
Accepted: 7 January 2025

DOI: 10.1002/cpa.22244

RESEARCH ARTICLE

Analysis of density matrix embedding theory
around the non-interacting limit

Eric Cancès1 Fabian M. Faulstich2 Alfred Kirsch1

Eloïse Letournel1 Antoine Levitt3

1CERMICS, Ecole des Ponts and Inria
Paris, Marne-la-Vallée, Paris, France
2Department of Mathematics, Rensselaer
Polytechnic Institute, Troy, New York,
USA
3Laboratoire de Mathématiques d’Orsay,
Université Paris-Saclay, Paris, France

Correspondence
Eric Cancès, CERMICS, Ecole des Ponts
and Inria Paris, 6, and 8 Avenue Blaise
Pascal, 77455 Marne-la-Vallée, Paris,
France.
Email: eric.cances@enpc.fr

Funding information
Horizon 2020, Grant/Award Number:
810367; Simons Targeted, Grant/Award
Number: 896630; Air Force Office of
Scientific Research, Grant/Award
Number: FA9550-18-1-0095; Simons
Targeted Grants in Mathematics and
Physical Sciences on Moiré Materials
Magic

Abstract
This article provides the first mathematical analysis of the
Density Matrix Embedding Theory (DMET) method. We
prove that, under certain assumptions, (i) the exact ground-
state density matrix is a fixed-point of the DMET map for
non-interacting systems, (ii) there exists a unique phys-
ical solution in the weakly-interacting regime, and (iii)
DMET is exact up to first order in the coupling parameter.
We provide numerical simulations to support our results
and comment on the physical meaning of the assumptions
under which they hold true. We show that the violation
of these assumptions may yield multiple solutions to the
DMET equations. We moreover introduce and discuss a
specific 𝑁-representability problem inherent to DMET.
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1 INTRODUCTION

Electronic structure theory is a powerful quantum mechanical framework for investigating the
intricate behavior of electrons within molecules and crystals. At the core lies the interaction
between particles, specifically the electron-electron and electron-nuclei interactions. Embracing
the essential quantum physical effects, this theory is the foundation for ab initio quantum chem-
istry and materials science calculations performed by many researchers in chemistry and related
fields, complementing and supplementing painstaking laboratory work. With its diverse applica-
tions in chemistry and materials science, electronic structure theory holds vast implications for
themathematical sciences. Integratingmathematical doctrines into this field leads to the develop-
ment of precise and scalable numerical methods, enabling extensive in silico studies of chemistry,
for example, sustainable energy, green catalysis, and nanomaterials. The synergy between math-
ematics and electronic structure theory offers the potential for groundbreaking advancements in
addressing these global challenges.
Within the realm of electronic structure theory, the treatment of strongly correlated quantum

systems is a particularly difficult and long-standing challenge. Here, the application of high-
accuracy quantum chemical methods that are able to capture the electronic correlation effects
at chemical accuracy is inevitable. Unfortunately, the application of such high-accuracy methods
is commonly stymied by a steep computational scaling with respect to the system’s size. A poten-
tial remedy is provided by quantum embedding theories, that is, a paradigm for bootstrapping the
success of highly accurate solvers at small scales up to significantly larger scales by decomposing
the original system into smaller fragments, where each fragment is then solved individually and
fromwhich, a solution to the whole system is then obtained [17, 20, 44]. Such approaches include
dynamical mean-field theory [15, 16, 26, 30, 32], or variational embedding theory [7, 22, 27].
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ANALYSIS OF DENSITY MATRIX EMBEDDING THEORY AROUND THE NON-INTERACTING LIMIT 1361

The subject of this article is a widely-used quantum embedding theory, namely, density matrix
embedding theory (DMET) [3, 9, 10, 23, 24, 48, 51, 56]. The general idea of DMET is to partition the
global quantum system into several quantum “impurities”, each impurity being treated accurately
via a high-level theory (such as full configuration interaction (FCI) [25, 39, 52], coupled cluster
theory [8], density matrix renormalization group (DMRG) [55], etc.). More precisely, the DMET
methodology follows the procedure sketched out as: (1) fragment the system, (2) for each fragment,
construct an interacting bath that describes the coupling between the fragment and the remaining
system, thus giving rise to a so-called impurity problem, (3) solve an interacting problem for each
impurity using a highly accurate method, (4) extract properties of the system, (5) perform steps
(2)–(4) self-consistently in order to embed updated correlation effects back into the full system.
Note that in step 2, one may also consider a non-interacting bath where Coulomb interactions
are included only on the fragment orbitals [56]; however, in this work, we will focus solely on
the interacting bath formulation. Over the past years, a large variety of methods following this
general framework has been developed, including how the bath space is defined (including the
choice of low-level theory) [13, 35, 36, 59], how the interacting cluster Hamiltonian is constructed
and solved [14, 29, 38, 41, 43], and the choice of self-consistency requirements [12, 57, 58]. This
variety of DMET flavors has been successfully applied to a wide range of systems such as Hubbard
models [3, 6, 23, 45, 46, 54, 65–67], quantum spin models [11, 18, 42], and a number of strongly
correlated molecular and periodic systems [1, 2, 9, 19, 24, 31, 33, 34, 37, 40, 49, 50, 56, 60–64].
Recently, the application of DMET variants on quantum computers has been explored [5, 28, 53].
In this article, we follow the computational procedurewhere the global information, at the level

of the one-electron reduced densitymatrix (1-RDM), ismade consistent between all the impurities
with the help of a low-level Hartree–Fock (HF) type of theory. In the self-consistent-field DMET
(SCF-DMET)1, this global information is then used to update the impurity problems in the next
self-consistent iteration, until a consistency condition of the 1-RDM is satisfied between the high-
level and low-level theories.
This article is organized as follows. In Section 2.1, we introduce the many-body quantum

model under investigation and its fragment decomposition, and set up some notation used in the
sequel. In Section 2.2, we present a mathematical formulation of the DMET impurity problem
and introduce (formally) the high-level DMET map. The low-level DMET map and the DMET
fixed point problem are defined (still formally) in Sections 2.3 and 2.4 respectively. In Section 3,
we state our main results:

1. in Proposition 1, we show that for non-interacting systems, the exact ground-state density
matrix is a fixed-point of the DMET map if (i) the system is gapped (Assumption (A1)), and
(ii) the fragment decomposition satisfies a natural and rather mild condition (Assumption
(A2)). Although this result is well-known in the physics and chemistry community, a complete
mathematical proof was still missing;

2. in Theorem 4, we prove that under two additional assumptions ((A3) and (A4)), the DMET
fixed-point problem has a unique physical solution in the weakly-interacting regime, which
is real-analytic in the coupling parameter 𝛼. Assumption (A3) is related to some specific 𝑁-
representability condition inherent to the DMET approach, while Assumption (A4) has a
physical interpretation in terms of linear response theory;

3. in Theorem 5, we prove that in the weakly-interacting regime, DMET is exact up to first order
in 𝛼.

1 Throughout the paper, DMET refers to SCF-DMET. This is in contrast to one-shot DMET, in which the impurity problem
is only solved once without self-consistent updates.
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1362 CANCÈS et al.

The numerical simulations reported in Section 4 illustrate the above results and indicate that
DMET does not seem to be exact at second order. Although, in the special case when there is
only one site per fragment, Assumption (A4) is a consequence of Assumptions (A1)–(A3) (see
Remark 3), the numerical simulations presented show that this is in general not the case. Further
investigations using theH6-model (vide infra) reveal the existence of a specific configuration (Θ3)
for which only Assumption (A4) is not satisfied. In the vicinity of this configuration, DMET has
at least two distinct solutions that arise from a transcritical bifurcation atΘ3. In Section 5, we for-
mulate the impurity problem inmore detail and discuss the domain of the high-level DMETmap.
In Section 6, we study the𝑁-representability problemmentioned above and provide a simple cri-
terion of local𝑁-representability directly connected to Assumption (A3). In order to improve the
readability of the paper, we postponed the technical proofs to Section 7. For the reader’s conve-
nience, the main notations used throughout this article are collected in Table A1 in Appendix A.

2 THE DMET FORMALISM

2.1 The quantummany-body problem and its fragment
decomposition

We consider a physical system with 𝐿 quantum sites, with one orbital per site, occupied by 1 ≤
𝑁 < 𝐿 electrons, and assume that magnetic effects (interaction with an external magnetic field,
spin-orbit coupling, etc.) can be neglected. This allows us toworkwith real-valuedwave-functions
and density matrices. We set

 ∶= ℝ𝐿 (one-particle state space), at ∶= {𝑒𝜅}𝜅∈[[1,𝐿]] (canonical basis of ℝ𝐿), (1)

𝑛 ∶=
𝑛⋀ (𝑛-particle state space), Fock() ∶=

𝐿⨁
𝑛=0

𝑛 (real fermionic Fock space).

We denote by 𝑎𝜅 and 𝑎
†
𝜅 the generators of the (real) CAR algebra associated with the canonical

basis of, that is,

𝑎𝜅 ∶= 𝑎(𝑒𝜅) and 𝑎†𝜅 = 𝑎
†(𝑒𝜅).

Recall that the maps

ℝ𝐿 ∋ 𝑓 ↦ 𝑎†(𝑓) ∈ (Fock()) and ℝ𝐿 ∋ 𝑓 ↦ 𝑎(𝑓) ∈ (Fock()),
are both linear in this setting since we work in a real Hilbert space framework. Here and below,
(𝐸) is the space of linear operators from the finite-dimensional vector space 𝐸 to itself. We also
define the number operator 𝑁̂ by

𝑁̂ ∶=

𝐿∑
𝑛=0

𝑛 𝟙̂𝑛 =
𝐿∑
𝜅=1

𝑎†𝜅𝑎𝜅 (particle number operator).

For each linear subspace 𝐸 of , we denote the orthogonal projector on 𝐸 by Π𝐸 ∈ (). We
assume that the Hamiltonian of the system in the second-quantized formulation reads

𝐻̂ ∶=

𝐿∑
𝜅,𝜆=1

ℎ𝜅𝜆𝑎
†
𝜅𝑎𝜆 +

1

2

𝐿∑
𝜅,𝜆,𝜈,𝜉=1

𝑉𝜅𝜆𝜈𝜉𝑎
†
𝜅𝑎
†
𝜆
𝑎𝜉𝑎𝜈, (2)
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ANALYSIS OF DENSITY MATRIX EMBEDDING THEORY AROUND THE NON-INTERACTING LIMIT 1363

where the matrix ℎ ∈ ℝ𝐿×𝐿 and the fourth-order tensor 𝑉 ∈ ℝ𝐿×𝐿×𝐿×𝐿 satisfy the following
symmetry properties:

ℎ𝜅𝜆 = ℎ𝜆𝜅 and 𝑉𝜅𝜆𝜈𝜉 = 𝑉𝜈𝜉𝜅𝜆.

We denote by the Grassmannian of rank-𝑁 orthogonal projectors in ℝ𝐿:

 ∶= Grℝ(𝑁, 𝐿) = {𝐷 ∈ ℝ𝐿×𝐿sym | 𝐷2 = 𝐷, Tr(𝐷) = 𝑁}, (3)

and by CH() the convex hull of, that is,
CH() = {𝐷 ∈ ℝ𝐿×𝐿sym | 0 ≤ 𝐷 ≤ 1, Tr(𝐷) = 𝑁}. (4)

Physically, the setCH() corresponds to the set of (real-valued,mixed-state)𝑁-representable one-
body density matrices with 𝑁 electrons, and  is the set of one-body density matrices generated
by (real-valued) Slater determinants in𝑁 .
We consider a fixed partition of the 𝐿 sites into 𝑁𝑓 non-overlapping fragments {𝑥}𝑥∈[[1,𝑁𝑓]] of

sizes {𝐿𝑥}𝑥∈[[1,𝑁𝑓]] such that 𝐿𝑥 < 𝑁 for all 𝑥. Up to reordering the sites, we can assume that the
partition is the following:

[[1, 𝐿]] =

{
(1, … , 𝐿1)
⏟⎴⏟⎴⏟

1
, (1 + 𝐿1, … , 𝐿1 + 𝐿2)
⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

2
, … , (1 + 𝐿1 +⋯+ 𝐿𝑁𝑓−1, … , 𝐿)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟
𝑁𝑓

}
. (5)

This partition corresponds to a decomposition of the space into𝑁𝑓 fragment subspaces fulfilling

 = 𝑋1 ⊕⋯⊕𝑋𝑁𝑓 with 𝑋𝑥 ∶= Span(𝑒𝜅, 𝜅 ∈ 𝑥). (6)

For𝑀 ∈ ℝ𝐿×𝐿sym, we set

Bd(𝑀) ∶=

𝑁𝑓∑
𝑥=1

Π𝑥𝑀Π𝑥, (7)

whereΠ𝑥 ∶= Π𝑋𝑥 is the orthogonal projector on𝑋𝑥. The operatorBd ∈ (ℝ𝐿×𝐿sym) is the orthogonal
projector onto the set of block-diagonalmatrices for the partition (5) (endowedwith the Frobenius
inner product).
As we will see, a central intermediary in DMET is the diagonal blocks of the density matrix,

𝑃 = Bd(𝐷) ∈ Bd(). It is clear that these blocks must satisfy 0 ≤ 𝑃𝑥 ≤ 1 and ∑𝑁𝑓
𝑥=1 Tr(𝑃𝑥) = 𝑁.

Conversely, it is easy to see that grouping these blocks together into a block-diagonal matrix
produces a matrix in CH(); therefore, we have

 ∶= Bd(CH()) =
{
𝑃 =

⎛⎜⎜⎜⎜⎜⎝

𝑃1 0 ⋯ 0

0 𝑃2 ⋯ 0

⋮ ⋱ ⋮

0 0 ⋯ 𝑃𝑁𝑓

⎞⎟⎟⎟⎟⎟⎠
s.t. ∀1 ≤ 𝑥 ≤ 𝑁𝑓, 𝑃𝑥 ∈ ℝ𝐿𝑥×𝐿𝑥sym , 0 ≤ 𝑃𝑥 ≤ 1,

𝑁𝑓∑
𝑥=1

Tr(𝑃𝑥) = 𝑁

}
. (8)
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1364 CANCÈS et al.

From a geometrical viewpoint,  is a non-empty, compact, convex subset of an affine vector
subspace of ℝ𝐿×𝐿sym with base vector space

 ∶=
{
𝑌 =

⎛⎜⎜⎜⎜⎜⎝

𝑌1 0 ⋯ 0

0 𝑌2 ⋯ 0

⋮ ⋱ ⋮

0 0 ⋯ 𝑌𝑁𝑓

⎞⎟⎟⎟⎟⎟⎠
s.t. ∀1 ≤ 𝑥 ≤ 𝑁𝑓, 𝑌𝑥 ∈ ℝ𝐿𝑥×𝐿𝑥sym ,

𝑁𝑓∑
𝑥=1

Tr(𝑌𝑥) = 0

}
. (9)

The structure of the set Bd() ⊂  is a more subtle issue that we will investigate in Section 6.

2.2 The impurity high-level problem

Given one of the spaces 𝑋𝑥 and a one-body density matrix 𝐷 ∈ , we set:
𝑊𝑥,𝐷 ∶= 𝑋𝑥 + 𝐷𝑋𝑥 = 𝐷𝑋𝑥 ⊕ (1 − 𝐷)𝑋𝑥 (𝑥-th impurity subspace). (10)

We will assume in the following that

dim(𝐷𝑋𝑥) = dim((1 − 𝐷)𝑋𝑥) = dim(𝑋𝑥) = 𝐿𝑥 (maximal-rank assumption), (11)

so that dim(𝑊𝑥,𝐷) = 2𝐿𝑥. Decomposing Ran(𝐷) and Ker(𝐷) as

Ran(𝐷) = 𝐷𝑋𝑥 ⊕core𝑥,𝐷 and Ker(𝐷) = (1 − 𝐷)𝑋𝑥 ⊕virt𝑥,𝐷,

we obtain the following decomposition of = ℝ𝐿:
 = 𝑊𝑥,𝐷 ⊕core𝑥,𝐷 ⊕virt𝑥,𝐷

⏟⎴⎴⎴⏟⎴⎴⎴⏟
=∶env𝑥,𝐷

.

Note that the space core𝑥,𝐷 has dimension (𝑁 − 𝐿𝑥). The matrix 𝐷 can be seen as the one-body
density matrix associated with the Slater determinant

Ψ0𝑁,𝐷 = Ψ
0,imp
𝑥,𝐷 ∧ Ψ0,core𝑥,𝐷 with Ψ

0,imp
𝑥,𝐷 ∈

𝐿𝑥⋀
𝐷𝑋𝑥 and Ψ0,core𝑥,𝐷 ∈

(𝑁−𝐿𝑥)⋀ core𝑥,𝐷 ,

whereΨ0,imp𝑥,𝐷 andΨ0,core𝑥,𝐷 are normalized. More precisely,Ψ0𝑁,𝐷 is the Slater determinant built from
an orthonormal basis of 𝐿𝑥 orbitals in𝐷𝑋𝑥 and an orthonormal basis of (𝑁 − 𝐿𝑥) orbitals incore𝑥,𝐷 .
The so-defined wave-function Ψ0𝑁,𝐷 is unique up to an irrelevant sign.
We denote by 𝑁̂𝑋𝑥 ∈ (Fock()) the projection of the number operator onto the fragment Fock

space Fock(𝑋𝑥). Solving the impurity problem aims at minimizing, for a given 𝜇 ∈ ℝ which will
be specified later, the thermodynamic potential

⟨Ψ|(𝐻̂ − 𝜇𝑁̂𝑋𝑥 )|Ψ⟩ (12)
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ANALYSIS OF DENSITY MATRIX EMBEDDING THEORY AROUND THE NON-INTERACTING LIMIT 1365

over the set of normalized trial states in Fock() of the form
Ψ = Ψ

imp
𝑥,𝐷 ∧ Ψ

0,core
𝑥,𝐷 (13)

with Ψ0,core𝑥,𝐷 fixed, and Ψimp𝑥,𝐷 in

Fock(𝑊𝑥,𝐷) ∶=

2𝐿𝑥⨁
𝑛=0

𝑛⋀
𝑊𝑥,𝐷 (𝑥-th impurity Fock space).

The impurity Hamiltonian is the unique operator 𝐻̂imp𝑥,𝐷 on Fock(𝑊𝑥,𝐷) such that

∀Ψ
imp
𝑥,𝐷 ∈ Fock(𝑊𝑥,𝐷), ⟨Ψimp𝑥,𝐷 |𝐻̂imp𝑥,𝐷 |Ψimp𝑥,𝐷 ⟩ = ⟨Ψimp𝑥,𝐷 ∧ Ψ0,core𝑥,𝐷 |𝐻̂|Ψimp𝑥,𝐷 ∧ Ψ0,core𝑥,𝐷 ⟩. (14)

For an explicit expression of 𝐻̂imp𝑥,𝐷 , see Proposition 8.
The impurity problem defined by (12)–(13) can then be reformulated as

min
Ψ
imp
𝑥,𝐷 ∈Fock(𝑊𝑥,𝐷),‖Ψimp𝑥,𝐷 ‖=1⟨Ψimp𝑥,𝐷 |𝐻̂imp𝑥,𝐷 − 𝜇𝑁̂𝑋𝑥 |Ψimp𝑥,𝐷 ⟩ (impurity problem). (15)

In practice, this full-CI problem in the Fock space Fock(𝑊𝑥,𝐷) is solved by an approximate cor-
related wave-function method such as CASSCF, CCSD, or DMRG for example, but we assume in
this analysis that it can be solved exactly.
If (15) has a non-degenerate ground state for all 𝑥, we denote the one-body ground-state density

matrices by 𝑃𝜇,𝑥(𝐷), seen as matrices in ℝ𝐿×𝐿sym, and finally set

𝐹HL𝜇,𝑥(𝐷) ∶= Π𝑋𝑥𝑃𝜇,𝑥(𝐷)Π𝑋𝑥 . (16)

Let us remark incidentally that if the ground state of the impurity problem is degenerate, we can
either consider𝐹HL𝜇,𝑥(𝐷) as amultivalued function or define them from finite-temperature versions
of (15), which are strictly convex compact problems on the set of density operators on the Fock
space, and therefore always have a uniqueminimizer.Wewill not proceed further in this direction
and only consider here the case of impurity problems with non-degenerate ground states.
The combination of the 𝑁𝑓 impurity problems introduced in (15) (see also (16)) gives rise to a

high-level DMET map 𝐹HL

 ∋ 𝐷 ↦ 𝐹HL(𝐷) ∈  (17)

formally defined by

𝐹HL(𝐷) ∶=

𝑁𝑓∑
𝑥=1

𝐹HL𝜇,𝑥(𝐷) (high-level map) (18)

with 𝜇 ∈ ℝ chosen such that Tr(𝐹HL(𝐷)) = 𝑁. The domain of 𝐹HL and the regularity properties
of this map will be studied in Section 5.
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1366 CANCÈS et al.

2.3 The global low-level problem

The low-level map is defined by

𝐹LL(𝑃) ∶= argmin
𝐷∈, Bd(𝐷)=𝑃

HF(𝐷) (low-level map), (19)

where HF is theHF (mean-field) energy functional of the trial density-matrix𝐷. The latter reads

HF(𝐷) ∶= Tr(ℎ𝐷) + 1
2
Tr(𝐽(𝐷)𝐷) −

1

2
Tr(𝐾(𝐷)𝐷), (20)

where

[𝐽(𝐷)]𝜅𝜆 ∶=

𝐿∑
𝜈,𝜉=1

𝑉𝜆𝜉𝜅𝜈𝐷𝜈𝜉 and [𝐾(𝐷)]𝜅𝜆 ∶=

𝐿∑
𝜈,𝜉=1

𝑉𝜅𝜉𝜈𝜆𝐷𝜈𝜉. (21)

The existence and uniqueness of a minimizer to (19) will be discussed in Section 6.

2.4 The DMET problem

Finally, the full DMET map is formally defined as the self-consistent solution to the system

𝐷 = 𝐹LL(𝑃) ∈ ,
𝑃 = 𝐹HL(𝐷) ∈  .

In particular,𝐷 = 𝐹LL(𝑃) implies that 𝑃 = Bd(𝐷). Equivalently, we can formulate the problem as

𝑃 = 𝐹DMET(𝑃) ∶= 𝐹HL(𝐹LL(𝑃)).

