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Chapter 1

Introduction

The standard model and general relativity synthesize our present knowledge of the
behavior of elementary particles in terms of four fundamental forces. In the 19th
century, only the gravitational and the electro-magnetic force were known. At that
time, gravity was described by Newton’s law and the classical Maxwell equations
enabled the explanation of electro-magnetic phenomena. From the beginning of
the 20th century on, it became clear that for a proper description of the short-
distance behavior of the elementary constituents of matter, quantum mechanics
was needed.

By now, the standard model explains or at least accommodates all experi-
ments done in accelerators so far. It is a renormalizable quantum field theory with
gauge group SU(3). x SU(2)r x U(1). Another big achievement of the last century
is a better description of the gravitational force in terms of general relativity. This
geometrical description of space and time replaces Newton’s law. It survives all
experimental tests done nowadays. Remarkably, the gravitational force is tested
only up to distances of centimeters. It is so weak in comparison to the other
three forces that the classical, geometrical description is sufficient. No quantum-
mechanical formulation is needed to explain the phenomena observed up to now.
Even then, there remains the fundamental question for a quantum-mechanical de-
scription of the gravitational force. The last couple of years, astrophysicists have
found further evidence for the existence of black holes. At the horizon of these
classical singularities of spacetime, the gravitational force is much stronger and a
quantum-mechanical description is required. The approach to quantize the other
forces, using regularization and renormalization, cannot be used for the gravita-
tional force. The gravitational coupling constant is dimensionful and the renor-
malization program is doomed to fail. This means that another way is needed to
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formulate a quantum-mechanical theory of gravity. Also the standard model is
not fully satisfactory. Its formulation requires almost 20 arbitrary parameters, the
difference in masses of the elementary particles begs for an explanation, there is
no clear reason for the existence of three generations of leptons, ... The strongest
argument to look for a more fundamental theory is that gravity is not included
in this standard model. The quest for a unified theory of all the four forces was
initiated already many years ago. For several decades, people are trying to scratch
the surface of this ‘theory of everything’.

1.1 Superstrings and supergravity

1.1.1 Why introduce superstrings?

In these days, there is only one viable (and promising!) candidate to solve some
(all?) of the problems with the standard model and general relativity: string
theory [1, 2]. String theory is a theory where elementary constituents of matter
are no point particles any more, but tiny one-dimensional entities. The vibrational
modes of these strings can be considered as the different elementary particles!.
As particles sweep out a worldline in spacetime, these strings sweep out a two-
dimensional worldsheet in a higher-dimensional spacetime. A Lorentz-invariant
formulation of string theory requires 26 (indeed, twenty-six) spacetime dimensions,
but even then, the lowest-energy state is a tachyon, a state with negative mass-
squared, signaling that the theory is instable. There is however a way out for these
inconveniences.

The introduction of supersymmetry allows a stable quantum-mechanical for-
mulation of string theory in ten dimensions. Supersymmetry is a generalization
of bosonic symmetries. It relates bosons and fermions, states of different spin. It
is clear that at low energies supersymmetry is broken. It is not clear whether at
higher energies, supersymmetry is a true, physical symmetry. For the moment, the
only indication for its existence comes from the unification of the different gauge
couplings at high energy (10'® GeV) in the minimal supersymmetric standard
model. People hope to find it in the near future at LHC. Supersymmetry helps a
lot in discovering properties of superstring theory and supergravity theory. There
are some strong arguments in favor of superstring theory. By introducing super-
symmetry, there are no tachyonic states any more in the string spectrum. Gravity
is automatically included. The string spectrum contains a massless spin-2 particle,

I This was also the way in which string theory was introduced into physics. Before the advent
of QCD, string theory was used as a model to explain the mesonic resonances.
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which can be identified with the graviton?. Furthermore, it allows a unified de-

scription of gravity and gauge symmetry. This unification is one of the dreams of
physicists: one theory that could explain all the fundamental forces. Superstring
theory has two aspects that seem awkward at first sight: consistency requires ten
spacetime dimensions and there are five different superstring theories. Both of
these aspects will turn out to be useful later on. There is the type ITA or type
IIB theory. These are theories that contain closed strings and have two spacetime
supersymmetries. The heterotic string is a closed string with one supersymme-
try that is consistent for the gauge groups SO(32) and Eg X Eg. Finally, type I
string theory describes open strings. At low energies, these superstring theories
give rise to supergravity theories. The research in this thesis is situated in this
low-energy domain. We study different matter multiplets in different supergravity
backgrounds.

1.1.2 Supergravity: the low-energy limit of superstrings

We want to derive that supergravity is the low-energy limit of superstring theory.
For that purpose, we start from the description of a superstring theory in a curved
spacetime. The worldsheet action of a string is a generalization of the worldline ac-
tion for a particle. The bosonic theory is an interacting two-dimensional quantum
field theory that contains the massless states of string theory (e.g., the spacetime
metric G, the antisymmetric tensor B, and the dilaton ®). These massless
states are derived from an analysis in flat spacetime. The fundamental field of
this theory is the position of the string X# (o, 7), which depends on the worldsheet
coordinates o and 7. These fields X* span the curved target space. Later, su-
persymmetric partners are introduced and the target space becomes a superspace.
If the kinetic term of the fields in the action is field dependent, this is called a
non-linear o-model. If the characteristic radius of curvature of the target space is
R., there is an effective dimensionless coupling o/*/? R;’!, where the Regge slope o
has units of spacetime-length-squared. ' is related to the string tension T" in the
following way: T' = ﬁ If R. is much greater then the characteristic length, this
coupling is small and perturbation theory is a useful tool in the two-dimensional
field theory. This difference in length scales says also that the internal structure of
the string becomes negligible and a description in terms of a low-energy effective
field theory is useful. This low energy was already used implicitly by introducing
only the massless string states in the worldsheet description. The massive string
states have masses of the order of the Planck mass, Mp ~ 10 GeV and this is
much higher than what is (and will be) accessible in accelerators.

2When using string theory as a model for the strong interaction, this spin-2 particle was very
annoying since there were no massless spin-2 particles there.
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Consistency of string theory requires conformal or Weyl invariance of the
worldsheet action. This requires that the trace of the energy-momentum tensor
vanishes. This can also be derived from an effective spacetime action. In this
way, superstring theory gives rise to a supergravity action at low energies. FEach
of the five string theories has its corresponding supergravity theory. One of the
big, modern challenges is to give a microscopic description of the 11-dimensional
theory that has 11-dimensional supergravity as its low-energy limit. These super-
gravity theories are interesting on their own too. They describe gravity and gauge
theory at the same time. Even if these supergravity theories are not fundamental,
microscopic theories, they reveal already a lot of interesting properties. They are
some kind of bridge between the standard model and general relativity on the one
side and a real ‘theory of everything’ on the other side. That is the reason why
we are interested in studying their properties.

1.1.3 Compactification

One of the two main problems with superstring theory (and its low-energy limit
supergravity) was the presence of ten spacetime dimensions. The idea to solve
this problem is to compactify some dimensions. After all, string theory does not
dictate that all its ten dimensions should be infinitely extended. This means that
our world consists in a string-theoretic framework of four macroscopic, visible di-
mensions, while the six other dimensions are rolled up in a specific way. These
compact dimensions are so small that we cannot see them, at least not at the
energies that are at present available. Depending on the structure of the com-
pact manifold, different amounts of supersymmetry survive in the effective theory
in lower dimensions. Instead of immediately attacking the full problem of com-
pactifying to four dimensions, people have also been studying compactifications
to other dimensions, e.g., to six dimensions. Although it is clear that this has no
predictive power about our universe, it contributes to a better understanding of
compactifications of supergravity theories. One of the possibilities to compactify
four dimensions gives chiral? theories in six dimensions. ITB theory on a K3 man-
ifold gives rise to chiral (2,0) supergravity in six dimensions. The only possibility
for a matter representation in these supersymmetric theories are self-dual tensor
multiplets. A self-dual tensor in six dimensions is a two-index tensor that has
a real self-dual field strength. We will pay a lot of attention to models with a
self-dual tensor in chapter 4 and 5.

Besides, people have very much studied compactification on Calabi—Yau man-

3In even dimensions, it is possible to split a spinor (and thus also the supercharges of the
supersymmetry algebra) in two different chiralities using a projection. This is explained in
chapter 2. (2,0) supersymmetry means that there are two supersymmetries of the same chirality.
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ifolds. These six-dimensional manifolds obey certain restrictions such that one
quarter of the ten-dimensional supersymmetry survives in four dimensions. The
Calabi—Yau compactification of the heterotic superstring gives rise to a chiral the-
ory with one supersymmetry in four dimensions and a certain gauge group. These
theories come qualitatively very close to the minimal supersymmetric standard
model. The Calabi—Yau compactification of ITA or IIB string theory leads to
theories with two supersymmetries in four dimensions. Up to now, nobody has
been able to find a realistic superstring vacuum.

1.1.4 Non-perturbative aspects of field theory

The solution of the problem of five, seemingly-different superstring theories re-
quires something more. Up to now, we have only explained some results that
are found in a perturbative treatment of string theory, in the same way that the
Feynman diagram expansion in particle physics is a perturbative approximation
of the theory. Up to some years ago, we knew, in contrast to field theory, only the
perturbative approximation of string theory. Only the last couple of years, we have
gained some insight into aspects of string theory that go beyond the perturbative
level. Still, we have not (yet) a description of the full theory. We first explain
something more about non-perturbative aspects of field theory that will later be
relevant in string theory. In a next section, we explain more on non-perturbative
aspects of string theory. It will also be in the context of these non-perturbative
aspects of field theory that we will study vector multiplets in four dimensions.

In field theory, we have point-particles with electric charge e. They are coupled
to a vector field, a one-form. In four dimensions, there is also another object
that couples to this form: the magnetic monopole. This magnetic monopole has
magnetic charge g. The Dirac quantization condition,

eg = 2mnh, (1.1.1)

imposes that the product of the electric charge and the magnetic charge should
be equal to a constant. This means that the electric and the magnetic charge
are inversely proportional. These magnetic monopoles are present in U(1) gauge
theories. In non-Abelian gauge theories with a U(1) subgroup appear 't Hooft—
Polyakov monopoles. The presence of such topologically stable, magnetically
charged particles raises the possibility for a symmetry between electricity and mag-
netism. There is no experimental proof of the existence of magnetic monopoles
up to now. So, in the real world, with only the presence of electric charges, this
electro-magnetic duality is not present. In vacuum, the Maxwell equations are
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invariant under the transformation
E—B, B--E, (1.1.2)

of the electric field E and the magnetic field B. In the presence of electrically
and magnetically charged particles, this would imply that their charges would
be interchanged. This transformation can be generalized to rotations over an
arbitrary angle

E - cos9§+sin9§,
B — —sinfE+cosfB. (1.1.3)

The same symmetry works also on the version of the Maxwell equations with the
field equation and the Bianchi identity*:

9, F 0,
O F" = 0, (1.1.4)

where F},, is the field strength for the vector and F}, = +euvpe FP7. This set of
equations is again invariant under rotations over an arbitrary angle:

(Fe)=s(E)=(¢5)(0).  w

where S € GL(2,R). In the presence of m Abelian vector fields, this symmetry
generalizes to GL(2m, R). The equations of motion can be derived from an action:

£y = LAmNpy)FL F™7 — 1 (Re Npy)eh?o FL FJ (1.1.6)

preopo

where I,.J =1, ..., m, the matrix N7 is symmetric and Flf,, are the field strengths
of the vector fields. In a theory with also scalars, N7; may depend on them.
Supersymmetry imposes a very specific dependence of the scalars. Because the
field strengths transform under electro-magnetic duality transformations, also the
action will change. Imposing that the equations of motion are still derivable from
the transformed action, implies that the group of symmetry transformations is
restricted to symplectic matrices in Sp(2m, R):

STAS=Q  with Q= ( o ) . (1.1.7)

4The Bianchi identity expresses that the field strength is locally derivable form a vector.
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This implies that the components of S satisfy
ATc-cT™A=0, B'TD-D"B=0, ATD-C"B=1. (1.1.8)

The matrix N must transform into
N = (C + DN)(A+ BN)™! (1.1.9)

by these symplectic transformations. If both electric and magnetic sources are
added to the combination of field equations and Bianchi identities, the Schwinger-
Zwanziger quantization condition restricts the charges to a lattice. For instance,
the charges of two dyons (q1,¢1) and (g2, g2) have to satisfy

q192 — q291 = 2mnh. (1.1.10)

This lattice restricts the symplectic transformations further to its discrete sub-
group Sp(2m,Z). These integer symplectic transformations will be essential in
the treatment of vector multiplets coupled to N = 2 supergravity® in four dimen-
sions. Later in this thesis, in chapter 6, we will be interested in the coupling of
vector multiplets to supergravity. The symplectic form of the electro-magnetic
duality transformations will get a geometrical interpretation there.

A symmetry between the electrically and magnetically charged objects was
conjectured in the late 70’s by Montonen and Olive. In 1994, Sen gave new evidence
for the presence of S-duality in N = 4 supersymmetric Yang—Mills theory. This
S-duality is a strong-weak coupling duality. It relates a regime of the theory at
strong coupling to a regime of the same or another theory at weak coupling where
perturbative results can be achieved. The presence of much supersymmetry was
essential in his proof, since supersymmetry limits the possible quantum corrections.
Indeed it involves relations between coupling constants, which get renormalized.
Supersymmetry can protect the relations between them from getting spoiled by
renormalization effects.

1.1.5 Non-perturbative aspects of string theory

The ideas of the previous section from quantum field theory can be generalized
to higher dimensional theories and also to string theory. In general, an object,
extended in p dimensions, couples electrically to a (p + 1)-form. Its magnetic dual

5We will denote the number of supersymmetries in the specific dimension under consideration
by N in this thesis.
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is extended in (d — p — 4) space dimensions. This means that a string in ten
dimensions couples to a two-form, the NSNS® antisymmetric form B, . This sug-
gests that there exist also non-perturbative objects that are magnetically charged
with respect to this two-form. These have five space dimensions and are called
NS5-branes. They are present in each of the five different string theories. The
mass of these 5-branes is proportional to 1/g2, where g5 is the string coupling
constant. Also in 11-dimensional supergravity, we have electric and magnetic ob-
jects. There is a three-form potential which suggests that there are electrically
charged membranes. The membranes have a magnetically dual object with five
spatial dimensions: the M 5-brane. Moreover, different string theories contain also
different antisymmetric RR-forms. The objects that are charged with respect to
these forms are called Dp-branes”. Type ITA/IIB string theory allows Dp-branes
for even/odd p. Different points of view are suited to enlarge insight into these
objects. A first way to look upon D-branes is to study them as solutions of the
supergravity equations of motion. These solutions involve harmonic functions. On
the other hand, D-branes are extended objects in open string theory that obey
certain Dirichlet boundary conditions. The ends of open superstrings are free to
move on the brane. It is possible to determine the long-wavelength behavior of
these D-branes in terms of a worldvolume field theory. The generalization of the
worldsheet description is a o-model in (p+1) dimensions that contains the position
of the brane in spacetime as part of the fields. The worldvolume theory of a single
D-brane in addition contains a vector field and fermions. They reside together in
a vector multiplet. A stack of n D-branes on top of each other leads to a field
theory with a non-Abelian gauge group U(n).

All these extended objects lead to the conclusion that string theory is a theory
of more than strings. String theory teems with extended objects. These branes
also allow to clarify lots of intricate relations between the five, at first sight dif-
ferent string theories. These relations are dualities. A first type of duality is
T-duality. T-duality in its simplest form relates ITA and IIB string theory. Via
a compactification to nine dimensions, it is possible to see a relation between the
different antisymmetric forms in ITA and I1B theory. So, D-branes clarify the
relations between different string theories. Also mirror symmetry can be seen as
T-duality. Mirror symmetry expresses that the compactification of a type I1 string
theories on a certain Calabi—Yau manifold is equivalent to the other type IT string
theory on a different, but related Calabi-Yau manifold. This type of T-duality is

6The bosonic fields in target space are called NSNS-fields (NS for Neveu—Schwarz) if they
originate from a spinor bilinear in worldsheet fermions with antiperiodic boundary conditions
and RR-fields (R for Ramond) if they come from two periodic worldsheet fermions.

"The p in Dp-branes counts the number of spatial dimensions of these non-perturbative ob-
jects: a DO0-brane is a particle, a D1-brane is a string, a D2-brane a membrane, ... The standard
work on D-branes is nowadays [2].
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relevant for the compactification of string theory to four dimensions.

Another type of duality is a generalization of S-duality in quantum field the-
ory. By increasing the string coupling constant g¢s, the solitonic objects can be-
come the lightest objects in the theory. A perturbative expansion in terms of
1/gs becomes more interesting in such situations. A combination of T- and S-
dualities relates all the different string theories. Another remarkable conclusion
that was drawn the last couple of years, is that it is also possible to recover an 11-
dimensional theory from string theory. Type I1A supergravity at strong coupling
gives rise to its unique 11-dimensional cousin. The matrix model [3] is a candidate
for the microscopic description of the theory with 11-dimensional supergravity as
its low-energy limit. The final version of this microscopic description is not known
yet, but it got the name M -theory already. The dualities between all these different
string theories suppress the objection that there exist multiple perturbative string
theories. People have found that they are all connected at the non-perturbative
level.

1.1.6 The Maldacena conjecture

When putting a large number n of D3-branes on top of each other, the classical
supergravity solution for the metric becomes a good approximation for the space-
time geometry in string theory. Taking the large n limit in which the string length
is taken to zero, gives rise to a near-horizon geometry which is the product of
adSs x S°. The isometry group of this space is SO(4,2) x SO(6). On the other
hand, we have seen that n D3-branes on top of each other give rise to a N = 4
Yang-Mills gauge theory in four dimensions with gauge group U(n). This gauge
theory is conformally invariant and has as spacetime symmetry group SO(4,2).
Besides, there is the internal R-symmetry group which rotates the different su-
persymmetry charges into each other: SU(4). As SU(4) is the covering group of
SO(6), we find that the isometry group of both theories is the same. These facts
were the motivation for Maldacena to conjecture the adS/CFT-correspondence
[4]: string theory in an adSs x S® background® is equivalent to a N = 4 super-
conformal Yang—Mills theory in four dimensions in the limit for large n. This field
theory contains no gravity. It is defined on the four-dimensional boundary of the
adS5 space. More precisely, the bulk amplitudes in 11 B supergravity are functions
of the string fields at points on the boundary of adSs. The conjecture states that
these boundary fields are the sources of certain operators in the Yang—Mills the-
ory. The string amplitudes are to be identified with correlation functions in the
conformal field theory. By this correspondence, a classical calculation in super-

8Less symmetrical spaces than perfect spheres give rise to situations where the correspondence
should be valid with less supersymmetry.
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gravity theory can lead to the calculation of strong quantum effects in conformal
field theory.

The Maldacena conjecture was also formulated for M-theory on adS; x S”
and M-theory on adSy; x S*. These cases can be interpreted as the geometry on
the horizon of a stack of M2-branes or M5-branes on top of each other. The
worldvolume description of the M 5-brane contains a self-dual tensor. This implies
that the worldvolume description of a stack of M5-branes requires an interact-
ing theory for self-dual tensors. It remains one of the challenges of high-energy
theoretical physics to find a theory that describes this.

1.2 Overview of the thesis

In this thesis, we study aspects of two different supergravity models. This means
that we consider aspects of the low-energy physics from string theory/M-theory.
The models under consideration are both studied in a superconformal gravitational
background. There are two reasons to do so. A first reason is that we want
to study several aspects of models that can be found from compactifications of
string theory on manifolds that preserve some amount of supersymmetry. The
study of different matter representations in a gravitational background can be
done very elegantly using superconformal tensor calculus. With this motivation
in the back of the mind, the coupling of matter to a conformal background is only
an intermediate step. The ultimate goal, which is aimed to be reached via this
step, is the coupling of matter to Poincaré supergravity. Another reason that was
motivating us, certainly when studying the coupling of the self-dual two-tensor to
chiral six-dimensional gravity, is its possible role in the Maldacena conjecture.

In chapter 2, we stress the role of symmetry in this work. Using the algebraic
setup allows to use the presence of certain symmetries (mainly superconformal
symmetry). We first repeat the classification of the different supergroups and
explain the two supergroups that will be relevant in this thesis, SU(2,2|2) and
OSp(8*|4), in detail. The knowledge of these algebras and their representations
are a solid tool in discovering the properties of the two models under consideration
in this thesis. In section 2.2, we study the different representations of these and
other supergroups. We pay extra attention to chiral bosons in different dimensions,
since the six-dimensional model will have a chiral two-form as backbone. Also
different types of spinors are classified.

In chapter 3, we explain the two main techniques used in this work. Section 3.1
gives a short overview of superconformal tensor calculus. This technique is used
very often in the construction of the coupling of different matter multiplets to
Poincaré supergravity. The idea is that one first constructs the coupling of matter
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to a conformal supergravity background and that this model is gauge equivalent
to the model with matter multiplets coupled to Poincaré supersymmetry. The
conformal group is bigger than the final symmetry of the model we are after. We
introduce compensating, unphysical multiplets which allow us to break the super-
fluous symmetry by imposing suitable gauge conditions. This technique will be
used in both models we study in this thesis. In the model for vector multiplets
in four dimensions with two supersymmetries, the breaking of the conformal sym-
metry will be done explicitly. In the six-dimensional model, the relevant results
will be achieved already before the breaking is done and there, the conformal sym-
metry need not be broken. This section further contains also two examples that
illustrate the essential steps in the construction. They clarify the train of thought
behind the results in this thesis and are highly recommended for the reader that
is not familiar with superconformal tensor calculus. Section 3.2 repeats shortly
the Batalin—Vilkovisky formalism. This formalism is suited to treat models with
the most general gauge symmetries, both for classical and quantum-mechanical
aspects. We will use it in chapter 4 for the gauge symmetries of the self-dual
tensor.

In chapter 4 and 5, we study aspects of the first model under consideration in
this thesis: the self-dual tensor (multiplet) in six dimensions. This self-dual tensor
is a two-form that has a real self-dual field strength in six Lorentzian dimensions.
For a long time. the self-duality condition has been the obstacle to formulate a
Lorentz-covariant action for this field. In 1996, this was achieved by Pasti, Sorokin
and Tonin (PST) in [5]. This action required the introduction of an extra scalar
field and two PST gauge symmetries which relied on the existence of the extra
scalar. In a first stage of our research, we study the bosonic aspects of these gauge
symmetries and two gauge fixings using the Batalin—Vilkovisky formalism. The
results can be found in chapter 4 and in [6].

Some supersymmetric aspects of models with a self-dual tensor are studied
in chapter 5. We first give an overview of the role of different chiral bosons in
different contexts in supersymmetric theories. Section 5.2 sketches the relevant
properties of the self-dual tensor multiplet which appear already when there is
only rigid supersymmetry. The role of the extra scalar and of the PST gauge
symmetries in a supersymmetric context is clarified. In section 5.3, we prepare
the coupling of the self-dual tensor multiplet to conformal supergravity by studying
the Weyl multiplet for (2,0) supersymmetry in six dimensions. We give some new
arguments for including matter fields in the Weyl multiplet. In section 5.4, we
give the Lorentz-covariant action for a self-dual tensor multiplet in a (2,0) chiral,
conformal supergravity background. This requires a combination of the results of
chapter 4, section 5.2 and section 5.3. This Lorentz-covariant action was achieved
earlier for supersymmetric models and also for self-dual tensor multiplets coupled
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to Poincaré supergravity. The coupling to a conformal background is new and can
also be found in [7]. We comment on how this action leads to similar actions with
less supersymmetry or with Poincaré instead of conformal supersymmetry.

In chapter 6, we are studying vector multiplets in four dimensions with two
supersymmetries. The coupling of matter multiplets to N = 2 supergravity is
already a subject of research for more than fifteen years. During this period, it
became clear that there is an intricate relation between these theories and the geo-
metrical Calabi—Yau compactifications of string theory. This has lead to attempts
to formulate the vector multiplets with N = 2 in four dimensions using a geomet-
rical definition which allowed the connection to Calabi—Yau compactifications [8].
This definition does not rely any more on the existence of a prepotential, a homo-
geneous function of degree two, which in the past was thought to be indispensable
for the construction. The geometrical construction heavily relies on the symplec-
tic symmetry, which is a generalization of electro-magnetic duality, as explained
earlier in the introduction. A first thing we consider, is the development of the
Bianchi identities and the equations of motion of the special case of one vector
multiplet, which was not worked out in [8]. The formulation of a geometrical defi-
nition reveals that there are two possible definitions for the coupling of one vector
multiplet to N = 2 supergravity in four dimensions. We work out the model that
satisfies only the weak definition and not the strong one. Besides, we construct
an explicit model that satisfies the weak definition and not the strong one. These
results can be found in chapter 6 and in [9]. In this chapter, we also explain why
this model cannot be found from a geometrical Calabi—Yau compactification. So,
there exist models for one vector multiplet in N = 2 and four dimensions that
cannot be found from a geometrical Calabi—Yau compactification. In section 6.5,
we investigate which part of the symplectic invariance group can be used for a
non-Abelian gauging. We report the (partial) results here for the first time.

Concluding remark

One could ask: “What is the use of all this if all these results seem to contribute
nothing to the final aim of string theory? Why doing research in string (super-
gravity) theory if it is up to now impossible to make contact between the standard
model and general relativity on one side and a microscopic description of elemen-
tary ‘particles’ that comprises all the fundamental forces on the other side?”
This digression of high-energy theoretical physicists to problems which are far
away from making contact with the standard model, has to my opinion nothing to
do with unwillingness. It is rather the conviction of the community that a better
understanding of the mathematical structure underlying string theory is needed
before we can make reliable predictions. We hope that this thesis will help to make
a tiny, tiny step in the right direction.



Chapter 2

Algebraic background

The physical problems that are subject of modern scientific research are phe-
nomena that are very different from our daily experiences. There is a language
however, namely that of mathematics, that is extremely suited to describe, under-
stand and interpret the solutions to these problems. Together with a good amount
of creativity, a great deal of perseverance and something that maybe can be called
‘physical intuition’, mathematics, as a pure form of logical deduction, has played
an enormous role in taking small steps forward to grasp the world of physics (or
the physics of the world) and it will surely remain as important in the future as it
is nowadays. This chapter contains some mathematical concepts that are essential
to build up this work.

The concept of symmetry is very important for physics in general and also for
the models in high-energy theoretical physics under consideration in this thesis.
The translation of the concept of symmetry into mathematics requires vocabulary
as: algebra, groups, representations, gauge fields, curvatures, ... Since we will
concentrate very much on these algebraic properties of certain supersymmetric
theories, we start this chapter by a section on the classification of supergroups.
We will mainly be interested in superconformal groups in four and six dimensions.
The fields in these models are collected into multiplets, representations of these
superalgebras.

The reason for studying these superconformal algebras and their representa-
tions is twofold:

e A first reason is valid for each of the two models in chapter 5 and in chap-
ter 6. The aim is to study the coupling of matter to gravity with Poincaré
supersymmetry. This is achieved by studying first theories with superconfor-

13
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mal invariance. Since the final goal is in this case not to study theories with
superconformal invariance, we will break the conformal to Poincaré super-
symmetry. Besides breaking the dilatations, this involves also the breaking
of two other symmetries. This procedure is called superconformal tensor
calculus. In section 3.1, we will explain the essential ingredients to achieve
this.

e A second, more recent, motivation is the role of conformal supergravity in
the adS/C FT-correspondence. Here, the conformal symmetry is an essential
ingredient of the theory and it is not broken. This will be a focus in the study
of the six-dimensional model.

Section 2.1 contains the introductory notions, relevant for the algebraic ap-
proach. We will first give the different spacetime algebras that underlie grav-
itational theories. Then we discuss the classification of superalgebras, starting
with a short review about the most general groups that have the right spacetime
symmetry group as a subgroup of the bosonic subgroup. Since the advent of super-
symmetry the last decades, this implies the development of the concept of super
Lie group. We end with a classification of conformal supergroups.

In section 2.2, we study different representations of these algebras. We de-
velop the different irreducible spinor representations for different dimensions and
signatures, after introducing Clifford algebras. Then we pay some attention to
chiral bosons, antisymmetric p-forms with real (anti)self-dual field strengths. The
spinor representations allow to write down the two superalgebras OSp(8*|4) and
SU(2,2|2), relevant for models with (2,0) chiral supersymmetry in six dimensions
and models with N = 2 in four dimensions. Other reviews on superalgebras and
spinors can be found in [10, 11].

2.1 Supergroups

The analysis of a physical system is often much easier when using a symmetry
present in the problem. The mathematical translation of this symmetry principle
introduces the concept of a group. Often, this group is a continuous Lie group
with a Lie algebra underlying it. Lie groups are used for instance in classical and
quantum mechanics, in solid state physics and of course in the study of particle
physics by using quantum field theory, but this list is far from exhaustive. Good
introductions into group theory can be found in [12].
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2.1.1 Different bosonic algebras and their relation
Poincaré and (anti) de Sitter algebras

ISO(1,d—1), the Poincaré algebra in d dimensions, has translation generators P,
and Lorentz rotation generators M, :

[M,uua Mpa] = nu[pMa]u - nu[pMa]u )
[Pua Ml/p] = nu[upp] )
[P.,P] = 0. (2.1.1)

This is the symmetry algebra in general relativity with a vanishing cosmological
constant. The symmetries of spaces with a non-trivial cosmological constant can be
described by adjusting the last line in the Poincaré algebra. Spaces with negative
cosmological constant are called anti de Sitter (adS) spaces [13]. Their algebra is

[Myuv, Mool = MufoMoyy = ujp Moy
[Pua Ml/p] = nu[upp] )
1
[P.,,P)] = 2—R2Mu,,, (2.1.2)

where R is the radius of curvature of the adS-space. The supersymmetric version
of this algebra is very important in the adS/C FT-conjecture. By defining R P, =
Mg, = —M,q, it is possible to collect all the generators of the anti de Sitter space
into My = =My, with = 0,...,d. Using the metric n,; = (—+ ...+ —), these
M, span a SO(d — 1,2) algebra:

(Mo, Mps] = nu1sMeyo — o1 My - (2.1.3)

Its relation with the conformal algebra will be clarified later on.

The last couple of years, astrophysical experiments have collected increasing
evidence that our universe has a slightly positive cosmological constant [14]. This
would mean that our universe is a de Sitter space. Then, the commutator of two
translations is

1

[Py, Py] = —Q—RQMW-

(2.1.4)

Furthermore, it is possible to derive the Poincaré algebra from the (anti) de Sitter
algebra by taking R — oo, the infinite-radius limit of the (anti) de Sitter space.
This limiting procedure is called an ‘Indénii—Wigner’ contraction.
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The conformal algebra

Conformal transformations are defined to keep angles fixed. This implies that a
conformal transformation can transform the metric:

ds*(x) — Q(z)ds* (). (2.1.5)

Under infinitesimal coordinate transformations x# — x* + &*, the metric trans-
forms as

ds*(z) — ds*(z) + 20,&,)dz" dz” . (2.1.6)

Compatibility with (2.1.5) requires that
a(ugu) - %nuua ' 5 =0 (217)
in d dimensions. It also follows from (2.1.7) that
(N8 + (d —2)0,0,)0- £ =0. (2.1.8)

For d > 2, (2.1.7) and (2.1.8) require that £* is at most quadratic in z¥. For &
zeroth order in ¥, we have

& =a, (2.1.9)

i.e., ordinary translations independent of z. There are two solutions for which &*
is linear in z":

EH = )\HVI.V,

¢ = Apz*, (2.1.10)

where A" is antisymmetric in uv. These solutions correspond to Lorentz rotations
and dilatations. Finally, when &* is quadratic in z¥ we have

e = Nia? — 22F Ak -z, (2.1.11)

the so-called special conformal transformations. This conformal algebra has d +
did—-1)/2+1+4+d = (d+ 1)(d + 2)/2 generators. The most general conformal
transformation can thus be written as

Sc = aP, + X M,, + ApD + A% K, , (2.1.12)
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in terms of the parameters times the generators. With these transformations, one
can obtain the algebra with as non-zero commutators

(Myw, Mps] = NuoMoly — Mo M)y »
[Puv MVp] = nu[upp] )
(K, Myl = Ky,
[PLHKV] = _Q(UW/D +2Muu) ,
(D, Pu] = Py,
[D,K,] = -K,. (2.1.13)

The case of two dimensions is special in (2.1.7) and (2.1.8). For d =2, (2.1.7)
becomes the Cauchy-Riemann equation and it is natural to write everything in
terms of complex coordinates. Two-dimensional conformal transformations thus
coincide with the analytic coordinate transformations, which have an algebra with
infinitely many generators. These conformal algebras in two dimensions are a
cornerstone of string theory and studied for instance in [15].

The SO(d,2) algebra (2.1.13) can be rewritten as

B M Lpw— Kmy L(Pr 4 KM
MI = | —5(P" = K) 0 -iD , (2.1.14)
—1(P" + K) D 0

where the metric is 1, = (—+ ...+ —). This is the same algebra as the anti de
Sitter algebra (2.1.2) in d + 1 dimensions, so

Confq = adSqy1 - (2.1.15)

The fact that these two algebras, and also their supersymmetric extension, are the
same ones is the cornerstone of the adS/CFT-conjecture.

2.1.2 Classifying superalgebras
The Coleman—Mandula theorem

In the 60’s and the 70’s, people were studying which was the most general combi-
nation of four-dimensional spacetime and internal symmetries allowing non-trivial
scattering amplitudes in the S-matrix approach. Coleman and Mandula [16]
achieved the most general no-go theorem at that moment. They showed that
if the symmetry group is a Lie group with an internal group G mixing in a non-
trivial way with the Poincaré group, then the S-matrix for all processes would



18 Chapter 2. Algebraic background

be 1. Among other assumptions, the theorem is only valid when there are no
massless particles. An implication of the direct product of the Poincaré group
and the internal group for a non-trivial scattering matrix is that G cannot relate
eigenstates with different mass or spin.

This theorem can be extended to the massless case (modulo infrared prob-
lems): a non-trivial S-matrix then requires the direct product of the four-dimen-
sional conformal group with an internal Lie group: SO(2,4) x G. These conformal
transformations leave the lightcone invariant. The presence of masslike parameters
would spoil the invariance under these transformations. The internal symmetry
group again has to commute with the conformal group.

This is a purely bosonic result, even if Coleman and Mandula talk about a
supermultiplet in their article. Anno 1967, a supermultiplet was a set of states
transformed by the bosonic internal group G into one another (and thus with the
same mass and spin).

The Haag—Lopuszanski—Sohnius theorem

The Coleman—Mandula theorem did not allow to relate eigenstates with the same
mass, but with different spin. This is only allowed if one includes symmetry
generators that change the spin of the states. Graded Lie algebras are suited to
do this. They contain two types of generators: bosonic and fermionic ones. The
Lie product of Lie groups is generalized to an anticommutator for the product of
two fermionic generators:

[6(€1),0(e2)] = P (QuQB + QBQA) = B el {Q4,QB) , (2.1.16)

where §(£1) is a fermionic transformation with parameter £{' and fermionic gen-
erator ) 4. If the Lie product of two fermionic generators gives rise to a bosonic
one, they are called Zy graded algebras!. These fermionic generators allow to by-
pass the no-go theorem of Coleman and Mandula. This graded algebra also has
to satisfy Jacobi-identities

[T 4, [FTr,e§Tc]] + cyclicin 1,2,3 =0. (2.1.17)
For the generators, this translates into

[Ta,Ts},Tc} = [Ta, [T, Tc}} — (=)A8 [T, [Ta,Tc}} (2.1.18)

LAlso Z3 graded algebras are studied, for instance in [17].
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where the notation [, } means an anticommutator when both generators are odd
(fermionic) and a commutator if at least one of them is even (bosonic).

Models with this type of relations were first proposed by Gol’fand and Likht-
man [18]. Volkov and Akulov were the first to write down a non-linear realization
of supersymmetry [19]. The first renormalizable field theoretical model was pre-
sented by Wess and Zumino [20]?. It contained two scalars with spin 0 and a
fermion with spin 1/2, sitting in the same supermultiplet. This model contained
supersymmetry generators which transformed states with spin j into states with
spin j + 1/2. Such models cannot be described by Lie groups and are therefore
not ruled out by the Coleman—Mandula theorem. Haag, Lopuszanski and Sohnius
were able to generalize the result of Coleman—Mandula. They proved that also
the supersymmetric generalization must be split into two cases:

e In the presence of massive states, the most general symmetry group of the
four-dimensional S-matrix has the same I50(1,3)®G as a bosonic subgroup
as in the purely bosonic treatment. The fermionic operators transform as
spinors under the homogeneous Lorentz group and commute with transla-
tions. The commutator of two supersymmetries gives always rise to a trans-
lation. The fermionic generators in the algebra allow the presence of central
charges 7'M

{QL, QY'Y = capz™™. (2.1.19)

e With only massless particles, two types of supersymmetries are present. The
bosonic subgroup of the graded Lie algebra is the direct product of the
conformal group SO(2,4) and an internal group G. This internal group is the
direct product of the R-symmetry group (which rotates the supersymmetry
generators into each other) and another internal symmetry group G'.

Classification of superalgebras

In the first half of the 70’s, the analysis of supergroups was only relevant for four-
dimensional physical models. The advent of superstrings and supergravities in
10 and 11 dimensions and their compactifications to all different dimensions with
different amounts of residual supersymmetry asked for a classification of Lie super-
groups in different dimensions. The simple Lie superalgebras have been classified
in [21]. The analysis of different properties of the graded Lie algebra contains a
lot of subtleties, for instance a semi-simple superalgebra is not always the direct
sum of simple ones. The main properties of superalgebras and lots of useful tables

2The ‘supergauge symmetry’ in their title was later called ‘supersymmetry’.
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can be found in [22]. The classical Lie superalgebras are a subset of the simple
Lie subalgebras, whose fermionic generators are in an irreducible or a completely
reducible representation of the bosonic algebra. Simple Lie superalgebras that
are not classical are called Cartan-type superalgebras [22]. The list of classical
superalgebras and their real forms [23] can be found in table 2.1.

Name Range Bosonic algebra | Defining Number of
repres. generators
SU(mln) | m>2 SU(m) & SU(n) | (m,n)® m? +n* -1,
m#n ®U(1) (m,n) 2mn
m=n no U(1) 2(m? —1),2m?
St(m|n) St(m) & Sl(n) ®S0(1,1) "
SUm =p.pln=q,q) | SUm—p,p) ©SUM —qq) UL 0,
SU*(2m|2n) SU*(2m) & SU*(2n) ®S0(1,1)
OSp(m|n) | m >1 SO(m) @ Sp(n) | (m,n) 3(m? —m+
n=24,. n? +n),mn
OSp(m — p,p|n) SO(m — p,p) ® Sp(n) n even
OSp(m*|n —q,q) SO*(m) ® USp(n — q,q) m,n,q even
[DR2,1,0) [U<a<l |S0@ &Sl | (222 |98
| D*(2,1,0) SO(4 — p,p) ® SL(2) p=0,1,2
| F(4) | So(M @S2 | (8,2 | 21, 16
| FP(4) SO(7 — p,p) ® SL(2) p=0,1,2,3
| G(3) | G2 ® S((2) | (7,2) | 14,14
| G, ( Gap @ SU(2) p=—14,2
| P(m ) | m>3 | St(m) | (m@m) | m* —1,m?
[Qm—1) [m>3 SU(m) | Adjoint | m? —1,m* — 1
Q(m—1) St(m)
Q((m — 1)) SU*(m)
UQ(p,m —1—p) SU(p,m — p)

Table 2.1: Lie superalgebras of classical type. Under ‘name’ is given the algebra
over C. The ‘defining representation’ gives the bosonic representation in which the
fermionic generators transform. The number of generators gives first the bosonic
and then the fermionic ones. Before starting with a new algebra over C, the
different real forms are given, together with their respective bosonic subalgebras.

The first series of SU-groups is a supersymmetric generalization of the bosonic
SU-groups (the A-series in the classification using Dynkin diagrams). The OSp-
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series contains supersymmetric generalizations of the B-, the C- and the D-series:
for m = 1, one finds the ‘supersymmetric C-series’, for other odd values of m, the
B-series is recovered and for m even, the D-series is discovered. The exceptional
Lie superalgebras F(4) and G(3) contain the special groups Fy and G5 in their
bosonic subgroup. The other exceptional group D(2, 1, «) has three bosonic factors
sl(2) in its bosonic subgroup. They appear with relative weights 1, @ and —1 — «
in the anticommutator of the fermionic generators. Its real forms contain SO(4) =
SU(2) x SU(2), SO(3,1) = Si(2,C) and SO(2,2) = Si(2) x SI(2). In the first and
last case, a should be real and for p = 1, a = 1 +ia with a real is required. In the
limit that « = 1, one finds D?(2,1,1) = OSp(4 — p,p). P(n) and Q(n) are called
strange superalgebras.

2.1.3 Superconformal algebras

As we have seen in section 2.1.1, the conformal algebra in d dimensions is equivalent
to the adS algebra in d + 1 dimensions:

Confy = adSg41 - (2.1.20)

It is also possible to do an Indnii-Wigner contraction of an (a)dS algebra in d
dimensions to a Poincaré algebra in d dimensions. Furthermore, we start the
derivation mostly from different superconformal algebras in this thesis. Therefore,
it is sufficient to study the classification of the conformal superalgebras. We always
first construct representations of the superconformal algebra and only afterwards
break sometimes to Poincaré supersymmetry. Also for the adS/CFT-conjecture,
it is sufficient to classify the superconformal (or equivalently the anti de Sitter)
algebras.

