction ansatz as:

ds? = ¢ P darda” + qﬁ% do? | G = qﬁd%dlg/(f) , D=d+2. (2.1)

nv v

d is the number of the transverse dimensions. The two dimensional action after the Weyl transfor-

mation, is given by:

5= 1671G2 /d%\/jg (¢R ~Ul¢,9) - ;¢(8w)2> : (2.2)
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The dilaton potential U(¢,1)) is the function of the dialton field ¢ and an extra scalar field .
The scalar field ¥ controls the gauge coupling as g% M= e¥. The power-law scaling ansatz for the
two-dimensional fields and the corresponding higher-dimensional spacetimes can be expressed as:

ef
e
The solution of the two-dimensional dilaton gravity theory described in [I13] (see Eq. is given
by:

o=tk ef =1t ¥V =t ds% = ( —dt? + d1"2) + ng/d"da:? . (2.3)

R? taR?
ds3, o = oz (—dt* + dr?) + " dx?
tR? tﬂRd+1 2(d—1)
o= 4=t Cap ey oo/ 2.4)

R is the AdS length scale. Consider a scenario where the bulk matter is described by a conformal
field theory (CFT32) in its ground state. This is a reasonable assumption far from the singularity at
t = 0 in the semi-classical regime. Additionally, we assume that the quantum extremal surface lies

on the same time slice as the observer, i.e., £ = ty. The generalized entropy is then derived using

Egs. (1.69) and ([2.4)), expressed as:

(d—1)
_ G tRY e (T, cdl
Sgen — + lOg ,rd—l = 4G ¢ + 12 d log(gb) . (25)

The extremization equations are given by:

¢, dtR? ¢ (d—l)} 0

4G rd+1 12
¢ RE ¢ (d—1)
WSgen = Gt a

We observe that both terms in the extremization equations have the same sign for ¢ > 0 and d > 1.

8r5gen - — |:

=0. (2.6)

Therefore, each term must individually equal zero in both extremization equations. This leads to

the quantum extremal surface (QES) solution [43], denoted as (ry, ), given by:
te=ty , T=Tyi—00 , t=ti—>00 , ty<rs. (2.7)

This suggests that the quantum extremal surface (QES) is driven to the semi-classical region, away
from the singularity at ¢ = 0. Consequently, island solutions are absent in AdS Kasner cosmologies

under the assumption ¢t = tg.

2.2 AdS Kasner, quantum extremal surfaces, regulated

We study various two-dimensional backgrounds characterized by the dilaton and the two-dimensional

metric , analyzing quantum extremal surfaces obtained from extremizing the generalized entropy
(1.69)):
¢

Sgen = E

c 2 2 2 2
—i—ﬁlog(A ef\(t,r)), A2 =12 — (¢ — tg)2. (2.8)
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The extremization equations, retaining only the relevant terms, are given by:

O-¢ o, 0 _cl—ly
4G 6A2

C
3G "6 AT Tl =0. (2.9)

We seek to understand the dependence of the quantum extremal surface (t.,7s) on the observer’s
location (tg,r0) = (to0,0). Specifically, we focus on an observer at the holographic boundary. Our
analysis considers the AdS Kasner case, where we explicitly restore the AdS scale and the Kasner
scale from to ensure that length scales remain manifest. The dilaton and two-dimensional

metric then take the form:

6= t/ti g (t/tg)(di—1)/di
(r/R)%’ (r/R)%+1
Towards understanding quantum extremal surfaces, let us study with the scales put in explic-
itly as in . If we assume t = ¢y, we obtain , , which are structurally similar to the
AdS case . We will instead attempt solving for ¢ as a function of ¢yg. Then the extremization

equations are (introducing ¢, as bookkeeping for now)

cr ¢ dit/lk c d; +1 ct—ty ¢ 1tk c d;—1

(—dt* + dr?) . (2.10)

6 A2 4G rdF/RE 12 ¢ 6 A2 4G rd/RE 12 dgt

Note that each term now has dimensions of inverse length manifestly. In the parametrization of

(2.11)

these cosmologies ([2.4]), the singularity is at ¢ = 0: regarding this as a Big-Crunch, we take the
time coordinate ¢ to represent |t| so that ¢ > 0 in our entire discussion.
We require that the QES is spacelike-separated from the observer, consistent with the interpre-

tation of these extremal surfaces as holographic entanglement. This implies
A’>0 = t.>t, (A% =72 — (At)?] (2.12)

from the t-equation in . This means that the QES always lags behind the observer, in the
direction away from the singularity (t = 0).

Let us now look in more detail at QES solutions near the semiclassical solution , where
At ~ 0 and r,t — oco. Let us first rewrite the r-extremization equation in as

3¢, dit/tg (di—%l_ﬁ):% dit/tx di+1<d+17“ — (Ar)? ):0 (2.13)
Ge rditl/Rdi r A2 Gc rditl/Rdi r (At)2 '
As long as At is small, i.e. A% ~ 12, the second term is positive: thus both terms are positive, the
only solution to this being r = r, — co. This is very similar to the time-independent AdS case in
(1.76)), giving the entire Poincare wedge as the entanglement wedge: there are no islands.
Analysing the t-extremization equation is rendered tricky with r, — oo strictly. Towards
obtaining insight into the ty dependence of ¢, let us regulate as r. = R, ~ oo with some large
but finite spatial cutoff R, that represents the boundary of the entanglement wedge. Then the

t-equation in (2.11) becomes
At 1 d; — 1 I 3¢ 1 Jti

R2— (At 2K, ' 2d;t ’ K. Gec R%/Rd:

(2.14)



This expression is manifestly satisfied semiclassically as in (2.7]). Taking these regulated equations
as containing finite terms we can solve for ¢, : with At < R., we obtain the approximate regulated

expression
At 1 d; — 1

R2 72K, 2dity

At=t, —tg, (2.15)

where we have approximated A? ~ R2 and set t ~ to in the last expression (with ¢y large, as
in ) We see that the QES lags behind the observer, in the direction away from the
singularity. We now see that as tg decreases, At increases, i.e. the lag of the QES is increasing: see
the top part of Figure for a heuristic depiction (the lag is exaggerated!).

IIIIII singularity t=0 Figure 2.1: Cartoon of the 2-dim AdS Kasner geometry
(singularity at ¢t = 0), the holographic boundary at » = 0
boundary and the QES at (t.,r.), with a time-independent AdS
Adrsegig;ner =0 space appended for ¢ > tx. The boundary observer (tg,0)
observer moves in time from the time-independent region to the

QES (10.0)

(t,.r,) AdS Kasner region. The QES lags behind in time, i.e.

t=ty t« > to, when tg is in the Kasner region.

time independent
far region

The on-shell generalized entropy ({2.8)) in the semiclassical regime where A? ~ R? becomes

2 (d;i—1)/d;
gos. _ Or b/t c log<RC (t/tx) ) |

-— — 2.1
gen 4G (RC/R)di + 12 62UV (RC/R)di'H ( 6)

with ¢, in (2.15). Since t. 2 to and R, is large, Sy, is not dramatically different structurally from

gen

the AdS value (1.76]), without the ¢./tx factors. In more detail, we see that the on-shell AdS

expression (1.76) with r, = R. and ¢|,., = ¢, becomes S = f—é + {5 log (Eé;—i(%)(di_l)/di) S)

the log vanishes when its argument becomes O(1), i.e. when ¢, is sufficiently small. At this point,

S5~ f—é ~ 0, in accord with the physical expectation that the AdS ground state has zero entropy.
In this sense the spatial regulator R, has physical meaning as the effective physical boundary of the
entanglement wedge, where ¢, becomes small enough to be comparable with (EUTV)#. Note that
R2

we can recast S%% as (|1.77)) exactly setting WGQ— ~ 1 thus fixing ¢,, which can possibly
N 1 i€y

be regarded as renormalizing % = G% (and rendering Sgey, finite). The above expression 1} is

similar when the t./tx factors are O(1) so the above arguments apply, and the overall entropy is

not appreciable.

As a further check, note that this QES solution vindicates the maximin propertyﬂ

2
'In the semiclassical regime, the second derivatives 07 Sgen|s ~ —15 %7 — € 7z — ¢ — x>~ < 0 and
T Y *
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Naively it appears that %é ~ % shows a growth as ty decreases. Rewriting 1’ and solving

as a quadratic, taking At > 0, gives

At 1 1 1
—=—\|,/—4———+R} - — | , 2.17
Re  Re <\/(1% + dcil:tl)z % + dcllitl) ( )

showing a slow growth in At as ¢ decreases, for fixed regulator R.. Extrapolating and setting tg = 0

shows that ¢ = 0 is not a solution (this can also be seen in (2.11))).

We consider our analysis to be most valid within the semiclassical regime, far from the singu-
larity, where bulk matter is approximated to be in its ground state. Nevertheless, the qualitative
behavior of the quantum extremal surfaces and the associated entanglement wedge—excluding the
near-singularity region (schematically depicted in the top AdS Kasner part of Figure —may
persist as a reliable result even with improved near-singularity bulk entropy models.

We observe that the semiclassical generalized entropy, , decreases over time as the sin-
gularity is approached. This behavior is reminiscent of findings in [128], [129], which suggest low
complexity in such singularities. Expressing this semiclassical value in the form , we find that
as long as ¢ remains sufficiently large, the bulk entropy term remains subleading to the area term.
Consequently, the Bekenstein bound is upheld, preventing the formation of spatially disconnected
islands akin to those found in black holes. From a qualitative perspective, one might interpret the
excluded near-singularity region as a timelike-separated, island-like domain. Further investigation

into this interpretation could provide deeper insights.

2.2.1 Searching for islands

Examining (2.13)), we observe that in the regime

di—1

2 2 2
) 1’/“ < ( t) <rs, ( 8)

a spacelike-separated island appears to emerge. This behavior contrasts with the semiclassical
region with At < r (where both terms are the same sign), as the numerator in the bracketed term
of changes sign, leading to a large but finite r ~ (%)# solution, indicating a disconnected
region. This bears some structural resemblance to the discussion in [125].

To explore this in detail, we rewrite the d,-equation in (2.11)) as:

N 1 1 3¢ 1)tk (2.19)
- . d, t °’ - d; d; !
di +1 1+ %5 % K  Ge r%/R
SO

di—1 di t

At = T A%
AP=rf (AN = = | SRR (2.20)

1 + di+1 K

4G T, plit? 12 "R2 +5 A2
mization, with the regulator R, finite.

d; (d;+1) t,. R? . 2R? . e . ..
835gen|* ~ $r di(dit)t. By c ditl 4 ¢ 1 (1 = %) > 0 confirm time-maximization and spatial mini-
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The potential island arises at large finite 7 in (2.13]) when

(At)2>d 12

el (2.21)

so that At is not small but in fact scales as r which is large. Expanding (2.20)) in the vicinity of

(2.21)) gives
At di—11 d; t
— ~ -1 — 4+ ... 2.22
r2 \/ali+17“<+d22—1KJr ) ( )

Now the 0d;-equation (2.11]) as an exact quadratic can be solved to obtain (choosing At > 0)

_dy g2 d; t
At a2 2 —=
at %Jrl_ddz%, (2.23)
r (7257 +1)? goix 1

with K defined in . For a nontrivial island-like solution, this expressmn for & 7 must match
that in (2.20) in the vicinity of the island boundary (2.21). With - ~ € being small, we expand

and obtain at leading order

d— 1 - d t 1
Vita? —g= /2 solving,  p=_% ‘o 2 (2.24)

di + 1 di—1
i i— T d? —1
This gives
A JEE g (2.25)
~ di+1 v ’

The last condition At 2 d;t is clearly impossible with At =t — ¢y for any d; > 1.

In addition, using the leading term matching condition (2.25)) and expanding bout the
d

potential island boundary (2.21)) shows that the first subleading term in % is dT- dlfli which

does not match the first subleading term in ([2.22]).
We have investigated an island-like solution near the potential island boundary (2.21]), emerging

continuously from the semiclassical region where r, — oo, as discussed after . However, a
simultaneous solution to the extremization equations , rewritten as and , is
not achieved near . Consequently, this potential island solution is inconsistent. One might
question whether nontrivial islands exist further towards the singularity (though they may not be
physically reliable). Expressing and expanding the extremization equations (2.13|) and - 2.14)) yields
two cubic equations in ¢. However, solving these equations simultaneously (e.g., by eliminating the
term t3) suggests the absence of consistent finite solutions, implying that no islands exist.
Moreover, our current treatment of potential island-like solution is semiclassical, based on a
fixed classical background geometry and a quantum field theory in the bulk. In this framework,
the generalized entropy includes only the leading-order quantum correction term, Sy, at (’)(G?V),
and does not account for higher-order quantum gravitational corrections. Nonetheless, the general-
ized entropy formula encapsulates results—such as the quantum extremal surfaces (QES) and the

emergence of island-like regions—at all orders in G, provided the background geometry is held
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fixed. This approach, while not fully non-perturbative, may be regarded as a semi-non-perturbative
framework, as it extends beyond leading-order perturbation theory but still fundamentally relies on
the semiclassical description. A genuinely non-perturbative formulation of quantum gravity must
incorporate both all-order perturbative corrections in GGy and intrinsically non-perturbative effects,
such as those arising from stringy dynamics or gravitational instantons. Establishing a rigorous,
fully non-perturbative derivation of island phenomena would require computing the full quantum
gravity path integral within a more complete framework—such as string theory. This remains an

open problem and is left for future investigation.

2.2.2 Appending a time-independent far region

Let us now consider appending the AdS Kasner space with a time-independent AdS region far
from the singularity, joined at the Kasner scale t = tx. See Figure Thus, we have AdS Kasner
region for ¢t < tx and a time-independent AdS space for t > tg, i.e.,

_ _ttk (/b))
= (r/R)di’ ds® = W(—GW + dr?) [t < tx],
”= (7“/13)‘11' ’ ds* = (7«/Rl)di+1(_dt2 +dr?) [t > tg] . (2.26)

The two regions are continuously joined at ¢t = tx, though the joining is not smooth. The extrem-
ization equations must now be analyzed separately as the observer at tg moves through each region.
Applying the generalized entropy and its extremization to the background profiles in
both regions yields:

cr o d; c d; +1 ct—ty
t ti : —— = 4 — ———=0; 2.2
0> K 6A2 4G ATRE T2 o 0§ A2 O (227)
b <t cr o dit/tg idﬁ—l ct—ty _ o 1/tx idi_l
O 6 A2 T 4G pdtT/RE 12y 0 6 A2 4G r%/RE 12 dit

In the time-independent region t > t, it is physically reasonable to set t, = tg, i.e., the QES lies
on the same time slice as the observer. This follows from time-translation invariance in that region,
at least for to > tx (sufficiently far from the junction at ¢x). Since the joining slice ¢t = tx lies in
the semiclassical region, far from the singularity, it is appropriate to use with the regulator
to study the QES’s time evolution in the Kasner region. The lagging (or repulsive) behavior of the
QES thus begins when the observer enters the Kasner region. However, due to the sharp transition
at tx, this lag does not evolve smoothly.

To see this in more detail, consider the time tg = tx — dtg when the observer is just entering
the Kasner region: then we expect that the quantum extremal surface is just a little away from the
observer time slice tg. To quantify this, let us compare dt, in with 0ty (and K, defined in
(2.14)): we have

(5t0:t[(—t0>0;

_l’_

Ste  te—to 1 di—1 Sto
_ ~ %% 2.28
RZ R 2K, ' 2ditg ( ) (2:28)

i
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so that for small dtg i.e. tg ~ tx, the quantum extremal surface ends up being pushed to the time-
independent region (t. > tx). Of course as the observer moves in time further, the QES enters the
Kasner region as well. To see this further, let us compare the QES location with the Kasner scale:
with tg < tx, we have
tr —to 1 d; — 1
te St = 2 + 2.29
LK RZ 2K, 2dito (2:29)

In other words, the quantum extremal surface is within the Kasner region if the observer is suffi-

ciently further within. The cross-over of the QES to the Kasner region occurs when ¢, ~ tg, i.e.
when the above inequality is saturated (giving togéK ~—3 }Q — %).
The model (2.26)) serves as a simple toy model to gain insight into the evolution of the quan-

tum extremal surface as the observer moves from the time-independent far region into the time-

dependent AdS Kasner region toward the singularity. The presence of the time-independent far
region suggests that the initial state can be prepared as a ground state via a Euclidean continua-
tion. However, placing this on firmer footing is more subtle. A discontinuity arises at the ¢t = tx
slice, likely reflecting that the Kasner time dependence does not simply switch off at ¢x. This
raises potential concerns regarding smooth time evolution into the Kasner region, particularly in
the absence of any external energy-momentum inflow. A more detailed analysis would require a
careful examination of the junction conditions governing the transition at tx. Rather than a sharp
time slice at tx, it may be more physical to consider a thickened spacetime region that interpolates
smoothly between the time-independent far region and the Kasner region. In such a scenario, the

QES lag would likely evolve more smoothly. We leave these questions for future investigation.

2.2.3 More general 2-dim cosmologies, QES, regulated

In the previous subsections, we examined AdS-Kasner cosmologies, their 2-dimensional reductions
(2.4)), and quantum extremal surfaces. We now extend this analysis to more general 2-dimensional

cosmologies:
f
p=thrm | el =19t | dsi, s = d;fl_l) (—dt* + dr?) + gﬁ dx? . (2.30)
d

The corresponding 2-dimensional dilaton and metric fields take the form:
d=trm, e =t%?, a>0, m<0, b<O. (2.31)

Note that we have taken the time exponent of the dilaton in accord with the universality of the
near singularity region found in [I13]. We take a > 0 to simulate a Big-Crunch singularity at ¢ = 0.
Further we assume m,b < 0 in accord with the intuition that the dilaton and the 2-dim metric
grow towards the holographic boundary at r = 0.

The generalized entropy and its extremization with r,t, give

cr ¢ |mft c |b] ct—ty o¢p 1 ca

6AZ 4G mH T12 . 0 6 AZ aGdm T 127

(2.32)
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analogous to (2.11]), except that we have suppressed length scales analogous to R, tx here. Firstly,
requiring the spacelike condition A? > 0 implies ¢, > tg, analogous to : this means the QES
lags behind the observer, in the direction away from the singularity at ¢ = 0.

As noted already in [43], it is clear that the QES solution to these extremization equations is
again of the form (2.7)), i.e. r, — 00, t, ~ tg — oo with ¢, < r.. In the vicinity of the semiclassical
region, analogous to the AdS Kasner case we can recast the r-equation as

[b]-2 2 2

522 — (At)

|o] _
2 — (A2 )=0.

3¢, |m|t (|b\ 27") 3¢, |mlt +@<

Ge rlml+1 r A2) T Gerplml+t Ty (2.33)

r A2
As in that case, with At small, i.e. A2 ~ 72, both terms are positive and the only solution to this
is r, — o0, giving the entire Poincare wedge as the entanglement wedge: there are no islands. Now,

the t-equation becomes

At 3¢, 1)tk di —1
RZ— (At)2  2Ge R% JRpdi — 2dit

(2.34)

analogous to . As before, we are regulating the QES solution as r, = R, ~ oo with some
large but finite spatial cutoff R. representing the boundary of the entanglement wedge. Taking
these regulated equations as containing finite terms we can solve for ¢, , obtaining an approximate
regulated expression analogous to after setting A%2 ~ R? and t ~ tg. The resulting semiclas-
sical picture is similar to the discussion in the AdS Kasner case, with the QES lag increasing as tg
decreases.

Now let us look for island-like solutions in these more general holographic cosmologies, analogous
to Sec. The corresponding island boundary here, analogous to , is

. (2.35)

At bz kot 1 3¢, 1
A= (An)? 5 == | BE S 2 (2.36)
r 1 4 lmlt K  Gerlml
o] K
rearranging (2.33)), and

At a% % 1t

= _ + _ ar , 2.37

PONGERD T 3

from the Oi-equation in ([2.32)) regarded as a quadratic, choosing At > 0.

For a nontrivial island-like solution emerging in the vicinity of (2.35]), these two expressions for
At

T

must match: expanding, the leading order terms give

‘b’ -2 solving t a
Vit —oe oo
0] r VIbl(f = 2)

29

8
Il
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while matching the first subleading terms requires

1 (1_ 1 )i: ml/[b] ¢ (2.39)
a/IpI(l = 2) N VIRI(El = 2) + 17 K /pl(fo] - 2) K |

i.€e. )
aml (2.40)
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For the AdS Kasner values a = didfl , m = —d;, b= —(d; + 1), these agree with the conditions

obtained in Sec. which were not consistent as we saw. The condition (2.38) gives At =
b1=24 . this is impossible in the AdS Kasner case 1) as we saw. For the hyperscaling violating

a

cosmologies (6.33]), this condition can again be shown to be impossible to satisfy (a takes its

maximum value for v = 0). The hyperscaling violating Lifshitz cosmologies in [I13] require a =
|b|—2, m = —1 (reviewed very briefly after (6.33])). This gives At = M%Qt = t, which is satisfied for
to = 0, but this is the location of the singularity which is unreliable (the condition becomes
% = \/W giving b = —2,a = 0). Thus overall, these more general holographic cosmologies
appear qualitatively similar to the AdS Kasner case.

The conditions on the exponents are motivated by the broader investigations of 2-
dimensional cosmologies in [I13]. These studies adopt fairly general and minimal assumptions about
the effective action governing such cosmological spacetimes, revealing a remarkably rich space of so-
lutions. This includes cosmologies with nonrelativistic asymptotics, such as hyperscaling-violating
Lifshitz spacetimes, and various boundary conditions—all of which satisfy the conditions .
However, it would be interesting to further explore this landscape of cosmologies, potentially ex-
tending it beyond those that reduce to two dimensions. A broader classification could provide
deeper insights into the behavior of quantum extremal surfaces, particularly in relation to the

Big-Crunch (or Big-Bang) singularities they may exhibit.

2.3 Null cosmologies and quantum extremal surfaces

In this section, we consider cosmological spacetimes with null time dependence, drawing parallels
with the discussions in [22] [115] [1T6] as well as, for example, [130, 131], 132} 133, [134]. If we further
impose that the higher-dimensional spacetime allows for dimensional reduction via (2.1)) to two

dimensions, the resulting backgrounds take a restricted form:
ds®* = —dzTdz™, d=¢(zT), V=T, aF=txr. (2.41)

Since the two-dimensional metric depends only on z7, it can always be transformed to a flat form
via a coordinate redefinition, provided that ¢ and ef in the reduction ansatz also depend
solely on x™. This leads to the simplified expression above. Consequently, the higher-dimensional
spacetime corresponding to takes the form:
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ds® = —¢~ = D/di ot g 4 ¢2/digy? | z; = {r,y;}. (2.42)

This comprises various higher dimensional backgrounds with null singularities e.g.
ds? = () Y(—dztde™) + (27)0dy? (2.43)

which however are somewhat special, given the restriction to the 2-dimensional reduction ansatz
: thus it also does not include the null holographic AdS cosmologies in [22] 115|132} [133] which
are of the form ds? = f—;[ef @) (—dztdz~ + dx2) 4+ dr?]. There are qualitative parallels however.
The exponents a, b in are related by the Einstein equations. These are a bit similar to the null
Kasner backgrounds considered in [I16], except that the 2-dim restriction implies that e/ = (z1)?
can be absorbed by redefining the null time variable z+ — X+ = [e/dz*. In writing the 2-dim
backgrounds we have effectively redefined the lightcone variables z* in this manner. These
backgrounds are likely supersymmetric.

Now the equations of motion simplify tremendously since there is only null-time de-
pendence in the background ansatze : for instance all nontrivial contractions of the form
g" 9,09, ¥ ~ gt~ 94 WH_T vanish since there is no 2~ -dependence. We also have R = 0 since the

2-dim space is flat. Thus the equations of motion give

(++): —0%¢p— g(m\p)? =0; (2.44)
oU 1 ou ) B
(6) : 87):72—5(6\11)2:0; (V) : a—mzﬁu(qbg“ 9,¥)=0.

These imply that the dilaton potential is trivial and give a single nontrivial condition from the
(++) equation relating ¢, ¥. We want to consider a Big-Crunch singularity arising at x7 =0 as a

future null singularity, so we take ™ < 0 in our entire discussion below. Then
_Qaigé _ 2k(k-1)
¢ ()
= 0<k<1l, ¢=(—ah)F, %= (—ah)tVH0-k (2.45)

o= (-aht, W=uEh) = (0.0) =

While k& > 0 gives vanishing dilaton as = — 0, the exponent of e¥ could have either sign. The
single ¢, U-relation allows extrapolating ¢, ¥ above to asymptotically constant functions i.e. flat
space. This 2-dim background implies the upstairs background (2.42)) with ¢ as above: this is of
the form (2.43)) with a = —k(dgl%;l) and b = 3—’: . These have R’ _;, = % so tidal forces diverge

(all curvature invariants vanish due to the null nature of the backgrounds). To see this in more
detail, consider a null geodesic congruence propagating along x+ with cross-section along some

y'-direction: the geodesic equation then gives
(1.+)a+1

- A=
a+1

dxt + (dm+)2 —0 ’ (2.46)

oz T e
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where Fi + = & is the only nonvanishing F;; component. Solving this leads to the affine parameter
above and the tangent vector becomes £ = 0y = (%)BJr so T = (1) The relative acceleration
of neighbouring geodesics then is a™ = RM oppt€¢Pn® with n = nP0p the unit normalized cross-
sectional separation vector. Then it can be seen that a* = R} ;4 (€7)*n! so |a!|? diverges for all
0 < k < 1 leading to diverging tidal forces, somewhat similar to the corresponding discussion in
[116]. For k = 1 the spacetimes have all Riemann components vanishing: these can be recast
as ds?> = —dX*dr~ + (X*)2dy? which can be shown to be flat space in null Milne coordinates
(redefining V; = X Ty;, y~ =2~ +y2X7T).

