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Résumé

Cette thèse présente la recherche de nouvelles résonances se désintégrant en deux
photons, dans les données de collisions proton-proton collectées par le détecteur ATLAS
au LHC, à une énergie dans le centre de masse de

√
s= 13 TeV. La recherche d’une

résonance de spin 0 dans une gamme de masse allant de 65 à 110 GeV est effectuée
à l’aide de 80 fb−1 de données collectées en 2015, 2016 et 2017. Les événements
sélectionnés sont divisés en trois catégories en fonction de l’état de conversion des
deux photons, afin d’augmenter la sensibilité de la recherche. Dans la région de masse
au-dessus de 160 GeV, deux types de signaux sont recherchés à l’aide de 139 fb−1

données collectées de 2015 à 2018 : un état résonnant de spin 0 sans se référer à un
modèle théorique spéfcifique, et un état d’excitation du graviton, de spin 2, prédit
par le modèle Randall-Sundrum avec une dimension supplémentaire déformée. La
sélection des événements est optimisée et harmonisée entre les deux recherches. La
méthode de décomposition fonctionnelle est appliquée pour la première fois dans la
procédure de modélisation du bruit de fond, afin de réduire l’incertitude systématique
correspondante. Tant pour les recherches à basse masse qu’à haute masse, aucun excès
significatif n’est observé par rapport aux prédictions du modèle standard. Des limites
supérieures sont établies sur le produit de la section efficace de production fiducielle
(totale) et du rapport d’embranchement, en fonction de la masse du signal, pour les
résonances de spin-0 (spin-2). En outre, une étude de l’incertitude systématique sur
l’étalonnage de l’énergie des photons due à la mauvaise modélisation de la fraction
d’énergie de la gerbe électromagnétique perdue latéralement est également présentée.
Cette incertitude est quantifiée comme la différence entre la perte d’énergie pour les
photons et les électrons en utilisant les événements Z → ee. Les résultats obtenus
avec les événements diphotons sont également présentés pour la première fois comme
contrôle dans une région cinématique plus grande.

Mots clés: LHC, ATLAS, diphoton, au-delà du modèle standard
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Abstract

This thesis presents the search for new resonances in the diphoton final state with
proton-proton collision data collected by the ATLAS detector at the LHC at a centre-
of-mass energy of

√
s= 13 TeV. Search for a low-mass spin-0 resonance in the diphoton

invariant mass range from 65 to 110 GeV is performed using 80 fb−1 data collected in
2015, 2016 and 2017. Selected events are split into three categories depending on the
conversion state of the two photons, in order to increase the sensitivity of the search. In
the high-mass region above 160 GeV, two kinds of signal are searched for using 139 fb−1

data collected in 2015-2018: a spin-0 model-independent resonant state, and a spin-2
graviton excitation state predicted by the Randall-Sundrum model with one warped
extra dimension. Analysis selections are optimized and harmonized for both spin-0
and spin-2 searches. Functional decomposition method is applied for the first time in
the background modeling procedure, in order to reduce the corresponding systematic
uncertainty. For both low-mass and high-mass searches, there is no significant excess
observed with respect to the Standard Model expectation. Upper limits are set on
the fiducial (total) production cross section times branching ratio as a function of the
signal mass for the spin-0 (spin-2) resonances. In addition, a study on the photon-
specific energy calibration systematic uncertainty from electromagnetic shower leakage
mismodeling is also presented. This uncertainty is quantified as the difference between
the lateral energy leakage mismodeling for photons and electrons using Z→ ee events.
Results obtained with diphoton events are also shown for the first time as a cross
check in a larger kinetic region.

Keywords: LHC, ATLAS, diphoton, beyond Standard Model
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Introduction

With decades of efforts throughout the second half of the 20th century, the Standard
Model (SM) of the elementary particles was finalized in the mid-1970s. Currently, it is
our best description of the fundamental building blocks of the matter in our universe,
and the basic laws that govern their interactions. The Standard Model is so far
self-consistent, and its validity has been successfully confirmed by several experimental
results. The most famous prediction of the Standard Model as well as its last missing
piece, the Higgs boson, is the explanation how the massive elementary particles acquire
their masses at the beginning. It motivated generations of experimental physicists,
and to prove the existence of the Standard Model Higgs boson was one of the main
purpose of the Large Hadron Collider (LHC), the world’s largest and most powerful
particle collider. For a long time, people were expecting evidence to show up from
ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact Muon Solenoid), the two
general-purpose particle detectors.

After a 40-year long quest, a particle of properties consistent with those of the
Standard Model Higgs boson was eventually discovered in 2012 by the ATLAS and the
CMS collaborations at the LHC. Since its discovery, the study of the Higgs sector has
become an important objective of the ATLAS program. One aspect of this program is
to study the properties of the new boson, and to investigate its role in the mechanism
of Electroweak symmetry breaking and the generation of the SM particles masses.
Detailed studies performed in the past years has shown a good consistency with the
SM predictions. On the other hand, although the Standard Model is now complete,
unanswered questions still remain and indicate that the Standard Model might just be
part of a more fundamental theory. Therefore, another equally important objective
is to investigate the physics beyond the Standard Model, such as the possibility of
extended Higgs sectors with additional states predicted by many extensions of the
Standard Model.

This manuscript presents the search for new resonances decaying to two photons.
The diphoton decay channel played an important role in the discovery of the Standard
Model Higgs at 125 GeV, thanks to the excellent mass resolution provided by the
electromagnetic calorimeter and the moderate and easy-to-measure background. For
the same reasons, this channel might offer further discovery potential, for either
resonances below 125 GeV or for higher-mass states. The search was divided into two
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analyses: one searches for a spin-0 resonance in the diphoton invariant mass range from
65 to 110 GeV (“low-mass search”); the other searches for a spin-0 model-independent
resonance with mass above 160 GeV, or a spin-2 Randall-Sundrum graviton resonance
with mass above 500 GeV (“high-mass search”). The low-mass search uses the Run 2
pp collision data collected at

√
s = 13 TeV with the ATLAS detector in 2015-2017,

corresponding to an integrated luminosity of 80 fb−1. The result was presented at the
International Conference on High Energy Physics (ICHEP) in 2018. After that, the
high-mass search was initiated and inherited the experiences and analysis framework,
using the full Run 2 data (2015-2018) corresponding to an integrated luminosity of
139 fb−1. Results were presented at ICHEP 2020, while a paper is under preparation.
I joined the analysis team in 2017 to start working with the low-mass search, and was
mostly involved in the high-mass search. I will describe my contributions to the two
analyses in more detail, while trying to give an overall introduction to the strategy of
such classic resonance search.

A study on the photon-specific energy calibration systematic uncertainties from
electromagnetic shower leakage mismodeling is also presented. The energy loss due to
shower leakage mismodeling is corrected by the in-situ energy calibration performed
with Z→ ee events. However the corrections for electrons of certain transverse energy
might not hold for photons or for other transverse energies due to the imperfect
simulation of the shower shape. This study was my qualification task in order to
become an ATLAS author, and was recorded in the electron and photon energy
calibration paper that was published in Journal of Instrumentation (JINST) in 2018.

This manuscript is formed by five chapters, organised as follows.
Chapter 1 presents an overview of the Standard Model. Gauge theory and sponta-

neous symmetry breaking are briefly introduced, followed by the different production
and decay modes of the Higgs boson as these models might also be assumed for a
potential new resonance. Two models, the two-Higgs doublet models (2HDM) and
the Randall-Sundrum (RS) model are also introduced as examples of the models of
beyond the Standard Model (BSM) physics.

Chapter 2 presents a general description of the LHC and the ATLAS detector. This
chapter begins with the overview of the LHC accelerator complex and its performance.
Then the ATLAS detector is described, the structures as well as the design parameters
of its sub-detectors are introduced.

Chapter 3 presents the reconstruction, calibration and identification of the photons
in the ATLAS experiment, which is the most relevant object of the physics analyses
of this thesis. The necessary procedures and their performance to reconstruct and
identify a photon candidate are described in detail.

Chapter 4 presents my contribution to the electron and photon calibration, which
is a study on the photon-specific uncertainty from electromagnetic shower leakage
mismodeling. Variables used to quantify this uncertainty are constructed and measured

20
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with Z→ ee and Z→ µµγ samples, while diphoton sample is also used as a cross-check
for the first time.

Chapter 5 presents the search for new resonances in the diphoton final state.
Two analyses are performed separately in the low-mass and high-mass regions, while
the basic analysis strategy and the methods of signal and background modeling are
common.
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Chapter 1

Theory

Throughout the human history, scientists have been trying to figure out the ultimate
answer to “everything”: the basic constituent of matter, and the fundamental laws
of the universe. After the discovery of quite a big number of elementary particles up
to the 1960s, the corresponding theories that put them all under one self-consistent
framework became the famous Standard Model (SM). So far, most of its predictions are
successfully confirmed by many experiments. In 2012, the Higgs boson was discovered
at the LHC, which is the last particle predicted by the Standard Model. However the
journey to the unknown continues, as people are still searching for physics beyond
the Standard Model. In this chapter, a brief introduction of the Standard Model is
given in Sec. 1.1, including the basic concepts of the gauge principle, the Standard
Model Lagrangian, the spontaneous symmetry breaking and a brief review of the
Higgs mechanism and properties. In Sec. 1.2, two particular models are introduced as
examples of the extension of the current Standard Model of particle physics.

1.1 The Standard Model of particle physics

The elementary particles in the Standard Model are illustrated in Fig. 1.1, along
with their basic properties. The elementary fermions with spin 1/2 consist all the
matter in the universe, classified as quarks and leptons.1 The interactions between
these particles are carried by the elementary bosons with integral spin. The Standard
Model describes three of four fundamental forces: electromagnetic, weak and strong
forces. The bosons, photon, W±/Z0 bosons and gluons are the carrier of the three
fundamental forces respectively. The fourth force, gravity is not included in the
Standard Model, since the attempt of describing gravity with quantum field theory
leads to renormalization problems[1]. However if the carrier of gravity (graviton) exists,
it must be a spin-2 boson[2]. Finally, the Higgs boson has spin 0, and the massive
particles acquire masses through their interactions with the Higgs field.

1More precisely, muons and taus can only be produced in high energy collisions, such as particle
accelerators and cosmic rays.



Chapter 1. Theory

Figure 1.1 – The elementary ingredients of the Standard Model.

Considering all the particles in the Standard Model with different properties, we
have 36 quarks, 12 leptons and 12 mediators of the forces, each of them are already
“elementary”. In addition, there is one scalar Higgs boson, giving us a total of 61
particles. Although this number is large, these particles are interrelated and follow
clear rules. As illustrated, there are three generations of leptons and quarks with
significantly different masses. The type of charge they possess decides the kind of
fundamental interaction they can participate. For example, a neutrino (q = 0) interacts
only via the weak force and gravity. A charged lepton (q =±1) could participate in the
electromagnetic interaction as well. The six flavours of quarks (q = 2/3 or q =−1/3)
also have a “color” charge (conventionally named as red, green and blue), allowing
them to participate in the strong interaction. The eight gluons also have colors in
order to carry the strong interaction, and they are completely identical except for the
color charge.

1.1.1 The gauge theory

In order to explain the content of the Standard Model, the first thing we should
look into is symmetry. As the Noether’s Theorem states, every symmetry of nature
yields a conservation law, and conversely every conservation law reflects an underlying
symmetry. The Standard Model is built on the gauge principle, which means that
the complete Lagrangian that corresponds to the interactions between the elementary

24



1.1. The Standard Model of particle physics

particles is invariant under local phase transformations. To illustrate this idea, one
can consider the Dirac Lagrangian (for example, a free electron or positron):

Lfree = iψ̄γµ∂µψ−mψ̄ψ (1.1)

where ψ is a massive Dirac field with mass m, γµ are the Dirac matrices[3]. This
Lagrangian is invariant under the following global phase transformation:

ψ→ eiqθψ (1.2)

where q is the electric charge of the particle, and the phase factor θ can be any
real number that is independent of space or time. However, this holds no more when
it comes to local transformation:

ψ→ eiqθ(x)ψ (1.3)

Because the derivative of θ(x) gives an extra term. In order to restore the invariance,
one can introduce a new massless vector field Aµ to soak up the extra term, by replacing:

∂µ→ ∂µ+ iqAµ (1.4)

where Dµ = ∂µ + iqAµ is called “covariant derivative”. The new field Aµ itself
changes under the local transformation as:

Aµ→ Aµ−∂µθ(x) (1.5)

Now, after requiring local invariance and introducing the vector field Aµ, the
complete Lagrangian becomes:

L= iψ̄γµ∂µψ−mψ̄ψ−
1

16πF
µνFµν− (qψ̄γµψ)Aµ (1.6)

where Fµν = (∂µAν −∂νAµ), γµ are the Dirac matrices mentioned above. Equa-
tion 1.6 can be written as:

L= Lfree− qJµAµ (1.7)

where Jµ = ψ̄γµψ is the electromagnetic current density, and the introduced vector
field Aµ is known as the photon field.
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It is convenient to use the group theory to study symmetries. The transformation
above could be considered as multiplication of ψ by a unitary matrix (in this case,
U = eiθ):

ψ→ Uψ,U †U = 1 (1.8)

The group of all such matrices is U(1). The full gauge symmetry group of the
Standard Model is SU(3)C ⊗SU(2)L⊗U(1)Y : the strong force is described by the
Quantum Chromo-Dynamics (QCD), which is a gauge theory with SU(3)C symmetry,
based on the conservation of the color charge (C). The electromagnetic and weak
interactions are unified, together described by the Glashow-Weinberg-Salam (GWS)
electroweak theory based on the conservation of left-handed isospin (L) and hypercharge
(Y ). The corresponding gauge symmetry group is SU(2)L⊗U(1)Y .

1.1.2 The Standard Model Lagrangian

As introduced above, the Standard Model Lagrangian is invariant under the local
gauge transformations. It can be divided into four parts:

LSM = Lfermions+Lgauge+LHiggs+LY ukawa (1.9)

The first two components describe the kinetic energies and interactions of the
fermion and gauge bosons. The rest, Higgs sector (LHiggs+LY ukawa), is the key for
the massive particles to acquire mass. This subsection focuses on the fermion and
gauge fields, introducing their kinetic terms and their couplings.

The fermion and gauge boson fields

Any free particle in the SM can be described by a relativistic field. The SM fermions
are all Dirac fermions except for the neutrinos.2 The kinetic term of a Dirac fermion
ψ is given by:

iψ̄γµ∂µψ (1.10)

Note that the left-handed and right-handed fermion fields are not mixed in the SM
as a consequence of the SU(2)L symmetry. By absorbing the matrix (1−γ5) where
γ5 = iγ0γ1γ2γ3, the left-handed fermion fields are treated as SU(2)L doublets:

2It is not determined yet wether the neutrinos are Dirac fermions or Majorana fermions (each
particle is also its own anti-particle).
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1.1. The Standard Model of particle physics

fL = 1−γ5

2 f (1.11)

and the right-handed fields are treated as singlets:

fL = 1 +γ5

2 f (1.12)

In addition, considering the U(1)Y symmetry, the left-handed and right-handed
fermions also have different weak hypercharges Y . The relation of the hypercharge,
the electric charge (Q) and the third component of isospin (I3, or “weak isospin”) is
given by the Gell-Mann-Nishijima formula:

Q= I3 + 1
2Y (1.13)

Then, the kinetic term and self-interactions of the gauge boson fields is given by:

Lgauge =−1
4G

a
µνG

µν
a −

1
4W

a
µνW

µν
a −

1
4BµνB

µν (1.14)

The three gauge fields, G, W and B correspond to the generators of each of the
sub-groups of SU(3)C⊗SU(2)L⊗U(1)Y . Gaµν is the gluon tensor where index a labels
elements of the eight generators of SU(3)C . Similarly, W a

µν is the gauge field tensor of
SU(2)L, where index a runs over its three generators. Gauge field Bµ corresponds to
generator of U(1)Y group, and the gauge field tensor is denoted by Bµν . The three
field strength tensors are defined as:

Gaµν = ∂µG
a
ν−∂νGaµ+gsf

abcGbµG
c
ν (1.15)

W a
µν = ∂µW

a
ν −∂νW a

µ +g2εabcGbµG
c
ν (1.16)

Bµν = ∂µBν−∂νBµ (1.17)

where gs and g2 (or named as gw) are the strong and weak coupling constants
respectively, fabc and εabc are tensors that serve different symmetry group: for the
SU(3) group, the generators λa (Gell-Mann matrices) follow the communication re-
lation [λa,λb] = ifabcλc, where fabc (a, b, c = 1, 2, ...8) is the structure constant
of SU(3); similarly, the generators T a of SU(2) follow the communication relation
[T a,T b] = iεabcT c, where εabc is called the Levi-Civita symbol (also named as permuta-
tion symbol, antisymmetric symbol, or alternating symbol). In the case of U(1) group,
the generators do commute and follow [Y a,Y b] = 0, which is different from the other
two non-abelian group. It means that the G and W fields can self-interact while the
B cannot, as seen in Eq. 1.15. Furthermore, to determine the couplings between the
fermions and gauge bosons, the quantum chromodynamics theory and the electroweak
theory are briefly introduced below.
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Quantum chromodynamics

Quantum chromodynamics (QCD) describes the strong interactions between the
colored particles, i.e. the quarks and the gluons. The strong coupling constant, which
determines the strength of the chromodynamic force is given by:

gs =
√

4παs (1.18)

or equivalently αs = g2
s/4π. The strong coupling constant can be thought as the

fundamental unit of color charge. Furthermore, it becomes asymptotically weaker
as the energy scale increases and the corresponding length scale decreases, known as
asymptotic freedom. The coupling decreases approximately logarithmically as:

αs = g2
s(k2)
4π ≈ 1

β0 ln k2
Λ2

(k2� Λ2) (1.19)

where k is a renormalization scale of the given physical process; β0 = (11n−2f)/12π
is a constant, with n and f denotes the number of the colors (3 in the SM) and flavors
of the quarks (6 in the SM); Λ is the QCD scale.

The specification of a quark state requires its momentum, spin and the color. A
three element column vector c gives the color of a quark in QCD:

c=


1
0
0

 for red,


0
1
0

 for blue,


0
0
1

 for green

At a quark-gluon vertex, the quark color changes and the difference before and
after the interaction is carried by the gluon. Each gluon carries one unit of color and
one unit of anticolor, resulting in nine different color states. Practically, the gluons
are the linear combinations of these color states. The nine states constitute a “color
octet”:

(rb̄+ br̄)/
√

2 (1.20)
−i(rb̄− br̄)/

√
2 (1.21)

(rḡ+gr̄)/
√

2 (1.22)
−i(rḡ−gr̄)/

√
2 (1.23)

(bḡ+gb̄)/
√

2 (1.24)
−i(bḡ−gb̄)/

√
2 (1.25)

(rr̄− bb̄)/
√

2 (1.26)
(rr̄+ bb̄−2gḡ)/

√
6 (1.27)
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and a “color singlet”:

(rr̄+ bb̄+gḡ)/
√

3 (1.28)

In our universe, there are only eight gluons. This fact involves another important
feature of the QCD theory, quark confinement, which requires all the naturally
occuring particles to be color singlets. The octet gluons as free particles are therefore
forbidden, while the singlet gluons are allowed to be free particles as a mediator of
long-range force3 between two color singlets. However, the strong force observed in
our universe is practically of quite short range. The singlet gluon is absent, which also
indicates that the symmetry of QCD theory is SU(3), not U(3) that requires all the
nine gluons. As a consequence of quark confinement, the quarks exist with the form of
colorless mesons (qq̄) and baryons (qqq). When two quarks are separated to a certain
extent, the potential energy due to separation would be large enough to produce a
new quark-antiquark pair. This process is called “hadronization”, which is the reason
we see jets instead of single quarks in the accelerators.

In the end, the QCD Lagrangian with quark field qf with flavor f is given by:

LQCD =−1
4G

a
µνG

µν
a +

∑
f

q̄f (i(γµDµ)−mf )qf (1.29)

with the covariant derivative Dµ replacing ∂µ:

Dµ = ∂µ+ i
gsλa

2 Gaµ (1.30)

where G is the gluon field strength tensor, λa are the Gell-Mann matrices mentioned
before.

The electroweak theory

The electromagnetic and weak interactions are unified by the electroweak theory
(also named as Glashow-Weinberg-Salam theory). The couplings between fermions
and electroweak bosons can be determined using the following covariant derivative to
replace ∂µ:

Dµ = ∂µ− ig2TaW
a
µ − ig1

Y

2 Bµ (1.31)

where g1 and g2 are the coupling constants of SU(2) and SU(1), Ta is the SU(2)
generator mentioned before, Y is the hypercharge. Remember the left-handed fermion

3Similarly to the electrodynamics, the gluons mediate a force of infinite range as they are massless.
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fields are SU(2) doublets and right-handed fields are singlets, denote as (take electron,
the first lepton generation as an example[4]):

L=
νe
e−


L

, R = e−R

and the Lagrangian of the electroweak interactions is hence given by:

LEW = g2
2 [ν̄LγµνLW 3

µ −
√

2ν̄LγµeLW+
µ −
√

2ēLγµνLW−µ − ēLγµeLW 3
µ ] (1.32)

−g1
2 [YL(ν̄LγµνL)−YRēRγµeR]bµ (1.33)

where W±µ are physical fields of charged W bosons. In the electroweak theory,
the physical weak boson fields (charged W±µ , neutral Zµ) and photon field (Aµ) are
determined through linear combinations of the W and B fields:

W±µ = 1√
2

(W 1
µ ∓ iW 2

µ) (1.34)

Zµ =
−g1Bµ+g2W 0

µ√
g2

1 +g2
2

(1.35)

Aµ =
g2Bµ+g1W 0

µ√
g2

1 +g2
2

(1.36)

For convenience, one can define the weak mixing angle (Weinberg angle):

sinθW = g1√
g2

1 +g2
2

(1.37)

Note that so far the mass term is not included in the Lagrangian, since it breaks the
local gauge symmetry. We need the Higgs sector term LHiggs+LY ukawa to complete
our SM Lagrangian, which is introduced in the next section.

1.1.3 Spontaneous symmetry breaking and the Higgs mecha-
nism

The idea of spontaneous symmetry breaking is quite subtle. The calculation of
quantum field theory is a perturbation procedure, which means we always start from
the ground state (“vacuum”) and have the fields fluctuate around the ground state.
Although the Lagrangian is invariant under the gauge transformation, however the
vacuum may not share the symmetry of the Lagrangian, as the vacuum state is
not necessarily zero. Since no external action is responsible in this case, we call it
“spontaneous” symmetry breaking.
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1.1. The Standard Model of particle physics

Figure 1.2 – The potential V (φ) for a complex scalar field with µ2 < 0.[5]

A simple scenario could be used to illustrate spontaneous symmetry breaking and
how the mass term of the given particle appears as a consequence. Consider the
following Lagrangian of a simple complex scalar field φ= (φ1 + iφ2)/

√
2:

L= ∂µφ
†∂µφ−V (φ) (1.38)

with potential energy density V (φ) = µ2φ†φ+λ(φ†φ)2. For µ2 > 0 and λ > 0, it is
easy to find that the minimum of V (φ) corresponds to φ1 = φ2 = 0. However, for µ2 < 0
and λ > 0, the shape of V (φ) becomes a “Mexican hat”, as illustrated in Fig. 1.2. The
minimum of V (φ) is now a continuous set on the (φ1, φ2) plane:

√
φ2

1 +φ2
2 =

√
−µ2

λ
= v (1.39)

To expand around a particular vacuum state, we could choose φ1 = v, φ2 = 0, and
introduce the following new fields:

η = φ1−v, ξ = φ2 (1.40)

which are the fluctuations around the selected vacuum state. Therefore, the
Lagrangian (Eq. 1.38) can be rewritten as (higher order terms of η and ξ are not
shown):

L= [12(∂µη)(∂µη)− (λv2)η2] + [12(∂µξ)(∂µξ) + 0× ξ2] + ... (1.41)
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It can be seen from the last line that two particles are generated from the spon-
taneous symmetry breaking. The first term is a free Klein-Gordon Lagrangian cor-
responding to a massive field η with mass mη =

√
−2µ2; the second term is a free

Lagrangian corresponding to a massless field ξ.
Then, then Higgs mechanism is nothing but the spontaneous breaking of the

electroweak symmetry SU(2)L⊗U(1)Y . Simply replace φ with a complex SU(2)
doublet scalar field Φ:

Φ =
φ+

φ0

= 1√
2

φ3 + iφ4

φ1 + iφ2


The corresponding Lagrangian and potential energy density are given by:

LHiggs = (DµΦ)†(DµΦ)−V (Φ), V (Φ) = µ2Φ†Φ +λ(Φ†Φ)2 (1.42)

where Dµ is the covariant derivative, given in Eq. 1.31. In the case µ2 < 0, we
also have the “Mexican-hat” shaped potential, meaning the electroweak symmetry is
broken. To expand the Lagrangian around the vacuum state, we have:

Φ = 1√
2

 0
v+h


where h is the introduced Higgs field. Hence, the first term of the Lagrangian

(1.42) gives:

(DµΦ)†(DµΦ) = 1
2∂µh∂

µh+ (v+h)2

8 (2g2
1WµW

µ+ (g2
1 +g2

2)ZµZµ) (1.43)

The mass terms of the three vector bosons can then be extracted, assigning masses
to the W±, Z bosons and the photon:

m2
W = 1

4g
2
1v

2, m2
Z = 1

4(g2
1 +g2

2)v2, mA = 0 (1.44)

Note that the U(1) symmetry actually remains unbroken and the photon is therefore
massless. In addition, one can also find the following relation between the W and Z
masses:

mW

mZ
= g1√

g2
1 +g2

2)
= cos(θw) (1.45)

The mass of W boson is related to the Fermi coupling constant GF = 1.166×
10−5 GeV−2[6], which means we can measure the vacuum expectation v via GF :
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mW = g1

2
√√

2GF
, v =

√
1√

2GF
(1.46)

The measured value of v through the measurement of the life time of muons[7] is
around 246 GeV.

Finally, the mass term of the fermions is introduced by including the gauge invariant
Yukawa interaction term between the fermion fields ψ and scalar (Higgs) fields Φ, with
form L=−gψ̄Φψ (g is the coupling constant). Taking electrons as an example: after
the spontaneous symmetry breaking (i.e. replacing the Higgs field as an fluctuation
around the vacuum expectation value v), the full Yukawa Lagrangian with electron
field e and Higgs field H becomes:

LY ukawa =− 1√
2
λe(v+H)ēLeR (1.47)

from which the electron mass is given by me = λev/
√

2, and the coupling between
electron and Higgs boson is given by λe/

√
2, which is proportional to me.

1.1.4 The production and decay of Higgs boson

The properties of the Higgs boson, especially its production and decay at the Large
Hadron Collider (LHC) are briefly summarized in this section. Driven from Eq. 1.42,
the mass and kinetic terms of the Higgs boson itself is given by:

LHiggs = 1
2(∂µh)2−λv2h2−λvh3− 1

4λh
4 (1.48)

Therefore the mass of Higgs boson is mh =
√

2λv2. The Higgs mass is not predicted
in the Standard Model since λ is a free parameter of the Standard Model. Experimen-
tally, the measured SM Higgs mass is around 125 GeV[8]. Equation 1.48 also indicates
the existence of the self-interaction of the Higgs boson.

Figure 1.3 shows the lowest-order Feynman diagrams of five Higgs production
processes with the largest cross section at the LHC:

• gluon-gluon fusion (gg→H);

• vector boson fusion (qq→Hqq via W+W− or ZZ→H);

• associated production with vector (W or Z) boson (qq̄→ V H);

• associated production with tt̄ pair (gg, qq̄→ tt̄H).
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Figure 1.3 – The lowest-order Feynman diagrams for the five different Higgs boson
production processes: (a) gluon-gluon fusion; (b) vector-boson fusion; associated
production with W (c) or Z (d) vector boson; (e) associated production with tt̄ pair.
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Figure 1.4 – The Higgs boson production cross sections as a function of Higgs mass (SM-
like coupling, narrow-width assumption, no electroweak corrections applied) measured
at
√
s= 13 (left) and 14 TeV (right).
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Figure 1.5 – The Higgs boson production cross sections as a function of centre-of-mass-
energies for mH = 125 GeV. The tH production cross section accounts for t-channel
and s-channel computations only.
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The evolution of the SM Higgs production cross section as a function of the Higgs
mass for different production modes is shown in Fig. 1.4, at centre-of-mass collision
energies of

√
s = 13 and 14 TeV. In addition, the cross section as a function of the

centre-of-mass-energies is shown in Fig. 1.5 for a 125 GeV Higgs boson. It can be
seen that the gluon-gluon fusion (ggF) through a heavy quark loop is the dominant
production mode at the LHC, coming from the huge gluon-gluon statistics after the
hadron collision. The production mode with second-largest cross section is vector
boson fusion (VBF). The contributions from associate production with vector bosons
(WH, ZH) or tt̄ (tt̄H) events are relatively small.

The masses of fermions and massive bosons comes from their coupling to the Higgs
boson. Following the calculation from previous section, the Higgs boson coupling to
the fermions and vector gauge bosons after the spontaneous symmetry breaking is
given by:

gHff ∝
mf

v
, gHV V ∝ m2

V
v , gHHV V ∝

m2
V

v2 (1.49)

The Higgs boson is unstable and can decay to various pair of particles. Its partial
decay widths are proportional to the Higgs couplings to the final state fermions or
bosons given by Eq. 1.49, which means that the Higgs boson tends to decay to the
heaviest particle allowed kinematically. Figure 1.6 shows the SM Higgs boson branching
ratios of the main decay modes as well as the total decay width as a function of Higgs
boson mass. In addition, the branching ratios as a function of Higgs mass in a smaller
mass range near 125 GeV are shown in Fig. 1.7. It can be clearly seen that for the
125 GeV Higgs, the dominant decay mode is H→ bb̄ since the b quark is the heaviest
particle allowed in this case. The second-largest branching ratio is the WW ∗ decay
mode, with one of the W boson produced off-shell. The branching ratios of the SM
Higgs with mass of 125 GeV for different decay modes are summarized in Tab. 1.1.

A decay channel with high sensitivity does not necessary have high branching ratio.
For example, the branching ratio of H→ γγ decay is quite low (0.23%), yet it was still
one of the “golden channel” for the discovery of the SM Higgs boson thanks to the
clean experimental signature and the excellent diphoton invariant mass resolution of
the detectors. Figure 1.8 shows the leading-order Feynman diagrams of loop-induced
decays to γγ or Zγ events. Such processes are usually generated by loops via massive
particles like W (dominant) and fermions in the diagrams.

