

Study of Λ Identification Method by the $\pi^- p \rightarrow K^0 \Lambda$ Reaction for a Λp Scattering Experiment at J-PARC

T. Sakao¹, J.K. Ahn², Y. Akazawa³, T. Aramaki¹, S. Ashikaga⁴, S. Callier⁵, S.W. Choi², P. Evtoukhovitch⁶, N. Fujioka¹, M. Fujita¹, T. Gogami⁴, T. Harada⁴, S. Hasegawa⁷, S.H. Hayakawa⁷, R. Honda¹, S. Hoshino⁸, K. Hosomi⁷, M. Ichikawa⁴, Y. Ichikawa⁷, M. Ikeda¹, K. Imai⁷, Y. Ishikawa¹, S. Ishimoto³, W.S. Jung², S. Kajikawa¹, H. Kanauchi¹, H. Kanda⁹, B.M. Kang², H. Kawai¹⁰, S.H. Kim², K. Kobayashi⁸, K. Matsuda¹, Y. Matsumoto¹, K. Miwa¹, S. Nagao¹, R. Nagatomi⁸, Y. Nakada⁸, M. Nakagawa¹¹, I. Nakamura³, T. Nanamura^{4/7}, M. Naruki⁴, S. Ozawa¹, L. Raux⁵, T. Rogers¹, A. Sakaguchi⁸, H. Sako⁷, S. Sato⁷, K. Shirotori⁹, K.N. Suzuki⁴, S. Suzuki³, M. Tabata¹⁰, C.d.L. Taille⁵, H. Takahashi³, T.N. Takahashi⁹, T. Takahashi³, M. Tanaka³, K. Tanida⁷, H. Tamura^{1/7}, Z. Tsamalaidze^{6/12}, M. Ukai³, H. Umetsu¹, T.O. Yamamoto⁷, J. Yoshida⁷, K. Yoshimura¹³

¹Department of Physics, Tohoku University, Sendai, Miyagi 980-8578, Japan,

²Department of Physics, Korea University, Seoul 02841, Korea,

³High Energy Accelerator Research Organization (KEK), Tokai, Ibaraki 319-1106, Japan

⁴Department of Physics, Kyoto University, Kyoto 606-8502, Japan,

⁵OMEGA Ecole Polytechnique-CNRS/IN2P3, France,

⁶Joint Institute for Nuclear Research (JINR), Dubna, Russia,

⁷Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195, Japan,

⁸Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan,

⁹Research Center for Nuclear Physics (RCNP), Osaka University, Japan,

¹⁰Department of Physics, Chiba University, Chiba, Chiba, 263-8522 Japan,

¹¹RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan,

¹²Georgian Technical University (GTU), Tbilisi, Georgia

¹³Department of Physics, Okayama University, Okayama, Japan,

E-mail: sakao@lambda.phys.tohoku.ac.jp

(Received December 12, 2019)

The $\pi^- p \rightarrow K^0 \Lambda$ reaction is an important elementary process to produce Λ from a proton target and is a key for a Λp scattering experiment where the momentum of Λ should be tagged from the missing momentum of the (π^-, K^0) reaction. However, the (π^-, K^0) spectroscopy method has not been established yet due to the difficulty of the K^0 detection. Therefore, we have proposed a new K^0 detection method where π^+ and π^- from the K^0 decay are measured by a forward magnetic spectrometer and a detector cluster surrounding the target, respectively. The feasibility of the K^0 detection method was confirmed by analyzing the J-PARC E40 data taken with such a detector system. In the analysis, Λ 's were successfully identified in the missing mass spectrum of the $\pi^- p \rightarrow K^0 X$ reaction.

KEYWORDS: Strangeness, Hypernuclear Physics, Particle Physics, J-PARC

1. Introduction

The nuclear force has been intensively studied by a lot of pp and pn scattering experiments in the wide-range energy. Meson-exchange models well reproduce the attractive potential in the long-range (≥ 1 fm) region. In the short-range part, however, the nuclear force becomes quite repulsive, and it