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1 Introduction and summary of results

There has been recent interest in the canonical approach to quantum gravity in Anti-de Sitter
(AdS) universes, e.g. [1–3]. The program of canonical quantization starts from the Hamiltonian
formulation of GR, which allows one to identify configuration variables and their conjugate
momenta. In the original context of (3 + 1)-dimensional gravity with zero cosmological
constant, these variables are given by the 3-metric of Cauchy slices and corresponding
conjugate momenta. Their Poisson brackets are promoted to commutators, and the classical
Hamiltonian constraint promoted to a Wheeler-DeWitt (WdW) equation in what is known
as ‘quantum geometrodynamics’ or WdW quantum gravity. Applying this approach to
quantum gravity to theories of gravity with negative cosmological constant is important to
formulate the fundamental problems of AdS quantum gravity, which has been extensively -
but somewhat indirectly - studied in the past two decades through holography. Especially
in low dimensions, where AdS holography has proven to be very powerful, it seems possible
to combine insights from WdW and holographic approaches [4–6].

Another development, in the context of AdS holography, has been that of T T̄ theory [7, 8].
This is the theory obtained from deforming 2-dimensional quantum field theories with
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Zamolodchikov’s irrelevant T T̄ operator [9]. The resulting theory has non-local features
but at the same time a closed form expression for its energy spectrum. This notion of
integrability has led to many complementary perspectives on T T̄ theory [10] other than
that of non-local QFT, such as 2-dimensional gravity [11–14], random geometry [15], and
worldsheet string theory [8, 13, 16] descriptions, which make T T̄ theory a very rich theory to
study. Moreover, when the undeformed theory is a 2-dimensional holographic CFT, the T T̄
deformation also has a powerful holographic interpretation as ‘pulling the boundary inwards’
or ‘cut-off holography’ [16] (see also [17–19]), which has opened the door to a strategic
approach to beyond AdS holography [20, 21].

One of the main arguments for the holographic T T̄ proposal is the connection between
the T T̄ flow and bulk evolution described by a radial WdW equation. It makes use of the
long-known observation that the WdW equation in the semi-classical limit reduces to a
Hamilton-Jacobi equation (which has been previously interpreted holographically in terms of
holographic RG [22–25]). In this way, T T̄ forms a bridge between different quantum gravity
approaches, namely WdW gravity on one hand and AdS/CFT on the other. In some sense,
cut-off holography tells us that T T̄ ‘dissects’ AdS/CFT, and as such we can expect T T̄ theory
to provide a language to discuss and address issues in WdW AdS gravity. The real challenge
will be to make statements beyond the semi-classical approximation.

The relation between T T̄ and WdW gravity has been investigated in recent work [2, 3],
which includes the proposal of Cauchy slice holography. In these papers, one discusses the
standard canonical formalism in the context of AdS gravity, treating actual time as the
direction of WdW evolution.

In this paper, in contrast, we study the radial canonical formalism for AdS3 (see also [25]),
which has been shown in [16] to have a direct T T̄ interpretation at the level of the Hamilton-
Jacobi equation and cut-off AdS energy spectrum. We revisit both these T T̄ interpretations
(section 2.1 and 5), in the context of our more detailed discussion of the canonical treatment.
To this end, we construct the BTZ solution as well as corresponding WdW states by expo-
nentiating solutions to the Hamilton-Jacobi equation, which form a semi-classical basis of
the bulk theory. This follows the program of the recent works [26–28] (in 3 + 1 dimensions),
but applied to 2 + 1 dimensions. In [26, 28], the constructed WdW states (upon including a
counterterm contribution) were conjectured to be holographically equivalent to the Lorentzian
partition function of a field theory that was left unspecified (but a possible higher-dimensional
T T̄ interpretation was mentioned in [26]). We apply the same strategy to 2 + 1 dimensions,
precisely to explicitly identify the dual field theory as T T̄ theory, which is 2-dimensional.

In section 2, on the radial canonical formalism, we introduce a mini-superspace approxi-
mation that allows the identification of a preferred time before quantization: the volume time
v ≡

√
−γ, equal to the volume density of radial slices of the asymptotically AdS manifold.

This time variable is canonically dual to the York time [29], which has been previously
discussed in the context of AdS/CFT, e.g. in [2, 30, 31]. The identification allows a reduced
phase space formalism discussion of radial canonical AdS3 gravity. In it, the Hamiltonian
constraint takes the form of a Schrödinger equation for the WdW wavefunctional. ‘True’
or physical canonical degrees of freedom are identified as the ones introduced in [16], and
the role of unconstrained (i.e. non-vanishing), ‘true’ Hamiltonian density is taken by the
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York time πv. At the semi-classical level, these statements have a T T̄ interpretation. In
particular, the semi-classical T T̄ path integral solves a radial Schrödinger equation into
the AdS bulk, and the value of the generator of volume time translations is given by the
integrated expectation value of the T T̄ operator ⟨OT T̄ ⟩. We comment on the differences at
the full quantum level, and on the role of the counterterm in the gravitational action in this
discussion. The main result of section 2 is the volume time Schrödinger equation (2.27),
with semi-classical T T̄ interpretation (2.49) and (2.47).

In section 3 we proceed to construct the BTZ solution (3.18) from the Hamilton-Jacobi
equation. In particular, we include the technical complication of allowing rotating BTZ
solutions, with an eye on the T T̄ interpretation in which the rotation takes the role of
momentum. Corresponding semi-classical solutions of the WdW equation are subsequently
constructed in section 4. The evolution of the obtained Vilenkin wavefunctional (4.16) is
illustrated in the Penrose diagrams in figures 1 and 2. We discuss different measures of energy
of the solution, and their holographically dual interpretation, in section 5.

In appendix A we provide some more background on the ADM deparametrization
strategy [32], and in appendix B we repeat the BTZ solution construction of section 3 in
the volume notation employed in [26].

A comment on notation: throughout the paper we use a notation that distinguishes
between objects in the theory without counterterm contribution to the action, and with
counterterm. For reference, we summarize that notation here. In the presence of the
counterterm, we use πij for the canonical momenta, S for the gravitational action, Scl for the
on-shell action, and S for the Hamilton’s principal function. In the absence of the counterterm,
we use pij for the canonical momenta, I for the gravitational action, Icl for the on-shell action,
and I for the Hamilton’s principal function. They are simply related by (3.1) and (3.2).

In the final stages of preparing this paper, the work [33] appeared, which also employs
a volume time interpretation of T T̄ evolution, applied to de Sitter, as well as [34] on the
notion of emergent time in Hamiltonian General Relativity.

2 Volume time reduced phase space

We consider a D = (2 + 1)-dimensional theory of gravity with negative cosmological constant
Λ = −1/l2 in terms of AdS radius l. The gravitational action for a manifold M with
d = (D − 1)-dimensional timelike boundary ∂M is given by

S = 1
2κ

∫
M
dDx

√
−g(R(D) − 2Λ) − 1

κ

∫
∂M

dD−1x
√
−γ K − 1

κ l

∫
∂M

dD−1x
√
−γ (2.1)

with gravitational constant κ = 8πG, 3-curvature R(3), trace of extrinsic curvature K, and
the determinant of the 3-metric gµν and induced 2-metric γij on ∂M denoted g and γ. The
extrinsic curvature of ∂M in M is defined as Kµν = −1

2Lnγµν for γµν = gµν − nµnν in terms
of the normal nµ to the boundary. We follow the same conventions as in [35, 36].

The first two terms in (2.1) are the Einstein-Hilbert action and Gibbons-Hawking-York
boundary term, ensuring a well-defined variational principle. The last term is the standard
counterterm Sct =

∫
dD−1xLct = − 1

κ l

∫
dD−1x

√
−γ [37]. It is included to obtain a finite

gravitational stress tensor.
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We write the spacetime metric in a D-dimensional ADM metric form

ds2 = N2dr2 + γij(dxi +N idr)(dxj +N jdr) (2.2)

where we choose the decomposition in the radial direction, meaning we think of r as playing
the role of a (Euclidean) ‘time’. It describes a foliation with d = 2-dimensional, timelike
hypersurfaces Σ homeomorphic to the boundary ∂M. We use Latin indices for the 2-
coordinates xi and 2-metric γij on those constant r slices. In the ADM decomposition, all
functions are still functions of all coordinates, meaning lapse N , shift N i and 2-metric γij

are short for N(r, x⃗), N i(r, x⃗), γij(r, x⃗).
Using the Gauss-Codazzi equation for the ADM split of the curvature into 2-curvature R

and extrinsic curvature terms (e.g. (A20) of [35]), the action S =
∫
dr d2xL becomes

S = 1
2κ

∫
M
dDx

√
−g(R+K2 −KijKij − 2Λ) − 1

κ l

∫
∂M

dD−1x
√
−γ. (2.3)

This expression can be brought in canonical form

S =
∫
M
d3x

(
πij∂rγij −NH−N iHi

)
, (2.4)

in terms of the momenta

πij ≡ ∂L
∂γ̇ij

= − 1
2κ

√
−γ

(
Kγij −Kij + 1

l
γij
)

(2.5)

pij ≡ ∂L
∂γ̇ij

− ∂Lct

∂γ̇ij
= − 1

2κ
√
−γ (Kγij −Kij) (2.6)

where the dot refers to a derivative with respect to r, the Hamiltonian density

H = −2κGijkl p
ijpkl −

√
−γ
2κ (R− 2Λ)

= −
√
−γ
2κ (R− 2Λ) − 2κ√

−γ

(
pijpij − p2

)
, (2.7)

and momentum density

Hi = −2Djp
j
i . (2.8)

The Hamiltonian density is given in terms of the DeWitt metric Gijkl = 1
2
√
−γ

(γikγjl +γilγjk−
2

d−1γijγkl), and Dj in (2.8) is the induced covariant derivative for tensors tangent to the
boundary; traces of the momenta pk

k and πk
k are denoted p and π. The DeWitt metric is the

metric on superspace, which is the space of all 2-metrics γij . The counterterm contribution
to (2.4) enters through the last term of πij in (2.5). The densities H and Hi are given in
their more standard form in terms of the momenta pij without this counterterm contribution.

The 2-metric and momenta in (2.4) form a pair of canonically conjugate variables (γij , π
ij).

The lapse and shift act as Lagrange multipliers imposing respectively the Hamiltonian and
momentum constraints, H = 0 and Hi = 0. These constraints are the Gr

µ = 0 Einstein
field equations (rather than Gt

µ = 0 in standard ADM slicing), so technically we could
refer to H = 0 as radial Hamiltonian constraint [25], but we will not always repeat this
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specification explicitly, for reasons of conciseness. Written out in terms of (γij , π
ij), the

(radial) Hamiltonian constraint is

(2κ)2

γ

(
πijπ

ij − π2
)

+ 4κ
l

1√
−γ

π −R(γij) = 0. (2.9)

The effect of using a notation that includes the counterterm contribution is twofold: the
appearance of a linear term in the momenta, and the disappearance of the cosmological
constant term, compared to (2.7).

Next, we make a symmetric ansatz for the metric in which all metric fields depend
only on the radial coordinate

N = N(r), N i = N i(r), γij = γij(r). (2.10)

This has two immediate consequences. The first is that the momentum constraint Hi = 0 is
trivially satisfied. (Note that this would already be the case if only the hypersurface metric was
restricted, γij = γij(r), which is the radial equivalent of the ‘spatially constant’ ansatz used in
the canonical description of (2 + 1)-dimensional gravity in [38].) An ansatz with this property
can be called a mini-superspace ansatz, with ‘mini’ referring to the strong reduction in covered
superspace, and this is indeed how we will refer to (2.10). In the mini-superspace ansatz for
the slicing of spacetime, the fact that the hypersurfaces are imposed to be non-intersecting
means the Hamiltonian and momentum constraint are expressing diffeomorphism invariance of
the spacetime. In general, such an interpretation of the constraints is more subtle [39] (p.156).

