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Abstract

This article provides the first mathematical analysis of the
Density Matrix Embedding Theory (DMET) method. We
prove that, under certain assumptions, (i) the exact ground-
state density matrix is a fixed-point of the DMET map for
non-interacting systems, (ii) there exists a unique phys-
ical solution in the weakly-interacting regime, and (iii)
DMET is exact up to first order in the coupling parameter.
We provide numerical simulations to support our results
and comment on the physical meaning of the assumptions
under which they hold true. We show that the violation
of these assumptions may yield multiple solutions to the
DMET equations. We moreover introduce and discuss a
specific N-representability problem inherent to DMET.
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1 | INTRODUCTION

Electronic structure theory is a powerful quantum mechanical framework for investigating the
intricate behavior of electrons within molecules and crystals. At the core lies the interaction
between particles, specifically the electron-electron and electron-nuclei interactions. Embracing
the essential quantum physical effects, this theory is the foundation for ab initio quantum chem-
istry and materials science calculations performed by many researchers in chemistry and related
fields, complementing and supplementing painstaking laboratory work. With its diverse applica-
tions in chemistry and materials science, electronic structure theory holds vast implications for
the mathematical sciences. Integrating mathematical doctrines into this field leads to the develop-
ment of precise and scalable numerical methods, enabling extensive in silico studies of chemistry,
for example, sustainable energy, green catalysis, and nanomaterials. The synergy between math-
ematics and electronic structure theory offers the potential for groundbreaking advancements in
addressing these global challenges.

Within the realm of electronic structure theory, the treatment of strongly correlated quantum
systems is a particularly difficult and long-standing challenge. Here, the application of high-
accuracy quantum chemical methods that are able to capture the electronic correlation effects
at chemical accuracy is inevitable. Unfortunately, the application of such high-accuracy methods
is commonly stymied by a steep computational scaling with respect to the system’s size. A poten-
tial remedy is provided by quantum embedding theories, that is, a paradigm for bootstrapping the
success of highly accurate solvers at small scales up to significantly larger scales by decomposing
the original system into smaller fragments, where each fragment is then solved individually and
from which, a solution to the whole system is then obtained [17, 20, 44]. Such approaches include
dynamical mean-field theory [15, 16, 26, 30, 32], or variational embedding theory [7, 22, 27].
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The subject of this article is a widely-used quantum embedding theory, namely, density matrix
embedding theory (DMET) [3, 9, 10, 23, 24, 48, 51, 56]. The general idea of DMET is to partition the
global quantum system into several quantum “impurities”, each impurity being treated accurately
via a high-level theory (such as full configuration interaction (FCI) [25, 39, 52], coupled cluster
theory [8], density matrix renormalization group (DMRG) [55], etc.). More precisely, the DMET
methodology follows the procedure sketched out as: (1) fragment the system, (2) for each fragment,
construct an interacting bath that describes the coupling between the fragment and the remaining
system, thus giving rise to a so-called impurity problem, (3) solve an interacting problem for each
impurity using a highly accurate method, (4) extract properties of the system, (5) perform steps
(2)-(4) self-consistently in order to embed updated correlation effects back into the full system.
Note that in step 2, one may also consider a non-interacting bath where Coulomb interactions
are included only on the fragment orbitals [56]; however, in this work, we will focus solely on
the interacting bath formulation. Over the past years, a large variety of methods following this
general framework has been developed, including how the bath space is defined (including the
choice of low-level theory) [13, 35, 36, 59], how the interacting cluster Hamiltonian is constructed
and solved [14, 29, 38, 41, 43], and the choice of self-consistency requirements [12, 57, 58]. This
variety of DMET flavors has been successfully applied to a wide range of systems such as Hubbard
models [3, 6, 23, 45, 46, 54, 65-67], quantum spin models [11, 18, 42], and a number of strongly
correlated molecular and periodic systems [1, 2, 9, 19, 24, 31, 33, 34, 37, 40, 49, 50, 56, 60-64].
Recently, the application of DMET variants on quantum computers has been explored [5, 28, 53].

In this article, we follow the computational procedure where the global information, at the level
of the one-electron reduced density matrix (1-RDM), is made consistent between all the impurities
with the help of a low-level Hartree-Fock (HF) type of theory. In the self-consistent-field DMET
(SCF-DMET)', this global information is then used to update the impurity problems in the next
self-consistent iteration, until a consistency condition of the 1-RDM is satisfied between the high-
level and low-level theories.

This article is organized as follows. In Section 2.1, we introduce the many-body quantum
model under investigation and its fragment decomposition, and set up some notation used in the
sequel. In Section 2.2, we present a mathematical formulation of the DMET impurity problem
and introduce (formally) the high-level DMET map. The low-level DMET map and the DMET
fixed point problem are defined (still formally) in Sections 2.3 and 2.4 respectively. In Section 3,
we state our main results:

1. in Proposition 1, we show that for non-interacting systems, the exact ground-state density
matrix is a fixed-point of the DMET map if (i) the system is gapped (Assumption (A1)), and
(ii) the fragment decomposition satisfies a natural and rather mild condition (Assumption
(A2)). Although this result is well-known in the physics and chemistry community, a complete
mathematical proof was still missing;

2. in Theorem 4, we prove that under two additional assumptions ((A3) and (A4)), the DMET
fixed-point problem has a unique physical solution in the weakly-interacting regime, which
is real-analytic in the coupling parameter a. Assumption (A3) is related to some specific N-
representability condition inherent to the DMET approach, while Assumption (A4) has a
physical interpretation in terms of linear response theory;

3. in Theorem 5, we prove that in the weakly-interacting regime, DMET is exact up to first order
in a.

I Throughout the paper, DMET refers to SCF-DMET. This is in contrast to one-shot DMET, in which the impurity problem
is only solved once without self-consistent updates.
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The numerical simulations reported in Section 4 illustrate the above results and indicate that
DMET does not seem to be exact at second order. Although, in the special case when there is
only one site per fragment, Assumption (A4) is a consequence of Assumptions (Al)-(A3) (see
Remark 3), the numerical simulations presented show that this is in general not the case. Further
investigations using the Hg-model (vide infra) reveal the existence of a specific configuration (©5)
for which only Assumption (A4) is not satisfied. In the vicinity of this configuration, DMET has
at least two distinct solutions that arise from a transcritical bifurcation at @s. In Section 5, we for-
mulate the impurity problem in more detail and discuss the domain of the high-level DMET map.
In Section 6, we study the N-representability problem mentioned above and provide a simple cri-
terion of local N-representability directly connected to Assumption (A3). In order to improve the
readability of the paper, we postponed the technical proofs to Section 7. For the reader’s conve-
nience, the main notations used throughout this article are collected in Table Al in Appendix A.

2 | THE DMET FORMALISM

2.1 | The quantum many-body problem and its fragment
decomposition

We consider a physical system with L quantum sites, with one orbital per site, occupied by 1 <
N < L electrons, and assume that magnetic effects (interaction with an external magnetic field,
spin-orbit coupling, etc.) can be neglected. This allows us to work with real-valued wave-functions
and density matrices. We set

H :=RE (one-particle state space), By := {extkeqi,y  (canonical basis of RD), 1)
n L
H, := /\ H (n-particle state space), Fock(H) := @ H,, (real fermionic Fock space).
n=0

We denote by @, and 6; the generators of the (real) CAR algebra associated with the canonical
basis of H, that is,

@, :=d(e,) and @, =a'(e).
Recall that the maps
RE S f o af(f) € L(Fock(H)) and R 3 f - a(f) € L(Fock(H)),

are both linear in this setting since we work in a real Hilbert space framework. Here and below,
L(E) is the space of linear operators from the finite-dimensional vector space E to itself. We also
define the number operator N by

L
N := Z nly = 21 a,a, (particle number operator).
=

For each linear subspace E of H, we denote the orthogonal projector on E by IIp € L(H). We
assume that the Hamiltonian of the system in the second-quantized formulation reads

L L
5o ~ia 1 PRI
H := Z h,daka,1+§ Z Viareth @, 00, ()
A=1 1 A,E=1
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where the matrix h € RIXE and the fourth-order tensor V € RIXIXIXE gatisfy the following
symmetry properties:

he =hye and  Vigye = Vg
We denote by D the Grassmannian of rank-N orthogonal projectors in RE:
D :=Grr(N,L) ={D € R, | D> = D, Tr(D) = N}, (3)
and by CH(D) the convex hull of D, that is,
CH(D) ={D € Ry |0 <D <1, Tr(D) = N}. 4)

Physically, the set CH(D) corresponds to the set of (real-valued, mixed-state) N-representable one-
body density matrices with N electrons, and D is the set of one-body density matrices generated
by (real-valued) Slater determinants in H .

We consider a fixed partition of the L sites into Ny non-overlapping fragments {Z, },¢[1,n f of
sizes {Ly}xe1,N /1 such that L, < N for all x. Up to reordering the sites, we can assume that the
partition is the following:

[[l,L]] = { (1,...,L1),(1 +L1,...,L1 +L2),,(1 +L1 + .- +LNf—17"'7L) } (5)

1, 1,

ZNf

This partition corresponds to a decomposition of the space into N ; fragment subspaces fulfilling

H=X,® - ®&Xy, with X, := Span(e,, x € I,). (6)
ForM € Rg;(mL, we set
Ny
Bd(M) := Y II,MIL,, (7)
x=1

whereIl, := IIyx_istheorthogonal projector onX,. The operator Bd € E(Rfﬁfl) is the orthogonal

projector onto the set of block-diagonal matrices for the partition (5) (endowed with the Frobenius
inner product).

As we will see, a central intermediary in DMET is the diagonal blocks of the density matrix,
P = Bd(D) € BdA(D). It is clear that these blocks must satisfy 0 < P, <1 and Zi\z , Tr(P) = N.
Conversely, it is easy to see that grouping these blocks together into a block-diagonal matrix
produces a matrix in CH(D); therefore, we have

P, 0 - 0
0 P, - 0
P :=Bd(CH(D)) =4 P = '
0 0 Py,
Ny
st.V1<x <Ny, P, €RGA™, 0<P, <1, > TPy = N}. (8)
x=1
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1364 | CANCES ET AL.

From a geometrical viewpoint, P is a non-empty, compact, convex subset of an affine vector
subspace of [Rﬁ;if1 with base vector space

Y; 0 0
0Y, - 0 Ny

yzz{yz o7 |stvisx <N, Y, e RERR, ZTr(Yx)zo}. ©
0 0 Yy

The structure of the set BA(D) C P is a more subtle issue that we will investigate in Section 6.

2.2 | The impurity high-level problem
Given one of the spaces X, and a one-body density matrix D € D, we set:
Wyp :=X,+DX, =DX, ®(1—-D)X, (x-thimpuritysubspace). (10)
We will assume in the following that
dim(DX,) = dim((1 — D)X,) = dim(X,) = L, (maximal-rank assumption), (11)
so that dim(W, p) = 2L,.. Decomposing Ran(D) and Ker(D) as
Ran(D) = DX, @ Ho® and Ker(D) = (1-D)X, & H;lg,

we obtain the following decomposition of H = RL:

— core virt
H=Wyp®HIE@H.
—_——

=iy

Note that the space H;°; has dimension (N — Ly). The matrix D can be seen as the one-body
density matrix assomated with the Slater determinant

Lx (N_Lx)
0 _ 0imp 0,core . 0,imp 0,core core
W, =P AW with W) e ADX, and W) e N MO,
where ¥ ! lmp and W)™ are normalized. More precisely, ¥, , is the Slater determinant built from

an orthonormal ba81s of L, orbitalsin DX, and an orthonormal basis of (N — L) orbitals in HCore
The so-defined wave-function ‘P?V p Is unique up to an irrelevant sign.