Now we analyze quantum extremal surfaces. These cosmologies have no holographic boundary:
introducing a bookkeeping ¢,, the generalized entropy (Appendix is

_ o

Sgen = 4G(—x+)k 4 log(—AztAz™) (2.47)

6

+

where Az® = z+ — :):g characterizes the spacetime interval between the observer O and the QES

(see Figure . Strictly speaking, there is a null Kasner scale ¢t here appearing as ¢ = (%)k SO
¢ is dimensionless: however since the 2-dim metric is flat in these variables, ¢y can be absorbed into
the definition of ¢, above: so we will suppress this (unlike the spacelike cases in sec. earlier).
The extremization with respect to = and x+ gives

—Axt or k cOLNA?
—AztAz— TR T UG (—at) Ik Az (248)

angen = g

With 0 < k < 1, the classical extremization (¢ = 0) gives 27 — oo in full, we have

1 2Gc 1
2 _ + - - _ _ —
A= —-Ax"Ax” >0, Az ==z r, — —00, " 3¢rk‘33+—a?6r_0’ (2.49)
S0
+ + + 2Ge +\1-k + - - —~
Az™ >0, zf =z (=) ">y Azrx~ <0, z, =X, ~—00. (2.50)

3kor

This is best visualized as in Figure [2.2]: we describe this further below. From (2.8), we have
Ge < 1 so that 7 ~ xf upto small corrections (with k # 0). Thus employing perturbation theory

in Ge, we obtain

2GC —k
vl ~ g+ 3,{@(—%*)1 , (2.51)

i.e. the QES is almost on the same null-time () slice as the observer, but just a little towards the
null singularity (using absolute values gives |z7| — || ~ — Z?I%i lzg |*=%). The location of the QES
as being towards the singularity rather than away as in the spacelike cases may look surprising at

first sight. However from Figure drawing constant ™ and x~ slices, it is clear that the location
of the QES with Az* > 0 and Az~ — —oo is geometrically reasonable and expected if the QES
and the observer are to be spacelike separated (Az™ < 0 gives timelike separation between the
QES and the observer). In terms of the (¢,r)-coordinates (2.41)), Figure 2.2] can be taken to depict
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Figure 2.2: Cartoon of the 2-dim geometry with the

null singularity at 2+ = 0, the worldline (z§,z;) of a

*’i\o timelike observer (vertical trajectory, representing for

J”’f?,,& ) simplicity a fixed spatial location), and the quantum

'a extremal surface at (x},z7). As can be seen, the

obser\gr QES is spacelike separated from the observer (A2 > 0)
(X if Azt > 0 and Az~ ~ —oo, and lies towards the
(xgi)s singularity in terms of zT-slices. The entanglement

entanglement
wedge

wedge defined by the QES is shown as the blue wedge.

the region with #* = ¢ +r < 0 in the (¢, 7)-plane, with the singularity locus being ¢t +r = 0 and
the timelike observer worldline having some fixed rg with t9 < 0. The description in Figure
continues to hold as long as the observer remains timelike: it also holds if the observer is moving
along a null trajectory along * with fixed 7. As a further check, we see that this extremization
exhibits time-maximization with null time (z¥): we have, using (2.50),

2 _ _ Pr o4k ¢ 1 2
0% Sgen = —k(1 = k)7 = (=27) S e 02 Syenls < 0 . (2.52)

Note however that 8% Sye, = —gm — 0~ from 1' This should not be surprising: the
2-dim space here is flat and the absence of the bulk gravitational field makes it quite different from
AdS-like spaces (e.g. an expression like S ~ logr gives 925 ~ —%2 —07).

As examples of (2.47)), we see that for a nearly smooth space e.g. with k = € < 1, (2.50|) gives

rr~ (11— ??Sb‘j)xar . The case k = 2 gives the cubic

Gce
=1 B+ —t—|zd| =0, (2.53)
or
which can be shown to have one real root which satisfies Azt > 0 and agrees with (2.51)) in
1
perturbation theory in Gec. For generic k values, recasting using x+ = —yT-F | it can be seen

numerically that there is one real root satisfying Az™ > 0. Along these lines, for values such as
k= % we choose the positive root of the resulting quadratic in continuity with neighbouring &
values, which then again gives Az™ > 0.

Note that these null cosmological singularities differ somewhat from spacelike ones. In partic-
ular, the extremization shows that the singularity locus 2+ = 0 is an allowed QES solution
when x(')'“ = 0. The behavior near ™ = 0 can be explicitly examined in examples such as ,

e.g., numerically. Thus, these null singularities do not appear to be excluded from the observer’s
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entanglement wedge. However, the on-shell generalized entropy (2.47) remains singular in the

vicinity of the singularity:

0.5 Pr k€ 2Ge (—af)' X 7|
= (= -1 . 2.54

Thus although formal extrapolation to the singularity appears possible, the above implies that
the QES (2.50)) is only reliable in the semiclassical regime with large ;" and Gc < 1 (where the

Bekenstein bound does not appear violated). Also since Sger, appears singular, further subleading

contributions beyond the bulk entropy term presumably also must be considered. It was observed
in [I16] that strings become highly excited in the vicinity of a null Kasner Big-Crunch singularity
(see also [130, 134]). It is likely that this will be true for as well. In this regard, note
that the backgrounds (2.41)) necessarily require the extra scalar e¥ to be nontrivial: interpreting
this as the string coupling gs = e¥ and choosing the negative sign exponent for e¥ in
suggests large string interactions in the vicinity of the singularity ™ = 0. It is conceivable however
that in some appropriate double-scaling limit x} — 0, X. — —oo, with ??]gfr (_xj);j Xe | held

fixed, the generalized entropy can be rendered nonsingular. It would be nice to explore this more

carefully, perhaps dovetailing with the positive sign exponent for e¥ in and suppressed string
interactions.

It is interesting to note that there exists an entire function-worth of nontrivial null backgrounds
in , as shown by . This is a special feature of 2-dimensional spacetimes with a “holo-
morphic” structure, as is the case here with sole dependence on 2. For instance, the backgrounds
(2.43)) can be recast by redefining the null-time variable to obtain , such that the 2-dimensional

metric becomes flat in these z*

—coordinatesﬂ In contrast, spacelike cosmological singularities gen-
erally do not exhibit such “holomorphy” and cannot typically be recast in flat coordinates—hence,
the metric factor e/ persists. This holomorphicity manifests in the extremization equations ,
, where the 2% sectors decouple—unlike, for instance, in the AdS Kasner case and, more
generally, . Indeed, for generic 2-dimensional backgrounds , extremizing the generalized

entropy yields

2G 1 2Gc 1
¢ =0 — x"'fxér ¢

04Sgen =0  — 5+¢+3¢rm T3, 0.0

(2.55)

once again reflecting this holomorphicity. From the reasoning in Figure with A2 > 0 and
Axt > 0, we find Az~ — —oo, implying that the quantum extremal surface must lie in the di-

rection of decreasing dilaton, i.e., 0;¢ < 0. This is consistent with our earlier discussion since the

?Instead of these “flat” variables, had we taken the background to be
2 _ 2K(a— K +1)
(X+)?

In other words, the exponent k from earlier relates as k = aL-H Now, the generalized entropy contains the

el =(XT) o=XNHE, = (0,7) - 0<K<a+1.

metric factor ef/ 2|,., thus appearing singular.
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dilaton undergoes a crunch toward decreasing z*.

2.4 Discussion

We have examined quantum extremal surfaces in a variety of cosmological spacetimes exhibiting
Big-Crunch singularities, building upon the investigations in [43]. In this context, the generalized
entropy is analyzed within two-dimensional cosmologies that can, in part, be derived from the
dimensional reduction of higher-dimensional cosmologies. The bulk matter is assumed to be in
the ground state, which is a reasonable approximation in the semiclassical regime far from the
singularity. We first focused on the isotropic AdS Kasner spacetime and its reduction to two
dimensions. In [43], the quantum extremal surfaces were found to be driven into the semiclassical
region, located infinitely far from the Big-Crunch singularities present in these backgrounds (the
classical RT /HRT surfaces for finite subregion sizes bend away from the singularity, as illustrated in
Figure . Furthermore, an analysis of the spatial extremization equation reveals that, in
the semiclassical region, the QES location extends over the entire Poincaré wedge, leaving no room
for island-like regions. Introducing a spatial regulator in the time extremization equation
enables understanding the dependence of the QES on the observer’s location in time. This shows
that the QES lags behind the observer location, in the direction away from the singularity, as in
Figure The lag can be seen to increase slowly as the observer evolves towards the singularity:
extrapolating shows that the singularity ¢ = 0 is not a solution to the extremization equations. Thus
the entanglement wedge appears to exclude the near singularity region. Removing the regulator
recovers the results in [43]. The spatial extremization equation shows an island-like region
emerging for . However analysing carefully the extremization equations recast as ,
, in the vicinity of this island boundary reveals that the potential island-like solution is in
fact inconsistent. Appending a time-independent far region joined with the AdS Kasner region at
the time slice t =t as in gives further insight on the QES behaviour. This QES analysis in
the AdS Kasner case extends to more general singularities admitting a holographic interpretation,
with similar QES behaviour , , in the semiclassical region, and inconsistencies near
a potential island boundary . These cosmologies include nonrelativistic asymptotics: the
assumptions on the exponents are fairly general.

In Section [2.3] we investigated families of null Big-Crunch singularities that exhibit a form
of holomorphy owing to the unique properties of null backgrounds. Notably, the behavior of the
quantum extremal surfaces in these cases (see Figure is distinct, as they can now reach the
singularity. However, the on-shell generalized entropy remains singular, rendering the vicinity of
the singularity unreliable. In all instances, the QES is clearly spacelike-separated from the observer
(e.g., see and ), which is consistent with its interpretation as holographic entanglement.

Our investigation focused on employing quantum extremal surfaces to gain insights into cosmo-
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logical spacetimes that contain Big-Crunch singularities. These spacetimes can all be expressed as
two-dimensional cosmologies, thereby excluding more general cosmologies that do not allow such
a reduction. Our discussion primarily considers the bulk matter in its ground state—a reasonable
assumption in regions far from the singularities encountered in these cosmologies. Overall, the
cosmologies examined are closed universes with no horizons, negligible entropy, and no additional
non-gravitating bath regions; consequently, islands are not generic in these settings (see, e.g., [126]).
This observation aligns with previous studies of closed universes that lack entanglement with ex-
ternal regions, which could act as purifiers for mixed states. As a result, the Bekenstein bound
is not violated, meaning that the bulk entropy does not overwhelm the classical area term in the
generalized entropy.

Perhaps the most intriguing question involves exploring more sophisticated models for bulk
matter in the near-singularity spacetime region, where the matter is expected to become highly
excited. Incorporating analogs of more "stringy” physics or quantum entanglement may provide
deeper insights into how the near-singularity region becomes accessible via entanglement (with the
null singularities perhaps more tractable).

At a broad level, cosmological singularities in holography are, in several respects, qualitatively
different from black holes. They seem to require nontrivial, non-generic initial conditions: generic
time-dependent deformations of the CFT vacuum are expected to thermalize over long timescales,
leading to black hole formation in the bulk rather than a Big-Crunch. This observation is consistent
with our finding that, for example, the AdS Kasner and other holographic cosmological singular-
ities remain inaccessible via entanglement with conventional ground state bulk matter—perhaps
corroborating the expectation of non-generic holographic dual states (see the discussion following
and related studies such as [128 [129] on these singularities and complexity). It would be
interesting to further explore the roles of holographic entanglement, quantum extremal surfaces,

and islands in cosmology more broadly.
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Chapter 3

Cosmological singularities,
holographic complexity and

entanglement

Building on our analysis of quantum extremal surfaces in cosmological backgrounds with Big-
Crunch singularities in Chapter [2] we now turn to another key aspect of holography—holographic
complexity. The QES framework provides valuable insights by incorporating the structure of en-
tanglement; however, studies suggest that entanglement may not probe the deep interior of a black
hole at very late times. In contrast, complexity-based approaches have proven effective in capturing
the late-time dynamics of black holes and their interior growth. Consequently, it is natural to ask
what insights holographic complexity can offer for cosmologies exhibiting Big-Crunch singularities.

Recent advancements in quantum information theory have further enriched our understanding
of black hole physics and holography, especially in addressing the black hole information paradox.
Within this framework, complezity emerges as a fundamental tool that quantifies the difficulty
of preparing a target quantum state from a given reference state. In the context of holography,
complexity is intimately connected with the growth of the black hole interior. For eternal black
holes dual to thermofield double states, the ER=EPR conjecture [I35] suggests that the linear
growth of the spatial volume of the Einstein-Rosen bridge over time corresponds to the linear
time growth of complexity in the dual field theory [25] 26l [136], 137, 138]. This relationship is

encapsulated in the expression:
VOI(Zt)

GNR '’

where C(t) denotes the holographic complexity, 3; is a codimension-1 spacelike extremal slice

C(t)

(3.1)

anchored at time t, G is the Newton constant, and R is the AdS scale. The precise proportionality
factors are not canonical and depend on the specific details of the system. In time-independent

scenarios, the extremal codimension-1 surface volumes receive dominant contributions from the
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near-boundary region, leading to the scaling:

d;+1
R,
GdH—QR edi

C(t) = NuotVa, ALy (3.2)
where € is a cutoff, d; represents the spatial dimensions, Nyt corresponds to the number of degrees
of freedom in the dual field theory, and Ayy is the UV cutoff scale. This reflects that complexity
scales with both the number of degrees of freedom in the dual field theory and the spatial volume
(measured in units of the UV cutoff). Extensive studies of holographic complexity, including alter-
native proposals such as complexity-equals-action, complexity-equals-anything, and path integral
complexity, have been explored, with particular relevance to cosmological contexts [139]-[197]. For
a comprehensive review of complexity, see Sec. and [70].

The application of quantum information tools to investigate cosmological singularities is a cap-
tivating pursuit, as these singularities continue to pose profound and enigmatic challenges. In
this work, we employ the “complexity equals volume” proposal to study these phenomena.
It is natural to expect significant stringy and quantum effects to play a critical role in this con-
text. Within the framework of holography, severe time-dependent deformations of the conformal
field theory (CFT) may provide insights into Big Bang or Big Crunch singularities. A prototyp-
ical example is the AdS5 Kasner background, where the dual Super Yang-Mills CFT undergoes
severe time-dependent deformations affecting both the gauge coupling and the spatial manifold
on which the CFT resides [22] 23, 24, [115]. Further discussions on this subject can be found
in [117, 118, 119, 120], as well as reviews on Big Bang/Crunch singularities and string theory
in [121), 122]. These cosmological singularities are likely qualitatively distinct from bulk black
holes, which, being dual to thermal states, are often regarded as natural endpoints of generic time-
dependent perturbations that thermalize over long timescales. In contrast, the dual state to a Big
Bang or Big Crunch singularity appears to be highly non-generic. For instance, studies on volume
complexity in AdS-Kasner singularities indicate that complexity becomes vanishingly low [128]
(see also [129]). This observation aligns with investigations of classical and quantum codimension-2
extremal surfaces and holographic entanglement entropy in AdS-Kasner and other singular back-
grounds [43], [127]. Specifically, for spacelike singularities, entangling surfaces are driven away from
the near-singularity region. These results suggest that the effective number of qubits corresponding
to the near-singularity region is vanishingly small, resulting in low complexity for the “dual Kasner
state,” independent of the reference state, as well as low entanglement. The bulk singularity in these
cases corresponds to a Big Bang or Big Crunch scenario, where spatial volumes—and consequently,
the number of degrees of freedom—become vanishingly small. This contrasts with the colloquial
perception of a Big Bang as a “hot dense mess” and instead reflects that these holographic singu-
larities correspond to low-entropy configurations. It is worth noting that, in the eternal AdS black
hole, the extremal surfaces associated with complexity avoid the black hole singularity. Instead,
they approach a limiting surface as time progresses to infinity, ¢ — 0o, analogous to the behavior of

holographic entanglement entropy surfaces described in [20] (see also [17, 42}, 96, [97]). This aligns
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with the observation that the black hole interior itself is a cosmological region with a spacelike Big
Crunch singularity.

This study is based on [44] and builds upon previous investigations to study holographic com-
plexity and entanglement in greater depth. As detailed in Sec. and Sec. we find that the
codimension-1 complexity extremal surface anchored at a boundary time slice ¢, located at a finite
temporal distance from the singularity at ¢ = 0, initially emerges as a spacelike surface near the
boundary. This surface bends away from the singularity and transitions towards a lightlike trajec-
tory in the (¢, 7)-plane, where r represents the bulk holographic direction. As the anchoring time
slice t decreases, moving closer to the singularity, the surface transitions more rapidly from space-
like to the lightlike limit. The lightlike portion of the surface has a vanishing volume, causing the
complexity volume functional to diminish as ¢ approaches zero. Eventually, this functional becomes
vanishingly small as £ — 0, nearing the singularity. This behavior appears to be universal across
various classes of Big Bang/Crunch singularities, including AdS Kasner, hyperscaling-violating
Kasner, and Lifshitz-Kasner geometries. For AdS-Kasner and Lifshitz-Kasner backgrounds, the
complexity decreases linearly with the boundary anchoring time slice ¢ as ¢ — 0. In contrast, for
hyperscaling-violating Kasner backgrounds, the decrease in complexity is nonlinear with respect
to t, reflecting the nontrivial effective spatial dimension of the dual field theories. Overall, our
results on complexity corroborate previous findings on AdS Kasner complexity discussed in [12§].
However, our analysis, particularly the extensive numerical studies, adds greater detail to these
discussions. The complexity results for other cosmological backgrounds presented here are new but
align with those observed for AdS Kasner geometries.

Our technical analysis of complexity exhibits several parallels with the study of holographic en-
tanglement entropy presented in [43], which builds on foundational work in [17, [42] [96], 97]. Specif-
ically, in the semiclassical regime far from the singularity. We extend this analysis numerically,
applying the methods used for volume complexity, as described above, to the study of entangle-
ment. The codimension-2 area functional associated with holographic entanglement entropy shares
many technical similarities with the codimension-1 volume complexity functional. Consequently,
we observe analogous results in the infrared (IR) limit, where large subregions effectively covers
the whole space. In this regime, the extremal surfaces transition from spacelike near the boundary
to lightlike deeper in the interior. As the anchoring time slice ¢t approaches the singularity, this
transition becomes increasingly rapid. Ultimately, as ¢t — 0, the entanglement entropy diminishes
and asymptotically approaches zero.

The vanishingly low complexity and entanglement observed as time approaches the singularity
reflects the fact that spatial volumes crunch at the singularity, resulting in an effectively negligible
number of degrees of freedom near this region. From the perspective of constructing the dual
“Kasner” state from a reference state, this behavior suggests that the number of effective qubits
in the vicinity of the singularity becomes vanishingly small, irrespective of the choice of the initial

reference state. Consequently, the complexity is low in this regime.
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The cosmological backgrounds under consideration are predominantly isotropic. As a result, the
complexity volume functional can be reformulated in an effective two-dimensional framework, con-
sistent with the dimensional reduction of all boundary spatial dimensions. This reformulation yields
a relatively simple expression for complexity in terms of the variables characterizing the effective
two-dimensional dilaton gravity theory. Specifically, these variables include the two-dimensional
metric and the dilaton, the latter corresponding to the transverse area in the higher-dimensional
spacetime. It may be of interest to interpret this effective two-dimensional holographic complexity
in the context of suitable dual effective one-dimensional qubit models.

This Chapter is organized as follows: In Sec. we argue that volume complexity in higher-
dimensional theories can be reformulated as complexity in effective two-dimensional theories, which
can be understood as arising via dimensional reduction. Sec. focuses on the holographic com-
plexity of AdS Kasner spacetimes. Specifically: In Sec. Sec. and Sec. we derive
solutions to the equations of motion for complexity surfaces in AdSs 47 Kasner spacetimes. In
Sec.[3:2.4] we numerically compute the holographic complexity of these spacetimes. Sec.[3.3|explores
holographic complexity in hyperscaling-violating cosmologies: We focus on the cases d; = 2, 6 = —%
(Sec.|3.3.1) and d; = 4, § = —1 (Sec. . Numerical computations of holographic complexity for
these cosmologies are presented in Sec. In Sec. [3.4] we compute the holographic complexity
of isotropic Lifshitz-Kasner cosmologies. Sec. [3.5] provides a review of holographic entanglement
entropy studies from [43], focusing on RT/HRT surfaces in AdS Kasner spacetimes: Sec.
addresses AdSs Kasner, and Sec. discusses AdS7 Kasner. Numerical results for holographic
entanglement entropy in AdSs7 Kasner spacetimes are presented in Sec. m

Appendices provide supplementary material: In Appendix we briefly review prior studies
on holographic cosmologies and their two-dimensional reductions. Appendix lists coefficients
appearing in the perturbative solutions for AdS-Kasner and hyperscaling-violating cosmologies. In
Appendix [6.7], we outline our numerical methods for entanglement entropy calculations in finite

subregions, with results that support our overall analysis.

3.1 Higher dim volume complexity — 2-dims: general-
ities

The metric for an eternal AdSg, 1o Schwarzschild black hole (with transverse space doi) is given
by

R? dr?
2 _ 2 2
ds* = ﬁ( — H(r)dt” + 0 + dadi> . (3.3)
Then, the complexity volume functional given by the volume of the Einstein-Rosen bridge is
Vi, R&FL [ 1
Cp = . d — H(r)t'(r)2. 3.4
b= gy [ iy g~ HOO) 6.4
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Since the transverse space (which the codimension-1 extremal surface wraps) appears in a straight-
forward manner in this expression, the complexity functional effectively reduces to a 2-dimensional
form. This allows it to be explicitly recast in terms of the complexity of an effective 2-dimensional
dilaton gravity theory, obtained via dimensional reduction over the transverse space dai. This
formulation is quite general and applies to a broad class of backgrounds that are predominantly
isotropic. The 2-dimensional dilaton gravity theory, in many cases, serves as an effective descrip-
tion encapsulating the essential features of the higher-dimensional gravity theory [112]. We will
find this perspective particularly useful in the following sections, where we investigate holographic
backgrounds featuring cosmological singularities, with a focus on those examined in [I13]. A brief
review of these studies and holographic cosmologies is provided in App.

Consider the general ansatz for a D = d; + 2 dimensional gravity background

f
ds? = g/(f,/)da;“da:” + ¢2/dida§i = W(—dt2 + dr?) + ¢2/did03i ,
ds® = g, datda” = e (—dt? 4 dr?), G = ¢(di71)/digl(t21,) . (3.5)

Reviewing [112] and [I13], performing a dimensional reduction over the transverse space dai gives
rise to a 2-dim dilaton gravity theory. With the given parametrization, the higher-dimensional
transverse area corresponds to the 2-dimensional dilaton ¢. The Weyl transformation g,, =
Ppldi—1)/di g,(ﬁ,) absorbs the dilaton kinetic energy into the curvature R®) and the 2-dim action be-

comes

5= 1671G2 /d%\/jg (‘?573 ~U(e, ) - ;¢(8‘I’)2> , (3.6)

with the dilaton potential U (¢, ¥) potentially coupling ¢ to another scalar ¥ which is a minimal
massless scalar in the higher dimensional theory (see App. [6.5). The dilaton factor in the ¥
kinetic energy arises from the reduction to 2-dimensions. These models with various kinds of
dilaton potentials encapsulate large families of nontrivial higher dimensional gravity theories with
spacelike Big-Bang/Crunch type cosmological singularities. In the vicinity of the singularity, the

2-dim fields have power-law scaling behaviour of the form (setting dimensionful scales to unity)
¢ =thrm, el =t eV =trf (3.7)

and the forms of ef, ¢ then translate to the higher dimensional cosmological background profile
containing the singularities. The 2-dimensional formulation simplifies the structure of these back-
grounds and highlights certain noteworthy features. In particular, the severe time dependence near
the singularity implies that time derivative terms dominate, while other terms, especially those
related to the dilaton potential, become negligible. This leads to the emergence of a ”universal”

subsector with k =1,

Q

¢ ~t, ef ~te, eV ~to; a=—. (3.8)
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A prototypical example is AdS Kasner [22] and its reduction to 2-dimensions,

R2 tz/di R2 ._ ) di di +1
ds? = S (—dt? + dr?) + i dad, Y = VR A:_<2R2>,
di (di—1)/d; pdi+1
— ¢ = tﬁi ,  ds’= %(ﬂz# + dr?), U =2A¢"/% (3.9)

The isotropic restriction from general AdS Kasner alongwith the Kasner exponent relation
>, pi = 1 implies a single Kasner exponent p = d%. R is the AdS length scale. We are suppressing
an implicit Kasner scale tx: e.g. 27 — (t/tx)?’. We will reinstate this as required. There are
several more general families of such backgrounds with Big-Bang/Crunch singularities, including
nonrelativistic ones such as hyperscaling violating (conformally AdS) theories, and those with

nontrivial Lifshitz scaling, as we will discuss in what follows, and summarized in the Table

Cosmologies k m a = %2 b
AdS Kasner cosmology 1 —d; did:l —(d; +1)
7
Hy cosmology (== 1, 0 £0) | 1| ~0,—0) | (/25— \[i8)" | e
Lif cosmology (2 =d;, # =0) | 1 —-1 did:_l -3+ 7

Table 3.1: Exponents for 2-dim cosmologies.

The time dependence in these backgrounds does not switch off asymptotically, making simple
interpretations in terms of deformations of a vacuum state challenging. Instead, these backgrounds
are likely best understood as dual to a nontrivial, nongeneric state in the dual field theory. This
aligns with the expectation that generic, severe time-dependent CFT deformations will lead to ther-
malization and, consequently, correspond to black hole formation in the bulk. Further discussions
on this perspective appear throughout the study, building on [22| 23], 24], 115] and [43] 127].

We now turn to complexity. We mostly consider the transverse space to be planar, so dafli =
> d:p?. Then, in terms of 2-dim variables the complexity volume functional becomes

d.
_ 1 T(s1/di . ef 2 2
C = GiaR / E G \/ a7 A+ dr)
(d (d

i+1) i)
-V /dr¢ 2w ef 2\ 1—1(r)2 = b /dr¢ @ ef2\/1—¢(r)2,  (3.10)
Ga,+2R J. GaRR /.

. Gy, . . . .
with Go = % the 2-dimensional Newton constant after reduction, and r = € the holographic

(3

boundary. The higher dimensional curvature scale (e.g. R in (3.9)) continues as the 2-dim curvature
scale. Also, t' = % is the r-derivative of the time coordinate as a function ¢(r) of the holographic

radial coordinate.
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The last expression in ([3.10]) above can be interpreted as the complexity volume functional in the
2-dim dilaton gravity theory intrinsically. It would then be interesting to ask for dual 1-dimensional
effective qubit models whose complexity can be understood as this.

Sticking in the power-law ansatze above, we obtain

fi (k.((di':l)>+£> <m<(di+i1)>+é> — _ le/
C= GuioR /edr t(r) 2d 2) p 2d 2 1-t(r)2 = Goiolt Edr,/j, (3.11)

with £ = L(r,t(r),t'(r)) the effective Lagrangian. Extremizing for the complexity surface ¢(r)
leads to the Euler-Lagrange equation di’/‘ (83—6)) — a‘?—(ﬁ) = 0. Simplifying this gives the equation of

motion for the complexity surface t(r) in (3.11)

2d;rtt" + 1 (ad; + d; + 1) (1 — (£)?) + (bd; + dim +m) tt' (1 — (¢')?) =0, (3.12)
abbreviating notation with ¢t = ¢(r), t' = %, t = 5725, and we have used the universality result

kE=11in (3.8).
Now we solve equation (3.12)) perturbatively and numerically for AdS Kasner, hyperscaling vio-

lating and Lifshitz cosmologies, and thereby compute holographic complexity for these cosmologies

in sections 3.2] and [3.3]

Methodology: We outline our techniques and methods here:

1. For a given background, first, we solve (3.12)) semiclassically in perturbation theory using an
ansatz of the form ¢(r) = 3_, ;. c,r" for the complexity surfaces ¢(r), as functions of the
radial coordinate 7 for various anchoring time slices tg which define boundary conditions at
r = 0. The perturbative solutions are valid only in a certain r-regime, i¢.e. upto a cut-off rp

(roughly 7o < tp). Thus these cannot encapsulate the entire bulk geometry.

