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Resumo 

Neste trabalho discutimos a quantização dos campos escalar e vetorial, com massa 

nula, no espaço-tempo de um buraco negro estático sem carga e realizamos algumas aplicações. 

Primeiramente analisamos a radiação emitida por uma carga escalar girando ao redor de um 

buraco negro de Schwarzschild, tanto numericamente quanto analiticamente no limite de baixas 

freqüências. Obtemos que, para as órbitas circulares estáveis mais internas possíveis segundo a 

Relatividade Geral, a potência emitida é cerca de 20 a 30% menor do que a obtida no espaço- 

tempo de Minkowski, calculada utilizando duas diferentes possibilidades para descrever a in- 

teração gravitacional no espaço-tempo plano. Investigamos também a taxa de resposta de uma 

carga elétrica estática no espaço-tempo de Schwarzschild interagindo com fótons da radiação 

Hawking. Encontramos um resultado finito para esta taxa de resposta, que é calculada exata- 

mente, em contraste com o resultado divergente no caso de uma carga elétrica uniformemente 

acelerada no espaço-tempo de Minkowski. Concluímos que a igualdade encontrada entre a taxa 

de resposta de uma carga escalar estática interagindo (í) com a radiação Hawking no espaço- 

tempo de Schwarzschild e (m) com o banho térmico de Fulling-Davies-Unruh no espaço-tempo 

de Rindler não se verifica para o caso de uma carga elétrica. 

Palavras chave: Teoria Quântica de Campos, espaços-tempos curvos, buraco negro, radiação 

eletromagnética, radiação escalar, radiação Hawking. 

Áreas de conhecimento: 1.05.01.02-9, 1.05.01.03-7, 1.05.02.01-7, 1.05.03.01-3. 
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Abstract 

In the present work we discuss the quantization of the massless scalar and vector fields 

in the spacetime of a chargeless static black hole and some associated applications. First we 

analyze the scalar radiation emitted from a source rotating around a Schwarzschild black hole 

both numerically and analytically in the low-frequency limit. We obtain that as the source 

approaches the innermost stable circular orbit according to General Relativity the emitted 

power is about 20 to 30% smaller than what would be obtained in Minkowski spacetime, where 

we use two diíferent assumptions to describe the gravitational interaction in the later case. 

Next, we investigate the response rate of a static electric charge interacting with photons from 

Hawking radiation. We find a finite result for this response rate, which is computed exactly, 

in contrast with the divergent result associated with the infrared catastrophe obtained for the 

case of an electric charge uniformly accelerated in Minkowski spacetime. We conclude that 

the equality found for the response rate of a static scalar source interacting with (i) Hawking 

radiation in Schwarzschild spacetime and with (ii) the Fulling-Davies-Unruh thermal bath in 

Rindler spacetime does not hold for electric charges. 

Keywords: Quantum field theory, curved spacetimes, black hole, electromagnetic radiation, 

scalar radiation, Hawking radiation. 
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Capítulo 1 

Introdução 

Três das quatro interações fundamentais da natureza, a eletromagnética, a nuclear fraca e a 

nuclear forte, têm seu grande sucesso calcado em sua elaboração como teorias quânticas de 

campos desenvolvidas no espaço-tempo plano de Minkowski. Tais teorias foram e continuam a 

ser experimentalmente comprovadas com grande precisão. 

A interação gravitacional é explicada de maneira bastante elegante e precisa através da 

Relatividade Geral einsteiniana, também testada com uma exatidão que nada deixa a desejar 

às teorias das demais interações, tratando-se em sua essência de uma teoria clássica de campos, 

que descreve a interação gravitacional através da curvatura do espaço-tempo. 

Apesar de inúmeras terem sido as tentativas de se quantizar a gravitação, a Física ainda 

aguarda por uma teoria quântica de campos que venha incrementar a Relatividade Geral de 

maneira completa e que possa ser experimentalmente comprovada. 

Enquanto alguns físicos empenharam-se na busca de uma gravitação quântica, outros 

dedicaram-se a elaborar uma teoria surgida da combinação dos ingredientes fundamentais da 

Teoria Quântica de Gampos e da Relatividade Geral, que ficou conhecida como Teoria Quântica 

de Campos em Espaços Curvos (TQCEC) [1, 2]. A TQCEC dedica-se a investigar as con- 

seqiiências de se definir uma teoria quântica de campos para a matéria e suas interações sobre 

um espaço-tempo curvo clássico subjacente. Apesar de se tratar de uma teoria efetiva, incapaz 

de descrever fenômenos físicos em regimes extremos, como na escala de Planck, a TQCEC tem 

sido responsável pela predição de importantes efeitos, como a criação de partículas em uni- 

9 



versos em expansão [2], a radiação térmica obtida para observadores acelerados [3, 4] (efeito 

Fulling-Davies-Unruh), e a evaporação de buracos negros ocasionada por efeitos quãnticos [5] 

(radiação Hawking), este último em total contraste com as predições clássicas. 

Sob o ponto de vista de ser uma teoria efetiva, um desenvolvimento equivalente à 

TQCEC pode ser encontrado na Física antes do advento da Eletrodinâmica Quântica (EDQ). 

Previamente ao desenvolvimento da quantização do campo de Maxwell em Minkowski, realiza- 

vam-se cálculos semiclássicos nos quais o campo do elétron (descrito pela equação de Dirac) era 

quantizado, mas o campo do fóton era considerado como clássico. Naquele contexto semiclássico 

puderam-se obter resultados que estão em completo acordo com a EDQ [6]. 

Em espaços-tempos planos a invariância de Lorentz garante uma caraterização coerente 

dos estados quãnticos de um sistema físico. Tal simetria garante a existência de um estado de 

vácuo quântico preferencial, que é o estado no qual todos os observadores inerciais concordam 

com a ausência de partículas, conhecido como vácuo de Minkowski. No entanto, um espaço- 

tempo curvo não possui a simetria de Lorentz global. No caso de espaços-tempos estacionários, 

que possuem um campo de Killing tipo tempo global, ainda podemos selecionar os estados 

quãnticos de forma análoga e conseqüentemente extrair o conteúdo de partículas da teoria. 

No espaço-tempo de Minkowski temos na verdade dois campos de Killing tipo tempo, 

o campo de Killing associado a observadores estáticos e outro associado a observadores uni- 

formemente acelerados neste espaço-tempo. Isto nos permite selecionar dois conjuntos dis- 

tintos de estados quãnticos no espaço-tempo plano, permitindo inclusive a definição de dois 

estados de vácuo, o vácuo de Minkowski definido acima e o chamado vácuo de Rindler. É 

esta dupla possibilidade que nos capacita dizer que um detector uniformemente acelerado no 

vácuo de Minkowski com aceleração própria constante a, comporta-se como se estivesse em um 

banho térmico de partículas com temperatura o:/27r, no sistema natural de unidades, no qual 

c = G = h = kB = l, que será adotado ao longo de todo este trabalho. Este é essencialmente o 

efeito Fulling-Davies-Unruh. 

No caso do espaço-tempo de Schwarzschild temos apenas um campo de Killing tipo 
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tempo, que é aquele associado a observadores estáticos nesta geometria, i.e., observadores 

parados fora do horizonte de eventos do buraco negro. O estado de vácuo natural para estes 

observadores é o vácuo de Boulware, que é definido como sendo o estado quântico no qual tais 

observadores não vêem partículas. (A definição formal dos estados de vácuo mencionados aqui 

será apresentada ao longo deste trabalho.) E com relação a estes observadores que a quantização 

dos campos bosônicos escalar e vetorial sem massa é desenvolvida na literatura e nesta tese. 

Uma das dificuldades na quantização dos campos bosônicos na geometria de Schwarzs- 

child está na determinação dos modos normais associados a estes campos. Mais precisamente, 

na determinação da forma analítica da função radial destes modos. Pelo fato destas funções não 

poderem ser escritas em termos de expressões analíticas previamente existentes na literatura, 

teremos que ou determiná-las numericamente, ou determiná-las dentro de certas aproximações, 

como no limite assintótico ou no limite de baixas freqüências, que caracteriza o título deste 

trabalho. Mesmo no limite de baixas freqüências, podemos aplicar as aproximações encontradas 

aqui em vários fenômenos físicos, ora obtendo resultados aproximados, como no caso da radiação 

emitida por uma carga escalar (que chamaremos aqui de fonte) girando ao redor de um buraco 

negro, ora obtendo resultados exatos, como no caso da radiação emitida por uma carga parada 

fora de um buraco negro. Além disso, de posse deste resultado exato, podemos compará-lo com 

o obtido por uma carga uniformemente acelerada em Minkowski, e averiguar se existe algum 

tipo de equivalência quântica entre os mesmos. 

A quantização do campo escalar na geometria de um buraco negro estático sem carga 

será revisitada no capítulo 2. No capítulo 3 calcularemos a radiação escalar emitida por uma 

fonte girando ao redor de um corpo estelar, usando várias abordagens, culminando com a 

aplicação dos resultados obtidos no capítulo 2 para calcular numericamente a analiticamente 

(este último na aproximação de baixas freqüências) a radiação emitida por uma fonte girando 

ao redor de um buraco negro. A quantização do campo eletromagnético no espaço-tempo de 

Schwarzschild será apresentada no capítulo 4, utilizando a quantização canônica e o método de 

Gupta-Bleuler adaptados para o espaço-tempo exterior ao horizonte de eventos de um buraco 
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negro. Determinaremos a normalização dos modos relevantes do campo do fóton no limite de 

baixas freqüências. No capítulo 5 utilizaremos o mesmo procedimento do capítulo 4 para quan- 

tizar o campo de Maxwell no espaço-tempo plano e realizar algumas aplicações que comprovam 

a consistência de nosso desenvolvimento, além de rediscutir o problema da radiação emitida 

por uma carga elétrica uniformemente acelerada em Minkowski. A emissão de radiação por 

uma carga elétrica parada fora de um buraco negro de Schwarzschild é calculada no capítulo 

6 e comparada com o resultado obtido no caso de uma carga uniformemente acelerada em 

Minkowski com a mesma aceleração própria. No capítulo 7 faremos nossos comentários finais e 

apresentaremos nossas conclusões. 

Em todo este trabalho estaremos adotando o sistema natural de unidades, no qual 

c=G = h = kB = l, bem como a signatura (+, —, —, —). 
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Capítulo 2 

Quantização do campo de 

Klein-Gordon na geometria de 

Schwarzschild no limite de baixas 

freqüências 

Neste capítulo revisitaremos a quantização do campo escalar sem massa no espaço-tempo de 

um buraco negro estático sem carga [7]. 

Na seção 2.1 determinaremos os modos normais e apresentaremos a quantização canô- 

nica do campo escalar. Os modos serão normalizados nas regiões assintóticas (muito próximo e 

muito distante do horizonte de eventos do buraco negro) na seção 2.2. Na seção 2.3 obteremos 

a normalização dos modos na aproximação de baixas freqüência.s. 

Os resultados obtidos aqui serão utilizados no capítulo seguinte, onde estudaremos a 

emissão de radiação por uma fonte girando em torno de um buraco negro de Schwarzschild. O 

processo de quantização do campo escalar em Schwarzschild antecipa vários aspectos envolvidos 

na quantização do campo de Maxwell na mesma geometria, que será desenvolvido no capítulo 

4 desta tese. 
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2.1 Equação de Klein-Gordon em Schwarzschild: Deter- 

minação dos modos normais 

Um buraco negro estático e sem carga, com massa M, é descrito pelo elemento de linha 

de Schwarzschild, a saber 

ds^ — gfj,udx^dx‘' = f{r)dt^ — f{r) ^dr^ — r^dO"^ — dgP' , (2.1) 

onde /(r) = 1 — 2M/r. 

A menos quando especificarmos o contrário, estaremos utilizando ao longo de todo este 

trabalho a convenção de soma' de Einstein, pela qual índices repetidos estarão sempre sendo 

somados. 

De (2.1), obtemos as componentes da métrica em questão, nas coordenadas polares 

esféricas definidas acima, como sendo 

= diag(/, -/"\ -r^ -r^sen^^). (2.2) 

Consideremos nesta geometria um campo escalar não-massivo livre, (f>{x^), cuja ação 

clássica invariante é dada por 

S = jd‘^xC, (2.3) 

onde 

£==^(V^^0)(V^0) (2.4) 

é a densidade de lagrangiana e g = det{g^^), de forma que d^Xy/^ é o elemento de volume 

(quadridimensional) invariante do espaço-tempo de Schwarzschild. 

A equação dinâmica de Euler-Lagrange, obtida pelo princípio da ação extrema. 

ÔS _dS ^ ( dS \_ 

5<t>- dcj> 

é a equação de Klein-Gordon homogênea 

(2.5) 

04, = = 0 (2.6) 
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Os modos de freqüência positiva com relação ao campo de Killing tipo tempo dt, 

txe “ (üJ>0) , (2.7) 

são soluções da equação de Klein-Gordon homogênea no espaço-tempo de Schwarzschild, que 

pode ser escrita como [8] 

d 

Usando (2.2), podemos reescrever (2.8) como 

9 
iiv 9Uujlm 

dx'' 
= 0 . (2.8) 

/ dr \ or j 
‘^ulm — 0 ) 

onde 

= cotei- 1 ^ 

(2.9) 

(2.10) 
09"^ d6 (senO)'^ d(p^ 

Em um espaço-tempo estático e esfericamente simétrico, como é o caso do espaço-tempo de 

Schwarzschild, os modos podem ser escritos na forma 

i,S 
(w>0) , 

V 7T r 

com 0 fator introduzido por conveniência. Usando (2.11) e que 

(2.11) 

V^Yim{9,V^) = +l{l + mm{d,<P) (2.12) 

em (2.9), obtemos a equação diferencial a ser satisfeita pela função radial a saber 

1 d d\ u? l{l + l) 

dr i ^ dr j / ”*” 
>5í(0' 

= 0, 

ou ainda 

tô(0=^Vf/(0 1 

com o seguinte potencial de espalhamento (vide figura 3.1): 

2M' 

(2.13) 

(2.14) 

Vs{t) = 1 - 
2M 1(1 + 1) 

(2.15) 
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Em termos da coordenada adimensional de Wheeler 

(2.16) 

a equação (2.14) pode ser reescrita como 

+4iWV5[r(x)] 

Para ortonormalizar os modos lançamos mão da definição do produto interno 

de Klein-Gordon [2],-a saber 

(2.17) 

<yKG{<Í>\\ <t>2) = i ^ [(/»! 7T2;, - (f)^ , (2.18) 

com n^, onde = \J—g^d^x é o elemento de (tri)volume invariante da 

superfície de Cauchy^ é o vetor unitário ortogonal à superfície tipo espaço E^^l, dire- 

cionado para o futuro, e é o determinante da métrica restrita a E^^l. Além disso 

1 dC 
TT;, = 

a(v^0) 

Usando-se (2.4), obtemos 

7Tp = ^ , 

de forma que tti^ = e 7T2^ = V^(j)2, e podemos reescrever (2.18) como 

<^Ka(<l>u4’2) = i / „, - (V„(6:)Í2l . 
«/Ew) 

o momento clássico ■k{x^) conjugado ao campo é definido como 

(2.19) 

(2.20) 

(2.21) 

7T = n^TT M > (2.22) 

onde é 0 versor normal definido acima. Note-se que o momento tt é um escalar. No caso 

desenvolvido aqui tt = é a derivada de (j) na direção do versor n^. 

^Uma superfície de Cauchy em uma variedade é um conjunto fechado acronal cujo domínio de dependência 
é toda a variedade em questão. No espaço-tempo de Minkowski, e.g., t = constante constitui uma superfície de 
Cauchy. 
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Definindo-se a corrente 

/(01,02) = 0l7T2^ - 7rr02 = 0I(V^02) ~ (V^0Í)02 , (2.23) 

pode-se ainda reescrever o produto interno (2.18) como 

O-Kg(01,02) = i j^(01,02) . (2.24) 
y £(3) 

Vale ressaltar que, desde que 0i e 02 satisfaçam a equação de Klein-Gordon, ^01 = Ü02 = 0, 

a corrènte (2.23) é conservada, i.e., 

V^i^(0i, 02) = [0I(V^02) - (V^0O02] = 0 . (2.25) 

Vamos agora mostrar que, para o caso em que 0i e 02 são soluções da equação de Klein- 

Gordon (2.6), o produto interno <7kg{4>i^4>2) definido em (2.18) é independente da escolha da 

superfície i.e., 

. <^/rG(01) 02)ei = O'A'g(015 02)ll2 ) (2.26) 

sendo Ej, e E2 duas superfícies diferentes que não se interceptam. Para provar isso, suponhamos 

que V seja um quadrivolume limitado por Ei e E2, e por fronteiras tipo tempo nas quais 

01 = 02 = 0. Podemos então escrever 

<^/Cg(01, 02)e2 “ ^A'g(01. 02)si = í / Ím(<i^i)‘i^s) , (2.27) 
J dV 

onde fizemos uso de (2.24). Usando agora a versão quadridimensional do teorema de Gauss, 

podemos reescrever (2.27) como 

C^A'g(01,02)s2 — *^A'g(01)02)i:i = 7^(01,02) = 0 > (2.28) 

onde usamos (2.25) para obtermos a última igualdade, e que dV é o elemento de volume 

quadridimensional. Fica então provado que, para 0i e 02 soluções da equação de movimento, o 

produto interno de Klein-Gordon é independente da superfície escolhida. 
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Isto dito, podemos escolhê-la como sendo uma superfície com t = constante, que de- 

notaremos por Desta forma, para o espaço-tempo de Schwarzschild com coordenadas 

esféricas definidas em (2.1), temos 

  ^2 
= y—g^^'>drd9d(p = —j=sen9drdddtç , (2.29) 

v/ 

e 

= /-V2jm (2.30) 

Para quantizar o campo 4>{x^) vamos impor as relações de comutação a tempos iguais 

[$(í,x),ê(í,x')] = [n(í,x),n(í,x')] = 0 , (2.31) 

[$(í,x),n(í,x')] = í^^^(x-x') , (2.32) 

onde X e x' representam todas as componentes espaciais de e x'^, respectivamente, e 

íi = n^Il^ = . (2.33) 

Expandimos então o campo $(x^), que agora tem o status de operador quântico, em 

termos dos modos de freqüência positiva u^imi^^) e negativa ul^i^{x^), como 

, °° ^ roo . 
= / (^[y‘wlm{x^)àujlm + Ki^{x^)àliJ\ , (2.34) 

/=0 m=-í 

onde os coeficientes desta expansão, e operadores de aniquilação e criação, 

respectivamente. De (2.33) e (2.34) podemos escrever 

n„(i") = V„4. = 5: ^ / da. + (V„»:,„)âL„] . (2.35) 
l-Q m=-r^ 

(O momento canônico definido tal que [<l(í,x), fl‘^(í,x')] = íá^^^(x — x'), é dado por 

= v^n(x^)/no.) 

^Se uma variedade M tiver uma superfície de Cauchy ela será dita globalmente hiperbólica. Neste caso M 
/Q'\ 

poderá ser folheada por uma família a um parâmetro {e.g., t) de superfícies de Cauchy SJ , i.e., = R x S) . 
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Vamos agora determinar as relações de comutação entre os operadores a^jim e 

definidos em (2.34). Inicialmente requeremos que os modos u^im satisfaçam 

^Kg{.^ujpí ^ui'— ^^pp' à[ui iü ) , 

(^KGÍKp,U^'p') = 0 , 

onde p representa os números quânticos discretos l e m. Usando (2.21) e 

Uu '(jJp\ J <tj<g{Í, = i - (V„4') 

além de (2.31)-(2.33), podemos mostrar que 

[(^kgÍUojp, ^), ctkg{^, u^'p>)] = (^kg{uujp, u^'p>) = Mpp>5{u - üj') . 

Por outro lado, usando (2.21), (2.34), (2.36) e (2.37) obtemos 

^kgÍ^^wpi ^ ' à^p"Mppii, 
p" 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

CTKG{^,y'w’p') = '^àlj,p„Mp»pi , 
P" 

de onde segue que 

[(7kg{uujp,^),(^kg{^,'^w'p>)] = XI ^pp"[àup",àlj,p,ii]Mp»'p>, 
P",P"' 

(2.41) 

(2.42) 

onde resolvemos escrever explicitamente as somas em p. Concluímos então de (2.39) e (2.42) 

que 

[ôwp, àlp>] = {M-^)pp>6{u - u'). (2.43) 

Desta forma, exigindo que os modos u^im sejam ortonormalizados por este produto interno de 

Klein-Gordon como 

<^KG{Uu!lm,Uu!'l'm') ~ Ô{u — Uj')ÔuiÔ„ 

0'/('g(w*/^, Ucj'/'m') = 0 , 

(2.44) 

(2.45) 
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segue que 

(2.46) 

Procedendo de maneira análoga obtemos também que 

\P‘LjlmiÔ‘ui'Vm'\ \P‘uilm'>^w'Vm'\ ~ (2-47) 

O vácuo de Boulware [12], que denotaremos por |0)s, é o estado quântico no qual observadores 

estáticos (parados) fora do horizonte de eventos do buraco negro não medem nenhuma partícula. 

Ele é o estado aniquilado por todos os operadoes 

• âciiím|0)fí — 0 • 

O espaço de Fock usual é então construído aplicando-se os operadores de criação sobre o vácuo 

de Boulware. 

2.2 Forma assintótica normalizada dos modos Uujim 

A solução geral de (2.14)-(2.15) não é fácil de ser analisada [9], pois a mesma não pode 

ser expressa em termos de funções especiais disponíveis na literatura. No entanto, consegue-se 

obter suas soluções normalizadas na região espacial assintótica, assim como no limite de baixas 

freqüências. Nesta seção apresentaremos a forma analítica de ■05, nas proximidades do horizonte 

e no infinito, e determinamos sua normalização. Na seção seguinte encontraremos a forma 

analítica aproximada das soluções independentes de (2.14)-(2.15) no limite de u pequeno e, com 

o auxílio da forma assintótica encontrada nesta seção, determinaremos também a normalização 

de neste limite. 

