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Abstract

We explore chiral symmetry breaking in a magnetic field within a Nambu-Jona-Lasinio

model of interacting massless quarks including tensor channels. The new interaction chan-

nels are opened up through Fierz identities due to the breaking of the rotational symmetry

by the magnetic field. We demonstrate that the magnetic catalysis of chiral symmetry

breaking leads to the generation of two independent condensates, the conventional chiral

condensate and a spin-one condensate. While the chiral condensate generates a dynami-

cal fermion mass, the spin-one condensate gives rise to a dynamical anomalous magnetic

moment for the fermions. We also investigate the possibility of a crossover from a BCS

to a BEC (Bardeen-Cooper-Schrieffer to Bose-Einstein Condensation) phase for strongly-

coupled quark matter, and its implications for the system equation of state. The study

uses zero temperature effective quark models at densities beyond nuclear density. We use

mean-field approximation and consider quark-quark, quark-antiquark, and diquark-diquark

interactions. We determine the region of parameters where the crossover can take place

for a stable system (i.e. that with a corresponding positive pressure). To carry out this

investigation, we first use a simple relativistic model of one-flavor fermions, and then, we

consider a more realistic two-flavor model for strongly interacting quarks
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Chapter 1

Introduction

Our current understanding of the laws that govern the fundamental particles have been

written successfully in the language of quantum field theory (QFT). At high energy, those

laws can be summarized in the Standard Model of particles [1]. This model has extended

and generalized the quantum theory of electromagnetism (QED) with the weak nuclear

forces into a unified Electro-Weak theory. In a similar way, Quantum Chromodynamics

(QCD), the theory of quarks and gluons, proves an analogous theory of the strong nuclear

forces. Together they summarize our present knowledge of the basic constituent of matter in

terms of Abelian and non-Abelian gauge theories based on symmetry groups. Symmetries

play a central role in the understanding of modern physics and in the construction of the

Standard Model. One important aspect of gauge symmetries is that they can spontaneously

be broken and not be manifest in physical observable.

Symmetry breaking was well known in classical physics in the form of phase transitions

and had been formalized in the theory of Ginzburg-Landau (GL) [2]. The GL theory, in a

statistical context, allows an understanding of the different states of atomic matter. The

mechanism that leads to the transitions between different phases can be characterized by

an order parameter that describes the symmetry-breaking. In similar way, symmetries can

be broken in QFT. For example, in the thermal evolution of the Universe, the electro-weak

system starts from a symmetric phase with massless fermions (quarks and leptons) and

four massless bosons that carries the electro-weak force. Introducing as order parameter a

scalar filed, known as the Higgs field, the theory predicts that below a certain energy scale

the Higgs will acquires a non-zero vacuum expectation value (vev). The appearance of the

Higgs field vev will break the electro-weak symmetry down to the gauge symmetry of elec-
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tromagnetism, and three of the force-carried bosons will become massive. The interaction

of the particle field with the non-trivial ground state of the Higgs condensate will generate

the constituent mass of quarks and leptons.

On the other hand, the theory of strong interactions, QCD, is described with an addi-

tional color symmetry group. The immediate implication of this symmetry is that quarks

will never be observed in isolation. At energies lower than the so called QCD energy scale

(ΛQCD), the quarks are confined by their strongly interacting gluons to be colorless in group

of three forming baryons, or as quark-antiquark pair forming mesons. In addition, at suf-

ficient high energies the theory is invariant under the interchange of left and right handed

quarks. This symmetry is known as a chiral symmetry. Increasing the energy scale, the

quark current masses can be neglected, and an approximate flavor symmetry emerges. The

breaking of those two symmetries give rise to a rich diversity of phases and phenomena.

In regard of this, QCD has become a great challenge for both experimentalist and theo-

reticians. The study of quark matter in extreme environments, such as high temperature

T, high baryon density µB, strong external fields, etc., is essential to unveil the properties

of nuclear matter and for a better understanding of many phenomena in cosmology, astro-

physics and heavy ion collision experiments. These probes bring us closer to the ultimate

goal of understanding QCD.

This thesis is dedicated to the study of two phenomena within the context of quark mat-

ter in the extremes of high temperature, high density and strong magnetic field. In Chapter

2, we explore chiral symmetry in a strong magnetic field for a system of massless fermions.

We show that, in addition to a dynamical mass, a dynamical anomalous magnetic moment

is generated once the chiral symmetry is broken. In Chapter 3, we investigate the possibil-

ity of a crossover from the Bardeen-Cooper-Shriffer (BCS) superfluidity/superconductivity

state to a Bose-Einstein condensation (BCS) one in a simplified model of relativistic quarks.

Later in Chapter 4, we explore the possibility of the BCS-BEC crossover in a more realistic

model with u and d quarks. The strongly-coupled-quark-matter model used is the 2SC.

Finally, in Chapter 5, we descries the methods employed to solve the numerical problems
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that were presented in Chapter 2-4. And we summarize the main outcomes of our inves-

tigation and make our concluding remarks in Chapter 6. The remainder of this chapter is

dedicated to a brief introduction to several topics of interest for the present work and to

providing a motivation and possible implications of our investigation.

1.1 The QCD Phase Diagram

The phases of the low-energy regime of QCD, where only the u, d, and s quarks may

form, are commonly mapped in the plane of temperature T and baryon-number chemical

potential µ. This representation is known as the QCD phase diagram. Each phase is char-

acterized by their symmetries and order parameters. The different phase boundaries that

have been found are model dependent. They are particularly influenced by the values of the

coupling constant, the constituent s quark mass (ms), and the introduction of external con-

ditions as magnetic field, temperature, etc. However, thanks to the asymptotic freedom of

the theory (the nuclear interaction is asymptotically free [3], what means that the strength

of the strong force decreases with the energy scale. At high energies the quarks becomes

closer and interact weakly), the extremes in the QCD phase diagram have states of matter

well described by theoretical models that use the perturbative techniques allowed in those

high-energy regions. Fig. 1.1 describes the QCD phase diagram with a simple sketch of the

global phases of QCD pointing out the energy regions of the high-energy experiments that

has been conducted in the last years [4].

In the high temperature (T > ΛQCD) and low density asymptote, it is found the quark-

gluon plasma (QGP), a state of matter formed by quarks and gluons where there is neither

color confinement nor quark dynamical mass. This regime has been successfully analyzed

employing lattice QCD calculations [5], and has been the subject of ultra-relativistic heavy-

ion colliders. The existence of the QGP phase has been confirmed by the Relativistic Heavy

Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) and by the Large Hadron

Collider (LHC) at the European Organization for Nuclear Research (CERN). The results

3



Figure 1.1: Schematic QCD Phase Diagram [4]

of both experiments also confirm the existence of a crossover transition from QGP to a

phase of hadrons, at a temperature of approximately 170 MeV.

On the other extreme of high density (µB > ms) and low temperatures, baryonic matter

is also deconfined. The dense and weakly interacting quarks are unstable under the forma-

tion of Cooper pairs, a phenomenon in QCD similar to the BSC instability in conventional

superconductivity, producing a new ground state formed by colored diquark. Here, all three

flavors and three colors forms pairs in a more energetic phase known as Color-Flavor-Locked

(CFL) [6]. Moving down in density, the CFL phase becomes unstable. A rich spectrum of

superconducting phases has been suggested to replace the CFL; however, at present, it is

not clear which state is the ultimate one. The problem is that some parameters concerning

the superconducting phases, like the quark masses and their couplings, are not accessible to

observation at those regimes, and their values rely only on educated guesses. However, the

measure of the physical values of the quark masses, as increasing the baryon density at low
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temperatures, implies that the chiral symmetry braking transition, where hadronic matter

becomes deconfined-superdense matter, is a first order transition [7]. Consequently in the

QCD diagram, there will be a critical point that delimits the crossover from the first order

phase transition. The location of this critical point has been addressed by ultra-relativistic

heavy-ion experiments, performed at CERN and BNL.

The asymptotic behavior and the transition to the hadronic phase are the most secure

parts in the QCD diagram. Nonetheless, part of our investigation is placed in the inter-

mediate region of densities at low temperature. The study of this region is a challenging

theoretical problem that, at the moment, cannot be addressed by experiments nor by QCD

lattice calculation. However, it is known that the ground state at those regions may have a

superconducting condensate formed by the pairing of quarks (〈 qq 〉), and a chiral conden-

sate formed by a pairing of quarks and anti-quarks with opposite spins (〈 q̄q 〉). The first

condensate produces a gap in the energy spectrum and the later one produces a dynamical

mass. The spontaneous breaking of those two symmetries is usually studied employing

effective models of QCD like the Nambu-Jona-Lasinio (NJL) model that although fails to

describe confinement, it captures the essences of the symmetry breaking phenomena. This

model can be seen as the result of integrating all the gluons in the one gluon exchange,

which is a good approximation at high densities, and will be the starting point in our

studies.

1.2 QCD in a Magnetic Field

Extremely high magnetic fields (∼ 1018 G) [8,9] can be generated in noncentral Au-Au

collisions for top collision energies
√
SNN = 200 GeV at the RHIC at BNL, and even

larger fields (∼ 1019 G) can be generated for the energies reachable at the LHC at CERN,
√
SNN = 4.5 TeV, for the Pb-Pb collisions [9]. Even though these magnetic fields decay

quickly, they may influence the properties of the particles generated during the collision.

Later in this decade, the Facility for Antiproton and Ion Research (FAIR) at the Society
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for Heavy Ion Research (GSI) will open the possibility to explore the intermediate region

of temperatures and densities. Strong magnetic fields will likely be also generated at FAIR,

making possible to explore the region of higher densities under a magnetic field.

An other physical environment where the influence of a magnetic field in the state of

quark matter is relevant is the core of neutron stars, which typically are very magnetized

objects reaching surface magnetic fields as large as 1014 − 1016 G [10]. Moreover, due

to the very high electric conductivity, the magnetic flux should be conserved, and it is

natural to expect a stronger field strength with increasing matter density at the core. The

interior magnetic fields are however not directly accessible to observation. Estimates based

on macroscopic and microscopic analysis, considering both gravitationally bound and self-

bound stars, have led to maximum fields within the range 1018−1020 G, depending whether

the inner medium is formed by neutrons [11] or by quarks [12].

A uniform magnetic field has a strong tendency to enhance fermion-antifermion spin-0

condensate in any charged-fermionic system with arbitrarily weak attractive interaction.

This phenomenon is known in the literature as the magnetic catalysis of chiral symmetry

breaking (MCχSB) [13]. The mechanism responsible for such effect is related to the di-

mensional reduction of the infrared dynamics of the particles in the lowest Landau level

(LLL). Such a reduction favors the formation of a chiral condensate because there is no

energy gap between the infrared fermions in the LLL and the antiparticles in the Dirac

sea. The MCχSB modifies the vacuum properties and induces dynamical parameters that

depend on the applied field. This effect has been actively investigated assuming that the

catalyzed chiral condensate generates only a fermion dynamical mass [14–18]. However,

it has been shown recently that in QED the MCχSB leads to a dynamical fermion mass

and inevitably also to a dynamical anomalous magnetic moment (AMM) [19]. This is con-

nected to the fact that the AMM does not break any symmetry that has not already been

broken by the other condensate. The dynamical AMM in massless QED leads, in turn, to

a non-perturbative Lande g-factor and Bohr magneton proportional to the inverse of the

dynamical mass. The induction of the AMM also yields a non-perturbative Zeeman effect.
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An important aspect of the MCχSB is its universal character, and one expects that the

dynamical generation of the AMM should also occur in QCD. Regarding this, Chapter 2

is dedicated to investigate the influence of a magnetic field on the QCD chiral transition

in a system of massless fermions. We explore a tensor channel in the one-flavor one-color

NJL model that opens up via Fierz identities due to the explicit breaking of the rotational

symmetry by the magnetic field. This tensor channel is important only in the presence of a

magnetic field, and leads to the generation of two independent condensates. One generates

a dynamical mass, while the other generates a dynamical AMM.

1.3 Color Superconductivity and the

BCS-BEC Crossover

The idea behind the BCS theory of superconductivity is the formation of Cooper pairs.