We denote by N x, € L(Fock(H)) the projection of the number operator onto the fragment Fock
space Fock(X,). Solving the impurity problem aims at minimizing, for a given 4 € R which will
be specified later, the thermodynamic potential

(W|(H — uNy )|¥) (12)
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over the set of normalized trial states in Fock(H) of the form

lmp 0,core
=T AW (13)
. 0,core ¢ imp .
with ‘IJX’D fixed, and ‘PX’D in
2Ly n
Fock(W, p) := @ /\ Wy p (x-th impurity Fock space).
n=0

The impurity Hamiltonian is the unique operator ﬁ;ng) on Fock(W, p) such that

o 0,
qump € Fock(W, p), <1P‘mp ;mp ‘mp> = (lplmp ore |H|‘lep ANFEDE). (14)
For an explicit expression of H lmp , see Proposition 8.
The impurity problem defmed by (12)-(13) can then be reformulated as
min (¥ ;mp |H, » g —uN X, |‘Pixm£ ) (impurity problem). (15)
llflmpeFock(Wx D), ||ly”“p|| 1 ’

In practice, this full-CI problem in the Fock space Fock(W, ) is solved by an approximate cor-
related wave-function method such as CASSCF, CCSD, or DMRG for example, but we assume in
this analysis that it can be solved exactly.

If (15) has a non-degenerate ground state for all x, we denote the one-body ground-state density

matrices by P, (D), seen as matrices in ngﬁg, and finally set

F%(D) :=Tx P, (D). (16)

Let us remark incidentally that if the ground state of the impurity problem is degenerate, we can
either consider F Zlk (D) as a multivalued function or define them from finite-temperature versions
of (15), which are strictly convex compact problems on the set of density operators on the Fock
space, and therefore always have a unique minimizer. We will not proceed further in this direction
and only consider here the case of impurity problems with non-degenerate ground states.

The combination of the Ny impurity problems introduced in (15) (see also (16)) gives rise to a
high-level DMET map FHt

DD~ FiL(D)e P 17)

formally defined by

FHL(D) := ZFHL(D) (high-level map) (18)

with 4 € R chosen such that Tr(FHX(D)) = N. The domain of FH ' and the regularity properties
of this map will be studied in Section 5.
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2.3 | The global low-level problem

The low-level map is defined by

FY(P) := argmin &UF(D) (low-level map), 19)
DeD, Bd(D)=P

where £ is the HF (mean-field) energy functional of the trial density-matrix D. The latter reads

EVF(D) 1= Tr(hD) + %Tr(J(D)D) - %Tr(K(D)D), (20)
where
L L
UD)a i= D VagwDye and [KD) i= D, VigyaDye. 1)
»,E=1 v,E=1

The existence and uniqueness of a minimizer to (19) will be discussed in Section 6.

2.4 | The DMET problem

Finally, the full DMET map is formally defined as the self-consistent solution to the system

D =F"Y(P)eD,
P =Fi(D) e P.

In particular, D = F'“(P) implies that P = Bd(D). Equivalently, we can formulate the problem as

P= FDMET(P) c= FHL(FLL(P)).

Assuming that the solution to this fixed-point problem exists and is unique, P is expected
to provide a good approximation of the diagonal blocks (in the decomposition (6) of H) of the
ground-state one-body density matrix of the interacting system. The mathematical properties of
this self-consistent loop will be studied in the next section, first for the non-interacting case, and
second, for the interacting case in a perturbative regime.

3 | MAIN RESULTS

We now embed the Hamiltonian H into the family of Hamiltonians

L L

s~ i QA At

H, := 2 h,a,a; + o) 2 Ve @,0:a@,, o €R, (22)
x,A=1 x,A,vE=1
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acting on Fock(H). For a = 0, we obtain the one-body Hamiltonian
Ay:= ) hia 8,8, (23)

describing non-interacting particles, and we recover the original Hamiltonian A for o = 1. We
denote by F, ?L, F I,;L, and F OI?MET the high-level, low-level, and DMET maps constructed from PAIa.

We first assume that the non-interacting problem is non-degenerate. Denoting by ¢,, the n-th
lowest eigenvalue of h (counting multiplicities), this condition reads

(Al) ey < 0< EN+1>

where without loss of generality we have chosen the Fermi level to be 0. Assumption (Al) indeed
implies that the ground-state of H, in the N-particle sector of the Fock space is non-degenerate,
and that the ground-state one-body density is the rank-N orthogonal projector given by

DO = ﬂ(_oo,o](h) (24)

By perturbation theory, the ground state of H, in the N-particle sector is non-degenerate for all
a € (—a,,a,) for some 0 < a, < +oco0. We denote by DE¥! the corresponding ground-state one-
body density matrix. As a consequence of analytic perturbation theory for hermitian matrices, the
map (—a,,o,) D a - Dt e Rﬁ;nﬁ is real-analytic.

Second, we make the maximal-rank assumption:

(A2) Forall1l < x < Ny, dim(DyX,) = dim((1 — Dg)X,) = dim(X) = L,.

Assumption (A2) implies that the impurity problem (15) for H = H, and D = D, is well-defined
for each x and each u. We emphasize however that this does not prejudge that the so-obtained N
impurity problems are well-posed (i.e., have a unique ground-state) for a given value of ¢, nor a
fortiorithat Dy is in the domain of the high-level map F é{L. We will elaborate more on the meaning
of Assumptions (A2) in Section 5.

DMET is then consistent in the non-interacting case:

Proposition 1 (P, := Bd(D,) is a fixed point of the DMET map for a = 0). Under Assumptions
(A1)-(A2), Py := Bd(D,) is a fixed point of the non-interacting DMET iterative scheme, that is P, is
in the domain of F-*, D, is in the domain of F!I', and F, (I))MET(PO) = P,.

Remark 2. We formally define the high-level HF map
HL .
F MF - D - P,
as the high-level map constructed from the HF N-body Hamiltonian

L

A= Y [hF(D)],,a,a8,
x,A=1
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where
hHE(D) = h + J(D) — K(D) (25)

is the one-particle mean-field (Fock) Hamiltonian. Using exactly the same arguments as in the
proof of Proposition 1, we obtain that the low-level map F" satisfies the mean-field consistency

property
HL —
FUEHLD,)) = D,

for any HF ground state D,. We will make use of this important observation in the proof of
Theorem 4.

We now study the DMET equations in the perturbative regime of a small. In order to use per-
turbative techniques, we need to determine the space in which we seek P. Generically, at o # 0,
we expect P to be equal to the block diagonal of the one-body density matrix, which is not a pro-
jector. Therefore it is natural to seek P in P = Bd(CH(D)). However, in the DMET method, D is
constrained to be a projector, and therefore P will necessarily belong to Bd(D). We will study in
Section 6 the relationship between the two sets P and Bd(D) (the N-representability problem),
and in particular show that, in the regime of interest to DMET (many relatively small fragments,
so that L > max, L,), the two sets are (generically) locally the same. Therefore, it is natural to
assume the local N-representability condition:

(A3) The linear map Bd is surjective from 7; p,Dto Y,

where Y is the vector subspace defined in (9). Indeed, P is a (non-empty, compact, convex) subset
of the affine space Py, + Y and Assumption (A2) implies that P, € P°, where P° is the interior
of Pin Py + Y. Thus Y can be identified with the tangent space at P, to the manifold 7°. By the
local submersion theorem, this implies that any P in the neighborhood of P, can be expressed as
the block diagonal of a density matrix in the neighborhood of D, in D.

Our last assumption is concerned with the response properties of the impurity problems
at the non-interacting level. Consider a self-adjoint perturbation Y € ngXnLl of the one-particle
Hamiltonian h, non-local but block-diagonal in the fragment decomposition, that is such that
Y € RI; + Y, and denote by13Fli n+y (D) the non-interacting high-level map obtained by replacing
hwith h + Y (so that FTL; (D) = F}IY). Formally, we have

—_—

FHL y(Do) = Po + R[Y ]+ o(IYID, (26)

with R : RI; + Y — Y linear (the fact that R[Y] € Y is due to particle-number conservation).
The map R can be interpreted as a non-interacting static 4-point density-density linear response
function for frozen impurity spaces. It follows from Assumption (Al) that constant perturbations
do not modify the density matrix: R(I;) = 0. Our fourth assumption reads:

(A4) the 4-point linear response function R : Y — Y is invertible.

This condition is somewhat reminiscent of the Hohenberg-Kohn theorem from Density Func-
tional Theory. Together with the local inversion theorem, it implies that, locally around h, in the
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non-interacting case and for frozen impurity spaces W, p , the high-level map defines a one-to-
one correspondence between non-local fragment potentials (up to a constant shift) and fragment
density matrices.

Remark 3. We will show in Section 7.6.4 that in the case when N; = L (one site per fragment), it
holds: under Assumptions (A1)-(A2),

(A3)is satisfied = D, is an irreducible matrix < (A4) is satisfied.

On the other hand, numerical simulations indicate that in the general case, Assumption (A4) is
not a consequence of Assumptions (A1)—-(A3).

We are now in position to state our main results.

Theorem 4 (DMET is well-posed in the perturbative regime). Under assumptions (A1)-(A4), there
exist0 < @, < a,, and a neighborhood Q of D in D such that for all ¢ € (—a,, @), the fixed-point
DMET problem

POI?MET — F[IX-IL(DO]?MET)’ DOI?MET — F&L(POI?MET)

has a unique solution (DYMET, PPMET) yith DPMET € O (otherwise stated, the DMET map for H,,
has a unique fixed point P?MET in the neighborhood of Py). In addition, the maps (=&, &, ) D o +
DPMET € REX! and (—&,,@,) 3 a — PYMET € REX: are real-analytic and such that

DYMET = Dy = 1(_qo01(h),  PYMET = Py = BA(Dy).

As is standard, the first-order perturbation of the exact density matrix is given by the HF
method. DMET is able to reproduce this, and is therefore exact up to first order:

Theorem 5 (DMET is exact to first order). Under Assumptions (A1)-(A4) and with the notation of
Theorem 4, it holds

DaDMET — D;xact + O(OCZ) — DaHF + O(O(z),
where DIIF is the HF ground-state density matrix for H,, which is unique for a small enough.

The numerical simulations reported in the next section show that such exactness property is
not expected to hold at second order.

In the weakly interacting regime, the solution DPMET to the DMET fixed-point problem is the
only physical one. Indeed, it is the only one laying in the vicinity of D,, where the exact ground-
state density matrix must be located for small «, by analytic perturbation theory.

Remark 6. A variant of DMET, which could be termed density embedding theory (DET), would con-
sist in choosing fragments of arbitrary sizes for the high-level step, but in using only the diagonal
of the density matrix (i.e., the density) in the low-level step. Denoting by A the space of L X L real
diagonal matrices with entries between 0 and 1 and trace N, and by Dg : P P — Diag(P) € A,
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the DET fixed-point problem would consist in solving FPET(p) = p, where FPET : A — A is
defined as

FDET — DgOFHLOFLL

Ler with FEb(p) := argmin EUF(D).

E
DeD, Dg(D)=p

Similar arguments as the ones used in the proofs of Proposition 1, Theorem 4, and Theorem 5,
allow one to show that

1. under Assumptions (A1)-(A2), po = Dg(Dy) is a fixed point of the non-interacting DET
scheme;
2. under Assumptions (Al), (A2),

(A3) all diagonal elements of D, are in the open interval (0,1),

(A4’) the non-interacting high-level map satisfies some local Hohenberg-Kohn theorem, in
the sense that, locally around the one-body Hamiltonian A, there is a one-to-one corre-
spondence between diagonal perturbations of i (up to uniform shift) and perturbations
of the density,

the DET fixed-point problem has a unique physical solution in the weakly-interacting regime

(0 < a <« 1), which is exact up to first-order in a.

A rigorous analysis of the respective merits of the different variants of quantum embedding
methods is outside the scope of this article, and is the subject of ongoing work by some of us.

