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Abstract

Two approaches for computing binary and breakup amplitudes for three-
body scattering above the breakup threshold are presented. The asymptotic
approach provides a way to take into account the orthogonality of the binary
and breakup channels. It reduces the problem to a boundary value problem
with known inhomogeneous boundary conditions. The scattering amplitudes
are calculated without reconstruction of the solution over the entire configura-
tion space. The complex-scaling method reduces the scattering problem to a
boundary value problem with homogeneous zero boundary conditions. It allows
calculating the amplitudes via an integral representations. Both methods are
applied to neutron-deuteron scattering. The binary and breakup amplitudes are
calculated using a developed parallel algorithm.
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1 Introduction

Study of three-body scattering problems includes developing reliable analytical ap-
proaches as well as effective computational techniques. One of the approaches for
treating neutron-deuteron (nd) scattering above the breakup threshold is based on
the three-body configuration space Faddeev formalism [1]. The differential Faddeev
equations are reduced to a boundary value problem by implementing appropriate
boundary conditions. The existing boundary conditions have been introduced by
S. P. Merkuriev [2]. In this paper we continue developing the boundary value problem
approach for Faddeev equations. We introduce a new representation for Merkuriev
boundary conditions and apply the complex-scaling method for obtaining the zero
boundary value problem for Faddeev equations.

In the first approach [3], the asymptotic boundary conditions are represented in
the form of the hyperspherical adiabatic expansion. This expansion is constructed
in such a way that the binary and breakup channels are orthogonal at any value of
the hyper-radius. This property allows using the asymptotic value of the Faddeev
component as the boundary value [4] for the Faddeev equation. This approach makes
it possible to calculate scattering parameters at the asymptotic region through the
solution of the boundary value problem with the inhomogeneous boundary conditions
in the asymptotic region, i. e. without reconstruction of the solution in the entire
configuration space.

The second approach is to take advantage of the exterior complex-scaling method [5]
for the inhomogeneous Faddeev equations. The method allows us to reduce the asymp-
totic boundary conditions to the homogeneous zero conditions at large separation of
particles by the rotation of the hyper-radius into the upper complex half-plane. This
approach demands calculation of the integral representation [1, 6] for scattering am-
plitudes. Therefore, it needs the reconstruction of the full solution over the entire
configurational space.
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The numerical solution of the problem includes solving the linear systems of equa-
tions with block tridiagonal matrices of large orders. The matrix sweeping algo-
rithm [7] is a traditional computational scheme for such problems. Despite the fact
that the algorithm is well defined and robust for matrices with diagonal dominance
its recursive nature leads to a negative effect for taking advantage of parallel com-
puters for large matrices. For our first approach, we use a technically simple scheme
of matrix sweeping algorithm for forward elimination step which produces the so-
lution only at the asymptotic region. For the second approach which requires the
complete solution, we have to take advantage of parallel algorithms and to perform
calculations using supercomputing facilities. In this case, the sweeping algorithm is
applicable only as a brute-force algorithm due to its hard parallelization. For this
case we have developed a new domain decomposition method (DDM). Using DDM
on the supercomputer cluster allows us to reduce the computation time by an order
of magnitude comparing to the brute-force algorithm.

The developed algorithms include conventional linear algebra packages as LAPACK
and principal implementations of parallel programming concepts. The scattering am-
plitudes obtained by both approaches have been compared against each other and
with results in [8].

The plan of the paper is as follows. In the second section a brief formulation of
the three-body scattering problem is presented. The third section describes methods
of solving the stated problem. The equations and the corresponding boundary con-
ditions for each of approaches are given here. The computational methods as well
as its parallelization are discussed in the fourth section. The obtained results are
summarised and compared in the last fifth section before the conclusion.

The authors are thankful to E. A. Yarevsky for valuable suggestions concerning
the application of the complex-scaling method. All calculations presented in the
paper have been performed using the supercomputing facilities of the Computational
Resources Center of SPbSU.

