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Abstract In this letter, we investigate behaviour of massive
and massless scalar field that is represented by the covari-
ant Klein–Gordon equation with Bocharova–Bronnikov–
Melnikov–Bekenstein (BBMB) black hole background. We
successfully solve analytically the governing relativistic
wave equation and discover the exact quasibound states’
wave functions and energy levels of both massive and
massless cases. The corresponding quasibound states have
complex-valued energy E = ER + i EI where the real part
ER can be interpreted as the scalar’s relativistic quantized
energy while the imaginary part represents decay as the qua-
sibound states tunnels through the black hole’s horizon. The
Hawking radiation coming out of the BBMB black hole’s
horizon is also discussed and calculated via the Damour–
Ruffini method, i.e. by singling out the particle–anti-particle
parts of the obtained exact scalar’s exact wave function from
where, the radiation distribution function is derived and the
Hawking temperature is obtained.

1 Introduction

1.1 BBMB black hole

The BBMB black hole [1] is a static spherically symmetric
solution of the modified Einstein equation. A conformally
coupled scalar field is added into the Einstein–Hilbert action
as follows [2–4],

S = 1

2κ

∫ (
R − 1

2
∇μφ∇μφ − 1

12
Rφ2

)√−gd4x, (1)

where R is the Ricci scalar and φ is the scalar field. The equa-
tions of motion of the theory are obtained from extremizing
the action (1) respect to gμν that is resulted in this following
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tensorial field equation reads as follows,

Rμν − 1

2
Rgμν = κ

1 − 1
6φ2

[
∇μφ∇νφ − 1

2
gμν∇αφ∇αφ

+1

6

(
gμν∇α∇α − ∇μ∇ν

)
φ2

]
, (2)

and extremizing respect to φ leads to a scalar field equation
as follows,

∇β∇βφ = 1

6
Rφ, (3)

where κ = 8πG
c4 . It is also possible to define the effective

gravitational constant Gef f as follows,

Gef f (φ) = G

1 − 1
6φ2

. (4)

However, we can investigate the tensorial equation further
by calculating its contraction as follows,

− R = 8πGef f

c4

[
−∇αφ∇αφ + 1

2

(∇α∇α

)
φ2

]
, (5)

where,

∇α∇αφ2 = 2
(∇αφ∇αφ + φ∇α∇αφ

)
. (6)

Now, combining with (3), the (5) reads as follows,

0 = 8πGef f

c4

[
1 + 1

6
φ2

]
R, (7)

that implies,

R = 0, (8)

∇α∇αφ = 0. (9)
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By imposing the static spherically symmetric ansatz,

ds2 = gμνdx
μdxν, (10)

gμν =

⎡
⎢⎢⎣

− f (r) 0 0 0
0 f (r)−1 0 0
0 0 r2 0
0 0 0 r2sin2θ

⎤
⎥⎥⎦ , (11)

where the coordinates are xμ = (ct, r, θ, φ) the solution is
obtained as follows,

f (r) =
(

1 − rH
r

)2
, rH = GM

c2 , (12)

where M is the black hole’s mass. Notice that due to the
similarity of the BBMB metric with the extremal Reissner–
Nordström metric, the obtained results are applied for both
cases.

Since we are dealing with a static spherically symmetric
black hole solution with g00 = g11, the effective potential of
a scalar field under the influence of the black hole’s gravita-
tional field is given as follows,

Ve f f =
(
L2

r2 + kc2
)

f (r) − k2c2, (13)

where k = 1 is for massive scalar and k = 0 for massless
scalar case. In the following, we present an effective potential
graph for various M and L with massive and massless case
for each, in geometrical unit.

Notice that in few massive case, where M is small, there
exists a potential well that allows quasistable scalar bound
states.

1.2 Black hole’s spectroscopy

In 2015, the gravitational wave signal of a binary black hole
merger was directly detected for the first time [5] that makes
black hole spectroscopy a new emerging interest. The qua-
sibound states, quasinormal modes, and shadows of black

holes are among the most interesting characteristic of such an
astrophysical objects in the observational measurable spec-
tra that is generated as particles crossing into the black hole
[6]. Thus, the spectrum of quasibound states have complex
frequencies where the real part is associated as the scalar’s
energy while the imaginary part determines the stability of
the system. It is possible, in principle, to extract some infor-
mation about the physics of black holes as well as to validate
some alternative/modified theories of gravity from these qua-
sibound states [6]. Analogously to atomic transitions emitting
photons, level transitions of axions around black holes emit
gravitons [7].

