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Abstract

We explore chiral symmetry breaking in a magnetic field within a Nambu-Jona-Lasinio
model of interacting massless quarks including tensor channels. The new interaction chan-
nels are opened up through Fierz identities due to the breaking of the rotational symmetry
by the magnetic field. We demonstrate that the magnetic catalysis of chiral symmetry
breaking leads to the generation of two independent condensates, the conventional chiral
condensate and a spin-one condensate. While the chiral condensate generates a dynami-
cal fermion mass, the spin-one condensate gives rise to a dynamical anomalous magnetic
moment for the fermions. We also investigate the possibility of a crossover from a BCS
to a BEC (Bardeen-Cooper-Schrieffer to Bose-Einstein Condensation) phase for strongly-
coupled quark matter, and its implications for the system equation of state. The study
uses zero temperature effective quark models at densities beyond nuclear density. We use
mean-field approximation and consider quark-quark, quark-antiquark, and diquark-diquark
interactions. We determine the region of parameters where the crossover can take place
for a stable system (i.e. that with a corresponding positive pressure). To carry out this
investigation, we first use a simple relativistic model of one-flavor fermions, and then, we

consider a more realistic two-flavor model for strongly interacting quarks
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Chapter 1

Introduction

Our current understanding of the laws that govern the fundamental particles have been
written successfully in the language of quantum field theory (QFT). At high energy, those
laws can be summarized in the Standard Model of particles [1]. This model has extended
and generalized the quantum theory of electromagnetism (QED) with the weak nuclear
forces into a unified Electro-Weak theory. In a similar way, Quantum Chromodynamics
(QCD), the theory of quarks and gluons, proves an analogous theory of the strong nuclear
forces. Together they summarize our present knowledge of the basic constituent of matter in
terms of Abelian and non-Abelian gauge theories based on symmetry groups. Symmetries
play a central role in the understanding of modern physics and in the construction of the
Standard Model. One important aspect of gauge symmetries is that they can spontaneously
be broken and not be manifest in physical observable.

Symmetry breaking was well known in classical physics in the form of phase transitions
and had been formalized in the theory of Ginzburg-Landau (GL) [2]. The GL theory, in a
statistical context, allows an understanding of the different states of atomic matter. The
mechanism that leads to the transitions between different phases can be characterized by
an order parameter that describes the symmetry-breaking. In similar way, symmetries can
be broken in QFT. For example, in the thermal evolution of the Universe, the electro-weak
system starts from a symmetric phase with massless fermions (quarks and leptons) and
four massless bosons that carries the electro-weak force. Introducing as order parameter a
scalar filed, known as the Higgs field, the theory predicts that below a certain energy scale
the Higgs will acquires a non-zero vacuum expectation value (vev). The appearance of the

Higgs field vev will break the electro-weak symmetry down to the gauge symmetry of elec-



tromagnetism, and three of the force-carried bosons will become massive. The interaction
of the particle field with the non-trivial ground state of the Higgs condensate will generate
the constituent mass of quarks and leptons.

On the other hand, the theory of strong interactions, QCD, is described with an addi-
tional color symmetry group. The immediate implication of this symmetry is that quarks
will never be observed in isolation. At energies lower than the so called QCD energy scale
(Agep), the quarks are confined by their strongly interacting gluons to be colorless in group
of three forming baryons, or as quark-antiquark pair forming mesons. In addition, at suf-
ficient high energies the theory is invariant under the interchange of left and right handed
quarks. This symmetry is known as a chiral symmetry. Increasing the energy scale, the
quark current masses can be neglected, and an approximate flavor symmetry emerges. The
breaking of those two symmetries give rise to a rich diversity of phases and phenomena.
In regard of this, QCD has become a great challenge for both experimentalist and theo-
reticians. The study of quark matter in extreme environments, such as high temperature
T, high baryon density uz, strong external fields, etc., is essential to unveil the properties
of nuclear matter and for a better understanding of many phenomena in cosmology, astro-
physics and heavy ion collision experiments. These probes bring us closer to the ultimate
goal of understanding QCD.

This thesis is dedicated to the study of two phenomena within the context of quark mat-
ter in the extremes of high temperature, high density and strong magnetic field. In Chapter
2, we explore chiral symmetry in a strong magnetic field for a system of massless fermions.
We show that, in addition to a dynamical mass, a dynamical anomalous magnetic moment
is generated once the chiral symmetry is broken. In Chapter 3, we investigate the possibil-
ity of a crossover from the Bardeen-Cooper-Shriffer (BCS) superfluidity /superconductivity
state to a Bose-Einstein condensation (BCS) one in a simplified model of relativistic quarks.
Later in Chapter 4, we explore the possibility of the BCS-BEC crossover in a more realistic
model with v and d quarks. The strongly-coupled-quark-matter model used is the 2SC.

Finally, in Chapter 5, we descries the methods employed to solve the numerical problems



that were presented in Chapter 2-4. And we summarize the main outcomes of our inves-
tigation and make our concluding remarks in Chapter 6. The remainder of this chapter is
dedicated to a brief introduction to several topics of interest for the present work and to

providing a motivation and possible implications of our investigation.

1.1 The QCD Phase Diagram

The phases of the low-energy regime of QCD, where only the u, d, and s quarks may
form, are commonly mapped in the plane of temperature 7" and baryon-number chemical
potential p. This representation is known as the QCD phase diagram. Each phase is char-
acterized by their symmetries and order parameters. The different phase boundaries that
have been found are model dependent. They are particularly influenced by the values of the
coupling constant, the constituent s quark mass (my), and the introduction of external con-
ditions as magnetic field, temperature, etc. However, thanks to the asymptotic freedom of
the theory (the nuclear interaction is asymptotically free [3], what means that the strength
of the strong force decreases with the energy scale. At high energies the quarks becomes
closer and interact weakly), the extremes in the QCD phase diagram have states of matter
well described by theoretical models that use the perturbative techniques allowed in those
high-energy regions. Fig. 1.1 describes the QCD phase diagram with a simple sketch of the
global phases of QCD pointing out the energy regions of the high-energy experiments that
has been conducted in the last years [4].

In the high temperature (7' > A,p) and low density asymptote, it is found the quark-
gluon plasma (QGP), a state of matter formed by quarks and gluons where there is neither
color confinement nor quark dynamical mass. This regime has been successfully analyzed
employing lattice QCD calculations [5], and has been the subject of ultra-relativistic heavy-
ion colliders. The existence of the QGP phase has been confirmed by the Relativistic Heavy
Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) and by the Large Hadron
Collider (LHC) at the European Organization for Nuclear Research (CERN). The results
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Figure 1.1: Schematic QCD Phase Diagram [4]

of both experiments also confirm the existence of a crossover transition from QGP to a
phase of hadrons, at a temperature of approximately 170 MeV.

On the other extreme of high density (s > ms) and low temperatures, baryonic matter
is also deconfined. The dense and weakly interacting quarks are unstable under the forma-
tion of Cooper pairs, a phenomenon in QCD similar to the BSC instability in conventional
superconductivity, producing a new ground state formed by colored diquark. Here, all three
flavors and three colors forms pairs in a more energetic phase known as Color-Flavor-Locked
(CFL) [6]. Moving down in density, the CFL phase becomes unstable. A rich spectrum of
superconducting phases has been suggested to replace the CFL; however, at present, it is
not clear which state is the ultimate one. The problem is that some parameters concerning
the superconducting phases, like the quark masses and their couplings, are not accessible to
observation at those regimes, and their values rely only on educated guesses. However, the

measure of the physical values of the quark masses, as increasing the baryon density at low



temperatures, implies that the chiral symmetry braking transition, where hadronic matter
becomes deconfined-superdense matter, is a first order transition [7]. Consequently in the
QCD diagram, there will be a critical point that delimits the crossover from the first order
phase transition. The location of this critical point has been addressed by ultra-relativistic
heavy-ion experiments, performed at CERN and BNL.

The asymptotic behavior and the transition to the hadronic phase are the most secure
parts in the QCD diagram. Nonetheless, part of our investigation is placed in the inter-
mediate region of densities at low temperature. The study of this region is a challenging
theoretical problem that, at the moment, cannot be addressed by experiments nor by QCD
lattice calculation. However, it is known that the ground state at those regions may have a
superconducting condensate formed by the pairing of quarks ({¢q)), and a chiral conden-
sate formed by a pairing of quarks and anti-quarks with opposite spins ({gq)). The first
condensate produces a gap in the energy spectrum and the later one produces a dynamical
mass. The spontaneous breaking of those two symmetries is usually studied employing
effective models of QCD like the Nambu-Jona-Lasinio (NJL) model that although fails to
describe confinement, it captures the essences of the symmetry breaking phenomena. This
model can be seen as the result of integrating all the gluons in the one gluon exchange,
which is a good approximation at high densities, and will be the starting point in our

studies.

1.2 QCD in a Magnetic Field

Extremely high magnetic fields (~ 10'® G) [8,9] can be generated in noncentral Au-Au
collisions for top collision energies /Syy = 200 GeV at the RHIC at BNL, and even
larger fields (~ 10 G) can be generated for the energies reachable at the LHC at CERN,
VS = 4.5 TeV, for the Pb-Pb collisions [9]. Even though these magnetic fields decay
quickly, they may influence the properties of the particles generated during the collision.

Later in this decade, the Facility for Antiproton and Ion Research (FAIR) at the Society



for Heavy Ion Research (GSI) will open the possibility to explore the intermediate region
of temperatures and densities. Strong magnetic fields will likely be also generated at FAIR,
making possible to explore the region of higher densities under a magnetic field.

An other physical environment where the influence of a magnetic field in the state of
quark matter is relevant is the core of neutron stars, which typically are very magnetized
objects reaching surface magnetic fields as large as 10'* — 10 G [10]. Moreover, due
to the very high electric conductivity, the magnetic flux should be conserved, and it is
natural to expect a stronger field strength with increasing matter density at the core. The
interior magnetic fields are however not directly accessible to observation. Estimates based
on macroscopic and microscopic analysis, considering both gravitationally bound and self-
bound stars, have led to maximum fields within the range 10'® —10%° G, depending whether
the inner medium is formed by neutrons [11] or by quarks [12].

A uniform magnetic field has a strong tendency to enhance fermion-antifermion spin-0
condensate in any charged-fermionic system with arbitrarily weak attractive interaction.
This phenomenon is known in the literature as the magnetic catalysis of chiral symmetry
breaking (MCySB) [13]. The mechanism responsible for such effect is related to the di-
mensional reduction of the infrared dynamics of the particles in the lowest Landau level
(LLL). Such a reduction favors the formation of a chiral condensate because there is no
energy gap between the infrared fermions in the LLL and the antiparticles in the Dirac
sea. The MCySB modifies the vacuum properties and induces dynamical parameters that
depend on the applied field. This effect has been actively investigated assuming that the
catalyzed chiral condensate generates only a fermion dynamical mass [14-18]. However,
it has been shown recently that in QED the MCySB leads to a dynamical fermion mass
and inevitably also to a dynamical anomalous magnetic moment (AMM) [19]. This is con-
nected to the fact that the AMM does not break any symmetry that has not already been
broken by the other condensate. The dynamical AMM in massless QED leads, in turn, to
a non-perturbative Lande g-factor and Bohr magneton proportional to the inverse of the

dynamical mass. The induction of the AMM also yields a non-perturbative Zeeman effect.