2 Formulation of the problem

The nd system under consideration is described by differential Faddeev equation of
the form [1]
(—A+V(x)—E)UX) = -V(x) (P+ + P_) U(X) (1)

for the Faddeev component U of the wave function W. The center-of-mass frame of
standard Jacobi coordinates {x,y} = X [1] is used throughout. The expansion of the
wave function into components is written as

U(X)=(I+P"+P)UX),

where P is the cycling and anti-cycling permutation operators of three particles and
I is the unit operator. The s-wave equations for the radial part of the Faddeev wave
function component appear from the equation (1) after projection onto the states with
zero orbital momentum in all pairs of the three-body system. These s-wave Faddeev
equations are given by [9]

(__ — = +V/(z) - E) U’ (w,y) = —VJ(SC)/dﬂzx/_szJUJ(fc’,y’)a (2)
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The superscript J labels states with a given total momentum that coincides with the
total spin of the system in our case. For J = 1/2 (doublet), U'/? is a three-component

. 172 771/2 ;172\ 7T 3/2 - .
function (U1 y U 7, Uy ) , whereas U%/# is a scalar (quartet). The potentials are

defined as follows: V1/2 = diag{V*,V*,V*}, V3/2 = V! where V* and V* are triplet
and singlet potentials of N N-interaction [8]. Numerical matrices B” are given as

1/4 —=3/4 0
BY2=1|-3/4 1/4 0 |, B¥?=-1/2
0 0 —1/2

The energy E in the center-of-mass system and the relative neutron momentum ¢ are
associated with the deuteron ground state energy ¢ < 0 by the equation ¢ = E — ¢.
The deuteron ground state wave function satisfies the equation

d? 3/2
(- oz + V2@ ) = ete) 3
with the zero boundary conditions at zero and infinity.

The solution of the s-wave Faddeev equations (2) for nd scattering above the
breakup threshold (E > 0) should satisfy the boundary conditions [2]

. . expivV Ep
U11/2(:E, y) ~ () (sm qy + a(l)/2(q) exp zqy) + A}/Q(G, E)———, (4)
N
VEp
UY2(2,y) ~ AY?(0, )Y 9 3, 5
(z,y) (0,E) 75 (5)
expiv Ep

U32(x,y) ~ o(x) (Sin qy + ay/*(q) exp iqy) + A%%(0,F) (6)

VP

where p = /2?2 + 32, tand = y/x, as p — oo, and the conditions U(z,0) = U(0,y) =
0 guarantee the regularity of the solution at zero. The structure of the numerical
matrix B/2 makes it possible to reject the third uncoupled equation in (2) and thus
to simplify the problem. The functions ag (¢) and A} (6, E) are the binary amplitude
and the Faddeev component of the breakup amplitude, respectively. The integral
representations for these functions in the simplest case J = 3/2 are of the form [1]

ag/Q(q) = 1/000 dy sin qy /OOO dx o(x) K(z,y) (7)

A3/2(§, E)= %e”/‘l /OO dy sin qy /OO dx qﬁ(\/Ecos é,x) K(z,y), (8)
V T 0 0

where ¢(k, z) is the scattering two-body wave function

and

ok, x) — P sin (ka4 6(k))

T—r00

and
1

1 Ty
K(ag) = 5V92a) [ duZ U@ y),

—1
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Taking into account the change of the unknown function U”(p,0) = /pU”(z,y),
the transformation to the hyperspherical coordinates {p,0} leads to the following
equations:

52 1 1 62
(_8_/)2 - 4_p2 - ;w + V3/2(p(3089) _ E) u3/2(p,9)
2 9+(‘9)
= _VB/Q(pCOSQ) / U(p,e/) do' (9)
3
V3 0_(9)
for J =3/2 and
52 1 1 62
(_8—[)2 T4 200 + Vi(pcosh) — )ul/z( 0)
1 64(0)
— 7% Vt(pCOS 9) / (ull/Q(/” 9/) - 3“21/2(/)7 9/)) d@/, (10a)
_(0)
32 1 1 82 .
<<”_p2 TaE pmog TV peost) E) U (p,0)
1 04(0)
“TEY e / (~3t6"(0.0) +t"(0,0)) @9’ (10b)
6_(0)

for J = 1/2. The integration limits are defined, in turn, as 6_(0) = |r/3 — 4|,
04+(0) = w/2 — |w/6 — 0] and the boundary conditions (4)—(6) should be multiplied
by /p.