A second consequence of the mini-superspace ansatz is that the radial slicing is flat,
more precisely R ≡ R(γij) vanishes up to possible delta function contributions. With this
form of the 2-curvature in mind, we will retain its presence in the equations. After the
freezing of degrees of freedom (2.10), the remaining freedom in the description is the choice
of radial coordinate r or ‘time’.

At the quantum level, the momenta are promoted to operators or variational deriva-
tives [39, 40]

πij = −i δ

δγij
(2.11)

when acting on the gravitational wavefunction(al) in a ‘coordinate representation’ (ψ de-
pending on γij)

ψ ≡ ψΣ(γ) =
∫

g|Σ =γ
Dg eiS[g]. (2.12)

The Hamiltonian constraint H = 0 is then promoted to the WdW equation

Hψ = 0, (2.13)

with H now in the role of an operator. It expresses a restriction on physically allowed
wavefunctionals ψ. Explicitly, it has the form(

(2κ)2

γ

(
πijπ

ij − π2
)

+ 4κ
l

1√
−γ

π −R(γij)
)
ψ = 0. (2.14)
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The term that is quadratic in the momentum operators comes with a prescribed normal
ordering [41].

In a semi-classical approximation, the wavefunction taking the WKB form ψ ∼ exp iScl

and taking the limit κ → 0, one recovers from the WdW equation the Hamilton-Jacobi
(HJ) equation

(2κ)2

γ

−δScl

δγij

δScl

δγij
−
(
γij
δScl

δγij

)2
+ 4κ

l

1√
−γ

γij
δScl

δγij
−R(γij) = 0 (2.15)

with the on-shell action Scl in the role of Hamilton’s principal function S [42]. It is the
Hamiltonian constraint (2.9) rewritten (using δScl =

∫
πijδγij on a solution) as a condition

on the functional form of the on-shell action’s dependence on the boundary metric, Scl[γij ].
Where the Hamiltonian density H is purely quadratic in pij in (2.7), it contains a term

linear in the (trace of) the momentum πij , since πij = pij − 1
2κl

√
−γγij . Therefore the

linear term in the WdW equation can be traced back to the presence of the counterterm,
i.e. the fact that the action S in the exponent of the wavefunction ψ in (2.14) is the total
gravitational action including the counterterm.

The linear term in the WdW equation can now be identified as a variation with respect
to the volume of radial slices. This follows from

π = −i γij
δ

δγij
= −i

√
−γ δ

δ
√
−γ

, (2.16)

which upon introducing the notation

v ≡
√
−γ , πv ≡ −i δ

δ
√
−γ

(2.17)

for the volume of the radial slices and its canonical partner, can be written as

π = v πv. (2.18)

This suggests a natural orthogonal decomposition of the momenta, obtained by splitting off
the trace part π or πv from a remaining traceless part,

πij = π̃ij

√
−γ

+ 1
2γ

ijπ, (2.19)

and a rewriting of the 2-metric by splitting off the volume

γij =
√
−γ γ̃ij . (2.20)

Or yet,

πij = π̃ij

v
+ 1

2 γ̃
ijπv , γij = v γ̃ij . (2.21)

The new introduced variables are π̃ij , which has the property that it is traceless, and γ̃ij ,
which has the property that its determinant equals minus one. The indices of these objects
are raised and lowered by the new metric γ̃ij and its inverse (defined through γ̃ikγ̃

kj = δj
i ).
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Therefore, πij =
√
−γ π̃ij + 1

2γijπ and γij = 1√
−γ
γ̃ij . The tracelessness of π̃ij implies

that the decomposition (2.19) is indeed orthogonal as
∫
d2x π̃ij

√
−γ

γijπ =
∫
d2x π̃ π = 0 [43].

We’ve rediscovered the same variables that Martinec introduced in [38] for the description
of canonical (2+1)-dimensional Λ = 0 gravity, and that more generally are employed in
D-dimensional Λ = 0 canonical gravity discussions [39, 44] to argue that the volume of
the slices forms the direction of time of the (− + . . .+) signature DeWitt metric Gijkl on
D(D−1)

2 -dimensional superspace. We will now see that in the case of radial slicing they lead
to a reduced phase space description of (2+1)-dimensional Λ < 0 gravity.

In terms of the new variables, (2.9) becomes

−(2κ)2

v2 π̃ij π̃klγ̃kiγ̃lj + (2κ)2

2 π2
v + 4κ

l
πv −R(v, γ̃ij) = 0 . (2.22)

It is the Hamiltonian constraint H = 0 with the general (γij , π
ij) dependence rewritten

in terms of the orthogonal decomposition (v, πv, γ̃ij , π̃
ij). Separating the linear term, it

takes the form

πv = P0(πv, v, π̃
ij , γ̃ij). (2.23)

This can be solved for πv to

πv = T 0
0 (v, π̃ij , γ̃ij) (2.24)

with the explicit solution of the quadratic equation simply

T 0
0 ≡ − 1

κl
− 1
κl

√
1 + 2κ2l2

π̃ij π̃ij

v2 + l2

2 R(v, γ̃ij) . (2.25)

As we will shortly explain, the above reasoning is an ADM ‘deparametrization of gravity’
argument. To make the comparison to the ADM notation of [32] explicit, we have introduced
in equations (2.23)–(2.24) the same notation as in that original paper.

What the rewriting to (2.24) achieves, is that the Hamiltonian constraint — rather than
expressing the vanishing of the constrained Hamiltonian density H — takes the more familiar
form of a momentum equaling a ‘true’ Hamiltonian density given by

HADM ≡ −T 0
0 (v, π̃ij , γ̃ij). (2.26)

The momentum necessary for this identification is the volume time momentum πv. Upon
quantization, with πv = −i δ/δv, the Hamiltonian constraint then takes the form of the
Schrödinger equation

i
δ

δv
ψ = HADM ψ. (2.27)

The sign of the square root in the solution (2.25) for T 0
0 is chosen on the basis of boundedness

of the Hamiltonian, and HADM =
∫
d2xHADM is the radial ‘true’ Hamiltonian.

The above argument follows the ‘deparametrization of gravity’ strategy1 of Arnowitt,
Deser and Misner [32] and of Kuchar in e.g. [46]. In mechanics, a system of M degrees of

1As reviewed in [39], criticisms of this strategy can be kept in mind, e.g. in [45] for the case of a closed
universe.
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freedom with action I =
∫
dt (pi∂tqi −Htrue(p, q, t)) (with i = 1, . . . ,M) can be brought into a

parametrized form I =
∫
dτ pj∂τqj =

∫
dτ (pj∂τqj −NH) (with j = 1, . . . ,M + 1) by writing

Hamiltonian and time as a conjugate pair of variables (t,−Htrue) ≡ (qM+1(τ), pM+1(τ)), with
arbitrary parameter τ and new degree of freedom qM+1. The second rewriting of I introduces
a Lagrange multiplier N(τ) to impose the constraint equation H(pM+1, qM+1, pi, qi) = 0,
which can be any equation with the solution pM+1 = −Htrue(pi, qi, qM+1). To reverse
back from a parametrized to an unparametrized description,2 one should substitute the
solution pM+1 = −Htrue(pi, qi, qM+1) of the constraint equation H = 0, and impose a
‘coordinate condition’ qM+1 ≡ t = τ identifying the time t. In comparison to mechanics, the
gravitational action (2.4) evaluated on the mini-superspace ansatz (2.10) comes in an ‘already
parametrized’ form S =

∫
dr d2x (πij∂rγij − NH), with the momentum constraint Hi ≡ 0

already identically satisfied and ‘time’ r in the role of parameter. It can be similarly brought
into a deparametrized form by substituting the solution of the constraint equations, with
solution (2.24) the equivalent of pM+1 = −H(pi, qi), and imposing the identification of time

v l = −r (volume time), (2.28)

where the AdS radius l enters for reasons of dimensionality, and the sign is such that the
infinite ‘past’ is situated at the asymptotic AdS boundary. This volume time3 identification√
−γ l = −r is thus the explicit equivalent of the coordinate condition qM+1 = τ . The

deparametrization results in singling out a choice of time before quantization. In the process,
the number of degrees of freedom decreases (from M + 1 to M in mechanics) and the ‘true’
degrees of freedom are observed to be the variables γ̃ij and their conjugate π̃ij on which
the ‘true’ or ADM Hamiltonian density in (2.26) depends. In the case at hand, HADM also
depends on the volume time v itself.

Let us now discuss the deparametrized form of the action, applying the ADM reduction
technique of substituting the constraints and imposing coordinate conditions. Such a treatment
of (2 + 1)-dimensional Λ = 0 gravity can be found in [47], and indeed the following discussion
for the Λ < 0 case will be very similar. Upon substituting (2.19) and (2.20), the action (2.4)
evaluated on the constraints becomes

S =
∫
d3x

[(
π̃ij

v
+ 1

2γ
ijπ

)
(v ∂rγ̃ij + γ̃ij∂rv)

]
(2.29)

=
∫
dr d2x (π̃ij ∂rγ̃ij + πv ∂rv). (2.30)

Going to the second line, the cross terms disappear due to the properties of the new variables
γ̃ij and π̃ij , that is,

√
−γ̃ = 1 and π̃ = 0. After the identification of volume time (2.28), we find

S =
∫
dv d2x (π̃ij ∂vγ̃ij + πv) (2.31)

for the reduced phase space action. It indeed takes the form from the mechanics example,
I =

∫
dt (pi∂tqi −Htrue(p, q, t)), such that we can read off from it that the true Hamiltonian

2This is detailed in appendix A.
3Technically, v is of course the volume density of the Σ slices, but we will refer to it as volume time.
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density is given (on the constraint) by the conjugate partner of volume time

HADM = −πv. (2.32)

This is of course consistent with (2.24) and (2.26). The corresponding true Hamiltonian is
obtained by integrating over the boundary directions HADM = −

∫
d2xπv/l.

The momentum πv is known in the literature as York time [29]. From (2.5) and (2.18),
the momenta have trace π = − 1

2κ

√
−γ(K + 2

l ) and

πv = − 1
2κ

(
K + 2

l

)
. (2.33)

The second term is the contribution from the counterterm, which is not present in the flat
gravity context in which York time was introduced [29]. In that case, York time is just
proportional to the trace of the extrinsic curvature (of spacelike slices in that context), but
it is still the conjugate of volume, with the ‘true’ Hamiltonian in [29, 47] identified as the
volume of the universe. ADM deparametrization in terms of York time has been discussed
in [47] and in the context of cosmology in [48].

2.1 T T̄ flow equation interpretation

The radial HJ equations have been holographically interpreted as T T̄ trace flow equations
in [16] and [18] (in Euclidean signature). We will repeat their argument here (in Lorentzian
signature), showing that the volume time identification provides a natural, useful notation.