We first discuss the general structure of the superconformal algebra. Solving
(2.1.7) and (2.1.8), we found that the bosonic algebra already contained transla-
tions, Lorentz rotations, dilatations, and special conformal transformations. Ex-
tending this to the supersymmetric context immediately implies that a second
supersymmetry has to be introduced. Indeed, the commutator of the special con-
formal transformations and supersymmetry gives rise to a fermionic generator in a
Zs-graded algebra. This supersymmetry is called ‘special supersymmetry’ and de-
noted by S. Schematically, this can be written as: [K,,Q] = I',S. Furthermore,
the anticommutator {@Q,S} gives rise to new bosonic generators, mostly called
R-symmetry generators. The whole superconformal algebra can be represented
schematically in a supermatrix as

(Sg(_d’;) Q;f). (2.1.21)
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d superalgebra R number of fermionic generators
1 OSp(N|2) ( ) 2N
SU(N|1,1) SU(N) x U(1) for N # 2 4N
SU(2|1,1) SU(2) 8
OSp(4*12N) SU(2) x USp(2N) 8N
G(3) G2 14
F°(4) SO(7) 16
D%(2,1,q) SU(2) x SU(2) 8
3 OSp(N|4) SO(N) 4N
4 SU(2,2|N) SU(N) xU(1) for N #4 8N
SU(2,2|4) SU(4) 32
5 FZ%(4) SU(2) 16
6 OSp(8*|N) USp(N) (N even) 8N

Table 2.2: Super adSgy1 or confy algebras.

The diagonal elements are the bosonic generators (the conformal algebra and the
R-symmetry generators), the fermionic generators (for supersymmetry and spe-
cial supersymmetry) are off-diagonal. Nahm classified the conformal algebras® in
[24]. He imposed SO(2,d) to be a factor of the factorizable bosonic subgroup and
moreover, the fermionic generators should transform as spinors of the conformal
group. Using the algebra isomorphisms?,

Sp(2) = SO(2,1) = SU(1,1)=SI(2),
SO*(4) = SU(L,1)& SU(2),
S0(2,2) = Si(2)®SI2),
50(3,2) = Sp(4),
SO(4,2) = SU(2,2),
S0(6,2) = SO*(8), (2.1.22)

one ends up with the conformal algebras with compact R-symmetry group in
diverse dimensions of table 2.2. The maximal dimension for a superconformal
algebra is six.

The first line of the real forms of the OSp(m|n) groups of table 2.1 contains
a group with bosonic subgroup SO(6,2) and a non-compact R-symmetry group

3His classification also includes the de Sitter algebras.

4These equality signs are not correct for the corresponding groups. There one should use the
appropriate covering groups. SO*(2n) is a complex matrix that is equivalent to the quaternionic
matrix O(n, Q).
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Sp(N). We would like to have a supergroup with a compact R-symmetry. Due
to the isomorphism between the bosonic groups SO*(8) and SO(6, 2) we find that
OSp(8*|4) is a superconformal algebra with a compact R-symmetry group in six
dimensions.

The conformal algebra in two dimensions is SO(2,2) ~ SO(2,1) @ SO(2,1).
The superconformal algebras in two dimensions with a finite number of generators
can be constructed as the sum of two algebras in one dimension of table 2.2. The
superconformal algebras in two dimensions with infinitely many generators are
omnipresent in the worldsheet description of string theory. They are classified in
[25].

The Haag—FLopuszanski—-Sohnius theorem allowed for a central extension Zp s
which was a scalar under Lorentz transformations. This theorem was formulated
in the context of S-matrix theory in four-dimensional quantum field theory. In the
meantime, we know that string theory is not a theory of strings alone. Extended
objects (D-branes and NS-branes) are also present. Their description requires
corresponding ‘central charges’ with different numbers of indices. These ‘central
charges’ are not Lorentz-invariant. This relaxation of the Haag—FLopuszanski—
Sohnius theorem was introduced already in [26] and is reviewed in [27].

Two of these superconformal algebras will be used to construct matter cou-
plings to super-Poincaré theories. Then, one first couples matter to a confor-
mal gravity background and later breaks local superconformal symmetry to local
Poincaré symmetry. In this thesis, the analysis is restricted to two types of mod-
els. The first one is the construction of an action for the (2,0) self-dual tensor
multiplet in six dimensions. Then, the supergroup OSp(8*|4) is relevant. The
other supergroup used, is SU(2, 2|2), which corresponds to N = 2 supersymmetry
in four dimensions. Using superconformal tensor calculus, we will construct the
most general coupling of vector multiplets to N = 2 supergravity in four dimen-
sions.

2.2 Spinors and chiral bosons

In supersymmetric theories, the supercharges transform bosons (like scalars, vec-
tors, metrics, chiral bosons, etc.) into fermions and vice versa. This transformation
of a boson (B) into a fermion (F) can generically be denoted by:

§B =¢F . (2.2.1)
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A dimensional analysis learns that the dimension of the supersymmetry parameter
€ is —%. This implies that

SF = (9B)e. (2.2.2)

These two rules lead very schematically to the result that the commutator of two
supersymmetries gives rise to a translation. These schematic rules also argue that
a supermultiplet, a representation of an algebra that contains fermionic generators,
will contain both bosonic and fermionic fields. In [28] is argued the following: there
are an equal number of bosonic and fermionic degrees of freedom in any realization
of the supersymmetry algebra when translations are an invertible operation.

This equality in number of fermionic and bosonic states holds both for on-shell as
for off-shell representations. All this implies that we need a good understanding
of spinors in diverse dimensions. We will also discuss the different possibilities of
spaces where chiral bosons can exist.

A free electron is described by a Dirac fermion satisfying the Dirac equation
[29]. This equation contains the Dirac matrices which span a Clifford algebra. So,
the knowledge of Clifford algebras is indispensable for the description of spinors.
For certain dimensions with specific signatures, it is possible to impose chirality
(Weyl) or reality (Majorana or symplectic Majorana) conditions on these spinors
such that they become irreducible representations. We list these possibilities to
retrieve later the analogy with chiral bosons: exactly the same dimensions and
signatures allow chiral bosons and (symplectic) Majorana—Weyl spinors. A similar
analysis on Clifford algebras and spinors can also be found in [30].

2.2.1 Clifford algebras

We do our analysis in a space with flat metric 7,5, = diag(— ... — +...+) writing
first ¢ timelike and then s spacelike directions in d = ¢t + s spacetime dimensions.
The Clifford algebra is defined by

r,ry + W', = 2Nap - (223)

The purely spacelike (signature (0,d)) realization of this algebra in terms of the
Hermitian Pauli matrices:

01:((1’(1)> a2z<?_oi> 03:<(1)_01>, (2.2.4)

can be built in the following way:

' = ®1l1l®...
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Iy = »eI191®...
I's = 0300 1®...
Iy = 035001®...
I = 03®03R01®...

= ... (2.2.5)

For even spacetime dimensions, this Clifford algebra has dimension® 24/2. For odd
spacetime dimensions, the o in the matrix I'; is not needed. This implies that
the dimension of the Clifford algebra for odd d is 2(¢~1/2, For non-Euclidean
signatures, the first ¢ matrices are multiplied with a factor i. The timelike I'-
matrices are anti-Hermitian, the spacelike ones Hermitian:

rf=-r,, Tri=r,. (2.2.6)
This can be written in one equation:
If = (=)tAT A7, (2.2.7)

where A =T ...T;. The I'l also span the Clifford algebra (2.2.3) (or equivalently,
one could have multiplied the timelike I'’s of (2.2.5) with —i).

Define for n = 0,1, ...,d the matrices

I =T4 . a, =4 Tas-. Loy (2.2.8)

1

In even spacetime dimensions®, the set {F(")} is a complete set of 24/2 x 24/2.
matrices where I'® = 1 is the only one with non-trivial trace. The last matrix
'@ is related to

L, = (=), ...y, (2.2.9)

such that I',[', = 1. If the 'y of (2.2.5) are used, T, is independent of the
spacetime signature because of the factor (—i)! in (2.2.9). ', anticommutes with

5The word ‘dimension’ here refers to the number of rows and columns of the irreducible repre-
sentation of the algebra in matrix form. The irreducibility of the representation also guarantees
that a notion of the transpose of I'; can be defined. The dimension of the Clifford algebra, in
the sense of the number of generators, is 2%, where d is used for the spacetime dimension.

6We put more emphasis on even spacetime dimensions, since the calculations that use these
explicit realizations of the algebras and their representations are in four and six spacetime di-
mensions.
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d{|1|12]3|4]5]|6]|7/|8
ni|-|E£|+|x|-|x|+]|=x
el-| |+ |+ | +|F| - |-

Table 2.3: The symmetry properties related to C: values of € and n for different
dimensions.

all T',. Therefore, it can be used as 'y for the next odd spacetime dimension.
For even spacetime dimensions, we have the following relation between I'-matrices:

Fal...an = ﬁgal...adid/2+tr*radma"+l . (2210)

Furthermore, for the irreducible representations it is always possible to define a
charge conjugation matrix C which satisfies

¢T=—c, T1I'=_ycr,c7', cct=1, (2.2.11)
fore = £1 and p = +1. C is always unitary. For even dimensions, two possibilities
exist for C. For the representation (2.2.5), these are:

C+ = 02001 R02R... n=1,
C. = 0100001 ... n=-1. (2.2.12)

Remark that in this representation C_ = C4 Ty and CL = Cl. For odd dimensions,
only one of the two possibilities of one dimension lower remains. All possibilities
for € and n are summarized in table 2.3. 1 and € are independent of the spacetime
signature and the same for d and d 4+ 8 dimensions.

2.2.2 Irreducible spinors in different dimensions

The next ingredient in our theories is the construction of the irreducible spinor
representations for different dimensions and signatures. A spinor is a representa-
tion of the universal covering group of the relevant SO-group. One talks about
Euclidean, Minkowski, or conformal spinors in d dimensions if the symmetry group
of spacetime rotations is SO(d), SO(1,d — 1), or SO(2,d). Using the I'-matrices
of the last section, the infinitesimal transformation of a spinor under spacetime
rotations is

§ip = —1T A"y, (2.2.13)
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where 'y, = T'(?) of (2.2.8). The spinor in (2.2.13) is a priori a Dirac spinor. It has”
2 - 2[4/2] real off-shell components. Imposing the Dirac equation gives 2[4/2] real
on-shell components. The Dirac spinor is often a reducible representation. Two
types of projections are possible to find the irreducible fermionic representations.

For all even dimensions, it is always possible to use I'y. Since

1+I,\> 14T,
= 2.2.14
(5) -5 (22.14)
it is possible to project onto left- or righthanded spinors:
14T, 1-T.
AL = ( + > )\L; >\R = ( > >\R . (2.2.15)
2 2
In a representation of the Clifford algebra where T, is of the form
1T 0
T, = ( 0 -1 > , (2.2.16)

this gives rise to

AL = ( ?) ) i = ( N ) . (2.2.17)

This projection is compatible with Lorentz transformations since [1£= T';] = 0.
Spinors obeying one of these conditions are called Weyl spinors.

Another projection imposes a reality condition. From (2.2.7) and (2.2.11),
one obtains

I =—n(-)'Br,B !, (2.2.18)
where
BT =ca™t (2.2.19)
and
t(t+1)
B*B=—en'(-)" 2z . (2.2.20)

7[d/2] = d/2 for d even and equals (d — 1)/2 for d odd.



28 Chapter 2. Algebraic background

Imposing a reality condition on spinors,
\* = B, (2.2.21)

must survive Lorentz transformations:

(=1Tw\)" = —1BT,A. (2.2.22)
Using (2.2.18), implies that
BT, B 'B =BT, (2.2.23)
which is solved by
B = Ba, (2.2.24)

where « can in general be a matrix in the space of all the spinors, but is a scalar
in spinor space. This leads to the condition that

[a,Tas] = 0. (2.2.25)

Consistency requires that A** = X. This means that B*B = 1. Choosing a = 1
leads to

L. t(t+1)
B*B = (—6 ’r’t (—) 2 > ﬂ_ = ’_I]_’ (2226)

and this is solved if the right hand side of (2.2.20)

. t(t+1)
—enf(=)" 2 =1. (2.2.27)

Checking the different possibilities for € and 7 in table 2.3, gives that this condition
is satisfied for

s—t = 0,1,7 mod 8,
s—t = 2 mod 8 withn=+1,
s—t = 6 mod 8 withnp=-1. (2.2.28)

The spinors that obey a reality condition like A* = B are called Majorana spinors.
There is another possibility to denote this reality condition: the Majorana conju-
gate should equal the Dirac conjugate or

A=2c,  XO=XAa . (2.2.29)
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For the case of Minkowski signature, the Dirac conjugate is the familiar ATT.

Even if (2.2.20) is —1, it is possible to impose a ‘reality condition’. For that
purpose, one needs a non-trivial R-symmetry group. Choose a in B equal to Qij,
an antisymmetric matrix such that QQ* = —1. Q;; acts on the different spinors
in a representation of the R-symmetry group, so it still commutes with the I'-
matrices. So starting from complex spinors in a representation of the R-symmetry
group, equation (2.2.21) becomes:

Ap=(\)" = BN, (2.2.30)

The advantage of spinors with this type of reality condition is that they transform
nicely in a representation of the R-symmetry group of the superalgebra. These
symplectic Majorana spinors will be relevant for simple and extended chiral super-
symmetry in six dimensions (with R-symmetry group SU(2) and USp(4)) in chap-
ter 5. We will use four symplectic Majorana—Weyl spinors in the 4-representation
of R-symmetry group USp(4) instead of two chiral spinors without a reality con-
straint.

A last possibility is to combine the chirality and the reality condition. Com-
bining (2.2.9) and (2.2.18), one finds that

(T,)* = (=)¥***Br, B~". (2.2.31)

This is compatible with the reality condition if d/2+¢ is even or if s—t = 0 mod 4.
All the possibilities are collected in table 2.4. Spinors obeying a combination of
the chirality and reality condition are called (symplectic) Majorana—Weyl spinors.

2.2.3 Chiral bosons

Chiral bosons are antisymmetric p-forms in 2p + 2 dimensions with real (anti)self-
dual field strengths. Using the definitions for the Levi-Civita tensor ¢ of appendix
A.1, the dual of an n-tensor in 2n dimensions is

Fopa, =12 L g Bt (2.2.32)

n

With this definition, the dual of the dual is the original tensor. The (anti)self-dual
component of an n-form is defined as

FE . =1 (Fal...an j:F'al...an) . (2.2.33)
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d=t+s \ © 0 1 2 3

1 M T M 1

2 M- 2 | MW 1| M+ 2

3 4| M 2 | M 2 4
4 SMW 4 | M* 41 MW 2| M- 4
5 8 8| M 4| M 4
6 M+ 8| SMW 8| M~ 8 | MW 4
7 M 8 16 16 | M 8
8 MW 8| M- 16 | SMW 16 | Mt 16
9 M 16 | M 16 32 32
10 M- 32| MW 16 | M* 32 | SMW 32
11 64 | M 32 | M 32 64
12 SMW 64 | Mt 64 | MW 32| M~ 64

Table 2.4: Spinors in various dimensions, and for various number of time directions
(modulo 4). For even dimensions, Weyl (W) spinors are always possible. M stands
for Majorana spinors. For even dimensions, M¥ indicates which sign of  (ta-
ble 2.3) should be used. MW indicates the possibility of Majorana—Weyl spinors.
SMW indicates the possibility of symplectic Majorana—Weyl spinors. They are al-
ways possible when the Majorana condition is not possible. The numbers indicate
the real dimension of the minimal off-shell spinor.

This means that real (anti)self-dual field strengths are possible in spacetimes where
d/2 4+t is even. So, chiral bosons appear in two, six, ten, ... dimensions for
Minkowski spacetimes and multiples of four for Euclidean spacetimes. All possi-
bilities are collected in table 2.5.

Comparing the different dimensions and signatures where chiral bosons are
possible (table 2.5) and where (symplectic) Majorana—Weyl spinors are allowed
(table 2.4), leads to exactly the same spacetimes. So, the smallest irreducible rep-
resentations for both fermions and bosons appear in the same spacetimes. When
discussing supersymmetry, they will be together in supersymmetric multiplets.

Later in this thesis, we will study two different models. The first model is the
(2,0) self-dual tensor multiplet in six Minkowski dimensions. This self-dual tensor
multiplet contains a chiral two-form, four symplectic Majorana—Weyl spinors and
five scalars. This means that we have to look in the row with d = 6 and the
column ¢t = 1 for this case. The other model will be vector multiplets with two
supersymmetries in four Minkowski dimensions. The fermions will be Majorana
fermions as can be seen in table 2.4. Table 2.5 shows that chiral bosons are not
possible for Minkowski signature in four dimensions.
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d=t+s\t] 0] 1]2]3
2
4 X X
6 X X
8 X X
10 X X
12 X X

Table 2.5: Possible chiral bosons in various dimensions, and for various number of
time directions (modulo 4) are indicated by X .

2.2.4 Superconformal algebras in 4 and 6 dimensions
The superalgebra SU(2,2|2)

The superalgebra SU(2,2|2) is one of the possibilities of four-dimensional confor-
mal algebras of table 2.2. We have N = 2, two supersymmetries in four dimensions.
The R-symmetry group is SU(2) x U(1). The algebra has ten generators in the
Poincaré algebra: four translations P, and six rotations M,;. The bosonic confor-
mal algebra further contains the dilatation generator D and four special conformal
generators K,. They form the algebra®

(Map, Meal] = —nareMayp + Mee Mapa
[Pos Mye] = —nap Py,
[Kay Mpe] = —nappKes
[Po, Kb = (MapD —2Map) ,
[D, Pa] = P,
[D,Ka] = -K,. (2.2.34)

Unlike the algebras for different spacetimes in section 2.1.1, the generators here
carry tangent-space indices. The supersymmetry charges ; and special super-
symmetry charges S; carry an SU(2)-index ¢ = 1,2 counting the number of super-
symmetries. The place of the index denotes the chirality:

V5Qai = Qui QL = —Q, V5Sai = —Sai s v5SL = SL. (2.2.35)

8The factors in this algebra differ slightly from the ones used in (2.1.13) and in (2.2.38). With
these conventions, the symplectic structure is achieved more clear and we remain in contact with
the literature for N = 2, d=4. The following conversion gives rise to the bosonic subalgebra in
(2.1.13): change the sign of P, and of M, and transform K, into —%Ka.
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The R-symmetry generators are denoted by U;/ and U(1). The SU(2)-generators
U;J are anti-Hermitian. They satisfy

Ul = (U)* = -U,, (2.2.36)

*

where * means complex conjugation. The algebra has the following non-trivial
(anti)commutators:

[Ma, Q4] = 2(7asQ)a, [Map, SL] = 2(vabS")a
(Ko, QL] (YaSDas  [PasSL] = (72Q")a,
[D,Q.] = 3Qu, [D,Si]=—3S,
[UW),Q.] = —-3Qn,  [UW),Si] =—5Ss,
{QL,Q7} = =6;(1")a’Pu,
{85,57} = —38;'(v")a"Ka,
{Qi, 5]} = —38;70.°D + 35,7 (v"")a" Map — £(75)a"U (1) = 6°U;,
U7,Q% = —6*Q + 467Q% , [U7,SE] = —6;*S7 + 36,75k,
U, 0] = -&'U7 + 6,70 (2.2.37)

In the righthand side of the (anti)commutators, (anti)chiral projections are left
out. It should be easy to add them, since the chirality of the supercharges is
given in (2.2.35). This corresponds to the algebra used in [31, 32], up to factors:
the (special) supersymmetry generators there should be multiplied with V2. This
algebra will be used in chapter 6 to study the most general coupling of vector
multiplets to supergravity.

The superalgebra OSp(8*|4)

The conformal group in 6 dimensions consists of the 21 generators of the Poincaré
algebra (6 translations P, and 15 rotations Mg;), the dilatation-generator D and
6 special conformal generators K, with the following algebra:

[Map, Mea] = Nafe Mapp — Mo Mapa
[Pos Mye] = nappPe s
[(Kay Mbe] = napKe s
[Po, Kb = —2(napD +2Map) ,
[D, Pa] = P,

[D,K,] = -K,. (2.2.38)
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In addition, we have two chiral supersymmetries in six dimensions. This is called
(2,0) supersymmetry in six dimensions. When the chirality of the two super-
symmetries differs, the model has (1,1) non-chiral supersymmetry. We use the
notations of appendix A.3.1. The right-handed supersymmetric generators Q¢
are symplectic Majorana—Weyl:

’

=t -me? Q. QL = QD) (—im)a® =CasQ) . (2.2.39)

As already mentioned in the general discussion on conformal algebras in section
2.1.3, the commutator of [K, Q] gives rise to special supersymmetries S?,. Also
these generators are symplectic Majorana—Weyl, but they have the other chirality:

S=3(1+7v1)a" Sk (2.2.40)

The anticommutators of - and S-generators gives rise to the R-symmetry: repre-
sented by USp(4)-generators U;; which satisfy U;; = Uj; = (U%)*. Their indices
are raised and lowered with the USp(4)-metric Q;; and U!; = U¥%Q;; = 0. The
new non-trivial (anti)commutators are:

{QL, Q7Y = —3(va)a’s;'PC,

{85,57F = L)oo K",
{QL,, 87} = 16,00 D — L(ya)a® 6, M — 46,7 U,
[May, Q] = —3(7ar @),

[Map, S5] = —1(vabS)s

U9,Qh] = 3etiQl,

v st] = b0k

[Uij, U]l = —3Uak + 3UkiQur,

[D,Qu] = 3Qu

[D.Si] = —38.,

(Ko, Q] = (a8

[Pa,S5] = —(1a@)e - (2.2.41)

In this algebra, we have used everywhere  for the matrices of the Clifford algebra.
From the notations in section A.3.1, it should be clear which one is meant.



34

Chapter 2. Algebraic background




Chapter 3

Methodological background

This chapter introduces two techniques that were extensively used in the devel-
opment of this work. Section 3.1 reveals the essential features of superconformal
tensor calculus. It explains the motivations for using this method. Further, it pays
attention to its main ingredients, illustrated by the example of a massive vector.
Finally, we build gravity from conformal gravity using what can be called ‘confor-
mal tensor calculus’. Some essential steps (independent from any supersymmetry)
for the construction of models with local superconformal symmetry are explained
here already.

In section 3.2, we will review the Batalin—Vilkovisky method, also called field-
antifield formalism. This is a framework that allows studying the most general
gauge theories known today in a unified framework. Both classical and quantum-
mechanical aspects are treated. We will use this formalism in chapter 4 to study
different gauge fixings of the Lorentz-covariant action of the self-dual two-tensor
in six dimensions.

3.1 Superconformal tensor calculus

3.1.1 Motivation for superconformal tensor calculus

One of the techniques used in this work to study supergravity models in four and
six dimensions is superconformal tensor calculus. Good reviews can be found in
[33, 34, 35, 36]. This method enables the construction of actions or equations of
motion for pure supergravity or for the coupling of different matter multiplets to
Poincaré supergravity. During most of the intermediate steps of the construction,

35
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the models under consideration are invariant under superconformal symmetry, but
this is not the final symmetry group. The main reason for breaking this conformal
invariance is that it is only possible for massless fields. Conformal transformations
leave invariant the light-cone. This invariance is spoiled by dimensional param-
eters. Since making contact with the standard model, which contains massive
particles (and no conformal symmetry), is our ultimate goal, we are not always
interested in models with conformal symmetry.

Why do we make this detour, if the ultimate goal is not a conformally invariant
model? The main motivation to use superconformal methods is that they enable a
more elegant construction of Poincaré invariant models. It also allows to see more
clear the connection between different models with Poincaré symmetry. In this
way, no separate tensor calculi need to be set up to study supergravity theories
with different auxiliary fields. Another reason is that the origin of certain terms of
the intricate expressions of supergravity models are clarified. The higher degree of
symmetry makes the transformation rules simpler. Breaking to Poincaré symmetry
at the end of the construction leads to certain non-linear terms in the Poincaré
theory that were obscure before.

All the results are presented in component form. Also other formulations are
possible, e.g., a superspace formulation, where, by using a geometric construction,
the spacetime coordinates get accompanied by fermionic coordinates [37].

After all, it is not a surprise that a bigger gauge symmetry can be used that
is gauge fixed afterwards. A theory with a gauge symmetry is a formulation of
a physical model with more symmetry in the description than in the model it-
self. This redundancy in the description enables a more elegant formulation. In
our approach, the redundancy is the superconformal symmetry that is extra when
compared to ordinary supersymmetry. The dilatational, special conformal, and
special supersymmetry are not symmetries of the physical models under consider-
ation. Including these symmetries facilitates a more elegant construction.

Even if it seems that conformal symmetry is not a physical symmetry in the
study of high energy physics, it can be interesting to study'. The last couple
of years, conformally invariant theories have attracted more attention after the
formulation of the adS/CFT-correspondence.

Superconformal tensor calculus has been used successfully in four dimensions
with N =1 [38], N =2 [39] and N = 4 [40] supersymmetry. In six dimensions, it
has been developed in [41] for one chiral supersymmetry and in [42] for two chiral
supersymmetries. Also in five dimensions the construction of conformal gravity is
possible, but this is not yet achieved.

1Up to now, supersymmetry also seems not to be physical, but it still is interesting to study
supersymmetric theories for reasons discussed in the introduction.
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3.1.2 The method in general

Gauge equivalence: the essential steps

The aim of superconformal tensor calculus is to construct models with super-
Poincaré invariance. The superconformal group is introduced only as a tool to
obtain this. The key ingredient in superconformal tensor calculus is using the
procedure of gauge equivalence. This means that in the process of constructing
the model, a bigger symmetry group (in our case the superconformal group) is
introduced than the final symmetry required. The extra symmetry is used as a
tool in the construction. One constructs representations of this bigger symmetry
group. Some of these representations, the compensating multiplets, will contain
fields that are not physical, nor auxiliary at the end of the construction. The
breaking of the residual symmetry is done by imposing gauge-fixing conditions
on fields of the compensating multiplets. The following steps are essential in the
construction of an action:

e define extra symmetry

e choose compensators

e construct an invariant action or equations of motion
e impose gauge fixings for the unwanted symmetries

e rewrite the action or the equations of motion

This gauge equivalence approach is not exclusive for the construction of Poincaré
supersymmetric actions. It can also be used for more simple models. In the
remainder of this section, we will explain the essential ingredients in a simple
example. Section 3.1.3 will study the case of conformal gravity. Both examples
contain aspects of the models we will be studying later.

A simple example of gauge equivalence

The main ingredients of the gauge equivalence program will first be illustrated by
the example of a massive vector. The Lagrangian of a massive vector V), can be
written as

L=-1F,F" — im’V,V". (3.1.1)
Because of the mass term this Lagrangian is not invariant under an Abelian U (1)-

symmetry. By following the different steps of the gauge equivalence program, one
can recover the action (3.1.1) for a massive vector.
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The first step consists of defining an extra symmetry. In this example, we
choose the extra symmetry to be the Abelian group U(1). This symmetry will be
broken at the end, since we want to end up with the action for a massive vector
which has no U(1)-invariance. The vector in the model will transform under this
U(1):

5V, = 0,A. (3.1.2)

In a second step, the compensator is introduced: a real scalar field ¢ that
transforms as a shift:

Sp=A. (3.1.3)

By introducing an extra scalar and a new gauge symmetry, the number of degrees
of freedom in the model is not altered.

The next step of the program is the construction of an action for these two
fields. Therefore, the covariant derivative of the scalar is defined in the usual way:
the partial derivative minus the gauge transformation with the parameter replaced
by the corresponding gauge field?:

Dup=0,6—V,. (3.1.4)

This covariant derivative is gauge invariant and can be used in the invariant La-
grangian:

L=-1F,F" —im>D,¢D"¢. (3.1.5)

The final step in this example is the gauge fixing of the unwanted symmetry.
The easiest thing to do is choosing ¢ = 0. This gauge choice can always be reached
by the shift symmetry. Imposing it gives rise to the action for a massive vector
with mass m. In this case, the construction of an action that is known already
for a long time is rather elaborate, but the main steps in the construction are all
included. This example also makes clear that this technique is not tied to any
conformal symmetry or to supersymmetry.

3.1.3 Conformal gravity

In this subsection, pure gravity in d dimensions will be constructed using conformal
methods. This enables a clear explanation of the conventional constraints. Later

2In the six-dimensional model, we will recover a similar gauge transformation and covariant
derivative for a scalar field, essential in the covariant formulation of the model.
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on, we will use it to illustrate the gauge equivalence program. The extra symmetry
in this example is conformal symmetry. The conformal algebra in d dimensions
is SO(d,2). Its commutation rules are given in (2.1.13). This algebra has d
generators P, for translations, %d(d — 1) Lorentz generators My, one dilatational
generator D and d generators K, for special conformal transformations.

generators | P, | My, | D | K,
gauge fields | e, | w, % | b, | fu®

parameters | £° A T Ap [ A%

Table 3.1: The generators of the algebra (2.1.13), its gauge fields and the corre-
sponding parameters.

The gauge fields corresponding to these symmetries can be found in table 3.1.
Gauge fields transform in general as follows:

Shit = 0,6 +ehl fhe . (3.1.6)
The numbers fj. are the structure constants (or structure functions) of the sym-

metry algebra. The infinitesimal transformation of the gauge fields of the confor-
mal algebra (2.1.13) are:

de, = Du&" —Ape,” — )\“beub,
8by = 0uAp —20%euq + 26" fua,
Sw,™ = DA 4 4anlte, bl — aglof, 0
6fu® = DuA%+Apfu® —A"fup, (3.1.7)

where D,, is the covariant derivative with respect to the dilatations and Lorentz
rotations:

Dufa = 6;16& + buga + wuabgb ,
DAY = 0,A% —buA% +w,""Axy,
DAY = 9,0 4 2w, [0N0e (3.1.8)

The natural way to form curvatures is:
Ru,,A = 28[uh,,]A + h[,,chu]BfgC . (3.1.9)

This gives rise to the following curvatures:

Ry, (P) = 206" + 2bje,® + 20, ey
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Ru,,ab(M) = 28[uw,,]‘“’ + QW[uan,,]Cb — Sf[u[ae,,]b] ,
Ruu (D) = 2a[,ubu] + 4f[uaeu]a )
R:(K) = 20, 1" + 2w fujp — 2b.f0)" - (3.1.10)

Up to now, the conformal group (with the Poincaré group as its subgroup) has
been treated as an internal symmetry group with no relation to any spacetime.
Making contact with a description of spacetime needs a formulation in terms of
general coordinate transformations. They describe reparametrizations of the base
manifold spanned by the spacetime coordinates:

x# — ot + (). (3.1.11)

The conversion of Poincaré transformations into transformations of spacetime can
be understood by rewriting the general coordinate transformation of e,® with a
transport term and a rotation term as follows:

dgeten” = &€70,e," + 0,8 e,
= Du(€e,*) = (€"w,)ew — (€'by)e,” — €V RE,(P). (3.1.12)

Following equation (3.1.7), this can be rewritten as a combination of a translation
with parameter £”e,®, a Lorentz transformation with parameter £’w,® and a
dilatation with parameter £”b, if the following constraint is introduced:

R:,(P) =0. (3.1.13)

In this way, local Poincaré and general coordinate transformations are no longer
independent. This is called a conventional constraint because the appearance
of the (underlined) product of a vielbein® and wu“b enables to express the spin
connection w,® in terms of other fields. w,®® is a composite gauge field. This
formulation in terms of a spin connection is necessary to couple spinors to gravity.
The solution of the constraint (3.1.13) is:

w, " = 2e"19;,e,," — erl"e"7 e, Dpe e + 2¢,10" . (3.1.14)

"

In conformal gravity, a second conventional constraint is necessary. The underlined
term in expression (3.1.10) for the curvature R, ®(M) also contains the product
of a field and the vielbein. Imposing

R’y =0, (3.1.15)

3Remark that the vielbein e,® has to be non-singular. Its inverse is eq”.
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expresses f,® also as a composite gauge field:
fua = —mR;a(M)—F WCHER’(M), (31.16)

where R, *(M) = e”,R],,** and R),,*" is the Riemann curvature in (3.1.10) without
the underlined term. In a supersymmetric model, the two conventional constraints
(3.1.13) and (3.1.16) get accompanied by a constraint for the fermionic fields. As
can be seen in (3.1.10), also the dilatational curvature contains a term with the
product of a vielbein and the gauge field b,. However, there is no new constraint
any more. The Bianchi identity for P, gives a relation between R, (D) and the
contracted form of R, in (3.1.16). The two constraints (3.1.13) and (3.1.16)
are the maximal number that can be imposed. They give rise to an irreducible
representation of the conformal algebra.

We thus find that conformal gravity has two independent gauge fields: e,®
and b,. In d dimensions we can count the degrees of freedom in the following way.
A priori, e,® and b, have d*> + d degrees of freedom. Subtracting d degrees of
freedom fE)r g()eneral coordinate transformations, d other components for conformal

d(d—1

boosts, ==— degrees of freedom for Lorentz rotations and one for dilatations,

gives d; — % — 1 off-shell components. This counting is called an off-shell count-
ing, since no equations of motion are used. After this subtraction, this is called a
‘massive’ graviton?. In four dimensions, the massive graviton has five components.
In 6 dimensions, this counting gives rise to a graviton with 14 off-shell degrees of
freedom. These countings will be relevant in chapter 5 for six dimensions and
in chapter 6 for four dimensions. Remark that there are no degrees of freedom
associated anymore to the field b,. It is the only independent field that trans-
forms under conformal boosts. Therefore, it can be completely gauged away. All
the composite gauge fields transform under special conformal symmetry via their
dependence on b,,.

Gauge equivalence for conformal gravity

After the analysis of conformal gravity, it is possible to study the coupling of
matter to conformal gravity. This will again illustrate the ‘gauge equivalence’
approach in an example of ‘conformal tensor calculus’. We start from a bigger
symmetry then we want to end up with: conformal symmetry.

4The word ‘massive’ is inspired by the resemblance with a massive vector in four dimensions
with three degrees of freedom. Its number of degrees of freedom is the same as that of a massless
vector where the equation of motion is not yet imposed.
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The second step: the compensator we choose to gauge fix this symmetry later
on is a scalar field. Consider a scalar field that is invariant under conformal boosts

0k =0. (3.1.17)
It has Weyl weight w under dilatations:
dpp =wApd. (3.1.18)
The covariant derivative of such a scalar is
D,¢p =0, —wb,o. (3.1.19)

Since b, is not invariant under K,-transformations, the covariant derivative of the
K ,-invariant scalar will transform:

Ok (Do) = 2wA K- (3.1.20)
The dilatational weight of D,¢ is w + 1. Its covariant derivative is
D,(D"¢) = 0,D¢ +w,"* Dy — (w + 1)b, D¢ — 2wf,"¢. (3.1.21)
The expression
Oc¢p = Do(D%p) = 0, D% 4+ wo Dy — (w + 1)be D% — 2wf,%¢  (3.1.22)

is called a covariant d’Alembertian. It is an easy job to derive the following
transformation rules:

6kD,D"¢ = (2w +2)A%D,ud+ (2w + 2)Ak, D¢ — 2A% Dyde,”,

SkDyD% = (4w +4—2d)A% Dy,

opDD* = (w+2)D,D%. (3.1.23)
For w = %, it is possible to construct a conformally invariant Lagrangian

for a scalar coupled to a background of conformal gravity. Such a background
of conformal gravity is not the same as dynamical conformal gravity. Dynamical
conformal gravity requires a higher derivative action, quadratic in the Weyl ten-
sor [43]. The case of conformal supergravity is treated in [44]. The Lagrangian
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contains also a conformally invariant self-coupling with coupling constant g which
will give rise to a cosmological term:

L = —epDyD"¢+ egpi=
— e (aaD% + we® Dy — (w + 1)ba D% + %R’(ﬁ)
+eghTa (3.1.24)
where we used that f,* = —mR’ from (3.1.16). The vielbein determinant

e provides invariance under dilatations and general coordinate transformations.
This density finishes the third step in the gauge equivalence program. The sign
of the kinetic term is ‘wrong’. The reason for it will become clear at the end of
the section. This finishes the construction of the action that is invariant under
conformal symmetry. Now everything is ready to study the gauge equivalence of
this model with general relativity.

The following step consists of making the appropriate gauge choices for the
unwanted symmetries. Here, we want to illustrate the gauge equivalence pro-
gram and get rid of the superfluous symmetries, in this case the special conformal
symmetries and the dilatational symmetry. The only independent field that still
transforms under special conformal transformations is b,. It is possible to gauge
fix this symmetry by imposing;:

b, =0. (3.1.25)

By choosing ¢ to be a constant, the covariant derivative of ¢ (3.1.19) is 0. This
means that in the conformal d’Alembertian (3.1.22) only the term

2w, ¢ = ﬁR’ ¢ (3.1.26)
survives. Choosing
b= % (3.1.27)
changes (3.1.24) into
a4
L'=—LeR +eg (%) . (3.1.28)

This is the Einstein-Hilbert term in the action (3.1.24) if g = 0. For g different
from 0, we find a cosmological term giving rise to a de Sitter space or an anti de
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Sitter space. Positive g corresponds to a negative cosmological constant of an anti
de Sitter space, and the other way around.

This procedure shows how to build the Einstein—Hilbert action for pure gravity
in d dimensions by gauge fixing the action of a scalar coupled in a conformal gravity
background. The ‘wrong’ sign for the kinetic term in (3.1.24) was needed to find
the appropriate sign for the Einstein—Hilbert term here. This phenomenon is also
encountered in the superconformal tensor calculus. Starting from a density with
more matter fields (with the right kinetic term) than just the one compensating
scalar will give rise to the coupling of matter to Poincaré gravity. This is of course
a much too long derivation for the result it yields. It is because this example
illustrates the importance of both the construction of an action that is invariant
under the bigger symmetry group and the way in which the superfluous symmetries
are gauge fixed that we have spent so much attention to it. We use the same
mechanism in the supersymmetric case in four and six dimensions later on.

3.2 A review of the Batalin—Vilkovisky method

3.2.1 Some background on gauge theories

It is difficult to overrate the role of gauge symmetry in the formulation of elemen-
tary particle theories. The first example of a gauge theory was electrodynamics.
Electric and magnetic forces are generated by the exchange of photons. Photons
have spin one and are described by an Abelian vector field A,. Not all of its four
components are dynamical. The two transversal components correspond to physi-
cal polarizations. The longitudinal degree of freedom plays a role in the exchange
of virtual photons. The remaining gauge degree of freedom does not enter the
theory. Non-Abelian gauge theories are the cornerstone of the standard model.

The quantization of gauge symmetries is far from trivial. In the Abelian
case, the quantization was established in the 50’s. Generally, the quantization of
a gauge theory involves ghost fields. The ghost fields are needed to compensate
for the effects of (superfluous) gauge degrees of freedom, in order to preserve
unitarity. With linear gauges, ghosts decouple in electrodynamics and can be
ignored. This is not the case anymore in non-Abelian theories. There, convenient
gauges generically imply interacting ghosts. A systematic procedure for the gauge-
fixing of non-Abelian theories was established by the Faddeev—Popov procedure
[45] which introduced in a systematic way the ghost sector. Becchi, Rouet, Stora
and Tyutin realized that this gauge-fixed action, where the presence of the ghosts
is understood as a “measure effect”, still contains a nilpotent, fermionic, global
symmetry: the BRST-symmetry [46].
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Later on, not only the group structures of gravity and the Virasoro algebra
in string theory were studied, but also gauge theories with more sophisticated
algebraic structures. The first one of these extensions were theories with soft alge-
bras [47], where one had (field-dependent) structure functions instead of structure
constants. Another generalization were models in gravity [48] and supergravity
[49, 50, 51] with open algebras [50, 52]: the commutator of two transformations
closes only if one uses the equations of motion. Another complication were re-
ducible algebras: not all gauge transformations are independent. The main reason
to work with such a redundancy is the same as to work with gauge theories: one
wants to keep Lorentz invariance explicit. The dependency relations between the
gauge transformations are called ‘zero-modes’. These zero-modes can have further
zero-modes, so a next stage of reducibility is reached [53, 54]. Also infinitely-
reducible models [55, 56] are possible.

For each of these complications, appropriate solutions were invented. The big
advantage of the field-antifield formalism is that it is the only formalism that can
treat all these difficulties in a unified way, separately and in combination. It is the
merit of Batalin and Vilkovisky to generalize the role of the symplectic structure,
that was known already in the BRST-framework [57], to antibrackets, and the
sources for BRST-transformations to antifields. Therefore, the field-antifield for-
malism is often called Batalin—Vilkovisky (or BV) formalism. Original references
can be found in [58, 59, 60, 52, 61], some reviews in [62, 63, 64].

The two essential ingredients of the BV-formalism are the antifields and the
antibrackets. For each field or ghost (or ghost for ghost, ...), there is an an-
tifield. The antifields are like the momentum conjugates for the coordinates in
the canonical formalism. Antifields are the sources for the BRST-symmetries, the
symmetries of the Lagrangian after gauge fixing. Antibrackets, the second essen-
tial ingredient, introduce a symplectic form on the space of fields and antifields.
They are an attractive feature of the formalism since they have the same role in
the space of fields and antifields as the Poisson brackets in the phase space with
coordinates and conjugate momenta in classical mechanics. Furthermore, the an-
tibrackets enable a covariant treatment. For the Hamiltonian approach, we refer
to [65, 66].

3.2.2 The classical Batalin—Vilkovisky formalism

In this section we give a brief technical account of the classical BV-procedure. A
ghost number ¢ is assigned to the gth generation of ghosts, where the classical
fields have g = 0. For every field, including the ghosts, an antifield with opposite
statistics is introduced. So, if the field ® is bosonic, its antifield ®* will be fermionic
and vice versa. We denote the set of classical and ghost fields by ®4 and the set
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of their antifield counterparts by ®%. The antifields are assigned a ghost number
such that

g(®4) + g(®%) = —1. (3.2.1)

We also define an antifield number, which is 0 for fields and equal to —g for
antifields. For functionals F'(®,®*), G(®, ®*), we introduce the antibracket

— o — o

o 0 o 9
64>A6¢>f4G_F8<I>*Aa<I>A

(F,G)=F G, (3.2.2)

where summation over A includes also spacetime integration. The analogy of
the fields and antifields in the antibrackets with respect to the coordinates and
momenta in Poisson brackets can be illustrated in the following way:

(0%,6%) =0,  (¢4,05) =0, (¢ %) =035. (3.2.3)

Sometimes we will add to the antibracket an index between brackets. (F,G) )
means that in (3.2.2), only the terms with antifield number n are to be included.