Partindo de (2.21) e (2.11), usando (2.29), (2.30) e que 

r27T l*7T 
/ / de dipseneY*^{e,(p)Yi'm'{0,<p) = Sm5m'm , (2.48) 
Jo Jo 

obtemos 

0-KGÍUcjlm,U^'l'm') = — [uJ + Uj') 5mm' í (’”)05i(’') • (2-49) 
7T Jr-2M 
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No entanto, da equação diferencial (2.17), lembrando da relação (2.16) entre as variáveis r e x, 

podemos mostrar que 

roo 

Jr-2M 

1 

2M(u;2-a;'2) 

Desta forma, de (2.44), (2.49) e (2.50) obtemos 

1 

x—^+oo 

UJ — W 

I—v+oo 
2ttM 

U) 
S{u — u') 

(2.50) 

(2.51) 

que nos permite obter a normalização da forma assintótica de e, por conseguinte, de u^im- 

Note-se que o potencial (2.15) se anula tanto para r —>• 2M (x —oo) como para 

r -boo (x -Hoo). Sendo assim, da equação diferencial (2.17) para as funções 'tpiMiij'), segue 

que muito próximo e muito longe do horizonte de eventos do buraco negro, os modos 'ip^i'^{x) 

provenientes do horizonte passado H~ (horizonte do buraco branco), e os modos ip^i'^{x) prove- 

nientes do infinito passado tipo luz J~, podem ser escritos como [7] 

^^(g2iAí.x + 7^^g-2iMo,x) (r>2M) , 

2i‘+^A:;irjMcüx h\^\2Mux) (r»2M) , 
(2.52) 

(r>2M) , 
(2.53) 

2>l;^Ma;x[(-í)'+i/ií^^*(2Ma;x) -f {2Mux)] (r » 2M) , 

onde é a função esférica de Hankel ou função esférica de Bessel de terceiro tipo [10, 11], 

definida como 

hp^(x) = ji{x) + ini{x) . (2.54) 

Vale notar que h\^\x) (—exp(zx)/x para |x| » 1. Além disso ® 

\T^f são respectivamente os coeficientes de refiexão e transmissão, que satisfazem as seguintes 

equações: f = 1 , e = 1. De (2.51)-(2.53) obtemos as constantes 

de normalização das formas assintóticas de ip, 

— 4“^ —   
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onde, para tanto, precisamos lembrar da seguinte representação da função delta de Dirac: 

A forma assintótica normalizada dos modos Uu;im é então obtida substituindo-se os 

resultados desta seção em (2.11). 

2.3 Normalização dos modos no limite de baixas freqüên- 

cias 

Nesta seção encontraremos os modos de freqüência positiva e negativa, soluções da 

equação de Klein-Gordon homogênea no espaço-tempo de Schwarzschild, no limite de baixas 

freqüências e determinaremos sua normalização. Tal aproximação consiste em substituir as 

soluções de (2.17) por suas contribuições dominantes no limite de baixas freqüências. 

Após uma certa manipulação algébrica, podemos reescrever (2.14)-(2.15), com u = 0, 

de uma maneira conveniente, a saber 

í(i + 1) (^tó=o,í) } = 0. (2.56) 

Transformando esta equação diferencial na variável r para uma equação diferencial na variável 

(2.57) 

temos que (2.56) será satisfeita se e somente se 

(1 “ + l{l + 1) 
'2 i’5=o,Mr)y 

, (^ + 1) . 
= 0. (2.58) 

dz^ dz 

Esta é justamente a equação de Legendre [11] para '0f=o,í/('^ + l)i cujas duas soluções indepen- 

dentes são as funções de Legendre de primeiro e segundo tipos, Pi{z) e Qi(z), respectivamente. 

Desta forma, definindo a variável 

y = 
2M ’ 

(2.59) 
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podemos aproximar as duas soluções independentes de (2.14)-(2.15), no regime de baixas 

freqüências, por 

~ C'cÍ2/Qí(2?/- 1) , (2.60) 

€i"{y) ~ Cl^ymy-l). (2.61) 

Precisamos agora associar e nas regiões assintóticas, com e no 

limite de baixas freqüências. Para tanto devemos notar primeiramente que, no limite de baixas 

freqüências, é praticamente todo refletido de volta para o horizonte pelo potencial es- 

palhador Vs dado em (2.15). Uma vez que Pi{z) ~ para z S> 1 (r 2M), notamos que 'ipIJi 

cresce para além do máximo do potencial em direção a x —>■ +oo. Sendo assim, concluímos que 

toda a contribuição em x +oo para , no limite cu ^ 0, vem de iJjJi . 

Vejamos agora o caso do modos provenientes de J~~. No limite de baixas freqüências 

eles devem ser totalmente refletidos pelo potencial V5, de volta para õT’’*'. Como Qi{z) ^ 

— log|2: — para 2: « 1, notamos que ip^i cresce na medida em que nos aproximamos do 

. c 
horizonte. Concluímos então que toda a contribuição em z —>■ —00 para , no limite u; —>■ 0, 

vem de 

Feitas essas associações , podemos determinar as constantes e comparando 

as soluções radiais de (2.14), nos limites assintóticos e de baixas freqüências, i.e., compa- 

rando (2.60)-(2.61) nas regiões assintóticas apropriadas com (2.52)-(2.53) no limite de baixas 

freqüências., 

Para obtermos C^, usemos inicialmente que [13] 

(z « 1). (2.62) 

Além disso, sabemos de (2.16) e (2.59) que, na vizinhança do horizonte, i.e., no limite y >1 , 

x = y + ln(7/ -1) ^ ln(y - 1). 

Desta maneira podemos obter a forma assintótica de (2.60), na vizinhança do horizonte, como 

sendo 

Qi{z) ~ 2 
z + 1 

z - 1 - É- ^ k fc=l 

CL 
(^) ~ ^ ~ 0) • (2.63) 
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No entanto, de (2.52) conhecemos na vizinhança do horizonte (x —>■ —oo), para um valor 

arbitrário de u. Usando que « 1 + a:, para x C 1, obtemos a forma de no limite de 

baixas freqüências {2Mux <C 1), como sendo 

,5/ N _ fp^i’ (x) « Mx + i(l — TZ^i) (x —>■ —oo, 2Mux 1) , (2.64) 
. 2Mux 

onde fizemos uso de (2.55). Para que a expressão acima tenha o comportamento desejado 

no regime de baixas freqüências, concluímos que 7^^ ííí — 1 + 0{u). Desta forma podemos 

reescrever (2.64) como 

iplf{x) « 2Mx (x —>• —oo, 2Müjx 1) . 

De (2.63) e (2.65), concluímos que 

C'=4M, 

a menos de uma fase arbitrária. Portanto, podemos reescrever (2.60) como 

tí'V)«(-^ -1) . 

que é a aproximação válida no limite de baixas freqüências. 

O próximo passo é determinar em (2.61). Para tanto usamos que 

P<W « (^»D- 

Desta forma, de (2.61), (2.68) e (2.59), podemos escrever 

... (2Q! CL^ ( r 
2'(/!)2 2 \M) 

(r » 2M,lü « 0) . 

Por outro lado, de (2.53)-(2.55) podemos escrever, para x —> +oo e 2Mux <C 1, 

~ Mx[(-^)('+') + (^■)^'^^^7^;:;i]i,(2Ma;x) + 

íMx (-■i)^'"^^^ - Vii^Mujx) . 

Em seguida, usamos que 

ji{k) 
2^\ 

(2/ + 1)!! (2/ + 1)! 
A:' (A: < 1) , 

(2.65) 

(2.66) 

(2.67) 

(2.68) 

(2.69) 

(2.70) 

(2.71) 
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r„{k) « -{21 + 1)!! (k « 1) , 

e, de (2.16), que 

X 
2M 

(x -4 OO) , 

(2.72) 

(2.73) 

para reescrever (2.70) como 

2cj 

i {2l)\ p 

2u 2'/! 
(_i)d+l) _ (i)('+i)K^l (u,r)-‘ , (2.74) 

com r 2M e wr <C 1. Desta forma, de (2.69) e (2.74), obtemos que TZ^i « (—+ 0{u) 

e 

jj ^ ^n+i) i 

{2l)\{2l + l)\ 
(2.75) 

a menos de uma fase arbitrária. Substituindo (2.75) em (2.61), chegamos à seguinte expressão 

5, , 2‘^Hliy(Muy ^ f r \ , , 
’ (0^ T7-1 . (2-76) 

válida no limite de baixas freqüências. As expressões (2.67) e (2.76) determinam os dos modos 

normais (2.11) do campo escalar fora de um buraco negro de Schwarzschild, no regime de baixas 

freqüências. 
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Capítulo 3 

Radiação escalar emitida por uma fonte 

girando ao redor de um objeto estelar 

A análise da radiação emitida por partículas aceleradas na vizinhança de corpos estelares, tem 

tido papel fundamental na investigação de um dos maiores desafios da astrofísica, que é sem 

dúvida o da confirmação observacional da existência de buracos negros. Recentemente, alguns 

objetos estelares compactos em sistemas binários, com uma das componentes invisível, emitindo 

radiação na forma de raio-X, têm sido identificados como buracos negros, uma vez que análises 

criteriosas têm demonstrado que suas massas estão muito além dos limites aceitos para estrelas 

mortas, segundo a Relatividade Geral [14]. Existem também evidências indiretas da presença 

de buracos negros supermassivos no centro de galáxias [15]. No entanto, para obtermos uma 

confirmação experimental definitiva da existência de buracos negros, precisamos da observação 

de efeitos devidos a presença do horizonte de eventos dos mesmos. Tais confirmações deverão 

ser obtidas através de medidas precisas da radiação eletromagnética emitida pelos discos de 

acreção em volta de buracos negros [16, 17] e/ou da radiação gravitacional emitida pelas estrelas 

companheiras de buracos negros em sistemas binários [18]. Pelo fato da radiação proveniente 

da matéria orbitando buracos negros ter um papel tão importante na astrofísica moderna, e 

também porque medidas cada vez mais precisas têm levado à observação de efeitos relativísticos 

ocorrendo na vizinhança do horizonte de eventos de buracos negros [19], uma investigação de 

como os processos de emissão de radiação são modificados pela curvatura e topologia não-triviais 

do espaço-tempo de um buraco negro torna-se de grande relevância. 
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Neste capítulo analisaremos a radiação escalar emitida por uma fonte em movimento 

circular uniforme em torno de um objeto estelar, adotando diferentes abordagens. Boa parte dos 

resultados e conclusões apresentados aqui foi publicada em [20]. Na seção 3.1 usaremos a Teo- 

ria Clássica de Campos (TCC) no espaço-tempo plano de Minkowski para calcular a potência 

irradiada pela fonte girante, assumindo que a força gravitacional entre a fonte e o objeto estelar 

é dada pela Lei da Gravitação Newtoniana. Utilizaremos nesta primeira seção uma abordagem 

com funções de Green para calcularmos o potencial de Liénard-Wiechert correspondente, ob- 

tendo assim o análogo da fórmula de Larmor para o campo escalar. Na seção 3.2 usaremos a 

Teoria Quântica de Campos (TQC) a nível de árvore, no espaço-tempo de Minkowski, também 

assumindo que a atração gravitacional é dada pela Gravitação de Newton. Mostraremos que os 

resultados usando a TCC e a TQC a nível de árvore, no espaço-tempo plano, são coincidentes, 

ressaltando-se que assumimos a mesma interação gravitacional entre o objeto estelar e a fonte 

girante, em ambos os casos. Assumiremos que a força gravitacional entre e fonte e objeto estelar 

é originada pela troca de grávitons na seção 3.3, onde o gráviton será definido como um campo 

não-massivo, de spin 2 e covariante por transformações de Lorentz. O cálculo da potência 

emitida pela fonte será realizado via TQC a nível de árvore, no espaço-tempo de Minkowski. 

Consideraremos que o objeto estelar seja um buraco negro na seção 3.4, assumindo portanto 

a Relatividade Geral e calculando a potência irradiada usando a TQC a nível de árvore, no 

espaço-tempo de Schwarzschild. Finalmente, na seção 3.5 faremos a análise e comparação dos 

resultados obtidos. 

3.1 Cálculo usando a TCC em Minkowski, assumindo 

Gravitação Newtoniana 

Nesta seção vamos calcular a radição emitida por uma carga escalar (fonte) em movi- 

mento circular uniforme no espaço-tempo plano de Minkowski, usando a Teoria Clássica de 

Campos, assumindo Gravitação Newtoniana. 
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Consideremos inicialmente uma fonte acelerada seguindo uma linha de mundo 

onde r é o tempo próprio da fonte, no espaço-tempo de Minkowski, com elemento de linha em 

coordenadas cartesianas dado por 

ds^ = +dt^ — ôijdx^dx^ . (3.1) 

(Neste capítulo índices latinos assumirão os valores 1, 2, e 3, enquanto que índices 

gregos (/Lí, jy,...) assumirão os valores 0, 1, 2, e 3.) Ressaltemos que nesta tese estamos assumindo 

o sistema natural de unidades, no qual c = G = h = kB = l- 

O campo escalar clássico (j) produzido por uma fonte externa j satisfaz a equação de 

Klein-Gordon não-homogênea 

U(l){x) = j{x), (3.2) 

escrita aqui no sistema Heaviside-Lorentz de unidades (no qual Vj£'* = p), com c — l.k solução 

de (3.2) pode ser escrita em termos da função de Green retardada Gn{x,y), na forma [21, 22] 

(p{x) = J d‘^y^-g(y) GR{x,y)j{y), (3.3) 

onde g é o determinante da métrica do espaço-tempo em questão, x^ é o ponto do espaço-tempo 

no qual queremos determinar o campo (f), ey^ é uma variável auxiliar de integração. Lembrando 

que [2] 

0,GRÍx,y) = ^--~^^, (3.4) 

a equação (3.2) pode ser diretamente verificada. A corrente escalar associada a uma fonte 

puntual seguindo uma linha de mundo z^(r), com quadrivelocidade ii^[^(r)j = é dada por 

j{y) = 
\j-9iy) 

^ (r)j, (3.5) 

onde ç é a magnitude da carga escalar da mesma. Usando (3.5) em (3.3), e lembrando que 

d^y = dy^d^y, obtemos 

(f){x) = q J dy°d^y^^^^ô^[y - ~z (r)j Gr{x, y). (3.6) 
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Podemos realizar a integral em d^y utilizando 5^[y — z (r)] e, como u°(y) = temos que 

f^=Jdr^ Daí 

0(i) =9/iítGrÍx.z) . (3.7) 

O próximo passo é lembrar que a função de Green retardada é dada por 

Gh(x, z(r)) = Í0(x» - a«)í[(x - z(r))^] = ^e(x» - . (3-8) 

onde enfatizamos que tq é o tempo próprio da fonte no instante da emissão da radiação (que 

ocorreu) em z^(ro). O termo 0(a:° —z°) em Gr{x,z{t)) impõe que > z°, garantindo trátar-se 

efetivamente da função retardada. Substituindo então (3.8) em (3.7), obtemos o que podemos 

chamar de “versão escalar do potencial retardado de Liénard-Wiechert”, a saber 

1 
= 7Z (3.9) 

T=ro 47t \{x^ - Zu,{r))uf^\ 

Na verdade o sinal de módulo em (3.8) e (3.9) é desnecessário pois podemos mostrar que 

{Xf, - z^(r))u^ > 0. 

Definindo 

= {x^^-z^^ir)), (3.10) 

podemos reescrever (3.9) como <p{x) = 9/(47ri?^u^)|.j. . Podemos ainda mostrar, usando que 

R={x - z (r)) , 

e definindo 

R = 
R 
->■ 
R 

(3.11) 

(3.12) 

que R^u^ = 'y\ R \{1 — R- v), com 7 = = dz°/dr, onde usamos a definição de produto 

escalar cartesiano, a saber 

A - B= = I /I 11 5 I COS6ab , 

e a definição usual de norma de um trivetor 

\A\ = \Ia- A . 

(3.13) 

(3.14) 
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Desta forma, podemos ainda reescrever (3.9) como uma expressão que não é explicitamente 

covariante, dada por 

j? 1  

4^ 7l^l(l-Á- v) 
) 

T=ro 

(3.15) 

onde u' = dz^/dz^. 

Nosso objetivo nesta seção é obter a potência emitida usando a TCC, pela fonte 

acelerada j, devido à sua interação com o campo O índice superior M da potência emitida 

enfatiza que estamos fazendo os cálculos no espaço-tempo de Minkowski. é dada pelo 

—y 
fluxo do trivetor de Poynting S através da superfície esférica bidimensional (no sisl;ema inercial 

de coordenadas) com centro na posição da fonte j, e raio | |, cujo elemento de área será 
—y 

denotado por d f . Sendo assim 

= f <if-S, (3.16) 

onde 

= (VV)(VV) = -{dt(l>){dió) (3.17) 

são as componentes do trivetor de Poynting no caso do espaço-tempo de Minkowski com coor- 

denadas cartesianas. Estamos utilizando aqui que dt = dfdt , e d{ = d/dx'’. 

Para obtermos 5'\ devemos então calcular inicialmente d^<l){x), onde = djdx^. 

Derivando (3.3) com respeito à x^ obtemos 

= J dS^f^Mj{y)[df,GR{x,y)]. ' (3.18) 

Substituindo (3.5) em (3.18) e usando novamente que d‘^y = dy^d^y, flcamos com 

ô^0(x) = q j dy°d^y^J^5^[y - z (r)][a^Gfí(x, y)]. (3.19) 

Agora usamos que ^ para transformar a integral em dy° em uma integral em dr. Sendo 

assim 

d^(j){x) = q J drd^y5^[y - z {T)][dfj,GR{x,y)]. (3.20) 

Usamos então ô^[y — 'z (r)] para realizar a integral em d^y e obter 

df,4>{x) = q j dT[d^GR{x,z{T))]. (3.21) 
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A regra da cadeia pode ser utilizada para escrever 

r (t - 9[Gr{x,z{t))] d[{x - zf] _ d[GR{x,z{T))\ dr d[{x - zf]' 
^ ^ dxf^ dr d[{x — z)^] dx>^ d[{x — zY 

No entanto, temos que 

dr -1 

o?[(x — zY] 2{x‘' — z‘')ui, 

d[{x — zY^ 
— 2(x^ Zfi), 

(3.22) 

(3.23) 

(3.24) 

onde usamos que ^ e ^ = 0. Desta forma obtemos de (3.21)-(3.24) que 

r dr \ I . 
^ J-oo ( dr J {x‘' — z‘')u^ 

Integrando por partes a expressão acima obtemos 

(3.25) 

d^(f){x) = - q 

+ q 

{x'' - z'')u^ 

r+oo 

Gr{x,z{t)) 

/-too 
dTGR{x,z{r)) 

-OO 

d 

T—>>+00 

- r—>•—OO 

(x^ - z^) 
(3.26) 

dr [{x'' — z‘')ut, 

O primeiro termo à direita da igualdade em (3.26) vai a zero devido às contribuições em r —> ±oo 

se anularem. Usando (3.8) e efetuando a derivação com relação a r obtemos 

q [{x^-zY}{u''u^ + 5Y)] 
a^0(x) 

47t [(xa - zx)u^Y 

q {Xf, - Zf,){xu - Zu) du'- 

T=To 

(3.27) 
T=:To 47t [(xa — Za)u'^]^ dr 

onde lançamos mão de d(r — tq) na definição da função de Green para realizarmos a integração 

no último termo de (3.26). 

—► 
Podemos notar que, para | /? | >> 1, o primeiro termo à direita do sinal de igualdade 

em (3.27) é proporcional à | R |“^, enquanto que o último termo, contendo a quadriaceleração 

instantânea da fonte no instante tq é proporcional à | i? |“^ Sendo assim, vemos que para 

I R I >> 1, i.e., para pontos espacialmente distantes da linha de mundo da fonte j, o termo 

proporcional à quadriaceleração é dominante em d^4>{x). Desta forma, uma vez que a radiação 
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é identificada como sendo a contribuição que sobrevive assintoticamente (muito longe da fonte 

emissora), vemos claramente a sua dependência da aceleração instantânea da fonte. Portanto, 

no restante dos cálculos consideraremos 

q - z^){x^ - z^) 

47T [(xa - zx)u^]^ 

du'' 

dr T=Tq 

Definindo C = — z\)u^, podemos escrever 

(3.28) 

(3.29) 

onde decompusemos (x^ — z^)^ em componentes espaciais e temporal. Utilizando (3.10), a 

métrica (3.1) e que {x‘' — z^) é, um quadrivetor tipo luz obtemos que 

(xo - Zq) = (x° - 2°) = I I, 

{xi - Zi) = -(x’ - 2’) = -| i? |(.R)'. 

Além disso, podemos obter que 

d^4>{x) « - 
q - Zf,) 

47T 

, . dvP , ^ du'’ 
(x„ -z,) — + (I, - z.) — 

du* dz° 

dr dr 

du° _ dz° dvP 

dr dr dz° 

d í dz^ dz^'' 

4 
= T{y ■ a), 

= 7^(u • a)u* + 7^0*, 

(3.30) 

(3.31) 
d2° y dr dz^ 

onde utilizamos as definições u* = dz^fdz^ e o* = dv'^/dz°. Usando estas expressões, podemos 

reescrever (3.29) na seguinte forma: 

R \l^ [l\v . 3)(1- ? -R) - (R. a)] (3.32) 
r=To 

No caso particular em que u = 0 {i.e., no referencial inercial instantaneamente em repouso com 

a fonte acelerada) 

df^(j){x) ^ + (xm - {R- a) 
47t| R P 

onde usamos que 7(u==0) = 1, e C(^=0) = | J? |. Desta forma 

q 

(3.33) 

r=To 

dt<P{x) 
47t| R 

{R- «) 
r=To 
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e 

Si0(x) « - -V- -5- {R- «) 
ii:\R\\R\ 

Utilizando estes resultados em (3.17), ficamos, para pontos espacialmente distantes da fonte 

{i-e., I i? I 2> 1), com 

5= + 
Ifi-TT^I R |2 

{R- afk 

T=To 

(3.34) 

A energia irradiada por unidade de tempo coordenado é então encontrada in- 

tegrando-se 0 vetor de Poynting na superfície esférica de raio | i? |, no referencial inercial 
—y ^ 

instantaneamente em repouso com a fonte, cujo elemento de área é dado por d f= dfR, com 

df = \ R \‘^sen0d9dip, onde 9 é escolhido como sendo o ângulo entre a triaceleração a e o vetor 

unitário R, e <p é o ângulo azimutal correspondente. Desta forma 

^dasT = / = / d9d^sen9 \ R \ S^R^. (3.35) 

Usando (3.34) e que {R- a) = | a | cos 9, ficamos com 

n^\ n /*27T r7T 
I de sen« (cos 6?. (3.36) 

Realizando as integrais angulares terminamos com 

,2 
_   ^ 'a|2 (3.37) 

Vale ressaltar que este resultado é igual a metade do valor clássico encontrado para o 

campo (vetorial) eletromagnético A^, conhecido como fórmula de Larmor [21, 22], dado por 

,2 
Wtarmar = (3.38) 

escrito aqui também em unidades de Heaviside-Lorentz, com c = 1. É razoável esperar que no 

caso do campo de Maxwell o valor da potência irradiada seja duas vezes maior do que no do 

campo escalar, devido aos dois graus de polarização físicos do campo eletromagnético. 

Como (3.37) é obtida em um referencial inercial instantaneamente em repouso (no 

instante tq) com relação à fonte acelerada — portanto para v = 0, ela deve ser encarada como 
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um resultado não-relativístico. No entanto, podemos generalizar (3.37), mediante argumentos 

de covariância sob transformações de Lorentz, obtendo um resultado relativístico, válido para 

uma velocidade v arbitrária da fonte acelerada. 