An important aspect of the MCySB is its universal character, and one expects that the
dynamical generation of the AMM should also occur in QCD. Regarding this, Chapter 2
is dedicated to investigate the influence of a magnetic field on the QCD chiral transition
in a system of massless fermions. We explore a tensor channel in the one-flavor one-color
NJL model that opens up via Fierz identities due to the explicit breaking of the rotational
symmetry by the magnetic field. This tensor channel is important only in the presence of a
magnetic field, and leads to the generation of two independent condensates. One generates

a dynamical mass, while the other generates a dynamical AMM.

1.3 Color Superconductivity and the
BCS-BEC Crossover

The idea behind the BCS theory of superconductivity is the formation of Cooper pairs.
For sufficiently low temperatures, the Cooper pairs will resist temperature fluctuations,
producing a condensation that will modify the ground state and break some of the symme-
tries of the underlying theory. In QCD, the ground state of the superdense quark system,
a Fermi liquid of weakly interacting quarks, is unstable with respect to the formation of
diquark condensates [20]. This non-perturbative phenomenon is essentially equivalent to
the Cooper instability in the BCS theory. The attractive channels are provided by the
one gluon exchange color-antitriplet channel. The color condensates break the SU(3) color
gauge symmetry of the ground state producing a color superconductor.

A natural scenario where color superconductivity could be realized is in the interior
of compact astrophysical objects as neutron stars. There, matter can reach densities es-
timated to be several times larger than the nuclear saturation density and temperatures
several orders smaller than the superconducting gap. Also, there exists a possibility that
color superconductivity could be found in future experiments planned at FAIR at GSI, the

Nucleon-Ion Collider Facility (NICA) at the Joint Institute for Nuclear Research (JINR)



in Dubna, and the Japan Proton Accelerator Research Complex (JPARK) at the Japan
Atomic Energy Research Institute (JAERI), all of which intend to complement the experi-
ments at RHIC and LHC by reaching regions of even higher densities and intermediate to
low temperatures in the QCD phase map.

Nonetheless, in both referred scenarios the color superconducting state will be realized
at densities which are not asymptotically high. At these intermediate densities, the CFL
phase breaks down due to the mismatch between the Fermi momenta of the heavier s
quark with the light v and d quarks, and to the constraints imposed by electric and color
neutralities [21]. As a consequence of the pairings with mismatched Fermi surfaces, the
CFL phase exhibits chromomagnetic instabilities [22]. To remove such instabilities several
interesting proposals exist, e.g. the existence of inhomogeneous condensates [23]; a LOFF
phase on which the quarks pair with nonzero total momentum [24]; and an inhomogeneous
gluon condensate together with the spontaneous induction of an in medium magnetic field
[25]. At present, it is not clear if any of these proposals is the final solution to the instability
problem. On the other hand, taking into account the running of the coupling constant with
the energy scale, it is expected that in the moderate density region the coupling constant
turns stronger. Then, one possible scenario where the chromomagnetic instability can
be avoided occurs if in the region of moderate-low densities the strong coupling constant
becomes sufficiently high (G, ~ G ~ 1/A? with G, and Gg denoting the diquark and
quark-antiquark coupling constants respectively) [26,27]. In this situation it was found
that the more stable phase at T' = 0 is the strongly-coupled 2SC one.

Nevertheless, the increase of the coupling constant strength that occurs at intermediate
density can modify the properties of the ground state by decreasing the Cooper-pair coher-
ence length, which can reach values of the order of the inter-quark spacing [28]. As already
found in other physical contexts [29], this fact strongly suggests the possibility of a crossover
from a BCS superfluidity /superconductivity to a BEC state of composite molecules, where
although the symmetry breaking order parameter (the diquark condensate) is the same,

the quasiparticle spectra in the two regions are completely different. In the BCS side, the



coherence length of the pairs is much larger than the mean inter-particle distance and as
a consequence the fermionic degrees of freedom are still manifested. However, in the BEC
state, the fermions pairs are bound into a bosonic molecule and no fermionic degrees of
freedom remain. This finding in non-relativistic systems, together with the fact that the
diquark BEC phase could be the natural phase reached after deconfinement, strongly sug-
gests the possibility of a crossover from a color-superconducting BCS dynamics to a BEC
one in QCD. Several studies in this direction have been already pursued by using different
relativistic models and calculational techniques [30-34].

Having in mind that the possible realization of the BCS-BEC crossover can take place in
the core of neutron stars, it turns very important to investigate the effect of the formation
of the Bose-diquark cluster on the matter pressure, since it should balance the strong
gravitational inward pressure at the star’s core. In this context, we should take into account
that the ground state of the diquark cluster will be a pressureless zero-momentum Bose
condensate. Since for this astrophysical medium we can consider that T' < pu, it should be
expected that the system of free diquarks becomes almost pressureless at those relatively
low temperatures. However, as it was pointed out in Ref. [35], together with the fact that
there exists an attractive channel between quarks that favors the diquark formation, there
is also a diquark-diquark repulsion. This repulsion is due to the cross-channel unfavorable
correlations between the quarks belonging to different diquarks. Hence, when the diquark
repulsion is self-consistently taken into account in the EoS of this system, the instability
previously found in the strong coupling region can be removed, stabilizing the pressure.
The increase of the diquark repulsion compensates the effect of the decay of the chemical
potential, which is known to make an important contribution to the EoS [36].

In this direction, part of our investigation is to analyze whether a BCS-BEC crossover
may appear in a realistic model for compact stars. We employ multi-fermion NJL models
including the chiral condensate, the diquarks formation, and the diquarks repulsion. The
investigation is carried out self-consistently through the mean-field approximation. We map

the spectrum of possible parameters where the BCS-BEC crossover may take place, and



its consequences in the system EoS. In this way, we investigate the realization of a stable
(i.e. having a positive pressure) BCS-BEC crossover in a wide parameter regime. First in
Chapter 4, we want to get an insight of the interplay of both superconducting and chiral
condensates in a simple model of fermions. Later in Chapter 5, we consider the strongly
coupled 2SC model that, as mentioned before, may be a suitable model for the densities

inside compact stars.
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Chapter 2

Anomalous Magnetic Moment of

Massless Quarks in a Strong

Magnetic Field

A magnetic field is known to enhance the chiral condensate in many systems of fermions
with arbitrarily weak attractive interaction (MCxSB). This effect has been actively inves-
tigated assuming that the condensate generates only a fermion dynamical mass. Recently,
a similar scenario was study in QED [19]; and it was found that the MCxSB leads to a dy-
namical fermion mass and inevitably also to a dynamical AMM. Similarly, and considering
that the MCySB is a universal phenomenon, the purpose of this Chapter is to investigate
the dynamical generation of a net magnetic moment in the ground state of QCD and dis-
cuss its implications for the chiral phase transition at finite temperature using a NJL model
with four-fermion point interactions. The use of NJL models to explore chiral symmetry
breaking in QCD with nonzero magnetic field has been a successful strategy followed in
many previous works [37,38]. The new element in the present investigation will be the
introduction of a yet unexplored four-fermion channel that becomes relevant only in the

presence of a magnetic field and can lead to non-trivial physical consequences [39].

2.1 NJL Model in a Magnetic Field

Our main goal here is to investigate the effect of a constant and homogeneous magnetic

field in the spontaneous breaking of chiral symmetry for a system of massless quarks. We

11



use a simple NJL model that can be interpreted as the result of integrating out the gluon
fields and quark fluctuations with momenta larger than some scale A, with A 2 Agcp. Our
NJL model of massless quarks in the presence of a constant and uniform magnetic field is

given by the Lagrangian density

M 4 L@

L = piy"Dyp + LD + L2 (2.1)

The single-flavor Dirac spinor 1 belongs to the fundamental representation of the SU(N,)
color group. The electromagnetic four-potential in the covariant derivative D,, = #+iqA§f“>
is chosen, without lost of generality, in the gauge Affxt) = (0,0, Bz1,0), so to have a constant
and homogenous magnetic field of magnitude B pointing in the z3-direction. We use the
Lorentz metric 7,, = (1,-1) and the Dirac matrices in the chiral representation. The

interaction
G . - _
L0 = 2 [0+ @in)?], 22)

has the conventional four-fermion scalar and pseudoscalar channels used in many previous
studies based on NJL [38]. In addition, we introduce a new channel
G _ _
£ = 5 [(05%) + (Win"s*y)*] (233)
that preserves chiral symmetry and rotations about the magnetic field direction; here ¥3 =
%[71, v?] = o is the spin operator in the direction of the applied field. In Egs. (2.1)-(2.3),
summation over color index has been assumed.

A uniform magnetic field always selects a preferable direction and explicitly breaks
the rotational symmetry into a parallel and transverse to the field directions. The new
interaction channel £ with second-rank tensor structure naturally emerges using the
Fierz identities in the one-gluon-exchange channels of QCD when the rotational symmetry
is broken. This, in turn, implies that the tensor structures of the Dirac ring split in
components parallel and transverse to the field direction with the help of the normalized
tensor ﬁuv = F./|B|,

€1

[ J— 77|l|w%a vo= nﬁ”fyy (24)

v

12



with
A 5 2.5

being the longitudinal and transverse Minkowskian metric tensors respectively. In the rest
frame, for a magnetic field in the x3 direction, 5" has only u,v = 0,3 components, and
Nt has p,v =1,2.

As a consequence, the four-fermion interaction Lagrangian density splits into two terms,

8 i
2A2 2A2

Notice that despite the fact that there is no direct coupling between the gluons and the

Lii = 5@ (W) + =5 (W) (). (2.6)

magnetic field, the fermion vertex is modified because of the distinction between longitudi-
nal and transverse fermion modes in this case. The extreme case occurs for magnetic fields
of the order of the energy scale of the fermions, where all the fermions are in the LLL and
hence the only modes entering in the bare coupling are the longitudinal ones.

On the other hand, the O(3) — O(2) symmetry breaking that takes place in the presence

of a magnetic field leads to the anisotropic Fierz identities

() a(Yk = : {(1)il(1)kj + (175 )i (ivs)xs + l(aﬁ”)iz(ij)kj — (0®)a(o0s)ks + } :

2 2
(2.7)
and
(ali s = 5 { D + Gaedatinis + 502l g = O™ alowhg + .}
(2.8)

where | and 1 denotes parallel ;4 = (0,3) and transverse p = (1,2) Lorentz indexes with
respect to the magnetic field direction. Einstein’s summation convention for repeated
indices is assumed.