The minimal extended action is defined by adding to the classical action
a part containing the antifields, multiplied by the BRST-transformations. The
parameters of the gauge transformations are replaced by ghost fields c?:

Smin - Scl + S(l)
= Sq+ 4R pcP, (3.2.4)

where §®4 = RAp(¢%) e? is the infinitesimal gauge transformation with param-
eter eB. The extra term S(1) has antifield number 1.

If the gauge transformations of S have zero modes, the gauge symmetry is
reducible. Extra terms have to be introduced which have an analogous form: an
antifield that is the antighost of the relevant gauge transformation, multiplied by
the zero mode transformation, where the parameter has been replaced by a ghost
for ghost. This yields a term of antifield number 2. In the case of an infinitely
reducible theory, this is an infinite series of terms. This procedure ensures that
for every gauge symmetry a ghost has been introduced, and for every zero mode
a ghost for ghost. This can be checked by counting the number of zero modes of

the Hessian
— —

0 0

B _
547 = 531° 5w,

(3.2.5)
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at the stationary surface. This is the surface where the classical fields satisfy the
field equations and the ghosts and antifields are set to 0. The result should be half
the number of fields and antifields. If this is the case, the properness condition is
fulfilled.

Other terms have to be added, if the algebra of the model is open of soft. For
a soft algebra, an additional term is introduced for the commutators of the gauge
symmetries, of the form

/da: L(=)Bek The cBe@ (3.2.6)

where the T, are the structure functions associated to the commutators of the
gauge symmetries and (—)® is the fermion number of ghost c?. For non-Abelian
gauge theories, the Tj,f‘c are the structure constants. In our algebra in section 4.3,
they will be field-dependent structure functions. In the case of an open algebra,
the extended action contains a term

Sy = (=) L 75 B apclet. (3.2.7)

This is the product of the square of the antifields and the square of the ghosts
and the corresponding non-closure functions E. In this way, more terms of higher
antifield number, S),...,S(,), are added until the resulting action, called the
extended action, satisfies the classical master equation, which is

(Sezt; Se:tt) =0. (328)

The classical limit imposes that the truncation of the extended action to the
antifield-independent part should be the classical action.
If the three conditions:

1. properness condition

2. classical master equation: (Sext,Sert) =0

3. classical limit
are satisfied, Se,; is an extended action that can be used for studying the gauge-
fixing and later the quantum-mechanical properties in the BV-formalism.

To perform the gauge-fixing, two main ingredients can be used: canonical
transformations and addition of auxiliary (‘non-minimal’) fields.
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Canonical transformations from the basis {®4,®%} to another set {®4, &%} are
defined to leave the antibrackets invariant. The same terminology is used in the
Hamiltonian formulation of classical mechanics. Often these canonical transfor-
mations can be determined by a fermionic generating function of ghost number
—1, F(®,®*), such that

- OF (®,9*) OF (®,9*)
=" = ———— 3.2.9
8(1)2 ) A a(bA ( )
The generating function is of the form
F(®,8") = 13" + T(d). (3.2.10)

The function ¥, also a fermion of ghost number —1, is called the gauge fermion. If
the canonical transformation is not invertible in the field-field part, then it cannot
be generated by a gauge fermion. In section 4.4, we will give an example of such
a canonical transformation.

To do the gauge fixing, it will sometimes be necessary to introduce auxiliary
fields and their antifields b and b*. They should not have any influence on the
master equation, and the physical content of the action should not be changed.
For example, one gives the field b a ghost number —1, so that its antifield has
ghost number 0, and one adds to the action the term S, = (b*)?. Fields with
negative ghost number are called non-minimal. There are two typical forms to
introduce non-minimal extensions:

Srlz,m = %A27
SZ = b*A. (3.2.11)

The first non-minimal extension is described by a bosonic field A and its anti-
field, the second extension has two sets of a field and its antifield. Both types of
non-minimal extensions will be used in section 4.4. Gauge fixing is performed by
a combination of introducing non-minimal sets and canonical transformations on
the set of fields and antifields. This operation should make sure that the antifield-
independent part of the extended action has a Hessian that is invertible on the
stationary surface. In that case, well-defined propagators can be calculated. Al-
though it is not difficult to explain how the gauge fixing can be done, this does not
mean that the gauge-fixing is not difficult. Raymond Stora’s statement: ‘Gauge
fixing is an art’ remains valid. There are plenty of possibilities to transform the
fields and antifields into a new set where the Hessian of the fields is invertible, but
it is far from trivial which choice has to be made to achieve this in a manageable
way. The advantage of the gauge-fixing using canonical transformations is the pos-
sibility to go from one gauge-fixing to another by doing canonical transformations.
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3.2.3 A short review of the quantum BV-formalism

After doing the gauge fixing, one has not obtained any quantum-mechanical result
yet. One has only finished the preparation to start a quantum-mechanical calcu-
lation. We will sketch how to obtain also quantum-mechanical results using the
quantum BV-formalism. Vaster literature can be found in the references of the
previous section and in [67].

We already stated that gauge fixing is doing a canonical transformation to a
gauge-fixed basis such that it becomes possible to compute propagators. There
was an arbitrariness in this gauge fixing and we do not want the quantum theory
to depend on this choice of gauge fixing. Therefore, the path integral should be
invariant under a canonical transformation. The translation of this statement into
the BV-language is that the quantum master equation should be satisfied:

(W, W) = 2ihAW , (3.2.12)

where W is the quantum action, an expansion in terms of A with the classical
action as the h°-term:

W =S8+ nM. (3.2.13)

i=1

The M;’s in the power expansion in & are counterterms. The A-operator is formally
defined as

0 0

A:W'am'

(3.2.14)

Remark that the part of the quantum master equation (3.2.12) independent of &
is the classical master equation (3.2.8). If the quantum theory is dependent of
the chosen gauge-fixing, there is a symmetry in the classical model that is not
surviving at the quantum level. The translation of this statement into the BV-
language is that the classical master equation (3.2.8) is satisfied, but the quantum
master is broken:

A= AW + 4 (W, W) . (3.2.15)

A rigorous computation of AW in (3.2.15) for a local action is proportional to
d(0) and thus ill defined. This expresses that a regularization is needed. In prin-
ciple different regularization schemes are possible. The results obtained by using
different regularization schemes can be related by choosing an appropriate local
counterterm in the action. One could use dimensional regularization [68], but this
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has as disadvantage that it is hard to evaluate a path integral for non-integer di-
mensions. Another possibility is to use point-splitting [69] or lattice regularization,
but then it becomes difficult to keep working with local field theories. Therefore,
the regularization scheme mostly used is Pauli-Villars (PV) regularization® [70].
The most important ingredient of PV-regularization is the introduction of a mas-
sive field for each field in the theory. The Feynman diagrams are replaced by the
original expression minus a similar expression where the particles that propagate
in the loops are extremely massive. This renders finiteness. One gets rid of these
massive PV-fields by sending their mass to infinity after the calculation of the
diagram. In this way, their influence in low-energy physics disappears. For calcu-
lating only one-loop terms, it is sufficient to use this regularization scheme. Higher
loop calculations require other regularization schemes.

Adding an extra counterterm AX to the quantum action (3.2.13), causes a
shift in the anomaly. This can all be expressed in a cohomological sense [63].
Saying that A # 0 then means that there is no counterterm that can shift A to
0. Using the PV-regularization scheme, it is possible to calculate anomalies up to
one [72] or more [73] loops.

This concludes a short summary of the BV-formalism. For justification of the
statements made here, and for further details, one should consult one or more of
the clearly written original references [58, 59, 60, 52, 61, 67] or one of the reviews
[62, 63, 64].

5Both point-splitting and Pauli-Villars regularization are used nowadays in the study of string
theory on non-commutative spaces (spaces with constant antisymmetric N.S two-form By, ) in
[71].



Chapter 4

A Lorentz-covariant action
for the self-dual tensor

This chapter describes some bosonic aspects of the PST construction® of a covari-
ant action for a self-dual two-tensor in six dimensions. Using PST gauge symme-
tries, it is possible to construct a local, non-polynomial Lorentz-covariant action
for the self-dual two-tensor in six dimensions. First, some background on chiral
bosons is given. In section 4.2, the different approaches to construct actions for
chiral bosons in two, six and ten dimensions are reviewed. In a third section, the
gauge symmetries, essential in this construction, are studied. Also some aspects of
this action are stressed: its equations of motion and the counting of the three de-
grees of freedom of a self-dual two-tensor. In a last section, aspects of these gauge
symmetries will be studied using the Batalin—Vilkovisky (BV) method. Two gauge
fixings (a covariant one and a non-covariant one) are obtained and their possible
use in quantum-mechanical calculations is given. This chapter is restricted to the
bosonic model. The role of self-dual bosons in a supersymmetric context is post-
poned to the next chapter. Most of the new results in this chapter, mainly the
different gauge fixings in the BV-language and their possible applications, were
reported already in [6].

IThe method to write Lorentz-covariant actions was introduced by P. Pasti, D. Sorokin and
M. Tonin (PST) in [5].

o1
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4.1 Chiral bosons in different dimensions

As explained in section 2.2.3, chiral bosons are antisymmetric p-forms in 2p + 2
dimensions with real (anti)self-dual field strengths. Table 2.5 lists the possibilities
to have chiral bosons. When the signature is Minkowskian, they appear in two,
six and ten dimensions. For other signatures, also the other even dimensions are
possible.

Chiral bosons appear in supersymmetric models in two, six and ten dimen-
sions, but they are also relevant in physical models that have nothing to do with
supersymmetry. In [74], the theory of chiral bosons in two dimensions is used in
the description of the dynamical properties of the edge excitations of the frac-
tional quantum Hall effect?. In superstring theory or supergravity, models with
chiral bosons are frequent: chiral scalars appear in the worldsheet description of
the heterotic string [77], chiral two-tensors pop up in the matter and the gravity
multiplets of simple and extended chiral six-dimensional supergravity and in the
worldvolume description of M5- and NS5-branes and the self-dual four-form is
part of ITB supergravity [78] in ten dimensions.

When the signature is Euclidean, real (anti)self-dual field strengths are pos-
sible in four and eight dimensions. In four Euclidean dimensions, chiral bosons
are of great importance. (Anti)self-dual field strengths appear in the context of
instantons, finite-action solutions of Fuclidean gauge field equations. These enable
the derivation of important non-perturbative results in the context of the standard
model as elucidated in the original papers [79, 80, 81, 82, 83] and one of the lec-
tures of [84]. In eight Euclidean dimensions, self-dual three-forms are studied for
instance in [85]. As can be found in table 2.5, other models with self-dual field
strengths appear in spacetimes with the following signatures: (2,2), (3,3), (4,4),
(5,5), and other spacetimes, with more than one time direction, that satisfy the
condition for chiral bosons. Even if these models with more than one time direc-
tion may look rather strange, some properties of them are known. Spaces with
(2, 2) signature are called Atiyah—Ward spacetimes and supersymmetric non-linear
sigma models in (2,2) dimensions are studied in [86]. The last couple of years,
models with (10, 2) signature are studied in [87, 88]. In [88], the D3-brane of IIB
supergravity is embedded in 12 dimensions. This embedding is used to enlarge
insight in the description of certain branes. This is done by introducing a self-dual
five-form in this treatment of models with (10, 2) signature.

As was derived in section 2.2.3, real (anti)self-dual field strengths in four di-
mensions with Lorentz signature are not possible. The complex antiself-dual field
strengths are an essential ingredient in the most general coupling of vector multi-

2In 1998, R. Laughlin, H. Stérmer and D. Tsui [75] got the Nobel price for their discovery of
a new form of quantum fluid with fractionally charged excitations [76].
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plets to N = 2 supergravity in four dimensions. It is also possible to study self-dual
tensors in six dimensions with Euclidean signature [41]. Since the conditions to
have real self-dual field strengths is not satisfied, they have twice as many degrees
of freedom as chiral bosons in six Lorentzian dimensions.

There is also a concept of ‘self-duality in odd dimensions’ [89]. With a ‘self-
dual field’, one means there a massive antisymmetric tensor field in 4k — 1 dimen-
sions that satisfies certain equations. It propagates with half as many massive
modes as expected. In [90] is explained how this self-duality in odd dimensions
can be found from a higher-dimensional embedding.

4.2 Actions for chiral bosons in 2, 6, and 10 di-
mensions

4.2.1 Why looking for a (Lorentz-covariant) action?

The description of chiral bosons in two, six and ten dimensions in terms of a
Lorentz-covariant action has been a longstanding problem. The core of this prob-
lem is the first order self-duality condition. One prefers to have a Lorentz-covariant
action to be able to use path integral methods to study quantum-mechanical
aspects of these models, for instance using the Batalin—Vilkovisky quantization
method. The absence of a Lorentz-covariant action makes the analysis of quantum-
mechanical properties of these models more cumbersome.

Another reason for being interested in a Lorentz-covariant action is the follow-
ing. There are two ways to look upon relativistic invariance. The first one demands
that there should be no privileged reference frame. Technically, this requires that
there should be a frame-independent prescription for how to transform a descrip-
tion of a physical situation in a particular inertial frame to a description in terms
of another inertial frame. The set of transformations from one frame to another
should obey the multiplication laws of the Poincaré group. Another, seemingly-
stronger definition states that relativistic invariance means that the description of
the system should be manifestly covariant. This ensures that the theory can be
formulated fully independent of any reference frame. The question is whether this
second definition of relativistic invariance is really stronger than the first one. In
four dimensions, it is proven [91] that for free field theories the two definitions are
equivalent: to every representation of the Poincaré group corresponds a manifestly
covariant free field theory. In [92] was proven that it is not possible to construct
a simple (i.e., for a free field quadratic), manifestly Lorentz-covariant Lagrangian
for a chiral boson in six or ten dimensions. Extra propagating fields are needed.
This seemed to indicate that the two ways to look upon relativistic invariance are
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not equivalent. In this section, we will sketch in which way (manifestly covari-
ant) actions for chiral bosons were constructed. This does not prove that the two
definitions of relativistic invariance are equivalent. It only says that the apparent
counterexample of [92] is not a counterexample.

4.2.2 Different attempts to construct actions

The (anti)self-duality condition of chiral bosons makes it difficult to construct an
action for them. Different attempts have been made to bypass this difficulty. We
make a distinction between manifestly and non-manifestly covariant actions. The
manifestly covariant approaches can be split into actions polynomial in auxiliary
fields and the PST approach which is non-polynomial. We first stress actions for
chiral bosons in two dimensions. Later we generalize to six and ten dimensions.

A first class of actions are the manifestly covariant ones. A first possibility,
introduced by Siegel [93], is to impose the square of the self-duality condition
through the introduction of an auxiliary scalar field as a Lagrange multiplier. The
attempts [94] to quantize the action of [93] revealed that it suffers from an anomaly.
Another approach [95] to deal with the self-duality constraint introduces a term
in the action that is the product of an auxiliary vector field and the self-duality
constraint. Although this has some defects as pointed out in [96, 97], this linear
formulation strictly describes a chiral boson from the point of view of equations
of motion at both the classical and quantum levels. A third way to construct a
Lorentz-covariant action was achieved in [98]. To circumvent the infinite reducibil-
ity of the squared self-duality constraint of [93], the authors introduce an infinite
set of auxiliary fields®. The quantum-mechanical analysis of this infinite set of
auxiliary fields requires a lot of caution. A seemingly different formulation [99]
in terms of infinitely many auxiliary fields was proven in [100] to be equivalent
to the approach of [98]. All these constructions make use of terms polynomial in
the auxiliary field(s) to impose the self-duality condition in a Lorentz-covariant
action. By giving up explicit Lorentz invariance (imposing only the first definition
of relativistic invariance), it became possible to construct new actions. In two
dimensions, an action and its quantization properties were studied in [101]. In-
spired by the quest for duality-invariant actions in four dimensions [102], it became
possible to construct a Lorentz-invariant action with a finite number of auxiliary
fields [103] for a chiral boson in two dimensions. The simplest case is that only
one auxiliary scalar field is introduced. The exact role of this auxiliary scalar will
be clarified in the next section. This approach gives rise to a Lorentz-covariant
action where the auxiliary field appears in a non-polynomial way. The relation

3 An auxiliary field is a field that has trivial dynamics and consists not purely of gauge degrees
of freedom. The field a that will be introduced later, is not an auxiliary field in this sense.
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of this approach to the one with infinitely many auxiliary fields of [98] has been
clarified in [5]. A gauge choice for the gauge symmetry of the PST construction
leads to the non-covariant action of [101].

We now discuss the generalization of these approaches to six and ten dimen-
sions. The first approach, squaring the self-duality constraint and introducing a
Lagrange multiplier, was already achieved in six and ten dimensions in the original
paper. The implementation of the linear formulations of [95] in six dimensions is
treated in [104]. The two-dimensional result with infinitely many auxiliary fields of
[98], is generalized to higher order chiral p-forms in [105]. An extra complication is
the reducibility of the gauge transformation of the chiral p-form. Take for instance
the example of the reducible gauge symmetry of a two-form in six dimensions:

8Bap = Oy (4.2.1)

is reducible for

Aw =M. (4.2.2)

For a chiral four-form in ten dimensions, the Lorentz-covariant action [106],
derived from IIB closed superstring field theory, contains an infinite number of
fields, because of bosonic ghost zero modes. Its relation to the approach of [98] is
clarified in [107]. In [108], the method of [101], making an explicit splitting of the
fields into time and space, was generalized to higher dimensions. In [109], another
six-dimensional action was constructed with manifest five-dimensional Lorentz in-
variance only. There, one of the spatial dimensions was treated specially. The
proof of six-dimensional Lorentz invariance needed a non-trivial check in both
cases. Also some quantum-mechanical results were achieved: the gravitational
anomaly of the chiral two-tensor in six dimensions was calculated. The implemen-
tation of the non-polynomial action of [103] to six dimensions was given in [5]. It
gives rise to a Lorentz-covariant action with one extra scalar field. Its relation to
the actions in [108, 109] will be discussed in section 4.4.

4.3 The gauge symmetries and action for a self-
dual 2-tensor

The quantum-mechanical behavior of elementary particles, achieved during the
last 40 years, is described in terms of gauge theories. When the description of a
physical system is in terms of a gauge group, it means that there is a redundancy
in the description. In principle, this redundancy can be eliminated, but reasons
for not doing so are legion: locality of interactions, calculational convenience and
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manifest Lorentz covariance. This last reason is the main one to study the self-
dual tensor using the PST gauge symmetries. Introducing one auxiliary scalar?
a and two local gauge symmetries (redundancies in the description), dependent
of the auxiliary scalar, it becomes possible to write down a manifestly covariant
Lagrangian [5].

In this paragraph, the explicitly Lorentz-covariant action for a self-dual two-
tensor is repeated. It satisfies the (seemingly?) stronger definition of Lorentz
covariance. Further, the counting of the three degrees of freedom of a self-dual
two-tensor is given and different gauge fixings are done.

4.3.1 Definitions and gauge symmetries

We use the notations of appendix A.3 in six Minkowski dimensions. The following

additional notations are used. The auxiliary scalar is denoted by a. Expressions

containing a are®:

u
_ 2 _ a b _ a
Ug = Oa@, u” = u'nLpu’, Vg =

H = dB, Habc = 36[aBbC] )

Cc

u
Hab = \/——2Habc = UCHabC,
u
. ut oo, . 1 dof
ab — —\/,L? abe where Habc = EeabcdefH N
u’ .
HE = —mHib where H: = L(Hupe £ HY,.) - (4.3.1)

The action will have the following three gauge symmetries:

6IBab = 28[aAb] 5 510, = 0,

_og- @ _
0r1Bap = QH“b—? ; drra=¢,
6IIIBab = U[al/)b] s 51[]& =0. (4.3.2)

The first symmetry is the usual gauge symmetry for a two-form. The second and
the third symmetry are the PST symmetries, enabled by the introduction of the

4This scalar is not auxiliary in the usual sense of having trivial dynamics and being not pure
gauge as in footnote 3. Here, the equation of motion of a is not trivial and a is pure gauge for
one of the gauge symmetries. It is only for this scalar a that we will abuse terminology in this
way. The role of the ‘auxiliary scalar’ a will become more clear when the equations of motion of
the action are discussed in section 4.3.2

5To define these expressions consistently, we need to impose that u2 > 0.
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scalar field a. The first and the third symmetries are reducible. Together, they
have three zero modes:

Ay = 0.\, 0, =0;
(M ugth, Ay = 0;
A, ugA' 1, = 20,A". (4.3.3)

The first zero mode is the usual reducible component of the two-tensor in six di-
mensions. The second reducible symmetry stems from the third gauge symmetry.
The third one is a zero mode for a combination of the first and the third trans-
formation. The second gauge transformation has no reducible components. These
gauge transformations have non-trivial commutators with each other:

Frr(02).8(00)] = G111 (gt (61062 = 020"0).
[011(¢), 0111(¥a)] = 0r(3v%a®) + 0111(20,10¢ UC%) . (4.3.4)

These transformation rules and the non-trivial commutators of the different gauge
symmetries will be used in section 4.4 when studying different gauge fixings of the
action of the next section using the Batalin—Vilkovisky approach.

4.3.2 The Lorentz-covariant action
In this section, the Lorentz-covariant action, its equations of motion and the way

to derive the self-duality condition from this action are given. The action was first
formulated in this way in [5].

The action and its equations of motion

Using the notations of paragraph 4.3.1, the action for a self-dual two-tensor is

— r7*ab
S = —%/deHabH o
1 6, rr— U preabd_td
_E/d wHabcﬁH ﬁ (435)

Remark that this action is local and non-polynomial. The Lagrangian is a func-
tional of only the first derivative of @ and expanding the denominator would give
rise to an infinite power series. Using that the variation of this action is of the



58 Chapter 4. A Lorentz-covariant action for the self-dual tensor

form

abcae — ]- — —
0S = /d6x (—% ape + ”TdfvdH ef) SH™ 4 2—\/_26“deefHabHcdveaf5a,

w
(4.3.6)
together with the gauge transformation rules (4.3.2) for a and B,y, some calcula-
tion proves that this action is invariant under the three gauge symmetries (4.3.2).
An alternative form of this action is

S = /d%; (-4 H Hope + SH™""H,,) . (4.3.7)

The first term of this action is the usual kinetic term for a two-tensor. The second
term ensures that this is the action for a self-dual tensor.

The equations of motion for B, and a follow from (4.3.6):

abcae 1 —

eabed fac(ﬁudHefgug) = 0,
1

‘/’U,2

eredel g (—=H, H,v;) = 0. (4.3.8)

Using the identity

8[avb] + Vg 0, (4.3.9)

1 1

. O ——= =

Vu? Vu?
it is possible to prove that the equation of motion of a is implied by the equation
of motion of By,. This means that it is not an independent propagating degree
of freedom. a is pure gauge for symmetry I, but it has a non-trivial equation
of motion. This implies that it cannot be integrated out. Remark that even if
gauge symmetry II suggests that a can be shifted to an arbitrary value, choosing
an arbitrary constant for a gives rise to a singular action.

The same technique with one auxiliary scalar gives rise to a Lorentz-invariant
action in two and ten dimensions in [5]. The relation with the non-covariant
actions is also clear: upon appropriately gauge fixing the derivative of a to a unit
vector in the time direction gives rise to the models of [108]. A unit spatial vector
leads to the actions in [109].

It is also possible to recover the formulation in terms of an infinite number of
auxiliary fields of [105]. To this end, one has to get rid of the non-polynomiality
of (4.3.5) or (4.3.7). The relation between the action (4.3.5) and the formulation
with infinitely many auxiliary fields is clarified in the original paper [5].
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The action (4.3.5) is the Lorentz-covariant action for a free self-dual tensor,
the ‘U(1)-case’ for a self-dual tensor. There is not much known about models
of interacting tensors. This would be a ‘Yang-Mills generalization’ of the free
case. In [110] is argued on geometric grounds that it is not possible to construct a
non-Abelian Yang—Mills gauge field theory for extended objects coupling to non-
chiral p-forms in spacetime: only the Abelian U(1)-group is allowed. In [111] is
derived a similar result for self-dual tensors using a cohomological analysis: the
only consistent interactions are (up to redefinitions) deformations that do not
modify the gauge symmetries of the free theory. There are no other consistent,
local deformations. This leaves the possibility of non-local deformations. Proposals
in these directions exist [112]. Also for the superconformal version, some attempts
have been done to study interacting tensor multiplets [113], but the mystery of
interacting tensors still needs to be unraveled it seems.

The self-duality condition

Following the analysis of [5], the self-duality condition can be derived. The equa-
tion of motion of By is

gabedef ac(u—gudH;cgug) =0. (4.3.10)
The solution of (4.3.10) is
H ot = u?8)adp) + 2upathy) - (4.3.11)
Multiplying this with u® must be 0, so
0= u2ub8[a¢b] + uqu - ) — ut, (4.3.12)

which leads to
Yo = u’Oudy) + ual, (4.3.13)

The last term can be neglected since it does not contribute to (4.3.11). This means
that the solution of the field equation of B,, can be written as

H, u" = u28[a¢b] + u” (0 Ppa)up) + wo(Fpde)u”
= UC3U[a6b(I)C] - (4.3.14)
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This is a gauge transformation III of H ;. In flat space, there are no problems
with global properties of spacetime to solve these equations. By using a Schouten
identity, it can be proven that H_, = 0 is equivalent to H_, = 0. This means that
it is possible to find the self-duality of B, by picking a gauge choice for the third
gauge transformation. So, the formulation with an auxiliary field gives rise to the
self-duality equation.

4.3.3 The counting of the degrees of freedom

In this section we will argue that the self-dual tensor has three degrees of freedom.
We first derive that a tensor with gauge symmetry I has six degrees of freedom.
Then, we argue that introducing the PST symmetries reduces still three degrees
of freedom of this on-shell tensor. This is not a fully satisfying derivation in the
sense that it would be preferable to derive the three degrees of freedom from the
equation of motion of the PST action. But, it is more satisfying for our approach
than what was done before: deriving that the tensor has six degrees of freedom
and splitting the reducible representation of the Lorentz in two parts: the self-dual
tensor and the antiself-dual tensor. Here, we are able to translate the counting of
the degrees of freedom into the language of the PST symmetries. We start with 16
degrees of freedom: the antisymmetric tensor B, has a priori % = 15 degrees of
freedom and the scalar a has one. We will end up with the three on-shell degrees
of freedom of a self-dual tensor in six dimensions.

The tensor

We start from the action for a tensor in six dimensions
S = /d% (=L H" Hgpe) - (4.3.15)

The equation of motion of the tensor in momentum space is
ko (k*B" + k"B + k°B**) = k*B" + 2k""k, B ~ 0, (4.3.16)

where an equation that is = 0, is called ‘weakly 0’: it vanishes provided the field
equations are satisfied. The gauge transformation is

5Buap = 2kio Ay - (4.3.17)
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We can take kg # 0. We generalize the temporal gauge on every gauge orbit:
By; =0. (4.3.18)

This reduces five degrees of freedom. The equation of motion (4.3.16) for b = 0
becomes
E*B% + k°k,B" — k'k, B ~ 0. (4.3.19)
Using (4.3.18), we find that
k;BY ~0. (4.3.20)
This condition again eliminates four degrees of freedom. It has five components,

but the product with &/ gives zero, so it has four independent components. The
equations of (4.3.16) with b # 0 # ¢ give rise to

E°BY ~ 0. (4.3.21)

This leads to a massless tensor: k2 = 0. So, the action leads to a massless tensor
with six degrees of freedom.

The PST symmetries

We introduce a scalar field a and the gauge symmetries I7 and I7I. This means
that we start from seven degrees of freedom and that we have to gauge fix still
two symmetries.

The first PST symmetry shifts the field a. We want to gauge fix it such that
the derivative of a becomes a unit vector ng,:

a=nz,. (4.3.22)

This means that the degree of freedom of a will not survive on-shell.

We impose the gauge condition
n®Bg =0, (4.3.23)

where B, contains the six degrees of freedom left after the constraints of the
previous section:

By; = 0,
k'B;; = 0. (4.3.24)
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If we choose the tensor of the previous section to move in the fifth direction, the
equation of motion gives that

ko = (ko,0,0,0,0, ko) . (4.3.25)

Choose now

ne = (0,1,0,0,0,0). (4.3.26)

Then the gauge fixing condition (4.3.23) becomes
By; =0. (4.3.27)

We have to check how many of these conditions are new ones. First of all, Bp; = 0
does not lead to a new condition. In addition, the equation of motion and the
second equation of (4.3.24) gives that

Bo1 = Bs; = 0. (4.3.28)

So, there remain three extra conditions from (4.3.23): the gauge fixing reduces
three degrees of freedom. This argues that the self-dual tensor has three on-shell
degrees of freedom. A full proof would require that we do the derivation as we did
for the tensor and start with the action for the self-dual tensor. We were not able
to do that analysis.

4.4 Two gauge fixings in the BV-language

In this section we will use the Batalin—Vilkovisky scheme, shortly reviewed in
section 3.2, to construct two gauge-fixed actions of the self-dual tensor with the
PST symmetries. To this end, we first construct the extended action using the
procedure of section 3.2.2. Then, we will gauge fix this action in two different
ways: a non-covariant and a covariant one. For each of these gauge fixings we
will comment on some applications or possibilities to obtain quantum-mechanical
information. Most of this work is reported in [6].

4.4.1 The extended action for the chiral two-form

Using the gauge symmetries (4.3.2) and their reducibility conditions (4.3.3) to-
gether with the procedure sketched in section 3.2, we will build the extended action
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of the chiral two-form. This is constructed as an expansion in antifield-number.
The first step to achieve an extended action is the introduction of antifields B},
and a* for the classical fields, and ghosts ¢,, ¢ and ¢}, associated respectively to
symmetries I, I] and II1. The ghost number and statistics of the different fields
and antifields can be found in table 4.1. The gauge symmetries yield the following

P Bab a Cq C C; d1 d2 d3
g9(®) 0 0(1]1 1 212 2
stat(®P) + |+ - -] -]+ +]|+
d* By |a |ci|c c* diy | ds | d;
g(®*) -1 | -1(-2|-2|-2|-3]|-3]-3
stat(®*) | - R e

Table 4.1: Ghost number g(®) and statistics stat(®) of the minimal fields and
their antifields.

contribution to the extended action at antifield number 1, given by (3.2.4):

/d6 (B*“b(Qa cp +2H + uqcy) + a*c) . (4.4.1)

ab\/_

A contribution at antifield number two, comes from the ghosts for ghosts di, da
and ds, associated to the three reducible symmetries (4.3.3). This gives

Sty = / B (c5(0°dy + u'ds) + c* (uds + 204)ds) | (4.4.2)

where ¢ and ¢ are the antifields associated to the ghosts ¢, and ¢/,. At antifield
number two, we also have to include a term related to the commutators of the
symmetries as indicated in (3.2.6). These commutators are given in (4.3.4) and
give rise to the following terms in the action

* la * ala * Hiab
(2) = /d T ( CI l 8 Ib] C+ 4c l W c@bc> . (443)
It is straightforward to check that the action

S =8+ S+ S, (4.4.4)
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with S(z) = 562) + 5(’2), satisfies the properness condition, i.e., that the Hessian

— —

0 0

B _
ST = 557555,

(4.4.5)

at the stationary surface has a number of zero modes that is exactly half its dimen-
sion. To check it, it is convenient to choose a point on the surface where H_, = 0.
The number of zero modes of the Hessian cannot vary along the stationary sur-
face. Continuous deformations in the space of fields that avoid singularities in the
action cannot cause a jump in the number of degrees of freedom. The properness
condition is one of the three conditions that an extended action has to satisfy to
be an action that can be used to start gauge fixing.

As far as antibrackets are concerned, one has
(Set, S(1y) = 0. (4.4.6)

This is simply a consequence of the gauge invariance of the classical action. How-
ever, the classical master equation is not yet satisfied; in particular, at antifield
number two, one has the antibracket

H;
2(5(1),5(2))(2) + (5(2),5(2))(2) = 8 (ugc)d uldcc - cdbc + 2¢ »0%(dsc)

u® b
—ciuldac + 2¢F Y (9[ cb] cO

¢ (u?)?
2l <8“(d20) _ ulu

abd2 c> L (4.4.7)

Since this is not 0, we have to add terms to the action at antifield number three.
The choice that works is

5(3) = —dId3C
* Hab b a u’ b
+dy | — ( )5/280 c@c+2( )8cb] cac+ (9d2 c
+didac. (4.4.8)
Then

2(5(2),S3))2) — 2(S(1)> S2))2) + (S2):S2)) 2y = 0,
2(5( 1)s S( ))(3) +2(S(2),S )(3) + (5(3),5 )(3) = 0. (4.4.9)
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This means that all the terms in the antifield number expansion of the classical
master equation are 0, so the classical master equation, (3.2.8), is satisfied. So
we end up with an action that is the sum of (4.3.5), (4.4.1), (4.4.2), (4.4.3) and
(4.4.8). This action satisfies the three conditions required: the classical master
equation (3.2.8) is satisfied, the properness condition is obeyed and the classical
limit (deleting all terms with non-zero ghost number in the action) gives the clas-
sical action (4.3.5). So, all the conditions to have a good extended action are
fulfilled.

4.4.2 A covariant gauge fixing

In this section we will present a covariant gauge fixing of the extended action
using gauge fermions in the BV-formalism. At the end, we will comment on some
possible quantum-mechanical calculations. We start by gauge fixing the three
gauge symmetries (4.3.2) of the classical action. We will use the gauges

9,B"® = 0, (4.4.10)

w? = 1, (4.4.11)

u, B = 0. (4.4.12)

(4.4.11) is a Lorentz-invariant gauge fixing for symmetry IT. The gauge (4.4.12)

fixes symmetry 111 and is the analogue of the Lorentz gauge; using a transfor-
mation I11, one can remove the component of By, that is parallel to the vector

ua

For each of the three gauge fixings, one introduces a new non-minimal set of
fermionic fields and their antifields and adds to the action a term quadratic in the
antifields. In table 4.2, the non-minimal fields are denoted by by, b!, and b.

The gauge fixing is done by introducing a gauge fermion for each symmetry:

¥, = b,0,B, (4.4.13)
Uy, = bluyB™, (4.4.14)
Ty = bu?—1), (4.4.15)

and adding to the action the non-minimal terms
Spm = —2b5b* — Lplxp™o 4 p*2 (4.4.16)

This corresponds to the first way of introducing non-minimal fields in (3.2.11).

The gauge symmetries of the classical action also had three zero modes. Their
gauge fixing is done in general by introducing two extra sets of bosonic fields and
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Bab) a
(07_1)
e
ba, b, b ct,c?c
(=1,0) (1,-2)
e 4
blal = {lanaq} % ba1 = {kamap} d17d2;d3
(0,—1) — (—=2,1) (2,-3)

Table 4.2: The fields for the gauge fixing of theories with a reducible gauge algebra,
with (ghost number, ghost number of antifield) and a schematic indication of
non-degeneracy conditions of the gauge fixing and the connected antifields in the
non-minimal extended action.

their antifields for each zero mode. This corresponds to the second procedure to
add non-minimal fields of (3.2.11). In table 4.2, they are denoted by b** and b,, -
The arrow between them is used to indicate that one adds a non-minimal term
to the action that is a product of their antifields. For the gauge fixing of these
three reducible gauge symmetries, one introduces the bosons k,m,p and I,n,q.
The following gauge fermions can be used:

T, = kopc® +19,0%, (4.4.17)
Us = mugc®+ nugbd®, (4.4.18)
Us = plugc® —29,) + q(ugd® — 20,b0") . (4.4.19)

The following non-minimal terms are added to the action:
S2 o = KU+ Im*n* +p*q*. (4.4.20)

The antifield-independent part of the action becomes

S = /d%[%BabDBab —1H “"H,, — 1¢°u® — 2qu"0, 1

—100 + (u® — 1)” + q0g + nud, ¢ — in’u® — Luy, B u°B,,

—b'%9up - & — " ud, cp — %b'bu2c§, — b%Oc,

apb | - ¢
20" Hyy s

Uac® uph® 4 40,6 - Db + (gb + 2bu® 4+ nb'*) H,c¢
+pu®d, diy + kOd; + pu’ds + ds ud, k + Ipuac e+ k0% (“c)

— 1c,u’d, b+ Sugb® c, + 0%y, - '
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—2ds u®dy p + mu? dy + 4p0ds + 2m u®d, ds + 20,p - olachl . %c
Hiab a ra
—80.p - W) cOpe + (pc® + mc'®) O,c| . (4.4.21)

This is a covariant gauge-fixed action for the self-dual two-form in six dimensions.

Comments on quantum-mechanical applications

In principle, (4.4.21) can be used to derive quantum-mechanical results. A first
possibility would be to calculate gravitational anomalies® as in [114, 115], but the
presence of the auxiliary scalar in the propagators makes an analysis of anomalies
using this action very hard. The non-covariant gauge fixing of the next section
can be used for this.

Another possibility to obtain a quantum-mechanical result would be to use
this gauge fixing to calculate the conformal anomaly for the self-dual tensor. This
would give rise to an interesting check of the adS/CFT-conjecture since the cal-
culation at the supergravity side is already done [116]. For this purpose, a gravi-
tational formulation of this action is needed. This will be the subject of chapter
d.

Further, this action could be used to repeat the calculation of [117]. They
computed the ratio of the three- and two-point correlation functions of the stress-
energy tensors of the rigid (2,0) self-dual tensor multiplet. They need the propa-
gator of the self-dual two-form in terms of its field strengths to calculate the ratio
of the three-point and the two-point correlation functions of the stress-energy ten-
sor of the self-dual tensor multiplet in six dimensions. They choose to calculate
the propagator for an ordinary tensor and then use the same projection method
as [114] to end up with the propagator for the self-dual tensor. After getting
more familiar with this gauge-fixed action (4.4.21), maybe one could show how
to re-obtain the results of [117], starting from this action and without using a
projector.

Although this gauge-fixed action is too difficult to obtain some quantum-
mechanical results for the moment, it could be useful for further analysis of quan-
tum properties of chiral two-forms in the future, especially in application to the
quantization of the M 5-brane, the solitonic object of 11-dimensional supergravity.

8Gravitational anomalies are violations at the quantum level of the classical conservation of
the energy-momentum tensor.
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4.4.3 A non-covariant gauge fixing

The non-covariant gauge fixing of the second symmetry in this section corresponds

to a = 2° in [109] or a = 2° in [108]. The second gauge symmetry can be fixed by
a canonical transformation that cannot be generated by a gauge fermion:

a — =b"+n.z", (4.4.22)

nonumbera® — b. (4.4.23)

This type of canonical transformation is the analogue of changing a momentum
into a coordinate and vice-versa in classical mechanics. This means that

Ue — —0:0" +ne, (4.4.24)
nonumberu® — 1 —2n%9,b* + (0b*)?. (4.4.25)
Using the gauge fermions

Y1 = b.OBY, (4.4.26)

v = bymyB®, (4.4.27)

Yy = kOyc? + 100", (4.4.28)

Y5 = mngec® 4+ nngb'®, (4.4.29)

e = pnac® +20,¢") + q(nab* + 20,0, (4.4.30)

for the other symmetries, and the corresponding non-minimal terms in the action

1 1 1 1
= __b*ab* _bl*abl* _ k*l* - k% Tk ok
S, 1 o T 5 a + 2m n 2p q,

the other symmetries of the action are gauge fixed. The antifield-independent part
of the action is:

S = /dﬁw[éBabDBab — %H_abcnc H&)dnd — b%0c, — V0P8 ¢,

+20"0"H, - nc+ 3n%, 8¢ — L9008y ¢, — Lb'c, + be
+kOdy + kn®d, ds + 1k0%(c,c) + mdy + 2mn®d, ds + Lqn®d, 1 + 1101
+%anab n°Bae + %n2 —2nn,0%q — 2¢q0q — %n“ca nlby, — 28, - Opb'°
+pn®dq dy + pds + Lpnclc — 2dy n®9d, p + 4p0ds + 20p - 8[ac§)] -nbe

—89%p - H, n°cd’c|. (4.4.31)

abce

This action is much more simple than (4.4.21) because the vector n, is a constant
vector here. All the terms in the denominators drop. The same procedure can
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be used to retrieve the non-covariant actions of [108] and [109], where the six
spacetime coordinates are split into a time coordinate and five space coordinates
and into five spacetime coordinates and one special space coordinate. In this sense,
we can understand that the covariant action (4.3.5) of [5] is more general than the
action of [109] and [108]: they are both gauge-fixed versions of (4.3.5).

Comments on quantum-mechanical results

The gravitational anomalies for the self-dual two-tensor in six dimensions were
already calculated in [114]. Alvarez-Gaumé and Witten argued that the only
bosonic field that can give rise to gravitational anomalies is the (anti)self-dual
2k-form in 4k + 2 dimensions. Other bosonic fields have standard kinetic terms
and can always be regularized. In (4.3.7) can be seen that the kinetic term in
the action for a chiral two-form is not quadratic in derivatives of bosonic fields
and therefore, it is not obvious how to regularize such a theory. At the time
Alvarez-Gaumé and Witten wrote their article, no action for the chiral two-form
was known. They were pragmatic and invented suitable Feynman rules. They first
studied the energy-momentum tensor of ordinary two-tensors and argued that it
was enough to calculate the propagator of the gauge-invariant field strength (Hgpe
in our case). To deal with the self-dual field, they assumed that it was correct
to use the field strength propagator without modification, while modifying the
energy-momentum tensor using the self-dual tensor instead of the tensor in it.