1.1.5 Non-resonant diphoton production

Searches for the γγ final states suffer from the background coming from the non-
resonant diphoton production, which will be discussed later in the analysis chapter.
Figure 1.9 shows the leading-order Feynman diagrams of the different processes with
non-resonant diphoton productions. The main contribution of diphoton events comes
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Figure 1.6 – The Standard Model Higgs boson decay branching ratio (left) and total
width (right), as a function of the Higgs boson mass in a wide mass range.
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Decay modes Branching ratio (%)
H→ bb̄ 58.24

H→WW ∗ 21.37
H→ ττ 6.27
H→ ZZ∗ 2.62
H→ γγ 0.23
H→ Zγ 0.15
H→ µµ 0.02
others 11.10

Table 1.1 – The branching ratios of SM Higgs with mass of 125 GeV, provided by the
Handbook of LHC Higgs Cross Sections.[9]

Figure 1.8 – The leading-order Feynman diagram of the H→ γγ (H→ Zγ) decay.

Figure 1.9 – The leading-order Feynman diagrams of (a) the Born process qq→ γγ, (b)
the box process gg→ γγ, (c) the bremsstrahlung process qg→ qγγ, the leading-order
fragmentation process with one (d) or (e) two partons fragment into high-transverse
momentum photons.
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from direct production: the Born process (qq→ γγ), the box process (gg→ γγ), and
the bremsstrahlung process (qg→ qγγ). The photon in the γγ final state might also
coming from the fragmentation process of a gluon or a quark. Another important
background component comes from the photon-jet and multi-jet productions, since
there is a chance that jets might be mis-identified as photons during the physical
analysis. The cross section of such jet enriched production is very high, however its
contribution is not as significant as the prompt γγ thanks to the strong suppression
from the photon identification. In addition, the invariant mass spectrum of these
processes has a smoothly falling shape, which is relatively easy to model.

1.2 Beyond the Standard Model

So far, the Standard Model is our most successful theory of particle physics. Most of
its predictions have been confirmed by many experiments, and almost all the observed
phenomena in the particle colliders all over the world are well explained. However, the
standard Model is not a perfect, or complete theory. The SM fails to provide dark
matter candidates or convincing explanations to the dark energy, massive neutrino or
matter-antimatter asymmetry in our universe. Physicists are also expecting mechanism
that breaks the CP symmetry in the strong interaction, however such violation has not
been observed experimentally yet. Moreover, some problems of the SM always exist
within its mathematical framework, e.g. the SM is not compatible with the general
relativity, and therefore cannot explain the forth fundamental interaction, gravity. The
hierarchy problem is also unsolved: some quantum corrections (e.g. on the Higgs mass)
are so much larger than the effective value itself, and the fine tuning on this seems
unnatural. In addition, there are a few experimental results that deviate a lot from
the SM expectation, such as the famous anomalous magnetic dipole moment of muon.
Answering to this kind of problem requires more precise and careful experiments as
well.

Fortunately, solving the existing problems of the SM does not mean that we need
to reject the whole theory. A lot of excellent ideas are raised by physicists known
as “Beyond the Standard Model” (BSM), which are modifications of the SM in a
subtle way so that the new models would still be consistent with the current data and
observations. Two models are briefly introduced in this section as examples, and both
of them predict new resonances in the diphoton final state. They can be seen as the
physical motivation of the analysis part of this thesis.

1.2.1 The Two-Higgs-Doublet Models

As discussed in Sec. 1.1.3, the Standard Model assumes a simple scalar structure
with only one SU(2) doublet, while experimentally the existence of extended scalar
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sectors is still allowed. The Two-Higgs-Doublet Models (2HDM)[10] are some of the
simplest extension of the SM, which extend the SM Higgs sector into two scalar
doublets. An additional Higgs doublet might be an elegant solution to many problems.
For example, the 2HDMs are able to generate baryon asymmetry of the universe while
the SM cannot[11]; an additional Higgs doublet is needed for cancellation of anomalies
in supersymmetry[12]; with two Higgs doublets, it is also possible to imposing a
global U(1) symmetry, which is needed to deal with a CP-violating term in the QCD
Lagrangian in the Peccei-Quinn model[13][14].

The 2HDMs are categorized according to the way the Higgs doublets couple to the
quarks and leptons. There are four types of 2HDMs: Type-I, Type-II, lepton−specific
and flipped models. A serious potential problem of general 2HDMs is the existence
of tree-level flavour-changing neutral currents (FCNC), which are excluded by the
data. A solution to circumvent this problem is to impose discrete symmetries. The
four types of 2HDMs mentioned above are all free from the flavour-changing neutral
current, although models with tree-level FCNCs also exist, such as the Type-III model
listed in Tab. 1.2, together with the coupling of the two doublets Φ1 and Φ2 with the
fermions.

Type uiR diR eiR
Type-I4 Φ2 Φ2 Φ2

Type-II Φ2 Φ1 Φ1

Lepton-specific Φ2 Φ2 Φ1

Flipped Φ2 Φ2 Φ1

Type-III Φ1, Φ2 Φ1, Φ2 Φ1, Φ2

Table 1.2 – The five types of Two-Higgs-doublet models and the couplings of the scalar
doublets to different fermions: right-handed up quarks, right-handed down quarks and
charged right-handed leptons. The superscript i is a generation index. By convention,
the right-handed up quark uiR always couple to Φ2.

One can rewrite the Higgs potential in Eq. 1.42 for two complex scalar doublets
under some necessary assumptions (e.g. CP conservation in the Higgs sector). After
symmetry breaking, minimization of this potential ends up in eight fields, among
which three are used to generate mass for the W± and Z bosons; the five remaining
fields are physical states. There is one neutral CP-odd pseudoscalar A, two charged
Higgs H±, and two neutral CP-even Higgs H and h with different masses. The free
parameters of 2HDM are: the four Higgs masses mh, mH , mA and mH± , the ratio
between the two vacuum expectation values (tanβ = v2

v1
), and the mixing angle α of

the neutral CP-even 2HDM Higgs bosons. With these parameters, we can express the
2HDM couplings in terms of the SM couplings.For example, the light CP-even Higgs
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boson h coupling to WW ∗ or ZZ∗ is given by the SM coupling multiplied by a factor
of sin(β−α), and the coupling of the heavier Higgs H is given by the SM coupling
multiplied by cos(β−α)[10].5 Assuming the SM Higgs discovered in 2012 with mass
of 125 GeV being the neutral Higgs boson H or h, we might be able to discover the
other one as well in the lower- or higher-mass region.

1.2.2 The Randall-Sundrum model

A new spin-2 resonance is predicted by the Randall-Sundrum (RS) model[15][16].
This mechanism was proposed for solving the hierarchy problem, where the electroweak
scale (MEW ∼ 1010 GeV) is much lower than the Planck mass scale (Mpl ∼ 1019 GeV).

To illustrate the RS model, we need to start with the central idea of the brane
cosmology, brane and bulk. Our visible, three-dimensional universe is restricted to a
“brane” inside a higher-dimensional space, called the “bulk” (or “hyperspace”). At
least some of the extra dimensions of the bulk are extensive, so that other branes may
be moving through this bulk. Assuming the simplest case: the higher dimensional
spacetime is approximately a product of a 4-dimensional spacetime with a n-dimensional
compact space. Then, the effective four-dimensional (reduced) Planck scale M̄pl

(M̄pl =Mpl/
√

8π) can be determined by the fundamental (4 +n)-dimensional Planck
scale M∗, and the geometry of the extra dimensions:

M̄2
pl =Mn+2

∗ Vn (1.50)

where Vn is the n-dimensional volume of the compact space. By taking the compact
space to be very large, the hierarchy between the weak scale and Planck scale may be
eliminated.[17]

Particularly, the RS models describe our universe as a 5-dimensional warped-
geometry[18] universe. There were two models with one extra dimension proposed in
1999 by Lisa Randall and Raman Sundrum: one is called RS1 model, which has a
finite size of extra dimensions with two branes, one as each end; the other is called
RS2 model, which has only one brane left since the other brane is placed infinitely far
away. The following discussion is based on RS1 model. As illustrated in Fig. 1.10, it
involves a finite 5-dimensional bulk that is extremely warped and contains two branes:
the Planck brane (also called "gravity brane" where gravity is a relatively strong) and
the TeV brane (also called "weak brane"). The trick is that all the SM particles and
forces are confined to a 4-dimensional subspace (TeV brane), while gravity is free
to propagate in the full spacetime (bulk). The exponential drop of the probability

5The coupling of the neutral Higgs bosons to the W and Z are the same for all the 2HDMs. The
couplings to the charged Higgs are given by the 2HDM Yukawa Lagrangian, and are different in each
model. The coupling of the pseudoscalar to vector bosons vanishes.
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Figure 1.10 – Scheme of dimensions on RS1 theory. The Planck (Plank) and TeV
branes are the 4-dimensional boundaries of the extra dimension.
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function of the graviton indicates that the gravity would be much weaker on the TeV
brane than on the Planck brane.

The resulting 5-dimensional metric is non-factorizable, given by:

ds2 = e−2krcφηµνdx
µdxν + r2

cdφ
2 (1.51)

where k and rc are the curvature and compactification radius of the extra dimension;
η is the Minkowski metric; xµ are the traditional coordinates for the four dimensions;
φ is the coordinate for the extra dimension, in the range 0< φ < π. With reasonable
krc (e.g. krc ∼ 12), the hierarchy problem can be eliminated.

With the spacetime configured above, the TeV scale is related to the Planck scale,
given by:

Λπ = M̄pl exp(−krcπ) (1.52)

When the graviton travels freely in the bulk, a series of massive graviton excitations
come out as a consequence. This set of possible graviton mass values are called a
Kaluza-Klein (KK) tower[19]. They are visible on the TeV brane, meaning that we
could observe the KK gravitons just like other SM particles. The KK gravitons have
spin 2, and a universal dimensionless coupling to the SM fields of k/M̄pl. Its mass
mG∗ is splitted between the different KK levels on the TeV scale.
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Chapter 2

The Large Hadron Collider and the
ATLAS detector

2.1 The Large Hadron Collider

The world’s largest and most powerful particle accelerator, the Large Hadron
Collider (LHC) [12], is located beneath the France-Switzerland border near Geneva.
It lies in the former Large Electron-Positron collider (LEP) [20][21] tunnel, which is
27 km in circumference, around 100 m underground.

The LHC is a two-ring-superconducting-hadron accelerator, designed to collide
proton and heavy ion beams with a centre-of-mass energy up to 14 TeV. In December
1994, the approval of the LHC project was given by the European Organization for
Nuclear Research (CERN). The construction of the LHC started in 1998. After the
LEP was closed to liberate its tunnel in 2000, the LHC was finished in 2008 under the
cooperation of many scientists, universities and laboratories across the world. Seven
detectors, each designed for different purposes, are positioned at the four crossing points
of the collider. There are four main experiments: ATLAS[22], CMS[23], LHCb[24]
and ALICE[25]. The two high luminosity experiments, ATLAS (A Toroidal LHC
ApparatuS) and CMS (Compact Muon Solenoid) are general-purpose detectors, both
designed to operate at a peak luminosity of L= 1034 cm−2s−1 for proton operation.
The low luminosity experiment LHCb (Large Hadron Collider beauty) is designed
for B-physics, capable of data-taking at a peak luminosity of L= 1032 cm−2s−1. The
dedicated heavy ion experiment ALICE (A Large Ion Collider Experiment) is designed
to study of the physics of strongly interacting matter at extreme energy densities,
aiming at a peak luminosity of L= 1027 cm−2s−1 for nominal lead-lead ion operation.

On 10 September 2008, the first beam was circulated through the LHC. Nine days
later, however, a magnet quench occurred and the collider had to be stopped. After
one year of repairs and reviews from the consequential damages, the first operation
run (Run 1) started on 20 November 2009. The proton beam energy was 3.5 TeV
(corresponding to centre-of-mass energy of 7 TeV) in 2010, and increased to 4 TeV
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(
√
s= 8 TeV) in 2012. On 13 February 2013, the LHC was shut down for a two-year

upgrade, enabling collisions at its designed energy and enhancing the detectors and
pre-accelerators. After the Long Shutdown 1 (LS1), the second operation run (Run
2) started on 5 April 2015 with collision energy of 13 TeV. On 10 December 2018,
the Long Shutdown 2 (LS2) started for the purposes of maintaining and upgrading of
the LHC and ATLAS complex. After which, Run 3 is planned to start in February
2022. The implementation of the High Luminosity Large Hadron Collider (HL-LHC)
project has been preparing since LS2, aiming to be used in Run 4 in the future. The
beam parameters and hardware configuration are designed for the HL-LHC to reach a
peak luminosity of 5×1034 cm−2s−1, allowing an integrated luminosity of 250 fb−1

per year[26].

2.1.1 The LHC injection chain

In order to accelerate protons and heavy ions to the required energy, a chain of
accelerators is used as shown in Fig. 2.1. The LHC injection chain for protons is Linac
2 — Proton Synchrotron Booster (PSB) — Proton Synchrotron (PS) — Super Proton
Synchrotron (SPS). The protons are first stripped of the hydrogen gas by an electric
field. Then, the protons are injected into a linear accelerator Linac 2, and accelerated
to a beam energy of 50 MeV before being injected into the PSB. The PSB accelerates
the beam to 1.4 GeV, followed by the PS which accelerates the beam to 25 GeV. The
protons are then injected to the SPS, and the beam energy increases to 450 GeV before
they are finally transferred into the two beam pipes of the LHC.

The beams are guided to circulate in opposite directions in the accelerator ring of
the LHC by the magnet system. 1232 dipole magnets are used to bend the beams,
and 392 quadrupoles are used to focus them. The nominal dipole field is 8.33 T,
corresponding to a beam energy of 7 TeV. However, the actual field attainable depends
on the heat load and temperature margins inside the magnets, therefore a distribution
system of liquid helium is designed to keep an operating temperature of 1.9 K for the
magnets. In the rings of LHC, the proton beam energy are accelerated to a maximum
of 7 TeV by the electric field in the radio frequency (RF) cavities, and then kept as a
constant at this value. At the designed instantaneous luminosity of L= 1034 cm−2s−1,
√
s= 14 TeV (7 TeV per beam), bunches containing up to 1011 protons will collide 40

million times per second.

2.1.2 Luminosity and performance

Figure 2.2 shows the cross sections of several processes of interest as a function of the
centre-of-mass energy of proton-(anti)proton collisions. For a given the physics process
with cross section σprocess, the event rate is L ·σevent, where L is the instantaneous
luminosity. The instantaneous luminosity reflects the characteristics of a certain
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Figure 2.1 – The CERN accelerator complex.
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Figure 2.2 – Expected cross sections for specific physics processes as a function of the
centre-of-mass energy

√
s. The dotted lines show the energies of two hadron collider

(the proton-antiproton collider Tevatron at 1.96 TeV, and the LHC at 14 TeV).
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(a) (b)

Figure 2.3 – (a) Integrated luminosity versus time delivered to ATLAS (green), recorded
by ATLAS (yellow), and certified to be good quality data (blue) during stable beams
for pp collisions at 13 TeV centre-of-mass energy since 2015 to 2018. (b) The peak
instantaneous luminosity delivered to ATLAS during stable beams for pp collisions at
13 TeV centre-of-mass energy is shown for each LHC fill as a function of time in 2018.

Figure 2.4 – Integrated luminosity versus day delivered to ATLAS during stable beams
(p-p collisions only).
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accelerator as it is given by:

L= N2
b nbfγ

4πσxσy
F, (2.1)

where Nb is the number of particles per bunch, nb is the number of bunches
per beam, γ is the relativistic factor of the accelerated particles, f is the revolution
frequency (11.2kHz for the LHC), σx,y are the horizontal and vertical beam size (around
2.5 µm for the LHC), F is a geometrical correction factor from the crossing-angle of
the two beams at the interaction point.

In order to maximize the physics reach of the LHC, the aim of the operation of
the accelerator is to provide the highest integrated luminosity possible, calculated
as L =

∫
Ldt. Figure 2.3 shows the total integrated luminosity and data quality in

2015-2018 (Run 2) and the peak luminosity per fill in 2018. So far, the LHC has
reached its designed luminosity. The peak instantaneous luminosity gradually increased
since Run 1, and even exceeded the designed value, reaching 2.1×1034 cm2s1 in 2018.
During the whole Run 2, 156 fb−1 was delivered by the LHC. The ATLAS detector
collected 147 fb−1 of pp (proton-proton) collisions, about 95% of the dataset is good
for physics studies. The integrated luminosity delivered to ATLAS as a function of
time for the year 2011 to 2018 is shown in Fig. 2.4.

As a result of the high instantaneous luminosity, the pileup, namely the additional
pp collisions accompanying the hard scattering pp interactions of interest, becomes
more significant and must be taken into account in the data analysis. There are two
types of pileup:

• In-time pileup, occurring in the same bunch-crossing of the collision of interest.

• Out-of-time pileup, occurring in the previous or the following bunch-crossings of
the collision of interest.

In order to quantify the pileup, the average number of interactions per bunch
crossing, < µ >, is usually calculated. This number is shown in Fig. 2.5 for each
year in Run 2. For the whole Run 2, the average number of 〈µ〉 is 33.7. The high
pile-up condition has effects on the calibration and identification of the physics objects,
requiring dedicated correction procedures.

2.2 The ATLAS detector

The largest general-purpose particle detector ever constructed, the ATLAS (A
Toroidal LHC ApparatuS) detector, is installed in its experimental cavern at point 1
at CERN, as shown in 2.1. With the unprecedented energy and luminosity achieved by
the LHC, the ATLAS detector was designed to search for new phenomena that involve
highly massive particles which were not observed before with the former accelerators,
and to measure the known physics processes with higher precision. Among which, the

50



2.2. The ATLAS detector

Figure 2.5 – Mean number of interactions per bunch crossing per year in Run 2.

most strong physical motivation is to search for the Higgs boson. In July 2012, the
discovery of the Higgs boson was made by the ATLAS. The CMS collaboration has
independently discovered the particle and announced the discovery at the same time.

The overall ATLAS detector layout is illustrated in Fig. 2.6. The detector is 44
meters long, 25 meters high, 25 meters in diameter and has a total weight of about
7,000 tons. The ATLAS detector is composed of three subsystems. From the inside out,
there are the Inner Detector (ID), the Calorimeters, and the Muon Spectrometer (MS).
The detector is forward-backward symmetric, each subsystem has multiple layers, and
consists of a series of concentric cylinders (barrel) around the interaction point. For
the purpose of a larger coverage, there are also disc-shaped components (end-cap) set
along the beam direction. Functions of each detector complement each other: the Inner
Detector provides a precise measurement of the trajectories and vertices of the charged
particles, the Calorimeters provide the energy and position information of the stopped
particles, and additional measurements of muons are given by the Muon Spectrometer.
For charged particles, their tracks are bent by the magnet system and left in the ID
and the MS. Considering the huge event rates coming from the pp collisions, a trigger
system is installed in order to select the events of interest. The main performance
goals are listed in Tab. 2.1.

The following right-handed Cartesian coordinate system is used by the ATLAS
detector: the origin of the coordinate system is defined as the nominal interaction point
of the proton beams, which is also the geometrical centre of the detector. The z-axis is
defined as the beam direction that runs clock-wise, and the x-y plane is orthogonal to
it. The positive x-axis is defined as pointing from the interaction point to the centre
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of the LHC ring, while the positive y-axis points upwards. In the transverse plane
x-y, the cylindrical coordinates are also used: the azimuthal angle Φ is defined around
the beam axis, and the polar angle θ is defined with respect to the z-axis. The more
commonly used value, pseudorapidity, is defined as η =− lntan(θ/2).

Figure 2.6 – The cut-away view of the ATLAS detector.

Detector component Required resolution
η coverage

Measurement Trigger
Tracking σpT /pT = 0.05%pT

⊕1% ±2.5
Electromagnetic calorimetry σE/E = 10%/

√
E
⊕0.7% ±3.2 ±2.5

Hadronic calorimetry (jet)
barrel and end-cap σE/E = 50%/

√
E
⊕3% ±3.2 ±3.2

forward σE/E = 100%/
√
E
⊕10% 3.1< |η|< 4.9 3.1< |η|< 4.9

Muon spectrometer σpT /pT = 10% at pT = 1 TeV ±2.7 ±2.4

Table 2.1 – General performance goals of the ATLAS detector. The units for E and
pT are in GeV.

2.2.1 Inner detector

The Inner Detector is designed for an excellent momentum and position resolution.
A general scheme of the ID and a sketch showing the detailed structures are shown
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(a) (b)

Figure 2.7 – (a) The cut-away view of the ATLAS Inner Detector. (b) Sketch of the
ID showing all its subsystems, including the new IBL.

in Fig. 2.7. The diameter of the Inner detector is about 2.1 meters, and the total
length along the direction of the proton beam is 6.2 meters. The ID is placed in a
2 T axial magnetic field, provided by a surrounding superconducting solenoid. The
motion of charged particles is tracked by detecting their interaction with the materials
at various positions of the detector. From the inside out, the ID is composed of four
sub-detectors: the Insertable B-Layer (IBL), the Pixel detector, the Semiconductor
Tracker (SCT) and the Transition Radiation Tracker (TRT).

The Insertable B-Layer (IBL)

The Pixel detector is designed for an instantaneous luminosity of 1×1034 cm−2s−1,
and is exposed to high radiation level. In order to cope with the high hit rate in Run
2, the IBL was installed in May 2014, right between the existing Pixel detector and a
new, smaller beam pipe at a radius of 3.3 cm. It consists of 14 carbon fibre staves (2
cm in width and 64 cm in length), each tilted by 14◦ in φ surrounding the beam-pipe,
covering |η|< 3. Two new sensor technologies are adopted: the pixel planar sensors
and 3D sensors. The pixel size is only 60% of the one used for the Pixel detector. The
performance of b-jet tagging significantly benefits from the additional hit information
at the closest position to the collision point. For instance, the light jet rejection in tt̄
event for 60% b tagging efficiency almost doubled with the IBL information[27].

The Pixel detector

The Pixel detector[28] is designed to provide precise trajectories and vertex mea-
surements with a coverage of |η|< 2.5. It consists of three coaxial cylinders around the
proton beam, and three disks perpendicular to it at each end-cap region. There are
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1,744 identical pixel sensors on the cylinders and the disks, each contains 47,268 pixels
and can measure an area of 2.44 cm × 6.34 cm. The minimum detection unit is 1 pixel,
each corresponding to one read out channel. The resolution of the charged particle
position is 10 µm (R−Φ)× 115 µm(z). In order to reduce the radiation damage, the
working temperature of the Pixel detector must be kept at about −6◦C.

The Semiconductor Tracker (SCT)

The Semiconductor Tracker[29] is designed to provide high-resolution pattern
recognition capabilities using discrete space-points. It consists of four concentric
cylinders, and nine disks at each end-cap region with silicon microstrip. There are
2,122 modules on the cylinders, and 1,976 modules on the disks, embedded with 6.2
million read out channels in total. The total measurable area is 61 m2. For each
track, the SCT can give precisely at least four additional space points, resulting in a
resolution of 17 µm (R−Φ)× 580 µm(z).

The Transition Radiation Tracker (TRT)

The TRT[30] is the outmost part of the Inner Detector. It is a transition radiation
detector that uses gas ionization to track the charged particles. The TRT is composed
of straw-tubes with a diameter of 4 mm and length of 144(37) cm in the cylindrical(end-
cap) layer. The straw-tubes are filled with a mixture of Xenon gas, which is operated
at a voltage of -1500 V. When charged particles pass by and ionize the gas, the anions
move towards the wire located in the centre of the straw, generating a current pulse
signal. The precision of the measurements performed by the TRT is merely 170 mm
per straw-tube, however this lack of precision can be compensated by large number of
hits. In addition, transition radiation is emitted when charged particles with moving
speed close to the speed of light pass the interface of material with different refractive
indices (polyethylene fibres and air). For a given momentum, the energy of the photons
generated by electrons will be much higher for electrons than for pions and muons, as
it is proportional to the relativistic factor (γ = E/m) of the incident particle. This
difference can be used to distinguish electrons from pions.

2.2.2 Calorimetry

The calorimeters measure the energy of the incident particles: the incident particles
interact with the material of the calorimeters, producing new particles with less energy;
each of the secondary particles repeat the same interaction until a large number of
particles are produced (which is called electromagnetic or hadronic shower, depending
on the type of incident particles), and finally stopped in the material and fully absorbed.
The deposited energy will converted into measurable signal.
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Figure 2.8 – Cut-away view of the ATLAS calorimeter system.

The ATLAS calorimeters are illustrated in Fig. 2.8. All of the calorimeters of
ATLAS are sampling calorimeters, which only sample part of the energy of the incident
particles. A sampling calorimeter consists of alternating layers of absorber (in which
the particle shower develops) and sampler (which gives detectable signal). The absorber
(dense material) usually has a low radiation length1, while the sampler (active material)
has large radiation length. For all the ATLAS calorimeter, the liquid argon (LAr) is
chosen as the sampler for its intrinsic linear behaviour, its intrinsic radiation-hardness
and its stability of response over time. The following calorimeters are included by the
ATLAS experiment:

• the electromagnetic calorimeter with coverage up to |η| = 3.2. It is divided
into a barrel part (EMB) for |η| < 1.475 and two end-cap parts (EMEC) for
1.375< |η|< 3.2.

• the hadronic calorimeter, divided into a tile calorimeter in the barrel (one
covering |η| < 1 and two extended barrels covering 0.8 < |η| < 1.7), a liquid
argon hadronic end-cap calorimeter (HEC) covering |η|< 3.9 and a liquid-argon
forward calorimeter (FCal) extending the coverage to 3.1< |η|< 4.9.

LAr electromagnetic calorimeter

The ATLAS electromagnetic calorimeter is a lead-LAr sampling detector. The
electromagnetic showers are mainly developing in the lead layers. Liquid Argon is

1X0, A characteristic of certain material, related to the energy loss of high energy particles
electromagnetically interacting with it.
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Figure 2.9 – Scheme of the ATLAS liquid argon electromagnetic calorimeter.

filled in between, used as the sampler. The lead absorbers and the electrodes have an
accordion geometry, which ensures a full coverage in Φ without any cracks and a fast
extraction of the signal.

As shown in Fig. 2.9, the EM calorimeter has three longitudinal layers, allowing a
more precise measurement of the longitudinal development of the EM shower. The
first layer (strips layer) has the thickness of around 4.4 X0. The high granularity of
this layer is important for the photon identification based on the transverse shower
profiles. The background from the neutral mesons, such as π0 decaying to multiple
photons can be significantly reduced. The middle layer has a thickness up to 22 X0.
Most of the energy of the electromagnetic showers are deposited in this layer. The
third layer has the thickness of about 2 X0, which collects the energy of the tail of the
showers and measures the energy leakage to the hadronic calorimeter outside.

Hadronic calorimeters

Tile calorimeter

The tile calorimeter is a sampling hadronic calorimeter using steel as the absorber
and scintillating tiles as the sampler. Ultraviolet scintillation light is produced when a
charged particle crosses the active material, and collected by wavelength-shifting optical
fibre. As an output of the fibre, the ultraviolet light is converted into visible light
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and passed to a photon-multiplier, producing measurable signal. The tile calorimeter
is segmented in depth into three layers, and divided azimuthally into 64 modules as
shown in Fig. 2.10.

(a) (b)

Figure 2.10 – (a) Schematic showing how the mechanical assembly and the optical
readout of the tile calorimeter are integrated together. (b) Azimuthal view of the tile
calorimeter module-to-module interface.

LAr hadronic end-cap calorimeter

The hadronic end-cap calorimeter (HEC) is a sampling hadronic calorimeter using
copper plates as absorbers and LAr as sampler. It has two independent wheels per
end-cap (front wheel HEC1 and rear wheel HEC2), sharing the same LAr cryostats
as the electromagnetic end-cap calorimeter (EMEC). Each wheel is divided into two
segmentations in depth, and has 32 identical wedge-shaped modules.

LAr forward calorimeter

The forward calorimeter (FCal) is designed to extend the acceptance of the calorime-
ter up to |η|= 4.9. The FCal is a sampling hadronic calorimeter using LAr as sampler.
In each end-cap, the FCal consists of three individual modules. the first layer uses
copper as absorber and is optimised for measuring the electromagnetic objects. The
other two layers use tungsten as absorbers, meant to measure the hadronic interactions.
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2.2.3 Muon spectrometer

Figure 2.11 – Scheme of the ATLAS muon spectrometer.

As illustrated in Fig. 2.11, the Muon Spectrometer (MS) is the outermost part
of the ATLAS detector, surrounding the hadronic calorimeter. The coverage of the
Muon Spectrometer is |η|< 2.7. It is designed to detect the charged particles exiting
the calorimeters and to measure their momentum. For |η| < 2.4, the MS can also
provide the trigger capability, since the precision-tracking chambers can deliver the
track information within a few tens nanoseconds once a charged particle pass by. Four
different gaseous chambers are adopted in the MS depending on the usage and position:
the Monitored Drift Tubes (MDTs), the Cathode Strip Chambers (CSCs), the Resistive
Plate Chambers (RPCs) and the Thin Gap Chambers (TGCs). MDTs provide precise
measurement of the momentum up to |η|= 2. For 2< |η|< 2.7, the CSC are used in
the innermost tracking layer for higher rate capability and better time resolution. In
different |η| coverage, the RPCs (|η|< 1.05) and the TGCs (1.05< |η|< 2.4) are used
separately by the trigger system.

2.2.4 Magnet system

ATLAS is equipped with the unique hybrid system of four large superconducting
magnets. The trajectories of the charged particles are bent in the magnetic field,
therefore the momenta can be measured by the detector. The magnetic system is 26 m
long and 22 m in diameter, with a stored energy of 1.6 GJ. The system consists of:
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• a solenoid: the central solenoid aligned on the beam axis, providing a 2 T axial
magnetic field for the Inner Detector.

• a toroid: there is one barrel toroid and two end-cap toroids, providing about
0.5 T (barrel) and 1 T (end-cap) toroidal magnetic field for the Muon Detectors.

2.2.5 Forward detectors

In addition of the ATLAS main detectors, four smaller sets of detectors are built in
the region |η|> 5 in order to provide good coverage in the very forward region. The
forward detectors are:

• LUCID: the Luminosity measurement using Cherenkov Integrating Detector
(LUCID) is dedicated to online monitoring of the LHC luminosity. Two detector
modules of LUCID are installed in both end-cap regions of the ATLAS detector,
17 m away from the interaction point. The coverage of LUCID is 5.5< |η|< 5.9.
Each module consists of 1.5 m long tubes that are filled with C4F10 gas at a
constant pressure, providing a Cherenkov threshold of 10 MeV for electrons and
2.8 GeV for pions.

• ZDC: the Zero Degree Calorimeter (ZDC) is dedicated to the detection of the
forward neutrons with |η| > 8.3 in heavy-ion collisions, and to measure the
centrality of such collisions. The ZDCs are located ±140 m away from the
interaction point, where the straight section of the beam pipe is divided back
into two independent beam pipes. Four modules (one electromagnetic, three
hadronic) are installed in each arm.