Pode-se mostrar que a potência irradiada = dE/dz^ é um invariante por trans- 

formações de Lorentz [23]. Sendo assim, por covariância, também o lado direito da igualdade 

em (3.37) deverá ser um invariante de Lorentz. Reescrevamos então (3.37) como 

W, 
M,em _ 9^ dvdv 

(3.39) 
127T dz° dz° ’ 

preparando para a generalização para o caso relativístico. Estamos buscando um invariante de 

Lorentz que se reduza a (3.39),' no limite u->0. Na verdade podem existir vários invariantes 

nestas condições. No entanto, de (3.16), (3.17) e (3.27) vemos que o invariante desejado só 

deverá depender de e du^/dr (ou de ^ e a). Com esta restrição sobre a ordem das derivadas 

do quadrivetor posição da fonte acelerada, o resultado é único, dado por 

Aí,em _ 9^ du^ 
class 127T dr dr 

Definindo a aceleração própria da fonte j como sendo 

(3.40) 

dut 
a = 

dr dr 

podemos reescrever (3.40) como 

W. 
Aí,em   9 
class 127T 

a 

No caso geral, temos de (3.30) e (3.31), que 

du^ du,. 
= -7«(u ■ af + [-f\v ■ a)E -H Yd 2^112 

(3.41) 

(3.42) 
dr dr 

Vemos então que -^ | a p, quando >-0, e, portanto, que o invariante (3.40) se reduz a 

(3.37) nesse limite, como requerido. 

No caso do movimento circular uniforme (MCU), analisado no sistema inercial, temos 

que a aceleração à qual está submetida a fonte girante é a aceleração centrípeta õ^, que é 

perpendicular à velocidade v, i.e. v ■ a = u ■ õ^= 0. Portanto, neste caso 

2 41 i2 
O^AICU = 7 I Qc I (3.43) 
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onde o módulo da aceleração centrípeta é dado por 

= (3.44) 

Na expressão acima fizemos uso da relação conhecida entre o módulo da velocidade tangencial 

e a velocidade angular no MCU, i.e., | v \ = Q72.. Note-se que é a velocidade angular da 

fonte, assim como medida por observadores inerciais eTZé o raio da trajetória circular da fonte 

j. Sendo assim, de (3.44), (3.43) e (3.41), obtemos a expressão da potência irradiada pela fonte 

j em MCU 

yyciass (3.45) 

Para que possamos escrever a potência irradiada pela fonte em movimento circular 

uniforme em função somente de variáveis que possam em princípio ser medidas assintoticamente, 

é necessário relacionarmos a distância coordenada radial TZ com a velocidade angular da referida 

fonte. Isto é feito aqui (enquanto não lançamos mão da Relatividade Geral) impondo a condição 

de que a fonte está em órbita circular devido à influência de uma força gravitacional. Entretanto, 

não há uma maneira única de definirmos um campo gravitacional no espaço-tempo plano de 

Minkowski [24]. 

Nesta seção e na seguinte, assumiremos uma força gravitacional newtoniana entre o 

objeto estelar e a fonte girante. Na seção 3.3 assumiremos que a força gravitacional responsável 

pela trajetória circular da fonte j é originada da troca de grávitons entre o objeto estelar massivo 

central e a fonte. Já na seção 3.4, assumiremos a Relatividade Geral. 

Relembremos então a Lei da Gravitação Newtoniana, escrita no sistema inercial de 

coordenadas, a saber 
—^ nnrt A/f  i. 

(3.46) 
->• mM -+ 
Fn= — TI, 

7^3 

onde m é a massa da fonte j, M é a massa do objeto estelar atrativo eTZ é a. distância entre m e 

M. (Gomo foi dito no início desta seção, estamos adotando aqui o sistema natural de unidades 

no qual a constante gravitacional é igual a unidade.) A força centrípeta de um corpo em MGU 
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é dada, segundo a Mecânica Newtoniana, por [vide (3.44)] 

Fc= -mír TZ . (3.47) 

Igualando as expressões das forças, =Fc, obtemos 

(3.48) 

que equivale à terceira lei de Kepler aplicada a uma trajetória circular. Substituindo (3.48) em 

(3.45), obtemos a potência irradiada pela fonte j em MCU 

ç2^2/3^8/3(^^)4 
^Aí.em _ 
*''N,class 127T 

(3.49) 

como função de q, M e ü. Note-se que, no caso do MCU, 

dz° 1 1 
7n = 

dr ^1 - (MÍ^)2/3 ■ 
(3.50) 

3.2 Cálculo usando a TQC em Minkowski, assumindo 

Gravitação Newtoniana 

Vamos agora analisar a radição emitida por uma fonte em movimento circular uniforme 

no espaço-tempo plano de Minkowski, usando a Teoria Quântica de Campos a nível de árvore, 

assumindo que a força de atração gravitacional é dada pela Lei da Gravitação Universal de 

Newton. 

A corrente clássica associada a uma fonte descrevendo uma trajetória circular no plano 

0 = 7t/2 com raio Rm e com velocidade angular constante > 0 (assim como medida por 

observadores inerciais neste espaço-tempo plano), é dada por 

- Rm) 5{9 - tt/2) õ{cp - ÇU) , (3.51) 
7 

onde 7 = 1/— , e a constante q determina a magnitude do acoplamento entre a fonte 

e 0 campo. Estamos usando aqui coordenadas polares esféricas definidas pelo elemento de linha 
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de Minkowski, a saber 

ds^ = Tf^^dx^dx'' = dt^ — dr^ — r^dO^ — r^sen^O d(p^ . (3.52) 

De (3.52), temos que 

= diag(+l, -1, -r^, -r^sen^0). 

Vale ressaltar que, de acordo com a Mecânica Newtoniana, a fonte escalar especificada 

pela corrente (3.51) descreve um movimento circular uniforme com aceleração (centrípeta) cons- 

tante, com módulo dado por (3.44). 

A corrente acima foi normalizada requerendo-se que / da^^^j^{x^) = q, onde da^^^ 

é 0 elemento de (tri)volume ortogonal à quadrivelocidade u% da fonte clássica que, nas coorde- 

nadas polares esféricas definidas em (3.52), é dada por 

u)íí(n, i?Aí) = (7,0,0, ÍI7) . (3.53) 

A interação entre a fonte j^{x^) e o campo escalar quãntico $(o;^) será dada pelo 

acoplamento mínimo, de forma que a ação será 

5 = 1 , (3.54) 

com 77 = det{r]^y), de forma que d^x^f—rj é o elemento de volume (quadridimensional) invariante 

do espaço-tempo de Minkowski. 

O operador campo escalar Ô'“(x^) é escrito como 

- ■ 00 / -oo ■ J. T 
$'"(x'^) = ^^ / du[u^irn{,x^)d^i^-\-uli^{x^)a!^}J^ . (3.55) 

i=0 m=-l 

Aqui e são os operadores de criação e aniquilação, respectivamente, e são os 

modos de freqüência positiva associados com observadores inerciais estáticos em x^ = constante, 

oc (o; > 0) , (3.56) 

soluções da equação de Klein-Gordon homogênea no espaço-tempo de Minkowski, 

= 0 , (3.57) 

37 



onde 

^i/'^H^wlm — ^i/{Pn^wlvn^ — ^, 

com OS símbolos de Christoffel dados por 

1 
{dpvsj + d-yV50 - dsvi3^) . (3.58) 

No caso do espaço-tempo de Minkowski com coordenadas polares esféricas, os únicos símbolos 

de Christoffel não-nulos são 

1 
r;, = -r . = -r(sen»)" , r?, = Fj, = - , 

= -sendcose , r;f„ = rs. = i , rs„ = rj, = cote. T(p (fV 

Podemos então reescrever (3.57), neste caso, como 

2 9.1 ^2 
di2 Qj-2 r dr r“^ '^wlm — 0 ) (3.59) 

com definido em (2.10). Assumindo-se que a dependência angular de u^iim seja dada pelos 

harmônicos esféricos [11], podemos escrever 

Uu,im{xn = ^iir)Yim{9,^)e-^"' {^ > 0) .' 

Em seguida usamos (2.12) e (3.60) para reescrever (3.59) como 

(3.60) 

cP 2 d 
 ^ \u - 

/(/ + 1) 

dr2 f dr 

ou ainda, definindo Ruji{r) = ip^i{r)/r, como 

d? 

Ruji{r) = 0, (3.61) 

(3.62) 

com o potencial espalhador (vide figura 3.1) 

Vm = 
l{l + l) 

(3.63) 
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A equação diferencial (3.61) é na verdade a equação diferencial que define as funções de Bessel 

esféricas na variável üjt, i.e., ji{ciir) e rji{ur). Podemos descartar a solução Tji{ur) pois os modos 

a ela associados não são normalizáveis, como conseqüência de seu comportamento divergente 

na origem. Podemos, desta forma, reescrever (3.60) como 

Uuimi^'') = C (cu > 0) , (3.64) 

onde Cai é a constante a ser determinada pela normalização de 

Tal normalização será obtida a partir do produto interno de Klein-Gordon, 

<rKa{<t'. i>) = i í,„ n" - (V„0-)t/;] . (3.65) 

onde aqui é o elemento de (tri)volume invariante no espaço-tempo plano 

da superfície de Cauchy é o vetor unitário ortogonal à superfície tipo espaço 

direcionado para o futuro, e é o determinante da métrica restrita a Uma vez que 

(3.65) é independente de E^^\ escolhemos a superfície Ep^ com t = constante. Desta forma, 

para o caso do espaço-tempo plano com coordenadas polares esféricas, temos que 

dEp^ = \f—T]^drd9dip = r'^sen9drd9d(p , (3.66) 

e 

n^ = ô^ . (3.67) 

À semelhança do que fizemos no capítulo 2, impomos as condições de ortonormalização 

dos modos u^im e seus complexos conjugados u^im, a saber 

O^Kci^ujlmí — d(íU Lü > (3.68) 

= 0 . (3.69) 

Segue então que, Cim'] = 0. e = ô{uj - u')ôa>5mm'- Usando 

(3.65), podemos normalizar (3.64) encontrando assim a constante De (3.64)-(3.67), obtemos 

roo 
= (w Y uj') C* C^' ‘^ )* / dvT^ji'{uj'r)ji{ujr) X 

J 0 
/*27r r7T 
/ / d9dipsen9Y:^{9,ip)Y,m'[9,^) . (3.70) 

JQ Jo 
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Substituindo (2.48) e 
roo 'jr 

dr ji{uj'r)ji{ur) = -^d{u - u') , 

em (3.70), ficamos com 

7T 
d{^UI ÍU ) 5m 5^^'^ ■ 

(jJ 

Comparando (3.72) com (3.68), obtemos 

(3.71) 

(3.72) 

(3.73) 

a menos de uma fase multiplicativa arbitrária. 

Passemos agora à determinação da potência irradiada, assim como calculada por obser- 

vadores inerciais. Iniciemos pela introdução do vácuo de Minkowski, |0)aí, que é o estado no 

qual observadores inerciais não vêem nenhuma partícula, definido por 

= 0 . (3.74) 

A nível de árvore, a amplitude de transição entre este vácuo e o estado de uma partícula com 

números quãnticos u, l e m, |l;a;/m), é dada por [25] 

iSi 10)m , 

onde - ■ 

Si = I (3.75) 

é a ação de interação . Desta forma, usando (3.55), (3.74), que 

|0)a/ = |l;o»/m) , 

e que 

(1;ul'm\l\üj'l'm') — ó(lü — u>')ôu'âmm' , 

podemos escrever 

i I |0)„ = i I . (3.76) 
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No espaço-tempo plano com coordenadas polares esféricas, temos que 

= dt dr dd dif sen0 . 

Sendo assim, usando as funções delta de Dirac na definição da corrente dada em (3.51), e a 

expressão (3.64) para os modos normais com C^j dada em (3.73), obtemos 

Í dtYirri{-JT/2,Qt) 
V 7T 7 J-oo 

, — iujt 

Lembrando que 

yim{0,(p) - CimPr{cos9)e 
tmip 

com 

(2Z + 1) (Z-m)! 

\ 47t (Z + m)! ’ 
= (-1)^ 

podemos reescrever (3.77) como 

- QmPno) m^rm) 
y 7T 7 J-oo 

Lançando mão da definição usual da função delta de Dirac, a saber 

5(x-xo) = ^ 
ZTT J ’~co 

(3.77) 

(3.78) 

(3.79) 

(3.80) 

(3.81) 

obtemos 

= 2iV^ ^ Cim jiimüRM) Pr(0) - mÜ) . (3.82) 
7 

Vale ressaltar que a presença de 5{uj — mQ) em (3.82) indica que só serão emitidas partículas 

com freqüência u = mQ. 

A potência emitida, assim como calculada por observadores inerciais, para um valor 

fixo de momento angular, é dada por 

W, 
r+oo ,em I 

= L • 
duu> 

AM,em 

T~ 
(3.83) 

onde 

T = 27T(5(0) = 
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é 0 tempo total medido por observadores inerciais [25]. Usando (3.82) e (3.83), obtemos a 

potência total irradiada 

oo l 
^M,em ^ ^ ^ ^ ^ ^ \MmnR^)\^\YU^/2, Qt)? , 

l=l m—1 1—1 m=l ' 
(3.84) 

onde também foi usada, uma vez mais, a definição dos harmônicos esféricos dada em (3.78). 

Recordemos agora o resultado obtido na seção anterior para a potência irradiada, calculado 

usando a TCC, a saber (vide (3.41)) 

T^AÍ.em   Q ^ 
ciass - j_2rr (3.85) 

onde a é a aceleração própria da fonte clássica com uma trajetória arbitrária. No caso de 

uma trajetória circular percorrida uniformemente pela fonte (caso no qual a velocidade é 

perpendicular a aceleração, ambas medidas no sistema inercial), temos que a = , pelo 

que obtemos 

T,yM,em 
' class 127T 

(3.86) 

Usando a fórmula 

oo / 1 a2 

E Ê m'^[ji{m(:)]^\Yim{TT/2,(p)\‘^ = —, (3.87) 
/=zl m=l ^ / 

válida para |d < 1, podemos constatar a igualdade entre (3.84) e (3.86). A demonstração da 

fórmula (3.87) pode ser encontrada em [20]. 

Concluímos então que o resultado para a potência irradiada por uma fonte em MCU no 

espaço-tempo de Minkowski, assim como calculada por observadores inerciais usando a TQC 

a nível de árvore, coincide com o resultado encontrado, também por observadores inerciais, 

usando a TCC. 

Assumindo-se a Lei da Gravitação Newtoniana e usando a terceira lei de Kepler, 

/ ]\/f\ 1/3 
fiíí(í2) = (fjí) . (3.88) 

como foi feito na seção 3.1, obtemos como função de Q, q e M, como sendo 

M,em 
N 

oo l 

= EE 
2q^vn?ÇÍ^ 

1=1 m- 1 
\ji[m{MüYlY\Ytm{Tr/2,ÇU)\‘ 
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(3.89) 
127T 

onde 

7n = 
- (MQ)2/3 ’ 

0 que naturalmente coincide com o resultado do final da seção anterior, dado por (3.49)-(3.50), 

obtido usando a TCC. O índice N denota que estamos assumindo a força gravitacional new- 

toniana entre a fonte girante e o objeto estelar. Assintoticamente {Rm —> +oo), a potência 

emitida pode ser escrita como 

,^M.ern 
127T 

(3.90) 

3.3 Cálculo usando a TQC em Minkowski, assumindo 

grávitons 

Conforme foi dito no final da seção 3.1, não há uma maneira única de definirmos um 

campo gravitacional no espaço-tempo plano de Minkowski. Uma das maneiras de fazê-lo é 

simplesmente admitir a Gravitação Newtoniana e identificar a distância dada pela coordenada 

radial Rm em (3.51)-(3.52) com a distância que figura na Lei da Gravitação Universal de 

Newton, como foi feito na seção anterior. 

Nesta seção consideraremos que a força gravitacional responsável pela trajetória circular 

da fonte no espaço-tempo de Minkowski, dada em (3.51), é originada da troca de grávitons 

entre o objeto estelar massivo central e a fonte em MCU. Por gráviton entendemos aqui um 

campo não-massivo, de spin 2 e covariante por transformações de Lorentz, definido no espaço- 

tempo plano. 

A ação clássica que descreve o sistema físico composto pela fonte girante e o objeto 

estelar, levando em conta a interação entre ambos, é dada por [24] 

S = Sf + Sg + Si . (3.91) 
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A ação 5/ da fonte clássica seguindo uma linha de mundo 2“(r) = {t,x,y,z) é dada por 

/ 

dz° dZa , 
(3.92) 

onde m é a massa de repouso da fonte , e r é o tempo próprio da mesma. A ação do gráviton, 

Sg, representado pelo campo hap, simétrico {hpa = hap), pode ser escrita como 

^ I - d^h^adph d^x , (3.93) 

onde hap = h^p — \r]aphl^, sendo rjap = diag (+1,-1,-1,-1) as componentes da métrica 

do espaço-tempo de Minkowski em coordenadas cartesianas, e hl^ = rj^^hpa- (A ação (3.93) 

corresponde a um campo de spin 2 no espaço-tempo plano, covariante por transformações de 

Lorentz e com massa nula [26].) A ação de interação Si entre a fonte e o campo do gráviton é 

dada por 

Si = ll hapTf d^x , (3.94) 

onde é o tensor energia-momentum da fonte seguindo uma linha de mundo z°, dado por 

Tf = jm^^5^[x - z{T)]dr . (3.95) 

Note-se que a ação total do problema inclui também a parte relativa ao campo quântico $(a;“) 

e à interação entre este e a fonte clássica j^{x°‘), dada por (3.54). A ação clássica (3.91) 

acima representa simplesmente a dinâmica do sistema composto pela fonte e objeto estelar, 

cuja interação é descrita aqui através de uma teoria clássica de campos que é covariante por 

transformações de Lorentz. 

Usando as equações de Euler-Lagrange, podemos então obter as equações de movimento 

do sistema. Para a dinâmica da partícula, calculando SS/ôz° = 0, obtemos 

, , dz^dz-^ ^ 
[Vap + Kp) ^^2 + - 0 , (3.96) 

com 

^aP^ — ^i^jhaP d" Sphf^^ d^hp-y'). (3.97) 
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Requerendo que o campo do gráviton satisfaça o gauge (calibre) harmônico 

dah^^ = 0, (3.98) 

obtemos para a dinâmica do campo, calculando ôS/Sha^ = 0, que 

ah = dyd'^h - 167tT“^ . (3.99) 

É oportuno ressaltar aqui que as equações (3.99) tratam-se, na verdade, das equações de Einstein 

linearizadas, obtfdas assumindo-se uma métrica g^p = riap-\-hap , com \hap\ <C 1 (considerando- 

se apenas as contribuições até primeira ordem em h^p e suas derivadas). Este é o melhor 

argumento a favor de usarmos a ação (3.93): ela representa uma teoria efetiva para a interação 

gravitacional entre a fonte e o objeto estelar que é equivalente à Gravitação Einsteiniana no 

limite de campo fraco desta última. 

Representaremos o objeto estelar localizado na origem do sistema de coordenadas, com 

massa M, pelo tensor energia-momentum para uma massa puntual estática, cujas componentes 

são T°° = Mô^{x) e = 0. Substituindo estas componentes em (3.99), obtemos 

, 2M , ^ . 2M /omrvN 
hoo —  ) hoi — 0 , hij — Oij , (3.100) 

r r 

onde r = + z^. A fonte em movimento circular uniforme em torno do objeto estelar 

dada por (3.51) pode ser representada pela linha de mundo z“, que, em coordenadas cartesianas, 

é escrita como 

= (í, X, y, z) - [7T, Rm cos(í^7t), Rm sen(í27r), 0], (3.101) 

com 

7 = l/\/r^RÍ^, (3.102) 

que denota o movimento no plano equatorial. Definamos então a quadriforça (por unidade de 

massa da fonte girante), responsável pelo movimento da fonte, como sendo 

dz^ dz^ 
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Usando (3.100) e (3.101) em (3.103), lembrando que são dados por (3.97), obtemos 

(3.104) F = ^ [i + n^(x^+y^)| 
“ (x2 + y2)3/2 [1 _ + ^2)| ‘ 

Usando (3.104) na equação de movimento da fonte, que agora pode ser escrita como 

{VaP d" ^ap) 
dr'^ 

+ Fa — 0 , 

obtemos que 

= (3.105) 

onde 7 é dado em (3.102) e o índice g denota que, para o cálculo das grandezas que o carregam, 

foi assumida uma força gravitacional originada pela troca de grávitons. Resolvendo a equação 

acima para R%[, obtemos 

23 í^2 
RUP) = 

3 (27Mn4 + yJ-4 fii2 + (27Mü^-2 
2\ 3 

T + 

+ 

27MÍ2^ -2M^ + ^-4 Q12 + (27MQ^-2 Q.^)' M 

T ’ 
(3.106) 

23 3 f^2 

onde Rlf > 0. 

Uma vez obtida a relação entre Rm e íl, no caso da força gravitacional sendo originada 

pela troca de grávitons no espaço-tempo de Minkowski, devemos substituí-la em (3.86) para 

encontrarmos a potência emitida neste caso. Fazendo isso, ficamos com 

onde 

■ryM,em . 
9 

7n = 

ç2^2/3f28/3 (^5)8/3 

127T 
(3.107) 

íl» ’ 

com Rl^{Q) dado em (3.106). 

Assintoticamente {Rm —>■ +00), a potência emitida pode ser escrita como em (3.90), 

i.e., 
2MV3Q8/3 

^ (3.108) yirM,em 
g 127T 
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3.4 Cálculo usando a TQC em Schwarzschild, assumindo 

Relatividade Geral 

Nosso próximo passo consiste em analisar a potência emitida por uma fonte em movi- 

mento circular uniforme em torno de um buraco negro sem carga e com momento angular 

nulo (portanto no espaço-tempo de Schwarzschild), usando a Teoria Quântica de Campos em 

Espaços-tempos Curvos a nível de árvore, assumindo Relatividade Geral. 

Vamos então considerar uma fonte em movimento circular neste espaço-tempo de um 

buraco negro de Schwarzschild', com elemento de linha dado em (2.1), localizada em r = Rs 

com velocidade angular constante Í2 > 0 (assim como medida por observadores estáticos no 

infinito), restrita ao plano 0 = 7t/2, descrita por 

f{x^) = ^ , - Rs) S{9 - tt/2) 5{^ - Qt) , (3.109) 
V~9 '^s 

com g = e a constante q determinando, como no caso plano, a magnitude do acopla- 

mento entre o campo quântico e a fonte clássica. A quadrivelocidade desta fonte é dada por 

u^(0,R5) = ,0,0, 
Q 

(3.110) 
Xf{Rs)-Rln^)^/^^ ’ ’ (/(Rs)-R|n2)i/2J • 

Novamente a fonte foi normalizada requerendo-se que / = ç, onde da^^^ é o elemento 

diferencial de (tri)volume ortogonal a U5, pela métrica de Schwarzschild. 

Vale ressaltar que, de acordo com a Relatividade Geral, uma fonte em movimento cir- 

cular uniforme ao redor de um buraco negro segue uma geodésica e portanto tem aceleração 

própria nula. Este fato será explorado no item 3.4.1, onde obter-se-á a relação entre a coorde- 

nada radial Rs e a velocidade angular Í2 desta fonte. 