2. To overcome this and obtain a global picture of the bulk, we solve numerically (in
Mathematica). For this purpose, we need two initial conditions which we extract from the
perturbative solutions for ¢(r) above and their derivatives ¢'(r), setting the boundary value
r = e = 1072 and to as the numerical value of a specific anchoring time slice (with all
other dimensionful scales set to unity). This allows us to obtain numerical solutions for
the complexity surfaces, which then reveal nontrivial bulk features such as lightlike limits
and the transition thereto, from spacelike regimes near the boundary. This then allows us
to numerically evaluate holographic volume complexity and plot it against tg for various

backgrounds.
3. We then employ similar algorithms more broadly for holographic entanglement entropy.

4. Some numerical issues persist for certain backgrounds, as we outline below, and we omit

detailed discussions in these cases.

73



3.2 Complexity: AdS Kasner

The isotropic AdSg,+2 Kasner spacetime (3.9), expressed in terms of the reduction ansatz (3.5))
along with its 2-dimensional exponents (3.7)), is:

2 2/d; p2 (d 41
ds? — R—(—dt2 +dr?) + % R da?, eV — V2Adi-1)/di A= _di(di +1) 7
r2 r2 2R2
t R% ) tldi—1)/d; pdi+1 ) ) 1
b=—g A= (df+dr’), U =2A¢"",
di—1 2d; — 1
k=1, m=-d;, a= T b=—(di+1), a= (d) (3.13)

The single Kasner exponent p = d%_ arises due to the isotropic restriction in 1} R is the AdS
length scale. We are suppressing an implicit Kasner scale tx: e.g. 27 — (t/tx)?.
Then the ¢(r) extremization equation (3.12]) becomes

rt(r)t"(r) — (di + 1) t(r) t'(r) (1 - t'(r)Q) +r (1- t'(r)2) =0. (3.14)

We discuss the solution of (3.14)) for AdSs 4 7-Kasner spacetimes in sec. [3.2.1} [3.2.2, and |3.2.3]

3.2.1 AdSs;-Kasner spacetime

For AdSs-Kasner spacetime, we have d; = 3: then (3.14)) simplifies to
rt(r)t"(r) — 4t(r)t'(r) (1 - t'(r)2) +r (1- t'(r)g) =0. (3.15)

First we note that with #,#’ = 0, the equation above is not satisfied except for r ~ 0, so that
t(r) = const is not a solution: the surface always bends in the time direction due to the time
dependence of the background. When the complexity surface t(r) has weak r-dependence, i.e. it is
almost constant with ¢(r) ~ ¢y, we can analyze the above equation in perturbation theory in r, by

considering the following ansatz for ¢(r):

t(r) =1to+ Z enr’ (3.16)
neZly
Inputting this ansatz (3.16]) in (3.15) and solving for the coefficients iteratively, we found the
solution up to O(r3°). Up to O(r?), this is
r2 7rd

t(?") =tg+ —

- 3.17
6to 216t} (3:17)

We have truncated the solution (3.17) up to O(r*) here for brevity of the series expansion (this
is O(r3) in #(r) in (3.23)). A more detailed iterative version of (3.17) up to O(r3°) appears in
(B1)). Likewise, truncated solutions are displayed elsewhere in the paper, e.g. (3.19)), (3.31), (3.42),
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(3.44), (3.49), (3.51) and (3.61). The numerical analysis described in what follows is based on the

more detailed expansion up to O(r3"). However we find that the numerical plots do not change
much with the truncated solutions such as (3.17)): the qualitative features of the extremal surfaces

are the same. So we will continue to display the truncated solutions alone in the rest of the paper

for compactness.
The solution #(r) in (B1)) and its derivative ¢'(r) are plotted in Fig. for various to-valued}

K(r)

34+

3.3+

te=3

31
05 1.0 15 2.0 25 3.0
=300
t(r) 0=3
350 -
340/
330
320
310/
50 100 150 200 250 300 350
t(r)
— 1p=24
0.15/— 1=26
— =28
— =30
010 °
0.05-
2 4 6 8 10 12 14

te=30
) 0
35/
34l
33f
32f
31f
5 10 15 20 25 30 35
t(r)
015 f=1
to=2
— 1r=3
0.10-
0.05-
0.1 0.2 0.3 0.4 05
t(r)
|— 1y=240
0.15— 1=260
- 1,=280
— 1,=300
0.10-
0.05-
20 40 60 80 100 120 140

Figure 3.1: Variation with r of the semiclassical (perturbative) complexity surfaces t(r) and

their derivatives t'(r) for various values of the anchoring time slice .

'We obtain similar qualitative behaviour for the variation of complexity surfaces and their derivatives in

other backgrounds, so we will not display them, in favour of the plots of numerical solutions which are more

instructive.



From Fig. we see that the complexity surface varies approximately linearly with r in the
regime roughly r ~ ¢y and ¢'(r) reaches its maximum value about ¢'(r) < 0.2, which vindicates the
mild bending of the surface ¢(r) in the radial direction. Of course this perturbative solution has
clear limitations, expressed as it is here by a finite power series. However it is of great value to
display the behaviour of the complexity surface near the boundary r = 0.

We expect that when the anchoring time slice tg is far from the singularity at ¢ = 0, the above
perturbative solution remains reasonable, at least in the vicinity of the boundary. A closely related
analysis was performed in [43], demonstrating that the RT/HRT surface in the semiclassical regime
far from the singularity bends away from it. We will later study this numerically to extract further
insights.

A further check of the above series solution is that in the semiclassical limit, when we ignore
the higher order terms in ¢'(r) (i.e. /(r) < 1), then reduces to

t(r) (rt"(r) —4t'(r)) +7=0. (3.18)
Solving (3.18) with the ansatz (3.16]), we obtain up to O(r):
2 A
tr)=to+ — — —= - 3.19
(r) =10+ G5~ 2483 (3.19)

Plotting (3.19)) and its r-derivative reveals that the behaviour of the complexity surface ¢(r) and
its derivative is qualitatively similar to that in Fig. m This vindicates the fact that ¢/(r) is indeed
small in this regime.

Holographic complexity of AdSs;-Kasner spacetime: The holographic volume complexity
(3.11)) for the AdSs-Kasner spacetime ([3.13)) with d; = 3 simplifies to

V R3 t(r)\/ (1 —t(r)?)
C= 25 /Edr< = > (3.20)

Now we compute this for the solutions (3.19) and (3.17)).
The semiclassical solution (3.19) was obtained with #'(r) < 1 so we can approximate the

complexity functional (3.20)) as:

N VaR3 [Ta " t(r)(l - t,(;)2)

¢ G5 € T4

(3.21)
We have inserted a cut-off rp in (3.21]) because the perturbative solution is only valid upto some
ra S to, and so this only covers part of the full complexity surface. Beyond this we require

additional analysis, which we carry out numerically later.

Substituting the semiclassical solution ¢(r) from (3.19)) into (3.21)) and integrating gives com-

plexity as (writing only terms up to next-to-leading order in ¢y for simplicity)

o(S-%) i (-2 eo((1))] e
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For the more general solution (3.17)) obtained retaining all the nonlinear terms in (3.15]), we find
t'(r) as:

N 0.3r 0.1

t(r) — — ——. 2
)~ - (3.23)

Thus we see that ¢'(r) < 1 provided r < ¢g. In this approximation, we can evaluate complexity as
with the solution . Then holographic complexity is the same as upto next-to-
leading-order in %.

Going beyond perturbation theory fascinatingly shows that the complexity surface becomes
lightlike in the interior, as first noted in [I128]. This can be seen right away by noting that
is in fact satisfied identically when ¢'(r) = 1 and t’(r) = 0, i.e. with ¢(r) ~ r being lightlike
independent of the anchoring time slice .

Towards identifying this in the AdSs-Kasner spacetime, consider the following ansatz for ¢(r)

around the lightlike limit with f(r) a small deviation:
tir)=to+r+ f(r). (3.24)

This ansatz simplifies (3.15]) to

2

= (f'()+ 17+ () +r+to) (nf'(r) + 47 () (f (1) +1) (f () +2)) +7=0. (3.25)
Linearizing the above equation, i.e. ignoring higher order terms in f/(r), gives
r?f"(r) + rto f"(r) + 8to f'(r) + 6rf'(r) = 0, (3.26)
which can be solved as
B % ot 1
f(T) =C1 ( ﬁ ﬁ 57’5> +c2, (327)

2 to 1
t(r):to+r+cl *7*7*7 +co. (3‘28)

The above solution is not well-behaved when extrapolated all the way to the boundary r = 0 but
it indicates the existence of the neighbourhood of a lightlike surface. We now look for the lightlike

solution numerically.

Lightlike limits of complexity surfaces, numerically

Now we solve equation numerically. Since this is a second-order nonlinear differential equa-
tion, we need two initial conditions for a numerical solution. Omne trivial initial condition is
t(r = 0) = to, leaving the question of the initial condition for #'(r = 0). Since we have solved
perturbatively obtaining , we can obtain the initial condition ¢'(r = 0) by evaluating

7



the r-derivative thereof. We regulate the holographic boundary r = € ~ 0 by choosing € = 1072
as the boundary point. For a specific slice tp, we can obtain initial conditions ¢(r = 0.01) and
t'(r = 0.01) by substituting = 0.01 and the value of ¢ in the solution and its r—derivativeﬂ
The numerical computations were performed using Mathematica, with careful tuning of parameters
such as setting WorkingPrecision to MachinePrecision and PrecisionGoal to Infinity in NDSolve
to ensure stable solutions for the chosen initial conditions. The results have also been partially
cross-validated using independent Python implementations. The Mathematica files are available

upon request.
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Figure 3.2: Numerical plots of the complexity surface versus r in AdSs-Kasner spacetime for

different slices of ty. In the right Figure, we have extended the range of radial coordinate.

The numerical solutions of (3.15) for the complexity surface ¢(r) and their derivatives t'(r) for
different ¢ slices are plotted in Fig. [3.2) and Fig. [3.3| respectively. Some striking points to note are:

e In Fig. [3.2) we remind the reader that ¢(r) corresponds to |t(r)| so the singularity is at
t = 0 (the horizontal axis at the bottom). Thus all complexity surfaces bend away from the

neighbourhood of the singularity, which correlates with ¢'(r) > 0.

e From Fig. the complexity surfaces become lightlike after a certain value of r for any

anchoring time slice %g.

e The surfaces with lower ty (i.e. closer to the singularity) become lightlike earlier (at smaller
r) than those with larger ¢y. This is also vindicated in Fig. [3.3] where we have numerically
plotted '(r) with r. All the complexity surfaces t(r) approach ¢'(r) = 1 eventually, i.e. a
lightlike regime.

e The lightlike regime ¢'(r) = 1 implies vanishing holographic complexity here from the y/1 — /(r)?2
factor in (3.20]). Thus, numerically we see that complexity picks up finite contributions only

2We have used this method in obtaining the numerical solution of the equation of motion associated with
complexity /entanglement surfaces throughout the paper for different backgrounds. Therefore, we will not

repeat this again: we will simply quote the results for different backgrounds.
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Figure 3.3: Numerical plots of ¢'(r) versus r in AdSs-Kasner spacetime for different ¢, slices.

In the right Figures, we have extended the range of the radial coordinate.
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from the near-boundary spacelike part of the complexity surfaces, beyond which it has neg-

ligible value where the complexity surfaces are lightlike.

e The above two points imply that as the anchoring time slice approaches the singularity
location tg — 0, the complexity surface is almost entirely lightlike: thus as t9 — 0 the
holographic volume complexity becomes vanishingly small. We verify this later by numerical

evaluation of the volume complexity integral in sec. [3.2.4

e These numerical plots and this analysis only makes sense for ty not strictly vanishing (e.g.
we require tg 2 €). In close proximity to the singularity, the semiclassical gravity framework

here and our analysis breaks down.

In Figs.|3.2land we have shown the behaviour of ¢(r) and ¢'(r) with r for both limited range
(left side plots) and extended range of the radial coordinate in these Figures (right side plots). We
obtain similar behavior for other cases later. So we will not show the counterparts of the right side
plots (extended r-range) in Figs. in order to display our results succinctly in subsequent
data

3.2.2 Holographic complexity of AdS,-Kasner spacetime
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Figure 3.4: Plots of #(r) with r and ¢'(r) with r in AdS,-Kasner spacetime for various t

slices.
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For the AdSs-Kasner spacetime with d; = 2, the equation of motion (3.14) for the complexity

surface t(r) becomes
rt(r)t"(r) = 3t(r)t'(r) (L=¢(r)*) +r (1 =¥ (r)*) =0. (3.29)

Numerical results: The perturbative solution of is obtained only up to O(r?) unfortunately,
i.e. t(r) = tg + %, beyond which the numerics appear problematic. However, we find that this
O(r?) perturbative solution is adequate in extracting the initial conditions for numerical solutions.

Using these initial conditions, the numerical solution of for t(r) and its derivative ¢'(r)
are obtained along the same lines as in AdSs-Kasner. These are plotted in Fig. which reveal
that the behaviour of the complexity surfaces ¢(r) and their derivatives are similar to those in
AdS5-Kasner.

3.2.3 Holographic complexity of AdS;-Kasner spacetime

The equation of motion for the complexity surface t(r) for AdS7-Kasner spacetime using d; = 5 in

becomes
rt(r)t"(r) — 6t(r)t'(r) (1 - t'(r)Q) +r(l- t'(r)Q) =0. (3.30)

As in AdSs-Kasner spacetime, we solve this perturbatively and numerically.

Perturbative results: The perturbative solution of (3.30) for the ansatz t(r) = to+3_,cz, car™”
is given as:
r? 234

Hr) =t)+ — — —— .
(r) =t % 15~ 30003

(3.31)

The solution for ¢(r) and its derivative ¢/(r) for AdS;-Kasner are qualitatively similar to
those in AdSs-Kasner.

Numerical results: Using the above, we can pin down boundary conditions near the boundary
and then solve (3.30) numerically. This is similar to the analysis in AdS5-Kasner and the solution
t(r) of and its derivative t'(r) are plotted in Fig. We see that the AdS7-Kasner spacetime

gives similar results.

3.2.4 Numerical computation of complexity, AdS Kasner

We evaluate holographic complexity of AdSs 4 7-Kasner spacetime numerically using the numeri-
cal solutions discussed above and performing the numerical integration in C. The expression of

holographic complexity for AdSs, AdSy and AdS7-Kasner spacetimes are given as:

Vg, R t(r) /1 —t(r)?
(Adei+2 Kasner) C = m /edT < rdi+1 ) (332)
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Figure 3.5: Plots of ¢(r) with r and #(r) with r in AdS7-Kasner spacetime for different ¢

slices.

To perform the integrals numerically, we set the lengthscales Vg, R% G4,42 to unity and take
e = 1072 at the lower end. The upper end of the integration domain is irrelevant since the com-
plexity surfaces become lightlike eventually as r increases so the complexity integral has negligible
contribution there, as stated in sec. Then as an order-of-magnitude estimate, o ~ 100 gives
C ~ :TOi ~ 10%%+2 which corroborates with the scales in Fig. which displays the variation of
complexity with tg in AdS-Kasner spacetime. From the Figure, we see that holographic volume
complexity decreases linearly as the anchoring time slice approaches the vicinity of the singularity,
i.e. as tg — 0. Thus the dual Kasner state appears to be of vanishingly low complexity, independent
of the reference state.

It is worth making a few comparisons on holographic complexity across AdSs 74 Kasner space-
times, based on the numerical results in Fig. Fig.|3.3| (AdS5-K), Fig. 3.5 (AdS7-K), and Fig.
(AdS4-K). Relative to AdSs-Kasner, we see that the complexity surfaces become lightlike at smaller
r-values in AdS7-Kasner. Thus complexity of AdS7-Kasner acquires vanishing contributions at
smaller r-values relative to AdSs-Kasner. Likewise, we see that the AdSs-Kasner displays the
lightlike regime at smaller r-values than AdS4-Kasner. Thus complexity surfaces in higher dimen-
sional AdS-Kasner acquire lightlike regimes earlier than those in lower dimensional ones. However
it is clear that the leading divergence behaviour is larger for higher dimensions, since the extremal

codim-1 surface volumes have dominant contributions from the near boundary region. With cutoff
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Figure 3.6: Numerical plots of holographic volume complexity with ¢, in AdS, 5 --Kasner

spacetimes.

€= A(}‘l/ we have the scaling

R+ Y,

O~
Gdi-i-?R edi

to = Naoy Va, A% o, (3.33)

reflecting the fact that complexity scales with the number of degrees of freedom in the dual field
theory and with spatial volume in units of the UV cutoff. Some intuition for this can be obtained
from the form of the complexity volume functional where the m factor is amplified
by the T%i—factor. Both the spacelike part (¢ < 1) of the complexity surface and the transition
to the lightlike part (where ' is changing) are amplified by the T—ﬁi—factor to a greater degree at
larger d;. Thus higher dimensional AdS-Kasner hits the lightlike regime and vanishing complexity
at smaller r-values relative to lower dimensions.

Overall from (3.33]) we see that
— ~ Ngos Vg, A% (3.34)

This arises from the near-boundary UV part of the complexity surface, with the lightlike component
contributing negligibly. This is consistent with complexity scaling as the number of microscopic
degrees of freedom in (a lattice approximation of) the CFT. In this context, it appears that near
the singularity, there is a reduction in the effective number of degrees of freedom. As ¢ty — 0, space

completely crunches, and there are no effective qubits, leading to the vanishing of complexity.
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3.3 Complexity: hyperscaling violating cosmologies

Various cosmological deformations of conformally AdS or hyperscaling-violating theories were iden-
tified in [113] (see Appendix[6.5). The two-dimensional form of these backgrounds can be described
using the two-dimensional dilaton gravity action , along with the corresponding dilaton po-
tential, parameters, and the (¢, r)-scaling exponents in . Additionally, the higher-dimensional

cosmology is:

- 26
- V2di(di - 0)(—0)

20
204, [ _ 42 2 — oy
ds? — R*r < dt* + dr +t2/didx?>, Q¥ o, 2dim0)

U=2Ap" %™ 20 =—(di+1-0)(d; —0),

)

72 tre
o? 2(d; — 1)
F=1, m=—(i-0), a=%, a=-—qi |2 240
2 d;
di —0)(d; +1 2(d; — 0)(—6
b:—( zl( + )7 8= ( d)( ) (3.35)

With o taken positive, e¥ — 0 as t — 0 and we obtain

2
o=+ ,Yu?(dz‘di—l) . a:< d:;ﬁ;l_ /di((d:‘)_)e)) (3.36)

In this section, we restrict to Lorentz invariance: the Lifshitz exponent is z = 1. Then the null

energy conditions [I98] implies that the hyperscaling violating exponent 6 is constrained as

z=1
—

(di —O0)(di(z—1)—0) >0, (2—1)(di+2—0)>0 0<0. (3.37)

The other possibility # > d; has undesirable properties suggesting instabilities [198].
Time-independent backgrounds of this sort appear in the dimensional reduction [I98] over
the transverse spheres of nonconformal Dp-branes [199], and the #-exponent is then related to
the nontrivial running of the gauge coupling. Reductions of nonconformal Dp-branes over the
transverse spheres and over the brane spatial dimensions leads to 2-dim dilaton gravity theories
[200] with dilaton potentials as in above, and the 2-dim dilaton then leads to a holographic
c-function encoding the nontrivial renormalization group flows. Some of the analysis there, as well
as in [198], may be helpful to keep in mind in our discussions here. In particular, the D2-brane and
D4-brane supergravity phases give rise to d; = 2, 0 = —% and d; = 4, 0 = —1, respectively, both
with z = 1. In these cases, the Big-Bang/Crunch singularities may be interpreted as appropriate
Kasner-like deformations of the nonconformal Dp-brane backgrounds, although again the time-
dependence does not switch off asymptotically with corresponding difficulties in interpretation as

severe time-dependent deformations of some vacuum state.
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We will focus on studying the Big-Bang/Crunch hyperscaling-violating cosmological back-
grounds in above and explore the holographic complexity associated with them. The calcu-
lations are broadly similar to those in AdS Kasner spacetimes earlier, but with noteworthy detailed
differences. Using the exponents in , , the holographic volume complexity sim-
plifies to

Rdi (di+1)(0—d;) <,/d i \/ () +5 +1>
c = Ya R /dr roo G (s /o 9)) 1-¢(r2|. (3.8

Gat2

Extremizing with ¢(r), we obtain the Euler-Lagrange equation of motion for the complexity surface

t(r) as
<\/7 ,/ d_9> +di+1| (1-t(r)?)

+ 2d;rt(r)t"(r) — 2(d; + 1)( t(r)t'(r) (1 —¢(r)?) =0. (3.39)

In the semiclassical limit (#'(r) < 1), we can ignore terms like ¢'(r)2,#(r)3 in the equation of motion

(3.39), which then simplifies to

2
t(r) (2(di + 1)(d; — O) (r) — 2dirt" (r)) — 7 di( d"d_if;l — ,/di((d:e_) 0)> +d;+1|=0.

(3.40)

Now, we solve equations and perturbatively using ansatze similar to those in the AdS-
Kasner spacetime, i.e. t(r) = to +ZneZ+ cnr™ . We illustrate this in detail by analysing holographic
volume complexity for two cases: (i) d; = 2, § = —1/3 in sec. and (ii) d; =4, § = —1in
sec. Analysing other cases reveals similar results. To differentiate between the different

solutions, we will use different coefficients for the different cases, e.g., gn, sn etc.

331 di=2 0=—3

This case is related to the D2-brane supergravity phase as stated earlier, and we analyze the

perturbative and numerical solutions now.

The equation of motion (3.39) with exponents (3.35]), (3.36)), for this case simplifies to
14r t(r) ¢ (r) — (m - 15) r(1—¢(r)2) — 49t(r) £'(r) (1= #'(r)2) = 0. (3.41)
The solution #(r) up to O(r%) is given as

t(r) = to + gar® + gar”, (3.42)
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with g; in (B2). The behaviour of the complexity surfaces (3.42)) with r for different ¢y values is
qualitatively similar to those in AdS-Kasner (see Fig. so we will not display the plots.
When #'(r) < 1, we can ignore the higher order terms in (3.41)) to obtain

2 (2V42-— 15) r— 14t(r) (20" (r) — T(r)) = 0. (3.43)
This has solution up to O(r*) given as
t(r) = to + sar® + sar?, (3.44)

with s; in (B3]). The behaviour of (3.44)) is qualitatively similar to that in AdS-Kasner.
Solving (3.41]) numerically along similar lines as in AdS-Kasner, we obtain the variation of the
complexity surfaces and their derivatives with r: this is shown in Fig.
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Figure 3.7: Numerical plots of ¢(r) versus r and t'(r) versus r for d; = 2 and § = —1/3 in

hv cosmology.

Holographic complexity: With d; =2, 0 = —% in 1D gives

2 %*L _
%R /ﬁ ( TW; t()>. (3.45)

Restricting to the regime t'(r) < 1, we perform this integral rewriting as

V2R2 TA t(T)%fg (1 — L(;) )
C:Gutl dr . . (3.46)
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Then using (3.44)) truncating to t(r) = to + sor? + s4r* using (B3)), the complexity (3.46) up to
next-to-leading-order in ty is obtained as

E_;'_ﬁ
1\ 14 7 1 1
C = ‘/QRQ 215%772 1 _ 1 _ 2883 (%> (\/TT\ B %) (3 47)
Gy |5° /2 5/ 50 (233 + 60v/2) ' '

3.3.2 di=4, 0=-1

This is related to the D4-brane supergravity phase as stated earlier.
For d; = 4 and # = —1, the equation of motion (3.39)) becomes

20rt(r)t"(r) + 177 (L —¢/(r)%) — 125¢(r) ¢'(r) (1 = ¢'(r)*) = 0. (3.48)
Using the ansatz t(r) = to + >_,,cz, ynr", We obtain the following solution to (3.48):
t(r) = to + yar® + yar?, (3.49)

with y; given in (B4)). The plots of the solution (3.49)) and its derivatives are qualitatively similar

to those in AdS-Kasner spacetimes and the d; = 2,0 = —% hv-cosmology. Ignoring higher order

terms in (3.48]), we obtain
—34r + 5t(r) (—=8rt"(r) +50t'(r)) = 0. (3.50)

Solving this with the ansatz ¢(r) = to + )_, cz, tnt" gives the qualitatively similar complexity
surface (with v; in (B5)):

t(r) = to + var® 4 vyrt. (3.51)

Solving the nonlinear equation (3.48) numerically as in AdS-Kasner gives numerical solutions for
the complexity surfaces ¢(r) and their derivatives. These are shown in Fig. 3.8
Holographic complexity: Substituting d; = 4, § = —1 in (3.38)) gives

U 2
4 17/20 (2 4 pra t(r)17/20 1 - tr)
o ViR /dr (t(r) 1 t(r)) _ ViR / 0 ( 2 ) . G5

Gy 725/4 Ge 725/4

Similar to the discussion for d; = 2,0 = —%, we approximate as t(r) = tg + vor? + vgr? (with vg,
vg in (B5))) and simplify (3.52)). The calculations are similar to the earlier case: complexity up to

next-to-leading-order in ty is

(17/20 4 4
0 21e21/4  21p,21/4

. <1>23/20 4913 - 4913
to 525 (V715 — 13) (13 + V/715) €13/ 525 (/715 — 13) (13 4+ V/T715) ra13/4 | |
(3.53)

_ ViR

C o
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Figure 3.8: Plots of complexity surface versus r and #'(r) versus r for d; =4 and § = —1 in

hyperscaling violating cosmology.

{di=2, 0 =—3} vs {d; =4, 6 = —1} hv-cosmologies: Comparing Fig. and Fig.

we see that the numerical solution of d; = 4, § = —1 hv-cosmology becomes lightlike for a smaller
r-value relative to that for d; = 2, 0 = —%. The /1 —t(r)? factor in the volume complexity
expression implies d; = 4, § = —1 complexity vanishing earlier relative to that in d; = 2, 0 = —% .