Given a classical solution, variations of the on-shell action Scl (or ‘on-shell variations’ [49])
take the form [35]

δScl =
∫

Σ
d2xπijδγij . (2.34)

We rewrite this in terms of the new canonical pairs in our radial canonical gravity discussion,
given by the volume time and its canonical partner (v, πv) and the ‘true’ canonical degrees
of freedom (γ̃ij , π̃

ij), to the simple form

δScl =
∫

Σ
d2x

(
π̃ijδγ̃ij + πv δv

)
. (2.35)

The absence of cross terms again follows from the same argument as in the derivation of (2.30).
From (2.34), we have πij = δScl

δγij
and from the second form in (2.35),

π̃ij = δScl

δγ̃ij
and πv = δScl

δv
. (2.36)

The solution’s gravitational energy-momentum that is contained in the bulk region bounded by
the constant r surface Σ with intrinsic metric γij is given by the Brown-York stress tensor [35]

T ij = 2√
−γ

δScl

δγij
(2.37)
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or Tij = − 2√
−γ

δScl
δγij . It is immediate that the stress tensor is proportional to the momenta

T ij = 2√
−γ
πij . From a T T̄ perspective, we are specifically interested in the combination of

Brown-York stress tensor components (with notation Θ for the trace T k
k )

TijT
ij − Θ2 (2.38)

which written out in terms of the canonical degrees of freedom is

4
v2

(
πijπ

ij − π2
)

= 4
(
π̃ij π̃

ij

v2 − 1
2π

2
v

)
. (2.39)

This is indeed the combination of momenta that also appears in the Hamiltonian con-
straints (2.9) and (2.22), the latter more precisely taking the form

πv = κl

(
π̃ij π̃

ij

v2 − 1
2π

2
v

)
(2.40)

(with vanishing curvature R). With (2.36), these Hamiltonian constraints give HJ equations
for Scl[γij ] or Scl[γ̃ij , v].

Now let us consider T T̄ theory, a 2-dimensional QFT defined on a background metric γij

obtained by deforming a seed theory, which in our considerations will always be a holographic
2-dimensional CFT. Following the notation of [14], this ‘T T̄ theory’ or ‘T T̄ -deformed CFT’
in Lorentzian signature is described by an action that satisfies

∂

∂λ
S

(λ)
QF T = 1

2

∫
d2x

√
−γOT T̄ (2.41)

with S
(0)
QF T the seed theory action, and S

(λ+dλ)
QF T the perturbatively deformed one from S

(λ)
QF T .

The deformation is given by the T T̄ operator

OT T̄ ≡ TQF T
ij T ij

QF T − (ΘQF T )2 (2.42)

which is well-defined as a composite local operator up to derivatives of other local operators [9],
and where TQF T

ij is the stress tensor of the deformed theory S(λ)
QF T , and ΘQF T its trace. The

T T̄ coupling λ is the parameter that is positive in the 2-dimensional massive gravity description
of T T̄ [14] and in the Nambu-Goto string description of T T̄ [8, 11, 13, 16], being respectively
identified with the inverse mass squared of the graviton and the Nambu-Goto string tension.
It has dimension length squared, hence the deformation is irrelevant.

Following the argument of [10, 18] that in the absence of other scales in the theory (apart
from the role of the UV cutoff which is less clear), µdS(λ)

QF T /dµ =
∫
d2x

√
−γΘQF T for mass

scale µ = 1/
√
λ, the so-called trace flow equation of T T̄ follows:

⟨ΘQF T ⟩ = −λ⟨OT T̄ ⟩. (2.43)

In regular AdS/CFT, the Brown-York stress tensor T ij is holographically dual to the
stress tensor expectation value ⟨T ij

CF T ⟩ of the CFT living on the conformal boundary. The
cut-off holographic duality of [16] proposes that similarly, the Brown-York stress tensor T ij

of the bulk solution cut off at a finite value of the radial direction is holographically dual to
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the stress tensor expectation value ⟨T ij
QF T ⟩ of a T T̄ theory living on the slice Σ with metric

γij . Applying this prescription to the trace flow equation, the left hand side in bulk notation
becomes the trace of the Brown-York stress tensor Θ = 2

vπ = 2πv, and the right hand side
(−λ) times (2.39), such that the bulk translation of (2.43) reads

πv = −2λ
(
π̃ij π̃

ij

v2 − 1
2π

2
v

)
. (2.44)

Comparison to the radial HJ equation (2.40) leads to exact agreement, provided one makes
the identification4

λ = −1
2κl (2.45)

between the QFT parameter λ and gravitational parameters κ ≡ 8πG and l. The sign
is such that the T T̄ coupling has the opposite sign in a holographic context, sometimes
referred to as holographic T T̄ having the ‘wrong sign’, compared to in e.g. the Nambu-Goto
interpretation. In a ‘hybrid’ (meaning left hand side in bulk and right hand side in boundary)
notation, we could write

πv = −λ2 ⟨OT T̄ ⟩. (2.46)

Comparing the trace flow equation in this holographic notation to (2.32), we can identify
the expectation value of the T T̄ operator with the on-shell value of the ADM Hamiltonian
(density) generating evolution in the v-direction into the bulk,

1
2λ⟨OT T̄ ⟩ = lHADM . (2.47)

This observation in terms of volume time fits naturally in the cut-off holographic idea that
T T̄ deformations push the boundary inwards.

To arrive at the λ identification (2.45), first obtained in [16], we have essentially repro-
duced their argument. This includes the decomposition of metric components and momenta
in (2.19) and (2.20), which was already employed in that paper. Our discussion adds a
canonical gravity viewpoint on a natural origin for this decomposition. Namely, as discussed
in section 2, it is the decomposition that allows an ADM deparametrization of the classical
GR problem for a special choice of ‘time’. The volume time identification then leads to a
simple notation, starting with (2.35), for the derivation of (2.45), and a natural interpretation
of the T T̄ operator expectation value in terms of the corresponding ADM Hamiltonian.

The same λ identification (2.45) follows directly from comparing the trace flow equation
to the constraint (2.9) in terms of the original momenta, which is the approach of [18]. Let
us remark that the relation between the T T̄ coupling λ and volume time v can be made
more explicit as follows. Similar to e.g. in [17, 50], we can alternatively interpret the dual
T T̄ theory as living on the background geometry γ̃ij , as defined in (2.20), rather than γij .
This gives rise to the inversely proportional relation

λ = −1
2
κl

v
. (2.48)

4Our λ relates to µ in [16] as µ = 4λ.

– 11 –



J
H
E
P
0
1
(
2
0
2
5
)
0
9
2

We will however in the remainder of this paper stick to the interpretation of the T T̄ theory
on the induced boundary metric γij , and correspondingly use (2.45).

Modulo Weyl anomaly subtleties, the T T̄ flow equation interpretation of the radial
HJ equation implies that the radial WdW equation for the semi-classical gravitational
wavefunctional ψ can be interpreted as a T T̄ flow equation for the semi-classical, Lorentzian
T T̄ partition function ZQF T ≈ eiSQF T [16]. Said otherwise, at the semi-classical level, ψ is
holographically dual to ZQF T , or in hybrid notation

ψ = ZQF T . (2.49)

Since in section 2 we have reinterpreted the radial WdW equation as a volume time Schrödinger
equation (2.27), we immediately arrive at the conclusion that the semi-classical, Lorentzian
T T̄ partition function solves a radial Schrödinger equation describing volume time evolution
into the holographic bulk. This statement is closely related to the holographic RG discussion
in terms of radial Schrödinger equations in [24].

We note that the presence of the counterterm Sct in the bulk dual played a role in arriving
at a Schrödinger interpretation of the WdW equation. Indeed we emphasized in section 2
that it is the linear term in the momenta in the WdW equation that suggested a rewriting
in Schrödinger form (2.27), and the origin of the linear term ∼ πv is the counterterm in the
bulk action. (It is worth emphasizing this, because the counterterm is no longer required
to be present at a finite radial cut-off from the perspective of renormalization.) From an
AdS/CFT perspective, the volume time appears because the asymptotic radial WdW equation
for ψ expresses the Weyl anomaly equation for the CFT path integral ZCF T . The Weyl
anomaly equation or conformal Ward identity describes the behavior of ZCF T under scale
transformations, or, variations of the volume v. The corresponding classical statement is that
the asymptotic Hamilton-Jacobi equation πv = l

4κR expresses the Weyl anomaly Tµ
µ = c

24πR.
We add that it does so most succinctly with volume time because Tµ

µ equals 2πv. The T T̄
deformation then provides the holographic dual interpretation to the non-asymptotic HJ
and WdW equations, i.e. including quadratic terms in (2.22), or from the boundary point
of view, extending evolution along the RG flow direction.

The volume time interpretation provides a revealed structure of true canonical degrees
of freedom and a preferred radial time on the bulk side, as well as an indication to the
relevance of York time in the description of the system. Since volume time is dual to York
time, the semi-classical T T̄ path integral ψ(γij) is related by a Fourier transform to the
functional [27, 31]

ψ̃(πv, γ̃ij) =
∫
dv ψ(v, γ̃ij) e−i

∫
d2x v πv . (2.50)

The WdW equation for ψ̃ will describe evolution in York time rather than volume time (with
minus v providing the corresponding Hamiltonian density, similar to in [29]). This perspective
should allow to further investigate the role of the mixed boundary conditions discussed in [2]
(see also [51, 52]). They consist of keeping πv and the conformal class of metrics on Σ fixed,
and are argued in [2] to be better defined from a WdW equation point of view than the
Dirichlet boundary conditions appearing in cut-off holography [16] (this is more pressing in
higher-dimensional set-ups). We leave this for future work.

– 12 –



J
H
E
P
0
1
(
2
0
2
5
)
0
9
2

Figure 1. Non-rotating BTZ solution. Left: radial evolution in Lorentzian signature, with constant-R
slices Σ in the outer (blue) and inner (red) horizon region. Right: Euclidean radial evolution (blue)
up to the horizon, followed by Lorentzian radial evolution (red).

The appearance of volume time in mini-superspace AdS gravity is not unexpected. Firstly,
the associated true canonical degrees of freedom in (2.21) are directly equivalent to the Dirac
canonical variables discussed in [53] in (3 + 1)-dimensional Λ = 0 gravity. Secondly, the
volume time is the natural Anti-de Sitter equivalent of the use of volume time in de Sitter
quantum cosmology [33, 39, 44], as the radial direction into the AdS bulk takes over the role
of the time direction in dS [54]. While in dS the volume will keep expanding, providing a
monotonous notion of time, in AdS, the volume time will reach a maximum at the maximal
volume slice. This is illustrated further on in figure 3. From a T T̄ perspective, this does
not give rise to complications, as the volume time provides a good dual description of T T̄ in
particular in the near-boundary limit in the bulk, or c → ∞ limit in the boundary theory.
We discuss the reason for this regime in the next paragraph.

Going to the full quantum level, it is quite unclear if the Schrödinger wavefunction
interpretation of the Lorentzian T T̄ partition function provides any added value. This is
because equations (2.27) and (2.14) describe different quantum gravity theories, obtained
from different quantization (i.e. normal ordering) prescriptions. The latter is described by the
WdW equation with standard Laplace normal ordering [41], which is indeed the prescription
followed in [26–28] and the one we will follow in section 4. The former is instead described
by a WdW equation with normal ordering of the square root in (2.25). If one thinks of
quadratic normal ordering in the trace flow equation ΘQF T = −λ : OT T̄ : as a definition
of the quantum T T̄ theory, then the normal ordering prescriptions of [41] or [2, 3] provide
more natural bulk interpretations when interested in beyond semi-classical statements, as
compared to the normal ordering prescription of the square root in (2.25) in our volume
time interpretation (2.27).