Assuming that the solution to this fixed-point problem exists and is unique, 𝑃 is expected
to provide a good approximation of the diagonal blocks (in the decomposition (6) of ) of the
ground-state one-body density matrix of the interacting system. The mathematical properties of
this self-consistent loop will be studied in the next section, first for the non-interacting case, and
second, for the interacting case in a perturbative regime.

3 MAIN RESULTS

We now embed the Hamiltonian𝐻 into the family of Hamiltonians

𝐻̂𝛼 ∶=

𝐿∑
𝜅,𝜆=1

ℎ𝜅𝜆𝑎
†
𝜅𝑎𝜆 +

𝛼

2

𝐿∑
𝜅,𝜆,𝜈𝜉=1

𝑉𝜅𝜆𝜈𝜉𝑎
†
𝜅𝑎
†
𝜆
𝑎𝜉𝑎𝜈, 𝛼 ∈ ℝ, (22)
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ANALYSIS OF DENSITY MATRIX EMBEDDING THEORY AROUND THE NON-INTERACTING LIMIT 1367

acting on Fock(). For 𝛼 = 0, we obtain the one-body Hamiltonian

𝐻̂0 ∶=

𝐿∑
𝜅,𝜆=1

ℎ𝜅𝜆𝑎
†
𝜅𝑎𝜆 (23)

describing non-interacting particles, and we recover the original Hamiltonian 𝐻̂ for 𝛼 = 1. We
denote by 𝐹HL𝛼 , 𝐹LL𝛼 , and 𝐹DMET𝛼 the high-level, low-level, and DMET maps constructed from 𝐻̂𝛼.
We first assume that the non-interacting problem is non-degenerate. Denoting by 𝜀𝑛 the 𝑛-th

lowest eigenvalue of ℎ (counting multiplicities), this condition reads

(A1) 𝜀𝑁 < 0 < 𝜀𝑁+1,

where without loss of generality we have chosen the Fermi level to be 0. Assumption (A1) indeed
implies that the ground-state of 𝐻̂0 in the 𝑁-particle sector of the Fock space is non-degenerate,
and that the ground-state one-body density is the rank-𝑁 orthogonal projector given by

𝐷0 = 𝟙(−∞,0](ℎ). (24)

By perturbation theory, the ground state of 𝐻̂𝛼 in the 𝑁-particle sector is non-degenerate for all
𝛼 ∈ (−𝛼+, 𝛼+) for some 0 < 𝛼+ ≤ +∞. We denote by 𝐷exact𝛼 the corresponding ground-state one-
body densitymatrix. As a consequence of analytic perturbation theory for hermitianmatrices, the
map (−𝛼+, 𝛼+) ∋ 𝛼 ↦ 𝐷exact𝛼 ∈ ℝ𝐿×𝐿sym is real-analytic.
Second, we make the maximal-rank assumption:

(A2) For all 1 ≤ 𝑥 ≤ 𝑁𝑓 , dim(𝐷0𝑋𝑥) = dim((1 − 𝐷0)𝑋𝑥) = dim(𝑋𝑥) = 𝐿𝑥.
Assumption (A2) implies that the impurity problem (15) for 𝐻̂ = 𝐻̂0 and 𝐷 = 𝐷0 is well-defined
for each 𝑥 and each 𝜇. We emphasize however that this does not prejudge that the so-obtained𝑁𝑓
impurity problems are well-posed (i.e., have a unique ground-state) for a given value of 𝜇, nor a
fortiori that𝐷0 is in the domain of the high-levelmap𝐹HL0 . Wewill elaboratemore on themeaning
of Assumptions (A2) in Section 5.
DMET is then consistent in the non-interacting case:

Proposition 1 (𝑃0 ∶= Bd(𝐷0) is a fixed point of the DMET map for 𝛼 = 0). Under Assumptions
(A1)–(A2), 𝑃0 ∶= Bd(𝐷0) is a fixed point of the non-interacting DMET iterative scheme, that is 𝑃0 is
in the domain of 𝐹LL0 , 𝐷0 is in the domain of 𝐹HL0 , and 𝐹DMET0 (𝑃0) = 𝑃0.

Remark 2. We formally define the high-level HFmap

𝐹HLMF ∶ →  ,
as the high-level map constructed from the HF 𝑁-body Hamiltonian

𝐻̂HF𝐷 ∶=

𝐿∑
𝜅,𝜆=1

[ℎHF(𝐷)]𝜅𝜆𝑎
†
𝜅𝑎𝜆,
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1368 CANCÈS et al.

where

ℎHF(𝐷) = ℎ + 𝐽(𝐷) − 𝐾(𝐷) (25)

is the one-particle mean-field (Fock) Hamiltonian. Using exactly the same arguments as in the
proof of Proposition 1, we obtain that the low-level map 𝐹LL satisfies the mean-field consistency
property

𝐹LL(𝐹HLHF(𝐷∗)) = 𝐷∗,

for any HF ground state 𝐷∗. We will make use of this important observation in the proof of
Theorem 4.

We now study the DMET equations in the perturbative regime of 𝛼 small. In order to use per-
turbative techniques, we need to determine the space in which we seek 𝑃. Generically, at 𝛼 ≠ 0,
we expect 𝑃 to be equal to the block diagonal of the one-body density matrix, which is not a pro-
jector. Therefore it is natural to seek 𝑃 in  = Bd(CH()). However, in the DMET method, 𝐷 is
constrained to be a projector, and therefore 𝑃 will necessarily belong to Bd(). We will study in
Section 6 the relationship between the two sets  and Bd() (the 𝑁-representability problem),
and in particular show that, in the regime of interest to DMET (many relatively small fragments,
so that 𝐿 ≫ max𝑥 𝐿𝑥), the two sets are (generically) locally the same. Therefore, it is natural to
assume the local 𝑁-representability condition:

(A3) The linear map Bd is surjective from 𝐷0 to  ,
where is the vector subspace defined in (9). Indeed, is a (non-empty, compact, convex) subset
of the affine space 𝑃0 +  and Assumption (A2) implies that 𝑃0 ∈ ◦, where ◦ is the interior
of  in 𝑃0 +  . Thus  can be identified with the tangent space at 𝑃0 to the manifold ◦. By the
local submersion theorem, this implies that any 𝑃 in the neighborhood of 𝑃0 can be expressed as
the block diagonal of a density matrix in the neighborhood of 𝐷0 in.
Our last assumption is concerned with the response properties of the impurity problems

at the non-interacting level. Consider a self-adjoint perturbation 𝑌 ∈ ℝ𝐿×𝐿sym of the one-particle
Hamiltonian ℎ, non-local but block-diagonal in the fragment decomposition, that is such that
𝑌 ∈ ℝ𝐼𝐿 +  , and denote by𝐹HLℎ+𝑌(𝐷) the non-interacting high-levelmap obtained by replacing
ℎ with ℎ + 𝑌 (so that 𝐹HLℎ(𝐷) = 𝐹HL0 ). Formally, we have

𝐹HLℎ+𝑌(𝐷0) = 𝑃0 + 𝑅[𝑌] + 𝑜(‖𝑌‖), (26)

with 𝑅 ∶ ℝ𝐼𝐿 +  →  linear (the fact that 𝑅[𝑌] ∈  is due to particle-number conservation).
The map 𝑅 can be interpreted as a non-interacting static 4-point density-density linear response
function for frozen impurity spaces. It follows from Assumption (A1) that constant perturbations
do not modify the density matrix: 𝑅(𝐼𝐿) = 0. Our fourth assumption reads:

(A4) the 4-point linear response function 𝑅 ∶  →  is invertible.

This condition is somewhat reminiscent of the Hohenberg–Kohn theorem from Density Func-
tional Theory. Together with the local inversion theorem, it implies that, locally around ℎ, in the
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ANALYSIS OF DENSITY MATRIX EMBEDDING THEORY AROUND THE NON-INTERACTING LIMIT 1369

non-interacting case and for frozen impurity spaces𝑊𝑥,𝐷0 , the high-level map defines a one-to-
one correspondence between non-local fragment potentials (up to a constant shift) and fragment
density matrices.

Remark 3. We will show in Section 7.6.4 that in the case when 𝑁𝑓 = 𝐿 (one site per fragment), it
holds: under Assumptions (A1)–(A2),

(A3) is satisfied ⇒ 𝐷0 is an irreducible matrix ⟺ (A4) is satisfied.

On the other hand, numerical simulations indicate that in the general case, Assumption (A4) is
not a consequence of Assumptions (A1)–(A3).

We are now in position to state our main results.

Theorem4 (DMET is well-posed in the perturbative regime).Under assumptions (A1)–(A4), there
exist 0 < 𝛼̃+ ≤ 𝛼+, and a neighborhoodΩ of𝐷0 in such that for all 𝛼 ∈ (−𝛼̃+, 𝛼̃+), the fixed-point
DMET problem

𝑃DMET𝛼 = 𝐹HL𝛼 (𝐷
DMET
𝛼 ), 𝐷DMET𝛼 = 𝐹LL𝛼 (𝑃

DMET
𝛼 )

has a unique solution (𝐷DMET𝛼 , 𝑃DMET𝛼 ) with 𝐷DMET𝛼 ∈ Ω (otherwise stated, the DMET map for 𝐻𝛼
has a unique fixed point 𝑃DMET𝛼 in the neighborhood of 𝑃0). In addition, the maps (−𝛼̃+, 𝛼̃+) ∋ 𝛼 ↦
𝐷DMET𝛼 ∈ ℝ𝐿×𝐿sym and (−𝛼̃+, 𝛼̃+) ∋ 𝛼 ↦ 𝑃DMET𝛼 ∈ ℝ𝐿×𝐿sym are real-analytic and such that

𝐷DMET0 = 𝐷0 = 𝟙(−∞,0](ℎ), 𝑃DMET0 = 𝑃0 = Bd(𝐷0).

As is standard, the first-order perturbation of the exact density matrix is given by the HF
method. DMET is able to reproduce this, and is therefore exact up to first order:

Theorem 5 (DMET is exact to first order). Under Assumptions (A1)–(A4) and with the notation of
Theorem 4, it holds

𝐷DMET𝛼 = 𝐷exact𝛼 + 𝑂(𝛼2) = 𝐷HF𝛼 + 𝑂(𝛼2),

where 𝐷HF𝛼 is the HF ground-state density matrix for 𝐻̂𝛼 , which is unique for 𝛼 small enough.

The numerical simulations reported in the next section show that such exactness property is
not expected to hold at second order.
In the weakly interacting regime, the solution 𝐷DMET𝛼 to the DMET fixed-point problem is the

only physical one. Indeed, it is the only one laying in the vicinity of 𝐷0, where the exact ground-
state density matrix must be located for small 𝛼, by analytic perturbation theory.

Remark 6. A variant ofDMET,which could be termed density embedding theory (DET),would con-
sist in choosing fragments of arbitrary sizes for the high-level step, but in using only the diagonal
of the density matrix (i.e., the density) in the low-level step. Denoting by Δ the space of 𝐿 × 𝐿 real
diagonal matrices with entries between 0 and 1 and trace 𝑁, and by Dg ∶  ∋ 𝑃 ↦ Diag(𝑃) ∈ Δ,
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1370 CANCÈS et al.

the DET fixed-point problem would consist in solving 𝐹DET(𝜌) = 𝜌, where 𝐹DET ∶ Δ → Δ is
defined as

𝐹DET = Dg◦𝐹HL◦𝐹LLDET with 𝐹LLDET(𝜌) ∶= argmin
𝐷∈, Dg(𝐷)=𝜌

HF(𝐷).

Similar arguments as the ones used in the proofs of Proposition 1, Theorem 4, and Theorem 5,
allow one to show that

1. under Assumptions (A1)–(A2), 𝜌0 = Dg(𝐷0) is a fixed point of the non-interacting DET
scheme;

2. under Assumptions (A1), (A2),
(A3’) all diagonal elements of 𝐷0 are in the open interval (0,1),
(A4’) the non-interacting high-level map satisfies some local Hohenberg–Kohn theorem, in

the sense that, locally around the one-body Hamiltonian ℎ, there is a one-to-one corre-
spondence between diagonal perturbations of ℎ (up to uniform shift) and perturbations
of the density,

the DET fixed-point problem has a unique physical solution in the weakly-interacting regime
(0 ≤ 𝛼 ≪ 1), which is exact up to first-order in 𝛼.
A rigorous analysis of the respective merits of the different variants of quantum embedding

methods is outside the scope of this article, and is the subject of ongoing work by some of us.

4 NUMERICAL SIMULATIONS

In this section, we perform numerical investigations of DMET for two distinct test systems: The
first system is H10 in a circular geometry which serves as a benchmark where DMET has been
previously recognized for its exceptional performance [24]. By studying this system, we aim to
reaffirm the efficacy of DMET and numerically showcase that DMET is exact to first order in the
non-interacting limit. However, to gain a comprehensive understanding of DMET’s limitations,
we also explore a second systemwhich is anH6 variant. This particular system allows us to numer-
ically scrutinize the assumptions made in the analysis presented above. Through these numerical
investigations, we aim to provide valuable insights into the mathematical structure of DMET,
paving the way for further advancements and improvements in this promising computational
approach. Throughout this section, we denote by ‖ ⋅ ‖F the Frobenius norm on matrix spaces.

4.1 𝐇𝟏𝟎 ring

We consider a circular arrangement of ten hydrogen atoms, with a nearest-neighbor distance of
1.5 𝑎0 between each pair of atoms (where 𝑎0 ≃ 0.529 Å is the Bohr radius). The system is treated
using the STO-6G basis set and is half-filled, that is, containing ten electrons. We partition the
system into five fragments, each consisting of two atoms, as shown in Figure 1.
In order to numerically confirm thatDMET is exact to first order for this “well-behaved” system,

we determine𝑃𝛼 for𝛼 ∈ [0, 1] and compute ‖𝑑𝑃𝛼∕𝑑𝛼‖𝐹 . Figure 2 compares theDMET result with
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ANALYSIS OF DENSITY MATRIX EMBEDDING THEORY AROUND THE NON-INTERACTING LIMIT 1371

F IGURE 1 Depiction of the H10 system in circular geometry. The red-shaded areas show the chosen
fragmentation.

F IGURE 2 (a) Shows ‖𝑑𝑃𝛼∕𝑑𝛼‖𝐹 for DMET and FCI, respectively (b) Shows the error on 𝑑𝑃𝛼∕𝑑𝛼 between
DMET and FCI, measured in Frobenius norm. DMET, density matrix embedding theory; FCI, full configuration
interaction.

the exact diagonalization result (abbreviated FCI). We clearly see that DMET is indeed exact to
first order for the considered system.

4.2 𝐇𝟔model

In this section,wewill numerically investigate the assumptions required for the analysis presented
in this article. To that end, we consider a non-interacting H4−6 system, undergoing the following
transition on a circular geometry. We begin by placing three hydrogen molecules in equilibrium
geometry, that is, bond length of 1.4 𝑎0, equidistantly on a circle of radius 3 𝑎0. We then dissoci-
ate each hydrogen molecule while maintaining a circular geometry. Specifically, we break each
hydrogen molecule in such a way that the hydrogen atoms from neighboring molecules can form
new molecules. We stop this transition at Θ = Θmax , when the hydrogen atoms from neighbor-
ing molecules form new hydrogen molecules in equilibrium geometry. We steer this transition
with the angle Θ that measures the displacement of the individual hydrogen atoms relative to
their initial positions. The dissociation is done in a manner that maintains the circular arrange-
ment of the hydrogen atoms throughout the process, see Figure 3 for a schematic depiction of
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1372 CANCÈS et al.

F IGURE 3 Schematic depiction of the consideredH6 transition. The left panel shows the initial
configuration for Θ = 0; the right panel shows the final configuration Θ = Θmax . The red-shaded areas depict the
imposed fragmentation. The arrows indicate the transition of the hydrogen atoms for Θ ∈ [0,Θmax].

F IGURE 4 (a) Shows ‖𝜕𝛼𝑃𝛼||𝛼=0‖𝐹 for HF, DMET, and FCI (b) Shows ‖𝜕𝛼𝐷𝛼||𝛼=0‖𝐹 for HF, DMET, and FCI.
DMET, density matrix embedding theory; FCI, full configuration interaction; HF, Hartree–Fock.

this process and a depiction of Θ. The system is partitioned into 3 fragments that correspond to
the initial molecules. Note that the fragments remain unchanged during the transition process.
In order to fulfill the𝑁-representability condition (33) below (which is necessary for Assumption
(A3) to be fulfilled),𝑁must be chosen between 6 and 10 (in this example𝑁𝑓 = 3 and 𝐿𝑥 = 2 hence
dim() = 8). As shown in [12], DMET encounters challenges when being doped; we therefore opt
for 𝑁 = 10. The system is discretized using the 6-31G basis set.
In order to numerically depict Theorem 5, we compute 𝑃𝛼 and 𝐷𝛼 using a mean-field theory

approach (HF), DMET, and the exact diagonalization (FCI), and compare these quantities for
𝛼 = 0 as well as their first derivatives with respect to 𝛼. Note that in the non-interacting limit,
the mean-field theory is exact, which is reflected in our simulations. We indeed observe that
supΘ ‖𝑃HF0 (Θ) − 𝑃FCI0 (Θ)‖𝐹 and supΘ ‖𝐷HF0 (Θ) − 𝐷FCI0 (Θ)‖𝐹 are equal to zero up to numerical
accuracy, while supΘ ‖𝑃DMET0 (Θ) − 𝑃FCI0 ‖𝐹(Θ), supΘ ‖𝐷DMET0 (Θ) − 𝐷FCI0 (Θ)‖𝐹 are respectively of
the order of 10−13 and 10−7with the chosen convergence thresholds. Figure 4 shows the first-order
exactness of DMET in the non-interacting limit for the H4−6 model.
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ANALYSIS OF DENSITY MATRIX EMBEDDING THEORY AROUND THE NON-INTERACTING LIMIT 1373

F IGURE 5 (a) Shows the HOMO-LUMO gap for the H6 model as a function of Θ for 𝛼 = 0. (b) Shows the
largest and smallest singular values of 𝑃 for the H6 model as a function of Θ for 𝛼 = 0.

F IGURE 6 (a) The orange line shows the lowest eigenvalue of 𝑆 ∶= (Bd|𝑇𝐷0→ )∗Bd|𝑇𝐷0→ for the H6
model as a function of Θ for 𝛼 = 0 (which corresponds to (A3)), and the blue line shows the smallest singular
value 𝜎min of 𝑅|→ (which corresponds to (A4)). (b) Shows a zoomed version of (a) around the second (local)
minimum.

Our numerical investigations include an analysis of Assumptions (A1)–(A4). We present a
check of Assumptions (A1) and (A2) in Figure 5. Assumption (A1) can be directly tested by
calculating the HOMO-LUMO gap of the non-interacting Hamiltonian under consideration for
each value of Θ. Furthermore, Assumption (A2) can be tested by monitoring the behavior of the
smallest and largest singular values of thematrix 𝑃0 as a function of the variableΘ (see Lemma 7).
The validity of assumptions (A3) and (A4) is tested in Figure 6 by monitoring the lowest eigen-

value of the operator𝑆 ∶= (Bd|𝑇𝐷0→ )∗Bd|𝑇𝐷0→ (which corresponds to (A3)), and the smallest
singular value of the operator 𝑅|→ (which corresponds to (A4)).
We see that Assumptions (A1) and (A2) are uniformly fulfilled over the whole range [0, Θmax].

Assumption (A3) seems to be satisfied for all Θ except two values Θ1 ≃ 0.885 and Θ2 ≃ 0.957.
Careful testing aroundΘ2 shows that Assumption (A4) is additionally not satisfied atΘ3 ≃ 0.958,
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1374 CANCÈS et al.

F IGURE 7 (a) shows ‖𝜕2𝛼𝑃𝛼||𝛼=0‖𝐹 for HF, DMET, and FCI (b) shows ‖𝜕2𝛼𝐷𝛼||𝛼=0‖𝐹 for HF, DMET, and FCI.
DMET, density matrix embedding theory; FCI, full configuration interaction; HF, Hartree–Fock.

where all other assumptions are satisfied. This illustrates the fact that in the general case𝑁𝑓 < 𝐿,
Assumption (A4) is independent of Assumptions (A1)–(A3) (see Remark 3).
Figure 7a shows the Frobenius norms of the second derivative of 𝑃𝛼 and 𝐷𝛼 at 𝛼 = 0 for HF,

DMET, and FCI. We see that the three methods give different results, and that the result in The-
orem 5 is therefore optimal. We also observe that for DMET, the second derivatives become noisy
in the range of Θ’s where Assumptions (A3) and (A4) are poorly or not satisfied. This is probably
due to conditioning issues or to the use of convergence thresholds not directly connected to the
computed quantity of interest. The numerical analysis of DMET is left for future work.
We now investigatemore closely the violation of the hypotheses atΘ3, where𝑅 is not invertible,

but (A3) is still satisfied. To that end, we compute the differential of 𝐹DMET0 (𝑃0) at 𝑃0, as a function
ofΘ, and see that forΘ close toΘ3, 𝐹DMET0 (𝑃0(Θ)) possesses a simple real eigenvalue which tran-
sitions from being positive (forΘ < Θ3) to being negative (forΘ > Θ3), with all other eigenvalues
having negative real parts. As is standard, this type of eigenvalue crossing generically gives rise to
a transcritical bifurcation [47]. This suggests the existence of another branch of solutions 𝑃1(Θ) of
𝑃 = 𝐹DMET0 (𝑃), which collides with 𝑃0(Θ) at Θ = Θ3, and such that the largest eigenvalue of the
differential of 𝐹DMET0 at 𝑃0 has the opposite sign to that at 𝑃1.
To find this branch of solutions, we employ aNewton algorithmon𝐹DMET0 . Sincewe are looking

at small differences, this requires accurate computations of 𝐹HL0 and 𝐹LL0 as well as their differ-
entials (without resorting to finite differences). The differential of 𝐹HL0 is computed analytically
by perturbation theory (taking into account the self-consistent Fermi level). For 𝐹LL0 , we imple-
mented a manifold Newton algorithm to compute an accurate solution of the problem defining
the low-level solver. This is done by, starting from the point 𝐷𝑛, parametrizing 𝐷𝑛+1 as 𝐷(𝑋)with
an unconstrainedmatrix𝑋 as in the proof of Lemma 11, and then performing aNewton step on the
Lagrangian 𝐿(𝑋,Λ) that corresponds to minimizing HF (𝐷(𝑋)) subject to Bd(𝐷(𝑋)) = 𝑃. From
the Hessian of the Lagrangian one can also compute the differential of 𝐹LL0 , and then ultimately
of 𝐹DMET0 .
To initialize theNewton algorithmon𝐹DMET0 at a givenΘ close toΘ3, we start from𝑃0, and com-

pute the eigenvector𝑌 of 𝑑𝐹DMET0 associated with the eigenvalue that crosses zero. Then, we run a
Newton algorithm started from 𝑃0 + 𝛼(Θ − Θ3)𝑌, where 𝛼 is an empirically chosen parameter (its
precise determination involves higher derivatives [47], which are cumbersome to compute). We
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ANALYSIS OF DENSITY MATRIX EMBEDDING THEORY AROUND THE NON-INTERACTING LIMIT 1375

F IGURE 8 The two branches 𝑃0 and 𝑃1 (displayed are the scalars
∑
𝑖𝑗
𝑃𝑖𝑗) as functions of Θ near Θ = Θ3.

observe the two branches 𝑃0 and 𝑃1 shown in Figure 8, confirming the transcritical bifurcation.
Let us emphasize that this bifurcation is not due to symmetry breaking, as can be shown from a
detailed analysis of the solutions 𝑃0 and 𝑃1 (see Appendix B).