4 | NUMERICAL SIMULATIONS

In this section, we perform numerical investigations of DMET for two distinct test systems: The
first system is Hjq in a circular geometry which serves as a benchmark where DMET has been
previously recognized for its exceptional performance [24]. By studying this system, we aim to
reaffirm the efficacy of DMET and numerically showcase that DMET is exact to first order in the
non-interacting limit. However, to gain a comprehensive understanding of DMET’s limitations,
we also explore a second system which is an Hg variant. This particular system allows us to numer-
ically scrutinize the assumptions made in the analysis presented above. Through these numerical
investigations, we aim to provide valuable insights into the mathematical structure of DMET,
paving the way for further advancements and improvements in this promising computational
approach. Throughout this section, we denote by || - || the Frobenius norm on matrix spaces.

41 | H,,ring

We consider a circular arrangement of ten hydrogen atoms, with a nearest-neighbor distance of
1.5 a, between each pair of atoms (where a, ~ 0.529 A is the Bohr radius). The system is treated
using the STO-6G basis set and is half-filled, that is, containing ten electrons. We partition the
system into five fragments, each consisting of two atoms, as shown in Figure 1.

In order to numerically confirm that DMET is exact to first order for this “well-behaved” system,
we determine P, for a € [0, 1] and compute ||dP, /da||r. Figure 2 compares the DMET result with
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FIGURE 1 Depiction of the H;, system in circular geometry. The red-shaded areas show the chosen
fragmentation.
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FIGURE 2 (a)Shows ||dP,/da||r for DMET and FCI, respectively (b) Shows the error on dP, /da between
DMET and FCI, measured in Frobenius norm. DMET, density matrix embedding theory; FCI, full configuration
interaction.

the exact diagonalization result (abbreviated FCI). We clearly see that DMET is indeed exact to
first order for the considered system.

4.2 | H;model

In this section, we will numerically investigate the assumptions required for the analysis presented
in this article. To that end, we consider a non-interacting Hg‘ system, undergoing the following
transition on a circular geometry. We begin by placing three hydrogen molecules in equilibrium
geometry, that is, bond length of 1.4 a,, equidistantly on a circle of radius 3 a,. We then dissoci-
ate each hydrogen molecule while maintaining a circular geometry. Specifically, we break each
hydrogen molecule in such a way that the hydrogen atoms from neighboring molecules can form
new molecules. We stop this transition at ® = ©,,,,, when the hydrogen atoms from neighbor-
ing molecules form new hydrogen molecules in equilibrium geometry. We steer this transition
with the angle © that measures the displacement of the individual hydrogen atoms relative to
their initial positions. The dissociation is done in a manner that maintains the circular arrange-
ment of the hydrogen atoms throughout the process, see Figure 3 for a schematic depiction of
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FIGURE 3 Schematic depiction of the considered Hy transition. The left panel shows the initial
configuration for ® = 0; the right panel shows the final configuration ® = ©,,,,. The red-shaded areas depict the
imposed fragmentation. The arrows indicate the transition of the hydrogen atoms for ® € [0, © ., ].
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FIGURE 4 (a)Shows ||d,P, |[X=0 || for HF, DMET, and FCI (b) Shows ||0,D, |a=0 || for HF, DMET, and FCI.
DMET, density matrix embedding theory; FCI, full configuration interaction; HF, Hartree-Fock.

this process and a depiction of ®. The system is partitioned into 3 fragments that correspond to
the initial molecules. Note that the fragments remain unchanged during the transition process.
In order to fulfill the N-representability condition (33) below (which is necessary for Assumption
(A3) to be fulfilled), N must be chosen between 6 and 10 (in this example Ny = 3and L, = 2 hence
dim(Y) = 8). Asshown in [12], DMET encounters challenges when being doped; we therefore opt
for N = 10. The system is discretized using the 6-31G basis set.

In order to numerically depict Theorem 5, we compute P, and D, using a mean-field theory
approach (HF), DMET, and the exact diagonalization (FCI), and compare these quantities for
a = 0 as well as their first derivatives with respect to a. Note that in the non-interacting limit,
the mean-field theory is exact, which is reflected in our simulations. We indeed observe that
supg, [IPFF(©) — PEC(©)| and supy, [IDFF(©) — DEC'(®)|| are equal to zero up to numerical
accuracy, while supg |[PDMET(©) — P! (), supg, IDYMET(©) — DFC!(©)|| are respectively of
the order of 107!% and 10~ with the chosen convergence thresholds. Figure 4 shows the first-order
exactness of DMET in the non-interacting limit for the Hg_ model.
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FIGURE 5 (a)Shows the HOMO-LUMO gap for the Hs model as a function of © for « = 0. (b) Shows the
largest and smallest singular values of P for the Hg model as a function of © for a = 0.
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FIGURE 6 (a)The orange line shows the lowest eigenvalue of S := (BleD0 Do y)*BleD0 p_y for the Hg
model as a function of © for & = 0 (which corresponds to (A3)), and the blue line shows the smallest singular
value o,,;, of R|y_,y (which corresponds to (A4)). (b) Shows a zoomed version of (a) around the second (local)
minimum.

Our numerical investigations include an analysis of Assumptions (Al)-(A4). We present a
check of Assumptions (Al) and (A2) in Figure 5. Assumption (Al) can be directly tested by
calculating the HOMO-LUMO gap of the non-interacting Hamiltonian under consideration for
each value of ©. Furthermore, Assumption (A2) can be tested by monitoring the behavior of the
smallest and largest singular values of the matrix P as a function of the variable © (see Lemma 7).

The validity of assumptions (A3) and (A4) is tested in Figure 6 by monitoring the lowest eigen-
value of the operator S := (Bd|TD0 Do y)*BleD(J p—y (which corresponds to (A3)), and the smallest
singular value of the operator R|y,_,y, (which corresponds to (A4)).

We see that Assumptions (Al) and (A2) are uniformly fulfilled over the whole range [0, © .« ]-
Assumption (A3) seems to be satisfied for all ® except two values ©; ~ 0.885 and ©, ~ 0.957.
Careful testing around ©, shows that Assumption (A4) is additionally not satisfied at ©; ~ 0.958,
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FIGURE 7 (a)shows||6;P,]| _,llr for HF, DMET, and FCI (b) shows [|0;D,|__, I for HF, DMET, and FCI.
DMET, density matrix embedding theory; FCI, full configuration interaction; HF, Hartree-Fock.

where all other assumptions are satisfied. This illustrates the fact that in the general case Ny < L,
Assumption (A4) is independent of Assumptions (A1)—(A3) (see Remark 3).

Figure 7a shows the Frobenius norms of the second derivative of P, and D, at « = 0 for HF,
DMET, and FCI. We see that the three methods give different results, and that the result in The-
orem 5 is therefore optimal. We also observe that for DMET, the second derivatives become noisy
in the range of ®’s where Assumptions (A3) and (A4) are poorly or not satisfied. This is probably
due to conditioning issues or to the use of convergence thresholds not directly connected to the
computed quantity of interest. The numerical analysis of DMET is left for future work.

We now investigate more closely the violation of the hypotheses at ©;, where R is not invertible,
but (A3)is still satisfied. To that end, we compute the differential of F, (?MET(PO) at Py, as a function
of ©, and see that for © close to O, F, (?MET(PO(G))) possesses a simple real eigenvalue which tran-
sitions from being positive (for ® < ©3) to being negative (for ® > ©;), with all other eigenvalues
having negative real parts. As is standard, this type of eigenvalue crossing generically gives rise to
a transcritical bifurcation [47]. This suggests the existence of another branch of solutions P;(®) of
P = FJMET(P), which collides with Py(©) at © = @3, and such that the largest eigenvalue of the
differential of FPMFT at P, has the opposite sign to that at P;.

To find this branch of solutions, we employ a Newton algorithm on F{™ET . Since we are looking
at small differences, this requires accurate computations of Fi'* and Fi" as well as their differ-
entials (without resorting to finite differences). The differential of F;‘L is computed analytically
by perturbation theory (taking into account the self-consistent Fermi level). For F-*, we imple-
mented a manifold Newton algorithm to compute an accurate solution of the problem defining
the low-level solver. This is done by, starting from the point D,,, parametrizing D, as D(X) with
an unconstrained matrix X as in the proof of Lemma 11, and then performing a Newton step on the
Lagrangian L(X, A) that corresponds to minimizing £MF (D(X)) subject to Bd(D(X)) = P. From
the Hessian of the Lagrangian one can also compute the differential of FOLL, and then ultimately
of FPMET_

0

Toinitialize the Newton algorithm on atagiven O close to ®3, we start from P, and com-
pute the eigenvector Y of dFp™F" associated with the eigenvalue that crosses zero. Then, we run a
Newton algorithm started from Py + a(® — ©3)Y, where « is an empirically chosen parameter (its
precise determination involves higher derivatives [47], which are cumbersome to compute). We

FDMET
0
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FIGURE 8 The two branches P, and P, (displayed are the scalars Zij P;;) as functions of © near @ = ©;.

observe the two branches P, and P; shown in Figure 8, confirming the transcritical bifurcation.
Let us emphasize that this bifurcation is not due to symmetry breaking, as can be shown from a
detailed analysis of the solutions P, and P; (see Appendix B).

5 | IMPURITY PROBLEMS AND HIGH-LEVEL MAP
5.1 | Impurity Hamiltonians
It follows from the considerations in Section 2.2 that if
Vx € [1,Nf], dim(DX,) = dim((1 - D)X,) = L,.
the impurity problem is well-defined for each fragment since the maximal rank assump-
tion (11) is satisfied for each X,. The next lemma gives useful equivalent characterizations of

these conditions.
Let us introduce the matrix

U
o L = Ly
E, :=maty (e,,x € I,)=| I |eRM™x with L,,x,_ Liscrn I)f (27)
X '_Zx<x’§Nf x!
Orrxr,

representing the orbitals of fragment x € [[1,N f]], whose range is X,. We recall that P° denotes
the interior of the set 7 = Bd(CH(D)) in the affine space Py, + ).

Lemma 7 (Compatibility conditions). Let D € D. The following assertions are equivalent:

1. Bd(D) € P°;
2. Vx € [1,Nf], dim(DX,)=dim((1 - D)X,) = L,;
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3. Vxe[[1,Ns], 0< EIDE, <1 (all the eigenvalues of ELDE,, are in (0,1));
4. Vx € [1,N/]l, E{DE, € GLg(L,) and E,(1—D)E, € GLg(Ly).

If D satisfies these conditions, we say that it is compatible with the fragment decomposition.

It is easily seen that if D is compatible with the fragment decomposition, then the column
vectors defined by the matrix

CX(D) := <DE (EIDE,) ’(1 — D)E,(EL(1 — D)E,) Y 2> € Rl (28)

form an orthonormal basis of the impurity one-particle state space W, ;, defined in (10). More
precisely, the first L, columns of C*(D) form an orthonormal basis of DX, and its last L, columns
form an orthonormal basis of (1 — D)X, . Likewise, the column vectors of the matrix

C*(D) := <Ex

11,)DE, (ELD(1 — TI,)DE, ) "/ 2) c RLX2L. (29)

form an orthonormal basis of X, @ (1 — I1,,)DX,.
We denote by fij.‘(D) and Eij.‘ (D)", 1 < j < 2L, the annihilation and creation operators in the
basis of the columns of C*(D):

F

L L
@;(D) = Y (C*D))yj@, (D) = Y (CX (D).
x=1 k=1

1mp

These operators allow for an explicit form of the impurity Hamiltonian H p as follows.

Proposition 8 (Impurity Hamiltonian). Let D € D be compatible with the fmgment decomposition.
The x-th impurity Hamiltonian ﬁ;mg is the operator on Fock(W, p) given by

2Ly
A = B D)+ Y DY (h + J(DH(D)) - K@ D)D), ;ai(D)d;(D)
i,j=1
1 2L,
+3 [V>*(D)];j1@(D)'@; (D)@ (D)a(D), (30)
i,j,k,6=1

where

* the Coulomb and exchange matrices J(D¥(D)) € RIL and K(D*(D)) € RIXL for the x-th
impurity are constructed from the density matrix

D*(D) := D — DE(ELDE,)"'EID € Gr(N - L,,L); (31)

* the rank-4 tensor V*(D) is given by

L

[VXD)]ijir = Z Ve [C* (D)) [C*(D)]3;[C*(D) ],k [C*(D) ] (32)
1 A,,E=1

* thevalue of the (irrelevant) constant ES™ (D) is given in (39).
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Note that the matrix D*(D) is in fact the one-body density matrix associated with the Slater

determinant ‘P?C’CDore (see Section 2.2).