These theories have effective space dimension dyy = d; — 0 so the effective dimensions are doff = 5
and depp = g respectively: so the larger effective dimension case acquires vanishing complexity at
smaller r-values. This is similar to the observations in AdS-Kasner discussed in sec. [3.2.4

Let us summarize the results for complexity in AdSs-Kasner and hyperscaling violating cos-

mologies up to next-to-leading-order in ¢y (the results to this order are the same whether we use
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the linearized equation ignoring higher order terms in ¢'(r), or the full nonlinear one):

wR3[ /03 0.3 1/01 01 1\3
AdSs — Kas ~ o[ =2 22} 4= (22 - 2= =
(AdSs asner) C c- 0 < 3 r%) +t0 ( c TA> + O (<t0> )],

13, V2

1147 1 1
<d- —9 = _1) O~ Vo R? gtﬁ,?z 11 2883 (%) (ﬂ _ W)
— _ ViR | 1720 4 4
(dz = 47 0 = —1) C ~ G76 tO 21621/4 B 21rA21/4

. <1>23/20 4913 ~ 4913
to 525 (V715 — 13) (13 + V715) €!3/4 525 (\/715 — 13) (13 + V/715) ral3/4 | |

(3.54)

. . . . Vs R2 % 1
The leading divergence of complexity from above is C' = G2 to for d; = 2,0 = —3, and
C= G‘;‘iﬁ% t(1)7/ 2 for d; = 4,0 = —1. Overall, at leading order in (3.54]), we see that the holographic

complexity of AdSs-Kasner spacetime is linearly proportional to ¢y whereas in hyperscaling violating

cosmologies, complexity is proportional to t8'9 and t8'85 summarized below:

(AdS5 — Kasner) C xt,
1
(di =2 0= —3> C o ty?, (d; =4, §=-1) Cocty®.  (3.55)

The complexity scaling in hyperscaling-violating cosmologies reflects the fact that the dual theories
reside in an effective space dimension, d.fy = d; — 6. It may be interesting to investigate the
underlying effective lattice qubit models that simulate this behavior, which could potentially differ

from relativistic CFTs, considering the general arguments in [25].

3.3.3 Numerical computation of complexity in hv cosmologies

We now compute holographic complexity of hyperscaling violating cosmologies, for d; = 2, 8 = —%,
and d; = 4, 0 = —1, as for AdS-Kasner spacetimes in sec. [3.2.4] For this purpose, we use the
numerical solutions of the cosmologies as discussed earlier, and numerically perform the integrations
appearing in the complexity expressions in 1D ford; =2, 6 = —%, and ford; =4, 6 = —1
(using the full nonlinear expression). The variation of holographic complexity with ¢ in these
backgrounds is shown in Fig. 3.9

As shown in , the complexity of hyperscaling-violating cosmologies does not scale linearly
with ¢y , in contrast to the scaling observed in AdS Kasner spacetimes. However, the exponents
remain positive, so complexity continues to decrease as ty approaches the singularity, becoming
vanishingly small as tg — 0. Thus, the dual Kasner state continues to exhibit low complexity, as
illustrated in Fig. 3.9
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Figure 3.9: Numerical plots of holographic complexity versus ¢ty for d; = 2, § = —1/3 and

d; =4, § = —1 cosmologies.

3.4 Complexity: isotropic Lifshitz Kasner cosmologies

The 2-dim dilaton gravity formulation [I13] led to new Kasner cosmologies with Lifshitz asymp-
totics. The equations of motion are rather constraining however admitting only certain values for
the various exponents: in particular the cosmological solutions turn out to have 8 = 0 so v = 0 with
Lifshitz exponent z = d;. In 2-dim form, they are described by the 2-dim dilaton gravity action
with dilaton potential, parameters, and the (¢, r)-scaling exponents in below. Also given

below is the higher dimensional Lifshitz Kasner cosmology:

) C 2dz 22di—1 2di—1
U:¢1/dz(7cl+¢7226m>’ )‘Zi/d-—l’ Cl:(d) CQZ(d-)’

2 2 2
ds* = R? (—d;—l—dg—ktwdic@), eV =t z=d;, (3.56)
r r r
k=1, m=-1 a—dz_l b——3—i—l b=a=— 2(di — 1)
- ) - ) - dl ) - d27 - - dl

Here R is the analog of the AdS scale, and we are suppressing an additional scale in gy arising
due to the nontrivial Lifshitz scaling. The nonrelativistic time-space scaling implies that lightlike
trajectories have dt? = r%*~2dr? so to identify lightlike limits it is convenient to use (, p) coordinates

with p ~ r?. To illustrate this and study complexity, we will focus on the Lifshitz Kasner cosmology

with z = d; = 2 and exponents a = % , b= —% with metric
> dr?* t
ds* = R? (—744 trt s (dz? + dx§)> : (3.57)

Redefining 2 ~ p and appropriately absorbing numerical factors redefining the various lengthscales
makes lightlike trajectories have dt? = dp?, with the metric (3.57) recast as

> dp® t
ds* = R? (—p2 - p% - ;(dx% + dﬁ)) : (3.58)
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Parametrizing the complexity surface by ¢(p) gives the complexity volume functional

_ R t(p) ;
c=2 [ (pz G <p>>2), (3.59)

with Vo = [ dxidze. Extremizing for the complexity surface t(p) gives the equation of motion

pt(p)t"(p) = 2t(p) t'(p)((1 = (p)*) + p (1 = (p)*) = 0. (3.60)

The perturbative solution of 1D for the ansatz t(p) = Zn€Z+ cnp" similar to the previous cases
up to O(p*) is given by
2 4

p p
tp) =t — = . 3.61
() =to+ 4 — s (3.61)

The behavior of this perturbative solution is qualitatively similar to that in AdS-Kasner and

hv-cosmologies, so we suppress these plots here.
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Figure 3.10: Variation of volume complexity surfaces ¢(p) and their derivative ¢'(p) with

radial distance p for 4-dim Lifshitz Kasner cosmology.

As in the earlier cases, it is instructive to study the complexity surface equation numerically, so
we solve (3.60) with boundary conditions for ¢(p) and t(p) at the boundary p = €, with appropriate
numerical values for €,, along similar lines as described earlier. The numerical results are shown

in Fig. [3.10] which display the variation of the complexity surfaces and their derivatives with p for
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various tg values. The plots show that the transition to the lightlike regime is slower with nontrivial
Lifshitz z-exponent (relative to AdS, z =1).

Perturbatively we can compute holographic complexity in the regime p < ¢y where ¢'(p) < 1,
approximating complexity (3.59) as

VaR? [Pn 1 t(p) t'(p)
C~G4/€p dp[p2 <1— : )] (3.62)

For the perturbative solution (3.61)), holographic complexity after truncating (3.62) up to next-to-

leading-order in % is given by
LN (=) 1Y
——— —= 40— . 3.63
0 <ep pA> - 24¢3 * to ( )

We have described the z = 2 Lifshitz Kasner cosmology so far: other z = d; cases in (d; + 2)-dims

exhibit similar behaviour. The (¢, p) coordinates with p ~ r* in Lifshitz Kasner cosmologies allow

us to conveniently see that the complexity surfaces become lightlike in the bulk. The metric in

(3.56) is recast as

dt>  dp*  t%* Va, R% t(p)
ds? = R* | —— + 5 + dz? | — C=-% /d V1= ((p)?2. 3.64
( 2 p2 | p2/d; G P 2 ('(p)) (3.64)

The leading divergence in C' is

R% Vv, _
. to, €p =€ = ¢l (3.65)
d;+2 €p°

C ~

The above equation shows the linear time growth of complexity in Lifshitz Kasner. Further, from

(3.65)), we can show that
=~ Naog Va, Ay (3.66)

where €, ~ e = Agiv. The observations in sec. and sec. thus apply here as well upon
analysing ([3.64)), and the dual state appears to have vanishingly low complexity as one approaches
the singularity. This is vindicated in Fig. which shows holographic complexity plotted against

to which reveals a linear decrease as the anchoring time slice approaches the singularity, i.e. to — O.

3.5 Holographic entanglement entropy: AdS Kasner etc

We will review the discussion in [43] here. Classical extremal surfaces in cosmological backgrounds
are parametrized by (¢(r), z(r)), Az = [, and t(r) 29 4o. The time function t(r) exhibits nontrivial
bending due to the time-dependence. This extremal surface is located at a constant t slice on the

boundary denoted by ¢t = tg and dips into the bulk up to the turning point and returns to to. Here
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Figure 3.11: Variation of complexity with ¢y for 4-dim Lifshitz Kasner cosmology.

1

[ is the width of the strip along the x direction (taking some z' = x), and the extremal surface

wraps the other z;.; directions. The holographic entanglement entropy is then given by:

J=1,2,...,(

f
l/d" V) (a2 2 2/d; ]2
4Gy, +2/ xl;[x ¢ day) \/¢(di1)/di( dt? + dr?) + ¢*/%idz? . (3.67)
J

SEE =

The absence of x(r) in (3.67)) leads to a conserved conjugate momentum: solving for z/(r) gives

s
_ W (1—t(r)?)

(&' (r))? " (3.69)
Substituting back into (3.67)) gives
Vi1 / ef2(3-1/di)/2
SEE = —/ dr | —F —— 1—t(r)2 3.69
el B ( Fae (r) (3.69)
At the turning point, 2/(r) — oo implying A = ¢, = —;‘n‘ (in the approximation ¢ is nonvanishing
and t'(r) < 1) where t, = t(ry) (smce, qb = thym | = 1 m = —|m| <0).
For the AdS Kasner spacetime, (|3.68] , -, simplify to
1\ 1-¥(r)? Va1 {2 1/ds 1—t(r)?
! 2 _ 42 — i
a'(r)”=A (twi> Ryl SEE = 4Gdi+2/dr s — (3.70)
e 'r‘2di
Using A = ¢, u = ;-, we find the width scaling
1
T d 1—1t(r)? ts
= / drz'(r) = r*/ 112 (r) = lore, A=¢o=—. (3.71)
0 o V% \/(¢/¢.)? —1 rd

For a subregion anchored at a time slice g > 0 far from the singularity, the RT/HRT surface
bends in time mildly away from the singularity. The turning point is (¢.,74), with A > 0 as

above for finite size subregions. The IR limit where the subregion becomes the entire space is
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defined as | — oo and we expect r, — o0 so the surface extends deep into the interior: here
A = 0. In the semiclassical region far from the singularity ty — oo, solving the extremization
equation perturbatively for t(r) = to 4+ >_,cz, cnr™ shows that ¢, 2 to with ¢'(r) < 1 for finite
subregions [43] (reviewed numerically in App. [6.7)). This perturbative analysis is similar to the one
for the complexity surface discussed earlier (see Fig.[3.1). Analyzing this in the IR limit is more
challenging. In the following, we will analyze this numerically for the entangling RT /HRT surfaces

and find results similar to those for the complexity surfaces.

3.6 Entanglement, AdS Kasner: numerical results

In this section, we will numerically analyze the codim-2 RT /HRT surfaces for entanglement entropy,
building on the studies in [43], following the same approach as for complexity. First, we obtain
the perturbative solution of the equation of motion for ¢(r) and then use this perturbative solution
for boundary conditions to solve numerically. The extremization equation for ¢(r) following from
the entanglement area functional is (there is a typo in one of the corresponding equations in
[43], but the analysis there is correct):

P (t(r)? — A%2) dir) () - A drt" () (3.72)

(1=t(r)?) (d?t/(r) + t(r)3 ~t(r) t(r)?

We will focus on solving (3.72) in the IR limit A = 0 (3.71)) for infinitely wide strip subregions in
AdSs 7-Kasner spacetimes in sec. and sec. respectively. The above equation in the IR

limit A = 0 becomes

dirt(r)t"(r) — (L=t (r)?) (dFt(r)¢'(r) — (d; — 1)r) = 0. (3.73)

3.6.1 Holographic entanglement entropy in AdSs;-Kasner

For AdSs-Kasner with d; = 3, the IR limit (3.73) becomes
3re(r)t’(r) — (1—#'(r)%) (9t(r)¥'(r) —2r) = 0. (3.74)

The perturbative solution of l} using the ansatz t(r) =to + 3,7, cor™, after truncating, is

7‘2

t(r) ~to+ —. 3.75
() ~to + o (3.75)

The numerical solutions of and their derivatives are shown in Fig. This shows that
the behaviour of RT/HRT surfaces is similar to complexity surfaces, as discussed earlier. In par-
ticular, the RT/HRT surface for lower ty (closer to the singularity) becomes lightlike earlier in
comparison to RT surfaces with higher ¢y values. Thus as we approach the singularity with o — 0,

entanglement entropy becomes vanishingly small. In particular near the singularity, entanglement
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Figure 3.12: Variations of the RT/HRT surface t(r) vs r and #(r) vs r in AdSs;-Kasner

spacetime for various tq slices.

entropy vanishes as did complexity. There is an extreme thinning of the degrees of freedom near
the singularity.
For AdSs-Kasner, the results are qualitatively similar but the numerics turn out to not be as

clean for just technical rather than physics reasons so we do not discuss this.

3.6.2 Holographic entanglement entropy, AdS;-Kasner

The t(r) equation of motion in the IR limit for AdS7-Kasner spacetime with d; = 5 is:
5rt(r)t’(r) — (1 — t/(r)2) (25t(7") t'(r) — 47‘) =0. (3.76)

The perturbative solution of using the ansatz t(r) = to + 3_,cz, car™ is obtained as:

r2 ort
t(r)=to+—

- 3.77
10tp 10003 (8.77)

The numerical solutions of (3.76)) and their derivatives are shown in Fig. we find the entangling

surfaces t(r) have qualitatively similar behaviour as in AdSs-Kasner.
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Figure 3.13: Numerical plots of the RT/HRT surfaces t(r) versus r and t'(r) versus r in

AdS;-Kasner spacetime for different ¢y slices.

3.6.3 Numerical computation of holographic entanglement entropy

The holographic entanglement entropy (3.70) in the IR limit (A = 0) for the AdSy,4o-Kasner

spacetime is given by

d; )/di
S = 2 Vaim1 /d T2, (3.78)
4Gaq2

We evaluate the integrals in (3.78) numerically for AdSs 7-Kasner spacetimes, setting e = 0.01 and
normalizing the length scales R, Vg, _1,Gg,+2 to unity. As an order-of-magnitude estimate with

to ~ 1000, we obtain
2/3

SgE ~ tOET ~ 106, (3.79)

The variation of entanglement entropy in the IR limit for AdSs5 7-Kasner spacetimes as a function

of ty is shown in Fig. This indicates that the entanglement entropy in AdS Kasner spacetime

decreases as tg decreases, eventually vanishing as tg — 0. This behavior aligns with our observations

in Fig. where the entangling surfaces ¢(r) become lightlike earlier for anchoring time slices
closer to the singularity.

We now compare the IR entangling RT/HRT surfaces for AdSs-Kasner (Fig. and AdS7-

Kasner (Fig. 3.13), as we had done for complexity surfaces in Sec. We observe that the
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Figure 3.14: Numerical plots of holographic entanglement entropy versus ¢, for AdSs -

Kasner.

surfaces approach the lightlike regime earlier in AdS7-Kasner relative to AdSs-Kasner, similar to
the complexity surfaces. Once again, this behavior appears to stem from the amplification factor
Tdi%l of the lightlike term /1 — (#)? in entanglement entropy, leading to a more rapid effective
thinning of the degrees of freedom in higher dimensions.

As a mathematical observation, by comparing the ¢(r) plots in AdS Kasner, we see that the
complexity surfaces become lightlike earlier than the entangling RT/HRT surfaces. This follows
from the equations of motion, which share a similar structure but differ in the numerical factors

that appear. For AdSs-Kasner, we obtain from (3.74]) and ([3.15|),

rtt”

srtt” B
At —r

1—- () =432—
®) Stt —r

[EE]; 1—(t)? [complexity] . (3.80)
Since the denominator factors are comparable, the relative factor of 2 makes (1 — (¢)2) larger,
resulting in a smaller ¢'(r) for the entangling surface t(r).

Explicit expressions for holographic entanglement entropy can be obtained for hyperscal-
ing violating cosmologies using (3.35)). The exponents for ¢(r) are fairly nontrivial. The r-scalings
gj’z:; Eicﬁg_fl where we have reinstated the dimensionful bulk

scale R (which can be done simply on dimensional grounds). This can be recast as

give the leading divergence as Sgpp ~

V,_, R Vi, Réi—0
S o bzl 22 —dizl N —
Br Gayqo €hi0-1 ers(€) edi—1 er1(€) Ga,+2

e, (3.81)

where N,y is the effective scale-dependent number of degrees of freedom evaluated at the UV cutoff
length € (see [96], [201]). In concrete gauge/string realizations of hyperscaling violating theories
obtained by dimensional reduction of nonconformal Dp-branes, it can be seen that the lengthscales
in the Dp-brane description reorganize themselves as the above and also match various expectations,

including from considerations of the holographic c-function from a 2-dim dilaton gravity point of

view [200]. For instance, the d; = 2, 0 = —% case corresponding to the D2-brane supergravity
phase with G4 ~ % after the transverse sphere reduction gives Nepy = N 2 (g% ulN e)*l/ 3 which
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ends up being consistent with the regime of validity of the D2-supergravity phase. By comparison
the complexity scalings then are less obvious. The leading divergence of complexity in hyperscaling

violating theories can be expressed as

o B (I o B (B o2

—0
using Negs in (3.81). The extra factor (£)4 arising from the extra metric factor for codim-1

surfaces (relative to codim-2) cannot be obviously recast in terms of field theory parameters once
Neyy is pulled out (see [150} [152) [174] [186] for other complex1ty studies). Of course this can be
expressed in terms of some effective UV cutoff A% ‘i R ’1 . The scalings of complexity with time
are also nontrivial. It would be interesting to understand this better.

The numerical plots of the entangling RT /HRT surfaces for the hyperscaling violating cosmology
with d; = 4, § = —1 are qualitatively similar to the above for sufficiently high ty: away from this,
there appear to be some numerical issues (as well as for the d; = 2, 0 = —% case), similar to the

AdS, Kasner case stated earlier. So we do not discuss these in detail.

3.7 Discussion

We have examined holographic volume complexity and entanglement entropy in various families of
cosmologies featuring Big-Bang/Crunch singularities, some of which have been previously studied
(e.g., [22), 23] 24, 115, 017, 118, 119, 120]). These include AdS Kasner, hyperscaling-violating,
and Lifshitz asymptotics. By focusing on isotropic Kasner-like singularities, we demonstrated that
higher-dimensional complexity and entanglement can be reformulated in terms of those in two-
dimensional dilaton gravity theories obtained via dimensional reduction [113], with the resulting

expressions elegantly expressed solely in two-dimensional variables.

Figure 3.15: Cartoon of complexity and IR entanglement surfaces at

singularity (t=0)

various anchoring time slices ¢ on the boundary (r = 0) in holographic
cosmologies with Kasner-like Big-Crunch singularities. The extremal sur-
faces bend away from the singularity (dotted line, ¢ = 0) and approach

lightlike regimes eventually (approaching faster as t — 0).

The equations of motion governing complexity and IR entangling surfaces, derived from the ex-
tremization of the respective functionals, can be solved perturbatively near the holographic bound-
ary. This approach allows us to extract boundary conditions for numerical solutions of the surfaces.

In the numerics, we impose a near-boundary cutoff e: the interior end approaches a lightlike regime
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so no interior regulator is required. The complexity plots appear in Figs.[3.2}f3.3} [3.4} [3.5]for AdS5 47
Kasner, Figs. [3.7] [3.8 for hyperscaling violating cosmologies, and Fig. [3.10] for Lifshitz Kasner, and
those of entanglement appear in Fig. Fig. for AdSs 7 Kasner.

Overall this shows that the surfaces begin spacelike near the boundary, bend in the direction
away from the location of the singularity and transition to lightlike in the interior (sec. . For
instance in , (i) with (#)?2 < 1 (spacelike), we see by using a series expansion for #(r) that
t'(r) > 0, and (ii) with 1 — (#)? ~ 0% (lightlike), we see that ¢’ > 0. As the anchoring time slice
is moved towards the singularity, the spacelike part shrinks and the transition to lightlike is more
rapid. The overall picture depicting a future Big-Crunch singularity is shown in Fig. above
(which is top-bottom reflected relative to the plots): note that ¢ = |¢| here so our analysis applies
equally well to past Big-Bang singularities (e.g. in , t — —t is a symmetry). The complexity
and entanglement functionals contain a m factor so that the lightlike regimes give vanishing
contributions: see Figs. (complexity) and Fig. (EE). Thus the near singularity
region has vanishingly low complexity and entanglement and the “dual Kasner state” in all these
theories corresponds to the effective number of qubits being vanishingly low, consistent with spatial
volumes undergoing a Crunch. Our results corroborate those in [I128] for volume complexity, and
in [129] from holographic path integral optimization, in AdS Kasner. However our analysis (in
particular numerically) is more detailed and applies to various families of cosmologies which are in
the same “universality class” in the scaling behaviour near the singularity. Our entanglement
analysis develops further the semiclassical perturbative study in [43], where the entangling surfaces
were shown to bend away from the singularity (and quantum extremal surfaces are driven far away).
Our numerics is consistent with the behaviour of entangling surfaces for finite subregions which
only bend mildly (App.[6.7).

This vanishing of holographic complexity and entanglement can be naturally understood from
a renormalization group (RG) perspective. As the singularity is approached, the dual field theory
undergoes RG flow toward a trivial infrared (IR) fixed point, resulting in a negligible number of
effective degrees of freedom. This, in turn, leads to vanishing complexity. The contribution of soft
modes to the overall complexity is minimal, as these low-energy excitations dominate in the IR
and contribute insignificantly to the complexity. This perspective aligns with the work of Swingle
and McGreevy [202], who provided a rigorous RG-based argument for the area law of entanglement
entropy in gapped phases of matter. Their framework offers a conceptual foundation for under-
standing both entanglement and complexity through RG flow. For field theories dual to crunching
geometries, the renormalization group (RG) flow traverses all intermediate energy scales—including
potential gaps—and ultimately terminates at a trivial infrared (IR) fixed point. This results in a
complete suppression of both entanglement and complexity, providing a particularly sharp and
illustrative realization of RG-driven vanishing complexity. A more rigorous treatment, including
detailed computations and mathematical analysis, is deferred to future work.

It is important to note that in the region very close to the singularity, where the transition to
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a lightlike regime occurs rapidly, the anchoring time slice ¢y eventually becomes comparable to the
cutoff ¢, i.e., tg ~ €. At this stage, the semiclassical gravity framework employed here likely becomes
unreliable. Consequently, when concluding that complexity approaches a vanishingly small value as
to — 0, we are effectively extrapolating the observed trend of decreasing complexity into the near-
singularity regime. While this extrapolation appears reasonable, a more detailed understanding of
the very near-singularity region remains an important open question. At a fundamental level, our
analysis of holographic volume complexity and entanglement—building on the work of [43] [127]
and [128, 129], as well as studies of the limiting surface in the black hole interior [20]—indicates
that such spacelike Kasner cosmological singularities are excluded from the entanglement wedge
of observers. This exclusion, determined by extremal surfaces in a self-consistent manner, ensures
that they avoid the vicinity of the singularity. We refer to this phenomenon as “entanglement
wedge cosmic censorship” (thanks to Sumit Das for coining the phrase). In a sense, this
is reassuring, since the opposite scenario would imply a breakdown of the semiclassical gravity
framework and lead to inconsistencies. It is plausible that the study of null singularities will reveal
qualitatively new behavior, particularly in light of the investigations of holographic duals in [115]
and quantum extremal surfaces in [127], which tend to bend toward the singularity. The behavior
of extremal surfaces bending away from the singularity is reminiscent of the absence of spacelike
surfaces anchored at the future boundary in de Sitter space [213]: perhaps more general structures
[223, 224] may be of value as near singularity probes.

We have focused on the isotropic Kasner subfamily, which naturally arises in the context of
reduction to two dimensions. However, it is likely that more general spacetimes with hyperscaling-
violating and Lifshitz asymptotics exist, exhibiting general anisotropic Kasner singularities—analogous
to the fully anisotropic Kasner spacetimes in AdS. The constraint ), p; = 1 suggests that holo-
graphic volume complexity would remain the same as in our analysis. However, entanglement
entropy, which depends on the choice of the boundary spatial subregion, would be sensitive to its
spatial orientation.

More general AdS-BKL-type singularities were also studied in [24]. In these cases, spatial
curvatures force BKL oscillations between various Kasner regimes (starting with some Kasner ex-
ponent negative), which continue indefinitely in the absence of external scalars [203] 204, 205]. In
the presence of the scalar W as we have, the BKL oscillations lead to attractor-type basins even-
tually (with all Kasner exponents positive). Holographic entanglement requires defining a spatial
subregion and thus would appear to evolve along BKL oscillations. Since the volume complexity
functional for anisotropic AdS-Kasner backgrounds is similar, the evolution of complexity naively
appears insensitive to these BKL oscillations, but it would be interesting to explore complexity
more carefully to see the role of spatial curvatures.

The effectively 2-dimensional nature of our bulk analysis suggests the existence of effective dual
1-dimensional qubit models governing complexity. In AdS and Lifshitz Kasner spacetimes, the

decrease in complexity with time is linear, whereas in hyperscaling-violating theories, it is not.
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These latter theories, characterized by a nonzero hyperscaling violation exponent 6, have effective
spatial dimensions given by deg = d; — 6. It would be interesting to explore effective 1-dimensional
qubit models that simulate this behavior, recalling the general arguments presented in [25].
Finally, it is worth noting that the Kasner singularities we have discussed exhibit time depen-
dence that does not switch off asymptotically. This is reflected in the persistence of the nontrivial
Kasner scale tx appearing in our expressions: for instance after reinstating tx is really
C ~ Ngoy VdiAgiV f—; so this perhaps cannot be extrapolated to asymptotically large timescales
to > tg. The main merit of these models is the simplicity of the bulk in the vicinity of the
singularity. Perhaps, as in [127] for quantum extremal surfaces, asymptotic regions with no time-
dependence can be appended beyond tg > tx with appropriate boundary conditions. In this case,
the extremal surfaces becoming lightlike hitting the past horizon here (Fig. must instead pre-
sumably be extended to these asymptotic far-regions (translating the question of the behaviour at
the past horizon to the behaviour asymptotically). This hopefully will lead to better understanding
of the (non-generic) initial conditions in the asymptotic regions that give rise to this “dual Kasner

state” and its low complexity.
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Chapter 4

Time entanglement and

pseudo-entropy

Our earlier studies focused on extremal surfaces—both quantum extremal surfaces (QES) and
complexity surfaces—in the context of AdS/CFT, providing insights into cosmologies exhibiting
Big-Crunch singularities. We now turn our attention to a different holographic framework: de
Sitter holography, which has been extensively studied in the literature [209]-][226].