• ALFA: the Absolute Luminosity For ATLAS (ALFA) detector determines the
absolute luminosity for the ATLAS using the elastic-scattering amplitude at
small angles (around 3 µrad). ATLAS adopted the Roman-pot technique[31]
for the measurements very close to circulating beams. The ATLAS Roman-pots
are located ±240 m away from the interaction point, two Roman-pot stations
separated by four meters on each side.

• AFP: the ATLAS Forward Proton (AFP) detector is dedicated to tagging and
measuring the momentum and emission angle of very forward protons (around
100 µrad), in order to extend the physics reach of ATLAS. The AFP detector
was installed in 2017, ±200m from the interaction point.

2.2.6 Trigger system

Limited by the reaction time, readout bandwidth, storage space, etc, it is impossible
and redundant to store all the data collected by the ATLAS detector given such a
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Figure 2.12 – The ATLAS Trigger and Data Acquisition (DAQ) System in LHC Run
2[32].

high designed luminosity. Therefore, ATLAS uses a trigger system to select only the
interesting events for offline analyses. The ATLAS trigger system can be divided
into three levels of event selection: Level-1 (L1), Level-2 (L2) and the event filter.
Each level only processes the events that already passed the previous level of selection.
The trigger system operates within the framework called the Data Acquisition (DAQ)
system, which receives and buffers the data from the readout electronics. An overview
of the ATLAS trigger and DAQ system during Run 2 is shown in Fig. 2.12.

• Level-1 trigger: the L1 is implemented using custom-made fast electronics,
using only the information from the calorimeters and the Muon Spectrometer.
It selects muons with high transverse momentum, electrons, photons, jets, τ
leptons decaying into hadrons and large missing transverse energy (EmissingT ).
One or more Regions of Interest (RoI) is defined by the L1, in which exist the
potentially interesting signatures. The RoIs are later passed to the next levels of
trigger system. L1 reduces the event rate from 40 MHz to around 100 kHz.

• High-level trigger: the High-Level Trigger (HLT) is formed by the L2 and
the event filter. The software-based HLT system has access to the full detector
information within the RoI, and further reduces the event rate to around 1 kHz.
Once an event is accepted by the HLT, it is sent to the CERN permanent storage
via the Data Logger.
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Photon reconstruction and
performance

The ATLAS detector provides a precise measurement of photons that benefits a lot
of physics analyses. This chapter will discuss all the necessary steps to reconstruct and
identify a photon: the reconstruction and energy calibration procedure are introduced
in Sec. 3.1 and Sec. 3.2 separately. The photon identification procedure, aiming
to select prompt photon, which is defined as the photons produced from the hard
scattering, in contrast to those produced from the decays of the hadrons, is described
in Sec. 3.3. The photon isolation criteria aiming to further suppress the background
contribution from hadronic decay is described in Sec. 3.4.

3.1 Photon reconstruction

Information from ATLAS Calorimeters is Inner Detectors are essential for photon
reconstruction. As discussed in Sec. 2.2.1 and Sec. 2.2.2, photon candidates in ATLAS
detector are reconstructed through:

• interactions with the electromagnetic (EM) calorimeters. Photons (and electrons)
develop EM showers in the absorber in the LAr EM calorimeter, deposit their en-
ergy in a region of the detector containing multiple cells, which are reconstructed
as clusters.

• interactions upstream of the calorimeter. Photon conversions (γ→ e+e−) might
happen in the inner detector, leaving tracks that may be matched to EM clusters.

3.1.1 Energy reconstruction

Signal readout

The readout electronics of the ATLAS calorimetry is designed to measure the energy
in each calorimeter cell, and provide the L1 trigger system with the deposited energy.
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Figure 3.1 – Shapes of the LAr calorimeter current pulse in the detector and of the
signal output from the shaper chip. The dots indicate an ideal position of samples
separated by 25 ns.[33]

The signal readout begins when the electromagnetic showers ionize the LAr in the EM
calorimeter, resulting in drifting electrons which induce a triangular current pulse on
the copper electrodes. The amplitude of the triangular signal is proportional to the
deposited energy. The signal is then amplified, shaped and digitalized to optimise the
signal-to-noise ratio. The triangular input current pulse and the shaped output pulse
from the FEB are shown in Fig. 3.1.

The signals are then sampled at the LHC bunch crossing frequency of 40 MHz, and
temporarily stored here during the L1 trigger latency. Once the events are accepted,
the samples are read out and digitized by a 12-bit Analog to Digital Converter (ADC).
A Gain Selector chips (GSEL) is used to choose the most suitable gain for each channel
in each event, in order to optimize the precision of the energy measurement. In the
end, The digitized samples with the chosen gain are transmitted to the corresponding
readout drivers (ROD). Equation 3.1 shows the conversion of the reconstructed pulse
amplitude A to the deposited energy (E) in MeV.

E = FµA→MeV ×FDAC→µA×
1

Mphys

Mcali

×G×
Nsamples∑
j=1

aj(sj−p) (3.1)

The factor FµA→MeV converts the ionization current in the calorimeter to the
energy deposited. FDAC→µA converts the Digital-to-Analog Converter (DAC) counts
set of the calibration board to the injected current in µA. G is the gain of the channel,
and Mphys

Mcali
is a correction factor of G where Mphys is the ionization pulse response,

Mcali is the calibration pulse corresponding to the same input current, to adapt to
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physics-induced signals. For the selected electronic gain, sj are the samples of the
shaped signal. aj are the optimal filtering coefficients (OFC), calculated according to
an optimal filtering algorithm for better energy and timing resolution. p denotes the
pedestal value, namely the mean value of the samples when no signal is present.

Clustering algorithm

After the energy is measured using Eq. 3.1, the calorimeter cells are clustered via
different clustering algorithms.

The first algorithm is called Sliding-window algorithm[34]. The calorimeter cells
are divided into towers of size Stower = ∆η×∆φ= 0.025×0.025, each tower sums up
all the energy of the cells on the longitudinal layer. Then a fixed-size window scan
of 3× 5 towers is performed. A cell with total transverse energy above 2.5 GeV is
selected as the seed, around which the cluster is built by summing the energy of all
cells within a 3×7 (5×5) ∆η×∆φ window in the barrel (end-cap) region. The cluster
reconstruction efficiency is given by the number of reconstructed EM clusters divided
by the number of produced particles. The efficiency varies as a function of ET and |η|,
and can reach above 99% for ET > 15 GeV.

The second algorithm is called Dynamical topological cell clustering algorithm[35].
This new clustering algorithm was implemented since 2017, with which one can easily
recover low-energy deposits from bremsstrahlung photons and associate them to the
electron cluster, together form a so-called “supercluster” as shown in Fig. 3.2.

The main idea of the topological cell clustering algorithm is to choose an initial
seed, and add the neighboring cells under certain rules. One important observable
that governs the seeding and growth of a topo-cluster, cell significance, is given by:

ζEMcell = | EEMcell
σEMnoise,cell

| (3.2)

where EEMcell is the cell energy, σEMnoise,cell is the expected cell noise.
The initial seed is chosen with ζEMcell ≥ 4, around which all the immediate neighboring

cells with ζEMcell ≥ 2 are added. Then, all the cells which are immediate neighbors of
the first added ones are added. Finally, All cells that are immediate neighbors of those
added previously are added, regardless of the ζEMcell value. Following this procedure,
the constructed clusters are called EM topoclusters. From a seed topocluster, a
supercluster is built after satellite cluster candidates around the seed candidate are
resolved. There is no upper ET threshold on the satellites, a cluster of cells is accepted
as a satellite only if it falls within a window of ∆η×∆φ= 0.075×0.125 around the
seed cluster barycentre. An identified satellite can not be used for other clusters. The
whole satellite finding procedure is summarized in Fig. 3.3.
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Figure 3.2 – Diagram of an example supercluster showing a seed electron cluster and
a satellite photon cluster.

Figure 3.3 – Diagram of the dynamical topological cell clustering algorithm for electrons
and photons.
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The search region of the detector is not limited by the topo-cluster algorithm,
which means that cells from both the LAr and Tile calorimeters may be included in a
single topo-cluster. Another important value, the EM fraction is defined as:

fEM = EL1 +EL2 +EL3 +w(̇EE4 +EPS)
Ecluster

,w =
1,1.37< |η|< 1.63

0,otherwise
(3.3)

ELx is the cluster energy in layer x, the term (EE4 +EPS) only considered for
clusters within the transition region 1.37< |η|< 1.63, where the energy deposition is
non-negligible in the pre-sampler and E4 scintillators. Only the topo-clusters with
fEM > 0.5 and ET > 400 MeV are accepted.

3.1.2 Track matching

The electrons, unconverted and converted photons are characterized depending
on the number of reconstructed tracks and the matching situations: the electrons
are reconstructed with clusters matched to ID track from a vertex in the interaction
region. The converted photons are reconstructed with clusters matched to the track
(tracks) originating from a conversion vertex. Unconverted photons are reconstructed
with clusters without matching tracks. Figure 3.4 illustrates the path of an electron
through the detector [36].

The standard track-pattern reconstruction [37] is first performed everywhere in the
inner detector. A silicon track seed is searched within a certain region of interest, which
is a set of silicon detector hits used to start a track. If the standard pattern recognition
fails, a modified pattern recognition algorithm using a Kalman filter [38] is used, up to
30% energy loss at each material intersection is allowed. Track candidates are then fitted
with the global χ2 fitter [39], allowing for additional energy loss when the standard track
fit fails. To improve track parameter estimation, the tracks with silicon hits loosely
matched to clusters are re-fitted using a Gaussian Sum Filter (GSF) algorithm[40]:
the loosely matched, re-fitted tracks are then matched with the seeded EM clusters by
extrapolating the track from the perigee to the second layer of the calorimeter, using
either the measured track momentum or rescaling the magnitude of the momentum to
match the cluster energy. A track is considered as matched if, with either measured or
rescaled momentum, |η|< 0.05 and −0.10< q · (φtrack−φcluster)< 0.05 (q represents
the sign of the reconstructed charge of the track). In case more than one tracks are
matched to the same cluster, tracks with hits in pixel detector are preferred, then
tracks with hits in the SCT only. For converted photons, both tracks with silicon hits
(Si tracks) and tracks reconstructed only in the TRT (TRT tracks) are used for the
conversion reconstruction. Two-track conversion vertices are reconstructed from two
opposite-charge tracks forming a vertex consistent with that of a massless particle.
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Figure 3.4 – A schematic illustration of the path of an electron through the detector.
The red trajectory shows the hypothetical path of an electron, which first traverses
the tracking system (pixel detectors, then silicon-strip detectors and lastly the TRT)
and then enters the electromagnetic calorimeter. The dashed red trajectory indicates
the path of a photon produced by the interaction of the electron with the material in
the tracking system.

Single-track vertices are reconstructed from tracks without hits in the innermost
sensitive layers.

3.2 Energy calibration

After summing up the energy of all the cells of the three layers of the EM calorime-
ter and the pre-sampler, the photon energy is corrected by a dedicated calibration
procedure. In general, the cluster energy is calibrated to the original electron or photon
energy, and an absolute energy scale is obtained using data-driven method to correct
for the data-MC difference using Z→ ee samples. Photon specific uncertainties are
applied due to the difference of the shower shape between electrons and photons. As
shown in Fig. 3.5, the calibration proceeds as follows:

The first step is the training of MC-based e/γ calibration. A multivariate (MVA)
regression algorithm is trained based on Monte-Carlo (MC) simulation of the detector,
in order to calibrate the EM cluster properties to the original electron and photon
energy. The calibration constants are determined using the MVA, and its optimization
is performed separately for electrons, converted and unconverted photons.

The following variables are used as an input to the MVA algorithm:
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3.2. Energy calibration

Figure 3.5 – Schematic overview of the procedure used to calibrate the energy response
of electrons and photons in ATLAS.[41]

• total energy in the accordion, Eacc = Eraw1 +Eraw2 +Eraw3 , where Erawx is the
uncalibrated energy of each layer.

• ratio of the energy in the pre-sampler to the energy in the accordion, E0/Eacc,
only used for the clusters within the geometric range of the pre-sampler |η|< 1.8.

• ratio of the energy in the first layer to the energy in the second layer, Eraw1 /Eraw2 ,
which provides the information of the longitudinal shower depth.

• pseudorapidity ηcluster in the ATLAS frame.

• cell index, an integer number defined as the integer part of ηcalo/∆η, where ηcalo
is the pseudorapidity of the cluster in the calorimeter frame, and ∆η = 0.025
is the size of one cell in the middle layer. This variable is sensitive to the
non-uniformities of the calorimeter.

• η with respect to the cell edge.

• φ with respect to the lead absorbers.

Additional variables are used for converted photons:

• radius of the conversion R, used only for converted photon with pconvT larger than
3 GeV, where pconvT is the sum of the transverse momentum of the conversion
tracks.

• ratio of the conversion transverse energy to the transverse momentum in the
accordion EaccT /pconvT , where EaccT = Eacc/cosh(ηcluster).

• fraction of the conversion pT carried by the highest-pT conversion track.

An essential requirement is that the detector geometry and interactions of particles
with matter are accurately described in the MC simulation. Measuring E1/E2 in data
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allows a precise determination of the amount of material upstream of the calorimeters,
based on which the modifications of the detector material settings in simulation are
made.

Figure 3.6 illustrates the energy resolution σEcalib/Egen , where Ecalib is the recon-
structed energy after the algorithm is applied, and Egen is the true energy. The
resolution is defined as the interquartile range of σEcalib/Egen , i.e. the interval excluding
the first and last quartiles of the σEcalib/Egen distribution in each bin, divided by 1.35
in order to convert to the equivalent standard deviation of a Gaussian distribution.

The second step is the longitudinal layer inter-calibration. Since the EM calorimeter
is longitudinally segmented into three layers, the scales of the different longitudinal
layers should be equalised in data with respect to simulation before the determination
of the overall energy scale, in order to ensure the correct extrapolation of the response
in the full pT range. Any mismatch between data and the simulation of the relative
energy response of the different layers could bias the calibrated energy.

Muons from Z → µµ decays are used to study the relative calibration of the
first and second layers, since its deposited energy is insensitive to the amount of
passive material upstream of the calorimeters. The observed muon energy distribution
in each layer can be described by a convolution of a Landau distribution (energy
deposit) and a noise distribution. The relative calibration is calculated as α1/2 =
(〈E1〉data /〈E1〉MC)/(〈E2〉data /〈E2〉MC), where 〈E1〉 (〈E2〉 ) is the most probable value
(MPV) in the first (second) layer. MPV of the deposited energy can be obtained
with two method: fit the muon energy distribution (“fit method”), or compute the
mean of energy over a restricted window to minimize the sensitivity to the tails of the
distribution (“truncated-mean method”). Figure 3.7 shows the α1/2 obtained with the
two methods.

The third step is the MC-based e/γ energy calibration. After training and opti-
mization, the MC-based e/γ response calibration is applied to the cluster energies in
both data and simulated samples.

The fourth step is the uniformity corrections. The corrections are aimed to account
for energy response variations not included in the simulation due to some specific
reasons, for instance, non-optimal high voltage, geometric effects, or biases associated
with the LAr calorimeter electronic calibration.

The fifth step is Z → ee scale calibration and resolution smearing. The overall
electron response in data is calibrated so that it agrees with the expectation from
simulation, using a large sample of electrons from Z boson decays. Per-electron scale
factors are extracted, and applied to both electron and photon candidates in data.
The resolution in data is slightly worse than that in simulation, therefore the energy
in MC simulation is smeared to match the data.

The difference in energy scale between data and simulation after all the corrections
on data mentioned above is defined as αi, where i corresponds to different region in

68



3.2. Energy calibration

(a)

(b) (c)

Figure 3.6 – Energy resolution, σEcalib/Egen , estimated from the interquartile range
of σEcalib/Egen as a function of |η| for (a) electrons, (b) converted photons and (c)
unconverted photons, for different ET ranges.[42]
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Figure 3.7 – Ratio α1/2 = (〈E1〉data /〈E1〉MC)/(〈E2〉data /〈E2〉MC) as a function of
|η|, as obtained from the study of the muon energy deposits in the first two layers of
the calorimeters. The results from the two methods are shown with their statistical
uncertainties. The final average measurement is shown with its total uncertainty
including the statistical and systematic uncertainties.[42]

η. The difference in energy resolution between data and simulation is defined as an
additional constant term ci in the energy resolution, also depending on η:

Edatascale = EMC
scale(1 +αi),(

σE
E

)data = (σE
E

)MC ⊕ ci (3.4)

where i represents bins of pseudorapidity, and ⊕ denotes a sum in quadrature. For
Z→ ee decays with the two electrons falling in regions i and j in |η|, the difference in
average di-electron invariant mass and in mass resolution is given by:

mdata
ij =mMC

ij (1 +αij) (3.5)

(σm
m

)dataij = (σm
m

)MC
ij ⊕ cij (3.6)

where αij = (αi+αj)/2, cij = (ci⊕ cj)/2, obtained from comparison between the
shape of the invariant mass distributions in data and in simulation, separately for each
(i, j) region. Two methods are considered as cross-checks of each other: shift the mass
scale in simulation distributions by αij and apply an extra resolution contribution of
cij , where the best estimation of the two values are obtained by minimizing the χ2

of the difference between data and simulation templates (“template fit method”), or
fit both data and simulated invariant mass distribution in each bin by an analytic
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fuction, extract the parameters from a simultaneous fit of all i− j regions (“lineshape
method”).

Figure 3.8 shows the energy scale and resolution corrections measured with 2015-
2016 data. The energy scale corrections are about −3% to 2% depending on pseu-
dorapidity, the uncertainty is about 0.02% to 1%. The additional constant term of
the resolution ci is typically smaller than 1% in the barrel region, and is up to 2% in
end-cap region. Figure 3.9 shows the Z→ ee invariant mass distribution of data and
simulations after applying the energy scale and resolution corrections. The stability of
the reconstructed peak position as a function of the average number of interactions
per bunch crossing is also presented.

The sources uncertainty are listed below, computed separately in each η interval:

• accuracy of the main method (template fit method). Pseudo-data samples
generated from the simulation samples are used to validate the procedure of
estimation of αi and ci. The residual bias of the method in the estimation is
computed, comparing the values used to generate the pseudo-data samples with
the extracted values. The bias is assigned as a systematic uncertainty.

• method comparison. The difference between the results of the two methods is
assigned as a systematic uncertainty.

• mass range used to perform the comparison between data and simulation. Mass
range is changed from 80-100 GeV (nominal) to 87-94.5 GeV, and the difference
is assigned as a systematic uncertainty.

• region selection. The choice of the invariant mass range of the two electrons can
introduce bias if non-Gaussian tails of the energy resolution are not correctly
modeled. An η-dependent invariant mass range selection is applied to remove
such biased i− j region. The difference obtained by varying this criteria is
assigned as a systematic uncertainty.

• background with prompt electrons. The small contributions of backgrounds from
Z→ ττ , diboson pair production and top-quark production is neglected in the
parameter extraction. The difference between including and neglecting them is
assigned as a systematic uncertainty.

• with/without election isolation requirement, as described in Sec. 3.4.

• Tight/Medium election identification, as described in Sec. 3.3.

• electron bremsstrahlung probability. Before reaching the calorimeter, electrons
can lose a significant fraction of energy by bremsstrahlung. Electrons with higher
momentum loss due to bremsstrahlung have worse resolution. The fraction of
momentum loss through bremsstrahlung is defined as fbrem = 1− (q/p)IP

(q/p)outofID .
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(a) (b)

Figure 3.8 – Measured (a) energy scale and (b) resolution corrections as a function
of η using Z → ee events in 2015 and 2016 data. The systematic and statistical
uncertainties are shown separately in the bottom panels.

The ratio q/p is estimated from the tracking algorithm, where q is the charge
of the particle and p is the momentum at the interaction point (IP) and when
the particle is leaving the inner detector (out of ID). The additional requirement
fbrem < 0.5 is performed on electrons, and the difference in results obtained
with/without the requirement is assigned as uncertainty.

• corrections on the electron reconstruction, trigger, identification and isolation
efficiencies, which can slightly change the shape of the invariant mass distribution
predicted by the simulation.

The sixth step is data-driven scale validation of the extrapolation of the calibration
to low-ET electrons using J/Ψ→ ee events, and to photons using Z→ llγ events in
data. The electron-to-photon extrapolation is performed assuming that the energy scale
corrections obtained from Z→ ee are also valid for photons within the uncertainties.
As an additional correction, the residual photon energy scale difference correction
factor ∆α is parameterized and then applied to photon energy. The residual corrections
are shown in Fig. 3.10 as function of the photon energy. The additional sources of
uncertainty for the photon energy scale are listed below. They will be explained in
details in the next chapter, which describes the work I performed at the beginning of
my Ph.D. in order to qualify as an ATLAS author.

• photon conversion classification. The MVA algorithm is trained separately for
electrons, converted and unconverted photons. Misclassification of the conversion
type may bias the calibration, typically result in uncertainties of about 0.05% at
ET = 60 GeV.

• modeling of the lateral shower shape. The difference of lateral energy leakage
outside of the cluster between electron and photon is taken as an uncertainty,
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(a) (b)

Figure 3.9 – (a) Comparison between data and simulation of the invariant mass
distribution of the two electrons in the selected Z→ ee candidates, after the calibration
and resolution corrections are applied. The total number of events in the simulation is
normalized to the data. The uncertainty band of the bottom plot represents the impact
of the uncertainties in the calibration and resolution correction factors. (b) Relative
variation of the peak position of the reconstructed di-electron mass distribution in
Z→ ee events as a function of the average number of interactions per bunch crossing.
The error bars represent the statistical uncertainties.[43]

coming from the difference between electron and photon showers related to the
interaction probabilities with the material upstream of the calorimeter.

3.3 Photon identification

After the reconstruction, the sample of photon candidates contains a significant
number of background candidates (“fake” photons from jets). It is important to
distinguish prompt photons (produced in hard scattering process) from the faked
ones, originating from the neutral hadrons decays (mostly π0 → γγ) or QCD jets
depositing a large energy fraction in the EM calorimeter. As shown in Fig. 3.11,
prompt photons deposit narrower showers in the EM calorimeter and leak less in the
hadron calorimeter. Therefore, a set of discriminating variables (DVs) that characterize
the lateral and longitudinal electromagnetic shower development in the EM calorimeter
and the leakage fraction of showers in the hadron calorimeter is defined, listed in Tab.
3.1 and Fig. 3.12. The photon identification is constructed from one-dimensional
selection criteria (cut-based selection) applied on the discriminating variables.

There are three photon identification working points: the primary identification
selection is labelled as Tight, and the Medium and Loose selections are less restrictive
ones mainly used for the trigger system. In 2015 and 2016, Loose selection was the main
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(a) (b)

Figure 3.10 – Residual photon energy scale factors, ∆α, for (a) unconverted and (b)
converted photons as a function of the photon transverse energy EγT , respectively. The
points show the measurement with its total uncertainty and the band represents the
full energy calibration uncertainty for photons from Z→ llγ decays.[43]

Figure 3.11 – Event display of a prompt photon candidate (left) and of a fake photon
candidate (right).
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Figure 3.12 – Schematic representation of the photon identification discriminating
variables, from Ref. [8]. ESNC denotes the electromagnetic energy collected in the
N − th longitudinal layer of the electromagnetic calorimeter in a cluster of properties
C, identifying the number and/or properties of selected cells. Ei is the energy in the
i− th cell, ηi is the pseudorapidity centre of that cell.

selection for photon and di-photon event events triggering, using only Rhad, Rhad1, Rη
and wη2 variables. Since 2017[43], the Medium selection, which adds a loose cut on
Eratio, became the main trigger selection in order to maintain an acceptable trigger
rate. The Loose and Medium selections are the same for converted and unconverted
photons. The Tight identification criteria are optimized separately for converted and
unconverted photons using the TMVA algorithm1, since the shower shape of them are
different due to the opening angle of e+e− conversion pairs which is amplified by the
magnetic field.

The efficiency of the photon identification is measured in both data and simulation
using three methods: a directly measurement using photons from radiative Z boson
decays, a matrix method based on inclusive photon production, and measurement
using Z→ ee decays with the shower shape of electrons modified to resemble photons.
The final estimation of photon identification efficiency is the combination of the three
methods. The difference between data and simulation is used as a correction factor
for simulation. Generally, the photon identification efficiency is better than 90% for
photons with ET > 40 GeV, varying with respect to η and ET of the photon candidate.
Figure 3.13 shows the Tight identification efficiencies efficiencies for unconverted and
converted photons (in region 0.6< |η|< 1.37) as measured with the three efficiency
methods.

1The Toolkit for Multivariate Data Analysis with ROOT (TMVA) is a ROOT-integrated project
providing a machine learning environment for the processing and evaluation of multivariate classifica-
tion, both binary and multi class, and regression techniques targeting applications in high-energy
physics.
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(a) (b)

Figure 3.13 – The photon identification efficiency, and the ratio of data to MC
efficiencies, for (a) unconverted photons and (b) converted photons with a Loose
isolation requirement applied as preselection, as a function of ET . The combined
scale factor, obtained using a weighted average of scale factors from the individual
measurements, is also presented; the band represents the total uncertainty.[44]

3.4 Photon isolation

One signature of the prompt photons is that they are usually isolated with little
energy activity around them. Therefore, to further suppress the background from
hadronic decay, the isolation criteria is often required. Two kinds of isolation variables
are built to construct the isolation criteria: the calorimeter isolation variable EconeXXT

and the track isolation variable pconeXXT . The variables are defined as the sum of the
calorimeter cell ET or track pT inside a cone (namely isolation cone) of a given radius
around the electron or photon cluster barycentre, where XX refers to the size of the
cone (e.g, XX = 40 for a cone size of 0.4). The detailed definition will be given later.

In order to compute the calorimeter isolation variable, a raw isolation transverse
energy, EisolT,raw is first computed by summing the transverse energy of positive-energy
topological clusters whose barycentre falls within the isolation cone. Figure 3.14 is a
scheme of the isolation cone with the core contribution shown in yellow, which is the
raw EM particle energy that needs to be subtracted from the sum. The subtraction
is made by simply removing the energy of the cells contained in a 5×7 (in units of
middle layer cell sizes) rectangular cluster around the barycentre of the EM particle
cluster. An additional leakage correction is needed to correct for the energy leakage
outside of the 5×7 window into the isolation cone. The leakage is parameterized as a
function of ET and |η| using single particle simulated samples without pile-up. The
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Figure 3.14 – Schema of the calorimeter isolation method: the grid represents the
second-layer calorimeter cells in the η and φ directions. The candidate electron is
located in the centre of the purple circle representing the isolation cone. All topological
clusters, represented in red, for which the barycentres fall within the isolation cone
are included in the computation of the isolation variable. The 5×7 cells (which cover
an area of ∆η×∆φ= 0.125×0.175) represented by the yellow rectangle correspond to
the subtracted cells in the core subtraction method.
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contribution from pile-up and underlying-event is estimated and subtracted as well.
The final calorimeter isolation variable is given by:

EconeXXT = EisolXXT,raw −ET,core−ET,leakage(ET ,η,∆R)−ET,pileup(η,∆R) (3.7)

where ∆R = XX/100. Both cone size ∆R = 0.2 and 0.4 are used for photon
isolation working points.

The track isolation variable pconeXXT is computed by summing the transverse
momentum of the selected tracks within a cone centred around the electron or the
photon cluster direction, excluding the tracks matched to the EM cluster. Only tracks
that have pT > 1 GeV, |η|< 2.5, at least seven silicon (Pixel+SCT) hits, at most one
shared hit (defined as nshP ixel+nshSCT /2, where n are the numbers of hits assigned to
tracks in the Pixel and SCT detectors), at most two silicon holes (missing hits in the
pixel and SCT detectors) and at most one pixel hole are considered. The cone size
varies with respect to the transverse momentum of the electron or photon candidate,
since the other decay products tend to be very close to the candidate direction in the
boosted case. The cone size is defined as:

∆R =min( 10
pT [GeV ] ,∆Rmax) (3.8)

where ∆Rmax is the maximum cone size, typically 0.2.
Three working points of the photon isolation selection are summarized in Tab.

3.2, each has different efficiency and rejection ability. The efficiency of the photon
isolation is measured using photons from Z → llγ events (10 < ET < 100 GeV) and
inclusive photons (25<ET < 1500 GeV). In general, isolation efficiency is higher for
photons with higher transverse momentum. With increasing pile-up activity, the
decrease of efficiency is observed (about 10% when increasing 〈µ〉 from 15 to 60).
There is a slight disagreement (about 5%) of the measured efficiencies in data and
simulation, due to the mismodelling of the lateral profile development of the EM
showers in simulation. Data-driven shifts are therefore applied to the calorimeter
isolation variables in simulation, computed from the difference in the fitted peak
values of the calorimeter isolation variable distributions between data and simulation.
The isolation efficiencies for unconverted and converted photons as function of η and
ET are illustrated in Fig. 3.15 and Fig. 3.16. In both barrel and end-cap regions of
the detector, the isolation efficiencies tend to increase with |η| due to an imperfect
pile-up correction. The efficiencies also increase with ET in general as we have less
fake photons (e.g. π0 decays) in high-ET region. Figure 3.17 shows the decrease of
efficiency with increasing pile-up activity.
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(a) (b)

Figure 3.15 – Efficiency of the isolation working points defined in Tab. 3.2, using
Z → llγ events, for (a) unconverted and (b) converted photons as a function of
photon η. The lower panel shows the ratio of the efficiencies measured in data and in
simulation. The total uncertainties are shown, including the statistical and systematic
components[44].