5 IMPURITY PROBLEMS ANDHIGH-LEVELMAP

5.1 Impurity Hamiltonians

It follows from the considerations in Section 2.2 that if

∀𝑥 ∈ [[1,𝑁𝑓]], dim(𝐷𝑋𝑥) = dim((1 − 𝐷)𝑋𝑥) = 𝐿𝑥.

the impurity problem is well-defined for each fragment since the maximal rank assump-
tion (11) is satisfied for each 𝑋𝑥. The next lemma gives useful equivalent characterizations of
these conditions.
Let us introduce the matrix

𝐸𝑥 ∶= matat (𝑒𝜅, 𝜅 ∈ 𝑥) =
⎛⎜⎜⎜⎝
0𝐿′𝑥×𝐿𝑥
𝐼𝐿𝑥
0𝐿′′𝑥 ×𝐿𝑥

⎞⎟⎟⎟⎠ ∈ ℝ
𝐿×𝐿𝑥 with

{
𝐿′𝑥 ∶=

∑
1≤𝑥′<𝑥 𝐿𝑥′

𝐿′′𝑥 ∶=
∑
𝑥<𝑥′≤𝑁𝑓 𝐿𝑥′

(27)

representing the orbitals of fragment 𝑥 ∈ [[1,𝑁𝑓]], whose range is 𝑋𝑥. We recall that ◦ denotes
the interior of the set  = Bd(CH()) in the affine space 𝑃0 +  .
Lemma 7 (Compatibility conditions). Let 𝐷 ∈ . The following assertions are equivalent:
1. Bd(𝐷) ∈ ◦;
2. ∀𝑥 ∈ [[1,𝑁𝑓]], dim(𝐷𝑋𝑥) = dim((1 − 𝐷)𝑋𝑥) = 𝐿𝑥;
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1376 CANCÈS et al.

3. ∀𝑥 ∈ [[1,𝑁𝑓]], 0 < 𝐸𝑇𝑥𝐷𝐸𝑥 < 1 (all the eigenvalues of 𝐸𝑇𝑥𝐷𝐸𝑥 are in (0,1));
4. ∀𝑥 ∈ [[1,𝑁𝑓]], 𝐸𝑇𝑥𝐷𝐸𝑥 ∈ GLℝ(𝐿𝑥) and 𝐸𝑇𝑥 (1 − 𝐷)𝐸𝑥 ∈ GLℝ(𝐿𝑥).

If 𝐷 satisfies these conditions, we say that it is compatible with the fragment decomposition.

It is easily seen that if 𝐷 is compatible with the fragment decomposition, then the column
vectors defined by the matrix

𝐶𝑥(𝐷) ∶=

(
𝐷𝐸𝑥

(
𝐸𝑇𝑥𝐷𝐸𝑥

)−1∕2 ||||(1 − 𝐷)𝐸𝑥(𝐸𝑇𝑥 (1 − 𝐷)𝐸𝑥)−1∕2
)
∈ ℝ𝐿×2𝐿𝑥 (28)

form an orthonormal basis of the impurity one-particle state space 𝑊𝑥,𝐷 defined in (10). More
precisely, the first 𝐿𝑥 columns of 𝐶𝑥(𝐷) form an orthonormal basis of𝐷𝑋𝑥 and its last 𝐿𝑥 columns
form an orthonormal basis of (1 − 𝐷)𝑋𝑥. Likewise, the column vectors of the matrix

𝐶𝑥(𝐷) ∶=

(
𝐸𝑥

||||(1 − Π𝑥)𝐷𝐸𝑥(𝐸𝑇𝑥𝐷(1 − Π𝑥)𝐷𝐸𝑥)−1∕2
)
∈ ℝ𝐿×2𝐿𝑥 (29)

form an orthonormal basis of 𝑋𝑥 ⊕ (1 − Π𝑥)𝐷𝑋𝑥.
We denote by 𝑎𝑥

𝑗
(𝐷) and 𝑎𝑥

𝑗
(𝐷)†, 1 ≤ 𝑗 ≤ 2𝐿𝑥 the annihilation and creation operators in the

basis of the columns of 𝐶𝑥(𝐷):

𝑎𝑥
𝑗
(𝐷) =

𝐿∑
𝜅=1

(𝐶𝑥(𝐷))𝜅𝑗𝑎𝜅, 𝑎𝑥
𝑗
(𝐷)† =

𝐿∑
𝜅=1

(𝐶𝑥(𝐷))𝜅𝑗𝑎
†
𝜅.

These operators allow for an explicit form of the impurity Hamiltonian 𝐻̂imp𝑥,𝐷 as follows.

Proposition 8 (Impurity Hamiltonian). Let𝐷 ∈  be compatible with the fragment decomposition.
The 𝑥-th impurity Hamiltonian 𝐻̂imp𝑥,𝐷 is the operator on Fock(𝑊𝑥,𝐷) given by

𝐻̂
imp
𝑥,𝐷 = 𝐸

env
𝑥 (𝐷) +

2𝐿𝑥∑
𝑖,𝑗=1

[
𝐶𝑥(𝐷)𝑇(ℎ + 𝐽(𝔇𝑥(𝐷)) − 𝐾(𝔇𝑥(𝐷)))𝐶𝑥(𝐷)

]
𝑖𝑗
𝑎𝑖(𝐷)

†𝑎𝑗(𝐷)

+
1

2

2𝐿𝑥∑
𝑖,𝑗,𝑘,𝓁=1

[𝑉𝑥(𝐷)]𝑖𝑗𝑘𝑙𝑎𝑖(𝐷)
†𝑎𝑗(𝐷)

†𝑎𝓁(𝐷)𝑎𝑘(𝐷), (30)

where

∙ the Coulomb and exchange matrices 𝐽(𝔇𝑥(𝐷)) ∈ ℝ𝐿×𝐿 and 𝐾(𝔇𝑥(𝐷)) ∈ ℝ𝐿×𝐿 for the 𝑥-th
impurity are constructed from the density matrix

𝔇𝑥(𝐷) ∶= 𝐷 − 𝐷𝐸𝑥(𝐸
𝑇
𝑥𝐷𝐸𝑥)

−1𝐸𝑇𝑥𝐷 ∈ Gr(𝑁 − 𝐿𝑥, 𝐿); (31)

∙ the rank-4 tensor 𝑉𝑥(𝐷) is given by

[𝑉𝑥(𝐷)]𝑖𝑗𝑘𝑙 ∶=

𝐿∑
𝜅,𝜆,𝜈,𝜉=1

𝑉𝜅𝜆𝜈𝜉[𝐶
𝑥(𝐷)]𝜅𝑖[𝐶

𝑥(𝐷)]𝜆𝑗[𝐶
𝑥(𝐷)]𝜈𝑘[𝐶

𝑥(𝐷)]𝜉𝓁; (32)

∙ the value of the (irrelevant) constant 𝐸env𝑥 (𝐷) is given in (39).
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ANALYSIS OF DENSITY MATRIX EMBEDDING THEORY AROUND THE NON-INTERACTING LIMIT 1377

Note that the matrix 𝔇𝑥(𝐷) is in fact the one-body density matrix associated with the Slater
determinant Ψ0,core𝑥,𝐷 (see Section 2.2).

5.2 Domain of the high-level map

Amatrix 𝐷 ∈  is in the domain of the high-level map 𝐹HL formally defined in Section 2.3 if and
only if

1. 𝐷 is compatible with the fragment decomposition (see Lemma 7), in such a way that the
impurity problem (15) is well defined for each 𝑥;

2. the set

𝑀𝐷 ∶=

{
𝜇 ∈ ℝ

|||| ∀𝑥, the impurity problem (15) has a unique ground-state 1-RDM 𝑃𝑥,𝐷,𝜇,

and
𝑁𝑓∑
𝑥=1

Tr
(
Π𝑥𝑃𝑥,𝐷,𝜇Π𝑥

)
= 𝑁

}
is non-empty;

3. the function

𝐷 ∶ 𝑀𝐷 ∋ 𝜇 ↦
𝑁𝑓∑
𝑥=1

Π𝑥𝑃𝑥,𝐷,𝜇Π𝑥 ∈ 

is a constant over𝑀𝐷 , which we denote by 𝐹HL(𝐷).

In the proof of Theorem4,wewill study𝐹HL𝛼 in the non-interacting (𝛼 = 0) andweakly interact-
ing (|𝛼| small) cases.Wewill see that in these regimes the domain of𝐹HL𝛼 contains a neighborhood
of 𝐷0 in.

6 𝑵-REPRESENTABILITY AND LOW-LEVELMAP

In this section,we focus our study on the low levelmapdefined in (19). Clearly, (19) hasminimizers
if and only if 𝑃 ∈ Bd() (otherwise, the feasible set of the minimization problem is empty).
The next Lemma covers the extreme cases ofminimal (𝑁𝑓 = 2) andmaximal (𝑁𝑓 = 𝐿) numbers

of fragments.

Lemma 9 (Global 𝑁-representability).

1. If𝑁𝑓 = 𝐿 (one site per fragment), then Bd() = Bd(CH()) =  .
2. If𝑁𝑓 = 2 and 𝐿 ≥ 3, then Bd() ⊊ Bd(CH()) =  . More precisely,

Bd() = {
𝑃 ∈  || ∀0 < 𝑛 < 1, dim(Ker(Π1𝑃Π1 − 𝑛)) = dim(Ker(Π2𝑃Π2 − (1 − 𝑛))}.
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1378 CANCÈS et al.

Our analysis of theDMETmethod in the non-interacting andweakly perturbative settings relies
on the following weaker 𝑁-representability result.

Definition 10 (Local𝑁-representability). Let 𝐷 ∈  be compatible with the fragment decompo-
sition. We say that the local 𝑁-representability condition is satisfied at 𝐷 if the linear map Bd is
surjective from 𝑇𝐷 to  .
Note that Assumption (A3) can be rephrased as: the local 𝑁-representability condition is

satisfied at 𝐷0.
A necessary condition for the local 𝑁-representability condition to be satisfied at some 𝐷 ∈

Bd
−1̊ is that

𝑁(𝐿 − 𝑁) = dim() = dim(ℝ𝑁v×𝑁) ≥ dim() =
𝑁𝑓∑
𝑥=1

𝐿𝑥(𝐿𝑥 + 1)

2
− 1. (33)

If 𝑁𝑓 = 𝐿 (one site per fragment), the above condition reads 𝑁(𝐿 − 𝑁) ≥ 𝐿 − 1, and is there-
fore satisfied for any 1 ≤ 𝑁 ≤ 𝐿 − 1, that is for any non-trivial case. On the other hand, if 𝑁𝑓 = 2
and 𝐿 = 2𝐿1 = 2𝐿2 (two fragments of identical sizes), the necessary condition reads 𝑁(𝐿 − 𝑁) ≥
𝐿(𝐿+2)

4
− 1 and is never satisfied as soon as 𝐿 ≥ 3. This result is in agreement with the global

𝑁-representability results in Lemma 9. In usual DMET calculations, condition (33) is always
satisfied, so that, generically,  and Bd() coincide in the neighborhood of 𝑃0.
The next lemma provides a sufficient local 𝑁-representability criterion.

Lemma 11 (A local 𝑁-representability criterion). Let 𝐷 ∈  be compatible with the fragment
decomposition (i.e., 𝐷 ∈ Bd−1̊). The following assertions are equivalent:
1. the local𝑁-representability condition is satisfied at 𝐷;
2. the only matrices𝑀 ∈ ℝ𝐿×𝐿sym commuting with both 𝐷 and the matricesΠ𝑥 for all 1 ≤ 𝑥 ≤ 𝑁𝑓 are

of the form𝑀 = 𝜆𝐼𝐿 for some 𝜆 ∈ ℝ;
3. if Φ ∈ ℝ𝐿×𝐿 is an orthogonal matrix such that

𝐷 = Φ

(
𝐼𝑁 0

0 0

)
Φ𝑇, (34)

then the linear map

ℝ(𝐿−𝑁)×𝑁 ∋ 𝑋 ↦

𝑁𝑓∑
𝑥=1

Π𝑥Φ

(
0 𝑋𝑇

𝑋 0

)
Φ𝑇Π𝑥 ∈  (35)

is surjective.

The third assertion of Lemma 11 gives a practical way to check the local 𝑁-representability
criterion: it suffices to (i) diagonalize 𝐷 in order to write it as in (34) (the columns of Φ ∈ 𝑂(𝐿)
form an orthonormal basis of eigenvectors of𝐷), (ii) assemble the matrix of the linear map (35) in
the canonical bases of ℝ(𝐿−𝑁)×𝑁 and  , and (iii) check whether the number of positive singular
values of this matrix is equal to dim() = ∑𝑁𝑓

𝑥=1

𝐿𝑥(𝐿𝑥+1)

2
− 1.
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ANALYSIS OF DENSITY MATRIX EMBEDDING THEORY AROUND THE NON-INTERACTING LIMIT 1379

7 PROOFS

7.1 Proof of Lemma 7

Let 𝐷 ∈ .
2) ⟺ 3). Assume that

∀1 ≤ 𝑥 ≤ 𝑁𝑓, dim(𝐷𝑋𝑥) = dim((1 − 𝐷)𝑋𝑥) = 𝐿𝑥.

Since 𝐷2 = 𝐷, we have for all 𝑦 ∈ ℝ𝐿𝑥 ,

𝑦𝑇(𝐸𝑇𝑥𝐷𝐸𝑥)𝑦 = 𝑦
𝑇(𝐸𝑇𝑥𝐷

2𝐸𝑥)𝑦 = (𝐷(𝐸𝑥𝑦))
𝑇(𝐷(𝐸𝑥𝑦)) = |𝐷(𝐸𝑥𝑦)|2, (36)

and therefore,

0 ≤ 𝑦𝑇(𝐸𝑇𝑥𝐷𝐸𝑥)𝑦 = |𝐷(𝐸𝑥𝑦)|2 ≤ |𝐸𝑥𝑦|2 = |𝑦|2.
Thus 0 ≤ 𝐸𝑇𝑥𝐷𝐸𝑥 ≤ 1 in the sense of hermitian matrices. Assume now that 𝑦𝑇(𝐸𝑇𝑥𝐷𝐸𝑥)𝑦 = 0.
Then, 𝐸𝑥𝑦 ∈ Ker(𝐷). But we also have 𝐸𝑥𝑦 ∈ 𝑋𝑥. Since dim(𝐷𝑋𝑥) = 𝐿𝑥, this implies that 𝑦 = 0.
Thus 0 < 𝐸𝑇𝑥𝐷𝐸𝑥 in the sense of hermitian matrices. Likewise, we have 𝐸𝑇𝑥𝐷𝐸𝑥 < 1. This proves
that 2) ⇒ 3). Conversely, if for all 1 ≤ 𝑥 ≤ 𝑁𝑓 , 0 < 𝐸𝑇𝑥𝐷𝐸𝑥, we infer from (36) that 𝐷(𝐸𝑥𝑦) = 0
implies 𝑦 = 0, hence that dim(𝐷𝑋𝑥) = 𝐿𝑥. Likewise, 𝐸𝑇𝑥𝐷𝐸𝑥 < 1 implies dim((1 − 𝐷)𝑋𝑥) = 𝐿𝑥.
Therefore, 3)⇒ 2).
3) ⟺ 4). Since 0 < 𝐸𝑇𝑥𝐷𝐸𝑥 is equivalent to 𝐸𝑇𝑥𝐷𝐸𝑥 ∈ GLℝ(𝐿𝑥) and 𝐸𝑇𝑥𝐷𝐸𝑥 < 1 is equivalent

to 𝐸𝑇𝑥 (1 − 𝐷)𝐸𝑥 ∈ GLℝ(𝐿𝑥), we conclude that 3) ⟺ 4).
Lastly, it follows from the definition of  that

𝑃 =

⎛⎜⎜⎜⎜⎜⎝

𝑃1 0 ⋯ 0

0 𝑃2 ⋯ 0

⋮ ⋱ ⋮

0 0 ⋯ 𝑃𝑁𝑓

⎞⎟⎟⎟⎟⎟⎠
∈
◦ ⟺ (∀1 ≤ 𝑥 ≤ 𝑁𝑓, 0 < 𝑃𝑥 = 𝐸𝑇𝑥𝑃𝐸𝑥 < 1). (37)

This shows that 1) ⟺ 3), which concludes the proof.

7.2 Proof of Proposition 8

Let𝐷 ∈  and 1 ≤ 𝑥 ≤ 𝑁𝑓 . Let us first concatenate thematrix𝐶𝑥(𝐷) ∈ ℝ𝐿×2𝐿𝑥 introduced in (28)
with a matrix 𝐶𝑥env(𝐷) ∈ ℝ𝐿×(𝐿−2𝐿𝑥) in order to form an orthogonal matrix

ℭ𝑥(𝐷) = (𝐶𝑥(𝐷)|𝐶𝑥env(𝐷)) ∈ 𝑂(𝐿).
The column vectors of ℭ𝑥(𝐷) define an orthonormal basis of  = ℝ𝐿 adapted to the decompo-
sition  = 𝑊𝑥,𝐷 ⊕env𝑥,𝐷 . The generators of the real CAR algebra associated with this basis are
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1380 CANCÈS et al.

given by

𝑎𝑥
𝑖
(𝐷) =

𝐿∑
𝜅=1

ℭ𝑥(𝐷)𝜅𝑖𝑎𝜅, 𝑎𝑥
𝑖
(𝐷)† =

𝐿∑
𝜅=1

ℭ𝑥(𝐷)𝜅𝑖𝑎
†
𝜅,

so that the Hamiltonian

𝐻̂ =

𝐿∑
𝜅,𝜆=1

ℎ𝜅𝜆𝑎
†
𝜅𝑎𝜆 +

1

2

𝐿∑
𝜅,𝜆,𝜈,𝜉=1

𝑉𝜅𝜆𝜈𝜉𝑎
†
𝜅𝑎
†
𝜆
𝑎𝜉𝑎𝜈

can be rewritten as

𝐻̂ =

𝐿∑
𝑖,𝑗=1

[ℎ𝑥(𝐷)]𝑖𝑗𝑎
𝑥
𝑖
(𝐷)†𝑎𝑥

𝑗
(𝐷) +

1

2

𝐿∑
𝑖,𝑗,𝑘,𝑙=1

[𝑉𝑥(𝐷)]𝑖𝑗𝑘𝑙 𝑎
𝑥
𝑖
(𝐷)†𝑎𝑥

𝑗
(𝐷)†𝑎𝑥

𝑙
(𝐷)𝑎𝑥

𝑘
(𝐷)

with

[ℎ𝑥(𝐷)]𝑖𝑗 ∶=

𝐿∑
𝜅,𝜆=1

ℎ𝜅𝜆ℭ
𝑥(𝐷)𝜅𝑖ℭ

𝑥(𝐷)𝜆𝑗 that is ℎ𝑥(𝐷) = ℭ𝑥(𝐷)𝑇ℎℭ𝑥(𝐷)

and

[𝑉𝑥(𝐷)]𝑖𝑗𝑘𝑙 ∶=

𝐿∑
𝜅,𝜆,𝜈,𝜉=1

𝑉𝜅𝜆𝜈𝜉ℭ
𝑥(𝐷)𝜅𝑖ℭ

𝑥(𝐷)𝜆𝑗ℭ
𝑥(𝐷)𝜈𝑘ℭ

𝑥(𝐷)𝜉𝑙.

Note that if 1 ≤ 𝑖, 𝑗, 𝑘, 𝑙 ≤ 2𝐿𝑥,
[ℎ𝑥(𝐷)]𝑖𝑗 = [𝐶

𝑥(𝐷)𝑇ℎ𝐶𝑥(𝐷)]𝑖𝑗 and [𝑉𝑥(𝐷)]𝑖𝑗𝑘𝑙

∶=

𝐿∑
𝜅,𝜆,𝜈,𝜉=1

𝑉𝜅𝜆𝜈𝜉𝐶
𝑥(𝐷)𝜅𝑖𝐶

𝑥(𝐷)𝜆𝑗𝐶
𝑥(𝐷)𝜈𝑘𝐶

𝑥(𝐷)𝜉𝑙,

in agreement with (32). Let Ψ ∈ Fock() be of the form

Ψ = Ψ
imp
𝑥,𝐷 ∧ Ψ

0,core
𝑥,𝐷 with Ψ

imp
𝑥,𝐷 ∈ Fock(𝑊𝑥,𝐷) and Ψ0,core𝑥,𝐷 ∈

(𝑁−𝐿𝑥)⋀ core𝑥,𝐷 .