From (2.2),(2.3), and (2.6)-(2.8), one can readily identify the channels considered in

LY and L2, Then, the couplings G and G’ can be related to g, and g, through
1 2 2 1 2 2
G = W(g” + gl)? G = W(gu - gl) (29)
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with A the energy scale of the effective theory. At zero magnetic field g = g, = g, and
one can use measured physical quantities to find consistent values for G and A. However,
at non-zero magnetic, field there are no measured parameters that can be used for this
purpose. In lieu of arbitrarily assigning values to G, G’ and A, we can take G and A
at their zero-field values, chosen to fix the pion decay constant to f, = 93 MeV and the
condensate density per quark to (uu) = —(250 MeV)3, and then assign values to G’ with
the constraint G’ < G. Notice that G’ > 0 because when the field increases, so does the
occupation of the LLL, hence reinforcing the longitudinal contributions over the transverse
ones (see Eq. (2.9)).

The Lagrangian density (2.1) can be also interpreted as an ad-hoc single-flavor effective
theory consistent with the symmetries of QCD in a magnetic field. Apart from the subgroup
of rotations already mentioned, it is also invariant under baryon symmetry, U(1)p, and
because of the absence in (2.1) of a fermion mass, chiral symmetry U(1),, is preserved. For
other contexts where unconventional four-point interactions in NJL-like models have been

considered see [40-43].

2.2 Effective Potential in the Mean-Field Approxima-
tion
Let us explore now the possibility of the following homogeneous condensates

() = -2, () = —g,
¢

(biv'r*0) = -, (i) = -

- 2.1
G/7 ( 0)

where o, I, £ and £’ are constant parameters.
Using them to perform the Hubbard-Stratanovich transformation in the Lagrangian

density (2.1), we obtain the partition function in the mean-field approximation

Z = /me exp [iS(o, 11, &, €' ], (2.11)
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with action

SO LEE) = [ datie)(iD, - o~ 07T - 1157 = 1% o)
V

v
02+H2)—2G/

el (€ +€%). (212

The corresponding mean-field effective potential is

B 0'2—|-H2 +£2+§/2
26 2G'
+ %Tr In (iD -y — o — iy°II — iy*y2€6 — i7%93¢) (2.13)

Q(0,11,¢,¢)

where the trace (Tr) acts in color, Dirac, and coordinate spaces.

At this point, it is convenient to transform to momentum space with the help of the
Ritus transformation [44]. This method is based on a Fourier-like transformation that
uses eigenfunction matrices E,(z). The E,(x) are the wave functions of the asymptotic
states of charged fermions in a uniform magnetic field. The method yields a fermion Green
function that is diagonal in momentum space and explicitly dependent on the Landau
levels. Although valid at any field strength, this formalism is particularly convenient to
study the strong-field region, where the main contribution comes from the LLL [16,19,45].

Using Ritus’s approach, the inverse propagator in momentum space [19] takes the form

G M p,p) = / d*zd*z' EL(z)[iD - v — 0 — y°IL — iy'9%¢ — iy%9%¢' 16W (z — 2)EL (')

= 2m)" Y- p)eW)G  (p) (2.14)

with
G'(p) = [p-v— 0=y~ 1%, (2.15)

and
7' = (p°,0,—Sgn(¢B)v/2[qB[l,p*). (2.16)
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The EL(z)’s are matrix functions given as linear combinations of spin up (+) and down

(—) projectors A(£). For ¢ > 0, they can be written as
E,(x) = Ef (z)A(+) +E, (2)A(-),

with

and

Ef(z) = N, e~ i(Por’tp22® 4z’ (5

E-(z) = N_je iwor’+pe®smsa®) py ()

(2.17)

(2.18)

(2.19)

The index [ = 0, 1,2, ... is the Landau level number that characterizes the discretization of

the transverse momentum in a magnetic field. Here N, = (4mqB)Y*/+/1! is a normalization

constant and D;(p) denotes the parabolic cylinder function of argument p = \/2¢B(z; —

p2/qB) and index |.
The coeflicient

O() = A(+)d"° +1(1— 6"

in (2.14) takes into account the lack of spin degeneracy of the LLL.
To obtain (2.14) we used the orthogonality of the E} functions [16]

[ i@ By @) = 20506 e

with fEé = 70(]E§,)T70 and 0@ (p—p) =6"6(py — P)0(p2 — ph)o(ps — ph).

After going to Euclidean space, we can use the completeness relation

dp” LB (z) = 20)*%W(z — 2
LB @B @) = @0 -,

to invert (2.14) and find

et = A
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(2.21)

(2.22)
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with

Zé d4 " Z / dp4dp2dp3

With the help of (2.23), the effective potential can be written as

. 0.2+H2 2+ 12 00 0o d d ~
QoLe¢) = T+ e - NaB Y [ o meG @) (220
I=0 ¥~

where the integration in p, was done using

/OO dps /OO dpy _jrery
—_ = — qB
oo 2m oo 2m

and the trace (Tr) now only acts on the spinorial matrices. Here [ = 1/4/¢qB denotes the

1 0o
= E . dxl, (225)

p1=0 B p1=0
magnetic length.

Taking into account that the [ = 0 term only gets contributions from the subspace of
spinors with a single spin projection; spin up (down) for ¢ > 0 (¢ < 0); it can be separated

from the rest to write

02—|—H2 2+ 2
RS

/ —
Q(O—aﬂvgvg) - 2G 2G,
dp4dps dp4dp3
B /Oo(%)31<dte +Z/ (det G (3))
(2.26)
Integrating in p, we find
2 2 2, ¢r2
no_ oo HIm T+ ¢
Q(O’,H,g,f) - 26 + 2
NegB ch
-5 / leo|dps — > Z/ |e1.n|dps, (2.27)
n=%1 i=1
with energy spectrum
g = pit(o+& +([M+¢)% 1=0,
2 = P+ I+ &%+ 0%(1— X) +2gB(1 — X (x/ 2X+2qu+77§>
[>1, n==1 (2.28)
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where

B H£, 2 ;L 5/2
X = (1+;E) , X' = <1+§> (2.29)

The factor ¢B/4m?* accounts for the density of states of the Landau levels. The spectrum of
the quasiparticles with Landau levels [ > 1 exhibits a Zeeman splitting (n = £1) indicating
that the new dynamical parameter ¢ enters as an AMM energy term. This is even more
evident if we take II = ¢ = 0 in the spectrum, since it becomes equal to the one found in
QED with dynamical mass and AMM [19]. No splitting is present in the [ = 0 mode, in

agreement with the fact that the fermions in the LLL only has one spin projection.

2.3 Condensate Solutions

2.3.1 Gap Equations

We are interested in the situation where the magnetic field is large enough to have all
the quarks lying in the LLL, thus the ground state is dominated by the infrared dynamics
and only the first integral in the RHS of (2.27) contributes to the equations. This requires
magnetic fields ¢B ~ A? > AZCD. Such large fields are actually generated in off-central
heavy-ion collisions at RHIC.

To determine the dynamical solutions for the four condensates o, II, £ and &', we need

to solve the gap equations

of o
8_0':5_(0-_’_5)10_07
of 1S
i o~ +8L =0,
o0 B , B
- a—(H+§)Io = 0,
of !
where
NaB [ dps

(2.31)



Here we introduced the momentum cutoff A below which the NJL theory is valid. One can

check that the solution of (2.30) satisfies

£ = %5, ¢ - Y (2.32)

Then, the condensates can be found from

A dps 272
= , (2.33)
I Vi (4 §) ety (OOl

Notice that the gap equation (2.33) depends only on the Uy (1) x Ug(1)-invariant &2 + I12,
a typical feature of the MCySB phenomenon [13,38]. Hence, we can, as usual, specialize
the condensate configuration with II = 0 and o constant. As expected for a magnetically
catalyzed condensate, no critical coupling is needed for a nontrivial solution to exist.

From (2.32), we see that no solution exists with & # 0 and £ = 0, and viceversa. The
energetically favored solution has expectation values of both & and ¢ different from zero. In
the same way that the chiral condensate (1)) gives a dynamical mass to the quasiparticles,
the new condensate (9iy'v%) gives them a dynamical AMM.

Once the quarks acquire a dynamical mass, they should also acquire a dynamical AMM.
This effect has been found to occur in QED [19] and the appearance of the condensate &
in our NJL model is a clear indication that it also occurs in QCD. One can understand
the inevitability of a dynamical AMM in the magnetically catalyzed system on the base
of symmetry arguments. Once the chiral symmetry is dynamically broken, there is no
symmetry protection for the AMM, because it breaks the exact same symmetry. The AMM
of the quarks leads to a nonzero dynamical MM for the pair. That the pairs should have
a dynamical MM is easy to understand, since they are formed by quarks and antiquarks
with opposite spins, so the fermions’ AMMs point in the same direction. The magnetic

field aligns the pairs’s MM leading to a net MM of the ground state.
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2.3.2 Effect on the Quasiparticle’s Effective Mass

The solutions of the gap equations (2.32)-(2.33) are

2GA 272
g = | ——— — 2.34
? (G+G’>6Xp[ (G+G/)Ncq3] (2:34)

and

/ 2
¢= (are) > “@romas (2:3)
It is important to emphasize that the induced AMM term (2.35) depends nonperturba-
tively on the coupling constant and the magnetic field. This behavior reflects two important
facts: 1) in a massless theory, chiral symmetry can be only broken dynamically, that is,
nonperturbatively; and 2) the MCySB phenomenon is essentially a LLL effect. The LLL
plays a special role due to the absence of a gap between it and the Dirac sea. The rest of
the LLs are separated from the Dirac sea by energy gaps that are multiples of 1/2¢B, and
hence do not significantly participate in the pairing mechanism at the subcritical couplings
where the magnetic catalysis phenomenon is relevant. Since the dynamical generation of
the AMM is produced mainly by the LLL pairing dynamics, one should not expect to obtain
a linear-in-B AMM term, even at weak fields, in sharp contrast with the AMM appearing
in theories of massive fermions. In the later case, not only the AMM is obtained perturba-
tively through radiative corrections, but considering the weak-field approximation means
first summing in all the LL’s, which contribute on the same footing, and then taking the
leading term in an expansion in powers of B [46,47]. Notice that such a linear dependence
does not hold, even in the massive case, if the field is strong enough to put all the fermions
in the LLL [48].
The effect of the new condensate (iy'y21 ) is to increase the effective dynamical mass

of the quasiparticles in the LLL,

- 272
Me = 64+& = 2Aexp [_(G+G/)NQB:| (2.36)
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In QCD, for fields, ¢B ~ A?, the dimensional reduction of the LLL fermions would
constraint the LLL quarks to couple with the gluons only through the longitudinal compo-
nents. Thus, to consistently work in this regime within the NJL model, we should consider,
taking into account (2.9), that G’ = G, so that G + G’ = 2G.