(a) (b)

Figure 3.16 – Efficiency of the isolation working points defined in Tab. 3.2, using
Z→ llγ events, for (a) unconverted and (b) converted photons as a function of photon
ET . The lower panel shows the ratio of the efficiencies measured in data and in
simulation. The total uncertainties are shown, including the statistical and systematic
components[44].
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(a) (b)

Figure 3.17 – Efficiency of the isolation working points defined in Tab. 3.2, using
Z → llγ events, for unconverted (left) and converted (right) photons as a function
of 〈µ〉. The lower panel shows the ratio of the efficiencies measured in data and in
simulation. The total uncertainties are shown, including the statistical and systematic
components[44].
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Category Description Name loose tight

Acceptance |η|< 2.37, with 1.37< |η|< 1.52 excluded - X X

Hadronic leakage
Ratio of ET in the first sampling layer of the hadronic calorime-
ter to ET of the EM cluster (used over the range |η|< 0.8 or
|η|> 1.52)

Rhad1 X X

Ratio of ET in the hadronic calorimeter to ET of the EM
cluster (used over the range 0.8< |η|< 1.37)

Rhad1 X X

EM middle layer
Ratio of the energy in 3×7 η×φ cells over the energy in 7×7
cells centered around the photon cluster position

Rη X X

Lateral shower width,
√

(∑Eiη2
i )/(

∑
Ei)− ((∑Eiη2

i )/(
∑
Ei))2,

where Ei is the energy and ηi is the pseudorapidity of cell i
and the sum is calculated within a window of 3×5 cells

wη2 X X

Ratio of the energy in 3×3 η×φ cells over the energy of 3×7
cells centered around the photon cluster position

Rφ X

EM strip layer
Lateral shower width,

√
(∑Ei(i− imax)2)/(∑Ei), where i runs

over all strips in a window of 3×2 η×φ strips, and imax is the
index of the highest-energy strip calculated from three strips
around the strip with maximum energy deposit

ws3 X

Total lateral shower width,
√

(∑Ei(i− imax)2)/(∑Ei), where
i runs over all strips in a window of 20×2 η×φ strips, and
imax is the index of the highest-energy strip measured in the
strip layer

wtot X

Energy outside the core of the three central strips but within
seven strips divided by energy within the three central strips

fside X

Difference between the energy associated with the second
maximum in the strip layer and the energy reconstructed in
the strip with the minimum value found between the first and
second maxima

∆Es X

Ratio of the energy difference between the maximum energy
deposit and the energy deposit in the secondary maximum in
the cluster to the sum of these energies

Eratio X

Ratio of the energy in the first layer to the to the total energy
of the EM cluster

f1 X

Table 3.1 – Discriminating variables used for loose and tight photon identification.
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Working point Calorimeter isolation Track isolation
Loose Econe20

T < 0.065×ET pcome20
T /ET < 0.05

Tight Econe40
T < 0.022×ET + 2.45GeV pcome20

T /ET < 0.05
TightCaloOnly Econe40

T < 0.022×ET + 2.45GeV -

Table 3.2 – Definition of the photon isolation working points.
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Chapter 4

Photon energy calibration
uncertainties from shower leakage
mismodeling

Studies described in this chapter were my qualification task in order to become an
ATLAS author. In this chapter, one of the photon-specific systematic uncertainties on
the energy calibration is discussed. The shower shape in EM calorimeter is mismodeled
[45] by the simulation.This mismodeling can slightly bias the energy estimation, as it
is possible that the energy leaking outside of an electromagnetic cluster is different
between electrons and photons, or varies with respect to pT . For electrons of certain
ET , the loss of energy is corrected by the in-situ energy scales. However, the correction
might not hold for other transverse energies or photons anymore.

To study the electron to photon leakage mismodeling, the photons are selected
from the Z → µµγ and diphoton samples, and the electrons are selected from the
Z→ ee samples. To be consistent with the energy calibration procedure, the results
obtained with photons from the radiative Z decay channel are used to quantify the
photon-specific systematic uncertainty, while the results obtained with photons in
diphoton samples are used as a cross-check in the high pT region. In addition, single
particle MC samples are used to study the impact of detector material and conversion
reconstruction mismodeling. Section 4.1 introduces the method and the data and
simulated samples used in the analysis. The measured variables are presented in
Sec. 4.2, and some further studies are discussed in Sec. 4.3. Finally, two important
corrections and the final results of this analysis are summarized in Sec. 4.4.

4.1 Method

This study is based on clusters reconstructed by the sliding-window algorithm
described in Sec. 3.1.1. In the electromagnetic calorimeter, the cluster energy is first
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reconstructed using the hits in the second layer, where cells within a certain window
around the cell with the highest energy are clustered together. For other layers, all
cells intersecting the geometrical projection of this window are included. In practice,
energy collected within a 7×11 window in η×φ in the middle layer is taken as the
reference energy. Once this 7× 11-cell cluster and its centre have been found, it is
possible to build clusters of arbitrary sizes, as long as they are smaller.

The variables used to describe the energy leaking outside a given cluster are defined
in Sec. 4.1.1. The data and simulated samples are discussed in Sec. 4.1.2. Particularly,
the background component (jet faking photons) needs to be removed when using the
diphoton samples. A dedicated subtraction method is described in Sec. 4.1.3.

4.1.1 Definition of leakage variables

Two main quantities are studied in this analysis. The first one is the fraction of
energy leaking outside a given cluster (namely l):

l = Es2(7×11)−Es2(size)
Es2(size) (4.1)

where Es2 represents the energy collected in layer 2 for a given cluster size. The
size might depend on the type of particle (electron or photon) and its position in the
detector (barrel or end-cap). However, in Run 2, the size is identical for electrons,
converted photons and unconverted photons and is 3×7 in the barrel and is 5×5 in
the end-cap region.

Next, in order to quantify the difference between data and MC, electrons and
photons, the “double difference” is defined as:

∆((e−γ)data− (e−γ)MC) = (lel− lph)data− (lel− lph)MC (4.2)

where l is the energy leakage as defined in Eq. 4.1, and the superscripts indicate
the sample it is estimated from (electrons or photons, in data or MC).The absolute
value of double difference is used as a photon-specific systematic uncertainty, as the
result of the subtractions in Eq. 4.2 could be positive or negative.

In addition, two other variables are calculated to study the lateral energy leakage
along η and φ directions:

lη = Es2(7×7)−Es2(3×7)
Es2(size) (4.3)

lφ = Es2(7×11)−Es2(7×7)
Es2(size) (4.4)
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The energy leaking outside a given cluster is calculated separately for electrons,
converted photons and unconverted photons. Since the thickness of absorbers changes
in the calorimeter at |η| = 0.8, three η bins are set: |η| < 0.8 (namely “inner barrel
region”), 0.8 < |η| < 1.37 (“outer barrel region”) and 1.52 < |η| < 2.37 (“end-cap
region”). The double difference may also depend on the pT of the candidates or on
pile-up conditions. In order to check the dependence, the data-MC simple differences
for photons and electrons are calculated separately in selected pT bins, while the
double differences are calculated only in the common bins. As for pile-up, the double
differences are calculated in different bins of number of interactions per bunch crossing.

4.1.2 Data and simulated samples

Radiative Z decaying to a lepton pair and one photon provides a photon sample
of high purity, although it is limited in statistics and the available kinematic range.
In this study, the lateral leakage for electrons is extracted from a sample of Z→ ee

events. To avoid the electron to photon ambiguity, the Z→ eeγ channel is not used,
while a Z→ µµγ event selection is applied to provide low-pT photon samples. Photons
with higher pT coming from QCD production of photon pairs are also studied as a
cross-check and an extension.

By the time the study was done, the data taking of Run 2 was not finished and
only a dataset of 33 fb−1 collected in 2016 is used in the analysis (the results may still
be referred as “Run 2 results” when they are compared with Run 1 results). For both
Z→ µµγ and Z→ ee processes, the simulated samples are generated and showered
with Powheg, Pythia8, EvtGen and Photospp generators. The diphoton events are
generated with the Sherpa generator. The simulation is performed in slices of the
diphoton invariant mass Mγγ , therefore the samples for all slices are then merged with
the proper normalization to match the luminosity corresponding to the one in the
data.

When the Monte Carlo samples are produced, one can only put a best-guess of the
data pile-up conditions as they are generated during (or even before) the data-taking
period. The pile-up condition might have significant impact especially when the
luminosity is high. Therefore, the MC pile-up condition needs to be reweighted to
what is found in data. This weight is usually computed using the distributions of the
average number of pile-up interactions for a given dataset and for MC as inputs.

The Z → µµγ candidate events must pass the double muon trigger requirement
(the events must contain two muons with pµT > 10 GeV) and at least one single muon
trigger requirement (loosest ones require a muon with pµT > 40 GeV, or a muon with
pµT > 20 GeV which passes loose identification). Similarly, the Z→ ee candidates must
pass the double electron trigger requirement (two electrons with peT > 15 GeV, both
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pass loose identification1) or at least one single electron trigger requirements (loosest
ones require a electron with peT > 24 GeV which passes tight identification, or electron
with peT > 60 GeV which passes medium identification). The diphoton candidates must
pass one of the following diphoton trigger requirements:

• pleadingT > 35 GeV, psub−leadingT > 25 GeV, both leading (the photon with higher
pT ) and sub-leading photons pass the loose identification requirement.

• pleading,sub−leadingT > 50 GeV, both leading and sub-leading photons pass the loose
identification requirement.

• pleading,sub−leadingT > 20 GeV, both leading and sub-leading photons pass the tight
identification requirement.

The criteria used to select the objects and the events for the energy leakage
measurement are listed below:

Z→ e+e−: the electrons are required to have pT > 18 GeV and |η|< 2.47, excluding
the crack region (1.37< |η|< 1.52). They are also required to pass the likelihood-
based LHMedium identification criteria, and a gradient2 isolation requirement.

Z→ µ+µ−γ: the muons are required to have pT > 10 GeV and |η| < 2.4. They are
also required to have a reconstructed track with small impact parameter with
respect to the primary vertex, |d0|/σd0 < 10 and |zpv|< 10 mm3.

The photons are required to have pT > 10 GeV and |η| < 2.37, excluding the
crack region (1.37 < |η| < 1.52). They are required to pass the tight photon
identification requirement and the Tight isolation requirement, as defined in
Tab. 3.2.

diphotons: photons are required to have pT > 25 GeV and |η| < 2.37, excluding the
crack region (1.37< |η|< 1.52). The tight photon identification requirement and
the tight isolation requirement are also applied.

1The baseline electron identification algorithm used in Run 2 is the likelihood-based (LH) method.
When making a selection decision, several properties of the electron candidates are evaluated simul-
taneously. Three levels of identification working points (loose, medium, tight with increasing the
background rejection ability) are provided. Each of them uses the same variables to define the LH
discriminant while the selection on the discriminant is different. The online selections are kept as
close as possible to the offline ones, except for some important differences on variables such as the
impact parameter, ∆p/p, E/p, etc.

2The gradient working point is a set of requirements on Econe20
T and pcone20

T (defined similarly as in
Sec. 3.4), designed to give a fixed value of efficiency of 90% at pT = 25 GeV and 99% at pT = 60 GeV,
uniform in η.[44]

3The transverse impact parameter, d0, is defined as the shortest distance between a track and the
beam line in the transverse plane. The significance of the transverse impact parameter is defined as
the ratio of d0 to its uncertainty. The longitudinal impact parameter, zpv, is defined as the distance
in z between the primary vertex and the point on the track used to evaluate d0.
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For the Z decay events, the following event-level selection is applied:

• exactly two electrons or two muons, passing the object selection criteria described
above. Exactly one additional photon is required for the Z→ µ+µ−γ channel;

• the two leptons are required to have opposite charges;

• the two leptons must match the objects, on which the trigger decision was made;

• for the Z → µ+µ−γ channel, the invariant mass must lie within the following
ranges: 40 GeV < Mµµ < 83 GeV and 83 GeV < Mµµγ < 100 GeV.

• for the Z→ e+e− channel, the mass window should be 75 GeV< Mee < 105 GeV.

Figure 4.1 shows the pT distributions for photons from the Z→ µ+µ−γ channel
and electrons from the Z→ e+e− channel. After all the selection requirements, the
pT spectrum for electrons is peaked around 45 GeV while for photons it is much softer.
The η distributions are shown in Fig. 4.2. Figure 4.3 shows the transverse momentum
distribution of both leading−pT and sub-leading−pT photons.

Figure 4.1 – The distributions of pT for electrons in MC (black), electrons in data
(green), photons in MC (red) and photons in MC sample (blue line). The distributions
from MC samples are scaled to the same normalization as the distributions in data.

In order to check the contamination from fake photons and fake electrons, the
background contamination of the selected samples is estimated. For Z→ µµγ events,
the Mµµγ distribution is fitted in the range [45 GeV, 125 GeV] and the signal region
is defined as [83 GeV, 100 GeV]. The signal is modeled with the convolution of a
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Figure 4.2 – The distributions of η for electrons in MC sample (black line), electrons in
data sample (green line), photons in MC sample (red line) and photons in MC sample
(blue line). The distributions from MC samples are scaled to the same normalization
as the distributions in data.

Breit-Wigner function and a Crystal Ball function while a polynomial is used to
describe the background. For Z→ ee events, the Mee distribution is fitted in the range
[66 GeV, 116 GeV] and the signal region is defined as [75 GeV, 105 GeV]. The signal is
modeled with a Voigt function while a polynomial is used to describe the background.
The results are shown in Fig. 4.4. The fraction of background in the signal region is
estimated to 1.96% in the Z→ µµγ channel and 0.08% in the Z→ ee channel. Since
the sample purities are high, the background is neglected in the following.

In the diphoton channel however, one cannot simply neglect the background
contamination. As an example, distributions of energy leakage of leading converted
photon falling into the inner barrel region are shown in Fig. 4.5 for two pT regions. After
normalization to the luminosity in data, the number of events in data is about twice
as much as in γγ simulated samples. In addition, energy leakage distributions in data
tend to have longer tails and larger central values, most likely due to background from
jets faking photons, which are more likely to have larger leakage in the second layer of
the calorimeter. One can also see in Fig. 4.5 that the purity of the photons sample
increases with respect to pT . For photons with pT larger than about 100 GeV, the
background contribution is negligible. However in the low pT region, the background
contamination must be subtracted.
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4.1. Method

Figure 4.3 – The distributions of pT for photons after normalization in MC (black)
and in data (blue).

(a) (b)

Figure 4.4 – Invariant mass distribution for (a) the Z → µµγ sample and (b) the
Z → ee sample. The black dots represent the distributions from the data samples.
The red line is the result of the signal+background fit described in the text.

4.1.3 Background subtraction in the diphoton sample

There are four components in the diphoton data sample: the signal component (γγ),
and three background components: photon-jet pairs (γjet, jetγ) and jet pairs (jetjet).
A standard method to extract the fraction of each component is to fit the distributions
of the isolation variables. In this study, however, a fit to the boolean variable indicating
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(a) (b)

Figure 4.5 – Energy leakage distribution of leading converted photon with |η|< 0.8,
(a) 35<pT<45 GeV and (b) 150<pT<200 GeV.

if the candidate photon passes or not the isolation criteria is preferred in order to
reduce the impact of the correlation between isolation and leakage.

It was not possible to directly use γjet simulation samples to build the fitting
templates for two reasons: it was seen in the past that the jet-to-photon fake rate is
not modeled accurately in the simulation, and the amount of simulated events is not
enough, especially after applying the tight photon identification and isolation criteria.
A control region (CR) from data is therefore used. It is defined by reverting at least
one criterion on two shower shape variables (so-called “Loose’2” selection): the second
maximum difference (∆E) and the maximum relative ratio (Eratio), as illustrated in
Fig. 3.12. The signal template is built from γγ MC samples, applying the selection
described in Sec. 4.1.2. Definitions of signal and control regions are summarized in
Tab. 4.1. Note that the fit is performed on the isolation status of the leading photons,
while the isolation criteria is still applied on the sub-leading photons in order to reduce
the background.

Region Candidate photon ID
Signal Leading Tight

Sub-leading Tight
Background Leading Loose’2

Sub-leading Loose

Table 4.1 – Definition of the control and signal regions.

The boolean variable “PassIsolation” is set to 1 (0) if the leading candidate passes
(fails) the tight isolation requirement as mentioned before. The two-bin histograms of
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PassIsolation obtained from signal MC and background CR are then used as signal
and background templates to fit the data. Then, the fraction of background fbkg (or
conversely, the purity) in the PassIsolation=1 bin is extracted. The purity of the
diphoton sample is shown in Fig. 4.6. The purity increases with respect to photon
pT as expected, and is slightly higher for unconverted photons (except for the inner
barrel region). For photons with pT larger than 100 GeV, the purity is above 95%,
therefore the background is neglected in such case. The fractions obtained from the fit
are used to normalize the energy leakage of the background, which is later subtracted
from data.

(a) (b)

Figure 4.6 – Purity for samples with (a) converted and (b) unconverted leading photon.
The black dots represent |η| < 0.8, red corresponds to 0.8 < |η| < 1.37, and blue to
1.52< |η|< 2.37. The statistical uncertainty is negligible.

4.2 Measurement of the lateral leakage and double
difference

4.2.1 Measurement of the lateral leakage

Since the pT distributions are quite different for electrons and photons, the photon
sample from the Z decays is split according to two pT bins: 15 < pT < 25 GeV and
pT > 25 GeV in order to better compare with electrons. The distributions of the energy
leakage for converted, unconverted photons and electrons are shown in Fig. 4.7, Fig. 4.8
and Fig. 4.9 respectively. One can see that the profiles of electrons are narrower, while
for photons with low pT , the profiles are wide especially in the barrel region.

For the high-pT diphoton sample, more pT bins are defined: 35-45, 45-55, 55-70,
70-100, 100-125, 125-150, 150-200, >200 GeV. Similarly to the photons and electrons
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Figure 4.7 – Distributions of the shower leakage for converted photons in |η|< 0.8 (top
row), 0.8< |η|< 1.37 (middle) and 1.52< |η|< 2.37 (bottom), for photon candidates
with pT > 25 GeV (left) and 15 < pT < 25 GeV (right). Data and MC distributions
are shown in black and blue respectively.
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Figure 4.8 – Distributions of the shower leakage for unconverted photons in |η|< 0.8
(top row), 0.8< |η|< 1.37 (middle) and 1.52< |η|< 2.37 (bottom), when the photon
candidates has pT > 25 GeV (left) or pT < 25 GeV (right). Data and MC distributions
are shown in black and blue respectively.
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(a)

(b) (c)

Figure 4.9 – Distributions of the shower leakage for electrons in (a) |η| < 0.8, (b)
0.8 < |η| < 1.37 and (c) 1.52 < |η| < 2.37. The blue histogram represents the MC
samples and the black histogram represents data.
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from the Z decay, mean and spread of the energy leakage decreases as pT increases.
As an example, the distributions of energy leakage in MC and data in the region
35 < pT < 45 GeV are shown in Fig.4.10, after the subtraction procedure described
in Sec. 4.1.3. Comparing to Fig.4.5, one can see that the background is efficiently
suppressed by the dedicated method.

4.2.2 Measurement of the double difference

The mean values of the leakage distributions in Sec. 4.2.1 are used to calculate the
double difference using Eq. 4.2. Figure 4.11 shows the results without any correction,
obtained with photons from radiative Z decays in three η bins: |η|< 0.8, 0.8< |η|< 1.37,
1.52< |η|< 2.37. Here all electrons have pT > 25 GeV and all photons have pT > 15 GeV.
The Run 1 results are also plotted for comparison. Generally, the double difference is
smaller than 0.2% with large statistical uncertainties. The mean value and statistical
uncertainties of the double difference are listed in Tab. 4.2.

Double difference(%) |η|< 0.8 0.8< |η|< 1.37 1.52< |η|< 2.37
El - Conv, pγT > 25GeV 0.273±0.095 −0.056±0.089 −0.014±0.080

El - Unconv, pγT > 25GeV −0.072±0.033 −0.164±0.040 −0.092±0.035
El - Conv, 15< pγT < 25 GeV 0.196±0.114 −0.031±0.112 −0.138±0.093

El - Unconv, 15< pγT < 25 GeV −0.158±0.038 −0.087±0.046 −0.026±0.037

Table 4.2 – Double difference measured for converted and unconverted photons from
Z decay. Electrons have pT > 25 GeV.

As a cross check, the double difference calculated using the energy leakage of
photons from diphoton channel is shown in Fig. 4.12. Results are also shown in three
η regions separately. Before background subtraction, the double difference tends to
be negative due to the large value of energy leakage of fake photons. This effect is
obvious in the low pT region due to lower photon purity. In the high pT region, the
background contamination is negligible. After background subtraction, the double
difference is generally around zero. Only statistical uncertainty is shown here, which
is much smaller compared to the results obtained with Z decay photons. However
non-negligible systematic uncertainty coming from the background subtraction must
be considered, introduced later in Sec. 4.4.2.

4.3 Studies on the double difference

In order to further understand the results in Sec. 4.2.2 and to study potential biases,
a few checks on the double difference are performed and described in this section.
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Figure 4.10 – Distributions of the shower leakage for converted (left) and unconverted
(right) photons in |η|< 0.8 (top row), 0.8< |η|< 1.37 (middle) and 1.52< |η|< 2.37
(bottom). The black histogram represents MC, and the green represents data after
background subtraciton.
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(a) (b)

(c) (d)

Figure 4.11 – Double difference measured with Z→ µµγ sample in three η regions (x-
axis), for converted photons (left) and unconverted photons (right), with pT > 25 GeV
(top row) or 15 < pT < 25 GeV (bottom row). Electrons have pT > 25 GeV. Open
squares represent Run 1 numbers and black dots represent Run 2 results.
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(a) (b)

(c) (d)

Figure 4.12 – Double difference measured with diphoton sample in eight pT regions
(x-axis), for converted photons (left) and unconverted photons (right). The upper row
shows the results before subtracting background. The black dots represent |η|< 0.8,
red corresponds to 0.8< |η|< 1.37, and blue to 1.52< |η|< 2.37.
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Only photons and electrons from Z decay channels are used in the following checks,
the conclusions are therefore limited by the statistical accuracy.

4.3.1 pT and η dependence

The EM shower shape varies a lot with respect to the transverse momentum of
the photon and electron candidates, and this shift is not perfectly modeled by the
MC simulation. The dependence on pT of the data-MC differences of energy leakage
is studied in three η bins (|η| < 0.8, 0.8 < |η| < 1.37 and 1.52 < |η| < 2.37). The
requirement on the electron pT is relaxed to 18 GeV, in order to be better compare to
photons. Given the pT spectra shown in Fig. 4.1, three finer pT bins are chosen for
photons (10−18,18−25,> 25 GeV) and six bins for electrons (18−25,25−35,35−
45,45−50,50−55,> 55 GeV).

The data-MC differences are shown in Fig. 4.13 and 4.14 for photons and electrons
separately. Generally, the data-MC difference in the outer barrel region (0.8< |η|< 1.37)
is larger than in the other two bins. Figure 4.14 shows that the data-MC difference is
lower when peT < 25 GeV. One explanation is that this region suffers from larger fake
electron background for which the mismodeling of shower shape is significant.

(a) (b)

Figure 4.13 – Data-MC difference of leakage for (a) converted photon and (b) un-
converted photon in three pT bins (x-axis) and three η regions (|η| < 0.8 in yellow,
0.8< |η|< 1.37 in black and 1.52< |η|< 2.37 in red).

There are two pT bins common to electrons and photons: 18 to 25 and 25 to
35 GeV in which the double difference can be calculated. The results are shown in
Fig. 4.15. Except for converted photons in the end-cap region (mainly due to large
data-MC difference in leakage for electrons), the double difference is around 0.2% or
below. The double differences and their statistical uncertainties are listed in Tab.4.3,
and are consistent with the results in Tab. 4.2 within the statistical uncertainties.
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Figure 4.14 – Data-MC difference for electrons in six pT bins (x-axis) and three η
regions (|η|< 0.8 in yellow, 0.8< |η|< 1.37 in black and 1.52< |η|< 2.37 in red).

(a) (b)

Figure 4.15 – Double difference for electron and (a) converted photon, (b) unconverted
photon in two pT bins (x-axis) and three η regions (|η|< 0.8 in yellow, 0.8< |η|< 1.37
in black and 1.52< |η|< 2.37 in red).

4.3.2 Leakage along η and φ directions

Because of the electromagnetic field provided by the ATLAS magnet system, the
energy leakage along φ and η directions could be different. Figure 4.17 shows the
initial 7×11 (η×φ) window (barrel case) in which the results discussed so far were
estimated. The region in yellow corresponds to a 3×7 window, from which the energy
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Double difference(%) |η|< 0.8 0.8< |η|< 1.37 1.52< |η|< 2.37
El - Conv, 18< pT < 25 GeV 0.058±0.126 0.138±0.121 0.511±0.102
El - Conv, 25< pT < 35 GeV 0.057±0.112 0.030±0.111 0.079±0.091

El - Unconv, 18< pT < 25 GeV 0.230±0.042 0.203±0.050 0.168±0.042
El - Unconv, 25< pT < 35 GeV 0.112±0.039 0.159±0.047 0.127±0.042

Table 4.3 – Double difference measured for converted and unconverted photons in two
pT regions.

Figure 4.16 – Number of interactions per bunch crossing in data and MC samples.

of the cluster is calculated. Outside of this window, the regions in green and blue
correspond to the energy leakage.

For the φ direction, the actual square window one want to study is the light blue
part in Fig. 4.17. However in the studied samples only the (7×11)− (7×7) window
energy is available and therefore is used in the following. The total leakage equals to
the η leakage plus φ leakage.

For the end-cap region, since the cluster size being used now is 5×5, the actual
variables that are used to calculate η and φ leakage should be different from that used
in the barrel region. However, the correct variables are also not available and the η
and φ leakage for the end-cap region are calculated assuming the size of the cluster is
3×7.

Fig. 4.18 and 4.19 show the photon η and φ leakage respectively, while the total
leakage is the same in both figures. The results for electrons are shown in Fig. 4.20.
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Figure 4.17 – An illustration of the regions used to calculate the energy cluster and
leakages in the middle layer of the barrel calorimeter.

The average leakage is very close between data and MC, except for the outer barrel
region (0.8 < |η| < 1.37). For the φ leakage the data and MC are even closer. The
leakage along η is much larger than leakage along φ.

4.3.3 Pile-up dependence

The pile-up rate in Run 2 is larger than in Run 1, which may lead to different
performance of the double difference. Figure 4.16 shows the number of interactions
per bunch crossing in data and MC samples used in the Run 2 study. Four bins are
set accordingly: (< 12,12−15,15−18,> 18), and the results are given in three η bins
(Fig. 4.21). Electrons have pT > 25 GeV and photons have pT > 10 GeV. Although
the measurement is limited by statistics, the double difference is generally stable with
respect to the pile-up rate.

4.3.4 Impact of additional material

Another important check is to measure the impact coming from the amount of
simulated detector material. The shape of electromagnetic showers changes with
respect to the amount of the material that the particle travels through in the detector.
Considering the imperfect simulation, this effect is studied by altering the configuration
of material upstream of the calorimeter using single particle samples generated by
the event generator named ParticleGun. All the particles are selected with 50< pT <

150 GeV, and tight identification requirement for the photons.
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(a) (b)

(c) (d)

Figure 4.18 – Average leakage along η (solid squares) for converted photons (left)
and unconverted photons(right) in three bins of η (x-axis), with pT > 25 GeV (top
row) or pT < 25 GeV (bottom row).The total leakage is shown with open squares for
comparison.
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(a) (b)

(c) (d)

Figure 4.19 – Average leakage along φ (solid squares) for converted photons (left)
and unconverted photons(right) in three bins of η (x-axis), with pT > 25 GeV (top
row) or pT < 25 GeV (bottom row).The total leakage is shown with open squares for
comparison.
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(a) (b)

Figure 4.20 – Average leakage along η (solid squares, a) and along φ (solid squares, b)
for electrons in three bins of η (x-axis). The total leakage is shown with open squares
for comparison.

Six different configurations are considered: Config N4 (s2764), Config C’+D’5

(s2765), Config E’+L’6 (s2766), Config F’+M+X7 (s2767), Config G’8 (s2768), Increase
PP0 (patch panel 0, containing the optoboards in the detector cryostat) Pixel services
(s2889). The difference in energy leakage with respect to the nominal configuration is
shown in Fig.4.22 for converted photons, unconverted photons and electrons. To check
the overall effect, another double difference between distorted and nominal samples,
electrons and photons is defined as:

∆(e−γ) = (ldistorted− lnominal)El− (ldistorted− lnominal)Conv,Unconv (4.5)

The results are shown in Fig.4.23. It can be seen that the most significant difference
in barrel region appears when Config G’ is applied. In particular, for the end-cap
region, the largest effect arises when increasing the material of the PP0 of pixel services.
The largest difference here is below 0.2%, and the double difference is around 0.1%.

Although the discrepancy induced by the additional material is not negligible, it
gives smaller electron to photon difference than the difference between MC and data.

4Config N in simulation: +5%X0 PS-layer1 end-cap.
5Config C’+D’ in simulation: +10% Pixel (including IBL) services and +10% SCT services.
6Config E’+L’ in simulation: 5% extra material for whole inner detector, +7.5%X0 at SCT/TRT

end-cap, +5%X0 radial barrel cryostat.
7Config F’+M+X in simulation: +7.5%X0 inner detector endplate, +5%X0 radial PS-Layer1,

+30%X0 in front of the end-cap calorimeter.
8Config G’ in simulation: 5% extra material for whole inner detector, 15% relative increase of

SCT and Pixel services (ie 10% extra on top of +5% whole ID), +7.5%X0 at SCT/TRT end-cap,
7.5%X0 at ID end plate, +5%X0 radial PS-Layer1 barrel, +5%X0 PS-layer1 end-cap and Transition
distortion.
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(a) (b)

(c) (d)

Figure 4.21 – Double difference as a function of the number of interactions per bunch
crossing and for three η bins, for converted photons (left) and unconverted photons
(right), with pT > 25 GeV (top row) or pT < 25 GeV (bottom row).
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Therefore, additional material should not be considered as an important source of
lateral leakage as a photon-specific uncertainty.

4.3.5 Other effects

A few more studies are performed to ensure that the strategy of the measurement is
reliable. Negligible impact on the double difference is found compared to the statistical
uncertainty, as summarized below:

• pile-up reweighting. The pile-up reweighting is not applied when the raw results is
obtained (Sec. 4.2). By comparing the results before and after pile-up reweighting,
one can see small shifts of double difference which are still within the statistical
uncertainty. This reweighting is applied in the final results.

• background in Z decay channel. By altering the invariant mass cuts on Mee for
Z→ ee events and Mµµγ for Z→ µµγ events, more or less background events
are included in the signal sample since no dedicated background removal is
applied. To check this effect, the measurement is repeated three times with
different invariant mass criteria while keeping other selections unchanged, and
no significant effect is observed. The tightest invariant mass selection is applied
in the main studies, as introduced earlier.

• shape of energy leakage distribution. The mean value of the energy leakage is
used in the measurement. To check if there is any significant impact coming
from the different profiles between the distribution of electrons and photons of
different conversion type, the median value is taken as an alternative way to
calculate the energy leakage. No obvious change in double difference is observed,
therefore the median value is not used in the main studies.

• energy leakage in first layer of the EM calorimeter. The energy leakage in layer
1 is much smaller than in layer 2, since the electromagnetic shower is mainly
developed in the second layer. The double difference results obtained with
leakage in both layer 1 and 2 or layer 2 only are very similar. It is therefore
decided to keep the current definition of the energy leakage, i.e. use only the
layer 2 value.