Vamos assumir, como nas seções anteriores, 0 acoplamento mínimo da fonte j^(x^) 

com o campo escalar Ò{x^). A nível de árvore, a amplitude de emissão de uma partícula com 

números quânticos u, l e m, devido à interação do campo quântico $ com a fonte é 

AtiZ = i j d^x^g f{x‘‘)¥’‘(x“) |0>b , (3.111) 
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onde escolhemos como estado inicial do campo o vácuo de Boulware |0)a, definido no capítulo 

2. Usando a expansão do campo escalar quântico inicial (2.34), a definição do vácuo, que 

|0)b = , e que os estados do espaço de Fock são ortonormais, ficamos com 

(3.112) 

De (2.2), (2.11), (3.78), (3.79) e (3.109) podemos reescrever (3.112) como 

fü 1 tó*(i?s) 
CimPr{^)d{^-mÜ) . (3.113) 

7T U%[Rs) Rs 

A potência emitida, assim como calculada por observadores estáticos assintóticos, é 

dada por 

= í ■ 
JQ 

duüj 
A S,em 

íülm 

T 
(3.114) 

onde T = 27rá(0) é o tempo total assim como medido por estes observadores. Usando (3.113) 

em (3.114) obtemos 

W, S,em 
Im = 2q^m^Q^[f{Rs) - Rln^ 

Rí 
|Fi^(7r/2,Dí)p (3.115) 

onde üJo = mÇí e /, m > 1. Notemos que [11] yjj„(7r/2, Dí) = 0, para l + m ímpar e 

2l + l{l + m-l)\\{l-m-l)\\ 

47t (/ + m)\\{l — m)\\ 
(3.116) 

para l + m par. De (3.116) fica claro que y)r;i(7r/2, Dí) não depende do tempo. Aqui nü = 

n{n — 2) • • • 1, se n for ímpar e nü = n(n — 2) • • • 2, se n for par. 

Vemos então que, para o cálculo da potência irradiada pela fonte girante , precisamos 

das soluções ip^i{r) de (2.17). No entanto, a solução geral de (2.17) não pode ser expressa 

em termos de funções especiais conhecidas [9]. Sendo assim, adotaremos duas estratégias para 

prosseguir com a análise do problema. A primeira, que consiste em resolver (2.17) numerica- 

mente e portanto realizar um cálculo numérico da potência emitida, será apresentada na seção 

3.4.2. A outra será resolver (2.17) utilizando uma aproximação simplificadora. Na seção 3.4.3 

resolveremos (2.17) e calcularemos a potência irradiada no limite de baixas freqüências. 
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3.4.1 A relação entre Rs e Q, segundo a Relatividade Geral 

Para que possamos expressar a potência irradiada somente em termos de grandezas 

que possam ser medidas assintoticamente é necessário relacionar a coordenada radial Rs da 

fonte girante com sua velocidade angular Q (assim como medida por observadores estáticos no 

infinito). 

Seja a quadrivelocidade da fonte dada por 

Inicialmente, consideremos o movimento da fonte j^, com massa de repouso m (dado portanto 

por uma trajetória tipo tempo), restrito ao plano 9 = Tvf2. 

A equação = 1, no caso do movimento equatorial na geometria de Schwarzschild, 

reduz-se a 

=+(1 - 2M/r) - (1 - 2M/r)-‘(^^ j 

Assumindo-se que a fonte está seguindo uma geodésica, temos duas constantes de movimen- 

to [27]. Uma delas é a energia total (incluindo a energia potencial gravitacional) por unidade 

de massa de repouso da fonte seguindo a geodésica, com relação a um observador estático no 

infinito, 

s = = (1 - 2M/r) j , (3.118) 

onde = {d/dtY = (1,0,0,0) denota o campo de Killing estático tipo tempo. A outra é o 

momento angular por unidade de massa de repouso da fonte, 

L = ’ (3.119) 

onde = {d/d(pY = (0,0,0,1) denota o campo de Killing rotacional tipo espaço. Substituindo 

(3.118) e (3.119) em (3.117) e manipulando algebricamente o resultado obtemos a equação da 

geodésica tipo tempo, para a fonte massiva no espaço-tempo de Schwarzschild, em movimento 

no plano equatorial, dada por 

1 ídR 

2 idr. 

1 / 2M 

2 (* “ T 

'L" 
(3.120) 
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escrita em termos das constantes do movimento geodésico £ e L. A equação (3.120) nos mostra 

que o movimento radial da fonte massiva seguindo uma geodésica em Schwarzschild é o mesmo 

do de uma partícula de massa unitária, com energia S'^/2, submetida ao potencial efetivo 

1 M 

^ ~ 9 ~ r 9r2 r3 ’ (3.121) 

analisado segundo a mecânica unidimensional não-relativística usual. Um eventual movimento 

radial da fonte é determinado pelo potencial efetivo acima, enquanto que o seu movimento 

angular e a mudança na coordenada temporal t são obtidos das equações (3.119) e (3.118) 

acima, respectivamente. 

Os extremos do potencial efetivo (3.121) são obtidos da equação 

^ _ (Mr^ -LV + 3ML^) 

dr 

cujas raízes são 

L^± {L^ - 121,2M2)U2 

Se í/2 < 12M2, não há pontos extremos no potencial. Se = 12AP, há um ponto de inflexão 

no potencial em /?+ = R_ = 6M, ao qual está associada uma órbita circular geodésica instável 

da fonte. Finalmente, se L'^ > 12M‘^, há um ponto de mínimo do potencial U em e um 

máximo em i?_ . Sendo assim concluímos que, para a fonte massiva com valores suflcientemente 

grandes do momento angular L, existem órbitas circulares estáveis para Rs > 6M, e órbitas 

circulares instáveis para 3M < Rs < 6M. Pode-se ainda mostrar que a luz pode permanecer 

em uma órbita circular instável em r = 3M. 

A fonte , em MCU, dada pela equação (3.109), orbitando na geometria de Schwarzs- 

child emitirá partículas escalares com freqüência u = m£l = -§r^, devido à interação com 

o campo escalar quântico l>(a;^) [vide (3.113) e (3.124)]. (Na verdade a fonte também 

estará emitindo ondas gravitacionais, mas isto não será levado em conta nesta tese.) Devido 

à reação da radiação (cujos detalhes não serão tratados aqui) a fonte desviar-se-á ligeiramente 

do movimento geodésico. Considerando-se a fonte como estando localizada originalmente 
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em Rs > 6M, com > 12M^, ela deverá espiralar lentamente até raios cada vez menores, 

perdendo energia através da emissão de radiação escalar, permanecendo em órbitas circulares, 

aproximadamente, até ela atingir o raio orbital Rs — 6M. Naquele ponto, a órbita tornar-se-á 

instável e a fonte deverá cair rapidamente na singularidade localizada em r = 0. 

Usamos então (3.123) e que 

L = r^ (3.124) 

com u° dado em (3.110), para obter, segundo a Relatividade Geral, que as órbitas circulares 

estáveis são tais que 

fís=(^) . (3.125) 

3.4.2 Cálculo numérico da potência irradiada 

Nesta seção descreveremos o procedimento de obtenção das soluções numéricas de (2.17) 

e sua utilização para calcular ,a potência emitida pela fonte girante . 

Devemos encontrar as soluções de (2.17) provenientes de H~ e J~, e 

cujos valores assintóticos sejam compatíveis com as equações (2.52) e (2.53), respectivamente. 

A seguir apresentamos um resumo do método numérico utilizado para encontrar as funções 

radiais provenientes do infinito passado tipo luz J~. 

De (2.53) concluímos que, perto do horizonte de eventos, 

oc exp(—2íMo;x) {x -C —1). 

Iniciemos então com uma solução de (2.17), proveniente de ó7“, com módulo unitário, dada por 

= exp{-2iMuxL), (3.126) 

para um valor fixo de u, com xs <C —1. Vale ressaltar que (3.126) dada acima não está 

normalizada. X^aÍ^l) será a condição inicial na região assintótica próxima ao horizonte futuro 

onde x —>■ —oo (ou r > 2M). Devemos então evoluir numericamente esta solução rumo 
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a X ^ +00 (r +oo), através da equação diferencial (2.17). O resultado será, para regiões 

suficientemente distantes do horizonte (para muito além do máximo do potencial (2.15)), 

~ exp{-2iMuxR) + D^i qxp{2íMuxr) , (3.127) 

com xh » 1, e \C^i\^ — \D^i\^ = 1. (Vale notar, de (2.53) para x » 1, usando que h\'’\x) ^ 

(—exp(zx)/x neste limite, que tpui’^{x) « [exp(—2zMcjx) + 7?.^ exp(+2iMo;x)]/2u;.) Cal- 

culando a derivada de xtÃ (com relação a x), no ponto x^ ^ 1, obtemos 

^■y V 
(xr) ~ —2íM(jjC^i exp[—2iMuxr) -|- 2íMojD^i qxp[2íMuxr) . (3.128) 

dx 

Desta forma. 

\x:;í{xr)\^ + 4M2o;2 
dXui 

Ix<!)í(2;h)I^ + 
1 

dx 

dxti 
dx 

Í^r) 

Í^r) 

1 

+ 2’ 

1 

2 

(3.129) 

(3.130) 
4M2o;2 

Vale lembrar que a função xtn iião está normalizada. Vamos então multiplicá-la por 

uma constante de normalização K^i: 

KujlXtli.^) (3.131) 
(r>2M) , 

(r » 2M) . 

Em seguida, para determinar K^ji, requeremos que as condições de contorno assintóticas de 

(3.131) sejam compatíveis com (2.53), que pode ser reescrita como 

Obtemos então que 

(r>2M) , 

(r » 2M) 

— - • 

(3.132) 

r. ujl 
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Podemos assim concluir que 

= Kl Kl XuK) ■ (3.133) 

Vale ressaltar que o erro numérico neste método será tanto menor quanto maiores os 

módulos de xx, < 0 e Xfí > 0. Para uniformizarmos este procedimento, para cada valor de u 

escolhemos xl e xr tais que o potencial Vs, dado em (2.15), seja sempre menor ou igual a 5% 

de u;^, de forma que as exponenciais sejam de fato boas aproximações para Ki^)- 

Desta forma, fica explicado como é feito o cálculo numérico de Ki'^> P^^ra um valor fixo 

de cj. O cálculo do valor numérico de Ki’^ ® de maneira completamente análoga. 

Para encontramos as amplitudes correspondentes, substituímos as funções radiais Ki’^ 

e Ki'^ (3.113), obtendo 

= 2iq^ If(Rs) - iÇfjãÚ Q^Pr [0)â(u, - míl) , (3.134) 
■tís 

para n =—>•, f- , onde Cim foi definido em (3.79). Em seguida encontramos as respectivas 

potências irradiadas, dadas por 

= 2m’í2*,^[/(fís) - m„(>r/2,fií)|= , (3.135) 

onde ujo = mO, e l,m>l. A expressão para \Yim{Tr/2,Qt)\'^ foi dada em (3.116). 

Na figura 3.2, mostramos a potência irradiada total para valores fixos do momento 

, angular. 

fS,em 
+ w, Im (3.136) 

em função da velocidade angular Q. Os resultados numéricos apresentam-se como as curvas 

sólidas da figura 3.2, e foram calculados para í = m = 1, 2, 3. Vale notar que = 0 para 

valores ímpares de (/ d- m), uma vez que Yim{T^/2, Qt) = 0 nestes casos. 

3.4.3 Cálculo da potência irradiada na aproximação de baixas fre- 

qüências 

Nesta seção encontraremos uma expressão analítica para a potência irradiada pela fonte 

girante, utilizando uma aproximação de baixas freqiiências, na qual as funções radiais, soluções 
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de (2.17), são substituídas por suas contibuições dominantes no limite de baixas freqüências. 

Para justificar que o limite de baixas freqüências é uma boa aproximação para o pro- 

blema vejamos o seguinte raciocínio. Primeiramente recordemos que, da expressão da amplitude 

de emissão (3.113), tem-se que oc 6{u — mQ), de onde segue que as partículas emitidas 

pela fonte em movimento circular uniforme são tais que ui = mQ. Além disso sabemos que 

órbitas geodésicas estáveis só são possíveis para Rs > 6M, sendo em Rs = 6M a órbita 

circular geodésica (OCG) tipo tempo mais interna possível. Como Q. = yjM/R\, segue que esta 

também é a OCG com maior freqüência, dada por = m(6\/6 M)“P Denotando por 

o máximo do potencial de espalhamento Vs expresso em (2.15), obtemos que < 10~^. 

No caso particular dos modos com m = 1 que, como veremos adiante, são os modos responsáveis 

pela contribuição dominante para a potência emitida, temos que « 

4 X 10~^ -C 1. Concluímos então que no caso da fonte em MCU em torno do buraco negro de 

Schwarzschild, a freqüência das partículas emitidas é sempre bem menor do que a raiz quadrada 

do potencial envolvido, o que justifica e caracteriza como apropriada a aproximação em questão. 

Substituindo e dados pelas equações (2.67) e (2.76), respectivamente, na 

expressão da potência emitida com valores fixos do momento angular, dada por (3.115), obtemos 

2 
Ty->,S,em 
^ * Im (/(ü>5) - Rln^) (^ - l)| \Yim{TT/2,Qt)\^ , (3.137) 

W, 
-Sem 2^'+^g2(;j)6^2i+2j^^2Zj^2í+2 

^ pyippTOT 
if{Rs) - Rln^) \YU'K/2,Çlt)\^ , 

(3.138) 

onde /, m > 1. 

As curvas tracejadas da figura 3.2 exibem -t- , para valores 

fixos do momento angular (/ = m = 1,2,3). Naquela figura vemos que a aproximação analítica 

adotada aqui é tanto melhor quanto menor o valor de Q. Isto pode ser ententido lembrando 

que u (X Q, devido a presença da função S{u — míi) em (3.113). 
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A potência total irradiada é então, na aproximação de baixas freqüências, dada por 

oo í 

= E E + E E 
/=1 m=l 1=1 m=l 

(3.139) 

com e dados por (3.138) e (3.137), respectivamente. 

Para órbitas geodésicas circulares suficientemente distantes do horizonte, podemos usar 

as equações (3.137)-(3.139) para escrever a potência irradiada na forma 

ç2jV^2/3^8/3 
W S.em 

127T 
(3.140) 
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3.5 Análise e comparação dos resultados deste capítulo 

Dedicaremos esta seção final deste capítulo à comparação dos resultados das seções 

anteriores para a potência emitida pela fonte em movimento circular uniforme, obtidos uti- 

lizando diferentes suposições. O fato de termos expressado nossos resultados em função de 

grandezas medidas pelos mesmos observadores (estáticos assintóticos neste caso), permite que 

esta comparação tenha efetivamente um sentido quantitativo. 

Na seção 3.2 vimos que, no caso do espaço-tempo plano, o resultado para a potência 

irradiada supondo TCC coincide com o resultado supondo TQC. Esta igualdade (entre (3.84) 

e (3.86)) vem do fato do cálculo via TQC ter sido realizado a nível de árvore (e não envolver 

partículas virtuais). 

Ainda no espaço-tempo de Minkowski, dependendo qual a suposição para a força gra- 

vitacional, se newtoniana ou devida à troca de grávitons, obtemos um resultado diferente para 

a potência emitida. e dados em (3.89) e (3.107), respectivamente, tendem 

assintoticamente a um mesmo valor (vide (3.90) e (3.108)), mas diferem na medida em que nos 

aproximamos do objeto estelar. Para um valor fixo de Q, medido por um observador inercial em 

Minkowski, a potência emitida pela fonte girante é maior se supusermos uma força newtoniana 

do que se supusermos um força induzida por grávitons. A título de exemplo, para QM « 0.07, 

temos que a potência irradiada é cerca de 15% maior no ca^o de uma força newtoniana entre a 

fonte e o corpo estelar massivo, do que para o caso de grávitons. 

Vamos agora comparar os resultados obtidos no espaço-ternpo de Minkowski com os 

obtidos no espaço-tempo de Schwarzschild. 

Para o caso no qual a interação gravitacional no espaço-tempo de Minkowski é dada pela 

força gravitacional newtoniana, calculamos a razão'W^’^^/W^’^^, que é mostrada na figura 3.3 

como função de Q. Nela exibimos tanto o resultado numérico (curva sólida), quanto o resul- 

tado analítico aproximado (curva tracejada). Já na figura 3.4 exibimos a razão 

também como função de Q, para o caso em que é a troca de grávitons a responsável pela 
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Figura 3.1: Nesta figura mostramos os potenciais Vm e Vs como funções de r/2M para l = 1. 

Vale ressaltar que Vm e Vs são definidos como funções deis coordenadas radiais r de Minkowski 
e Schwarzschild, respectivamente. Assintoticamente, vemos que ambos Vm e V$ caem como 

1/r^. O potencial V$ só é definido na região exterior ao horizonte de eventos do buraco negro 

(r > 2M). Devido a não-existência de um horizonte de eventos no caso do espaço-tempo de 

Minkowski com coordenadas inerciais, Vm também é definido na região 0 < r < 2M. 
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Figura 3.2: Nesta figura mostramos a potência irradiada como função de flM para 

órbitas circulares geodésicas. As curvas sólidas e as curvas tracejadas estão associadas com 

os resultados numéricos e com os resultados analíticos aproximados, respectivamente. O valor 

máximo de Q.M considerado acima é 0.068, que corresponde à última órbita circular estável 

possível, segundo a Relatividade Geral. Como era esperado, a aproximação analítica utilizada 
aqui é tanto melhor quanto menor a energia das partículas emitidas, como podemos ver pela 

proximidade entre as curvas correspondentes aos resultados numéricos e analíticos aproximados, 

para baixos valores de Çl. Da figura fica claro que as ondas com menores valores de momento 

angular são responsáveis pelas contribuições dominantes para a potência irradiada total. 
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interação gravitacional no espaço-tempo plano. 

Nas figuras 3.3 e 3.4, vemos que para —» 0 a razão tende a 1, como 

pode ser constatado, no caso dos resultados analíticos, pelas expressões (3.90), (3.108) e (3.140). 

No entanto, na medida em que a fonte se aproxima da órbita circular estável mais interna 

possível, os resultados numéricos e analíticos mostram que £)g fato, obtemos 

que para órbitas circulares relativísticas a potência emitida é cerca de 30% e 20% menor no 

caso de Schwarzschild, com relação aos casos do espaço-tempo de Minkowski com Gravitação 

Newtoniana e com troca de grávitons, respectivamentè. Vale ressaltar que esta diferença de 

30% e 20% não é uma conseqüência trivial advinda de um fator de redshift (desvio para o 

vermelho) gravitacional, uma vez que é a freqüência medida por observadores estáticos no 

infinito, tanto no caso do espaço-tempo de Minkowski, como do espaço-tempo de Schwarzschild, 

que é assintoticamente plano. 

Esses nossos resultados corroboram o fato de que processos astrofísicos envolvendo com- 

primentos de onda da ordem do raio de Schwarzschild, para serem analisados de maneira quali- 

tativamente correta e quantitativamente precisa, devem ser descritos através de uma abordagem 

que leve em conta a curvatura e a topologia deste espaço-tempo. 

Vamos agora calcular o quanto da radiação emitida pela fonte em MCU ao redor do 

buraco negro é observada assintoticamente, i.e., 

oo l 
^S,o6i = 

i=l m=l 

Usando que = 1 — podemos reescrever a expressão acima como 

oo l 
^s,obs _ 

/=1 m=l 

A curva sólida na figura 3.5 mostra o resultado do cálculo numérico de Para o 

cálculo analítico de , na aproximação de baixas freqüências, precisamos conhecer 

a expressão do coeficiente de transmissão neste limite, para podermos então obter 

para 1. Pode ser mostrado que [13] 

2U/i')2 
Qi ~ (2/ + 1)!^~^~^ 2 » 1 • (3.143) 

(3.142) 

(3.141) 
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Usando (3.143), podemos reescrever (2.67), assintoticamente, como 

{2My+^{i\y 

(2Í + 1)! 
r ^ {r :$> 2M,uq ^ 0) . 

Em seguida, usando 

(20! .-í-i h\^\k) ^ T]i{k) « k 

(3.144) 

(3.145) 

em (2.52) (fazendo-se uj = ujq), e também (2.55) e (2.73), obtemos 

1 (2/)!. 
XZiUJ ‘ r ‘ (r » 2M, o;o « 0) , (3.146) 

2üj 2n\ 

a menos de uma fase arbitrária. Assim, comparando (3.146) com (3.144), nos limites r » 2M 

e üjqt 1, ficamos com 

IXZil = 
2^^+^{l\f{Mcüo) i+i 

{2l + l)\{2l)\ ■ 

Usando (3.147), (3.137) e (3.138) em (3.142), obtemos uma aproximação analítica para 

]yS,obsque é mostrada na curva tracejada da figura 3.5. Nesta figura vemos que muito 

pouco da radiação emitida pela fonte girante é absorvida pelo buraco negro. Isto não contradiz 

o fato de que buracos negros de Schwarzschild têm uma seção de choque não-desprezível para 

partículas escalares com freqüência infravermelha (baixas energias) [28] — da ordem da área 

do horizonte de eventos, 167tM^ — porque a contribuição dominate para o cálculo dessa seção 

de choque vem dos modos com l = 0, que não são emitidos pela fonte em movimento circular 

uniforme (lembrar da presença de 5{u — mÇl) nas expressões das amplitudes de emissão, tanto 

no caso de Minkowski como de Schwarzschild). 

Pode-se adaptar o procedimento deste capítulo para fontes seguindo outras trajetórias, 

modificando-se apropriadamente a corrente dada em (3.109). Uma outra possível extensão para 

o desenvolvimento apresentado aqui seria considerarmos a presença de um disco composto por 

partículas girando ao redor de um buraco negro (vide [29] e referências lá contidas). Claro está 

que a presença de matéria em volta dos buracos negros (na forma de discos de acreção) deverá 
r 

aprisionar a radiação emitida naquela região, devido a efeitos de fricção [17]. Estas questões, 

no entanto, não serão analisadas nesta tese. 
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Figura 3.3: Na figura acima a razão é mostrada como função de ÍIM, as- 

sim como calculada por observadores estáticos assintóticos. e são as potências 

emitidas pela fonte girante, assim como calculadas por observadores estáticos assintóticos que 
consideram espaços-tempos de Schwarzschild (assumindo Relatividade Geral) e Minkowski com 

Gravitação Newtoniana, respectivamente. As somas nos momentos angulares envolvidas nos 

cálculos de e foram consideradas até l = 3. O gráfico é realizado até ClM = 0.068, 

já que este é o valor correspondente à órbita circular estável mais rápida possível, de acordo 

com a Relatividade Geral. As curvas sólida e tracejada estão associadas aos cálculos numérico 

e analítico, respectivamente. Assintoticamente (Í2 0), temos que jy^M,em Na 

medida em que aumenta, vemos que a razão diminui. 
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n M 

Figura 3.4: De maneira análoga à figura 3.3, a razão é mostrada como função 
de Í2M. Aqui, no entanto, é a potência irradiada pela fonte girante , assim como 

calculada por observadores estáticos assintóticos considerando o espaço-tempo de Minkowski, 

assumindo uma força gravitacional induzida por grávitons, ao invés da força newtoniana usual. 