Because the effective coupling enters in the exponential, the modification of the dy-
namical mass by the magnetic moment condensate can be significant. In consequence, the
quasiparticles should be much heavier in our model than in previous studies that ignored
the magnetic moment interaction [38]. How much heavier, can be estimated from the log-

arithm of the ratio between the effective mass (2.36) and the mass found with G’ equal to

zero (i.e. Me—g = 2Aexp [—27?/GN.qB))

M 272 n
1 = 2.37
t (M“) GN.qB (1 n n) (2:37)

Here we used G’ = nG, but we know that for ¢B/A* ~ 1, n ~ 1. Using the values
GA? = 1.835, A = 602.3 MeV [49], N, = 3 and ¢ = |e|/3 ~ 0.1, we estimate the RHS
of (2.37) as (7?/GN.B) ~ 1.8. Due to the condensate ¢ the dynamical mass of the

quasiparticles increases sixfold. This result shows that at strong fields the new channel of
interaction must not be ignored, as it may lead to important physical consequences. One
of them is the increase of the critical temperature for the chiral restoration, as we show in

the next section.

2.4 Critical Temperature

2.4.1 Condensate Solutions at Finite Temperature

Our goal now is to calculate the critical temperature for chiral symmetry restoration
in the magnetized system. With that aim, we take the LLL approximation in (2.26) and

replace the integration in p4 by the Matsubara’s sum

A
/A 2T B p4’ & ba B o o ( )
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to obtain

24112 2467 NgB [~ d
Of (0,11,€,¢') = UQG +£2G,g - q psZIn [p] + <] (2.39)

Performing the sum in p, [50] and introducing the momentum cutoff A, we obtain

A 2 2 2 | 2
dps 2 _ o +1I° & 4¢
QF (0, 1,€,¢) = —NgB | ——= “In(1+e P 2.4
0 (0,11,¢,¢) oq /0 57 {50+/Bn( +e )}+ g T e (240)
The gap equations at finite temperature are then given by
o0k o
— = = — Io+1Zs] = 0
0 = L0+ +Ts] = O,
o _ ¢
¢ @—(UJFQ[IOJFZB] =0,
00T I
— = — —(II To+1Is]| =
aQT 6/
o~ o~ WHOL+T] =0 (2.41)
where Z; is defined in (2.31), and
_ NygB Adp3 2e~Fe0/2
Is = oo /0 oo Pl 4 o B2 (242)

Once again we can check that the solutions of (2.41) satisfy relations similar to those

in Eq. (2.32). Then, the condensates can be found from

/ dps \/p3 1+& (52 +&7) - 272
0 \/p§+ (1+%)2(§2+§2) 2T - (G+G)NygB

(2.43)

Just as in vacuum, the gap equation (2.43) depends only on the Up (1) x Ug(1)-invariant
€2 + €2, Hence, we can, as usual, specialize the condensate configuration along the &
internal direction and take ¢’ = 0. In Fig. 2.1 we represent the numerical solution of (2.43).
Notice that the condensate £ decreases continuously with the temperature, vanishing at
T ~ 0.6M¢, with M, the zero-T" dynamical mass. This behavior is consistent with that
of the order parameter of a second-order phase transition. Equally important, the chiral
condensate & evaporates together with £, because of the relations (2.32), which, as already

pointed out, remain valid at finite temperature.
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Figure 2.1: Condensate &, normalized by A, as a function of the temperature, T,
divided by the zero-temperature dynamical mass M.

2.4.2 Critical-Temperature Analytical Expression

The critical temperature 7i,, can be analytically found from the condition

8290Tc>< _ o2 + I12 . 52 + 5/2
07| ., 2G 2G"
NgB [G+ G ["dps Boxps 272

We would have arrived at the same condition by taking instead the derivative with respect
to £. This is a consequence of the proportionality between & and £, given in Eq. (2.32),
which implies that the two condensates evaporate at the same critical temperature.

Doing the change ps — p3/Tc,, we have

A/TCX d 2 2

P3 D3 T
P tanh (—) — , 2.45
/0 D3 R\ (G+ G')N.gB (2.45)

so the resulting critical temperature is
T, 1.16A 2 0.58M, (2.46)
= 1. exp | — = 0. :
o PTG+ a)NgB ¢
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in agreement with the result found numerically in Fig. 2.1. The fact that the critical
temperature is proportional to the dynamical mass at zero temperature, is consistent with
the findings in other models [51]. In the present case, since the dynamical mass is increased
by the AMM, the critical temperature is proportionally increased.

That the chiral transition is second order can be seen directly from Fig. 2.1, as well as

analytically, from the positiveness of the second derivative of {2 near the phase transition,

> 0. (2.47)

23 sinh z cosh z

0*Q _ N.qBpS. [G + G’T/BCA/;Z tanh z [1 z
0(02)? BB 3272 G 0

We emphasize that the existence of a unique critical temperature for the evaporation
of the two condensates reflects the fact that the condensate ¢ does not break any new
symmetry that was not already broken by the condensate o and the magnetic field, as
discussed above.

The simultaneous evaporation of the chiral and magnetic moment condensates has been
also reported in the context of lattice QCD [52]. There are, however, important differences
in the way the magnetic field influences the system in lattice QCD and in the situation
considered in the present work. In Ref. [52] the coupling is supercritical, so the quark have
constituent masses even at zero field and the tensor term can be considered to be linear
in B. In our case, however, the quarks acquire their mass and AMM through the MCxSB

mechanism, so the field-dependence of the condensates is not expandable in powers of B,

and hence can never be linear.
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Chapter 3

The EoS in the BCS-BEC Crossover

of a Simple Fermion System

This Chapter is dedicated to the study of the BCS-BEC crossover for a simple model
with multi-fermion interactions. This simple NJL-like model serves as a toy model for a
system of quarks with only one flavor and no color degrees of freedoms. The purpose of
analyzing this model is to get a qualitative insight on the mechanism driving the BCS-BEC
crossover in a relativistic system, and on its implication for the system EoS.

We take into account multi-fermion interactions that account for the attractive inter-
action between quarks, which gives rise to the diquark formation, the attractive quark-
antiquark interaction that fives rise to the chiral condensate, as well as for the repulsive
interaction that exists among the diquarks. The inclusion of the multi-fermion interaction
with repulsive coupling is inspired by the fact that the same channel that favors diquark
formation also gives rise to unfavorable correlations for the cross-channels that would bound
quarks from the different diquarks [35]. Without the diquark repulsion, the inclusion of a
BEC state in gravitational bound systems, as neutron stars, will become unstable. The

results we are reporting in this Chapter are in part contained in the paper [53].

3.1 Fermion Model

We use a simple model with fermions having only spin degrees of freedom and exhibit-
ing multiple contact interactions with strengths parameterized by attractive four-fermion

couplings G, for the fermion-fermion channel, G for the fermion-antifermion one, and by
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a repulsive eight-fermion coupling .

The corresponding Lagrangian density of our multi-fermion system is given by,

L = Py + yom)Y + Lint (3.1)
where
Gs n 2 GD 7. - . T. n . 2
Lint Z(?/J@D) + T(M%C@DT)(WCI%W + A [(isCyT) (9T Cisp)] ™ (3.2)

In Eq. (3.1), in which we are neglecting the particle current mass, 1 is a Dirac fermion
field, C = iy is the charge conjugation matrix, and p the chemical potential defining
the Fermi energy associated in realistic models with the baryon number. The interactions
are described by the attractive quark-quark coupling G, in the J* = 0% channel which
generates the spin-0 diquark condensate, the quark-antiquark coupling Gy, and the diquark-
diquark repulsion A\. The only internal degree of freedom considered in this model is the
spin. However, the results we will obtain should not qualitatively change when additional
internal fermion degrees of freedom are taken into account. This due to the fact that
the essence of the phenomenon under investigation is uniquely related to the change in
the nature of the spectrum of the quasiparticles, which is determined by the variation of
the diquark-pair binding energy and chemical potential as functions of the strength of the
couplings G, and Gg. If A = 0, the Lagrangian density Eq. (3.1) reduces to that considered
in previous works [54,55]. The interaction term parameterized by A does not break any
symmetry of the original theory. NJL model with eight-fermion contact interaction has
also been considered in studying chiral symmetry breaking in Ref. [56].

Now, we bosonize the multi-fermion interactions via Hubbard-Stratonovich transforma-

tion. The resulting interaction Lagrangian density is

| B , AP m?
Line = GXAPIpCOT + ox AT Ciysgh — x % aren (3.3)
with gap parameters defined as
G G
A = Z2YTCyuu), m o= (), (3.4



and coeflicients
A2 A2
X = 14+32\—, X = 1+48\—. (3.5)
G3 G3

In the Nambu-Gorkov space, UT = (1,1),) with 1, = Ct)7, the mean-field propagator

is given by
P, 4+ 1y? —m At
gi=| T X (3.6)
XA~ Yk — py® —m
with the gap matrices
AT = Ay A = AT+ (3.7)

The corresponding mean-field partition function

Z = /D\I/D\I/ exp li (/ (;1:;4\116(}_1\11 — X’2—2 - g—z)} (3.8)

is then quadratic in terms of the Nambu-Gorkov fields, and can thus be readily integrated.

Going to the finite temperature formalism, the mean-field thermodynamic potential at

temperature 7' = 1/ and chemical potential p takes the form

1
Q2 = —InZ
v
I N o AR m?
_ _%;/(%)3 T In [5G (i k)] 4+ X5 + - (3.9)

where the Matsubara frequencies of the fermion fields are w, = (2n+1)7/3, and G (iw,, k)
is the inverse propagator in momentum space.
After Matsubara summation, in the zero-temperature limit we obtain

A AR m?
Qy = — ¢ ! — 3.10
’ Z/ err TG, e (310)

where A is an appropriate momentum cutoff to regularize the momentum integral in the

ultraviolet, and €}, the quasiparticle energy spectrum given by

e = View—ep)? + AL, @ = VE2+m2, e = %1, (3.11)
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The spectra corresponding to different e = £ values denote the particle (e = +1) and
antiparticle (e = —1) contributions. Note that the term proportional to AJA|* in (3.10)

corresponds to a repulsive potential of the bosonized theory [57,58].

3.2 Gap and Mass Equations at Fixed Particle Num-
ber Density
The gap equation (0€2/0|A|) = 0 obtained from (3.10) for |A| # 0, is
A1y 2
[er(G5) - coe (312

The particle mass m is dynamically determined from the chiral condensate gap equation

(0929/0m) = 0, which for m # 0 is given by

¢k 1orgh g 1
A(%)SE(%*%) - G (3.13)

with
& = eaTn (3.14)

As usual in the study of the BCS-BEC crossover, we will consider a canonical ensemble
where the particle number density, n, = —(9€2/0u), is fixed through the Fermi momentum,

Pp, as np = (P2/37?). Then

P SPE (& &
= e (-8 (315

Solving numerically the system of Eqs. (3.12), (3.13), and (3.15), we can find the gap, A,

chemical potential, x4, and dynamical mass, m, as functions of the couplings G, G5 and \.