For sufficiently low temperatures, the Cooper pairs will resist temperature fluctuations,

producing a condensation that will modify the ground state and break some of the symme-

tries of the underlying theory. In QCD, the ground state of the superdense quark system,

a Fermi liquid of weakly interacting quarks, is unstable with respect to the formation of

diquark condensates [20]. This non-perturbative phenomenon is essentially equivalent to

the Cooper instability in the BCS theory. The attractive channels are provided by the

one gluon exchange color-antitriplet channel. The color condensates break the SU(3) color

gauge symmetry of the ground state producing a color superconductor.

A natural scenario where color superconductivity could be realized is in the interior

of compact astrophysical objects as neutron stars. There, matter can reach densities es-

timated to be several times larger than the nuclear saturation density and temperatures

several orders smaller than the superconducting gap. Also, there exists a possibility that

color superconductivity could be found in future experiments planned at FAIR at GSI, the

Nucleon-Ion Collider Facility (NICA) at the Joint Institute for Nuclear Research (JINR)
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in Dubna, and the Japan Proton Accelerator Research Complex (JPARK) at the Japan

Atomic Energy Research Institute (JAERI), all of which intend to complement the experi-

ments at RHIC and LHC by reaching regions of even higher densities and intermediate to

low temperatures in the QCD phase map.

Nonetheless, in both referred scenarios the color superconducting state will be realized

at densities which are not asymptotically high. At these intermediate densities, the CFL

phase breaks down due to the mismatch between the Fermi momenta of the heavier s

quark with the light u and d quarks, and to the constraints imposed by electric and color

neutralities [21]. As a consequence of the pairings with mismatched Fermi surfaces, the

CFL phase exhibits chromomagnetic instabilities [22]. To remove such instabilities several

interesting proposals exist, e.g. the existence of inhomogeneous condensates [23]; a LOFF

phase on which the quarks pair with nonzero total momentum [24]; and an inhomogeneous

gluon condensate together with the spontaneous induction of an in medium magnetic field

[25]. At present, it is not clear if any of these proposals is the final solution to the instability

problem. On the other hand, taking into account the running of the coupling constant with

the energy scale, it is expected that in the moderate density region the coupling constant

turns stronger. Then, one possible scenario where the chromomagnetic instability can

be avoided occurs if in the region of moderate-low densities the strong coupling constant

becomes sufficiently high (GD ≈ GS ≈ 1/Λ2, with GD and GS denoting the diquark and

quark-antiquark coupling constants respectively) [26, 27]. In this situation it was found

that the more stable phase at T = 0 is the strongly-coupled 2SC one.

Nevertheless, the increase of the coupling constant strength that occurs at intermediate

density can modify the properties of the ground state by decreasing the Cooper-pair coher-

ence length, which can reach values of the order of the inter-quark spacing [28]. As already

found in other physical contexts [29], this fact strongly suggests the possibility of a crossover

from a BCS superfluidity/superconductivity to a BEC state of composite molecules, where

although the symmetry breaking order parameter (the diquark condensate) is the same,

the quasiparticle spectra in the two regions are completely different. In the BCS side, the
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coherence length of the pairs is much larger than the mean inter-particle distance and as

a consequence the fermionic degrees of freedom are still manifested. However, in the BEC

state, the fermions pairs are bound into a bosonic molecule and no fermionic degrees of

freedom remain. This finding in non-relativistic systems, together with the fact that the

diquark BEC phase could be the natural phase reached after deconfinement, strongly sug-

gests the possibility of a crossover from a color-superconducting BCS dynamics to a BEC

one in QCD. Several studies in this direction have been already pursued by using different

relativistic models and calculational techniques [30–34].

Having in mind that the possible realization of the BCS-BEC crossover can take place in

the core of neutron stars, it turns very important to investigate the effect of the formation

of the Bose-diquark cluster on the matter pressure, since it should balance the strong

gravitational inward pressure at the star’s core. In this context, we should take into account

that the ground state of the diquark cluster will be a pressureless zero-momentum Bose

condensate. Since for this astrophysical medium we can consider that T � µ, it should be

expected that the system of free diquarks becomes almost pressureless at those relatively

low temperatures. However, as it was pointed out in Ref. [35], together with the fact that

there exists an attractive channel between quarks that favors the diquark formation, there

is also a diquark-diquark repulsion. This repulsion is due to the cross-channel unfavorable

correlations between the quarks belonging to different diquarks. Hence, when the diquark

repulsion is self-consistently taken into account in the EoS of this system, the instability

previously found in the strong coupling region can be removed, stabilizing the pressure.

The increase of the diquark repulsion compensates the effect of the decay of the chemical

potential, which is known to make an important contribution to the EoS [36].

In this direction, part of our investigation is to analyze whether a BCS-BEC crossover

may appear in a realistic model for compact stars. We employ multi-fermion NJL models

including the chiral condensate, the diquarks formation, and the diquarks repulsion. The

investigation is carried out self-consistently through the mean-field approximation. We map

the spectrum of possible parameters where the BCS-BEC crossover may take place, and
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its consequences in the system EoS. In this way, we investigate the realization of a stable

(i.e. having a positive pressure) BCS-BEC crossover in a wide parameter regime. First in

Chapter 4, we want to get an insight of the interplay of both superconducting and chiral

condensates in a simple model of fermions. Later in Chapter 5, we consider the strongly

coupled 2SC model that, as mentioned before, may be a suitable model for the densities

inside compact stars.
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Chapter 2

Anomalous Magnetic Moment of

Massless Quarks in a Strong

Magnetic Field

A magnetic field is known to enhance the chiral condensate in many systems of fermions

with arbitrarily weak attractive interaction (MCχSB). This effect has been actively inves-

tigated assuming that the condensate generates only a fermion dynamical mass. Recently,

a similar scenario was study in QED [19]; and it was found that the MCχSB leads to a dy-

namical fermion mass and inevitably also to a dynamical AMM. Similarly, and considering

that the MCχSB is a universal phenomenon, the purpose of this Chapter is to investigate

the dynamical generation of a net magnetic moment in the ground state of QCD and dis-

cuss its implications for the chiral phase transition at finite temperature using a NJL model

with four-fermion point interactions. The use of NJL models to explore chiral symmetry

breaking in QCD with nonzero magnetic field has been a successful strategy followed in

many previous works [37, 38]. The new element in the present investigation will be the

introduction of a yet unexplored four-fermion channel that becomes relevant only in the

presence of a magnetic field and can lead to non-trivial physical consequences [39].

2.1 NJL Model in a Magnetic Field

Our main goal here is to investigate the effect of a constant and homogeneous magnetic

field in the spontaneous breaking of chiral symmetry for a system of massless quarks. We

11



use a simple NJL model that can be interpreted as the result of integrating out the gluon

fields and quark fluctuations with momenta larger than some scale Λ, with Λ & ΛQCD. Our

NJL model of massless quarks in the presence of a constant and uniform magnetic field is

given by the Lagrangian density

L = ψ̄iγµDµψ + L(1)

int +L(2)

int (2.1)

The single-flavor Dirac spinor ψ belongs to the fundamental representation of the SU(Nc)

color group. The electromagnetic four-potential in the covariant derivative Dµ = ∂µ+iqA(ext)
µ

is chosen, without lost of generality, in the gauge A
(ext)
µ = (0, 0, Bx1, 0), so to have a constant

and homogenous magnetic field of magnitude B pointing in the x3-direction. We use the

Lorentz metric ηµν = (1, -~1 ) and the Dirac matrices in the chiral representation. The

interaction

L(1)

int =
G

2

[
(ψ̄ψ)2 + (ψ̄iγ5ψ)2

]
, (2.2)

has the conventional four-fermion scalar and pseudoscalar channels used in many previous

studies based on NJL [38]. In addition, we introduce a new channel

L(2)

int =
G′

2

[
(ψ̄Σ3ψ)2 + (ψ̄iγ5Σ3ψ)2

]
, (2.3)

that preserves chiral symmetry and rotations about the magnetic field direction; here Σ3 =

i
2
[γ1, γ2] = σµν⊥ is the spin operator in the direction of the applied field. In Eqs. (2.1)-(2.3),

summation over color index has been assumed.

A uniform magnetic field always selects a preferable direction and explicitly breaks

the rotational symmetry into a parallel and transverse to the field directions. The new

interaction channel L(2)

int with second-rank tensor structure naturally emerges using the

Fierz identities in the one-gluon-exchange channels of QCD when the rotational symmetry

is broken. This, in turn, implies that the tensor structures of the Dirac ring split in

components parallel and transverse to the field direction with the help of the normalized

tensor F̂µν = Fµν/ |B|,

γ‖ = ηµν‖ γν , γ⊥ = ηµν⊥ γν (2.4)
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with

ηµν‖ = ηµν − F̂ µρF̂ ν
ρ , ηµν⊥ = F̂ µρF̂ ν

ρ . (2.5)

being the longitudinal and transverse Minkowskian metric tensors respectively. In the rest

frame, for a magnetic field in the x3 direction, ηµν‖ has only µ, ν = 0, 3 components, and

ηµν⊥ has µ, ν = 1, 2.

As a consequence, the four-fermion interaction Lagrangian density splits into two terms,

Lint =
g2
‖

2Λ2
(ψ̄γµ‖ ψ)(ψ̄γ‖µψ) +

g2
⊥

2Λ2
(ψ̄γµ⊥ψ)(ψ̄γ⊥µψ). (2.6)

Notice that despite the fact that there is no direct coupling between the gluons and the

magnetic field, the fermion vertex is modified because of the distinction between longitudi-

nal and transverse fermion modes in this case. The extreme case occurs for magnetic fields

of the order of the energy scale of the fermions, where all the fermions are in the LLL and

hence the only modes entering in the bare coupling are the longitudinal ones.

On the other hand, the O(3)→ O(2) symmetry breaking that takes place in the presence

of a magnetic field leads to the anisotropic Fierz identities

(γµ‖ )il(γ
‖
µ)kj =

1

2

{
(1)il(1)kj + (iγ5)il(iγ5)kj +

1

2
(σµν⊥ )il(σ

⊥
µν)kj − (σ03)il(σ03)kj + ...

}
,

(2.7)

and

(γµ⊥)il(γ
⊥
µ )kj =

1

2

{
(1)il(1)kj + (iγ5)il(iγ5)kj +

1

2
(σµν⊥ )il(σ

⊥
µν)kj − (σ03)il(σ03)kj + ...

}
,

(2.8)

where ‖ and ⊥ denotes parallel µ = (0, 3) and transverse µ = (1, 2) Lorentz indexes with

respect to the magnetic field direction. Einstein’s summation convention for repeated

indices is assumed.

From (2.2),(2.3), and (2.6)-(2.8), one can readily identify the channels considered in

L(1)

int and L(2)

int. Then, the couplings G and G′ can be related to g‖ and g⊥ through

G =
1

2Λ2
(g2
‖ + g2

⊥), G′ =
1

2Λ2
(g2
‖ − g2

⊥) (2.9)
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with Λ the energy scale of the effective theory. At zero magnetic field g = g‖ = g⊥ and

one can use measured physical quantities to find consistent values for G and Λ. However,

at non-zero magnetic, field there are no measured parameters that can be used for this

purpose. In lieu of arbitrarily assigning values to G, G′ and Λ, we can take G and Λ

at their zero-field values, chosen to fix the pion decay constant to fπ = 93 MeV and the

condensate density per quark to 〈 ūu 〉 = −(250 MeV)3, and then assign values to G′ with

the constraint G′ ≤ G. Notice that G′ ≥ 0 because when the field increases, so does the

occupation of the LLL, hence reinforcing the longitudinal contributions over the transverse

ones (see Eq. (2.9)).

The Lagrangian density (2.1) can be also interpreted as an ad-hoc single-flavor effective

theory consistent with the symmetries of QCD in a magnetic field. Apart from the subgroup

of rotations already mentioned, it is also invariant under baryon symmetry, U(1)B, and

because of the absence in (2.1) of a fermion mass, chiral symmetry U(1)χ is preserved. For

other contexts where unconventional four-point interactions in NJL-like models have been

considered see [40–43].