Note-se que as figuras 3.3 e 3.4 têm características semelhantes, a saber (i) —> 1 

assintoticamente {Q —>■ 0) e, (ii) diminui de até cerca de 20% (vide figura 3.4) e 
de até cerca de 30% (vide figure 3.3), na medida em que D cresce. 
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1.00 

0.99 

0.98 

0.97 

Figura 3.5: Nesta figura mostramos a razão como função de QM para órbitas 

circulares geodésicas. Assim como no caso das figuras 3.3 e 3.4, as somas nos momentos an- 
gulares envolvidas são realizadas até l = 3. Aqui também as curvas sólida e tracejada estão 

associadas com os resultados numérico e analítico, respectivamente. Da figura vemos que prati- 

camente toda a energia emitida pela fonte girante escapa para o infinito. 
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Capítulo 4 

Quantização do campo eletromagnético 

na geometria de Schwarzschild no 

limite de baixas freqüências 

A previsão de que buracos negros devem evaporar [5] tem dado origem a várias questões con- 

ceituais em Teoria Quântica de Campos que, por sua vez, têm sido bastante discutidas pela co- 

munidade científica nos últimos 25 anos. Uma das principais dificuldades em quantizar campos 

livres no espaço-tempo de Schwarzschild está relacionada com a não-trivialidade da ortonor- 

malização dos modos de freqüência positiva e negativa nesta geometria [9], como pudemos ver 

anteriormente neste trabalho. Entretanto, a situação não é tão problemática na aproximação 

de baixas freqüências. Podemos destacar a importância da quantização de campos bosônicos 

no limite de baixas freqüências com duas razões principais, quais sejam: A primeira delas é a 

possibilidade de investigação analítica de processos ocorrendo na vizinhança de buracos negros 

envolvendo partículas com baixas energias, a exemplo do que foi feito no capítulo anterior. 

A outra está associada ao fato de partículas com energia nula serem cruciais para a análise 

de questões conceituais relevantes, como a discussão se observadores co-acelerados com fontes 

estáticas detectam radiação [7, 30] que será abordada no capítulo 6 (vide seção 6.1). 

Apesar de sua grande relevância física, a quantização do campo de Maxwell em Schwarzs- 

child [31, 32] tem recebido menos atenção do que a do campo escalar. Neste capítulo nos 

propomos a investigar o setor de baixas freqüências do espaço de Fock associado à quantização 
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canônica do campo eletromagnético fora de um buraco negro estático e sem carga. Com este 

objetivo usaremos o procedimento de Gupta-Bleuler [33, 25, 34] adaptado ao espaço-tempo de 

obter as soluções das equações de Maixwell fora de um buraco negro estático e sem carga. Na 

seção 4.2 transformaremos as soluções obtidas neste gauge iniciai para obter um novo conjunto 

satisfazendo a condição de Lorenz [21, 35]. Adaptaremos a quantização de Gupta-Bleuler para 

o espaço-tempo de Schwarzschild na seção 4.3. Na seção 4.4 obteremos a normalização dos 

modos físicos na' aproximação de baixas freqüências. Em [36] podemos encontrar um desen- 

volvimento semelhante ao apresentado neste capítulo, onde aplicamos a quantização do campo 

eletromagnético fora de buracos negros estáticos para (p -j- 2) dimensões em fenômenos envol- 

vendo baixas energias. 

Para expandirmos o campo fotônico em termos dos modos de energia positiva e nega- 

tiva em um buraco negro estático e sem carga, com elemento de linha dado em (2.1), deve- 

mos primeiramente analisar as soluções clássicas do campo de Maxwell livre na geometria de 

onde e p = dei As equações de movimento de Euler-Lagrange 

correspondentes são = 0, ou 

onde fizemos uso de que, no vácuo, as equações de Einstein se resumem a = 0. Em seguida 

reescrevemos (4.2) separando suas componentes da seguinte forma: 

Schwarzschild. Na seção 4.1 imporemos uma certa condição de gauge (condição de calibre) para 

4.1 Soluções Clássicas 

Schwarzschild. A densidade de lagrangiana clássica de um campo vetorial com massa nula 

é dada por - ■ 

(4.1) 

= 0 , (4.2) 

□eAí - /-'aMí + ídtdrAr ~ T-^dt Ai) + (2//r)5íA, + fdrAt = 0 , (4.3) 
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(4.4) n,Ar + fõ^Ar - f-'drd,At ~ r~^d, (VMi) + (/' + 2//r) d,A, = 0, 

[/■‘ô? - /a; - /'a. 

onde i = 9, íf, e 

+ r-Mi - {2f/r)d,Ar - = 0 , (4.5) 

= f-^dtAt - fdrAr - (/' + 2//r) Ar + r-^V^Ai. (4.6) 

Foi usada acima a convenção de que o símbolo é colocado sobre operadores definidos 

no subespaço (S^,gij), caracterizado pelo elemento de linha dl'^ = -dO"^ - (sen0)^ d(p^. Em 

particular, podemos escrever V^^lj = g^^VjVkAi como 

VM; = 
Vg Ag + 2 cot 0 (sen0) d^A^f,{cot 9Y Ae para í = ^ 

- 2 cot 0 {d^Ae - deA^) - A^ 
(4.7) 

para i = (p 

e VMj = —dgAg — {sen9) ‘^d^A^ — cot 9Ag. Além disso, adotamos o índice “e” para denotar 

operadores diferenciais escalares. Separando suas componentes, o operador 

pode ser escrito como 

°e = - fdl - (/' + 2//r) ô. + r-^Vl , (4.8) 

onde V\ = g di {^/g g^Wj) é dado por 

Vg = -dg - cot 9dg - (sen0)~^5^ . (4.9) 

Para resolver as equações (4.3)-(4.5) é conveniente adotarmos a seguinte condição de 

gauge: 

VMi = 0, (4.10) 

que denominaremos gauge de Coulomb esférico. A seguir provaremos que esta é uma condição 

de gauge legítima, mostrando que uma solução arbitrária das equações de Maxwell pode ser 

levada, por uma transformação de gauge, em uma outra solução que satisfaça (4.10). Iniciemos 
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por assumir uma solução arbitrária que não satisfaça (4.10), i.e., V^Ai = onde 

x{t,r,9,(f) é uma função real não-nula. Lembrando que a esfera não possui borda, obtemos 

pelo teorema de Gauss que 

l,xdn = ls^V^AdQ = 0, (4.11) 

onde dO, é 0 elemento de área da esfera 5^. Para resolvermos esta equação integral, vamos 

expandir x(í,em termos dos harmônicos esféricos escalares Yim{9,íp) na forma 

oo +l 
X{i,r,9,if) = Xim{t,r)Yim{9,(p). • (4.12) 

/=0 m=—l 

Substituindo (4.12) em (4.11) e usando 

J^^Yim{9,(p)dQ = \/^ ôioSmo, (4.13) 

obtemos que Xoo = 0. Sendo assim podemos reescrever (4.12) como 

00 +/ 

X{t,r,9,(p) = Xim(t,r)Yin,(9,ip). (4.14) 
/=1 m=—l 

Em seguida definimos a função 

oo +/ 

X{t,r,9,(f) = J2 Xim{t,r)Yim{9,(p)/[l{l + l)]. (4.15) 
/=:! m=—l 

Usando que XlYim{9,ip) = l{l + l)Yim{9,(p), podemos então mostrar que = x- Desta 

forma, dada uma solução arbitrária Af^, sempre podemos realizar uma transformação de gauge 

e obter uma outra solução A'^ = A^ — satisfazendo a condição (4.10), onde X{t,r,9,(p) 

está definida em (4.15). Isto é verdadeiro uma vez que V' A[ = VMi — VgX = 0. 

Usando a condição de gauge (4.10), as equações de campo (4.3)-(4.5) podem ser rees- 

critas como 

□ e-^í — / ^d^At + fdtdrAr + {2f /r)dtAr + fdrAt — 0, 

a,Ar + - r'd,d,A, + {/' + 2//r) ÕrA, = 0, 

- Í3l - fdr)Ai + r-"VM. + r-Mi - f-^a,diA, + SÕAA, + /'Sj/1, = 0. 
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Classificaremos as soluções segundo suas polarizações e. Os modos puro-gauge, e = G, serão 

as soluções de (4.16)-(4.18) que satisfazem a condição de gauge (4.10) e que podem ser escrita.s 

como para um dado campo escalar Os modos físicos e = X = I,II, satisfazem 

as equações (4.16)-(4.18) e a condição (4.10) mas não são puro-gauge, enquanto que os modos 

não-físicos, e = NF, satisfazem (4.16)-(4.18) mas não a condição de gauge. 

Vamos primeiramente analisar as soluções puro-gauge Impondo a condição de 

gauge (4.10) a $ obtemos 

V2$(x^)=0. ' (4.19) 

Uma vez que a solução de (4.19) não tem dependência angular, ou, dito de outra forma, tem 

dependência angular proporcional a Yóo (= constante), obtemos que $ = $(í, r). Desta maneira, 

os modos puro-gauge podem ser escritos na seguinte forma: 

4°) = a,$(i,r), 0, 0) . (4.20) 

Note-se que a solução (4.20) satisfaz automaticamente (4.16)-(4.18). 

Em seguida procuremos pelos modos físicos A = I, II com freqüência positiva com 

respeito ao campo de Killing tipo tempo dt 

^ (a; > 0), (4.2l) 

onde n =—> e n =4- denotam os modos provenientes do horizonte do buraco branco, H~, e do 

infinito passado tipo luz , J~, respectivamente. Além disso os números inteiros l,m {I > 0, 

—l<m<l) são os números quânticos que determinam o momento angular dos modos A^. 

Os modos físicos A = / podem ser escolhidos na forma 

A condição de gauge (4.10) é então trivialmente satisfeita por estes modos. Assumindo que 

(sem convenção de soma de Einstein nesta última 

expressão) na equação (4.21), podemos resolver (4.18), obtendo 
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com constantes de integração convenientemente escolhidas. Usando isto em (4.17) resulta que 

Qç. Sendo assim, estaremos procurando por soluções na 

forma 

Analisemos inicialmente o caso / = 0 (m = 0). As equações (4.16)-(4.17), para l = 0, serão 

satisfeitas se e somente se drAt = dtAr, enquanto que a equação (4.18) é trivialmente satisfeita 

neste caso. Segue então que 

^(/.n,a;,0.0) ^ (47r)-i/2 {i/üj) drRl^’'"’‘"’°\r),0,o) iaií (o; > 0), (4.22) 

onde pode ser escolhido arbitrariamente. No entanto, uma vez que podemos es- 

crever ^U.".‘^.o,o) _ v^'!' com $(í, r) = {i/y/ÂTU^) , concluímos que a 

solução corresponde a modos puro-gauge. Vamos agora analisar o caso / > 1. Da 

equação (4.18) obtemos que 

(4.23) 

Definindo + l)^/(^ — 1)]9Í?(2) com ^ = r/M — 1, podemos escrever 

[m (^ “ ^)~nr + / , (4.24) 
dz (z + 1) 

onde, de acordo com a equação (4.17) [e usando (4.23)] podemos mostrar que os gif(z) são 

soluções da equação diferencial 

2 , o (z + 1)^ A 
dz dz 

+ l{l + 1) r - 9^r = o. (4.25) 
z + 1 {z-l) 

Pode-se mostrar que (4.16) é automaticamente satisfeita por (4.24). Usando-se a coordenada 

adimensional de Wheeler x = r/2A/’ + ln(r/2M — 1), pode-se escrever (4.25) como uma equação 

tipo Schrõdinger para a saber 

( d? 

dx'^ 
-f m‘^V\x) (rg^D = {r qt^) , (4.26) 
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com V'^[x{r)] = /(/+l)/(r)/r^. Escolhemos as duas soluções independentes de (4.26) de maneira 

que, assintoticamente, 

[ 2i^^^B^-^rà-^Muxh^^\2Mux) {x » 1), 

é uma onda proveniente do horizonte passado H , enquanto que 

_ „Xi— 
^Quji 

✓ 

B^f[‘^i-iy'^^Muxh\^\2Mujxy + 2i‘+^n^lMuxhy\2Mujx)] (x » 1), 

(4.28) 

é uma onda proveniente do infinito passado tipo luz J~. Aqui é a função esférica de 

Bessel do terceiro tipo [10, 13], B^f são constantes de normalização , e |7?-^7P ® são os 

coeficientes de reflexão e transmissão, respectivamente. 

Os modos físicos X = II podem ser escolhidos na forma 

Devemos impor que os modos X = II satisfaçam a condição de gauge V* Aj = 0. Sabemos no 

entanto que (0, </?) = 0, com l > 1, onde = ejid^Vimiô, (p)/^l{l + 1) , são 

os harmônicos esféricos vetoriais [37], com eg^ = —t^pg = sen0 e tgg = — 0. Sendo assim, 

buscamos por soluções de freqüência positiva na forma 

^ , (/?), Yjy^\9, ^)) {üj > 0) . (4.29) 

Note-se que não há modos do tipo (4.29) com momento angular nulo. As equações (4.16) 

e (4.17) são automaticamente satisfeitas por estes modos. Substituindo (4.29) em (4.18) obtemos 

_ ^1/2 onde são soluções de (4.25), e usamos que 

if) = [l{l + 1) - 1]y}‘^\9, if) . (4.30) 

Podemos então reescrever os modos físicos II na forma 

+ 1) qüriz) (0,0, r,<"">(«, <í>), ,;)) e-<“‘. (4.31) 
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Os modos não-físicos podem ser escolhidos como 

^ ^1/2 + (0, 0, 9,Y(í^) (0, (/.), (0, </.)) 6-^“* , (4.32) 

uma vez que estes satisfazem (4.16)-(4.18), mas não (4.10). 

Para normalizar os modos independentes do campo eletromagnético vamos utilizar o 

produto interno de Klein-Gordon generalizado para o caso do campo vetorial, definido por [30] 

a^av (A«, /!«>) = ^ (4.33) 

onde Aqui dTP'^ = é o elemento de (tri)volume invariante da 

superfície de Cauchy cujo vetor unitário ortogonal (apontando na direção futura) é n^, e 

é o determinante da métrica de Schwarzschild restrita a Além disso 

(4.34) 

com 

dC 
(4.35) 

onde £ é a lagrangiana associada ao campo vetorial. Vale ressaltar que ctkgv (44.^*^ é linear 

com relação ao segundo termo, e que gkgv = gkgv (A^^\ A^*)^ , 0 que garante que 

a norma definida através de (4.33) seja real. Pode-se ainda mostrar que as equações de campo 

garantem a conservação da corrente, i.e.: V^TV^[A^'\ = 0. Como conseqüência, a exemplo 

do caso escalar, o produto interno (4.49) não depende da escolha da superfície de Cauchy E^^^ 

[38]. 

No caso particular da lagrangiana (4.1), temos 

1 5£iu M 
,, = - 

(4.36) 

e, conseqüentemente. 

gkgv (a«, A(^)) = (A«, A(^')) = i dEf (4.37) 
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com Ai). 'A^ = A^ 

Em seguida vamos mostrar explicitamente que o produto interno (4.37) é invariante 

por uma transformação de gauge . Com este propósito, vamos 

inicialmente escrever 

^ + {A^^, . (4.38) 

Note-se que {A'^^\A'^^^) = {A^'’\A^A'j^ pois cada um dos termos no lado direito da igualdade 

acima é nulo. Em particular, podemos mostrar que o último termo desta expressão se anula, 

fazendo 

= i í dE[f)[V^($W* = 0, (4.39) 
y£(3) ^ 

onde usamos que é um tensor anti-simétrico, o teorema de Gauss e também que o campo 

vetorial se anula assintoticamente; além das equações de campo de Ma^cwell, que são trivialmente 

satisfeitas por modos puro-gauge. De (4.39) segue diretamente que 

(^(G)^^(/)) ^ ^ (^(^), A(^)) =0. 

Os modos com e = I, II,G, NF, exibidos anteriormente podem então ser 

normalizados usando-se (4.37). O processo de quantização canônica a partir da lagrangiana 

(4.1) apresenta problemas relacionados com o fato de o momento conjugado ao campo Aq 

ser identicamente nulo. Sendo assim, para aplicarmos as regras de comutação canônicas ao 

campo eletromagnético e ao momento correspondente, modificaremos a lagrangiana (4.1). Este 

desenvolvimento será apresentado na seção 4.3. 

4.2 Soluções Clássicas no gauge de Lorenz 

Uma vez que quantizaremos o campo fotônico usando o método de Gupta-Bleuler, é 

conveniente obtermos as soluções das equações de Maxwell no gauge de Lorenz 

% = (4.40) 
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Neste gauge as equações dinâmicas (4.2) reduzem-se a 

a% = 0 , (4.41) 

onde □ = . 

Os modos puro-gauge são agora dados por com üe$ = 0, cujas soluções 

foram estudadas em detalhe no capítulo 2. Os modos físicos também satisfazem (4.40) 

e (4.41) mas não são puro-gauge e os modos não-físicos satisfazem (4.41) mas não (4.40). 

Recordemos que os modos físicos X = I com l = 0 são puro-gauge (e assim serão em 

qualquer gauge legítimo). Os modos físicos X — I com l > 1 no gauge de Lorenz podem ser 

obtidos por uma transformação de gauge dos modos encontrados na seção anterior, i.e.\ 

com satisfazendo (4.40), o que implica que 

e ^ 

(4.42) 

(4.43) 

Usando (4.43), (4.6) e (4.23) e obtemos 

□ = - — 4õn,o;,/,m) _ (4 44) 
r 

Desta forma, os modos físicos I transformam-se para 

onde g definidos em (4.24). 

Com relação aos modos físicos A = II, segue diretamente de (4.6) que assim 

como dado em (4.31), já satisfaz a condição de Lorenz, de forma que 

Lj^(II,n,u,l,m) _ ,n,íJ,l,m) ^ (Z > 1). (4.46) 

Os modos não-físicos podem em princípio ser determinados, no entanto, como os mes- 

mos não serão usados em nosso desenvolvimento, não nos preocuparemos em obter sua forma 

explícita neste gauge. 
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4.3 Quantização Canônica 

Para quantizarmos o campo de Maxwell, usaremos o método de Gupta-Bleuler adap- 

tado para o espaço-tempo de Schwarzschild. Iniciemos então com a densidade de lagrangiana 

apropriada, que inclui o termo covariante de fixação de gauge, a saber 

Cp = -\T-g (4.47) 

■de acordo com a proposição original de Fermi [39, 25, 34]. 

Neste caso as equações de Euler-Lagrange são dadas por 

-f = 0. (4.48) 

No gauge de Feynman, a = 1, as equações (4.48) se reduzem a (4.41), sendo então satisfeitas 

pelos modos físicos, puro-gauge e não-físicos indicados na seção anterior, onde aqui o 

índice (í) representa todo o conjunto de números quãnticos que indexam os modos. 

Para normalizar os módos (x) usaremos também o produto interno de Klein-Gordon 

generalizado (4.33)-(4.35), que no caso da lagrangiana (4.47), no gauge de Feynman, é dado 

por 

(^KGv , (4.49) 

com 

Í4Ü)] = i _ L^u) (4.50) 

onde 

1 d£.p 
= -[F>^^ + 9 

Para os modos que satisfazem a condição de Lorenz 

. (4.51) 

{e = podemos mostrar 

que 

(L^{i) ^ (4.52) 

com (,) dado por (4.37), que é invariante por uma transformação de gauge, como foi demons- 

trado na seção 4.1. 
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Como conseqüência direta da invariância de gauge de (4.37), podemos mostrar que, 

para quaisquer números quânticos n,u,l,m, 

í4m) = (iA(=),‘/i("))=o 

e 

, Í4(°>) = 0 . 

Estas expressões nos dizem que os modos puro-gauge são ortogonais aos modos físicos A = /, //, 

e têm norma nula. Além disso, existem modos não-físicos que não são'ortogonais aos modos 

puro-gauge. Para mostrarmos isso, usamos que o momento tensorial (4.51) associado com os 

modos puro-gauge (onde = 0) é nulo. Desta forma, usando o produto 

interno (4.49), podemos escrever 

(L^(iVF)^ V$) = i j (Hlf • (4.53) 

Em seguida definimos o tensor anti-simétrico 

e relembramos que o produto interno de Klein-Gordon entre modos escalares é dado por [vide 

(2.21)] 

ctkg (4', «) = i / dZf’ [ÍV"'*’ - (V'‘<S>)'rj . 

Usamos estas duas últimas expressões para reescrever (4.53) como 

(L^(VF), ^ ^ • J V,, (4.54) 

onde também fizemos uso de que = 0. Note-se que $ e são soluções da 

equação de Klein-Gordon com massa nula. O primeiro termo a direita da igualdade de (4.54) é 

diferente de zero para os escalares $ e associados com a mesma energia e os mesmos 

números quânticos de momento angular [vide (2.44)], enquanto que ò último termo é nulo pelo 

teorema de Gauss, desde que os campos se anulem assintoticamente. Desta forma concluímos 

que existem modos puro-gauge que não são ortogonais aos modos não-físicos. 
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A seguir mostraremos que os modos físicos com X = I e X = II são mutuamente 

ortogonais. Usando (4.49), (4.52) e o fato que (4.37) é invariante por transformações de gauge, 

podemos escrever 

(4.55) 

onde e com l > 1 foram definidos em (4.24) e (4.31), respectivamente. Integrando 

por partes apropriadamente (4.55), e lembrando que satisfaz a condição de Lorenz, pode- 

mos expressar (4.55) como 

( = i , (4.56) 

onde usamos que = 0 e definimos o tensor anti-simétrico U''^ = ^ , 

Podemos então usar o teorema de Gauss para obter 

(Í4<'>, Í4<"1)=0. 

Além disso, podemos sempre tornar os modos não-físicos ortogonais aos modos físicos através 

do método de Gram-Schmidt. Isto é importante para que possamos gerar um espaço de Hilbert 

físico adequado. Vamos supor que não seja ortogonal ao conjunto de modos físicos 

e onde denotam aqui os números quânticos n,üj,l,m. (A fim de 

evitarmos dificuldades associadas com o uso de números quânticos contínuos, podemos realizar 

a ortogonalização pelo método de Gram-Schmidt no interior de uma casca esférica e fazê-la 

arbitrariamente grande no final do procedimento.) Vamos agora definir os seguintes modos 

não-físicos transformados 

(4.57) 

onde a|/ej e 0y/[,,, são números complexos a serem determinados o posteríori. Requerendo que i(i) 

(4.58) 

para cada conjunto [i'), obtemos 
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e 

W’ 

onde usamos o fato dos modos I e II serem mutuamente ortogonais. Desta forma, o sis- 

tema algébrico acima pode ser em princípio resolvido, determinando-se «[/j/) e e, con- 

seqüentemente os novos modos não-físicos dados por (4.57), ortogonais aos modos A = I,II. 

Note-se que, devido à estrutura linear de (4.57), pode-se concluir diretamente que 

também satisfaz = 0 e 0. No desenvolvimento a seguir assumiremos que 

os modos não-físicos já sejam ortogonais aos modos físicos. (Na verdade, como já mencionamos, 

a forma explícita dos modos não-físicos não será importante para o que apresentaremos aqui.) 