In [115], the second gauge symmetry of the action (4.3.5) was fixed by im-
posing a = ng,x® where n, is an arbitrary unit vector. Using the Faddeev—Popov
approach, it was proven that this gauge fixing gives rise to the propagators postu-
lated and used in [114] to calculate the gravitational anomalies of a chiral two-form
in six dimensions. This result supports the quantum reliability of the action (4.3.5)
at the perturbative level. In [118] was already proven that the non-covariant ac-
tion of [108] gives rise to different Feynman rules, but to the same gravitational
anomalies as [114].

A last remark has to be made about the two gauge-fixed actions. It is not
known whether the PST gauge symmetries are good symmetries at the quantum
level or whether they develop a kind of gauge anomaly.
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Chapter 5

The self-dual tensor in
conformal supergravity

In chapter 4, we studied different bosonic aspects of the chiral two-tensor in six
dimensions. Self-dual tensors also appear in a supersymmetric context if the su-
persymmetry algebra is chiral. So, there are no (anti)self-dual tensors for (1,1)
supersymmetry in six dimensions. Depending on the amount of chiral supersym-
metry in six dimensions, it is sometimes possible to construct supersymmetric
matter multiplets that contain a self-dual tensor. Self-dual tensors appear in all
the gravity multiplets of chiral supersymmetry in six dimensions.

This chapter tries to describe the coupling of a self-dual tensor multiplet to a
(2,0) conformal supergravity background in terms of a Lorentz-covariant action.
This work is originally reported in [7]. The coupling of this multiplet to conformal
supergravity in terms of field equations was already studied in [42]. There are
two main motivations for studying the coupling of this matter multiplet to this
background.

e A first motivation is the completion of the superconformal tensor calculus
program. As explained in section 3.1, this method is used to study the
coupling of different matter multiplets to Poincaré supergravity in different
dimensions. For this purpose, first the coupling to conformal supergravity
is constructed. In this coupling of matter to superconformal gravity, the
superfluous symmetries are broken later to Poincaré supersymmetry.

e Another, more recent, motivation comes from the adS/C FT-correspondence.
The last couple of years, people have been trying to understand and prove

71
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the conjectured correspondence between certain theories with rigid conformal
symmetry and string/M-theory on adS spaces times compact manifolds. The
local symmetries in the bulk induce local superconformal symmetries on the
boundary. Thus, it is natural to formulate the boundary field theory in a
conformal supergravity background. So, we wish to study the coupling of the
self-dual tensor multiplet to six-dimensional conformal supergravity, which
is induced on the six-dimensional boundary of adS7.

By using superconformal techniques, summarized in section 3.1, the coupling of
self-dual tensors to a conformal supergravity background is studied before in terms
of field equations, both for the case of (1,0) in [41] and for extended chiral su-
persymmetry in [42]. What was still lacking is the construction of a covariant
action for self-dual tensors in this background using the tools of chapter 4. This
is what will be done in section 5.4. The consistency of the action is checked by
the derivation of the field equations of [42]. We give the transformation rules of
the tensor multiplet that do not make use of the self-duality condition to realize
the algebra. These supersymmetry transformation rules are understood better by
looking upon the first PST symmetry (gauge symmetry I]) as a gauge symmetry
with the derivative of the auxiliary scalar as its gauge field. We also indicate how
the algebra is changed when transformation rules for the tensor multiplet are used
that take into account the PST gauge symmetries. The transformation rules of
the equations of motion are given. There is also sketched how the action with
(1,0) conformal supersymmetry can be found and how the breaking to models
with Poincaré supersymmetry can be done.

Most of this chapter will be spent to the self-dual tensor in matter multiplets.
Section 5.1 gives some background on chiral bosons and their importance in su-
persymmetric theories in six dimensions. In section 5.2, we will build the action
with rigid supersymmetry for the (2,0) self-dual tensor multiplet and sketch the
importance of the superconformal algebra OSp(8*|4). We will use the ingredients
(one auxiliary scalar and two new gauge symmetries) of the construction of the
action for the bosonic model of section 4.3. This model is also suited to clarify
the role of the auxiliary scalar in supersymmetric models, both as a representation
with only one bosonic field and in supersymmetry transformation rules which do
not need the self-duality condition of the tensor. Section 5.3 gives four arguments
for the field content of the (2,0) Weyl multiplet, since it is not yet proven that
the Weyl multiplet with matter fields is the unique possibility for constructing a
conformal supergravity background. This Weyl multiplet is used in the last section
of this chapter to derive the coupling of the (2,0) tensor multiplet to a conformal
supergravity background. Most of the results of this chapter can be found in [7].
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5.1 Self-dual tensors in 6 dimensions

5.1.1 Self-dual tensors in matter multiplets

For one and two rigid chiral supersymmetries in six dimensions, it is possible to
have a supersymmetric matter multiplet that contains an (anti)self-dual tensor.
For (1,0) and (2,0) chiral supersymmetry, the self-dual tensor multiplet contains
a self-dual tensor, one or two Weyl spinors and one or five scalars. For models
with (1,0) supersymmetry, also other, more familiar, matter multiplets are al-
lowed: vector multiplets (possibly with a non-Abelian Yang-Mills group), hyper
multiplets, ... as studied in [119]. For (2,0) supersymmetry, the tensor multiplet
is the only matter multiplet allowed. Also for (3,0) chiral supersymmetry, there
exists a matter representation which contains six self-dual tensors [120], but this
multiplet also contains a gravitino. A dynamical description of multiplets that
contain a gravitino requires supergravity [121]. The gravitino then becomes part
of the gravity multiplet and so it is no (rigid) matter multiplet any more.

5.1.2 Chiral 2-forms in (conformal) supergravity

In this section we will explain how chiral theories in six dimensions arise from
certain string compactifications, where (anti)self-dual tensors appear in six-dim-
ensional chiral supergravities and comment on gravitational anomalies in these
theories.

Chiral theories from string compactifications

One of the main reasons why we are interested in these six-dimensional models
is that some chiral supergravities can be found as string compactifications. Here
we will try to explain how chiral spinors can be found from K 3-compactifications.
One starts with a Majorana—Weyl spinor in ten dimensions, an irreducible repre-
sentation of SO(1,9). In ten dimensions there are two possibilities: a lefthanded
spinor (denoted 16) and a righthanded spinor (denoted 16). Compactifying to
six dimensions means that the spacetime R is replaced by R"® x X, for some
compact four-dimensional manifold X. To see what happens to the supersymme-
tries, we need to consider how a spinor of SO(1,9) decomposes under the maximal
subalgebra:

SO(1,9) D SO(1,5) @ SO(4) = SO(1,5) & SU(2) @ SU(2) (5.1.1)
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The ten-dimensional spinors decompose as

16 — (4,2)9 (4,2) >~ (4,2,1)® (4,1,2),
16 - (4,2)®(4,2)=(4,1,2)® (4,2,1). (5.1.2)

We want to study different backgrounds and more specifically how much super-
symmetry these backgrounds allow. The condition for unbroken supersymmetry is
that the variations of the Fermi fields are zero. These variations contain a covari-
ant derivative of the supersymmetry parameter, so we need that there is a solution
to the massless Dirac equation in the four compact dimensions. If the background
is T*, this is always possible and compactification gives rise to a non-chiral theory.
No supersymmetries are broken.

For other backgrounds, the possible spinors are determined by the holonomy.
The holonomy describes the transformation of a spinor around a closed loop un-
der parallel transport. This parallel transport is expressed using the covariant
derivative. So a vanishing covariant derivative will give rise to the original spinor.
Therefore, solutions of the Dirac equation in the internal dimensions must be sin-
glets for the holonomy of the internal manifolds. The torus has trivial holonomy,
so every representation survives. This means that both parts of the decomposed
spinor survive and that both chiralities appear. This shows that toroidal compact-
ifications can never give rise to chiral six-dimensional theories.

A next example will be a compactification on a K3 surface. A K3 surface is
a complex, Ricci-flat Kéhler manifold of complex dimension two. It has SU(2)-
holonomy!. Let us first consider the case of an N = 1 theory in ten dimensions
compactified down to six dimensions on a smooth K3 surface. We choose the
last of the SU(2) factors in the algebra as the holonomy. This means that only
the (4,2,1) spinor of the decomposed 16 is allowed. In the K3 background, the
(4,1,2) is not possible. It may look that we have two spinors, but the 2 is a
representation of an internal SU(2), the R-symmetry group. So (4,2,1) is the
symplectic Majorana—Weyl spinor doublet of (1,0) supersymmetry in six dimen-
sions. So, we conclude that N = 1 supergravity in ten dimensions compactified on
a smooth K3 surface will give an NV = 1 theory in six dimensions. The general rule
is that compactification on a smooth K3 surface will preserve half of the super-
symmetry. The compactifications of string theory with one supersymmetry in ten
dimensions that give rise to (1,0) supersymmetry in six dimensions are type I on
K3 in [124] and the heterotic string on K3 in [125]. Also M-theory on K3 x S'/Z
[126] and F-theory? on Calabi—Yau threefolds [128] have (1,0) supersymmetry in
six dimensions.

I For more mathematical background on Calabi—Yau manifolds, see [122]. K3’s role in string
theory is treated in [123].

2F-theory is a 12-dimensional theory that is defined such that its toroidal compactification
to 10 dimensions gives rise to ITB theory. It was first formulated by Vafa in [127].
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There are also two models with two supersymmetries in ten dimensions. The
type ITA superstring in ten dimensions yields, in the low-energy limit, a theory
of ten-dimensional supergravity with N = (1,1). If we compactify this theory
on a K3 surface then each of the spinors has to be decomposed. Choosing the
second SU(2) again as the holonomy of the K3 surface implies that the (4,2,1)
and the (4,2,1) survive. So one ends up with N = (1,1) supersymmetry in six
dimensions. So there is no K'3 compactification of type I1A supergravity or string
theory which gives rise to a chiral theory in six dimensions.

The other theory with maximal supersymmetry in ten dimensions is IIB
string theory. IIB string theory and its low-energy limit /1B supergravity have
(2,0) supersymmetry in ten dimensions, so this is a chiral theory in ten dimensions.
Decomposing the spinor and taking into account the K3 holonomy gives rise to
two (4, 2,1) spinors. So there is (2,0) supersymmetry in six dimensions. The two
spinors can be combined into a quartet of Majorana—Weyl spinors, transforming
in the 4 representation of the USp(4) R-symmetry group. The theories with
more chiral supersymmetry in six dimensions cannot be found from string theory
compactifications.

Chiral 2-forms in supergravity

The (anti)self-dual tensors appear in two ways in gravitational theories, the low
energy approximations of certain superstring compactifications. First, they can
be one of the components of the gravitational multiplet in Poincaré [129, 130]
supergravities. Also the conformal chiral supergravity multiplets [41, 42] and the
gravitational multiplets of (3,0) and (4,0) and other six-dimensional supergravities
contain self-dual tensors®. The gravitational multiplet of (3,0) chiral supergravity
contains 15 self-dual tensors and that of (4,0) has 27 of them [120]. The gravita-
tional multiplet is the only massless multiplet that can be used for a dynamical
model with this amount of supersymmetry.

The self-dual tensor multiplets with rigid (1,0) or (2,0) chiral supersymme-
try can also be realized as matter multiplets in a supergravity background. The
coupling of matter multiplets in chiral theories with one supersymmetry can be
found in [129, 131]. In these articles, the only models for which an action can be
constructed, have one self-dual tensor multiplet. Together with the antiself-dual
tensor of the gravity multiplet, the tensors combine into an ordinary tensor, for
which of course an action exists. For multiple tensor multiplets, no satisfying ac-
tion was found. They only gave the equations of motion and an action for the

3Also the non-chiral theories contain (anti)self-dual tensors, but they always have a combina-
tion of self-dual and antiself-dual tensors. For (1,1) supersymmetry, there is one self-dual and
one antiself-dual tensor which can be combined into an ‘ordinary’ tensor.
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tensors where the self-duality is imposed only after the derivation of the equations
of motion. In [132, 133, 134, 135], the Poincaré actions for the multiplets with
self-dual tensors and their couplings to other matter multiplets were constructed.
Also for (2,0), the coupling to supergravity is constructed in [130, 136]. This
required a generalization of the actions with only rigid supersymmetry.

An alternative approach to write down an action is possible [137]. First, an
action is written down with a non-chiral tensor. The variation of this action must
be proportional to the antiself-dual field strength. So, this action gives rise to the
exact equations of motion provided the self-duality is imposed by hand.

Gravitational anomalies

In chapter 4, we argued that the coupling of action (4.3.5) to gravity gives rise
to the gravitational anomalies calculated in [114]. In that article, not only the
anomalies for the self-dual tensor in six and ten dimensions are calculated (cf.
chapter 4), but also the anomalies of the chiral spin-1/2 and spin-3/2 fermions. The
conditions to have anomaly freedom are calculated for different dimensions. The
most striking conclusion of [114] was that in ten dimensions there is a unique chiral
theory with extended supersymmetry that is anomaly free: type IIB supergravity.

In six dimensions, other possibilities exist. For the case of (2,0) supersymme-
try, there are only two multiplets that can change the anomaly: the gravitational
multiplet and the tensor multiplet. The anomaly polynomials for gravitational
anomalies in six dimensions give rise to an algebraic equation:

2111 )5 — 3o + 814 =0, (5.1.3)

where fl/g, f3/2 and I4 are the anomaly polynomials for respectively a positive
chirality spin-1/2 field, a negative chirality spin-3/2 field and a self-dual tensor.
The (Poincaré) (2,0) gravitational multiplet in six dimensions [120] contains five
antiself-dual tensors and two gravitini which contribute to the anomaly. The tensor
multiplet contains one self-dual tensor and two positive chirality spin-1/2 fields.
This implies that the coupling of 21 tensor multiplets to (2, 0) chiral supergravity
is the only possibility in (2,0) chiral supergravity in 6 dimensions [138] free of
anomalies.

For (1,0) supergravity, there are much more matter configurations which have
no gravitational anomalies. A minimal condition [139] to have no gravitational
anomalies is that

ng — Ny + 2907 = 273, (5.1.4)
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where the n; indicates the number of hyper, vector and tensor multiplets. Different
models with vanishing (gauge, gravitational and mixed) anomalies can be found
in chapter 4 of [140]. More recent results can be found in [141].

5.1.3 Self-dual tensors on the worldvolume of extended ob-
jects

String theory contains several extended objects which break half of the supersym-
metry. Several string theories contain objects with five spatial dimensions that
are the magnetic duals of the fundamental string. These NS5-branes are solitonic
objects with tensions proportional to 1/g2. One of the ways to study these NS5-
branes is to look for solutions of the low-energy supergravity action (or to the
solution of the f-functions of the massless fields) in terms of a harmonic function
[142]. The small fluctuations of this brane around the classical solution can be de-
scribed by a six-dimensional quantum field theory. Strong restrictions come from
the many symmetries that this action must respect. World-brane symmetries de-
scend to the world-brane from the spacetime symmetries. In [143] is argued that
the NS5p, the type IIB NS5-brane, has (1, 1) supersymmetry on its worldvolume
while the NS5 4, the type ITA NS5-brane, has chiral supersymmetry. This means
that the worldvolume description of the NS5 4 contains a self-dual tensor multiplet.

Also the fundamental strings in type I, the type I’ string? and the heterotic
string theories with gauge groups SO(32) and Eg x Eg have magnetic duals. The
NS5-branes of type I' and of the heterotic string with gauge group Eg x Eg also
have a self-dual tensor multiplet (with (1,0) supersymmetry this time) in the
description of the small fluctuations of the worldvolume [145].

D-branes are another class of non-perturbative objects in string theory. These
extended objects carry charge under the different RR-potentials of ITA or I1B
supergravity. Their tension is proportional to 1/gs and open strings can end on
them. So, at weak coupling, D-branes are lighter objects than the NS5-branes.
The worldvolume description of D-branes requires a vector field. Multiple D-
branes on top of each other give rise to a non-Abelian Yang—Mills gauge group [2].
So, D-brane worldvolumes contain no self-dual tensors.

A last class of extended objects that appears in this context are the extended
objects in 11-dimensional theories. At low energies, the description of M-theory
can be done in terms of 11-dimensional supergravity [146]. Much is known about
the classical solutions of this low-energy supergravity limit in terms of harmonic
functions. For 11-dimensional supergravity, the M 2-brane is an extended object

4Type I’ string theory is an orbifold projection of ITA string theory which keeps 1 supersym-
metry in ten dimensions [144].
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with 2 spatial dimensions. Its 3-dimensional solution of 11-dimensional super-
gravity in terms of a harmonic function is in [147]. The M5-brane, the magnetic
partner of the electric M2, has five spatial dimensions with a classical solution
in terms of a harmonic function [148]. The worldvolume of the M5 is described
by a six-dimensional quantum field theory. The gravitational anomalies of the
M 5-brane were calculated in [149].

One M 5-brane breaks half of the 32 supersymmetries of 11-dimensional su-
pergravity. This implies that the worldvolume description of the M 5-brane will be
a supersymmetric quantum field theory with 16 supercharges. In [150] was argued
that this is an (2, 0) superconformal field theory in six dimensions. The only multi-
plet possible in this theory is the self-dual tensor multiplet. The five scalars can be
understood as the five transversal fluctuations of the M5-brane. The description
of this worldvolume theory of the M 5-brane is far from trivial. The equations of
motion were derived in [151]. The quest for an action was harder. A non-covariant
version was achieved in [152]. A bosonic covariant action using the ingredients of
section 4 was derived in [153], a supersymmetric version in [154]. The complete
Wess—Zumino term was found in [155]. There was also proven that the world-
volume of the M5 is invariant under non-linear supersymmetry transformations
and that the quadratic approximation of the worldvolume action gives rise to the
action for a free self-dual tensor multiplet with the full rigid superconformal group
as symmetry group.

The appearance of the different self-dual tensors in the NS5-branes can be
understood from M-theory: compactifying one of the 11 dimensions on a circle
orthogonal to the M 5-worldvolume gives rise to the 1A NS5-brane with also a
self-dual tensor multiplet on its worldvolume. In [156] is argued that the heterotic
Eg x Eg superstring is equivalent to M-theory on S'/Z,. If the M5-brane is again
chosen in a direction orthogonal to the line segment, one keeps a self-dual tensor
on the worldvolume of the heterotic NS5-brane.

An alternative approach to construct an action was also applied for the M5-
brane in [137]: first write down an action whose transformation is proportional to
the antiself-dual field strength and afterwards impose the self-duality by hand.

Even if the worldvolume action for a single M 5-brane is found in this way,
it is far from clear how to describe a set of n M5-branes on top of each other.
It is precisely this description in terms of a large number of parallel M 5-branes
that is needed to check the adS7/C FTg-correspondence. A stack of n D5-branes
gives rise to a U(n) Yang—Mills theory, but it remains unknown what a stack of n
M 5-branes will look like. The same problem arises for the description of n NS5 4-
branes, since they also have a self-dual tensor in their worldvolume. Partial results
on theories with n tensor multiplets have been reported in [157, 113, 158, 117].
The proof of [111] that the description of the model will not be a local interacting
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quantum field theory remains valid in this supersymmetric setting.

5.2 Chiral bosons in rigid (2,0)-models

In this section, we study the self-dual tensor multiplet in a context with rigid
supersymmetry. This allows a clear analysis of certain aspects of the role of the
auxiliary scalar and the PST gauge transformations with respect to the supersym-
metry algebra.

The superconformal algebra OSp(8*|4), explicitly given in (2.2.41), allows
for one matter representation in six dimensions. Both rigid and local parameters
are allowed. Here, the case of global parameters is studied, the local case is the
subject of study of the next two sections. The tensor multiplet contains eight
bosonic and eight fermionic on-shell degrees of freedom: the self-dual tensor has
three degrees of freedom, as argued in section 4.3.3, the two Weyl tensors have
eight on-shell degrees of freedom and in addition there are five scalar fields. For
the two-form B,;, we use the same notations as in section 4.3. The spinors are
described by symplectic Majorana—Weyl spinors ¢ (i = 1,...,4) which transform
in the 4 representation of USp(4). The five real scalars ¢ transform as a 5-plet
of USp(4). The properties of these gauge fields are summarized in table 5.1. The
U Sp(4) notations, definitions of traces for different tensors, and USp(4)-Schouten
identities can be found in appendix A.3.

Field | Type Restrictions USp(4) | w
By boson | real antisymmetric tensor gauge field 1 2
Yt | fermion Yt = 1)t 4 5
o boson P = —¢it Q9" =0 5 2
a boson 1 0

Table 5.1: The fields of the rigid (2,0) tensor multiplet and the auxiliary scalar a
with the various algebraic restrictions on the fields, their USp(4) representations
assignments and the Weyl weights w.

In [155] is proven that it is more economical to use the z-dependent super-
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symmetry parameter &(z)
e(z) =+~ zum, (5.2.1)
where € and 77 are the rigid parameters for supersymmetry and special supersym-

metry. The rigid supersymmetry transformation rules that respect the algebra
(2.2.41) of the self-dual tensor multiplet and the auxiliary scalar are then

6Bab = —5_(1')’70,[;1/1 )
st = LHf A" (@) + 1 Poe(x); — ¢y,
51 = —de(x)lp! — QU e(z)y . (5.2.2)

Keep in mind that Yape = Ya77- We want that the commutator of two super-
symmetry transformations gives rise to a translation. Using the transformation
rules (5.2.2) in

[6(e1),0(e2)] Bap = §°0cBay (5.2.3)

illustrates that we are obliged to use the self-duality condition,

H, =0, (5.2.4)
to find a translation. Therefore, these are called on-shell transformation rules.
The aims are to write down a covariant action for the tensor multiplet and to
introduce other supersymmetry transformation rules such that the self-duality
condition (5.2.4) is not needed anymore to realize the algebra. The auxiliary
field @ and the two new gauge symmetries of chapter 4 will be a cornerstone to
achieve this. Therefore, the transformation of this auxiliary field under (special)
supersymmetry is chosen:

Sa=0. (5.2.5)

The auxiliary field a is inert under both supersymmetry and special supersym-
metry. For the tensor B,; and the scalar a, we use the same gauge symmetries
as in the bosonic model. We choose the same notations as in section 4.3. The
fermions 1! and the scalars ¢¥ are inert for these gauge symmetries. Using gauge
transformations and the auxiliary scalar it is possible to define a field strength
which is automatically self-dual:

h+

abc

= %Habc - %U[aHb;] . (526)

This h;bc was already introduced in [133]. It reduces automatically to %Hjbc

when the self-duality condition (5.2.4) is imposed. The transformation rule for
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the spinors can be changed into
st = Shh e (z) + L Poe(x); — ¢V, . (5.2.7)

Upon imposing the self-duality condition (5.2.4), this gives rise to the old rule
in (5.2.2).

When checking the commutator of two pure supersymmetries on B, we find:

H, Hy
_ l(= .c ab le
[6(51)a 6(52)]Bab = 5(527 €1) (aaBbc + Oy Bea + 0cBap — 2“0\/u—2 - 4“[0, \/17)

H
= 1(e27°e1) <8cBab — 2u, ab) + 20, (3827°€1By).)

Vu2
2 = c HbTC
—2(&27%1) U[aﬁ

= 1(827°c1)DeBap — 61 (3 (227°€1) Bed) Bas

—0r11 (2(527661) 5;—2) Bap, (5.2.8)

without imposing the self-duality condition (5.2.4).

Some comments can be made about the terms in the algebra, each of them
clarifying the role of one of the gauge symmetries in the model:

e the D, in the first term of (5.2.8) is a covariant derivative which contains
also a term for gauge transformation IT

H-
DcBab = 60Bab — Uc (2\/Z—I;> . (529)

This asks for some explanation. We define a covariant derivative as a par-
tial derivative minus the gauge transformations where the parameters are
replaced by the gauge fields. The second gauge symmetry has also a field
that can be considered as a gauge field. The derivative of the scalar u, = 0,0
transforms into the derivative of the parameter of the second gauge symme-
try:

6[[’Lta = 6a¢. (5210)

Using this definition, the covariant derivative of By, appears in (5.2.8).
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e One sees that there is a field-dependent gauge transformation I. In the local
case, this will be part of the general coordinate transformations.

e The algebra also contains a field-dependent term which is a gauge symmetry
III. In the local case, this term will be absorbed into the covariant general
coordinate transformation.

In this way, each of the three gauge symmetries plays a specific role in the real-
ization of the algebra. This will also be the case in a slightly different way in the
local superconformal case.

We can also look to the commutator of two supersymmetries on the scalar
field a. The supersymmetry transformation rule (5.2.5) gives trivially that this
commutator should be 0, checking the algebra gives

My

[0o(e1),0q(e2)]a = %

27°€1 Dea + 01 (5(827°€1) Bye) @
+Orr1 (2(6_2’)/661) \I-/I%) a

%6_2’)/ €1 (6ca — ’LLC)
= 0. (5.2.11)

The second line is the covariant derivative D, of the field® a. This shows that the
auxiliary field a is a fermionic singlet [159]. A fermionic singlet is a representation
of the supersymmetry algebra which contains only one (bosonic or fermionic) com-
ponent. Usually, in supersymmetric theories all fields have superpartners. This is
immediately related to the supersymmetry algebra [@, Q] = P, where two super-
symmetries produce a translation. Therefore, the existence of singlets Q® = 0 in
general contradicts the supersymmetry algebra, since always P® # 0. In general,
one has Q® = V¥, where ¥ is the ‘-ino’partner of ®. However, the scalar a here
is an example of such a fermionic singlet. In all cases, there is an extra symmetry
which cancels the general coordinate transformation. In this way, the right-hand
side of the [@Q,Q]-commutator is not invertible any more. In this case, it is the
second gauge symmetry that makes the scalar field a pure gauge for this symmetry
and which enables to build a fermionic singlet with it. Other examples in rigid,
local and k supersymmetry are given in [159]. This fermionic singlet is not in con-
tradiction with the theorem of section 2.2. That theorem states that the number of
fermionic and bosonic on-shell components should equal in an on-shell realization
of the supersymmetry algebra and that is the case here with 0 on-shell degrees of
freedom. Keep in mind that there is no off-shell realization of the self-dual tensor
multiplet yet.

5This covariant derivative resembles the one of the scalar in section 3.1.2.
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The role of this scalar a is to enable the two PST gauge symmetries. These
gauge symmetries allow the self-dual tensor hjb .- With h;b > supersymmetry trans-
formation rules can be constructed that do not need the self-duality condition any
more to realize the algebra. We were not only looking for such transformation The
final aim is to construct an action that is explicitly Lorentz invariant, just as in

the bosonic model. It is possible to define such an action for these fields:
S = /d% (—H  H** — 49" ip; + 27 0¢;;) . (5.2.12)

In [155] is proven in detail that this action for the free rigid (2, 0) tensor multiplet is
invariant under all the rigid superconformal symmetries. In our case the (special)
supersymmetry transformation rules are (5.2.5), the first and the third of (5.2.2)
and (5.2.7) for the transformation of the spinor. The self-duality of the tensor
appears in the same way as in chapter 4 after deriving the equation of motion for
the tensor and imposing the suitable gauge fixing for symmetry I71.

This treatment is purely algebraic: starting with the algebra, looking for
representations and building an action. The geometrical superspace® treatment
of the self-dual tensor multiplet is possible in terms of a real scalar superfield
satisfying an appropriate constraint [160] or equivalently in terms of a super two-
form [161].

So, we clarified the role of each of the gauge transformations in the realization
of the algebra when using the appropriate supersymmetry transformation rules.
Further, it is possible to extend the Lorentz-covariant action for the self-dual tensor
to the self-dual tensor multiplet with rigid (2, 0) superconformal symmetry.

5.3 The Weyl multiplet in (2,0) supergravity

5.3.1 The components of the Weyl multiplet

The goal of this chapter is to write down an action for the (2,0) superconformal
tensor multiplet, coupled to a superconformal gravitational background. This
asks for a good understanding of this background. The (2,0) superconformal
gravitational multiplet is a representation of OSp(8*|4), whose (anti)commutation
rules are in (2.2.41). This superalgebra has generators

Ta=P,,Q. Uy , My ,K,,S. ,D, (5.3.1)

6 A superspace is a space where, for mathematical convenience, the (bosonic) spacetime coor-
dinates get fermionic superpartners. This approach is very fruitful in certain calculations, e.g.,
in diagrammatic calculations in supersymmetric theories. A good reference is [37].
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for translations, supersymmetry, USp(4) R-symmetry, Lorentz rotations, special
conformal transformations, special supersymmetry, and dilatations. The gauge
fields corresponding to the generators of each of these symmetries are

eua ) 1/’; ) Vuij > wuab , fua , QSL , bu . (5.3.2)

Some properties of these gauge fields are described in Table 5.2. They contain

Field | Type Restrictions | USp(4) | w
e’ boson sechsbein 1 -1
¢i, | fermion | 47yl = +4), 4 -1
V,fj boson Vuij = Vuji 10 0
w,® | boson 1 0
fu® boson 1 0
¢l | fermion | y7¢l, = —¢i, 4 1
b, boson 1 1

Table 5.2: The gauge fields of the OSp(8*|4) algebra. We have indicated the var-
ious algebraic restrictions on the fields, their USp(4) representation assignments,
and the Weyl weights w. A field ¢ of weight w transforms under dilatations as

dp¢p = wApo.

190 bosonic and 160 fermionic off-shell degrees of freedom. In the bosonic case,
w, % is expressed in terms of (derivatives of) e,® and other fields to replace local
translations and local Lorentz rotations by general coordinate transformations as
explained in section 3.1.3. In a local superconformal theory, we need constraints
for w,, f,%, and qﬁfl in terms of the other gauge fields to obtain the smallest
irreducible representation with spin 2. These conventional constraints can be
written using the linearized curvatures’:

Rl“’a(P) = 07

"The fully covariant constraints follow later in (5.3.14).
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R, (M)e", = 0,
YR, (Q) = 0. (5.3.3)

The first two equations reduce 90 + 36 bosonic degrees of freedom. The third con-
straint eliminates 96 fermionic degrees of freedom. This implies that the multiplet
still contains 64 + 64 degrees of freedom. Later on, we will give the full (co-
variantized, matter-corrected) conventional constraints, but they reduce the same
number of degrees of freedom as these linearized versions. For the analysis we aim
to do now, these linearized expressions are sufficient.

In all the other constructions of Weyl multiplets (in other dimensions or with
other amounts of supersymmetry), there is a discrepancy between the number
of bosonic and fermionic degrees of freedom after imposing the three conventional
constraints. If that is the case, it is clear that this cannot be the full Weyl multiplet.
This counting argument is then used to add matter fields to the remaining gauge
fields until there is a matching between the number of bosonic and fermionic
components. Also here, the matter fields 7,3 ., x)’, and D¥* are introduced to
obtain a Weyl representation with 128+ 128 degrees of freedom. Several properties
of these matter fields are summarized in Table 5.3. The last condition on D%k
can be expressed in two equivalent ways. The last one, expressing that the fully
antisymmetric part of D¥* is 0, is new (but equivalent) with respect to [42].
There is no proof that it is not possible to formulate a supergravity multiplet
without introducing these matter fields. Although the counting of the degrees of
freedom is in this derivation no argument to add them, some strong arguments
are given to introduce them. We list four indications in favor of the matter fields:

e The N = 4 Weyl multiplet in four dimensions should be found by com-
pactifying the (2,0) theory in d = 6 to four dimensions [162]. The gravity
multiplet for N =4 in d = 4 contains 128 4+ 128 degrees of freedom [163] and
the type of matter fields that one finds by doing the compactification.

e Another argument to introduce 64 + 64 matter degrees of freedom is the
existence of a current multiplet in six dimensions with the same number of
components and the same tensorial structure [42]. This enables the coupling
of the gravitational multiplet to this current multiplet.

e Moreover, the breaking to (1,0) should give the Weyl multiplet of [41] and
this contains also matter fields that cannot be found in another way.

e The adS/CFT-correspondence leads to a last strong argument in favor of the
matter fields. As explained in the introduction, it conjectures a correspon-
dence between the large n limit of certain conformal field theories in d dimen-
sions to M-theory or string theory compactified to (d + 1)-dimensional adS
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Field Type Restrictions USp(4) | w
T;gc boson T;gc = —Tg;c ) 1
QT =0
Tote = —§€abedes Tl
Xf@j fermion Xf@j = —Xii 16 %
X;y =

YXE =X
DUkE | boson Dkt = _ pitkt — _ pis.th 14 2
Dij,k( — Dkl,ij

QijDij’M — QMDij,M =0

Qi Q;0D* = 0 or DI =0

Table 5.3: Matter fields of (2,0) conformal supergravity The various algebraic
restrictions, the USp(4) representation assignments and the Weyl weights w are
indicated.

spacetimes (times spheres). Supposing that the adS/C FT-correspondence is
right, the field content of the Weyl multiplet with matter fields is derivable in
the following way. The starting point is the field content of the maximal adS
supergravity in 7 dimensions [164, 90]: a vielbein, 4 gravitinos, 5 real, third-
rank, antisymmetric tensors, 10 SO(5) gauge fields, 16 spin 1/2 fields and
14 scalars. There exists an action for these fields which is invariant under
general coordinate transformations, local Lorentz rotations, local SO(5),,
global SO(5)., and local supersymmetry. It is possible to study the impli-
cations of these local symmetries on the boundary of the adS space. This
is done in [165] by partially gauge fixing the local symmetries. The fields
on the boundary transform under the residual symmetry transformations
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after the gauge fixing. These symmetry transformations appear to be the lo-
cal superconformal transformations of OSp(8*|4) in six dimensions. So, the
seven-dimensional local symmetries give rise to local superconformal sym-
metry on the six-dimensional boundary of adS;. The boundary values of the
gravitational multiplet in adS; form the Weyl supermultiplet in six dimen-
sions with matter fields. In [166], all the unitary irreducible representations
of OSp(8*|4) in seven dimensions were derived. There is no possibility in
seven dimensions for a gravitational multiplet that gives rise to a supercon-
formal gravity multiplet without matter fields in six dimensions. So, trusting
the adS/C FT-correspondence and using the possible representations of [166]
is another argument that the six-dimensional Weyl multiplet must contain
the matter fields T3 ., x}’, and D¥* The same connection between adSg41
and the gravitational multiplet in d dimensions is treated earlier for d = 4
[167] and d = 2 [168].

5.3.2 The curvatures and transformation rules

In this section, we will construct the full non-linear transformation rules, the
matter-corrected curvatures, and the appropriate conventional constraints for the
(2,0) Weyl multiplet in six dimensions. To do so, we will use the iterative proce-
dure of [41]. The method to construct the transformation rules, the curvatures,
and the constraints is given there in general and applied to simple conformal su-
pergravity in six dimensions. We start with the matter fields (T3, x;’, and Dk
in this case) and the linear transformation rules of the gauge fields. These linear

transformation rules can be derived from the algebra using the basic rule:
hit = 0ue™ +e“nf fpet . (5.3.4)
For the gauge fields of the bosonic algebra, these transformation rules were already

givenin (3.1.7). Using the algebra (2.2.41), this gives rise to the following linearized
transformation rules:

§ = EQ+7S +ApD + X My + ALK, + A9U;;,
de,” = %5‘7“1/@ —Ape,* — )\“beub,
0y = Duc' +yun’ — 3Ap¢y, + At — PA vt
(Sbu = auAD — %gﬁbu + %77’(/}” — 2AKu;
Swu®™ = 9N+ 2w, [N — Lay g, — iy e, + Ak e,
SV = 9N+ AU VDR — 4gligh) — anliyd)

86, = Dun’ = fu'vas' + Ajvatdy + A 0% + MDY, — TA gy,
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6fu" = DuNk +Apfu” —10v"¢u — X fup. (5.3.5)

The derivatives D,, are covariant with respect to dilatations, Lorentz rotations,
and USp(4) R-symmetry symmetries:

Due' = 9e'+ %bugi + %wuab%bgi - %Vjﬁj )
Dun' = 0’ = 5bun’ + qwuvasn’ — Ve
DAY = 0,A% —buA% 4w, Ak - (5.3.6)

The spinors & and n° have positive and negative chirality. Using
Ry =20,,h,* + W fpe (5.3.7)

and the structure constants of the algebra allows for the calculation of the different
curvatures:

) 28[ueﬁ] + 2b[ueﬁ] + Qw[uabe,,]b — %d_},ﬁ“d}u ,

) = 20w+ 20w, — 8 e + P ey,

) = 20040+ bdhy + s Vel — Vit + 274l
Ru(D) = 20p,b,) + 4f. €uja + Yy »

) = 20,V + VROV + 84,0,

) QD[U%] - Q%f[u“z/;f,] ;

) = 2Dufi)" + 50u - (5.3.8)

The method consists of the following steps:

1. The first step comprises the derivation of the linearized @Q-transformation
rules. For the gauge fields, this has been done already in (5.3.5). For the
matter fields, this requires some work. One writes down the most general
possibility with arbitrary constants for the moment. If derivatives of gauge
fields appear somewhere, they are replaced by the corresponding linearized
curvatures of (5.3.8). The coefficients are fixed by calculating the commu-
tator of two supersymmetries and imposing that this should give rise to a
translation. This leads to:

T, = 38 (v Yave + 700" BRI (Q) = 758 Yavexi? — (trace),
Yy = 5 (%Tiic) ybeqhtey — WA R (V) el — LD el

—(traces) ,
SDUHR = _9glt gLkl _9glk Gy bid 4 (15 5 k) — (trace) . (5.3.9)
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Also the transformations of the gauge fields get extra matter contributions,
for instance

i _ 1 ij _abe .
61/}u - ﬂTabc’Y VYu€j»

6Vﬂij _ —fl_sék'YuX(i’j)k- (5.3.10)

. The second step leads to the bosonic transformation rules of the matter fields.
The Lorentz transformations follow immediately from the index structure of
the fields. The Weyl weight of the matter fields follows from the Weyl weights
of the gauge fields (derived from the algebra and given in (5.3.5)) and the
linearized supersymmetry rules of step 1. These bosonic transformation rules
of the matter fields are summarized in table 5.3.

. Replace in the @Q-transformation rules the ordinary derivatives (coming from
imposing in step 1. that the commutator of two supersymmetries should give
rise to a translation) by fully covariant derivatives @u- This is defined as the
partial derivative minus the gauge transformations with the parameters re-
placed by the corresponding gauge fields for each superconformal symmetry,
except the translations. Since the transformations of the gauge fields have
changed in step 1., also the curvatures will change. This will also be done
when the transformation rules will be changed in one of the next steps. We
find the following corrected curvatures:

Ruw™(M) = 204,w,)" + 2wp,*“w,e” = 81" + 1™y
Y Ry Q) + 391 B (Q) + S iveth ;T
Ru,I(V) = 20,V + Vi,V + 800,96,)7 + Edpsrx b,
sz(Q) = 2a[u¢xi/] + b[u‘/’zi/] + %w[uab%bd’f/] - V[ZJ"/’,];] + 27[#_‘#;/]
+ 5T Yt - (5.3.11)

The curvature R,,,,*(P) and R, (D) get no corrections. The other curvatures
are not needed in the transformation rules since their gauge fields will become
composite fields after imposing the conventional constraints.

. The fourth step gives rise to the special supersymmetry transformations of
the different fields. They can be found by calculating the [Q), K]-commutator:

[0k (M), 0q(e)] = s (—A%7a2) - (5.3.12)

This gives rise to the following special supersymmetry transformation rules:

Ssvl, = yun',
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Osby = 57,

oVl = —dnty),

Soxi = T~ (iraces),
SsDHk = gpliz bk _ (trace) . (5.3.13)

5. The last but one step changes the conventional constraints (5.3.3). First the
curvatures are replaced by their covariant curvatures as defined in step 3.
Their exact form is not important as long as they enable a solution of
w,®, .2, and ¢!, in terms of the matter and other gauge fields. The form
that allows to transform the conventional constraints into each other by Q-
supersymmetry and also allows for a fermionic constraint invariant under
S-supersymmetry (and thus leaving invariant the S-transformation of ¢)L)
is:

R,%(P) = 0,
Ru,,“b(M)e”b+iT$CTi‘;bc = 0,
YR}, (Q) = 0. (5.3.14)

6. The last step allows for the construction of the full non-linear (special) super-
symmetry transformation rules. Asrequired in the first step, the commutator
of two @Q-transformations leads to a translation. The matter term (5.3.10)
in the transformation for 1/12 gives rise to a Lorentz rotation that depends

on the matter field T;gc in the commutator applied on e,®. This implies
that the algebra is changed and that this matter-dependent Lorentz rotation
should be reproduced also for the [@), @]-commutator on other fields. This
requires other covariantization terms in the transformation rules, driven by
an iterative procedure. In principle, this can lead also to field-dependent
terms in the commutator [@Q), S] or [S, S], but this is not the case here.

This terminates the construction of the full non-linear Weyl multiplet. This
procedure leads to the following results. The solution of the constraints (5.3.14)
is possible since each of the constraints contains a (underlined) term which is the
product of a gauge field and an invertible sechsbein. They express w,ﬂb, ¢i, and
fu® in terms of other fields:

w, = 2@”[a6[u€u]b] — e, Dye,,
+26u[abb] + %ZZJN’Y[ET/)IJ] + i‘/;a%ﬂ/)b )
fu = —RRL (M) + et RUM) + T T

b = —15 (1% = 3ny®) Rip'(Q) (5:3.15)
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The curvatures R’ are the ones of (5.3.11) without the underlined term. The full
non-linear (special) supersymmetry transformation rules are:

et = Lev'u,
6bu = _% QS 2771/]“)
oY, = Dy el + Tabﬂ “Yui + Yun',
Vi = —aeligl) — Ly PO — agtiyg)
6T¢%c = E[l')/ 'YabcRg]e (Q) - %ék')/abcxzj - (trace) s
5Xk = (D Ta”bc) abc7u€k - %VWRuuk[i(V)Ej] - iDijklé‘l
5le67 °ni — (traces) ,
SDUR = 9zl bR L gpli JLRL 4 (G5 s KD) — (trace) . (5.3.16)

The transformation rules of the composite gauge fields can be derived from these
rules. The algebra takes the following form:

[0q(e1),0q(e2)] = l(*5_27“51)75 + O (—LEs Ty ed)
+05(—ZE1[kVal25]Y ax k) 4 5K(__52'Ybfj D T“bc)
[05(n),0q(e)] = dp(—Lien) + o (—36v""n) + Susp(a) (—4&'n?))