2.2 Effective Potential in the Mean-Field Approxima-

tion

Let us explore now the possibility of the following homogeneous condensates

〈 ψ̄ψ 〉 = − σ
G
, 〈 ψ̄iγ5ψ 〉 = −Π

G
,

〈 ψ̄iγ1γ2ψ 〉 = − ξ

G′
, 〈 ψ̄iγ0γ3ψ 〉 = − ξ

′

G′
, (2.10)

where σ, Π, ξ and ξ′ are constant parameters.

Using them to perform the Hubbard-Stratanovich transformation in the Lagrangian

density (2.1), we obtain the partition function in the mean-field approximation

Z =

∫
D ψ̄D ψ exp [ iS(σ,Π, ξ, ξ′) ], (2.11)
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with action

S(σ,Π, ξ, ξ′) =

∫
d3x4 ψ̄(x)( iγµDµ − σ − iγ5Π− iγ1γ2ξ − iγ0γ3ξ′ )ψ(x)

− V

2G
(σ2 + Π2)− V

2G′
(ξ2 + ξ′2). (2.12)

The corresponding mean-field effective potential is

Ω(σ,Π, ξ, ξ′) =
σ2 + Π2

2G
+
ξ2 + ξ′2

2G′

+
i

V
Tr ln ( iD · γ − σ − iγ5Π− iγ1γ2ξ − iγ0γ3ξ′ ) (2.13)

where the trace (Tr) acts in color, Dirac, and coordinate spaces.

At this point, it is convenient to transform to momentum space with the help of the

Ritus transformation [44]. This method is based on a Fourier-like transformation that

uses eigenfunction matrices Ep(x). The Ep(x) are the wave functions of the asymptotic

states of charged fermions in a uniform magnetic field. The method yields a fermion Green

function that is diagonal in momentum space and explicitly dependent on the Landau

levels. Although valid at any field strength, this formalism is particularly convenient to

study the strong-field region, where the main contribution comes from the LLL [16,19,45].

Using Ritus’s approach, the inverse propagator in momentum space [19] takes the form

G−1
l (p, p′) =

∫
d4xd4x′ Ēlp(x)[ iD · γ − σ − iγ5Π− iγ1γ2ξ − iγ0γ3ξ′ ]δ(4)(x− x′)El′p′(x′)

= (2π)4 δ̂ (4)(p− p′)Θ(l)G̃−1
l (p̄) (2.14)

with

G̃−1
l (p̄) = [ p̄ · γ − σ − iγ5Π− iγ1γ2ξ − iγ0γ3ξ′ ], (2.15)

and

p̄µ = ( p0, 0,− Sgn(qB)
√

2|qB|l, p3 ). (2.16)
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The Elp(x)’s are matrix functions given as linear combinations of spin up (+) and down

(−) projectors ∆(±). For q > 0, they can be written as

Elp(x) = E+
p (x)∆(+) + E−p (x)∆(−), (2.17)

with

∆(±) =
I ± iγ1γ2

2
(2.18)

and

E+
p (x) = Nl e

−i(p0x0+p2x2+p3x3)Dl(ρ),

E−p (x) = Nl−1 e−i(p0x0+p2x2+p3x3)Dl(ρ). (2.19)

The index l = 0, 1, 2, ... is the Landau level number that characterizes the discretization of

the transverse momentum in a magnetic field. Here Nl = (4πqB)1/4/
√
l! is a normalization

constant and Dl(ρ) denotes the parabolic cylinder function of argument ρ =
√

2qB(x1 −

p2/qB) and index l.

The coefficient

Θ(l) = ∆(+)δl0 + I(1− δl0) (2.20)

in (2.14) takes into account the lack of spin degeneracy of the LLL.

To obtain (2.14) we used the orthogonality of the Elp functions [16]∫
d3x4Ēlp(x)El′p′(x) = (2π)4δ̂ (4)(p− p′)Θ(l), (2.21)

with Ēlp ≡ γ0(Elp)†γ0 and δ̂ (4)(p− p′) = δll
′
δ(p0 − p′0)δ(p2 − p′2)δ(p3 − p′3).

After going to Euclidean space, we can use the completeness relation∑∫ d4pE

(2π)4
Elp(x)Ēlp(x) = (2π)4δ(4)(x− x′), (2.22)

to invert (2.14) and find

G−1(x, x′) =
∑∫ d4pE

(2π)4

d4pE

(2π)4
Elp(x)G−1(p, p′)Ēl′p′(x′). (2.23)
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with ∑∫ d4pE

(2π)4
≡

∞∑
l=0

∫
dp4dp2dp3

(2π)4
.

With the help of (2.23), the effective potential can be written as

Ω(σ,Π, ξ, ξ′) =
σ2 + Π2

2G
+
ξ2 + ξ′2

2G′
−NcqB Tr

∞∑
l=0

∫ ∞
−∞

dp4dp3

(2π)3
ln Θ(l)G̃−1

l (p̄) (2.24)

where the integration in p2 was done using∫ ∞
−∞

dp2

2π
=

∫ ∞
−∞

dp2

2π
e−i

p2p1
qB

∣∣∣∣
p1=0

=
1

l 2
B

δ(p1)

∣∣∣∣
p1=0

=
1

l 2
B

∫ ∞
−∞

dx1, (2.25)

and the trace (Tr) now only acts on the spinorial matrices. Here lB = 1/
√
qB denotes the

magnetic length.

Taking into account that the l = 0 term only gets contributions from the subspace of

spinors with a single spin projection; spin up (down) for q > 0 (q < 0); it can be separated

from the rest to write

Ω(σ,Π, ξ, ξ′) =
σ2 + Π2

2G
+
ξ2 + ξ′2

2G′

−NcqB

[∫ ∞
−∞

dp4dp3

(2π)3
ln
(

det G̃−1
0 (p̄)

)
+
∞∑
l=1

∫ ∞
−∞

dp4dp3

(2π)3
ln
(

det G̃−1
l (p̄)

)]
(2.26)

Integrating in p4 we find

Ω(σ,Π, ξ, ξ′) =
σ2 + Π2

2G
+
ξ2 + ξ′2

2G′

− NcqB

4π2

∫ ∞
−∞
|ε0|dp3 −

NcqB

4π2

∑
η=±1

∞∑
l=1

∫ ∞
−∞
|εl,η|dp3, (2.27)

with energy spectrum

ε2
0 = p2

3 + (σ + ξ)2 + (Π + ξ′)2, l = 0,

ε2
l,η = p2

3 + Π2 + ξ′2 + σ2(1−X) + 2lqB(1−X ′) +
(√

σ2X + 2lqB + ηξ
)2

,

l ≥ 1, η = ±1 (2.28)
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where

X =

(
1 +

Π

σ

ξ′

ξ

)2

, X ′ =

(
1 +

ξ′2

ξ2

)
(2.29)

The factor qB/4π2 accounts for the density of states of the Landau levels. The spectrum of

the quasiparticles with Landau levels l ≥ 1 exhibits a Zeeman splitting (η = ±1) indicating

that the new dynamical parameter ξ enters as an AMM energy term. This is even more

evident if we take Π = ξ′ = 0 in the spectrum, since it becomes equal to the one found in

QED with dynamical mass and AMM [19]. No splitting is present in the l = 0 mode, in

agreement with the fact that the fermions in the LLL only has one spin projection.

2.3 Condensate Solutions

2.3.1 Gap Equations

We are interested in the situation where the magnetic field is large enough to have all

the quarks lying in the LLL, thus the ground state is dominated by the infrared dynamics

and only the first integral in the RHS of (2.27) contributes to the equations. This requires

magnetic fields qB ∼ Λ2 & Λ2
QCD. Such large fields are actually generated in off-central

heavy-ion collisions at RHIC.

To determine the dynamical solutions for the four condensates σ, Π, ξ and ξ′, we need

to solve the gap equations

∂Ω

∂σ
=

σ

G
− (σ + ξ) I0 = 0,

∂Ω

∂ξ
=

ξ

G′
− (σ + ξ) I0 = 0,

∂Ω

∂Π
=

Π

G
− (Π + ξ′) I0 = 0,

∂Ω

∂ξ′
=

ξ′

G′
− (Π + ξ′) I0 = 0, (2.30)

where

I0 =
NcqB

2π2

∫ Λ

0

dp3

ε0

(2.31)
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Here we introduced the momentum cutoff Λ below which the NJL theory is valid. One can

check that the solution of (2.30) satisfies

ξ̄ =
G′

G
σ̄, ξ̄′ =

G′

G
Π̄ (2.32)

Then, the condensates can be found from∫ Λ

0

dp3√
p2

3 +
(
1 + G′

G

)2(
σ̄2 + Π̄2

) =
2π2

(G+G′)NcqB
(2.33)

Notice that the gap equation (2.33) depends only on the UL(1)×UR(1)-invariant σ̄2 + Π̄2,

a typical feature of the MCχSB phenomenon [13, 38]. Hence, we can, as usual, specialize

the condensate configuration with Π = 0 and σ constant. As expected for a magnetically

catalyzed condensate, no critical coupling is needed for a nontrivial solution to exist.

From (2.32), we see that no solution exists with σ̄ 6= 0 and ξ̄ = 0, and viceversa. The

energetically favored solution has expectation values of both σ̄ and ξ̄ different from zero. In

the same way that the chiral condensate 〈 ψ̄ψ 〉 gives a dynamical mass to the quasiparticles,

the new condensate 〈 ψ̄iγ1γ2ψ 〉 gives them a dynamical AMM.

Once the quarks acquire a dynamical mass, they should also acquire a dynamical AMM.

This effect has been found to occur in QED [19] and the appearance of the condensate ξ

in our NJL model is a clear indication that it also occurs in QCD. One can understand

the inevitability of a dynamical AMM in the magnetically catalyzed system on the base

of symmetry arguments. Once the chiral symmetry is dynamically broken, there is no

symmetry protection for the AMM, because it breaks the exact same symmetry. The AMM

of the quarks leads to a nonzero dynamical MM for the pair. That the pairs should have

a dynamical MM is easy to understand, since they are formed by quarks and antiquarks

with opposite spins, so the fermions’ AMMs point in the same direction. The magnetic

field aligns the pairs’s MM leading to a net MM of the ground state.
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2.3.2 Effect on the Quasiparticle’s Effective Mass

The solutions of the gap equations (2.32)-(2.33) are

σ̄ =

(
2GΛ

G+G′

)
exp

[
− 2π2

(G+G′)NcqB

]
(2.34)

and

ξ̄ =

(
2G′Λ

G+G′

)
exp

[
− 2π2

(G+G′)NcqB

]
(2.35)

It is important to emphasize that the induced AMM term (2.35) depends nonperturba-

tively on the coupling constant and the magnetic field. This behavior reflects two important

facts: 1) in a massless theory, chiral symmetry can be only broken dynamically, that is,

nonperturbatively; and 2) the MCχSB phenomenon is essentially a LLL effect. The LLL

plays a special role due to the absence of a gap between it and the Dirac sea. The rest of

the LLs are separated from the Dirac sea by energy gaps that are multiples of
√

2qB, and

hence do not significantly participate in the pairing mechanism at the subcritical couplings

where the magnetic catalysis phenomenon is relevant. Since the dynamical generation of

the AMM is produced mainly by the LLL pairing dynamics, one should not expect to obtain

a linear-in-B AMM term, even at weak fields, in sharp contrast with the AMM appearing

in theories of massive fermions. In the later case, not only the AMM is obtained perturba-

tively through radiative corrections, but considering the weak-field approximation means

first summing in all the LL’s, which contribute on the same footing, and then taking the

leading term in an expansion in powers of B [46,47]. Notice that such a linear dependence

does not hold, even in the massive case, if the field is strong enough to put all the fermions

in the LLL [48].