Uma vez que o produto interno entre os modos oc deve ser independente 

de í, o produto interno entre e só poderá ser diferente de zero se u; = o;'. 

Desta forma podemos escrever 

5nn'Su>ômm>S{u - üj') , (4.59) 

requerendo que 

1 0 0 0 ^ 

jp/(e)(e') _ (4.60) 
0 10 0 

0 0 0 -1 

\ 0 0 -1 -1 y 

de acordo com o desenvolvimento acima, onde linhas e colunas de M são dispostas na ordem 

e = I, II, G, NF. 

Para quantizar o campo clássico vamos impor as relações de comutação a tempos 

iguais 

[>((, x), Â-it, X')l = (ft-íi. x), n-íí, x')l = 0, (4.61) 

[/!“((, x).n‘'(i,x')] = « 
. 9' 

pt/ 
<5^(x-x') , 

com 

= n/n"^ = -n,. [F‘'^ + , 

(4.62) 

(4.63) 
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onde = d^A,^ — e é o versor tipo tempo definido abaixo do produto interno (4.33). 

Usando (4.49) e as relações acima podemos mostrar que 

[(L^(M^ i), (i, ^ - u;'), (4.64) 

com 

mI-X"') = . (4.65) 

onde denotamos por k todos os índices discretos de ^4^, i.e., e,n,l,m. 

Podemos expandir o operador campo vetorial associado à lagrangiana (4.47) em 

termos dos modos obtidos anteriormente como 

roo 
Ã,{x) = J: dü, aMÍ4<.““’W + õ;^,'íl('“)'(i)] , (4.66) 

(«) 

Os coeficientes desta expansão, â(«;a>) e são os operadores de aniquilação e criação, res- 

pectivamente. Ressaltemos que a soma em (4.66) engloba todas as polarizações possíveis, i.e., 

e = I, II, G, NF. 

Usando (4.49) e (4.66) podemos concluir que 

[(X^(«a;), ^), Í4(«V))J ^ 

(«"),(«" 

')(«') (4.67) 

onde usamos também o fato de que modos de freqüência positiva e negativa são mutuamente 

ortogonais, i.e.. 

e que o produto interno definido em (4.33) é antilinear na entrada da esquerda e linear na 

entrada da direita. De (4.64) e (4.67) obtemos 

— (M )(,ç)(K')(5(a; ), 

onde (M“^)(k)(k') é a matriz inversa de M, definida por 

i;(M-‘)(„(,»,M'-‘")('’) = 5<;;>. 

W) 

(4.68) 

(4.69) 
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Analogamente 

= 0. (4.70) 

De (4.60), (4.65) e (4.69) podemos escrever 

{M J(k)(k') = {M )(e){e')^nn'5ll'5^ (4.71) 

onde 

1 0 0 0 ^ 

(M ^)(£)(£/) = 
0 10 0 

0 0 1-1 

0 0-10 

Sendo assim, os comutadores não-nulos entre os operadores de criação e aniquilação são 

V 

(4.72) 

/ 

~ à]^n,n',uj',1’,m')] ~ ) (4-73) 

[Ô(G,n,o;,i,m)) ô|(5 ~ ^ ) ) (4-74) 

[^{G,n,uj,l,m), àj^NF,n',Lj',l',m')\ ~ [^{NF,n,w,l,m)',Ô^[G,n> ,ui',V ,rn''^ ~ —u). (4.75) 

É sabido que a quantização canônica e a condição de Lorenz para o operador são 

incompatíveis. Isso pode ser visto de 

[V^i^(í,x),i‘'(í,x')]7^0, (4.76) 

que em nosso caso pode ser obtido de (4.62) e (4.63). De fato, devido à presença dos modos 

não-físicos na expansão (4.66), temos que 

V^i^(í,x) 7^0. (4.77) 

Precisamos então de uma formulação mais fraca do vínculo de Lorenz, conhecida como condição 

de Gupta-Bleuler, a saber 

|EF) = 0 (4.78) 



que restringe o espaço de Hilbert dos estados físicos |EF). Aqui é a parte de freqüência 

positiva do operador dado em (4.66). Uma vez que só é não-nula para 

segue que a condição (4.78) equivale a 

^{NF,n,ij,l,m) |EF) = 0 , (4.79) 

para todos n,u),l,Tn. O vácuo de Boulware, |0)s, é definido requerendo-se que o mesmo seja 

aniquilado por todos os operadores a(g^n,ui,i,m), 

^{£,n,üj,l,m) |fi)s — 0 ) (4.80) 

com e = /, II, G, NF. Os estados físicos são obtidos aplicando-se ao vácuo de Boulware um 

número qualquer de operadores de criação e Qualquer estado obtido pela 

aplicação de i.e., |EF) (em particular 10)b), não será um estado físico pois, de 

(4.75) e (4.79) 

^{NF,n,ui,l,m) [^(G,n',a;',í',r7i') 1^^)] — ^ )l^^) ^ ^ , (4.81) 

onde vemos que tal estado não satisfaz a condição de Gupta-Bleuler (4.79). Conclui-se então 

que leva estados físicos em não-físicos. Devemos ainda ressaltar, uma vez que 

[Ô(iVF,n,w,/,m)> — 0, 

estados físicos na forma a[;vF) 1^^) norma nula, i.e., 

{EF\ à(^NF,n,u,l,m) (^{NF,n,uj,l,m) 1^^) ~ (-^-^1 ^(NF,n,cj,l,m) ^(NF,n,uj,l,m) |EF) = 0 , 

(4.82) 

(4.83) 

onde usamos a condição (4.79) para obtermos a última igualdade acima. Além disso, de (4.82) 

e de 

(4.84) 

concluímos que os estados físicos na forma |EF) são ortogonais a quaisquer outros estados 

físicos. Sendo assim, um estado físico |EFi) pode ser considerado equivalente à qualquer outro 

estado físico na forma |EFi)IEF2). Conseqüentemente, os estados físicos representativos 

são aqueles obtidos aplicando-se n(Anw/m)i vácuo de Boulware |0)b, definido 

acima. 
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4.4 Determinação das constantes de normalização no li- 

mite de baixas freqüências 

Para concluirmos a quantização do campo de Maxwell em Schwarzschild, resta-nos 

de baixas freqüências, de maneira análoga ao que foi feito no caso do campo de Klein-Gordon 

(vide seção 2.3). Para u pequeno o suficiente, a equação (4.25) reduz-se a 

tipos [10, 13] e são as constantes de normalização a serem determinadas. Notemos que 

equação (4.26)]. Uma vez que Pi{z) ~ z' e Qi{z) ~ z~^~^ para 2 » 1, e Pi{z) rí 1 e Qi{z) « 

- log \/z - 1 para z ^ 1, obtemos de (4.86) e (4.87) que diverge em H~ e permanece finita 

em J~, enquanto que diverge em J~ e permanece finita em H~. Estas são as razões 

porque Qi{z) e Pi{z) são associadas com os modos movendo-se para a direita e para a esquerda, 

respectivamente. Em seguida, usando que [7] P/(2)]z>i ~ [(20!2^]/[2^(/!)^], e Qi{z)\z~i « 

—x/2 + 1/2 — Ylk=i 1/^ ) onde lembramos que x{z) = {z + l)/2 + ln[(z — l)/2] é a coordenada 

de Wheeler, obtemos de (4.86) e (4.87) para u pequeno que 

normalizar os modos físicos de acordo com (4.59)-(4.60). Pelo fato da forma analítica das funções 

radiais dos modos físicos não ser conhecida, não nos foi possível realizar tal normalização para 

quaisquer valores de u. No entanto, pode-se ainda normalizar os modos físicos na aproximação 

(4.85) 

cujas duas soluções independentes são 

{z - 1) dQi{z) 

l{l 4-1) dz 
(4.86) 

e 

(4.87) 

onde lembramos que l 7^ 0. Aqui Pi{z) e Qi{z) são funções de Legendre de primeiro e segundo 

modos de baixa freqüência deverão ser quase que totalmente refletidos pelo potencial U*' [vide 

(4.88) 
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para x < 0, |x| » 1, e 

Qu;li)~C^l (í + l)(/!)2 (4.89) 

para x 3> 1, respectivamente. 

Para determinarmos o termo dominante na freqüência das constantes de normalização 

C^f , devemos comparar (4.88) e (4.89) com a expansão de r para u pequeno dada em (4.27) e 

(4.28), nas regiões assintóticas apropriadas. Com este objetivo devemos determinar inicialmente 

e De (4.24) e (4.31), e do fato de que 

L^{X,n',ui',1' 

para A = 7, II, podemos escrever 

/ 

Para obter (4.90) e (4.91) usamos que 

r2n rv 
/ dif l dOsenô Yim*{0,(p)Yiim'{0,(p) — dlV dfflxji' 

Jo Jo 

(4.91) 

(4.92) 

^ d(f dd sen9 {6, (p)Yj^ ^ {6, (f) = -5w5mm', 

respectivamente, com Çij definido abaixo de (4.6) e, de (2.29) e (2.30), que 

r‘2 
= — sen0 dr dO dip . 

Para auxiliar no cálculo da integral em (4.90) e (4.91), definimos 

tí = r drry-Xf = 2M r°° dx(r,tf) (rqiy;) 
J2M J—oo 

1 

2M(íj2 _ o;'2) - (>■*') 

1 \ +CO 

(4.93) 

(4.94) 

(4.95) 

82 



onde usamos (4.26) no último passo acima. Lembrando que = 1 e + 

— 0, obtemos de (4.27) e (4.28) que 

Substituindo esta expressão em (4.90) e (4.91) obtemos, por comparação com a condição de 

ortonormalização (4.59)-(4.60), que as constantes de normalização dos modos I e II, que apare- 

cem nas expressões (4.27) e (4.28), são 

BÍ7 = 
M 

y/wl{l + 1) 

a menos de uma fase multiplicativa arbitrária. 

d//ti 
— 

M 1 

2U> y/lT ’ 
(4.96) 

Podemos então expandir rq^J*{z) com x < 0, |x| » 1, dado em (4.27), para \íjjx\ <C 1, 

obtendo 

~ -f-1) (4.97) 

~ i2M^x/y/^, (4.98) 

onde usamos que ~ —1 + 0(u>). Comparando (4.97) e (4.98) com (4.88), obtemos 

C, /-> 
Ufl 

2M 

C, //-> 
(jJI 

+ 1) 

2M   

(4.99) 

(4.100) 

Em seguida, procedamos de maneira análoga para o caso dos modos movendo-se para 

a esquerda. Usando que h\^\x) = ji{x) -I- ini{x) com ji{x) « x^/{2l -t-1)!! + 0{x^'^'^) e rii{x) « 

— {21 — l)!!/x'+^ + 0(x“'+^), expandimos rq^^{z) com x :§> 1, dado em (4.28), para |o;x| <C 1, 

obtendo 

rQÍti^) 

rgíí^(^) 

2i+i(_^)/+ijV/'+Vx'+^ 

^7rl(l + l)(2l + l)l'. 

V^(2/ + l)ü 

(4.101) 

(4.102) 
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onde usamos que 

obtemos 

(—+ 0{üj). Comparando (4.101) e (4.102) com (4.89), 

'-'lüI 
22'M'+iv/r+T(/!)V 

^Ull 

V^/3/2(2/)!(2/ + 1)! 

22'M'+i(í + 1)(/!)V 

(4.103) 

(4.104) 
0F/(2/)!(2Z + l)! ■ 

Com isso concluímos a determinação das constantes de normalização (a menos de uma fase 

multiplicativa arbitrária), que são necessárias para a obtenção dos modos físicos e 

regime de baixas freqüências. 

84 



Capítulo 5 

Quantização do campo eletromagnético 

no espaçortempo de Minkowski e 

aplicações 

Neste capítulo seguiremos o procedimento desenvolvido anteriormente para quantizar o campo 

de Maxwell no espaço-tempo de Minkowski, ora usando coordenadas cartesianas, ora coor- 

denadas polares esféricas. Utilizaremos os modos obtidos neste capítulo para calcular taxas 

de emissão de radiação eletromagnética por algumas fontes clássicas e funções de correlação, 

mostrando assim a consistência da quantização apresentada no capítulo anterior. Note-se que 

tal cheque de consistência não seria possível no espaço-tempo de Schwarzschild. Por este mo- 

tivo focalizaremos neste capítulo o espaço-tempo de Minkowski (que é maximalmente simétrico), 

antes de apresentarmos a aplicação dos resultados em Schwarzschild obtidos no capítulo 4, o 

que será feito no capítulo seguinte. 

Na seção 5.1 quantizaremos o campo de Maxwell no espaço-tempo plano com coorde- 

nadas cartesianas. Na seção 5.2 apresentaremos a quantização do campo eletromagnético em 

Minkowski com coordenadas polares esféricas. Calcularemos a emissão de fótons por uma carga 

elétrica com aceleração própria constante na seção 5.3. Algumas componentes da função de dois 

pontos envolvendo o tensor intensidade de campo eletromagnético são calculadas na seção 5.4 

usando coordenadas polares esféricas, onde é mostrado que os resultados coincidem com aqueles 

obtidos usando coordenadas cartesianas. Na seção 5.5 obtemos a taxa de emissão de fótons por 
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um dipolo oscilante usando os modos da seção 5.1, repetindo o cálculo com os modos da seção 

5.2 e comentando a concordância dos resultados. 

5.1 Quantização no espaço-tempo de Minkowski com co- 

ordenadas cartesianas 

o elemento de linha do espaço-tempo de Minkowski com coordenadas cartesianas é 

dado por 

ds^ = +dt^ — dx^ — dy^ — dz^ . (5.1) 

As equações de Euler-Lagrange, obtidas a partir da lagrangiana modificada de Fermi 

dada por (4.47), no gauge de Feynman (a = 1), são dadas por 

= 0, (5.2) 

cujas soluções no espaço-tempo plano com coordenadas cartesianas definidas em (5.1) têm a 

forma 

4'’ = , (5.3) 

com 

= 0 , (5.4) 

onde são constantes de normalização, k„ é o quadrivetor momento constante, e e|f^(k) são 

os vetores de polarização . 

Exigindo que as soluções clássicas (5.3) dos modos físicos e puro-gauge satisfaçam a 

condição de Lorenz, = 0, obtemos que os vetores de polarização correspondentes devem 

ser tais que 

^ Q ^ (5 5) 

e, por sua vez, que o vetor de polarização dos modos não-físicos deve obedecer a relação 

(5.6) 
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Quando escolhemos = (1,0,0,1), uma escolha de vetores de polarização compatível 

com a condição de Lorenz é: 

6^ = (0,1,0,0), (5.7) 

eíf='^) = (0,0,l,0), (5.8) 

€f=^) = (l,0,0,l), e (5.9) 

,(.=NF)^(1^0,0,0). (5.10) 

Pode-se mostrar que no caso do gauge de Feynman o produto interno definido em 

(4.49)-(4.51) se reduz a 

= -i di:f . (5.11) 

Obtemos então de (5.3) e (5.11) que 

(^(..k),^(.',k')) ^ _c*c^,[e(f)(k)e(^')^(k')](27r)32a;52(k - k'), (5.12) 

com u — yjkl + k^ + kl- Vamos agora exigir que os modos sejam normalizados a 5^(k — k'), 

i.e., que 

com 

= -ejf)(k)e("')'^(k'). (5.14) 

Segue então que 

^{2txY2üj ' 

No caso particular da polarização (5.7)-(5.10), temos 

10 0 0 

0 10 0 

0 0 0 -1 

0 0-1-1 

(5.15) 
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onde linhas e colunas da matriz M são dispostas na ordem £ = I, //, G, NF. Note-se que a 

matriz (5.15) coincide com a obtida no caso de Schwarzschild, dada em (4.60). 

O operador campo eletromagnético An(x) pode ser expresso, analogamente a (4.66), 

pela seguinte expansão de Fourier: 

^ Y. j 
(Fk 

e-I,II,G,NF yJ{2TTf2uj 
[á,.,(k)íW(k)e-‘'='' + à|.,(k)eW-(k)e+“-''] . (5.16) 

Lembremos agora de (4.64) e (4.68), para escrever a partir de (5.13) que 

|ã(,)(k), â|,.,(k')l = (M-')(„„.,55(k - k’). _ (5.17) 

onde M~^ é a matriz inversa de M. Devemos em seguida impor a condição de Gupta-Bleuler, 

|EF) = 0, que neste caso se reduz a 

X: V*‘’‘‘(k)âw(k)|BÍ’)=0. 
e^I,n,G,NF 

OU simplesmente â(Ari?)(k)|£^F) = 0, o que pode ser visto diretamente de (5.5)-(5.6). O espaço 

de Fock é então construído seguindo o desenvolvimento apresentado ao final da seção 4.3, sendo 

que aqui os estados de partículas são obtidos a partir do vácuo de Minkowski. 

5.2 Quantização no espaço-tempo de Minkowski com co- 

ordenadas esféricas 

Devemos ressaltar que, como no caso do espaço-tempo plano com coordenadas inerciais 

não há horizonte de eventos, todos os modos vêm do e vão para o infinito. Assim, não teremos 

aqui o índice n =—>■, 4—, que faz a distinção entre os modos vindos do horizonte e do infinito 

tipo luz passados, no caso de Schwarzschild. 

O elemento de linha do espaço-tempo de Minkowski em coordenadas polares esféricas 

é dado por 

ds^ = Fdt^ — dr^ — r^d6^ — r^sen^Odip^. (5.18) 
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As equações de Maxwell correspondentes são dadas por (4.3)-(4.5), com /(r) = 1. Seguindo 

o mesmo procedimento do caso de Schwarzschild, iniciamos adotando a condição de gauge 

V* Ai = 0. Neste gauge as equações de campo assumem a seguinte forma: 

— d^At {drAt — dtAr) + dtdrAr H rVgAf — 0, 
r 

1 -, 
df Ar — drdfAt + — VgAr — 0, 

dtAi - dl Ai - di {dtAt - drAr) + 
(V2 + 1) 

Aj = 0. 

Neste caso os modos puro-gauge podem ser escritos como 

Af i = ( —iu!v{r), dv{r)/dr, 0,0) e —iwt 

(5A9) 

(5.20) 

(5.21) 

(5.22) 

com V sendo uma função arbitrária de r. Os modos físicos X = I, com l > 1, podem ser 

escolhidos como 

f i d[rji{üjr)] 
^rji(o;r),0,0 —iijt (5.23) 

ttI{1 + 1) \u dr 

Para / = 0 os modos físicos I são puro-gauge. Os modos físicos X = II podem ser escolhidos, 

para / > 1, como 

^ ^rj,(wr) (o,0,y,e-“‘ (5.24) 

Vale lembrar que não há soluções da forma (5.24) com 1 = 0. Já os modos não-físicos podem 

ser escolhidos como 

UJ A{NF,íJ,l,m) _ I 
^ V +1) 

rji{ur){0,0, dgYim{0, </?), d^Yim{9, (p)) e —iuit (5.25) 

Para normalizar os modos acima, utilizamos o produto interno (4.37), que no caso do 

espaço-tempo de Minkowski com coordenadas esféricas pode ser escrito como 

r27T 
(a(‘), A(^)) = i dr dd 1^'' dip rhenô [a« - AÍ^'>F^^ 

requerendo que 

(5.26) 
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e 

^^(NF,uj,l,m)^j^{NF,.j',l',m')s^ ^ ^‘í'§rnm'_ 

Vamos em seguida obter os modos satisfazendo a condição de Lorenz. Podemos obter 

os modos físicos I, a partir de dado em (5.23), por uma transformação de gauge, 

como foi feito na seção 4.2. Fazendo-se isso resulta que 

(5.27) 

com üeT = —(2/r) . Os modos físicos II dados em (5.24) já satisfazem a condição de 

Lorenz. Sendo assim 

Sabemos que para modos satisfazendo a condição de Lorenz o produto interno (4.49) se reduz 

a (4.37), que é invariante por uma transformação de gauge [vide (4.52)]. Conclui-se então que 

os modos dados em (5.27) e (5.28) já estão corretamente normalizados. Modos puro-gauge são 

dados por com Z oc ji{ur)Yim{0, (p) . Os modos não-físicos no gauge de 

Lorenz podem ser escolhidos como 

,—iut (5.29) 

que têm norma negativa, i.e., = —ô^^'ô'^‘^'ô{uj — uj') , obtida de (5.11). 

O operador campo vetorial pode então ser expandido da maneira usual [vide (4.66)]. As- 

sumimos a restrição de Gupta-Bleuler (4.78) no espaço de Hilbert dos estados físicos, e toda a 

quantização é feita analogamente ao que foi desenvolvido na seção 4.3. 

5.3 Emissão de fótons por uma carga uniformemente 

acelerada no espaço-tempo de Minkowski 

Nesta seção vamos revisitar o cálculo da emissão de fótons por uma carga elétrica 

uniformemente acelerada em Minkowski, como visto no referencial inercial. Em particular. 
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vamos calcular a taxa de emissão de fótons com valor fixo de momento transversal [30], pois 

utilizaremos este resultado para a comparação com o de uma carga elétrica uniformemente 

acelerada no espaço-tempo de Schwarzschild, que será obtido no capítulo 6. 

Obtenhamos inicialmente a taxa de emissão de radiação eletromagnética por uma cor- 

rente arbitrária j^{x) no espaço-tempo de Minkowski. A amplitude de emissão de um fóton 

com momento k e polarização e pela carga acelerada no vácuo de Minkowski é dada por 

= M(l;k,e|í5/(x)|0)M = Aí(l;k,e|2 j d‘^xj^{x)Ãf,{x)\0)M , (5.30) 

onde o índice M denota os estados de Minkowski. Pode-se mostrar que somente os modos 

físicos têm' uma contribuição não-nula para a amplitude acima pelo fato dos modos puro- 

gauge não contribuírem para ação de interação e dos modos não-físicos terem norma nula (vide 

demonstração na seção 6.3). Obtemos então as amplitudes (5.30) que não são nulas, dadas por 

_4(A,k) ^ 

y (27r)^2a; 
(5.31) 

com A = /,//, onde usamos (5.16) e (5.17). Podemos expressar a probabilidade total de 

emissão de fótons com momento transversal {kx,ky), dividida pelo tempo próprio total r da 

carga acelerada (durante o qual a mesma interage com o campo eletromagnético) como 

uM 
/- 

* X=I,II' 

+00 

00 T 
(5.32) 

onde ressaltamos que a soma é somente nas polarizações físicas A = I,II. Substituindo (5.31) 

em (5.32), obtemos 

1 dk^ •qM 
{kx tky) = ;/: C» (27r)32o; 

J d^x d^x' 
X=I,II 

jf^{x)j‘'{x')e . (5.33) 

Lembremos agora da relação de completeza 

(5.34) 

OU 

/ . ^11 '-fj. '-V ' '-fj, (5.35) 
A=/,/7 
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que pode ser obtida de (5.14), onde são as componentes da métrica do espaço-tempo de 

Minkowski. Devemos então substituir (5.35) em (5.33). Pela mesma razão que os modos puro- 

gauge não contribuem para a ação de interação, termos envolvendo / não 

contribuem para Desta forma, 

r>M 
^{kx,k T 7-00 

dk. 

oo (27r)32a; 
J d^x j d'^x'j^{x)j^{x')e iui{t-t')—ik{x—x') 

(5.36) 

Vale ressaltar que a expressão acima é válida para uma corrente arbitrária j^{x) no espaço- 

tempo plano. 