We have

⟨Ψ|𝐻̂|Ψ⟩ = ⟨
Ψ
imp
𝑥,𝐷 ∧ Ψ

0,core
𝑥,𝐷

|| 𝐿∑
𝑖,𝑗=1

[ℎ𝑥(𝐷)]𝑖𝑗𝑎
𝑥
𝑖
(𝐷)†𝑎𝑥

𝑗
(𝐷)

+
1

2

𝐿∑
𝑖,𝑗,𝑘,𝑙=1

[𝑉𝑥(𝐷)]𝑖𝑗𝑘𝑙𝑎
𝑥
𝑖
(𝐷)†𝑎𝑥

𝑗
(𝐷)†𝑎𝑥

𝑙
(𝐷)𝑎𝑥

𝑘
(𝐷)||Ψimp𝑥,𝐷 ∧ Ψ0,core𝑥,𝐷

⟩
.
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ANALYSIS OF DENSITY MATRIX EMBEDDING THEORY AROUND THE NON-INTERACTING LIMIT 1381

The terms in the Hamiltonian which change the number of particles in the impurity space or the
environment do not contribute. The terms which act only on the environment subspace yield a
term proportional to ‖Ψimp𝑥,𝐷‖2. Expanding the above expression, we thus obtain

⟨Ψ|𝐻̂|Ψ⟩ = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + 𝑎6 + 𝑎7
with

𝑎1 ∶ =

2𝐿𝑥∑
𝑖,𝑗=1

[ℎ𝑥(𝐷)]𝑖𝑗⟨Ψimp𝑥,𝐷 ∧ Ψ0,core𝑥,𝐷 |𝑎𝑥
𝑖
(𝐷)†𝑎𝑥

𝑗
(𝐷)|Ψimp𝑥,𝐷 ∧ Ψ0,core𝑥,𝐷 ⟩

=

2𝐿𝑥∑
𝑖,𝑗=1

[ℎ𝑥(𝐷)]𝑖𝑗⟨Ψimp𝑥,𝐷 |𝑎𝑥𝑖 (𝐷)†𝑎𝑥𝑗 (𝐷)|Ψimp𝑥,𝐷 ⟩
=

2𝐿𝑥∑
𝑖,𝑗=1

[𝐶𝑥(𝐷)𝑇ℎ𝐶𝑥(𝐷)]𝑖𝑗⟨Ψimp𝑥,𝐷 |𝑎𝑥𝑖 (𝐷)†𝑎𝑥𝑗 (𝐷)|Ψimp𝑥,𝐷 ⟩,
𝑎2 ∶ =

𝐿∑
𝑖,𝑗=2𝐿𝑥+1

[ℎ𝑥(𝐷)]𝑖𝑗⟨Ψimp𝑥,𝐷 ∧ Ψ0,core𝑥,𝐷 |𝑎𝑥
𝑖
(𝐷)†𝑎𝑥

𝑗
(𝐷)|Ψimp𝑥,𝐷 ∧ Ψ0,core𝑥,𝐷 ⟩

=

(
𝐿∑

𝑖,𝑗=2𝐿𝑥+1

[ℎ𝑥(𝐷)]𝑖𝑗⟨Ψ0,core𝑥,𝐷 |𝑎𝑥
𝑖
(𝐷)†𝑎𝑥

𝑗
(𝐷)|Ψ0,core𝑥,𝐷 ⟩)‖Ψimp𝑥,𝐷‖2,

𝑎3 ∶ =

𝐿∑
𝑖=2𝐿𝑥+1

2𝐿𝑥∑
𝑗=1

[ℎ𝑥(𝐷)]𝑖𝑗⟨Ψimp𝑥,𝐷 ∧ Ψ0,core𝑥,𝐷
⏟⎴⎴⎴⏟⎴⎴⎴⏟
𝐿𝑥 part. in imp.

(𝑁 − 𝐿𝑥) part. in env.

|𝑎𝑥
𝑖
(𝐷)†𝑎𝑥

𝑗
(𝐷)|Ψimp𝑥,𝐷 ∧ Ψ0,core𝑥,𝐷 ⟩

⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟ ⎴⎴⎴⎴⎴⎴⎴⎴⏟
(𝐿𝑥 + 1) part. in imp.

(𝑁 − 𝐿𝑥 − 1) part. in env.

= 0,

𝑎4 ∶ =

2𝐿𝑥∑
𝑖=1

𝐿∑
𝑗=2𝐿𝑥+1

[ℎ𝑥(𝐷)]𝑖𝑗⟨Ψimp𝑥,𝐷 ∧ Ψ0,core𝑥,𝐷
⏟⎴⎴⎴⏟⎴⎴⎴⏟
𝐿𝑥 part. in imp.

(𝑁 − 𝐿𝑥) part. in env.

|𝑎𝑥
𝑖
(𝐷)†𝑎𝑥

𝑗
(𝐷)|Ψimp𝑥,𝐷 ∧ Ψ0,core𝑥,𝐷 ⟩

⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟ ⎴⎴⎴⎴⎴⎴⎴⎴⏟
(𝐿𝑥 − 1) part. in imp.

(𝑁 − 𝐿𝑥 + 1) part. in env.

= 0,

𝑎5 ∶ =
1

2

2𝐿𝑥∑
𝑖,𝑗,𝑘,𝑙=1

[𝑉𝑥(𝐷)]𝑖𝑗𝑘𝑙⟨Ψimp𝑥,𝐷 ∧ Ψ0,core𝑥,𝐷 |𝑎𝑥
𝑖
(𝐷)†𝑎𝑥

𝑗
(𝐷)†𝑎𝑥

𝑙
(𝐷)𝑎𝑥

𝑘
(𝐷)|Ψimp𝑥,𝐷 ∧ Ψ0,core𝑥,𝐷 ⟩

=
1

2

2𝐿𝑥∑
𝑖,𝑗,𝑘,𝑙=1

[𝑉𝑥(𝐷)]𝑖𝑗𝑘𝑙⟨Ψimp𝑥,𝐷 |𝑎𝑥𝑖 (𝐷)†𝑎𝑥𝑗 (𝐷)†𝑎𝑥𝑙 (𝐷)𝑎𝑥𝑘 (𝐷)|Ψimp𝑥,𝐷 ⟩,
𝑎6 ∶ =

1

2

𝐿∑
𝑖,𝑗,𝑘,𝑙=2𝐿𝑥+1

[𝑉𝑥(𝐷)]𝑖𝑗𝑘𝑙⟨Ψimp𝑥,𝐷 ∧ Ψ0,core𝑥,𝐷 |𝑎𝑥
𝑖
(𝐷)†𝑎𝑥

𝑗
(𝐷)†𝑎𝑥

𝑙
(𝐷)𝑎𝑥

𝑘
(𝐷)|Ψimp𝑥,𝐷 ∧ Ψ0,core𝑥,𝐷 ⟩
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1382 CANCÈS et al.

=

(
1

2

𝐿∑
𝑖,𝑗,𝑘,𝑙=2𝐿𝑥+1

[𝑉𝑥(𝐷)]𝑖𝑗𝑘𝑙⟨Ψ0,core𝑥,𝐷 |𝑎𝑥
𝑖
(𝐷)†𝑎𝑥

𝑗
(𝐷)†𝑎𝑥

𝑙
(𝐷)𝑎𝑥

𝑘
(𝐷)|Ψ0,core𝑥,𝐷 ⟩)‖Ψimp𝑥,𝐷‖2,

𝑎7 ∶ =
1

2

2𝐿𝑥∑
𝑖,𝑘=1

𝐿∑
𝑗,𝑙=2𝐿𝑥+1

([𝑉𝑥(𝐷)]𝑖𝑗𝑘𝑙−[𝑉
𝑥(𝐷)]𝑖𝑗𝑙𝑘−[𝑉

𝑥(𝐷)]𝑗𝑖𝑘𝑙+[𝑉
𝑥(𝐷)]𝑗𝑖𝑙𝑘)

× ⟨Ψimp𝑥,𝐷 ∧ Ψ0,core𝑥,𝐷 |𝑎𝑥
𝑖
(𝐷)†𝑎𝑥

𝑗
(𝐷)†𝑎𝑥

𝑙
(𝐷)𝑎𝑥

𝑘
(𝐷)|Ψimp𝑥,𝐷 ∧ Ψ0,core𝑥,𝐷 ⟩

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⟨Ψimp𝑥,𝐷 |𝑎𝑥𝑖 (𝐷)†𝑎𝑥𝑘 (𝐷)|Ψimp𝑥,𝐷 ⟩⟨Ψ0,core𝑥,𝐷 |𝑎𝑥
𝑗
(𝐷)†𝑎𝑥

𝑙
(𝐷)|Ψ0,core𝑥,𝐷 ⟩

.

Noticing that

∀2𝐿𝑥 + 1 ≤ 𝑗, 𝑙 ≤ 𝐿, ⟨Ψ0,core𝑥,𝐷 |𝑎𝑥
𝑗
(𝐷)†𝑎𝑥

𝑙
(𝐷)|Ψ0,core𝑥,𝐷 ⟩ = (ℭ𝑥(𝐷)𝑇𝐷ℭ𝑥(𝐷))𝑗𝑙 (38)

we get

𝑎7 =
1

2

2𝐿𝑥∑
𝑖,𝑘=1

𝐿∑
𝑗,𝑙=2𝐿𝑥+1

([𝑉𝑥(𝐷)]𝑖𝑗𝑘𝑙−[𝑉
𝑥(𝐷)]𝑖𝑗𝑙𝑘−[𝑉

𝑥(𝐷)]𝑗𝑖𝑘𝑙+[𝑉
𝑥(𝐷)]𝑗𝑖𝑙𝑘)

× (ℭ𝑥(𝐷)𝑇𝐷ℭ𝑥(𝐷))𝑗𝑙⟨Ψimp𝑥,𝐷 |𝑎𝑥𝑖 (𝐷)†𝑎𝑥𝑘(𝐷)|Ψimp𝑥,𝐷 ⟩
=

2𝐿𝑥∑
𝑖,𝑗=1

( 𝐿∑
𝑘,𝑙=2𝐿𝑥+1

([𝑉𝑥(𝐷)]𝑖𝑘𝑗𝑙−[𝑉
𝑥(𝐷)]𝑖𝑘𝑙𝑗−[𝑉

𝑥(𝐷)]𝑘𝑖𝑗𝑙+[𝑉
𝑥(𝐷)]𝑘𝑖𝑙𝑗)(ℭ

𝑥(𝐷)𝑇𝐷ℭ𝑥(𝐷))𝑘𝑙

)
× ⟨Ψimp𝑥,𝐷 |𝑎𝑥𝑖 (𝐷)†𝑎𝑥𝑗 (𝐷)|Ψimp𝑥,𝐷 ⟩.

It holds for all 1 ≤ 𝑖, 𝑗 ≤ 2𝐿𝑥,
𝐿∑

𝑘,𝑙=2𝐿𝑥+1

[𝑉𝑥(𝐷)]𝑖𝑘𝑗𝑙(ℭ
𝑥(𝐷)𝑇𝐷ℭ𝑥(𝐷))𝑘𝑙

=

𝐿∑
𝑘,𝑙=2𝐿𝑥+1

𝐿∑
𝜅,𝜆,𝜈,𝜉,𝜎,𝜏=1

𝑉𝜅𝜆𝜈𝜉[ℭ
𝑥(𝐷)]𝜅𝑖[ℭ

𝑥(𝐷)]𝜆𝑘[ℭ
𝑥(𝐷)]𝜈𝑗[ℭ

𝑥(𝐷))]𝜉𝑙[ℭ
𝑥(𝐷)]𝜎𝑘𝐷𝜎𝜏[ℭ

𝑥(𝐷)]𝜏𝑙

=

𝐿−2𝐿𝑥∑
𝑘,𝑙=1

𝐿∑
𝜅,𝜆,𝜈,𝜉,𝜎,𝜏=1

𝑉𝜅𝜆𝜈𝜉[𝐶
𝑥(𝐷)]𝜅𝑖[𝐶

𝑥
env(𝐷)]𝜆𝑘[𝐶

𝑥(𝐷)]𝜈𝑗[𝐶
𝑥
env(𝐷))]𝜉𝑙[𝐶

𝑥
env(𝐷)]𝜎𝑘𝐷𝜎𝜏[𝐶

𝑥
env(𝐷)]𝜏𝑙

=

𝐿∑
𝜅,𝜈=1

[𝐶𝑥(𝐷)]𝜅𝑖

⎛⎜⎜⎝
𝐿∑

𝜆,𝜉,𝜎,𝜏=1

𝑉𝜅𝜆𝜈𝜉

(
𝐿−2𝐿𝑥∑
𝑘=1

[𝐶𝑥env(𝐷)]𝜆𝑘[𝐶
𝑥
env(𝐷)]𝜎𝑘

)

× 𝐷𝜎𝜏

(
𝐿−2𝐿𝑥∑
𝑙=1

[𝐶𝑥env(𝐷)]𝜏𝑙[𝐶
𝑥
env(𝐷)]𝜉𝑙

))
[𝐶𝑥(𝐷)]𝜈𝑗

=

𝐿∑
𝜅,𝜈=1

[𝐶𝑥(𝐷)]𝜅𝑖

⎛⎜⎜⎝
𝐿∑

𝜆,𝜉,𝜎,𝜏=1

𝑉𝜅𝜆𝜈𝜉
(
𝐶𝑥env(𝐷)𝐶

𝑥
env(𝐷)

𝑇𝐷𝐶𝑥env(𝐷)𝐶
𝑥
env(𝐷)

𝑇
)
𝜆𝜉

⎞⎟⎟⎠[𝐶𝑥(𝐷)]𝜈𝑗
=

[
𝐶𝑥(𝐷)𝑇𝐽(𝔇̃𝑥(𝐷))𝐶𝑥(𝐷)

]
𝑖𝑗
,
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ANALYSIS OF DENSITY MATRIX EMBEDDING THEORY AROUND THE NON-INTERACTING LIMIT 1383

with, recalling that ℭ𝑥(𝐷) = (𝐶𝑥(𝐷)|𝐶𝑥env(𝐷)) is an orthogonal matrix,
𝔇̃𝑥(𝐷) ∶ = 𝐶𝑥env(𝐷)𝐶

𝑥
env(𝐷)

𝑇𝐷𝐶𝑥env(𝐷)𝐶
𝑥
env(𝐷)

𝑇

= (1 − 𝐶𝑥(𝐷)𝐶𝑥(𝐷)𝑇)𝐷(1 − 𝐶𝑥(𝐷)𝐶𝑥(𝐷)𝑇)

= 𝐷 − 𝐷𝐸𝑥(𝐸
𝑇
𝑥𝐷𝐸𝑥)

−1𝐸𝑇𝑥𝐷

= 𝔇𝑥(𝐷) (see (31)).

Using similar arguments, we get

𝑎7 =

2𝐿𝑥∑
𝑖,𝑘=1

[
𝐶𝑥(𝐷)𝑇(𝐽(𝔇𝑥(𝐷)) − 𝐾(𝔇𝑥(𝐷)))𝐶𝑥(𝐷)

]
𝑖𝑗
⟨Ψimp𝑥,𝐷 |𝑎𝑥𝑖 (𝐷)†𝑎𝑥𝑗 (𝐷)|Ψimp𝑥,𝐷 ⟩.

We finally obtain

⟨Ψ|𝐻̂|Ψ⟩ = ⟨Ψimp𝑥,𝐷 |𝐻̂imp𝑥,𝐷 |Ψimp𝑥,𝐷 ⟩,
where 𝐻̂imp𝑥,𝐷 is given by (30) with

𝐸env(𝐷) =

𝐿∑
𝑖,𝑗=2𝐿𝑥+1

[ℎ𝑥(𝐷)]𝑖𝑗⟨Ψ0,core𝑥,𝐷 |𝑎𝑥
𝑖
(𝐷)†𝑎𝑥

𝑗
(𝐷)|Ψ0,core𝑥,𝐷 ⟩

+
1

2

𝐿∑
𝑖,𝑗,𝑘,𝑙=2𝐿𝑥+1

[𝑉𝑥(𝐷)]𝑖𝑗𝑘𝑙⟨Ψ0,core𝑥,𝐷 |𝑎𝑥
𝑖
(𝐷)†𝑎𝑥

𝑗
(𝐷)†𝑎𝑥

𝑙
(𝐷)𝑎𝑥

𝑘
(𝐷)|Ψ0,core𝑥,𝐷 ⟩. (39)

7.3 Proof of Lemma 9

The first assertion is a direct consequence of [21, Theorem 6].
We now prove the second assertion. Let

 ∶= {
𝑃 = (𝑃1, 𝑃2) ∈ ℝ

𝐿1×𝐿1
sym × ℝ

𝐿2×𝐿2
sym

||∀0 < 𝑛 < 1, dim(Ker(𝑃1 − 𝑛)) = dim(Ker(𝑃2 − (1 − 𝑛))}.
Let 𝑃 = (𝑃1, 𝑃2) ∈ Bd() and 𝐷 ∈  be such that Bd(𝐷) = 𝑃. Let 𝑈1 and 𝑈2 be two orthogo-
nal matrices of sizes (𝐿1 × 𝐿1) and (𝐿2 × 𝐿2) respectively, and 𝐷1 = diag(𝑚1, … ,𝑚𝐿1) and 𝐷2 =
diag(𝑚′1, … ,𝑚

′
𝐿2
) two diagonal matrices with entries in the range [0,1] ranked such that 𝑚1 ≥

⋯ ≥ 𝑚L1 and𝑚′1 ≤⋯ ≤ 𝑚′L2 , such that 𝑃1 = 𝑈1𝐷1𝑈𝑇1 and 𝑃2 = 𝑈2𝐷2𝑈𝑇2 . It holds

𝐷 =

(
𝑈1 0

0 𝑈2

)(
𝐷1 𝐶

𝐶𝑇 𝐷2

)(
𝑈𝑇1 0

0 𝑈𝑇2

)
for some 𝐶 ∈ ℝ𝐿1×𝐿2 .

The condition 𝐷2 = 𝐷 reads

𝐶𝐶𝑇 = 𝐷1 − 𝐷
2
1, 𝐶𝑇𝐶 = 𝐷2 − 𝐷

2
2, 𝐶 − 𝐷1𝐶 − 𝐶𝐷2 = 0,
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1384 CANCÈS et al.

that is

∀1 ≤ 𝑖 ≤ 𝐿1, ∀1 ≤ 𝑗 ≤ 𝐿2,
𝐿2∑
𝑘=1

𝐶2
𝑖𝑘
= 𝑚𝑖 − 𝑚

2
𝑖
,

𝐿1∑
𝑘=1

𝐶2
𝑘𝑗
= 𝑚′

𝑗
− 𝑚′

𝑗

2
, (1 − 𝑚𝑖 − 𝑚

′
𝑗
)𝐶𝑖𝑗 = 0.

This implies that 𝐶𝑖𝑗 = 0 unless𝑚′𝑗 = 1 − 𝑚𝑗 and that 𝐶𝑖𝑗 = 0whenever𝑚𝑖 = 0 or 1, or𝑚
′
𝑗
= 0 or

1. It follows that

(
𝑈𝑇1 0

0 𝑈𝑇2

)
𝐷

(
𝑈1 0

0 𝑈2

)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼𝑟1
𝑛1𝐼𝑑1 𝐶1

⋱ ⋱

𝑛𝓁𝐼𝑑𝓁 𝐶𝓁

0𝑠1
0𝑠2

𝐶𝑇1 (1 − 𝑛1)𝐼𝑑′
1

⋱ ⋱

𝐶𝑇
𝓁

(1 − 𝑛𝓁)𝐼𝑑′
𝓁

𝐼𝑟2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (40)

with 0 < 𝑛𝓁 < ⋯ < 𝑛1 < 1. Using again the idempotency of 𝐷, we obtain the relations 𝐶𝑗𝐶𝑇𝑗 =
𝑛𝑗(1 − 𝑛𝑗)𝐼𝑑𝑗 and 𝐶

𝑇
𝑗
𝐶𝑗 = 𝑛𝑗(1 − 𝑛𝑗)𝐼𝑑′

𝑗
. Taking the trace leads to 𝑑𝑗 = 𝑑′𝑗 . Therefore, 𝑃 ∈  so

that Bd() ⊂ .
Conversely, let 𝑃 ∈  and 𝑈1, 𝑈2, 𝐷1, 𝐷2 as before. Then 𝑈𝑇1 𝑃1𝑈1 and 𝑈

𝑇
2 𝑃2𝑈2 read as the

diagonal blocks of the right-hand side of (40) with 𝑑𝑗 = 𝑑′𝑗 for all 𝑗. Setting 𝐶𝑗 =
√
𝑛𝑗(1 − 𝑛𝑗)𝐼𝑑𝑗 ,

the matrix 𝐷 defined by (40) is inS and satisfies Bd(𝐷) = 𝑃. Hence, 𝑃 ∈ Bd() and therefore ⊂ Bd().

7.4 Proof of Lemma 11

Let 𝑁v ∶= 𝐿 − 𝑁. For 𝑋 ∈ ℝ𝑁v×𝑁 such that ‖𝑋‖ < 1∕2, we set
𝑓Φ(𝑋) ∶ = Φ

⎛⎜⎜⎝
1

2

(
𝐼𝑁 + (𝐼𝑁 − 4𝑋

𝑇𝑋)1∕2
)

𝑋𝑇

𝑋
1

2

(
𝐼𝑁v − (𝐼𝑁v − 4𝑋𝑋

𝑇)1∕2
)⎞⎟⎟⎠Φ𝑇,

𝑔Φ(𝑋) ∶ = Bd(𝑓Φ(𝑋)).
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ANALYSIS OF DENSITY MATRIX EMBEDDING THEORY AROUND THE NON-INTERACTING LIMIT 1385

The map 𝑓Φ provides a local system of coordinates of  in the vicinity of 𝐷. Therefore, the local
𝑁-representability condition is satisfied at 𝐷 if and only if the map

𝑑0𝑔Φ ∶ ℝ
𝑁v×𝑁 ∋ 𝑋 ↦ 𝑑0𝑔Φ =

𝑁𝑓∑
𝑥=1

Π𝑥Φ

(
0 𝑋𝑇

𝑋 0

)
Φ𝑇Π𝑥 ∈ 

is surjective. This proves the equivalence between the first and third assertions of the lemma.
WritingΦ asΦ = (Φocc|Φvirt)withΦocc ∈ ℝ𝐿×𝑁 andΦvirt ∈ ℝ𝐿×𝑁v , the adjoint of 𝑑0𝑔Φ is given

by

𝑑0𝑔
∗
Φ ∶  ∋ 𝑌 ↦ 𝑑0𝑔∗Φ(𝑌) = 2Φvirt𝑇𝑌Φocc ∈ ℝ𝑁v×𝑁.