[05(11), 05 (m2)]

This finishes the discussion on the Weyl multiplet for conformal supergravity. We
end up with 128 + 128 degrees of freedom, 64 + 64 of them being matter fields.
This multiplet of (2,0) conformal supergravity will be used in the next section to
study the coupling of a (2,0) self-dual tensor multiplet to a conformal supergravity
background. To construct the action for this multiplet, we will need the auxiliary
scalar and the gauge symmetries of section 4.3.

Orc (=527 m) - (5.3.17)

5.4 An action in a conformal supergravity back-
ground

In this section, we will construct the main result of this chapter: the Lorentz-
covariant action for the (2, 0) self-dual tensor multiplet in a conformal supergravity
background. This work was reported in [7]. We will combine the experience of
the construction of the rigid-supersymmetric action in section 5.2 with the field
content and properties of the conformal supergravity background of section 5.3.
We will retrieve the equations of motion, that were known already before. We end
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with some comments on the possible role of this action in presently developing
subjects.

5.4.1 The algebraic aspects in the conformal background

Placing the self-dual tensor multiplet in a conformal background implies inter-
actions between the matter multiplet and the gravitational background. We will
sketch how this can be done. By generalizing the rigid transformation rules (5.2.2),
the following on-shell (special) supersymmetry transformation rules are compatible
with the algebra:

0By = =Wt +E vt bij (5.4.1)
opt = NHE et 4 L Pgiie; — ¢l (5.4.2)
Spt = —4§[iz/1j] — (trace) . (5.4.3)

In (5.4.2), the first term contains the self-dual part of the covariant field strength
for the tensor:

Huup = 36[uBup] + 31/_}[u'71/p]1/} - %/‘/_}[ZH'YVIZJZ] ¢ij - %QSZJT;'LP
= 30,,Byy) + Cop - (5.4.4)

Using (5.4.1), this field strength H,,, is a covariantized version of the rigid
field strength. Remark that we define a matter term in the covariant field strength.
This matter term does not appear in the transformation rule (5.4.2) since the self-
dual part of H,,, does not contain the antiself-dual matter field. We introduce
this matter field in the field strength because this allows an easier and shorter anal-
ysis later on. The self-duality condition in a conformal supergravity background
becomes

wp = 0. (5.4.5)
Analogous to the analysis with rigid supersymmetry, equation (5.4.5) must be
used to realize the algebra (2.2.41) with the supersymmetry transformation rules
(5.4.1)—(5.4.3) and (5.3.16). As could be seen from the covariant field strength
already, the Weyl weight of the tensor By, is 0. In the rigid case (cf. table 5.1),
the conformal weight of the tensor was 2, but By, is multiplied twice with a vielbein
with each time conformal weight —1 (cf. table 5.2).

Just as in the rigid case, it is again possible to construct supersymmetry
transformation rules that do not need the self-duality condition (5.4.5). To this
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end, we again introduce the auxiliary scalar a as in the bosonic or as in the rigid
supersymmetric case. Since the metric is dynamical here, the definition of u? and
v, becomes

’U,2

uug"uy ,
Uy
v, = —. 5.4.6
= o, 40
The contractions of the field strength with the vector v, are defined as in the
bosonic equations (4.3.1). The first and the third gauge symmetry are completely
the same as in the bosonic case. In the gauge transformation I7 of the tensor,

8118y = QHW\/% , (5.4.7)

the full covariantized field strength of (5.4.4) is used, so this includes here also the
term with the matter field.

The vector u, again transforms into the derivative of the parameter of the sec-
ond gauge symmetry and as such can be treated as a gauge field for this gauge
symmetry.

Making use of the gauge symmetries (with a suitable transformation IT), it is
again possible to write down supersymmetry transformation rules that realize the
algebra without using the self-duality condition (5.4.5). Therefore, the self-dual
component of the field strength in (5.4.2) will be replaced by a self-dual tensor, such
that it gives the old transformation rule upon imposing the self-duality condition
(5.4.5):

v = 1 Huvp — 303H,, - (5.4.8)
The terms with v, in (5.4.8) can again be seen as the product of u,,, the gauge field
of the second symmetry, and the I/-transformation of B,,. Therefore, hj,,p can,
just as in the rigid model (5.2.6), be considered as the fully covariant field strength
of B, where fully means also with respect to gauge symmetry I1I. h:,,p is auto-
matically self-dual in this way. The new (special) supersymmetry transformation
rule is then:

;1 A g
0" = Sl et + 1 Poe; — 6V . (5.4.9)

12 e

This transformation rule depends on the matter term in h:j,, - This is necessary

later to realize the algebra (5.4.14) and the invariance of the action.

In the rigid action (5.2.12) appear the kinetic terms of the spinors and the
scalars. In the action with local symmetries, this terms will be generalized to
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the covariant derivative of ¢* and the covariant d’Alembertian of ¢*. From the
transformation rules (5.4.1), (5.4.9), (5.4.3) and (5.3.16), the covariant derivative
of ¢* and ¢¥ are:

Dyt = (Ou— Sbu + wu®vap) ¥ — Vi
— 15l W — 1 (POY) Vs + 67 s
Du(z’ij = (Ou —2by) ¢ + Vu[ik(bj]k +4 (z[?,[fz/)j] — trace) . (5.4.10)

For the supercovariant d’Alembertian of the scalars, we need the superconformal
transformation properties of D,¢" :

0D.¢7 = 3ApDeoY + AlyD,¢ % — AP Dyg" + 4A g, 07
—45lD,pl) + 2 (7,9 — i 6 j)
—%5k7a7b0dTlﬁ[;z/Jﬂ — 4l — (trace) . (5.4.11)

This gives rise to the following supercovariant d’Alembertian:

DaDa¢ij — aaDa¢ij _ 3baDa¢ij _ Va[ikDa¢j]k + waabDb¢ij _ 4faa¢ij
+4RD ) = & (Gprax 'l — i o )
—Lpyay Ty — 4gliy ) — (trace) . (5.4.12)

The Riemann scalar curvature occurs in the equation of motion for the scalar fields
through the term —4f,%¢%, using the solution of the second constraint for f,* in
(5.3.15):

fo' = —%R' (M) + ... (5.4.13)
Upon gauge fixing the conformal symmetries (with the superconformal tensor cal-

culus program in the back of the mind), this term gives rise to the standard
Einstein term in the super-Poincaré action.

Just as in the rigid case, calculating the algebra of @)- and S-transformations
gives rise to field-dependent transformations. When using the transformation rules
for the tensor multiplet, (5.4.1), (5.4.9) and (5.4.3), also a field-dependent term
for gauge symmetry I appears in this algebra. The combination of (5.2.8) and
(5.3.17) leads to

[Bo(e1),0q(e2)] = 3&27"e1 Dy + Sn(— 35T veed)
+5S(_%51[k'7a€2j]7ax(i’j)k) + 51((—%53%6{ 'DCTZ»’;-bC)
+01(=5857E1035) (5.4.14)
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[05(n),0q(e)] = dp(—ien) + dm(—36v""n) + dusp(a) (—4en?)), (5.4.15)
[65(m),05(m2)] = Or(—5m27"m). (5.4.16)

Some comments can be made about the terms in the algebra:

e The ﬁu in the first term of (5.4.14) stands for a covariant general coordinate
transformation [35]. The general form of a general coordinate transformation
of a tensor field B, is:

0gct (§”)Buy = €7 0p By + 20,8 - By, - (5.4.17)

In (5.4.14), & = %527"51. In a covariant general coordinate transforma-
tion, this partial derivative is generalized by field-dependent gauge transfor-
mations. For symmetry I, the covariant general coordinate transformation

becomes:
6CQCt(§p)BHV = gpapB,uu + 28[u€p ° Bl/]p - 6I(€UBa-p)Buy , (5418)
= & (0,Bu +0.B,, +0,B,,) , (5.4.19)
= Hpuw- (5.4.20)

In the model with rigid supersymmetry, we saw that there were terms with
gauge transformation I and gauge transformation 117 in the algebra, when
we considered the second gauge symmetry as a symmetry with gauge field
uy,. In this covariant general coordinate transformation, the term with gauge
symmetry I is absorbed into the field strength.

e When introducing the covariant derivative with respect to the second gauge
symmetry, also the terms that are a gauge transformation I1I, will be ab-
sorbed in the same way as for symmetry I. So, the covariant derivative ﬁu
in (5.2.8) includes all the superconformal transformations, and also gauge
symmetry I1. There is no natural gauge field for symmetry 11 and it does
not appear in the covariant general coordinate transformation.

e The algebra gets a new term proportional to a symmetry I transformation.
This is not dependent on the amount of supersymmetry and was found al-
ready in [41].

So, the three gauge symmetries each play their specific role in the algebra.

With u,, as the gauge field for symmetry I, the same reasoning can be made
as in the rigid model: « is a supersymmetric singlet, also for local supersymmetry.



96 Chapter 5. The self-dual tensor in conformal supergravity

In [41] is given a prescription to go from extended to simple chiral supercon-
formal symmetry. Using this prescription immediately gives rise to the Lorentz
rotation and the gauge symmetry I in the algebra. The breaking to (1,0) super-
symmetry requires a shift in (bL and f,%, because otherwise the (2,0) supersym-
metry transformation rules and conventional constraints do not lead to those of
(1,0) used in [41]. This shift implies that some work has to be done to achieve
the special conformal transformation and special supersymmetry transformation
in the algebra.

Finally, remark that the algebra is not realized off-shell. In the transformation

of H,,, (5.4.28), will still appear the equation of motion of the spinor. Therefore,

also in the commutator of two supersymmetries on wi appears an equation of
motion. Also the commutator of symmetry I] with supersymmetry contains terms
with equations of motion.

5.4.2 The action and the equations of motion

In [155] was already proven that the rigid model has superconformal invariance.
Here we give the action for the self-dual tensor with local (2,0) superconformal
symmetry. We also see that the action, as expected, gives rise to the equations of
motion of [42].

The following action is invariant under local superconformal transformations
and under the 3 bosonic symmetries in (4.3.2).

S = /dﬁm\/g [~H,, H*" — Lg%, cre
—4p Pl — Pt P b
+7¢7 (0°Dadij — 3b"Dadij + ViiPati® +wa" Dyt — 4fa" i
+41po D" P; + 4daiy ;)
— B b + SDIHF Gy + LTV -y
e X" DV Ul + Ui b T -y — F5 it ¢k T -y
— sz UL TR -y W i dnr + a5 VR T* -y L din b
— LA Ty Wl b o] (5.4.21)

In (5.4.21) appears the covariant derivative of ¢»' without the h;,,p—term:

D' = (O — b+ wu ™ van) ¥ — 3V
—5 (P67) s + 67 b - (5.4.22)



5.4. An action in a conformal supergravity background 97

Further, T;; - v = Ti‘}bc%bc.

This action describes the coupling of a self-dual tensor multiplet in six dimen-
sions to a conformal supergravity background. The first gauge symmetry imposes
that By, only appears in a field strength in the action. The second and the third
gauge symmetries impose the form of the action as given in (5.4.21) for terms that
transform with respect to one of these symmetries. The second term contains only
covariantization terms of (5.4.4). This term is imposed by the third gauge symme-
try and can also be found in the local super-Poincaré actions for self-dual tensors
[133, 134]. It is absent for free chiral bosons. All other coefficients of the action are
fixed by imposing invariance under supersymmetry and special supersymmetry.

The action (5.4.21) gives rise to the following field equations for B, a, v,
and ¢¥:

g = 9, (dehtHvr — Lewormoq, ) (5.4.23)
1
A = 0, (? e“”P"T¢’Hu,,HMvT> ) (5.4.24)
i i 1 i L ij abc
= Py - 1—5¢’“’ka - ETanﬂ beaps (5.4.25)
Cij = D*Dachij — 15 Di b + $hly T3 + 12X n - (5.4.26)

The equations (5.4.25) and (5.4.26) are the equations of motion as derived in [42].
Also the self-duality condition (5.4.5) is identical as in [42]. The only difference is
the one but last term in (5.4.26), but that is a term proportional to the self-duality
equation which is put to zero in [42]. Rewriting (5.4.23) gives:

GH = —ghvooTiy (UJH;{)) . (5.4.27)

Analogous to the rigid case, the self-duality condition (5.4.5) can be found by a
gauge choice of symmetry II1 for the most general solution of this equation of
motion, if there are no global obstructions. Global aspects of chiral bosons are
studied in [169, 170]. So, this action describes a self-dual two-form.

The description using this action is more satisfactory than the one of [136].
There, first the action for an ordinary tensor is written down and the equation of
motion is derived. Only then, the self-duality condition is imposed. Here the self-
duality is automatically incorporated in the action and follows from the equation
of motion.

The equations of motion and the self-duality condition transform in the fol-
lowing way into each other under (special) supersymmetry:

6Hg;)c = _%E’Yabcra
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1
dA = =0, (\/_e“”p”d’Hu_,,EprI‘U”vT),

’LL2
0Gay = —&apc DT,
oT" = 1CY¢; + 57*€'Gap — 27" vl 'EY" Y,
6CH = —4ei pril 4 Lyliy Mileyaypr — 8l — (trace). (5.4.28)

5.4.3 Comments and discussion

The action (5.4.21) leads to three other actions for self-dual tensor multiplets cou-
pled to a (conformal) supergravity background. There are two ways to end up
with actions with less symmetry. A first one is lowering the number of supersym-
metries. Another possibility is to break the superconformal symmetry to Poincaré
supersymmetry. Using the prescription of [42], the Poincaré action for n self-dual
tensor multiplets can be derived from this superconformal formulation. One starts
with n + 5 tensor multiplets in the vector representation of SO(n,5). Imposing
the suitable geometrical constraints that gauge fix the appropriate superconformal
symmetries (dilatations, special conformal symmetry, and special supersymmetry)
yields the coupling of n self-dual tensor multiplets to (2,0) Poincaré supergravity.

The 5n scalars of these n tensor multiplets parameterize the coset %

[130, 42]. The signature of SO(n,5) leads to the kinetic terms for n physical and
five compensating multiplets. The compensating scalar field in section 3.1.3 also
had the ‘wrong’ sign for the kinetic energy. Filling in the constraints and the so-
lutions for the matter fields gives rise to a Lorentz-covariant action with extended
chiral Poincaré supersymmetry for n self-dual tensor multiplets.

Using the procedure given in [42] to go from (2,0) to (1,0), one discovers the
action for a self-dual tensor multiplet in a (1,0) superconformal gravity back-
ground. This procedure essentially breaks the R-symmetry group USp(4) to
SU(2), puts equal to zero half of the (special) supersymmetry parameter, and
gives a prescription for the components of the matter fields of the Weyl multiplet,
such that they become the matter fields of the (1,0) Weyl multiplet. This ap-
proach also requires a subtle shift in the gauge fields f,* and ¢i in order to be
able to use the conventional constraints and transformation rules of [41].

For the case with (1,0) superconformal symmetry, it is also possible to go
to a Poincaré description. Starting from n + 1 tensor multiplets in the vector
representation of SO(n,1) and imposing the appropriate constraints will break
the superconformal symmetry. This should give the actions of [133, 134]. The
scalars in the Poincaré theory are in SSOO(?T’S) [130]. Again, the signature of the

scalars resembles this of section 3.1.3.
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An interesting project would be to calculate explicitly the conformal anomaly
for the self-dual tensor, e.g., by following the approach in [171] and using the ghost
sector of the action for the self-dual tensor of chapter 4 or [6]. This calculation
would lead to a check of the adS/CFT-conjecture for the adS;/CFTg case. In
[171], the calculation of the Weyl anomaly for the ordinary tensor required the
calculation of the propagator (B, B,s). The complete ghost sector decoupled
in this calculation. To repeat this calculation for the self-dual tensor is far from
trivial. One needs to take into account the ghost-sector for the gauge symmetries,
so one needs to use one of the gauge-fixed actions: (4.4.31) or (4.4.21). Tt is
preferable to use the covariant gauge fixing, but the big disadvantage of this gauge
fixing is that the corresponding gauge-fixed action (4.4.21) is much more difficult
to handle. To this end, another approach could be to first calculate the propagator
for the ordinary field strength (H,,,Hsr4). Then, one should project to the self-
dual field strengths, just like in the calculation of gravitational anomalies of chiral
two-tensors in six dimensions [114].

The conformal anomaly of the self-dual tensor multiplet is calculated in an-
other way in [172]. The anomaly can be split into three parts: a first term that
is proportional to the Euler density (i.e., a total derivative of a non-covariant ex-
pression), a second term, containing terms with independent Weyl invariants (i.e.,
Weyl tensor contractions with extra conformal derivative operators), and a last
term that is a total derivative of a covariant expression. This follows the classifi-
cation of the conformal anomalies, studied earlier in [173] and references therein.
The weakness of this calculation is that it is not an explicit calculation of the con-
formal anomaly of the self-dual tensor. The authors impose that it is half of the
conformal anomaly of a non-chiral tensor which was calculated in [171]. They cal-
culate the anomaly for a stack of 4n> free self-dual tensor multiplets. This factor
of 4n? is found [174] by comparing the absorption cross-sections of longitudinally
polarized gravitons by n M5-branes in d = 11 supergravity and the M5 brane
worldvolume calculation. The comparison between the result in [172] at small
coupling and the result of the supergravity calculation at strong coupling reveals
that there is a discrepancy for one term of the conformal anomaly, the one propor-
tional to the Euler density. This signals a problem with the adS;/CFTs-version
of the Maldacena conjecture.

This difference between the weak-coupling calculation here and the strong-
coupling result in [116] can still have three origins.

o A first possibility is that the calculation of the conformal anomaly in [172] is
not right. They suppose that the conformal anomaly of a self-dual tensor is
half of the conformal anomaly of a non-chiral tensor. This might be wrong
and can hopefully be clarified by doing the calculation, suggested in this
concluding section.
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e Another possibility would be that large n effects have to be taken into ac-
count. The calculation of [116] is done for a large number of M 5-branes,
while the calculation of [172] is done for only one brane.

e A third possibility is that there is no non-renormalization theorem for this
model. In the case of adSs x S°, there is a non-renormalization theorem
[175] which ensures that there are no corrections to the conformal anomaly
when changing the coupling from weak to strong. In [172] is even argued
that there cannot be such a non-renormalization theorem, that there must
be a renormalization when changing the coupling.



Chapter 6

N = 2 vector multiplets in 4
dimensions

6.1 Introduction

The understanding of the most general coupling of vector multiplets in N = 2
supersymmetry or supergravity is important in very different contexts. Four-
dimensional theories with two supersymmetries are interesting because their pos-
sible quantum corrections have nice properties. In [176] is proven that there are
only one-loop perturbative corrections in rigid N = 2 theories. Theories with
N =1 get quantum corrections at all loops and are therefore more difficult to con-
trol. Theories with NV = 4 on the other hand, have no quantum corrections. Since
1994, also the non-perturbative corrections of the theories with rigid N = 2 are
known. In [177, 178], the non-perturbative corrections of the low energy effective
actions of supersymmetric gauge theories and their coupling to hypermultiplets
were derived.

Supergravity theories with N = 2 in four dimensions are an essential element
in the compactification of type ITA or II1B string theory on Calabi—Yau man-
ifolds [179, 180, 181]. This leads to a geometrical understanding of the matter
content of these theories. This thesis will only consider a description of the vec-
tor multiplets. Hypermultiplet couplings were studied in [39, 182]. The role of
the vector-tensor multiplet (arising in compactifications of the heterotic string on
K3 x T?) is elaborated in [31, 32, 10].

The general vector multiplet coupling has been studied for the supergravity
case in [183, 184] and has been given the name special geometry [185]. The similar
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coupling in rigid supersymmetry was obtained in [186] and is referred to as ‘rigid
special geometry’.

Historically, the coupling of several N = 2 matter multiplets to N = 2 su-
pergravity in four dimensions was found using superconformal tensor calculus
[187, 188, 183, 184, 39] as explained in section 3.1. First, representations of a
larger algebra, SU(2,2|2), concretely given in equations (2.2.37) and (2.2.34), are
constructed. Then, superconformal actions are build and two compensating mul-
tiplets (one vector multiplet to give rise to the graviphoton in the Poincaré gravity
multiplet and a hyper-, a linear, or a non-linear multiplet) are introduced. Finally,
three conditions are imposed to gauge fix the residual symmetries and to end up
with an N = 2 Poincaré supergravity theory coupled to NV = 2 matter multiplets.
Here we will confine ourselves to the coupling of vector multiplets to N = 2 super-
gravity in four dimensions, where, after breaking the superconformal symmetry,
the complex scalars of the vector multiplets form a special K&hler manifold.

6.1.1 Symplectic transformations

Electric-magnetic duality transformations in four dimensions manifest themselves
by symplectic transformations [189], as explained in chapter 1. Symplectic trans-
formations in a special Kahler manifold have been studied in [184, 190]. A sym-
plectic matrix

A B
S= ( c D ) € Sp(2m,R) (6.1.1)
is defined to obey
STAS=Q  with Q= ( o ) . (6.1.2)

This implies that the components satisfy

ATc-cTA=0, B'D-D"B=0, ATD-C"B=1. (6.1.3)

The kinetic action for a set of (n 4+ 1) Abelian vector multiplets is
Ly = YAmNp ) FLF™T — LReNp)e e FLFL (6.1.4)

where I,J = 1,...,n + 1, the symmetric matrix A;; may depend on the scalars,
and F, i,, are the field strengths of the vector fields. We choose n + 1 vectors since
we need one compensating vector multiplet to break the superconformal symmetry
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in the superconformal tensor calculus program and we want to study the coupling
of n vector multiplets to supergravity. The field equations for these vectors are

oL
9,Im G = 0where G7* = 2i and 7" = —2i . 6.1.5
4 I I 8]—';2,[ I 8]—',],,1 ( )
From (6.1.4) one finds that
g}i-uu :NI,]]:+J’“/ ; gI—uV :./\_/IJ}-iJ“V, (6.1.6)

where .7:3:,, = % (.7:,“, + %su,,p(,]:p") is used. This gives only equations of motion
for the field strengths and not for the potentials. The existence of the potentials
follows from the Bianchi identities:

9, Im FHm = . (6.1.7)

The set of 2(n + 1) equations in (6.1.5) and (6.1.7) is invariant under symplectic
transformations

Ft Ft A B Ft
(5)-s(5)-(ED)(EF) s
if at the same time is imposed that the form of the relation (6.1.6) between F and

G is preserved. To this end, NV has to transform under symplectic transformations
into

N =(C+DN)(A+BN)™" . (6.1.9)
If the role of electric and magnetic excitations is interchanged, the role of F and

G is also interchanged. The equations for G then become Bianchi identities and
therefore, the tensors G, are called magnetic field strengths.

The action (6.1.4) is not invariant under general symplectic transformations.
It is invariant under the classical subgroup of Sp(2(n + 1), R):

Su = ( fg (Aﬁ),l ) . (6.1.10)

These transformations map respectively the electric and magnetic field strengths
into each other. Another subgroup is formed by the perturbative symplectic ma-
trices:

Spert = ( é (ATO)_I > : (6.1.11)
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These transformations mix the electric field strengths among one another and give
rise to new magnetic field strengths which are linear combinations of magnetic
and electric field strengths. It remains clear which are the elementary excitations.
These transformations leave the action invariant up to a total derivative. This
term does not influence the equations of motion. However, it becomes relevant
quantum mechanically. This total derivative term corresponds to a shift in the
second term of (6.1.4), whose coefficient is called the theta-angle. This yields a
symmetry of the path integral as long as the added term is an integer multiple
of 2rh. These transformations will also play a role in section 6.5 where we will
clarify some aspects of the coupling of non-Abelian vector multiplets to N = 2
supergravity.

Generic elements of the symplectic group (with B # 0) are sometimes called
non-perturbative. They mix the electric (elementary) field strengths with magnetic
(solitonic) ones. These transformations are not a symmetry of the complete action,
but only of the equations of motion. In particular, the prepotential is not an
invariant of the symplectic transformations. On the other hand, for a coordinate-
free formulation of special geometry [191], the symplectic symmetry is an essential
ingredient. The symplectic setup also clarified the link to Calabi-Yau manifolds
[179].

Before the role of the symplectic transformations was clarified, a prepotential,
a holomorphic function of second order, was an essential ingredient to construct
the theory. In [191, 192, 193], other approaches were used to describe the cou-
pling of vector multiplets to supergravity. In [194], vector multiplet couplings to
supergravity were constructed for which no prepotential existed, by performing a
symplectic transformation of an action based on a prepotential. These models are
relevant in the partial breaking of N = 2 to N = 1 supersymmetry [195]. The
resulting action was thus not based on a prepotential. One of the purposes of this
chapter is to obtain a symplectic covariant formulation of the coupling of vector
multiplets to N = 2 supergravity which at the same time uses superconformal
tensor calculus. In particular, it should thus contain the coupling of [194]. To
obtain an action in superconformal tensor calculus, one needs a prepotential, and
hence one is obliged to give up the symplectic covariance. The combination of
superconformal and symplectic covariance will, however, be possible if we only
construct equations of motions without an action.

6.1.2 Definition(s) of a special Kihler manifold

The various possible actions and geometric formulations were compared in [8], and
one has arrived at a new definition of special geometry. Remarkably, it was also
noticed that one part of the definition, expressed by differential constraints, can be
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formulated in two different ways. These two forms are equivalent when more than
one vector multiplet is coupled to supergravity, but inequivalent if only one vector
multiplet is coupled. The presentation in [8] contained the constraints such that
for one vector multiplet the coupling known previously (e.g., from superconformal
tensor calculus) is obtained. But it was noted that another form of the constraints
is possible which is also symplectic covariant. Obvious physical arguments could
not exclude the existence of hitherto unknown couplings of one vector multiplet
to supergravity that obey the weaker constraint, and not the stronger one.

To be more explicit, we repeat here one of the formulations of the three
equivalent definitions of a special Kéhler manifold of [8]'. We choose this definition
in terms of symplectic products, since it makes the symplectic structure more
explicit than the other definitions.

Take a complex manifold M. Suppose we have in every chart a 2(n + 1)-
component vector V(2% 2%) such that on overlap regions there are transition

functions of the form ) o
es(F(z7)=F(2%)) S, (6.1.12)

with f a holomorphic function and S a constant Sp(2(n + 1), R) matrix. (These
transition functions have to satisfy the cocycle condition.) Take a U(1) connection
of the form K, dz® + k5 dzZ% with

kg = —Ra , (6.1.13)
under which V' has opposite weight as V. Denote the covariant derivative by D:

Ua EDD(VEaaV—FK/aV, DaVE@&V“‘I‘E&Y,

Us =DaV =05V — kaV, DV = 0,V — kg V. (6.1.14)

We impose the following conditions:

1. (V,V) =i, (6.1.15)
2. DgV =0, (6.1.16)
3. D Ug =0, (6.1.17)
4. (V,U,) =0, (6.1.18)

where (-,-) denotes the symplectic inner product, e.g., (V,V) = VTQV with an
antisymmetric matrix €2, which has as standard form

Q= (_Oﬂ g) . (6.1.19)

1The first one is not explicitly symplectic covariant, but we could as well have discussed here
definition 2, where the constraint relevant for the discussion below was formulated as (v, 9, v) = 0.
The alternative form is then (9av, dgv) = 0.
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Define B
905 = (U, UB> , (6.1.20)

where UB denotes the complex conjugate of U, . If this is a positive-definite metric,
M is called a special Kahler manifold.

It can then be shown that locally a function K’ exists such that

ko =30.K',  ka=—Fa=—30K". (6.1.21)
The real part of K’ is the K&hler potential K. If there is an imaginary part Im K’
then

V! = ellm K2y (6.1.22)
satisfies the same constraints with K' replaced by the real K.

As discussed at the end of section 4.2.2 in [8], the constraints have a clear
physical interpretation, related to the positivity of kinetic terms in the action.
However, as suggested there already, the fourth constraint (6.1.18) could be re-
placed by

4'. (U,,Us) =0, (6.1.23)

without violating the physical arguments. The constraint 4 implies 4', by taking a
covariant derivative and antisymmetrizing, and with 4’ it was shown that 4 follows
when n > 1. However, for n = 1, equation 4’ is empty. Taking 4' as constraint
thus allows (V,U,) # 0. Such N = 2 models would be new, and this possibility
is worked out in section 6.4.3. It will be called ‘the special case’. The case with
n>1or (V,U,) =0 will be called ‘the generic case’.

In appendix C of [8], two n = 1 examples are given where the condition
(6.1.18) is not fulfilled. In these examples it was shown that the relaxation of that
constraint leads to models not allowed by other definitions of special geometry.
Here we will first give further evidence of the non-triviality of (6.1.18). The main
result will be that indeed models which violate (6.1.18), still allow an N = 2 su-
persymmetric formulation. Section 4.3 of [8] makes contact between the geometry
of the moduli spaces of Calabi—Yau manifolds and the scalars of vector multiplets.
The moduli spaces of Calabi—Yau threefolds are natural candidates for special
Kahler manifolds. Using the definitions (6.1.15)—(6.1.18), the connection can be
made between symplectic vectors {V,U,,V,Us} and integrals of (p,q) forms over
a canonical basis of 3-cycles. The question arises whether all models with vector
multiplets can be found as some string compactification or whether there exist
consistent models that cannot come from a compactification of string theory. The
answer to this question is in section 6.4.3. There will be given a consistent four-
dimensional model that can not be found from a Calabi—Yau compactification of
type I string theory.
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6.1.3 The plan of the construction

The scalars of the special Kahler manifolds are the lowest components of chiral
multiplets of N = 2 supersymmetry. A chiral multiplet is a reducible representa-
tion of N = 2 supersymmetry. After imposing suitable reducibility constraints, it
gives a vector multiplet. In rigid supersymmetry these constraints can be written
in superspace for a symplectic section of superfields or, in components, as a linear
multiplet of constraints of symplectic sections [8, 196]. With a standard symplec-
tic metric (6.1.19), the rigid special Kédhler constraints can be used to write the
lower part of the symplectic sections V' in terms of the upper one. The reducibility
constraints for the lower parts of the sections then give rise to the field equations
of the fields in the upper parts. We want to use this approach to construct the
field equations of vector multiplets, coupled to N = 2 supergravity.

Chiral and vector multiplets can also be defined as representations of the
local superconformal algebra SU(2,2|2) of equations (2.2.37) and (2.2.34). Then
the fields of the gauge multiplet of the superconformal gauge invariances, which is
the Weyl multiplet, enter in the transformation rules of the multiplets [187, 188].
To describe the coupling of n on-shell vector multiplets to supergravity, we will
start from 2n + 2 chiral multiplets. The linear multiplet of constraints, which
reduce these chiral multiplets to vector multiplets in supergravity, will contain
additional terms with fields of the Weyl multiplet [187].

The equations that follow by supersymmetry from this weak definition of
special Kahler geometry are derived for the complete set of 2n+ 2 chiral multiplets.
The constraints defining special Kihler geometry involve a breaking of dilatations
and the U(1) transformations in the superconformal group. We also choose a
symplectic fermionic constraint as the gauge choice for S-supersymmetry. Special
conformal symmetry is broken by a choice for the dilatation gauge field as in
previous approaches. So, finally this leads to the breaking of superconformal to
super-Poincaré spacetime symmetry with a residual internal SU(2) in a consistent
way, without relying on a prepotential or an action. Combining the reducibility
constraints with the constraints of special Kdhler geometry we find n on-shell
vector multiplets, coupled to 24+24 supergravity components, remnants of the
Weyl multiplet.

These 24424 components reside in a ‘current multiplet’, which we identify
as a reduced chiral self-dual superfield. The full supergravity equations, however,
would rely on a second compensating multiplet, which is independent of the sym-
plectic formulation. For these aspects we refer to the three known constructions
of auxiliary field formulations [197, 187].

In section 6.2, the building blocks of the construction, the Weyl multiplet and
the chiral multiplet, are given. Their supersymmetry transformation rules and the
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constraint to make a vector multiplet out of a chiral multiplet are recapitulated.
In section 6.3 the special Kahler constraints and the supersymmetric relatives are
treated for the most general case. In section 6.4 we combine the constraints im-
posed on the chiral multiplets and those found in section 6.3 to find on-shell vector
multiplets. We comment on the remaining off-shell components of supergravity
and their field equations. We give a concrete example of the special case and com-
ment on the impossibility to find this model from a Calabi—Yau compactification.
Section 6.5 gives the role of extra terms in the action for non-Abelian vector multi-
plets coupled to supergravity of [39] in terms of symplectic transformations. Most
of the results in this chapter were reported in [9]. Some other new results are the
discussion on the connection to Calabi-Yau compactifications of string theory and
the possible extension to non-Abelian gaugings of Abelian models and the role of
symplectic transformations.

6.2 The building blocks of the construction

In this section we review the Weyl multiplet, i.e., the gauge multiplet of the N = 2
superconformal symmetry, and the superconformal chiral multiplet, coupled to the
Weyl multiplet. They are the two relevant representations of SU(2,2|2) that are
needed in this chapter, since there exist constraints which reduce the chiral to the
vector multiplets. In the spirit of superconformal tensor calculus (cf. section 3.1),
we start from representations of the superconformal algebra. Most of the material
presented here is well known (see e.g., [188, 31])2. We use the notations of appendix
A .2 and the algebra given in (2.2.37) and (2.2.34).

6.2.1 The Weyl multiplet

The Weyl multiplet is the gravitational multiplet of N = 2 superconformal grav-
ity. We start to build this representation of SU(2,2|2) from the gauge fields
en®, Wi by, fu®, Vi'y, Ay, ¥l and ¢f. They are, respectively, gauge fields of gen-
eral coordinate transformations, Lorentz rotations, dilatations, special conformal
boosts, chiral SU(2) and U (1), supersymmetry, and special supersymmetry. The
SU(2) gauge field is anti-Hermitian. It satisfies the following condition

Vi) = V') = =V, (6.2.1)

2However, here we use different normalizations, more suited for a manifestly symplectic for-

mulation of the theory. We use the notations of [198]. So the old supersymmetry parameters

are % the new ones and the old fermionic fields are v/2 the new ones. Also keep in mind that
0123 _ ;
€ =1i.
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where * means complex conjugation. The representation is completed by the

Lorentz tensor Tai]b, antisymmetric in [i5], the spinor x?, and the scalar D. Here,
in contrast with the six-dimensional (2,0) Weyl multiplet, the counting of the
bosonic and fermionic degrees of freedom already imposes that the Weyl multiplet
should contain auxiliary fields. Note that 77 is an antiself-dual tensor, and its
complex conjugate Tgp;; is self-dual. The spin connection and the gauge fields for
the special conformal transformations and special supersymmetry are composite
gauge fields, derived from the three conventional constraints and given by

wzb = —26"[“8[ue,,]b] — e”[aeb]"eucaaeyc — 2eu[“eb]”b,,
~5 Q@0 + Dt +he),
L = (0" — é%ﬂpa) (,Dlﬂ/}zir - %U : Tij%@/’ffj) + %%sz"
fu = AR —3e " — e e  Ryp (U(1)) + (5 TET, — 3e,°D
+(1/_J[iu0“b¢u]i + 501, ,J;] — 31,0 xi — 1/7[2%]1%“"@)1’ + h.c.) e’ .

(6.2.2)
The following expressions are used in f,*:
f# = WR-D
—(%6_16“"”01/_12%73,,%1' — VLY Th — UL + h.c.) ,
Rop(U) = 204,40 — i (20],60; + 0, +hec.)
R™(Q) = 2Duly —udl — 1o Ty, - (6.2.3)

Also, D, is covariant with respect to the Lorentz transformations, dilatations,
U(1), and SU(2), i.e.,

Dl = (O — 3wiloa + 2by + A,) ¥} + 3V 500 (6.2.4)
Furthermore, R = e#e¥ R, is the Ricci scalar derived from the Riemann tensor
Ruw®™ = 28[uwﬁ]b - Qwﬁfw,,]cb (6.2.5)

and

Ru" = ey R . (6.2.6)

The transformation rules of the independent fields of the Weyl multiplet under su-
persymmetry, special supersymmetry and special conformal transformations (with
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| [ Weyl multiplet |
‘ﬁeld H Cu" 1/’11; by Ay Vuij T X' D‘wzb fu® l‘

I
w -1 % 0 0 0 1 gl 2 0 1 %1
c 0 -3 0 0 0 -1 -5 0 0 0 -3
Vs + + —

Table 6.1: Weyl and chiral weights (w and ¢, respectively) and fermion chirality
(75) of the Weyl multiplet component fields and of the supersymmetry transforma-
tion parameters. The parameter for (special) supersymmetry has the same Weyl
and chiral weights and fermion chirality as its corresponding gauge field.

i A a
parameters €', n* and A% ) are

Se,* = &'q"pu+he.,
5, = Due' — 30Ty — 1y’
by = 3Ebui — 58 VuXi — 3T Yui + e+ A epa,
6A, = i&¢u + ey, x; + i + hee.,
Vu'y = 280, — &X' + 20¢, — (h.c.; traceless),
0TY = 8&liRa,(Q)7,
o' = o PTe;+ GR(SUQ); 0! — FiR(U(L) - o’
+iDe' + Lo - TVy;,
6D = &Dx;+hec.. (6.2.7)

The other transformation rules can be derived from table 6.1. The modified SU(2)-
curvature is defined as

R(SU(2))'; = R(SU2))u’; + 6 (zzgﬂy]xj - (h.c.;traceless)) . (628)

6.2.2 The chiral multiplet

A chiral multiplet is a reducible representation of the superconformal algebra [188].
By imposing a linear multiplet of constraints it becomes a vector multiplet. This
is an irreducible representation of the superconformal algebra. The constraints are
called the generalized Bianchi identities, because they contain a Bianchi identity
for the tensor in the chiral multiplet.
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Later we want to couple vector multiplets to conformal supergravity. The
scalars of these vector multiplets form a symplectic section. They are the lowest
components of a multiplet. Therefore, all the components of the multiplets have
to form such a symplectic section. This is the reason to start from a (2n + 2)-
dimensional section of chiral multiplets:

& = V48 + 1007 + Leybio . Fo
+%6ij (éiaabOj)éka“bf\k + ;—S(Sijéiaabej)zé . (6.2.9)

The components of the section are denoted by

- ¢I
$ = ( ) : (6.2.10)
bF,1
with I =0,...,n, which gives for the components of the chiral superfield
Xt ~ Of - \ &
Vv = , Q; = g , Y = ] ,
< Fy > ' < Qi ) N < Y1) >
. Fli- . AT ~ o’
F, = b ) A= i C= (6.2.11
¢ < gF,Iab ) < Arri ) ( Cr1 > ( )

This section of multiplets is independent of the existence of a prepotential. The
multiplets starting with F are on an equal footing with the ones starting with
X'. As long as we do not impose the constraints to obtain a vector superfield or
the special Kahler constraints, these are 2n + 2 independent chiral multiplets. The
full superconformal transformation rules are given by

V. = EQ;+ (Ap —iAa)V,

60 = DVei+ 3Yyel + 3o Feyel + Vi + (3Ap — 1A4)Q; + ASU@)ZQj ,
8V = 26:DQj —28%Auej + 20pY5; + 2500y (Vi s
0F, = €9eiDouQ+'oapNi — 26700000 + 2ADpF,, ,

oAi = —30-F E gi — 1 DYijere’® + LOeey;

—Lp(Velk T - o)e; — 3 (X(iva Q) ene™
_Yi]‘Sjknk + %AD[\Z + %AA]\z + ASU(2)2[\J' ,
50 = —26“@@[\]' - 6§inYk18ik6jl + %&Tio‘ . Tjk@()l&‘ij&‘kl + QEijﬁi]\j
+3ApC +iA4C . (6.2.12)
This superconformal chiral superfield can be reduced to a vector superfield with
the constraints

0 = Yy —eue¥™, (6.2.13)
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0 = DO —cYA;, (6.2.14)
T T S ii Vi 3 (103,70, O

0 = D (fab - ‘7:ab + ZTabiJ‘E - ZTabEij) - 5(6 Xi'Yij - h.C.) s (6.2.15)

0 = —20V-1FLTh e —6x:Q - C. (6.2.16)

The symplectic vector of chiral multiplets with these constraints defines 2n + 2
vector multiplets in superconformal gravity. The special Kdhler constraints will
relate them such that one ends up with n + 1 vectors and n complex scalars and
spinors obeying field equations.

6.3 Gauge choices and special Kahler constraints

To obtain a Poincaré supergravity theory of n vector multiplets, we start from
the assumption that the components in the symplectic sections V' are the lowest
components of reduced chiral multiplets, as is the case in previous constructions
of matter couplings in N = 2 supergravity. To achieve that, we have to impose
the reducibility constraints (6.2.13)—(6.2.16) on the chiral multiplets and suitable
constraints that impose restrictions on the sections such that the resulting theory
contains n physical vector multiplets and the gravity multiplet. The superfluous
symmetries of the superconformal construction need to be broken by suitable gauge
choices. The symplectic section V can be seen as a function of n scalars z® and
their complex conjugates z% (a = 1, ...,n). These scalars can be interpreted as the
coordinates of a special Kahler manifold.