The effect of the new condensate 〈 ψ̄iγ1γ2ψ 〉 is to increase the effective dynamical mass

of the quasiparticles in the LLL,

Mξ = σ̄ + ξ̄ = 2Λ exp

[
− 2π2

(G+G′)NcqB

]
(2.36)
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In QCD, for fields, qB ∼ Λ2, the dimensional reduction of the LLL fermions would

constraint the LLL quarks to couple with the gluons only through the longitudinal compo-

nents. Thus, to consistently work in this regime within the NJL model, we should consider,

taking into account (2.9), that G′ = G, so that G+G′ = 2G.

Because the effective coupling enters in the exponential, the modification of the dy-

namical mass by the magnetic moment condensate can be significant. In consequence, the

quasiparticles should be much heavier in our model than in previous studies that ignored

the magnetic moment interaction [38]. How much heavier, can be estimated from the log-

arithm of the ratio between the effective mass (2.36) and the mass found with G′ equal to

zero (i.e. Mξ=0 = 2Λ exp [−2π2/GNcqB])

ln

(
Mξ

Mξ=0

)
=

2π2

GNcqB

(
η

1 + η

)
(2.37)

Here we used G′ = ηG, but we know that for qB/Λ2 ∼ 1, η ' 1. Using the values

GΛ2 = 1.835, Λ = 602.3 MeV [49], Nc = 3 and q = |e|/3 ' 0.1, we estimate the RHS

of (2.37) as (π2/GNcqB) ' 1.8. Due to the condensate ξ the dynamical mass of the

quasiparticles increases sixfold. This result shows that at strong fields the new channel of

interaction must not be ignored, as it may lead to important physical consequences. One

of them is the increase of the critical temperature for the chiral restoration, as we show in

the next section.

2.4 Critical Temperature

2.4.1 Condensate Solutions at Finite Temperature

Our goal now is to calculate the critical temperature for chiral symmetry restoration

in the magnetized system. With that aim, we take the LLL approximation in (2.26) and

replace the integration in p4 by the Matsubara’s sum∫ Λ

−Λ

dp4

2π
→ 1

β

∑
p4

, β =
1

T
, p4 =

(2n+ 1)π

β
, n = 0,±1,±2, ... (2.38)
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to obtain

ΩT
0 (σ,Π, ξ, ξ′) =

σ2 + Π2

2G
+
ξ2 + ξ′2

2G′
− NcqB

β

∫ ∞
−∞

dp3

4π2

∑
p4

ln
[
p2

4 + ε2
0

]
(2.39)

Performing the sum in p4 [50] and introducing the momentum cutoff Λ, we obtain

ΩT
0 (σ,Π, ξ, ξ′) = −NcqB

∫ Λ

0

dp3

2π2

[
ε0 +

2

β
ln
(
1 + e−βε0

)]
+
σ2 + Π2

2G
+
ξ2 + ξ′2

2G′
(2.40)

The gap equations at finite temperature are then given by

∂ΩT
0

∂σ
=

σ

G
− (σ + ξ)[ I0 + Iβ ] = 0,

∂ΩT
0

∂ξ
=

ξ

G′
− (σ + ξ)[ I0 + Iβ ] = 0,

∂ΩT
0

∂Π
=

Π

G
− (Π + ξ′)[ I0 + Iβ ] = 0,

∂ΩT
0

∂ξ′
=

ξ′

G′
− (Π + ξ′)[ I0 + Iβ ] = 0, (2.41)

where I0 is defined in (2.31), and

Iβ =
NcqB

2π2

∫ Λ

0

dp3

ε0

2e−βε0/2

eβε0/2 + e−βε0/2
(2.42)

Once again we can check that the solutions of (2.41) satisfy relations similar to those

in Eq. (2.32). Then, the condensates can be found from∫ Λ

0

dp3√
p2

3 +
(
1 + G

G′

)2(
ξ̄2 + ξ̄′2

) tanh


√
p2

3 +
(
1 + G

G′

)2(
ξ̄2 + ξ̄′2

)
2T

 =
2π2

(G+G′)NcqB

(2.43)

Just as in vacuum, the gap equation (2.43) depends only on the UL(1)×UR(1)-invariant

ξ̄2 + ξ̄′2. Hence, we can, as usual, specialize the condensate configuration along the ξ

internal direction and take ξ′ = 0. In Fig. 2.1 we represent the numerical solution of (2.43).

Notice that the condensate ξ decreases continuously with the temperature, vanishing at

T ∼ 0.6Mξ, with Mξ the zero-T dynamical mass. This behavior is consistent with that

of the order parameter of a second-order phase transition. Equally important, the chiral

condensate σ̄ evaporates together with ξ̄, because of the relations (2.32), which, as already

pointed out, remain valid at finite temperature.

22



0.00 0.20 0.40 0.60 0.80 1.00

0.02

0.06

0.10

0.14

0.18

T /M
ξ

ξ
/
Λ

Figure 2.1: Condensate ξ, normalized by Λ, as a function of the temperature, T ,
divided by the zero-temperature dynamical mass Mξ.

2.4.2 Critical-Temperature Analytical Expression

The critical temperature TCχ can be analytically found from the condition

∂2Ω
TCχ
0

∂σ̄2

∣∣∣∣∣
σ̄=ξ̄=0

=
σ2 + Π2

2G
+
ξ2 + ξ′2

2G′

− NcqB

2π2

[
G+G′

G

∫ Λ

0

dp3

p3

tanh

(
βCχp3

2

)
+

2π2

GNcqB

]
= 0 (2.44)

We would have arrived at the same condition by taking instead the derivative with respect

to ξ̄. This is a consequence of the proportionality between σ̄ and ξ̄, given in Eq. (2.32),

which implies that the two condensates evaporate at the same critical temperature.

Doing the change p3 → p3/TCχ, we have∫ Λ/TCχ

0

dp3

p3

tanh
(p3

2

)
=

2π2

(G+G′)NcqB
, (2.45)

so the resulting critical temperature is

TCχ = 1.16Λ exp

[
− 2π2

(G+G′)NcqB

]
= 0.58Mξ (2.46)
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in agreement with the result found numerically in Fig. 2.1. The fact that the critical

temperature is proportional to the dynamical mass at zero temperature, is consistent with

the findings in other models [51]. In the present case, since the dynamical mass is increased

by the AMM, the critical temperature is proportionally increased.

That the chiral transition is second order can be seen directly from Fig. 2.1, as well as

analytically, from the positiveness of the second derivative of Ω near the phase transition,

∂2Ω

∂(σ̄2)2

∣∣∣∣
β≈βC

=
NcqBβC

32π2

[
G+G′

G

]4 ∫ βCΛ/2

0

dz
tanh z

z3

[
1− z

sinh z cosh z

]
> 0. (2.47)

We emphasize that the existence of a unique critical temperature for the evaporation

of the two condensates reflects the fact that the condensate ξ does not break any new

symmetry that was not already broken by the condensate σ and the magnetic field, as

discussed above.

The simultaneous evaporation of the chiral and magnetic moment condensates has been

also reported in the context of lattice QCD [52]. There are, however, important differences

in the way the magnetic field influences the system in lattice QCD and in the situation

considered in the present work. In Ref. [52] the coupling is supercritical, so the quark have

constituent masses even at zero field and the tensor term can be considered to be linear

in B. In our case, however, the quarks acquire their mass and AMM through the MCχSB

mechanism, so the field-dependence of the condensates is not expandable in powers of B,

and hence can never be linear.
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Chapter 3

The EoS in the BCS-BEC Crossover

of a Simple Fermion System

This Chapter is dedicated to the study of the BCS-BEC crossover for a simple model

with multi-fermion interactions. This simple NJL-like model serves as a toy model for a

system of quarks with only one flavor and no color degrees of freedoms. The purpose of

analyzing this model is to get a qualitative insight on the mechanism driving the BCS-BEC

crossover in a relativistic system, and on its implication for the system EoS.

We take into account multi-fermion interactions that account for the attractive inter-

action between quarks, which gives rise to the diquark formation, the attractive quark-

antiquark interaction that fives rise to the chiral condensate, as well as for the repulsive

interaction that exists among the diquarks. The inclusion of the multi-fermion interaction

with repulsive coupling is inspired by the fact that the same channel that favors diquark

formation also gives rise to unfavorable correlations for the cross-channels that would bound

quarks from the different diquarks [35]. Without the diquark repulsion, the inclusion of a

BEC state in gravitational bound systems, as neutron stars, will become unstable. The

results we are reporting in this Chapter are in part contained in the paper [53].

3.1 Fermion Model

We use a simple model with fermions having only spin degrees of freedom and exhibit-

ing multiple contact interactions with strengths parameterized by attractive four-fermion

couplings GD for the fermion-fermion channel, GS for the fermion-antifermion one, and by
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a repulsive eight-fermion coupling λ.

The corresponding Lagrangian density of our multi-fermion system is given by,

L = ψ̄(iγµ∂µ + γ0µ)ψ + Lint (3.1)

where

Lint =
GS

4
(ψ̄ψ)2 +

GD

4
(ψ̄iγ5Cψ̄T )(ψTCiγ5ψ) + λ

[
(ψ̄iγ5Cψ̄T )(ψTCiγ5ψ)

]2
(3.2)

In Eq. (3.1), in which we are neglecting the particle current mass, ψ is a Dirac fermion

field, C = iγ0γ2 is the charge conjugation matrix, and µ the chemical potential defining

the Fermi energy associated in realistic models with the baryon number. The interactions

are described by the attractive quark-quark coupling GD in the JP = 0+ channel which

generates the spin-0 diquark condensate, the quark-antiquark coupling GS, and the diquark-

diquark repulsion λ. The only internal degree of freedom considered in this model is the

spin. However, the results we will obtain should not qualitatively change when additional

internal fermion degrees of freedom are taken into account. This due to the fact that

the essence of the phenomenon under investigation is uniquely related to the change in

the nature of the spectrum of the quasiparticles, which is determined by the variation of

the diquark-pair binding energy and chemical potential as functions of the strength of the

couplings GD and GS. If λ = 0, the Lagrangian density Eq. (3.1) reduces to that considered

in previous works [54, 55]. The interaction term parameterized by λ does not break any

symmetry of the original theory. NJL model with eight-fermion contact interaction has

also been considered in studying chiral symmetry breaking in Ref. [56].

Now, we bosonize the multi-fermion interactions via Hubbard-Stratonovich transforma-

tion. The resulting interaction Lagrangian density is

Lint =
1

2
χ∆ψ̄iγ5Cψ̄T +

1

2
χ∆∗ψTC iγ5ψ − χ′

|∆|2

GD

− m2

GS

(3.3)

with gap parameters defined as

∆ =
GD

2
〈ψTCγ5ψ〉, m =

GS

2
〈 ψ̄ψ 〉, (3.4)
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and coefficients

χ = 1 + 32λ
∆2

G3
D

, χ′ = 1 + 48λ
∆2

G3
D

. (3.5)

In the Nambu-Gorkov space, ΨT = (ψ, ψ
C

) with ψ
C

= Cψ̄T , the mean-field propagator

is given by

G−1 =

 γµkµ + µγ0 −m χ∆+

χ∆− γµkµ − µγ0 −m

 . (3.6)

with the gap matrices

∆+ = ∆γ5 ∆− = ∆†γ0γ5γ
0 (3.7)

The corresponding mean-field partition function

Z =

∫
D Ψ̄DΨ exp

[
i

(∫
d4k

(2π)4
Ψ̄βG−1Ψ− χ′∆

2

GD

− m2

GS

)]
(3.8)

is then quadratic in terms of the Nambu-Gorkov fields, and can thus be readily integrated.

Going to the finite temperature formalism, the mean-field thermodynamic potential at

temperature T = 1/β and chemical potential µ takes the form

Ω = − 1

βV
lnZ

= − 1

2β

∞∑
n=0

∫
d3k

(2π)3
Tr ln

[
βG−1(iωn,k)

]
+ χ′
|∆|2

GD

+
m2

GS

, (3.9)

where the Matsubara frequencies of the fermion fields are ωn = (2n+1)π/β, and G−1(iωn,k)

is the inverse propagator in momentum space.