We therefore have for all 𝑌 ∈  ,

(𝑑0𝑔Φ𝑑0𝑔
∗
Φ)𝑌 = 2

𝑁𝑓∑
𝑥=1

Π𝑥((1 − 𝐷)𝑌𝐷 + 𝐷𝑌(1 − 𝐷))Π𝑥, (41)

and therefore

‖𝑑0𝑔∗Φ(𝑌)‖2 = Tr(𝑌(𝑑0𝑔Φ𝑑0𝑔∗Φ)(𝑌))) = 2Tr⎛⎜⎜⎝𝑌
𝑁𝑓∑
𝑥=1

Π𝑥((1 − 𝐷)𝑌𝐷 + 𝐷𝑌(1 − 𝐷))Π𝑥

⎞⎟⎟⎠
= 2Tr

⎛⎜⎜⎝
𝑁𝑓∑
𝑥=1

Π𝑥𝑌Π𝑥((1 − 𝐷)𝑌𝐷 + 𝐷𝑌(1 − 𝐷))
⎞⎟⎟⎠

= 2Tr(𝑌((1 − 𝐷)𝑌𝐷 + 𝐷𝑌(1 − 𝐷))) = 4‖(1 − 𝐷)𝑌𝐷‖2.
Thus

∀𝑌 ∈  , ‖𝑑0𝑔∗Φ(𝑌)‖ = 2‖(1 − 𝐷)𝑌𝐷‖.
The map 𝑑0𝑔Φ is surjective if and only if its adjoint is injective. Thus the criterion is satisfied if
and only if

∀𝑌 ∈  , (1 − 𝐷)𝑌𝐷 = 0 ⇒ 𝑌 = 0.

As 𝐷 is an orthogonal projector, (1 − 𝐷)𝑌𝐷 = 0 if and only if 𝑌 commutes with 𝐷. In addition, a
matrix 𝑌 ∈ ℝ𝐿×𝐿sym is in  if and only if (i) it commutes with all the Π𝑥’s, and (ii) its trace is equal
to 0. Thus, the criterion is satisfied if and only if any zero trace matrix 𝑌 ∈ ℝ𝐿×𝐿sym commuting with
𝐷 and the Π𝑥’s is the null matrix. Lastly, this condition is equivalent to: any matrix 𝑌 ∈ ℝ𝐿×𝐿sym
commuting with 𝐷 and the Π𝑥’s is of the form 𝜆𝐼𝐿 for some 𝜆 ∈ ℝ. This completes the proof of
the second statement.
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1386 CANCÈS et al.

7.5 Proof of Proposition 1

For 𝛼 = 0, the low-level map is formally given by

𝐹LL0 (𝑃) = argmin
𝐷∈, Bd(𝐷)=𝑃

Tr(ℎ𝐷) (formal). (42)

Under Assumption (A1) (i.e., 𝜀𝑁 < 0 < 𝜀𝑁+1), 𝐷0 is the unique minimizer of

argmin
𝐷∈

Tr(ℎ𝐷).

Since Bd(𝐷0) = 𝑃0 (by definition of 𝑃0), 𝐷0 is the unique minimizer of (42) for 𝑃 = 𝑃0. Thus, 𝑃0
is in the domain of 𝐹LL0 and 𝐹LL0 (𝑃0) = 𝐷0.
For 𝛼 = 0, the high-level map takes the simple formal expression

𝐹HL0 (𝐷) =

𝑁𝑓∑
𝑥=1

Π𝑥𝐶
𝑥(𝐷)𝟙(−∞,0]

(
𝐶𝑥(𝐷)𝑇(ℎ − 𝜇Π𝑥)𝐶

𝑥(𝐷)
)
𝐶𝑥(𝐷)𝑇Π𝑥 (formal),

where 𝐶𝑥(𝐷) is defined in (28) and 𝜇 ∈ ℝ is such that

𝑁𝑓∑
𝑥=1

Tr
(
Π𝑥𝐶

𝑥(𝐷)𝟙(−∞,0]
(
𝐶𝑥(𝐷)𝑇(ℎ − 𝜇Π𝑥)𝐶

𝑥(𝐷)
)
𝐶𝑥(𝐷)𝑇Π𝑥

)
= 𝑁.

Therefore, a matrix 𝐷 ∈  is in the domain of 𝐹HL0 if and only if

1. the set

𝑀𝐷 ∶=

⎧⎪⎨⎪⎩𝜇 ∈ ℝ
|| 𝑁𝑓∑
𝑥=1

Tr
(
Π𝑥𝐶

𝑥(𝐷)𝟙(−∞,0]
(
𝐶𝑥(𝐷)𝑇(ℎ − 𝜇Π𝑥)𝐶

𝑥(𝐷)
)
𝐶𝑥(𝐷)𝑇Π𝑥

)
= 𝑁

⎫⎪⎬⎪⎭
is non-empty;

2. the function

𝐷 ∶ 𝑀𝐷 ∋ 𝜇 ↦
𝑁𝑓∑
𝑥=1

Π𝑥𝐶
𝑥(𝐷)𝟙(−∞,0]

(
𝐶𝑥(𝐷)𝑇(ℎ − 𝜇Π𝑥)𝐶

𝑥(𝐷)
)
𝐶𝑥(𝐷)𝑇Π𝑥 ∈ ℝ

𝐿×𝐿
sym

is constant over𝑀𝐷 . Its value is an element of  , which we denote by 𝐹HL0 (𝐷).
Let us prove that under Assumptions (A1) and (A2), 𝐷0 belongs to the domain of 𝐹HL0 and

𝐹HL0 (𝐷0) = 𝑃0.
First, we observe that for each 1 ≤ 𝑥 ≤ 𝑁𝑓 , the space 𝑊𝑥,0 ∶= 𝑋𝑥 + 𝐷0𝑋𝑥 is 𝐷0-invariant

since 𝐷0 is a projector. The linear operator 𝐷0 on ℝ𝐿 therefore has a a block-diagonal operator
representation in the decomposition𝑊𝑥,0 ⊕𝑊⟂𝑥,0 of = ℝ𝐿:

𝐷0 ≡
(
𝐷𝑥0 0

0 𝐷𝑥0

)
(in the decomposition = 𝑊𝑥,0 ⊕𝑊⟂𝑥,0),

 10970312, 2025, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22244 by D

E
SY

 - Z
entralbibliothek, W

iley O
nline L

ibrary on [11/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ANALYSIS OF DENSITY MATRIX EMBEDDING THEORY AROUND THE NON-INTERACTING LIMIT 1387

where 𝐷𝑥0 and 𝐷
𝑥
0 are both orthogonal projectors. The corresponding representation of ℎ is not

necessarily block-diagonal:

ℎ ≡
(
ℎ𝑥 ℎ𝑥OD

ℎ𝑥OD
𝑇

ℎ̃𝑥

)
(in the decomposition = 𝑊𝑥,0 ⊕𝑊⟂𝑥,0).

Let us now focus on the operator ℎ𝑥. To lighten the notation, we set

𝐷0,𝑥 ∶= 𝐸
𝑇
𝑥𝐷0𝐸𝑥.

We infer from Assumption (A2) and Lemma 7 that dim(𝐷0𝑋𝑥) = dim((1 − 𝐷0)𝑋𝑥) = 𝐿𝑥 and

𝐶𝑥0 ∶= 𝐶
𝑥(𝐷0) =

(
𝐷0𝐸𝑥𝐷

−1∕2
0,𝑥 |(1 − 𝐷0)𝐸𝑥(1 − 𝐷0,𝑥)−1∕2)

forms an orthonormal basis of𝑊𝑥,0. In this basis, the operator ℎ𝑥 is represented by the matrix

𝔥𝑥 ∶= 𝐶𝑥0
𝑇
ℎ𝐶𝑥0 =

(
𝔥𝑥− 0

0 𝔥𝑥+

)
, (43)

with

𝔥𝑥− ∶ = 𝐷
−1∕2
0,𝑥 𝐸

𝑇
𝑥𝐷0ℎ𝐷0𝐸𝑥𝐷

−1∕2
0,𝑥 , (44)

𝔥𝑥+ ∶ = (1 − 𝐷0,𝑥)
−1∕2𝐸𝑇𝑥 (1 − 𝐷0)ℎ(1 − 𝐷0)𝐸𝑥(1 − 𝐷0,𝑥)

−1∕2. (45)

The zeros in the off-diagonal blocks of 𝔥𝑥 come from the fact that𝐷0ℎ(1 − 𝐷0) = (1 − 𝐷0)ℎ𝐷0 = 0
since ℎ and 𝐷0 commute. In addition, we have

𝜀1𝐷0 ≤ 𝐷0ℎ𝐷0 =
𝑁∑
𝑖=1

𝜀𝑖𝜙𝑖𝜙
𝑇
𝑖
≤ 𝜀𝑁𝐷0, (46)

𝜀𝑁+1(1 − 𝐷0) ≤ (1 − 𝐷0)ℎ(1 − 𝐷0) =
𝐿∑

𝑎=𝑁+1

𝜀𝑎𝜙𝑎𝜙
𝑇
𝑎 ≤ 𝜀𝐿(1 − 𝐷0). (47)

Combining (44) and (46) on the one hand, and (45) and (47) on the other hand, we obtain

𝜀1𝐼𝐿𝑥 ≤ 𝔥𝑥− ≤ 𝜀𝑁𝐼𝐿𝑥 and 𝜀𝑁+1𝐼𝐿𝑥 ≤ 𝔥𝑥+ ≤ 𝜀𝐿𝐼𝐿𝑥 . (48)

We therefore have

𝟙(−∞,0](𝔥
𝑥) = 𝟙(−∞,0)(𝔥

𝑥) =

(
𝐼𝐿𝑥 0

0 0

)
, 𝟙[0,∞)(𝔥

𝑥) = 𝟙(0,∞)(𝔥
𝑥) =

(
0 0

0 𝐼𝐿𝑥

)
, (49)

and thus

𝑁𝑓∑
𝑟=1

Π𝑥𝐶
𝑥
0 𝟙(−∞,0](𝔥

𝑥)𝐶𝑥0
𝑇
Π𝑥 =

𝑁𝑓∑
𝑟=1

Π𝑥𝐶
𝑥
0

(
𝐼𝐿𝑥 0

0 0

)
𝐶𝑥0
𝑇
Π𝑥

 10970312, 2025, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22244 by D

E
SY

 - Z
entralbibliothek, W

iley O
nline L

ibrary on [11/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1388 CANCÈS et al.

=

𝑁𝑓∑
𝑟=1

(𝐸𝑥𝐸
𝑇
𝑥 )𝐷0𝐸𝑥𝐷

−1
0,𝑥𝐸

𝑇
𝑥𝐷0(𝐸𝑥𝐸

𝑇
𝑥 )

=

𝑁𝑓∑
𝑟=1

Π𝑥𝐷0Π𝑥 = Bd(𝐷0) = 𝑃0.

As Tr(𝑃0) = 𝑁, we have 0 ∈ 𝑀𝐷0 and 𝐷0(0) = 𝑃0. Let us now show that𝑀𝐷0 = {0}. It holds

Π𝑥 ≡
(
Π𝑥𝑥 0

0 0

)
(in the decomposition = 𝑊𝑥,0 ⊕𝑊⟂𝑥,0),

and in the basis defined of𝑊𝑥,0 defined by 𝐶𝑥0 , the orthogonal projector Π
𝑥
𝑥 is represented by the

matrix

𝔭𝑥 ∶= 𝐶𝑥0
𝑇
Π𝑥𝐶

𝑥
0 =

(
𝐷0,𝑥 𝐷

1∕2
0,𝑥 (1 − 𝐷0,𝑥)

1∕2

(1 − 𝐷0,𝑥)
1∕2𝐷

1∕2
0,𝑥 (1 − 𝐷0,𝑥)

)
. (50)

We therefore have in particular 𝔭𝑥2 = 𝔭𝑥 = 𝔭𝑥𝑇 . Consider the function

ℝ ∋ 𝜇 ↦ 𝜁(𝜇) ∶ =

𝑁𝑓∑
𝑥=1

Tr
(
Π𝑥𝐶

0
𝑥𝟙(−∞,0]

(
𝐶0𝑥
𝑇
(ℎ − 𝜇Π𝑥)𝐶

0
𝑥

)
𝐶0𝑥
𝑇
Π𝑥

)

=

𝑁𝑓∑
𝑥=1

Tr
(
𝔭𝑥𝟙(−∞,0](𝔥

𝑥 − 𝜇𝔭𝑥)
)

=

𝑁𝑓∑
𝑥=1

Tr
(
𝔭𝑥𝟙(−∞,0](𝔥

𝑥 − 𝜇𝔭𝑥)𝔭𝑥
) ≥ 0.

We already know that 𝜁(0) = 𝑁. We see from (48) that 0 is not in the spectrum of 𝔥 for all 𝑥. By
a simple continuity argument, we obtain that for |𝜇| small enough, 0 is not in the spectrum of
𝔥𝑥 − 𝜇𝔭𝑥 for all 𝑥. We therefore have

𝜁(𝜇) =

𝑁𝑓∑
𝑥=1

1

2𝜋𝑖 ∮
Tr

(
𝔭𝑥(𝑧 − (𝔥𝑥 − 𝜇𝔭𝑥))

−1
)
𝑑𝑧 (for |𝜇| small enough), (51)

where is for example, a circle in the complex plane, centered on the negative real axis, containing
0 and of large enough radius. It follows that 𝜁 is analytic in the vicinity of 0 and that

𝜁′(0) = −

𝑁𝑓∑
𝑥=1

1

2𝜋𝑖 ∮
Tr

(
𝔭𝑥(𝑧 − 𝔥𝑥)

−1
𝔭𝑥(𝑧 − 𝔥𝑥)

−1
)
𝑑𝑧 =

𝑁𝑓∑
𝑥=1

⟨𝔭𝑥, 𝔏+𝑥 𝔭𝑥⟩, (52)

where 𝔏+𝑥 is the linear operator on ℝ
2𝐿𝑥×2𝐿𝑥
sym defined by

∀𝑀 ∈ ℝ
2𝐿𝑥×2𝐿𝑥
sym , 𝔏+𝑥𝑀 = −

1

2𝜋𝑖 ∮
(𝑧 − 𝔥𝑥)

−1
𝑀(𝑧 − 𝔥𝑥)

−1
𝑑𝑧, (53)
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ANALYSIS OF DENSITY MATRIX EMBEDDING THEORY AROUND THE NON-INTERACTING LIMIT 1389

which can alternatively be defined by the linear response formula

𝟙(−∞,0](𝔥
𝑥 + 𝑀) = 𝟙(−∞,0](𝔥

𝑥) − 𝔏+𝑥𝑀 + 𝑜(‖𝑀‖). (54)

Let us diagonalize the real symmetric matrix 𝔥𝑥 as

𝔥𝑥 =

2𝐿𝑥∑
𝑛=1

𝜀̃𝑥,𝑛𝜙𝑥,𝑛𝜙
𝑇
𝑥,𝑛 with 𝜀̃𝑥,1 ≤⋯ ≤ 𝜀̃𝑥,2𝐿𝑥 , 𝜙𝑇𝑥,𝑚𝜙𝑥,𝑛 = 𝛿𝑚𝑛,

with (using (48))

∀1 ≤ 𝑖 ≤ 𝐿𝑥, ∀𝐿𝑥 ≤ 𝑎 ≤ 2𝐿𝑥, 𝜀̃𝑥,𝑖 ≤ 𝜀𝑁 < 0 < 𝜀𝑁+1 ≤ 𝜀̃𝑥,𝑎.
Using Cauchy residue formula, we get

∀𝑀 =

(
𝑀−− 𝑀+−

𝑇

𝑀+− 𝑀++

)
∈ ℝ

2𝐿𝑥×2𝐿𝑥
sym , 𝔏+𝑥𝑀 =

(
0 𝑁(𝑀+−)𝑇

𝑁(𝑀+−) 0

)
(55)

with

∀1 ≤ 𝑚, 𝑛 ≤ 𝐿𝑥, [𝑁(𝑀+−)]𝑚𝑛 =
[𝑀+−]𝑚𝑛

𝜀̃𝑥,𝑚+𝐿𝑥 − 𝜀̃𝑥,𝑛
. (56)

The operator 𝔏+𝑥 is self-adjoint and positive. Denoting by 𝜌 ∶= 𝜀𝐿 − 𝜀1 > 0 the spectral diameter
of ℎ, we have

∀𝑀 =

(
𝑀−− 𝑀−+

𝑀+− 𝑀++

)
∈ ℝ

2𝐿𝑥×2𝐿𝑥
sym , ⟨𝑀,𝔏+𝑥𝑀⟩ ≥ 2𝜌−1‖𝑀−+‖2. (57)

Indeed, we have

⟨𝑀,𝔏+𝑥𝑀⟩ = 2 𝑁𝑓∑
𝑥=1

𝐿𝑥∑
𝑖=1

2𝐿𝑥∑
𝑎=𝐿𝑥+1

|𝜙𝑇
𝑥,𝑖
𝑀𝜙𝑥,𝑎|2

𝜀̃𝑥,𝑎 − 𝜀̃𝑥,𝑖
≥ 2𝜌−1

𝑁𝑓∑
𝑥=1

𝐿𝑥∑
𝑖=1

2𝐿𝑥∑
𝑎=𝐿𝑥+1

|𝜙𝑇
𝑥,𝑖
𝑀𝜙𝑥,𝑎|2

= 2𝜌−1‖𝟙(−∞,0)(𝔥𝑥)𝑀𝟙(0,+∞)(𝔥𝑥)‖2 = 2𝜌−1‖𝑀−+‖2.
Let

0 ∶=
⎧⎪⎨⎪⎩𝜇 ∈ ℝ

||||
𝑁𝑓∏
𝑥=1

det(𝔥𝑥 − 𝜇𝔭𝑥) = 0

⎫⎪⎬⎪⎭.
Since 𝜇 ↦ det (𝔥𝑥 − 𝜇𝔭𝑥) is a polynomial of degree 𝐿𝑥, the set 0 contains at most 𝐿 elements. By
similar arguments as above, the function 𝜁 is real-analytic and non-decreasing on each connected
components of ℝ ⧵ 0. At each 𝜇0 ∈ 0, the jump of 𝜁 is given by

𝜁(𝜇0 + 0) − 𝜁(𝜇0 − 0) =

𝑁𝑓∑
𝑥=1

Tr
(
𝔭𝑥𝟙{0}(𝔥

𝑥 − 𝜇0𝔭
𝑥)𝔭𝑥

) ≥ 0.
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1390 CANCÈS et al.

The function 𝜁 is therefore nondecreasing on ℝ. As a consequence, the set𝑀𝐷0 is an interval 𝐼𝐷0
containing 0. Using (50), (52), and (57), we get

𝜁′(0) ≥ 2𝜌−1
𝑁𝑓∑
𝑥=1

‖𝐷1∕20,𝑥 (1 − 𝐷0,𝑥)1∕2‖2 = 2𝜌−1 𝑁𝑓∑
𝑥=1

Tr(𝐷0,𝑥(1 − 𝐷0,𝑥)) > 0,

since, in view of Lemma 7, all the eigenvalues of the symmetric matrix𝐷0,𝑥(1 − 𝐷0,𝑥) are positive.
Thus𝑀𝐷0 = {0}. This proves that 𝐷0 is in the domain of 𝐹

HL
0 and that 𝐹HL(𝐷0) = 𝑃0.

Combining this result with the previously established relation 𝐹LL0 (𝑃0) = 𝐷0, we obtain that 𝑃0
is a fixed point of the DMET map for 𝛼 = 0.

7.6 Proof of Theorem 4

We endow  with the Riemannian metric induced by the Frobenius inner product on ℝ𝐿×𝐿sym. For
𝜂 > 0, we set

𝜔𝜂 ∶= {𝑃 ∈  | ‖𝑃 − 𝑃0‖ < 𝜂} and Ω𝜂 ∶= {𝐷 ∈  | ‖𝐷 − 𝐷0‖ < 𝜂}.
7.6.1 Low-level map in the perturbative regime

Let us introduce the maps

𝑔 ∶ →  s.t. ∀𝐷 ∈ , 𝑔(𝐷) ∶= Bd(𝐷) − 𝑃0,

𝑎 ∶ → ℝ s.t. ∀𝐷 ∈ , 𝑎(𝐷) ∶= Tr(ℎ𝐷),

𝑏 ∶ → ℝ s.t. ∀𝐷 ∈ , 𝑏(𝐷) ∶=
1

2
Tr((𝐽(𝐷) − 𝐾(𝐷))𝐷),

𝐸 ∶ ℝ ×→ ℝ s.t. ∀(𝛼, 𝐷) ∈ ℝ ×, 𝐸(𝛼, 𝐷) ∶= HF𝛼 (𝐷) = 𝑎(𝐷) + 𝛼𝑏(𝐷).
Since the maps Bd, 𝐽, 𝐾 ∶ ℝ𝐿×𝐿sym → ℝ𝐿×𝐿sym are linear, the maps 𝑔, 𝑎, 𝑏, and 𝐸 are real-analytic. With
this notation, we have

(Assumption (A3)) ⟺
(
𝐵 ∶= 𝑑𝐷0𝑔 = Bd ∶ 𝑇𝐷0→  surjective

)
.

Lemma 12 (Low-level map in the perturbative regime).Under Assumptions (A1)–(A3), there exists
𝛼LL > 0 and 0 < 𝜂LL <

1

2
such that

1. 𝜔𝜂LL ⊂ Dom(𝐹
LL
𝛼 ) for all 𝛼 ∈ (−𝛼LL, 𝛼LL);

2. the function (𝛼, 𝑃) ↦ 𝐹LL𝛼 (𝑃) is real-analytic on (−𝛼LL, 𝛼LL) × 𝜔

𝜂LL
.

Proof. The first assertion means that for all (𝛼, 𝑃) ∈ (−𝛼LL, 𝛼LL) × 𝜔𝜂LL , the problem

min
𝐷∈ | Bd(𝐷)=𝑃 HF𝛼 (𝐷) = min

𝐷∈ | 𝑔(𝐷)=𝑃−𝑃0 𝐸(𝛼, 𝐷) (58)

has a unique minimizer, which we denote by 𝐹LL𝛼 (𝑃).
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ANALYSIS OF DENSITY MATRIX EMBEDDING THEORY AROUND THE NON-INTERACTING LIMIT 1391

Using Lemma 11 and the submersion theorem, we deduce from Assumptions (A2)–(A3) that
there exists 𝜂 > 0 and 𝐶 ∈ ℝ+ such that for all 𝑃 ∈ 𝜔𝜂, the set Bd

−1
(𝑃) is nonempty and there

exists 𝐷𝑃 ∈ Bd
−1
(𝑃) such that ‖𝐷𝑃 − 𝐷0‖ ≤ 𝐶‖𝑃 − 𝑃0‖. Let 𝐷𝛼,𝑃 be a minimizer of HF𝛼 on

Bd
−1
(𝑃). Such a minimizer exists since HF𝛼 is continuous on  and Bd−1(𝑃) is a nonempty

compact subset of, and satisfies the optimality conditions
∇𝐸(𝛼, 𝐷𝛼,𝑃) + 𝑑𝐷𝛼,𝑃𝑔∗Λ𝛼,𝑃 = 0, 𝑔(𝐷𝛼,𝑃) = 𝑃 − 𝑃0, (59)

where ∇𝐸(𝛼, 𝐷𝛼,𝑃) ∈ 𝑇𝐷𝛼,𝑃 is the gradient at 𝐷𝛼,𝑃 of the function  ∋ 𝐷 → 𝐸(𝛼, 𝐷) ∈ ℝ for
the Riemannian metric induced with the Frobenius inner product, and Λ𝛼,𝑃 ∈  the Lagrange
multiplier of the constraint 𝑔(𝐷𝛼,𝑃) = 𝑃 − 𝑃0.
Denoting by

𝐶nl ∶=
1

2
max
𝐷∈ |Tr((𝐽(𝐷) − 𝐾(𝐷))𝐷)|,

we have

HF𝛼 (𝐷𝛼,𝑃) ≤ HF𝛼 (𝐷𝑃) ≤ HF0 (𝐷𝑃) + 𝛼𝐶nl ≤ HF0 (𝐷0) + ‖ℎ‖‖𝑃 − 𝑃0‖ + 𝛼𝐶nl. (60)

To obtain a lower bound of HF𝛼 (𝐷𝛼,𝑃), we use that
∀𝐷 ∈ , HF0 (𝐷) = Tr(ℎ𝐷) ≥ HF0 (𝐷0) + 𝛾2‖𝐷 − 𝐷0‖2.