Having introduced K’ in (6.1.21), we have exhausted constraint (6.1.17). The
remaining relevant constraints are then (6.1.15), (6.1.16), and we will take the
formulation with (6.1.23). Condition (6.1.15) gauge fixes the dilatations, choos-
ing the canonical kinetic term for the graviton. Equation (6.1.16) imposes the
holomorphicity of the scalar fields. For the symmetry of the kinetic matrix of the
vectors, one needs another constraint, which is (6.1.23). In all previous papers on
special geometry, one imposed instead (6.1.18), which is equivalent for n > 1, but
not for n = 1 as mentioned in the introduction. There is no physical argument
known to demand (6.1.18), but up to now, no physical applications have been
found not fulfilling (6.1.18).

We have thus seen that we can look upon equations (6.1.15) and (6.1.16) in
two ways. They are the defining equations of special geometry, as well, they can
be considered as gauge choices for the dilatations and chiral U(1) transformations
present in the superconformal algebra. As we will see below, a supersymmetric
extension of these constraints will include the gauge choice of S-supersymmetry.
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From (6.1.14) follows
9oi = 0a05K =i(Ua,Us) . (6.3.1)

Furthermore, we impose the ‘physical’ condition (positivity of the kinetic energy
terms of the vectors [8]) that?

G =gz — 2.7 >0 for Z.=(V,U.). (6.3.2)

W = (V,Ua, V,U3) (6.3.3)

forms for every z,Zz a basis for symplectic vectors. More information about the
expansion coefficients can be found in appendix A.2.2. This expansion will be used
in the derivation of the supersymmetric extension of the special Kahler constraints
and of the field equations.

6.3.1 The constraint on the curvature

Covariant derivatives involve the Kéahler connection as in (6.1.14), and after choos-
ing a real Kihler potential one may define a Kéhler weight* p for a symplectic
section W, such that

DoW = (0a + 2(0.K)) W, DsW = (05 — 2(0:K)) W . (6.3.4)
If W carries indices a or @& there is a further metric connection, defined such that
Dagpsy = 0. The curvature of the special Kahler manifold is then defined by

[Da, D31Xy = —pgasXy — Rop, X5, (6.3.5)

aBy
where X, is a generic vector with K&hler weight p. Agplying this for X, replaced
by U, and taking the symplectic inner product with U one finds

RaB’yg = gJSRaB'y(S = _29(a|3\gw)3 - i<DDéU’Y:DBUS> . (6.3.6)

3Keep in mind that for n > 1 one always has Z, = 0.
4V and U, have weight 1, while Z, has weight 2, and for their complex conjugates respectively
—1 and -2.
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If we introduce a symmetric tensor
Capy = (Uas DgUsy), (6.3.7)

and expand the last term of (6.3.6) in the basis WV according to appendix A.2.2
we obtain the following two cases:
1.The generic case :

DQUB - iCaB'ngA?U’? ) (638)

and the curvature is constrained to
Rapys = gBBRfmS = =29(a15/97)5 + Careg™ Cps=- (6.3.9)

2.Thespecial case :
In a similar way one finds that in this case

DzUz = iglzg(czzzUE - ngDzZzVI) . (6310)

The curvature becomes

R.z.z = —2935 - ng(DzZz)glzz(DzZz) + szzglﬂ z7% - (6-3-11)

6.3.2 An adapted basis and metric for the special case

When Z. # 0, one may diagonalize the matrix of symplectic products between
V,V,U, and U; by defining

UL=U,+iZ.V ; UL=U;—-iZ:V. (6.3.12)
We then have symplectic products

(V,V) =i, (V,U!
<Ué) Uzlf> = i(ng - ZZZE) = ig,lgg . (6313)
In this way we find the Hermitian metric g% which is invertible because of (6.3.2),
but is not the second derivative of the Kéhler potential K, used to define the

covariant derivatives in (6.3.4). With this definition, covariant derivatives on the
above equations lead to

(DU, VY= (D, U, V)=0. (6.3.14)
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The defining expressions for U, and Z, imply
D.U: =g.:V, D:U. =g.:V, D.Z.-=D:Z.=0, (6.3.15)
which in the new basis give
DU, =g¢..V —-iZ:U., D:U.=g..V+iZ,U.. (6.3.16)

When we define D' with metric connection such that D.g.. = 0, all the above
relations remain valid for D', as the non-zero connections are just I'Z, and I'Z;.
The new definition now implies

(UL, D.UL) =0. (6.3.17)
The analogue of (6.3.7) is then the definition
—_— <UzI'7D,IzUzI'> =Chss . (6318)

zzz —

This leads again to o
DU, =iC,,.g"**U.. (6.3.19)

We define then the curvature based on the metric g’ by

DL, DX, = —pg.: X, — R...°X. . (6.3.20)
Observe that the first term has ¢ and not ¢’ as this is the Ké&hler curvature.
Calculating as before the curvature R' by replacing X, with U’, and an inner
product with U’, the last terms in (6.3.16) lead to extra terms such that we find

R.:.:=R.;.7¢: = ~20::90: + Corag**Cazz . (6.3.21)
Rephrasing as much as possible in terms of the metric ¢, we thus recover another
geometry than for other special K&hler models. There is an essential difference in
the product of metrics in (6.3.6) and here. We tried to extend our analysis in the
basis W' = (V,UL,V,U}%), but ran into problems with the transformation rules
because we want V' to be the lowest component of a chiral multiplet, as demanded
at the beginning of section 6.3. So, it is not possible to get rid of Z, # 0 by
choosing another basis while keeping a section of chiral multiplets. The model
with Z, # 0 is really another model compared to those studied in the past.

For some calculations below, it is also useful to introduce another basis with
symplectic vectors orthogonal to U. That is, we introduce

V' = V4+iZ.¢°°Us, V' =V —iZ:¢*°U.,
(Vlv‘?I) = i(l_gzgzzzf)) <72)UZ> :igziy
(V'\Uu.y = (V,U:;)=({V"U,)= (V' U:)=0. (6.3.22)
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6.3.3 Supersymmetric extension of special Kahler constraints

It is clear that the constraint (6.1.15) breaks the superconformal symmetry. The
constraints and their supersymmetric partners therefore play the role of gauge con-
ditions for some of the superconformal symmetries. The residual symmetry should
then still contain the symmetries of Poincaré supergravity. In this subsection we
will derive the supersymmetric partners of the constraints (6.1.15), (6.1.16), and
(6.1.23), and compute the decomposition rule for the resulting supergravity, i.e.,
the rule which gives the remaining symmetry as a linear combination of original,
superconformal, symmetries.

Gauge choices and decomposition rule

Before we go to these constraints, we break the special conformal symmetry by
imposing a constraint on b,:

K-gauge: b, =0. (6.3.23)

This does not alter the number of degrees of freedom as b, is pure gauge in the
Weyl multiplet (cf. table 6.2).

The decomposition rule for the special conformal symmetry is
AG = —e! (3¢ — 28 yuxi — 37" + hoc) . (6.3.24)

Constraint (6.1.15) breaks the dilatations. Indeed, the superconformal transforma-
tion of (6.1.15) gives

(V&) — (V,&:Q% 4+ 2iAp =0, (6.3.25)

and the dilatations are now a combination of other symmetries. We choose as
S-gauge

S-gauge: (V,Q;)=0 and (V,Q% =0. (6.3.26)
Remark that after this gauge choice the decomposition rule (6.3.25) simplifies to
Ap =0, (6.3.27)

such that we can forget about the original dilatations completely. Demanding that
the sections V' depend on z% and z% in the way described in (6.1.14)—(6.1.16), is
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| fields | d.o.f. | comments |
The Weyl multiplet (24+24)
e, 5 16 - 4(translation.) - 6(Lorentz) - 1(dilatation)
by 0 4 - 4(special conformal.)
A, 3 1-1(U(D)
V' 9 12 - 3(SU(2))
Y, 16 32 - 8(Q-supersymmetry) - 8(S-supersymmetry)
T 6 complex antiself-dual
Xi 8
D 1 real scalar
symplectic section of chiral multiplets (16(2n + 2) + 16(2n + 2))
V| 2(20+2)
Qi 8(2H+2)
Y, | 6(2n+2)
F, | 6(2n+2)
C | 2(2n+2)

Table 6.2: Degrees of freedom in the model before the constraints.

a gauge choice for the chiral U(1)-transformations. In fact, consider the transfor-
mation of the first line of (6.2.12) using these equations:

8V =Uab2® — 1(0.K'02% — 0 K'62%)V . (6.3.28)

An inner product with V' gives (using (6.1.15) and its covariant derivative) a
decomposition rule for the U(1)-transformations, i.e.,

A =Im (0,K'62%), (6.3.29)

where we have already used (6.1.21).
The decomposition rule for dg(n;) follows from the variation of the S-gauge:
n = —iV,DPV)e; — %(V,Ymﬁj
—L(V, Feio el —i(g;00, Q). (6.3.30)

From now on, we only request that the constraints are invariant under the resulting
Poincaré supersymmetry

d(ei) = dq(ei) + ds(mi) +da(Aa) + 0x (AK), (6.3.31)
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with Ag, A, and n; defined in (6.3.24), (6.3.29), and (6.3.30).

Having the symplectic sections as functions of z and Z, we can consider the
transformations of the bosonic constraints (6.1.15)—(6.1.17) and (6.1.23). The
variation of the first one determined the breaking of dilatations. The constraints
(6.1.16) and (6.1.17) are used to determine the z,z dependences of V, U, and K
and their supersymmetry transformations are thus trivial if we compute them in
terms of 6z and 0Z. The constraint (6.1.23) is only non-trivial for n > 1. Its
variation is

{Ua,Up) = 2(D,U,, Ug)627 (6.3.32)
which is 0 due to the symmetry of (6.3.7). This finishes the supersymmetry vari-
ations of the bosonic special Kahler constraints.

Physical fermions and fermionic constraints

The first line of (6.2.12), using (6.3.27) and (6.3.29), is in terms of dz:
&0 = Uyd2*. (6.3.33)

Therefore, the supersymmetry transformation of z is chiral, and we define Ay as
N =027, (6.3.34)
leading to
Qi = Ua\Y, (6.3.35)

compatible with the S-gauge. The relation (6.3.35) can be inverted to

A = —ig®%(Us, ) . (6.3.36)

i —

That Q; has only components in the U direction implies the constraints (the primes
here and below are irrelevant for n > 1 or Z, = 0)

(V, %) = Z.2% or (V',Q;) =0, (Ua, ) =0. (6.3.37)

The transformation rules for z* and \® are®

52 = &\,
— B 1
SAY = —T3 /027 + 2(0sK 62" — hoe)A?
+Yz%; — 1g°%(Us, Yij)e! — 9% (Us, Fp)eijo0™e?, (6.3.38)
5Tn the transformation laws below, there is still the SU(2) transformation which is not gauge

fixed and thus independent of the other transformations. We will not indicate these transforma-
tions explicitly, as they follow from the position of the ¢ indices.
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where

Vuz® = 0,2 — LA (6.3.39)

Further variations of constraints in the generic case

At the first fermionic level we have imposed the gauge choice (6.3.26), and found in
addition the constraints (6.3.37), leaving n physical fermions as shown in (6.3.35)
and (6.3.36). The variation of the S-gauge leads to the decomposition rule. Here
we will determine the further constraints on the 2(n + 1) chiral multiplets in
the symplectic vector. We first perform this analysis for the generic case where
(V,Uy) =0, and treat the case n = 1 separately afterwards.

The Poincaré transformations on (6.3.37) give

v, zy) = 0,

<Ua,)~/zj> = _Caﬁv;\iﬁA;’{’

(V.70 = 0,

WarFa) = —4Cune (K. (©:3.4)

To analyze the content of these equations, we make use of lemma B.1 of [8]. This
says that the 2(n + 1) x (n + 1) matrix (V,U,) has rank (n + 1). Thus we can
solve (6.3.40) for half of the components of Y;; and F,.

Straightforward variation of these two equations under Poincaré supersym-
metry yields a set of new constraints:

(V,A;) = —1Capre® g0 N)ow] (6.3.41)
(Ua,Ai) = 1Caprg™” ((Ug,zpsﬂug +(Us,0 - f?—w)
+1DoCps - e (N oap N )N (6.3.42)

Varying constraint (6.3.41) yields

(V,0y = 1c*dlCys g (U, Vij) NI N
—1Caprg™™(Ua, Frp)e™ (N[ o™ N])
—1DaClys - 7 (Ao X)) (AL 0™N]) . (6.3.43)

The variation of (6.3.42) gives

(Uoné> = %Caﬁ’ygﬁggﬁwfika%_BaYiijﬁa?kl)
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wsr g2 g (Ug, Foy WUy, F~°0)
—lglksﬂ[c AV, Yii) 4 DaClys - 672Uz, Vig INIA]
+3 [Ca6v<v ‘7:ab>+ aCays - g ( -7: pe’ (A?UabA})
—21C’a579555”)\7(l7 Aj)
+5DaDsChse - €7 (N oapA]) e (A ™) . (6.3.44)

These are all the possible ‘Kahler’ constraints on the sections. Let us review
the degrees of freedom. Before imposing the constraints, we have the degrees of
freedom as in table 6.2. First of all there is the Weyl multiplet with 24 + 24 degrees
of freedom. The gauge invariances have been used to determine the counting. In-
deed, the dilatation invariance can be seen as removing the trace of the vierbein
e, and 7“@[1”; is pure gauge under special supersymmetry. Similarly the vectors A,
and V,*; loose a degree of freedom because of their gauge transformations. Sec-
ondly, we have the symplectic vectors of 2n + 2 chiral multiplets, which altogether
consist of (2n + 2)16 + (2n + 2)16 degrees of freedom.

Then we have imposed the constraints (6.1.15)—(6.1.17), (6.1.23) and their
supersymmetry partners. The new counting is in table 6.3. All the symplectic
sections are first reduced to (n + 1) rather than (2n 4 2) degrees of freedom, as
inner products with V and with U, are removed by the constraints. The symplectic
vector V is further reduced to n complex variables z%, by constraints which we
have interpreted as gauge choices of dilatations and chiral U(1). These invariances
have thus disappeared, and in the upper part of the table we should thus no
longer subtract from degrees of freedom of the vierbein and of A,. Similarly, the
constraint (V,Q;) = 0 removed a spinor doublet from the degrees of freedom of
Q;, but this breaks the S-symmetry, and thus the gravitino still has 24 degrees of
freedom. As a result, the superconformal invariance is reduced to super-Poincaré.
The super-Poincaré multiplet contains the graviphoton, which resides in (V/, F wb)-
Similarly the other internal products with V' can be seen as auxiliary fields of the
40440 off-shell super-Poincaré multiplet. In other formulations [197, 187] they
are expressed in terms of another compensating multiplet. This compensating
multiplet is then also used to gauge fix the SU(2) invariance which we have not
broken here.

Further variations of constraints in the special case

Now we continue the analysis of the supersymmetry transformations on special
Kahler constraints for supergravity theories with Z, = (V,U.) # 0. This can
only happen for n = 1, because that is the only case where this condition is not
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| fields | d.o.f. | comments
The gravity multiplet (40+40)
e, 6 16 - 4(translation) - 6(Lorentz)
A, 4 gauge vector — vector
V.4 9 [12-3(SU(2))
L 24 | 32 - 8(Q-supersymmetry)
T 6 complex antiself-dual
Xi 8
D 1 real scalar
(V. Fn) | 6
(v,C) 2
Symplectic section of constrained chiral multiplets (16 n + 16 1)
2z 2n | (d.of. of V)/2 - 2 (=trace vierbein + extra comp. of 4,,)
A¢ 8n | (d.of. of Q;)/2-8 (=y")
< _&7 Yl]> 6n
( _5“ f;,) 6n
< 15[, Az) &n
(Us, C) 2n

Table 6.3: Degrees of freedom in the model after the special K&hler constraints

equivalent with (6.1.23). Because n = 1, U, and D, can be replaced by U, and

D..

The computation of the special Kahler constraint goes along the same track
as for the generic case, but extra terms appear because of the weaker constraint.
The new contributions appear for the first time after the supersymmetry variation

of (6.3.37):
(V', Vi)
(UL, Vi)
V', Fu)
(UL, Fop)

—D.Z,  N\?

(2

_szz X? )\%

[V I
1 (Y2 z
_EDZZZ.&:](AiO—abAj))

_%Ozzzgij (j\fo'ab)\j') . (6345)
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Define a new vector V"' 6

97D:Cose Uz _yy_ D:2:-U;

V=V - =V' - (6.3.46)
zzZz CZZZ
In terms of V" the constraints will have the same form as before:
<V”7Yij> = (V”)ﬁ;}) =0. (6-3'47)
Then, one finds
(V' Ny = H(D.Z.)g7((Us,Yij)e " X + (Us,0- F7)AF)
—1(Csez = D.D.Z.) M Xjo " N oA}, (6.3.48)
<U27Al> = %szzgzg(<057}7ij>5jk/\z + (UE)U"?7>>‘§)
+2D.C..s - M (Nfowp A )™ A, (6.3.49)
where we have used that
(V,D,D,U,)=-C,..+D.,D,Z,. (6.3.50)

Note that these are the analogues of (6.3.42) and (6.3.41). It is possible to replace
(6.3.48) by

- , 1
(V”, Al> = %SkZAzUabAfUabAf C ((_szz + DzDzZz) szz - DzZz : chzzz) .
(6.3.51)
Using the notation
Ozzzzz = glzézz [(_szz + DzDzZz) szz - DZZZ ° chzzz] 3 (6352)

the variation of (6.3.49) now gives

(UL,C) = 1C...g7%g7e™ el (U:, Yy (Us, Yir)
—% zzzgz_gzz<UZa‘7}(;)><U25‘7}_ab>
_%5ik5jl(0222<v, Y/zj> +D.C... - 922<UE: Yfl]>)5‘i>‘lz
+3(CoaaV, T ) + D2Clss - g7 (U=, F ) €M (R0 Af)
—2iC...977 " X[ (Uz, Ay)
+5(D.D.C.cs + 30.....) e (N oap X)) (Mo A7) .(6.3.53)

6Note that g,:D,Z, = D:C,., is not necessarily 0 in this case.
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Straightforward variation of constraint (6.3.48) gives

<V’,C> — D Z gzz 2Z zké_gl< Y'Z >< 5, f/ >
—3iD.Z. - g% g** (U, T, >( ,F)
+ieiel ((Cuze = DD 2.)g" (U, Vi) = D2 (V. Vig) ) NN

—ﬂwm—mm@mﬂ Fa) = DaZe (V) ) M (o))
—2iD,Z, - g7 N (U, &)

—15(2D.C... — D.D.D.Z.)e" (X oap X)) (Ao X)) . (6.3.54)
This can be rewritten in
- ing
<V”7 C> = 20 [(szz - DzDzZz) szz + chzzz : DZZZ] :
[s““eﬂ< T Vi) NN = <Ug,f~ab>skl(izaaw>}
D.Z.,
sii(ifaa,,Aj)g’“’(XzaabAf) . (6.3.55)

6.4 The generalized Bianchi identities combined
with the special Kahler constraints

In this section, we start by imposing the reduction constraints on the chiral mul-
tiplets. Because the constraints on the field strengths are Bianchi identities, this
linear multiplet of constraints is called the generalized Bianchi identities. We com-
bine these constraints with the special K&hler constraints of section 6.3. Together
they give the field equations of n vector multiplets and expressions for the aux-
iliary fields x; and D. We derive this first for the generic case (V,U,) = 0. We
comment on the supergravity equations of motion in this generic case. Finally,
we give the equations for the special case where (V,U,) # 0, we give a concrete
example and comment on the connection to string theory compactifications.

6.4.1 The field equations for the generic case

To see what follows from equations (6.2.13)-(6.2.16), we take the symplectic inner
product of these equations with the basis W. The four components of equation
(A.2.17) give four equations for each constraint.
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From the first identity we learn that the section )7,'3- is totally constrained, as
it should be, because it is auxiliary. We have

Yij = —iga& Cagfyj\?)\}ﬁa — C_'ag’qukfjl;\Bk)\:lea:I . (6.4.1)

It is more interesting to take a look at (6.2.14). Taking the symplectic inner
product of this equation with all components of the basis W (6.3.3), and using the
special Kéhler constraints of section 6.3.3 and (6.4.1) gives:

<V7AZ> = 0’
(Uas Ai) = —£ijCag, Y77 - N7,
0 = Xi - %U”V(Du‘/’f/ - %U ) Tij%ﬂ/’t/j) - %gaﬁﬁza - AiP

FIVQ — A, — Ly (Vo Fr )y 5
+15 Cagye e (N o™ N )Tap ] |
0 = igas (YWB +1@ —AWB) + 167 Cagy g™ (Us,0 - F7IX]
500, Cagd (VNN 4 1D, Clgys -9 (0™ A Yo X
(6.4.2)

where

VAL = 0 — Lwfloan Ay + 2V, 70 + 150,27 - A] — 9,8

Y2 i + 9% [(Ua, V) + 23 (Ua 0 F ) 0, (643)

and

Q, = —%(0.K - 0,2 —h.c.) (6.4.4)

is the K&hler one-form.

The first two equations in (6.4.2) imply with (6.3.42) and (6.3.41) that all
components of A; are expressed in terms of other fields, and thus they contain no
independent degrees of freedom. The third expresses x! in terms of other fields.
In a superconformal calculation using a Lagrangian, this expression for x* can
be found from the equation of motion of the fermion of the compensating vector
multiplet. The fourth equation is the field equation for n fermion doublets )\f .

We now proceed with the analysis of (6.2.15). We first repeat that (6.3.40)
implies that there are (n+ 1) independent antisymmetric tensors in the symplectic
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vector Fyp. ~Apart from these there is another antiself-dual tensor in the Weyl
multiplet T)7. A few definitions make (6.2.15) more transparent. First define the
combination in brackets as

Fop=Fap + TV Tap i + %VT;?E”’ . (6.4.5)

Then we take out covariantization terms:

X

Fup = Fap — 2(Qiyatijeij + Vibitges +huc) . (6.4.6)

This is chosen such that covariant derivatives in (6.2.15) can be rewritten as ordi-
nary derivatives, and the equation reduces to

0,e"P Fpp = 0. (6.4.7)

Applying this on the (n + 1) independent components of F),,, implies that they
can be expressed in terms of (n+1) vectors. The other (n+1) equations of (6.4.7)
are the equivalent of field equations for these vectors. Here, it is clear how our
formulation keeps the symplectic covariance. Only in the interpretation, we do
make a distinction between one half of the equations as Bianchi identities and the
others as field equations. These could have been interchanged giving the ‘magnetic
dual formulation’. Also the fact of whether or not a prepotential exists is hidden
here. The difference is seen only when breaking the symplectic formulation in
finding an explicit solution of equations (6.3.40). If the (n + 1) x (n + 1)-matrix,
formed by the upper part of (V,U,), is invertible, then (6.3.40) expresses the
(n+1) lower components of F,, in terms of the upper ones. This is the case where
there is a prepotential. When this matrix is not invertible”, then one can still solve
(6.3.40) for other (n + 1) components of F,.

We thus conclude that we have n + 1 on-shell vectors and their field equations
also depend on the 6 degrees of freedom of the tensor 77 of the Weyl multiplet.

Now let us have a look at (6.2.16). It involves the covariant Laplacian,

av = y™D,,D,V
= ¢ '9,(eD"V) + (" —iAM)D,V + fAV + 241k, 00 D,V

— DY + Loy, + Lo Ty — iV . (6.4.8)

u 27

7As proven in [8], it is only the matrix (fi)?l) that is always invertible, where fI are the
first n + 1 components of Uy,.
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To derive this expression, we used the theorem on covariant derivatives of [35].
We can again take the symplectic inner product of (6.2.16) with W:

v,

<6u

—~

) = 0,
20,5,V 2% - VHET + 1C 5 (W0 - Ty A\
0 = —2¢719,(e(Q" — AM)) + 2igag0,z™ - VH 2% — 2igaa0uz® - (PIN?)
—2i(QF — AM)(Q, — A,) + 2ift — 49y, (Q, — A,)
O (V,0 - Frep,; + 2i)' ), — 207 (@ — A,
=31y xs + H(VLFL)TE e = £Cap, 9% Cags APEXN) (K]
~5Cap,9" Ua, Fp)e™ (N o™ N])
—1DaChys - T (o)) e (N 0™ A])
0 = —2ie7'90a0,(eV*2%) +4(Q, — A))gaa VH 2"
+9aa(Qu — A) (WENT) = 2gaal’s 9,2° - V427
~4igaa Py, IV 2 + 2igaal VN = igaadl 7, A
+2Casre™®e? (NN (D ¥j) + 200 (Uas 0 - FHe ),
—19aa¥ V"o - Tij N — BigaaXiA™
+ 5 (Ua, T )TH e + 2Capy9%7 0 eire 11 Cse A NF) O 4 (N NC)
~1Caprg™ g7 (U5, F) (T3, F )
—1D0Cys - g Cs, (BN (AN
+5 [Cagy (V, Fp) + DaClays - 9 (U5, )] 4 (W)
+5DaDsChse - €7 (N o X)) (\go ™ X)
~2iCa5,9"P C3:50 Y27 - A0 . (6.4.9)

\C}z (@}

The first two equations, together with (6.3.44) and (6.3.43) (which can be simpli-
fied using the second equations in (6.4.2)), determine that C' is completely deter-
mined in terms of other fields. The real and imaginary part of the third equation
have both to be 0. The real part constrains the divergence of Q, — A,, and the
imaginary part gives an expression for the D-field of the Weyl multiplet. (D is
hidden in the f,*-term in the second line by using the first equation of (6.2.3).)
The fourth equation of the expansion in terms of W gives the field equations for
n complex scalars. So we find the same structure in the equations as for the
fermions: n + 1 equations express C' in terms of other fields, while the n + 1 other
equations give the field equations for n complex scalars z%, an expression for D,
and a constraint for (9, — A4,). The degrees of freedom are described in table 6.4.
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| fields | d.of. | comments |

The Gravity Multiplet
el 6 16 - 4(translation) - 6(Lorentz)
A, 3 O* A,, constrained
Vi 9 [ 12-3(SU(2)
L 24 | 32 - 8(Q)-supersymmetry)
T 6 n on-shell and 2 off-shell vectors
X 0 expressed in terms of other fields
D 0 expressed in terms of other fields

Table 6.4: Off-shell degrees of freedom after the special Kdhler constraints and
the generalized Bianchi identities: 24 + 24 d.o.f.. All other variables are expressed
in terms of these fields or have a field equation (for n complex scalars, n doublet
spinors, and n + 1 vectors).

6.4.2 Comments on the supergravity equations

Using the results of the previous section, we comment on the appearance of equa-
tions of motion for the remaining 24424 components of table 6.4 from one sym-
plectic invariant, constraint

(V,Fh) =0, (6.4.10)

which gives rise to a 24424 ‘current’ multiplet. The =-sign is used to denote
that we only expose the linear terms. This already shows the essential features
of this symplectic covariant formulation. With the linearized approximation we
mean that we keep terms with an arbitrary power of undifferentiated scalar fields
or metric, but only linear in other fields. In a full treatment of N = 2 supergravity
couplings, the r.h.s. of (6.4.10) would, for example, contain an additional coupling
to hypermultiplets. Here we only want to see how far we can go by using the
symplectic structure that allowed already the determination of the equations of
motion of the vector multiplets.

To discuss the supersymmetry partners of (6.4.10), we derive a new N = 2
multiplet with 24 + 24 components. The multiplet starting with the symplectic
expression (V, f(;)) is a supergravity realization of this multiplet. As shown be-
low the supermultiplet of constraints derived from (6.4.10) is only equivalent to
the supergravity equations of motion, up to integration ‘constants’. These 8+8
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remaining unknowns can be determined when one of the three possibilities of a
second compensating multiplet is introduced as in [197, 187, 39]. In our approach
this is the place where the second compensating multiplet, which is also needed
for consistency in the Lagrangian formulation, comes into play.

A restricted chiral self-dual tensor multiplet

The supermultiplet structure of the ‘current’ multiplet from (6.4.10) is that of a
chiral self-dual tensor multiplet

Wi = Al + T e + 377 Bapij + LeiT ocam! Fop®®
+%5ij (Floeam) T o U apn + j—g(siﬁ'iacdrjfclﬁ . (6.4.11)
It has the following field content. A7, is a self-dual complex tensor with 6 degrees
of freedom. 1)4p; has 24 left-handed fermionic components. The tensor Bgp;; has 18
components. The tensor Fj°¢ is self-dual in its first and antiself-dual in its second
pair of indices, leading to 9 complex components. It also satisfies the following
properties:

Fab,cd + ch,ab = %Sabef (Fef,cd - ch,ef) ;
Eabeld (Fec] + Fc]e) )

Fab,cd - ch,ab

Fab,cd = 6a[ch]b - 6b[ch]a - 6abe[c-Fed] )
Fay = 0,
F'y = 0, (6.4.12)

where
F,° = F,,°4). (6.4.13)

A general component of this self-dual-antiself-dual tensor F,;°? can thus be written
in terms of the traceless symmetric part F,;) with 9 components. The fermion
Xabi has again 24 left-handed components and Cﬁ has 6. So, this is a chiral
multiplet with 48 + 48 components.

The transformation rules of this multiplet are the same as for a chiral multiplet
with a complex scalar as lowest component, but with the components replaced
straightforwardly:

5A—;b = "%abi,

Stabi = PAT e+ LBayijel + LocaFa eizel
0Bapij = 28iPWabj) — 28" Xab(iCj)k »
SFupt = eVe;Pohbap; + 0 X abi s
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SXabi = —20caF) D € — $PBapije’ e + 1CH el
SCH = —2eY;Pxan; - (6.4.14)

Since we have broken superconformal symmetry to super-Poincaré and SU(2),
we only need a super-Poincaré version of this multiplet. Note that it cannot be
extended to a superconformal one. The commutator of a supersymmetry and a
special supersymmetry has to give a Lorentz transformation that can never be
realized because of the duality and chirality properties of the spinors. For this
reason, it is only possible to construct an antiself-dual chiral tensor multiplet,
realizing the superconformal algebra, as given in [163].

To study the field equations of the fields of table 6.4, we need a multiplet with
24 + 24 components. A suitable multiplet of constraints is:

0 = 0%Bapij +eireiBY), (6.4.15)
0 = 0*(xlp — 7 Pas;) (6.4.16)
0 = 9%C,, —0OA%,), (6.4.17)
0 = 0%(Fu + Fu?). (6.4.18)

These are the analogues of the constraints (5.4) in [163]. This set contains (9 +
6 4+ 9) + 24 equations. The constraint for F,;°? splits up in a part symmetric in
(bd) (6 independent equations) and an antisymmetric part in [bd] (3 independent
equations), which correspond to the real and imaginary part of F:

0 = —0°(0p(Fae+ Faye)) + $0600°0°(Fuc + Fac) + $0(Foa + Foa)
1604000 (F. — F°,). (6.4.19)

As far as we know, this reduced multiplet is a new representation of the rigid
N = 2 algebra.

An explicit supergravity realization of this reduced multiplet is given by

A;b = (V, fm )
wabi o —iEijVPUab¢f; )
By =~ 2ie;; R(SU(2)) 7, (6.4.20)

Fur' 2605 (9(Q7 = AT) + (97(Qy — Ay)) - 2Ry + L5)R)
—eelpbfs (O9(QM = A + (91(Qy ~ An)) — 2Ry + J5]IR) .

In deriving this multiplet we used the constraints of sections 6.3 and 6.4. The
expression for By,; satisfies constraint (6.4.15), which is a Bianchi identity that
expresses the existence of SU(2)-vectors. The expression for F,;¢ fulfils (6.4.12).
It also satisfies (6.4.18) when the third equation of (6.4.9) for (Q, — A,) is used.
Therefore, the multiplet derived from (V, ]}jb) has 24 + 24 components.
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Some comments on the multiplet of equations from (V| .7};;) ~ 0

Putting the ‘current’ multiplet (6.4.21) to 0, will give rise to some supergravity
field equations. These are 24 + 24 equations for the 24 + 24 remaining degrees
of freedom of table 6.4. The counting in this table subtracts the gauge degrees
of freedom. The multiplet here is a multiplet of curvatures and the counting is
equivalent if we take into account the Bianchi identities.

However, our equations are not equivalent to the complete supergravity equa-
tions of motion. They differ modulo ‘integration constants’. These can be deter-
mined when a second compensating multiplet is coupled [187, 197]. Since this step
is independent of the symplectic formulation of the coupling of vector multiplets
to supergravity, we do not treat it here.

Let us give a brief discussion of the content of the equations following from
(6.4.10). Equation (6.4.10) reduces six degrees of freedom. It expresses the
‘graviphoton’ field strength 7T}p;; as a combination of the n+ 1 on-shell vectors ob-
tained above. It is the symplectic expression for the algebraic equation of motion
that one finds in the Lagrangian approach, (4.11) in [39].

Using (6.4.2) in (6.2.2) with
RM = e ' e 5, (Dl — 30 - T ,005) (6.4.21)
in the second component of the current multiplet, gives that
¢, =R, — 17,7 R, ~0, (6.4.22)

the traceless part of the field equation of the gravitini. Therefore, this equation
cannot determine the trace-part v - R'. However, combining (6.4.22) with the
Bianchi identity for the gravitino field strength 0*R!, ~ 0, yields

py-R ~0, (6.4.23)
which determines v - R? in terms of eight ‘integration constants’.
The Bgap;; component yields
R(SU(2))a’; = 0. (6.4.24)

Together with the Bianchi identity for the SU(2) curvature it states that the gauge
fields V,,!; are pure gauge, i.e.,

Vi'i = (97 0up)'s s (6.4.25)
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where ¢ is a group element of SU(2). The three local parameters defining ¢ are
left undetermined.

F,;° has its components in the traceless part of Flac). From F,¢ ~ 0 follows
Fue =20(4(Qc) — Ae)) — 2iRac + 39a.R = 0. (6.4.26)

The imaginary part is the traceless part of the Einstein equation. Again we cannot
determine the scalar curvature R from this equation. However, combining this
equation with the Bianchi identity for the Einstein tensor

9*(Rab — 39abR) =0, (6.4.27)

gives
0°R ~ 0 (6.4.28)

and again R is determined up to a constant. The real part of the F-component
gives that A, ~ Q, up to a constant vector. Also in the Lagrangian approach
[39], one finds

A= Q. (6.4.29)
The additional 848 remaining unknowns can be determined through the field

equations of a second compensating multiplet. This concludes the short discussion
of the supergravity equations of motion.

6.4.3 The field equations for the special case

In this subsection, the expressions of section 6.4.1 are generalized for the case
n = 1 where further Z, = (V,U.) # 0. This is the case that was excluded by
the former definitions and where our less restrictive definitions becomes relevant.
The equations are found by expanding the constraints in terms of the basis of
symplectic vectors using appendix A.2.2.

The section 17}]- remains totally constrained:
Yy = g’zg( —ieirejig:zDsZz - NNV +ig:D. Z. - NNV
+i€ik5jlc_'gzzj\k2>\lez — Iszzj\fkjﬁg) . (6430)

This equation reduces to the former equation (6.4.1) when (V,U,) = 0.



132 Chapter 6. N = 2 vector multiplets in 4 dimensions

The equations that can be derived from the constraints for the fermions are
the following ones:

(V',Ai) = —D:Z:-eYz-N7,
(_é,Ai> = _Eijézzz z- N4 %’Y”Eij ((Uéaf/jk +o- j—+5jk>) Yuk
0 = Xi - %UW/(’DM/};Z; - %‘7 ’ Tij')/uz/}uj) - % (922$Z D i’y“(@ _A)) ¢L

—g"** [%Zzémé% AF 4 Iy (g (VYT o Frelyg,
~LeiD, 7, ((Uz, V)" N + (Uz,0 - FTIND)
~ 5567 9.2(Cue = DD Z.) M (Npoan N )™ X ]
0 = igis (VA" + 5@ -4 A7)
F3 g™ (U TN + (02,0 7))
+4D:Css - 7 (N0 A\ JowA] —12.D:Z: -2- X, (6.4.31)

Also here, the equations reduce to those that we have found for the generic case
where (V,U,) = 0. The same comments as in section 6.4.1 are valid here.

Repeating the analysis for the equations of the vectors, it appears that there
is no information used about Z.. This means that the analysis of the equations
for the vectors of section 6.4.1 remains valid. This is no surprise because the
equations for the vectors are a symplectic section of equations. All the other
equations are singlets for the symplectic group and can therefore be written as
symplectic invariant equations.

Also the last constraint can be decomposed with respect to the symplectic
basis. Then the equations become:

(V',C) = =20V, Y" +0-Frely, —20,2 -D:Z; - (V'z — PI'AF)
+iD:Z: NP0 - T N7,
ULC) = =20:::V,2-VFZ+ 1C::(Wo - Tiy\?),
0 = 9779 (26719, (e(Q" — A") + 20(Q" — A")(Qu — A,) — 2if,”

+3i) X — 2igez0uz - (VHZ — A7)
+40 1,91 (9, — Ay) + 208@ — A, — 2014,
+ptap ek el D, Z, - NiX; — (V! o - FH)elap,;
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_%gzzgﬂ(‘//’ ‘7}:”>Ti;;u6ij
L97D. 2. g° (1 el (U, y”><@, Fia) <Uz,fab><Uz,ﬁ*a">)

—gs““sﬂ (D22 - (7, 79) 4+ (=Caus + D2 22) g°5(0=, Vig) ) XN
—2ig** D, Z,, - N (U3, A;)

5 (D:D.D.Z. — 2D.C...) £ (X; 0" X3) M (Noas Af)

Z, - (V,F )" Npo™N})
_%(_szz +D.D.Z,) 922072: -7'1;)5“(5‘;‘7@)‘12) )
0 = —2ig. [efla,j(evuz) +2i(Q, — A,)VHz

+%(Qu - Au)(ﬂjgo‘ig) + 2‘/_’i[u7u¢;]vuf
+3XAT = ATy B + T50,2 - VIZ + 5Pl yto - TiyN*
0 (VuhE + 3@ = 40N + 37U T o Fre, )]

+2i7. (8,7 - D=Zo(VH2 = GPNZ) + BV, T 40 Freliyy,;)
+lszzg gZZEZkS l( z, Yij ><Uz:Ykl>
szzg gz < ><UZ"7: ab) Z(Ué)‘i—:V)Ti?VEij

—getel! (CanntV, D 0= Vi) ) WA
3 (CZZZ(V’}Tb) +D.C:: -g”(Uz,}‘m) £l (A0 2
& (D:D.Coss + §0unsss) £ (00X Oun D)
—2iC... g7 N; (Us, A;) . (6.4.32)

The metric in front of the kinetic term of the scalar in the fourth equation is
positive because of the physical condition (6.3.2). Again, all these equations reduce
to the equations of section 6.4.1 if Z, = 0 and the same conclusions can be drawn
as in section 6.4.1. For this purpose, we conclude at this point that the ‘special
case’ is a valid alternative for a theory with N = 2 supergravity and one vector
multiplet.
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A concrete example

This is the simplest example of a very special Kihler manifold. We start from the
case of a prepotential

(xh)?

F ="

(6.4.33)

but we add a parameter a in the section and check its consequences. This is also
very reminiscent to the case of appendix C.2 of [8], but here we take another
prepotential, that is less trivial and should give non-vanishing C,... This gives
the following results:

1
V= _"ZZB ef/? (6.4.34)
322
Imposing (V, V) = i, one finds
K(z,2) = —log(i(z — 2)(2* + (1 — 3a)2zz + 2%)) . (6.4.35)

From this Kihler potential, the Kdhler metric can be derived. Straightforward
calculation gives that

3i(a —1)22
= . 4.
(V,Uz) 23 — 3a22Z + 3azz2 — 73 (6.4.36)

The new metric,

9i: = g2z — (VU NV, Uz), (6.4.37)
becomes for this example

;o —3a(z — 2)?
92 = (24 (1 - 3a)22 + 222

(6.4.38)

and it has a well-defined positivity domain. Further calculation gives that

—6i(a — 1)az(z — 2)%(z + 2)

WPl = G = 30)22 1 P)(a(z = 2 + 3(1 — 22%7)

(6.4.39)
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One also finds that
6ia(z — 2)
(224 (1 - 3a)zz + 22)%°

C.re = (6.4.40)

For a = 1, this model obeys the ‘strong definition’ of special K&hler geometry:
(V,U,) =0.

It is also possible to find other ‘special’ models, starting from the prepotential

F= % (6.4.41)

and introducing again a parameter a in the section in the similar way as in the
previous example. These are also examples of models where (V,U,) = 0 is not
satisfied, but the formulas look less attractive than the ones of the model worked
out here.

(No) connection to Calabi—Yau compactifications

We clarify why it is not possible to construct models with Z, # 0 from Calabi—
Yau compactifications of type II string theory. It is possible to find Calabi—Yau
compactifications with one vector multiplet. This is a Calabi—Yau compactification
of type I'TA string theory on a manifold with one Kéhler modulus or of type I1B
with one complex structure modulus. An example of this is the quintic [199] for
ITA or its mirror symmetric Calabi—Yau in a IIB compactification.

A Calabi—Yau n-fold is a compact n complex dimensional Kahler manifold
with vanishing first Chern class. Good reviews can be found in [180, 123, 179].
The Hodge numbers of a Calabi—Yau threefold are of a very restricted form:

1
0 0
0 B 0
1 2L p2l 1 (6.4.42)
0 Al 0
0 0
1

Yau proved Calabi’s theorem which states that a given K&hler manifold with asso-
ciated Kéhler form Jy has a unique Ricci-flat Kéhler metric whose Kéhler form J
is in the same cohomology class as Jy. The possible deformations of this Ricci-flat
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metric into another Ricci-flat metric form two distinct sets: the variations of the
complex structure are associated to H?!(X) with dimension h%! and the moduli
space of Kahler deformations with dimension A'''.

The scalars of the vector multiplets span the moduli space My . The com-
pactification of ITA string theory on a Calabi-Yau threefold X gives rise to My
which is spanned by the deformation of the complexified Kahler form and has com-
plex dimension h!(X). For type I1B compactified on a Calabi—Yau threefold Y’
we have that My is spanned by the deformation of the complex structure of Y
and has complex dimension h%!(Y).