3 The solution methods

3.1 The asymptotic approach

The equations (9)—(10) are solved via expansion of the unknown function in basis
functions associated with the eigenvalue problem for the operator h(p):

Bon(p10) = (5 3+ VV (pe0s0)) n(610) = AL(o(50), 0 0,72

(11)
The spectral properties of this operator [3] allow us to orthogonalize the binary and
breakup scattering channels and hence to reformulate [3] the problem in such a way
that the boundary conditions (4)—(6) can be represented as the following equivalent
ones:
No
U (p,0) ~ 0o (pl6) (Yolap) + a3/ * (@) Holap) ) + 3 ér(pl0) @} *(B) Hi(VEp) (12)

k=1

for J =3/2, and

U (p,0) ~¢o(p|9)(yo(qp)+ao ) Ho qp) Zalk ) ¢ (pl0) Hi(VEDp), (13a)

Uy (p. 9 Zam ) 6k (p10) H(VEp) (13b)
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for J =1/2. Here Yy(t) and Hy(t) are expressed by

mt Yo(t) + Jo(t)
Yo(t) = \/773

[T 1)
H expz 1 —|— 7rk:)

through Bessel functions Jy, Yy and Hankel functions of the first kind H, lil) [10]. The
Faddeev component of the breakup amplitude is expressed in this case as a linear
combination

Ng

Al(0,B) = hm Al(0,E,p) = hm Zalk ) dr(p|0),
k=1

whereas the binary amplitude is given by ad (q).

The extraction of the coefficients a/ ;) of the presented linear combination, for
example, in the case J = 3/2 is performed as follows. The boundary value problems
with the boundary conditions given by separate terms of Eq. (12) and taken at some
last knot pimaq. + h are solved and the solutions Uy (pmaz) at the next-to-last knot are
obtained. Parameter p;,q. is chosen to be large enough in order to use the asymptotic
representation for the solutions in the asymptotic region. Constructing the complete
solution as a linear combination

Ny
U =Usn +a)* U+ 0> Uy, (14)
k=1

we assume that in this asymptotic region p = pma. the constructed solution (14) is
equal to the asymptotics (12):

N<l5 N<l5
Usin + ag/Q Uy + Z ai/Q U, = ¢o (yo + ag/Q 7‘[0) + Z az/Q O Hr. (15)
k=1 k=1

This provides the system of linear equations for calculation of ag/ in the asymptotic
region, i. e. using the orthogonality of the basis and projecting Eqs. (15) on the basis

functions ¢;, one can obtain the desired system of equations for az

o/? (61| Uo) — (&1]doHo)] +Za3” (el Us) — (D1l énHn)) = — (1] Usin) + (D]60V0)-

k=1

3.2 The exterior complex-scaling method

The exterior complex-scaling method [5] implies a substitution of the variable p in
Egs. (9)-(10) by a complex function R(p) according to the formula

=7 p < po
B0 ={ 0 fpmmntod) o

where the introduced complex function f defines the curve of R(p) in the complex
plane and can depend on some number of predefined parameters p;. Then the partial
second derivative in equations (9)—(10) is expressed as

0? Ry 0 1 92

=——f— 4 —. 16
oRE = (BP0 | (R0 16)
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The continuity properties of R(p) define the validity of Eq. (16) and the smoothness
of the scaling. The simplest case of the sharp exterior complex-scaling demands to
have f in the form

f(pa Lo, W, {pl}) = (p - po)eiw’ (17)

which prescribes the rotation to the upper complex half-plane by the angle w. The
derivative R;) in this case has the discontinuity at pg and this might affect the applica-
bility of the formula (16). A smooth exterior complex-scaling can be given by a more
complicated function f which provides a continuity of function R(p) together with
the first and second derivatives. Nevertheless, the limiting behavior of f as p — oo
should have a form (17). For example, the function f for the smooth scaling can be
given by

f(p, po,w,p) = (p— po) € (1 — exp[—p(p — po)])-

In the present work for this type of scaling we use fifth order polynomial function
with some chosen coefficients.

The impact of the complex rotation on the asymptotics results in an exponential
decrease of the scattered waves. For simplicity, we will consider the quartet asymp-
totics U3/? and the sharp complex-scaling. In the hyperspherical coordinates the
asymptotics (4) is given by the formula

Z/lg/Q(R, 0) ~ VR ©(Rcos ) (sin qy + ag/2(q) exp iqy) + A3/2(9, E) exp iVER.

The sharp complex rotation of the binary scattered wave exp (igR cos ) produces the
term

exp(ig[po + (p — po) cosw]sinB) exp(—q(p — po) sinwsin 6),

which exponentially vanishes as p — oo and the angle of the rotation determines
the rate of vanishing. The breakup scattered wave shows a similar behaviour. In
contrast, the incoming wave sin (¢R cos §) does not vanish after the complex rotation.
This wave is substracted from the asymptotics and consequently from the unknown
solution. Hence, in the case of J = 3/2, the inhomogeneous equation

—— —— — —— +V(Rcosf) — E> L~{3/2(R,9)

04(0)

) -
— —=V(Rcos® U2 (R, 0" do'
—ViReost) [ d(R.0)
0_(0)
, 0.(0)
= 7 V(R cos9) / VR ¢(Rcos#') sin (qRsin ') db'.