The spectroscopy of black hole is also a new emerging
interest in condensed matter physics as many different kinds
of analogue models has been proposed after Unruh’s predic-
tion, for example Bose–Einstein condensates, electromag-
netic wave guides, graphene, optical black hole, sonic black
hole and ion rings [8–12]. In optical domain, [13] proposed
the idea of an optical black hole for the first time in the year
of 2000. The idea is that propagation of light in a moving
medium resembles many features of a motion in a curved
space-time background. In this letter, we will be focus on
photon-fluid system, which is a nonlinear optical system that
is represented by hydrodynamic equations of an interacting
Bosonic gas [14]. And analogous to classical and quantum
fluids, long wavelength phonon excitations in an inhomoge-
neous flow propagate like a scalar field on a curved spacetime
[15]. Thus, it is very crucial to be able to calculate the exact
quasibound states frequency analytically.

However, due to the complexity of the equations involved,
especially the radial equation, analytical methods were used
less often and only for certain problems. The vast majority of
these studies made use of numerical techniques such as the
asymptotical analysis, WKB, and continued fraction to inves-
tigate the specific task at hand. Fortunately, very recently,
[16–21] successfully finds novel exact scalar quasibound
state solutions respectively around charged and chargeless
Lense–Thirring black hole, Reissner–Nordström black hole
where the radial equations of the scalar field are successfully
solved in terms of the Double Confluent Heun functions and
lastly for the case of f (R) theory’s static spherically sym-
metric black hole where the radial equations of the scalar
field are successfully solved in terms of the General Heun
functions.

The result obtained in this research can effectively recover
the well-known approximated analytical result, i.e. in small

black hole limit, Mblack hole � m2
Plankc

2

E0
-where mPlank is

Plank mass, E0 is the scalar particle’s rest energy, and c is
the speed of light,-the imaginary part of the complex valued
energy is suppressed [22].

In this present work, we are going to show in detail analyt-
ical derivation of exact solutions of relativistic massive and
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massless quasibound states around the BBMB black hole.
We successfully solve the radial equation exactly in terms
of Double Confluent Heun functions and it is for the first
time that the Double Confluent Heun function is used to
express black hole’s quasibound states exact solutions. And
having the exact solutions in the hand, the complex quantized
energy levels expression is obtained from the Double Conflu-
ent Heun’s polynomial condition. And finally, by applying
the Damour–Ruffini method, the Hawking radiation of the
apparent black hole’s horizon is investigated and the Hawk-
ing temperature is obtained.

This letter is organized as follows: in Sect. 2, the quasi-
bound states solutions are derived and the wave functions and
the energy levels expressions are obtained. And in the Sect. 3,
by using the obtained exact wave functions and applying the
Damour–Ruffini method [23], the Hawking radiation is cal-
culated.

2 The Klein–Gordon equation

In this section, we are going to consider the Klein–Gordon
equation that represents the behaviour of both massive and
massless scalar field with BBMB black hole background. We
start with writing that relativistic wave equation [24],

{
1

2
p̂μg

μν p̂ν + 1

2
k2c2

}
ψ = 0, (14)

p̂μg
μν p̂ν = −h̄2∇2 = −h̄2

[
1√|g|∂μ

√|g|gμν∂ν

]
, (15)

where the massive and massless cases are determined by the
particle’s rest energy per unit mass, E0 = kc2, where k = 1
for massive particles and k = 0 for massless particles.

Using (11), the Klein–Gordon equation can be rewritten
as follows,

0 = E2
0

c2h̄2 − 1

f
∂2
ct + 1

r2 ∂r

(
f r2∂r

)
+ 1

r2 ∇2
�2

. (16)

Considering the spherical symmetry of the equation, we
apply this following ansatz of separation of variables,

ψ (t, r, θ, φ) = e−i E
h̄c ct R (r)Yml

l (θ, φ) , (17)

where Yml
l (θ, φ) is the orthonormal spherical harmonics

function which is the solution of this following spherical
harmonics differential equation [25],

∇2
�2
Yml
l (θ, φ) = −l (l + 1) Yml

l (θ, φ) . (18)

Substituting the angular eigenvalue into the relativistic wave
equation and multiplying the whole with r2

ψ(t,r,θ,φ)
, we get

this following radial equation,

(
E

h̄c

)2 r2

f
+ 1

R
∂r

(
f r2∂r R

)
− l (l + 1)

r2 r2

−
(
E0

h̄c

)2

r2 = 0. (19)