In [185, 179], the connection is made between elements of special Kéhler
geometry and the period matrix of integrals of (3,0),(2,1),(1,2) and (0, 3) forms
over 3-cycles. There are 2(h?! + 1) homologically different 3-cycles in the Calabi—
Yau manifold. One chooses a canonical basis { A, By} with intersection numbers

ATnAl =0, BrNB;=0, AlnB;=-BynAl =461, (6.4.43)

Symplectic rotations, corresponding to changes of this canonical homology basis,
leave the intersection numbers invariant. The following identification can be made:

V= eK/z/Q(3’0), or wv= ( ﬁ’g ) . (6.4.44)

where Q30 is the unique holomorphic 3-form and V' = e¢®/2y. The small varia-

tions of a (p,q) form can give at most (p F 1, q =+ 1)-forms. Applied to Q) this
leads to

90 = O — ko O, (6.4.45)

where Q, are (2,1)-forms. Integrals of 3-forms over 3-cycles on the Calabi-Yau
are defined as follows:

z,:[/Arw/B,X_/B,w/AIX]://“AX' (6.4.46)

This allows to connect the symplectic product of symplectic vectors, formed by
integrals over 3-cycles of 3-forms, with integrals of the exterior product of forms
over the Calabi—Yau:

—i{v, ) = —i/ QAQ>0. (6.4.47)
cYy
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The integral formula (6.4.46) implies that only integrals of (p,3 —p) with (3—p, p)
forms can be non-vanishing. The following identifications can be obtained

Uy = eK/2/Q‘(X2’1) s Usg = eK/2/Q(D—(1’2) ; Vo= eK/2/9(0’3) . (6.4.48)

From this identification immediately follows that for Calabi—Yau manifolds
(V,Uqa) = (Uqa,Ug) = 0. (6.4.49)

This implies that the special case, developed in this section, can never be found
from a type II Calabi-Yau compactification, since always (V,U.) = 0. It is not
excluded that there be other compactifications which keep N = 2 in four dimen-
sions that allow these models, but then there will not be such a nice geometrical
interpretation as in the case of a Calabi—Yau compactification. References and
comments on these non-geometrical compactifications (e.g., Gepner or Landau-
Ginzburg models) are in chapter 19 of the second volume of [2].

6.5 Perturbative duality transformations and non-
Abelian gauge symmetry

In this section we will try to find out which actions for Abelian vector multiplets
allow for non-Abelian gaugings. We will first situate the problem and clarify the
role of perturbative symplectic transformations in it. Then we will explain how a
part of the problem can be analyzed in terms of algebraic cohomology. We will end
with the extension of the action that is needed and give some concrete examples
that illustrate the possible (non-)existence of a non-Abelian gauging.

6.5.1 Introduction

The action for an arbitrary number of vector multiplets coupled to supergravity
was constructed in [39] using a prepotential F. In most circumstances, models
with Abelian vector multiplets are studied as they arise in the low-energy effective
descriptions of compactifications of string theories. These models with Abelian
vector multiplets are endowed with a symplectic structure, as revealed in sec-
tion 6.4. In section 6.1.1 was explained already that the action for Abelian vector
multiplets is invariant under the classical subgroup of the symplectic group. These
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are matrices of the form

Sy = < ‘3 (ATO)_l ) . (6.5.1)

Further, there was explained that the perturbative symplectic matrices, matrices
of the form

= (2 ), 652

leave invariant the action up to a total derivative.

In this section we want to clarify some properties of models with non-Abelian
gauge symmetry. We want to study under which conditions the action for n
Abelian vector multiplets can be made invariant under a local non-Abelian gauge
group G with dim G < n. We will explain how these non-Abelian gaugings give
rise to very specific perturbative symplectic transformations that leave the action
invariant.

Introducing a non-Abelian Lie algebra implies that all the fields of the mul-
tiplet take values in it. The gauge transformations also act on the scalars X' of
the vector multiplets:

SaX! = gfi A XK (6.5.3)

In general, the introduction of an arbitrary non-Abelian gauge symmetry implies
that the action needs extra terms to remain invariant under the non-Abelian gauge
symmetry. These extra terms imply sometimes that the symplectic structure of
the Abelian model is not appropriate any more.

Here we would like to tackle the following problems: which non-Abelian gaug-
ings are possible such that the action is/can be made gauge invariant and is there
still a role for (a subset of) the symplectic transformations in this? These ques-
tions were answered partially in [39] in a context were the prepotential was the
backbone of the construction. In section 6.4, we have worked out the most general
case of special Kahler geometry by starting from the symplectic structure. In this
approach the prepotential is a derived concept. Here we will try to reformulate the
problem of the possible gaugings of Abelian vector multiplets as much as possible
in a symplectic context.

The bosonic part of the Lagrangian for Abelian vector multiplets can be writ-
ten as
L =1 (ImNy) Fp, 77 — L (ReNig) e F,, Fi

po >

(6.5.4)
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where I, J counts the number of vector multiplets and N7; depends on the scalars.
This is only the kinetic part for the vectors of the N = 2 supergravity Lagrangian.
The matrix N7  relates the scalars X' with the Fy of the section V:

Fr =N X7, (6.5.5)

If there is a prepotential, the following relations are valid:
(ImF]K) (ImFJL)XKXL
(ImFKL)XKXL ’
FryXx7, (6.5.6)

Ny = F]J + 2i

Fr

where F7y is the second derivative of the prepotential with respect to the scalars
XT
In a first step of the construction of non-Abelian actions in [39] was imposed

that the prepotential F has to be gauge invariant. Since F = 1XTFy, it follows
that

SaFr = —gfi- AKFy. (6.5.7)

This implies that the non-Abelian gauge transformation of the symplectic vector
of scalars can be written as a classical symplectic matrix:

I I J
dc ( )}% ) :gAK< ISJ _J?IJ{I ) ( )1«(1, ) ) (6.5.8)

So, the possible gauge transformations of the symplectic vector of scalars can be
expressed as classical symplectic transformations with the structure constants as
non-trivial entries. The condition that the prepotential has to be gauge invariant,
which was used in the construction with a prepotential, is translated into:

SaNis = 2Nk f7 A" (6.5.9)

This expresses that the (scalar-dependent) kinetic matrix has to transform covari-
antly under gauge transformations. This condition does not rely on the existence
of a prepotential. Using (6.5.5), the same classical symplectic transformations
express the allowed gauge transformations.

In [39] was further argued that it is possible to relax the condition that the
prepotential has to be gauge invariant. There was proven that this is possible for
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a prepotential that transforms under non-Abelian gauge transformations as

6aF = gFrfi AKXL = gX1Fp,ff AEXT
= 01 kN XIXE, (6.5.10)

for real Cf sk ’s that are symmetric in the last two indices and satisfy

This remains a strong condition on the prepotential: the gauge variation of a
homogeneous function of the second degree has to be quadratic. This type of
transformation still allows for the construction of a gauge-invariant action. If
there is a prepotential, it is possible to prove that

CI,JK = 2FL(.]f|L[|K) + FLJKfILMXM 5 (6512)

by using that the gauge transformation of the prepotential can be written in two
ways as in (6.5.10).

If one constructs the action for a prepotential of the form
F=A;xIx7, (6.5.13)

for a real symmetric matrix Ay, this reduces the action to a total derivative, as
can easily be seen for the kinetic terms from (6.5.6). So, such quadratic terms
do not contribute to the action. We will meet these quadratic terms later in the
cohomological analysis of the concrete examples. The gauge variation of the pre-
potential, (6.5.10), is almost of the form (6.5.13). The spacetime-dependent gauge
parameter A’ causes that this term will not be a total derivative in the variation
of the action. In [39] is proven that it is possible to regain gauge invariance by
introducing an additional term that depends on the constants Cr jx -

Now we want to allow for a similar relaxed condition for the gauge transfor-
mation of the matrix Nj; as was done for the prepotential. The advantage of
imposing the condition on N is again that we do not require the existence of a
prepotential. We will relax (6.5.9) to

daN17 = (2NK(If5()L + CL’IJ)AL . (6514)

The (a priori complex) constants Cr jx are symmetric in the last two indices as
imposed by the symmetry of N and have to satisfy C(; jx) = 0. From (6.5.5)
follows that

6 Fr = gAN (Cr,10X7 — f 1 Fy). (6.5.15)
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Demanding gauge invariance of the symplectic condition (V,V) = i, implies that
the constants C'r sk have to be real. This means that these C jx’s are exactly the
same ones as in the case with a prepotential. So, one finds that this more general
transformation of N leads to a gauge transformation of the symplectic section V
that can be written in a symplectic form:

XI fI 0 XJ
G (B (5)

This type of symplectic transformations was called a perturbative symplectic
transformation in section 6.1.1. As explained there, they are called perturbative
because they mix the electric field strengths among one another and give rise to
new magnetic field strengths which are a linear combination of ‘old’ electric and
magnetic field strengths. The invariance of the electric field strengths means that
the elementary, electrically-charged objects remain the fundamental excitations
in the theory. That is the reason for calling these transformations perturbative.
These more general gauge transformations form symplectic transformations with
the structure constants of the non-Abelian group on the diagonal and the constants
Cr,5K in the lower-diagonal entries. In the remainder of this section, we will study
the additional term that gives rise to a non-Abelian action in a cohomological
setting. We also give some concrete examples of possible gauge transformations
that can be expressed as perturbative symplectic transformations.

6.5.2 (' x and algebraic cohomology

We have derived in the introduction of section 6.5 that more prepotentials allow
for a non-Abelian gauge group if the gauge transformation of the prepotential or N’
transforms into specific terms with real constants Cr jk, symmetric in the last two
indices and obeying Cr k) = 0. These constants C; si’s can be formulated in a
cohomological setup following [200]. To introduce the notion of algebraic cohomol-
ogy, consider first a group manifold with right invariant one-forms e’ corresponding
to the components of dg - g~! in some basis labeled by I (I = 1,...,dimG). The
commutation relations of the non-Abelian group are equivalent to the Maurer—

Cartan equations de! = ff e’eX. Any n-form C = Cp,..,el* - -el», antisym-
metric in [y - - - I, with constant coefficients then satisfies:
dC = (DC),, , e°--e, (6.5.17)

with
(DC);, I T ECJ[Iz---Inf[J[)[l]- (6.5.18)
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This defines an algebraic operation on the coefficients: Cy, ., is transformed into
(DC) with n + 1 indices. As d? = 0, also D? is nilpotent, which is easily verified
using the Jacobi identities.

This gives rise to a notion of cohomology. This notion can further be refined
for C’s which transform under some non-trivial representation:

0(9) E) = Oh...In,aaIl o al"fa (6519)

for anticommuting #7 and ¢%, transforming under G as
daf' = gfiATO",
dat® = (Tr)*sA'e?, (6.5.20)

where the generators Ty satisfy [T7,T] = fKTk. Define 0*, a generalization of
the exterior derivative, as:

%0 = Lf1 0705 0% (0'07) = 00" -0 —6'0%07 , 0" ¢~ = (Tr)*307€% . (6.5.21)
This 0* induces an operation on the coefficients C":
8°C(0,6) = Cr.1,,00° (0" ---0™¢%)
= Ot (3575070507 91 4 (2)"6" 67 (1) 567"
= (D*C)1y..1, (07 - -0 (6.5.22)
with
(D*C)iy. .10 = 2Oyt 0l ly 1y + (Ti1) o Cly 1.8 - (6.5.23)

The Jacobi identity again implies that (9*)2 = 0, which leads to (D*)? = 0. This
defines cohomology classes for the coefficients C'. If C is D*-closed: D*C = 0,
there is an equivalence class of all C' = C' + D*A. The trivial cohomology class
contains C' = D*Q).

For semisimple (not necessarily compact) groups, the Cartan—Killing metric
gr; = —fE fE; is invertible. This allows to introduce an operation Z that lowers
the number of Lie algebra indices:

IOV .tya =+ 1)Con .1, 5(T7) 0, (6.5.24)

where T = ¢g/!Ty, which is only possible if the Cartan-Killing metric is invertible.
One then finds that

(ID* + D*I)Cr,. 1,0 = Cr,.. 1, 3C2(T)P (6.5.25)
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where the Casimir operator C»(T)%, = ¢!/ (Tr)?,(Ts)" 4. This implies that any
D*-closed C' is D*-exact for a semisimple gauge group. So, for semisimple Lie
algebras, there are no non-trivial cohomology classes taking their values in a non-
trivial representation.

The Cr sk’s in the symplectic transformations (6.5.16) fit in this context.
The I of Cr ji corresponds to n = 1 in (6.5.22), while the JK of Cr sk can
be considered as two copies of commuting u”’s transforming in the symmetric
product of two copies of the Lie algebra. This means that the matrices 77 are
given in terms of the structure constants. So, we find that equations (6.5.19),
(6.5.22), and (6.5.23) become

g6 = CLJK()IUJUK,
9*C(0,¢) = Crrxd*(0'u’u’)
= (D*C)IOI,JK(HIOHIuJuK),
(D*CQiorox = $CLuxfiyr—2f71,Cn 0k - (6.5.26)

Generalizing the operation 0* to d* where
0" — Ll 0765 = au, (6.5.27)

with « some constant, it is possible to derive cohomology classes as before if
furthermore

is imposed. Now it is possible to make the connection to non-Abelian vectors. The

67, u’ and the operator 0* can be realized as the gauge potential A7, the field
strength a~'F! and the exterior derivative d.

6.5.3 An extension of the action

The cohomological approach of the previous section allows the construction of an
action that is invariant under non-Abelian gauge transformations for N7 ; obeying
(6.5.14). The Jacobi identity and the closure of the algebra impose that Cr g
must be D*-closed:

(D*C)rrax = 5 11Cmak + Coomsfiyr — Crom Fryr, =0- (6.5.29)

Equation (6.5.28) and (6.5.29) were derived already in [39] in the context of a
prepotential. Here, we have repeated the derivation which did not rely on the
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existence of a prepotential. In [39, 200] is derived for both the approaches that
the action (6.5.4) becomes gauge invariant by adding the following term

Soow = / o Crery AKAT(AT — 3 f7,, AL AM) | (6.5.30)

if the prepotential or N7 transforms as imposed by (6.5.10), respectivily (6.5.14).
So, adding this term to the action allows for a non-Abelian extension of an Abelian
action.

In [201], the same model was studied in the context of gauged non-linear o-
models. They proved that a simplification of (6.5.30) is possible by introducing
yet another cohomology. Also the analysis in terms of Killing vectors and Killing
prepotentials as in [191, 193] relies on the algebraic cohomology®.

In [200] is argued that shifting Re A7y by constants corresponds to shifting
C’s by an exact piece. This shifting can be done as follows. Start from a model
with a prepotential F.. Consider for simplicity that the gauge transformation of
the section V' giving rise to this prepotential, is of the form (6.5.8). Adding to this
prepotential a term (X°)? gives rise to

F' = F+ (X%,
SaF' = 6aF +2X°gf A X7
= 6aF +29CrosA X°X7 . (6.5.31)

As argued earlier, these quadratic terms with real constants in the prepotential do
not influence the equations of motion. They only give rise to terms in the action
that are total derivatives. The gauge transformation of this prepotential can be
interpreted in two different ways. A first possibility is to say that V' will change
into a new section V'
XI
Vi=| Fy+2X° (6.5.32)
Fr>o

and that the symplectic form of the gauge transformation remains the same

sV = ghK ((Trs 0 Yy 6.5.33
G =9 0 _fJ : ( . )
i1

Another possibility is to say that the gauge transformation of the original section

8We thank Pietro Fré for a fruitful discussion on this subject.
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V has changed into

)= (50
(5@( P )-gA (C'K,OJ _fl, o) (6.5.34)

So, adding quadratic terms to the prepotential is equivalent to shifts in the lower-
diagonal terms in the gauge transformations if these gauge transformations are
written as perturbative symplectic matrices. Both prepotentials (with or without
(X%)2) are in the same cohomology class.

We will give some examples of prepotentials which allow or do not allow an
action that is invariant under non-Abelian gauge transformations. The prepoten-
tial

F = (X2 + (XY + (X?)? (6.5.35)

allows the gauge group SU(2), because it is gauge invariant.
On the other hand, the prepotential

F=XX'"4+X'Xx24+ X2X0° (6.5.36)
with the canonical section

XO

Xl

X2
X'+ X2
X0+ X2
X0+ X!

(6.5.37)

does not allow for gauge group SU(2). The gauge group SU(2) is also not possible
for
B Xl (X2)2

F
2X0

(6.5.38)

The SU(2) gauge transformation of this function is not a quadratic function. Yet,
it is possible to make a model with this prepotential and another non-Abelian
gauge group [39]. Choose a gauge group with three generators and commutation
rules

[t();tl] = _2t17
[t07t2] = t27
[ti,ts] = 0. (6.5.39)
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This gives rise to the following non-vanishing C7_jk’s:
Ci 22 =2, Cr12 =091 =—1, (6.5.40)

such that (6.5.28) is satisfied. This can be derived from (6.5.12). The gauge algebra
in the example (6.5.39) is not semisimple: [G,G] = GV with GV = {t;,t,} in
this case. Since [t1,t2] = 0, the derived series of the algebra ends with an empty
set, such that the algebra is solvable. This means that the Cartan-Killing metric,
which is used in the analysis of the cohomology classes, is not invertible. So,
there are non-trivial cohomology classis. The Cr jx in (6.5.40) are in a non-trivial
cohomology class of the algebraic cohomology and cannot be removed by adding
quadratic terms to the prepotential. The prepotential (6.5.38) is an example of
a very special Kahler manifold. These are characterized by a prepotential of the
form
XAxBx©
X0 ’

with the real constants d 4 g¢ fully symmetric. These very special Kahler manifolds
are related to N = 2 supergravity in five dimensions coupled to Abelian vector
multiplets [202]. The question whether the extra terms in the action (6.5.30) are
related to five-dimensional models (via the Chern-Simons term there or via models
with very special real manifolds [203]) is still under consideration.

F =dapc (6.5.41)

Another question that one can ask, is whether it is possible to do symplec-
tic transformation of certain sections (or prepotentials) that still allow a gauge
transformation of the form (6.5.16) after the symplectic transformation. This is
certainly not a general property. Start from the prepotential (6.5.38) with the
gauge group (6.5.39) and do the symplectic transformation

0 1.0 0 0O

0O 01 0 0 O
0O 0 0 1 0 O
S = 0 000 10 (6.5.42)
0O 0 0 0 0 1
-1 0 0 0 0 O
This symplectic transformation rotates the section V into
Xl
X2
_XI(X2)2
0)2
2X0
xtx?
X0
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This section can be expressed in new coordinates XZsuch that the three first
elements of the section are the coordinates and the following three elements of the
section can be seen as the derivatives of the associated prepotential

F=vXox2x", (6.5.44)

It is clear that this prepotential will not allow the same gauge group as the original
prepotential and its associated section. We also were not able to derive another
gauge group that gave rise to an invariant prepotential or a gauge transformation
of it proportional to quadratic terms. This is caused by the fact that the upper
right part of the matrix S in (6.5.42) is not 0. It is a non-perturbative symplectic
transformation. If one uses a perturbative symplectic transformation

( o ) . (6.5.45)
The transformed section is
Al x7

The prepotential F' transforms into
F+ (AT0) e X7 XK, (6.5.47)

which corresponds to a shifting of the C’s in the perturbative symplectic gauge
transformations of the original section (together with some linear combination
of the structure constants if A # 1). This transformed model still allows for a
gauge-invariant formulation in terms of a symplectic transformation, while this is
in general not possible for non-perturbative symplectic transformations.

So, we can conclude that we were able to derive a condition for the possible
gauging of a set of Abelian vector multiplets coupled to N = 2 supergravity. This
condition does not rely on the existence of a prepotential. To achieve more general
gaugings, an additional term has to be added to the action. The condition on these
constants can be analyzed using algebraic cohomology. The gauge symmetry gives
rise to a very specific subgroup of the symplectic group that remains a symmetry
of the action. We gave some concrete examples and speculated on a possible
connection to five dimensions.



148 Chapter 6. N = 2 vector multiplets in 4 dimensions




Appendix A

Notations and Conventions

A.1 Notations and conventions in d dimensions

These notations and conventions are used in chapter 2. We work in spaces of
arbitrary signature. We call ¢ the number of time directions and s the number
of space directions. The total number of dimensions is d = ¢t + s. Indices are
denoted by a,b,.... (Anti)symmetrization is always done with weight one: A, =
% (Aap — Apa) and Ay = % (Aap + Apa) and the generalization of this for more
indices. In a space with an arbitrary signature, the antisymmetric Levi—-Civita
tensor is chosen to be

e1.a=1, 1= (). (A.1.1)
The contraction of the Levi-Civita tensors is

Ealaz.“apbl.“bdipgala2"'l1p61"'Cd7p = (_)tp' (d - p)' (SE]Cll e 6bd_p (AIQ)

ca—pl”
The metric signature for Minkowski space is chosen to be (— + -+ - +). We choose

€o...(a-1) = 1, gOl-ld=) = 1. (A.1.3)

A.2 Notations and conventions in 4 dimensions

These notations and conventions will be used in chapter 6. They differ slightly
from the ones in the previous section to allow to make contact with the literature.

149
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The Levi-Civita tensor with curved indices is defined as
eMPT = \[—gelelelege el ; g2 — i, (A.2.1)

where the former implies that the latter is true for flat as well as for curved indices.
(Anti)self-dual tensors F' and G are introduced:

Fi =L1(Fy £ Fy) with  Fup = LeqpeaF . (A.2.2)
Since € is imaginary, the following properties hold:
FhtG— =0, (FLGT = F G, (A.2.3)

where T means Hermitian conjugation.

A.2.1 ~-matrices and spinors

The gamma and sigma matrices are defined by

YaYb = Nap + 204 , Y5 = 1Y0V1Y273 » (A.2.4)

which implies that 1e*“g.q = —75%. The following realization generates the
two-component formalism:

(0 il (0 —iog) (1 0
’YO_ (iﬂQ 0) ’ ’)/D(_ (io_a 0 ) ) 75_ (0 _1) ? (A2‘5)

where a = 1,2,3. The matrices 7, and 75 are Hermitian, while vy is anti-
Hermitian. The following identities are useful in the calculations:

Yt =4, Y YV = =27,
o = (VY — W) 5 Tur = —3€0pe 075,
ooy, = -3, UMUWUM =0u,
Yuo" Py =0, o’ Yuou, =0,
[V, o] = 26, 0, (0 = € 1570
[Opw,0%7] = —46[u{pay]”] ) {ouw, 07} = =6,°0,17 + 2€,"" 75 - (A.2.6)

There is a charge conjugation matrix C such that

CT=-C; CyC'=-". (A.2.7)
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This fixes C up to a (complex) constant. One can fix the proportionality constant

(up to a phase) by demanding C to be unitary, so that C* = —C~'. In the
representation (A.2.5) we can choose
€A 0
C= ( OB GAB> , (A.2.8)
where € is the antisymmetric symbol with e4p = —eAB = 1for A = 1, B=2.

Majorana spinors satisfy the ‘reality condition’ which says that their ‘Majo-
rana conjugate’ is equal to the ‘Dirac conjugate’:

x=x"C=-ix'o=x" o x“=-inCT'x =x. (A.2.9)

The factor —i is just a conventional choice as the phase of C is arbitrary. Majorana
spinors can thus be thought as spinors y; + ix2, where x; and y» have real com-
ponents, but these are related by the above condition. There exists a Majorana
representation where the matrices 7, are real, and with a convenient choice of the
phase factor of C the Majorana spinors are just real. We often use Weyl spinors,
where the left and right chiral spinors are defined as

xe=51+%)x;  xr=31-7)x- (4.2.10)

The chirality is indicated by the position of the 4, j index (index running over 1,2
for N = 2 supergravity). The choice of chirality for the spinor with an upper
(lower) index can change for each spinor. Note that these Weyl spinors are not
Majorana. A spinor which is Majorana and Weyl with the above definitions would
only be possible in d = 2 mod 8. The following Fierz identities will also be used
in the calculations:

Axr = —5 () 1+ 30 (Xpowr)
ALXr = —37" (XrYaAL) - (A.2.11)

A.2.2 A basis for symplectic vectors

In this appendix we show that

W = (V,Ua,V,Us) (A.2.12)

is a basis for symplectic vectors. Since we are dealing with a 2(n + 1) dimensional
vector space we only have to show that these vectors are independent.
Proof: Suppose

AV + XV + XU, + \305 =0, (A.2.13)
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then it follows that all A = 0 if and only if the determinant obtained by left
symplectic inner products with, respectively, V, V', Uz and Ug, is non—zero:

—i 0 0 (V,Ug)
0 i (V,Uq) 0
(Us, V) 0 0 ~ig,3

We can split this up in two cases:
1. The generic case :
Then (V,U,) =0, and (A.2.14) is

(det go5)° >0, (A.2.15)

which is satisfied by the metric.
2. Thespecial case :
Then we define Z, = (V,U,) and the determinant equation leads to

(922 — Z.72)* #0. (A.2.16)

However this follows from the “physical” condition on the sections that leads to
the right signs for the kinetic energy of the scalars and the vectors, cf. (6.3.2).

Now that we have a basis, we can expand every symplectic vector in this basis.
Take a generic symplectic vector X 4, where the index A denotes a generic index.
It is again useful to separate two cases.

1. The generic case :
This leads to

X4 = WV, XA)V iV, X2)V
+ig®® ((Uay X4)0a — (Ua, X)) - (A.2.17)

2. The special case :
In the basis W, the expansion becomes

Xa = —ig’”((—gzz(V,XA>+iZ(Uz,XA))V

+(—iZ<V, XA> + (UE,XA»UZ

—(Z(V,Xa) + (U., Xa)) _2> . (A.2.18)
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In this case we better use the basis
W' = (V,U.,V,U). (A.2.19)

The same formulas hold as above, when replacing g,5 with g’ ;.

z

A.3 Notations and Conventions in 6 dimensions

A.3.1 T@'-matrices and their properties

The Clifford algebra in six spacetime dimensions has dimension 29/2 = 8. The
[-matrices satisfy the property

Lolp + Ty = 2ngp - (A31)

Since we will be using Weyl spinors, it is useful to work in a basis where

1T 0
77:I‘0---I‘5:—F0---I‘5:<0 _]1). (A.3.2)
We denote a spinors A! as:
i _ M
Ao = ( A, > : (A.3.3)
14 Aa 1- 0
A = 277)&:( - > C g2l 277)AR: ( o ) . (A34)

where the index « is chiral, ' is antichiral. [-matrices have the form

(Tu)a’ = < (%())alﬁ (7“())“6 > . (A.3.5)

We use matrices 7y, and 7, to indicate that they have different chirality indices.

The charge conjugation matrix C can be defined as:

c= ( o ) (A.3.6)

c
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or

A3 0
aB _
o8 = ( @5 g ) : (A.3.7)

where ¢ is the four-dimensional charge conjugation matrix:

Eab 0
CcC = ( S Earb/ > N (A38)
where €15 = —¢'? = 1. Using this definition, one finds that
r’ - —cr,ct, cct=1, cT=c. (A.3.9)

This means that the upper signs of table 2.3 in six dimensions are valid. It is
possible to express v(™ in terms of v(6=") using the duality relation

aq--anby - be_n | +1forn=0,1,4,5
7 B (6—n)!E 1 CT b T Sn = { —1forn=2,3,6
(A.3.10)
This is an alternative form of (2.2.10). In the calculations with y-matrices is often
made use of the following identity for contractions of y-matrices in products:

Y My = nlC(n,m)y™ (A.3.11)

The coefficients for C'(n,m) for n,m < 3 are given in table A.3.1.

m\n |0 1 2 3
0 |1 6 —-15 -20
1 |1 -4 =5 0
2 2 1 1 4
3 |1 0 3 0

Table A.1: The coefficients C(n,m) defined in (A.3.11)

Products of y-matrices are given by:

,Yal"'“n’)/bl bm ’Yal---anbl bm+(_)n+1< ) > ( . >1!6{a11’ya2---an]b2 bm ]
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n
2
+(—1)”< g ) ( 7:7: )3!5{21153;%5”3%4...%]”4""%1

L. (A.3.12)

A.3.2 Conventions and properties of spinors and tensors
Bosons

As explained above, for Minkowski space we use indices from 0 to 5 with signature
(=4 ---+4). Therefore the Levi-Civita tensor is

Eo12315 = 1 = —%%347, (A.3.13)

The &’s with curved indices are defined as follows:

Euvpord = eileZef,eZegeieésabcdef ,
ghvPoTo  — eegegeé’egezeﬁgabc“i . (A.3.14)
The contraction of the Levi-Civita tensors is
ba_
g1t N aperea, = =P (A =D)L 50 (4.3.15)
The essential formula defining duality is:
Yabe Y7 = _7abc; (A316)
where the dual is defined as:
-E[abc = %5abcdefHdef 9 (A317)
and
Yabe = V[aVbVe] - (A.3.18)

Some other properties and definitions of (anti) self-dual tensors are

Hﬁc = %(Habc iIN{abc)a
H;;)CH—abc — %HabcHabc ,
H, Ht® = 0. (A.3.19)
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Fermions

We raise and lower USp(4) indices with Q¥ using NW-SE contraction:
No=QiN; . N =M. (A.3.20)
Contracted spinors with USp(4) indices omitted are defined as
My ep = Xy, (A.3.21)

We use symplectic Majorana—Weyl spinors. The symplectic Majorana condition is
imposed: the Dirac conjugate must be equal to the symplectic Majorana conjugate:

Xo= () (=) = (A) e, (A.3.22)
or, using spinor indices
X' = (Nt (—iT0), @ = X095 (A.3.23)

The same equation with all indices a and o' interchanged is also valid. The
conjugate of a chiral spinor with index « has index a'. This implies for left- and
righthanded spinors Ay and Ag that

/_\LFaXL = 5\%’ (%)a’a XaL = XL'%XL ) S‘RFaXR = S\R'YaXR- (A-3-24)

Changing the order of spinors in a bilinear leads to the following signs

TN 2) _ 5 o(2)4(n),(1) tn = —1forn=0,3,4
PUYTIXT =t XTI {tnzlforn:1,2,5,6 (A.3.25)

where the labels (1) and (2) denote any USp(4) representation, e.g., (1) = ¢ and
(2) = [jk].

We frequently use the following Fierz rearrangement formula:

Pt = =L (Yivahiv — S Yapethj) ™) (1 — 1), (A.3.26)
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for the case where both fermions are left-handed and
Pix = =1 (N5 + (N ya5)7*") $(1—7) (A.3.27)

for left-handed A and right-handed 1.

G

The notation “- (trace)” denotes terms that are proportional to either Q% or
8% (with “free” indices). We use the notation “-(traces)” if both invariant tensors
occur. For the convenience of the reader we give below the explicit expressions of
some trace terms:

X" — (trace) = X7 +4+1QUxk
Aink — (traces) = Aink + %AZ{ZXg(Si] — %QijAk[Xl y
SpliXT) — (traces) = SiUxI - Lollgillx, +1098,.6X, . (A.3.28)

where X% and X% are arbitrary USp(4) tensors, while A% is an antisymmetric
traceless and S¥ a symmetric tensor. In the calculations, the following USp(4)
Schouten identities are very useful:

2eligiFyy, + 2% g lipd) + ¢z — (trace) = 0,
7k W vabety? + 27l Plyapetpy, — (traces) =0 (A.3.29)
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Appendix B

Samenvatting

B.1 Algemene inleiding

Het standaardmodel en algemene relativiteitstheorie vatten de huidige kennis van
het gedrag van elementaire deeltjes samen door middel van vier fundamentele
krachten. In de 19de eeuw waren alleen de gravitatiekracht en de elektromagne-
tische kracht bekend. In die tijd werd gravitatie beschreven door de wetten van
Newton en de klassieke Maxwell vergelijkingen verklaarden de elektromagnetische
fenomenen. In het begin van de 20ste eeuw werd duidelijk dat kwantummechanica
nodig is voor een adequate beschrijving van het gedrag van elementaire deeltjes
op kleine afstanden.

Op dit moment verklaart het standaardmodel alle experimenten in deeltjes-
versnellers. Het standaardmodel is een renormaliseerbare kwantumveldentheorie
met ijkgroep SU(3). x SU(2)r x U(1). Een andere grote verwezenlijking van
de afgelopen honderd jaar is een betere beschrijving van de gravitationele kracht
door middel van algemene relativiteitstheorie. Deze meetkundige beschrijving van
ruimte en tijd vervangt de wetten van Newton. Ze is compatibel met al de hui-
dige experimentele testen. Merkwaardig genoeg is de gravitationele kracht slechts
getest tot op afstanden van de orde van centimeters. Deze kracht is zo zwak in
vergelijking met de andere drie krachten dat de klassieke geometrische beschrijving
volstaat. Er is geen kwantummechanische beschrijving nodig om de tot op heden
waargenomen fenomenen te verklaren. Zelfs dan blijft er de principiéle vraag naar
een kwantummechanische beschrijving van ook deze kracht. De laatste jaren heb-
ben astrofysici steeds meer aanwijzingen gevonden voor het bestaan van zwarte
gaten. Aan de horizon van deze klassieke singulariteiten van de ruimtetijd is de

159
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gravitatiekracht veel sterker en is een kwantummechanische beschrijving vereist.
De aanpak om de andere krachten te kwantiseren, namelijk door regularisatie en
renormalisatie, kan niet gebruikt worden in het geval van de gravitatiekracht. De
gravitationele koppelingsconstante is niet dimensieloos en het renormalisatiepro-
gramma is gedoemd om te mislukken. Dit betekent dat een andere aanpak vereist
is om een kwantummechanische formulering van gravitatie te realiseren. Ook het
standaardmodel bevredigt niet volledig. Het vereist bijna 20 willekeurige parame-
ters, de verschillen in massa van de elementaire deeltjes blijken moeilijk te verkla-
ren, het is niet duidelijk waarom er drie generaties leptonen zijn, ... Het sterkste
argument om te zoeken naar een meer fundamentele theorie is het feit dat gravi-
tatie niet in het standaardmodel vervat zit. De zoektocht naar een geiinificeerde
theorie voor de vier fundamentele krachten begon reeds jaren geleden. Gedurende
verschillende decennia al trachten mensen deze ‘theorie van alles’ te ontrafelen.

B.1.1 Supersnaren en supergravitatie
Waarom supersnaren introduceren?

Op dit moment is er slechts één volwaardige (en veelbelovende!) kandidaat om
de (alle?) problemen met het standaardmodel en algemene relativiteitstheorie
op te lossen: snaartheorie [1, 2]. Snaartheorie is een theorie waarbij de ele-
mentaire bouwstenen van de materie geen puntdeeltjes meer zijn, maar kleine
ééndimensionale entiteiten. De trillingswijzen van deze snaren kunnen beschouwd
worden als de verschillende elementaire deeltjes'. Net zoals deeltjes een wereldlijn
maken in de ruimtetijd, zullen deze snaren een wereldoppervlak vormen in de ho-
gerdimensionale ruimtetijd. Een Lorentz-invariante formulering van snaartheorie
vereist 26 (ja, zesentwintig) ruimtetijd dimensies. Zelfs dan is de toestand van
laagste energie een tachyon, een toestand met negatieve gekwadrateerde massa.
Dit signaleert dat de theorie instabiel is. Er is echter een manier om deze onge-
makken aan te pakken.

De invoering van het concept supersymmetrie maakt een stabiele, kwantum-
mechanische formulering van snaartheorie mogelijk in tien dimensies. Supersym-
metrie is een veralgemening van bosonische symmetrieén. Deze symmetrie rela-
teert bosonen en fermionen, toestanden met verschillende spin. Het is duidelijk dat
bij lage energieén supersymmetrie gebroken is. Het is echter niet duidelijk of su-
persymmetrie bij hoge energieén een fysische symmetrie zal blijken te zijn. Op dit
moment komt de enige indicatie dat supersymmetrie bestaat, van de unificatie van

1Het was op deze manier dat snaartheorie geintroduceerd werd in natuurkunde. Voor het
succes van QCD om de sterke kracht te verklaren, werd snaartheorie gebruikt als een model om
de mesonische resonanties te beschrijven.
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de verschillende koppelingen bij hoge energie (10 GeV) in de minimaal supersym-
metrische versie van het standaardmodel. Deeltjesfysici hopen deze symmetrie in
de nabije toekomst te vinden in LHC. Supersymmetrie is vooral nuttig bij het ont-
dekken van eigenschappen van snaartheorie en supergravitatie theorieén. Er zijn
een aantal sterke argumenten die voor supersymmetrie pleiten. Door de invoering
van supersymmetrie zijn er geen tachyonische toestanden meer in het spectrum
van snaartheorie. Verder is ook gravitatie automatisch geincorporeerd. Het spec-
trum bevat een massaloos deeltje met spin 2 dat met het graviton geidentificeerd
kan worden?. Snaartheorie laat ook een geiinificeerde beschrijving van gravita-
tie en ijktheorie toe. Deze unificatie is een van de dromen van natuurkundigen:
één theorie die alle fundamentele krachten kan beschrijven. Supersnaartheorie
heeft twee eigenschappen die op het eerste zicht afschrikken: consistentie vereist
tien ruimtetijd dimensies en er lijken vijf verschillende supersnaartheorieén mo-
gelijk. Allebei deze aspecten zullen later nuttig blijken. Ten eerste is er type
IIA en IIB theorie. Dit zijn theorieén die gesloten snaren bevatten en die twee
ruimtetijd supersymmetrieén hebben. De heterotische snaar is een gesloten snaar
met één supersymmetrie die consistente formuleringen toelaat voor de ijkgroepen
S0O(32) en Eg x Eg. Type I snaartheorie, tenslotte, beschrijft open snaren. Bij
lage energieén geven deze supersnaartheorieén aanleiding tot supergravitatie the-
orieén. Het onderzoek in deze thesis spitst zich toe op deze lage-energie modellen.
We bestuderen verscheidene materiemultipletten in verschillende supergravitatie
achtergronden.

Supergravitatie: de lage-energie limiet van supersnaren

We willen afleiden dat supergravitatie de lage-energie limiet van supersnaartheorie
is. Het uitgangspunt is daarom de beschrijving van snaartheorie in een gekromde
ruimtetijd. De wereldoppervlak actie van de snaar is een veralgemening van de
wereldlijn actie voor een deeltje. De bosonische beschrijving gebeurt door middel
van een interagerende tweedimensionale kwantumveldentheorie die de massaloze
toestanden van snaartheorie bevat (bijvoorbeeld de ruimtetijd metriek G, de
antisymmetrische tensor By, en het dilaton ®). Deze massaloze toestanden zijn
afgeleid uit een analyse in een vlakke ruimtetijd. Het fundamentele veld uit deze
theorie is de plaats van de snaar X*(o,7), die athangt van de wereldoppervlak-
codrdinaten o en 7. Deze velden X* spannen de gekromde ruimtetijd op. Later
zullen we supersymmetrische partners invoeren en wordt de ruimtetijd een super-
ruimte. Als de kinetische termen van de velden in de actie veld-afhankelijk zijn,
noemen we de actie een niet-lineair o-model.

2Het was net dit deeltje met spin 2 dat het gebruik van snaartheorie als een model voor de
sterke interactie danig bemoeilijkte.
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Als de karakteristieke lengte van de gekromde ruimtetijd R, is, dan is er een
effectieve dimensieloze koppelingsconstante o''/?R_ !, waarbij de Regge helling o
als eenheid ruimtetijd-lengte in het kwadraat heeft. o' staat als volgt in ver-
band met de spanning 7" van de snaar: T = ﬁ Als R, veel groter is dan de
karakteristieke snaarlengte, is deze koppeling klein. Storingsrekenen is dan een
nuttige techniek in de tweedimensionale veldentheorie. Dit verschil in lengtescha-
len impliceert ook dat de interne structuur van de snaar verwaarloosbaar wordt
en dat een beschrijving door middel van een lage-energie effectieve veldentheorie
nuttig is. Deze lage energie was al impliciet gebruikt door in de beschrijving van
de wereldoppervlak actie alleen de massaloze snaartoestanden te gebruiken. De
massieve snaartoestanden hebben een massa van de orde van de Planck massa,
Mp =~ 10' GeV en dit is veel hoger dan wat bereikbaar is (en zal zijn) in
deeltjesversnellers.

De consistentie van snaartheorie vereist conforme of Weyl invariantie van de
wereldoppervlak actie. Dit betekent dat het spoor van de energie-momentum
tensor nul moet zijn. Dit kan ook afgeleid worden uit een effectieve ruimtetijd
actie. Op deze manier geeft supersnaartheorie aanleiding tot een supergravitatie
actie bij lage energieén. Elk van de vijf snaartheorieén heeft een corresponderende
supergravitatie theorie. Een van de grote, moderne uitdagingen van theoretische
hoge-energie fysica is een microscopische beschrijving te geven die 11-dimensionale
supergravitatie als zijn lage-energielimiet heeft. De supergravitatie theorieén zijn
op zich ook al interessant. Ze beschrijven gravitatie en ijktheorie tesamen. Zelfs als
het geen fundamentele, microscopische theorieén zijn, vertonen ze al een heleboel
interessante eigenschappen. Ze zijn een soort brug tussen het standaardmodel en
algemene relativiteitstheorie aan de ene kant en een echte ‘theorie van alles’ aan de
andere kant. Daarom zijn we geinteresseerd om hun eigenschappen te bestuderen.