0_(0)

for U3/? = UP? — /R p(Rcos @) sin (gRsinf’) with homogeneous zero boundary
conditions

U?(R,0) = 0, UY*(R,0) = 0
p=0 p—>00
is obtained. The similar equations with vanishing zero boundary conditions can be
obtained for the case J = 1/2.

Within a framework of this method, the binary and breakup amplitudes are cal-
culated using the integral representations (7) and (8), respectively. The complete
solution for all values of hyper-radius p € [0, pmaz], Where pmaz > po, is reconstructed
and a part of the solution at real values of R(p) is then used for calculation.
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Figure 1: The cubic Hermite splines (18) at the unit interval.

4 The computational scheme

The two-dimensional boundary value problem is solved in the hyperspherical coor-
dinates {p, 8} due to proper description of the boundary conditions and appropriate
representation of the two-body operator (11). Therefore, the computational scheme
meets the requirements of a good representation of this f-dependent operator. As
a result, the unknown solution as a function of the coordinate 6 is expanded in the
basis of cubic Hermit splines [11]. These four splines are defined at the unit interval
by the formulae

hoo(t) = 2t3—3t2 +1,

hio(t) = 3 —2t2 4 ¢,

hoi(t) = —2t34 3% (18)
hi1(t) = 212

and can be transferred by linear transformations to two consecutive intervals of 6-
grid. The splines are shown in Fig. 1. In order to obtain the #-grid, a specially chosen
nonequidistant z-grid for operator (3) has been used and transformed by the relation

0;(p) = arccos 0; € [0,7/2].

T
X(p)’
Here the parameter X (p) defines the z-coordinate of the right zero boundary condi-
tion for some p. The quality of the z-grid and consequently of the #-grid has been
estimated by a precision of the ground state eigenvalue of the two-body Hamilto-
nian (3). For the MT I-III potential [8], the achieved value is Eq, = —2.23069 MeV.
The obtained nonequidistant #-grid has the highest density near 7/2 and makes it
possible to calculate the precise ground state eigenvalue with about 500 intervals.
The spline-expansion of the solution demands using as many as twice of numbers
of coefficients in the expansion. The orthogonal collocation method with two gauss
knots within one interval is used for discretisation of differential equations. Therefore,
the common size for a matrix of the two-body operator representation is about 1000.
The second partial derivative of the equation (9) is approximated over the equidistant
p-grid with the mesh parameter h = p,, — pm—1 by the finite-difference formula

i U(p,0) — U(pm=-1,0) —2U(pm,0) + U(pm+1,0) _
0p? h?
This approximation generates the block tridiagonal structure for the matrix of the
linear system. The matrix sweeping and the domain decomposition algorithms are
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applied for solving the obtained system.
The matrix sweeping algorithm for the block tridiagonal system

AiXZ',1 + CzXz + BiXiJrl = Sz A1 = BNP = 0, (19)

where A;, By, C;, 7 = 1,..., N, are the blocks of the left hand side matrix and
blocks S; present the right hand side, includes two sweep procedures: the forward one
and the backward one. The forward sweep consists of a sequential calculation of the
auxiliary blocks

&1 - Clela
& = (Ci—Aidi 1) 'Bi, i=2,..,N,—1

for the left hand side and similar ones for the right hand side. As a result, the matrix
of the system is reduced using these blocks to the upper diagonal form with C, blocks
on the diagonal, unchanged B; on the upper diagonal and S; in the right side. The
backward sweep consists in the reconstruction of the solution of the linear system by

formulae o
XNp = CE})SNP
X, = é;l(SifBiXiH), i=N,—1,....1

The solution is also calculated sequentially starting from the last block at the matrix
diagonal. This makes it possible to calculate the solution corresponding to the last
block by performing the complete forward sweep and only the first step of the back-
ward sweep. In spite of its sufficient simplicity and efficiency, the matrix sweeping
algorithm is recursive and parallelized only at the level of matrix operations. This
does not allow us to use the given method on contemporary supercomputing facilities.