• definition of cluster size. To compare the Run 1 and Run 2 results, double
difference is also measured by changing the definition of cluster size (3×7 in
the barrel, 5×5 in the end-cap region) back to the definition in Run 1 (3×5,
only for unconverted photon in barrel region). The change in double difference
is negligible within the statistical uncertainty.
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Figure 4.22 – Difference of energy leakage between distorted and nominal samples for
electron(black), converted photon(red) and unconverted photon(green). The tags of
samples used in left 3 plots are (from top to bottom): Config N (s2764), Config E’+L’
(s2766), Config G’ (s2768); the tags of samples used in right 3 plots are (from top to
bottom): Config C’+D’ (s2765), Config F’+M+X (s2767), Increase PP0 pixel services
(s2889).
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Figure 4.23 – Double difference of energy leakage between distorted and nominal
samples, electron and photon (converted photon in red and unconverted photon in
green). The tags of samples used in left 3 plots are (from top to bottom): Config N
(s2764), Config E’+L’ (s2766), Config G’ (s2768); the tags of samples used in right
3 plots are (from top to bottom): Config C’+D’ (s2765), Config F’+M+X (s2767),
Increase PP0 pixel services (s2889).
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4.3.6 Conclusion

One can draw the following conclusions about the performance of the measurement
of the double difference from the studies described in this section. The total energy
leakage is the sum of leakage along η and φ directions, and the leakage along η is
much larger due to the way of clustering. The EM shower and its energy leakage
varies with respect to the transverse momentum, and this effect is different for data
and simulated sample. However, the difference between the energy leakage in data
and MC is always constant with pT , therefore the final results of double difference can
still be safely given in only two pT bins. The pile-up rate does not have a significant
effect on double difference in the current (2016 data taking) condition. There is a non-
negligible discrepancy introduced by additional simulated detector material, however
its impact on electron-to photon difference is relatively small and is not considered as
an important source of photon-specific uncertainty.

The measurement is limited by the available statistics of the photon samples.
Although slight biases of the energy leakage can be introduced by the effects discussed
above, they are not considered as sources of systematic uncertainty since the variations
in double difference is negligible within the statistical uncertainty.

4.4 Refined double difference measurement and fi-
nal results

This section describes two important corrections needed to be applied before the
double difference result is taken as systematic uncertainty of photon calibration: the
pedestal shift correction and the conversion mismodeling correction. In addition,
systematic uncertainties from the background subtraction method applied in the
diphoton channel are introduced as well. However, as mentioned before, the results
obtained with diphoton samples are not included in the final photon-specific systematic
uncertainty in order to be consistent with the energy calibration. The final numbers
of double difference and the comparison between the Z decay and diphoton results are
given at the end of this chapter.

4.4.1 Corrections on the double difference

Pedestal shift

There is a global small but not negligible energy difference between data and MC
observed comparing “ZeroBias” triggered events (events triggered randomly in filled
bunches proportionally to the luminosity) with empty bunches. The difference can be
explained by a global pedestal shift in the simulation. In order to take it into account,
a small energy has to be added to the cell energy in MC samples.
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With pedestal correction in MC samples, the energy leaking outside a cluster of
size size reads:

lMC = Es2(7×11) +Eshift(η,µ)−Es2(size)
Es2(size) (4.6)

where Eshift is the pedestal shift, calculated as a small energy (per cell) times the
total number of cells. It also depends on the pseudorapity of the particle and on the
average number of interactions per bunch crossing µ.

After pedestal correction, the value of double difference slightly increases9, as can
be seen in Tab. 4.4. The statistical uncertainty is not affected and still dominant.

Double difference(%) |η|< 0.8 0.8< |η|< 1.37 1.52< |η|< 2.37
Before pedestal correction
El - Conv, pγT > 25GeV 0.273±0.095 −0.056±0.089 −0.014±0.080

El - Unconv, pγT > 25GeV −0.072±0.033 −0.164±0.040 −0.092±0.035
El - Conv, 15< pγT < 25 GeV 0.196±0.114 −0.031±0.112 −0.138±0.093

El - Unconv, 15< pγT < 25 GeV −0.158±0.038 −0.087±0.046 −0.026±0.037
After pedestal correction
El - Conv, pγT > 25GeV 0.270±0.095 −0.001±0.089 0.037±0.080

El - Unconv, pγT > 25GeV −0.082±0.033 −0.128±0.040 −0.060±0.035
El - Conv, 15< pγT < 25 GeV 0.208±0.114 0.086±0.112 −0.077±0.093

El - Unconv, 15< pγT < 25 GeV −0.155±0.038 −0.024±0.046 0.031±0.038

Table 4.4 – Double difference obtained using Z decay photons for converted and
unconverted photons, before and after pedestal correction.

Conversion reconstruction mismodeling

The MVA algorithm used for the calibration has been trained separately for
converted and unconverted photons, as mentioned in Sec. 3.2. Therefore, if a photon
is flagged with the wrong conversion status, its energy will be improperly calibrated.
This could happen easily for converted photons where the conversion tracks are not
reconstructed, especially if the conversion occurs at large radius. Unconverted photons
can also be classified as converted when a track from pile-up is wrongly assigned to
the candidate photon.

The reconstruction efficiency and conversion fake rate is measured with the ratio of
the deposited energy in layer 1 and layer 2 of the EM calorimeter, E1/2. The number
of photons reconstructed as converted N reco

conv (unconverted N reco
unconv) is given by:

9This does not mean that the overall difference increases due to the pedestal shift: only the
absolute value of double difference is taken as systematic uncertainty.
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N reco
conv =NfConv×fReco+N(1−fConv)×fFake (4.7)

N reco
unconv =N(1−fConv)× (1−fFake) +NfConv× (1−fReco) (4.8)

where N is the total number of photons, and fConv is the probability of a photon
to convert, fReco is the conversion reconstruction efficiency, i.e. the efficiency of
reconstructing a true converted photon as converted. Finally, fFake is the conversion
fake rate, i.e. the probability to reconstruct an unconverted photon as converted.
fConv, fReco and fFake are extracted from simulation and data.

In order to correct for the difference between simulation and data, weights that
correct for conversion reconstruction mismodeling are applied to the energy leakage
in simulation. Four weights are computed depending on the true and reconstruction
conversion status of the candidate photon:

• for a true converted photon reconstructed as unconverted: fDATA
Conv (1−fDATA

Reco )
fMC

Conv(1−fMC
Reco)

• for a true unconverted photon reconstructed as unconverted: (1−fDATA
Conv )(1−fDATA

Fake )
(1−fMC

Conv)(1−fMC
Fake)

• for a true converted photon reconstructed as converted: fDATA
Conv fDATA

Reco
fMC

Convf
MC
Reco

• for a true unconverted photon reconstructed as converted: (1−fDATA
Conv )fDATA

Fake
(1−fMC

Conv)fMC
Fake

The weights are given in Tab. 4.5. The uncertainties on fDataConv , fDataReco and fDataFake are
propagated as uncertainties on the weights (Tab. 4.6), used to calculate the systematic
uncertainty of the double difference after reweighting.

Weight Reco U/True C Reco U/True U Reco C/True C Reco C/True U
|η|< 0.8 1.935 0.963 0.920 1.703

0.8< |η|< 1.37 1.286 1.001 0.873 1.709
1.52< |η|< 1.81 2.460 1.004 0.861 0.765
1.81< |η|< 2.37 1.213 0.976 0.910 0.081

Table 4.5 – Weights applied on MC samples to correct for conversion reconstruction
mismodeling.

The value of the double difference obtained using Z decay photons after conversion
reweighting are given in Tab. 4.7. The pedestal correction detailed in Section 4.4.1 is
included. The systematic uncertainties on the double difference are given in Tab. 4.8.
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Weight Reco U/True C Reco U/True U Reco C/True C Reco C/True U
|η|< 0.8 0.228 0.010 0.048 0.053

0.8< |η|< 1.37 0.082 0.011 0.030 0.185
1.52< |η|< 1.81 0.120 0.011 0.016 0.118
1.81< |η|< 2.37 0.021 0.0083 0.014 0.049

Table 4.6 – Uncertainty on the weights applied on MC samples to correct for conversion
reconstruction mismodeling.

Conversion reconstruction reweighting generally reduces the mean of the absolute
value of double difference in the region |η|< 0.8. For the other two η bins, the double
difference increases slightly.

Since the effect of conversion mismodeling is not negligible, the final number taken
as photon-specific uncertainty should consider both the double difference before and
after the conversion mismodeling reweighting.

Double difference(%) |η|< 0.8 0.8< |η|< 1.37 1.52< |η|< 2.37
Before conversion reweighting

El - Conv, pT > 25GeV 0.270±0.095 −0.001±0.089 0.037±0.080
El - Unconv, pT > 25GeV −0.082±0.033 −0.128±0.040 −0.060±0.035

El - Conv, 15< pT < 25 GeV 0.208±0.114 0.086±0.112 −0.077±0.093
El - Unconv, 15< pT < 25 GeV −0.155±0.038 −0.024±0.046 0.031±0.038
After conversion reweighting

El - Conv, pT > 25GeV 0.133±0.096 −0.042±0.089 0.050±0.080
El - Unconv, pT > 25GeV −0.058±0.033 −0.115±0.040 −0.001±0.036

El - Conv, 15< pT < 25 GeV −0.021±0.115 0.034±0.113 −0.051±0.093
El - Unconv, 15< pT < 25 GeV −0.113±0.038 −0.002±0.046 0.060±0.038

Table 4.7 – Double difference obtained using Z decay photons for converted and
unconverted photons, before and after conversion reweighting.

4.4.2 Systematic uncertainty of background subtraction method
for diphoton sample

During the background subtraction procedure applied in the studies of the diphoton
channel, the control region used to estimate the background contribution may have
different characteristics from the real jet component, depending on how the control
region is built. To cover this difference, two sources of systematical uncertainty are
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Systematic uncertainty |η|< 0.8 0.8< |η|< 1.37 1.52< |η|< 2.37
El - Conv, pT > 25GeV 0.014 0.0027 0.00058

El - Unconv, pT > 25GeV 0.0049 0.0032 0.0027
El - Conv, 15< pT < 25 GeV 0.022 0.0033 0.0010

El - Unconv, 15< pT < 25 GeV 0.0088 0.0058 0.00084

Table 4.8 – Systematic uncertainties on the double difference due to the error of the
weights.

considered: the uncertainty on the background fraction and the uncertainty on the
mean value of the energy leakage of the background. In order to quantify these
uncertainties, another control region named “Loose’4” is built. The Loose’4 selection
requires the photon candidate to pass loose ID while failing at least one of the four
cuts on the following shower shape variables: ∆E, Eratio, Fside or weta1, as illustrated
in Fig. 3.12.

In order to estimate the systematic uncertainty due to fraction of background, the
passIsolation variable is fitted again with the signal template described in Sec. 4.1.3
and the background template obtained from the Loose’4 sample. The new set of
background fractions is used to normalize the background energy leakage from the
Loose’2 control region. A new signal leakage distribution is extracted and the difference
between the mean values of the distribution and the nominal one is taken as systematic
uncertainty. Figure 4.24 shows the double difference with error bands corresponding
to the systematic uncertainties.

In order to estimate the systematic uncertainty due to the profile of energy leakage,
the background leakage distribution is now built from the Loose’4 control region and
subtracted from data while keeping the fractions computed with Loose’2 background
unchanged. Again the difference of the mean value of photon energy leakage in data
with the nominal one is taken as systematic uncertainty. Figure 4.25 shows the double
difference with error bands corresponding to the systematic uncertainties due to the
shape of the background energy leakage distribution.

Finally, Fig. 4.26 shows the double difference with error bands corresponding to the
total systematic uncertainties due to the fraction of background and energy leakage
shape. It can be seen that the systematic uncertainties decrease with pT . The statistic
in control region runs out in high pT region as the photon purity goes high, and
the difference of how the control region is built (with Loose’4 or Loose’2) becomes
negligible.
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Figure 4.24 – Double difference for leading converted photon (left) and unconverted
photon (right) in |η|< 0.8 (top row), 0.8< |η|< 1.37 (middle) and 1.52< |η|< 2.37
(bottom). The error bar corresponding to statistical uncertainty. The error band
corresponding to systematic uncertainty due to unknown fraction of background
component.
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Figure 4.25 – Double difference for leading converted photon (left) and unconverted
photon (right) in |η| < 0.8 (top row), 0.8 < |η| < 1.37 (middle) and 1.52 < |η| <
2.37 (bottom). The error bar corresponding to statistical uncertainty. The error
band corresponding to systematic uncertainty due to unknown shape of background
component.
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Figure 4.26 – Double difference for leading converted photon (left) and unconverted
photon (right) in |η|< 0.8 (top row), 0.8< |η|< 1.37 (middle) and 1.52< |η|< 2.37
(bottom). The error bar corresponding to statistical uncertainty, and the error band
corresponding to the total systematic uncertainty.
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4.4.3 Final results

The final uncertainty coming from the energy leakage difference between electron
and photon is quoted as the maximum between the absolute value of the double
difference (after pedestal correction) before conversion mismodeling reweighting, after
reweighting, and the statistical uncertainties. Table. 4.9 shows the final outputs of this
study. These numbers are assigned as one of the photon-specific systematic uncertainty
of photon energy calibration of the ATLAS collaboration. Note that only the numbers
obtained with the Z→ ee and the Z→ µµγ events enter the main calibration results.

Systematic uncertainty |η|< 0.8 0.8< |η|< 1.37 1.52< |η|< 2.37
El - Conv, pT > 25GeV 0.270 0.089 0.080

El - Unconv, pT > 25GeV 0.082 0.128 0.060
El - Conv, 15< pT < 25 GeV 0.208 0.113 0.093

El - Unconv, 15< pT < 25 GeV 0.155 0.046 0.060

Table 4.9 – Systematic uncertainty coming from lateral energy leakage measured with
photons from Z→ µµγ envents, quoted as the maximum between the absolute value
of the double difference before and after conversion reweighting, and the statistical
uncertainties.

Studies with diphoton events provide a cross-check of the results above and complete
the measurement in higher transverse momentum region. As a summary, Figure 4.27
shows the double difference in three η bins, with pT of candidates from 10 GeV to
above 200 GeV. Error bars represent the statistical uncertainties. The first two bins of
the x-axis correspond to photons from Z→ µµγ events, while the rest corresponds to
photons from diphoton events. All electrons come from Z→ ee events. Generally, the
absolute value of double difference is smaller than 0.2%. No obvious trend with respect
to pT is observed. The uncertainty on the results from the radiative Z sample is
dominated by statistics, while the systematic uncertainty due to the limited knowledge
of the background leakage distribution shape and fraction dominate the error on the
results from diphoton events.
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(a)

(b)

Figure 4.27 – Double difference in different pT regions (x-axis), for (a) converted
photons and (b) unconverted photons. The black dots represents |η| < 0.8, red is
0.8< |η|< 1.37, and blue is 1.52< |η|< 2.37. Left two bins (on x-axis): results with
photon from radioactive Z decay channel. Right eight bins: results with photon from
diphoton channel.
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Chapter 5

Search for diphoton resonances

This chapter describes two analyses that search for diphoton resonances in different
invariant mass ranges: a low-mass range of 60 to 110 GeV using 80 fb−1 of pp collision
data collected at

√
s= 13 TeV with the ATLAS detector, published as a conference

note at ICHEP in 2018[46]; and a high-mass range above 160 GeV using the full Run 2
dataset corresponding to an integrated luminosity of 139 fb−1.

The diphoton final state is very important for searches for physics beyond the
Standard Model. This final state is sensitive to new resonances thanks to a smoothly
falling background that is relatively easy to model, and an excellent invariant mass res-
olution that can be used to distinguish the signal from the Standard Model background.
Two signal models, a spin-0 resonant state (X) and a spin-2 graviton excitation (G∗)
are searched for. As introduced in Sec. 1.2, the spin-0 resonances are predicted in
many extensions of the Standard Model[47][48][49][50][51]. They are searched for in
a model-independent way in both low and high-mass ranges. The spin-2 graviton
resonances are predicted by the Randall-Sundrum model[15][16] with one warped
extra dimension (RS1). The lightest Kaluza-Klein (KK) graviton excitation state
with mass mG∗ and a coupling k/M̄pl is searched for, where k is the curvature of
the extra dimension and M̄pl is the reduced Planck scale. The spin-2 resonances are
only searched for in the high-mass range using the RS model as a benchmark, as the
RS1 model is already excluded with mG∗ below 1.7 TeV (with k/M̄pl = 0.01) in the
previous study[52].

The general strategy is the same for both low-mass and high-mass searches: the
invariant mass distribution in data is fitted with analytic functions that model the
background and signal shapes. The methods of signal and background modeling are
also similar for the two analyses. Besides the separately optimized event selections, one
of the main difference between the two analyses is that the low-mass search suffers from
one important background component that comes from electron pairs from the decay
of Z bosons (Drell-Yan background). Hence, three categories defined according to the
conversion status of the two photons are used in order to improve the sensitivity of this
analysis. In addition, the high-mass search benefits from the recent developments of
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the background-distribution smoothing techniques, which brings a significant reduction
of the systematic uncertainty from the determination of the background function.

The details of datasets and simulated samples used in the analyses are presented
in Sec. 5.1. The event selections are listed in Sec. 5.2. The signal modeling and the
fiducial/total acceptance corrections are introduced in Sec. 5.3 and Sec. 5.5. The
determination of the analytical form of the background shape is described in Sec. 5.4.
All the systematic uncertainties are discussed in Sec. 5.6. The statistical method
and models used in the two analyses are explained in Sec. 5.7. Finally, the results
are presented in Sec. 5.8, showing the limits on the production cross section times
branching ratio and the p-value as a function of resonance mass and width.

Previously, the low-mass diphoton search results were published by the ATLAS
Collaboration with data collected at 8 TeV[53]. A small excess near 95 GeV was
observed by the CMS Collaboration when combining data recorded at 8 TeV and 13
TeV[54]. For high-mass region, results of the search using 37 fb−1 data collected at
13 TeV in 2015 and 2016 were published by the ATLAS Collaboration[52] in 2017.
The CMS Collaboration reported their high-mass search using 35.9 fb−1 at 13 TeV in
2018[55].

I joined the analysis team in the middle of the low-mass search effort. I have
contributed to almost all areas of the analyses, while I was mostly involved in the
high-mass search. My main contributions are the overall background study, the
systematic uncertainties and the statistical interpretation in the high-mass search.
In the low-mass search, I also contributed to the event selection optimization, signal
modeling validation, the studies of the Standard Model Higgs contamination and some
the systematic uncertainties from signal and background modeling.

5.1 Data and Monte Carlo samples

The datasets and the simulated MC samples used in the searches are listed in this
section. The simulated samples are used to optimize the event selections (Sec. 5.2),
compute the correction factors (Sec. 5.5), and model the signal and background shapes
(Sec. 5.3 and 5.4). Since the data-taking conditions changed in each year, different
sets of independent MC samples are produced and added together, weighted by their
luminosity.

5.1.1 Low-mass samples

Data

The low-mass analysis uses 80 fb−1 of data collected in 2015, 2016 and 2017 at
√
s= 13 TeV. Diphoton triggers that are run unprescaled are used when recording the

pp collisions, requiring both leading and sub-leading photons to have transverse energy
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(ET ) above 20 GeV. A tight photon identification is applied in the high-level trigger,
and also an isolation requirement in 2017. The recorded events are only used if they
pass the data quality (DQ) requirements and are in the Good Run List (GRL).1 The
datasets that are good to use correspond to an integrated luminosity of 3.2 fb−1 for
2015, 33.6 fb−1 for 2016 and 43.6 fb−1 for 2017. The uncertainty of the measurement
of the integrated luminosity is 2.1% for the 2015 data, 2.2% for 2016 and 2.4% for
2017[56].

Signal samples

The scalar Higgs-like signal models are simulated for generic spin-0 resonance
search using a Higgs boson production process in pp collision at

√
s= 13 TeV, with

the scalar particle X decaying to photon pairs. The simulated signal samples are
produced for different hypotheses of the resonance mass mX , in the mass range
of 40 to 180 GeV. The default samples are produced via gluon-gluon fusion (ggF)
with MadGraph5_aMC@NLO[57] version 2.3.3 at next-to-leading order (NLO) in
quantum chromodynamics (QCD), using the NNPDF3.0 NLO PDF set. The MadGraph
generator is interfaced to Pythia8[58] for parton showering and hadronization. For
all the signal samples, the Narrow Width Approximation (NWA, ΓX = 4.07 MeV, the
width of the 125 GeV SM Higgs boson) is assumed.

Since the spin-0 search is model-independent, the fiducial corrections (Sec. 5.5)
are also studied for other Higgs-like production modes: vector boson fusion (VBF),
associated production with a vector boson (WH, ZH), and associated production with
a top quark pair (tt̄H). The VBF samples are simulated with the Powheg generator
using CT10 PDF set, interfaced to Pythia8 for parton showering and hadronization as
well, while the other processes are simulated with Pythia8 generator, using NNPDF23
LO PDF set.

The different MC signal samples are listed in Table 5.1.

Background samples

For continuum diphoton (γγ) background production, two kinds of background
events are generated with the Sherpa generator. The simulations are performed in
slices of diphoton invariant mass and added together according to their cross section,
in order to maximize the statistics over the whole search range.

The leading order diphoton sample (“Sherpa LO”) is generated using the Sherpa
2.2.2 generator. The LO sample is produced in the early stages of the analysis,
and is used for analysis optimization and some cross-checks. The matrix elements

1The dataset used for physics analyses has to satisfy the data quality requirements: the beams are
stable, the sub-detectors and magnets are fully operational, not too many noisy cells are observed, etc.
On top of the general DQ requirement, GRL is a xml file that specifies the sets of “good” luminosity
blocks, i.e. over which data our analysis should run.
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Process Generator Mass[GeV]
ggF MG5_AMC@NLO + Pythia8 40-50-60-70-80-90-100-110-120-140-160-180
ggF Powheg+Pythia8 40-60-80-100-120
VBF Powheg+Pythia8 40-60-80-100-120
WH Pythia8 40-60-80-100-120
ZH Pythia8 40-60-80-100-120
tt̄H Pythia8 40-60-80-100-120

Table 5.1 – Low-mass analysis: signal samples of the five Higgs production modes,
generator and available mass points.

are calculated with up to 2 partons at LO, and merged with the Sherpa parton
showering[59] using the ME + PS@LO prescription[60]. The CT10 PDF set[61] is used
in conjunction with dedicated parton shower tune developed by the Sherpa authors.
Three slices of the LO sample are used with the following invariant mass ranges: 0-55,
55-100, 100-160 GeV.

The next-to-leading order diphoton sample (“Sherpa NLO”) is generated using
a more recent implementation, Sherpa 2.2.4[62]. The NLO sample is more accurate
and therefore used for background modeling. Parton-level calculations for different
jet multiplicities are combined: matrix elements are calculated at NLO accuracy
for up to one real emission of one additional parton, and at LO for two and three
additional partons. The NNPDF3.0 NNLO PDFs[63] are used in conjunction with the
corresponding Sherpa default tune. Two slices of samples are used with the following
invariant mass ranges: 50-90, 90-175 GeV.

To study the Drell-Yan background, MC samples of Z→ ee decays are simulated
using POWHEG-BOX V2 interfaced to the Pythia8 version 8.186 parton shower model.
The CT10 parton distribution function set is used in the matrix element. Sliced
samples generated with Sherpa 2.2.1 are also used for systematic uncertainties.

5.1.2 High-mass samples

Data

The high-mass analysis uses the full Run 2 dataset of 139 fb−1, collected in
2015, 2016, 2017 and 2018, the overall relative uncertainty of integrated luminosity
is 1.7%[56]. Similarly to low-mass search, the data are recorded with the lowest-
ET unprescaled diphoton trigger, with additional photon identification and isolation
criteria. The ET thresholds are 35 GeV and 25 GeV for leading and sub-leading
photons. A loose identification requirement is applied for 2015-2016 dataset, while a
medium identification requirement is applied for 2017-2018 dataset in order to cope
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with the increasing pile-up. Only the events in GRL and passing the data quality
requirements are used.

Scalar signal samples

Similarly to the samples used in the low-mass spin-0 search, scalar Higgs-like signal
samples are produced for different hypotheses of the resonance mass mX , in the range
200-5000 GeV. The generators and PDF sets used to produce all five production modes
are the same as in Sec. 5.1.1. The search covers signal with width from 4 MeV (NWA)
up to ΓX/MX = 10% (large width case, LW). When modeling the large width signal
(Sec. 5.3), the signal shape is described using convolutions of the NWA shape with a
Breit-Wigner distributions, since generating signal samples for all values of mX and
ΓX is impractical and unnecessary. Only samples with ΓX/mX = 2%, 6% and 10%
are produced for signal modeling and validation.

The different MC spin-0 signal samples are listed in Table 5.2.

Process Generator Width assumption[ΓX/mX ]
ggF MG5_AMC@NLO + Pythia8 NWA
ggF Powheg+Pythia8 NWA
VBF Powheg+Pythia8 NWA
WH Pythia8 NWA
ZH Pythia8 NWA
tt̄H Pythia8 NWA
ggF MG5_AMC@NLO + Pythia8 2%, 6%, 10%

Table 5.2 – High-mass analysis: signal samples of the five Higgs production modes,
generator and width assumption. The samples are generated for masses 0.2, 0.4, 0.8,
1, 1.2, 1.6, 2, 2.4, 3, 4 and 5 TeV.

Graviton signal samples

The spin-2 graviton signal events are generated using a Randall-Sundrum (RS)
graviton production model in pp collision at

√
s = 13 TeV, with the graviton G∗

decaying to photon pairs. The implementation of Pythia8 version 8.186 and the
NNPDF23LO PDF set are used. The graviton samples are produced for different
coupling values k/M̄pl in the range 0.01< k/M̄pl < 0.3, and graviton masses mG∗ in
the range 500 <mG∗ < 7000 GeV. With a small coupling value (k/M̄pl = 0.01), the
signal is considered as NWA case. LW signal shape is described using convolutions of
the NWA shape with the graviton lineshape.

The different MC spin-0 signal samples are listed in Table 5.2.
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Generator Mass[TeV] k/M̄pl

Pythia8 0.5-1-2-3-4 0.01-0.05-0.1
Pythia8 5-6-7 0.01-0.05-0.1-0.2-0.3

Table 5.3 – High-mass analysis: graviton samples of different mass mG∗ and coupling
k/M̄pl values.

Background samples

Similar to the low-mass analysis, background events from continuum γγ production
are generated using Sherpa 2.2.4 with the default tune. Matrix elements are calculated
at NLO for up to one real emission of one additional parton, and at LO for two and
three additional partons. The NNPDF3.0 NNLO PDF sets are used. The simulations
are also performed in slices of diphoton invariant mass: 90-175, 175-2000, 1400-2000,
2000−∞ GeV.

5.2 Event selection

Low-mass selection and categorisation

The photon candidates are required to fall within the calorimeter acceptance
|η|< 2.37, excluding the transition region between the barrel and end-cap calorimeters
1.37< |η|< 1.52. Only diphoton events with invariant mass in the range 60<mγγ <

120 GeV are selected. Both photons are required to have transverse energies above
22 GeV, which is slightly higher than the trigger threshold to ensure uniform trigger
efficiency.

Tight photon identification as well as the photon isolation criteria are required to
reject fake photons (jets mis-identified as photons). Among the three isolation working
points in Tab. 3.2, the choice is made by comparing the gain in significance relative
to the loosest selection FixedCutLoose: Zrelative/ZLoose = εS/

√
εB, where εS and εB

are the ratio of isolation efficiencies of signal and background respectively, defined as
Nrelative/NLoose. The subscript relative stands for an isolation working point under
test, namely FixedCutTight or FixedCutTightCaloOnly. The FixedCutLoose working
point is selected, since no significant improvement is observed by switching to other
working points. The total and relative selection efficiency2 for signal is summarized in
Fig. 5.1.

Events that pass the selections above are split into three categories depending on
the conversion reconstruction status of the leading and sub-leading photons: both

2relative selection efficiency: cut efficiency with respective to the previous cut in the analysis
cutflow.
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Figure 5.1 – The (a) total and (b) relative signal selection efficiency for different mass
points, measured with mc16a (corresponding to 2015+2016 data) and mc16d (2017
data) samples.

converted (CC), both unconverted (UU), or one converted and one unconverted (CU).
Since the fake photons from the Drell-Yan background are reconstructed mainly as
converted photons, the categorisation improves the sensitivity. The numbers of data
events after selection in each category are summarized in Tab. 5.4.

Year 2015 2016 2017
Preselection 638392 6720477 4101517
Identification 391529 4041009 2838686

Isolation 152850 1564423 1696862
UU 49.9% 52.5% 47.8%
CU 41.0% 39.4% 42.1%
CC 9.1% 8.1% 9.9%

Table 5.4 – The cut flow measured in the invariant mass range from 60 to 120 GeV,
for 2015, 2016 and 2017 data respectively. The fractions of events in each conversion
category are also presented.

High-mass Selection

The searches for both signal models use a common set of event selection: photon
candidates are required to fall within |η| < 2.37, excluding the transition region
1.37 < |η| < 1.52. Only diphoton events with invariant mass above 150 GeV are
selected. Tight photon identification criteria is required. Kinematic cuts on the photon
transverse momentum relative to the invariant mass of the diphoton are applied as
well. Comparing to previous high-mass search, the isolation working point and the
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relative ET cuts are re-optimized and harmonized between spin-0 and spin-2 selections
by checking the gain in relative significance. As a result, the leading (sub-leading)
photon is required to satisfy ET /mγγ > 0.3 (0.25), and the FixedCutTight isolation
working point is selected for this analysis. The numbers of data and signal MC events
after selection are summarized in Tab. 5.5.

Selection Scalar Graviton Data (139 fb−1)
All events 1./1. 1./1. 364.97M

GRL - - 357.42M
Trigger - - 304.26M

Detector DQ - - 304.26M
2 loose photons 76.7% 67.7% 86.42M

Tight ID 67.7% 59.8% 15.00M
Isolation 61.2% 53.7% 5.93M

mγγ > 150 GeV 61.2% 53.7% 746896
Rel. ET cuts 53.5% 41.9% 433655

Table 5.5 – The cut flow measured for (1) the full Run 2 data, (2) a NWA scalar
signal sample with mX = 1 TeV, and (3) a graviton sample with k/M̄pl = 0.01 rand
mG∗ = 1 TeV. For the MC samples, the efficiency is shown relative to the total event
yield after applying event weights (“absolute efficiency”). For data, the absolute
yields are shown. The kinematic acceptance cuts are included in the “2 loose photons”
selection.

5.3 Signal modeling

The signal modeling strategy introduced in this section is common to both analyses.
The spin-0 signal models are used in both low-mass and high-mass searches, while the
spin-2 graviton signal model is only used for high-mass search, as graviton with small
mG∗ is already excluded.