3 BTZ from the Hamilton-Jacobi equation

We have so far reinterpreted T T̄ flow in terms of a radial WdW solution evolving in volume
time. To make the connection between the T T̄ -deformed quantum theory and the WdW
solution more explicit, it will be useful to consider a particular example and construct a map
between quantities on each side of the duality. In particular, in this section we construct
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Figure 2. Rotating BTZ solution. Radial evolution in the exterior (blue) and interior (red) regions,
with constant-R slices Σ as solid lines.

the BTZ solution from a canonical perspective. The corresponding Hamilton’s principal
function will be used in the next section to construct WdW states, and finally we will discuss
the holographic interpretations of different energy measures for this solution. To construct
the BTZ solution, we closely follow in this section the planar AdS4-Schwarzschild solution
derivation of [26], applied to one lower dimension. Working in 2+1 dimensions has two
benefits. Firstly, it makes it possible to compare directly to holographic T T̄ arguments [16],
without having to resort to proposed higher-dimensional extensions of T T̄ theory [50, 55].
Secondly, it allows us to include the technical complication of rotation of the black hole.
To our knowledge, the derivation of Kerr from the Hamilton-Jacobi function is e.g. yet to
be explored in the literature.

To obtain the BTZ solution [56] from the HJ equation, we will start from the gravitational
action (2.1) without the counterterm

I = S − Sct, (3.1)

i.e. work with the Hamiltonian (2.7) in terms of the momenta pij , and account for the coun-
terterm’s effect afterwards by the canonical (i.e. Poisson bracket preserving) transformation
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(γij , p
ij) to (γij , π

ij) with

πij = pij − 1
2κl

√
−γγij . (3.2)

We consider the mini-superspace ansatz (2.10) introduced in the previous section, given
by the ADM metric (2.2) with r-dependent lapse and induced metric functions N(r) and
γij(r), now written as

ds2 = −N2(r)dr2 + γij(r)dxidxj

= −N2dr2 + γttdt
2 + 2γtφdtdφ+R2dφ2 (3.3)

with vanishing N i(r) (fixing the freedom of choosing coordinates on the slice) and γφφ(r) ≡
R2(r). For the two coordinates on the Σ slices we have chosen the notation xi = (t, φ) with
angular coordinate φ for a manifold R × R × S1. Compared to (2.2), the sign of dr2 was
changed to consider solutions in the region where r is actually timelike (and N2 positive),
i.e. the ansatz (3.3) will describe the black hole interior in figures 1 and 2, where r is the
timelike coordinate.

We can instead introduce a notation that allows to construct the solution in both the
interior and exterior regions, by writing the ansatz

ds2 = ϵ(−N2dr2 + γttdt
2) + 2γtφdtdφ+R2dφ2, (3.4)

with ϵ = 1 in the interior (r timelike and t spacelike) and ϵ = −1 in the exterior (r spacelike
and t timelike), for N2 and γtt assumed positive. A similar discussion can be found in [57].

On this ansatz (3.4), we evaluate the action

I = 1
2κ

∫
M
d3x

√
−g

(
R(3) + 2

l2

)
− 1
κ

∫
∂M

d2x
√
γ K (3.5)

to be

I [N, γij ] =
∫
d3xL, (3.6)

where the Lagrangian density is

L = N

κl2

√
|ϵγttγφφ − γtφ

2| + (∂rγtφ)2 − ϵ (∂rγtt) (∂rγφφ)
4κN

√
|ϵγttγφφ − γtφ

2|
. (3.7)

From this Lagrangian, we obtain the momenta pij conjugate to the metric functions γij in
the usual way (2.6), and construct the Hamiltonian

NH = N

√
|ϵγttγφφ − γtφ

2|
κ

[
κ2
(
(ptφ)2 − ϵ 4pttpφφ

)
− 1
l2

]
. (3.8)

The lapse N is a Lagrange multiplier that imposes the Hamiltonian constraint H = 0, or
explicitly,

1
κ2l2

+ ϵ 4 pttpφφ − (ptφ)2 = 0. (3.9)
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Upon writing the momenta as pij = ∂γijI(γij), per definition of the Hamilton’s principal
function I(γij), the Hamiltonian constraint becomes the Hamilton-Jacobi equation

1
κ2l2

−
(
∂γtφI

)2 + ϵ 4 (∂γttI)
(
∂γφφI

)
= 0. (3.10)

There is a family of solutions to (3.10). We will in particular consider

I (γij ; c, j) = −ϵ 1
4κ2c

γtt + c

l2
γφφ + (cj − γtφ/κ)2

4cγφφ
. (3.11)

Here {c, j} are non-trivial constants of integration. Specifically, they are the Hamilton-Jacobi
constants, with which we construct the phase space of our classical solution. A third constant
of integration, contributing an overall shift in I, could be included. Such a constant would
not contribute to dynamics and is thus not considered further. There is also a freedom
to choose the overal sign of I.

In Hamilton-Jacobi theory, the solution to the classical equations of motion (the Euler-
Lagrange equations for (3.7)) is obtained by introducing another pair of constants {m,w}
such that

∂c I = m and ∂jI = w. (3.12)

Simultaneously solving these equations we can rewrite two of our metric functions in terms
of the third. In particular, we obtain

γtt = ϵ 4κ2
(
γφφ

(
w2 − c2

l2

)
+ c (cm− jw)

)
, and γtφ = κ (cj − 2wγφφ) . (3.13)

We are now in a position to recover the geometry associated with this classical solution. We
substitute (3.13) into the equation of motion for N from (3.7), to find

N2dr2 = ϵ
(dγφφ)2

4mγφφ − j2 − 4γ2
φφ/l

2 . (3.14)

We now have all functions in (3.3) in terms of γφφ ≡ R2, so we can write for the (finally
ϵ-independent) metric solution

ds2 = −
(
fm,j(R) −

(
j − 2wR2/c

)2
4R2

)
d (2cκt)2 + 1

fm,j(R)dR
2

+
(
j − 2wR2/c

)
dφ d (2cκt) +R2dφ2,

(3.15)

where

fm,j(R) = −m+ j2

4R2 + R2

l2
. (3.16)

We have thus recovered the BTZ black hole solution [56]. Explicitly, if we define the rotated
angular coordinate and a rescaled time

ϕ = −φ+ 2wκt, and T = 2cκt (3.17)
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Figure 3. Illustrative plot of the volume density v of radial BTZ slices (in blue), and −v (in
orange) as a function of radial coordinate R, for choices of constants (m, j, l) = (1, 0, 1) (left) and
(m, j, l) = (1, 1/2, 1) (right). The volume time r = ϵ v l is highlighted in thick. It runs from the
boundary to the outer horizon (orange thick) and then continues up until the interior maximal volume
slice (blue thick).

we can write (3.15) in the more familiar form

ds2 = −fm,j(R)dT 2 + 1
fm,j(R)dR

2 +R2
(
dϕ− j

2R2dT

)2
. (3.18)

The transformation (3.17) preserves the periodicity of φ.
We have so far only considered one member of the family of solutions to (3.10). Provided

that we do not use both elements of a conjugate pair {c,m} or {j, w}, we could construct a
solution using any combination of these constants. In particular, we could have considered
the solution

Ī (γtt, γtφ, γφφ;m,w) = 1
κl

√
γφφ −ml2

√
−ϵγtt − 4wκγtφ − 4w2κ2γφφ. (3.19)

The classical equations of motion are solved when

∂mĪ = c, and ∂wĪ = j, (3.20)

and we once again obtain (3.13). We introduce this solution because it will emerge in the
Fourier transform of Wheeler-DeWitt states in section 4.2. It is important to emphasize
that when evaluated on shell, (3.11) and (3.19) are equal to each other and the on-shell
action (up to a constant which acts as a phase).

BTZ volume time The volume time (2.28) for the BTZ solution is

r = ϵR
√
|fm,j(R)| = ϵR

√
−ϵfm,j(R) (3.21)

with ϵ = −1 outside the outer horizon R > r+ and ϵ = 1 inside the outer horizon r− < R < r+.
That is, radial ‘time’ r is equal to r = −vl in the outside-region and to r = vl in the inside-
region (where we’ve rescaled by a factor 2cκl to write (3.21)). Defined in this way, and as
illustrated in figure 3, the volume time r = ϵ v l is monotonous, running from the boundary to
the horizon, and then continuing until the interior maximal volume slice, which is located at
a value of R in the domain r− < R < r+. Beyond that, it no longer provides a well-defined,
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monotonous radial time. In the former region, which is the one we consider, constant r ≡ ϵ v l

surfaces correspond to constant R surfaces. The highlighted volume time evolution in figure 3
corresponds to the arrow of radial bulk evolution in figure 1 for the non-rotating case, and
in figure 2 for the rotating case.

4 Semi-classical Wheeler-DeWitt states

We study the semi-classical WdW states corresponding to the classical BTZ solution discussed
in the previous section. Note that in this section, we restrict the discussion to the interior,
setting ϵ = 1. It is straightforward to include ϵ back in.

It is worth noting that here we have parameterized our WdW states in a different way to
in [26–28]. There, the metric function gtt was used, and solutions in one region of spacetime
were continued into a causally disconnected region by extending the domain of gtt to be both
positive and negative. For instance, in [26], this was to allow a Lorentzian partition function
at future infinity (gtt → −∞) to prepare a wavefunction at the singularity (gtt → +∞). In
this work, we interpret the dual theory (the T T̄ -deformed CFT) to live on a slice in the
same causal region as the WdW state. Thus, we use our ϵ to indicate which causal region
that is. This has a more natural connection with our volume time interpretation of the
WdW equation presented in section 2.

4.1 From classical to semi-classical

In order to construct semi-classical quantum states of the bulk, we follow the canonical
approach of [58]. The classical Hamiltonian is promoted to an operator, and the classical
Hamiltonian constraint H = 0 becomes a constraint on quantum states Ψ, namely the Wheeler-
DeWitt equation HΨ = 0 in (2.13). Observe that in (3.6) we have an action of the form

I[N, γij ] =
∫
d3xN

[ 1
2N2GAB γ̇

Aγ̇B − V (γA)
]
, (4.1)

and in (3.8) we have a corresponding total Hamiltonian of the form

NH = N

[1
2G

ABpApB + V (γA)
]
. (4.2)

Here, V (γA) is an effective potential of the metric functions γij and GAB is the mini-superspace
DeWitt metric as in [58]. Each index A,B corresponds to two spacetime indices tt, tφ, φφ,
with γij in the role of configuration space coordinates qA or γA, and pij in the role of their
corresponding momenta pA. The (A,B) notation, compared to the (ijkl) notation in section 2,
follows the quantum cosmology literature conventions, see e.g. chapter 8 of [39].

In constructing the operator H, momenta are promoted to operators, and there is an
ambiguity in the order of derivatives. The choice we consider here is the same as in [26–28];
which although differing from the recent work of [2, 3], follows the original prescription
of [59, 60] and does not affect the leading order semi-classical physics. Specifically, we
require that the quantization procedure should be covariant with respect to coordinate
transformations in mini-superspace, or equivalently redefinitions of the metric functions. This
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can be achieved by choosing as the Wheeler-DeWitt equation [59, 60](
−ℏ2

2 ∇2 + ℏ2 ηR + V (γij)
)

Ψ = 0. (4.3)

Here, ∇2 is the Laplacian for the DeWitt metric
√
−G∇2 = ∂γA

(√
−GGAB∂γB

)
, R is the

curvature of the DeWitt metric, and η an arbitrary constant. The role of the η term is to
ensure invariance of the Wheeler De-Witt equation under lapse rescalings in the classical
action (4.1). Specifically, the Wheeler De-Witt equation is invariant under lapse rescalings
N → Ñ = Ω−2N if (see e.g. [41, 61])

η = − (n− 2)
8(n− 1) , (4.4)

where n is the dimension of the mini-superspace, for n ≥ 2. Note that η = 0 for mini-
superspaces with only two degrees of freedom, such as in [26–28], so the η term in (4.3)
is then not present. In our present discussion, we are dealing with a three-dimensional
mini-superspace; meaning that we require η = −1/16 for our WdW equation to be invariant
under lapse rescalings [41, 60].