In de Sitter space, the holographic dual is a non-unitary Euclidean CFT residing on the future
boundary It. This departure from AdS/CFT brings fundamentally new challenges in defining and
interpreting extremal surfaces [213]. Notably, extremal surfaces anchored at the future boundary
(IT) do not have turning points that connect I* to itself. The absence of such It — I" returns
implies that these surfaces extend inward toward the past. Consequently, they require additional
input—either through specifying data in the interior of the spacetime or imposing boundary con-
ditions in the far past—to be properly characterized. One notable scenario involves future-past
extremal surfaces [217, 220] that extend from I" (the future boundary) to I~ (the past boundary)
in fully Lorentzian de Sitter space. These surfaces are entirely timelike, with their area acquiring
a factor of —i that reflects their timelike nature. Alternatively, by invoking the Hartle-Hawking
no-boundary proposal, one can construct a modified de Sitter geometry, often referred to as no-
boundary de Sitter. Here, the extremal surface (no-boundary dS extremal surface) comprises a
timelike segment anchored at IT™ and a spacelike segment emerging from a smoothly attached
Euclidean hemisphere, resulting in a complex-valued surface [223] 224] (see also [221] 222] for dis-
cussions on dS3/CFTy) with both real and imaginary contributions to its area. We review the key

aspects of extremal surfaces in de Sitter space in Sec.
Unlike AdS, where specifying boundary data resolves the extremization problem,

dS extremal surfaces that originate at late times on I do not return. This necessitates the inclusion

of additional data for boundary conditions in the far past. As a result, two distinct scenarios arise:
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future-past extremal surfaces in entirely Lorentzian d.S, and no-boundary dS extremal surfaces, as
discussed above. dS extremal surfaces necessarily involve a timelike component, which encodes a
novel structure termed ‘timelike entanglement’, as proposed in [224]. This gives rise to two possible
aspects of time-like entanglement: the first is rooted in the thermo-field double state inspired by the
timelike future-past surfaces, while the second is based on the time-evolution operator, motivated
by the behavior of dS extremal surfaces that require additional boundary conditions in the far
past. This behavior is reminiscent of scattering amplitudes, where final states arise from initial
states, or equivalently, time evolution. It is thus intriguing to explore entanglement-like structures
emerging from the time evolution operator, U(t), after performing a partial trace over a subsystem.
The time evolution operator yields complex-valued entanglement structures. We review various
aspects of timelike entanglement in Sec. Furthermore, [223] suggests that the entanglement
entropy derived from the complex-valued extremal surfaces in no-boundary de Sitter space should
be interpreted as pseudo-entropy.

Pseudo-entropy is a generalization of entanglement entropy, defined in terms of a transition
matrix rather than a density matrix. The transition matrix is expressed as:

_ R
FlI = {I[F)

(4.1)

which reduces to the density matrix for |F') = |I). We now decompose the Hilbert space as H4® Hp.

The reduced transition matrix T}‘,i" ; is obtained by tracing out Hp:
T?u =Trp(Tr1) - (4.2)

Notably, the transition matrix is non-Hermitian, and its reduced transition matrix may possess
complex eigenvalues. The entropy associated with the reduced transition matrix is referred to as

pseudo entropy and is defined as:
S(Tléu) = —TrA(Tj;‘ulog Tf«:‘u)- (4.3)

Pseudo-entropy can generally take complex values. Unlike de Sitter space with its non-unitary CFT
dual, the entanglement entropy of a timelike interval, even in unitary CFTs, is complex-valued and
should be interpreted as pseudo entropy.

For ordinary unitary two-dimensional conformal field theories (CFTs), the entanglement en-

tropy is given by
c. A% ¢ —(At)? + (Ax)?
SZglogeﬁzélog 62 .

(4.4)

For ordinary spacelike intervals with A2 > 0, this reduces to the familiar expression S = 5 log % .
On the other hand, if we rotate the subsystem to be entirely timelike, with a width At = T} along

the time direction, we obtain [224]

c T, c,.
= Sog 22 4 S(im). 4.
S 3 log — +6(z7r) (4.5)
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The imaginary part arises from the term log(—1) due to the timelike separation in the interval.
More generally, the real part of the entanglement entropy incorporates the condition A? < 0.
This result can also be derived by identifying the complex-valued extremal surface in AdS3. For
a detailed discussion, see [223]. Furthermore, pseudo entropy in holographic CFTs can be computed
as the area of a minimal surface in a time-dependent Euclidean asymptotically AdS geometry, as
illustrated in Figure Numerous studies on pseudo-entropy can be found in [227]-[239] (see
also [240]). Moreover, recent works [241]-[254] explore various aspects of time entanglement and

pseudo-entropy.
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Figure 4.1: A schematic representation of the setup for holographic pseudo-entropy. The
minimal surface ['A is anchored at the boundary of subregion ‘A’ in a time-dependent Eu-
clidean asymptotically AdS geometry. The dots denote excitations arising from external

sources or conformal field theory (CFT) operators.

This Chapter is based on [239] and builds upon the work in [224], exploring the time evolution
operator and its associated entanglement-like structures in various quantum systems, treating the
operator as a density operator. These structures, involving timelike separations, generally lead
to complex-valued entropy, though notable real subfamilies also emerge. This has many parallels
and close relations with reduced transition matrices and pseudo-entropy, which we discuss in this
study. We also consider time evolution operator along with a projection onto some initial state,
which amounts to pseudo-entropy for the initial state and its time-evolved final state. In the time-
independent cases studied, the structure of time entanglement exhibits similarities to conventional

finite-temperature entanglement but analytically continued to an imaginary temperature, 5 = it.
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In Sec. we extend the analysis to time-dependent interactions, focusing on simple two-qubit

systems with d-function potentials and the resulting time entanglement.

4.1 Review of extremal surfaces in de Sitter space

This section presents a review of the key aspects of dS extremal surfaces discussed in [224], 226].

4.1.1 dS extremal surfaces from /", and boundary conditions

The absence of Z+ — ZT turning points is evident in the Poincaré slicing with planar foliations

[213]. The metric in this slicing is given as:

ds} —R—ig(—d2+d2)—R—‘2iS—d2 dw?® + d3) (4.6)
1= T yi—T2(7+w+xi. .

Here, w € y; is singled out as the boundary Euclidean time. This choice is made without loss
of generality.

To analyze extremal surfaces, we consider a constant w slice. At ZT, we take a strip-shaped
subregion. This subregion is natural for planar symmetries, with its width along x € z;. Extremal
surfaces are anchored at the boundary interfaces of the strip.

The corresponding area functional is:

REWy o [ dr S
Sas = —1 TV 1 — (0rx)2. (4.7)

4G 11

Here, V;_» is the transverse volume, and G441 is the gravitational constant in (d 4+ 1) dimensions.

Extremizing this functional yields:

B27_2d72

2 _
(Or2) = T prrar

(4.8)

where B? is a constant.

A key observation is the sign difference compared to the AdS case. This difference reflects the
absence of turning points that would return to Z*. Near the boundary, where 7 — 0, the behavior
is:

(0r2)? < 1. (4.9)

This derivative remains bounded throughout, with (9,2)? < 1, for any real B? > 0.

For B? < 0, the surfaces correspond to analytic continuations from AdS Ryu-Takayanagi (RT)
surfaces [213, 214], 215] 216].

The absence of Zt — ZT turning points implies that the surfaces extend inward. In a purely
Lorentzian de Sitter space, these surfaces naturally end at Z—. This gives rise to future-past

extremal surfaces [217, [220]. These are timelike codimension-2 surfaces stretching from Z* to Z~.
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Alternatively, one can modify the Lorentzian de Sitter geometry using the Hartle-Hawking
no-boundary proposal. This replaces the bottom half of dS space with a FEuclidean hemisphere.
Extremal surfaces then satisfy a no-boundary type condition. These alternatives are discussed in

detail in subsequent sections.

4.1.2 Future-past extremal surfaces in dS

In static coordinates, the metric describes static patches with time translation symmetry. These

patches allow analytic extensions to the entire de Sitter space. The metric takes the form:

2 d 2
ds®> = — <1 — ;) dt* + n TTQ +7r2dQ3_,. (4.10)
=

In the Northern and Southern diamond regions (N and S), these static patches exhibit time trans-
lation symmetry, with ¢ serving as the time coordinate. Observers in these regions encounter event
horizons at r = [, where the area of these cosmological horizons corresponds to the de Sitter entropy.

To study the future boundary, we employ the coordinate transformations:

¢
l?

) w =

(4.11)

l
,
which recast the metric as:

2 dr? 2 2 2
dS = — —1_77_2 + (1 — T )d'UJ + de—l . (412)

Here, 7 serves as the bulk time, with 7 = 0 representing the future and past boundaries. The
future and past universes are described by 0 < 7 < 1, and the boundary at ZT is R x S%~1. The
boundary Euclidean time slice can be chosen as any S¢! equatorial plane or as a w = const slice.

Let us define a subregion on the boundary Z+ as Aw x S92, with a corresponding subregion

at Z—. The area functional is then:

ld_1VSd—2 dr 1 N2
_ [1_ 4.1
S ? 4Gd+1 / A1 f f(w ) ) ( 3)

where f =1 — 72, Extremizing this functional leads to:

22/, 12 B?r2i—2
A=) W) == g (4.14)
where B? > 0 is a constant. The total area is:
29" Weas (™ d 1
S =—i 12 / T . (4.15)
4G g41 . Tl /1 2 p2r2d2
Here, 7, denotes the turning point, satisfying:
1— 724+ B%r2°2 . (4.16)
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Figure 4.2: dS future-past extremal surfaces stretching between I* on an S% ! equatorial
plane. The left panel schematically depicts the extremal surface (shown in magenta) for a
generic subregion, whereas the right panel illustrates the extremal surface corresponding to

the entire space.

The turning point 7, lies within the N and S diamond regions, where the extremal surface
remains timelike. The surface from Z* can be joined to an equivalent surface from Z—, resulting
in a full, timelike future-past surface [217, 220] stretching from Z* to Z~, as shown in Figure
These surfaces are rotated analogs of Hartman-Maldacena surfaces in the eternal AdS black hole
[20]. For Aw — oo, the subregion becomes the entire space Z*. For dSy, the turning point occurs
at 7. = /2, corresponding to B — % The area of these surfaces exhibits an area-law divergence

and a finite part:

- 7?1 ml?
S o i — S~ —i——Aw [dS). 4.17

¢ G4 ec’ g G4 w [ 4] ( )
The divergence scales with the de Sitter entropy, g—lj, akin to the number of degrees of freedom in

the dual CFT.

Alternatively, we can consider cap-like subregions defined by # = const latitudes on S%! at

I+, with corresponding ones at Z~. The area functional is:

. 2ld_1VSd—2

dr . d—2 1 e
= — — . 4.1
S i e / —1 (sin @) 5 — (0") (4.18)
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While analyzing this explicitly for general 6 is challenging, for # = 7, we obtain a future-past
extremal surface stretching from a hemispherical cap on S% ! at ZT to the corresponding cap at
Z~. The area in dS; is:

5= 2 /1 dr___;7PL (4.19)
Gy Jo V1-72 Gye

This result contains no finite part.
In global coordinates, the metric is written as:
ds3, | = —dr® + 12 cosh? (%) Q2. (4.20)

The boundary Euclidean time slice can be chosen as any S% equatorial plane, all of which are

equivalent. The area functional, including a factor of 2 for the top and bottom parts, is:

2172 Vgas d—2( i pyd—2 2
S = —i———=— [ dr (cosh7)* *(sin0) \/1 — cosh” 7(0,0)2. (4.21)
4G g1

For 0 = 7, the future-past extremal surface stretches from Z7 toZ~. In dS4, the area is:

w2 e/l ml? ml? 1
= —7— ~ —]— TC/ZN—'if
S ZG4/0 cosh 7 dr i 46 ZQG4 A (4.22)

The result exhibits an area-law divergence, similar to the static coordinate case.

4.1.3 dS no-boundary surfaces

In accordance with the Hartle-Hawking no-boundary prescription [255] (see also [256]), global de
Sitter space can be split along the 7 = 0 time slice. The top half is then joined to a hemisphere in
the bottom half, defined by the Euclidean continuation

ds® = 12dr} + 1? cos® 75 A2 T=iltg, 0<71p< (4.23)

T
5
Now, consider an S? equatorial plane and the timelike extremal surface from at 0 = /2,
which represents the IR limit of such surfaces. The top portion of this surface originating from
I'" intersects the 7 = 0 mid-slice vertically. This is smoothly joined at 7 = 0 with a surface
extending over the bottom hemisphere, ensuring consistency with the Hartle-Hawking prescription,

as schematically illustrated in Figure [£.3] The IR surface in this configuration is

ds® = 1*drg + 1? cos® T (dO* + sin® 0 dQ75_,)| = 12dr2 + 1% cos? TpdQ3_,,

0=m/2
with the corresponding area given by
[a-1 /2 Ja-1 Nz (;1) 11971 Vgas
——Vea— / drg (cosTg d-2 — Ve 2 L — = S 4.24
4G 277 )y ( ) 4Gy 57 or (4) 2 4G (4.24)



Figure 4.3: A schematic representation of a global dS no-boundary surface. The top portion
(timelike) anchored at the future boundary I, is smoothly joined to the spatial component
that wraps around the hemisphere in the bottom half. In this figure, the no-boundary dS
surface corresponds to the IR limit (§ = 7) on an S? equatorial plane ( This figure is adapted
from [224], which holds the original credit).

Here, Vga = % is the volume of a d-sphere. Notably, the real part of the area of this spacelike
surface on the hemisphere is precisely half of the de Sitter entropy. This recovery of entropy differs
from the interpretation as the area of the cosmological horizon observed in static patches. In this
context, one of the hemisphere directions corresponds to the Euclidean continuation of the time
direction in the future universe. For dSy, the total area for the no-boundary surface is the sum of

the top timelike part (half of the future-past area from (4.22))) and the hemisphere contribution:

S: _'Lﬂi+ 7Tl2

This bears some resemblance to the semiclassical wavefunction ¥gq = €5t for no-boundary dSy,
where S, represents the action. The Lorentzian top half contributes a real S, yielding a pure phase
in ¥ 5. In contrast, the bottom hemisphere results from the Euclidean continuation , with
bp V9 (R—2A), evaluated on the hemisphere.

4
For dSy, this gives %f&‘%‘z . lﬁ = % , as is well known (see, e.g., [257, 258]).

15, becoming the Euclidean gravitational action — fn

A similar calculation can be performed for the timelike future-past surface in static coordinates.
Here, the boundary is R, x S%1, allowing for either S?~! equatorial planes or w = const slices as

boundary Euclidean time slices. The Euclidean continuation in this case is

ds® = 1*(cos® Y dri + d® +sin® ¢ dQ3 ), t=irtg, r=Isiny, (4.26)
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where 7 € [0,27l] and 0 < ¢ < 7/2.
For S9! equatorial plane surfaces, there is a limiting surface at 7, > 1 (e.g., 7 = v/2 for dSy),
corresponding to a limiting ¢, with sint, = r./l = 1/7.:
ds® = cos® i, dri + sin® 1, dQ2 .
The area evaluates to
ld_2
4Ga1

ml
/ o8 1y drg (sin b, )42 Vga—o
0

For dSy4, with siny, =1/ \@, this yields an area

1 ( )2t 27l 7r2l2
4G4 4Gy
For w = const slices (equivalently, Tg = const), the timelike surface from the § = 7/2 cap on
S9=1 leads to
ds® = dyp® + sin? o dQ3_,,

giving an area identical to that in global de Sitter space (4.24]). For dS4, adding the top timelike
part from (4.19)), the total area becomes
2

1

ol w2

Finally, note that these no-boundary surfaces turn only in the bottom hemisphere. The top

S = —

timelike half remains identical to the corresponding future-past surface, with no I™ — I" turning
point. For two disjoint subregions, the corresponding no-boundary surfaces are unique, with no

additional connected surfaces. As a result, the entropies satisfy
S[AU B] = S[A] + S[B],

implying that mutual information vanishes, similar to the case of future-past surfaces [220]. Fur-
thermore, the entropy for no-boundary de Sitter space is complex-valued, as evident from (|4.25|).
This suggests that it should be interpreted as a pseudo-entropy, as proposed in [223].

4.1.4  dS3 no-boundary surfaces, and pseudo entropy

Let us now turn our attention to d.Ss, which holds special significance for various reasons. In fully

Lorentzian global de Sitter space, the future-past surfaces on an S? equatorial plane slice (see

Eq. 4.21)) yield the area:

l [
S = —ZG—?)Iog—C

In the context of no-boundary dS3, the total area arises as the sum of contributions from the top
timelike segment and the bottom hemisphere (Eq. [4.24)), resulting in:

l 7l

— log —
Sd83 og —l— 4G3

l
2G
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This expression can be reformulated as:

Cds I cgs
Sas, = — log — +im——, 4.27
3 3 Tc 6 ( )
where cgg = —i%. The second term, which is real, corresponds to half of the dS3 entropy,
%. This formulation can be obtained by making the substitutions i—z — —% and ¢ — cg4g in

the familiar expression ¢ log i—z [36, 37, 259]. Here, the CFT5 dual to dSs has the central charge:
cqs = —iglﬁi, as established in [2I1]. One striking feature of Eq. is the presence of a real part,
originating from the hemisphere contribution. This real part necessitates an additional factor of
i, which is a novel characteristic of the Euclidean C'FTjg, dual. This is in contrast to ordinary

Euclidean CFTs, which involve purely real spatial lengths and lack temporal components.

4.2 Review of time-entanglement in quantum mechan-
ics

In the previous section, We have reviewed future-past extremal surfaces extending from I to I~.
These surfaces are entirely timelike, resulting in an area that is purely imaginary, differing by an
overall factor of —i from the areas of the familiar spacelike RT /HRT surfaces in AdS. Despite this
imaginary factor, the magnitude of the area remains real and positive, with —i acting as a uniform
multiplier for any subregion at I*. This is reminiscent of the relationship between the lengths of
timelike and spacelike geodesics, where the timelike geodesic length acquires an overall —i factor
relative to its spacelike counterpart. Motivated by this analogy, the areas of these timelike future-
past extremal surfaces are interpreted as encoding a novel object, time-entanglement, as introduced
in [224].

The no-boundary surfaces, which are closely related to the timelike future-past surfaces, also
exhibit complex-valued areas. These consist of two components: a timelike segment (identical to
the top half of the future-past surfaces) contributing a purely imaginary part, and a spacelike
segment (arising from the hemisphere) contributing a real part. Together, these components form
a complex area.

This notion of time-entanglement can be further explored through two perspectives in quantum
mechanics, independent of the de Sitter framework. The first perspective involves the thermofield-
double-type state discussed in [217), [220]. The second perspective treats the timelike surfaces as

representing some form of transition amplitude, related to the time-evolution operator.

A future-past thermofield double state

The entirely timelike future-past surfaces, analogous to the rotated Hartman-Maldacena surfaces

[20], suggest a form of entanglement between I and I~. Consider the state
iF P .
) =D W [in) lin)p (4.28)
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as introduced in [217]. This state was proposed as an entirely positive object, entangling identical F’
(future) and P (past) components, inspired by the thermofield-double (TFD) state for the eternal
black hole [260]. A partial trace over the second (P) copy yields a reduced density matrix with
nontrivial entanglement entropy.

To illustrate, consider a simple two-state system in ordinary quantum mechanics. The Hamil-

tonian H acts on the orthogonal basis eigenstates, leading to the time evolution:
H|k) = Exlk), k=1,2; k) p = |k(t)) = e *ERt k) p [(1]2) = 0] (4.29)

The F' and P slices are separated by time ¢, and the F' state is obtained from the P state via time
evolution through t.

The future-past TFD state in this toy example is given by:

) o = L|1>F\1>P + L|2>F|2>p = Le"'Elt\1>1;>|1>p + —=e 22 p2)p (4.30)

1
—e
V2 V2 V2 V2
The coefficients are normalized for maximal entanglement at t = 0. For nonzero t, additional phases
arise due to time evolution. However, these phases cancel in the reduced density matrix obtained

by tracing over the second copy (P):

1 1
o1 = Ten (1) 1y 1) = £ [ (Lls + 312 (2l (431)
As a concrete analogy, consider a two-spin system where |1) = | 4+ +) and [2) = | — —),

representing the two-state subspace | £ ) of two spins with states |+). A partial trace over the

second spin yields the reduced density matrix:

1 1
Trapsp = S F(HF + 5= r{=IF (4.32)

with an entirely positive structure and entropy log 2.

This future-past TFD state, characterized by timelike separation, exhibits a fundamentally
distinct nature compared to the standard TFD state. Notably, its positive structure, despite the
timelike separation, bears a resemblance to the areas of entirely timelike surfaces when the universal

overall factor of —i is disregarded.

Time-evolution and reduced transition amplitudes

Unlike AdS, where specifying boundary data resolves the extremization problem, dS extremal
surfaces that start at late times on I do not return. This necessitates additional data for boundary
conditions in the far past. Such behavior is reminiscent of scattering amplitudes, i.e., final states
arising from initial states, or equivalently, time evolution. It is therefore interesting to explore
entanglement-like structures emerging from the time evolution operator U(t) after performing a
partial trace over an environment. In other words, we seek a “reduced transition amplitude” and
its associated entropy. Specifically, for a subregion A and an environment B, we define:

pe(t) u()

T pl=Tepp, = Sa=-Tr(p{logp). (4.33)
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The normalization ensures that ordinary entanglement structures are recovered at ¢t = 0, as we will
explicitly demonstrate.
To illustrate, consider the simple toy example described earlier. For this case, since all compo-

nents are diagonal, the normalized time evolution operator simplifies to:

) 1 . 1 . 1 1
UL) =e B = pt) = 56—2E1t|1>p<1|P + 5e—ZE2t|2)P<zyp = 5|1>F<1yp + 5|2)F<2\p. (4.34)

Using the two-spin analogy, where |1) = | + +) and |2) = | — —), a partial trace over the second
components results in:
1 _ 1 .
pit = 3¢ ) Pt lp + e =) p (. (4.35)

The entropy associated with this is:

1 . 1 . 1 ) ) 1 . 1 )
Sa=— Z 56_“3“5 log (26_’Eit) =3 log 2 (e_’Elt + e_’EQt) + éiElt et | 5iE2t e tEat (4.36)
i

Normalizing U(t) by its trace at time ¢ ensures that Trp;(¢) = 1 for all ¢ (not just ¢ = 0), which

modifies (4.80)—(4.36) to:

e_iEz‘t

U(t)

pi(t) = 0 = p(t) = ZPiWP(”Pv pi = W,
7 J
pt =Y pili)plilp = Sa=-)_pilogpi, (4.37)
i i
where H|i) = E;|i). The second line follows after taking a partial trace. These structures

share similarities with pseudo-entropy [227], though their details differ. The time entanglement
(entanglement-like structures derived from the time evolution operator treated as a density op-
erator) and pseudo-entropy exhibit intriguing interrelations, which we explore in the subsequent
sections.

At t =0, ptA resembles an ordinary maximally entangled state. For ¢ # 0, the entropy Sa
generally becomes complex-valued. However, certain cases, such as for the two-state system,

iB2=Et vielding a real entropy. Additionally, different normalizations

involve a single phase e~
yield varying results, as demonstrated in the examples above. Overall, these structures bear a
resemblance to mixed-state entanglement at finite temperature, but with an imaginary temperature,
i.e., B = it. Several related quantities can also be constructed. For instance, the time evolution

operator U(t), combined with a projection operator onto a generic state |I), leads to:
U] = |Fr(t))(I],

where |F7(t)) is the future state obtained by time-evolving the initial state |I). Normalizing at time
t and performing a partial trace yields a reduced transition matrix, resembling that in pseudo-
entropy [227], but specifically tied to the time-evolved future state. Similarly, normalizing at
t = 0 produces different structures. For instance, projections onto Hamiltonian eigenstates |Ey),
followed by a partial trace, result in simple phases for pf 1 (essentially components of ), with

corresponding entropy forms such as iErt e *Frt,
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4.3 Summary: time evolution and pseudo-entropy

Our investigations, following [224], are based on treating the time evolution operator as a den-
sity operator, performing partial traces over subsystems, and evaluating the corresponding von
Neumann entropy. The time evolution operator U(t) = e~*H* for a system with Hamiltonian H
(time-independent) can be written in terms of Hamiltonian eigenstates |i), which are defined on

some past time slice P. The time evolution operator normalized at an arbitrary time ¢ gives:

U(t) = " = 3 e ] = Z|¢>t<z’|P, i(8)) = i) = e ),

i

U(t) et
l) = i ) P = =~ R’
prlt) Trid(t) - Zp P (il p > it
= p=Trgp =D 0N, —  Sa=- Zpi log p; - (4.38)

As is evident, there are striking parallels with ordinary finite-temperature entanglement structures,
except with imaginary temperature 8 = it. This connection will repeatedly emerge as a recurring
theme throughout much of what follows.

A related quantity involves the time evolution operator with projection onto some state |i),

U 01— U0}y
b Te(peliy(al)  Te(LfTE(E) ()

The state |f[i]) is the final state obtained by time-evolving the initial state |i). We obtain

=Xl ol = g S ko (140

@) = e tiys P =Te, o (4.39)

for a general (non-eigen)state |i). At ¢ = 0, the time evolution operator is just the identity
operator, a sum over all the eigenstate projection operators, while the time evolution operator
with projection becomes simply the density matrix for the initial state |7). For any nonzero time
t, there is timelike separation between the initial states [¢), and the eventual states |1);. These
entanglement structures involving timelike separations and time evolution have close parallels with

pseudo-entropy [227] obtained from the reduced transition matrix for two arbitrary states |), |f):

)
Tji = Trs (Trm <z’|>> | (4.41)

To summarize in generality, consider a bipartite system where the Hilbert space is characterized
by Hamiltonian eigenstates |i,") with energies F; ;. The normalized time evolution operator (4.38)

and its partial trace over B = {i'} are

—iE, A —iE;
pr = S /tZe Eiit )i i, = pit = 0 ST Ze ' t i@ . (4.42)
'LZ l'l
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The time evolution operator with projection onto state |I) is

1 —iE. gt - .o
D= cwlk k), p= R DINCRT i 74,57

kK’ Z ‘Cll |2€ (20 7.]7.]

1 ’
L S it 2 (2 eI (1.4

The reduced transition matrix for pseudo-entropy is obtained as

1) = cipli,i'), |F)=dcli,i'y;  Tpp= S de > i i) (G,

1,4 zz i,

1 " N
T}ﬁ[ = ﬁ (ch,ilcj’i/) ’Z> <j’ . (444)

It is clear that the time evolution operator with projection (4.43) is derived from the pseudo-entropy
reduced transition matrix (4.44) by restricting the final state to be the time-evolved initial state,
ie. |[FYy =U(t)|I).

4.3.1 The time evolution operator and the transition matrix

With a single Hilbert space, the structure of the reduced transition matrix appears different in
detail from that of the reduced time evolution operator. This distinction is evident in bipartite
systems from , , and . However, there should be a close connection between the
time evolution operator and the transition matrix, as both pertain to time evolution—particularly
when focusing on final states as time-evolved initial states.

Towards studying this, let us first recall that a special class of states comprises thermofield-
double type states |I)rrp = >y ¢k ry|k, {k}), with only diagonal components (a further special
subclass comprises maximally entangled TFD states, with all ¢, (4, equal).