After Matsubara summation, in the zero-temperature limit we obtain

Ω0 = −
∑
e=±1

∫
Λ

d3k

(2π)3
εek + χ′

|∆|2

GD

+
m2

GS

(3.10)

where Λ is an appropriate momentum cutoff to regularize the momentum integral in the

ultraviolet, and εek the quasiparticle energy spectrum given by

εek =
√

(εk − eµ)2 + χ2|∆|2, εk =
√
k2 +m2, e = ±1 . (3.11)
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The spectra corresponding to different e = ± values denote the particle (e = +1) and

antiparticle (e = −1) contributions. Note that the term proportional to λ|∆|4 in (3.10)

corresponds to a repulsive potential of the bosonized theory [57,58].

3.2 Gap and Mass Equations at Fixed Particle Num-

ber Density

The gap equation (∂Ω0/∂|∆|) = 0 obtained from (3.10) for |∆| 6= 0, is∫
Λ

d3k

(2π)3

(
1

ε+k
+

1

ε−k

)
=

2(2χ′ − 1)

GD(3χ2 − 2χ)
(3.12)

The particle mass m is dynamically determined from the chiral condensate gap equation

(∂Ω0/∂m) = 0, which for m 6= 0 is given by∫
Λ

d3k

(2π)3

1

2εk

(
ξ+
k

ε+k
+
ξ−k
ε−k

)
=

1

GS

(3.13)

with

ξ±k = εk ∓ µ (3.14)

As usual in the study of the BCS-BEC crossover, we will consider a canonical ensemble

where the particle number density, nF = −(∂Ω/∂µ), is fixed through the Fermi momentum,

PF , as nF = (P 3
F/3π

2). Then

P 3
F

3π2
= −

∫
Λ

d3k

(2π)3

(
ξ+
k

ε+k
− ξ−k
ε−k

)
(3.15)

Solving numerically the system of Eqs. (3.12), (3.13), and (3.15), we can find the gap, ∆,

chemical potential, µ, and dynamical mass, m, as functions of the couplings GD, GS and λ.

3.3 Equation of State Along the BCS-BEC Crossover

To consider the possible realization of the BCS-BEC crossover in physical systems, as

in the core of neutron stars, it is essential to analyze how the crossover affects the system
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EoS. The system’s pressure and energy density are determined by the quasiparticles created

as perturbation modes over the condensate. It is natural to expect that the nature of the

quasiparticles’ energy spectra is modified when the system crossovers from BCS to BEC,

and that modification has to be reflected in the system EoS.

The energy density and pressure of the system in the zero-temperature limit are respec-

tively calculated from

ε = Ω0 + µnF − Ωvac, p = −Ω0 + Ωvac, (3.16)

where we introduced the vacuum contribution Ωvac to guarantee that when µ = ∆ = 0,

the corresponding pressure difference between the system and the outside vacuum becomes

zero. In this way, we avoid the introduction by hand, as it was done in Ref. [34], of a

bag constant B, whose value is undetermined for the system under consideration. The

vacuum contribution, Ωvac, on the contrary, only depends on the chiral condensate that is

dynamically determined for this particular model.

The vacuum effective potential is given by

Ωvac = Ω0 (µ=0,∆=0) = −
∫

Λ

d3k

(2π)3
2 ε̄k +

mvac

GS

(3.17)

with

ε̄k =
√
k2 +m2

vac (3.18)

Here, the dynamical mass, mvac, is obtained from (∂Ωvac/∂mvac) = 0.

3.4 BCS-BEC Crossover and Critical Values

The model contains free parameters that need to be adjusted to solve numerically the

system of equations consisting of Eq. (3.12), Eq. (3.13), and Eq. (3.15). We scale all the

variables with the cutoff parameter Λ, leaving the Fermi momentum PF , the quark-quark

coupling GD, the quark-antiquark coupling GS, and the diquark-diquark repulsion λ as free
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parameters to be adjusted to drive the crossover. From now on, the normalized units

G̃D → GDΛ2, G̃S → GSΛ
2, λ̃→ λΛ8,

P̃F →
PF
Λ
, P̃ → P

Λ
, ε̃→ ε

Λ
,

µ̃→ µ

Λ
, ∆̃→ ∆

Λ
, m̃→ m

Λ
, k̃ → k

Λ
, (3.19)

are used. Therefore, the cutoff parameter will not explicitly appear in our results. For

convenience, we also define

ĜD →
G̃D

4π2
ĜS →

G̃S

4π2
, λ̂→ λ̃

4π2
. (3.20)

To understand the system dynamics, we analyze the consequence of varying the coupling

constants ĜD, ĜS, and λ̂ for a fixed Fermi momentum, P̃F = 0.10. The results given on

Fig. 3.1 and Fig. 3.2 are for a fixed ĜS = 1.20 while ĜD is varying in a convenient interval.

The left panel of Fig. 3.1 shows that the fermion’s chemical potential decreases with the

increase of the diquark interaction. This behavior is a crucial indication of the crossover. As

it is known, the main condition for a relativistic gas to have a bosonic nature is µ < m [59].

Then, the ĜD value, where µ = m, is the critical value for the BCS-BEC crossover. For

λ̂ = 0, we observe that there exists a coupling critical value, Ĝcr
D = 0.81, beyond which the

condition µ < m holds. Around the critical value, going from smaller to larger values of the

coupling, the crossover from a BCS regime to a BEC one takes place. On the right panel

of Fig. 3.1, we see that once the system approaches the BEC regime at λ = 0, the pressure

decreases to zero at ĜP0
D = 0.91, as it corresponds to a pressureless boson gas. Thus, this

is signaling an instability for this strong coupled state of dense matter in gravitational

bound systems. Therefore, this behavior would prevent, at λ = 0, the realization of the

BCS-BEC crossover in the core of neutron stars. Nevertheless, stars formed by bosons

(the so-called boson stars) have been theoretically considered since long ago [60]. In that

case the mechanism to stabilize the star against its self-gravity is reached through the

contribution to the pressure of self-interacting bosons (i.e. through an interacting potential

energy U(Φ) = λΦ4) [57].
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Figure 3.1: Chemical potential µ̃ and dynamical mass m̃ (left panel), and pressure
P̃ (right panel) as a function of the diquark coupling ĜD for different
values of λ̂ at P̃F = 0.10 and ĜS = 1.20

Inspired in this idea, in Ref. [34] a term λ∆4 was added by hand to model the diquark-

diquark repulsion in the thermodynamic potential. With this new term, the pressure in-

creased for ĜD values beyond the critical point for the crossover. Similarly, we are working

out this same idea, but in a more self-consistent way, starting from a multi-fermion inter-

action that in the mean-field approximation reproduces the λ∆4 potential, and considering

a vacuum pressure that is extracted from the same model dynamics. In this approach, we

found that while increasing the value of λ̂, Ĝcr
D increases, but for λ̂ > λ̂cr = 11, the system

pressure never vanishes. It is also apparent that for large values of λ̂ (as seen from the

left panel of Fig. 3.1), ĜD never crosses m in the considered domain of ĜD values. If we

continue increasing ĜD beyond the domain considered in Fig. 3.1 we find that for values

far from the critical point of the BSC-BEC crossover the pressure starts to increase even at

λ̂ = 0. This is due to the fact that the gap turns out to be so large that its contribution to

the quasiparticle spectrum becomes the leading one in the effective potential (4.18), hence

leading the pressure behavior.
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Figure 3.2: Gap parameter ∆̃ (left panel), and energy ε̃ (right panel) as a function
of the diquark coupling ĜD for different values of λ̂ at P̃F = 0.10 and
ĜS = 1.20

In the left panel of Fig. 3.2, we show that the gap parameter starts increasing as the

chemical potential begins its decline with increasing ĜD. On the other hand, increasing

the repulsion between the diquarks (λ̂) produces a gap decrease while slowing down the

decrease of the chemical potential. In the right panel of Fig. 3.2, we show the energy

density ε̂, which decreases as ĜD increases as a consequence of the increase of the diquark

gap that makes the condensation energy larger. The repulsion of the diquarks slows down

the decline of ε̂, since it decreases ∆, as it was just discussed.

The diquark-diquark repulsion affects the quasiparticle energy spectrum (see Eq. (3.11)).

To check that it is the case, we investigate what is the nature of the quasiparticle spectra

for ĜD values at both sides of Ĝcr
D . On the left panel in Fig. 3.3, we can see that at λ̂ = 0

the quasiparticle spectra corresponding to coupling constants smaller and larger than Ĝcr
D

correspond to fermion-like and boson-like behaviors, respectively. That is, for ĜD < Ĝcr
D ,

the minimum of the dispersion relations occurs at k̃ =
√
µ̃2 − m̃2, with excitation energy

given by the gap ∆, a behavior characteristic of quasiparticles in the BCS regime. On the
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other hand, for ĜD > Ĝcr
D , the minimum of the corresponding spectrum occurs at k̃ = 0,

with excitation energy k̃ =
√
µ̃2 − m̃2 + ∆2, which is typical of Bosonic-like quasiparticle.

Therefore, it is corroborated that Ĝcr
D is the threshold value for the BCS-BEC crossover in

this model. An additional indication of the crossover can be seen from the variation of the

gap parameter ∆ on the right side of Fig. 3.2. As the system crossovers to the BEC regime,

the gap becomes significantly larger, thus making the coherence length of the diquark pair

ξ ∼ 1/∆ smaller. On the right panel in Fig. 3.3, we show the spectrum for λ̂ = 106. It

shows that the spectrum have changed and have a fermionic nature for both values of ĜD

that were previously considerer on the left panel. This is in agreement with the fact that

when we increase λ̂, the critical value Ĝcr
D also increases.
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Ĝ
D
= 0.9

0.00 0.04 0.08 0.12 0.16 0.20

0.00

0.01

0.02

0.03

0.04

k̃

ε̃+ k
x 100

 

 

Ĝ
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Figure 3.3: Spectrum ε̃+
k as a function of the wave vector k̃. On the left panel, we

have λ̂ = 0, and on the right λ̂ = 106.

An important goal here is to determine the significance of the diquark-diquark repulsion

in the stable realization of the BCS-BEC crossover. We accomplish this by searching for the

parameter space where this scenario can be realized at λ̂ = 0, and then, with the inclucion

of λ̂.
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The required condition to have a stable BEC region is that the pressure is kept positive

after the crossover. Fig. 3.4 shows the stability windows in the ĜD − ĜS plane. On the

left panel, we show the solution for P̃F = 0.10, and on the left panel for P̃F = 0.20. The

solid line (blue) marks the crossover condition (points where µ = m). the BEC regime is

found to right of this line. The dashed line (black) denotes the zero-pressure condition,

which separates a negative pressure regime to the right from a positive pressure one to

the left. The short-dashed line (red) separates the massless region (below), characterized

by zero chiral condensate, from the massive region (above). The region of parameters

where the crossover can occur is given by the intersection of the three lines. Comparing

the two graphs we see that the stability region shrinks as P̃F increases, that is, a larger

density tends to favor BCS over BEC, as physically expected. For fixed density and ĜD, the

stability window narrows for larger ĜS, indicating that the difference between the system

and vacuum pressures becomes smaller with larger chiral coupling. The stability window

completely disappears at λ̂ = 0 when P̃F = 0.23.
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Figure 3.4: Mapping of the region on which the BSC-BEC Crossover take place for
λ̂ = 0. On the left panel P̃F = 0.10, and on the right panel P̃F = 0.20

If we switch to a nonzero λ, the line marking the zero pressure moves up, while the
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solid line remains almost at the same place. The stability region has expands in the GD-GS

plane. Fig. 3.5 shows the stability windows at λ̂ = 50 for two different Fermi momenta,

P̃F = 0.10 (on the left panel) and P̃F = 0.20 (on the right panel). The stability window still

shrinks with a larger particle density, but it now covers a larger parameter space including

higher densities than at λ̂ = 0.
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Figure 3.5: Mapping of the region on which the BSC-BEC Crossover take place for
λ̂ = 50. On the left panel P̃F = 0.10, and on the right panel P̃F = 0.20

Then, this result is an indication that it may not be justified to neglect the diquark-

diquark repulsion when investing the possible realization of the stable BEC phase. This

interesting fact serves as motivation to include the diquark repulsion in a realistic model

like the one investigated in the next chapter.
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Chapter 4

BCS-BEC Crossover for Strongly

Coupled 2CS Matter

In this Chapter, we analyze the strongly coupled 2SC phase. The 2SC condensate

consists of spin-0 Cooper pairs formed by the u and d quarks. The interaction in the QCD

one-gluon exchange vertex is attractive in the antitriple channel, which is antisymmetric in

flavor, and color.