However, the presence of the η term, and even the operator ordering ambiguity, are not
relevant if one is only concerned with leading order semi-classical physics, as we are in this
work. Observe that for solutions of the form eiI/ℏ, the leading order contribution (O(ℏ0)) is

1
2 (∇I)2 + V (γij) = 0, (4.5)

which is the Hamilton-Jacobi equation for (4.1). Indeed, the same leading order contribution is
obtained for any choice of operator ordering. That is, in the semi-classical regime, it is possible
to form a basis of Wheeler-DeWitt states by exponentiating the Hamilton-Jacobi solution.

4.2 Semi-classical states of the BTZ black hole

For our set-up, we can read off that the mini-superspace DeWitt metric (equal to Gijkl) is

GAB = 1
4κ
√
gttgφφ − gtφ

2


0 0 −1
0 2 0
−1 0 0

 (4.6)

where A,B refer to tt, tφ, φφ. The Wheeler-DeWitt equation, with η = −1/16, is therefore[
ℏ2
(

1
4
∂2

∂γ2
tφ

− ∂

∂γtt

∂

∂γφφ

)
+ 1

4κ2l2

+ ℏ2

8
(
γttγφφ − γ2

tφ

) (γφφ
∂

∂γφφ
+ γtt

∂

∂γtt
+ γtφ

∂

∂γtφ
+ 3

8

)Ψ = 0.
(4.7)

From section 4.1, we know that to construct a basis of semi-classical solutions to (4.7),
we can consider e±I/ℏ, where I is a solution to (3.10). We therefore introduce the basis

Ψ(γtt, γtφ, γφφ; c, j) = eiI(γtt,γtφ,γφφ;c,j)/ℏ, (4.8)

– 19 –



J
H
E
P
0
1
(
2
0
2
5
)
0
9
2

where here I is the solution introduced in (3.11). The basis of solutions (4.8) solves (4.7) up to
leading semi-classical order, that is O(ℏ0). From the basis (4.8), we construct a general solution

Ψ (γtt, γtφ, γφφ) =
∫ ∞

−∞

dc

2π

∫ ∞

−∞

dj

2πβ(c, j)eiI(γtt,γtφ,γφφ;c,j), (4.9)

where β(c, j) is an arbitrary function. Here, we have only considered the e+iI solution in our
sum. This is the Vilenkin choice of retaining only ‘outgoing modes’ [41, 62]. It corresponds
to the choice of red region that the Σ slices transition into under WdW evolution, in figures 1
and 2, as the outer horizon is crossed. It is important to pick either the e+iI or the e−iI

branch if one wishes to define a positive definite norm when introducing clocks (see [26, 28]
for further discussion). A superposition of the e±iI solutions would lead to decoherence in
the wavefunction, a phenomenon we are not concerned with in this work.

We can obtain another set of semi-classical solutions by constructing a basis of states
from (3.19). That is, we could consider the basis

Ψ (γtt, γtφ, γφφ;m,w) = eiĪ(γtt,γtφ,γφφ;m,w). (4.10)

We can actually recover states formed from the basis (4.10) by Fourier transforming our
solutions (4.9). We define α(m,w) by

β(c, j) =
∫ ∫

dm√
2π

dw√
2π
α(m,w)e−icm−iwj . (4.11)

Substituting (4.11) into (4.9) and evaluating the c and j integral by a 2D stationary phase
approximation, we obtain

Ψ (γtt, γtφ, γφφ) =
∫ ∞

−∞

dm

2π

∫ ∞

−∞

dw

2π α(m,w)
l
√
γφφ√

γφφ −ml2

(
ei(Ī+π/4) + e−i(Ī+π/4)) . (4.12)

To semi-classical order, the prefactors are subleading; thus, the upshot of the above calculation
is that we can alternatively construct general semi-classical solutions as

Ψ (γtt, γtφ, γφφ) =
∫ ∞

−∞

dm

2π

∫ ∞

−∞

dw

2π α(m,w)eiĪ . (4.13)

Again here, we have only considered the e+iĪ branch of solutions.
Of course, (4.11) is nothing more than a change of basis; we are yet to consider a

particular form for β(c, j). It is natural to consider Gaussian wavepackets, as these are
strongly supported on the classical solution. Let us consider a wavepacket

β(c, j) =Nβ exp
{
−im0 (c− c0) − ∆2

c

2 (c− c0)2
}

× exp
{
−i w0j −

∆2
j

2 (j − j0)2
}
.

(4.14)

Here, Nβ =
√

∆c∆j/4π is the normalisation of the wavepacket, and ∆c,∆j are its inverse
width in the c and j directions respectively. These wavepackets are strongly peaked around

– 20 –



J
H
E
P
0
1
(
2
0
2
5
)
0
9
2

{c = c0, j = j0} if ∆c,∆j ≫ 1. We can now explicitly compute (4.9) for the wavepackets (4.14)
by once again implementing a 2D stationary phase approximation. The wavefunction is
strongly peaked on values of the metric function such that

∂I
∂c

∣∣∣∣
c=c0

= m0, and ∂I
∂j

∣∣∣∣
j=j0

= w0. (4.15)

These are of course the conditions which recover the classical solution (3.13) with m = m0
and w = w0. As discussed before, we only consider one of the stationary points in the
stationary phase approximation. To leading semi-classical order, we therefore obtain

Ψ (γtt, γtφ, γφφ; c0, j0,m0, w0) = δ

(
γtt = 4κ2

(
γφφ

(
w2 − c2

l2

)
+ c (cm− jw)

))
×δ (γtφ = κ (cj − 2γφφw))

× exp
{
ic0

(2γφφ

l2
−m0

)}
.

(4.16)

The delta functions in (4.16) impose the classical solution (3.13). Evaluating the on-shell
action (that is, (3.6) on the classical solution), we obtain 2c0γφφ/l

2. That is, the phase
in (4.16) is simply the on-shell action, up to a phase which is a consequence of our choice
of gaussian wavepacket (4.14).

4.3 Quantum spread of the WdW states

The semi-classical quantum wavefunction presented in (4.16) is highly localized upon the
classical solution, and neglects any quantum spread in the wavefunction. In a usual quantum
mechanics, one may quantify the effect of quantum spread in the wavefunction by computing
expectation values of physical observables. To do so, one requires a definition of an inner
product, which is a conserved quantity in the Hilbert space of the quantum theory — a
quantity conserved with respect to some notion of time. That same notion of time describes
the evolution of the quantum state Ψ in some evolution equation (for example, the Schrödinger
equation). As we have emphasised, the Wheeler DeWitt equation encodes a relation between
metric functions on a given slice of spacetime. In that sense, it is “timeless”. Therefore, in
order to define an inner product and compute expectation values, one needs to choose a
coordinate (or some combination of coordinates) to treat as fixed, and label as a “clock”.
Changing the value of that clock is equivalent to evolving between slices.

For an (n+ 1)-dimensional minisuperspace, if one chooses the 0-th coordinate as a clock,
one can use the DeWitt norm introduced in [58] to define an inner product

|Ψ|2q0 ∝ − i

2

∫
dq1 . . . dqn

[
Ψ∗
(√

−GG0A∂AΨ
)
− h.c.

]
, (4.17)

where we employ the notation introduced under eq. (4.2). One has the freedom to rescale
the norm appropriately. One natural choice of clock for our Wheeler DeWitt equation is
γφφ, as it is monotonic from the singularity to the boundary. In particular, this will make
it straightforward to compute the quantum effects as one passes through the horizon. For
the Wheeler DeWitt equation in (4.7), the norm for the clock γφφ is

|Ψ|2γφφ
∝− i

2

∫
dγttdγtφ

1
(γttγφφ − γ2

tφ)1/4 (Ψ∗∂γttΨ − h.c.) . (4.18)
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Because of the (γttγφφ − γ2
tφ)−1/4 factor in the norm, completing computations with (4.18) is

unwieldy for the basis of solutions we have proposed in (4.9), as they are not linear in this
quantity. However, as discussed previously, Wheeler DeWitt equations related by a rescaling
of the lapse function are physically equivalent. As such a rescaling redefines the DeWitt
metric, it also redefines the inner product. Specifically, it introduces a factor of Ω2−n into
the integrand. We find that it is in particular convenient to introduce the lapse rescaling

Ω = γφφ

(
γttγφφ − γ2

tφ

)−1/4
. (4.19)

Under this rescaling, the Wheeler DeWitt equation becomes(
ℏ2
(

1
4

∂2

∂γtφ2
− ∂

∂γtt

∂

∂γφφ
+ 1

2γφφ

∂

∂γtt

)
+ 1

4κ2l2

)
Ψ = 0, (4.20)

and the norm associated with γφφ as a clock

|Ψ|2γφφ
= i

2

∫
dγttdγtφ

1
γφφ

(Ψ∗∂γttΨ − h.c.) . (4.21)

The rescaling by Ω as in (4.19) has another upshot. We remarked earlier that our basis of
solutions (4.8) only solve (4.7) to leading semiclassical order. However, we note that the
basis (4.8) solves the rescaled equation (4.20) to all orders in ℏ. That is to say, these states
were only really an approximate basis of solutions for (4.7), where we had ignored subleading
pre-factors. Those pre-factors are in fact exactly absorbed by the lapse rescaling (4.19), so
that (4.8) is an exact basis for (4.20). So the lapse rescaling not only simplifies computations,
but is also the most convenient choice for keeping track explicitly of the ℏ dependence of
our quantum corrections.

For a general solution (4.9), we evaluate the norm (4.21) to be (from here onwards
dropping the explicit label to the γφφ clock)

|Ψ|2 = 2κℏ
∫

dc dj

(2π)2 c |β(c, j)|2 . (4.22)

To study the quantum spread of the wavefunction, we will in particular study the metric
function γtt, its variance and its conjugate momentum ptt. It will be useful to introduce
a slightly redefined wavepacket β,

β(c, j) =Nβ

√
c exp

{
−im0(c− c0) − ∆2

c

2 (c− c0)2
}

× exp
{
−iw0j −

∆2
j

2 (j − j0)2
}
,

(4.23)

with Nβ = 1/
√
πκℏ

(
1 + 2c2

0∆2
c

)
/(∆3

c∆j). This wavepacket is strongly peaked on c0 and w0
for ∆c ≫ 1 and ∆j ≪ 1. The leading order semiclassical behaviour of this wavepacket is
thus still (4.16); we have additionally now specified the next-to-leading order behaviour such
that when (4.22) is evaluated on (4.23), the norm is |Ψ|2 = 1.
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We can now proceed to evaluate the expectation value of the metric function γtt. In
general, we have (now reinstating ϵ = ±1)

⟨γtt⟩ = ϵ 4κ2ℏ
∫

dcdj

(2π)2

(
2cγϕϕ∂jβ(c, j)∂jβ

∗(c, j) − 2c3γϕϕ

l2
|β(c, j)|2

+ i
[
c2ℏβ(c, j) (j∂jβ

∗(c, j) − c∂cβ
∗(c, j)) − h.c.

])
,

(4.24)

which on our new wavepacket evaluates to

⟨γtt⟩ = ϵ 4κ2
(
γφφ

(
w2

0 − c2
0
l2

)
+ c0 (c0m0 − j0w0)

)
+ O

(
ℏ2,

1
∆2

c

,∆2
j

)
= γtt|classical + O

(
ℏ2,

1
∆2

c

,∆2
j

)
.