This inequality is classical, but we recall its proof for the sake of completeness. For𝑀 ∈ ℝ𝐿×𝐿sym we
set

𝑀−− ∶= 𝐷0𝑀𝐷0, 𝑀−+ ∶= 𝐷0𝑀(1 − 𝐷0), 𝑀+− ∶= (1 − 𝐷0)𝑀𝐷0, 𝑀++ ∶= (1 − 𝐷0)𝑀(1 − 𝐷0).

Let 𝐷 ∈  and 𝑄 ∶= 𝐷 − 𝐷0. Since 𝐷0 = 𝟙(−∞,0](ℎ), we have

ℎ−+ = ℎ+− = 0, ℎ−− ≤ 𝜀𝑁, ℎ++ ≥ 𝜀𝑁+1, 𝑄++ ≥ 0, 𝑄−− ≤ 0,
and we deduce from the fact that both 𝐷 and 𝐷0 are rank-𝑁 orthogonal projectors that

𝑄2 = 𝑄++ − 𝑄−− and Tr(𝑄++) + Tr(𝑄−−) = 0.

Combining all the above properties, we obtain

∀𝐷 ∈ , 𝑎(𝐷) = Tr(ℎ𝐷)

= Tr(ℎ𝐷0) + Tr(ℎ(𝐷 − 𝐷0))

= 𝑎(𝐷0) + Tr
(
ℎ++𝑄++

)
+ Tr(ℎ−−𝑄−−)

≥ 𝑎(𝐷0) + 𝜀𝑁+1Tr(𝑄++) + 𝜀𝑁Tr(𝑄−−)
= 𝑎(𝐷0) +

𝛾

2
Tr

(
𝑄++ − 𝑄−−

)
= 𝑎(𝐷0) +

𝛾

2
‖𝐷 − 𝐷0‖2. (61)
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1392 CANCÈS et al.

As HF0 (𝐷) = 𝑎(𝐷), this implies that
HF𝛼 (𝐷𝛼,𝑃) ≥ HF0 (𝐷𝛼,𝑃) − 𝛼𝐶nl ≥ HF0 (𝐷0) + 𝛾2‖𝐷𝛼,𝑃 − 𝐷0‖2 − 𝛼𝐶nl.

Combining this result with (60), we obtain

‖𝐷𝛼,𝑃 − 𝐷0‖2 ≤ 2𝛾−1(2𝛼𝐶nl + ‖ℎ‖𝑃 − 𝑃0‖).
This implies in particular that for |𝛼| and ‖𝑃 − 𝑃0‖ small enough, any minimizer 𝐷𝛼,𝑃 of (58) is
close to 𝐷0. To conclude, it suffices to prove that for |𝛼| and ‖𝑃 − 𝑃0‖ small enough, (59) has a
unique critical point close to 𝐷0. This leads us to introduce the function

Θ ∶ (ℝ × ) × ( × ) ∋ ((𝛼, 𝑃), (𝐷, Λ)) ↦ Θ((𝛼, 𝑃), (𝐷, Λ)) ∈ 𝑇𝐷 × 
defined by

Θ((𝛼, 𝑃), (𝐷, Λ)) ∶= (∇𝐸(𝛼, 𝐷) + (𝑑𝐷𝑔)∗Λ, 𝑔(𝐷) − (𝑃 − 𝑃0)).

As 𝐷0 is the unique minimizer of 𝐷 ↦ 𝐸(0, 𝐷) on  and 𝑃0 = Bd(𝐷0), we have ∇𝐸(0, 𝐷0) = 0
and 𝑔(𝐷0) = 0, so that

Θ((0, 𝑃0), (𝐷0, 0)) = (0, 0).

In addition, denoting by

𝐴 ∶= 𝐷2𝑎(𝐷0) ∶ 𝑇𝐷0→ 𝑇𝐷0 (62)

the Hessian at 𝐷0 of the function 𝑎 for the Riemannian metric induced by the Frobienius inner
product, we have

∀(𝑄,Λ) ∈ 𝑇𝐷0 ×  , [
𝑑𝐷,ΛΘ((0, 𝑃0), (𝐷0, 0))

](𝑄
Λ

)
=

(
𝐴 𝐵∗

𝐵 0

)(
𝑄

Λ

)
,

where we recall that 𝐵 ∶= 𝑑𝐷0𝑔. In view of (61), we have

∀𝑄 ∈ 𝑇𝐷0, ⟨𝑄,𝐴𝑄⟩ ≥ 𝛾‖𝑄‖2. (63)

Since𝐴 is coercive and𝐵 ∶ 𝑇𝐷0→  is surjective, it follows from the Schur complement formula
that the map

𝑑𝐷,ΛΘ((0, 𝑃0), (𝐷0, 0)) ∶ 𝑇𝐷0 ×  → 𝑇𝐷0 × 
is invertible. It follows from the real-analytic implicit function theorem on manifolds that there
exist 𝛼LL > 0 and 𝜂 > 0, such that for all (𝛼, 𝑃) ∈ (−𝛼LL, 𝛼LL) × 𝜔𝜂, (59) has a unique solution
(𝐷𝛼,𝑃, Λ𝛼,𝑃) with 𝐷𝛼,𝑃 ∈ 𝜔𝜂 and the map (𝛼, 𝑃) ↦ 𝐷𝛼,𝑃 is real-analytic on (−𝛼LL, 𝛼LL) × 𝜔𝜂. □

7.6.2 High-level map in the perturbative regime

The following result states that the high-level map (𝛼, 𝐷) ↦ 𝐹HL𝛼 (𝐷) is well-defined and
real-analytic on a neighborhood of (0, 𝐷0).
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ANALYSIS OF DENSITY MATRIX EMBEDDING THEORY AROUND THE NON-INTERACTING LIMIT 1393

Lemma 13 (High-level map in the perturbative regime).Under Assumptions (A1)-(A2), there exists
𝛼HL > 0 and 0 < 𝜂HL <

1

2
such that

1. Ω𝜂HL ⊂ Dom(𝐹
HL
𝛼 ) for all 𝛼 ∈ (−𝛼HL, 𝛼HL);

2. the function (𝛼, 𝐷) ↦ 𝐹HL𝛼 (𝐷) is real-analytic on (−𝛼HL, 𝛼HL) × Ω𝜂HL .

Proof. For 𝐷 ∈  compatible with the fragment decomposition, we set

[ℎ̃𝑥(𝐷)]𝜅𝜆 ∶=
[
𝐶𝑥(𝐷)𝑇ℎ𝐶𝑥(𝐷)

]
𝜅𝜆
=

𝐿∑
𝜅′𝜆′=1

[𝐶𝑥(𝐷)]𝜅,𝜅′ [𝐶
𝑥(𝐷)]𝜆,𝜆′ℎ𝜅′𝜆′ , (64)

[𝑉𝑥(𝐷)]𝜅𝜆𝜈𝜉 ∶=

𝐿∑
𝜅′𝜆′𝜈′𝜉′=1

[𝐶𝑥(𝐷)]𝜅,𝜅′ [𝐶
𝑥(𝐷)]𝜆,𝜆′ [𝐶

𝑥(𝐷)]𝜈,𝜈′ [𝐶
𝑥(𝐷)]𝜉,𝜉′𝑉𝜅′𝜆′𝜈′𝜉′ , (65)

where 𝐶𝑥(𝐷) is defined in Lemma 7. Denoting by 𝑐𝜅, 𝑐
†
𝜅 , 1 ≤ 𝜅 ≤ 2𝐿𝑥 the generators of the CAR

algebra on Fock(ℝ2𝐿𝑥 ) associated with the canonical basis of ℝ2𝐿𝑥 , the high-level map can be
formally written as

𝐹HL𝛼 (𝐷) =

𝑁𝑓∑
𝑥=1

𝐿𝑥∑
𝜅,𝜆=1

𝑒𝐿′𝑥+𝜅TrFock(ℝ2𝑁𝑥 )

(
Γ𝛼,𝑥,𝐷,𝜇𝑐

†
𝜅𝑐𝜆

)
𝑒𝑇
𝐿′𝑥+𝜆

(formal), (66)

where Γ𝛼,𝑥,𝐷,𝜇 ∈ (Fock(ℝ2𝐿𝑥 )) is the ground-state (many-body) density matrix associated with
the grand-canonical impurity Hamiltonian

𝐻̃
imp
𝛼,𝑥,𝐷,𝜇 ∶=

2𝐿𝑥∑
𝜅,𝜆=1

[ℎ̃𝑥(𝐷)]𝜅𝜆𝑐
†
𝜅𝑐𝜆 + 𝛼

2𝐿𝑥∑
𝜅,𝜆,𝜈,𝜉=1

[𝑉𝑥(𝐷)]𝜅𝜆𝜈𝜉𝑐
†
𝜅𝑐
†
𝜆
𝑐𝜉𝑐𝜈 − 𝜇

𝐿𝑥∑
𝜅=1

𝑐†𝜅𝑐𝜅,

the parameter 𝜇 ∈ ℝ being chosen such that

𝑁𝑓∑
𝑥=1

𝐿𝑥∑
𝜅,𝜆=1

TrFock(ℝ2𝑁𝑥 )

(
Γ𝛼,𝑥,𝐷,𝜇𝑐

†
𝜅𝑐𝜆

)
= 𝑁.

The results established in the proof of Proposition 1 can be rephrased as follows: under
Assumptions (A1)–(A2),

1. the impurity Hamiltonian 𝐻̃imp0,𝑥,𝐷0,0 has a non-degenerate ground-state for each 𝑥 and that it
holds

𝑁𝑓∑
𝑥=1

𝐿𝑥∑
𝜅,𝜆=1

TrFock(ℝ2𝑁𝑥 )

(
Γ0,𝑥,𝐷0,0𝑐

†
𝜅𝑐𝜆

)
= 𝑁;

2. the function

ℝ ∋ 𝜇 ↦

𝑁𝑓∑
𝑥=1

𝐿𝑥∑
𝜅,𝜆=1

TrFock(ℝ2𝑁𝑥 )

(
Γ0,𝑥,𝐷0,𝜇𝑐

†
𝜅𝑐𝜆

)
∈ ℝ
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1394 CANCÈS et al.

is non-decreasing, real-analytic in the neighborhood of 𝜇 = 0, and its derivative at 𝜇 = 0 is
positive.

Since the maps

 ∋ 𝐷 ↦ [ℎ̃𝑥(𝐷]𝜅𝜆 ∈ ℝ and  ∋ 𝐷 ↦ [𝑉𝑥(𝐷)]𝜅𝜆𝜈𝜉 ∈ ℝ
are real-analytic in the neighborhood of 𝐷0, we deduce from Kato’s analytic perturbation theory
and the implicit function theorem that there exists 𝛼HL > 0, 𝜂HL > 0, and 𝜇HL > 0 such that

1. for each (𝛼, 𝐷, 𝜇) ∈ (−𝛼HL, 𝛼HL) × Ω𝜂𝐻𝐿 × (−𝜇HL, 𝜇HL), the impurityHamiltonian𝐻
imp
𝛼,𝑥,𝐷,𝜇 has

a non-degenerate ground-state for each 𝑥; we denote by Γ𝛼,𝑥,𝐷,𝜇(𝛼,𝑋) the corresponding ground-
state many-body density matrix;

2. for each (𝛼, 𝐷) ∈ (−𝛼HL, 𝛼HL) × Ω𝜂𝐻𝐿 , there exists a unique 𝜇(𝛼, 𝐷) ∈ (−𝜇HL, 𝜇HL) such that

𝑁𝑓∑
𝑥=1

𝐿𝑥∑
𝜅,𝜆=1

TrFock(ℝ2𝑁𝑥 )

(
Γ𝛼,𝑥,𝐷,𝜇(𝛼,𝐷)𝑐

†
𝜅𝑐𝜆

)
= 𝑁;

3. the maps (𝛼, 𝐷) ↦ 𝜇(𝛼, 𝐷), (𝛼, 𝐷) ↦ Γ𝛼,𝑥,𝐷,𝜇(𝛼,𝐷), and

(𝛼, 𝐷) ↦ 𝐹HL𝛼 (𝐷) ∶=
⎛⎜⎜⎝
𝑁𝑓∑
𝑥=1

𝐿𝑥∑
𝜅,𝜆=1

𝑒𝐿′𝑥+𝜅TrFock(ℝ2𝑁𝑥 )

(
Γ𝛼,𝑥,𝐷,𝜇(𝛼,𝐷)𝑐

†
𝜅𝑐𝜆

)
𝑒𝑇
𝐿′𝑥+𝜆

⎞⎟⎟⎠
are real-analytic on (−𝛼HL, 𝛼HL) × Ω𝜂HL .

This proves the two assertions of Lemma 13. □

7.6.3 Existence, uniqueness, and analyticity

We infer from Lemma 12 and Lemma 13 that there exist 𝛼DMET > 0 and 𝜂DMET > 0 such that the
function

(−𝛼DMET, 𝛼DMET) × 𝜔𝜂DMET ∋ (𝛼, 𝑃) ↦ Φ(𝛼, 𝑃) ∶= 𝐹
DMET
𝛼 (𝑃) − 𝑃 ∶= 𝐹HL𝛼 (𝐹

LL
𝛼 (𝑃)) − 𝑃 ∈ 

is well-defined and real-analytic, and we know from Proposition 1 that

Φ(0, 𝑃0) = 0.

To complete the proof of Theorem 4, we have to check that the function Φ satisfies all the
hypotheses of the implicit function theorem, namely that

𝑑𝑃Φ(0, 𝑃0) = (𝑑𝐷0𝐹
HL
0 ) (𝑑𝑃0𝐹

LL
0 ) − 𝐼 ∶  →  (67)

is invertible.
Let us first compute 𝑑𝑃0𝐹

LL
0 ∶  → 𝑇𝐷0. Differentiating the equality
∀𝑃 ∈ 𝜔𝜂, Θ((0, 𝑃), (𝐹LL0 (𝑃), Λ0,𝑃)) = (0, 0),
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ANALYSIS OF DENSITY MATRIX EMBEDDING THEORY AROUND THE NON-INTERACTING LIMIT 1395

we obtain that the derivatives at 𝑃0 of the functions𝜔𝜂 ∋ 𝑃 ↦ 𝐹LL0 (𝑃) ∈  and𝜔𝜂 ∋ 𝑃 ↦ 𝜆(𝑃) ∶=
Λ0,𝑃 ∈  are characterized by the relation

∀𝑌 ∈  , [𝑑𝑃Θ((0, 𝑃0), (𝐷0, 0))]𝑌
⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟

=(0,−𝑌)

+ [𝑑(𝐷,Λ)Θ((0, 𝑃0), (𝐷0, 0))]((𝑑𝑃0𝐹
LL
0 )𝑌, (𝑑𝑃0𝜆)𝑌)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
=(𝐴[(𝑑𝑃0𝐹

LL
0
)𝑌]+𝐵∗(𝑑𝑃0𝜆)𝑌),𝐵[(𝑑𝑃0𝐹

LL
0
)𝑌]

= 0,

from which we infer that

𝑑𝑃0𝐹
LL
0 = 𝐴−1𝐵∗(𝐵𝐴−1𝐵∗)−1. (68)

Let us now compute 𝑑𝐷0𝐹
HL
0 ∶ 𝑇𝐷0→  . We have

∀𝐷 ∈ Ω𝜂HL, 𝐹HL0 (𝐷) =

𝑁𝑓∑
𝑥=1

Π𝑥𝐶
𝑥(𝐷)𝟙(−∞,0]

(
𝐶𝑥(𝐷)𝑇(ℎ − 𝜇(0, 𝐷)Π𝑥)𝐶

𝑥(𝐷)
)
𝐶𝑥(𝐷)𝑇Π𝑥,

where the function

 ∋ 𝐷 ↦ 𝐶𝑥(𝐷) = (𝐷𝐸𝑥(𝐸𝑇𝑥𝐷𝐸𝑥)−1∕2
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

𝐶𝑥−(𝐷)

| (1 − 𝐷)𝐸𝑥(𝐸𝑇𝑥 (1 − 𝐷)𝐸𝑥)−1∕2
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝐶𝑥+(𝐷)

) ∈ ℝ𝐿×(2𝐿𝑥)

has been introduced in (28). Setting as previously 𝐶𝑥0 ∶= 𝐶
𝑥(𝐷0), and denoting by 𝑀(𝑄) ∶=

[𝑑𝐷0𝐶
𝑥](𝑄) and 𝓁(𝑄) ∶= [𝑑𝐷𝜇(0, 𝐷0)](𝑄), we get

𝑑𝐷0𝐹
HL(𝑄) =

𝑁𝑓∑
𝑥=1

Π𝑥

(
𝑀(𝑄)𝟙(−∞,0](𝔥

𝑥)𝐶𝑥0
𝑇
+ 𝐶𝑥0 𝟙(−∞,0](𝔥

𝑥)𝑀(𝑄)𝑇
)
Π𝑥

−

𝑁𝑓∑
𝑥=1

Π𝑥𝐶
𝑥
0𝔏
+
𝑥

(
𝑀(𝑄)𝑇ℎ𝐶𝑥0 + 𝐶

𝑥
0

𝑇
ℎ𝑀(𝑄) − 𝓁(𝑄)𝔭𝑥

)
𝐶𝑥0
𝑇
Π𝑥.

Using (49), we obtain

𝑀(𝑄)𝟙(−∞,0](𝔥
𝑥)𝐶𝑥0

𝑇
+ 𝐶𝑥0 𝟙(−∞,0](𝔥

𝑥)𝑀(𝑄)𝑇 = [𝑑𝐷0𝐶
𝑥
−(𝑄)][𝐶

𝑥
−(𝐷0)]

𝑇 + 𝐶𝑥−(𝐷0)[𝑑𝐷0𝐶
𝑥
−(𝑄)]

𝑇

= 𝑑𝐷0[𝐶
𝑥
−𝐶
𝑥
−
𝑇
](𝑄).

This implies that

Π𝑥

(
𝑀(𝑄)𝟙(−∞,0](𝔥

𝑥)𝐶𝑥0
𝑇
+ 𝐶𝑥0 𝟙(−∞,0](𝔥

𝑥)𝑀(𝑄)𝑇
)
Π𝑥 = 𝑑𝐷0[Π𝑥𝐶

𝑥
−𝐶
𝑥
−
𝑇
Π𝑥](𝑄).

Since

Π𝑥𝐶
𝑥
−(𝐷)𝐶

𝑥
−(𝐷)

𝑇
Π𝑥 = (𝐸𝑥𝐸

𝑇
𝑥 )(𝐷𝐸𝑥(𝐸

𝑇
𝑥𝐷𝐸𝑥)

−1∕2)((𝐸𝑇𝑥𝐷𝐸𝑥)
−1∕2𝐸𝑇𝑥𝐷)(𝐸𝑥𝐸

𝑇
𝑥 ) = Π𝑥𝐷Π𝑥,

we get 𝑑𝐷0[Π𝑥𝐶
𝑥
−𝐶
𝑥
−
𝑇
Π𝑥](𝑄) = Π𝑥𝑄Π𝑥 and therefore

𝑁𝑓∑
𝑥=1

Π𝑥

(
𝑀(𝑄)𝟙(−∞,0](𝔥

𝑥)𝐶𝑥0
𝑇
+ 𝐶𝑥0 𝟙(−∞,0](𝔥

𝑥)𝑀(𝑄)𝑇
)
Π𝑥 = Bd(𝑄) = 𝐵𝑄.
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1396 CANCÈS et al.

Next, observing that for all 𝑄 ∈ 𝑇𝐷0,
𝑑𝐷0𝐶

𝑥
−(𝑄) = 𝐷0𝐸𝑥𝑆−(𝑄) + 𝑄𝐸𝑥(𝐸

𝑇
𝑥𝐷0𝐸𝑥)

−1∕2,

𝑑𝐷0𝐶
𝑥
+(𝑄) = (1 − 𝐷0)𝐸𝑥𝑆+(𝑄) − 𝑄𝐸𝑥(𝐸

𝑇
𝑥 (1 − 𝐷0)𝐸𝑥)

−1∕2,

with 𝑄 ↦ 𝑆±(𝑄) ∈ ℝ𝐿𝑥×𝐿𝑥 linear and

𝑄 = 𝐷0𝑄(1 − 𝐷0) + (1 − 𝐷0)𝑄𝐷0, (69)

we obtain that

𝑀(𝑄)𝑇ℎ𝐶𝑥0 + 𝐶
𝑥
0

𝑇
ℎ𝑀(𝑄) =

(
∗ 𝑁(𝑄)𝑇

𝑁(𝑄) ∗

)
with

𝑁(𝑄) ∶ = (𝐸𝑇𝑥 (1 − 𝐷0)𝐸𝑥)
−1∕2𝐸𝑇𝑥 ((1 − 𝐷0)ℎ𝑄 − 𝑄ℎ𝐷0)𝐸𝑥(𝐸

𝑇
𝑥𝐷0𝐸𝑥)

−1∕2

= (𝐸𝑇𝑥 (1 − 𝐷0)𝐸𝑥)
−1∕2𝐸𝑇𝑥 (1 − 𝐷0)[ℎ, 𝑄]𝐷0𝐸𝑥(𝐸

𝑇
𝑥𝐷0𝐸𝑥)

−1∕2.