The purpose of exploring this phase is to relate our research with a realistic model that

can be applied to the interiors of compact astrophysical objects like neutron stars. The

density in their interior is bounded by hydrostatic equilibrium, augmented to be ρ < 10ρs

were ρs = 1014 g/cm3 is the saturation nuclear density. At such densities, the interaction

between the quarks is strong. Furthermore, matter in the bulk of compact stars should be

neutral with respect to electrical as well as color charges, and remain in β-equilibrium [61].

With that goal in mind, we impose conditions of neutrality and β-equilibrium. These

constraints could substantially influence the pairing dynamics between quarks and impose

nontrivial relations between the chemical potentials of different quarks. We explore the

intermediate density region were chiral symmetry has been broken but we have not reach

the confined phase (ρs < ρ < 5ρs). This is the region of the strongly coupled 2SC that, as

we mentioned before, is free of the chromomagnetic instabilities. Our expectation is that

a smooth BSC-BEC crossover take place by increasing the attractive coupling between the

quarks forming the diquarks.
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4.1 2SC Model

The NJL model with the appropriate pairing channels to describes the 2SC phase is

given by the Lagrangian density

L 2SC = ψ̄ai
(
iγµ∂µ + γ0~µ

)
ψai +GS(ψ̄ψ)2 +GD(iψ̄

C
εεaγ5~σψ)(iψ̄εεaγ5~σψC )

+ λ
[
(iψ̄

C
εεaγ5~σψ)(iψ̄εεaγ5~σψC )

]
, (4.1)

where we are neglecting the current mass of the quarks. Here, ψ
C

= Cψ̄T is the charge-

conjugate spinor, C = iγ2γ0 is the charge conjugation matrix, (ε)ik = εik and (εa)bc = εabc

are the antisymmetric tensors in the flavor and in the color spaces, respectively, and ~µ is the

matrix chemical potential. As in the simple model, we have introduced a diquark-diquark

repulsive interaction parameterized by a coupling constant λ.

We can notice that the color structure of the condensate (iψ̄
C
εεaγ5~τψ) ∼ εikε

abc is anti-

symmetric in color as well as in flavor and in Dirac indexes. It has an arbitrary orientation

in the color space, and by making use of the global color transformations, the orientation

is conveniently fixed in the third blue direction. In this case, the Cooper pairs in the 2SC

phase are made of the r and g quarks only in a reduced SU(2) flavor symmetry. The unpair

b quarks give rise to gapless quasiparticles.

We impose β-equilibrium by taking into account a density of electron in order to keep

the reactions

d→ u + e− + v̄e and u + e− → db + v̄e (4.2)

at the same rate.

On the other hand, the electric neutrality requires

nd ' 2nu (4.3)

where nu is the number of u quarks (with electric charge +2
3
) and nd the number of d quarks

(with electric charge −1
3
), even in the presence of a non vanishing electron density. This
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condition is implicit in the introduction of the electric chemical potential µe. Similarly, the

color neutrality is implicit in the introduction of the color chemical potential µ8.

The matrix ~µ is

µij,αβ = (µδij − µeQij)δαβ +
2√
3
µ8δij(T8)αβ (4.4)

where Q and T8 represent the generators of the electromagnetic and color gauge group.

The quark chemical potential explicit expressions are

µur = µug = µ− 2

3
µe +

1

3
µ8

µdr = µdg = µ+
1

3
µe +

1

3
µ8

µub = µ− 2

3
µe −

2

3
µ8

µdb = µ+
1

3
µe −

2

3
µ8 (4.5)

The effective potential in the NJL model in the mean field approximation is obtained

using the standard Hubbard-Stratonovich transformation, performing the functional trace

in Matzubara frequencies, and obtaining the zero temperature limit,

Ω0 = − µ4
e

12π2
− 1

4π2

∫ Λ

0

dp p2
∑
j

gj|εj|+ χ′
∆2

4GD

+
m2

4GS

(4.6)

where the sum in Eq. (4.6) run over twelve degrees of freedom associated with the original

ones of the six quarks and six antiquarks. In Eq. (4.6), we have introduced a 3-momenta

cut off that regularize the integral in the ultraviolet region. The dispersion relations and

degeneracies of the quasiparticles are respectively

ε1 = εp ± µub × 1

ε2 = εp ± µdb × 1

ε3 = E
±

p ± δµ × 2 (4.7)

Here, the following notations were used

εp =
√
p2 +m2,
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E
±

p =
√

(εp ± µ̄)2 + χ∆2, (4.8)

µ̄ =
µur + µdg

2
, (4.9)

δµ =
µdg − µur

2
, (4.10)

χ′ = 1 + λ
3

4

∆2

G3
D

, χ = 1 + λ
1

2

∆2

G3
D

(4.11)

Explicitly working out the sum in Eq. (4.6), we rewrite the thermodynamical potential

as

Ω0 = − µ4
e

12π2
− 2

π2

∫ Λ

0

dp p2εp −
1

π

∫ √µ2ub−m2

0

dp p2(µub − εp) (4.12)

− 1

π

∫ √µ2ub−m2

0

dp p2(µub − εp)−
2

π2

∫ Λ

0

dp p2(E
+

p + E
−

p )

+ χ′
∆2

4GD

+
m2

4GS

−Θ(δµ− χ1/2∆)F

The last term in Eq. (4.12) signalizes where the 2SC phase becomes unstable, that is when

δµ > χ1/2∆. The F function is given by

F = Θ(δµ−
√

(m− µ̄)2 + χ∆2 )

[∫ P+

0

dp p2(δµ− E−p ) + Θ(µ̄−m)

∫ P+

P−

dp p2(δµ− E−p )

]
+ Θ(δµ−

√
(m+ µ̄)2 + χ∆2 )

∫ P−

0

dp p2(δµ− E+

p )

where

µ± = µ̄±
√
δ2 − χ∆2, P± =

√
µ± −m2

It is important to check that in the BCS-BEC crossover region the condition δµ < χ1/2∆

is satisfied.
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4.2 Gap Equation and Neutrality Conditions at Fixed

Particle Density

The BCS-BEC crossover will be characterized by gap parameter ∆, mass m, and chem-

ical potentials µ, µe, and µ8, obtained by minimizing the thermodynamic potential with

respect to the gap and mass respectively

∂Ω

∂∆
= 0

∂Ω

∂m
= 0 (4.13)

and by solving the neutrality equations

∂Ω

∂µe
= 0

∂Ω

∂µ8

= 0 (4.14)

and the density equation

nF = −∂Ω

∂µ
(4.15)

The particle number density nF is fixed through the Fermi momentum nF =
P 3
F

3π2

The dimensional coupling constant GS and the momentum integration cutoff Λ are

adjusted to fit the pion decay constant to be fπ = 93 MeV, and the condensate density per

quark to 〈 ūu 〉 = −(250 MeV)3 like in Ref [37, 61]. This fixes the value of Λ = 653 MeV,

and GS = 2.14Λ2. Without loss of generality, we choose GD to be proportional to GS as

follows

GD = ηGS (4.16)

where η is a dimensionless parameter of order 1. We also introduce the normalized coupling

constants

G̃S →
GS

Λ
G̃D →

GD

Λ
λ̃→ λΛ8

In this way, the model parameter setting takes a value of G̃S = 2.14 for the chiral

condensate coupling. However, this coupling has not been measured in extreme condition
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of high densities. Changing the density scale will modify Λ and may also modify the relation

between Λ and GS. There is no complete certainty that the coupling will remain at the

same values. Our study, therefore, will include values of G̃S at and close to 2.14.

4.3 Equation of State Along the BCS-BEC Crossover

The system EoS is determined in the same way as in Chapter 3. The energy density

and pressure of the system in the zero-temperature limit are respectively calculated from

the quantum-statistical average of the energy momentum tensor. They are given by

ε = Ω0 + µnF − Ωvac, p = −Ω0 + Ωvac, (4.17)

where we introduced the vacuum contribution Ωvac to guarantee that when the gaps and

the chemical potentials vanish, the corresponding pressure difference between the system

and the outside vacuum becomes zero. The vacuum contribution, Ωvac only depends on

the chiral condensate that is dynamically determined for this model by

Ωvac = Ω0 (µiα=0,∆=0) = −12

∫
Λ

d3k

(2π)3
ε̄k +

mvac

4GS

(4.18)

were

ε̄k =
√
k2 +m2

vac. (4.19)

The dynamical mass in vaccum, mvac, is obtained from (∂Ωvac/∂mvac) = 0.

4.4 Numerical Results: EoS in the 2SC Phase

The condition that characterizes the BCS-BEC crossover in the simple model of Chap-

ter 3 was that the baryonic chemical potential µ crosses the value of the mass m. However,

the 2SC model has condensates that takes place only between an anti-symmetric mixture,

in color and flavor, of the u and d flavor quarks with g and r colors. Then, the BCS-BEC
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crossover in the 2SC phase, for only g and r color quarks, will take place when the effective

chemical potential µ̄ of the quasiparticles with diquark gaps, defined in Eq. (4.9), crosses

the value of the corresponding dynamical mass. On the other hand, since the the b quarks

do not participate in the pairing, they always maintain their fermion nature.

We explore first the crossover for a fixed value of G̃S = 2.14 at λ = 0. On the right

panel of Fig. 4.1, we show the behavior of the vacuum mass mvac vs G̃S. At G̃S = 2.14 , it

is obtained mvac = 330 MeV. On the left panel of Fig. 4.1, we show the values of G̃cr
D for

the BCS-BEC crossover as a function of the baryonic density. Here, ns is the ratio between

the density and the nuclear saturation density ρs (ρ = nsρs). It is important to notice that

the condition η < 1 is satisfied at the crossover only for ns < 1. Therefore, to have the

crossover at densities higher than the nuclear density, the value of η should be greater than

1. We also notice that the crossover disappears for density values for ns > 3.4, where only

a BCS phase is realized.
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Figure 4.1: Values of the critical coupling G̃D for the crossover at G̃S = 2.14 and
λ̃ = 0 as a function of the baryon density (left pane). Dynamical mass
vs G̃S at λ̃ = 0 (right panel)
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From now on, besides fixing G̃S = 2.14, we also fix the density to ns = 2 in Figs. 4.2

to 4.5. In Fig. 4.2, we show the behavior for the dynamical mass m, the effective chemical

potential µ̄, and the pressure P for λ = 0 and λ = 200. On the left panel, the BSC-BEC

crossover take place around η = 1.10 for λ = 0. The diquark repulsion moves the crossover

to η = 1.12. On the other hand, the corresponding pressures do not decrease in the range of

values plotted in the right panel of Fig. 4.2. For lower values of η, the 2SC phase enters the

instability region of the g2SC. Then, we conclude that the system is stable for η > 0.9 even

when it crosses to the BEC region. When λ increases, the pressure increases as expected

by the repulsion between diquarks.
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Figure 4.2: Crossover and Pressure at G̃S = 2.14 for λ̂ = 0(solid line), and λ̂ =
200(dotted line)

The behavior of ∆ is shown on the left panel of Fig. 4.3. Here, like in the simple

model, the gap decreases as λ increases. On the right panel, we confirm that the chemical

potentials of the b quarks do not change when the coupling G̃D increases. They remain

almost constant until the baryonic chemical potential decreases sufficiently at η = 1.4.

The electric and color chemical potentials are shown on the left and right panel respec-
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Figure 4.3: Gap ∆, and chemical potentials µub and µdb at G̃S = 2.14 for λ̂ = 0(solid
line), and
λ̂ = 200(dotted line)

tively in Fig. 4.4. The electric chemical potential seems to be fixed by the density PF and

the ĜS coupling. It does not change significantly whit ĜD and λ. On the other hand, the

color chemical potential decreases with ĜD at fixed slope, which decreases with λ.