(4.25)

We may similarly evaluate the variance

⟨γ2
tt⟩ − ⟨γtt⟩2 = 8c2

0κ
4
(
w2

0
∆2

j

+ ℏ2∆2
c

)
+ O

(
ℏ2,

1
∆2

c

,∆2
j

)
. (4.26)

Near the horizon (γtt|classical → 0), we find that

⟨γ2
tt⟩ − ⟨γtt⟩2

⟨γtt⟩2

∣∣∣∣∣
⟨γtt⟩→0

= 2c2
0
(
c2

0 − l2w2
0
)2

l4 (c0m0 − j0w0)2 ℏ2
∆2

c

∆4
j

+ O
(
ℏ0,∆0

j ,∆0
c

)
. (4.27)

Recall that ℏ,∆j ≪ 1 and ∆c ≫ 1. Thus, the significance of (4.27) is that the variance
is significantly larger than the expectation value of ⟨γtt⟩ near the horizon. That is, the
spread of the wavefunction becomes very large around the horizon, and quantum effects
dominate over semiclassical ones.

We verify the result (4.26) by computing the expectation value of its conjugate momentum
and recovering the Heisenberg uncertainty limit. As noted in earlier discussion, there is an
ordering ambiguity when defining momentum operators such as ptt = −iℏ∂γtt . We choose a
prescription consistent with our Laplacian normal ordering that recovers a real answer

⟨ptt⟩ = (−iℏ) i2

∫
dγttdγtφ

1
γφφ

(Ψ∗∂γtt (∂γttΨ) − ∂γttΨ∂γttΨ∗)

= − ϵℏ
2κ

∫
dcdj

(2π)2 |β(c, j)|2
(4.28)

which gives

⟨ptt⟩ = −ϵ 1
4κ2c0

+ O(∆2
c) = ptt

∣∣∣
classical

+ O(∆2
c). (4.29)

We similarly compute the variance to be

⟨(ptt)2⟩ − ⟨ptt⟩2 = 1
32c4

0κ
4∆2

c

+ O
( 1

∆3
c

)
(4.30)

and the uncertainty product(
⟨(ptt)2⟩ − ⟨ptt⟩2

) (
⟨γ2

tt⟩ − ⟨γtt⟩2
)

= ℏ2

4 + O
( 1

∆2
c

,∆2
j

)
(4.31)

We thus have a state which saturates the uncertainty principle, which is to be expected for a
Gaussian wavepacket. This computation verifies our computation of the variance in ⟨γtt⟩.
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Figure 4. Visualization of different surfaces that enter the energy discussion: 2-dimensional Σ (blue)
at constant R, 2-dimensional ΣT (pink) at constant T and 1-dimensional B (red) at their intersection.

5 Energy discussion: CFT and T T̄ interpretations

In sections 3 and 4, we have constructed a WdW state for the BTZ geometry, following the
program of [26–28]. As in those works, we expect this state to have a dual interpretation as a
QFT path integral. In [26–28], it was conjectured what the holographic relationship was, and
evidence was gathered about the properties of the dual theory. Here, in a (2 + 1)-dimensional
set-up, we can instead rely on earlier literature [16] to identify the dual theory more precisely
with a T T̄ -deformed theory. In this section, we calculate gravitational energy measures for
the BTZ solution of section 3, including the equivalent of the energy measure discussed
in [26]. We discuss their holographic interpretations in terms of a CFT dual at the conformal
boundary and a T T̄ dual on the Σ slice. In particular, we review the match to the T T̄

spectrum, first presented in [16].

Brown-York stress tensor, conserved charges and energy The Brown-York stress
tensor (2.37) for a solution is given by

T ij = 2√
−γ

πij , (5.1)

with the contribution from the counterterm Sct included by using (3.2). It measures the
gravitational energy-momentum of the solution in the region bounded by the hypersurface Σ
with induced metric γij . We will in this section use both the (r, t, φ) coordinates and (R, T, ϕ)
coordinates of section 3, and write out when necessary the components of γij and T ij to
make clear which of the coordinates are being used. We consider Σ to be a hypersurface
in the exterior region of the black hole at constant r, or equivalently, at constant R. The
induced metric on a constant-R hypersurface Σ of the metric (3.18) is γµν = gµν − nµnν

in terms of the normal nµ = δR
µ /
√
fm,j(R).

Following the volume time discussion in section 2, let us also introduce the trace-free
part T̃ ij of the Brown-York tensor through

Tij = T̃ij + 1
d
γijΘ. (5.2)

– 24 –



J
H
E
P
0
1
(
2
0
2
5
)
0
9
2

It is the stress tensor associated with the metric γ̃ij ,

T̃ ij = 2√
−γ̃

π̃ij = 2 π̃ij , (5.3)

with γ̃ij and π̃ij defined in (2.20)–(2.19). All objects with tildes are tensors whose indices are
raised and lowered with the determinant-one metric γ̃ij . Therefore, T̃ i

j =
√
−γ T i

j − 1
d

√
−γ δi

jΘ.
With the Brown-York tensor, one can define an energy density E , with respect to the time

T of the BTZ solution. The definition naturally requires the introduction of constant-T slices
ΣT with induced metric hab (with a, b = R,ϕ). In an ADM decomposition notation, we have
ds2 = −N2

T (R)dT 2 + hab(R)dxadxb, with N2
T ≡ fm,j and hϕ

T = −j/(2R2), as can be read off
from (3.18). The normal to ΣT is given by uµ = −NT δ

T
µ , in terms of which the induced metric

is hµν = gµν + uµuν . The proper energy density E is then given by the projection [35, 36]

E = uiujT
ij = u2

TT
T T = N2

TT
T T = fm,jT

T T . (5.4)

The corresponding energy for Σ is

E =
∫

B
dD−2x

√
σuiujT

ij (5.5)

with σµν = γµν +uµuν the intrinsic metric of the constant-R, constant-T , (D-2)=1-dimensional
hypersurface B at the intersection of Σ and ΣT . The different hypersurfaces Σ, ΣT and
B are shown in figure 4.

The conserved charge associated with a Killing vector field ξ on Σ is [35, 36]

Qξ =
∫

B
dD−2x

√
σξiujT

ij . (5.6)

For the Killing vector ξ(T ) ≡ ∂T , it gives the conserved BTZ mass M ≡ Qξ(T ) , and for
ξ(ϕ) ≡ ∂ϕ, the conserved BTZ angular momentum J ≡ −Qξ(ϕ) . Using u · ξ(T ) = −NT , the
mass can be written as

M = −
∫
dϕ

√
−γ T T

T , (5.7)

the angular momentum as

J =
∫
dϕ

√
−γ T T

ϕ , (5.8)

and the energy as

E =
∫
dϕ

√
−γNTT

T T (5.9)

with γ = γT Tγϕϕ − γ2
T ϕ. In the non-rotating case, the mass and energy differ only by a lapse

factor, M = NTE, and in the rotating case by

E = 1
NT

(M − j

2R2J). (5.10)
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In the asymptotic limit R → ∞ where Σ reaches the boundary, the conserved mass
is given by the constant ADM mass

M |∞ = π

κ
m. (5.11)

Similarly, the constant j in the BTZ solution (3.18) is the conserved charge associated with
asymptotic invariance under rotations J |∞ = πj/κ. That is, the constants m and j of the
BTZ solution are the conserved charges associated with asymptotic invariance under time
translations and rotations, i.e. mass and angular momentum [56].

5.1 Dual CFT energy

We now turn to a discussion of the dual CFT energy, which starts with an application of
the strategy used in [26] to our rotating solution. The on-shell action Icl as a function of
the boundary data is equal to the Hamilton’s principal function I in (3.11), with ϵ = −1 in
the exterior [42]. The effect of the counterterm can be included by performing the canonical
transformation (3.2), which amounts to an on-shell action Scl = Icl + Sct equal to the
Hamilton’s principal function S for the momenta πij = ∂γijS(γij),

Scl[γtt, γφφ, γtφ; c, j] = S, (5.12)

with

S (γij ; c, j) = 1
4κ2c

γtt + c

l2
γφφ + (cj − γtφ/κ)2

4cγφφ
−

√
−γ2

tφ − γttγφφ

lκ
. (5.13)

This object has the invariance

S[γtte
−k, γφφe

k, γtφ; c e−k, jek] = S[γtt, γφφ, γtφ; c, j]. (5.14)

From this, it follows that ∂kS|k=0 = 0, which can be written as

−c ∂cS + j ∂jS = γtt
δS
δγtt

− γφφ
δS
δγφφ

(5.15)

or still as

−c ∂cS + j∂jS =
√
−γ
2 (T t

t − Tφ
φ ). (5.16)

The first term on the left hand side can also be written as ∂k0S, with the constant c = −e−k0 ,
to connect to the notation used in [26]. The right hand side is equal to

√
−γ(T t

t − Θ
2 ), or

in terms of the traceless tensor T̃ij ,

−c ∂cS + j∂jS = T̃ t
t . (5.17)

By HJ construction, the expression is constant. More precisely, from (3.12), it is equal to
−cm + jw. On the right hand side, the constant can be expressed either as T̃ t

t or as the
asymptotic limit limr→∞

√
−γ T t

t , using that in that limit, the trace of the stress tensor of
the solution vanishes, limr→∞ Θ = 0 (for our flat slicing).
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Through the holographic dictionary, the Brown-York stress tensor for the asymptotic
radial slice Σ calculates the expectation value of the dual CFT stress tensor. As such, the
integrated right hand side of (5.17) calculates the CFT charge

⟨Q⟩CF T
ξ(t)

=
∫
dφ ⟨T̃ t

t ⟩CF T (5.18)

associated with translations in t, to be given by 2π(−cm + wj).
Let us also pause explicitly at the interpretation in terms of the BTZ coordinates (R, T, ϕ),

used in (3.18). From the coordinate transformation (3.17), we have

T t
t = T T

T + w

c
T T

ϕ , Tφ
φ = T ϕ

ϕ − w

c
T T

ϕ (5.19)

such that

2π (−c ∂cS + j∂jS) = 2cκ
∫
dϕ

√
−γ

(
T T

T + w

c
T T

ϕ − 1
2Θ
)

(5.20)

= 2cκ
∫
dϕ

(
T̃ T

T + w

c
T̃ T

ϕ

)
. (5.21)

The factor of 2cκ comes from a factor dT/dt in the measure, as γ in these lines now refers
to the determinant in the (T, ϕ) coordinates. Using the definitions (5.7) and (5.8), the
first line (5.20) becomes

2π (−c ∂cS + j∂jS) = 2cκ
(
−M + w

c
J − 1

2Θ
)
. (5.22)

All terms on the right hand side are R-dependent, M ≡ M(R), etc. But again, using
limr→∞ Θ = 0 for our slicing, the constant expression is equal to 2cκ(−M |∞ + w

c J |∞), or
by (5.11) for the ADM mass, indeed equal to 2π(−cm + wj) on the left hand side. This
is a consistency check on the definitions of m and j from the HJ perspective in (3.12) on
one hand, and as ADM mass (5.11) and angular momentum from the Noether charges
in (5.6)–(5.8) on the other.

From (5.21), it follows that the ADM mass π
κm and momentum π

κj respectively calculate
the classical values of the CFT charges (QCF T

ξ =
∫
dϕ jT

CF T ) associated with translations
in time T and angular direction ϕ,

⟨Q⟩CF T
ξ(T )

= −
∫
dϕ ⟨T̃ T

T ⟩CF T , ⟨Q⟩CF T
ξ(ϕ)

=
∫
dϕ ⟨T̃ T

ϕ ⟩CF T , (5.23)

for conformal currents ji
CF T = T̃ ij

CF T ξj .