5.2 | Domain of the high-level map

A matrix D € D is in the domain of the high-level map FH* formally defined in Section 2.3 if and
only if

1. D is compatible with the fragment decomposition (see Lemma 7), in such a way that the
impurity problem (15) is well defined for each x;
2. the set

Mp = { HER ‘ Vx, the impurity problem (15) has a unique ground-state 1-RDM P, p ,,

Nf
and ) Tr(IPyp,I0,) = N}

x=1

is non-empty;
3. the function
Ny
Fp:Mpduw Y IP.p I €P
x=1

is a constant over M, which we denote by FIIL(D).

In the proof of Theorem 4, we will study F1'* in the non-interacting (« = 0) and weakly interact-
ing (|a| small) cases. We will see that in these regimes the domain of FXI' contains a neighborhood
of Dy in D.

6 | N-REPRESENTABILITY AND LOW-LEVEL MAP
In this section, we focus our study on the low level map defined in (19). Clearly, (19) has minimizers
if and only if P € Bd(D) (otherwise, the feasible set of the minimization problem is empty).

The next Lemma covers the extreme cases of minimal (N = 2) and maximal (Ny = L) numbers
of fragments.

Lemma 9 (Global N-representability).

L. If Ny = L (one site per fragment), then Bd(D) = Bd(CH(D)) = P.
2. If Ny =2and L > 3, then BA(D) ¢ BA(CH(D)) = P. More precisely,

Bd(D) = {P € P | V0 < n < 1, dim(Ker(IT; PTI; — n)) = dim(Ker(II,PIT, — (1 — n))}.
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Our analysis of the DMET method in the non-interacting and weakly perturbative settings relies
on the following weaker N-representability result.

Definition 10 (Local N-representability). Let D € D be compatible with the fragment decompo-
sition. We say that the local N-representability condition is satisfied at D if the linear map Bd is
surjective from TpD to Y.

Note that Assumption (A3) can be rephrased as: the local N-representability condition is
satisfied at D).

A necessary condition for the local N-representability condition to be satisfied at some D €
Bd ™' is that

Ny
N(L - N) = dim(D) = dim(RV*N) > dim(¥) = ). Lx(L; +1)

x=1

1. (33)

If Ny = L (one site per fragment), the above condition reads N(L — N) > L — 1, and is there-
fore satisfied for any 1 < N < L — 1, that is for any non-trivial case. On the other hand, if N =2
and L = 2L, = 2L, (two fragments of identical sizes), the necessary condition reads N(L — N) >
@ —1 and is never satisfied as soon as L > 3. This result is in agreement with the global
N-representability results in Lemma 9. In usual DMET calculations, condition (33) is always
satisfied, so that, generically, P and Bd(D) coincide in the neighborhood of P,

The next lemma provides a sufficient local N-representability criterion.

Lemma 11 (A local N-representability criterion). Let D € D be compatible with the fragment
decomposition (i.e., D € Bd~'P ). The following assertions are equivalent:

the local N-representability condition is satisfied at D;

. the only matrices M € Rg;rﬁ commuting with both D and the matrices I1, forall1 < x < Ny are
of the form M = Al for some A € R;

3. if ® € RYXL is an orthogonal matrix such that

N~

Iy O
p=a " o, (34)
0 0
then the linear map
Nf 0 XT
RE-NN 5 X s 3 11,0 o', ey (35)
o X 0

is surjective.

The third assertion of Lemma 11 gives a practical way to check the local N-representability
criterion: it suffices to (i) diagonalize D in order to write it as in (34) (the columns of ® € O(L)
form an orthonormal basis of eigenvectors of D), (ii) assemble the matrix of the linear map (35) in

the canonical bases of RE=N*N and Y, and (iii) check whether the number of positive singular
Np o Ly(Ly+1)
- 1.

values of this matrix is equal to dim(Y)) = szl >
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7 | PROOFS
7.1 | Proof of Lemma 7

LetD € D.
2) < 3). Assume that

Vi<x<Nj, dim(DX,)=dim((1-D)X,)=L,.
Since D? = D, we have for all y € Rlx,
Y (EXDE,)y = y"(ExD’E,)y = (D(Exy))" (D(Ex))) = ID(Ex»)I?, (36)
and therefore,
0 <y'(E{DEy = ID(EY)I* < [Exy|* = ly]*.

Thus 0 < ETDE, <1 in the sense of hermitian matrices. Assume now that y'(EIDE,)y = 0.
Then, E,y € Ker(D). But we also have E,.y € X,. Since dim(DX,) = L, this implies that y = 0.
Thus 0 < ELDE, in the sense of hermitian matrices. Likewise, we have ELDE, < 1. This proves
that 2) = 3). Conversely, if for all 1 <x < N7, 0 < E){DEX, we infer from (36) that D(E,y) = 0
implies y = 0, hence that dim(DX,) = L,. Likewise, ELDE, < 1 implies dim((1 — D)X,) = L.
Therefore, 3) = 2).

3) <= 4).Since 0 < EIDE, is equivalent to ELDE, € GLg(L,) and ELDE, < 1 is equivalent
to EL(1 — D)E, € GLg(L,), we conclude that 3) <= 4).

Lastly, it follows from the definition of P that

P, 0 - 0
0 P, -+ 0 o .

p=]| . leP = M™i1<x<N;0<P =EIPE . <1. (37
0 0 - Py

!

This shows that 1) <= 3), which concludes the proof.

7.2 | Proof of Proposition 8

LetD € Dand 1 < x < Ny. Let us first concatenate the matrix C¥(D) € R"?x introduced in (28)
with a matrix C¥, (D) € REX=2L2) in order to form an orthogonal matrix

C*(D) = (C*(D)|Ceny(D)) € OL).

The column vectors of €*(D) define an orthonormal basis of H = R’ adapted to the decompo-
sition H = W, p @ H;". The generators of the real CAR algebra associated with this basis are
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given by
L L
ax(D) = Y C*(D)yd,,  @X(D)' = Y CX(D)ydy,

x=1 k=1

so that the Hamiltonian

L L

At ata A

A= Z h Aa a; + Z Vit 8, 0: T,
x,A=1 x/l,v,§=1

can be rewritten as

L L
¥ A A 1 A A LA ~
A=) [WD),;a Dy a;0) +5 Y, VD) 8 (D)a(D) 8/ (D)ay (D)
i,j=1 i,jk,l=1
with
L
[h*(D)];; Z h,6*(D),;6*(D);; thatis h*(D) = C*(D)' hC*(D)
x,A=1
and
L
[VXO)ijr 1= Y, ViawsC¥ (D) ¥ (D);,6* (D), 6*(D)g.
x,A,v,E=1

Note thatif 1 <1, j, k,l <2L,,

[R(D)];; = [C*(D)' hC*(D)];; and  [VX(D)]iju

L

Y Vit CHD)C*(D);,C* (D) C* (D)
1,A0,E=1

in agreement with (32). Let ¥ € Fock(H) be of the form

(N—Ly)
w=wIP AW with WP € Fock(W,p) and W05 e A\ M.
We have
L
(WIHI) = (W) AR5 Y (D)) (D) @ (D)
i,j=1
1 L
+5 Z [V*(D)];ju@ (D) @5(D)'a (D)D) LT AW,
i,j,k,l=1
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The terms in the Hamiltonian which change the number of particles in the impurity space or the
environment do not contribute. The terms which act only on the environment subspace yield a
term proportional to ||1lep||2 Expanding the above expression, we thus obtain

(‘P|ﬁ|‘l’)=a1+a2+a3+a4+a5+a6+a7

with

2L,
@t = 3 D), (U0 AW GED) E D) A
i,j=1
= Z [h*(D)];; (¥, 318 (D) &% (D)W}
i,j=1
2L,
= D [CHD) hCH(D)) (¥ @ (D) &)W S),
i,j=1
L
ai= Y PO ARSEar D) ar Oy A v
i,j=2L+1 ’
L
=( > oneEa oy a o) JIe?,
i,j=2L+1
Z Z hx(D)]lJ(‘lep/\‘Pocore|ax(D)'Ax(D)PP]mp/\Lpocore
i=2L,+1 j=1
L, part. in imp. (L, + 1) part. in imp.
(N —L,) part. in env. (N —L, —1)part. in env.
=0,

Z Z [R*(D)), (W0 A WO | G (D) @ (D)W A W™

x,.D
i=1 j=2L,+1
L, part. in imp. (Ly — 1) part. in imp.
(N — L) part. in env. (N — L, + 1) part. in env.

=0,

L
as: = : [VX(D)]Ulelep lPOcore|/\x(D)T/\x(D)Jr/\x(D)a\x(D)|II;1mP IP?C’,CDOre

ijikl=1

L
=5 > [V¥O)yu(e R (D)'ar o) 6 (D)a (D)D),
i,j,k,l=1

L
1 A A A
G =5 > (VD AR IaKD) ar(D) A (D)E; (DI WIE A
i l=2L, +1
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L
— <% Z [V* (D)]UklOPOcore x(D)1 Ax(D).Ax(D)ax(D)lqpcore )llqjlmpllz

i,jk]=2Ly+1
2L, L

=— 2 Y (VD)= VD)= [V D)okt + V(D)) i)

lk 1j,l=2L,+1

imp 0, core A~ ~ P A 1mp 0,core
X(Wop AW |aX(D)'a X(D)T ar(D)a; (DY, AWLE).
(W1 (D) (D)W, D)WY a5 (D) a (D)WY 5™)
Noticing that
. 0, A A 0,
V2L, +1<j,I<L, (‘lix’%)remj.‘(D)T arD)Y, ") = (€X(D)'DEX(D));; (38)
we get
2L, L

az =% Z z ((V*D)]ijra = VD) jure = [V D) jusa + [V (D))

ik=1j]=2L.+1

X (€*(D)T DEX(D)); (¥, 5 [@X (D) & (D)W,

2L, L
D < D ([VX(D)]ik,-l—[VX(D)LM]—[V%D)]M,-I+[Vx(D)]kuj>(GX(D>TDGX(D))H)
i,j=1 \k,JI=2L,+1

x (WP laE (D) ax (D) w)h).
Itholdsforall1 <i,j <2L,,

L

> [VD)]i(C* (D) DEX(D))y
kl=2L,+1

L L

= Y Y Vel O D) CF D)), (6 (D)) [6* (D)o Do [€*(D)]

k=2L, +1%,A.8,0,1=1

L-2Ly L

Z K/1v§ [Cx (D)]m [Cenv (D)]/'tk [Cx (D)]V] [Cenv (D) )] &l [Cenv (D)]UkDaT [Cenv (D)]‘L’l
k=1 kA& 0,1=1

L L—-2L,
Z [Cx(D)]m Z Vk/lv§'< z [Cécnv(D)]/lk [Cécnv(D)]ok>

x,v=1 A,€,0,1=1

L-2L,
XDGT( Z [ env(D)]Tl[ env(D)]é'l))[Cx(D)]vj

I=1
L L
= Z [C*(D)]xi Z Vk/lv§(anv(D)Cenv(D)TDCenV(D)Cenv(D)T)/15 [CX(D)]vj
x,v=1 1,€,0,1=1

[c@ri@ e m)] .
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with, recalling that C*(D) = (C*(D)|CZ,,(D)) is an orthogonal matrix,
éx(D) L= el’lV(D)Cel’lV(D)TDCEHV(D)CSHV(D)T
= (1 - C*(D)C*(D)")D(1 — C*(D)C*(D)")
=D - DE,(EIDE,)"'EID

=D*(D) (see (31)).

