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Abstract: In the noisy medium-scale quantum era, quantum computers are constrained
by a limited number of qubits, restricted physical topological structures, and interference
from environmental noise, making efficient and stable circuit scheduling a significant
challenge. To improve the feasibility of quantum computing, it is essential to optimize the
scheduling of quantum gates and the insertion of SWAP gates, reducing running time and
enhancing computational efficiency. We propose a collaborative optimization framework
that integrates the Quantum Exchange Lock Parallel Scheduler (QELPS) with the Full-level
Joint Optimization SWAP Algorithm (FJOSA). In QELPS, SWAP conflict characteristics are
used to adjust the layout of quantum gates across different levels while considering physical
constraints and dynamically adapting to the circuit’s execution state. Quantum lock parallel
technology enables the selective postponement of certain quantum gates, minimizing circuit
depth and mitigating inefficiencies caused by excessive SWAP gate insertions. Meanwhile,
FJOSA employs a cross-layer optimization strategy that combines heuristic algorithms
with cost functions to improve gate scheduling at a global level. This approach effectively
reduces quantum gate conflicts found in traditional methods and optimizes execution
order, leading to better computational efficiency and circuit performance. Experimental
results show that, compared to the traditional 2QAN algorithm, QELPS and FJOSA reduce
additional gate insertions by 85.59% and 89.38%, respectively, while decreasing running
time by 56.32% and 66.47%. These improvements confirm that the proposed method
significantly enhances circuit scheduling efficiency and reduces resource consumption,
making it a promising approach for optimizing quantum computation.

Keywords: Quantum Exchange Lock Parallel Scheduler (QELPS); quantum circuit scheduling;
SWAP conflict characteristics; quantum lock parallel technology; Full-level Joint Optimization
SWAP Algorithm (FJOSA)

1. Introduction

Compared to classical computing, quantum computing offers significant advantages in
solving specific problems, particularly in complex optimization tasks and quantum system
simulations. It has demonstrated strong potential in areas such as supply chain optimiza-
tion [1], simulation of quantum systems [2], cryptography [3], and drug development [4],
surpassing the capabilities of traditional computing. With ongoing advancements in quan-
tum technology, research based on various quantum algorithms continues to expand its
applications [5-7]. Significant progress has been made across different quantum computing
platforms, including ion traps [8], superconductors [9], topological quantum systems [10],
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and quantum dots [11]. The manipulation of quantum bits and the implementation of
quantum gates have also become increasingly refined, further enhancing the feasibility of
quantum computing in practical applications.

Despite significant progress in the Noise Intermediate-Scale Quantum (NISQ) era,
many challenges remain. In NISQ devices, quantum gate operations are inevitably affected
by noise, reducing computational accuracy and reliability. Noise can corrupt both quantum
bit states and gate executions, making large-scale quantum error correction infeasible. As a
result, achieving high-fidelity calculations comparable to classical computing has remained
difficult. With an increasing number of quantum gates, calculation accuracy gradually
declines, further complicating the problem. In this context, performing efficient and
accurate computations in a noisy environment has become a core challenge. Particularly
in the NISQ era, quantum algorithms and computing models must operate under strict
hardware and software constraints. Therefore, ensuring the efficient execution of quantum
algorithms with limited hardware resources is a critical issue that must be addressed.

To address this challenge, quantum circuit scheduling has become a key research focus
in quantum computing. Its primary goal is to reduce unnecessary qubit exchanges and
operation delays by optimizing the execution order of quantum gates [12]. This approach
improves computational efficiency and accuracy under limited hardware re-sources. Opti-
mization at the hardware level is essential [13] to ensure compatibility between quantum
hardware and software. Additionally, the specific constraints of hardware resources must
be carefully considered. Since different quantum hardware architectures have distinct
characteristics, scheduling methods must be highly adaptable to meet the needs of vari-
ous platforms. Quantum gate waveform optimization [14] is also crucial. By fine-tuning
gate execution, noise interference can be minimized, leading to improved computational
accuracy and fidelity.

In existing NISQ devices, quantum programs are typically composed of single-qubit
and two-qubit gates. Studies have shown that the error rate of two-qubit gates is usu-
ally 10 times higher than that of single-qubit gates [15]. As a result, two-qubit gates in
quantum circuits face a significantly higher risk of errors during execution. To improve
the fidelity and efficiency of quantum computing, various strategies have been explored,
including optimizing quantum circuit design [16], implementing quantum error mitigation
techniques [17], and developing more robust quantum algorithms [18]. The primary goal
of these strategies is to reduce quantum gate error rates and improve qubit stability, thereby
enhancing the overall performance and reliability of quantum computers.

To address the challenges of excessive SWAP gate insertion and insufficient parallelism
in quantum circuit scheduling, we propose a new scheduling method. By integrating SWAP
gate conflict avoidance with quantum gate parallelism optimization, a Quantum Exchange
Lock Parallel Scheduler is designed, and a Full-level Joint Optimization SWAP Algorithm
is implemented.