3.3 Equation of State Along the BCS-BEC Crossover

To consider the possible realization of the BCS-BEC crossover in physical systems, as

in the core of neutron stars, it is essential to analyze how the crossover affects the system
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EoS. The system’s pressure and energy density are determined by the quasiparticles created
as perturbation modes over the condensate. It is natural to expect that the nature of the
quasiparticles’ energy spectra is modified when the system crossovers from BCS to BEC,
and that modification has to be reflected in the system EoS.

The energy density and pressure of the system in the zero-temperature limit are respec-

tively calculated from
£ = Q0 + png — Qvaca b = _QO + Qvaca (316>

where we introduced the vacuum contribution €2,,. to guarantee that when u = A = 0,
the corresponding pressure difference between the system and the outside vacuum becomes
zero. In this way, we avoid the introduction by hand, as it was done in Ref. [34], of a
bag constant B, whose value is undetermined for the system under consideration. The
vacuum contribution, €2,,., on the contrary, only depends on the chiral condensate that is
dynamically determined for this particular model.

The vacuum effective potential is given by

d3k m
Qvac = Q :O,A:O - 2¢ vac
o (k ) /A (27)? €r +

(3.17)
with
€ = \/ k2 + m%ac (318)

Here, the dynamical mass, My, is obtained from (9€Qy4./0Myac) = 0.

3.4 BCS-BEC Crossover and Critical Values

The model contains free parameters that need to be adjusted to solve numerically the
system of equations consisting of Eq. (3.12), Eq. (3.13), and Eq. (3.15). We scale all the
variables with the cutoff parameter A, leaving the Fermi momentum Py, the quark-quark

coupling GG, the quark-antiquark coupling G, and the diquark-diquark repulsion A as free
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parameters to be adjusted to drive the crossover. From now on, the normalized units

Gp — G2, Gs— GsA2, X = A8,

. P ~ P 5 15
B Pog g
. " ~ A ~ m ~ k
— = A — — — — — — 1
" A’ A’ m A’ K A’ (3.19)

are used. Therefore, the cutoff parameter will not explicitly appear in our results. For

convenience, we also define

LG G

<A
GD — — GS — ﬁ’ A — ﬁ (320)

To understand the system dynamics, we analyze the consequence of varying the coupling
constants Gp, Gs, and \ for a fixed Fermi momentum, P, = 0.10. The results given on
Fig. 3.1 and Fig. 3.2 are for a fixed Gg = 1.20 while Gy is varying in a convenient interval.

The left panel of Fig. 3.1 shows that the fermion’s chemical potential decreases with the
increase of the diquark interaction. This behavior is a crucial indication of the crossover. As
it is known, the main condition for a relativistic gas to have a bosonic nature is u < m [59].
Then, the Gy, value, where i = m, is the critical value for the BCS-BEC crossover. For
A= 0, we observe that there exists a coupling critical value, GCDT = (.81, beyond which the
condition u < m holds. Around the critical value, going from smaller to larger values of the
coupling, the crossover from a BCS regime to a BEC one takes place. On the right panel
of Fig. 3.1, we see that once the system approaches the BEC regime at A\ = 0, the pressure
decreases to zero at GX = 0.91, as it corresponds to a pressureless boson gas. Thus, this
is signaling an instability for this strong coupled state of dense matter in gravitational
bound systems. Therefore, this behavior would prevent, at A = 0, the realization of the
BCS-BEC crossover in the core of neutron stars. Nevertheless, stars formed by bosons
(the so-called boson stars) have been theoretically considered since long ago [60]. In that
case the mechanism to stabilize the star against its self-gravity is reached through the
contribution to the pressure of self-interacting bosons (i.e. through an interacting potential

energy U(®) = \®*) [57].
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Figure 3.1: Chemical potential fi and dynamical mass m (left panel), and pressure

A

P (right panel) as a function of the diquark coupling Gy, for different
values of A at P. = 0.10 and G5 = 1.20

Inspired in this idea, in Ref. [34] a term AA? was added by hand to model the diquark-
diquark repulsion in the thermodynamic potential. With this new term, the pressure in-
creased for Gy, values beyond the critical point for the crossover. Similarly, we are working
out this same idea, but in a more self-consistent way, starting from a multi-fermion inter-
action that in the mean-field approximation reproduces the AA* potential, and considering
a vacuum pressure that is extracted from the same model dynamics. In this approach, we
found that while increasing the value of 5\, GCDT increases, but for A>T = 11, the system
pressure never vanishes. It is also apparent that for large values of A (as seen from the
left panel of Fig. 3.1), G, never crosses m in the considered domain of G, values. If we
continue increasing G beyond the domain considered in Fig. 3.1 we find that for values
far from the critical point of the BSC-BEC crossover the pressure starts to increase even at
A = 0. This is due to the fact that the gap turns out to be so large that its contribution to

the quasiparticle spectrum becomes the leading one in the effective potential (4.18), hence

leading the pressure behavior.
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Figure 3.2: Gap parameter A (left panel), and energy € (right panel) as a function
of the diquark coupling Gy, for different values of A at Pr = 0.10 and
Gs=1.20

In the left panel of Fig. 3.2, we show that the gap parameter starts increasing as the
chemical potential begins its decline with increasing Gp. On the other hand, increasing
the repulsion between the diquarks (5\) produces a gap decrease while slowing down the
decrease of the chemical potential. In the right panel of Fig. 3.2, we show the energy
density €, which decreases as Gy increases as a consequence of the increase of the diquark
gap that makes the condensation energy larger. The repulsion of the diquarks slows down
the decline of &, since it decreases A, as it was just discussed.

The diquark-diquark repulsion affects the quasiparticle energy spectrum (see Eq. (3.11)).
To check that it is the case, we investigate what is the nature of the quasiparticle spectra
for Gy, values at both sides of ég“ On the left panel in Fig. 3.3, we can see that at A=0
the quasiparticle spectra corresponding to coupling constants smaller and larger than G’fj
correspond to fermion-like and boson-like behaviors, respectively. That is, for Gp < C?CDT,

the minimum of the dispersion relations occurs at k = /% — m2, with excitation energy
given by the gap A, a behavior characteristic of quasiparticles in the BCS regime. On the
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other hand, for Gy > CA;CD”, the minimum of the corresponding spectrum occurs at k = 0,
with excitation energy k = \/m , which is typical of Bosonic-like quasiparticle.
Therefore, it is corroborated that G is the threshold value for the BCS-BEC crossover in
this model. An additional indication of the crossover can be seen from the variation of the
gap parameter A on the right side of Fig. 3.2. As the system crossovers to the BEC regime,
the gap becomes significantly larger, thus making the coherence length of the diquark pair
¢ ~ 1/A smaller. On the right panel in Fig. 3.3, we show the spectrum for A =106 It
shows that the spectrum have changed and have a fermionic nature for both values of G
that were previously considerer on the left panel. This is in agreement with the fact that

when we increase A, the critical value G¢ also increases.
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Figure 3.3: Spectrum & as a function of the wave vector k. On the left panel, we

have A = 0, and on the right A = 106.

An important goal here is to determine the significance of the diquark-diquark repulsion
in the stable realization of the BCS-BEC crossover. We accomplish this by searching for the
parameter space where this scenario can be realized at A= 0, and then, with the inclucion

of \.
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The required condition to have a stable BEC region is that the pressure is kept positive
after the crossover. Fig. 3.4 shows the stability windows in the Gp, — Gs plane. On the
left panel, we show the solution for P, = 0.10, and on the left panel for P, = 0.20. The
solid line (blue) marks the crossover condition (points where pr = m). the BEC regime is
found to right of this line. The dashed line (black) denotes the zero-pressure condition,
which separates a negative pressure regime to the right from a positive pressure one to
the left. The short-dashed line (red) separates the massless region (below), characterized
by zero chiral condensate, from the massive region (above). The region of parameters
where the crossover can occur is given by the intersection of the three lines. Comparing
the two graphs we see that the stability region shrinks as P, increases, that is, a larger
density tends to favor BCS over BEC, as physically expected. For fixed density and Gy, the
stability window narrows for larger Gs, indicating that the difference between the system

and vacuum pressures becomes smaller with larger chiral coupling. The stability window

completely disappears at A =0 when P, = 0.23.

Figure 3.4: Mapping of the region on which the BSC-BEC Crossover take place for
A = 0. On the left panel P, = 0.10, and on the right panel P, = 0.20

If we switch to a nonzero A, the line marking the zero pressure moves up, while the
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solid line remains almost at the same place. The stability region has expands in the Gp-Gg
plane. Fig. 3.5 shows the stability windows at A = 50 for two different Fermi momenta,
P, = 0.10 (on the left panel) and P, = 0.20 (on the right panel). The stability window still
shrinks with a larger particle density, but it now covers a larger parameter space including

higher densities than at A =0.

Figure 3.5: Mapping of the region on which the BSC-BEC Crossover take place for
A = 50. On the left panel P, = 0.10, and on the right panel P, = 0.20

Then, this result is an indication that it may not be justified to neglect the diquark-
diquark repulsion when investing the possible realization of the stable BEC phase. This
interesting fact serves as motivation to include the diquark repulsion in a realistic model

like the one investigated in the next chapter.
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Chapter 4

BCS-BEC Crossover for Strongly
Coupled 2CS Matter

In this Chapter, we analyze the strongly coupled 2SC phase. The 2SC condensate
consists of spin-0 Cooper pairs formed by the u and d quarks. The interaction in the QCD
one-gluon exchange vertex is attractive in the antitriple channel, which is antisymmetric in
flavor, and color.

The purpose of exploring this phase is to relate our research with a realistic model that
can be applied to the interiors of compact astrophysical objects like neutron stars. The
density in their interior is bounded by hydrostatic equilibrium, augmented to be p < 10p;
were p, = 10! g/cm? is the saturation nuclear density. At such densities, the interaction
between the quarks is strong. Furthermore, matter in the bulk of compact stars should be
neutral with respect to electrical as well as color charges, and remain in S-equilibrium [61].
With that goal in mind, we impose conditions of neutrality and [-equilibrium. These
constraints could substantially influence the pairing dynamics between quarks and impose
nontrivial relations between the chemical potentials of different quarks. We explore the
intermediate density region were chiral symmetry has been broken but we have not reach
the confined phase (ps < p < 5ps). This is the region of the strongly coupled 2SC that, as
we mentioned before, is free of the chromomagnetic instabilities. Our expectation is that
a smooth BSC-BEC crossover take place by increasing the attractive coupling between the

quarks forming the diquarks.
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4.1 2SC Model

The NJL model with the appropriate pairing channels to describes the 2SC phase is
given by the Lagrangian density

Lasc = 77/;;1 (i'yuau + ’70/7:) ¢f + GS(&@Z))Q + GD<i7v/;c€€a'750_:¢) (i@zeea'%aqvbc)
+ A [(izﬁcae“%&ﬁ)(1&56“7551%)] , (4.1)

where we are neglecting the current mass of the quarks. Here, ¢}, = C%7 is the charge-
conjugate spinor, C' = iy29? is the charge conjugation matrix, (¢)%* = ¢™* and (%) = e
are the antisymmetric tensors in the flavor and in the color spaces, respectively, and /i is the
matrix chemical potential. As in the simple model, we have introduced a diquark-diquark
repulsive interaction parameterized by a coupling constant \.