Towards mapping time evolution and the transition matrix, consider doubling the Hilbert space
at both initial and final times: i.e. extend the Hilbert state 57 = J# to 4 ® 5%, where the Hilbert
space % is an identical copy of 7. Now consider thermofield-double type initial and final states:

W) =Y el linli)e,  |or) =Y el i), (4.45)
i i
where {|i)} is a basis of states. The (un-normalized) transition matrix is

Trir = [YF) (Y1) = ZCF T li)aliy2 (il (4.46)

Performing a partial trace over copy-2 gives

Trs Ty = ZcF D 1iyy (il (4.47)
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For this to equal the time evolution operator, we require

Try Tyr = U(L) = Z e~ Bt 13 (i] = cFel* = emiEit (4.48)

A “symmetric” solution is

of =B ) = 3B i
el = el ) = 37 e B2 i) i) (4.49)

These can be regarded as obtained from a continuation S — it of the usual finite temperature
thermofield-double type states e=#%i/2|i)|i). There are of course less symmetric solutions ¢!, ¢,
describing the initial and final states. However the symmetric solution reduces to ordinary en-
tanglement when the initial and final states are the same, i.e. [¢)5) = [F) (i.e. at t = 0), the
transition matrix becomes the usual density matrix Ty = [¢1)(11| = ps for the state [¢r). Thus
the time evolution operator can be regarded as a particular reorganization of the transition matrix
appearing in pseudo-entropy.

It is worth noting that for systems with infinite towers of states, the trace of the time evolution
operator contains highly oscillatory terms and therefore requires a regulator to be well-defined.

This will be seen explicitly in the case of the harmonic oscillator later; see (4.70]).

Single qubit: This simple case serves to illustrate the above. In this case (described by (4.53))),
we have H |1) = F; |1), H |2) = E5|2), with H the Hamiltonian. Let us take

W)= e ) @)y, )= Y e 3 m), ©m), . (4.50)

n=1,2 m=1,2

Here the subscript 2 stands for the second auxiliary system with the identical Hilbert space 723.

Then the unnormalised transition matrix T' = [¢r) (7] is

—i(En+Em)t
Tpir = |[vr) (Y1| = Z € 2 [n)y [n)s (mly (mly (4.51)
n,m=1,2
Taking a partial trace over the second component gives
F|I—T7"2 Trir) = Z e Entiny (n|, = e "H (4.52)
n=1,2

thus obtaining the time evolution operator. This illustrates the general discussion earlier in this

simple case.

4.4 Time evolution operator, entanglement: examples

In this section, we study various examples of finite quantum systems to explore the entanglement

structure of the time evolution operator.
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4.4.1 2-qubit systems

For a 2-state system,

H|k) = Eylk), k=1,2; k) r = [k(t)) = e P E)p . [(1]2) = 0] (4.53)
we obtain p;(t) using (4.38). Now, imagining a 2-spin analogy |1) = |++), |2) = |——), performing
a partial trace over the second spins gives

1 .
pi = m(|+>P<+|P+6w|—>P<—\P)7 0 =—(E2— Ent,
1 1 1 1
_ A Ay
Sa=—tr(pf logpi’) = “Tic® log T5c? 15c® log = (4.54)

so the von Neumann entropy, recast as a + «*, is real-valued in this special case. We see that S{‘
grows large as 0 — (2n + 1)m. Further pf‘ and S{‘ are periodic in € and so in time ¢ (simplifying
S shows terms containing log(ew/ 2) which we retain as it is, rather than %, so as to avoid
picking specific branches of the logarithm, thereby losing manifest periodicity; within one 6-cell the
simplified expression for S/* coincides with the corresponding one in [227]).

Now consider two qubits, each being |1), |2), with a more general Hamiltonian
H = Eyi[11)(11| + E22[22)(22| + E12(]12)(12] + [21)(21]) (4.55)

that is diagonal in this basis. It is reasonable to take F1o = E51. So the normalized time evolution

operator ([4.38) becomes

iBt (112) (11] 4 €1 |22)(22] + €2 (|12)(12] + |21)(21])) |

e "7 e
Pt = Z Zk[ o— Bt |Z]><Z]| = 1+ eif1 + 2¢i0 )
,J

91 = —<E22 — Ell)t, 92 = —(E12 — E11)t . (456)

(At t = 0, the #; vanish and this is the normalized identity operator.) A partial trace over the 2nd

component gives the reduced time evolution operator,

1

= m((l + )1 (1] + (e + 6192)|2><2|) (4.57)

A
Pt

which generically has complex-valued von Neumann entropy. It is clear that this matches ordinary
finite temperature entanglement, except with imaginary temperature 5 = it.

Now let us impose an exchange symmetry |1) <+ |2): this occurs for instance if we consider two
spins |+) with nearest neighbour interaction H = —J sisz. This restriction now implies Fyo = F11
thereby reducing to earlier, with just one nontrivial phase, giving real entropy.
Qubit chains: In Appendix[6.9] we study finite and infinite chains of qubits with nearest neighbour
interactions, towards understanding the reduced time evolution operator for a single qubit, after

partial trace over all other qubits. This also reveals interesting complex-valued entropy in general,
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obtainable as a finite temperature system but with imaginary temperature. We also find a real-
valued slice when the system enjoys |1) <+ |2) exchange symmetry.
To illustrate obtaining the time evolution operator (4.56) from the doubled transition matrix

as in (4.48), , we write
_iEnmt i Enmt
[Wr) = Y e 2 Inm), @ [nm), [Wry = e 2 [nm); ® [nm), . (4.58)

n,m=1,2 n,m=1,2

Then the unnormalized transition matrix T' = [ir) (11| after partial trace over the second compo-

nent gives

_iEpmt _iqut .
T}u = TI"Q( Z e 2 e 2 |nm)|nm),y (pqly <P(J|2> = Z ¢~ Bnmt |nm), (nm|, ,

n,m,p,q=1,2 n,m=1,2

(4.59)

so this reduced transition matrix is the same as the unnormalized time evolution operator.

Mutual information

Mutual information defined as I[A, B] = S[A]+S[B]—S[AUB]| can be studied for the time evolution
operator as well. In the general 2-qubit case , , above, we can calculate p} = Trop; and
p? = Tryp;, which then leads to the von Neumann entropies S} and S? respectively. The time
evolution operator p; itself leads to Sy = —tr (pt log p¢). It is straightforward to see that ,0} 2 are of

the same form as p{' in (4.57)), which alongwith p; in (4.56) gives

19 14+ 6i92 1 + 6i92 eiel 4 ei@g 61‘61 4 ei@g
S = Tt o O T 0 o T 11 o 2a OB T gty oais
1 1 et et
St = T 120 BTt 2B | 1 g i 1 2e@ 8T ot oal
2€i92 67;92
T d e 200 08T it o (4.60)
so the mutual information is
I[A,B] =S} +S? -5, . (4.61)

In general this is nonzero and complex since the entropies are complex in general. However there

are special cases: for instance if all energy eigenvalues are identical, then

012=0 : S?=log2, S, =2log2 = I[A,B]=0, (4.62)

although the time evolution is nontrivial since each phase e ** is nonzero.
Likewise the 2-state subcase is obtained by setting 2 = 0 which gives St1 ’2, S; of the same
real-valued form as in , so I[A, B] = S}.

These expressions above can also be viewed as arising from the finite temperature results for

inverse temperature 8 continued to 8 = it. From that point of view, the high temperature limit
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B — 0 gives vanishing mutual information: this limit has SFE; — 0 which is mathematically
equivalent to the 6 o = 0 subcase earlier, with /[A, B] — 0. In the present context, this is ¢ — 0,

and we again obtain vanishing mutual information, I[A, B] — 0.

4.4.2 2-qutrit systems

Consider now two qutrits, |7), ¢ =0, 1,2: the Hamiltonian (in eigenstate basis) and the normalized

time evolution operator are

H = ZEijlijo! : Eij = {Eoo, Er1, B2, Eo1, Eo2, E12} (4.63)
e*iEijt e*iEijt
Pt = Zzg efiEijt |Z]><Z]| = e—iEoot + e—iEnt + e—iEQgt + 2e—iE01t + Qe—iEozt + 2€—iE12t |Z‘7><Z‘7|’

again with E;; = Ej;. The reduced time evolution operator tracing over the second qutrit is
1 A
A _ kl . A —tEijt\ |\ /s
(pi)ij = (P)ijrad™ 5 pp = S e il Z (Ze )il (4.64)
) 1=0,1,2 7

In general this leads to complex-valued entropy as before, with multiple distinct phases. Imposing
exchange symmetry between the qutrits, i.e. |0) <> |1) > |2), this reduces to a single independent
phase controlled by —(FEp; — Ego)t which then gives real entropy.

4.4.3 'Two uncoupled oscillators

We consider two uncoupled harmonic oscillators: the Hamiltonian is
H = ZEmm |1, n2)(ng, nal, Epin, =w(ng +n2+1). (4.65)

The normalized time evolution operator then becomes

o—iBnynyt

=2 S e Bt [n1, m2)(n1, nol (4.66)

The normalization evaluates to

—iEn not _ _ —iwt —iwnit _—iwnat __ e—iwt
122:(2 m2t = e 122:@ e 2 _m. (4.67)
Now, tracing over the second oscillator, we obtain
M o0 e—iwnlt
=S =S ) (4.68)
t 7;0 nzll/(l_e zwt)
with the von Neumann entropy
A e—iwnt e—iwnt _ it iwt e—iwt
St =-— Z 1/(1 — e—iwt) log 1/(1 — e—wt) — —log(1—e™") + 1 _ o—iwt ° (4.69)
n
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which is the usual entropy for a single oscillator at finite temperature with § = ¢t. In general this
is complex-valued. The zero temperature limit gives S ~ BE e~ ¥ which here gives S ~ itw e ™.
In evaluating the normalization , it is important to note that this sum over the infinite
tower of states (and similar quantities involving any infinite tower of states) is not strictly conver-
gent as an infinite series since this complex expression is highly oscillatory for high energy states,
although the sum and its closed form expression are formally true. This is also true for the single
oscillator expression obtained as the reduced time evolution operator, whose normalization
is >, e~wmt = 1/(1—e ™). Towards rendering this well-defined as a series, one can introduce a
small regulator either in w or in ¢ (giving time a tiny regulating Euclidean component) which then
makes it converge: e.g. a small Euclidean time component gives
Z e twna(t—ie) _ Z e iwnit gmniwe 1 omiet=io) 6—1iw(t—ie) , (4.70)
ny ni
which defines the sum. An alternative way to view it is to start with the (convergent) finite
temperature partition function ), e PEn and then perform analytic continuation to imaginary
temperature 3 = it.
It is also interesting to study two coupled harmonic oscillators with the Hamiltonian

1 k k
H = §(p?4+p23)+51(x?4+x23) + 52(1’,4—3313)2 ) (4.71)

We describe this in detail in Appendix[6.10} The resulting entropy from the time evolution operator

can be interpreted as arising from an imaginary temperature.

4.5 The time evolution operator with projections

As we have seen, the entanglement structures arising from the time evolution operator involve the
entire space of states, as the time evolution operator behaves like a full density matrix. To better
understand its various components, it is desirable to isolate a “part” of the time evolution operator.
This motivates appending projections onto individual states.

With this in mind, we now consider the time evolution operator along with a projection operator

onto some state |i), as in (4.39):

ol — peli) (il |fLa) (]
b Tr(pei)(al)  Te(lf(2)) ()

(The projection here is from the right: at the calculational level, projecting from the left is similar

|fli]) = e7"M]i) (4.72)

but leads to complex conjugate expressions in general.) The state |f[i]) is the final state obtained

by time-evolving the initial state |i). If |i) is a Hamiltonian eigenstate, then p|ti> reduces to just

a single component |i)(i| (the phase coefficient cancels upon normalizing), i.e. the usual density

matrix for |7). This is also true at ¢ = 0 for a generic state |i): here pp\t:o = Trl(i|>i<>i<|i|) which gives

ordinary entanglement structures at ¢t = 0.
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For a generic state i), we obtain (4.43)). As a simple concrete example, consider the 2-state
system (4.53|) earlier with a generic initial state:

i) =) +eaf2) (el +lel=1) = |fli]) = e P + ere PH2)
ot) = N7 (Jea PeT 1) (1] + [eaPem2112) (2] + encse™ P 1)(2] + cacteEH (1)), (473)

where N' = Tr(|f)(i]) is the normalization. Now taking |1) = |++) and |2) = |——) and performing
a partial trace over the second component gives
li),A _ 1 ( 2 2 0| _> 0= —(Ey— E )t
Pt ‘61‘2+‘C2‘2€i0 ’Cl| |+><+|+|62| € | >< ’ ) ( 2 1) )
) 2 | |2 |02|26i0 |02|2ei0
T Y 1 a 1 —. (474
U T TP el el el P + P Flap+igre 4T

At t = 0, the von Neumann entropy above is ordinary entanglement entropy for the generic state
|i) (obtained from p4 = Trp |i)(i|). For general timelike separation ¢, the entropy S, is real-valued
only if |c1|? = |ca|?, i.e. maximal entanglement at t = 0 (or § = 0).

Consider now two qubits, each |1),|2), with a general Hamiltonian as before. For a

generic state

Iy =>cylif) (4.75)
ij

with the basis |ij) = {|11),]22),|12),|21)}, and the time evolution operator with projection can be
evaluated as (4.43). Performing a partial trace over the second component here gives

|n,A  _ E,t
Pt a Z |C]|2(3*zE”t Z chckj Y ‘><k|

i,k=1 7

1 » p
= Z |C..|2e—iEijt ((’011‘23 ZE11t+|012’26 zElgt)H)(l‘
ij 1Cij
+ (ennche 0+ cracspe ) 1)(2] 4+ (carefie P! 4 eanctpe ) 2)(1

+ (|621’2€_iE12t + ‘022|26_iE22t) |2> <2‘) (4.76)

At ¢t = 0, this is ordinary entanglement for the generic state |I). There are special subcases with
interesting structure, some of which we will discuss soon.
For 3-qubits with Hamiltonian (C2|) with energies FE;;, for eigenstates |ijk) (alongwith the

symmetry-based simplifications there), we obtain

9 2
. ) Iy 1 * —iB; ikt
Z cijklijk) : Py = —ryo Z CijkClmne " O* |1jk) (lmn]
i k=1 Zijk|ciik|2e ot i.jiklm,n=1 " |
|I),A . —iFE; ikt
s > (S e il a7
Zz]k ’Cz k‘ze gkt j,m=1 1 o

where the last line is the reduced transition matrix for the middle qubit, arising after a partial

trace over the 1st and 3rd components (ptA)jm = (pt),;jk,lmnéilék”.
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4.5.1 Thermofield-double type states

It is interesting to focus on thermofield-double type initial states with only “diagonal” components:
then for 2-qubits, using (4.76|) we obtain

2
.. 1 . Bt
‘I> = Z Cii|’LZ> : pLU == Z CiiCipe ZE“t|ZY/><kk;|,

i=1,2 2 e e~ B ik=1

\UA 1 2 —iF1t 2 —iFoot )
Pt ‘011’26—2'E11t+’622‘2€_Z‘E22t<‘611| e |1)(1] + |coz|’e 2)(2]) . (4.78)

This is identical to (4.74). To elaborate a little, the initial state is [I) = c11]11) + ¢22|22) and its
time-evolved final state is |F) = cij1e " F1111) 4 cooe™F22¢|22), and the reduced time evolution
operator with projection, pP’A above, is the normalized reduced transition matrix for |I), |F),
with the corresponding (in general complex-valued) pseudo-entropy (4

Now restricting further to maximally entangled states with |011\2 |022|2 = 1 simplifies this
to just a single nontrivial phase €* W0 — ¢mIAEt where AE = Foy — Fiq, thereby leading to the
entanglement structure of the time evolution operator for the 2-state case, i.e. Stm’A =

-7 +1ei@ log 7 +1ei6 -3 +;_w log ; +el_,-9. The states in question here can be regarded as maximally

entangled Bell pairs and the entropy can be regarded as pseudo-entropy for the Bell pair initial

state |I) and its time-evolved final state |F'). As noted there, this is a real-valued entropy, oscillating

. . T . . . _ (2n+D)w
in time with periodicity set by AFE, growing unbounded at specific time values where ¢ = *={7~.

Note also that specific time values t = 2”” lead to the minimum value S4 = log 2, which is simply
the ordinary entanglement entropy of the maxunally entangled initial state. The fact that this time
entanglement entropy can be unbounded is a novel feature compared with ordinary entanglement
entropy for ordinary quantum systems.

For an n-qubit system comprising basis states [{i1,...,%,}), with iy = 1,2, the time evolu-
tion operator with projection onto generic initial states gives complicated entanglement structure.

However projecting onto thermofield double type initial states, we obtain

1) = Z ciilii. i)y - p = S o z|2e T Z i, alPe T Ftiy @, (4.79)
which is identical to the 2-qubit case. It is clear that any qubit system has identical entanglement
structure for the time evolution operator with projection onto thermofield double type states. Now
if we additionally restrict to maximal entanglement, we have both |c;;. ;|? equal so |c;;. i|? = %
This again contains just one nontrivial phase thereby leading to the entanglement structure of the

time evolution operator for the 2-state case, i.e. (4.54]).
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4.6 Time evolution operator, normalized at ¢t =0
In this section, we will discuss aspects of the time evolution operator with normalization at ¢t = 0
(rather than at general time t), following [224]. This gives

Ut
pet) = Trz/(,()o) = pt=trgp = Sa=—tr(plogp') . (4.80)

The normalization ensures that we obtain ordinary entanglement structures at ¢ = 0. In this case
Tr p(t) = 1 at t = 0 but not at general ¢. This gives quite different entanglement structures, as we
will see.

Since U(0) = > ; [I)(I| = 1 i.e. the identity operator made up as a sum over all eigenstate
projection operators, the normalization factor is Tri/(0) = N, the dimension of the Hilbert space,

constant in time. Thus for a general bipartite system we obtain
1 , 1 ,
0(t) = ~ ST it V6| - ppt = ~ S e )iyl (4.81)
i,/ i if
differing from (4.42]) only in the normalization. A general 2-qubit system (4.55)) now gives
1 .
) = 5 e P i) i (1.5
ij
and taking a partial trace over the second component gives
1 . A A A
PS’A _ Z ((e—zEut + e—zElgt)|1><1’ + (e—zEzlt + e—zEzzt) ’2> <2|)
Sto,A _ _i(e—iEnt n e—iEmt) log (i(e—iEnt 4 e—z‘E12t)>

- i(e_w”t + e‘iEz?t) log (i (e‘iEﬂt + e_iEm)>. (4.83)

In general S,? A s a complicated complex entropy. However there are special cases. If all energy

values are the same, this simplifies to

e*’iEot 0.A e*iEot
Ej=FEo:  p=—7—) lidigl, p'"=—5— > Il
ij i=1,2
1 .
SS’A — e Eot log (2 ’E°t> = (log2 + iEpt) e~ tEot (4.84)

Appending a projection operator for a state |i) as in sec. we obtain

0l ARl FEI@)YGL [l )G
' Te(of i) Gl) — Tr@O)a)Gl) — Tr(li)(l) °

since U(0) is the identity operator. This is similar to (4.39), but differs in normalization. So if

the initial state is unit-normalized, the normalization factor is a trivial 1. This is not ordinary

(4.85)
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entanglement even if the state is an eigenstate since the nontrivial time evolution phase remains.

For instance a 2-qubit system (4.55)) gives

ofiy _ UBNH(AL] _

i)y =|11) :  p," = (D 1) — e BNt 11)(11, (4.86)

after projecting onto a simple eigenstate |11). The partial trace then gives

0,)%),A 0

Py = Tert"i) = Pl = S?’|i>’A = —¢ Bt Jog (e_iE“t) = iEyte Eut  (4.87)

The normalization at t = 0 distinguishes this from ordinary mixed-state entanglement structures
at finite temperature, though it still bears a resemblance to imaginary temperature structures.
Although it might seem natural to normalize at general ¢, part of the motivation here, following
[224], is that the time evolution only enters via the final state in (4.85)), which apart from this is akin
to the pseudo-entropy , . This appears to help isolate the timelike characteristics, as in
(4.87) where the leading time-dependence is manifestly pure imaginary: it would be interesting to

explore this further.

4.7 2-dim CFTs and timelike intervals

The studies of dS3 extremal surfaces in [221] 222] 223, 224], led to studies of timelike entanglement
in ordinary 2-dim CFT (in particular (4.95)): we now elaborate on this (there are parallels with
some discussions in [236] which appeared as we were finalizing this paper).

We want to consider the time evolution operator as a density operator towards exploring

entanglement-like structures: towards this we define

pl{d(@)}{o(")}] = th ({o(2)}le ™ [{g(2")}) (4.88)

with Z, = Tr e "*# . However rendering this well-defined is best done in the Euclidean path integral

formulation, defining the ground state wavefunction for the configuration ¢(z’) as

tp=—0o0 E=—00

d(tp=0,x)=¢(z’) tp=0
U[{p(a")}] = / DgeF = /t Dée 5= [[o(s(ts = 0,2) — ¢(a’))  (4.89)

with Sg the Euclidean action for the field ¢(tg,x) (we model this discussion along the lines of
[36, 37, 96], and [259]). Now the reduced density matrix for the interval A is obtained from
pelpo(x)|pp(2")] above by performing a partial trace over the environment B setting ¢o(x) = ¢j(z).

This becomes

tp=00
plo@)or [6(a)o-] = / Dg e 5@ T 8(6(0%,2) — $la)or) 5(#(0,2) = d(x)o-)  (4.90)

E=700 €A

In this form there is no sacrosanct meaning to what we define as Euclidean time: the differences

for a timelike interval only enter in the analytic continuation to Lorentzian signature eventually.
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For a free massless 2-dim scalar, the action is Sg = [dtgdz ((01,0)? + (0x¢)?) and Euclidean
evolution appears symmetric between tg,x. For the usual spacelike interval, the reduced density
matrix involves Euclidean time evolution along tg: for a timelike interval on the other hand, the
reduced density matrix involves Euclidean time evolution along x which is regarded as Euclidean

time now calculationally. So we have

PHo(tR)o+ [6(tn)o-] = o / T Doe St T 6(o(tm,0%) — d(tr)or) 6(6(tr,07) — B(tr)y-)

it Ja=—oo tpeA
(4.91)
Apart from x <> tg, this is equivalent to .

Let us now discuss this in terms of Hamiltonians for a free massless scalar: note that Euclidean
and Lorentzian times are related as tg = it. For the usual time coordinate t, the Hamiltonian
is H = [dz ((0:9)* = [dx (—(0iz0)? + (9,0)?): this is positive definite. Now com-
pactifying tg can be used to obtaln the reduced density matrix Trge # at finite temperature
for an interval with width Ax. With x taken as Euclidean time, we obtain the Hamiltonian
H, = [dtg ((0i,0)? — (0:6)%). Now compactifying = with periodicity 3, and considering a time-

like interval with width At, the reduced density matrix becomes

H, = [ dte (0,07 + 010) = i [ dt (020 + @10)?) = ~iHi]

pit = Trg e Petls = Trp el (4.92)

so that in terms of the positive definite Hamiltonian H,, this resembles a thermal reduced density
matrix but with imaginary temperature.

The usual replica formulation of entanglement entropy for a single interval proceeds by picking
some Euclidean time direction 7z and the interval Az = [u,v] on that slice, then constructing n
replica copies of the space glued at the interval endpoints and evaluating Trp’;. The reduced density
matrix for the ground state is formulated as above, via Euclidean time evolution, with appropriate
boundary conditions for the fields on the replica sheets. Then Trp’; in the replica space can be
mapped to the twist operator 2-point function at the interval endpoints which implement the
boundary conditions across the sheets. This finally leads to

(Az)?
> .

c
— _ i n _
Sa = 7llurn1 O Trp’y — 5 log (4.93)

€

The only data that enters this is the central charge of the CFT and the interval in question. When
we consider a timelike interval, the above formulation goes through with the only change being that
the Euclidean time slice we pick is the spatial slice = const with the interval being At = [uy, vy].
However now when we continue back to Lorentzian time, we must rotate u;, v; accordingly, so the
spacetime interval is

A? = —(At)? = —(vy — w)? (4.94)
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and the entanglement entropy becomes

c. AT ¢ (A2 e, At ¢,
Sa=glog— = clog—5— = zlog — + (i), (4.95)

with the imaginary part arising as im = log(—1). Note that imaginary values also arise in studies
of quantum extremal surfaces in de Sitter with regard to the future boundary [98, [127], stemming
from timelike-separations.

The discussions above are formulated in terms of Euclidean path integrals with an eventual
analytic continuation to obtain timelike interval entanglement. Along the lines of our finite quantum
system descriptions, one could consider Lorentzian time evolution explicitly. Towards this consider
a CFT on a cylinder, with time running along the axis. The Hamiltonian is H., = 7 (Lo +Lo— %)
and the unnormalized time evolution operator becomes e~ #evit ~ g2n "Nn| N, V(N | with ¢ = e~ 2%/
for both left /right modes, and the normalization becomes Tr g2=n"Nn = T[> 1_1qn (the &t factor
cancels with normalization). In the momentum basis, the time evolution operator is an infinite

sum of decoupled oscillators. Recalling the case of two uncoupled oscillators , tracing out
all higher mode oscillators leaving only the lowest frequency n = 1 oscillator mode naively gives
i don #n_q) In)(n| and S* = —log(1 —q) — qlliigqq, with appropriate limits as described after
. Also, along the lines of sec. we can study aspects of the time evolution operator along

with projection onto initial states. We leave these and related investigations for the future.

4.8 Time entanglement, time-dependent interactions

So far, we have considered time-independent Hamiltonians, where the time evolution operator can
be related to the thermal density matrix through the analytic continuation § — it. This aligns
with the expectation that time independence corresponds to thermal equilibrium. In this section,
we explore specific examples of time-dependent Hamiltonians. In such cases, we anticipate that
the time evolution operator will not admit a simple mapping to a thermal density matrix, as no
thermal equilibrium is present.

We obtain the time evolution operator in the interaction picture by solving the Schrodinger

time evolution equations, evolving the state by the time evolution operator

la, t5to); = Ur(t, to) |o,tosto); = D cij(t)|ij) - (4.96)

This enables to determine the time evolution operator, where |ij) are the eigenstates of Hp (and
to = 0). Our conventions are those of [261], with the interaction picture time evolution equations
of the form ih%CN(t) = ZM VNMeinMth(t) with wyy = Eny — Ey.

As a toy example, consider a 2-state system with states |1),|2), and energies Ej, Fy: then a

0-function interaction Vig = V§(t — €) (with € > 0 an infinitesimal regulator) gives the interaction
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picture evolution equations (with ¢; = %ci)

ihél = V12€Zw12t02 y ihéQ = Vglezwmtcl N

ihey (t) = VCQ(G) + ihcy (0) , theo (t) =Va (6) + ihCQ(O) , (497)

where the second line is obtained by integrating across the interaction support at t = e (and

iwizt

the phases e are trivial). Since the time dependence is only nontrivial for ¢ = ¢, we see

that ¢;(t) = ci(e), i.e. the coefficients remain unchanged for ¢ > e. Solving for ¢ (t), ca(t) gives
(28) =PI (2&8;) with generic initial state ¢1(0), c2(0), where the interaction picture time evolution

operator is py,; = —4 (J1) (1[4 3 |1)(2|++2)(1]+2)(2]) (this can also be seen to agree with time

V2
2

dependent perturbation theory). We now generalize this sort of delta-function coupling interaction
to a system of two qubits to study time entanglement.