The signal lineshape is obtained by convolving the experimental mass resolution
function with the line shape at generator level (namely the true lineshape) of the
resonance. In the case of signals under the narrow width approximation (NWA), the
natural width of the resonance is negligible and the the signal model can be taken as
the resolution function of the detector centered around mX . In the case of large width
signals, the true line shape is described by the product of a relativistic Breit-Wigner
(BW) function and mass-dependent factors accounting for the parton luminosity and
the matrix elements of the production and decay processes.
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5.3.1 Narrow-width signal modeling

The resolution model is described by a double-sided Crystal Ball (DSCB) function.
It has a Gaussian core, and asymmetric non-Gaussian tails to take into account the
non-linear energy leakage effects and energy loss in inactive material. The DSCB
function is defined as:

FNW(mγγ ; t,nhigh,nlow,αhigh,αlow) =N ·



e−t
2/2 if −αlow ≤ t≤ αhigh

e−0.5α2
low[

αlow
nlow

(
nlow
αlow

−αlow−t
)]nlow if t <−αlow

e
−0.5α2

high[
αhigh
nhigh

(
nhigh
αhigh

−αhigh+t
)]nhigh if t > αhigh,

(5.1)
where t= (mγγ−µCB)/σCB; µCB3 and σCB represent the mean and width of the

Gaussian core of the function; N is a normalization parameter; αlow (αhigh) is the
position of the junction between the Gaussian and power law on the low (high) mass
side; nlow (nhigh) is the exponent of this power law. Figure 5.2 is an illustration of the
DSCB function.

Figure 5.2 – Example of DSCB function and illustrative description of its parameters
for a signal mass of mX = 600 GeV. ∆mX = µCB−mX in this plot.

The six parameters of the DSCB can be expressed as functions of mX , in order
to describe the narrow-width signal shape across different resonance mass values. As
mentioned in Sec. 5.1, the ggF signal samples are used for the signal modeling as

3Defining as µCB =mX +∆mX , where ∆mX is the difference between the resonance mass and
the Gaussian peak.
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default. First, the signal mγγ distributions for each mass point are fit with DSCB
shape, yielding a set of DSCB parameters at each mX value. Then, the mass dependent
evolution of parameter is described by linear functions. For low-mass analysis, the
two steps are done separately in UU, CC and CU categories. A simultaneous fit to
signal samples at various mass point is applied to obtain the coefficients of the signal
parameterization, followed by individual fits at each mass points as a validation. The
obtained parameterization is shown in Fig. 5.3 for UU category as an example. The
method is simplified for the high-mass analysis, with the linear functions directly fitted
to the results from the individual mass point fits. The extracted parameterizations
(separately for spin-0 and spin-2 to accommodate the different kinematics) are later
validated against the simulated diphoton mass distribution. Figure 5.4 shows the
narrow-width signal parameterization for the high-mass spin-0 analysis.
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Figure 5.3 – Low-mass analysis: result of the simultaneous fits of the mγγ distributions
from 40 to 200 GeV for the UU category. The four plots correspond to the parameters
∆mX = µCB−mX , σCB, αlow and αhigh. The other two parameters, nlow and nhigh,
are set to constants in the fit. The red line corresponds to the result of the multiple
fit while the dashed lines correspond to the linear fit of the individual mass point fits.
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Figure 5.4 – High-mass analysis: DSCB parameters as a function of the resonance
mass mX in the range 200 to 4000 GeV for a spin-0, narrow-width resonance produced
by gluon-gluon fusion. The parameters ∆mX = µCB−mX , σCB, αlow, αhigh, nlow and
nhigh are extracted from fitting the DSCB function on single-mass point MC signal
samples. The dependence of each parameter as a function of mX is parameterized
with linear functions (dotted lines) fitted to the results of the single-mass point fits.
In the case of the parameter nlow and nhigh, no explicit mass dependence is observed.
Those parameters are therefore fixed to constant.
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5.3.2 Large-width signal modeling

Large-width signal shapes for spin-0 resonances are described by convolving the
DSCB function obtained above with the lineshape describing a large width reso-
nance[64]:

FLW = FNW(mγγ ;mX)∗m7
γγ ∗Lgg ∗FB-W(mγγ ;ΓX) (5.2)

FB-W =
(
(m2

γγ−m2
X)2 + (mγγ ∗ΓX)2

)−1
(5.3)

where FNW is the detector resolution function, FB-W is the relativistic BW function
for a resonance of mass mX and width ΓX . Lgg is the gluon-gluon luminosity, which
is parametrized as a function of mγγ using the functional form:

p1(1− (x/
√
s)p2/3)p3 · (x/

√
s)p4 (5.4)

where
√
s = 13 TeV. The four parameters pi are given in Table 5.6. They were

derived from a fit to the gluon-gluon luminosity calculated with the NNPDF3.0 PDF
set at NLO.

For a spin-2 resonance with coupling k/M̄pl, its width can be determined using
the following relation:

ΓG∗/mG∗ = 1.44(k/M̄pl)2 (5.5)

which indicates that if k/M̄pl is small enough, the resonance could be considered
as a narrow-width signal. The resolution function for spin-2 search is obtained with
the graviton samples generated with the coupling of k/M̄pl = 0.01, which describes
graviton resonance with a negligible signal width. For the resonance with larger k/M̄pl,
the signal lineshape is constructed using a convolution of the resolution function and
the true graviton lineshape. Similarly to the spin-0 LW resonance case, the graviton
lineshape is described by the product of a relativistic BW function (Eq. 5.3) and
mass-dependent factors, given by[64]:

FG∗ ∝ m7
γγ (Lgg +αLqq̄)∗FB-W,grav(mγγ ;k/M̄pl) (5.6)

where FB−W,grav is the relativistic BW function for a resonance mass mG∗ and
width ΓG∗ , Lgg and Lqq̄ parameterize the gluon-gluon and quark-antiquark parton
luminosities, that follow the same functional form as Eq. 5.4 with parameters given in
Table 5.6. α denotes the relative contribution strength of the qq̄-initiated processes to
the gg-initiated processes. In the fits, the value is set to α = 3/24.

4The value 3/2 is obtained by directly checking the output cross section of the two processes of
Pythia. In some literature, this value is 2/3 computed from the relative LO cross section of gg→G∗

and qq̄→G∗ processes. However, since the choice of α barely affects the graviton line shape elsewhere,
the value 3/2 is used in the end.[64]
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Parton Luminosity Term p1 p2 p3 p4

Lgg (spin-0) 2.093 ·10−6 1 11.657 -2.557
Lgg (spin-2) 1.892 ·10−6 0.983 11.297 -2.581
Lqq̄ (graviton) 8.435 ·10−8 1 8.092 -2.266

Table 5.6 – The parameters of the functional forms Eq. 5.4 of the gluon-gluon (Lgg)
and quark-antiquark (Lqq̄) luminosities, derived for the spin-0 scalar and spin-2 models
considered in the analysis. These functional forms are fit on the NNPDF3.0 NLO PDF
parton distribution functions, which were used to simulate the MC samples for the LW
scalar. Note that the parameters of the gluon-gluon luminosities for spin-0 and spin-2
are from independent fits. The parameter values are slightly different, however the
difference is negligible compared with the signal modeling systematic uncertainties.

5.4 Background modeling

The background modeling procedure is discussed in this section. For the high-mass
search, there is only one inclusive conversion category while for the low-mass search, all
the background components and their normalization are estimated separately in each
category. Generally, the most important background is the non-resonant background
(continuum background) coming from the QCD production of photon pairs (γγ),
photon-jet pairs (γj) and jet pairs (jj), where one or two jets are mis-identified
as a photon. In the low-mass region, the background contamination is a bit more
complicated: the resonant background coming from Drell-Yan process is also significant,
where the two electrons from radiative Z decays are misidentified as photons. In
addition, since the upper limit of the invariant mass window is close to the mass of
the Standard Model Higgs boson, the SM Higgs contamination is checked as well.

For the continuum background, the distributions of each background component
are combined according to their respective fractions in order to construct the total
background. The distribution of γγ events is taken directly from MC simulation. The
shapes of the other components are modeled using data-driven approaches. Their
respective fractions are obtained using a background decomposition method. The
total continuum background is fitted on data with an analytical function selected
and validated through a so-called spurious signal test. The normalization and
parameters of the function are determined by the fit. For the Drell-Yan background,
the normalization is obtained from the e→ γ fake rates measured in data, and the
shape is determined by fitting the dielectron data sample, followed by a Smirnov
transformation[65] in order to correct for the bremsstrahlung effect.

In this section, the determination of the shape and normalization of the non-
resonant background is introduced in Sec. 5.4.1. The Drell-Yan and Standard Model
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Higgs backgrounds are introduced in Sec. 5.4.2. The final results of the background
modeling are shown in Sec. 5.4.3.

5.4.1 Non-resonant background

The continuum background consists of two components: one is the irreducible
background coming from the Standard Model production of real prompt photon pairs
(γγ), the other is the reducible background, including events with jets faking one or two
reconstructed photon candidates (γj and jj). By applying photon identification and
isolation criteria, this second source of QCD background can be reduced significantly.

The shape of irreducible background is obtained with the high-statistics Sherpa
NLO samples by applying the analysis selection listed in Sec. 5.2. Note that the
smoothness of the background MC samples is not naturally guaranteed since the
background samples are sliced in mγγ . The corresponding issue (called “stitching
issue”) is discussed in Appendix A. The shape of reducible background is obtained
from data control regions: background templates are built separately for the two
components, and added according to their respective fractions measured in data.

Normalization of the irreducible and reducible backgrounds

The 2x2D sideband decomposition method[67] is implemented to estimate the
relative fractions of the γγ, γj and jj components in the invariant mass spectrum.
Considering γγ as signal, the procedure to obtain the γγ purity in signal region is
introduced below.

First, two requirements of the signal selection are loosened in order to construct a
new sample (namely L’L’) that is enriched in fake-photon background: the photon
isolation criteria are dropped, and the tight photon identification criteria are relaxed
according to one of the LoosePrime configurations, as listed in Tab. 5.7. In this sample,
the observed yield WL′L′

tot is given by the sum of the unknown signal yield (WL′L′
γγ ) and

the background yields (WL′L′
γj , WL′L′

jγ
5 and WL′L′

jj ):

WL′L′
tot =WL′L′

γγ +WL′L′
γj +WL′L′

jγ +WL′L′
jj (5.7)

Then, depending on whether the leading or sub-leading photons passes or fails
the tight identification and isolation criteria, this new sample can be divided into 16
orthogonal subsamples. One of the subsamples is the signal region (namely TITI,
where “T” stands for Tight, and “I” stands for Isolated. “TITI” denotes that both
photon candidates pass the tight identification and isolation requirements), while the
rest ones are control regions of background contaminations. In each of the subsamples,

5jγ and γj represent the two cases of a photon-jet event, where either the leading or the sub-leading
photon is actually a mis-identified jet. The calculated yields of these two components are added
together in the end.
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ID name Variables used in the selection
Loose Rhad1, Rhad, Rη, wη2

Tight Loose + Rφ, ws3, Fside, ∆E, Eratio, ws1,tot, f1

LoosePrime-2 Tight – ws3, Fside
LoosePrime-3 Tight – ws3, Fside, ∆E
LoosePrime-4 Tight – ws3, Fside, ∆E, ws1,tot
LoosePrime-5 Tight – ws3, Fside, ∆E, Eratio, ws1,tot

Table 5.7 – Definitions of the Loose, Tight[66], and LoosePrime selections. For Loose
and Tight, the variables are those used in the selection. The LoosePrime selections
are defined with respect to the Tight selection and the variables for which the Loose
criterion is applied instead are listed. For example, in the LoosePrime-2 selection the
tight identification criteria are applied to all the shower variables, with the exception
of the two shower shape variables mentioned.

the observed yield can be expressed as a function of the signal and background yields in
the L’L’ sample, the identification and isolation efficiencies for prompt photons passing
the LoosePrime selection,6 background identification and isolation fake rates, and the
correlations between the isolation distribution of the two fake photons in jj events.
Therefore, one can deduce the signal and background yields given the identification
and isolations efficiencies of the signal as inputs. As an example, the observed signal
yield in the TITI region is given by:

NTITI =WL′L′
γγ εI1εT1εI2εT2

+WL′L′
γj εI1εT1fI2fT2

+WL′L′
jγ fI1fT1εI2εT2

+WL′L′
jj f ′I1f

′
T1f

′
I2f
′
T2ξIjj

(5.8)

where

• εI1 and εI2 are the isolation efficiencies for the leading and sub-leading photons
respectively;

• εT1 and εT2 are the tight dentification efficiencies for the leading and sub-leading
photons respectively;

• fI1 and fI2 are the isolation fake rates for γj and jγ events;
6To simplify the method, it is assumed that the efficiencies are identical for leading photons in γγ

and γj, and for sub-leading photons in γγ and jγ events.
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• fT1 and fT2 are the tight identification fake rates for γj and jγ events;

• f ′I1 and f ′I2 are the isolation fake rates for jj events;

• f ′T1 and f ′T2 are the tight identification fake rates for jj events;

• ξIjj is the isolation correlation factor between the jets in jj events.

In the calculation, the correlation between the isolation and the identification
efficiencies for γγ and γj events is neglected. Clearly there are 16 equations like
Eq. 5.8, and 19 unknowns in total. Six of the unknowns are inputs of the system or
fixed to a constant number:

• εI1, εI2, εT1 and εT2 are determined directly from the Sherpa diphoton sample;

• ξj1 and ξj2 are fixed to 1, they are the correlation between the identification and
the isolation fake rates for the leading and sub-leading jets.

The remaining 13 unknowns are outputs, determined through a minimisation
procedure of the decomposition method:

• the four yields WL′L′
γγ , WL′L′

γj , WL′L′
jγ and WL′L′

jj ;

• the tight identification fake rates fT1, fT2, f ′T1 and f ′T2;

• the isolation fake rates fI1, fI2, f ′I1 and f ′I2 ;

• the isolation correlation factorξIjj between the jets in jj events.

The extraction of yields, efficiencies and fake rates described above is performed in
6 mγγ bins with a fixed bin size of 10 GeV for the low-mass analysis, and in 7 bins for
the high-mass analysis with a minimum bin size of 50 GeV. The mγγ bins are chosen
to be wide enough so that the events in each bin is enough, and more importantly,
the mass spectrum in data cannot reveal potential peaks to comply with the blind
analysis policy.

For the high-mass analysis, the estimated yields in the mass range [150, 2000]
GeV of γγ, γj and jj components as a function of mγγ are shown in Fig. 5.5. The
decomposition results are computed with full Run 2 data. The γγ purity and the
respective fractions are obtained separately for 2015-2016, 2017 and 2018 datasets,
since the trigger and the pile-up conditions are different. As shown in Fig. 5.6, the
γγ purity is 89%− 97% depending on the diphoton mass, and it does not change
significantly between the data-taking periods. The average value of the purity over
mass range, 92%, is taken for normalization between the irreducible and reducible
components.

For lower mass range [60, 120] GeV, the background decomposition is done sepa-
rately for the three conversion categories. Figure 5.7 shows the decomposition results
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Figure 5.5 – High-mass analysis: the γγ, γj and jj event yields determined by the
2x2D sideband method as a function of the diphoton mass.

(a) (b)

Figure 5.6 – High-mass analysis: purity of the data sample in prompt isolated diphotons
as obtained from the 2x2D sideband decomposition method. Result (a) is shown with
statistical errors (error bars) and systematic errors associated with the variation of the
LoosePrime definition (error bands). Results (b) is obtained separately for different
data-taking periods in order to compare the purity for different pile-up and trigger
conditions and good agreement is seen. The errors shown reflect only the statistical
uncertainty.
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obtained with 2017 data for the UU and CC categories as an example. A bump-like
structure can be clearly seen around the Z peak in the CC category, which comes from
the Drell-Yan background. In general, the UU category has the highest γγ purity while
the purity in CC category is about 3% lower. The γγ purity also slightly increases with
the diphoton mass, from 60%−70% in the given mass range. The inclusive numbers
to be quoted as γγ fractions are 69% for UU, 66% for CU and 65% for CC category.
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Figure 5.7 – Result from low-mass analysis: the γγ, γj and jj event yields determined
by the 2x2D sideband method as a function of the diphoton mass with 2017 data, for
the UU (left) and CC (right) categories.

The leading systematic uncertainty of this method comes from the choice of
the LoosePrime definition. To cover the statistical uncertainty and the systematic
uncertainties on the choice of LoosePrime definition, isolation working point and other
potential sources, a conservative number of ±3% is assigned as the uncertainty on γγ
fraction for high-mass search, and ±5% for low-mass search.

Reducible background shape

It is impossible to obtain the reducible background model directly from γj MC
sample as mentioned in the previous chapter, since the simulated shape is not accurate
enough and only a small fraction of γj events pass the diphoton selection. On the
other hand, if the yield estimation described above is performed with fine mγγ binning,
the decomposition method could be used to provide a reliable shape of reducible
background. However, this would effectively unblind the input dataset, and higher
granularity would also introduce larger statistic fluctuations. Therefore, the reducible
background shape is estimated using the data control samples.

In the signal sample, the prompt photon candidates are required to pass both tight
photon identification and isolation criteria. In order to build a control sample enriched
in γj and jγ events, there are multiple ways to invert these two cuts. In addition, the
real γγ events may also satisfy the control region requirements and bias the shape

138



5.4. Background modeling

of the jet-enriched sample, therefore they need to be subtracted. Depending on the
definition of the control region, the shape and normalization of γγ contamination
are also different. This bias due to inaccurately simulated γγ contribution in control
region might be significant if the contamination is high.

In the low-mass analysis, three orthogonal control regions are studied:

• TIT Ī: the two photons (leading and sub-leading photons) pass the tight iden-
tification cuts, while one photon passes the isolation cuts and the other one
fails. This definition of control region is very close to the one of signal region,
however it brings large Drell-Yan contamination as well. The γγ contamination
in this control region is relatively high (about 25%, as estimated on MC from
the number of real diphoton events passing the TIT Ī selection) in this case.

• TIT̄ Ī: one photon passes both tight identification and isolation cuts, while the
other passes the loose identification but fail the tight identification and isolation
cuts. This definition is far from signal region, with γγ contamination less than
10%.

• TIT̄ I: two photons pass the isolation cuts, one photon passes the tight identifica-
tion, while the other passes the loose identification but fails the tight identification
cuts. As a compromise between the other two control regions, this definition
is closer to signal region comparing to TIT̄ Ī, and the γγ contamination is also
about 25%.

In general, we want the control regions to be as close to the signal region as
possible in order to minimize the bias from inverting the selections. However in the
case of TIT Ī, this definition introduce a large Drell-Yan contamination that would be
complicated to remove, similar to what was found in the background decomposition in
the signal region (Fig. 5.7). The TIT Ī control region is therefore discarded.

The other two control regions are tested against γj MC samples, and significant
bias coming from the inversion of idenfication and isolation is observed, even for the
purest γj sample (TIT̄ Ī). Figure. 5.8 shows the mγγ shapes of the TIT̄ Ī and TIT̄ I
from data control samples, as well as the the shape from diphoton MC samples. TIT̄ I
is chosen as a baseline, and TIT̄ Ī is taken as one systematic variation of the reducible
background shape.

The data control region used in high-mass analysis inherits the similar definition
as TIT̄ I. However the loose identification requirement is tightened to medium since
the trigger-level identification is already requiring so. The isolation criteria are applied
on both leading and sub-leading photons. One photon is required to pass the tight
identification cuts, while the other fails the tight identification, but passes certain
LoosePrime selection given in Tab. 5.7. Such constructed data control region with
LoosePrime-4 selection together with the expected diphoton contribution obtained
from MC samples is shown in Fig. 5.9.
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Chapter 5. Search for diphoton resonances

Figure 5.8 – Low-mass analysis: the invariant mass distribution of diphoton candidates
in the data-driven TIT̄ Ī (“CR2” in plot) and TIT̄ I (“CR3”) control regions and
in the diphoton MC sample for the three categories (UU, UC, CC). All histograms
are normalized to the same area. The bottom panels correspond to the ratio to the
diphoton MC shape. The pink line corresponds to a polynomial fit to the TIT̄ I/γγ
MC ratio.

140



5.4. Background modeling

Figure 5.9 – High-mass analysis: invariant mass distribution of events in the data
control region LoosePrime-4, shown together with the expected contribution for prompt
diphoton events from MC simulation. Although this is a control region enriched in γj
events, there is still a large contribution from true γγ events of about 40% which is
subtracted in order to estimate the mγγ shape of the reducible background.
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It can be seen that the γγ contamination is quite large (about 40%), because
the medium identification requirement at trigger-level has already reject a lot of
real jets. The accuracy of the simulation of the γγ contribution in control region
is worse than in the signal region, and the actual shape and normalization of the
γγ contribution highly depend on the LoosePrime selection. Therefore, data control
regions are also constructed with other LoosePrime definitions listed in Tab. 5.7 in order
to check the dependence on different definitions with better or worse γγ contamination.
Figure 5.10 shows the diphoton mass distribution obtained with each of the LoosePrime
definitions. Both the purity of γj events and reasonable identification requirements
should be considered. For example, the LoosePrime-2 control region requires the
tightest identification and is supposed to be the one that is closest to the signal region.
However, its statistic is limited, and a large γγ contamination leaking from the signal
into this control region has to be subtracted. The LoosePrime-5 selection is the loosest
one, allowing much higher statistics and larger γj fraction. However the LoosePrime-5
definition is far from the tight photon identification, which means the fake photons
selected in this region is less representative of the actual background in the signal region.
In the end, the LoosePrime-4 control region is used as the default definition, while the
other LoosePrime variations are used to estimate the systematic uncertainty on the
reducible background shape. As a cross check, the invariant mass spectrum estimated
from LoosePrime-4 control region is rebinned and compared with the decomposition
result. Despite the statistical uncertainties especially in the high-mass region, good
agreement is found between these two methods.

In principle, one could also build a jj enriched control region by inverting the
identification requirement on both leading and sub-leading photons. However, the
background decomposition results indicates that the contribution of multi-jet events
is insignificant, especially in the high-mass case. Studies show that the impact of
adding or not a jj component is fully covered by the systematic uncertainties on
the background shape, therefore the total continuum background template is for now
simplified with only two components, γγ and γj, as introduced in the next subsection.

Total non-resonant background template and associated systematics

The total non-resonant background template is built by summing the irreducible and
reducible components, and then normalized to the yield estimated in data. However,
the statistics of the data control region is too small to provide a smooth background
template with acceptable fluctuations. Therefore the total continuum background
template is actually obtained by reweighting the high-statistics diphoton MC samples.
In low-mass analysis, the ratio (Fig. 5.8) between the TIT̄ I distribution and the MC
γγ distribution is fitted with a polynomial function, separately for each category. The
fitted function is then used to reweight the diphoton MC sample, in order to get a
smooth shape of the reducible component thanks to the high statistics of the Sherpa γγ
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Figure 5.10 – High-mass analysis: reducible background distributions obtained from
data control regions. The data markers indicate the normalized event yields and shape
from the data of the default LoosePrime selection, LoosePrime-4. The distributions are
also obtained using the other LoosePrime selections in order to assess the systematic
uncertainty on the shape of the reducible background. All the LoosePrime distributions
are normalized to the same area.
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Figure 5.11 – High-mass analysis: an illustration of the total background template
constructed from MC simulation for the γγ component and a dedicated data control
region for the reducible γj component (black marks). The contribution of the γγ
component is also shown (blue line) to emphasize its contribution to the overall
template. The lower panel shows the ratio between the total template and the γγ
component indicating the contribution of the reducible component; the reducible
component fraction ranges from approximately 10% at low diphoton mass to 3% at
higher diphoton mass.
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samples. The total continuum template is built by adding the γγ and γj components
according to their measured fractions in data using the 2x2D decomposition method.
For the high-mass analysis where the search range is wide, the reducible background
contamination is only significant in the lowest part of the mass range since the γγ
purity increases with the diphoton invariant mass. The smoothing method is therefore
adjusted to simplify the fit. As shown in Fig. 5.11, the two components are first
added together, and then the ratio of the sum of γγ + γj to γγ is fitted with a
simple exponential function. The fitted function is then used to reweight the diphoton
component in order to obtain the total background template.

The total background template is eventually normalized to the data yields, therefore
only the sources of systematic uncertainty that affect the shape of the template are to
be considered and studied carefully. There are three main sources: the relative fraction
between γγ and γj components; the reducible background shape that is affected by
the control region definition and smoothing procedure; and the irreducible background
shape that is affected by the MC simulation and its corrections.

To study the first two sources, alternative background templates are built with
different systematic variations:

• change the γγ fraction. Increase or decrease the fraction by 5% (for low-mass
analysis) or 3% (for high-mass analysis).

• use alternative definition of the control region. Use TIT̄ Ī instead of TIT̄ I
(for the low-mass analysis), or switch from LoosePrime-4 to other LoosePrime
selections (for the high-mass analysis).

• change the functional form used for smoothing (negligible for high-mass analysis).

For the low-mass analysis, the nominal template and the templates built with these
variations are shown in Fig. 5.12. The largest impact comes from using the alternative
control region (up to 5%), as the definition of TIT̄ Ī and TIT̄ I are quite different.

The systematic uncertainties on the irreducible background shape are only studied
for the high-mass analysis. The experimental uncertainties come from the corrections
applied to the MC simulation, such as the pile-up modeling, the photon energy scale
and energy resolution, and the efficiencies of photon identification and isolation. These
corrections change with respect to the diphoton invariant mass in a wide mass range,
and are not so significant in the low-mass case. Alternative background templates
with variation due to the experimental systematics are built by varying the corrections
applied on the γγ sample. Figure. 5.13 shows the templates built with all the systematic
variations mentioned above for the high-mass analysis. The largest impact comes from
the fraction of γγ component, as the template is built in a wide mass range. The
experimental uncertainties of the γγ component is found to be small compared to the
one associated with the γγ fraction, and the uncertainties on energy resolution and
pile-up efficiencies are negligible.
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Figure 5.12 – Low mass analysis: non-resonant background template with systematic
variations associated with the reducible component for the inclusive case and the three
categories.
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Figure 5.13 – High-mass analysis: total γγ+γj background template with systematic
variations associated with the experimental uncertainties affecting the shape of the
diphoton MC simulation.

The theoretical uncertainties affecting the shape of the γγ component are also
studied, as they have a significant effect in the high-mass region. Uncertainties on the
QCD scales and the PDF set used in the simulation are considered. For the QCD scales,
the factorization scale (µF ) and the renormalization scale (µR) are set to alternative
values. The two combinations that give the largest shape variation (µR=1, µF=0.5
and µR=0.5, µF=1) are used to build the systematic variated template. For the PDF
uncertainties, all the 100 eigen-value variations of the nominal (NNPDF3.0 NLO)
PDF set as well as some alternative (MMHT2014 NNLO, CT14 NNLO, PDF4LHC15
NNLO, etc.) PDF sets are studied. The ones that give the largest shape variation
are picked. Due to the limitation of statistics, a similar smoothing procedure as the
one used for the construction of the total background template is applied: the ratio
of the distribution of each of the selected variations to the nominal one is fitted,
and the extracted function is used to reweight the γγ shape in order to obtain the
background template for each systematic variation. The templates associated with
theory uncertainties are shown in Fig. 5.14. For the overall normalization, it can be
seen that the theory uncertainties are quite large especially above 2 TeV, but their
actual impact is limited since only the variations on shape matters.
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Figure 5.14 – High-mass analysis: total γγ+γj background template with systematic
variations associated with the theoretical uncertainties affecting the shape of the
diphoton MC simulation.

Choice of fit function and spurious signal estimation

The non-resonant background contribution to the overall mγγ distribution is
modeled by a smooth functional form fitted to the distribution in data. The parameters
of the functional form are determined by the fit, along with the signal and background
yields. This function has to be capable of describing the background over the whole
search range, and to be flexible enough to accommodate different underlying background
distributions as well as the systematic variations.

In order to choose the functional form for the continuum background, a signal-
plus-background fit is performed on the background-only template described above,
for each given mass hypothesis mX . The potential bias due to the choice of the fit
function is estimated by the fitted signal yield Nspurious(mX) (spurious signal), which is
considered as a systematic uncertainty associated with the background modeling. The
spurious signal reflects how a given function can adapt to the continuum background
shape obtained as described above, under the assumption of infinite statistics.

If the fitted number Nspurious is significantly smaller than the uncertainty of the
signal yield in the full mass range of interest, the function is considered as valid. A
criterion is therefore set on Nspurious/δS and its dependence on mX , where δS is
the statistical uncertainty of the signal. Practically, the statistical uncertainty of
background is used instead of δS, as the signal-to-background ratio is quite small
and the expected statistical uncertainty from the fluctuations of the background

148



5.4. Background modeling

is dominant compared to the uncertainty of the hypothetical signal. The cut on
Nspurious/δS is chosen based on the limitation of available MC: for the low-mass
analysis the cut Nspurious/δS < 30% is required, and for the high-mass the requirement
is Nspurious/δS < 50%.

For the low-mass analysis, the nominal gluon-gluon fusion scalar signal model is
used in the signal-plus-background fits, separately for each conversion categories. The
following functional forms are tested:

• a Fermi distribution: f(x) = 1/(e(x−µ)/k + 1);

• Bernstein polynomials: f(x) =∑n
i=0 ci ·xi(1−x)n−i, with n= 5 to n= 7;

• a Landau distribution;

• the sum of a Landau distribution and an exponential distribution.

The fits are performed in the mass range [60,120] GeV, and the spurious signal is
tested between 65 and 110 GeV. The relative spurious signal Nspurious/δS results are
shown in Fig. 5.15 for the three categories respectively. The functions with the smallest
relative spurious signal and less degrees of freedom are chosen: the Landau+exponential
function for the UU and UC categories, and a fifth order Bernstein polynomial for the
CC category. The highest value of Nspurious over the search range is included as a
systematic uncertainty on background modeling.

The spurious signal study is more complicated for the high-mass analysis. The
value of Nspurious decreases rapidly with mX , and the extraction of spurious signal
suffers a lot from the statistical fluctuations of the background template. Therefore a
dedicated smoothing technique is applied. All the scalar (nominal gluon-gluon fusion)
and graviton signal models with different signal width are used in the signal-plus-
background fits. The following primary functional form, referred as PowLog-n function,
is tested:

f(x;a,ai) = (1−x1/3)a ·x
∑n
i=0 ai(logx)i (5.9)

where x= mγγ√
s

is a transformation that improves the numerical stability, n denotes
the highest power of the logarithm present in the exponent of the expression. For
example, when n= 0, the simplest function form PowLog-0 is given as:

f(x;a,a0) = (1−x1/3)a ·xa0 (5.10)

The fits are performed in the mass range [150,4000] GeV, and the spurious signal
is tested in a smaller range depending on the signal width. With only two degrees
of freedom, the PowLog-0 function is already capable of describing the background
sufficiently. Figure 5.16 shows the estimation of the spurious signal for the narrow
width scalar signal model. In the low mγγ region where the local statistical fluctuations
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Figure 5.15 – Low-mass analysis: results of the spurious signal scan over mX in the
UU (top row), UC (middle) and CC (bottom) categories. The spurious signal is
illustrated in terms of the number Nspurious relative to the statistical uncertainty of
the background (left) and in term of the absolute value of Nspurious (right).
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are large, lots of spurious signal events can be observed. In the region above 2 TeV,
the number of spurious signal is much smaller due to the significantly larger statistics
of diphoton MC. At 1.3 - 1.4 TeV, a large under-fluctuation occursin the background
template that comes from the slicing of the MC samples, as the statistics runs out in
the high mass tail of the mγγ distribution of the [175, 1400] GeV slice. A particularly
large spike of spurious signal is therefore seen in that region. Despite these local
features, the spurious signal for most mass points is within the 50% envelope.
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Figure 5.16 – High-mass analysis: result of the spurious signal scan over mX assuming
the NW signal model and using a background template derived solely from the Sherpa
γγ MC sample. The spurious signal is illustrated in terms of the Nspurious relative to
the statistical uncertainty of the background (a) and in term of the absolute value of
Nspurious (b).