Besides the matrix sweeping algorithm, we have developed a new solution method
called the domain decomposition method (DDM). It was designed to perform fast
parallel solving and obtain a complete solution of the linear system. The idea of the
method is presented in Fig. 2. The initial tridiagonal system (19) is rearranged into
an equivalent form which allows the parallel solving. The matrix is logically divided
into independent subsystems and last components of the solution corresponding to
each subsystem are moved to the end of the full solution. The subsystems are shown
in Fig. 2 (middle) by thin squares. This procedure affects the transformation of the
initial matrix and reduces it to the new block “arrow”-form which is shown in Fig. 2
(bottom). The obtained system can be expressed as

M1 My, uy Pry
<M21 Mv v - Pv ’ (20)
where the unknown solution v corresponds to the moved part of the full solution, the
superblock Mj; consists of the new independent blocks at the diagonal, M, is the
bottom right coupling superblock which is the “arrowhead”, and other superblocks

present additional blocks of the matrix. The solution of the system (20) is given by
the relations

u = M;11P11 — Mill\/[lgv,
Z —1 _
v = (M, —MyM'Ms) (P, — Moy My Pry).

Due to the structure of obtained superblocks, the inversion of My is reduced to in-
dependent inversions of the diagonal blocks corresponding to each subsystem. Only
two nonzero blocks for each subsystem of Ms; and M5 drastically reduce the num-
ber of matrix operations and their sparse allocation allows us to perform multipli-
cations Ml_llMu independently for each subsystem. The calculated supermatrix
M, — MglMﬁlMu has a block tridiagonal form. Although its size equals to the



Computing binary scattering and breakup in three-body system 129

aoan
O
| I I o s I s s o s Y o e s Y s s Y o |
L
| I I o s I s s o s Y o e s Y s s Y o |

ooao

aoono

|
gm
m[E[S
ooo
oo

14
N
CoomoocomoodmooOl
L
boomoooEood=oogl

O
O
mmmOooOooOoodoog)
L
EmmOoopoogoodooq)

Figure 2: A simple graphical scheme of the domain decomposition method: (top)
the initial block tridiagonal system; (middle) a rearrangement of the initial system
to independent subsystems, the moved elements are highlighted by the diagonal lines
and solid filling; (bottom) the obtained system in the “arrow”-form which can be
solved using parallel calculations.

number of subsystems (multiplied by the size of one block) and can be chosen much
smaller than the size of the initial system (19), the matrix sweeping algorithm is used
for computation of the solution v. After obtaining v, the solution w is calculated in
parts independently for each subsystem.

The DDM is successfully integrated in modern parallel programming models and
it allows us to obtain a linear growth of performance with the increase of a number
of computing units for not so large supercomputing systems. Fig. 3 shows obtained
values of the computation acceleration with respect to the number of computing units.
The linear dependence is clearly observed and the acceleration larger than 10 is easily
reached. Nevertheless, further increase of computing hubs leads to violation of the
linear dependence and stagnation of the performance increase because of the growth
of hardly parallelized matrix sweeping part.
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Figure 3: Computation acceleration for the domain decomposition method as a func-
tion of a number of computing units. The linear growth of the performance is ob-
served.

5 Results of calculations

The calculations have been carried out for energies in the laboratory frame Fj,;, = 14.1,
42.0 MeV using the MT I-III potential [8] for the description of the two-body sub-
system (3). A number of knots for the nonequidistant #-grid was chosen to be about
1000 and the mesh step of the uniform p-grid was varied from 0.033 fm to 0.01 fm.

Within the asymptotic approach, the boundary value problems consisting of equa-
tions (9), (10) and boundary conditions (12), (13) taken at the hyper-radius p = pmaz,
have been solved. The expansion coefficients a'i] o (E, pmaz) as functions of pr,q. have
been calculated and used for reconstructing of the Faddeev component of the breakup
amplitude

N
J 1 J S E J
A7 (0,E, prmaz) = plingo A; (0, E, pmaz, p) = plggo ;ai,k(Evpmax) ok (pl0).

The prelimiting doublet breakup amplitudes A; /2 (0, E, pmaz, p) for Ejqp = 14.1 MeV
at some finite value of p;q; are shown in Fig. 4. The breakup amplitudes
A;/Q(H,E,pmaz) as p — oo for the same energy are presented in Fig. 5. A con-
vergence to a limit is explicitly guaranteed by properties of the functions ¢ (p|6).