5.2 Dual T T̄ energy

Now we turn to the energy discussion for non-asymptotic radial slices Σ of the BTZ met-
ric (3.18), at a constant value of R. The induced metric on Σ is ds2

Σ = −fm,j(R)dT 2 +
R2
(
dϕ− j

2R2dT
)2

, which can be written in terms of new coordinates (t̃, φ̃) as

ds2
Σ = −dt̃2 +R2 dφ̃2 (5.24)
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with

t̃ = NTT, φ̃ = ϕ− j

2R2T. (5.25)

By the cut-off holography proposal of [16], there is a dual interpretation of the BTZ solution
with boundary Σ at a finite value of R in terms of a T T̄ theory living on the fixed boundary
metric ds2

Σ, with R in the role of the radius of the cylindrical geometry. One of the main
arguments for this proposal is the identification of the cut-off BTZ energy spectrum with
the T T̄ spectrum. We repeat this argument here, focusing on the difference between energy
E and mass M .

For the T T̄ spectrum, we look at the T T̄ conserved charge associated with translations in t̃,

⟨Q⟩QF T
ξ(t̃)

=
∫
dφ̃

√
σ ⟨T t̃

t̃ ⟩QF T (5.26)

with σ = R2 the determinant of the metric ds2
B = R2 dφ̃2 on the constant-time hypersurface

B. On the bulk side, this is calculated by the conserved charge Qξ(t̃) for the Killing vector
ξ(t̃) = ∂t̃, or mass

Mt̃ ≡ Qξ(t̃) =
∫
dφ̃

√
σut̃T

t̃
t̃ (5.27)

where we used the definition (5.6). To distinguish it explicitly from the mass charge Qξ(T )

introduced in (5.7), let us in this section use the notation MT for (5.7) and Jϕ for (5.8). Then
we find by simple tensor calculus the following relation5 between Mt̃, MT and Jϕ:

Mt̃ = 1
NT

(MT − j

2R2Jϕ). (5.28)

This can be recognized as the energy of the constant-R Σ slices with respect to bulk time
T , given as E in (5.10),

Mt̃ = E. (5.29)

This is the reason it is the energy formula (5.5) that is used (in [10, 16, 18] etc.) to calculate
what can be interpreted as the T T̄ spectrum. We are just making very explicit here the
comment in [16] that E calculates the mass charge for ds2

Σ with lapse equal to one (in (5.24)).
Using the formulas (5.4) for the energy density and (5.5) for E, we recover

E = −

√
fm,j(R)
κR

+ 1
κl

(5.30)

and

E =
∫
dϕR E = −

2π
√
fm,j(R)
κ

+ 2πR
κl

, (5.31)

with the function fm,j given in (3.16). The second term in these expressions is the contribution
coming from the counterterm in the action. It is such that in the limit of R→ ∞, both E and

5For t′ = at, θ′ = cθ + bt, we have Mt′ = 1
a

(Mt + b
c
Jθ).
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E vanish, as
√
fm,j(R) → R/l. It is the dimensionless object ER that asymptotes to lM |∞.

The T T̄ spectrum EQF T on a cylinder of size L (equal to R in (5.24)) is known as a function
of the T T̄ coupling λ and the seed CFT’s energy and momentum, given holographically by
M |∞ in (5.11) and J |∞ below equation (5.11). In [16, 18], the dimensionless combination
ER is matched to the T T̄ spectrum EQF TL for the λ identification (2.45), and we find
agreement with that conclusion.

In this section we have focused on the BTZ solution, and identified the bulk mass or
conserved charge (5.29) that calculates the T T̄ energy spectrum (5.31) for T T̄ coupling
λ = −1

2κl. This constitutes a traditional holographic match between conserved charges on
each side of the duality (which is slightly obscured by using the energy formula (5.5) rather
than (5.6) in e.g. [10, 16]). It adds an explicit entry

Mt̃ = EQF T (5.32)

to the duality ψ = ZQF T in (2.49) applied to the BTZ wavefunction (4.16), with ‘QFT’
referring to the dual T T̄ theory.

5.3 WdW perspective on T T̄ energy levels

It is well-known that due to the square root structure of the T T̄ energy levels, these can
become imaginary. The standard cut-off holographic interpretation of this is the following: the
gravitational energy levels (5.31) of cut-off BTZ become imaginary when the cut-off crosses
the BTZ horizon and the BTZ solution as such no longer ‘fits’ in the imposed holographic
box. From the WdW perspective, one can argue that the imaginary energy levels are an
allowed feature of the theory, and correspondingly that the holographic interpretation of
the WdW wavefunction as a T T̄ partition function holds even when the bulk cut-off crosses
the horizon. Let us expand on this argument.

In the discussion of the semi-classical states for BTZ, we chose in section 4.2 to construct
the Vilenkin wavefunction Ψ given in (4.10). This is the wavefunction with (+iI) in the
exponent. It describes the set of hypersurfaces Σ that cover the blue and red region in figure 1,
i.e. that cover the outside-horizon region and the future black hole interior. Thinking of these
hypersurfaces as evolving in the r-direction, the Vilenkin wavefunction (4.10) corresponds to
‘upwards’ evolution along r in figure 1. The other WKB solution, with (−iI) in the exponent,
similarly would correspond to ‘downwards’ evolution along r in figure 1, associated with the
set of hypersurfaces Σ covering the outside-horizon and the past black hole interior. Since r
becomes a timelike direction past the horizon, the choice of sign in the exponent of our WKB
solution (4.10) corresponds to a breaking of time symmetry at the crossing of the horizon. This
leads to a CPT symmetry breaking and associated non-unitarity, which in turn is reflected in
energy levels becoming complex. This is entirely consistent with the T T̄ interpretation, as
the dual T T̄ energy levels become complex precisely at the point of crossing the horizon in
the bulk description. This provides the WdW wavefunction point of view on the origin of
imaginary energy levels in T T̄ . In [3], such a point of view was discussed for Cauchy slices,
whereas our discussion here is for the radial slicing in figure 1 that we consider in this paper.
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Entirely analogous, the red regions in figure 2 where the r coordinate of the rotating BTZ
solution becomes timelike correspond to imaginary T T̄ energy levels in the dual description
(fm,j < 0).

The preceding argument makes use of the classical solution I in (3.11), exponentiated to
give a WKB solution (4.10). More precisely, (4.10) is a Vilenkin wavefunction solution Ψ to
the WdW equation to leading semi-classical order. In section 4, we included some quantum
effects by discussing the construction of more general wavepacket solutions (4.9) that are
peaked around the classical solution. We will here investigate if the wavepacket solutions
provide additional information about the T T̄ spectrum, particularly as the horizon is crossed.

We constructed a particular wavepacket solution with large ∆c and small ∆j (centered
on classical values c0 and w0 of c and w) by using β defined in (4.23). It is such that the
DeWitt norm of the wavepacket solution Ψ in (4.22) is one. This norm is defined with respect
to a particular choice of clock or ‘time’ in mini-superspace, namely γϕϕ. This is not only
a natural choice of clock from the bulk perspective, as explained in section 4.3, but also
from the dual T T̄ perspective, as we discuss next.

The T T̄ coupling λ given in (2.45) has dimensions length squared. For T T̄ on a cylinder,
dual to cut-off BTZ gravity, the dimensionless combination that appears in the T T̄ energy
expression is the T T̄ coupling divided by the cylinder radius squared. From the dual bulk
perspective, this is the dimensionless combination

λ̂ = λ

R2 (5.33)

with R the radial coordinate of BTZ (3.18). This makes it particularly clear that the T T̄
deformation corresponds to moving inwards into the holographic bulk. It also makes that the
choice of clock γφφ ≡ R2 in (4.21) can be recognized as describing T T̄ evolution λ̂ ∼ 1/γφφ.
Moreover, it is the more well-behaved choice of clock than the volume time r = ±vl in (3.21)
to investigate near-horizon physics, since volume time switches sign at the horizons as pictured
in figure 3. This volume time was argued (from an ADM reparametrization perspective) to
provide the natural bulk evolution dual to T T̄ in the semi-classical regime. In this regime,
the WdW equation for the T T̄ partition function can be rewritten as a Schrödinger equation
in volume time. Near the boundary of the BTZ solution, its volume time and γφφ time
indeed coincide, as they should: v ∼ R2 in the limit R → ∞. Volume time is the useful
choice of time to describe the bulk evolution corresponding to the initial T T̄ deformation of
a holographic CFT, but to probe the bulk deeper we use γφφ ≡ R2 (see also the discussion
in the last paragraph of section 2.1).

Now that we have established that γφφ is a sensible choice of time for T T̄ interpretations,
we revisit the results of section 4.3 from this perspective.

The gravitational energy E in (5.9) that calculates the dual T T̄ energy can be written
in terms of the momenta as

E ∼ √
γtt π

tt. (5.34)

On the wavepacket, the expectation value of the energy in the γφφ clock is ⟨E⟩ ∼ ⟨√γttπ
tt⟩.

Here, πtt differs by the contribution of the counterterm from ptt, the expectation value of
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which was calculated in (4.29). In terms of the coordinates γij and momenta pij , there are thus
contributions to the energy of the form ⟨√γttp

tt⟩ and of the form ⟨
√
−γttγγ

tt⟩. The notation
is short for expectation values with respect to ‘time’ γφφ, i.e. using the norm (4.21). Both of
these contributions can in principle be calculated using the techniques of section 4.3, there
put to use to obtain ⟨γtt⟩ and ⟨ptt⟩. In practice, however, the equivalent expressions to (4.24)
and (4.28) are very hard to obtain, and we have not succeeded in directly calculating ⟨E⟩ for
the wavepacket as a result. That said, in (4.27) we obtained the result that the variance of
γtt becomes so large around the horizon that quantum effects dominate. It is highly likely
that the more complicated terms contributing to E, both dependent on γtt, will similarly
have a variance that blows up around the horizon. Indeed, it would be sufficient for either the
ptt contribution or the counterterm contribution to E to have such a near-horizon behavior
to cause a breakdown of the wavepacket description. Note however that the counterterm
contribution classically only is responsible for the addition of a term 2πR/(κl) to the energy
in (5.31), and as such plays no role in the classical discussion of imaginary energy levels
due to the square root structure

√
fm,j(R).

To summarize, the energy levels becoming complex beyond the horizon can be understood
in terms of a CPT breaking argument at the classical level. On the wavepacket (4.23) centered
on the classical solution, the result (4.27) for the expectation value and variance of γtt indicates
that the wavepacket description of the energy levels is highly likely to break down near the
horizon, where quantum effects will instead dominate.

6 Discussion and outlook

In this work, we have studied the radial canonical formalism of asymptotically AdS3 gravity.
In its original form, the WdW equation is a relation between metric functions on a slice of
spacetime, and with no explicit time parameter is in a sense “timeless”. By employing a
deparametrization strategy, as in [32], we showed in section 2 that in a radial slicing the
volume density of the radial slices can in fact be interpreted as a time, and the WdW equation
as a Schrödinger equation. From a holographic point of view, we concluded that at the
semi-classical level, the Lorentzian partition function of T T̄ theory satisfies a Schrödinger
equation in volume time describing evolution into the bulk, and the T T̄ operator expectation
value can be naturally interpreted in terms of the bulk volume time Hamiltonian.

We looked to test our insight from our volume time interpretation by studying WdW
states of a (2+1)-dimensional theory of gravity and their dual T T̄ interpretation. In particular,
in sections 3 and 4 we turned our attention to the BTZ solution, constructing WdW states
from a Hamilton-Jacobi function. A technical upshot of this computation is that we were able
to include rotation of the black hole solution. We constructed both the classical solution and
wavepacket solutions, in Vilenkin wavefunction forms. On the wavepackets, we investigated
the expectation value and variance of mini-superspace coordinates and momenta in section 4.3.
Having constructed bulk semi-classical states, as in [26–28] we expected the WdW state
to be dual to a quantum theory. What we do here is specifically identify it as a (1+1)-
dimensional T T̄ -deformed CFT theory, following [16]. The CFT limit corresponds to the
asymptotic boundary of the bulk, and deforming the theory corresponds to moving the theory
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to effectively living on a radial slice inside the bulk. In section 5, we explicitly matched
quantities in the WdW state to quantities in the T T̄ theory.