Substituting the explicit expression of the f (r) and decom-
posing the first term followed by multiplying the whole equa-
tion with 1

(r−rH )2 , we get,

∂2
r R+

[
2

(r − rH )

]
∂r R +

[
E2

h̄2c2

r4

(r − rH )4 − l (l + 1)

(r − rH )2

− E2
0

h̄2c2

r2

(r − rH )2

]
R = 0. (20)

Since the region of interest is outside the horizon r ≥ rH ,

let us define this following new radial variable,

r − rH = rH y → dr = rHdy, (21)

∂r = r−1
H ∂y, (22)

that shifts the region of interest to be y ≥ 0, we also define
these following dimensionless energy parameters,

� = ErH
h̄c

�0 = E0rH
h̄c

. (23)

In the new radial variable y, the radial equation is obtained
as follows,

∂2
y R+

[
2

y

]
∂y R+

⎡
⎢⎢⎢⎣

(y + 1)2

y2︸ ︷︷ ︸
A(y)

{
�2 (y + 1)2

y2 − �2
0

}

− l (l + 1)

y2

⎤
⎥⎥⎥⎦ R = 0.

(24)

The A(y) function can be expanded as follows,

(y + 1)2

y2 = 1 + 2

y
+ 1

y2 . (25)

Substituting back to the radial equation, we can express
everything in terms of 1

y as follows,
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∂2
y R + p (y) ∂y R + q (y) R = 0, (26)

where,

p(y) = 2

y
, (27)

and,

q(y) =
[
�2 − �2

0

]
+

[
4�2 − 2�2

0

] 1

y

+
[
6�2 − �2

0 − l(l + 1)
] 1

y2

+
[
4�2

] 1

y3 +
[
�2

] 1

y4 . (28)

We are going to transform the linear ordinary second order
differential equation above into its normal form by following
Appendix A as follows,

−1

2
∂y p (y) = 1

y2 , (29)

−1

4
p2 (z) = − 1

y2 , (30)

and finally obtain the normal form as follows,

∂2
yY (y) + K (y) Y (y) = 0, (31)

Y (y) = yR(y), (32)

where,

K (y) = −1

2
∂y p (y) − 1

4
p2 (y) + q (y)

=
[
�2 − �2

0

]
+

[
4�2 − 2�2

0

] 1

y

+
[
6�2 − �2

0 − l(l + 1)
] 1

y2

+
[
4�2

] 1

y3 +
[
�2

] 1

y4 . (33)

2.1 The radial solution

Comparing the normal form above with the normal form of
Double Confluent Heun’s differential equation (see Appendix
A), we can conclude as follows,

y = x, (34)

ε = 2
√

�2
0 − �2, (35)

γ = 2i�, (36)

δ = 2 [1 + 2i�] , (37)

α = 4�2 − 2�2
0 + 2

√
�2

0 − �2 [1 + 2i�] . (38)

Here, we have successfully obtained all of the Double
Confluent Heun function’s parameters. So, the novel exact
solution of the Klein–Gordon equation in BBMB space-time
can be written as follows,

ψ = ψ0e
i E
h̄c ctYml

l (θ, φ)

[
Ay

1
2 (δ−2)e

1
2

(
εy− γ

y

)

× HeunD (β, α, γ, δ, ε, y) + By− 1
2 (δ−2)e

− 1
2

(
εy− γ

y

)

× HeunD (−2 + β + δ, α − 2ε,−γ, 4 − δ,−ε, y)

]
.

(39)

2.2 Energy quantization

Now, consider the polynomial condition of the Double Con-
fluent Heun see Appendix A Eq. (63). By substituting the
values of the parameters explicitly, we obtain this follow-
ing exact novel quantized energy expression that can only be
discovered from the exact radial solution,

2�2 − �2
0√

�2
0 − �2

+ [1 + 2i�] = −nr . (40)

Now, let us consider massless scalar case with rest energy
parameter �0 = 0. Here we obtain a purely imaginary energy
level as follows,

� = i
nr + 1

4
. (41)

Here we visualize of the scalar’s quantized spectrum in a
complex plane for various scalar mass with radial quantum
number n = 0, 1, . . . , 10,
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3 Hawking radiation

In this section, the BBMB black hole’s Hawking radiation
will be investigated. We are going it make use the successfully
obtained exact solution of the radial wave function in order
to derive the Hawking radiation distribution function that
comes out of the apparent horizon of the BBMB black hole.
Let us start with rewriting the complete solution of the wave
function as follows,

ψ = ψ0e
i E
h̄c ctYml

l (θ, φ)

[
Ay

1
2 (δ−2)e

1
2

(
εy− γ

y

)

× HeunD (β, α, γ, δ, ε, y) + By− 1
2 (δ−2)e

− 1
2

(
εy− γ

y

)

× HeunD (−2 + β + δ, α − 2ε,−γ, 4 − δ,−ε, y)

]
.