Consider a simple system of two qubits with the time-dependent interaction
Vi(t) =V(t—e) (|11) (12] + [12) (11]), (4.98)

with an infinitesimal regulator € > 0 (so the impulse interaction is just after ¢t = 0). The Hamil-
tonian Hy before turning on the interaction (¢ < 0) has eigenstates |11), [22), [12), |21), and
eigenvalues E11, Foo, Fh2, Eo1 = Ej9, respectively. The time evolution equations for the coeffi-

cients (suppressing the phases), and their integrated versions, are (with 7 = 1)

Conlt) = Vot —enlt) ,  en(t) =iVt - den(r),
%621(15) =0 s %ng(t) = O,
= Cll(t) = 611(0) — iV 612(6) R 612(7f) = 612(0) — iV 611(6),
Cgl(t) = C21 (0) s ng(t) = 022(0) . (4.99)

We now note that the ¢;;(t) = ¢;j(e) for the impulse interaction, where ¢ > ¢, since there is no

nontrivial time dependence after ¢ = €. This then gives

Cll(t) = 1-{—1‘/2 (011(0) — 3V 012(0)) s Clg(t) = 1 +1V2 <012(0) — 3V 011(0)),
CQl(t) = C21 (O) s C292 (t) = 022(0) . (4.100)

This gives the interaction picture time evolution operator Uy (t,to) (with tp = 0 and ¢ > 0) which
maps (C“(t)) = U(t) (C“(O)) in the {|11),|12)} subspace, using (4.96). Then the time evolution

Clz(t) C12(0)
operator U(t) = p; in the Schrodinger picture is (with p; the normalized one)
. 1 . . .
pr = e oty (t) = e (e*@EHt 111) (11| — iVe *Fnt 11) (12| — iV e~ 12t |12) (11
+ e F2t 12) (12| ) + et 21) (21] + e E22 |22) (22]
pr = Nvpe, Ny =Te(p) = (efiE“t + efiE”t) + e B2t oibat (4.101)

1+ V2

127



We now find the reduced time evolution operator by tracing out a qubit. pf* arises from tracing out

the second qubit in p;, and pf from tracing out the first qubit:

1 . . . .

Nyt = s (7™ e 1y 1] + (e 4 e ) j2) (2]
1 . . ,

Ny P = e (e_’Ent 1) (1] — iVe ®Ent 1) (2] — iV e ™E12t |2) (1]

TRt 2) (9] ) 4 et 1) (1] 4 P20 12) (2] (4.102)

Note that pft = pB for V = 0 is in agreement with sec. for the 2-qubit system. The entropy
associated with p{* or pP is complex-valued in general.

Consider now the same 2-qubit system but a more general impulse interaction
Vi(t) = Vét —e) (111) (12] + [12) (11] + |21) (22| + [22) (21]) . (4.103)

Using (4.96)), the interaction picture time evolution equations and the integrated versions are

%Cn(ﬁ) ==V (5(t - 6) 612(75) 5 %612(75) = =V (S(t - 6) Cll(t) s
%Cgl(t) = —V (S(t — 6) ng(t) s %622(75) = =V 5(t — E) C21 (t) s
= c11(t) = €11(0) — iV c1a(e) c12(t) = c12(0) — iV c11(e)
Cgl(t) = C21 (0) — iV 622(6) s 622(25) = 022(0) — iV 021(6) . (4.104)

These are the analogs for the interaction (4.103|) of (4.99) with the simpler interaction (4.98)). As
before, we have ¢;;(t) = ¢i;(€), t > €, since there is no nontrivial time dependence after the impulse
at t = €. Solving for ¢;;(t) leads here to the Schrodinger picture time evolution operator U(t) = p;

(with p; the normalized one)

. 1 . . ‘
pr = e U (t) = e (e*ZEHt 111) (11] — iVe *Fnt |11) (12| — iV e~ 12t [12) (11
+ e Pt 12) (12] + P12t |21) (21] — iVe P12t |21) (22|
— Ve it |99) (21| + e~iP2t |22) (22| ) :
B _ B 1 . . .
pr = Ny py Nyt =Te(py) = e I O (4.105)

Tracing out either the second qubit or the first gives pf or pP:

1 : : / ‘

ot = Ny g (70 TP 1) (1] 4 (7 4 e [2)(2) ).
1 : ; i '

pP =Ny g (€7 4 o720 1) (1] = V(e ™ 4 P 1) (2

_ V(emiBiat | =Bty |9y (1| 4 (e~iBazt 4 e~iBaat) |9) <2|). (4.106)

Note that here the ﬁ factors cancel with that in Ny (which is an accident; this would not

occur if the interaction strengths in (4.103]) were not uniformly V' for all matrix elements). As for
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(4.102), we see that these reduced time evolution operators are equal, pi* = pP, for V = 0, in
agreement with sec. [f.4] These give complex-valued entropy in general, although there are special
cases with real entropy: e.g. for E11 = F9y = Fj15 we obtain ptB = %(_}V_ilv) with eigenvalues
Mg = %(1 4+ V) : then the entropy S = — 3", A\xlog Ay becomes real-valued giving SP = log2 —
(1 +iV)log(1+14V) — (1 —iV)log(1 —iV).

We now look at this time evolution operator with projection onto some initial state, along the
lines of sec. First consider a thermofield-double type initial state [I) = > ,_; ,c;id) as in
sec. this gives (with A the normalization)

N iV e b2t
= 1+V2(pt|l><l|)‘vzo_'/v 1+ V2

+ clpe2|21) (11| + 1022|2]21><22\). (4.107)

Np I)(1] (|011|2|12><11| + c11¢3[12) (22

A partial trace over the second or first qubit gives, respectively,

iV e—iElzt

1 * *
pir=N173 e Py —NW(CH%IW\ + 011022!2><1|> :
B 1 B ZV e_iEut 2 2
ol =N 73 PPy = N o (len PR+ e P 1) 21) (4.108)

This thus leads to nontrivial contributions to the complex-valued entropy stemming from the im-
pulse interaction controlled by the strength V. For special cases the entropy is real: e.g. Fq; =
E2 = E12 with maximally entangled initial state c¢117 = coo = % gives pf}l = ptEfI = %(_}V_ilv)
with eigenvalues A\, = %(1 +iV) leading to real entropy SP = — 3", A, log Ak

This is essentially the pseudo-entropy for the initial state |I) = c11|11) 4 ¢22]22) and its time

evolved final state using p; in (4.105))

1

) = 5.1 =
) =5l = 157

(e—"EHtCH 11) + e~ B22t 0y |22) — iV e~ 1B12tey [12) — iV e_iE12t022|21>) :
(4.109)

If on the other hand, one considers some initial state within the {|11),[12)} subspace, then it
turns out that pf}l o |1)(1] while pfl has eigenvalues 0,1 (perhaps this is not surprising since any
state in this subspace is of a factorized form |[1)4(a|l) + b|2))p). This leads to vanishing pseudo
entropy for p;;‘I and pfl.

We have illustrated the time evolution operator and its time entanglement structure, focusing
on simple 2-qubit examples involving an impulse d-function interaction. We obtained the time
evolution operator by solving the time evolution Schrédinger equation for the state coefficients. The
time dependence of the interaction introduces a nontrivial dependence on the interaction strength
V', in addition to its dependence on the energy eigenvalues and the timelike separation ¢. Unlike the
discussions in the rest of the study, which involve time-independent quantum systems, no simple
continuation via some imaginary temperature exists here. It is likely that general time-dependent
quantum systems will exhibit similar features. Perhaps there are deeper ways to formulate timelike

entanglement that make a partial trace over time paths or histories more explicit.
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4.9 Discussion

We have explored various aspects of entanglement like structures with timelike separations arising
from the time evolution operator when regarded as a density operator, as discussed in [224]. There
are close parallels with pseudo-entropy [227] as we have seen. The entropy from the time evolution
operator alongwith projection onto some initial state as we have seen in sec. is identical to
pseudo-entropy for the initial state and its time-evolved final state. More broadly, there are large
parallels of the investigations here and in [224] with corresponding ones in [223, 236]. In general,
the non-Hermitian structures discussed yield complex-valued entropy; however, there are several
notable real-valued subfamilies, for example, , special cases of and , as well as
qubit chains (see App exhibiting the |1) <> |2) exchange symmetry, and so on. The behaviour
of this entropy is quite different from usual spatial entanglement entropy: for instance,
oscillates in time and appears to grow large at specific time values. Correspondingly at other
specific periodic time values the entropy acquires its minimum value, coinciding with ordinary
entanglement entropy for the initial state (see sec. in the context of thermofield-double states,
akin to Bell pair states). Overall these appear to be new entanglement-like measures involving
timelike separations, likely with many new aspects open for exploring further. (It is also worth
noting other work e.g. [262), 263, 264, 265], which may have bearing on this broad circle of ideas.)

Although a more detailed understanding and physical interpretation of time entanglement re-

main to be developed, mapping it to pseudo-entropy establishes connections with previously studied

quantities. Pseudo-entropy originates from the transition matrix 7p; in (4.41) and (4.44), which

is treated as a generalized density operator incorporating both a preparation state and a posts-
elected state. Related quantities include weak values of operators, defined as O, = Tr(’TF| I (’)).
In general, these weak values are complex-valued, which is unsurprising given that the transition
matrix is not a Hermitian object (in contrast to conventional Hermitian density matrices). See e.g.
[266] 267] for more on postselected states, conditional entropy and weak values (including some
experimental aspects). In the current context, components of the time evolution operator can be
isolated via projections onto specific initial states as we have seen in sec. this then maps onto
the corresponding pseudo-entropy. Thus time entanglement with projection onto initial state |I)
dovetails with postselected states being the corresponding time-evolved states. We hope to obtain
more refined understanding of these interrelations in the future.

The finite quantum systems we have examined permit analysis through Hamiltonian eigenstates,
making them inherently straightforward. Time-independent Hamiltonians enable the mapping of
the time evolution operator to a thermal density matrix via the analytic continuation 8 — it,
aligning with the expectation that time independence corresponds to thermal equilibrium. We
expect that in cases with nontrivial time dependence, these time-entanglement structures will
become more intricate with no natural imaginary temperature analytic continuation: along the
lines of studies of scattering amplitudes, we expect that analogs of the interaction picture will be

useful in organizing these time entanglement structures. All these are vindicated in the simple
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2-qubit examples with J-function impulse potentials (sec. , where we solve explicitly for the
nontrivial time evolution operator and the corresponding time entanglement structures. Related,
complementary studies (including holographic ones) appear in [223], [227]-[238]. We hope to report
further on these in the future.

Furthermore, recent studies have examined quantum entanglement in scattering processes from
both theoretical and experimental perspectives. Notably, key experimental results from the LHC
during 2023-2024 have confirmed the generation of quantum entanglement in high-energy scatter-
ing events. These include findings from the ATLAS Collaboration [268], the CMS Collaboration
[269] , and the CMS Update on the High-Mass Regime [270)]. These experiments reveal spatial en-
tanglement, inferred through spin correlations among decay products. However, they have not yet
measured timelike entanglement—such as entanglement between different temporal instances—or
entanglement characterized via pseudo-entropy across time evolution. On the theoretical front, a
number of studies have investigated entanglement in scattering processes, with notable contribu-
tions spanning both spatial and temporal aspects [271]-[276]. While most of these works focus on
spatial entanglement, only a few—such as [271] and [275]—explicitly address temporal entanglement
within the scattering framework. To date, no dedicated study has directly applied pseudo-entropy
to scattering amplitude matrices. Existing analyses of temporal entanglement typically employ
standard entropy measures—such as the von Neumann and second-order Rényi entropies—defined
via density matrices, rather than pseudo-entropy derived from transition matrices or the time
evolution operator. Our work, together with related research, seeks to establish a foundational
framework for applying pseudo-entropy to scattering processes through the use of the scattering
amplitude matrix or the time evolution operator. Further investigation into this direction remains
an open and important area for future research.

It would also be of interest to explore connections between the present work and the principle
of entanglement minimization, which has recently emerged as a promising bootstrap criterion (see,
e.g., [277]). Nonetheless, a natural extension of this work would be to define a timelike entanglement
power (EP) via the Schmidt decomposition of the time-evolution operator. This would yield a real-
valued quantity that characterizes the entanglement generated as a system evolves in time. Such a
formulation could offer valuable insights into the role of entanglement minimization within S-matrix
bootstrap frameworks. Moreover, it holds the potential to track the buildup of entanglement during
scattering processes—not only between asymptotic states but also throughout the interaction itself.
A detailed investigation of this direction is left for future work.

We now make a few remarks on de Sitter extremal surfaces anchored at the future bound-
ary, which have timelike components, in particular paraphrasing some discussions in [226]. The
dS/CFT dictionary [211] Zcpr = W4g implies that boundary entanglement entropy is bulk pseudo-
entropy (since a replica formulation on Zgcpr amounts to one on Wyg, i.e. single ket rather than
a density matrix). Among other things this leads to novel entropy relation/inequalities based

on the complex-valued dS extremal surface areas. This is put in perspective by comparing with
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time-entanglement /pseudo-entropy in qubit systems, using the analyses in this paper, in particular
sec. {5} this reveals striking differences for mutual time-information, tripartite information and
strong subadditivity (see sec.2.5 in [226]). The dS areas give definite signs for these quantities
relative to those obtained from time-entanglement/pseudo-entropy for qubit systems (with the fi-
nal state being time-evolved from the initial state). Since the dS areas are analytic continuations
from AdS, these differences are perhaps not surprising in light of the studies in [278] (which reveal
definite signs the AdS RT surface area inequalities compared with those for entanglement entropy
in qubit systems), but they are striking. Overall, the entanglement structures observed here arise
from timelike separations. We anticipate that this study, along with related ongoing research, will

provide deeper insights into both quantum information and holography.
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Chapter 5
Conclusion

In this thesis, we primarily explored various aspects of quantum extremal surfaces (QES) and holo-
graphic volume complexity within cosmological models that exhibit Big-Crunch singularities, all of
which can be represented as two-dimensional cosmologies. In addition, we investigated the struc-
ture of timelike entanglement by treating the time evolution operator as a density operator and
examining its connection with pseudo-entropy. Below, we summarize the key findings and results

of our studies.

In Chapter [2 we examined various aspects of quantum extremal surfaces (QES) in cosmolo-
gies exhibiting Big-Crunch singularities. These cosmologies include isotropic AdS Kasner, general
Kasner cosmologies with holographic interpretations, and null Kasner cosmologies obtained via di-
mensional reduction from higher-dimensional spacetimes. To gain insights into these cosmologies,
we computed the quantum extremal surfaces by extremizing the generalized entropy, Sgen, Whose
extrema yield the QES. The generalized entropy comprises two components: a classical term and
a quantum bulk entanglement entropy term. For simplicity, we assume that the bulk matter is in
its ground state—a reasonable approximation in the semiclassical region far from the singularity—
modeled by a two-dimensional conformal field theory (CFT3). In the AdS Kasner case, the quantum
extremal surface is consistently driven away from the near-singularity region. The QES, denoted by
(r«, t«), asymptotically approaches r, — oo and ¢, — oo with ¢, ~ ty. To regularize the extremiza-
tion solution, we introduce a spatial cutoff r, = R — oco. This procedure allows us to associate the
temporal location of the QES with the observer’s time slice ¢y, implying that the QES lags behind
the observer O (situated at tp) in the direction away from the singularity. Moreover, we observed
that the generalized entropy decreases over time as the singularity is approached, a behavior that
mirrors findings in holographic complexity studies of these cosmologies and suggests a state of low
complexity near the singularity. Although an island solution initially appears to emerge, a detailed
analysis of the extremization equations reveals it to be inconsistent. This observation is consistent

with existing literature, which shows that these cosmologies lack horizons and are not entangled
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with “elsewhere.” General Kasner cosmologies exhibit similar behavior.

In the next section, we analyze a class of null cosmologies that admit a two-dimensional null
reduction. These null cosmologies encapsulate holomorphic structures, as suggested by their null
backgrounds. Interestingly, the quantum extremal surface in these cases can approach the null
singularity region. However, the on-shell generalized entropy becomes singular in this regime, ren-
dering the semiclassical analysis unreliable near the singularity. Nevertheless, the semiclassical
analysis provides an intriguing result: the quantum extremal surfaces tend to approach the singu-
larity. To probe the near-singularity regime more reliably, a more fundamental framework—such
as string theory or a complete theory of quantum gravity—is required, as the semiclassical approx-

imation breaks down in this region.

In Chapter 3| we analyzed the holographic volume complexity for various families of holographic
cosmologies with Kasner-like singularities, specifically focusing on AdS Kaner, hyperscaling vio-
lating, and Lifshitz geometries. First, we derived the extremization equations by extremizing the
codimension-1 volume functional for these cosmologies. Subsequently, we conducted an extensive
numerical analysis of these equations, employing appropriate boundary conditions. Our results
reveal that the complexity surface consistently bends away from the singularity, transitioning from
spacelike near the boundary to lightlike in the interior. Notably, as the boundary anchoring time
slice approaches the singularity, this transition to lightlike becomes more abrupt, with the spacelike
region diminishing. In the vicinity of the singularity, the complexity functional receives negligible
contributions from the lightlike region, resulting in a vanishing complexity near the singularity.
This suggests that the dual Kasner state exhibits low complexity, corresponding to an effectively
negligible number of qubits, which is consistent with the spatial volume undergoing a crunch. For
AdS Kasner and isotropic Lifshitz Kasner cosmologies, the holographic complexity exhibits linear
scaling with the anchoring time slice ¢y3. In contrast, hyperscaling violating theories demonstrate
a nonlinear dependence of holographic complexity on the anchoring time slice. Additionally, our
study further refines prior investigations of extremal surfaces for holographic entanglement entropy,

revealing that their behavior in the IR limit aligns closely with that observed for complexity.
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In Chapter [4 we explored various aspects of entanglement like structures with timelike separa-
tions, by treating the time evolution operator as a density operator. The relationship between the
time evolution operator and the reduced transition matrix is detailed in Sec. Furthermore,
this approach has a close connection to pseudo-entropy. We analyzed several examples of simple
quantum systems to investigate the time entanglement structure arising from the time evolution
operator. In general, the corresponding entanglement entropy is complex; however, certain sub-
families exhibit real values, which are explored in detail in this study. A key finding is that time
entanglement matches the usual finite-temperature entanglement entropy evaluated at an imagi-
nary temperature, with 5 — it, for systems with time-independent interactions. Additionally, we
examined the entanglement structure of the time evolution operator when projected onto an initial
state. This is exactly equivalent to the transition matrix, where the final state is time-evolved
from the initial state. In this case, the corresponding entanglement entropy is identified as the
pseudo-entropy. We further extended our analysis to systems with time-dependent interactions,

which introduce a more intricate time entanglement structure.
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Chapter 6

Appendix

6.1 Computation of renormalized on-shell gravitational
action for two-point correlators in AdS;,

Consider a free scalar field ® in Euclidean poincare AdS;.1, the action is given by

1
5= /dd“x V79N Dy DN D (6.1)
The equation of motion is
LA+, (zlfdazgz)k) — 22520 — m2R%g, = 0. (6.2)

The solution for the scalar field ® reads as:

Oy (2) = 2Y2 [B(k) L, (k2) + A(k)K,(k2)] 5 v =4 Cff +m2?R? . (6.3)

I,(kz) diverges as z — 00, requiring that the solution of ® is regular in the interior as z — oc.

This forces the condition B(k) = 0, @, is then expressed as
By (2) = A(k)z2 K, (kz) . (6.4)
The scalar field ¢ takes the form
®(z,x) ~ / dik € 292 A(K) K, (k=) . (6.5)

We now normalize the scalar field such that ®(z = ¢,x) = A(z), and ¢o(k) = A(k). @ is then
expressed as:
do(k)22K, (kz)

€12 K, (ke) (6.6)

O(z,x) ~ /dke"k“

138



( can be recast as:

1

5= /dd—i-lx (00 (VG g N BN D) — DDy (v/g g™ N OND)] . (6.7)

After using the scalar equation of motion for ®, obtaining S, 5[®.] as:

S, [] = _% / 'z Dy (v/5 9"V BOND) . (6.8)

Extracting the relevant part of the action (source ¢o(x) dependent) which contributes to the two-

point function after performing the integral, S, s is then given by

1 z=¢€
Sosld] = — / d'x (/5o 0.0~ . (6.9)

After putting the metric coefficients, the above expression becomes

1 d—1 2=00
Sosl®d = /d% ﬁd_l q>azq>} ,

y Rdfl
~ [ ey [@0:9) (6.10)

Z=€

Here, we are interested in the on-shell S, s with the source ®y(x). Therefore, dropping a term at
z = 00, which is not relevant in computing the two-point function. We now insert the classical
solution ( into (6.10]), after some simplification, S, s[®.] takes the form as follows:

Socfed ~ [ o0 b 2 ( i((’;?] | (6.11)

We can compute the on-shell action S, s explicitly for AdSy using v = %, d=3, and

T _, 1
K%(z) =\/5,¢ (1 + z> . (6.12)
Then, the on-shell action reads as:
k‘2
So.s[®c] ~ R? / d*k ¢o(k)do(—k) [—6 - k:3] . (6.13)

First term in ( [6.13)) is divergent, it can be cancelled by adding a local-counterterm in ( |6.13) of
the form, Scounterterm ~ f d%ﬁ 4 85 0j¢o. The renormalised on-shell action is given by:

Srer-(@.] ~ R? / d*k ¢o(k)po(—k) k> . (6.14)
Two-point correlator is then computed as:

(O(k)O(=k)) ~ K3 (6.15)



In the position space, the two-point correlator is expressed as:

1

OOO) ~ 75 (6.16)
In general dimensions, the two-point correlator is given by:
1
(O(2)0(0)) ~ EES (6.17)

where A =v + % is the scaling dimension of the operator O.

6.2 Black hole near-horizon geometry and Rindler time

Consider the metric for a 4-dimensional black hole given by:

dr?

f(r)
where f(r) is the black hole’s redshift factor, and f(rj) = 0 defines the horizon at r = rj,. Here,

d? represents the metric of a unit 2-sphere.

ds* = —f(r)dt* + + r2d0? (6.18)

Near the horizon (r =~ rp,), f(r) can be expanded as:

fr)y = f'irp)(r —mp). (6.19)
The surface gravity « is defined as:
/
= L) (6.20)
2
Thus, the function f(r) can be approximated as:
f(r) = 2k(r—mrp) . (6.21)
Substituting this into the metric (6.18]), we obtain:
ds* ~ —2k(r —rp,) dt* + _drt + r2dQ? (6.22)
2k(r —rp) ’ '
To further simplify the metric near the horizon, we introduce a new radial coordinate:
2
p=1/—(r—rn), (6.23)
K
and rescale the time coordinate as 7 = kt. Substituting these into the metric, we get:
ds® = —p?dr? + dp® + r(p)2dQ>. (6.24)
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For the Euclidean near-horizon geometry, we perform a Wick rotation, 7 — irg, where 7 is

the Euclidean time. The metric becomes:
ds® = p*dri + dp* + r(p)?dQ?. (6.25)

To avoid a conical singularity at p = 0, the Euclidean time 7 must be periodic with a period:
2
TR ~Tg + —. (6.26)
K
This periodicity implies that the surface gravity « is related to the Hawking temperature Ty
of the black hole:
K

Ty = 2
= o (6 7)

The near-horizon geometry of a black hole (non-extremal) takes the universal form (6.24]), where
the two-dimensional part describes the Rindler wedge (a region of Minkowski space). In this setup,

7 corresponds to the Rindler time, and the metric:
ds* = —p® dr* + dp*, (6.28)

describes the Rindler patch, with a uniformly accelerating observer at a constant p.

6.3 Some details: 2-dim gravity, extremal surfaces

The equations of motion following from the 2-dim effective action (2.2)) are

9w V2 -V, Vb + I (?(8\1})2 i U) _ ?auqfayqf —0,

ou 1 ou

R — 5~ 5(a\y) , fa W(V=g 60) = = =0 (6.29)

In conformal gauge g, = ef N these give

(ir) 00,6 — L f'0u6 — L o6+ D =0,

(rrttt) -2 — o+ fOrd+ 'O — %(@)2 - %(\1/')2 o,

(rr — tt) —02¢+ 029 +eU=0, (6.30)

.._//_1_.2 /Q_faU_

(¢) (f=1" 5 (=(¥)"+(¥)%) ea¢—0,
(V) —0($0y ) + Oy (40, V) — ef gg =0.

The severe (singular) time-dependence in the vicinity of the singularity implies that time-derivative
terms are dominant while other terms, in particular pertaining to the dilaton potential, are irrele-

vant there: solving these leads to a “universal” subsector

dp~t, ef ~tt ¥ ~t a=—, (6.31)
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which governs the cosmological singularity. Analysing these equations in more detail can be done
using the ansatz , giving e.g. the AdS Kasner cosmology as well as various others, some
of which have nonrelativistic (hyperscaling violating Lifshitz) asymptotics. For instance, flat space
has U = 0, giving

o=t ds?=t"(—d? +dr?), eV =t". (6.32)

With t = TPt these are the reduction of “mostly isotropic” Kasner singularities ds? = —dt? +
t2P1dx? + 22 > dz?. Hyperscaling violating cosmologies comprise backgrounds (2.3)) with expo-

nents and parameters:

_ d%» Y — 71 . — ;i — = 20
U(¢’ \If) 2A¢ e , A 2(dl + 1 9)(dz 0)’ vy \/de(dz — 9)(_0) 9
—(d; = 0), bzm(ld_W’ B =-my,

2 2(d; — 1
k=1, a:%ﬂ a:—yiﬂw+-(d). (6.33)

Here 6 < 0, v > 0. The higher dimensional backgrounds here can be obtained as certain kinds of
cosmological deformations of reductions of nonconformal branes down to D dimensions.

Still more complicated hyperscaling violating Lifshitz cosmologies (with nontrivial Lifshitz ex-
ponents z as well) and their 2-dimensional avatars were also obtained in [II3]: these have a
more complicated dilaton potential. These are more constrained, requiring the conditions m =
—1, a = —b — 2, as well as further relations between other exponents. A simple example has
0=0,2=2,d;,=2,and k=1, m=—1, a:%, b:—%, 8 = —a =1, and the dilaton potential
is U= ¢!/2(=3+ g ?7).