Let us also mention some directions for future work. In this work, we have considered
a (2+1)-dimensional bulk. The higher-dimensional generalization of T T̄ (in that context
called T 2) [50, 55] should allow a completely equivalent interpretation of the AdS4 solution
of [26] as discussed in our section 5. Inclusion of a gauge field (such as in [28]) or inclusion
of rotation in such an analysis may also lead to useful insights.

Connections between T T̄ and WdW have been further explored in the context of Cauchy
slice holography [3]. Our work presented here on the radial WdW formalism in AdS3 uses
a different set-up than the one considered in Cauchy slice holography. Specifically, the Σ
slices we consider in figure 1 are not Cauchy slices anchored on the boundary at constant
boundary time. We defer investigations of their set-up to later work. In addition, we plan to
consider applications of the techniques discussed in this paper to de Sitter spacetimes, where
the volume time evolution will correspond to actual timelike evolution. For this, relevant
work has very recently appeared [33].
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A ADM deparametrization

The action I of a mechanical system with M true degrees of freedom was discussed in
section 2 to have a parameterized incarnation

I =
∫
dτ (pj∂τqj −NH(pj , qj)) (j = 1, . . . ,M + 1). (A.1)

This action is invariant under reparametrizations τ → τ ′(τ) of the parameter τ , with N(τ)
transforming in the same way as ∂τqj . Variation with respect to the field N(τ) imposes
the constraint H(pj , qj) = 0 with solution pM+1 = −Htrue(pi, qi, qM+1). It is a Lagrange
multiplier, and thus undetermined by the dynamics of the system. Variation with respect to
pM+1 sets q′M+1(τ) ∼ N(τ), showing that qM+1(τ) is equally undetermined by the dynamics.
That is, qM+1(τ) can be freely fixed by a gauge choice or ‘coordinate condition’. For example,
qM+1(τ) = τ .

Let us now very explicitly write out the steps that take us from the parameterized
form of the action to the unparameterized form. For each step, there will be an explicit
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equivalent in the gravity discussion.

I =
∫
dτ (pj∂τqj −NH(pj , qj)) (j = 1, . . . ,M + 1) (A.2)

=
∫
dτ (pj∂τqj) |

pM+1=−Htrue(pi,qi,qM+1) (j = 1, . . . ,M + 1, i = 1, . . . ,M) (A.3)

=
∫
dτ (pi∂τqi −Htrue(pi, qi, qM+1)∂τqM+1) (i = 1, . . . ,M) (A.4)

=
∫
dqM+1

(
pi

dqi

dqM+1
−Htrue(pi, qi, qM+1)

)
(i = 1, . . . ,M) (A.5)

=
∫
dt

(
pi
dqi

dt
−Htrue(pi, qi, qM+1)

)
(i = 1, . . . ,M). (A.6)

The first step, going to (A.3), consists of substituting the constraint solution. In (A.4),
the resulting action is written out in terms of the M true variables, and the (M + 1)’th
variables are singled out. Next, in (A.5), the gauge choice qM+1(τ) = τ is made, and finally
in (A.6), the notational choice is made to write qM+1 ≡ t, identifying a time coordinate t as
the independent variable in terms of which the action takes the canonical form (A.6). The
combination of these last two steps can be referred to as imposing a coordinate condition.
It corresponds to the introduction of an ‘intrinsic’ coordinate, as opposed to the arbitrary
parameter τ , which is ‘extrinsic’ to the system.

Now we can apply the same steps to the gravitational action

S =
∫
dr d2x

(
πij∂rγij −NH(πij , γij)

)
(A.7)

that we are dealing with in section 2:

S =
∫
dr d2x

(
πij∂rγij −NH(πij , γij)

)
(A.8)

=
∫
dr d2x

(
πij∂rγij

)
|
πv=−HADM (π̃ij ,γ̃ij ,v)

(A.9)

=
∫
dr d2x

(
π̃ij

v
+ 1

2 γ̃
ijπv

)
(v∂rγ̃ij + γ̃ij∂rv)

∣∣∣∣∣
πv=−HADM (π̃ij ,γ̃ij ,v)

(A.10)

=
∫
dr d2x

(
π̃ij∂rγ̃ij + πv∂rv

)∣∣∣
πv=−HADM (π̃ij ,γ̃ij ,v)

(A.11)

=
∫
dv d2x

(
π̃ij∂vγ̃ij −HADM (π̃ij , γ̃ij , v)

)
. (A.12)

The steps echo the mechanics discussion (A.2)–(A.6): the deparametrization consists of first
substituting the constraint solution (2.24), with notation (2.26), then rewriting in terms
of the true degrees of freedom introduced in (2.21), and finally imposing the coordinate
condition −

√
−γ(r) = r ≡ −v that identifies the volume time v as a preferred radial ‘time’.

(For conciseness, we set the AdS radius equal to one in this appendix.)
We summarize the equivalence of the mechanics and radial gravity discussion in table 1.
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Mechanics Radial canonical gravity
‘time’ parameter τ r

degrees of freedom (pj , qj) (j = 1, . . . , M + 1), (πij , γij)
preferred ‘time’ qM+1(τ) = τ ≡ t −

√
−γ(r) = r ≡ −v

true Hamiltonian pM+1 ≡ −Htrue(pi, qi, qM+1) πv ≡ −HADM (π̃ij , γ̃ij , v)
true degrees of freedom (pi, qi) (i = 1, . . . , M) (π̃ij , γ̃ij)

Table 1. Comparison of roles in Hamiltonian formulation of classical mechanics and radial canonical
AdS3 gravity.

B BTZ from the Hamilton-Jacobi equation in (v, k) notation

This appendix shows a repetition of the calculations presented in section 3 using a notation
that makes the volume dependence explicit. In particular we will use the variables k, v
and ω. The variable k measures the stretching of the metric component gtt in relation to
gφφ at a fixed spatial volume v. This is the reason why one can say that k is a measure of
anisotropy [26]. On the other hand, ω represents the angular frequency. The metric ansatz
for the solution inside the event horizon is given by the following expression:

ds2 = −N2dr2 + vekdt2 + ve−k(dφ− ωdt)2, (B.1)

where N, k, v and ω are functions of the radial coordinate r. Evaluating the gravitational
action S on (B.1), we reach the following Lagrangian:

L = v

4κN

(
(∂rk)2 − (∂rv)2

v2 + e−2k(∂rω)2
)

+ Nv

κl2
. (B.2)

From this Lagrangian one can obtain the momenta conjugate to k, v, ω in the usual way:

pk = ∂L

∂k̇
= v

2κN k̇; (B.3a)

pv = ∂L

∂v̇
= − v̇

2κNv ; (B.3b)

pω = ∂L

∂ω̇
= v

2κN e−2kω̇, (B.3c)

where the dot represents differentiation with respect to r. Using these results, the Hamiltonian
reads as follows:

H = Nκ

v

[
p2

k − v2p2
v + e2kp2

ω − v2

κ2l2

]
, (B.4)

and the Hamiltonian constraint:

−p2
k + v2p2

v − e2kp2
ω + v2

κ2l2
= 0, (B.5)

which yields the following constraint equation for the on-shell action:

−(∂kI)2 + v2(∂vI)2 − j2e2k + v2

κ2l2
= 0, (B.6)
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where we have imposed the condition ∂ωI = j. This equation is solved by the action given by:

I = v

κl
sinh(k + k0) − l κ

j2e(k−k0)

2v + jω. (B.7)

At this point, one can recover the usual BTZ metric from (B.1). Firstly, we introduce
the constants {ω0, ϵ0} such that:

∂k0I = ϵ0; (B.8a)
∂jI = ω0. (B.8b)

Solving these equations will give expressions for the metric components in terms of ω0 and
ϵ0. Then, we make the change of variable ve−k = 1

z2 . From the Euler-Lagrange equation
for N we derive the following expression:

N2dr2 = l2(v2(dk2 + e−2kdω2) − dv2)
4v2 . (B.9)

Making the already mentioned change of variable and inserting the solutions of equations (B.8)
into (B.9), one reaches the following metric in the usual BTZ form:

ds2 = 1
z2

 dz2

f(z) − f(z)dt̃ 2 +
(
dφ−

(
ek0

l
ω0 + j κ z2

)
dt̃

)2
 , (B.10)

where z = 1
r , t̃ = t l e−k0 and

f(z) = 1
l2

− 2κ ϵ0
l

z2 + j2 κ2 z4.

This derivation, which is analogous to the one presented in [26], shows another way
to recover the BTZ solution starting from a mini-superspace ansatz that has an explicit
dependence on the volume of the constant r slices (v) making it easier to relate it to the
volume time discussion in section 2.

B.1 Clocks and expectation values

Following the strategy described in section 4, the quantized version of the Hamilton-Jacobi
equation (B.6) reads as follows:

∂2
kΨ − v∂v(v∂vΨ) + v2

κ2l2
Ψ = 0. (B.11)

For simplicity, we have set the angular frequency ω = 0. This equation can be solved
semiclassically by the one-dimensional WKB approximation

Ψ±(v, k) =
∫
dϵ

2πα±(ϵ)ψ±(v, k; ϵ), (B.12)

with

ψ±(v, k; ϵ) = eiϵk(
ϵ2 − v2

κ2l2

)1/4 exp

±i

√ϵ2 − v2

κ2l2
− ϵ tanh−1

√
ϵ2 − v2

κ2l2

ϵ
− π

4

 . (B.13)
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In the same way as in the metric components notation, the semiclassical solution is
constructed by wavepackets that consist of a Gaussian superposition, in this case of the WKB
modes. This is achieved by defining the function α±(ϵ) as:

α±(ϵ) =

√
2
√
π

∆ eik0ϵe−(ϵ−ϵ0)2/(2∆2), (B.14)

where we need ∆ ≪ 1 for the wavepacket to be strongly peaked on the classical solution ϵ0.
Now we can use this result to compute the conserved norm and expectation values. The

choice of clock in this case will be the volume v to make contact with section 2. Although the
volume is not a monotonic function in the black hole interior it is still interesting to use it as
a clock for the region outside the horizon, in light of the T T̄ interpretation in section 2.1.
The conserved norm for the v clock is given by

|Ψ|2v = −i
2

∫
dk(Ψ∗v∂vΨ − Ψv∂vΨ∗) = ±

∫
dϵ

2π |α±(ϵ)|2. (B.15)

We make use of this result to compute the expectation value of the momentum pv = −i∂v,
which is the Hamiltonian for the v time. Using the Laplace ordering prescription, the
expectation value is given by

⟨pv⟩v = −1
2

∫
dk(Ψ∗∂v(v∂vΨ) − ∂vΨv∂vΨ∗) =

∫
dϵ

2π |α±(ϵ)|2
√
ϵ2

v2 − 1
κ2l2

. (B.16)

In the semiclassical approximation, this is calculated to be

⟨pv⟩v =

√
ϵ20
v2 − 1

κ2l2
− ∆2

4κ2l2v2

(
ϵ20
v2 − 1

κ2l2

)−3/2

+ . . . (B.17)

The leading order of this expansion coincides with the classical value of the momentum
pv = 1

κ l sinh[k + k0]. This is calculated from (B.7) after substituting the classical value of
the volume v = ϵ0κ l sech[k + k0].

The quantum variance is given by

var(pv) = ∆2

2(ϵ20 κ2l2 − v2)
+ ∆2

2v2 + O(∆4). (B.18)
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