Analisemos em seguida o caso de uma carga uniformemente acelerada em Minkowski. A 

corrente associada a uma carga com quadriaceleração própria constante movendo-se na direção 

z é dada por 

= qazô{Q5{x)ô{y), f = jy = 0, f = qatô{Q5{x)5{y), (5.37) 

onde 

Ç^-ln[a^z^-t^)], 

m = 
5{z — y/W+~ãr^) 

(5.38) 

A linha de mundo com Ç, x e y constantes tem uma aceleração própria dada por ae~“''. 

Substituindo a corrente (5.37) na expressão (5.36) obtemos, após uma certa manipulação 

algébrica [30] 

R^kx,k,) = ^[Ki{kJa)fdk,dky, (5.39) 

onde Kt,{z) é a função de Bessel modificada, e fcx = é o momento transversal à direção 

da aceleração. 

Notemos agora que a taxa total de emissão de fótons é obtida integrando (5.39) em 

todos os valores possíveis dos momentos kx e ky, i.e., 

f27r r+oo r+oo r+oo r+oo 
(5.40) 
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onde 9 é o ângulo entre q ■ Usando (5.39) obtemos 

-i2 f+oo 
= 

27r^a 

r+oo o 
/ [Ki{k^/a)f k^dki_. 

JQ 
(5.41) 

O resultado da integral acima diverge, e esta divergência ocorre devido à contribuição dos modos 

com momento arbitrariamente pequeno. Esta é a divergência que ficou conhecida na literatura 

como catástrofe do infravermelho [25]. Devemos ressaltar que embora a taxa total de emissão 

de fótons divirja, a energia total irradiada através destes fótons é finita. 

Para qualificarmos o tipo de divergência apresentada aqui, vamos introduzir um mo- 

mento transversal de corte k na região do infravermelho, reescrevendo (5.41) como 

= 
2'K‘^a 

r+°° o 
/ [Ki{k±/a)] kj^dk^. 
Jk 

(5.42) 

A integral acima pode ser resolvida [13], de forma que 

R^ = 

e, conseqüentemente. 

2n'^a 

kl 
Kl 

'k^' 

a 

1 2 +CO 

~ |^ln(a/«) {k±/a<^l). 

(5.43) 

(5.44) 

Sendo assim, quando « -> 0, R^ diverge logaritmicamente. Este último resultado será utilizado 

na comparação com o obtido na seção 6.3 deste trabalho. 

5.4 Cálculo da função de dois pontos 

Como uma aplicação da quantização do campo eletromagnético em Minkowski, vamos 

calcular as componentes Gtrtri^,^') e Gg^0^{x,x') da função de correlação 

Gf,uedx,x') = M{0\Ff,^{x)Fg^{x')\0)M, (5.45) 

que é invariante de gauge, em coordenadas polares esféricas e verificar que as mesmas coincidem 

com as obtidas a partir de componentes cartesianas. Relembremos que |0)m é o vácuo de 

Minkowski, definido tal que 

' |0)aí = 0 , (5.46) 
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com £ = /, II, G, NF e normalizado a um (aí(0|0)m = !)• 

Usando-se que = df^A,,{x) — d,,Af^{x), e que 

= 12 Y. 
{e=I,II,G,NF) (p) 

podemos escrever 

/*0O 

F(^) =T.Y. L , (5.48) 
{e) ip) 

com (a?) = (x) — 5^(x). Aqui o índice p representa os números quânticos 

discretos l e m, associados ao momento angular. Substituindo (5.48) em (5.45) e usando (5.46),- 

obtemos 

G^ygç{x,x')= Y. Y 
(£)(£') (p)(p') 

(5.49) 

Modos puro-gauge não contribuem para G^ug<;{x,x') uma vez que F^^^’'^’^\x) = 0. Os únicos 

comutadores não-nulos do tipo que aparece em (5.49) são 

roo rOO 
£.w.p)> <^{e',u/,p') 

t 
]i0) M 

riju ^ 
I + , (5.47) 

J 0 

[â(/,oi,p), p/)] — [Ô(//,o;,p), — ú(p)(p/)ú(u; u ). (5.50) 

Vemos então que só os modos físicos contribuem para G^ug<;{x,x'), de forma que 

    rOO 
G,.^(x,x')= E E / (5.51) 

ÍX=I,II) (p) 

Devido a sua invariância de gauge obtemos os mesmos resultados para G^yQç{x,x') usando 

modos satisfazendo a condição de Lorenz, ou em qualquer outro gauge. Vamos efetuar os 

cálculos usando os modos físicos no gauge V* A,- = 0. 

Determinemos inicialmente Gtrtri^,^') usando os modos (5.23) e (5.24). Como a[^^^ = 

somente contribui para Gtrtri^,^')- Sendo assim, de (5.51) e (5.23) podemos 

escrever ■ 

Gtrtr ÍFi ^ ) 

00 T7X^—t rOO 

YY í du}[{drA\^\x) - dtA^J\x))[dr'A\^^*{x') - dt'A\!^*{x'))\ 
l=l m=-l 
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1 ~ 
+ '^) '^irn{9,(p)Yi*^{9',cp') / duujji{ujr)ji{ur')e~'‘ 

/=1 m=-l 

^ g. i,(.. ,)P,(oo..)o, 

—iui(t—t') 

, (5.52) 

onde usamos na última passagem que [11] 

m-l cfi , 1 
E Y,„(9,,p)YC^(e',v,') = -^P,{„osi), 

m=^l 

com COS 7 = COS 9 cos 9' + sen9 sen9' cos (</? — (/?'), e [13] 

— (í — í' — ie)^ + + r ^ 

2rr' 

Vamos agora calcular Ge^e^{x,x') usando os modos (5.23) e (5.24). Desta vez são 

somente os modos que contribuem porque não tem componentes angulares. Segue 

então de (5.51) e (5.24) que 

1 
/ (L}uji{ur)ji{ur')e~^^^~^"> = —Qi 

Jo 2rr 

oo m=l /•OO 

í=im=-r° 
/ (30 T7l=/ 

= —E E 
/=1 m=-i 

J 0 

— {t — t' — ie)^ + sen^sen^'^ 
+ 1)(2Í + 1)P/(cos7)Qí Stt^ í=i 2rr' 

.(5.53) 

Por outro lado, podemos calcular G^,ypç(rr, x') usando as componentes cartesianas, dadas 

por (vide, e.g., [40]) 

^Gtataix, x') = -47t{1 + 2[(Ca)^ ~ (CO^lr^lGe^(^T, x'), (5.54) 

^Gtatb{x, x) = -STrCaCòÇ^^G^(x, x'), (5.55) 

^Gtaab{x, x') = Gabtaix, x') = STrÇtCbC^G^ {x, x'), (5.56) 

^Gababix, x') = 47t{1 + 2[(Ca)' + (Cô)']^"'}^^(^:, x'), (5.57) 

^Gacbcix, x') = STrCaCftC^Í??{x, x'), (5.58) 
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onde a, b, c podem assumir os valores x, y, z com a ^ h ^ c (não estamos usando a convenção 

de soma de Einstein nas expressões (5.54)-(5.58)) e Além disso G^{x,x') = 

, onde 

= -(í -t' - ief + (x - xf + (y - y'f + {z - z'f . 

As componentes esféricas Gtrtr, Gg^peip podem ser obtidas das componentes cartesianas (5.54)- 

(5.58) usando as transformações tensorias usuais, a saber 

, 5x“ dx^ dxG dx'^ . 
^^"^(X’X) - 

Procedendo desta maneira obtemos 

Gfrír(a;,x') = —(^xx' + yy'^rzz')^-\-2\^xy'-x'y)'^^-{xz'-x'zf 

(5.59) 

(5.60) 

Ge^g^[x, x') - 47rrr'sen0sen0' ((xx' -1- yy' + zz')^^ + 2 {xy' -x'yf 

+ {xz' - x’zf + {yz' - y'zY]) . (5.61) 

Para que as equações (5.60) e (5.52) coincidam, a seguinte igualdade deve ser válida: 

-(í — t' — ieY -H -f 
+ 1)(2/ -f 1)Pí(cos7)Q/ 

1=0 2rr' 

8rr' 

~ê~ 
((xx' 4- yy' -I- zz')^"^ + 2 [(xy' - x'y)^ 4- (xz' - x'zf + {yz' - y'2:)^]) • (5.62) 

Para mostrarmos a igualdade acima, partamos do resultado conhecido [13] 

1 
J2i2l + l)Pi{p)Qi{cr) = 
1=0 ^-P 

(5.63) 

Aplicando o operador 

dp 
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em ambos os lados de (5.63), e usando que Pi{p) satisfaz a equação de Legendre, a saber 

dp 
+ l{l + l)Pi{p) — 0 , (5.64) 

obtemos a relação 

+ l){2l + l)Pi{p)Qi{a) =  — . (5.65) 
i=i -pr 

Esta é exatamente a igualdade (5.62), que pode ser obtida explicitamente fazendo-se 

p = COS 7 = 
xx' + yy' -f zz' 

rr' 

e 

-(í - í'- ze)2 + r2 + r'2 
cr = —  

2rr' 

em (5.65). 

Usando-se (5.62), segue diretamente que (5.61) e (5.53) são equivalentes. As demais 

componentes G^t/^(a;, x') podem ser calculadas de maneira semelhante, mas omitiremos seu 

cálculo aqui por consideramos que o mesmo não acrescentaria informações relevantes para nossos 

objetivos neste trabalho. 

5.5 Dipolo elétrico oscilante no espaço-tempo de Minkow- 

ski na presença de um banho térmico 

Vamos em seguida calcular a taxa de resposta (probabilidade de emissão de fótons 

dividida pelo tempo total) de um dipolo elétrico oscilante no espaço-tempo de Minkowski, imerso 

em um banho térmico com temperatura Utilizaremos os modos do campo eletromagnético 

no espaço-tempo plano obtidos nas coordenadas cartesianas e nas coordenadas polares esféricas 

para mostrar (numericamente) que a taxa de resposta neste banho térmico é a mesma em ambos 

os casos. 

Iniciemos exibindo brevemente o cálculo em coordenadas cartesianas. Consideremos a 

corrente conservada {d^j^ = 0) de um dipolo oscilante no espaço-tempo de Minkowski com 
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coordenadas cartesianas dada por 

f = U\f,0,0), (5.66) 

onde 

/ = qV2 COS Et [5(x) -5{x- L)] 5(y) 5{z), (5.67) 

e 

f = qy/2 E senEt 0(x) 0(-a: + L) 5{y) 5{z), (5.68) 

com 0(a:) sendo a função degrau de Heaviside [11], i.e., 0(a;) = 1 se a; > 0 e 0(x) = 0 se x < 0. 

A taxa de resposta em coordenadas cartesianas, que pode ser obtida de (5.40) e (5.36), 

é dada por 

R 
= T / W.íxOe-C-')-- !--') coth (f), (5.69) 

onde o fator 

coth = (1 + QUijS _l qujP _l^ 

exprime a presença do banho térmico com temperatura Usando (5.66)-(5.68) em (5.69) 

obtemos, após uma certa manipulação matemática, 

R = ^(EL [Si(EL) - 5í(0)j - 
ZTT ' 

1 - 
senEL 

EL J 
[1 — COS (EL)]j E coth (5.70) 

onde 

Sí(k)= r (5.71) 
Jk Ç 

Vamos em seguida obter a taxa de resposta do dipolo (5.66)-(5.68) fazendo o cálculo 

em coordenadas polares esféricas, usando para tanto os modos apresentados na seção 5.2. A 

corrente (5.66)-(5.68), em coordenadas polares esféricas, tem a seguinte forma: 

f = (i‘./.0.0), (5.72) 

onde 

q y/2 COS Et 

sen^o 
[5(r - ro) - ô(r - L)] 5(9 - 9o) 5(ip - (po), (5.73) 
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f = eí-- - '■o) + L) s(6 - «o) S(<f> - Vo), (5.74) 

com Oo = 7t/2, (po = 0 e no limite tq —)• 0. Note-se que esta corrente é conservada = 0). 

Novamente aqui só os modos físicos têm contribuição não-nula para a amplitude de 

transição. Pode-se ainda notar que os modos físicos II não se acoplam com a corrente (5.72), 

de forma que a única contribuição diferente de zero será dada pelos modos físicos I. Além 

disso, como a ação de interação é invariante por uma transformação de gauge (vide seção 6.3), 

obteremos o mesmo resultado usando os modos (5.23) ou os modos (5.27). Escolhamos os 

modos (5.23). 

A amplitude de emissão de um fóton com números quânticos (/, u, l, m), na ordem mais 

baixa da teoria de perturbações, é dada por 

j d'xs/^ j“(x)À^{x)\0)M 

= -q - E) v'm(7TT) vo) \ t dr 
Jrn üJr 

(5.75) 

A taxa de resposta no caso da quantização do campo eletromagnético realizada em coordenadas 

polares esféricas pode então ser escrita como 

47T 
Ecoth 

I fEL 
E Í(I + 1)(2Í + 1) II dí ç 

onde já foi tomado o limite tq —)• 0. Ressalte-se que o termo l = 0 não contribui por corresponder 

a modos puro-gauge. 

Para e R coincidirem devemos ter 

m 
^ 2 

(5.76) 

^ l{l + 1)(2Í + 1) 

2 (EL[Si{EL) - Si{0)] - 1 - 

rEL 

/ ^ 

seiiEL _ _ cos(í;l)]) . 

3i{0 
1 2 

EL 
(5.77) 

Embora não tenhamos demonstrado analiticamente a igualdade acima, a mesma foi verificada 

numericamente (usando o programa Mathematica) para diferentes valores de EL. 
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Capítulo 6 

Interação entre radiação Hawking e 

uma carga elétrica estática 

Após uma breve discussão do problema da radiação emitida por cargas aceleradas do ponto de 

vista da Teoria Quântica de Campos (TQC) realizada na seção 6.1, estudaremos uma carga 

elétrica parada fora do horizonte de eventos de um buraco negro estático e sem carga e sua in- 

teração com a radiação proveniente do mesmo. Na seção 6.2 descrevemos a corrente associada à 

carga elétrica em questão e discutiremos a necessidade de considerar, nos passos intermediários, 

um regulador caracterizado por um dipolo oscilante. Na seção 6.3 calcularemos a taxa de res- 

posta de uma carga elétrica estática fora de um buraco negro de Schwarzschild interagindo com 

a radiação Hawking, representada pelo vácuo de Unruh. Será exibida a forma analítica exata 

para a taxa de resposta da carga elétrica, ao invés de meramente mostrar que o resultado é 

finito na região de baixas freqiiências, uma vez que trata-se de uma quantidade com significado 

físico e que, em princípio, pode ser medida experimentalmente. Este resultado foi publicado 

em [41]. 

6.1 Radiação emitida por cargas aceleradas segundo a 

TQC 

o problema da radiação emitida por uma carga acelerada tem sido um tema bastante 

discutido na Física. Desde a demonstração de Larmor, em 1897 [42], de que um elétron acele- 
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rado irradia energia eletromagnética, físicos renomados como Born, em 1909 [43], e Pauli, em 

1918 [44], dedicaram especial atenção ao problema [45]. Durante todo o século vinte, vários 

trabalhos científicos foram dedicados à compreensão do fenômeno da emissão de radiação por 

cargas aceleradas. Para termos uma idéia do quão controvertido era o problema, vale mencionar 

que, enquanto Pauli [44] e Von Laue [46] concluíam que cargas uniformemente aceleradas não 

emitem radiação, Bondi e Gold [47], entre outros, afirmavam o contrário. Seguindo esta linha 

de trabalho calcada na Teoria Clássica de Campos (TCC) o problema da radiação emitida por 

cargas uniformemente aceleradas foi analisado cuidadosamente por Rohrlich e Fultoii no início 

dos anos 60 [48]. 

De fato este é um assunto que tem despertado o interesse da comunidade científica 

até tempos bastante recentes, permanecendo um tema de pesquisa até os dias de hoje. O 

problema ganha ainda mais interesse, se pensarmos em analisá-lo do ponto de vista de um 

observador co-acelerado com a carga, considerando também o princípio de equivalência, que, 

em uma de suas versões estabelece que “não há experimentos locais que permitam distinguir 

entre queda livre (sem rotação) em um campo gravitacional e movimento uniforme na ausência 

de campo gravitacional”, ou ainda que “um referencial linearmente (uniformemente) acelerado 

com relação a um referencial inercial no contexto da Relatividade Especial é localmente idêntico 

a um referencial em repouso num campo gravitacional” [49]. Vamos agora admitir o fato de que 

cargas em repouso em um campo gravitacional estático não emitem radiação , do ponto de vista 

de observadores em repouso com relação a estas cargas, uma vez que as mesmas (por estarem 

em repouso no campo gravitacional estático) não dispõem de energia para emiti-la na forma de 

radiação. Sendo assim, cla^sicamente, podemos pensar em usar o princípio de equivalência para 

concluir que cargas uniformemente aceleradas na ausência de campo gravitacional também não 

devem emitir radiação, do ponto de vista de observadores co-acelerados com as mesmas. No 

entanto, admitindo-se que cargas uniformemente aceleradas na ausência de campo gravitacional 

de fato emitem radiação segundo observadores inerciais (vide [21, 22]), o que acontece com esta 

radiação no sistema de referência de observadores co-acelerados com a carga? 
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Boulware, em 1980 [50], ainda no âmbito de TCC, propõe uma solução para o aparente 

paradoxo, afirmando que toda a radiação emitida pela carga uniformemente acelerada na 

ausência de campo gravitacional vai para uma região do espaço-tempo (de Minkowski) to- 

talmente inacessível ao observador co-acelerado com relação a carga, sendo portanto impossível 

de ser observada por este. 

Do ponto de vista da Teoria Quântica de Campos (TQC) tal aparente paradoxo foi re- 

centemente esclarecido por Higuchi, Matsas e Sudarsky [30]. De acordo com a TQC, um detector 

com aceleração própria constante a no vácuo de Minkowski (estado quântico no qual obser- 

vadores inerciais não vêem partículas), comporta-se como se estivesse em um banho térmico 

de partículas com uma temperatura a/27r, no sistema natural de unidades (efeito Fulling- 

Davies-Unruh). Em seus trabalhos de 1992, Higuchi, Matsas e Sudarsky mostraram que a 

radiação emitida por uma carga uniformemente acelerada com relação a um observador inercial 

no espaço-tempo de Minkowski, obtida na Eletrodinâmica Quântica usual, pode ser coerente- 

mente interpretada no referencial co-acelerado, desde que levemos em conta o banho térmico de 

Fulling-Davies-Unruh. Mais especificamente, foi mostrado que a taxa de emissão de fótons (com 

um dado momento transversal) calculada no referencial inercial é exatamente igual a taxa de 

absorção mais emissão (estimulada) de fótons de Rindler com energia nula (mas com o mesmo 

momento transversal) do banho térmico de Fulling-Davies-Unruh, calculada no referencial de 

repouso da carga acelerada. Este fato está em total concordância com os trabalhos realizados 

no contexto clássico que afirmam que observadores co-acelerados não vêem radiação, pois fótons 

de energia nula, como o próprio nome sugere, não carregam energia e portanto não podem ser 

identificados com a radiação clássica. 

Também no âmbito da TQC, para o caso de cargas escalares (que denominamos de 

fontes), foi obtido recentemente [7] que a tcixa de resposta de uma carga escalar estática q no 

espaço-tempo de Schwarzschild, assumindo-se o vácuo de Unruh [4], é igual à taxa de resposta 

para a mesma fonte estática no espaço-tempo de Rindler, assumindo-se o vácuo de Minkowski, 
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dada por 

(6.1) 

desde que a fonte esteja em ambos os casos com a mesma aceleração própria a. (Vale lembrar 

que uma fonte estática no espaço-tempo de Rindler nada mais é do que uma fonte uniforme- 

mente acelerada no espaço-tempo de Minkowski.) Ambas as taxas de resposta são calculadas 

com relação a observadores co-acelerados com a carga. A escolha do vácuo adotado no espaço- 

tempo de Schwarzschild é crucial para que esta igualdade seja válida. Por exemplo, se substi- 

tuirmos o vácuo de Unruh pelo vácuo de Hartle-Hawking [51], esta igualdade deixa de valer. 

No entanto, como o vácuo de Unruh corresponde ao estado quântico de um buraco negro for- 

mado por um colapso gravitacional, representando portanto a radiação Hawking, tal igualdade 

poderia ser o indício de uma universalidade quântica subjacente. Sendo assim, é interessante 

averiguar se uma tal igualdade é verificada também para outros campos quânticos. Com o 

intuito de averiguar se tal equivalência se mantém no caso eletromagnético, calcularemos na 

seção 6.3 a probabilidade de emissão e absorção de uma carga elétrica estática no espaço-tempo 

de Schwarzschild, assumindo o vácuo de Unruh. 

O princípio de equivalência desempenhou um papel fundamental no desenvolvimento 

da Relatividade Geral e continua a ser testado com grande sucesso[52j. Recentemente tem 

sido questionado por vários autores se uma versão quântica deste princípio de equivalência 

pode ser formulada (vide, e.^.,[53j). A principal dificuldade inerente ao problema está no fato 

de estados quânticos serem definidos globalmente enquanto que o princípio de equivalência 

envolve apenas quantidades locais. No caso de fenômenos caracterizados por freqüências muito 

grandes (comprimentos de onda muito pequenos) efeitos de curvatura não devem em princípio 

influenciar significativamente no comportamento da função de onda. (Ressalte-se que efeitos 

topológicos são relevantes mesmo no caso de altas freqüências.) Sendo 8issim, apenas no ca^o 

de fenômenos caracterizados por freqüências muito grandes deve ser esperada uma equivalência 

entre resultados obtidos em espaços-tempos curvos e planos. Por exemplo, a radiação Hawking 

pode ser derivada requerendo-se que a física nas vizinhanças do horizonte de um buraco negro 
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seja a mesma daquela no espaço-tempo de Minkowski, no limite de freqüências infinitas [54]. 

Desta forma não há uma razão a priori para esperarmos alguma equivalência, para baixas 

freqüências, entre fenômenos em espaços-tempos planos e curvos. 

A igualdade encontrada para a taxa de resposta de uma fonte estática em Rindler e em 

Schwarzschild, pelo fato de se tratar de uma fonte estática sem estrutura interna, é inteiramente 

devida à emissão e absorção de partículas de frequência nula. Sendo assim, aquela igualdade 

envolve, obviamente, baixas freqüências. 

Na seção 6.3 investigaremos se uma tal igualdade também é encontrada no caso eletro- 

magnético. Antes porém, na seção seguinte, vejamos a forma da corrente associada à carga 

eletromagnética, que nos permite efetuar os cálculos de maneira coerente. 