We can notice that the color structure of the condensate (i&cse“'yg,ﬁb) ~ £;,€% is anti-
symmetric in color as well as in flavor and in Dirac indexes. It has an arbitrary orientation
in the color space, and by making use of the global color transformations, the orientation
is conveniently fixed in the third blue direction. In this case, the Cooper pairs in the 2SC
phase are made of the r and g quarks only in a reduced SU(2) flavor symmetry. The unpair
b quarks give rise to gapless quasiparticles.

We impose [-equilibrium by taking into account a density of electron in order to keep

the reactions
d—u+e +v and u+e —dy + Ve (4.2)

at the same rate.

On the other hand, the electric neutrality requires
Ng > 2Ny (4.3)

where n,, is the number of u quarks (with electric charge +§) and ny the number of d quarks

(with electric charge —%), even in the presence of a non vanishing electron density. This
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condition is implicit in the introduction of the electric chemical potential p.. Similarly, the
color neutrality is implicit in the introduction of the color chemical potential pus.

The matrix /i is

2
tijap = (11055 — peQij)0ap + ﬁus%(Ts)aﬁ (4.4)

where () and Ty represent the generators of the electromagnetic and color gauge group.

The quark chemical potential explicit expressions are

2 1
Hur = Hug = N__Ne+§u8

3
1 1
Hdr = Hdg = M+§He+§ﬂg
22
Hup = [ 3,Ue 3,u8
1 2
il 2 45
fdb M+3M 3M8 (4.5)

The effective potential in the NJL model in the mean field approximation is obtained
using the standard Hubbard-Stratonovich transformation, performing the functional trace
in Matzubara frequencies, and obtaining the zero temperature limit,

4 A 2 2
T 1 9 , A m
°T T T am ), PP Zj IR TeRTe) (46)

where the sum in Eq. (4.6) run over twelve degrees of freedom associated with the original
ones of the six quarks and six antiquarks. In Eq. (4.6), we have introduced a 3-momenta
cut off that regularize the integral in the ultraviolet region. The dispersion relations and

degeneracies of the quasiparticles are respectively

€1 = € + b x 1
€2 = €p + db x 1
ey = B, + X 2 (4.7)

Here, the following notations were used

— 2 2
Ep_ p+m7
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By = (o= P +xa2 (1.8

_ Mur+ﬂd
Ho= Tga (4.9)
S = w (4.10)
3 A2 1 A?
D D

Explicitly working out the sum in Eq. (4.6), we rewrite the thermodynamical potential

as
4 A ;U'2 7m2
e 2 2 1 / ub 2
Qy = — - — d - — d ub — 4.12
]_ \ Hibimz 2 2 A 2 + _
- = dpp” (b — €p) — = | dpp°(E, + E,)
™ Jo ™ Jo
/ 2 m2 /
—O(0u —x'"?AF
+Xia TG (op — x'*A)

The last term in Eq. (4.12) signalizes where the 2SC phase becomes unstable, that is when
o > x'?A. The F function is given by

Py

F =606 lm =i T8 | [y E,) - O-m) [ aniton - )

+0(6p—/(m + )2 + xA?) /0 dpp* (6 — Ey)

where

pe = fE /02— XA P = /pux —m?

It is important to check that in the BCS-BEC crossover region the condition du < x'/2A

is satisfied.
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4.2 Gap Equation and Neutrality Conditions at Fixed
Particle Density

The BCS-BEC crossover will be characterized by gap parameter A, mass m, and chem-
ical potentials p, pe, and pg, obtained by minimizing the thermodynamic potential with

respect to the gap and mass respectively

0N} o1

R = = 4.1

0A 0 om 0 (4.13)
and by solving the neutrality equations

o) o)

=0 — =0 4.14

a:ue a,u8 ( )

and the density equation
0N

3
The particle number density n; is fixed through the Fermi momentum n, = e

322

The dimensional coupling constant GGz and the momentum integration cutoff A are
adjusted to fit the pion decay constant to be f, = 93 MeV, and the condensate density per
quark to {(au) = —(250 MeV)? like in Ref [37,61]. This fixes the value of A = 653 MeV,
and Gs = 2.14A2. Without loss of generality, we choose G}, to be proportional to Gg as

follows

where 7 is a dimensionless parameter of order 1. We also introduce the normalized coupling

constants

G Gy -
GS—>TS GD—>T A — AA8

In this way, the model parameter setting takes a value of Gs = 2.14 for the chiral

condensate coupling. However, this coupling has not been measured in extreme condition
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of high densities. Changing the density scale will modify A and may also modify the relation
between A and Gg. There is no complete certainty that the coupling will remain at the

same values. Our study, therefore, will include values of Gg at and close to 2.14.

4.3 Equation of State Along the BCS-BEC Crossover

The system EoS is determined in the same way as in Chapter 3. The energy density
and pressure of the system in the zero-temperature limit are respectively calculated from

the quantum-statistical average of the energy momentum tensor. They are given by
£ = QO + UM — Qvacu p = _QO + Qvacu (417)

where we introduced the vacuum contribution €2,,. to guarantee that when the gaps and
the chemical potentials vanish, the corresponding pressure difference between the system
and the outside vacuum becomes zero. The vacuum contribution, €2,,. only depends on

the chiral condensate that is dynamically determined for this model by

dgk Myac

Qvoe = Qo (Jia=0,A=0) = —12 [ =" ¢
vac O(Mza O, 0) //\(271')3 €k+ 4Gs

(4.18)

were

€ = \/ k2 + m?}ac. (419)

The dynamical mass in vaccum, m,q., is obtained from (0€,40/0Myac) = 0.

4.4 Numerical Results: EoS in the 2SC Phase

The condition that characterizes the BCS-BEC crossover in the simple model of Chap-
ter 3 was that the baryonic chemical potential u crosses the value of the mass m. However,
the 2SC model has condensates that takes place only between an anti-symmetric mixture,

in color and flavor, of the u and d flavor quarks with g and r colors. Then, the BCS-BEC
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crossover in the 2SC phase, for only g and r color quarks, will take place when the effective
chemical potential i of the quasiparticles with diquark gaps, defined in Eq. (4.9), crosses
the value of the corresponding dynamical mass. On the other hand, since the the b quarks
do not participate in the pairing, they always maintain their fermion nature.

We explore first the crossover for a fixed value of Gg = 2.14 at A = 0. On the right
panel of Fig. 4.1, we show the behavior of the vacuum mass m,,. vs Gs. At G = 2.14 , it
is obtained m,,. = 330 MeV. On the left panel of Fig. 4.1, we show the values of ég’" for
the BCS-BEC crossover as a function of the baryonic density. Here, n, is the ratio between
the density and the nuclear saturation density ps (p = nsps). It is important to notice that
the condition n < 1 is satisfied at the crossover only for n, < 1. Therefore, to have the
crossover at densities higher than the nuclear density, the value of n should be greater than
1. We also notice that the crossover disappears for density values for ngy > 3.4, where only
a BCS phase is realized.

MeV
500

290+

400
2,701

zQ)Q 250¢

230

2101,

1.00 1.50 2.00 2.50 3.00 3.50 1.60

Figure 4.1: Values of the critical coupling G, for the crossover at Gg = 2.14 and
A = 0 as a function of the baryon density (left pane). Dynamical mass
vs Gg at A = 0 (right panel)
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From now on, besides fixing G5 = 2.14, we also fix the density to n, = 2 in Figs. 4.2
to 4.5. In Fig. 4.2, we show the behavior for the dynamical mass m, the effective chemical
potential i, and the pressure P for A = 0 and A = 200. On the left panel, the BSC-BEC
crossover take place around n = 1.10 for A = 0. The diquark repulsion moves the crossover
ton = 1.12. On the other hand, the corresponding pressures do not decrease in the range of
values plotted in the right panel of Fig. 4.2. For lower values of 7, the 25C phase enters the
instability region of the g2SC. Then, we conclude that the system is stable for n > 0.9 even
when it crosses to the BEC region. When A\ increases, the pressure increases as expected

by the repulsion between diquarks.

MeV MeV4x107

300t : 5p |—— A=0
— 1=200

~—
13, 100}

sof |[— A=0
— A=200

1.00 1.10 1.20 1.30 1.40 1.00 1.10 1.20 1.30 1.40

Figure 4.2: Crossover and Pressure at Gy = 2.14 for \ = O(solid line), and A =
200(dotted line)

The behavior of A is shown on the left panel of Fig. 4.3. Here, like in the simple
model, the gap decreases as A increases. On the right panel, we confirm that the chemical
potentials of the b quarks do not change when the coupling Gy, increases. They remain
almost constant until the baryonic chemical potential decreases sufficiently at n = 1.4.

The electric and color chemical potentials are shown on the left and right panel respec-
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Figure 4.3: Gap A, and chemical potentials ji,;, and pg, at GS =2.14for \ = 0O(solid
line), and
A = 200(dotted line)

tively in Fig. 4.4. The electric chemical potential seems to be fixed by the density P, and
the Gy coupling. It does not change significantly whit Gp and A. On the other hand, the
color chemical potential decreases with G, at fixed slope, which decreases with .

The nature of the quasiparticle spectrum is shown in Fig. 4.5 for the three spectra in
Eq. (4.7). In the left panel of Fig. 4.5, the three spectra are plotted vs k for G, < G (where
G‘g“ is the critical value of the coupling in the crossover). Here, each of the quasiparticle
spectra has a fermionic nature with a minimum at £ > 0. On the other hand, the spectra
of the right panel show the same spectrum after the crossover. The nature of the spectra
for the b quarks remain fermionic, while for the r and g quarks, the spectra become bosonic
with a minimum at & = 0. This fact confirm the realization of the BCS-BEC crossover for
the quasiparticles formed by combinations of r and g quarks.