We thus have

𝑀(𝑄)𝑇ℎ𝐶𝑥0 + 𝐶
𝑥
0

𝑇
ℎ𝑀(𝑄) =

(
∗ 0

0 ∗

)
− 𝐶𝑥0

𝑇
[𝐷0, [ℎ, 𝑄]]𝐶

𝑥
0 ,

which implies, using (55),

𝔏+𝑥

(
𝑀(𝑄)𝑇ℎ𝐶𝑥0 + 𝐶

𝑥
0

𝑇
ℎ𝑀(𝑄) − 𝓁(𝑄)𝔭𝑥

)
= 𝔏+𝑥

(
−𝐶𝑥0

𝑇
[𝐷0, [ℎ, 𝑄]]𝐶

𝑥
0 − 𝓁(𝑄)𝔭

𝑥
)
.

We therefore obtain

𝑑𝐷0𝐹
HL
0 = 𝐵 + 𝐿,

with 𝐿 ∶ 𝑇𝐷0→  given by

∀𝑄 ∈ 𝑇𝐷0, 𝐿𝑄 ∶=

𝑁𝑓∑
𝑥=1

Π𝑥𝐶
𝑥
0𝔏
+
𝑥

(
𝐶𝑥0
𝑇
[𝐷0, [ℎ, 𝑄]]𝐶

𝑥
0 + 𝓁(𝑄)𝔭

𝑥
)
𝐶𝑥0
𝑇
Π𝑥. (70)

Combining with (68), and setting

𝑅 ∶= 𝐿𝐴−1𝐵∗ ∶  →  , (71)

we obtain

𝑑𝑃Φ(0, 𝑃0) = (𝐵 + 𝐿)(𝐴
−1𝐵∗(𝐵𝐴−1𝐵∗)−1) − 𝐼 = 𝑅(𝐵𝐴−1𝐵∗)−1.

To conclude, we just have to show that the map 𝑅 rigorously defined by (71) actually coincides
with the 4-point response function formally defined by (26) (the latter is bijective by Assumption
(A4)). We have for all 𝑄 ∈ 𝑇𝐷0 and 𝑌 ∈  ,

⟨𝑄, 𝐵∗𝑌⟩𝑇𝐷0 = ⟨𝐵𝑄,𝑌⟩ = Tr((𝐵𝑄)𝑌)
= Tr

⎛⎜⎜⎝
⎛⎜⎜⎝
𝑁𝑓∑
𝑥=1

Π𝑥𝑄Π𝑥

⎞⎟⎟⎠𝑌
⎞⎟⎟⎠ =

𝑁𝑓∑
𝑥=1

Tr(Π𝑥𝑄Π𝑥𝑌) =

𝑁𝑓∑
𝑥=1

Tr(𝑄Π𝑥𝑌Π𝑥)
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ANALYSIS OF DENSITY MATRIX EMBEDDING THEORY AROUND THE NON-INTERACTING LIMIT 1397

= Tr
⎛⎜⎜⎝𝑄

⎛⎜⎜⎝
𝑁𝑓∑
𝑥=1

Π𝑥𝑌Π𝑥

⎞⎟⎟⎠
⎞⎟⎟⎠ = Tr(𝑄𝑌) = Tr(𝑄(𝐷0𝑌(1 − 𝐷0) + (1 − 𝐷0)𝑌𝐷0)⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

∈𝑇𝐷0
)

= ⟨𝑄,𝐷0𝑌(1 − 𝐷0) + (1 − 𝐷0)𝑌𝐷0⟩𝑇𝐷0.
Therefore

𝑌 ∈  , 𝐵∗𝑌 = 𝐷0𝑌(1 − 𝐷0) + (1 − 𝐷0)𝑌𝐷0. (72)

By a classical calculation (see e.g. [4, Section 2.2]), we have

∀𝑄 ∈  , 𝐴𝑄 = −[𝐷0, [ℎ, 𝑄]]. (73)

It is also easily checked that

𝐶𝑥0
𝑇
(𝐵∗𝑌)𝐶𝑥0 = 𝐶

𝑥
0

𝑇
(𝐷0𝑌(1 − 𝐷0) + (1 − 𝐷0)𝑌𝐷0)𝐶

𝑥
0 =

(
∗ 0

0 ∗

)
+ 𝐶𝑥0

𝑇
𝑌𝐶𝑥0 . (74)

Putting together (55) and (70)–(74) yields

𝑅[𝑌] =

𝑁𝑓∑
𝑥=1

Π𝑥𝐶
𝑥
0𝔏
+
𝑥

(
𝐶𝑥0
𝑇(
𝑌 − 𝓁(𝑌)Π𝑥

)
𝐶𝑥0

)
𝐶𝑥0
𝑇
Π𝑥, (75)

where

𝓁(𝑌) ∶= 𝓁(𝐴−1𝐵∗𝑌) = Tr(𝐺𝑌) with 𝐺 ∶=

𝑁𝑓∑
𝑥=1

𝐶𝑥0𝔏
+
𝑥 (𝔭

𝑥)𝐶𝑥0
𝑇
∈ ℝ𝐿×𝐿sym. (76)

Using the notation introduced in (26), we have

𝐹HLℎ+𝑌(𝐷0) =

𝑁𝑓∑
𝑥=1

Π𝑥𝐶
𝑥
0 𝟙(−∞,0]

(
𝐶𝑥0
𝑇
(ℎ + 𝑌 − 𝜇𝑌Π𝑥)𝐶

𝑥
0

)
𝐶𝑥0
𝑇
Π𝑥,

where 𝜇𝑌 ∈ ℝ is chosen such that Tr(𝐹HLℎ+𝑌(𝐷0)) = 𝑁. Using similar perturbation argument as
in Section 7.6.2, one can check that𝐹HLℎ+𝑌(𝐷0) is well-defined for𝑌 ∈  small enough, and that

𝐹HLℎ+𝑌(𝐷0) =

𝑁𝑓∑
𝑥=1

Π𝑥𝐶
𝑥
0 𝟙(−∞,0]

(
𝔥𝑥 + (𝐶𝑥0

𝑇
(𝑌 − 𝜇𝑌Π𝑥)𝐶

𝑥
0

)
𝐶𝑥0
𝑇
Π𝑥

= 𝐹HLℎ(𝐷0) +

𝑁𝑓∑
𝑥=1

Π𝑥𝐶
𝑥
0𝔏
+
𝑥

(
𝐶𝑥0
𝑇
(𝑌 + 𝜇𝑌Π𝑥)𝐶

𝑥
0

)
𝐶𝑥0
𝑇
Π𝑥 + 𝑜(‖𝑌‖),

with 𝜇𝑌 = 𝓁(𝑌) by particle conservation. This shows that the map 𝑅 defined by (75)-(76) actually
coincides with the 4-point response function in Assumption (A4).
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1398 CANCÈS et al.

7.6.4 About Assumptions (A3) and (A4) in the one-site-per-fragment setting

Let us show that when 𝑁𝑓 = 𝐿, we have under Assumptions (A1)–(A2),

(A3) are satisfied ⇒ 𝐷0 is an irreducible matrix ⟺ (A4) is satisfied.

Throughout this section, we assume that (A1)–(A2) are fulfilled.
Let us first show that (A3) implies that 𝐷0 is irreducible. We deduce from the second assertion

of Lemma 11 that (A3) is satisfied if and only if the only matrices inℝ𝐿×𝐿sym which commute with𝐷0
and all theΠ𝑥’s are themultiples of the identitymatrix.When𝑁𝑓 = 𝐿, thematrices inℝ𝐿×𝐿sym which
commute with all the Π𝑥 are the diagonal matrices. The diagonal matrices Λ = diag(𝜆1, … , 𝜆𝐿)
which commute with 𝐷0 are the ones for which

∀1 ≤ 𝑖, 𝑗 ≤ 𝐿, 𝜆𝑖[𝐷0]𝑖𝑗 = [𝐷0]𝑖𝑗𝜆𝑗.

If 𝐷0 was reducible, then one could find a permutation matrix 𝑃 ∈ 𝑂(𝐿) such that 𝑃𝐷0𝑃−1 is a
2 × 2 block-diagonal matrix. The matrix 𝑃diag(1, … , 1, 2, … , 2)𝑃−1, where the numbers of entries
1 and 2match the sizes of the blocks of 𝑃𝐷0𝑃−1, would then be a diagonalmatrix which commutes
with𝐷0 and is not proportional to the identitymatrix.We reach a contradiction. Thus, (A3) implies
that 𝐷0 is irreducible.
Let us now show the equivalence

𝐷0 is an irreducible matrix ⟺ (A4) is satisfied.

We have for all 𝑌 ∈  ,
‖𝑅[𝑌]‖2 = Tr((𝑅[𝑌])(𝑅[𝑌]))

=

𝑁𝑓∑
𝑥,𝑥′=1

Tr
(
Π𝑥𝐶

𝑥
0𝔏
+
𝑥

(
𝐶𝑥0
𝑇(
𝑌 − 𝓁(𝑌)Π𝑥

)
𝐶𝑥0

)
𝐶𝑥0
𝑇
Π𝑥

× Π𝑥′𝐶
𝑥′

0 𝔏
+
𝑥′

(
𝐶𝑥

′

0

𝑇(
𝑌 − 𝓁(𝑌)Π𝑥′

)
𝐶𝑥

′

0

)
𝐶𝑥

′

0

𝑇
Π𝑥′

)

=

𝑁𝑓∑
𝑥=1

Tr
(
Π𝑥𝐶

𝑥
0𝔏
+
𝑥

(
𝐶𝑥0
𝑇(
𝑌 − 𝓁(𝑌)Π𝑥

)
𝐶𝑥0

)
𝐶𝑥0
𝑇
Π𝑥𝐶

𝑥
0𝔏
+
𝑥

(
𝐶𝑥0
𝑇(
𝑌 − 𝓁(𝑌)Π𝑥

)
𝐶𝑥0

)
𝐶𝑥0
𝑇
Π𝑥

)

=

𝑁𝑓∑
𝑥=1

Tr
(
𝔭𝑥𝔏

+
𝑥

(
𝐶𝑥0
𝑇(
𝑌 − 𝓁(𝑌)Π𝑥

)
𝐶𝑥0

)
𝔭𝑥𝔏

+
𝑥

(
𝐶𝑥0
𝑇(
𝑌 − 𝓁(𝑌)Π𝑥

)
𝐶𝑥0

))

=

𝑁𝑓∑
𝑥=1

‖𝔭𝑥𝔏+𝑥(𝐶𝑥0 𝑇(𝑌 − 𝓁(𝑌)Π𝑥)𝐶𝑥0)𝔭𝑥‖2.
Using (50) and (55)–(56), we obtain after straightforward algebraic manipulations that

(𝑅[𝑌] = 0) ⟺
(
∀1 ≤ 𝑥 ≤ 𝑁𝑓, 𝔭𝑥𝔏+𝑥

(
𝐶𝑥0
𝑇(
𝑌 − 𝓁(𝑌)Π𝑥

)
𝐶𝑥0

)
𝔭𝑥 = 0

)
⟺

(
∀1 ≤ 𝑥 ≤ 𝑁𝑓, (1 − 𝐷0,𝑥)1∕2𝑁̃𝑥(𝑌)𝐷1∕20,𝑥 + 𝐷1∕20,𝑥 𝑁̃𝑥(𝑌)𝑇(1 − 𝐷0,𝑥)1∕2 = 0

)
,
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ANALYSIS OF DENSITY MATRIX EMBEDDING THEORY AROUND THE NON-INTERACTING LIMIT 1399

with

𝑁̃𝑥(𝑌) ∶= 𝑁
(
(1 − 𝐷0,𝑥)

−1∕2𝐸𝑇𝑥 (1 − 𝐷0)𝑌𝐷0𝐸𝑥𝐷
−1∕2
0,𝑥 − 𝓁(𝑌)𝐷

1∕2
0,𝑥 (1 − 𝐷0,𝑥)

1∕2
)
.

In the case when𝑁𝑓 = 𝐿, we have 𝐿𝑥 = 1 for all 𝑥, and thus, 𝐷0,𝑥 and 𝑁̃(𝑌) are scalar quantities.
We then have in this special case by assumption (A2),

(𝑅[𝑌] = 0) ⟺
(
∀1 ≤ 𝑥 ≤ 𝑁𝑓, 𝑁𝑥(𝑌) = 0) ⟺ (

𝑀𝑦 = 𝓁(𝑌)𝑧
)
,

where 𝑦 = (𝑌11, … , 𝑌𝐿𝐿)𝑇 ∈ ℝ𝐿, 𝑧 = (𝐷0,1(1 − 𝐷0,1), … , 𝐷0,𝐿(1 − 𝐷0,𝐿))𝑇 ∈ ℝ𝐿, and 𝑀 ∈ ℝ𝐿×𝐿sym is
the matrix with entries

𝑀𝑥𝑥 = [𝐷0]𝑥𝑥 − [𝐷0]
2
𝑥𝑥, 𝑀𝑥𝑥′ = −[𝐷0]

2
𝑥𝑥′

if 𝑥 ≠ 𝑥′.
Still by Assumption (A2),

∑𝑁𝑓
𝑥=1 𝑧𝑥 > 0, and therefore using the fact that 𝐷0 is an orthogonal

projector (hence that
∑𝑁𝑓
𝑥=1[𝐷0]

2
𝑥,𝑥′
= [𝐷20]𝑥𝑥 = [𝐷0]𝑥𝑥), we get

(𝑀𝑦 = 𝓁(𝑌)𝑧) ⇒
⎛⎜⎜⎝𝓁(𝑌) =

∑𝑁𝑓
𝑥,𝑥′=1

𝑀𝑥,𝑥′𝑦𝑥′∑𝑁𝑓
𝑥=1 𝑧𝑥

=

∑𝑁𝑓
𝑥=1[𝐷0]𝑥,𝑥𝑦𝑥 −

∑𝑁𝑓
𝑥,𝑥′=1

[𝐷0]
2
𝑥,𝑥′
𝑦𝑥′∑𝑁𝑓

𝑥=1 𝑧𝑥

= 0
⎞⎟⎟⎠.

Therefore,

(𝑅[𝑌] = 0) ⟺ (𝑀𝑦 = 0).

The matrix𝑀 is hermitian, diagonal dominant with positive diagonal elements and non-positive
off-diagonal elements, and such that

∀1 ≤ 𝑥 ≤ 𝑁𝑓, 𝑀𝑥𝑥 = −
∑
𝑥′≠𝑥

𝑀𝑥𝑥′ .

Therefore the kernel of𝑀 is reduced toℝ(1,… , 1)𝑇 if and only if𝑀 is irreducible. Besides, we see
from the expressions of the coefficients of𝑀 andAssumption (A2) that𝑀 is irreducible if and only
if𝐷0 is irreducible. We conclude that 𝑅 is injective, hence bijective, if and only if𝐷0 is irreducible.

7.7 Proof of Theorem 5

7.7.1 Perturbation expansion in the Fock space

This calculation is classical in the physics and chemistry literature, but we report it here for the
sake of completeness. Consider a family of Hamiltonians (𝐻̂𝛼)𝛼∈ℝ of the form

𝐻̂𝛼 ∶= 𝐻̂0 + 𝛼(𝑊1 +𝑊2)

on the real Fock space Fock(ℝ𝑁𝑏) where

𝐻̂0 ∶=

𝑁𝑏∑
𝑚,𝑛=1

[ℎ0]𝑚𝑛𝑐
†
𝑚𝑐𝑛 and 𝑊1 ∶=

𝑁𝑏∑
𝑚,𝑛=1

[𝑊1]𝑚𝑛𝑐
†
𝑚𝑐𝑛
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1400 CANCÈS et al.

are one-body Hamiltonians and

𝑊2 ∶=
1

2

𝑁𝑏∑
𝑚,𝑛,𝑝,𝑞,=1

[𝑊2]𝑚𝑛𝑝𝑞𝑐
†
𝑚𝑐
†
𝑛𝑐𝑞𝑐𝑝

is a two-body Hamiltonian.
Let us provisionally assume that ℎ0 is diagonal, and more precisely that

ℎ0 = diag(𝜀01, … , 𝜀
0
𝑁𝑏
) with 𝜀01 ≤⋯ ≤ 𝜀0 < 0 < 𝜀0+1 ≤⋯𝜀0𝑁𝑏 .

This amounts to working in a molecular orbital basis set of the unperturbed one-body Hamilto-
nian ℎ0 and assuming that the Fermi level 𝜖F for having  particles in the ground state can be
chosen equal to zero. The ground state Ψ0 of 𝐻̃0 in the -particle sector then is unique and so is
the one of 𝐻̃𝛼 for 𝛼 small by perturbation theory. We have

Ψ0 =
1√ ! 𝑐

†

 ⋯𝑐
†
1|0⟩, 𝐸0 ∶= ⟨Ψ0|𝐻̂0|Ψ0⟩ = ∑

𝑖=1

𝜀0
𝑖
.

Denoting by 𝑑(𝛼) the ground-state one-body reduced density matrix of 𝐻̂𝛼, the map 𝛼 ↦ 𝑑(𝛼) is
real-analytic in the neighborhood of 0 and

𝑑(𝛼) = 𝑑0 + 𝛼𝑑1 + 𝑂(𝛼
2) with 𝑑0 ∶=

(
𝐼 0

0 0

)
.

In addition, we have

[𝑑1]𝑚𝑛 = ⟨Ψ1|𝑐†𝑚𝑐𝑛|Ψ0⟩ + ⟨Ψ0|𝑐†𝑚𝑐𝑛|Ψ1⟩,
where Ψ1 is the first-order perturbation of the ground-state wave-function Ψ0, solution to

(𝐻̂0 − 𝐸0)Ψ1 = −ΠΨ⟂
0

(
(𝑊1 +𝑊2)Ψ0

)
, Ψ1 ∈ Ψ

⟂
0 .

For 1 ≤ 𝑖1 < ⋯ < 𝑖𝑟 ≤  (occupied orbitals) and 𝑚 + 1 ≤ 𝑎1 < ⋯ < 𝑎𝑟 ≤ 𝑁𝑏 (virtual orbitals),
we set

Φ00 ∶= Ψ0 and Φ
𝑎1⋯𝑎𝑟
𝑖1⋯𝑖𝑟

= 𝑐†𝑎𝑟 ⋯ 𝑐
†
𝑎1
𝑐𝑖1 ⋯ 𝑐𝑖𝑟Φ

0
0.

The Φ𝑎1⋯𝑎𝑟
𝑖1⋯𝑖𝑟

’s (0 ≤ 𝑟 ≤ min( , 𝑁𝑏 − ), 1 ≤ 𝑖1 < ⋯ < 𝑖𝑟 ≤  , 𝑎1 < ⋯ < 𝑎𝑟 ≤ 𝑁𝑏, form an
orthonormal basis of eigenfunctions of the restriction of 𝐻̂0 to the -particle sector and it holds

𝐻̂0Φ
𝑎1⋯𝑎𝑟
𝑖1⋯𝑖𝑟

= 𝐸
𝑎1⋯𝑎𝑟
𝑖1⋯𝑖𝑟

Φ
𝑎1⋯𝑎𝑟
𝑖1⋯𝑖𝑟

with 𝐸
𝑎1⋯𝑎𝑟
𝑖1⋯𝑖𝑟

= 𝐸0 +

𝑟∑
𝑠=1

𝜀𝑎𝑠 −

𝑟∑
𝑠=1

𝜀𝑖𝑠 .

We thus obtain the sum-over-state formula

Ψ1 = −
∑

1≤𝑟≤min( ,𝑁𝑏− )

∑
1≤𝑖1<⋯<𝑖𝑟≤

∑
+1≤𝑎1<⋯<𝑎𝑟≤𝑁𝑏

⟨Φ𝑎1⋯𝑎𝑟
𝑖1⋯𝑖𝑟

|𝑊1 +𝑊2|Φ00⟩
𝐸
𝑎1⋯𝑎𝑟
𝑖1⋯𝑖𝑟

− 𝐸0
Φ
𝑎1⋯𝑎𝑟
𝑖1⋯𝑖𝑟

,
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ANALYSIS OF DENSITY MATRIX EMBEDDING THEORY AROUND THE NON-INTERACTING LIMIT 1401

yielding

[𝑑1]𝑚𝑛 = −
∑

1≤𝑟≤min( ,𝑁𝑏− )

∑
1≤𝑖1<⋯<𝑖𝑟≤

∑
+1≤𝑎1<⋯<𝑎𝑟≤𝑁𝑏

⟨Φ𝑎1⋯𝑎𝑟
𝑖1⋯𝑖𝑟

|𝑊1 +𝑊2|Φ00⟩
𝐸
𝑎1⋯𝑎𝑟
𝑖1⋯𝑖𝑟

− 𝐸0

×
(⟨Φ𝑎1⋯𝑎𝑟

𝑖1⋯𝑖𝑟
|𝑐†𝑚𝑐𝑛|Φ00⟩ + ⟨Φ00|𝑐†𝑚𝑐𝑛|Φ𝑎1⋯𝑎𝑟𝑖1⋯𝑖𝑟

⟩).
Since ⟨Φ𝑎1⋯𝑎𝑟

𝑖1⋯𝑖𝑟
|𝑎†𝑚𝑎𝑛|Φ00⟩ = 0 if 𝑟 ≥ 2, and⟨Φ𝑎
𝑖
|𝑐†𝑚𝑐𝑛|Φ00⟩ = 𝛿𝑛,𝑖𝛿𝑚,𝑎,⟨Φ𝑎

𝑖
|𝑐†𝑚𝑐†𝑛𝑐𝑞𝑐𝑝|Φ00⟩ = −𝛿𝑚,𝑞𝛿𝑛,𝑖𝛿𝑝,𝑎𝛿𝑞≤ + 𝛿𝑚,𝑝𝛿𝑛,𝑖𝛿𝑞,𝑎𝛿𝑝≤ + 𝛿𝑚,𝑖𝛿𝑛,𝑞𝛿𝑝,𝑎𝛿𝑞≤

− 𝛿𝑚,𝑖𝛿𝑛,𝑝𝛿𝑞,𝑎𝛿𝑝≤ ,
this expression reduces to

[𝑑1]𝑚𝑛 = −

𝑁∑
𝑖=1

𝑁𝑏∑
𝑎=+1

⟨Φ𝑎
𝑖
|𝑊1 +𝑊2|Φ00⟩
𝜀0𝑎 − 𝜀

0
𝑖

(𝛿𝑛=𝑖𝛿𝑚=𝑎 + 𝛿𝑚=𝑖𝛿𝑛=𝑎).