Extremal (RT/HRT) surfaces: The area functional

Va.—
- 4C§d ; / \/ (dit1 /d = (0:t)?) + (Oy)? (6.34)

upon extremizing x(r) gives

d,(diiifwdi(l — (0r1)?) Vi1 el /2 (3-1/d)/2

) = T
¢? — A2 4G 4,12 V2 — A2

In the above expressions, A is the turning point A = ¢, =

(0px)* = A®

1—(0,t)2 . (6.35)

Analysing these extremal surfaces is reliable in the semlclasswal region far from the smgularlty at
t = 0. In this region, a detailed analysis of the time extremization equation leads to - the
surface lies almost on a constant time slice (¢ < 1) and can be shown to bend in the direction

away from the singularity, as depicted in Figure
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6.4 Some details on 2d CFT and entanglement entropy

Any 2-dim metric is conformally flat so ds? = ef Nudxtdx”. We can then modify the Calabrese-
Cardy result [36, B7], in particular taking the ground state entanglement in flat space and then
incorporating the effects of the conformal transformation e/ as in [I5]. The twist operator 2-point

function scales under a conformal transformation as

CAn 2] A f)2 cn®—1
e Sl em TR, (o (x1) o(22))g Ay =

- (6.36)

(o(z1) o(22))esy =
Since the partition function in the presence of twist operators scales as the twist operator 2-point
function, the entanglement entropy becomes

12 : 12, € 2
Sify == lim On(o(z1) o(m2))erg = S2+ 5 > logel /2. (6.37)

endpoints

For a bulk interval, this gives

2 2
12_¢€ A 12 _ € A /21, _f/2
Sg —610g (62m/> — Sefg—glog (GQUVB / ’16 / |2 (638)
while for a CFT with boundary, we have essentially half the flat space answer (with one end of the
interval at the boundary), thus obtaining
A? c A?
S0 = jog () — SY = Zog ( efh) (6.39)
g 12 EQUV ¢g 12 E%JV
We have used the latter in the AdS cases which include the presence of the AdS boundary, while

for the bulk cases we use the former expression.

6.5 Holographic cosmologies — 2-dim

Time-dependent non-normalizable deformations of AdS/CFT were studied in [22] 23] 24] [115]
towards gaining insights via gauge/gravity duality into cosmological (Big-Bang or -Crunch) singu-
larities. The bulk gravity theory exhibits a cosmological Big-Crunch (or -Bang) singularity and
breaks down while the holographic dual field theory (in the AdSs case) subject to a severe time-
dependent gauge coupling g%, M= e¥ (and living on a time-dependent base space) may be hoped
to provide insight into the dual dynamics: in this case the scalar ¥ controls the gauge/string cou-
pling. There is a large family of such backgrounds exhibiting cosmological singularities. Among

the simplest are AdS-Kasner theories

R2 1
ds® = %(—dt2 + th”idx? +dr?), e¥ =1t Zpi =1, ZP? =1- 5042 . (A1)

For constant scalar ¥ with o = 0, the Kasner space is necessarily anisotropic: the p; cannot all

be equal. In this case, the gauge theory lives on a time-dependent space but the gauge coupling is
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not time-dependent. The isotropic subfamily requires a nontrivial scalar source ¥ as well. More
general backgrounds can also be found involving AdS-FRW and AdS-BKL spacetimes [23]24], all of
which have spacelike singularities. There are also backgrounds with null singularities [I15]. Similar
Kasner deformations exist for AdS,; x X7 and AdS; x X*. For generic spacelike singularities, the
gauge theory response appears singular [24] while null singularities appear better behaved [115].
Some of these spacelike singularities were further investigated in [117, 118 119, 120]

These arise in higher dimensional theories of Einstein gravity with scalar ¥, a potential V', and

S = 16771GD /dD:m/—g(D) (R - %(a\y)? - V) . (A2)

We allow the potential V' to also contain metric data, i.e. it is a function V' (g, ¥). Under dimensional
reduction with ansatz (3.5]), we obtain the 2-dim action ({3.6]) (see the general reviews [206] 207, 208§],

of 2-dim dilaton gravity theories and dimensional reduction). In general these sorts of generic 2-

action

dim dilaton gravity theories encapsulate various aspects of the higher dimensional gravity theories,
and are perhaps best regarded as effective holographic models [I12]. These sorts of theories were
considered in [200] towards understanding holographic c-functions from the 2-dim dilaton gravity
point of view. The 2-dim equations of motion following from were solved in [113] with various
families of asymptotics (flat, AdS, hyperscaling violating and Lifshitz) to obtain various classes of
2-dim cosmologies with Kasner-like Big-Bang/Crunch singularities.

We now review a little more from [I13]. With AdS asymptotics, we have V' = 2A giving
the dilaton potential in as U = 2A¢!/d independent of the scalar ¥. Hyperscaling
violating asymptotics ds? = %ﬁ/di(—dtg + dr? + dx?) with nontrivial exponent @ arise [198] from
dimensional reductions of nonconformal Dp-branes [199]: after reduction over the transverse sphere
we obtain a (d; +2)-dim action of the form with V' = 2A 7Y, which after reduction over the d;
spatial dimensions gives with U in , and the corresponding parameters for the on-shell

2
backgrounds. Lifshitz asymptotics ds? = Rz(—% + %2 + dfz’ ) with nontrivial exponent z requires

a further gauge field strength, which on-shell leads to an action with effective potential of the
form V = ¢~ 1/% U with U in . Hyperscaling violating Lifshitz theories contain both nontrivial
z and 6 exponents.

Cosmological deformations of the isotropic Kasner kind were found in [IT3] by solving the 2-dim
theories obtained by reduction over the transverse d;-space. The power law ansatz for the
2-dim fields ¢, ef, e¥ describes the vicinity of the singularity. The exponents, fixed by the 2-dim
equations, with various asymptotics are in , and . The asymptotics are the same
as those in the absence of the time-dependence. For the AdS and hyperscaling violating cases,
the solutions for the ¢t- and r-parts of the equations of motion end up being compatible (they are
roughly independent). In general however, the time-dependent backgrounds are more constraining,
particularly in the Lifshitz case where the equations couple the ¢- and r-exponents forcing 8 = 0
and z = d;.

As in AdSs Kasner, the scalar e¥ controls the gauge coupling in nonconformal brane theories
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as well. Taking the exponent a > 0 in (3.35)) amounts to taking the gauge coupling to vanish at
t = 0 which then leads to diverging (¥)2 ~ # and thence a bulk singularity.

6.6 g, 5, Yi, i

e The iterative solution of (3.15)) up to O(r3?) is given as:

Hr) = to + in _ Trd n 576 _ 2378 5671r10 _ 193157712 _ 145138914
6to  216t3 3888ty  31104t7  125971200t]  31744742400t3' 571405363200t
126271147116 1714994924218 2509650528887r29
60340406353920t° B 211794826302259200t 57 + 7624613746881331200¢°
23544237318388621722 74037865493904302737r24
_21387()415600021340160000t%1 + 2048023099785804353372160000¢32°
27221138559698748551126 2040692465059715118445379r28

B 2457627719742965224046592000¢2° + 640998461863360189735832125440000¢27
414120404436438180460454771r3°
480748846397520142301874094080000000¢3°

(B1)

Likewise (3.19), (3.31)), (3.42)), (3.44), (3.49), (3.51)), (3.61) display truncated solutions anal-

ogous to (3.17). The numerical plots do not change much with the truncation.

g2,4 appearing in (3.42)) are given as:

15— 22 50361/2 — 25835
92 =~ g4= 3 (B2)
70t 343000£3
e 54 appearing in (3.44) are given as:
15— 2v/2 —233 — 60v/2
S = —p——, S4= (B3)
70t 196023
e Y24 appearing in (3.49)) are given as:
17 597941
V279106 YT T 12039300063 (B4)
e vy 4 appearing in (3.51)) are given as:
17 289
= = B5
70106 T T 5460083 (B5)

In general, the coefficients in the series expansion (3.16)) (and similar other places in the paper),
scale as ¢, ~ #tn%l, with “#” is some numerical coefficient that becomes an increasingly bigger

(more unwieldy) fraction at higher order n.
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6.7 EE, finite subregions (A # 0), AdS; Kasner

Here we give a brief description of the entangling RT/HRT surface for finite subregions, i.e. finite
A, developing numerically the studies in [43]. The equation of motion for the entangling RT/HRT
surface for finite A in AdS5 Kasner spacetime is given by with d; = 3.

The perturbative solution of this equation is the same as for A = 0. For nonzero A,
we solve numerically for ¢(r) up to the turning point r, determined by the condition (see ,
(13.71))

A=, = t(r*) : (Cl)

The perturbative solution (3.75|) simplifies (C1)) with d; = 3 to
6Ar3ty —r2 —6t2 = 0. (C2)

This can be solved for 7, (with one real solution) but in perturbation theory, it is consistent to
take r, ~ Até/ % Since t(rs) ~ to, i.e. the surface is approximately on the ¢y constant time slice
(the surface bends very little, as we confirm below). The t(r)-equation (3.72)) with d; = 3 is solved

t(r) t(r)
0.04}
0.008

0.03-
0.006

0.004
— 1y=24, A=1

— 1p=240, A=1

tp=26, A=1 1p=260, A=1
0.01}- 0 0.002 9
1,=28, A=1 1,=280, A=1
| | | = 1=30,A=1_ e T 1=800,A=1
05 1.0 1.5 20 25 1 2 3 4 5 6

Figure 6.1: Numerical plots of ¢/(r) with r in AdS; Kasner for different ¢, slices with A = 1.

numerically for the boundary conditions extracted from the perturbative solution . The
numerical solution for the surface only makes sense upto the turning point r,. We illustrate this
fixing A =1 80 ry ~ t(l]/ 3 here, with the results plotted in Fig. ﬂ It is clear that the bending is
always small, i.e. t/(r) < 1 over the entire surface as expected: the ¢'(r) values in Fig. are in
approximate agreement with the semiclassical ¢’ ~ % in . No lightlike limit arises here as
expected (see Fig. 1 of [127] for a qualitative picture of the surface). This shows consistency of our
techniques and analysis throughout the paper where the numerics for complexity and entanglement

for large subregions with A = 0 (Fig. [3.12]) exhibits clear lightlike limits.
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6.8 Time evolution, pseudo-entropy: special cases

Consider now the pseudo-entropy transition matrix (4.41)) for the 2-state case (4.53), with arbitrary
initial state |i) and arbitrary final state |f),

i) = cill) +e2f2) . [f) = ch[1) + h[2);

1
Tt = s (et (1] + hesi2) (2] + a2l + cheti2)1). (1)
crer + 66
With |1) = |+ +),]2) = | — —), a partial trace over the second component gives
1 * *
Th = o (A G + et ) () (C2)

as the reduced transition matrix. To compare with entanglement for the time evolution operator,

we take the final state to be time-evolved from some other initial state |i’) so

(el (+] + chese®| =) (=)
et + cdheset?

[f) = e PL) + he 2y = T = : (C3)

with § = —(Fy — E1)t. Then we see that:
e using 1) for the time evolution operator, 7}‘?@ =plifei=c =L, ca=c)= %, i.e. the
initial and final states are identical maximally entangled states.

|2)

e using (4.74) for the time evolution operator with projection, ’Tf‘?z =p, if )y =c1, ¢y =ca,ie

|f) = |f[i]) i-e. the final state is time-evolved from the initial state |i') = |i).
This structure of mapping ’T |Z = pt however is not true more generally. For instance, consider
two qubits more generally, as in . Then the pseudo-entropy transition matrix (4.41)) becomes

2 2

1) =D eylid), 1F)y= ) cylif)s  Tep= Z cijcrlig) (ki (C4)

i,j=1 ij=1 ZU ij ZJ i3,k l=1

and partial trace over the 2nd component gives the reduced transition matrix as

2
Tii = 2 g, 2o O ciydy) )] = EU””((c'nc’fl+c'12c1<2>|1><1|+

ij “i5%5 =1
(11651 + Clacha)|1) (2] + (chychy + caacin)|2) (1] + (eg631 + 0/22032)|2><2‘)- (C5)

Towards comparing with the time evolution operator, we think of the future state as time-evolved

zE%J

from some initial state, i.e. |F) = Z” e tlij). Tt is then clear that pseudo-entropy via the

reduced transition matrix matches time entanglement via the normalized time evolution operator
with projection onto [i), i.e. 7}|Z, = > if the final state is taken to be time-evolved from the
initial state, i.e. |F') = U(t)|I) so cm = ¢;;e*Fiit. However, in contrast with |i the fact that
there are off-diagonal terms in makes the structure different from the reduced time evolution

operator. To set the off-diagonal terms to vanish, we could consider specializing to maximally
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entangled thermofield-double type initial and final states, and with |F') time-evolved from |I), i.e.
1) = > calii) with cij, ¢, = 0, i # j, cii = ¢jj Vi, j, and |[F) = >, j;|ii) = U(t)|I). In this case,
we find that all the off-diagonal terms vanish and we obtain the reduced transition matrix to be of
the same form as in . On the other hand the reduced time evolution operator for the general
2-qubit case is , which has two distinct phases in general. Thus the reduced transition matrix
differs from the reduced time evolution operator. One can engineer special energy values E;; where
the two coincide (although this appears ad hoc).

Of course, these structures are with a single Hilbert space for constructing both initial and final
states. Doubling the Hilbert spaces directly enables a map from the transition matrix to the time

evolution operator in general, as in sec. [£.3.1]

6.9 Qubit chains

Now we consider qubit chains to understand time entanglement structures. For any nearest neigh-

bour 2-qubit pair, we impose nearest-neighbour interactions, with

slg) = aqlg), lg) ={[1),12)};  H=—Jsis2,

H[11]) = By = —Ja}, H[22] = By = —Jai, H[12] = H[21] = E13 = —Jajaz. (Cl1)

In the first line, we are defining operators s; with action as above (the i being the site label), that
give the qubit Hamiltonian action elaborated on in the second line. This Hamiltonian generalizes
the 2-qubit case (4.55|) earlier. (Imposing a |1) <> |2) exchange symmetry simplifies this to Ising-like
interactions, as we will discuss later.)

3-qubit chain: Consider now a chain of 3 qubits with Hamiltonian based on the nearest

neighbour 2-qubit interaction above. This gives the 3-qubit chain Hamiltonian as

H = —J(s182 + s2s3) ,
H = E|I)(I| = E1|111)(111] + E»[222)(222| 4+ E5(|121)(121] 4 [212)(212])
+ E3(]112)(112] 4 [211)(211]) 4+ E4(]122)(122] + [221)(221])
By = —2Ja} =2Ey,, Ey=—2Ja3=2Fy, Fs5=—2Jajay=2E,
B3 = —Ja% —Jajas = E11 + Ea, Ey=—-Jajas — Ja% = E9 + E1a, (C2)

Ey— FE3 = (EQ—El), E1+E5:2E3, Ey+ Es =2FE,.

1
2
Then the time evolution operator U(t) after normalizing becomes

1 —iEt _ —iErt
Pt = ZiBit | o—iBal 1 9p—iBsl | 9¢—iEal | 9o ibst DT HINUI=N Y e BN (C3)
I I

Now tracing out the 1st and 3rd qubit states gives the reduced time evolution operator

(Pf)ll — N (efiElt 4 2€7iE3t 4 e*iE5t) 7 (P{gA)QQ — N(efiEzt 4 2671'E4t 4 e*iE5t) ’ (04)

148



for the middle qubit. Using the relations between the E; in (C2) simplifies this to

()024)11 — N’ (e—iEllt 4 e—iElgt)Z’ <p24)22 — N’ (e—iEQQt 4 e—iElzt)Z’
N = Tri(t) = (eiiE“t + efiEth)2 + (efiE”t + eiiEmt)Q . (Ch)

In general, this is a function of three independent parameters E11, Fa2, E12 (or equivalently Ey, Fo, E5)
so it is a complex-valued function of three phases in general. A straightforward real slice is obtained
when there is a |1) <> |2) exchange symmetry as we will discuss later.

5-qubit chain: the configurations and their energies are

I11111), 4Ey;;  [22222), 4E;  |12121), [21212), 4Ei;

111112), [11122), [11222), [12222), 3Ey; + Eio;

22221), [22211), [22111), [21111), 3Ehs + Eia;

111121), [11211), [12111), [21112), 2Ey; + 2Eys;

12221), [22212), [22122), [21222), 2B, + 2E1s;

111221), [12211), [22112), |21122), Eyi + Eap + 2E1s;

111212), [12112), [21211), [21121), Eyi + 3E1s;

112122), [12212), [22121), [21221), Ea + 3E1s; (C6)

Tracing over all but the middle (3rd) qubit gives the reduced time evolution operator as

(ﬁt)ggl) — efi(4E11)t + ef’i(4E12)t + 26*’5(3E11+E12)t 4 26*’5(3E22+E12)t 4 267’5(E11+E22+2E12)t
+ Be—i(2E11+2E12)t + e—i(2E22+2E12)t + 2e—i(E11+3E12)t + 2€_i(E22+3E12)t,
(ﬁt)g;) — e*i(4E22)t 4 e*i(4E12)t 4 267’L’(3E22+E12)t + 2672'(3E11+E12)t + 2672'(E11+E22+2E12)t

+ 3671'(2E22+2E12)t + efi(2E11+2E12)t + 2671'(E22+3E12)t + 2671'(E11+3E12)t , (07)

where the tilde denotes un-normalized. The normalization of the time evolution operator here
becomes
_ ~(3 (3 -\ (3
Nyt =Tep? = TU() = (P07 + (505 (C8)

In general the resulting von Neumann entropy is a complicated complex-valued function of the
three energy parameters FE11, Fog, E12.
There are parallels between our discussions here on qubit chain configurations and those in

[279] on ghost-spin chains (although the context is different).

Infinite qubit chain: Consider now an infinite 1-dim chain of qubits, again with only nearest-

neighbour interactions, the Hamiltonian being

H:—Jansn+1:...—Js_lso—Jsosl—l—... (C9)
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We can focus on the qubit at location n = ng as the subsystem in question, tracing over all the

other qubits in the chain. The reduced time evolution operator is
1 Bl
Pt = W Z Z e \no {no (C10)
no=1,2 I; n#0

This is a complicated object in general, although still simply a complex-valued function of the three
energy parameters Fq1, Foo, 2. Since this qubit only interacts directly with its two neighbours,
the effective system has some parallels with the 3-qubit chain above: but the detailed structure is
complicated, as already evident in the 5-qubit case earlier.

|1) <> |2) exchange symmetry: In the simple subcase enjoying |1) <+ |2) exchange symmetry,

there are substantial simplifications in (C1)): this is when there is an Ising-like structure, with
a] = —ag = 1; E11 = E22 = —E12 =—J. (Cll)

For instance the 3-qubit case (C5|) simplifies to

. . . 4 1
Nyt =2 e )R (= () = N (¢ e ) = (C12)
which thus gives von Neumann entropy log 2. Likewise the 5-qubit (C7)) case can be seen to simplify
to )
Nt =2 e )t (= () = N (¢ e = (C13)

so the middle qubit has identical structure. For an infinite qubit chain with this Ising-like Zg
symmetry, we expect translation invariance in the “bulk” so we expect that the reduced time
evolution operator has again similar structure. Considering an N-qubit chain (towards large N),
the configurations can be organized similar to . It is then clear that the ground states are
|11...11), |22...22), with energy —(NN — 1)J. The first excited states comprise “one kink” states
with exactly one 12- or 21-interface with energy —(N — 3)J and degeneracy 2(/N —1). The next set
of excited states contain two kinks, so the energy is —(N — 5).J with degeneracy 4(N — 2). Higher
excited states contain multiple 12- or 21-interfaces. The two highest energy states have maximally
alternating 1,2s, i.e. [12121..),]21212..): there are (N — 1) interfaces giving energy (N — 1).J.
Furthermore, every energy F (with corresponding configurations) comes in pairs, i.e. there are
corresponding configurations with energy —F. This can be seen above, with the ground states and
highest energy states: likewise, corresponding to the one kink states, we have states with energy
(N — 3)J obtained by transforming one of the 12- or 21-interfaces in the highest energy states
to 11 or 22, which then lowers the energy precisely by 2J (and their degeneracy can be checked
easily). Thus the normalization of the time evolution operator (akin to the partition function) is
./\/];1 = Tr py, i.e.

N]Gl — 2(eth(N—1) 4 (N— 1)eth(N—3) + .. +(N— 1)6—th(N—3) +e—th(N—1)) — 2(6th+€—th)N—1 '
(C14)
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Each component of the reduced time evolution operator for some bulk qubit can be explicitly seen

to receive contributions equally from half these states: so we obtain

(Pf)n = (Pf)Qz =Ny (ei‘]t + e_i‘]t)N_l ==, (C15)

which is identical to the structure of the middle qubit in the previous finite qubit cases.

Note that it is adequate to require E1q = Ea2 to implement this |1) <> |2) exchange symmetry:
then shifting the energies arrives at the symmetric values in . However if keep E12 independent
of E11 = Fyo then there are apparently two independent parameters: however it is straightforward
to see that the reduced time evolution operator, wbile non-Hermitian, nevertheless leads to real-
valued von Neumann entropy. It is likely that similar studies can be extended for “ghost-spin”
models such as those in [279, 280].

All of the above structures can be seen to match ordinary finite temperature entanglement,

except with imaginary temperature g = it.

6.10 Two coupled oscillators

We consider the following Hamiltonian H with unit masses m4q = mp =1,

H= L 0h+ph) + o @b oh) + 2 (o4 —an)? (1)

This is slightly different from the coupled oscillators case discussed in [227]. We diagonalise the
Hamiltonian in a coordinate basis {y1,y2} as below. Then the hamiltonian (C1)) becomes

1 1
3 Loz,

(a: A -l— rB) (xa—xB)
=" = , C2
U1 ﬂ Y2 \/i (C2)
where Q1 = k1, Q2 = k1 + 2k3. The energy eigenvalues and eigenfunctions of lb are labelled
by Eniny, and ¢ n, (yl, y2) respectively,

En1n2 = (’I’Ll + )Ql + (n2 + = )QQ = ETL1 + Enz ; ¢TL1’I’LQ (y17y2) = ¢7’L1 (yl) ¢n2 (?/2) ) (C3)

1
H=(5p+5 Q? yi) + (

where nq,n9 take values from 0 to oo and E,,, = (n1 + )Ql y, Eny, = (no + )Qg

We now write the time evolution operator in its eigenbasis as follows

et = p(t) = Z e e iy} (Gninal - (C4)

ni,n2

In position space

Py Y2 i Yoo t) = > et g (51, 92) G, W 05)

ni,n2
= Z e_i (Enl +En2)t ¢n1n2 (yla y2) ¢:117‘L2 (yiv yé) ’
ni,n2
= p1(y1: Y1, t) p2(y2; Y, t) - (Cs5)
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We have applied (C3)) in the first line of (C5|), and

prlyyit) = el g ()dh, (W) s pa(y2svht) = D e El g, (1), (uh) . (C6)

(C5)) shows that the time evolution operator p(t) is decomposed as p(t) = p1(t) ® p2(t). The energy

eigenstate for a single harmonic oscillator of frequency €2 (setting m = 1) is

1
1 Q 4 Q22 1
oule) = o (2) e m(VA n+3) ©n
We now use Mehler’s formula for Hermite polynomials [281]
2 (9)n 1 —a?(x24v?) 420Xy
Z iL' Hn(X)Hn(Y) == ﬁ € 1-a? . (C8)

n=0

We now consider the time evolution operator for a single harmonic oscillator of frequency €2 in
order to calculate (C5)):

o0

pla;a’ t) =) el gy (a) dp(a’) . (C9)

n=0

Applying (C7) into (C9)

1
= . 1 0\ 2 '
plasal ) =3 it <> e @) (V) Ha (V) | (C10)
n=0

2npl \ 7

We now use (C8)) in (C10)),
1
Q 2 22422 ,
ool t) = ) (C11)

where

() = —iQ
N = sin(Q¢)
We will not write the ¢ dependence of p and ¢ explicitly, we simply write p and ¢ instead of p(t)

and ¢(t). We now define the normalised time evolution operator as P(x;z’,t) = % :

p(t) = —iQ cot(Qt) ; (C12)

2 2
P=q 2D g

Px:2' t) =
CEROERE

(C13)

Note that the normalization Tr(p(x;2’,t)) using 1 is ffooo dz p(x,z,t), which is oscillatory
(rather than a damped Gaussian), using (C12). To render this well-defined, we insert a small
exponentially damping regulator: this is the position space analog of the regularization in (4.70)).

Similar regulators are required to define various infinite sums/integrals here.
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We now find the expressions for pi(y1;y],t) and pa(y2; v, t) appearing in (C5) using (C11)),

1
&)5 pW2+v,2) /
ot = (ﬂ— em 7 tamyr
p1(y1;y1.t) 57 sin (60, 1)
1
Q)2
/ (7) w-ﬁ-syzy
o(y2; Yh,t) = ——2—2—— ¢ 2, Cl4
p2(yz: vos ) 2i sin(Qso t) e
where
. —291 . —ZQQ
=—iQ cot(Qt); g=——r; —iQ cot(Qat); s=—— . C15
D i cot(Qt); ¢ sin(Q1 1)’ i cot(Q2t); s sin(Qga t) ( )

p(y1 7y27y1’y27 t)
Tr(p(y1,y2;91:95:t))

I pP—q [T =5 _M_,_ / M-F
P(y1,y2;y1, Y2, 1) =/ —— e 2 YL ¢ SY2Wa (C16)
T T

Writing P(y1,y2; ¥}, Y, t) in terms of original variables x4, 25 (C2) gives

S (:D-H") 2 /2 (q+9)
P(xa, w2y, 25 = 2B, 1) ”p q (x5 +27) +

(ZA+IA) (

We define the normalised time evolution operator as P(y1, y2; Y}, y5, t) =

TB (p+r—q—s)+zp

posta+t) | (C17)

We now trace over the 2nd oscillator P4 (za; 2'y,t) = Trp[P(za, xB; 24, ¥, t)]. For this we integrate
(C17) over xp, after performing the integration, we get

Pa(za;2/y,t) = L7ﬁe 3 (Tt )+ﬁan:A7 (C18)
m
where
ptr 1(pt+s—q—r)?, g_dats 1(pt+s—q—r)?
2 4 p+r—q—s ’ 2 4 p+r—q—s '
o (P @@—s) ptatr+s

_— = C19
Y=B= pap— v+ 5 (C19)

The entropy associated with the reduced density matrix P4 (z 4,2y, t) is given by Sq = —T'r(Palog Pa).

The eigenvalues A,, and eigenvectors fn(x) of an operator of the form (C18|) are given in [35]: we

have A\, = (1 — ¢) (", where ¢ = 7+a, a = \/v2 — 32, which gives

Sa=—log(l—-¢) — 1fclogc. (C20)
We see that the entropy S4 is complex valued, recasting ¢ in terms of v + 5 and v — f3,
C:\/V*-ﬁ—\/v—ﬁ' (C21)
VY+B+ V-8
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The explicit expressions for (C19|) in terms of original variables are given by

U Ut Qo Qat\\ 3 2i 3
\/ = -1 —cot—+—cot—)) , - :( ) . (C22
8= (2 2 "2 T 75 acot Ut 4 L cot Bt (G22)

For Q1 = Q2 = w (i.e. ka = 0), we recover our result for two uncoupled oscillators. Comparing our
result with the spacelike entanglement evaluated at finite inverse temperature it, we recover the
result in [282] (in particular ¢ in (C21)) matches with eq.(2.22) in [282]).
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