Using similar arguments, we get

2L,
a;= Y, [CXD) U(D(D) - K(®*DNC*D)] (¥ P 18F D) aDI)D).
i,k=1
We finally obtain

(WIAY) = (WP IATP WD,

where ﬁ;mg is given by (30) with

L
EenV(D) — Z [hx(D)]z]< 0 Corelax(D)-[-Ax(D)llpo ,core
i,j=2L,+1
1 L
ty IZ VD)W 18 (D) @ (D) @ (D) (DIWLR™).  (39)
i,j,k,l=2Ly+1

7.3 | Proof of Lemma 9

The first assertion is a direct consequence of [21, Theorem 6].
We now prove the second assertion. Let

K :={P=(P,,P,) € RGI" x RZR [V0 < n < 1, dim(Ker(P, — n)) = dim(Ker(P, — (1 — n))}.

Let P = (P1,P,) € Bd(D) and D € D be such that Bd(D) = P. Let U; and U, be two orthogo-
nal matrices of sizes (L; X L;) and (L, X L,) respectively, and D, = diag(m,, ...,m,) and D, =
diag(m/, ..., miz) two diagonal matrices with entries in the range [0,1] ranked such that m; >
< >my andm] < - < m’LZ, such that P, = U;D,U! and P, = U,D,U?. It holds

U, 0\/D, Cc\/UT o
D= ! ! 1 ;| forsomeC e RL1xLz
o U,/\cT D, 0 U,

The condition D? = D reads

cc’=p,-D}, Cc'C=D,-D;

20 C—DIC—CD2=O
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that is

Ly
VISi<L, V1<j<L, > C2=m ZC =m —m . A=m—m)Cy; =0.

k=1

This implies that C;; = 0 unless m} = 1—m; and that C;; = 0 whenever m; = 0 or 1, or m;. =0or

1. It follows that

with 0 < ny < ---

n;i(1- nj)Idj and CJ.TCJ- =nj(l1-n

that BA(D) C K.

0 U, o0
- D
U! 0 U,

I,
nilg, G
nely, Ce
_ Oy,
OS2
CIT a- nl)Idi
cy (1 =ne)ly
I,

(40)

< n; < 1. Using again the idempotency of D, we obtain the relations C jCjT =
i) . Taking the trace leads to d; = d;. Therefore, P € K so
J

Conversely, let P € K and U;, U,, Dy, D, as before. Then U| P,U; and U] P,U, read as the

diagonal blocks of the right-hand side of (40) with d; = d} forall j. Setting C; =
the matrix D defined by (40) is in Mg and satisfies Bd(D)

K c Bd(D).

74 |

Let Ny

foX) :

go(X) :

Proof of Lemma 11

2 (Iy + Iy — 4XTX)1/2)
X

= @d| 2

= Bd(fo(X)).

:=L — N.For X € R"*N guch that || X|| < 1/2, we set

XT
Iy, — Iy, —4XXT)'/2)

T

bl

i@ =nply,,
= P. Hence, P € Bd(D) and therefore
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The map f¢ provides a local system of coordinates of D in the vicinity of D. Therefore, the local
N-representability condition is satisfied at D if and only if the map

Nf 0 XT
dogo : RVVN 5 X 15 dyge = ), nxcp<X o ><I>THx ey
x=1

is surjective. This proves the equivalence between the first and third assertions of the lemma.
Writing ® as ® = (®°|®V'™") with ®°°¢ € RIXN and @'t € RIXNv, the adjoint of dy gy is given
by

- T
dogly 1 Y3 Y > dogh (V) = 20V Y@o© € RNV,

We therefore have forallY € Y,

Ny
(dogodogy)Y =2 ) (1 — D)YD + DY (1 — D))I,, (41)
x=1
and therefore
Ny
lldog, (V11> = Tr(Y(dogodog}y)(Y)) = 2Tr| Y )’ TT,((1 — D)YD + DY (1 — D))I,
x=1
Ny
=2Tr| ) I, YIL((1 - D)YD + DY(1 — D))
x=1

= 2Tr(Y((1 = D)YD + DY(1 — D))) = 4||(1 — D)YD|%.
Thus
VY e, lldogry(WIl =2[(1-D)YD].

The map dyge is surjective if and only if its adjoint is injective. Thus the criterion is satisfied if
and only if

VYey, (1-D)YD=0 = Y=0.

As D is an orthogonal projector, (1 — D)YD = 0 if and only if Y commutes with D. In addition, a

matrix Y € R is in Y if and only if (i) it commutes with all the I1,’s, and (ii) its trace is equal

to 0. Thus, the criterion is satisfied if and only if any zero trace matrix Y € ngXnLl commuting with

D and the IT,’s is the null matrix. Lastly, this condition is equivalent to: any matrix Y € Rﬁ}frﬁ
commuting with D and the I1,’s is of the form AI; for some 4 € R. This completes the proof of

the second statement.
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7.5 | Proof of Proposition 1

For a = 0, the low-level map is formally given by

Fi*(P)= argmin Tr(hD)  (formal). (42)
DeD, Bd(D)=P

Under Assumption (Al) (i.e., ey < 0 < ey41), Dy is the unique minimizer of

argmin Tr(hD).
DeD
Since Bd(D,) = P (by definition of Py), D, is the unique minimizer of (42) for P = P,,. Thus, P,
is in the domain of F;™ and F;"(P,) = D.
For a = 0, the high-level map takes the simple formal expression

Ny
FILD) = ) T, C¥(D)T (g0 (C¥(D)T (h — pIL)C¥(D))C*(D)'TI,  (formal),
x=1

where C*(D) is defined in (28) and u € R is such that

Ny
Z Tr (T, C¥ (D)1 (— 0,0 (C¥(D)T (h — uI1, )C*(D))C*(D)' 11, ) = N.

x=1

Therefore, a matrix D € D is in the domain of Fé{L if and only if

1. the set
Ny
Mp :={ueER| 2 Tr(T1,C¥(D) 1 (— 0,0 (C¥(D)' (h — uI1,)C*(D))C*(D)' I, ) =N
x=1
is non-empty;
2. the function
Ny
Fp i Mp 3 pr Y ILC* D) (o) (CHD) (h — uIT,)C*(D))C*(D) I, € REE
x=1

is constant over Mp,. Its value is an element of 72, which we denote by F(I){L(D).

Let us prove that under Assumptions (Al) and (A2), D, belongs to the domain of F(I){L and
Fi™(Dy) = P,.

First, we observe that for each 1 <x < Ny, the space W, := X, + DyX, is Dy-invariant
since D, is a projector. The linear operator D, on R therefore has a a block-diagonal operator
representation in the decomposition W, ; & W;to of H = RE:

DI 0 .
Dy = 0 B (in the decomposition H = W, o @ W)to)’
0
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where D and 5’5 are both orthogonal projectors. The corresponding representation of & is not
necessarily block-diagonal:

X X

h= & fop (in the decomposition H = W, , ® W= )

= n* T ’l’l\)z p - x,0 x,07°
oD

Let us now focus on the operator h*. To lighten the notation, we set
Dy :=ELIDyE,.
We infer from Assumption (A2) and Lemma 7 that dim(DyX ) = dim((1 — Dy)X,) = L, and

-1/2

€5 := C*(Dy) = (oD, *I(1 = DE(1 = Do) /?)

forms an orthonormal basis of W, . In this basis, the operator h* is represented by the matrix

X o xT X h)i 0
b 1=Cy hCy = : (43)
0 B
with
b* : = D, /*EIDyhDyE, D, 2, (44)
B : = (1— Do) Y/2EL(1 = Do)h(1 — Do)E,(1 — Dy 1) ~V/>. (45)

The zeros in the off-diagonal blocks of §* come from the fact that Dyh(1 — Dy) = (1 — Dy)hDy = 0
since h and D, commute. In addition, we have

N

€1Dy < DohDg = Z idip] <enDos (46)
i=1
L
en+1(1— Do) (1 —=Dh(1—Dg) = Y eaadl < (1 — Do) (47)
a=N+1

Combining (44) and (46) on the one hand, and (45) and (47) on the other hand, we obtain
Elle < f))ﬁ < ENILX and €N+1ILx < I]f_ < ELILx' (48)

We therefore have

I, 0 0 0
1—00,01(8) = T_o,0(B*) = Ox o) 110,000(5*) = T(0,00)(H*) = , (49)

0 Ip,
and thus
Ny ; Ny I, 0 r
D ILC T oo o)(B)CY T = D TLCY| = )CX 0,
r=1 r=1 0 0
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Ny
= (Eng)DOExD&iEiDO(Eng)
r=1

Ny
= ) TLDyII, = Bd(Dy) = P,.
r=1

As Tr(Py) = N, we have 0 € Mp, and 7 (0) = Py. Let us now show that Mp = {0}. It holds

I,

Iy o . . "
o o (in the decomposition H = W, , @ Wx,O)’

and in the basis defined of W, , defined by C;, the orthogonal projector II} is represented by the
matrix

1/2 1/2
bt =TI CY = < Dox D21 = Dy )Y > 0
. 0 0 1/2 :
(1-Do)V?Dy?  (1-Dyy)

We therefore have in particular p* 2= p* = p~ T, Consider the function

N
Zf: Tr(l‘[xcgﬂ(_oo,o] (cggT(h - ,,cnx)cg)chnx)

x=1

Ropuwe{(u:

Ny

[
g
o

(P T (—co0(B" — up™))

x=1

Ny
= 2 Tr(P 1o (B — HPFIPY) 2 0.
x=1

We already know that {(0) = N. We see from (48) that 0 is not in the spectrum of ) for all x. By
a simple continuity argument, we obtain that for |u| small enough, 0 is not in the spectrum of
h* — up* for all x. We therefore have

Ny

¢(u) = Z % }éTr(px(z —(p* - ,upx))_l) dz (for |u| small enough), (51)

x=1

where C is for example, a circle in the complex plane, centered on the negative real axis, containing
0 and of large enough radius. It follows that ¢ is analytic in the vicinity of 0 and that

Ny 1 Ny
Oy A G CR DR PR [EED MU N

where £ is the linear operator on R?;r’;lxu" defined by

1 _ _
VM e RN, 8fM = —5= }{ (z-5)""Mz-9) " dz, (53)
C
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which can alternatively be defined by the linear response formula
T(—o001(B" + M) = T(_so 0/(§") — LEM + o(IM)). (54)

Let us diagonalize the real symmetric matrix §* as

2L,
— = T T : = oT  x —
- Z Ex,n¢x,n¢x,n with Ex,l <- < 2Ly ¢x,m¢x,n - Smn’

n=1

with (using (48))
Vi<i< Lx, VLx <a< 2Lx’ Ex,l' < ey < 0< EN+1 < ’gx’a.

Using Cauchy residue formula, we get

T
M— Mt 0 NM*)T
VM = eRyLT, M ) (55)
Mt~ M, NM*) 0
with
M+
Vi<mn<L, [NM )= J# (56)

Ex,m+L, — Ex,n

The operator £ is self-adjoint and positive. Denoting by p := ¢; —&; > 0 the spectral diameter
of h, we have

w= (M M e REx i\ QEMY > 207 M2 (57)
= M+_ M++ sym El » VX = P .

Indeed, we have

Ny L, 2Ly M¢ |2 Ny L, 2L,

X,a ~

(M gM)y =23 3 22" Y 180 Ml

x=1i=1 a=Ly+1 x,a x,d x=1i=1 a=Ly+1

=207 1T (0,0 (5 IM T g 1) (HH)II> = 2071 |M~H||2.
Let
Ny
Jo :=qMER —up) =0,

Since u — det (§* — up*) is a polynomial of degree L,, the set J; contains at most L elements. By
similar arguments as above, the function ¢ is real-analytic and non-decreasing on each connected
components of R \ Jy. At each y, € J, the jump of ¢ is given by

Ny

Sl +0) =S — 0) = Z Tr(p* Tio(5° — pop™)p*) > 0
x=1
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The function ¢ is therefore nondecreasing on R. As a consequence, the set M, is an interval I,
containing 0. Using (50), (52), and (57), we get

Ny Ny
_ 1/2 _
¢'(0) > 2p7" Y 1Dy (1 = Do )1 = 2071 Y Tr(Dg (1 = Dy 1)) > 0,
x=1 x=1

since, in view of Lemma 7, all the eigenvalues of the symmetric matrix Dy (1 — Dy ,.) are positive.
Thus Mp, = {0}. This proves that Dy is in the domain of F" and that F'“(D,) = P,

Combining this result with the previously established relation F(%L(PO) = D,, we obtain that P,
is a fixed point of the DMET map for a = 0.