The limiting forms of these functions as p — oo are known and they are smooth for
6 €[0,7/2]:

or(pl0) e % sin 2k6.
Therefore, in contrast to the prelimiting case, a smooth behavior of the breakup
amplitudes near 90 degrees is observed.
The convergence of the binary amplitude ao(q, pmaz) and breakup amplitude
Af/ 2(9, E, pmaz) 88 Pmaz — 00 has been obtained. For example, the p,,q.-dependence
of the inelasticity coefficient and the phase shift, defined as

soJ
.]6215 -1

21
2 ’ 1)

af =
for J = 3/2 are presented in Fig. 6. It is shown in the figure that the decrease of the
mesh step h for the p-grid to 0.01 fm leads to obtaining of oscillating but significantly
less biased values of the phase shift as p;,q, increases. The oscillations are vanishing as
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A(8.E.Prax:P)

Figure 4: The prelimiting doublet breakup amplitudes Ag / 2(9, E, pmaz, p) for Ejgp =
14.1 MeV and p = pmaes = 1400 fm. The amplitudes have been obtained using the
asymptotic approach.

Pmaz — 00 and the limiting value of the amplitude can be obtained by extrapolation.
Nevertheless, in order to reach relatively small oscillations it is necessary to achieve
values of pyee > 1000 fm. The obtained values of the binary amplitude for different
laboratory frame energies are summarized in Table 1. The calculated values are in a
good agreement with the binary amplitudes of Ref. [8].

A(B,E,pax)

Figure 5: The breakup doublet amplitudes A; / 2(9, E, pmaz) for Ejgp = 14.1 MeV and
Pmaz = 1400 fm. The amplitudes have been obtained using the asymptotic approach.
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Figure 6: Calculated values of the quartet inelasticity coefficient 1 and phase shift §
[see Eq. (21)] for Ejqp = 14.1 MeV as functions of p,q.. The dashed line represents
the values obtained using the p-grid with relatively large mesh h = 0.033 fm, whereas
the solid line shows the values obtained using h = 0.01 fm. The values have been
obtained using the asymptotic approach.

The complex-scaling approach calculations have been carried out using the smooth
rotation by angle w = 30° and mesh step of the p-grid h = 0.033 fm. Due to rotation,
the boundary condition values have vanished and become smaller than 1076. The
full solution was reconstructed and the amplitudes were calculated by the integral
representations (7), (8). The most consistent preliminary values of the binary and
breakup amplitudes have been obtained for the starting rotation at ppee ~ 900 fm
and using the solution for pmee < 900 fm in formulae (7), (8). The achieved value
of binary amplitude is expressed by the inelasticity coefficient n = 0.9789 and phase
shift & = 68.79°. The obtained quartet breakup amplitudes A3/2(6, E, pyas) were
compared with the results of Ref. [8]. This comparison for Fj,, = 14.1 MeV is
presented in Fig. 7. The results are in good agreement for values of 8 < 80°, whereas
differences are observed for 6 ~ 90°.

Table 1: The values of the inelasticity coefficient 1 and phase shift § obtained using
the asymptotic approach for different laboratory frame energies.

Elab7 MeV 14.1 42.0
J =3/2, quartet

n3/? 0.9781 0.9031

§3/2 68.78  37.66
J =1/2, doublet

n'/? 0.4648  0.5021

51/2 105.40 41.21
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Figure 7: Real and imaginary parts of the breakup quartet amplitude A3/2 0, E, pmaz)
for Ejqp = 14.1 MeV. The values have been obtained using the asymptotic approach
and the complex-scaling method. The results of Ref. [8] are also shown for comparison.

6 Conclusion

In the paper we have presented two methods for solving the three-body scattering
problem above the breakup threshold. In the method 1, an orthonormal basis related
to the two-body subsystem Hamiltonian is constructed. The asymptotic boundary
condition is modified in terms of this basis. The breakup amplitude is represented by
a linear combination of basis functions which allows an extrapolation of this amplitude
to infinity exclusively by the properties of the basis functions. The coefficients of the
linear combination together with the binary amplitude are numerically obtained from
the comparison with the asymptotic form of the wave function. In the method 2, the
exterior complex scaling is used for reducing the asymptotic boundary conditions to
zero. The binary and breakup amplitudes are obtained from their integral represen-
tations. Both methods include solving the system of linear algebraic equations. The
domain decomposition method which allows a parallelization of the solution process
has been developed and successfully applied reducing the overall time of calculation
up to 10 times.
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