The nature of the quasiparticle spectrum is shown in Fig. 4.5 for the three spectra in

Eq. (4.7). In the left panel of Fig. 4.5, the three spectra are plotted vs k for G̃D < G̃cr
D (where

G̃cr
D is the critical value of the coupling in the crossover). Here, each of the quasiparticle

spectra has a fermionic nature with a minimum at k > 0. On the other hand, the spectra

of the right panel show the same spectrum after the crossover. The nature of the spectra

for the b quarks remain fermionic, while for the r and g quarks, the spectra become bosonic

with a minimum at k = 0. This fact confirm the realization of the BCS-BEC crossover for

the quasiparticles formed by combinations of r and g quarks.

Finally, on the left panel in Fig. 4.6, we show the realization of the BCS-BEC crossover

in the G̃S − G̃D plane at different baryonic densities. The blue line shows the crossover at

ns = 2, which is the same density we considered in Figs. 4.2-4.1. Here, we can follow the
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Figure 4.4: Chemical Potentials µe and µ8 at G̃S = 2.14

consequences of varying G̃cr
S at different densities. The increase of G̃cr

S produces a decrease

in G̃cr
D , and therefore, η becomes smaller. Increasing G̃cr

S even more, we reach a point were

the pressure becomes negative at the crossover. This point is when the lines pointing at the

crossover become wide (upper part in Fig. 4.6). The system is unstable along the crossover

for this point and for high enough values of G̃cr
S . On the other hand, decreasing the value

of G̃cr
S increases η. For each density value, the crossover will disappear at a sufficient high

value of G̃cr
D because the chiral condensate cannot exist for such values of G̃cr

D and ns.

If we increase the density, the lines characterizing the BCS-BEC crossover move in

both positive direction of the plane. At ns = 4 (green line) the crossover does not occur

for GS = 2.14. There is a maximum density, shown in Fig. 4.1, at ns = 3.4, in which

a crossover can take place at G̃cr
S = 2.14. The right panel in Fig. 4.6 shows the gaps as

function of G̃cr
D (remember that G̃cr

S decreases as G̃cr
D increases, see left panel in Fig. 4.6).

The mass m decreases and the gap ∆ increases at the crossover with the increase of G̃cr
D .

In summary, at strong couplings, a crossover between BCS and BEC regimes can take

place. Fig. 4.6 give us a wide view of where the BCS-BEC crossover can take place, and how
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Figure 4.5: Energy Spectrum at η = 1.0(left) and η = 1.2(right)

the crossover moves when changing the couplings or the baryonic density. The pressure

never vanishes at the BCS-BEC crossover for values of G̃cr
S ∼ 2.14. With the results

obtained at λ = 0, we can analyze why the pressure never decreases as in the simple model

studied in Chapter 3. This apparent contradictory result can be understood by dividing

the expression for the pressure in the EoS (Eq. (4.17)), at strong coupling, into two parts

P = P1 + P2

where

P1 =
2

π2

∫ Λ

0

dp p2(E
+

p + E
−

p )− χ′ ∆2

4GD

− m2

4GS

P2 = +
µ4
e

12π2
+

2

π2

∫ Λ

0

dp p2εp +
1

π

∫ √µ2ub−m2

0

dp p2(µub − εp) +
1

π

∫ √µ2db−m2

0

dp p2(µdb − εp).

The term P1 is the contribution to the pressure of the gaped quasiparticles, a term prac-

tically equal to the contribution of the gapped quasiparticles in the simple model. The

remaining term P2 is the contribution of the b quarks and the density of electrons. The

neutrality conditions together with β-equilibrium make the chemical potentials µub, µdb,
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Figure 4.6: Crossover in the G̃S − G̃D plane at different nF

and µe remains almost constant along the crossover keeping a positive contribution to P .

Hence, the term P2 is almost constant. On the other hand, the term P1 does not decreases

along the crossover because we are a strong coupling, and P1 at this stage had already

decreases, as in the simple model. Then, along the crossover, P1 is a small negative value

which remains without significant change for a while, and it increases later (due to the

increase in the gap) driving the increase in the P . As a result, the crossover at G̃cr
S = 2.14

is stable, and the maximum densities in which the crossover occurs is at ns = 3.4. There-

fore, it is possible that the BCS-BEC crossover may be realized in the interior of neutron

stars and influence their EoS by increasing the system pressure, or modifying the gaps at

sufficiently high diquark interaction.
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Chapter 5

Numerical Method

This section describes the methods employed to numerically solve the equations that

were analyzed in this thesis. The analytical procedure of the studied problems begins defin-

ing the Lagrangian density and results in the introduction of a grand canonical potential

Ω. The numerical problem starts there, and could be formulated as follows: we have a

thermodynamic potential Ω defined as an non-linear integro-differential equation. This

thermodynamic potential depends on several fixed parameters (coupling constants, and

baryonic density), has to be minimized with respect the gaps (superconducting and chiral),

and has to satisfy neutrality conditions (in the 2SC model) in order to have a stable phase.

Once a stable phase is obtained, we can calculate the EoS: pressure and energy density.

A prior analysis of NJL models thermodynamic potentials leads us to conclude the

following. The gap equations always have a trivial solution at zero, which is a global

minimum if it is a unique solution. Otherwise, the trivial solution is a maximum and a

unique positive minimum should be elsewhere, satisfying the density equation. Besides,

the neutrality equations have a unique solution once the gaps are fixed. The solutions

space is, therefore, limited. Besides, we know certain aspects of the system behavior at

the extreme of the explored range, that let us guess the values of the gaps. With this

information at hand, we consider that employing a minimization method with equality

constraints, like interior point methods or quadratic programming, will be computationally

too expensive and not necessary to obtain a satisfactory solution. The problem could be

solved efficiently if it is reformulated as a solution of non-linear equations. However, after

solving the problem it has to be checked that the gaps effectively minimize the potential.

The objective now is to solve non-linear equations. We start with a function Ω that
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depends of a set of fixed parameters a = (a1, a2, . . . , am)T , and unknown variables denoted

as x = (x1, x2, . . . , xn)T . We obtain a set of equation partially deriving the function Ω with

respect to n− 1 of the n variables (gap parameter, and possible neutrality conditions), and

imposing a density equation of the form ∂Ω
∂xn

+ c = 0. Then, solving the resulting system of

equations, we obtain a stable phase if the gaps minimize Ω.

The function Ω is proportional the dispersion relation. On the other hand, its partial

derivatives are inversely proportional to the dispersion relation, and it is common that the

integration in momentum contain a pole. The existence of the pole will spoil the numerical

calculations. Therefore, even when a close expressions for the partial derivatives are at

hand, the partial derivatives are obtained numerically.

With this goal in main, we divide the computations in three sections

• Numerical integration

• Numerical derivatives

• The solution of a non-linear system of equations

We discus each one of these points in the remaining part of this chapter. The main

objective of the numerical analysis will be to obtain results with enough precision to get

a good resolution on the pressure and energy density. This accuracy has to be tested at

the end of each calculation since the behavior of our equations are not trivial, and an

appropriate bounds could not be made.

5.1 Numerical Integration

The numerical integration is the heart in the evaluation of the non-linear equations.

This computation is the deepest in the sense that the error introduced here is propagated

through the others calculations. Thus, this error has to be strongly bounded with the least

computational work possible.
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The integrals appearing on the evaluations have the form

I =

∫ Λ

0

dk g(k) (5.1)

where g(k) is the dispersion relation of the quasiparticles, and Λ is a positive defined and

smooth ultraviolet cutoff parameter, a energy scale limit for our theory that none of our

variables could reach. All the variables x will be normalized with respect to this parameter.

The integral Eq. (5.1) is discretized using a Gaussian quadrature. In this way, we

obtain a better precision with less function evaluation that with the trapezoidal or Simpson

methods. The n-points Gaussian quadrature is given by∫ 1

0

dk g(k) =
n∑
i=0

Ai g(ki) (5.2)

The nodal points xi and the weights Ai in the Gaussian quadrature are chosen such that

the integral Eq. (5.2) is exact for polynomials of degree 2n + 1, as in Ref. [62]. Then, the

error term of using approximation Eq. (5.2) is given byBook:Kincaid

E =
g(2n)(ξ)

(2n)!

∫ 1

0

dk
n−1∏
i=0

(k − ki)2 (5.3)

where g(2n)(ξ) is the 2n derivative of g evaluated at a point ξ ∈ (0, 1).

To have an estimate of the error term using Gaussian quadratures, Table 5.1 shows the

integral factor on Eq. (5.3) for different numbers n.

In principle, a Gaussian quadratures with 10 points will be enough considering that

g(k) is usually smooth. However, we employ a dynamical choice of quadrature for each

problem. First, 50 and 40 points are compared. If both results do not coincide at 10

digits of precision, 50 points are used. Otherwise, 40 and 30 points are compared, and

we repeat the procedure until we determine the smallest number of points sufficient for

the quadrature to be accurate. This dynamical election is done at the first run of the

optimization algorithm described on Section 5.3.
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Table 5.1: Gaussian Quadrature Error Estimate.

n Error Bound

10
g2n(ξ)

(2n)!
· 1.3950× 1012

20
g2n(ξ)

(2n)!
· 1.2835× 10−24

30
g2n(ξ)

(2n)!
· 1.1720× 10−36

40
g2n(ξ)

(2n)!
· 1.0681× 10−48

50
g2n(ξ)

(2n)!
· 9.7268× 10−61

5.2 Numerical Differentiation

As we mentioned before, it is needed to calculate first the Gradient ∇f(x), and then,

the second derivatives of a function f(x), the Jacobian Jf(x). To obtain numerically the

gradient and the Jacobian, we use the method of finite difference. This method will be

described here for two variables, however, it can be generalized for any number of variables

by repeating the steps for each pair of variables. First, we create a mesh of points around

the evaluation point (x, y) as is shown in Fig. 5.1. The space h, between adjacent points,

is a parameter that are adjusted dynamically.

The schemes used to discretized first and second derivatives of f with respect to a

variable x are

∂f(x, y)

∂x
≈ fx =

f(x+ h, y)− f(x− h, y)

2h
∂2f(x, y)

∂x2
≈ fxx =

f(x+ h, y)− 2f(x, y) + f(x− h, y)

h2
(5.4)

and similar expressions are obtained for the derivatives with respect to y. The mixed
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Figure 5.1: Discretization

derivatives that appears on the Jacobian are discretized applying scheme in Eq. (5.4) twice

∂2f(x, y)

∂x∂y
≈ fxy =

1

2h

(
f(x+ h, , y + h)− f(x− h, y + h)

2h

−f(x+ h, y − h)− f(x− h, y − h)

2h

)
(5.5)

∂2f(x, y)

∂y∂x
≈ fyx =

1

2h

(
f(x+ h, , y + h)− f(x+ h, y − h)

2h

−f(x− h, y + h)− f(x− h, y − h)

2h

)
(5.6)

Using Taylor expansion, it can be shown that the error bound on each finite difference

evaluation is Err = O(h2). The parameter h is usually chosen as h =
√
ε, where ε is

the machine precision. However, since the explicit expressions for the first derivatives are

already known, they are used to chose the appropriate value of h dynamically. The initial

value is h = 10−8, then, both analytical and numerical first derivatives are compare in order

to adjust the value of h. If h = 10−8 is introducing roundoff errors, h will be decreased by

a factor of 10.
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Then, the gradient of f(x, y)

∇f(x, y) =

 ∂f(x,y)
∂x

∂f(x,y)
∂y

 (5.7)

is discretized using the grid as in Eq. (5.4), Eq. (5.5) and Eq. (5.6)

∇f(x, y) ≈

 fx

fy

 (5.8)

The Jacobian of f(x, y)

Jf(x, y) =

 ∂2f(x,y)
∂x2

∂2f(x,y)
∂x ∂y

∂2f(x,y)
∂y ∂x

∂2f(x,y)
∂y2

 (5.9)

is discretized as

Jf(x, y) =

 fxx fxy

fyx fyy

 (5.10)

Notice that the Function, Gradient, and Jacobian at pint (x, y) are evaluated using just

the 9 points shown in the mesh of Fig. 5.1.