7.6 | Proof of Theorem 4

We endow D with the Riemannian metric induced by the Frobenius inner product on Rg;nﬁ For
7 > 0, we set

w, :={PEP||P-Pyll<n} and Q, :={D€D]||D-Dyl <n}

7.6.1 | Low-level map in the perturbative regime

Let us introduce the maps

g:D->Y st. VDeD, g(D):=Bd(D)- Py,
a:D->R st. VDeD, a(D):=Tr(hD),
b:D—R st. YDeD, bD):= %Tr((J(D) — K(D))D),

E:RxD->R st. Y(a,D) ERxD, E(a,D):= &M (D)=a(D)+ab(D).

Since the maps Bd, J,K : ngxé - ngxnﬁ are linear, the maps g, a, b, and E are real-analytic. With
this notation, we have

(Assumption (A3)) < (B :=dp,g =Bd : Tp D — Y surjective).

Lemma 12 (Low-level map in the perturbative regime). Under Assumptions (A1)-(A3), there exists
arp, > 0and0 < 9y < § such that

1. @, CDom(F;")foralla € (—ayp, i)
2. the function (o, P) » F ;L(P) is real-analytic on (—agy,ary) X cu,%)m.

Proof. The first assertion means that for all (a, P) € (—ag 1, o1 1) X @,, ., the problem

nLL’

min  EMF(D) = min E(a,D) (58)
DeD | Bd(D)=P DeD | g(D)=P—P,

has a unique minimizer, which we denote by F-“(P).
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Using Lemma 11 and the submersion theorem, we deduce from Assumptions (A2)-(A3) that
there exists 7 > 0 and C € R, such that for all P € w,, the set Bd_l(P) is nonempty and there
exists Dp € Bd™'(P) such that ||Dp — Dyl| < C||P — Py||. Let D, p be a minimizer of £4F on
Bd_l(P). Such a minimizer exists since £IF is continuous on D and Bd_l(P) is a nonempty
compact subset of D, and satisfies the optimality conditions

VDE(a’Da,P) + dDa,pg*Aa,P = 0, g(Doc,P) =P- POa (59)

where VpE(a, Dy p) € Tp, D is the gradient at D, p of the function D 3 D — E(a, D) € R for
the Riemannian metric induced with the Frobenius inner product, and A, p € Y the Lagrange
multiplier of the constraint g(D,, p) = P — P,,.

Denoting by
1
Cy = 5 max |Tr((J(D) — K(D))D)|,
we have
EXT(Dy p) < EFF(Dp) < EF(Dp) + aCyy < EF(Dy) + [P — Pl + aCly. (60)

To obtain a lower bound of EF(D,, p), we use that

VDeD, &F(D)=Tr(hD) > £MF(D,) + g“D — Dyl

This inequality is classical, but we recall its proof for the sake of completeness. For M € ngﬁ we

set

M~ :=DyMD,, M™% :=DyM(1—Dgy), M*™ :=(1-DyMD,, M**" :=(1—-Dy)M(1— D).

LetD € Dand Q := D — Dy. Since Dy = 1(_, o(h), we have
ht=ht"=0, h " <ey, htt>ey,, QT >0, Q77 <0,
and we deduce from the fact that both D and D, are rank-N orthogonal projectors that
Q*=Q**—Q~ and Tr(Q*")+Tr(Q™")=0.
Combining all the above properties, we obtain
VD e D, a(D)=Tr(hD)

= Tr(hDy) + Tr(h(D — Dy))

= a(Dy) + Tr(h™Q*) + Tr(h Q™)

> a(Dy) + en1Tr(Q*F) + ey Tr(Q™7)

= a(Dy) + gTr(QH —Q )

Y
= a(Dy) + EHD — Dol|?. (61)
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As é‘é{F(D) = a(D), this implies that
14
£ (Dap) 2 £ (Dap) — aCut 2 £ (Do) + S 1Dp = Dol — aC.
Combining this result with (60), we obtain
1Dep = Doll? < 2y~ (2aCpy + ||2]|P = Py)).

This implies in particular that for |«| and ||P — P, || small enough, any minimizer D, p of (58) is
close to Dy. To conclude, it suffices to prove that for |a| and ||P — Py|| small enough, (59) has a
unique critical point close to D,. This leads us to introduce the function

0:RXxP)X(DxY)> (a,P),(D,N)) —» O((a,P),(D,\)) e TpD X Y
defined by
@((d,P), (D’ A)) = (VDE(a’D) + (dDg)*A’ g(D) - (P - PO))

As Dy is the unique minimizer of D — E(0,D) on D and P, = Bd(D,), we have V5E(0,D,) = 0
and g(Dy) = 0, so that

0((0, Po), (Do, 0)) = (0,0).
In addition, denoting by
A :=Dja(Dy) : Tp,D - Tp,D (62)

the Hessian at D, of the function a for the Riemannian metric induced by the Frobienius inner
product, we have

V(Q,A) € Tp, DX Y, [dpr0((0,Py),(Dy,0))| (2) = <2 T) (/?)

where we recall that B := dp g. In view of (61), we have
VQ € Tp,D, (Q,AQ)>7IQl* (63)

Since A is coercive and B : Tp,D - Y issurjective, it follows from the Schur complement formula
that the map

dp A0((0,Py),(Dy,0) : Tp,DXY = Tp DX Y

is invertible. It follows from the real-analytic implicit function theorem on manifolds that there
exist ary, > 0 and 7 > 0, such that for all (a, P) € (—ayy,arr) X @y, (59) has a unique solution
(Dg.ps Ayp) With D p € w,) and the map (a, P) = Dy p is real-analytic on (—otp, o) X @, [

7.6.2 | High-level map in the perturbative regime

The following result states that the high-level map («,D)+~ FI™(D) is well-defined and
real-analytic on a neighborhood of (0, D).
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Lemma 13 (High-level map in the perturbative regime). Under Assumptions (A1)-(A2), there exists
agr > 0and 0 < g, < % such that

1. Q,  cDom(Fy") forall a € (—apy, omy);
2. the function (a, D) ~ F3*(D) is real-analytic on (—ayy, otgy) X Q.

Proof. For D € D compatible with the fragment decomposition, we set

L
[Ae(D)]ya = [CXDYRC¥D)] , = Y [CX (D) [C*DY]gar s (64)
x' V=1
L o~ o~ —~ o~
VD) i= Y, [C¥ D) [CXDI 1 [C¥DY, o [CXD)g e Virarrrs  (65)
K//I/Vlglzl

where C*(D) is defined in Lemma 7. Denoting by c,, cz, 1 < x < 2L, the generators of the CAR
algebra on Fock(R?!x) associated with the canonical basis of R?/x, the high-level map can be
formally written as

Nf L

FEL(D)_ 2 Z eL'+KTrF0Ck([R2Nx)< och,,uCTC/1> LL+2 (formal), (66)
x=1x,A=1

where Ty, p , € £(Fock(R?x)) is the ground-state (many-body) density matrix associated with
the grand-canonical impurity Hamiltonian

2L, 2L, .

~im . ~ ~

Ay, o= O [l +a Y, [VaDlayecicieze, — p Y cle,
x,A=1 x,A,,E=1 x=1

the parameter 4 € R being chosen such that

f Ly
Z Z I‘Fock([RZNX) <Fa,x,D,MC;LCl) =N.
x=1x1=1

The results established in the proof of Proposition 1 can be rephrased as follows: under
Assumptions (A1)—-(A2),

1. the impurity Hamiltonian A™

o has a non-degenerate ground-state for each x and that it
,X,D0,0
holds

Ny L,

i .

Z Z Trpock(r2Vx) (FO,x,DO,OC;cC/I> =N;
x=1x1=1

2. the function

Ny Ly

R > M= 2 Z TrFOCk(RZNx)(FO,X,D(),,MC;ZC/I) eR
x=1x,A=1
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is non-decreasing, real-analytic in the neighborhood of 4 = 0, and its derivative at u = 0 is
positive.

Since the maps
D>Dw [h(D]y€R and D3D e [V,(D)]e €R

are real-analytic in the neighborhood of D, we deduce from Kato’s analytic perturbation theory
and the implicit function theorem that there exists oy, > 0, Hpyp, > 0, and g, > 0 such that

1. foreach(a,D, ) € (—apr, anr) X Qp,,, X (—ur, 4aL), the impurity HamlltonlanH p Dy has

anon-degenerate ground-state for each x; we denote by I' . p («.x) the correspondlng ground—
state many-body density matrix;

2. foreach (a,D) € (—ayy, agL) X Q,, ., there exists a unique u(a, D) € (—upyr, 4yr) such that

MHL’

Ny L,
Z Z TrFOCk(RZNX) (roc,x,D,/x(oc,D)CZC/l> =N;
x=1x,A=1

3. the maps (a, D) = u(a, D), (&, D) = Tg x p ua,p)> and
Ny L,
(a,D) = FU(D) := Z Z er +xTrFock(R2NX)(FaxD;¢(a D)Cx C/l) €

x=1x,A1=1

are real-analytic on (—ayy, apr) X Q)

This proves the two assertions of Lemma 13. O

7.6.3 | Existence, uniqueness, and analyticity

We infer from Lemma 12 and Lemma 13 that there exist apypr > 0 and npyer > 0 such that the
function

(—tpmETs ADMET) X @y D (@, P) > @(at, P) 1= FRVPH(P) — P := FM(FH(P) ~P € ¥
is well-defined and real-analytic, and we know from Proposition 1 that
(I)(O, Po) =0.

To complete the proof of Theorem 4, we have to check that the function & satisfies all the
hypotheses of the implicit function theorem, namely that

dp®(0, Py) = (dp,Fy") (dp,Fg") =1y : Y = Y (67)

is invertible.
Let us first compute dp F5" : ¥ — Tp, D. Differentiating the equality

VP € w,, O((0,P),(F3"(P), Agp)) = (0,0),
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we obtain that the derivatives at P, of the functionsw, > P — F (];L(P) € Dandw, 3 P~ A(P) :=
Ay p € Y are characterized by the relation

VY €Y, [dpO((0,Py), (Do, ONIY + [dp 200, Py), (Dg, 0NI((dp, F5™)Y, (dp,A)Y) = 0,

=01 =(Al(dp, F§")Y 1+B*(dpy )Y ).Bl(dp, F§ )Y ]
from which we infer that
dp,Fit = A7'B*(BA™'B*) . (68)
Let us now compute dp Fy'" : Tp D — Y. We have
Ny

FILD) = ) I,C¥(D)T (0,01 (C*(D) (h — (0, D)IL,)C*(D)) CX(D)' T,

x=1

VD € Q

NHL’

where the function

D> D CX(D) = (DE(EIDE,)"Y/2| (1 - D)E,(EX(1 — D)E,)"/?) € RIX(Lx)

cx(D) c*(D)

has been introduced in (28). Setting as previously Cy := C*(Dy), and denoting by M(Q) :=
[dp,C*1(Q) and £(Q) := [dpu(0, Dy)](Q), we get

dp, F1(Q) = Y T (MQ)T (oo (BICE + 100 (5IM(Q)T )TL,
x=1

Ny
— Y ILCEE (MQTAC] + C3TRM(Q) - ¢(Qp* )3 ' T

x=1

Using (49), we obtain

M(Q)T(—e0,0)(F)CE" + CX1 a0 (5IM(Q)T = [dp, CE@IICED)IT + CE(D)ldp, CEQ)I”