Finally, on the left panel in Fig. 4.6, we show the realization of the BCS-BEC crossover
in the G5 — Gy, plane at different baryonic densities. The blue line shows the crossover at

ns = 2, which is the same density we considered in Figs. 4.2-4.1. Here, we can follow the
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Figure 4.4: Chemical Potentials p. and us at Gy = 2.14

consequences of varying é? at different densities. The increase of égf produces a decrease
in ég‘, and therefore, n becomes smaller. Increasing ég?“ even more, we reach a point were
the pressure becomes negative at the crossover. This point is when the lines pointing at the
crossover become wide (upper part in Fig. 4.6). The system is unstable along the crossover
for this point and for high enough values of Gg’“. On the other hand, decreasing the value
of égr increases 7. For each density value, the crossover will disappear at a sufficient high
value of G because the chiral condensate cannot exist for such values of G¢ and n,.

If we increase the density, the lines characterizing the BCS-BEC crossover move in
both positive direction of the plane. At ny = 4 (green line) the crossover does not occur
for Gg = 2.14. There is a maximum density, shown in Fig. 4.1, at n, = 3.4, in which
a crossover can take place at Ggr = 2.14. The right panel in Fig. 4.6 shows the gaps as
function of G (remember that G<" decreases as G increases, see left panel in Fig. 4.6).
The mass m decreases and the gap A increases at the crossover with the increase of G

In summary, at strong couplings, a crossover between BCS and BEC regimes can take

place. Fig. 4.6 give us a wide view of where the BCS-BEC crossover can take place, and how
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Figure 4.5: Energy Spectrum at n = 1.0(left) and n = 1.2(right)

the crossover moves when changing the couplings or the baryonic density. The pressure
never vanishes at the BCS-BEC crossover for values of G ~ 2.14. With the results
obtained at A = 0, we can analyze why the pressure never decreases as in the simple model
studied in Chapter 3. This apparent contradictory result can be understood by dividing
the expression for the pressure in the EoS (Eq. (4.17)), at strong coupling, into two parts

P = P +P,

where

N? m?

AG, 4G,

Hfé piy—m? 1 /V fiy,—m?
0

2 4 2 1 2 2
P=+5o5+ 3 Odpp € + %/O dpp™(pus — &) + — dp p*(ptap — €p)-

2 [A _
p = F/ dpp*(E, + E,) — X'
0

The term P; is the contribution to the pressure of the gaped quasiparticles, a term prac-
tically equal to the contribution of the gapped quasiparticles in the simple model. The
remaining term P, is the contribution of the b quarks and the density of electrons. The

neutrality conditions together with S-equilibrium make the chemical potentials i, ftap,
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Figure 4.6: Crossover in the G5 — G, plane at different n,

and p. remains almost constant along the crossover keeping a positive contribution to P.
Hence, the term P, is almost constant. On the other hand, the term P; does not decreases
along the crossover because we are a strong coupling, and P; at this stage had already
decreases, as in the simple model. Then, along the crossover, P, is a small negative value
which remains without significant change for a while, and it increases later (due to the
increase in the gap) driving the increase in the P. As a result, the crossover at ég’" =214
is stable, and the maximum densities in which the crossover occurs is at ny = 3.4. There-
fore, it is possible that the BCS-BEC crossover may be realized in the interior of neutron
stars and influence their EoS by increasing the system pressure, or modifying the gaps at

sufficiently high diquark interaction.
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Chapter 5

Numerical Method

This section describes the methods employed to numerically solve the equations that
were analyzed in this thesis. The analytical procedure of the studied problems begins defin-
ing the Lagrangian density and results in the introduction of a grand canonical potential
(). The numerical problem starts there, and could be formulated as follows: we have a
thermodynamic potential €2 defined as an non-linear integro-differential equation. This
thermodynamic potential depends on several fixed parameters (coupling constants, and
baryonic density), has to be minimized with respect the gaps (superconducting and chiral),
and has to satisfy neutrality conditions (in the 25C model) in order to have a stable phase.
Once a stable phase is obtained, we can calculate the EoS: pressure and energy density.

A prior analysis of NJL models thermodynamic potentials leads us to conclude the
following. The gap equations always have a trivial solution at zero, which is a global
minimum if it is a unique solution. Otherwise, the trivial solution is a maximum and a
unique positive minimum should be elsewhere, satisfying the density equation. Besides,
the neutrality equations have a unique solution once the gaps are fixed. The solutions
space is, therefore, limited. Besides, we know certain aspects of the system behavior at
the extreme of the explored range, that let us guess the values of the gaps. With this
information at hand, we consider that employing a minimization method with equality
constraints, like interior point methods or quadratic programming, will be computationally
too expensive and not necessary to obtain a satisfactory solution. The problem could be
solved efficiently if it is reformulated as a solution of non-linear equations. However, after
solving the problem it has to be checked that the gaps effectively minimize the potential.

The objective now is to solve non-linear equations. We start with a function ) that
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depends of a set of fixed parameters a = (ay, as, ..., a,;,)", and unknown variables denoted
as X = (1, 9,...,2,)". We obtain a set of equation partially deriving the function Q with
respect to n — 1 of the n variables (gap parameter, and possible neutrality conditions), and
imposing a density equation of the form 867% + ¢ = 0. Then, solving the resulting system of
equations, we obtain a stable phase if the gaps minimize (2.

The function €2 is proportional the dispersion relation. On the other hand, its partial
derivatives are inversely proportional to the dispersion relation, and it is common that the
integration in momentum contain a pole. The existence of the pole will spoil the numerical
calculations. Therefore, even when a close expressions for the partial derivatives are at
hand, the partial derivatives are obtained numerically.

With this goal in main, we divide the computations in three sections
e Numerical integration

e Numerical derivatives

e The solution of a non-linear system of equations

We discus each one of these points in the remaining part of this chapter. The main
objective of the numerical analysis will be to obtain results with enough precision to get
a good resolution on the pressure and energy density. This accuracy has to be tested at
the end of each calculation since the behavior of our equations are not trivial, and an

appropriate bounds could not be made.

5.1 Numerical Integration

The numerical integration is the heart in the evaluation of the non-linear equations.
This computation is the deepest in the sense that the error introduced here is propagated
through the others calculations. Thus, this error has to be strongly bounded with the least

computational work possible.

49



The integrals appearing on the evaluations have the form

[= /A dk g(k) (5.1)

where g(k) is the dispersion relation of the quasiparticles, and A is a positive defined and
smooth ultraviolet cutoff parameter, a energy scale limit for our theory that none of our
variables could reach. All the variables x will be normalized with respect to this parameter.

The integral Eq. (5.1) is discretized using a Gaussian quadrature. In this way, we
obtain a better precision with less function evaluation that with the trapezoidal or Simpson

methods. The n-points Gaussian quadrature is given by

/0 Ahglk) = D Asg(h) (5.2)

The nodal points x; and the weights A; in the Gaussian quadrature are chosen such that
the integral Eq. (5.2) is exact for polynomials of degree 2n + 1, as in Ref. [62]. Then, the

error term of using approximation Eq. (5.2) is given byBook:Kincaid

g(m /dk:Hk: k)2 (5.3)

where g©@™ () is the 2n derivative of g evaluated at a point £ € (0,1).

To have an estimate of the error term using Gaussian quadratures, Table 5.1 shows the
integral factor on Eq. (5.3) for different numbers n.

In principle, a Gaussian quadratures with 10 points will be enough considering that
g(k) is usually smooth. However, we employ a dynamical choice of quadrature for each
problem. First, 50 and 40 points are compared. If both results do not coincide at 10
digits of precision, 50 points are used. Otherwise, 40 and 30 points are compared, and
we repeat the procedure until we determine the smallest number of points sufficient for
the quadrature to be accurate. This dynamical election is done at the first run of the

optimization algorithm described on Section 5.3.
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Table 5.1: Gaussian Quadrature Error Estimate.

n | Error Bound
2n

10 29 | 3050 x 1012
(2n)!

20 | 9708 1 9835 % 1072
(2n)!
2n

50 | 9708 1 1790 x 102
(2n)!
2n

10| ) o681 x 104
(2n)!

50 | 970 g 7968 x 10761
(2n)!

5.2 Numerical Differentiation

As we mentioned before, it is needed to calculate first the Gradient V f(x), and then,
the second derivatives of a function f(x), the Jacobian Jf(x). To obtain numerically the
gradient and the Jacobian, we use the method of finite difference. This method will be
described here for two variables, however, it can be generalized for any number of variables
by repeating the steps for each pair of variables. First, we create a mesh of points around
the evaluation point (z,y) as is shown in Fig. 5.1. The space h, between adjacent points,
is a parameter that are adjusted dynamically.

The schemes used to discretized first and second derivatives of f with respect to a

variable z are

af(xvy)%f :f(CC—Fh,y)—f(SC—h,y)
ox ’ 2h
Pflxy) . fle+hy) —2f(z,y)+ flz = hy)
o2 R fox = 2 (5.4)

and similar expressions are obtained for the derivatives with respect to y. The mixed
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Figure 5.1: Discretization

derivatives that appears on the Jacobian are discretized applying scheme in Eq. (5.4) twice

0xdy ’ 2h 2h
- — ) (5.5)
82f($,y)zf :i(f(x+h,,y+h)—f(w+h,y—h)
0yox ¥ 2n 2h
f($—h,y+h)—f(l'—h,y—h)
_ = ) (5.6)

Using Taylor expansion, it can be shown that the error bound on each finite difference
evaluation is Err = O(h?). The parameter h is usually chosen as h = /g, where ¢ is
the machine precision. However, since the explicit expressions for the first derivatives are
already known, they are used to chose the appropriate value of A dynamically. The initial
value is h = 1078, then, both analytical and numerical first derivatives are compare in order
to adjust the value of h. If h = 1078 is introducing roundoff errors, h will be decreased by

a factor of 10.
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Then, the gradient of f(z,y)

of(z,y)

Vi) =\ o (57)

Oy

is discretized using the grid as in Eq. (5.4), Eq. (5.5) and Eq. (5.6)

Vf(z,y) ~ ch ’ (5.8)

The Jacobian of f(z,y)

f(zy)  0*f(zy)

_ Oz2 Oz Oy
@D = s oo (5.9)
Oy Oz Oy?
is discretized as
Jf(w,y) = Jon oy (5.10)
fy:c fyy

Notice that the Function, Gradient, and Jacobian at pint (z,y) are evaluated using just

the 9 points shown in the mesh of Fig. 5.1.

5.3 Minimization Method

The problem described at the beginning of the chapter is strictly formulated as a min-

imization problem with a constraint

Q
min  (x) subject to 5 +c=0 (5.11)
Tl Tn—1 Tn

There are different methods to approach Eq. (5.11): sequential quadratic programming,
interior point methods, quadratic penalty methods, etc. However, the number of variables
n in our case is small, from two to four, and the function evaluation is not too expensive;
hence, we can reformulate problem Eq. (5.11) in a seme what more efficient way that will

save some complication inherent in the minimization problem.
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The problem, in Eq. (5.11), could be redefined as
r(x) =0 subjectto C>0 and |x*]. <1 (5.12)

where r(x) is the residual function

r1(x)
ro(x
r(x) = 2(x) (5.13)
r2(X)
whit r(x) = g—ﬁ, ro(X) = g—g, ey T (X) = %, and 7,(x) = 687(1 +c. The last equation

represents the density condition, and C is the curvature of 2 with respect to the variables
X1, To,...,Tp_1. In other words, the solution x* of Eq. (5.12) also has to be a minimum
of Q, but not any minimum, it has to be a global minimum where |x*|,, < 1. The last
restriction is imposed because of the physics that is being studied. All the variables are
normalized with respect to a momentum cutoff A. This value is our energy scale and no
observable could be even close to its value.