5.3 Minimization Method

The problem described at the beginning of the chapter is strictly formulated as a min-

imization problem with a constraint

min
x1,...,xn−1

Ω(x) subject to
∂Ω

∂xn
+ c = 0 (5.11)

There are different methods to approach Eq. (5.11): sequential quadratic programming,

interior point methods, quadratic penalty methods, etc. However, the number of variables

n in our case is small, from two to four, and the function evaluation is not too expensive;

hence, we can reformulate problem Eq. (5.11) in a seme what more efficient way that will

save some complication inherent in the minimization problem.
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The problem, in Eq. (5.11), could be redefined as

r(x) = 0 subject to C > 0 and |x∗|∞ < 1 (5.12)

where r(x) is the residual function

r(x) =


r1(x)

r2(x)

· · ·

r2(x)

 (5.13)

whit r1(x) = ∂Ω
∂x1

, r2(x) = ∂Ω
∂x2

, . . ., rn−1(x) = ∂Ω
∂xn−1

, and rn(x) = ∂Ω
∂xn

+ c. The last equation

represents the density condition, and C is the curvature of Ω with respect to the variables

x1, x2, . . . , xn−1. In other words, the solution x∗ of Eq. (5.12) also has to be a minimum

of Ω, but not any minimum, it has to be a global minimum where |x∗|∞ < 1. The last

restriction is imposed because of the physics that is being studied. All the variables are

normalized with respect to a momentum cutoff Λ. This value is our energy scale and no

observable could be even close to its value.

To solve Eq. (5.12), a Newton-like method with a merit function approach is used.

Taking into account the characteristics of the method needed, the name of the method

is a merit function approach to solve non-linear equations using a globalized Newton-like

method with a Line Search and curvature constrain. The name of the method summaries

the algorithms it uses (for more information about the different parts of the algorithm

see [63]).

5.3.1 Merit Function

The merit function is designed to measure the progress made by each Newton step. In

our case the function is proportional to the residual function r(x)

f(x) =
1

2
|r(x)|2 (5.14)
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Equation Eq. (5.14) is the same merit function minimized in the Least Square Problem.

However, in this case, the number of equations is equal to the number of variables; then,

the minimum x∗, if it exists, it will make f(x∗) = 0.

5.3.2 Newton’s Method

Newton’s method is an iterative method, which forms a linear model Mk(pk) of the

function f(pk) at each iteration k. The linear model is obtained from the first two terms

of the Taylor polynomial of the residual function r(x). The root of the model Mk(pk) = 0,

gives the step pk to the next approximation

xk+1 = xk + pk (5.15)

The model is

Mk(pk) ≡ rk + Jk pk (5.16)

where rk is a short notation for r(xk), Jk is the Jacobian of rk and pk is the Newton’s step

pk = −J−1
k rk (5.17)

Algorithm 1 Newton-Method Root Finder

Require: x0 and Tol

repeat

Obtain Newton Step

pk = −J−1
k rk

Update Solution

xk+1 = xk + pk

until f(xk+1) < Tol

If the first approximation x0 is close to the solution x∗, Newton method is guaranteed

to converge q-quadratically. Its convergence is its main advantage when the approximation

is close to the solution.
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After a Newton iteration, if the new approximation xk+1 is close enough to the solution

of Eq. (5.14), the method has succeeded; otherwise, the procedure is repeated. To measure

how close the approximation xk+1 is to the solution, the variable Tol is introduced. Then,

the criteria to stop the method is f(xk+1) < Tol. The variable Tol is chosen dynamically.

The initial value is Tol = 10−8, and will be adjusted, by a factor of 10, if needed, i.e. if at

the end of the algorithm the four digits of precision are not met.

5.3.3 Line Search

The Newton direction, pk, is designed to be a descendent direction

pTk∇fk = −pTk JTk rk = −|rk|2 < 0 (5.18)

if a sufficient small step is taken, it will decrease the merit function and a progress to the

solution is guaranteed. However, if big quantities of small steps are taken, the q-quadratic

convergency of a full Newton step is lost. There are two common strategies to approach

this problem a backtracking line search and a trust region method. Both strategies have

similar efficiency, and globalize the Newton method ensuring a progress to the solution at

each step. Thus, the strategy used is the line search because it is simpler.

Algorithm 2 Line Search

Require: pk, Jmax

Set α = 1

for J = 0, 1, . . . , Jmax do

if f(xk + αk pk) > f(xk) + c αk∇f(xk) then

return α

end if

α = 1
2
α

end for

return α
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The line search needs a condition to know if the considered step is accepted or not. The

requirement imposed is that the step reduces the merit function Eq. (5.14) in proportion

to the the step length α and the ∇f .

f(xk + αkpk) > f(xk) + c αk∇f(xk) (5.19)

Notice that close to the solution, ∇f � 0. The parameter c should be small; we use c = 104

which has been used with very good results [64].

The line search strategy is then to modify Newton step as

xk + αkpk (5.20)

first, the full Newton step is tested with αk = 1, if it does not satisfy Eq. (5.19) the step

is decreased by a factor 1
2

and tested again, until a proper step is found or a maximum

number of iterations Jmax has been reached. Restricting the number of iterations prevents

to get stuck accepting small steps, but could let to an increase of the merit function. This

is a risk that has to be taken.

5.3.4 Global Strategy

There are several points that have to be taken into account in the development of a

general strategy. In the search for a global minimum, a common strategy is to create a

discrete mesh of points and use the value of each point as initial approximation in Newton

method. The solution is expected to satisfy |x|inf < 1 due to physical restriction. Besides,

in this region, our function has probably just one minimum. Then, we create a mesh, with

no more than three or four points per dimension, inside the unit square like is shown in

Fig. 5.2.

Each point in the mesh is used as a starting point x0 in Newton method and will

converge to its own local minimum. When the method finish exploring each initial point,

the solutions found are compared. The one that minimizes the potential Ω and satisfies the

restriction on Eq. (5.12) is chosen. Finally, all the parameters of interest like pressure and
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Figure 5.2: Mesh of Initial Points

energy density are calculated, and the accuracy of the results are checked. It is expected

that when we change the variables by a value proportional to ∼ 10−5, the parameters of

interest do not change by more than a quantity ∼ 10−5. If the parameter changes more

than that, the precision is adjusted, and the calculation continues.

The pseudo-code for the complete method is shown belove. It does a very good job

on all the cases studied on the last chapters, and in reproducing some other result already

published [6, 34,61,65] similar to the ones handled in this thesis.
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Algorithm 3 Newton-Method Root Finder

Require: Mesh = {M1, M2, . . . , MN}, ITmax
Begin Local Search

for k = 1, k ≤ N, k → k + 1 do

x0 = Mk

Begin Newton Iteration

for IT = 0, IT < ITmax, IT → IT + 1 do

Obtain Newton Step pk = −J−1
k rk

Run Line search Algorithm

Update Solution xk+1 = xk + pk

Check toping Criteria f(xk+1) < Tol

end for

if IT < ITmax and |x|inf < 1 and C > 0 then

Solution Found.........!!! SOL(k) = xk+1

else

Solution not Found...!!! SOL(k) = −1

end if

end for

Find global Solution

return Global Solution
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Chapter 6

Remarks

6.1 AMM in Massless Quarks

The first part of this thesis explored chiral symmetry breaking in a magnetic field.

In Chapter 2, we used a QCD-inspired theory described by a one-flavor NJL model of

interacting massless quarks. The model includes a tensor channel that opened up via

the Fierz identities derived from one-gluon exchange interactions in a system where the

rotational symmetry has been broken by an external magnetic field.

Within this model, we showed that the MCχSB generates two independent, spin-0 and

spin-1, condensates that cannot exist separated one of each other. The spin-0 is the con-

ventional chiral condensate that generates a dynamical mass for the fermions. Here, the

pairs are formed by a particle and an antiparticle with opposite spins and charges, and they

have their magnetic moments pointing in the same direction. Under an applied magnetic

field, the magnetic moments of the pairs orient in the field direction giving rise to an overall

magnetic moments of the ground state that is equivalent to a nonzero expectation value

of 〈 ψ̄Σ3ψ 〉. The new condensate dresses the quasiparticles with a dynamical AMM, as re-

flected in the way the AMM parameter ξ enters in the energy spectra. The dynamical AMM

produces a Zeeman effect in all the quasiparticles with nonzero Landau levels. For the LLL

quasiparticles, there is no Zeeman splitting because only one spin contributes. However,

the effect of the AMM in this case is to significantly increase the effective dynamical mass

of the LLL quarks, and consequently the critical temperature of the chiral phase transition.

As the quasiparticles will be heavier at large fields, compared to their mass when the spin

condensate can be ignored, and since they are charged, the electrical conductivity in this
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case should be much smaller at strong fields. This will affect the transport properties of

this magnetized medium, a topic worth of more investigation for its potential implications

for astrophysics.

Previous works on magnetic catalysis of chiral symmetry breaking using analytical ap-

proaches [38] have found that the dynamical induced mass increases with the field. Then, it

has been a common believe that in the NJL approach the critical temperature of the chiral

phase transition increases with the field. However, QCD-lattice calculation has shown the

opposite, the critical temperature decreases with the magnetic field. Then, it is an open

question, which is attracting much attention, to reconciliate those two approaches

6.2 BCS-BEC Crossover

The second part of this thesis explored the possibility of a BCS-BEC Crossover in quark

matter. In Chapter 3, we started by considering a simple quark system described by a NJL

model with one flavor multi-fermion interaction. The model considers attractive channels

for particle-antiparticle (GS), particle-particle (GD), and a repulsive diquark-diquark (λ)

channel. For this system, we mapped the coupling GS −GD plane at λ = 0 and found out

that for a fixed density, where PF < 0.23, there exist a closed area of parameter values

where the BCS-BEC crossover with positive pressure can take place. We found that, as the

strength of the attractive coupling between quarks increases, the chemical potential turns

from being larger than the quark mass to being smaller, an indication of the BCS-BEC

crossover. This transition was confirmed in the characteristics of its quasiparticle spectrum.

For densities bigger than PF < 0.23, the pressure decreases to zero before reaching the BCS-

BEC crossover. Then, we considered the introduction of a repulsive force between diquarks.

The diquarks’ repulsion opens and widens the stability windows in the GS−GD plane, where

a stable BCS-BEC crossover can occurs for a larger range of densities. It turns out that the

diquark-diquark repulsion may affect considerably the stability of the system by increasing

its pressure or by changing the spectrum nature.
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The qualitative results obtained in Chapter 3 serve as a preliminary step to explore

a more realistic model of dense quark matter applicable to the EoS in neutrons stars in

Chapter 4. There, we studied a NJL model that describes the pairing channels in the

2SC phase at strong coupling. We explored the range of densities that may be available in

compact stars, and imposed neutrality of electric and color charge, as well as, β-equilibrium.

Besides, we set ĜS = 2.14 and Λ = 653 MeV to reproduce observable values that agrees

with this model at low densities. In this model, we found that a BCS-BEC crossover, with

positive pressure, occurs for densities until 3.4ρs. Rising the density, the chiral condensate

evaporates and the crossover disappears. On the other hand, contrary to the simple model,

the pressure never vanished due to the strong coupling on the considered range, the density

of electrons, and the unpaired b quarks, whose nature does not change along the BCS-BEC

crossover. Later, we increased the value of ĜS and found that the BCS-BEC crossover takes

place at smaller values of ĜD. For a sufficient high ĜS, there is a critical value where the

pressure becomes zero. Then, we showed that the introduction of the diquarks repulsion

increases the possibility of having higher values for ĜS, and what is most important for

application to compact stars, it allows to have a stable BCS-BEC crossover at higher

densities than 3.4ρs.

The results we are reporting in both studies show the importance of the diquark-diquark

repulsion. By increasing the repulsion, the parameter window, where the system is stable,

increases. Hence, it opens the possibility of having a stable BCS-BEC crossover.
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