Compactificatie

Een van de twee belangrijke problemen met supersnaartheorie (en zijn lage-energie
limiet supergravitatie) was de aanwezigheid van tien ruimtetijd dimensies. De
oplossing van dit probleem ligt in de compactificatie van een aantal dimensies.
Snaartheorie gebiedt immers niet dat al die tien dimensies oneindig uitgestrekt
moeten zijn. Dit betekent dat onze wereld in een snaartheoretisch kader bestaat
uit vier macroscopische, zichtbare dimensies, terwijl de zes andere dimensies op een
bepaalde manier opgerold zijn. Deze compacte dimensies zijn zo klein dat we ze
niet kunnen zien, of toch niet bij de energieén die we op dit moment kunnen berei-
ken. Afhankelijk van de structuur van de compacte variéteit, blijven verschillende
hoeveelheden supersymmetrie over in de effectieve theorie in minder dimensies.
In plaats van onmiddellijk het volledige probleem aan te pakken van een compac-
tificatie naar vier dimensies, hebben theoreten ook compactificaties naar andere
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dimensies bestudeerd, bijvoorbeeld naar zes dimensies. Hoewel het duidelijk is dat
die berekeningen geen realistische voorspellingen opleveren, kunnen ze wel bijdra-
gen aan een beter begrijpen van compactificaties van supergravitatie theorieén.
Een van de mogelijkheden om vier dimensies te compactificeren geeft aanleiding
tot chirale® theorieén in zes dimensies. IIB theorie op een K3 variéteit leidt
tot chirale (2,0) supergravitatie in zes dimensies. De enige mogelijke materie-
representatie in deze theorieén is een zelfduaal tensor multiplet. Een zelfduale
tensor in zes dimensies is een twee-index tensor die een reéle zelfduale veldsterkte
heeft. We zullen veel aandacht besteden aan modellen met een zelfduale tensor in
hoofdstuk 4 en 5.

Ook compactificaties op Calabi—Yau variéteiten zijn vaak bestudeerd. Deze
zesdimensionale variéteiten voldoen aan bepaalde voorwaarden zodat een kwart
van de tiendimensionale supersymmetrie bewaard blijft in vier dimensies. De
Calabi—Yau compactificatie van de heterotische supersnaar leidt naar een chirale
theorie met één supersymmetrie in vier dimensies die een bepaalde ijkgroep heeft.
Deze theorieén komen kwalitatief dicht bij het minimale supersymmetrische stan-
daardmodel. De Calabi-Yau compactificatie van IIA of I1B theorie geeft aan-
leiding tot theorieén in vier dimensies met twee supersymmetrieén. Die worden
bestudeerd in hoofdstuk 6. Tot nu toe is niemand er in gelukt een realistisch
supersnaarvacuiim af te leiden.

Niet-perturbatieve aspecten van veldentheorie

De oplossing van het probleem van de vijf, schijnbaar-verschillende supersnaar
theorieén vereist iets extra. Tot nu toe hebben we alleen resultaten verklaard
die gevonden zijn in een perturbatieve benadering van snaartheorie, net zoals de
expansie in Feynman diagrammen in deeltjesfysica een perturbatieve benadering
geeft van de theorie. Tot enkele jaren geleden was dit, in tegenstelling tot in vel-
dentheorie, de enige manier die gekend was om snaartheorie te beschrijven. De
laatste jaren echter is nieuw inzicht verworven in aspecten van snaartheorie die
deze perturbatieve benadering overstijgen. Toch zijn we nog ver van een volle-
dige beschrijving van de theorie. We zullen eerst een aantal niet-perturbatieve
aspecten van veldentheorie uitleggen, die later relevant zullen zijn in snaartheorie.
In een volgende sectie zullen we dan niet-perturbatieve aspecten van snaartheorie
aansnijden. Het is ook in de context van deze niet-perturbatieve aspecten van
veldentheorie dat we vector multipletten in vier dimensies zullen bestuderen.

3Tn even dimensies is het mogelijk om een spinor (en dus ook een superlading uit de supersym-
metrie algebra) in twee chiraliteiten te splitsen door een projectie te gebruiken. Dit is uitgelegd
in hoofdstuk 2. (2,0) supersymmetrie betekent dat er twee supersymmetrieén zijn met dezelfde
chiraliteit.
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In veldentheorie zijn er puntdeeltjes met elektrische lading e. Ze koppelen aan
een vectorveld, een één-vorm. In vier dimensies is er ook een ander object dat aan
deze vorm koppelt: de magnetische monopool. Deze magnetische monopool heeft
magnetische lading g. De Dirac kwantisatie conditie,

eg = 2mhn (1)

legt op dat het product van de elektrische en de magnetische lading gelijk moet
zijn aan een constante. Dit impliceert dat de elektrische en de magnetische lading
omgekeerd evenredig zijn. Deze magnetische monopolen verschijnen in U (1) ijkthe-
orieén. In niet-Abelse ijktheorieén komen ’t Hooft—Polyakov monopolen voor als er
een U(1)-deelgroep is. De aanwezigheid van zulke topologisch stabiele, magnetisch
geladen deeltjes opent de mogelijkheid voor een symmetrie tussen elektriciteit en
magnetisme. Er is tot nu toe geen experimentele aanwijzing voor het bestaan
van een magnetische monopool. In de reéle wereld, met alleen elektrische gela-
den materie, is er geen elektromagnetische dualiteit. In vaculim zijn de Maxwell
vergelijkingen invariant onder de transformatie

E— B, B— —E, (2)

van het elektrische veld E en het magnetische veld B. Als er elektrisch en magne-
tisch geladen deeltjes zijn, worden hun ladingen verwisseld onder deze transforma-
tie. Deze transformatie kan veralgemeend worden tot rotaties over een willekeurige
hoek

E - cosﬁﬁ+sin0§,
B — —sinfE +costB. (3)

Dezelfde symmetrie werkt ook in op de versie van de Maxwell vergelijkingen in
functie van de veldvergelijkingen en de Bianchi identiteit*:

O F* = 0,
O F" = 0, (4)

waarbij F, de veldsterkte is voor de vector en Fj, = &,1,0F*7. Deze vergelij-
kingen zijn opnieuw invariant onder rotaties over een willekeurige hoek:

(E)=s(Ee)=(aB)(5) 9

4De Bianchi identiteit drukt uit dat de veldsterkte lokaal afleidbaar is van een vector.
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waarbij & € GL(2,R). In de aanwezigheid van m Abelse vectorvelden veral-
gemeent deze symmetrie tot GL(2m,R). De veldvergelijkingen kunnen afgeleid
worden van een actie

Ly = 1(ImN1p)FL, F*7 — L(Re Npj)e"*  Fl  Fy, (6)

prvs o po

waarbij I,.J = 1,...,m, de matrix N7 is symmetrisch en F,{,, zijn de veldsterkten
voor de vectorvelden. In een theorie met ook scalairen, kan N7; afhangen van deze
scalairen. In supersymmetrische theorieén zal deze afhankelijkheid zeer specifiek
zijn.

De veldsterkten transformeren op een welbepaalde manier onder de elektro-
magnetische dualiteitstransformaties. Opleggen dat de veldvergelijkingen nog van
een actie kunnen afgeleid worden, impliceert dat de groep van transformaties be-
perkt wordt tot de symplectische matrices in Sp(2m, R):

Teyo _ 0o 1
STQAS =0 met Q_<—’Jl 0). (7)

Dit vereist dat de componenten van S voldoen aan
ATc-cTA=0, B'D-D'B=0, ATD-0"B=1. (8)

De matrix N transformeert als volgt:
N = N =(C+DN)A+BN)™*. 9)

Als zowel elektrische als magnetische ladingen toegevoegd worden aan de combina-
tie van veldvergelijkingen en Bianchi identiteiten, beperkt de Schwinger—Zwanziger
kwantisatievoorwaarde de mogelijke ladingen tot een rooster. De ladingen van twee
dyonen (g1, g1) en (g2, g2) moeten bijvoorbeeld voldoen aan

0192 — @291 = 2mnh. (10)

Dit rooster beperkt de symplectische transformaties verder tot hun discrete deel-
groep Sp(2m, Z). Deze gehele symplectische transformaties zullen een essentiéle rol
spelen in de behandeling van vectormultipletten gekoppeld aan N = 2 supergravi-
tatie® in vier dimensies. In hoofdstuk 6 zijn we geinteresseerd in de koppeling van
vectormultipletten aan supergravitatie. De symplectische vorm van de elektromag-
netische dualiteitstransformaties zal daar een meetkundige interpretatie krijgen.

5We zullen het aantal supersymmetrieén in de specifieke dimensie noteren met N in deze
thesis.
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Een symmetrie tussen de elektrisch en magnetisch geladen objecten werd al
in de late jaren ’70 geconjectureerd door Montonen en Olive. In 1994 gaf Sen
verdere bewijzen voor de aanwezigheid van S-dualiteit in N = 4 supersymmetri-
sche Yang—Mills theorie. Deze S-dualiteit is een sterke-zwakke koppelingsdualiteit.
Ze relateert een regime bij sterke koppeling met een regime van dezelfde of een
andere theorie bij zwakke koppeling. Daar kunnen perturbatieve resultaten ver-
kregen worden. De aanwezigheid van veel supersymmetrie was essentieel in zijn
bewijs, aangezien supersymmetrie de mogelijke kwantumcorrecties beperkt. Re-
laties tussen koppelingsconstanten, die gerenormaliseerd dienen te worden, zijn
inderdaad van belang. Supersymmetrie kan de relaties tussen deze koppelingscon-
stanten beschermen van renormalisatie effecten.

Niet-perturbatieve aspecten van snaartheorie

De ideeén uit de vorige sectie uit kwantumveldentheorie kunnen veralgemeend wor-
den naar meer dimensies en ook naar snaartheorie. In het algemeen koppelt een
object, uitgestrekt in p dimensies, elektrisch aan een (p+1)-vorm. Zijn magnetisch
duale partner in dan uitgestrekt in d — p — 4 ruimtelijke richtingen. Dit betekent
dat een snaar in tien dimensies koppelt aan een twee-vorm, de NSNS® antisymme-
trische vorm B,,. Dit impliceert dat er een niet-perturbatief object bestaat dat
magnetische geladen is met betrekking tot deze twee-vorm. Dit object heeft vijf
ruimtelijke dimensies en wordt een NS5-braan genoemd. Elk van de vijf snaartheo-
rieén heeft dergelijke NS5-branen. De massa van deze vijf-branen is evenredig met
1/g2 als g5 de snaarkoppelingsconstante is. Ook in 11-dimensionale supergravitatie
zijn er elektrisch en magnetisch geladen objecten. Er is een drie-vorm potentiaal
die suggereert dat er elektrisch geladen membranen zijn. Deze membranen hebben
een magnetisch duaal object met weer vijf ruimtelijke dimensies: het M 5-braan.

Verschillende snaartheorieén bevatten verder verschillende antisymmetrische
RR-vormen. De objecten die geladen zijn onder deze vormen worden Dp-branen
genoemd’. Type ITA/IIB snaartheorie laat Dp-branen toe voor even/oneven p.
Verschillende uitgangspunten zijn geschikt om het inzicht in deze objecten te ver-
groten. Een eerste manier om D-branen te bestuderen is als oplossingen van de
supergravitatieveldvergelijkingen. Deze oplossingen worden uitgedrukt met behulp
van harmonische functies. Aan de andere kant zijn D-branen uitgestrekte objecten
in snaartheorie die aan Dirichlet randvoorwaarden voldoen. De eindpunten van

6De bosonische velden in de ruimtetijd worden NSNS-velden (NS voor Neveu—Schwarz) ge-
noemd als ze van wereldoppervlak spinor bilineairen komen met antiperiodische randvoorwaarden
en RR-velden (R Van Ramond) als ze afkomstig zijn van periodische wereldoppervlak fermionen.

"De p in Dp-branen telt het aantal ruimtelijke dimensies van deze niet-perturbatieve objecten:
een DO0-braan is een deeltje, een D1-braan is een snaar, een D2-braan is een membraan ... Het
standaardwerk over D-branen is [2].
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open supersnaren kunnen vrij bewegen over de D-branen. Het is mogelijk om het
gedrag van deze D-branen bij lage energie te beschrijven door middel van een we-
reldvolume theorie. De veralgemening van een wereldoppervlak beschrijving is een
o-model in (p+ 1) dimensies waarbij de positie van het braan in de ruimtetijd een
deel van de veldinhoud is. De wereldvolume theorie van een D-braan bevat verder
een vectorveld en fermionen. Samen vormen deze velden een vector multiplet. Het
op mekaar leggen van n verschillende branen geeft aanleiding tot een veldentheorie
met niet-Abelse ijkgroep U(n).

Al deze uitgebreide objecten leiden tot de conclusie dat snaartheorie meer
is dan een theorie van snaren. Snaartheorie krioelt van de meerdimensionale
objecten. De branen laten toe een aantal relaties tussen de op het eerste zicht
verschillende snaartheorieén te verduidelijken. Die relaties zijn dualiteiten. Een
eerste type dualiteit is T-dualiteit. T'-dualiteit in zijn eenvoudigste vorm ver-
bindt ITA met IIB theorie. Op die manier verklaren D-branen de relaties tussen
snaartheorieén. Ook mirror-symmetrie kan beschouwd worden als T-dualiteit.
Mirror-symmetrie betekent dat een type I snaartheorie op een bepaald Calabi—
Yau variéteit equivalent is aan de andere type I theorie op een andere, maar
gerelateerde Calabi—Yau variéteit. Dit soort T-dualiteit is relevant voor de com-
pactificatie van snaartheorie naar vier dimensies.

Een ander soort dualiteit is de veralgemening van S-dualiteit in kwantumvel-
dentheorie. Door de snaar koppelingsconstante g, te laten toenemen, worden de
solitonische objecten de lichtste uit de theorie. Een perturbatieve beschrijving met
1/gs als koppelingsconstante wordt interessant op die manier. Een combinatie van
T- en S-dualiteiten verbindt al de verschillende snaartheorieén. Een merkwaar-
dige conclusie die de laatste jaren getrokken werd, is dat het ook mogelijk bleek
een 11-dimensionale theorie terug te vinden. Type ITA supergravitatie bij sterke
koppeling geeft aanleiding tot 11-dimensionale supergravitatie. Het matrixmo-
del [3] is een kandidaat voor de microscopische beschrijving van de theorie die
11-dimensionale supergravitatie als zijn lage-energie limiet heeft. De definitieve
versie van deze microscopische beschrijving is nog niet bekend, maar kreeg alvast
de naam M-theorie. De dualiteiten tussen al deze verschillende snaartheorieén
weerlegt het bezwaar dat er verschillende (perturbatieve) snaartheorieén zijn. Ze
zijn allemaal verbonden op het niet-perturbatieve niveau.

De Maldacena conjectuur

Als een groot aantal, n, D3-branen op mekaar geplaatst worden, wordt de klassieke
supergravitatie oplossing voor de metriek een goede benadering voor de ruimtetijd
meetkunde in snaartheorie. De limiet nemen voor grote n, waarbij de snaarlengte
naar nul gestuurd wordt, leidt tot een nabije-horizon meetkunde die het produkt
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is van adSs x S°. De groep van isometrieén van deze ruimte is SO(4,2) x SO(6).
Anderzijds hebben we al gezien dat n D3-branen op mekaar aanleiding geven tot
N = 4 Yang-Mills ijktheorie in vier dimensies met ijkgroep U(n). Deze ijktheorie
is conform invariant en heeft ruimtetijd symmetriegroep SO(4,2). De interne R-
symmetriegroep, die de verschillende supersymmetrieladingen in mekaar roteert, is
SU(4). Aangezien SU(4) de enkelvoudig samenhangende groep van SO(6) is, vin-
den we dat de groep van isometrieén voor beide theorieén dezelfde is. Dit was de
aanleiding voor Maldacena om de adS/CFT-conjectuur te postuleren [4]: snaar-
theorie in een adSs x S° achtergrond?® is equivalent aan een N = 4 superconforme
Yang—Mills theorie in vier dimensies in de limiet voor grote n. Deze veldentheorie
bevat geen gravitatie. De theorie is gedefinieerd op de vierdimensionale rand van
de adSs-ruimte. Exacter, de amplitudes in de I1B bulk supergravitatie zijn func-
ties van de snaarvelden op punten op de rand van adSs. De conjectuur schrijft
voor dat deze velden op de rand de bronnen zijn voor bepaalde operatoren in de
Yang—Mills theorie. De snaaramplituden kunnen geidentificeerd worden met cor-
relatiefuncties uit de conforme veldentheorieén. Deze correspondentie kan leiden
tot het berekenen van sterke kwantumeffecten in conforme veldentheorie door een
berekening in klassieke supergravitatie.

Maldacena formuleerde zijn conjectuur ook voor M-theorie op adS; x S en
M-theorie op adS; x S*. Deze gevallen kunnen geinterpreteerd worden als de
meetkunde op de horizon van een aantal M2-branen of M 5-branen op mekaar. De
wereldvolume beschrijving van het M 5-braan bevat een zelfduale tensor. Dit im-
pliceert dat de wereldvolume beschrijving voor veel M 5-branen een interagerende
theorie voor zelfduale tensoren vereist. Het blijft één van de uitdagingen van
hoge-energie theoretische natuurkunde om een theorie te vinden die dit beschrijft.

B.2 Overzicht van de thesis

Naast deze algemene inleiding bevat deze samenvatting een overzicht van de ver-
schillende hoofdstukken in dit proefschrift. Geinteresseerde lezers kunnen voor
meer technische details de relevante delen van dit werk raadplegen.

Hoofdstuk 2

Hoofdstuk 2 bevat vooral wiskundige achtergrond. Wiskunde blijkt de taal bij uit-
stek om natuurkunde accuraat te beschrijven. In dit werk is het concept symmetrie
uiterst belangrijk. In wiskundige termen worden deze symmetrieén beschreven met

8Minder symmetrische ruimtes dan perfecte sferen geven aanleiding tot situaties waarbij de
correspondentie geldig is met minder supersymmetrie.



B.2. Overzicht van de thesis 169

behulp van algebra’s, groepen en hun representaties. Supersymmetrie en conforme
symmetrie zijn de twee belangrijke hoekstenen in dit werk. Er zijn twee redenen
om modellen met superconforme symmetrie te bestuderen. Een eerste motive-
ring is dat we de koppeling van bepaalde modellen aan Poincaré supergravitatie
kunnen beschrijven met behulp van superconforme tensor calculus (zie daarvoor
hoofdstuk 3). We bestuderen eerst de koppeling van die multipletten aan con-
forme gravitatie en de conforme symmetrie wordt later gebroken tot Poincaré su-
persymmetrie. Een tweede reden om de koppeling van materie aan superconforme
gravitatie te beschrijven komt van de adS/CFT correspondentie.

In dit hoofdstuk willen we tot een classificatie van conforme superalgebra’s
komen. We starten met de bosonische algebra’s die verschillende ruimtetijd confi-
guraties beschrijven, geven hun supersymmetrische veralgemening en classificeren
de superconforme algebra’s. Verder besteden we aandacht aan hun representaties:
de verschillende spinor representaties en chirale bosonen. We beklemtonen de mo-
gelijkheid om kleinere spinorrepresentaties te vinden: de chiraliteitsvoorwaarde
leidt tot Weyl spinoren, een realiteitsvoorwaarde tot Majorana of symplectische
Majorana spinoren. We leiden ook af voor welke dimensies en signaturen de twee
voorwaarden samen opgelegd kunnen worden. Verder bestuderen we chirale bo-
sonen: antisymmetrische vormen met een reéle, (anti)zelfduale veldsterkte. Ze
komen voor in dezelfde dimensies en signaturen waar er (symplectische) Majorana—
Weyl spinoren zijn. In supersymmetrische representaties zitten ze samen in een
multiplet. Symplectische Majorana—Weyl spinoren en chirale spinoren komen we
later in de zesdimensionale modellen tegen.

Met behulp van de spinor representaties is het mogelijk om de conforme su-
peralgebra’s die relevant zijn in dit werk te geven: de zesdimensionale chirale,
superconforme (2,0) algebra OSp(8*|4) en de superconforme algebra in vier di-
mensies met twee supersymmetrieén SU(2,2/2).

Hoofdstuk 3

Hoofdstuk 3 beschrijft de methodes die we gebruikt hebben in de analyse van
de twee modellen in dit werk. We hebben voor allebei de modellen gebruik ge-
maakt van superconforme tensor calculus. Deze techniek wordt gebruikt om de
koppeling van verschillende materie multipletten aan Poincaré supergravitatie op
een elegante manier te bekomen. Het uitgangspunt is eerst modellen met te veel
symmetrie te bestuderen: de verschillende representaties alsook de actie (of de
veldvergelijkingen) worden opgesteld zodat ze invariant zijn onder superconforme
transformaties. Compenserende multipletten worden ingevoerd om later door be-
paalde algebraische voorwaarden de overbodige symmetrie te breken. In het geval
van superconforme tensor calculus zijn die overbodige symmetrieén de dilataties,
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de speciale conforme symmetrie en de speciale supersymmetrie. De essentiéle stap-
pen in deze procedure wordt geschetst aan de hand van twee voorbeelden. Het
belang van de conventionele beperkingen in (super)conforme tensor calculus wordt
benadrukt in een voorbeeld dat algemene relativiteit afleidt uit conforme gravi-
tatie. Dit voorbeeld bevat de gedachtegang die ook gevolgd wordt in de twee
modellen die expliciet uitgewerkt zullen worden in deze thesis. De lezer die niet
vertrouwd is met superconforme tensor calculus, wordt dan ook aangeraden zeker
dit voorbeeld te bestuderen.

Sectie 3.2 vat de Batalin—Vilkovisky methode samen. Die maakt het moge-
lijk de meest ingewikkelde ijksymmetrieén te behandelen: niet-Abelse Yang—Mills
theorieén, ‘softe’ algebra’s met veldafthankelijke structuurfuncties, (oneindig) redu-
cibele ijksymmetrieén, waarbij niet alle ijktransformaties onafhankelijk zijn, open
algebra’s, ... Batalin en Vilkovisky voerden in hun constructie voor elk veld een
antiveld in. Een ander essentieel ingrediént in hun constructie is de invoering van
antihaakjes. Die spelen dezelfde rol als de Poissonhaken in de beschrijving van
klassieke mechanica. De antihaakjes laten ook een covariante behandeling toe.
We geven de relevante aspecten van deze Batalin—Vilkovisky methode die nodig
zijn om de klassieke uitgebreide actie af te leiden. De vorm van die uitgebreide
actie hangt af van de verschillende soorten ijksymmetrieén van het model en moet
aan drie voorwaarden voldoen: De ‘properness’ voorwaarde, die uitdrukt dat alle
reducibele symmetrieén meegenomen zijn, en de klassieke ‘master’ vergelijking,
uitgedrukt met behulp van de antihaakjes, moeten voldaan zijn. De klassieke li-
miet van de uitgebreide actie, waarbij alle antivelden nul gesteld worden, moet
ook leiden tot de originele actie.

Verder beschrijven we hoe ijkfixing, het vastleggen van de symmetrie ter voor-
bereiding van een kwantummechanische behandeling, gebeurt door een canonieke
transformatie, een transformatie die de antihaakjes bewaart. Tenslotte schetsen
we kort uit hoe de berekening van kwantummechanische resultaten kan gebeuren
met behulp van het Batalin—Vilkovisky formalisme. In deze thesis zullen we geen
kwantummechanische resultaten afleiden.

B.2.1 De zelfduale tensor in 6 dimensies

Al deze achtergrond wordt gebruikt in de analyse van bepaalde aspecten van twee
modellen. We bestuderen eerst zelfduale tensoren in zes dimensies. Hoofdstuk 4
bestudeert bosonische aspecten van de Lorentz-covariante actie voor een zelfdu-
ale tensor in zes dimensies. De supersymmetrische aspecten, en meer specifiek
de koppeling van het zelfduale tensor multiplet aan een achtergrond van chirale,
conforme supergravitatie wordt behandeld in hoofdstuk 5.

De zelfduale tensor in zes dimensies is een chiraal boson. Het is een twee-tensor



B.2. Overzicht van de thesis 171

B, waarvan de veldsterkte zelfduaal en reéel is. Chirale bosonen komen voor in
de beschrijving van heterotische snaren en bij instantonen in vier Euclidische di-
mensies. De zelfduale vier-vorm in type IIB supergravitatie is ook een chiraal
boson. Chirale bosonen worden ook gebruikt in de beschrijving van bepaalde fe-
nomenen van het fractionele quantum Hall effect. De zelfduale twee-tensor vind
je zowel in materiemultipletten als in chirale-gravitatie multipletten. Chirale su-
pergravitaties in zes dimensies kunnen gevonden worden uit compactificaties van
tiendimensionale supergravitatie op geschikte variéteiten. Type IIB supergravi-
tatie geeft aanleiding tot modellen met (2,0) supersymmetrie in zes dimensies. De
wereldvolume beschrijving van het M 5-braan en het NS5-braan van ITA theorie
gebeurt door middel van een zelfduaal (2,0) tensor multiplet. Hoewel de veldin-
houd voor de beschrijving van de wereldvolume theorie van het M 5-braan gekend
is, blijft het zoeken naar een beschrijving van een interagerende theorie voor zelf-
duale tensoren. Die is nodig voor de beschrijving van meerdere samenvallende
branen.

Hoofdstuk 4

In dit hoofdstuk willen we een aantal bosonische aspecten van de Lorentz-covari-
ante actie voor de twee-tensor bestuderen. De kern van het probleem om die actie
neer te schrijven is de zelfdualiteitsvoorwaarde. Er zijn twee redenen om zo’n
actie op te schrijven. Een eerste reden is dat een covariante actie nodig is om een
kwantummechanische analyse met behulp van het padintegraalformalisme mogelijk
te maken. Een tweede motivering spruit voort uit de mogelijkheid om Lorentz-
covariantie op twee, a priori niet-equivalente, manieren te definiéren. Een eerste
mogelijkheid is te eisen dat er geen bevoorrecht referentiestelsel is. Dat betekent
dat een prescriptie vereist is die oplegt hoe de overgang van het ene naar het andere
referentiestelsel dient te gebeuren. De verzameling van die transformaties moet aan
de vermenigvuldigingswet van de Poincarégroep voldoen. Een tweede, op het eerste
zicht strengere, definitie van Lorentz-covariantie legt op dat de beschrijving van
het model manifest covariant moet zijn. De vraag is of deze manier om Lorentz-
covariantie te definiéren echt strenger is. De formulering van de Lorentz-covariante
actie weerlegt dat de zelfduale twee-tensor een voorbeeld is dat aantoont dat de
twee definities van Lorentz-covariantie niet equivalent zouden zijn.

In 1996 lukten Pasti, Sorokin en Tonin (PST) er in om een expliciet Lorentz-
covariante actie neer te schrijven. Daartoe dienden zij wel één extra scalair veld a
in te voeren. Dat veld maakte het mogelijk om behalve de gewone ijktransformatie
voor een tensor, ook nog twee nieuwe symmetrieén te introduceren, vanaf nu PST
symmetrieén genoemd. a is puur ijk voor de eerste PST symmetrie. Met behulp
van die symmetrieén argumenteren we dat de zelfduale tensor drie vrijheidsgra-
den bevat. De nieuwe resultaten in dit hoofdstuk beschrijven twee ijkfixings van
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de ijksymmetrieén van de zelfduale tensor. Daarvoor bouwen we eerst de uitge-
breide actie op in het Batalin—Vilkovisky formalisme. We ijkfixen deze actie op
twee manieren. Een eerste manier leidt tot een covariante ijkfixing. Deze ijk-
fixing zou kunnen leiden tot kwantummechanische resultaten voor de M 5-braan
uit M-theorie. De andere ijkfixing is niet covariant. Die ijkfixing werd vroeger al
gebruikt om de gravitationele anomalieén van de chirale tensor in zes dimensies te
berekenen. Een neerslag van deze nieuwe resultaten is ook te vinden in [6].

Hoofdstuk 5

Hoofdstuk 5 behandelt de supersymmetrische aspecten van het zelfduale tensor
multiplet met (2,0) chirale supersymmetrie. Het enige materie multiplet dat de
(2,0) supersymmetrie algebra toelaat, bevat een zelfduale tensor, een kwartet sym-
plectische Majorana—Weyl spinoren en vijf scalairen.

In sectie 5.2 geven we de beschrijving van het zelfduale tensor multiplet met
(2,0) rigide supersymmetrie. De on-shell transformatieregel voor de spinor bevat
het zelfduale deel, H;rbc, van de veldsterkte. Om dé elementaire eigenschap van
een supersymmetrie algebra — de commutator van twee supersymmetrieén is een

translatie — te realiseren, is het nodig de zelfdualiteitsvoorwaarde

H> =0 (1)

a_bc -
te gebruiken. We maken duidelijk dat dit kan vermeden worden door de invoering
van het scalaire hulpveld a. Die a maakt het mogelijk om een transformatieregel te
vinden met een a-afhankelijke, zelfduale tensor h;b . die wel aanleiding geeft tot een
translatie in de commutator van twee supersymmetrieén. Die commutator bevat
verder zowel een term die een ijktransformatie is voor de gewone ijksymmetrie,
als één voor de tweede PST symmetrie. De eerste PST ijksymmetrie verschijnt in
een covariante afgeleide in de algebra. We definiéren de covariante afgeleide van
een veld als zijn partiéle afgeleide min de ijktransformaties waarbij de parameter
vervangen is door het ijkveld. We realiseerden ons dat de afgeleide van a fungeert
als een ijkveld: de transformatie ervan is de afgeleide van de ijkparameter. Door
deze nieuwe interpretatie, voor het eerst beschreven in [7], komt de eerste PST
ijksymmetrie in covariante afgeleiden voor. De tensor h;‘b . kan dan ook als een
covariante grootheid beschouwd worden.

Verder herhalen we dat a een fermionisch singlet is. Dat is een represen-
tatie van een supersymmetrie algebra die slechts één bosonische of fermionische
component heeft. Het scalair veld is puur ijk voor de eerste PST symmetrie, dus
a is een representatie van de supersymmetrie algebra met nul bosonische en nul
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fermionische vrijheidsgraden. Het is door de aanwezigheid van de PST ijksym-
metrie dat het toch mogelijk is de algebra te realiseren voor dit veld. Tenslotte
geven we de actie voor het (2,0) zelfduale tensor multiplet. Die is invariant onder
superconforme, rigide transformaties.

Sectie 5.3 beschrijft de volgende stap om tot de koppeling van het zelfduale
tensor multiplet aan conforme gravitatie te komen: een accurate beschrijving van
de supergravitatie achtergrond. Het Weyl multiplet voor (2,0) conforme super-
gravitatie multiplet bevat a priori al de ijkvelden voor de symmetrieén van de
superconforme algebra: translaties, Lorentz rotaties, dilataties, speciale conforme
transformaties, supersymmetrie, U Sp(4) R-symmetrie en speciale supersymmetrie.
Net als in het geval van (bosonische) conforme gravitatie in hoofdstuk 3 leggen we
conventionele beperkingen op: vergelijkingen die garanderen dat we irreducibele
transformaties vinden. Die vergelijkingen voor de krommingen van translaties, Lo-
rentz rotaties en supersymmetrie leiden tot vergelijkingen voor de spin connectie,
het ijkveld voor speciale conforme transformaties en dat voor speciale supersym-
metrie. Na die beperkingen hebben we 64 + 64 vrijheidsgraden. We voeren dan
materievelden in met 64 + 64 componenten. Een telargument, dat voor alle an-
dere constructies in superconforme tensor calculus gebruikt wordt, gaat hier niet
op. Er is ook nog niet bewezen dat het niet mogelijk is om een supergravitatie
multiplet te construeren zonder materievelden. Wij geven vier argumenten om
ze wel in te voeren: zowel de compactificatie naar het vierdimensionale N = 4
conforme supergravitatie multiplet, als de koppeling aan een multiplet van stro-
men met 128 + 128 vrijheidsgraden en de reductie naar het Weyl multiplet van
(1,0) conforme supergravitatie wordt gerealiseerd vanuit het Weyl multiplet mét
materievelden. Een laatste argument steunt op de adS/CFT correspondentie. De
adS-zijde van de correspondentie wordt in goede benadering beschreven door su-
pergravitatie in adS7. Op de zesdimensionale rand van adSy leiden de velden van
het gravitatiemultiplet na een partiéle ijkfixing tot het (2,0) Weyl multiplet met
de materievelden erbij. In adS7 is wel bewezen dat er geen kleiner gravitatie mul-
tiplet bestaat dan het multiplet dat aanleiding geeft tot het Weyl multiplet met
de materievelden.

Met behulp van dit Weyl multiplet met 1284128 vrijheidsgraden construeren
we dan de gecorrigeerde krommingen, covariante conventionele beperkingen en
superconforme transformatieregels voor het hele multiplet.

De combinatie van het Weyl multiplet in sectie 5.3 en het zelfduale tensor
multiplet in sectie 5.2 leidt dan tot een koppeling van het materie multiplet aan
een achtergrond van superconforme gravitatie. Al de nieuwe resultaten uit deze
sectie zijn ook te vinden in [7]. In de covariante veldsterkte voor de tensor (voor-
lopig nog niet covariant voor de eerste PST symmetrie) staat ook een term met de
materievelden uit het Weyl multiplet. Die zal later nodig blijken bij het realiseren
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van de supersymmetrie algebra en een invariante Lorentz-covariante actie. Het
hulpveld a leidt weer tot een veldsterkte h:,,p die automatisch zelfduaal is en die
covariant is voor de eerste PST symmetrie. In het geval van lokale supersymmetrie
wordt de translatie in de algebra vervangen door een algemene codrdinaten trans-
formatie. Als er andere ijksymmetrieén in het spel zijn, wordt dat een covariante
algemene coordinaten transformatie. We leiden de rol van de ijksymmetrieén in
de commutator van twee supersymmetrieén af.

Het belangrijkste resultaat van dit hoofdstuk is de constructie van de Lorentz-
covariante actie. Die is invariant onder lokale superconforme transformaties en
geeft aanleiding tot veldvergelijkingen van deze actie, die al gekend waren uit de
literatuur. In zekere zin is dit de meest algemene Lorentz-covariante actie voor
het zelfduale tensor multiplet. Het is immers zowel mogelijk om supersymmetrie
(gedeeltelijk) te breken als om de conforme symmetrieén te ijkfixen.

Verder becommentariéren we op welke manier de berekening van de conforme
anomalie van de zelfduale tensor een rol zou kunnen spelen in een (voorlopige?)
discrepantie in de adS;/CFTs correspondentie.

We kunnen dus zeggen dat we er in gelukt zijn een aantal bosonische en fermi-
onische eigenschappen van zelfduale tensor (multipletten) af te leiden. We hebben
de uitgebreide actie geconstrueerd voor de zelfduale tensor en zijn ijksymmetrieén
op twee manieren geijkfixt. Verder hebben we een aantal supersymmetrische ei-
genschappen verduidelijkt. Zowel voor globale als lokale supersymmetrie hebben
we aangetoond dat we betere supersymmetrie transformatie regels vinden door
een veldsterkte te definiéren die covariant is voor de eerste PST ijksymmetrie.
Het ijkveld voor deze symmetrie is de afgeleide van het hulpveld a. Dat hulp-
veld a blijkt een fermionisch singlet te zijn. We hebben dan het Weyl multiplet
voor (2,0) conforme supergravitatie afgeleid: de materievelden, transformatiere-
gels, covariante krommingen en conventionele beperkingen. Tenslotte hebben we
de Lorentz-covariante actie geconstrueerd voor het zelfduale tensor multiplet in de
achtergrond van het Weyl multiplet.

B.2.2 Vector multipletten in N =2 in 4 dimensies

Het tweede model dat we onder de loupe nemen, zijn vector multipletten in vier
dimensies, gekoppeld aan N = 2 supergravitatie. Die multipletten spelen een
belangrijke rol in zowel supersymmetrische als supergravitatie theorieén. We stre-
ven naar een meetkundige beschrijving waarbij symplectische transformaties, de
veralgemening van elektromagnetische dualiteit, een essentiéle rol spelen.
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Hoofdstuk 6

In een eerste sectie benadrukken we de rol van symplectische transformaties in
theorieén met scalairen en vectoren. In de supersymmetrische behandeling van de
vector multipletten in de rest van dit hoofdstuk zal die symplectische symmetrie
immers essentieel zijn. Verder herhalen we in sectie 6.1 een definitie van speciale
Kéihler meetkunde die gebruik maakt van symplectische haken. Speciale Kéahler
meetkunde is de naam voor de meetkunde van de variéteiten die de scalairen uit
de N = 2 vector multipletten in vier dimensies opspannen. Verder schetsen we de
ambiguiteit in deze definitie: voor het geval van één fysisch vector multiplet zijn
er twee definities mogelijk. Tot hiertoe werd in de literatuur altijd de sterke defi-
nitie gebruikt. Wij zullen in dit hoofdstuk modellen construeren met een vector
multiplet die wel aan de zwakke definitie voldoen, maar niet aan de sterke. Voor
meerdere vector multipletten zijn de twee definities equivalent. Verder schetsen we
de procedure die we zullen volgen. We zijn geinteresseerd in de veldvergelijkingen
van vector multipletten gekoppeld aan Poincaré gravitatie. We vertrekken van
superconforme multipletten en zullen de veldvergelijkingen afleiden die Poincaré
supersymmetrisch zijn. Daarvoor gebruiken we zowel superconforme tensor calcu-
lus (cf. hoofdstuk 3) als de vergelijkingen die speciale Kéhler meetkunde definiéren
en de supersymmetrie partners van deze vergelijkingen.

In sectie 6.2 herhalen we de eigenschappen van de superconforme bouwblok-
ken van de constructie. Het Weyl multiplet is het multiplet van conforme su-
pergravitatie in N = 2 in vier dimensies en het superconforme chirale multiplet
geeft aanleiding tot een vector multiplet als een supersymmetrisch stel beperkin-
gen opgelegd wordt. Die beperkingen worden veralgemeende Bianchi identiteiten
genoemd omdat een van de vergelijkingen de Bianchi identiteit voor de vector uit
het multiplet is. Voor de koppeling van n vector multipletten aan gravitatie voeren
we er n + 1 in. Dat extra multiplet is een compenserend multiplet.

In sectie 6.3 onderzoeken we de eerste consequenties van de zwakkere defini-
tie van speciale Kéhler meetkunde. De kromming voor dit speciale geval wordt
vergeleken met de algemene kromming van een speciale Kidhler variéteit. Het
blijkt ook nuttig een aangepaste metriek te definiéren. Verder wordt de stap van
conforme naar Poincaré gravitatie voorbereid. De definitie van speciale Kéhler
meetkunde blijkt de dilataties al te ijkfixen. De supersymmetrische partners van
deze definiérende betrekkingen doen hetzelfde voor de speciale supersymmetrie.
De ijkkeuze voor speciale conforme symmetrie breekt de derde symmetrie. Zo
blijft het model invariant onder Poincaré supersymmetrie en een SU(2), atkom-
stig van de R-symmetrie uit de superconforme algebra. Vervolgens worden alle
andere supersymmetrie transformaties van de vergelijkingen van de definitie van
speciale Kéhler meetkunde afgeleid, zowel voor het generieke als voor het speci-
ale geval. Die uitdrukkingen worden later nog gebruikt bij de afleiding van de
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veldvergelijkingen. In sectie 6.4 worden de veralgemeende Bianchi identiteiten
gecombineerd met de vergelijkingen voor speciale Kéhler meetkunde. Zowel het
generieke geval als het speciale geval worden uitgewerkt. Die combinatie van resul-
taten uit sectie 6.3 en sectie 6.4 geeft aanleiding tot de veldvergelijkingen voor n,
respectievelijk één vector multiplet gekoppeld aan NV = 2 Poincaré supergravitatie.
Voor het generieke geval wordt nog bestudeerd in welke mate een nieuwe symplec-
tische vergelijking aanleiding geeft tot de gravitatie veldvergelijkingen. Tot nu
toe hadden we alleen veldvergelijkingen voor de vector multipletten en nog niet
voor de velden uit het gravitatie multiplet. We vinden die veldvergelijkingen op
848 ‘integratieconstanten’ na. Die ‘constanten’ zouden gevonden worden door het
invoeren van een tweede compenserend multiplet. Daardoor zouden we echter de
elegante symplectische structuur verspelen. Verder geven we in deze sectie expli-
ciet een klasse van modellen die wel aan de zwakke en niet aan de sterke definitie
van speciale Kdhler meetkunde voldoen. We bewijzen ook waarom de modellen
uit de speciale klasse niet kunnen komen van een Calabi—Yau compactificatie van
snaartheorie. De resultaten uit deze sectie, op het stuk over de relatie met Calabi—
Yau compactificaties na, zijn gebaseerd op [9]. In een laatste sectie onderzoeken
we welke deelgroepen van de symplectische transformaties nog mogelijk zijn als er
een niet-Abelse ijkgroep is. De volledige symplectische structuur van elektromag-
netische transformaties is alleen geldig voor Abelse vector multipletten. We vinden
dat de actie moet uitgebreid worden met een extra term opdat de invariantie onder
een deel van de symplectische groep bewaard blijft.

Een opmerking ter conclusie

Men kan zich afvragen: “Wat is nu de zin van dit alles als al deze resultaten niet
lijken bij te dragen aan de finale betrachting van snaartheorie? Waarom onderzoek
doen in snaartheorie (supergravitatie) als het tot nu toe onmogelijk is gebleken om
contact te maken tussen het standaardmodel en algemene relativiteitstheorie aan
de ene kant en een microscopische beschrijving van elementaire ‘deeltjes’ die al de
fundamentele krachten omvat, aan de andere kant?”

Dit uitweiden van hoge-energie theoretische fysici naar problemen die er helemaal
niet naar streven, laat staan er in lukken, contact te maken met het standaardmo-
del, heeft mijns inziens niet te maken met slechte wil. Het is eerder de overtuiging
van deze groep fysici dat een dieper begrijpen nodig is van de wiskundige structu-
ren die aan de basis liggen van snaartheorie, vooraleer betrouwbare voorspellingen
gemaakt kunnen worden. Hopelijk zet deze thesis een klein, klein stapje in de
goeie richting.
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