6.2 A corrente associada à carga elétrica estática 

Uma linha de mundo com r, 9 e <p constantes na geometria de Schwarzschild, cujo 

elemento de linha foi dado ém (2.1), tem uma aceleração própria constante dada por a = 

M/rQf^l^{ro). A corrente conservada correspondente a uma carga seguindo uma linha de mundo 

deste tipo é dada por 

= ^-^—^5{r-ro)ô{9-eo)S{ip-ipo), f = f = j’^ = 0. (6.2) 
Tq sen^o 

Note-se que o intervalo infinitesimal de tempo próprio de um observador no referencial parado 

com esta carga estática releciona-se com o intervalo infinitesimal de tempo coordenado por 

dr = /^-^^(ro) dt (onde /^^^(ro) é o chamado fator de redshift gravitacional). Queremos obter a 

taxa de resposta desta corrente no vácuo de Unruh, calculada no referencial co-acelerado com 

a carga estática. A taxa de resposta consistir-se-á da emissão e absorção de fótons do banho 

térmico correspondente ao vácuo de Unruh (radiação Hawking). Note-se que a tajca de emissão 

espontânea é zero pelo fato da corrente (6.2) ser estática. (Deve-se ter em mente que uma 

corrente estática só se acopla a fótons com energia nula). No entanto, o fato de termos uma 

corrente estática não implica que a tajca de emissão estimulada e absorção sejam também zero. 
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Uma vez que temos um número infinito de fótons de Unruh do banho térmico com energia 

nula (pois a distribuição térmica de Bose-Einstein de fótons com energia nula provenientes do 

horizonte diverge), as taxas de emissão estimulada e absorção ficam indefinidas (ficamos diante 

do produto de uma quantidade nula por um número infinito). Segue então que o uso direto 

desta densidade de corrente leva a resultados indefinidos [7]. 

Precisamos então regularizar a corrente (6.2) para tornar finitos tanto a magnitude 

do acoplamento com o campo quanto o número de fótons relevante, como devem ser. (Este 

regulador será obviamente removido no final dos cálculos.) 

Para contornar este problema, podemos modificar a corrente estática (6.2), substituin- 

do-a pela de uma carga oscilante com freqüência E > 0, dada por 

}‘= - ro)S{e - $o) â(>p - >po), /=/ = í«’ = 0. (6.3) 
Tq sení/Q 

Ao final, tomaríamos então o limite E —> 0. Deve-se ressaltar que a normalização desta corrente 

foi escolhida de maneira que a média temporal do quadrado da carga, (/ seja igual a 

No entanto, a corrente (6.3) não satisfaz a equação de conservação da corrente elétrica, 

= 0. Por esta razão devemos usar no seu lugar a de um dipolo elétrico oscilante, dada 

por 

/ = (/./, 0,0), (6.4) 

, ^ N/ãg COS£t _ Jg gj 

r^ sení^o 

e 

^ V2q EsenEt ^ 
sení/Q 

Aqui, 0(x) é a função degrau de Heaviside, i.e., Q{x) = 1 se x > 0 e 0(x) = 0 se x < 0. 

Ao final, tomaremos o limite L —> oo e E —> 0, para obter uma carga puntual estática sem 

estrutura de dipolo, localizada em {r,9,(ç) = (r"o, ^Oj T^o)- Pode-se mostrar que a corrente (6.4) 

satisfaz a equação de conservação V= 0. 
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Vale ressaltar que, nem a carga elétrica extra introduzida em r = L no dipolo (6.4)- 

(6.6), nem a corrente entre as duas cargas contribuirão para os resultados finais. Estas são 

introduzidas para manter a conservação da corrente e manter os cálculos coerentes antes mesmo 

de tomarmos o limite E ^ 0. 

6.3 Carga elétrica estática fora de um buraco negro de 

Schwarzschild no vácuo de Unruh 

Iniciemos por assumir que a carga elétrica clássica interage com o campo de Maxwell 

através do acoplamento mínimò representado pela ação de interação 

Sint = J d‘^Xy/^ . (6.7) 

Devemos ressaltar que a ação de interação acima é invariante por uma transformação de gauge 

do campo A^, desde que a corrente seja conservada e o campo eletromagnético se anule no 

infinito. Para demonstrarmos isso, assumamos uma transformação de gauge do tipo 

i;. = i, - . (6.8) 

Desta forma 

s;„í = . (6.9) 

onde V é 0 volume quadridimensional de integração . Integrando por partes o último termo da 

expressão acima obtemos 

= j^éx^ V^(i^X) - (V^Z)Í' = 0 . (6.10) 

O termo à esquerda do último sinal de igualdade na expressão acima se anula devido à con- 

servação da corrente. Podemos usar a versão quadridimensional do teorema de Gauss para 

transformar a integral à direita do primeiro sinal de igualdade acima em uma integral de su- 

perfície, que por hipótese também será nula devido ao campo envolvido anular-se na borda dV 

do volume V . Segue então que 

S' = . 
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como queríamos demonstrar. 

Isto dito, podemos, ao invés de usar as soluções satisfazendo o gauge de Lorenz, apre- 

sentadas na seção 4.2, usar aquelas satisfazendo o gauge V^Ai = 0, apresentadas na seção 4.1, 

pois a ação de interação será a mesma para ambos os casos. Deve-se também ressaltar que 

os modos puro-gauge, = V^$, não contribuem para a ação de interação, o que pode ser 

diretamente visto de (6.7) e (6.10). 

Vamos agora calcular a amplitude de transição a nível de árvore entre o vácuo de Boul- 

ware |0)b definido na seção 4.3, e o estado de uma partícula \l]e,n,uj,l,m)B = 

pela densidade de corrente clássica j^, a saber 

Estamos interessados aqui em determinar a interação da carga elétrica estática com 

a radiação Hawking, que será representada pelo vácuo de Unruh. O vácuo de Unruh cor- 

responde ao estado quântico de um buraco negro formado por colapso gravitacional, para o 

qual observadores parados fora do buraco vêem um fluxo térmico de partículas provenientes 

do horizonte de eventos do buraco negro. Para um observador estático localizado no infinito 

espacial a temperatura desse fluxo térmico é = 1/{8ttM). Já para um observador estático 

localizado em r = tq a temperatura desse fluxo é [55]. 

Como foi dito anteriormente, somente a emissão estimulada e a absorção de fótons 

do banho térmico em questão terão contribuições não-nulas para a taxa de resposta da carga 

estática. Além disso, o banho térmico de fótons de Boulware provém integralmente do horizonte 

de eventos passado H~ no caso do vácuo de Unruh. Desta forma, devemos considerar apenas 

modos com n =->. 

Já vimos que os modos puro-gauge têm contribuição nula para a ação de interação. 

Além disso os modos não-físicos também não contribuem para a amplitude acima pelo fato dos 

(6.11) 
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mesmos terem norma nula, i. e. 

b{1\NF, l, m\l]NF, l', m')B — B(0|[â(^F,->,c^,í,m), ~ ^ > (6-12) 

como foi visto na seção 4.3 [vide (4.83)]. Além disso, 

/4") = 0, 

pois de (6.4) = {f,f,0,0), e de (4.29) = (0.0,4"'”’"'''’"’,. Sendo 

assim, as únicas contribuições para a amplitude (6.1J) provirão dos modos I, de forma que 

À em   A em 

Desta forma, de (6.11), ficamos com 

+00 +1' 

= i f d'xV^g f(x) Y. E í 

X b(1; /, n, cj, l, |0)b 

= i j f{x) (6.13) 

onde usamos que 

b(1; /, n, u, l, „,,)|0)b = b(1; I, -t, l, m\l; I, u', l', m')B 

= Ô{u - u')Ôw5mm' ■ (6.14) 

Recordemos de (4.24) que 

—üjt (6.15) 

com 

- _L 
' dz ^{z + lf“‘ 

(6.16) 

KÍ“‘Hr) s [z - 1) 
(6.17) 
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Com isto obtemos 

- h+!r, (6.18) 

com 

h = i i J i'x^gf(x) 

- Kf‘\L)\Y:^(e^,q,^)5(ui - E), (6.19) 

Ir S ij d'xr/^f(x) 

= -■x\/2qE^I'‘\j^ drK'^“‘\r) YC„{e„,^„)5(u, - E), (6.20) 

oncie usamos que g{u))ô{uj — E) = g{E)6{u — E). Vale ressaltar a presença de õ{u} — E) nas 

expressões (6.19) e (6.20). Note-se que no limite da carga estática {E 0) teremos 6{uj) nestas 

expressões, onde manifesta-se explicitamente o fato citado anteriormente, qual seja: cargas 

estáticas só interagem com modos de freqüência nula. Sendo assim, precisaremos somente dos 

modos qii^{z) dados em (4.86) e (4.99), a saber 

9or(^) = 
2M 

Qi{z) 
z - 1 dQi(z) 

(6.21) 
^7Tl(l + 1) L + 1) 

Vamos então calcular a probabilidade de emissão de partículas com um dado momento 

angular para uma carga estática localizada em (ro,0o,^o) e imersa na radiação Hawking, re- 

presentada aqui pelo vácuo de Unruh, dada por 

r+oo 
= lim lim / éjj ^ 

L-^+oo £->0 Jq ' 
1 + 

1 
(6.22) _ 1 

Os dois termos entre colchetes na expressão acima estão associados à emissão espontânea e 

induzida, nesta ordem. Em seguida notemos que 

1 
lim 
E-*0 

1-f gwfl _ l 5{üj -E)= \im(Ep)-^ô{iJ - E), 

e, de (6.18)-(6.21), 

= l^‘l' + Wr + ' 

(6.23) 

(6.24) 
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com |/éP oc E, {hl* + Irll) oc E^, e \E\^ oc E^. Desta forma 

VZ = lim lim ™ L^+oo E^O 
im í 

>0 Jq 

+°° l/íp 
du 

EP 
7T 

<5(0)|/rr(r„)|" |Kto(«o.¥>o)P, 
4M 

,(00 

(6.25) 

onde usamos que P = 8nM e que ’{r) tende a zero assintoticamente. Lançando mão de 

(6.16), (6.21) e da equação diferencial de Legendre que define Qi{z), obtemos que 

/(■<»'> (r) = 
2i 

{z-1) 
dQijz) 

dz 
(6.26) 

vW+i) 

Substituindo (6.26) em (6.25), obtemos a taxa de emissão, assim como calculada por um ob- 

servador co-acelerado com a carga estática 

'Tyem 
'Im - 1)^ dQijzp) 

dzp T -í- l)/i/2(ro) 

onde r = 27r/’^/^(ro)5(0) é o tempo próprio total deste observador e zq = tq/M — 1. 

Podemos então somar sobre os números quânticos de momento angular, l e m, usando 

as fórmulas 

2/4-1 

m=—l 47T 

que pode ser obtida de [21], e 

dQi{z) ^21 + 1 

^ l{l + 1) [ dz 

-I 2 
2Qi{z) 

(z^ - 1)2 ’ 

(6.27) 

(6.28) 

cuja derivação será exibida no apêndice A. A taxa de emissão total é então dada por 

■P®"" g^a(ro) ^ f rp 

47t2 a©- 

onde 

a{rp) = Mtq^/ ^/^(ro) 

(6.29) 

(6.30) 

é a aceleração própria da carga no espaço-tempo de Schwarzschild. Analogamente, a probabi- 

lidade de absorção para um dado valor de momento angular é 

= lim lim í du\Aaí^^i. 
L-v-J-oo £->0 Jp ' çwH _ ij ’ 
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onde, por unitariedade, = M(i7-4,o;,i,m)l- O termo entre colchetes na expressão acima 

indica a presença do banho térmico (com temperatura f5~^) de fótons de Boulware com energia 

(jj proveniente de H~, que caracteriza o vácuo de Unruh. 

Segue então que a taxa de absorção total é dada por 

r 4.^ «■(¥ 
(6.31) 

A razão da igualdade entre e reside no fato de que a emissão espontânea torna- 

se desprezível em comparação com a emissão induzida na medida em que E tende a zero. É 

interessante notar também que é a existência de um número infinito de de fótons de Boulware 

com energia nula no banho térmico correspondente ao vácuo de Unruh que impede jr e 

-paba de se anularem. Na ausência do banho térmico, as taxas de emissão e absorção anular- 

se-iam. 

Obtemos então, uma vez que não há interferência entre os processos de emissão e ab- 

sorção de fótons de Boulware a nível de árvore, que a taxa de resposta total da carga é dada 

pela soma de (6.29) e (6.31), a saber 

-pem 'pabs 
By = —-b — 

r T 
,2 

(6.32) 

com 

(6.33) 

Note-se que a taxa de resposta (6.32) é finita, ao contrário de (5.41) que é divergente. Analisemos 

agora o comportamento de (6.32) muito próximo e muito distante do horizonte de eventos do 

buraco negro de Schwarzschild. Usando (6.30) e (6.33) podemos reescrever (6.32) como 

ro q^M 

2'K‘^rQ Vro — 2M 

1/2 r/ro-M 

ro 
In 

ro 

Lro - 2M 
(6.34) 

Em seguida usamos que 

lnx~x 1  
2 3 

(x sí 0), 
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para mostrar que vai a zero muito longe do horizonte como 

Ry 
2q^M^ 1 

StT^ fn 
(ro -> +oo). (6.35) 

Podemos também mostrar de (6.34) que próximo do horizonte Ry diverge na forma 

Ry 
2M \ 1/2 

87t2M \ro-2M > 
In 

2M y/2 

ro - 2m) 
(ro 2M+). (6.36) 

De (6.30) vemos que próximo do horizonte a aceleração própria da carga estática diverge como 

, , 1 / 2M \^-/2 , ^ ^ 

4M (^^) ^ 

Isto nos permite reescrever (6.36) como 

Ry « a(ro) ln[4Ma(ro)] (ro -> 2M'^). (6.38) 

Comparando esta expressão com a taxa de resposta de uma carga com aceleração constante a 

no espaço-tempo plano no vácuo de Minkowski com uma freqüência de corte «, dada por (5.44), 

a saber 
2 

~ ln(a/Ac) (Aix/a<^l), (6.39) 
27T^ 

concluímos que o tamanho finito do horizonte de eventos do buraco negro age como uma 

freqüência de corte na região do infravermelho. 

A expressão (6.32) nos fornece a tajca de resposta de uma carga elétrica estática fora de 

um buraco negro de Schwarzschild, interagindo com a radiação Hawking no vácuo de Unruh. 

O resultado encontrado aqui difere do obtido para a carga escalar (fonte), dado em (6.1), por 

um fator 2(5i(ro/M — 1). No caso escalar, foi encontrado que as taxas de resposta de fontes 

estáticas puntuais no espaço-tempo de Schwarzschild (assumindo-se o vácuo de Unruh) e no 

espaço-tempo de Rindler (assumindo-se o vácuo de Minkowski) são iguais desde que as fontes 

puntuais tenham a mesma aceleração própria em ambas as situações. Acabamos de obter que 

uma tal igualdade não é verificada no caso vetorial, uma vez que a taxa de resposta de uma 

carga elétrica estática no espaço-tempo de Rindler (que nada mais é do que uma carga elétrica 
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uniformemente acelerada no espaço-tempo de Minkowski) no vácuo de Minkowski diverge na 

medida em que as freqüências tendem a zero [vide (5.41) e a discussão logo abaixo da mesma]. 

Concluímos assim que a suspeita da existência de uma universalidade quântica conjecturada a 

partir do estudo do campo escalar não foi confirmada no caso eletromagnético. 
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Capítulo 7 

Conclusões e perspectivas 

Neste trabalho apresentamos a quantização dos campos escalar e vetorial, com massa nula, 

no espaço-tempo de um buraco negro estático e sem carga. Devido ad fato das funções ra- 

diais envolvidas satisfazerem equações diferenciais cujas soluções analíticas não se encontram 

disponíveis na literatura, não nos foi possível determinar analiticamente a forma e a normali- 

zação dos modos independentes dos campos em todo o espaço-tempo para quaisquer frequências. 

No entanto, uma vez que conhecemos as equações diferenciais envolvidas, é possível' encontrar 

numericamente os resultados desejados. Ademais, devido à estrutura assintótica do espaço- 

tempo de um buraco negro, nos é possível obter a normalização dos modos muito próximo e 

muito distante do horizonte de eventos. Podemos ainda utilizar estes resultados para obter 

os modos normalizados em todos os pontos do espaço-tempo em questão, na aproximação de 

baixas freqüências. 

No caso do campo escalar, apresentado nos capítulos 2 e 3, determinamos numerica- 

mente os modos normalizados e com eles calculamos a potência irradiada por uma fonte girando 

ao redor de um buraco negro de Schwarzschild (vide seção 3.4.2). Utilizamos também nossa 

aproximação analítica para baixas freqüências para calcular a mesma potência irradiada (vide 

seção 3.4.3). Comparamos então estes resultados obtidos para um buraco negro, com os obtidos 

assumindo-se um espaço-tempo plano, utilizando duas diferentes possibilidades para a interação 

gravitacional entre o corpo estelar e a fonte girante em Minkowski (força gravitacional newto- 

niana e troca de grávitons). Ao compararmos os resultados concluímos que os obtidos para 
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espaços-tempos curvos e planos diferem de 30 a 20% para as órbitas circulares estáveis mais 

internas possíveis segundo a Relatividade Geral. Na seção 3.5 apresentamos detalhadamente a 

análise e comparação destes resultados mencionados de passagem aqui. Nossa análise nos dá 

embasamento para afirmar que cálculos precisos da radiação emitida na vizinhança de buracos 

negros deverão levar em conta a Teoria Quãntica de Campos em Espaços Curvos (TQCEC). 

Dito de outra forma, a TQCEC nos permite obter correções devidas à interação gravitacional 

einsteiniana a fenômenos quânticos ocorrendo na vizinhança de buracos negros e estrelas rela- 

tivísticas. 

A quantização do campo eletromagnético foi apresentada no capítulo 4. Discutimos as 

soluções independentes em dois gauges diferentes e adaptamos a quantização de Gupta-Bleuler 

para o caso do espaço-tempo de Schwarzschild, apresentando com certo detalhe a estrutura 

do espaço de Fock associado ao fóton. Na aproximação de baixas freqüências, encontramos a 

normalização dos modos físicos. Para mostrar a consistência de nosso procedimento de escolha e 

normalização dos modos do campo eletromagnético em Schwarzschild com coordenadas polares 

esféricas, usamos o mesmo procedimento para quantizar o campo do fóton em Minkowski no 

capítulo 5. Fizemos uso dos modos normais assim obtidos para calcular quantidades que podem 

ser encontradas na literatura obtidas utilizando o procedimento de quantização padrão [25, 

34], exibindo a concordância dos resultados. Cheques de consistência desta natureza seriam 

igualmente interessantes de serem realizados com o procedimento utilizado na quantização do 

campo de Maxwell no espaço-tempo de Schwarzschild no gauge Ao = 0, discutido em [32]. 

No capítulo 6 utilizamos os modos normais obtidos na aproximação de baixas freqüên- 

cias para investigar a taxa de resposta de uma carga elétrica estática no espaço-tempo de 

Schwarzschild interagindo com fótons da radiação Hawking (com o vácuo de Unruh). Encon- 

tramos que esta taxa de resposta é finita. (Pelo fato da carga estática só interagir com modos 

de frequência nula os modos aproximados por nós obtidos são suficientes para o cálculo exa- 

to desta taxa de resposta.) Isto implica diretamente que não há uma igualdade análoga à 

encontrada no caso escalar, uma vez que a taxa correspondente no espaço-tempo de Rindler, 

115 



para uma carga elétrica, tem divergência na região do infravermelho. Desta forma não parece 

haver um princípio físico envolvido por detrás do resultado obtido no caso escalar. Com este 

exemplo, podemos então visualizar a importância da TQCEC na análise de aspectos conceitu- 

ais relevantes da Física como a emissão de radiação por fontes aceleradas e a possibilidade de 

existência de um princípio de equivalência quântico. 

Vale enfatizar que nossos resultados estão de acordo com a conclusão amplamente aceita 

em Eletrodinâmica Clássica, de que cargas estáticas em campos gravitacionais não irradiam [48, 

50, 56]. Tal conclusão é obtida aqui, lembrando que modos de freqüência nula, que se acoplam 

com a carga estática por nós considerada não carregam energia e, conseqüentemente, não podem 

ser identificados com radiação clássica. 

Ainda com o intuito de averiguar se a equivalência obtida para a fonte acelerada em 

Minkowski e em Schwarzschild se manteria no caso em que o buraco negro fosse provido de carga 

elétrica, foi calculada a probabilidade de emissão e absorção de uma fonte estática no espaço- 

tempo de Reissner-Nordstrpm [57], assumindo-se o vácuo de Unruh. No entanto, também não 

foi encontrada equivalência entre este resultado e aquele obtido para a fonte uniformemente 

acelerada em Minkowski (assumindo-se o vácuo de Minkowski). 

Recentemente a quantização do campo eletromagnético fora de buracos negros estáticos, 

semelhante a apresentada no capítulo 4, foi utilizada para calcular a seção de choque de absorção 

de ondas planas de baixa energia para buracos negros de Schwarzschild e de Reissner-Nordstrpm 

extremo em dimensões arbitrárias (maiores do que três) [36]. 

Um outro problema que nos parece interessante de ser investigado é o cálculo da potência 

irradiada por uma carga elétrica girando em torno de um buraco negro estático. Este problema 

é semelhante ao estudado no capítulo 3, envolvendo por sua vez a quantização do campo do 

fóton, desenvolvida no presente trabalho. 
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Apêndice A 

Dedução da equação (6.28) 

Inicialmente definamos 

°° 2/ + 1 
F{z)^Y. ' i-QM 

t 2 

^ l{l + 1) [dz 

Usando a equação de Legendre, satisfeita por Qi{z), obtemos 

T 2 

(A.l) 

1 -1)“ dz 
Qi{z) = 2l{l + l){z^ - l)Qi{z)—Qi{z). (A.2) 

Desta forma, 

^ - l)^í’(z)] = (z^ - 1)^ |ê(2í + l)lQ,(z)]=| . (A.3) 

Lembremos agora que 
OO l 
i:(2í + l)[Q,(z)l^ = . (A.4) 

(Isto pode ser obtido quadrando ambos os lados da equação (5.63) e integrando na variável t 

de —1 a 1.) Substituindo (A.4) em (A.3) obtemos 

^ [(z= - l)^f (z)J = (z’ - 1) 
dz 

1 1 /, z + 

z2 - 1 4 z - 1 

2-z , z + 1 . . 
+ In r , (A.5) 

z2 - 1 z-1’ 

onde usamos que 

Q.W = iiog^ (A.6) 

A integração de (A.5) nos leva a seguinte expressão 

(z2 - l)^F(z) = z In -2 + C, (A.7) 
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onde C é uma constante. Lembrando que Qi[z) ~ na medida em que z oo, encontramos 

que 0 lado esquerdo da equação acima tende a zero neste limite. Desta forma C = 0. Com isso 

podemos escrever 

F{z) = 
1 

(Z2 - 1)2 

que é 0 que queríamos demonstrar. 

zln^-2 
z — 1 

2Qi(z) 

(z2 - 1)2 ’ (A.8) 
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