The local features of the spurious signal results, especially the spike around 1.4 TeV,
are caused by the statistical fluctuations of the background template. To suppress this
impact, the background template is smoothed using the Functional Decomposition
(FD) method[68], as briefly introduced in Appendix B. The basic idea of FD is to
model the given dataset (in this case, the background template) as a truncated series
expansion in a complete set of orthonormal basis functions, using a process analogous
to Fourier analysis. Figure 5.17 shows the comparison between the raw background
template and the FD-smoothed one. No significant bias is seen on the determination of
the spurious signal. The spurious signal tests are then performed on the FD-smoothed
template, as shown in Fig. 5.18. Comparing to the spurious signal results with raw
background template in Fig. 5.16, the spike at 1.4 TeV has been removed and a
remarkable reduction in the number of spurious signal is achieved. This is considered
as a more precise estimation of the background mismodeling, especially for the regions
that initially suffer from large local statistical fluctuations.

Although the PowLog-0 function is already capable of describing the background
shape, PowLog-n functions with more degrees of freedom are also tested to see if they
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Figure 5.17 – High-mass analysis: comparison of the background template taken from
the Sherpa γγ MC sample (red) and the template obtained by smoothing using FD
(black) in themγγ range [150,4000] GeV. The ratio plot illustrates the relative deviation
between the two templates.

Figure 5.18 – High-mass analysis: spurious signal relative to the statistical uncertainty
of the background determined using the NW signal model and the FD-smoothed
distribution as the background template. The overall modeling systematic is found to
be smaller than 30%, which compares favorably to the more than 50% effect seen in
Fig. 5.16.
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have the flexibility to capture the systematic variations of the background template. By
doing so, a robust estimation of background mismodeling is ensured as the constructed
template cannot describe the shape in data perfectly. The PowLog-1 function with
three free parameters is chosen as the baseline function after being checked against
systematic variations of the background template. It can better adapt to the small
changes of the background shape comparing to PowLog-0, and has smallest number of
free parameters.

A constant number (the maximum Nspurious) is taken as the spurious signal
systematic uncertainty in the low mass analysis, since the search range is quite limited
and the number of spurious signal does not vary much with respect to the diphoton
mass. In the high-mass analysis, the spurious signal is parameterized as a function of
the diphoton mass in order to estimate the background mismodeling more accurately.
The idea is to identify the local maxima in the |Nspurious| distribution, and then fit
them with a functional form similar to Eq. 5.9 describing an envelope that covers all the
possible systematic variations. Parameterization of the spurious signal is performed for
all the signal models. As an example, Fig. 5.19 shows the spurious signal estimations
for narrow spin-0 resonance with the largest variations: the fraction of γγ component,
the QCD scales and the PDF variations. The envelope shown in green filled area
is the parameterization of the spurious signal uncertainty as a function of diphoton
mass. The extracted functions for spin-0 and spin-2 cases are given in Tab. 5.8 and
Tab. 5.9. Spurious signal results obtained with all possible variations of the background
template are found to be within the envelope. These parameterized functions of the
maximum value of the spurious signal at each mX enter the statistical model as a
nuisance parameter.

Figure 5.19 – High-mass analysis: spurious signal relative to the statistical uncertainty
for the narrow spin-0 resonance, shown for nominal against the fγγ , QCD scales and
PDF systematic variations. The green filled area is the envelope that contains the
local maxima of the variations.
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ΓX/mX Nspurious(mX)
NW 0.276× (1−x0.5)7.202×x−2.524−0.808×log(x)−0.134×log2(x)

2% 66.952× (1−x0.1)4.149×x−1.267 + 24775.411× exp(−0.015x)
6% x−119.720+51.979×log(x)−7.681×log2(x)+0.381×log3(x)

10% 3.718×x−63.155+27.603×log(x)−4.215×log2(x)+0.222×log3(x)

Table 5.8 – High-mass analysis: parameterization of the spurious signal in the spin-0
search, Nspurious, as a function of mX , obtained for a signal of variable width expressed
for the luminosity of the data (139 fb−1). In the functions, x= mX√

s
.

k/M̄pl Nspurious(mX)
0.01 7.486× (1−x1/30)2.781×x−2.014−0.066×log(x)

0.05 41.487× (1−x1/30)2.819×x−0.57−0.103×log2(x) + 8.244× exp(−0.002x)
0.1 76.532× (1−x1/30)2.127×x0.127−0.120×log2(x) + 16.712× exp(−0.002x)

Table 5.9 – High-mass analysis: parameterization of the spurious signal in the spin-2
search, Nspurious, as a function of mX , obtained for a signal of variable width expressed
for the luminosity of the data (139 fb−1). In the functions, x= mX√

s
.

5.4.2 Resonant background

The following two backgrounds, Drell-Yan background and Standard Model Higgs
background are only considered in the low-mass analysis.

Drell-Yan background

Similarly to the method used for the signal shape modeling, the Drell-Yan (DY)
background where both electrons are misidentified as photons is modeled using a
double-sided Crystal Ball function fitted on a DY background template. In order
to estimate the DY background properly, a precise description of the Z peak from
the electron background and a correct estimation of the electron fake rate are both
important.

The shape of DY background is determined by fitting a dielectron data sample, since
the statistic of simulated Z/γ∗→ ee sample where both electrons are reconstructed as
photons is limited. Both candidates in the dielectron sample are reconstructed and
calibrated as electrons, and must pass the same ET cuts as required in the diphoton
analyses. The Tight electron identification is also required. To avoid double counting,
electrons overlapping with a photon within a cone ∆R = 0.1 are not selected.

Fake photons in the DY background are generally originated from electrons that
lose a non-negligible amount of energy due to bremsstrahlung, leading to a slight shift
of the invariant mass distributions between the dielectrons, selected as mentioned
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above, and fake photon pairs in the diphoton signal sample. To correct for this effect,
a Smirnov transformation is used to represent the difference in kinematics between
electrons and fake photons.

Next, the electron template is normalized to the amount of dielectron events faking
diphoton events using the electron to photon fake rates[53]. The e→ γ fake rate is
measured in data using ee and eγ events, independently for leading and sub-leading
candidates in both converted and unconverted categories. The Smirnov transformation
is also applied. The fake rates are measured within a window around the Z peak, and
the non-resonant background is subtracted from the transformed ee invariant mass
distributions. The fake rate is also measured in Z→ ee simulation as a closure test.
Different material variations of the MC sample are also used to estimate the systematic
uncertainty on the energy loss due to bremsstrahlung, correlated with the detector
material.

Figure 5.20 shows the comparison of the transformation of the simulated ee template
with two candidates reconstructed as ee, γγ and ee after applying the Smirnov
transformation. Good agreement between γγ and electron pairs faking photon pairs
is observed. The largest uncertainty of the DY background model comes from the
normalization (±9 to 21%), affected by the choice of mass window, the statistic
limitation of the available MC sample, the statistical uncertainty from the fits, the
background subtraction during fake rate estimation and the generator used for the
simulated samples. The uncertainties on the DY shape (±2 to 3%) and peak position
(±0.1 to 0.2%) are also considered.

Figure 5.20 – Low-mass analysis: invariant mass distribution in the (a) UU and (b) CC
categories for fully simulated Z→ ee events reconstructed as ee (black dotted-lines),
γγ (red squares) and reconstructed as ee after applying the Smirnov transform (black
circles).
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(a) (b)

(c) (d)

Figure 5.21 – Low-mass analysis: the invariant mass distribution of three Standard
Model Higgs MC samples with 60<Mγγ < 120 GeV for the (a) CC. (b) CU. (c) UU.
(d) Sum of three categories.

Standard Model Higgs background

The Standard Model Higgs at mγγ = 125 GeV is a small but peaking background to
the low-mass analysis. Themγγ distribution of the Standard Model Higgs MC sample in
the range 60 to 120 GeV is shown in Fig. 5.21. Its contribution to the total background
is estimated from a SM Higgs sample of gluon-gluon fusion production, while other
production modes are neglected. After the analysis selection described in Sec. 5.2 is
applied, the Standard Model Higgs component is added to the predicted reducible
background for each conversion category. Two variables, the bias on background
yield due to SM Higgs (NHiggs/

√
Nbkg) and the fraction of SM Higgs background

(NHiggs/(NHiggs +Nbkg)) are calculated to estimate the impact of the additional
resonant background, where NHiggs and Nbkg are the numbers of the SM Higgs and
the γγ+γj background events (Z→ ee background is not considered). The results
are shown in Fig. 5.22 and Fig. 5.23. From the study, one can see that the SM Higgs
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amounts to less than 0.35% of the total background in all bins. Therefore, this SM
Higgs contamination is neglected when the final background template is built.

(a) (b)

(c) (d)

Figure 5.22 – Low-mass analysis: the backgrounds bias due to Standard Model Higgs
for the (a) CC. (b) CU. (c) UU. (d) Sum of three categories.

5.4.3 Background modeling results

The background-only fit of the data for the low-mass analysis is shown in Fig. 5.24,
the three conversion categories are shown in different colors. As expected, the Drell-Yan
contribution is significant in the CC category. No abnormal structure is seen in the
residuals.

The background-only fit of the data for the high-mass analysis is shown in Fig. 5.25
in both log and linear y-axis. The fit quality is check excluding the mass region above
1.4 TeV due to the limitation of statistics (bins with too few entries tend to bias the
estimation), χ2/Ndof = 37.2/54 is found.
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(a) (b)

(c) (d)

Figure 5.23 – Low-mass analysis: Fraction of Standard Model Higgs in the total
background. (a) CC. (b) CU. (c) UU. (d) Sum of three categories.

5.5 Fiducial and total acceptance corrections

The analysis strategy goes as following: for the spin-0 search, the aim is to provide
model-independent results by setting limits on the fiducial cross section. For the spin-2
search in the high-mass analysis where a warped extra-dimension model is taken as a
benchmark model, the aim is to set limits on total cross section, which can be directly
compared with theory. In general, the total cross section for process pp→X → γγ

can be expressed as:

σX ·B(X → γγ) =
N reco
sig

CX ·AX ·Lint
(5.11)

where B is the branching ratio, N reco
sig is the measured reconstruction level signal

yield, Lint is the integrated luminosity. AX and CX are correction factors obtained
from simulation samples, which are needed to translate the measured yields in terms of
cross section. AX is the acceptance of the fiducial volume, which is used to extrapolate
measurements that are performed in a restricted kinematic phase space (limited by
the acceptance of the detector) to the full phase space. CX is the correction factor
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Figure 5.24 – Low-mass analysis: background-only fit to the data (black markers) as a
function of the diphoton invariant mass mγγ for the three conversion categories. The
solid lines show the sum of the Drell-Yan and the continuum background components,
the dashed lines show only the continuum background components. The difference
between the data and the total background component is shown at the bottom
separately for each category.

159



Chapter 5. Search for diphoton resonances

Figure 5.25 – High-mass analysis: background-only fit to the data (black markers)
as a function of the diphoton invariant mass mγγ . The normalized residuals between
the data and the fit is shown in the bottom panel. There is no data event with
mγγ > 2400 GeV.
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for detector effects on events that fall into the fiducial volume of the analysis, defined
by the geometrical acceptance of the detector and the accessible kinematic phase
space. The CX factor is used to correct for reconstruction, identification and selection
efficiencies, as well as the migrations in and out of the fiducial volume.

The acceptance is highly model-dependent, since the kinematics of the hypothetical
signal can change dramatically with respect to various theory assumptions. For the
spin-0 analysis, to reduce the dependence on specific models, the fiducial cross section
is measured, which is given by:

σX,fid ·B(X → γγ) =
N reco
sig

CX ·Lint
(5.12)

The results are determined only with respect to the phase space which is accessible
by the detector. In this case, only the CX factor is included. The model dependence of
CX factor is rather small, since the detector efficiencies are rather stable with respect
to the photon kinematics. The remaining model dependency that might affect the
signal yield is included in systematic uncertainty, which will be introduced later.

5.5.1 Fiducial volume and correction factor

In order to minimize the model dependence, the fiducial volume defined at truth
level is designed to closely match the experimental acceptance of the measurement,
given by the geometrical acceptance of the detector, the reconstruction conditions and
any other kinematic analysis selections. Therefore, the fiducial volume is defined by
kinematic cuts applied on the truth level photon variables that mimic the selections
applied at the reconstruction level.

The kinematic cuts applied on truth photon variables are basically the same as in
Sec. 5.2. For low-mass search, both photons should be within |η|< 2.37, excluding the
transition region 1.37 < |η| < 1.52 between the barrel and the end-cap calorimeters.
Both photons are required to have transverse energies above 22 GeV. For high-mass
search, both photons should be within |η|< 2.37 but including the transition region for
simplicity. The relative ET cuts for leading and sub-leading photons, ET /mγγ > 0.3
and ET /mγγ > 0.25, are also applied.

In addition, the reconstructed photons tend to have larger calorimeter isolation
energy (leading to lower selection efficiency) if the resonance is produced in association
with many high ET jets. Therefore, truth-level isolation requirement is also applied
to further reduce the production dependence. For low-mass search, the truth-level
isolation is defined as the scalar sum of the transverse energy of all the stable particles
(except neutrinos and muons) found within a ∆R = 0.2 cone around the true photon,
namely etcone20. The truth-level isolation requirement is etcone20< 0.065ET (GeV),
which is the loose calorimeter-only isolation requirement. A similar variable etcone40
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is used for high-mass search with a cone size ∆R = 0.4. The isolation requirement is
etcone40< 0.05(ET + 120) GeV.

The CX factor is defined as:

CX = Nselection
Nfiducial

(5.13)

where Nselection is the number of reconstructed signal events that pass the analysis
selection, Nfiducial is the number of signal events generated within the fiducial volume.
The compution of CX factor is performed for all available production modes and values
of resonance mass. A function is then fitted to the results in order to provide the
interpolation between mass points, as shown in Figs. 5.26 and 5.27 for low-mass and
high-mass results respectively. In a wide mass range, the difference of the computed
CX factor between the different production modes is relatively small. The CX factor
drops above 1 TeV, which is mainly caused by the decrease in the photon identification
efficiency at very high transverse energy.

Figure 5.26 – Low-mass analysis: the CX factor as a function of mX for different
production modes in the low-mass range. The dashed black line represents the
parameterization of the nominal ggF mode and the dashed gray line represents the
parameterization of the maximal deviation from the nominal values.

5.5.2 Acceptance factor

The AX factor is defined as:

AX = Nfiducial
Ntotal

(5.14)
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Figure 5.27 – High-mass analysis, spin-0 search: the CX factor as a function of mX for
different production modes in the high-mass range. The lines illustrate the interpolation
fits for each production mode, while the bottom panel illustrates the ratio of the CX
factor determined in a given production mode to the baseline prediction from the ggF
production mode.

where Ntotal is the total number of the generated signal events, Nfiducial is the
number of events that pass the fiducial selection. The AX factor is used for the
calculation of total cross section in spin-2 search, and is also provided in spin-0
search so that the results determined with respect to a restricted phase space can be
reinterpreted to the total phase space. Figures 5.28 and 5.29 show the determination
of AX for the different production modes, as a function of mX for the two analyses.
The acceptance correction can vary by up to 30% between the different production
modes.

Finally, the total acceptance-times-efficiency-correction factor, CX ·AX , is actually
used in the spin-2 graviton search for the projection to the total cross section. It is
defined as:

CX ·AX = Nselection
Ntotal

(5.15)

The results as a function of mG∗ for different coupling hypotheses are given in
Fig. 5.30. Parameterization of the CX ·AX factor is given by a simple exponential
function.
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Figure 5.28 – Low-mass analysis: the AX factor as a function of mX for different
production modes. The dashed black line represents the parameterization of the
nominal ggF mode.

Figure 5.29 – High-mass analysis, spin-0 search: acceptance correction factor for
different production modes of the scalar narrow width signal. The lines illustrate the
interpolation for each production mode. The bottom panel illustrates the ratio of the
AX factor for a given production mode to the corresponding one from ggF production
mode.
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Figure 5.30 – High-mass analysis, spin-2 search: total efficiency-times-acceptance,
CX ·AX , computed using the MC simulation samples for various graviton signals
assuming different k/Mpl hypotheses. The CX ·AX factors for the different width
hypotheses considered in the simulation are all found to follow a similar trend as a
function of mG∗.
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5.6 Systematic uncertainties

The relevant sources of systematic uncertainty are discussed and summarized
in this section, including experimental and fit uncertainties from both signal and
background modeling. The sources affecting the signal yields (Sec. 5.6.1) and the
modeled signal shape (Sec. 5.6.2) are the same for the low-mass and high-mass analyses.
The uncertainties on background modeling is summarized in Sec. 5.6.3. Specially, the
migration between the three conversion categories in low-mass analysis is quantified in
Sec. 5.6.4. Summary tables of the different sources of the systematic uncertainty for
the two analyses are given in Sec. 5.6.5.

5.6.1 Signal modeling uncertainties

The energy resolution and energy scale are the most relevant sources of the
systematic uncertainty in signal modeling. The uncertainty on the photon energy
scale shifts the peak position of the modeled signal (∆mX). The uncertainty on the
energy resolution mainly impacts the width of the distribution (σCB). In order to
determine the effects of the photon energy scale and resolution, the signal MC events
are reprocessed using the photon energy scale and energy resolution smearing, and
the shift in ∆mX and the variation on σCB are estimated. The estimation of the
uncertainties on signal modeling is done separately in each conversion categories.

For the energy scale, the relative difference of the mean value of the modified and
nominal mγγ distributions at given mX is parameterized, and taken as the energy
scale uncertainty. The value is found to be about 0.6% for the high-mass analysis, and
between 0.3% to 0.5% for the low-mass analysis.

The energy scale variation also affects the resolution, but it is proved to be quite
small and can be safely neglected. Similarly, the difference of the width of the modified
and nominal distributions at given mX is taken as the energy resolution uncertainty.
This value is highly correlated to the photon mass. It varies from +17%

−12% to +51%
−29% as

a function of mX , in the mass range from 200 GeV to 2 TeV. For low-mass analysis
below 110 GeV, it is found to be between 2% to 8%.

The narrow-width signal models are extracted using gluon-gluon fusion MC samples.
Therefore, a closure test is used to check the impact of the unknown production mode.
Pseudo-datasets are used for this test, with a background component generated from
the background function (parameters fixed to the result of a background-only fit to the
background template), and a signal component from the mγγ distribution in signal MC
sample of the tested production mode. The background is normalized to the data yield,
and the signal is normalized to the expected 2σ upper limit on the fiducial cross section.
Two production modes, gluon-gluon fusion and associated production with top quark
pair (ttH) are compared, since they have the most different kinematic distributions.
The nominal gluon-gluon fusion signal model is used to fit the pseudo-datasets, and
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the bias on the signal yield is taken as the systematic uncertainty associated to the
production mode. This bias is mass-dependent: it is found to be up to 6% at low mass,
and reduced to about 0.5% at 800 GeV. By repeating the fit with nuisance parameters
for the uncertainties on the energy resolution and scale, the bias becomes even smaller.
It means that any potential bias on the signal yields due to the hypothetical signal
production mode is sufficiently covered by the experimental systematic uncertainties on
the signal modeling (especially energy resolution), therefore no additional uncertainty
is needed.

5.6.2 Signal yield uncertainties

The uncertainties on signal yields are derived from different sources that are
associated with the experimental conditions and the hypothetical signal production
process. The details of these sources are given below, and the size of each uncertainty
is summarized in the next section.

Production process

As the spin-0 analysis has no assumption on the production modes (of the hypo-
thetical scalar signal), the correction factor can be changed significantly according
to the given production mode with different kinematics, as mentioned in Sec. 5.5.
Therefore, a systematic uncertainty is assign to account for this effect by taking the
envelope of the difference in the correction factor obtained from different production
modes.

Photon identification

Data-driven methods are used to measure the photon identification efficiency, which
is used to compute the scale factors (data-to-MC ratios). The up and down uncertainty
of the scale factors are propagated to the analysis by applying the corresponding
variation.

Photon isolation

The uncertainty from the photon isolation efficiency comes from the contribution of
both calorimeter-based isolation and track-based isolation. The associated uncertainty
on the signal yield is obtained by applying a data-driven shift to the calorimeter
isolation, and a pT dependent shift to the track isolation[69]. The shifts on the
correction factor from these two parts are calculated separately and combined in
quadrature.
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Photon trigger

A bootstrap method[70] is used to estimate the diphoton trigger efficiency. The
uncertainty of this estimation is taken to be the systematic uncertainty associated
with photon trigger.

Pile-up reweighting

Pile-up reweighting is applied to the simulated samples in order to cover the
difference between the predicted and actually measured distributions of the average
number of pp interactions per bunch crossing (< µ >). The uncertainty associated
with the pile-up reweighting is obtained by shifting the distribution of < µ > before is
was used to reweight the MC sample.

Photon energy scale and resolution

The photon energy resolution and energy scale uncertainties could also impact the
correction factor, as they may cause migrations in and out of the fiducial volume of the
detector. These effects are estimated using the up and down variations of energy scale
and resolution similarly as in Sec. 5.6.1, and are found to be insignificant comparing
to other sources.

Luminosity

As mentioned in Sec. 5.1, the uncertainty of the integrated luminosity is propagated
to the analyses.

5.6.3 Background modeling

As mentioned in Sec. 5.4.1, the parameterized number of the spurious signal enters
the statistical model as a nuisance parameter. It is added as a variation of the
signal yield that is described by a Gaussian distribution of mean equal to zero, and
width equal to the parameterized value at given mX . This is the dominant source of
systematic uncertainty in the low-mass analysis, while its impact is much smaller in
the high-mass analysis thanks to the Functional Decomposition process. In addition,
the uncertainty coming from the imperfect modeling of the Drell-Yan background in
the low-mass analysis is described in Sec. 5.4.2.

5.6.4 Migration between categories

In the low-mass analysis, an additional systematic uncertainty is assigned to
take into account the migration between the three conversion categories. Since the
conversion of photons is related to the amount of material upstream of the calorimeter,
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this uncertainty is estimated by comparing the number of recorded events in each
category in simulated single photon samples with alternative detector geometries. The
fraction of converted photons fconv is measured in the distorted samples and used to
compute the fraction of each category (fUU , fCC and fUC). The number of events in
each category computed with nominal and alternative samples are compared and the
slightly mass-dependent difference is taken as systematic uncertainty.

5.6.5 Systematics uncertainties summary

The main sources of the systematic uncertainties are summarized in Tab. 5.10 for
the low-mass analysis, and in Tab. 5.11 for the high-mass analysis. The dominant
impact comes from the imperfectly estimated spurious signal (background modeling)
systematics for the low-mass analysis, making this analysis systematics-limited. For
the high-mass analysis, thanks to the Functional decomposition method, the size of
spurious signal is much smaller. The largest systematic uncertainty comes from the
photon energy resolution during signal modeling.

5.7 Statistical method

5.7.1 Profile log-likelihood ratio method

In the resonance searches, the numbers of signal and background events in the
selected data sample are estimated from maximum-likelihood fits, using an extended
profile likelihood to incorporate the systematic uncertainties. For a set of measured
quantities x= (x1,x2, ...,xn), the extended likelihood of the given dataset is:

L(µ,θ|x) = e−n
n∏
i=1

[s(µ) ·fs(xi;θ) + b ·fb(xi;θ)] (5.16)

where fs and fb are the probability density functions (pdf) of the signal and
background, s(µ) and b are the number of signal and background events respectively.
µ is the parameter of interest, in this case is the cross section.

To test a hypothetical value of µ, the profile likelihood ratio (PLR) is constructed
as:

λ(µ) = L(µ, ˆ̂θ(µ))
L(µ̂, θ̂)

(5.17)

where µ̂ and θ̂ are the values of the parameters that maximize the likelihood
function (“best fit” values), and ˆ̂

θ(µ) is the value of θ that maximizes the likelihood
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Table 5.10 – Low-mass analysis: summary of the main sources of systematic uncertainty
on the limit on the fiducial cross seciton.

Source Uncertainty
Signal yield

Luminosity (2015-2017) ±2.0%
Trigger ±1.4∼ 1.7%, mass dependent
Photon identification ±1.5∼ 2.3%, mass dependent
Isolation efficiency ±4%, mass dependent
Pile-up reweighting ±1.8∼ 4.1%, mass dependent
Scalar production process ±2.4∼ 25%, mass dependent
Photon energy scale ±0.13∼ 0.49%, mass dependent
Photon energy resolution ±0.053∼ 0.28%, mass dependent

Signal modeling
Photon energy resolution ±2∼ 8%, mass and category dependent
Photon energy scale ±0.3∼ 0.5%, mass and category dependent

Migration between categories
Material −2.0/+ 1.0/+ 4.1%, category dependent

Non-resonant background modeling
Maximum spurious signal 604/496/181 events, mass and category dependent

DY background modeling
Peak position ±0.1∼ 0.2%, category dependent
Template shape ±2∼ 3%, category dependent
Normalization ±9∼ 21%, category dependent

170



5.7. Statistical method

Table 5.11 – High-mass analysis: summary of the main sources of systematic uncertainty
on the limit on the fiducial and total cross seciton. The spurious signal (background
modeling uncertainty) is obtained from a mass parametrization (Tab. 5.8 and 5.9).
The number of spurious signal for a narrow- (large-) width resonance at given mass
point are quoted here.

Source Uncertainty
Signal yield

Luminosity (2015-2018) ±1.7%
Trigger ±0.5%
Photon identification ±0.5%
Isolation efficiency ±1.5%
Pile-up reweighting ±(2∼ 0.2)%, mass dependent
Scalar production process ±(7∼ 3)%, mass dependent
Photon energy scale/resolution negligible

Signal modeling
Photon energy resolution +17%

−12% (at mX = 200 GeV) ∼ +51%
−29% (at mX = 2 TeV)

Photon energy scale ±0.5%∼±0.6%, mass dependent
Pile-up reweighting negligible

Background modeling, spin-0
NWA 114–0.04 events (mX =160-2800 GeV)
ΓX/mX = 2% 107–0.14 events (mX =400-2800 GeV)
ΓX/mX = 6% 223–0.38 events (mX =400-2800 GeV)
ΓX/mX = 10% 437–0.50 events (mX =400-2800 GeV)

Background modeling, spin-2
k/M̄pl = 0.01 4.71–0.04 events (mG∗ =500-2800 GeV)
k/M̄pl = 0.05 19.00–0.09 events (mG∗ =500-2800 GeV)
k/M̄pl = 0.1 31.20–0.20 events (mG∗ =500-2800 GeV)
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function when µ is fixed (conditional maximum likelihood estimator). The test statistic
is given as:

tµ =−2lnλ(µ) (5.18)

The likelihood ratio is always between 0 to 1,7 while 1 indicates that the data and
the hypothetical µ are in good agreement. By definition, tµ is always positive.

5.7.2 Discovery p-value

The compatibility of the given dataset with the background-only hypothesis (or
null hypothesis, µ= 0) is quantified by the p-value. The probability, under the null
hypothesis assuming that no signal is present, of obtaining a signal yield at least as
large as the observed one is denoted as p0. Large value of p0 suggests that the datasets
agrees more with the background-only hypothesis, while small p0 suggests a significant
positive signal.

The one-sided test statistic is defined as:

tuncap0 =


−2ln L(0, ˆ̂θ(0))

L(µ̂, θ̂)
,µ̂≥ 0,

+2ln L(0, ˆ̂θ(0))
L(µ̂, θ̂)

,µ̂ < 0.

(5.19)

and the p-value of the null hypothesis is computed as:

p0 =
∫ ∞
t0,obs

f(t0|0)dt0 (5.20)

where t0,obs is the test statistic observed in data, and f(t0|0)dt0 is its pdf. The
observed value of t0 will be large in the presence of a signal.

In the asymptotic regime[71], one can directly compute p0 from the test statistic
using asymptotic formulae. Otherwise, p0 should be computed by sampling the
distribution of the test statistic in the null hypothesis using pseudo-experiments, which
is the case for the high-mass end of the search region (above 2.3 TeV).

The discovery p-value can also be expressed as a Gaussian significance Z, defined
as:

Z = Φ−1(1−p0(tuncap0 )) (5.21)

where Φ is the cumulative distribution function of a standard Gaussian, of which
the upper tail integral equals to the p-value. Usually, one can claim a discovery only
with 5σ significance.

7Usually, only µ ≥ 0 is considered as a valid “physical” signal. However, as long as the pdf is
positive, µ < 0 is also allowed. µ̂ < 0 corresponds to negative fluctuations in data with respect to the
background-only hypothesis.
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5.7.3 Look-elsewhere effect

In the high-mass analysis, as the search is performed in a quite large mass range,
one needs to consider what is the probability to have a fluctuation as (or bigger than)
the observed one anywhere in the search range, namely the “look-elsewhere effect”[72].

When scanning the wide range in search for resonances, the p-value obtained at
a given mX and width is called the local p-value, corresponding to local significance
Z local0 . Instead, the global p-value and significance are more relevant as they take into
account the possibility of background fluctuation occurring anywhere in the test. There
are multiple ways to compute the global significance. For a simple 1D p-value scan,
once a reference level of p-value is given (usually p= 0.5, “0σ level”), the asymptotic
formula[73] is given as:

pglobal = plocal+Nupe
−1/2(Z2

local−Z
2
ref ) (5.22)

where Nup is the number of upcrossings of the p-value curve that crosses the
reference level p-value, and Zref is the significance corresponding to the chosen
reference level of p-value. The statistical uncertainty on the global p-value is obtained
by varying Nup by ±

√
Nup. Eq. 5.22 also has multidimensional form.

However, a more straightforward and reliable way is to run background-only pseudo-
experiments generated from the signal and background function fitted on the observed
data and the profiled values of the nuisance parameters. For the generation of each
pseudo-experiment, the global observables (e.g. background function parameters) are
randomized according to a Gaussian constraint pdf with a mean value equal to the
profiled value of the corresponding nuisance parameter. Values of the experimental
observables (e.g. mγγ and N) are generated randomly from the background-only pdf
and the Poisson probability distribution.