We obtain that 𝑑1 is of the form

𝑑1 =

(
0 𝑑+−1

𝑑+−1
𝑇

0

)
with ∀1 ≤ 𝑖 ≤  < + 1 ≤ 𝑎 ≤ 𝑁𝑏, [𝑑1]𝑎𝑖 =

⟨Φ𝑎
𝑖
|𝑊1 +𝑊2|Φ00⟩
𝜀0𝑎 − 𝜀

0
𝑖

.

Finally, we have

[𝑑1]𝑎𝑖 =

𝑁𝑏∑
𝑚,𝑛=1

[𝑊1]𝑚𝑛
⟨Φ𝑎
𝑖
|𝑐†𝑚𝑐𝑛|Φ00⟩
𝜀0𝑎 − 𝜀

0
𝑖

+

𝑁𝑏∑
𝑚,𝑛,𝑝,𝑞=1

[𝑊2]𝑚𝑛𝑝𝑞
⟨Φ𝑎
𝑖
|𝑐†𝑚𝑐†𝑛𝑐𝑞𝑐𝑝|Φ00⟩
𝜀0𝑎 − 𝜀

0
𝑖

=
[𝑊1 + 𝐽𝑊2(𝑑0) − 𝐾𝑊2(𝑑0)]𝑎𝑖

𝜀0𝑎 − 𝜀
0
𝑖

,

where the direct and exchange operators are respectively given by

[𝐽𝑊2(𝑑)]𝑚𝑛 ∶=

𝑁𝑏∑
𝑝,𝑞=1

[𝑊2]𝑛𝑝𝑚𝑞𝑑𝑝𝑞 and [𝐾𝑊2(𝑑)]𝑚𝑛 ∶=

𝑁𝑏∑
𝑝,𝑞=1

[𝑊2]𝑛𝑝𝑞𝑚𝑑𝑝𝑞.

Introducing the linear response operator 𝔏+
ℎ0
such that

𝟙(−∞,𝜖F](ℎ0 +𝑊) = 𝟙(−∞,𝜖F](ℎ0 +𝑊)
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

=𝑑0

−𝔏+
ℎ0
𝑊 + 𝑂(‖𝑊‖),

we finally obtain

𝑑1 = −𝔏
+
ℎ0

(
𝑊1 + 𝐽𝑊2(𝑑0) − 𝐾𝑊2(𝑑0)

)
, (77)

this formula remaining valid in the general case when ℎ0 is not a priori diagonal and 𝜖F not a
priori equal to zero.

 10970312, 2025, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22244 by D

E
SY

 - Z
entralbibliothek, W

iley O
nline L

ibrary on [11/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1402 CANCÈS et al.

7.7.2 Perturbation expansion of the DMET ground-state

Under Assumption (A1), the HF problem

argmin
𝐷∈

HF𝛼 (𝐷)

has a unique minimizer 𝐷HF(𝛼) for 𝛼 small enough and the map 𝛼 ↦ 𝐷HF(𝛼) is real-analytic in
the neighborhood of 0. This results from a straightforward application of nonlinear perturbation
theory, which we do not detail here for the sake of brevity. We set 𝑃HF(𝛼) ∶= Bd(𝐷HF(𝛼)), and

𝐷exact1 ∶=
𝑑𝐷exact

𝑑𝛼
(0), 𝐷HF1 ∶=

𝑑𝐷HF

𝑑𝛼
(0), 𝐷DMET1 ∶=

𝑑𝐷DMET

𝑑𝛼
(0),

𝑃exact1 ∶=
𝑑𝑃exact

𝑑𝛼
(0), 𝑃HF1 ∶=

𝑑𝑃HF

𝑑𝛼
(0), 𝑃DMET1 ∶=

𝑑𝑃DMET

𝑑𝛼
(0).

We are going to prove that the above first three matrices on the one hand, and the last three ones
on the other hand are equal in 𝑇𝐷0 and  respectively.
First, we deduce from (77) applied with 𝑁𝑏 = 𝐿, 𝜖F = 0, ℎ0 = ℎ,𝑊1 = 0,𝑊2 = 𝑣, that

𝐷exact1 = −𝔏+
ℎ
(𝐽(𝐷0) − 𝐾(𝐷0)),

where 𝐽 and 𝐾 are the direct and exchange operators for the two-body interaction potential 𝑉
introduced in (21).
Next, by differentiating the self-consistent equation

𝐷HF(𝛼) = 𝟙(−∞,0]
(
ℎMF(𝛼, 𝐷HF(𝛼))

)
,

where

ℎMF(𝛼, 𝐷) = ℎ + 𝛼(𝐽(𝐷) − 𝐾(𝐷))

is the Fock Hamiltonian for the interaction parameter 𝛼, we get

𝐷HF1 = −𝔏+
ℎ
(𝐽(𝐷0) − 𝐾(𝐷0)).

Hence

𝐷HF1 = 𝐷exact1 and 𝑃HF1 = Bd(𝐷HF1 ) = Bd(𝐷
exact
1 ) = 𝑃exact1 .

Let us now show that 𝑃DMET1 = 𝑃HF1 . For convenience, we will use the following notation

𝐹LL(𝛼, 𝑃) ∶= 𝐹LL𝛼 (𝑃), 𝐹HL(𝛼, 𝐷) = 𝐹HL𝛼 (𝐷),

𝐹HLHF(𝛼, 𝐷) ∶=

𝑁𝑓∑
𝑥=1

Π𝑥𝐶
𝑥(𝐷)𝟙(−∞,0]

(
𝐶𝑥(𝐷)𝑇

(
ℎMF(𝛼, 𝐷) − 𝜇HF(𝛼, 𝐷)Π𝑥

)
𝐶𝑥(𝐷)

)
𝐶𝑥(𝐷)𝑇Π𝑥,

where 𝜇HF(𝛼, 𝐷) ∈ ℝ is the Lagrange parameter of the charge conservation constraint. The map
𝐹HLHF(𝛼, 𝐷) is the high-level HF map for the interacting parameter 𝛼, introduced in Remark 2 for
𝛼 = 1.

 10970312, 2025, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22244 by D

E
SY

 - Z
entralbibliothek, W

iley O
nline L

ibrary on [11/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ANALYSIS OF DENSITY MATRIX EMBEDDING THEORY AROUND THE NON-INTERACTING LIMIT 1403

We know from Theorem 4 that for all 𝛼 small enough

𝐹HL
(
𝛼, 𝐹LL

(
𝛼, 𝑃DMET(𝛼)

))
= 𝑃DMET(𝛼).

Taking the derivative at 𝛼 = 0, we get

𝜕𝛼𝐹
HL(0, 𝐷0) + 𝜕𝐷𝐹

HL(0, 𝐷0)
(
𝜕𝛼𝐹

LL(0, 𝑃0) + 𝜕𝑃𝐹
LL(0, 𝑃0)𝑃

DMET
1

)
= 𝑃DMET1 . (78)

The same arguments as in the proof of Proposition 1 allow one to show that for all 𝛼 small
enough

𝐹HLHF
(
𝛼, 𝐹LL

(
𝛼, 𝑃HF(𝛼)

))
= 𝑃HF(𝛼),

yielding

𝜕𝛼𝐹
HL
HF(0, 𝐷0) + 𝜕𝐷𝐹

HL
HF(0, 𝐷0)

(
𝜕𝛼𝐹

LL(0, 𝑃0) + 𝜕𝑃𝐹
LL(0, 𝑃0)𝑃

HF
1

)
= 𝑃HF1 . (79)

Since 𝐹HLHF(0, 𝐷) = 𝐹
HL(0, 𝐷) for all 𝐷 in the neighborhood of 𝐷0, we have

𝜕𝑃𝐹
HL
HF(0, 𝐷0) = 𝜕𝑃𝐹

HL(0, 𝐷0).

Using (67) and the invertibility of 𝑑𝑃Φ(0, 𝑃0) established in Section 7.6.3, we obtain

𝑃DMET1 = −(𝑑𝑃Φ(0, 𝑃0))
−1(
𝜕𝛼𝐹

HL(0, 𝐷0) + 𝜕𝐷𝐹
HL(0, 𝐷0)𝜕𝛼𝐹

LL(0, 𝑃0)
)
, (80)

𝑃HF1 = −(𝑑𝑃Φ(0, 𝑃0))
−1(
𝜕𝛼𝐹

HL
HF(0, 𝐷0) + 𝜕𝐷𝐹

HL(0, 𝐷0)𝜕𝛼𝐹
LL(0, 𝑃0)

)
. (81)

Let us show that 𝜕𝛼𝐹HL(0, 𝐷0) = 𝜕𝛼𝐹HLHF(0, 𝐷0). On the one hand, we have

𝐹HLHF(𝛼, 𝐷0) =

𝑁𝑓∑
𝑥=1

Π𝑥𝐶
𝑥
0 𝟙(−∞,0]

(
𝐶𝑥0
𝑇
(ℎ + 𝛼(𝐽(𝐷0) − 𝐾(𝐷0)) − 𝜇HF(𝛼, 𝐷0)Π𝑥)𝐶

𝑥
0

)
𝐶𝑥0
𝑇
Π𝑥,

and therefore

𝜕𝛼𝐹
HL
HF(0, 𝐷0) = −

𝑁𝑓∑
𝑥=1

Π𝑥𝐶
𝑥
0𝔏
+
𝑥

(
𝐶𝑥0
𝑇
(𝐽(𝐷0) − 𝐾(𝐷0))𝐶

𝑥
0 − 𝜕𝜇HF(0, 𝐷0)𝔭

𝑥
)
𝐶𝑥0
𝑇
Π𝑥. (82)

On the other hand, we have

𝐹HL(𝛼, 𝐷0) =

𝑁𝑓∑
𝑥=1

Π𝑥𝐶
𝑥
0𝐷
imp
𝑥,𝐷0
(𝛼)𝐶𝑥0

𝑇
Π𝑥,

where 𝐷imp𝑥,𝐷0(𝛼) is the ground-state one-body reduced density matrix in the basis of 𝑌𝑥,𝐷0 defined
by 𝐶𝑥0 of the impurity Hamiltonian (see Proposition 8)

𝐻̂
imp
𝑥,𝐷0
(𝛼) =

2𝐿𝑥∑
𝑖,𝑗=1

[
𝐶𝑥0
𝑇
(ℎ + 𝛼(𝐽(𝔇𝑥(𝐷0)) − 𝐾(𝔇

𝑥(𝐷0))))𝐶
𝑥
0

]
𝑖𝑗
𝑎𝑖(𝐷0)

†𝑎𝑗(𝐷0)
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1404 CANCÈS et al.

+
𝛼

2

2𝐿𝑥∑
𝑖,𝑗,𝑘,𝓁=1

[𝑉𝑥(𝐷0)]𝑖𝑗𝑘𝑙𝑎𝑖(𝐷0)
†𝑎𝑗(𝐷0)

†𝑎𝓁(𝐷0)𝑎𝑘(𝐷0)

− 𝜇(𝛼)

2𝐿𝑥∑
𝑖,𝑗=1

[
𝐶𝑥0
𝑇
Π𝑥𝐶

𝑥
0

]
𝑖𝑗
𝑎𝑖(𝐷0)

†𝑎𝑗(𝐷0),

where 𝜇(𝛼) is the Lagrange multiplier of the charge neutrality constraint and where we have dis-
carded the irrelevant constant 𝐸env𝑥 (𝐷0). Using the notation introduced in (43), this Hamiltonian
can be rewritten as

𝐻̂
imp
𝑥,𝐷0
(𝛼) =

2𝐿𝑥∑
𝑖,𝑗=1

[𝔥𝑥]𝑖𝑗𝑎𝑖(𝐷0)
†𝑎𝑗(𝐷0)

+ 𝛼

( 2𝐿𝑥∑
𝑖,𝑗=1

[
𝐶𝑥0
𝑇
(𝐽(𝔇𝑥(𝐷0)) − 𝐾(𝔇

𝑥(𝐷0)))𝐶
𝑥
0

]
𝑖𝑗
𝑎𝑖(𝐷0)

†𝑎𝑗(𝐷0)

+
1

2

2𝐿𝑥∑
𝑖,𝑗,𝑘,𝓁=1

[𝑉𝑥(𝐷0)]𝑖𝑗𝑘𝑙𝑎𝑖(𝐷0)
†𝑎𝑗(𝐷0)

†𝑎𝓁(𝐷0)𝑎𝑘(𝐷0)

)

− 𝜇(𝛼)

2𝐿𝑥∑
𝑖,𝑗=1

[
𝐶𝑥0
𝑇
Π𝑥𝐶

𝑥
0

]
𝑖𝑗
𝑎𝑖(𝐷0)

†𝑎𝑗(𝐷0).

We have

𝐷
imp
𝑥,𝐷0
(0) =

(
𝐼𝐿𝑥 0

0 0

)
.

Since 𝜇(0) = 0 and 𝛼 ↦ 𝜇(𝛼) is real-analytic, we can easily adapt the analysis done in the previous
section to the case when

𝑁𝑏 = 2𝐿𝑥, ℎ0 = 𝔥
𝑥, 𝑊1 = 𝐶

𝑥
0

𝑇(
𝐽(𝔇𝑥(𝐷0)) − 𝐾(𝔇

𝑥(𝐷0)) − 𝜇
′(0)Π𝑥

)
𝐶𝑥0 , 𝑊2 = 𝑉

𝑥(𝐷0),

and infer that

𝐷
imp
𝑥,𝐷0
(𝛼) = 𝐷

imp
𝑥,𝐷0
(0) − 𝛼𝔏+𝑥

(
𝐶𝑥0
𝑇(
𝐽(𝔇𝑥(𝐷0)) − 𝐾(𝔇

𝑥(𝐷0)) − 𝜇
′(0)Π𝑥

)
𝐶𝑥0

+ 𝐽𝑉𝑥(𝐷0)(𝐷
imp
𝑥,𝐷0
(0)) − 𝐾𝑉𝑥(𝐷0)(𝐷

imp
𝑥,𝐷0
(0))

)
+ 𝑂(𝛼2),

where 𝔏+𝑥 is the linear response operator introduced in (54). Observing that

𝐶𝑥0
𝑇
(𝐽(𝔇𝑥(𝐷0)) − 𝐾(𝔇

𝑥(𝐷0)))𝐶
𝑥
0 + 𝐽𝑉𝑥(𝐷0)(𝐷

imp
𝑥,𝐷0
(0)) − 𝐾𝑉𝑥(𝐷0)(𝐷

imp
𝑥,𝐷0
(0))

= 𝐶𝑥0
𝑇
(𝐽(𝐷0) − 𝐾(𝐷0))𝐶

𝑥
0 ,

we obtain that

𝜕𝛼𝐹
HL(0, 𝐷0) = −

𝑁𝑓∑
𝑥=1

Π𝑥𝐶
𝑥
0𝔏
+
𝑥

(
𝐶𝑥0
𝑇
(𝐽(𝐷0) − 𝐾(𝐷0))𝐶

𝑥
0 − 𝜇

′(0)𝔭𝑥
)
𝐶𝑥0
𝑇
Π𝑥. (83)
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Since the roles of the scalars 𝜕𝛼𝜇(0, 𝐷0) in (82) and 𝜇′(0) in (83) are simply to ensure charge
neutrality, these two scalars are the same. It follows that 𝜕𝛼𝐹HLHF(0, 𝐷0) = 𝜕𝛼𝐹

HL(0, 𝐷0), which
allows us to deduce from (80) to (81) that 𝑃DMET1 = 𝑃HF1 . Finally, we obtain that 𝐷DMET1 = 𝐷HF1
by differentiating the relations

𝐷DMET(𝛼) = 𝐹LL(𝛼, 𝑃DMET(𝛼)) and 𝐷HF(𝛼) = 𝐹LL(𝛼, 𝑃HF(𝛼)),

and using the fact that 𝑃DMET1 = 𝑃HF1 .
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APPENDIX A: NOTATION TABLE
The following table collects the main notations in use in this article.

TABLE A1 Collection of the main notations used in the paper.

Symbol Meaning See Eq.

Fock(𝐸) Fermionic Fock space associated with
the one-particle state space 𝐸 ⊂ 

 = ℝ𝐿 One-particle state space of the whole system, 𝐿 its dimension (1)
at = (𝑒𝜅)1≤𝜅≤𝐿 Canonical basis of (1)
𝐻̂ Hamiltonian of the whole system (op. on Fock()) (2)
𝐻̂0 Non-interacting Hamiltonian of the whole system (23)
𝐻̂𝛼 Hamiltonian of the whole system for coupling parameter 𝛼 (22)
𝑁 Number of electrons in the system
 Set of 1-RDMs associated with 𝑁-particles Slater states (3)

(Grassmann manifold Gr(𝑁, 𝐿))
CH() Convex hull of (4)

(set of mixed-state 1-RDMs with 𝑁 particles)
𝐷0 𝑁-particle round-state 1-RDM of 𝐻̂0 (24)
𝐷exact𝛼 𝑁-particle ground-state 1-RDM of 𝐻̂𝛼
𝐷HF𝛼 Hartree–Fock 𝑁-particle ground state 1-RDM of 𝐻̂𝛼
HF Hartree–Fock energy functional (20)
𝐽 and 𝐾 Coulomb and exchange energy functionals (21)
ℎHF(𝐷) Mean-field (Fock) Hamiltonian (op. on) (25)
𝑁𝑓 Number of fragments
𝐿𝑥 Number of sites in fragment 𝑥
𝑋𝑥 𝑥-th fragment subspace, 𝑋𝑥 = Span(𝑒𝜅, 𝜅 ∈ 𝑥) ⊂  (6)
Π𝑥 Orthogonal projector on 𝑋𝑥 (op. on ℝ𝐿×𝐿sym)
𝐸𝑥 Matrix of the 𝐿𝑥 orbitals of fragment 𝑥 (𝐸𝑥 ∈ ℝ𝐿×𝐿𝑥 ) (27)
Bd Projector defined by Bd(𝑀) =

∑𝑁𝑓
𝑥=1 Π𝑋𝑥𝑀Π𝑋𝑥 (op. on ℝ

𝐿×𝐿
sym) (7)

 Convex set of block-diagonal matrices with eigenvalues in [0,1] (8)
 Space of traceless block-diagonal matrices  ⊂ ℝ𝐿×𝐿sym (9)
𝑊𝑥,𝐷 𝑥-th impurity space, subspace of,𝑊𝑥,𝐷 = 𝑋𝑥 + 𝐷𝑋𝑥 ⊂  (10)
𝐶𝑥(𝐷), 𝐶𝑥(𝐷) Matrices in ℝ𝐿×2𝐿𝑥 defining orthonormal bases of𝑊𝑥,𝐷 (28), (29)
𝐻̂
imp
𝑥,𝐷 𝑥-th impurity Hamiltonian (op. on Fock(𝑊𝑥,𝐷)) (14), (30)
𝑅 4-point DMET linear response function (op. on ) (26), (75)
𝐹LL, resp. 𝐹LL𝛼 Low-level map for 𝐻̂, resp. 𝐻̂𝛼 (19)
𝐹HL, resp. 𝐹HL𝛼 High-level map for 𝐻̂, resp. 𝐻̂𝛼 (18), (66)
𝜇 DMET global chemical potential
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APPENDIX B: ANALYSIS OF THE DMET BIFURCATION FOR𝐇𝟒−
𝟔

We shall finally proceed with the analysis of the DMET solutions along the two bifurcation paths
forH4−6 aroundΘ3 (see Section 4.2). To begin with, we calculate the molecular orbitals atΘ3. The
molecular orbital energies exhibit two-fold degeneracies resulting from the fact that the 𝐸′ and
𝐸′′ are irreducible representations of the H4−6 symmetry point group (D3h) are two-dimensional.
For a visual representation of the molecular orbital energies and their corresponding molecular
orbitals, see Figure B1a,b.

Fermi-level

E′E′
-1.426

E′E′
-2.0119

-2.0478

A′
1

(a) Occupied orbitals

-0.3634

A′
2

E′E′
-0.5069

E′E′
-0.7604

-1.0275

A′
1

-1.3045

A′
2

Fermi-level

(b) Virtual orbitals

F IGURE B1 Depiction of the molecular orbitals, their irreducible representation with respect to the 𝐷3ℎ
point group symmetry and molecular energies. The left panel shows the occupied molecular orbitals and the
right panel shows the virtual molecular orbitals.

For the two solutions on the respective bifurcation branches, 𝑃0 and 𝑃1, we compute

𝑃0(Θ) − 𝑃1(Θ) = (Θ − Θ3)

[
0 𝑄+−

𝑄−+ 0

]
+ 𝑜(Θ − Θ3), (B1)

where 𝑄−+ = 𝑄⊤+− ∈ ℝ7×5. From the matrix 𝑄−+ we deduce “excitation” patterns that give
physical insight into the different branches. The numerical values of 𝑄−+ are given by
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-0.3634

-0.5069 -0.5069

-0.7604 -0.7604

-1.0275

-1.3045

-1.426 -1.426

-2.0119 -2.0119

-2.0478

Fermi-level

F IGURE B2 Molecular energies and “excitation” patterns concluded from 𝑄−+.

-2.0119 Ha

-1.426 Ha

-0.7604 Ha

-0.5069 Ha

E
ne

rg
y

-0.0000539

-0.0000617

-0.0001237

-0.0001776

0.0000539

0.0000617

0.0001237

0.0001776

F IGURE B3 Excitation patterns concluded from 𝑄−+ for symmetric and anti-symmetric molecular orbitals
respectively.

𝑄−+ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

−0.0004 0 0 0 0

0 0.0001 0 0.0002 0

0 0 −0.0001 0 −0.0002

0 0.0001 0 0.0001 0

0 0 −0.0001 0 −0.0001

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B2)

Upon inspecting 𝑄−+, we observe the following “excitation” pattern: The first molecular orbital
(A1’ symmetry) is rotated in the direction of the seventh molecular orbital (A1’ symmetry), while
the 4-dimensional space generated by the second to fifthmolecular orbitals (𝐸′ symmetry) is tilted
according to directions which are linear combinations of the eighth to eleventhmolecular orbitals
(𝐸′ symmetry). We summarize this “excitation” pattern in Figure B2.
We see that the pair of degenerate occupied orbitals are excited into the pair of degenerate

virtual orbitals. This block of excitations is highlighted by the red shaded area in Figure B2. A
more detailed depiction of the excitations between the red-shaded areas is given in Figure B3.
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