= dp,[C*C*"1(Q).
This implies that
I (MQ1 (001 (5)CE + C3 1o 01 5IM(QT )T, = dp, [I,CCETL(Q)
Since
IL,CX(D)CX(D)' I, = (ExEL)(DEy(E! DE,)~"/?)(E! DE,)~"/?ELD)(EEL) = I1,DIL,,

we get dp, [T1,C*C*'T1,]J(Q) = I1,QTI, and therefore

Ny

2 L (M@ g ®CE + 10 (5IMQ)T )11, = BA(Q) = BQ.
x=1
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Next, observing that for all Q € Tp D,
dp,C(Q) = DoExS_(Q) + QE((EYDoE,) /2,
dp,C3(Q) = (1 = D)EyS+(Q) = QEx(EY (1 = Do)Ex) /2,
with Q ~ S,(Q) € RIx*Lx linear and
Q = DyQ(1 — Do) + (1 — Do)QDy, (69)

we obtain that

T
M(Q)ThC§+Ca‘ThM(Q)=< - MO >

N@Q) =
with
N(Q) : = (ET(1 - Dp)E,)"/?EL((1 — Dy)hQ — QhDy)E,(EL DyE,)~1/?
= (EL(1 - Dy)E,)"/2EL(1 — Dy)[h, QIDyE(ELDyE,)~1/2.
We thus have

T X xT * 0 xT X

M(Q) hCO + C() hM(Q) = 0 % - CO [D05 [h’ Q]]Coy

which implies, using (55),
+ T X xT X + xT X X
2 (M@"hey + ¢ M@ - €@ = & (=C3 1Dy [, QUIC = £Q).
We therefore obtain
dp,Fy" =B +1L,

with L : Tp D — Y given by

Ny

YQETpD, LQ:i= ) nx032;<ch[Do, [h,QIICE + f(Q)pX>chnx. (70)
x=1
Combining with (68), and setting
R:=LA7'B*: Y > Y, (1)

we obtain
dp®(0,Py) = (B + L)(A™'B*(BA™'B*)™!) = I, = R(BBA™'B*)"L.

To conclude, we just have to show that the map R rigorously defined by (71) actually coincides
with the 4-point response function formally defined by (26) (the latter is bijective by Assumption
(A4)). We have forallQ € TpDand Y € Y,

(QrB*Y>TDOD =(BQ,Y)y = Tr((BQ)Y)

Ny Ny Ny
=Tr{| D) I, QI [y | = )’ Tr(IL,QIL,Y) = )| Tr(QILYIL,)
x=1 x=1 x=1
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Ny
= Tr{Q| )} I YL, || = Tr(QY) = Tr(Q(DyY(1 — Do) + (1 — Dy)Y D))
x=1

ETDOD
=(Q,DoyY(1 = Do) + (1 = Do)Y Do), D-
Therefore
Y€EY, B*'Y=D,Y(1-D,) + (1-D,)YD,. (72)
By a classical calculation (see e.g. [4, Section 2.2]), we have
It is also easily checked that
T (BY)CE = (DY (1= D) + (1 = DYDCE = [ )+ ye 74
0( )0_0(0(_0)+(_0) 0)0_0*+0 0° ()
Putting together (55) and (70)-(74) yields
Ny
RIY]= Y it (e (v - 2nm) ey ) ey L, (75)
x=1
where
Ny
2(Y) 1= €(A7'B*Y) = Tr(GY) with G := ) Crgf(p")Ci e RLE (76)
. . 0~x 0 sym-*
x=1
Using the notation introduced in (26), we have
Ny
FHL — X xT x \ ~xT
F h+Y(DO) = 2 cho ﬂ(—oo,O] CO (h +Y - :uYHx)CO CO IT,,
x=1

where uy € R is chosen such that Tr(FHL n+y(Dp)) = N. Using similar perturbation argument as
in Section 7.6.2, one can check that FHL, 1 (D,) is well-defined for Y € Y small enough, and that

Ny
-t T T
Ly (D) = ) TLC3 1 aog) (87 + (G5 (¥ — pyTLICY ) €T,
x=1
Ny
— ILHL X Q+t xT X xT
= FL,(Dg) + ) TLCIRE(C3T (Y + pyILIC )3T + oIV I,
x=1

with uy = £(Y) by particle conservation. This shows that the map R defined by (75)-(76) actually
coincides with the 4-point response function in Assumption (A4).
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7.6.4 | About Assumptions (A3) and (A4) in the one-site-per-fragment setting

Let us show that when N; = L, we have under Assumptions (A1)-(A2),
(A3) are satisfied = D, is an irreducible matrix < (A4) is satisfied.

Throughout this section, we assume that (A1)-(A2) are fulfilled.

Let us first show that (A3) implies that Dy is irreducible. We deduce from the second assertion

of Lemma 11 that (A3) is satisfied if and only if the only matrices in Rﬁ}fnﬁ which commute with D,

and all the TT,’s are the multiples of the identity matrix. When Ny = L, the matrices in Rﬁ;(rﬁ which
commute with all the II, are the diagonal matrices. The diagonal matrices A = diag(44, ..., 4;)
which commute with D, are the ones for which

V1<i,j<L,  AlDoli; = [Dolijd;.

If D, was reducible, then one could find a permutation matrix P € O(L) such that PD,P~! is a
2 X 2 block-diagonal matrix. The matrix Pdiag(1, ..., 1,2, ..., 2)P~!, where the numbers of entries
1and 2 match the sizes of the blocks of PDyP~!, would then be a diagonal matrix which commutes
with Dy and is not proportional to the identity matrix. We reach a contradiction. Thus, (A3) implies
that Dy is irreducible.

Let us now show the equivalence

D, is an irreducible matrix < (A4) is satisfied.
We have forallY € Y,

IRIY1II* = Tr((RIY D(RIY D)
Ny
= ) mr(meyel(cy’ (v - Zonmy)cy ey,
x,x'=1

! IT -~ ! /T
X I Cy &, <cg (Y — (V)L )CY >cg nx,>

Ny
= Y rr(mergr (e (v - enm)cy )er e (af (v - eonmy) e ), )

x=1
_ %Tr(pxg;: (c;;T(Y - E(Y)nx)cg>px2; (ch(Y - E(Y)nx)cg»

x=1
Ny

xq+(~xT 7 X\, x (12

= Y (c (v - Znm,) ey ) v
x=1

Using (50) and (55)-(56), we obtain after straightforward algebraic manipulations that
x Qt xT 2 X ) g%
R[Y]=0) < (v1 <x <Ny, p*&f (co (Y - f(Y)Hx)CO)p = o)

= (v1 < x < Ny, (1= Do )V/2N(Y)DY? + DY N (Y)Y (1 = Do )M/ = 0),
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with
N.(Y):=N(Q =D, )"V2ET(1 - D,)YD,E.D. > — 2(v)D*(1 = D, ,)/2
x( ) L ( O,x) x( 0) 0=x0 x ( ) 0,x ( O,x) .

In the case when Ny = L, we have L, = 1 for all x, and thus, D, , and N(Y) are scalar quantities.
We then have in this special case by assumption (A2),

(R[Y]=0) & (VI<x<N;, N, (Y)=0) < (My=~£¢(Y)z),

where y = (Yyy,..., Y )T € RE, z = (Dg (1 = Dygy), ..., Do (1 =Dy )" € R, and M € R]S‘;(Iﬁ is
the matrix with entries

My = [Dolxx — [Do]ix’ My = _[DO])ZCX/ if x # x'.

Still by Assumption (A2), Zi’i 1 Zx > 0, and therefore using the fact that D, is an orthogonal
projector (hence that Zfﬁ UDol2 = [Dglix = [Dolx), We get

N N N
M E,(Y) ) E(Y) Zx,fc’:l Mx,x’yx’ inl [DO]x,xyx - Zx,fc’:l [Do]i,xryx’ 0
y= Z) > = N = N =
xil Zx inl Zx

Therefore,
(R[Y]=0) <= My =0).

The matrix M is hermitian, diagonal dominant with positive diagonal elements and non-positive
off-diagonal elements, and such that

VI<X <Ny Mg=— ) M.

x!'#x

Therefore the kernel of M is reduced to R(1, ..., 1)T if and only if M is irreducible. Besides, we see
from the expressions of the coefficients of M and Assumption (A2) that M is irreducible if and only
if Dy is irreducible. We conclude that R is injective, hence bijective, if and only if Dy is irreducible.

7.7 | Proof of Theorem 5

7.71 | Perturbation expansion in the Fock space

This calculation is classical in the physics and chemistry literature, but we report it here for the
sake of completeness. Consider a family of Hamiltonians (H,),cg of the form

ﬁa = ﬁo + Q(Wl + Wz)

on the real Fock space Fock(RN») where

Ny Np
H, := Z [holmnCincn and Wi := Z (W1 lmnCmen
m,n=1 m,n=1
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are one-body Hamiltonians and

Np
W o-— o
W2 = Z [W2]mnpqcmcncqcp
m,n,p,q,=1

N

is a two-body Hamiltonian.
Let us provisionally assume that h is diagonal, and more precisely that
— diao(0 0 : 0 0 0 0
hy = dlag(sl,...,sNb) with g <. < € < 0< € S N,
This amounts to working in a molecular orbital basis set of the unperturbed one-body Hamilto-
nian h, and assuming that the Fermi level ¢y for having A particles in the ground state can be

chosen equal to zero. The ground state ¥, of H,, in the A -particle sector then is unique and so is
the one of H, for a small by perturbation theory. We have

N
1 , N
ol |0y, Ep 1= (¥|Ho|¥) = 25?'

VNI N i=1

Denoting by d(«) the ground-state one-body reduced density matrix of H,, the map a — d(a) is
real-analytic in the neighborhood of 0 and

lPO=

. Iy O
d(a@) =do+ ad, + O(a®) with d, := o o)

In addition, we have
[diln = (PrlemealPo) + (Polep,cal ),
where ¥, is the first-order perturbation of the ground-state wave-function ¥, solution to
(Hy, — Eg)¥, = —r[q,é((ﬁ/\1 +Wy)¥), ¥ eVl
For1<i; <. <i, <N (occupied orbitals) and m+ 1 < a; < --- < a, < N, (virtual orbitals),

we set

0 .= et _ et e e @0
@) =¥, and d:'ilml. =Cq, 01 Cq Ciy G D).

r

The cpfll_j'_;””s O <r<min(N,N,—N), 1<i; <+ <i, <N, a; <+ <a, <N, form an
r

orthonormal basis of eigenfunctions of the restriction of A, to the N -particle sector and it holds

A~ -
Hyd™
ipeeed

¥ ety r

r r
=Bl with BN =By + PRI
' s=1 s=1
We thus obtain the sum-over-state formula
Q5 a0
<q>i11...i r|W1 + W2|q)0>
4 ()

E?l“:ar _EO fy-eeiy

1<r<min(WN ,Np—N) 1<iy <-++<ip, <N N +1<a;<---<a, <N}, ip--iy

ay---a,

lpl=—

k]
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yielding
<¢§11""ar|w\1 + W, |®0)
1 0
[diln = — Z Z Z a1-a,
E - K,