(42)

Approaching the horizon rH , we could expand the wave
function in the lowest order of y where we also impose,

e
1
2

(
− γ

y→0

)
HeunD (β, α, γ, δ, ε, y → 0) = C1, (43)

e
1
2

(
γ

y→0

)
HeunD (−2 + β + δ, α − 2ε,−γ, 4 − δ,

−ε, y → 0) = C2 → ∞. (44)

Thus, the near horizon approximation can be rewritten in
a complete wave function as follows,

ψ = ψ0e
i E
h̄c ctYml

l (θ, φ)
[
AC1y

1
2 (δ−2) + BC2y

− 1
2 (δ−2)

]
.

(45)

The wave function consists of two parts as follows,

ψ =
{

ψ+in = AC1ei
E
c ctYm�

� (θ, φ) y
1
2 (δ−2)

ψ+out = BC2ei
E
c ctYm�

� (θ, φ) y− 1
2 (δ−2)

, (46)

where ψ+in is the ingoing wave and ψ+out is the outgoing
wave.

The Damour–Ruffini method works as follows. Suppose
we have an ingoing wave hitting the apparent horizon at
rH and inducing a particle–antiparticle pair where the parti-
cle will enhance the reflected wave and the antiparticle will
become the transmitted wave. Analytical continuation of the

wave function ψ
(
r−rH
rH

)
can be calculated as follows,

(y)λ → [y + iε]λ =
{
yλ, r > rH
|y|λeiλπ , r < rH

. (47)

We can get the ψ−out = ψ+out
(
y → yeiπ

)
simply by

changing y → −y = yeiπ as follows,

ψ−out = BC2e
i Ec ctYm�

� (θ, φ) y− 1
2 (δ−2),

= ψ+out e
− 1

2 iπ(δ−2) (48)∣∣∣∣ψ−out

ψ+in

∣∣∣∣
2

=
∣∣∣∣ψ+out

ψ+in

∣∣∣∣
2

e−i2π(δ−2), (49)

and for spherical wave l = 0,

∣∣∣∣ψ−out

ψ+in

∣∣∣∣
2

=
∣∣∣∣ψ+out

ψ+in

∣∣∣∣
2

e
4π
rH

[
E
�c r

2
H

]
. (50)

Using the fact that total probability of the particle wave
going out from the horizon and the antiparticle wave going
in must be equal to 1, we obtain this following distribution
function,

〈
ψout

ψin

∣∣∣∣ ψout

ψin

〉
= 1 =

∣∣∣∣ BC2

AC1

∣∣∣∣
2 ∣∣∣∣1 − e

4π
rH

[
E
�c r

2
H

]∣∣∣∣ , (51)

∣∣∣∣ BA
∣∣∣∣
2

=
∣∣∣∣C1

C2

∣∣∣∣
2 1

e
4π
rH

[
E
�c r

2
H

]
− 1

→ 0. (52)
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Now, let us write the general black hole’s apparent hori-
zon’s radiation distribution function,

ζ(TH ) = 1

e
h̄ω

kB TH − 1
, (53)

where kB is the Boltzmann constant and TH = c�
4πkBrH

.

By comparing (52) and (53), we can conclude that the radi-
ation distribution function of the BBMB black hole’s horizon
possesses ζ(TH ) → 0 and it implies TH → 0. This means
that the black hole’s horizon has a zero Hawking tempera-
ture, thus, does not radiate. The zero temperature the black
hole’s horizon are also found in the case of extremal black
holes where the space-time metric resembles the metric (11)
in [26].

4 Conclusions

In this work, exact analytical massive and massless quasi-
bound state’s quantized energy levels and their wave func-
tions in BMBB black hole background are presented in detail.
The exact angular solution is found in terms of pure harmon-
ics functions while the radial exact solutions are discovered in
terms of Double Confluent Heun functions (39). The obtained
exact radial solution is valid for all region of interest, i.e.
rH ≤ r < ∞, a significant improvement of any asymptoti-
cal method that can only solves for either region very close
to the horizon of very far away from the horizon which was
presented in [27].