In order to determine the maximum Z local0 , one could perform fits for every possible
mass and width hypothesis, determine the Z local

0 value at each point, and find the
maximum value. As this approach is computationally intensive, alternatively, a number
of maximum-likelihood fits are performed on each pseudo-dataset. The initial values
of the parameters of the interest (e.g. signal mass, width and cross section) are
randomized within the signal search range. The fit giving the minimum negative
log-likelihood value is assumed to correspond to the maximum Z local

0 .
From the distribution of Z local0 (H(Z local0 )), the Zglobal0 for a given Z local,obs0 is

computed by integrateing the observed Z local0 to infinity:

Zglobal,obs0 =
∫ ∞
Zlocal,obs0

H(Z local0 )dZ local0 (5.23)

In this way, a functional relation Zglobal0 (Z local0 ) is determined. Uncertainties coming
from the number of pseudo-experiments and the plocal,obs0 are provided when reporting
the global significance.
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5.7.4 Upper limits

In the case that no discovery can be claimed, upper limits are set on µ in order to
exclude certain models. The upper limit can be computed using the one-sided test
statistic, which defined as:

q̃µ =



−2lnL(µ, ˆ̂θ(µ))

L(0, ˆ̂θ(0))
,µ̂ < 0,

0,µ̂ > µ,

−2lnL(µ, ˆ̂θ(µ))
L(µ̂, θ̂)

,0≤ µ̂≤ µ.

(5.24)

where L is the likelihood function; µ̂ and θ̂ are the best fit values of µ and θ, ˆ̂
θ(µ)

is the best fit value of θ for a fixed µ. Specially, in the case µ̂ < 0, the likelihood value
at µ= 0 is used instead to avoid negative pdfs.

A 95% confidence level (C.L.) on the parameter of interest is computed using a
modified frequentist approach[74][75]. The modified CLs p-value is given as:

pCLsµup =
pµup
pb

=
∫∞

˜qµ,obs
f(q̃µ|s+ b)dq̃µ∫∞

˜qµ,obs
f(q̃µ|b)dq̃µ

(5.25)

Limits at 95% C.L. set on µ are then computed

5.7.5 Statistical models

The statistical models used for the two analyses are basically following the same
form, as detailed below.

Low-mass analysis

The numbers of signal and background events are estimated with an extended
maximum-likelihood fit to the binned mγγ distribution, separately in the three conver-
sion categories.

The parameterized signal and background models are described in Sec. 5.3 and
Sec. 5.4. The signal pdf is a DSCB function with parameters computed as a function
of mX . The background pdf is either a Landau+exponential function (UU and UC
categories) or a fifth order Bernstein polynomial function (CC category), as discussed in
Sec. 5.4.1; the function parameters are all free in the fit. The systematics summarized
in Tab. 5.10 are included in the fits via nuisance parameters constrained by Gaussian
terms.

The extended pdf is given by:

L=
nc∏
c=1

e−N
total
c

ndatac∏
i=1
Lc(mγγ(i, c)) (5.26)
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where nc = 3 is the number of categories; ndatac and N total
c are the number of data

events and the sum of the fitted numbers of events in each component in category
c; mγγ(i, c) is the mγγ value for event i of category c. The per-event term of the
signal-plus-background model is:

Lc(mγγ ;σfid,mX ,Nuu,c,Nuc,c,Ncu,c,Ncc,c,Nbkg,c,ac, θ) =
NX.c(σfid,mX , θNX , θSS)fX(mγγ ,mX ,xX(mX), θσ)
+Nuu,c(θNuu,c)fuu,c(mγγ ,xuu,c, θuu,c)
+Nuc,c(θNuc,c)fuc,c(mγγ ,xuc,c, θuc,c)
+Ncu,c(θNcu,c)fcu,c(mγγ ,xcu,c, θcu,c)
+Ncc,c(θNcc,c)fcc,c(mγγ ,xcc,c, θcc,c)
+Nbkg,cfbkg,c(mγγ ,ac)

(5.27)

where σfid is the fiducial production cross section of the new resonance of mass
mX ; Nuu,c, Nuc,c, Ncu,c, and Ncc,c are the number of Drell-Yan background events
identified respectively as unconverted-unconverted (contributing to the UU category),
unconverted-converted, converted-unconverted (both contributing to the UC category)
and converted-converted (contributing to the CC category); Nbkg,c is the fitted number
of background events; a are the parameters of the function that describe the non-
resonant background shape; θ denotes the nuisance parameters used to describe the
systematic uncertainties.

The nuisance parameters are listed below:

• θlumi: uncertainty on the integrated luminosity of the data sample.

• θtrig, θID, θisol, θCX , θPU : experimental uncertainties on the signal yield.

• θES : photon energy scale systematic uncertainty;

• θER: photon energy resolution systematic uncertainty;

• θmatmig : migration uncertainty between categories.

• θSS,uu,θSS,cu,θSS,cc: spurious signal systematics for each category. In low-mass
analysis, the maximum value of spurious signal is taken as systematic uncertainty.

• θstatnorm,uu,θstatnorm,uc, θstatnorm,cu,θstatnorm,cc : uncertainty on the normalisation of each
Drell-Yan component due to limited statistics in the computation of the tem-
plate. The uncertainties are assumed to be uncorrelated as they are computed
independently for each category.

• θmatnorm,uu,θmatnorm,uc, θmatnorm,cu,θmatnorm,cc : uncertainty on the normalisation of each
Drell-Yan component due to systematic effects of the material, also considered
as uncorrelated.

175



Chapter 5. Search for diphoton resonances

• θgennorm,uu,θgennorm,uc, θgennorm,cu,θgennorm,cc: uncertainty on the normalisation of each
Drell-Yan component due to systematic effects of using the Sherpa generator
instead of Powheg, also assumed to be uncorrelated.

• θBSpeak,uu,θBSpeak,uc, θBSpeak,cu,θBSpeak,cc, θBSsigma,uu,θBSsigma,uu, θBSsigma,uc, θBSsigma,cu,θBSsigma,cc,
θBSALo,uu,θBSsigma,uc, θBSALo,cu,θBSALo,cc, θBSAHi,uu,θBSAHi,uc, θBSAHi,cu: uncertainty on the
parameters of the Double-sided Crystal-Ball used as model of each Drell-Yan
component. The uncertainties are assumed to be uncorrelated as they are
computed independently for each category.

• θmatpeak,DY , θmatsigma,DY : uncertainty on the peak position and width of each Drell-
Yan component due to systematic effects of the material description. These
effects are assumed to be correlated between Drell-Yan components, so are
described as a function of a single nuisance parameters.

• θgenpeak,DY , θ
gen
sigma,DY : systematic uncertainty on the shape of the Drell-Yan com-

ponents of using the Sherpa generator instead of Powheg, also assumed to be
correlated.

Nbkg,c is a free parameter in the fit. NX,c represents the number of events for the
searched resonance, described as the product of the total number of events (proportional
to σfid) and the category fractions. This allows σfid to be directly extracted from the
fit. In a given conversion category c, the number of events for the searched resonance
NX is given as:

NX(σfid,mX , θNX , θSS) = σfid ·Lint ·CX(mX) ·
dimθNx∏

k

Kk(θk) + δSS · θSS (5.28)

where Lint is the integrated luminosity; CX(mX) is the value of the CX factor
for the considered mass mX ; δSS (=|NSS |) and θSS are the values of the background
modeling uncertainty and its associated nuisance parameter; Kk denotes a function
describing the effect of the k-th normalization systematic, and the index k runs over
the set of systematic uncertainties affecting NX . The expression Kk(θk) = [rk(mX)]θk
is used, where rk(mX) is approximately given by NX,+k(mX)/NX(mX) for θk > 0 and
NX(mX)/NX,−k(mX) for θk < 0. This expression means that the modifications to the
signal event yield for θk = ±1 correspond to the ±1σ variations used to define the
uncertainties.

In addition, the number of Drell-Yan events in each category should also be taken
into account. The systematic uncertainties on the normalization of the DY background
template are described by nuisance parameters introduced above.
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5.7. Statistical method

High-mass analysis

The numbers of signal and background events are estimated with an extended
maximum-likelihood fit to the binned mγγ distribution. In the high-mass analysis,
there is only one inclusive conversion category. The statistical models for the spin-0
and spin-2 searches are identical, except for using the CX or CX ·AX factor.

The parameterized signal and background models are described in Sec. 5.3 and
Sec. 5.4. The signal pdf is a DSCB function with parameters computed as a function
of mX . The background pdf fb(mγγ ;a) is using the function from Eq. 5.9 in Sec. 5.4.1;
the parameters of this function are all treated as free parameters in the fit. The
systematics summarized in Tab. 5.11 are included in the fits via nuisance parameters
constrained by Gaussian terms.

The signal-plus-background model used to describe the data can be written as:

L(mγγ ;σ,mX ,αX ,Nb,a,θ) = fX(mγγ ;xX(mX ,αX), θσ) ·NX(σ;mX , θNX , θSS)
+ fb(mγγ ;a) ·Nb

(5.29)
where fX , fb and NX , Nb denote the probability density function (pdf) and correspond-
ing yield for a given signal X and the background components; Nb is a free parameter
in the fit, NX is given as in Eq. 5.28 (In the high-mass case, δSS is a mass-dependent
number); σ is the fiducial (total) cross section times branching ratio of the hypothetical
resonance of mass mX decaying to two photons; a are the parameters of the function
that describe the background shape, and θNX is the set of nuisance parameters for
systematic uncertainties affecting NX , as listed below:

• θlumi : uncertainty on the integrated luminosity of the data sample.

• θtrig, θID, θisol, θCX , θPU : experimental uncertainties on the signal yield.

• θSS : spurious signal systematic uncertainty;

• θES : photon energy scale systematic uncertainty;

• θER: photon energy resolution systematic uncertainty;

• θCX : production-mode uncertainty on the CX factor (spin-0 search).

The overall likelihood including extended and constraint terms is given by:

L(σfid,mX ,αX ,Nb,a,θ) =
e−(NX+Nb)

[∏n
i=1L(mγγi;σfid,mX ,αX ,Nb,a,θ)

][∏dimθ
k=1 exp

(
−1

2 (θk− θaux
k )2)]

(5.30)
where n is the total number of events in the data, mγγi is the diphoton mass for a given
event, and θaux denotes the set of constants obtained from auxiliary measurements
and are used to constrain the nuisance parameters for the systematic uncertainties.
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5.8 Results

5.8.1 Low-mass search results

The p-value scan in range [65, 110] GeV with the 80 fb−1 dataset is shown
in Fig. 5.31. No significant excess above 1σ with respect to the background-only
hypothesis is observed. As introduced in Sec. 5.7.3, a global significance of 2.4σ is
computed using the approximate formula given in Eq. 5.22.
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Figure 5.31 – Low-mass: observed p-value for the background-only hypothesis, p0, in
(a) logarithmic and (b) linear scale, as a function of the resonance mass mX .

The expected and observed limits are shown in Fig. 5.32. An upper limit at the
95% C.L. is set on the fiducial cross section times branching ratio (σfid ·B) from 30 to
101 fb in the mass range [65, 110] GeV, which is consistent with the absence of a signal.
This limit is slightly improved in the lower mass part compared to the 2014 result[53]
(30 to 90 fb in the same mass range) obtained with 20.3 fb−1 data, thanks to the
increased luminosity and optimized analysis selection. However, the sensitivity loss
is significant due to the overall spurious signal. Figure 5.33 shows the impact of the
systematic uncertainties on the upper limit on the fiducial cross section. It can be found
that the spurious signal (non-resonant background modeling) systematic uncertainty
is dominant. In addition, the imperfect modeling of the Drell-Yan background leads
to the sensitivity loss around 90 GeV.

5.8.2 High-mass search results

Scalar results

The one-dimensional local p-value scans as a function of the resonance mass mX

are shown in Fig. 5.34 for the narrow-width approximation, and for several different
values of ΓX/mX . The two-dimensional (scanning over both mX and the relative
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Figure 5.32 – Low-mass analysis: expected and observed limits on the fiducial cross
section times branching ratio σfid ·B of a narrow resonance as a function of the
resonance mass mX in the 65-110 GeV mass range. The green and yellow bands show
the ±1σ and ±2σ uncertainties on the expected limit.

width ΓX/mX) scans are shown in Fig. 5.35. The 2D p value is scanned in 2 GeV
steps in mX in the mass range [400, 2800] GeV and steps of 0.5% in ΓX/mX in the
relative width range [0, 10%].

The most significant excess is observed for mX around 684 GeV for the NWA
model, corresponding to a 3.29σ local significance. One can also check the deviation
of the parameters after the fits (“pulls”) at this mass point as the evidence for the
various biases from the systematic uncertainties. The pulls of the fit parameters
for mX = 684 GeV are shown in Fig. 5.36. Only the signal mass resolution nuisance
parameter is pulled a little bit (still within the uncertainty on the signal mass resolution),
as the data prefer a slightly wider resonance.

The global significances corresponding to the maximum local significances observed
(at 684 GeV) in the analyses are calculated using 1000 pseudo-experiments, following
the method described in Sec. 5.7.3. For a local significance of 3.29σ in the scalar
analysis, the global significance is found to be (1.3±0.06)σ. The uncertainties quoted
here on the global significance value come from the generated toy sample sizes. The
global significance is also computed with the asymptotic formula, and the results are
found to be the same.
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Figure 5.33 – Low-mass analysis: expected upper limits on the fiducial cross section
times branching ratio σfid ·B as a function of the resonance mass mX in the 65-110
GeV mass range. The black curve represents all the systematic uncertainties are
considered; the blue curve represents that only the spurious signal uncertainty in
considered; the red curve represents that no systematic uncertainties are considered.

Both expected and observed limits are produced based on the asymptotic for-
mulas[71] to determine the fiducial cross section value corresponding to 95% C.L.

exclusion. One-dimensional fiducial limit scans as function of mX limit are shown
for different relative width ΓX/mX in Fig. 5.37. In addition, the 2D expected and
observed limits are given in Fig. 5.38 in the mass range [400,2800] GeV.

While limits in Figs. 5.37 and 5.38 are computed using the asymptotic approxi-
mation, one must consider the case where the statistics in the data begin to run out
(usually called “deep Poisson” regime). When the expected number of data events is
too small, the asymptotic approximation does not reflect the true distribution anymore
and usually leads to unphysical results[71]. In this regime (above mX = 2400 GeV for
the high-mass analysis), the limits should be set using pseudo-experiments instead.
As an example, Fig. 5.39 shows the upper limits (black) for a NWA spin-0 resonance
as a function of mX , obtained with asymptotic approximation and toys (blue). It can
be seen clearly that in the high-mass tail and some other low event count regions,
the limits obtained with asymptotic approximation tend to be over-optimistic. Simi-
lar studies are also done for the spin-2 search. However, limit calculations for each
resonance mass and for different signal width are extremely CPU consuming.8 The
toy-based expected and observed limit computation is not fully completed yet.

8With the application of the fast distribution sampling technique using linearized likelihood[76],
the computation time has been significantly reduced.
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Figure 5.34 – High-mass analysis, spin-0 search: observed scan of the p-value for the
background-only hypothesis as a function of the assumed mass, for various values of
ΓX/mX for the full 139 fb−1 dataset.

Graviton results

The 2D p-value scans (with respect to mG∗ and the coupling k/M̄pl) for the
background-only hypothesis are shown in Fig. 5.40, in the mass range [500, 2800] GeV
and in the coupling range [0.01, 0.1]. In addition, one-dimensional p-value scans as a
function of graviton mass are shown for different values of coupling in Fig. 5.41.

The most significant excess is also observed for mG∗ around 684 GeV and a
coupling of 0.01, corresponding to 3.29 σ local significance. This corresponds to a
global significance of (1.36± 0.06)σ, which is evaluated for a search region defined
as 500<mG < 2800 GeV, 0.01< k/M̄pl < 0.1, based on an ensemble of 1000 pseudo-
experiments.

The expected and observed limits are computed for the range [500, 2800] GeV
0.01 < k/M̄pl < 0.10. The two-dimensional scan results are shown in Fig. 5.42. In
addition, one-dimensional limit scans are shown for certain three coupling values
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Figure 5.35 – High-mass analysis, spin-0 search: observed two-dimensional scan of the
p-value, converted to significance, for the background-only hypothesis, as a function of
the probed resonance mass mX and relative natural width ΓX/mX for the full 139
fb−1 data.

in Fig. 5.43. Above mX = 2400 GeV where the data runs out, the expected and
observed limits are obtained with pseudo-experiments, as shown in the blue curves.
The theoretical predictions for an RS1 graviton are also shown in the one-dimensional
scan plots, with a theoretical systematic uncertainty computed using all the 100 eigen-
value variations of the nominal PDF set. Compared with the theoretical predictions,
The RS1 graviton model is excluded for mG∗ below 2.2, 3.9 and 4.5 TeV for coupling
values of 0.01, 0.05 and 0.1 respectively.

5.9 Conclusion

Conclusions of the low-mass and high-mass analyses are summarized in this section.
Previous results published by the ATLAS and the CMS experiments are also discussed,
in order to provide an overall picture of the search for a new resonance in the diphoton
final state.

5.9.1 Low-mass analysis

A search for a spin-0 narrow-width resonance decaying to a pair of photons in the
invariant mass range [65, 110] GeV is presented, using 80.4 fb−1 of pp collision data
collected at

√
s= 13 TeV. This search is limited by systematic uncertainties, with the
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Figure 5.36 – High-mass analysis, spin-0 search: pulls of fit to data for mX = 684 GeV,
where the largest local significance is observed. The post-fit effect of each systematic
source considered in the fit is also shown.
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dominant uncertainty arising from the choice of functions modeling the continuum
background. No significant excess above the Standard Model expectation is found, the
global significance is estimated to be 2.4σ. The observed 95% C.L. upper limits are
set on the fiducial cross section times branching ratio, between 30 to 101 fb depending
on the diphoton invariant mass.

This search is an update to the search in 2014 with 20.3 fb−1 of Run 1 data
recorded with the ATLAS detector at

√
s= 8 TeV[53]. The limits are improved a little

compared to the previous result, however the expected improvement coming from the
increased luminosity is not reached. A similar search for a low-mass diphoton resonance
in the mass range [70, 110] GeV was carried out by the CMS collaboration in 2017 as
well[54], using 19.7 fb−1 data collected at

√
s= 8 TeV and 35.9 fb−1 data collected

at
√
s = 13 TeV. A small excess was observed at a mass of 95 GeV, with a global

significance of 1.3σ. Our result could not exclude this excess, however the p-value
as a function of mX is also checked with the spurious signal systematic uncertainty
removed, and proves that we would still be sensitive to the CMS excess if the analysis
were not systematic-limited. This motivated us to treat the systematic uncertainty on
the choice of background function more carefully, and both the high-mass analysis and
the ongoing low-mass analysis with full Run 2 data use the functional decomposition
method to improve our estimation on this systematic uncertainty.

5.9.2 High-mass analysis

Searches for new resonances are also presented in the high-mass range, using the
full Run 2 data that corresponding to an integrated luminosity of 139 fb−1, collected
at
√
s= 13 TeV. The analyses are optimized to search for a spin-0 scalar resonance

with mass above 200 GeV, and a spin-2 graviton predicted by the Randall-Sundrum
(RS) model with mass above 500 GeV. Thanks to the optimization of the analysis
selection and the background smoothing technique, a better sensitivity for resonances
above 1 TeV is achieved and the systematic uncertainty on the choice of the analytic
function to model the background is no longer a limitation. No significant excess above
the Standard Model expectation is found, while the most significant excess is observed
at mX = 684 GeV for the spin-0 narrow-width model and for the spin-2 graviton
model (k/M̄pl), corresponding to 3.29σ local significance. The global significance
corresponding the the maximum local significance is found to be 1.30σ and 1.36σ
respectively for the two models. In the spin-0 search, the upper limits are set on the
fiducial cross section times branching ratio for a narrow-width resonance, between
12.5 fb to 0.03 fb in the mass range from 160 to 2800 GeV. In the spin-2 search,
the upper limits are set on the total cross section times branching ratio for different
assumptions on the graviton coupling and mass. For k/M̄pl = 0.1, the observed upper
limits are set between 3.2 fb to 0.04 fb in the graviton mass range from 500 to
5000 GeV.
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Previously the search for high-mass spin-0 and spin-2 RS graviton resonances was
performed with the 2015 data corresponding to 3.2 fb−1[77]. Near a mass of 750 GeV,
an excess of 3.9σ and 3.8σ was found for the spin-0 and spin-2 models respectively. In a
similar search with 19.7 and 3.3 fb−1 data collected at

√
s=8 and 13 TeV respectively,

the CMS collaboration also claimed an 3.4σ excess compatible with a narrow-width
resonance with a mass of about 750 GeV[78]. However, this excess was not seen again
by the ATLAS collaboration in the updated search in 2016 data or in the present
analysis, and was probably just a statistical fluctuation in data. In the combined 2015
and 2016 dataset corresponding to 37 fb−1[52], the largest local derivation from the
Standard Model expectation is 2.6σ for a spin-0 narrow-width signal near 730 GeV, and
3.0σ for a spin-2 k/M̄pl = 0.3 graviton signal near 708 GeV. Nevertheless, much better
limits were obtained in the present analysis compared to 37 fb−1 analysis thanks to
the optimization and the increased luminosity.
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Figure 5.37 – High-mass analysis, spin-0 search: expected and observed limit on the
fiducial production cross section limit σfid as a function of the resonance mass mX , for
various values of the relative signal width ΓX/mX for the combined 139 fb−1 dataset.
Results shown in these plots are obtained with asymptotic formulas.
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Figure 5.38 – High-mass analysis, spin-0 search: expected and observed two-dimensional
limit on the fiducial production cross section σfid as a function of the resonance mass
mX and relative natural width ΓX/mX .
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(a)

Figure 5.39 – High-mass analysis, spin-0 search: expected and observed limit on the
fiducial production cross section limit σfid as a function of the resonance mass mX , for
a NWA resonance. For masses greater than 2400 GeV, pseudo-experiments are used
to derive the expected (blue dashed line) and observed (blue line) limits. In addition,
pseudo-experiments are also used to compute a limit at several lower masses (blue
dots) to shwo the deviation of the asymptotic approximation in these low event count
regions.

188



5.9. Conclusion

500 1000 1500 2000 2500

 [GeV]
G*

 m

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

P
l

M/
k 

0

0.5

1

1.5

2

2.5

3

3.5 ]
σ

 L
o

c
a

l 
s
ig

n
if
ic

a
n

c
e

 [

ATLAS Internal ­1 = 13 TeV, 139 fbs Spin­2

Figure 5.40 – High-mass analysis, spin-2 search: observed two-dimensional scan of the
p-value for the background-only hypothesis, as a function of the probed resonance
mass mG∗ and coupling k/M̄pl for the full Run-2 dataset.
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Figure 5.41 – High-mass analysis, spin-2 search: observed scan of the p-value for the
background-only hypothesis as a function of the assumed mass, for various values of
k/M̄pl. The p-value results are derived only for the full Run-2 dataset.
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Figure 5.42 – High-mass analysis, spin-2 search: expected and observed two-dimensional
limit on the total production cross section times branching ratio to two photons
σ×BR(G∗→ γγ) for the RS1 graviton as a function of the resonance mass mG∗ and
relative coupling k/M̄pl.
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Figure 5.43 – High-mass analysis, spin-2 search: expected and observed limit on the
total production cross section times branching ratio to two photons σ×BR(G∗→ γγ)
for the RS graviton as a function of the resonance mass mG∗ , for various values of
the signal coupling k/M̄pl for the full Run 2 dataset. The theoretical predictions for
an RS1 graviton are shown (red) along with the expected and observed limits using
pseudo-experiments (blue).
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Conclusion

It has been a long journey for the elementary particle physics since the first thoughts
of peeking inside the atoms and the nucleus. Our largest and most powerful tool
nowadays for particle physics researches, the Large Hadron Collider, started to deliver
proton-proton collision data since 2009. Over the years, about 26 fb−1 of pp collisions
at
√
s= 7 and 8 TeV were delivered to both ATLAS and CMS during the first run of

the LHC, and 147 fb−1 of pp collisions were collected at
√
s= 13 TeV by the ATLAS

detector during the whole Run 2. The long shutdown for the purpose of maintaining
and upgrading of the LHC began in December 2018, aiming for higher centre-of-mass
energy and luminosity. In 2012, the discovery of the Higgs Boson filled in the last
missing piece of the Standard Model, while the Standard Model is still incomplete as
an ultimate answer and experimentalists are keep searching for signs of new physics
beyond the Standard Model. The journey is far from end.

All the exciting discoveries and reliable measurements own to the precise recon-
struction and calibration of the physics objects in the ATLAS detector. In this thesis,
one of the systematic uncertainty of the energy calibration of photons is focused on.
While the electron-to-photon extrapolation is performed smartly assuming the energy
scale obtained from electron samples are also valid for photons, this photon-specific
uncertainty arises from the difference of an energy-dependent mismodeling of the
lateral shower shape between electron and photon. To quantity this effect, the lateral
energy leakage outside a given cluster in the electromagnetic calorimeter is studied,
and its difference between data and MC, electrons and photons (“double difference”)
is taken as an additional systematic uncertainty in the photon energy calibration. The
double difference is measured in different η and ET regions using Z → µµγ sample,
and photons from diphoton sample are also used for the first time as an extension and
cross-check of the study.

In parallel, searches for new resonances decaying to photons pairs are also performed.
The two presented analyses share a common strategy: one searches for a spin-0 resonant
state in the low-mass region using 80 fb−1 of data collected in 2015-2017, the other
searches for a spin-0 resonance and a spin-2 graviton excitation predicted by the
Randall-Sundrum model with one warped extra dimension, using 139 fb−1 of full Run
2 dataset. Both analyses are updates to previous ATLAS and CMS results. Although
no significant excess with respect to the Standard Model expectation is observed
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considering the look elsewhere effect, better upper limits are set thanks to the analysis
optimization and increased luminosity. It is also worth mentioning that the Functional
Decomposition method is introduced for the first time in the high-mass background
modeling procedure, and the corresponding systematic uncertainty on the choice of
the analytical function describing the non-resonant background. The search will carry
on with the benefit of larger statistics as well as the challenge of much higher pile-up
condition in the coming Run 3.
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Appendix A

Stitching of the sliced MC
background samples

As introduced in Sec. 5.1, the background MC samples are sliced in mγγ for both
low-mass and high-mass analyses, in order to maximize the statistics over the whole
search range. However, the smoothness of the template is no longer guaranteed, because
the statistical precision of the generated event yields exceeds the precision of the cross
section corresponding to each MC slice, which is only accurate to percent-level. At a
consequence, significant discontinuities appear at each of the mγγ edges where two
sample slices meet, and lead to large spurious signals. Taking the high-mass analysis
as an example: Fig A.1 shows the background only fit in the low-mass range with the
PowLog-0 function using two MC slices. A discontinuity can be clearly seen around
the connecting point of the two slices at 175 GeV.

In order to mitigate this effect, for each connecting point of two MC slices, an ad-hoc
scaling correction is applied to one of the two slices. Since the background modeling is
irrelevant to the overall normalization of the background template, the choice of the
MC slice to be corrected is not important. This scaling correction is determined based

150 160 170 180 190 200 210 220 230 240 250
myy

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

E
nt

rie
s 

/ 1
 G

eV ATLAS Internal
B-only fit )=0.00982χs=1 ,  p(

Power-law

150 160 170 180 190 200 210 220 230 240 250
 [GeV]γγm

4−
2−
0
2
4

pu
lls

Figure A.1 – High-mass analysis: fit to themγγ distribution of the diphoton background
MC template in the range [150, 250] GeV, obtained from the 90-175 GeV and 175-
200 GeV MC slices. PowLog-0 (Eq. 5.10) is used in the fit.
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Figure A.2 – High-mass analysis: fit to themγγ distribution of the diphoton background
MC template in the range [150, 250] GeV, obtained from the 90-175 GeV and 175-
200 GeV MC slices. PowLog-0 (Eq. 5.10) is used in the fit.

on the quality of the background-only fit after applying the correction.1 Figure A.2
shows the backgroun-only fit to the background template after applying a scaling of
1.025 to the 90-175 GeV slice. Comparing to the result with raw background template
(Fig. A.1), the discontinuity around 175 GeV improves a lot. The overall fit quality
also improves dramatically from p(χ2)< 0.01 to p(χ2) = 0.12.

Note that the scaling correction that gives the best fit quality might not be
the “correct” one. In order to estimate the potential systematic uncertainty due to
the stitching procedure described above, one mass slice (1400-2000 GeV) is scaled
incrementally, and the fit quality p(χ2) is found to follow a gaussian distribution with
the scaling. The standard deviation σ of this gaussian distribution is therefore taken
as the “uncertainty” of the scaling. Alternative background templates are built with
σ up and down, and all the variations of template are checked with spurious signal
test. In the end, the systematic uncertainty due to stitching procedure only has minor
effect on the final FD smoothed background template.

1The spurious signal is not checked until the background stitching is finished, in order to minimize
any potential bias due to the choice of the scaling correction.
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Appendix B

Functional Decomposition
smoothing

As discussed in Sec. 5.4.1, the raw background template should be smoothed before
the spurious signal test in order to suppress the overall effect of the statistical fluctua-
tions. The basic steps of Functional Decomposition (FD) technique are introduced as
following.

First, the input dataset (background template) is modeled by a set of orthonormal
functions built from powers of exponential functions. The set of non-orthognal functions
function {Fn} is orthogonalized to generate the orthogonal function set {En}, where:

Fn(z) =
√

2e−nz (B.1)
En(z) =∑n

m=0 dnmFn(z) (B.2)
dnm =

√
n(−1)n+m( 2m

n+m)∏m−1
i=1

m+i
m−i

∏n
i=m+1

i+m
i−m (B.3)

the dnm can be calculated recursively[68]. The variable z denotes a transformation
of the variable of interest, mγγ :

z = (
mγγ−m0

γγ

λ
)α (B.4)

where m0
γγ is the lower mass cutoff of the spectrum. In the high-mass analysis,

m0
γγ is set to be 150 GeV. The hyperparameters λ and α are undefined yet, they

are determined through optimization during a log-likelihood fit to the background
template.

In our case, the signal is absent and FD can model a non-resonant background
shape by introducing another hyperparameter Nbkg, denoting the upper limits of the
number of exponential functions allowed in the smoothing fit. It means that the
function series is truncated after Nbkg terms, and the background model B(z) is given
by:



Appendix B. Functional Decomposition smoothing

B(z) =
Nbkg−1∑
n=0

bnEn(z), bn =
cn, n < Nbkg

0, n≥Nbkg
(B.5)

Note that if the allowed maximum number of exponential functions is too high,
the FD would try to fit all the fluctuations and fail to provide a smoothed template.

Finally, a log-likelihood is constructed and minimized by scanning over the three
hyperparameters λ, α and Nbkg. The resulting function with optimized hyperparame-
ters are used to model the input background spectrum, in a similar way to a Fourier
analysis. The smoothed background model is shown in Fig. 5.17.
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