1<r<min(N,Np—N) 1<ij <-++<ip, <N N'+1<a;<---<a, <N}, iy

X (@1 el D) + (@lchen B ).
Since (@Z{::;?’laiqanltbg) =0ifr > 2,and
(@ eiCnl®0) = 85,16m,00
(@b chegChl®O) = =811 4018 aOge’ + Om pOniBa.apen’ + Omidnadpadaen
— 8m,i0n,pSg.adp<n

this expression reduces to

G <c1>“|W1 + W] )
[d1 = - z Z E (5n 15 =q T 5m=i5n=a)'

i=1 a=N+1 a i

We obtain that d; is of the form

0 df” (D2|W) + W,| D))
d, = with VI<i<N <N +1<a<Ny, |[di]u= .
0

_T 0_ .0
df Eq — €
Finally, we have
Nb (¢ c,|00) Nb (<I>a|c cheqe,|®0)
' ntqtp
[dilai = Z [Wl]mnlo—oo + Z [WZ]mnpq v
m,n=1 &q — gl, m,n,p,q=1 Ea - gl,
_ W1 +Jy,(do) — Ky, (do)]ai
g — ¢
where the direct and exchange operators are respectively given by
Ny Np
[JWz(d)]mn ‘= Z [Wz]npqupq and [KWZ(d)]mn ‘= Z [WZ]npqmdpq-
p.g=1 p.g=1
Introducing the linear response operator 2;0 such that
Vcooep(ho + W) = T (L e (hg + W) —QZOW + oW,
—_———
=d,
we finally obtain
d, = —53;0 (W1 +Tw,(do) — Ky, (dy)), (77)

this formula remaining valid in the general case when h is not a priori diagonal and ¢ not a
priori equal to zero.
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7.7.2 | Perturbation expansion of the DMET ground-state

Under Assumption (Al), the HF problem

argmin (D)
DeD

has a unique minimizer D"¥(«) for a small enough and the map a —~ D'F(«) is real-analytic in
the neighborhood of 0. This results from a straightforward application of nonlinear perturbation
theory, which we do not detail here for the sake of brevity. We set PHF () := Bd(D"F(«)), and

Dexact DHF DDMET
DfxaCt c= d (O) D{IF - (O) D?MET c= d (0)’
da
Pexact — dPeXHCt (0) PHF c— dPHF (0) PDMET - dPDMET (0)
1 ) da ’ Lo da ’ 1 ) do '

We are going to prove that the above first three matrices on the one hand, and the last three ones
on the other hand are equal in Tp D and Y respectively.
First, we deduce from (77) applied with N, = L, e = 0, hy = h, W; = 0, W, = v, that

DYt = —F(J(Dy) — K(Dy)),

where J and K are the direct and exchange operators for the two-body interaction potential ¥
introduced in (21).
Next, by differentiating the self-consistent equation

DF(a) = 1(_g o) (WMF (o, DHF (),
where
WMF(a, D) = h + a(J(D) — K(D))
is the Fock Hamiltonian for the interaction parameter o, we get
D" = —2/(J(Do) — K(Dy))-
Hence
D{{F = Dt and PHF Bd(DHF) = BA(DE¥ct) = pesact,

Let us now show that PPMET

= P}'¥. For convenience, we will use the following notation

F'a,P) :=F(P), F"%%a,D)=FIxD),

Ny
Fiii(@,D) 1= ) TL.C¥(D)1(_qo ) (C*(D)T (WMF(a, D) — uF (e, D)II,. ) C*(D)) C*(D)' T,

x=1

where u"'F(a, D) € R is the Lagrange parameter of the charge conservation constraint. The map
F HL(oc D) is the high-level HF map for the interacting parameter «, introduced in Remark 2 for
a=1.
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‘We know from Theorem 4 that for all « small enough
FHL (g, FLL (o, PPMET(gr)) ) = PPMET(gp),
Taking the derivative at o = 0, we get
8, F1(0, Dy) + 8pFMH(0, Dy) (8, F (0, Py) + 8pF (0, Py)PPMET) = pDMET, (78)

The same arguments as in the proof of Proposition 1 allow one to show that for all « small
enough

FHL (o, FU (a, PP¥(a)) ) = PHF(c0),
yielding
8, Fi15(0,Dy) + dp Fii(0, Do) (8, F(0, Py) + 8pF (0, Py)PF) = PHE. (79)
Since F{1(0, D) = FH(0, D) for all D in the neighborhood of Dy, we have
8pF}5(0, Do) = 3pF™(0, Dy).
Using (67) and the invertibility of dp®(0, Py) established in Section 7.6.3, we obtain

PPMET — _(d, (0, Pp)) ' (8, FHL(0, Dy) + 3pFHL(0, D)3, FX-(0, Py)), (80)

PHF = —(dp®(0, Py)) " (3FHE(0, Do) + 3pF(0, Dg)3o F (0, Py)). (81)

Let us show that 8,F"(0,Dy) = 8,F;5(0, D). On the one hand, we have

Ny
Fip(a, Do) = ZH Co T =o00] <Cx (h + a(J(Dy) — K(Dy)) — unr(a, Do)nx)cx>CxT x>
x=1
and therefore
gl T T
8.FHL0,Dp) = = ) TLC2E (€57 U(Dy) = KDO)CE = dpasr(0, D™ ) M (82)
=1

On the other hand, we have

Ny
T
FHl(a, D) = Y TL,CEDp ()C3 T,
x=1

where D;ng)o (@) is the ground-state one-body reduced density matrix in the basis of Y, defined
by C;) of the impurity Hamiltonian (see Proposition 8)

2L,

A5 @ = 3, |G+ (@) = K@*PoNC | auD0)'a D)
i,j=1 L
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2L,
+2 Y, VED0)ljui(Dy) d;(Do) a (Do)ai(Do)
ije=1
2L,
—u@ Y, e, CX]_ a(Do)' a;(Dy),
i,j=1

where u(a) is the Lagrange multiplier of the charge neutrality constraint and where we have dis-
carded the irrelevant constant ES™ (D). Using the notation introduced in (43), this Hamiltonian
can be rewritten as

A;CmDI;( a) = Z [5*] ljal(DO) aJ(DO)

i,j=1
2Ly
+a< |c3" U@ (D) — K@ Do)CF| @) a;(Dy)
i,j=1 U
1 2L,
+2 kZ CACHCCRLICREACRCACRY

@ |5 ey acvo'a o).

i,j=1
0
1mp
XDO(O) ( O 0)‘

Since u(0) = 0 and a — u(a)is real-analytic, we can easily adapt the analysis done in the previous
section to the case when

‘We have

Ny =2Ly, hy=%*, W;= CE)CT(J(@X(DO)) — K(®*(Dy)) — M’(O)Hx)cg, W, = V*(Dy),
and infer that

D™ (@) = DI" (0) — a2+<ch(J(:s>X(Do)) K(®*(Dy)) - W (O)IL,)CE

imp

3y (DS O) = Ky (DS, 00 ) + 0@,

where £} is the linear response operator introduced in (54). Observing that

T (I(D*(Dy)) — K(D*(D)CS +J VX(DO)(Dlmp 0) - Kvwa)(D;“}i) 0)

= " (J(Dy) - K(Dy))CE,

we obtain that
Ny
8.F1H(0,Dg) = — ) TLCy 2t (€37 U(Dy) ~ KDO)CE — w9 )C3 T (83)

x=1
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Since the roles of the scalars 3,0, Dy) in (82) and u/(0) in (83) are simply to ensure charge
neutrality, these two scalars are the same. It follows that aaFIP{%(O,DO) = 3,F"(0,D,), which
allows us to deduce from (80) to (81) that PPMET = PHF. Finally, we obtain that DPMET = DHIF
by differentiating the relations

DDMET(O() — FLL(OC,PDMET(OC)) and DHF(C() — FLL(OC,PHF(O()),

and using the fact that PPMET = pJIF,
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APPENDIX A: NOTATION TABLE
The following table collects the main notations in use in this article.

TABLE A1l Collection of the main notations used in the paper.

Symbol Meaning See Eq.
Fock(E) Fermionic Fock space associated with
the one-particle state space E C H
H = RE One-particle state space of the whole system, L its dimension @))
By = (e )1<x<r. Canonical basis of H @))
a Hamiltonian of the whole system (op. on Fock(H)) 2)
A, Non-interacting Hamiltonian of the whole system (23)
A, Hamiltonian of the whole system for coupling parameter « (22)
N Number of electrons in the system
D Set of 1-RDMs associated with N-particles Slater states 3)
(Grassmann manifold Gr(N, L))
CH(D) Convex hull of D 4)
(set of mixed-state 1-RDMs with N particles)
D, N-particle round-state 1-RDM of H, (24)
DpExact N-particle ground-state 1-RDM of A,
DIF Hartree-Fock N-particle ground state 1-RDM of A,
EHF Hartree-Fock energy functional (20)
Jand K Coulomb and exchange energy functionals (21)
hHF(D) Mean-field (Fock) Hamiltonian (op. on H) (25)
Ny Number of fragments
L, Number of sites in fragment x
X, x-th fragment subspace, X, = Span(e,,x € I,) C H 6)
IT, Orthogonal projector on X, (op. on ngXnL,
E, Matrix of the L, orbitals of fragment x (E, € RF¥Ex) 27)
Bd Projector defined by Bd(M) = f;  Ox MTIy (op.on [Rfyxnﬁ @)
P Convex set of block-diagonal matrices with eigenvalues in [0,1] (8)
y Space of traceless block-diagonal matrices Y C R )
Wb x-th impurity space, subspace of H, W, , =X, + DX, CH (10)
c*(D), C*(D) Matrices in RP?Ex defining orthonormal bases of W, (28), (29)
ﬁi’fg x-th impurity Hamiltonian (op. on Fock(W, p)) (14), (30)
R 4-point DMET linear response function (op. on ) (26), (75)
F™, resp. FLE Low-level map for A, resp. A, 19)
FHL resp. FHU High-level map for A, resp. A, (18), (66)
u DMET global chemical potential
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APPENDIX B: ANALYSIS OF THE DMET BIFURCATION FOR H‘;‘

We shall finally proceed with the analysis of the DMET solutions along the two bifurcation paths
for Hg‘ around O; (see Section 4.2). To begin with, we calculate the molecular orbitals at ;. The
molecular orbital energies exhibit two-fold degeneracies resulting from the fact that the E’ and
E" are irreducible representations of the H‘;‘ symmetry point group (Ds;,) are two-dimensional.
For a visual representation of the molecular orbital energies and their corresponding molecular

orbitals, see Figure Bla,b.
. a8
-0.3634 v
®

_E

E/
-0.5069 ‘ ‘
‘ E, E,
~0.7604 ‘
1.426

_ 4N
) -1.0275
Jol E
-2.0119 ‘
-},-x

Fermi-level

%

E E

o
A—,l -1.3045
20478 “
Fermi-level
(a) Occupied orbitals (b) Virtual orbitals

FIGURE B1 Depiction of the molecular orbitals, their irreducible representation with respect to the D),
point group symmetry and molecular energies. The left panel shows the occupied molecular orbitals and the
right panel shows the virtual molecular orbitals.

For the two solutions on the respective bifurcation branches, P, and P;, we compute
0 [Q4—
Py(®) — P1(©) = (0 — 03) ) 0 +0(0 — 03), (BL)
—+

where Q_, = QI_ € R75. From the matrix Q_, we deduce “excitation” patterns that give
physical insight into the different branches. The numerical values of Q__ are given by
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FIGURE B2 Molecular energies and “excitation” patterns concluded from Q_, .
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FIGURE B3 Excitation patterns concluded from Q_, for symmetric and anti-symmetric molecular orbitals

respectively.

[ o 0 0 0 0 |

—0.0004 0 0 0 0
0 0.0001 0 0.0002 0

Q_, = 0 0 —0.0001 0 —0.0002 (B2)

0 0.0001 0 0.0001 0
0 0 —0.0001 0 —0.0001
0 0 0 0 0

Upon inspecting Q_, , we observe the following “excitation” pattern: The first molecular orbital
(A’ symmetry) is rotated in the direction of the seventh molecular orbital (A;” symmetry), while
the 4-dimensional space generated by the second to fifth molecular orbitals (B’ symmetry) is tilted
according to directions which are linear combinations of the eighth to eleventh molecular orbitals
(E' symmetry). We summarize this “excitation” pattern in Figure B2.

We see that the pair of degenerate occupied orbitals are excited into the pair of degenerate
virtual orbitals. This block of excitations is highlighted by the red shaded area in Figure B2. A
more detailed depiction of the excitations between the red-shaded areas is given in Figure B3.
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