Using the polynomial condition of the Double Confluent
Heun function (63), the quantized energy level expression is
obtained (40). We also have presented the visualization of
the quantized spectrum in a complex plane for various scalar
mass with radial quantum number n = 0, 1, . . . , 10.

The last section is dedicated to investigate the Hawking
radiation via the Damour–Ruffini method [23] by making
use of the priceless exact wave function. The same scenario
as Klein pair production, where pair production is induced
by an incoming particle then pair production occurs at the
horizon, is used. The particle goes to infinity while the anti-
particle goes inside the black hole and its negative energy will
reduce the black hole mass itself. The probability function
of Hawking radiation is derived from the modulus square
of the ratio between particle and antiparticle wave functions.
Finally, by comparing the radiation distribution function with
the Boltzmann distribution, we obtain the fact that the BBMB
black hole’s horizon has a zero Hawking temperature, thus,
it does not radiate (52).
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Appendix A: Normal form

There is a trick to simplify a second order linear differen-
tial equation which is called normal form. With this method,
we do not have to consider the far and near behaviour as we
usually do when we deal with the ordinary differential equa-
tion. The solution for the aforementioned limit will present
by itself in the solution. Let us consider this trick first before
continue the calculation. Suppose we have a second order
linear differential equation as follows,

d2y

dx2 + p(x)
dy

dx
+ q(x)y = 0. (54)

Now, let us define a new function as follows,

y = Y (x)e− 1
2

∫
p(x)dx , (55)

dy

dx
= dY

dx
e− 1

2

∫
p(x)dx − 1

2
Y pe− 1

2

∫
p(x)dx , (56)

d2y

dx2 = d2Y

dx2 e
− 1

2

∫
p(x)dx − 1

2

dY

dx
pe− 1

2

∫
p(x)dx

− 1

2
Y
dp

dx
e− 1

2

∫
p(x)dx + 1

4
Y p2e− 1

2

∫
p(x)dx . (57)

Substituting the expressions to (54), a lot of things cancel
out and we obtain this following equation without the first
order derivative term,

d2Y

dx2 +
(

−1

2

dp

dx
− 1

4
p2 + q

)
Y = 0, (58)

Y = ye
1
2

∫
p(x)dx . (59)
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Now, let us consider the Double Confluent Heun differen-
tial equation [28,29],

d2y

dx2 +
(

γ

x2 + δ

x
+ ε

)
dy

dx
+

(
α

x
− β

x2

)
y = 0, (60)

y = AHeunD (β, α, γ, δ, ε, x) + Be
γ
x −εx x2−δ

× HeunD (−2 + β + δ, α − 2ε,−γ, 4 − δ,−ε, x) ,

(61)

but, for the sake of notation simplicity, we will write the
solution using this following way,

y = HeunD(x)=AHeunD(x)+Be
γ
x −εx x2−δ HeunD′(x),

(62)
α

ε
= −nr , nr = 0, 1, 2, . . . . (63)

Now, let us express Double Confluent Heun’s differen-
tial equation in its the normal form by recognizing p and q
function (see Appendix A). First, we recognize,

p = γ

x2 + δ

x
+ ε, (64)

q = α

x
− β

x2 , (65)

y = HeunD = Y (x)e− 1
2 (εx− γ

x )x− δ
2 , (66)

and this leads to,

− 1

2

dp

dx
= 1

x2

(
δ

2

)
+ γ

x3 , (67)

− 1

4
p2 = −ε2

4
− 1

x

εδ

2
− 1

x2

(
δ2 + 2εγ

4

)

− 1

x3

δγ

2
− 1

x4

γ 2

4
(68)

K (x) = −1

2

dp

dx
− 1

4
p2 + q = −ε2

4
+ 1

x

(
−εδ

2
+ α

)

+ 1

x2

(
δ

2
− δ2 + 2εγ

4
− β

)
+ 1

x3

(
γ − δγ

2

)

+ 1

x4

(
−γ 2

4

)
. (69)

Combining everything, we get the Double Confluent Heun
equation’s normal form,

d2Y

dx2 + K (x)Y = 0, (70)

Y (x) = HeunD e
1
2 (εx− γ

x )x
δ
2 . (71)
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