To solve Eq. (5.12), a Newton-like method with a merit function approach is used.
Taking into account the characteristics of the method needed, the name of the method
is a merit function approach to solve non-linear equations using a globalized Newton-like
method with a Line Search and curvature constrain. The name of the method summaries
the algorithms it uses (for more information about the different parts of the algorithm

see [63]).

5.3.1 Merit Function

The merit function is designed to measure the progress made by each Newton step. In

our case the function is proportional to the residual function r(x)

f&x) = Slr(x)f* (5.14)



Equation Eq. (5.14) is the same merit function minimized in the Least Square Problem.
However, in this case, the number of equations is equal to the number of variables; then,

the minimum x*, if it exists, it will make f(x*) = 0.

5.3.2 Newton’s Method

Newton’s method is an iterative method, which forms a linear model My(p,) of the
function f(p) at each iteration k. The linear model is obtained from the first two terms
of the Taylor polynomial of the residual function r(x). The root of the model M (p,) = 0,

gives the step p; to the next approximation
Xp+1 = Xy + Py, (5.15)

The model is
My (pi) =16+ Ji Py (5.16)

where 1y is a short notation for r(xy), J is the Jacobian of ry and p,, is the Newton’s step

P, = —J; 1% (5.17)

Algorithm 1 Newton-Method Root Finder
Require: xq and 7ol

repeat
Obtain Newton Step
Pr = _lel Tk
Update Solution
Xp+1 = X + Py,

until f(xg41) < Tol

If the first approximation xq is close to the solution x*, Newton method is guaranteed
to converge q-quadratically. Its convergence is its main advantage when the approximation

is close to the solution.
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After a Newton iteration, if the new approximation xj, is close enough to the solution
of Eq. (5.14), the method has succeeded; otherwise, the procedure is repeated. To measure
how close the approximation xj,; is to the solution, the variable 7ol is introduced. Then,
the criteria to stop the method is f(xxy1) < Tol. The variable Tol is chosen dynamically.
The initial value is Tol = 1078, and will be adjusted, by a factor of 10, if needed, i.e. if at

the end of the algorithm the four digits of precision are not met.

5.3.3 Line Search

The Newton direction, p;, is designed to be a descendent direction
szfk = —pZJ;‘grk = —|I‘k|2 <0 (518)

if a sufficient small step is taken, it will decrease the merit function and a progress to the
solution is guaranteed. However, if big quantities of small steps are taken, the g-quadratic
convergency of a full Newton step is lost. There are two common strategies to approach
this problem a backtracking line search and a trust region method. Both strategies have
similar efficiency, and globalize the Newton method ensuring a progress to the solution at

each step. Thus, the strategy used is the line search because it is simpler.

Algorithm 2 Line Search
Require: p;, Jhax

Set a =1
for J=0,1,..., Jy4 do
if f(xx+ arpy) > f(xk) + cap Vf(x1) then
return «

end if

_1

end for

return o

o6



The line search needs a condition to know if the considered step is accepted or not. The
requirement imposed is that the step reduces the merit function Eq. (5.14) in proportion

to the the step length o and the V f.

f(xp + arpy) > f(xk) + cap V f(x) (5.19)

Notice that close to the solution, V f =< 0. The parameter ¢ should be small; we use ¢ = 10*
which has been used with very good results [64].

The line search strategy is then to modify Newton step as
Xk + Py (5.20)

first, the full Newton step is tested with aj = 1, if it does not satisfy Eq. (5.19) the step

is decreased by a factor % and tested again, until a proper step is found or a maximum
number of iterations J,,,, has been reached. Restricting the number of iterations prevents
to get stuck accepting small steps, but could let to an increase of the merit function. This

is a risk that has to be taken.

5.3.4 Global Strategy

There are several points that have to be taken into account in the development of a
general strategy. In the search for a global minimum, a common strategy is to create a
discrete mesh of points and use the value of each point as initial approximation in Newton
method. The solution is expected to satisfy |x|i,r < 1 due to physical restriction. Besides,
in this region, our function has probably just one minimum. Then, we create a mesh, with
no more than three or four points per dimension, inside the unit square like is shown in
Fig. 5.2.

Each point in the mesh is used as a starting point x; in Newton method and will
converge to its own local minimum. When the method finish exploring each initial point,
the solutions found are compared. The one that minimizes the potential {2 and satisfies the

restriction on Eq. (5.12) is chosen. Finally, all the parameters of interest like pressure and
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Figure 5.2: Mesh of Initial Points

energy density are calculated, and the accuracy of the results are checked. It is expected
that when we change the variables by a value proportional to ~ 107°, the parameters of
interest do not change by more than a quantity ~ 107°. If the parameter changes more
than that, the precision is adjusted, and the calculation continues.

The pseudo-code for the complete method is shown belove. It does a very good job
on all the cases studied on the last chapters, and in reproducing some other result already

published [6,34,61,65] similar to the ones handled in this thesis.
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Algorithm 3 Newton-Method Root Finder

Require: Mesh = {My, M, ..., Mn}, ITyan
Begin Local Search
for k=1, k<N, k—k+1do
Xo = My,
Begin Newton Iteration
for IT=0,IT < IT 4, IT - IT+1do
Obtain Newton Step p.=—J; 1
Run Line search Algorithm
Update Solution Xkt+1 = Xk + Dy
Check toping Criteria f(xgs1) < Tol
end for
if IT < IT,4, and |x|;ny < 1 and C > 0 then
Solution Found......... m SOL(k) = Xg41
else
Solution not Found...!!! SOL(k) = -1
end if
end for
Find global Solution

return Global Solution
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Chapter 6

Remarks

6.1 AMM in Massless Quarks

The first part of this thesis explored chiral symmetry breaking in a magnetic field.
In Chapter 2, we used a QCD-inspired theory described by a one-flavor NJL model of
interacting massless quarks. The model includes a tensor channel that opened up via
the Fierz identities derived from one-gluon exchange interactions in a system where the
rotational symmetry has been broken by an external magnetic field.

Within this model, we showed that the MCySB generates two independent, spin-0 and
spin-1, condensates that cannot exist separated one of each other. The spin-0 is the con-
ventional chiral condensate that generates a dynamical mass for the fermions. Here, the
pairs are formed by a particle and an antiparticle with opposite spins and charges, and they
have their magnetic moments pointing in the same direction. Under an applied magnetic
field, the magnetic moments of the pairs orient in the field direction giving rise to an overall
magnetic moments of the ground state that is equivalent to a nonzero expectation value
of (13 ). The new condensate dresses the quasiparticles with a dynamical AMM, as re-
flected in the way the AMM parameter £ enters in the energy spectra. The dynamical AMM
produces a Zeeman effect in all the quasiparticles with nonzero Landau levels. For the LLL
quasiparticles, there is no Zeeman splitting because only one spin contributes. However,
the effect of the AMM in this case is to significantly increase the effective dynamical mass
of the LLL quarks, and consequently the critical temperature of the chiral phase transition.
As the quasiparticles will be heavier at large fields, compared to their mass when the spin

condensate can be ignored, and since they are charged, the electrical conductivity in this
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case should be much smaller at strong fields. This will affect the transport properties of
this magnetized medium, a topic worth of more investigation for its potential implications
for astrophysics.

Previous works on magnetic catalysis of chiral symmetry breaking using analytical ap-
proaches [38] have found that the dynamical induced mass increases with the field. Then, it
has been a common believe that in the NJL approach the critical temperature of the chiral
phase transition increases with the field. However, QCD-lattice calculation has shown the
opposite, the critical temperature decreases with the magnetic field. Then, it is an open

question, which is attracting much attention, to reconciliate those two approaches

6.2 BCS-BEC Crossover

The second part of this thesis explored the possibility of a BCS-BEC Crossover in quark
matter. In Chapter 3, we started by considering a simple quark system described by a NJL
model with one flavor multi-fermion interaction. The model considers attractive channels
for particle-antiparticle (Gg), particle-particle (Gp), and a repulsive diquark-diquark ()
channel. For this system, we mapped the coupling G5 — G, plane at A = 0 and found out
that for a fixed density, where P, < 0.23, there exist a closed area of parameter values
where the BCS-BEC crossover with positive pressure can take place. We found that, as the
strength of the attractive coupling between quarks increases, the chemical potential turns
from being larger than the quark mass to being smaller, an indication of the BCS-BEC
crossover. This transition was confirmed in the characteristics of its quasiparticle spectrum.
For densities bigger than P, < 0.23, the pressure decreases to zero before reaching the BCS-
BEC crossover. Then, we considered the introduction of a repulsive force between diquarks.
The diquarks’ repulsion opens and widens the stability windows in the Gs— G}, plane, where
a stable BCS-BEC crossover can occurs for a larger range of densities. It turns out that the
diquark-diquark repulsion may affect considerably the stability of the system by increasing

its pressure or by changing the spectrum nature.
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The qualitative results obtained in Chapter 3 serve as a preliminary step to explore
a more realistic model of dense quark matter applicable to the EoS in neutrons stars in
Chapter 4. There, we studied a NJL model that describes the pairing channels in the
2SC phase at strong coupling. We explored the range of densities that may be available in
compact stars, and imposed neutrality of electric and color charge, as well as, S-equilibrium.
Besides, we set Gs = 2.14 and A = 653 MeV to reproduce observable values that agrees
with this model at low densities. In this model, we found that a BCS-BEC crossover, with
positive pressure, occurs for densities until 3.4ps. Rising the density, the chiral condensate
evaporates and the crossover disappears. On the other hand, contrary to the simple model,
the pressure never vanished due to the strong coupling on the considered range, the density
of electrons, and the unpaired b quarks, whose nature does not change along the BCS-BEC
crossover. Later, we increased the value of Gy and found that the BCS-BEC crossover takes
place at smaller values of Gp. For a sufficient high G, there is a critical value where the
pressure becomes zero. Then, we showed that the introduction of the diquarks repulsion
increases the possibility of having higher values for Gs, and what is most important for
application to compact stars, it allows to have a stable BCS-BEC crossover at higher
densities than 3.4p;.

The results we are reporting in both studies show the importance of the diquark-diquark
repulsion. By increasing the repulsion, the parameter window, where the system is stable,

increases. Hence, it opens the possibility of having a stable BCS-BEC crossover.
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