Our contributions focus on the following aspects:

e Introducing SWAP conflict optimization of traditional greedy algorithms: Reduce the
conflict of SWAP gates through deep optimization, while balancing the relationship
between local suboptimal solutions and global optimization. Using the idea of greedy
algorithms, flexibly handle conflicts between quantum gates and avoid frequent
insertion of SWAP gates.

e  Quantum lock parallel time operation: Utilize the parallelism of quantum gates to
reduce the execution time and depth of the circuit. It is based on the results of the first
layering and further optimizes the execution order of SWAP gates and other quantum
gates by dynamically inserting nonconflicting quantum gates.
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e  Full-level joint optimization algorithm: Through cross-level optimization, the FJOSA
algorithm can more effectively reduce the insertion of SWAP gates and optimize the
execution order of quantum gates.

e  Cost function: The algorithm dynamically selects the optimal number of optimization
layers through the cost function, balancing the relationship between reducing SWAP
gate insertion and controlling algorithm complexity.

o  Comprehensive experimental verification and algorithm comparison: The effective-
ness and superiority of the QELPS algorithm and the FJOSA algorithm are experi-
mentally verified and compared with the benchmark circuit and the 2QAN algorithm,
providing a reliable solution for the quantum circuit scheduling problem.

2. Related Works

Quantum circuit scheduling has been systematically investigated through three prin-
cipal dimensions: algorithmic innovation, hardware compatibility, and error mitigation
strategies. Early developments include the FitCut methodology [19], where quantum
circuits were modeled as weighted graphs with a community-driven bottom-up cutting
strategy to address qubit resource constraints. While effective in local optimization, this
approach was observed to compromise global solution quality.

Wau et al. [20] established an Integer Linear Programming (ILP)-based multi-circuit
framework for fidelity maximization, though its practical implementation remains con-
strained due to exponentially escalating computational complexity. Bhoumik et al.’s heuris-
tic approach [21] effectively reduced SWAP gate insertions but frequently converged to
local optima, particularly under complex topological constraints.

Recent progress in quantum circuit optimization has introduced novel techniques
to address hardware limitations and improve scalability. Zhou et al. [22] proposed a
Monte Carlo Tree Search (MCTS) framework for quantum circuit transformation, which
enables deeper solution space exploration and effectively reduces circuit depth and size
overhead. Bouchmal et al. [23] applied the Quantum Approximate Optimization Algo-
rithm (QAOA) to routing in optical networks, demonstrating its potential for efficient,
resource-aware scheduling in dynamic network environments. Kanno et al. [24] introduced
tensor-network-based quantum phase difference estimation techniques to facilitate scalable
parameter estimation in large quantum circuits, supporting more efficient simulations
and computations.

Advancements in quantum circuit design have spanned both algorithmic and hard-
ware domains. Perriello et al. [25] introduced a comprehensive quantum circuit to address
the information set decoding problem, aiding quantum cryptanalysis. Grzesiak et al. [26]
showcased efficient quantum programming utilizing Efficient Advanced Synthesis En-
vironment (EASE) gates on a trapped-ion platform, enhancing native gate synthesis.
Lu et al. [27] developed a reconfigurable silicon photonic processor based on Sidewall-
Corrugated Optical Waveguide (SCOW) resonant structures, facilitating adaptive optical
control. Kanaar et al. [28] tackled always-on exchange in silicon spin qubits by crafting
robust pulse sequences, improving gate fidelity under hardware constraints.

Advancements in quantum control and topological robustness have been achieved
through various innovative approaches. Ding et al. [29] designed baseband flux pulses
to enhance controlled-phase gate fidelity in superconducting circuits. Yale et al. [30]
demonstrated all-optical spin control using coherent dark states in solid-state systems. Das
Sarma et al. [31] introduced a topological model based on Majorana zero-mode braiding,
offering a path toward fault-tolerant quantum computing.

In the pursuit of enhancing quantum circuit performance and scalability, Che et al. [32]
introduced a rapid virtual gate extraction method for silicon quantum dot devices, stream-
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lining calibration processes. Krantz et al. [33] offered a comprehensive guide on super-
conducting qubits, detailing their design and operational principles. Sorourifar et al. [34]
explored Bayesian optimization priors to improve the efficiency of variational quantum
algorithms. Murali et al. [35] developed noise-adaptive compiler mappings tailored for
noisy intermediate-scale quantum computers, optimizing circuit execution.

Distributed quantum computing scenarios introduce additional complexity in schedul-
ing due to physical qubit separation. Cirac et al. [36] demonstrated the feasibility of
distributed quantum computation over long distances using optical fibers, laying the the-
oretical foundation for remote entanglement generation and inter-node gate operations.
Altintas et al. [37] investigated spatially separated quantum game systems through spin—
photon interactions, providing early insights into the scheduling challenges in hybrid
photonic-matter architectures.

Recent engineering efforts have focused on enabling reliable quantum communication
between distant nodes. Koshino et al. [38] proposed a bidirectional interface for state
transfer between superconducting and microwave-photon qubits via single reflection, en-
abling efficient remote quantum communication. Ozaydin et al. [39] achieved deterministic
preparation of W states based on spin—photon interaction models, facilitating multi-node
entanglement distribution. More recently, Main et al. [40] demonstrated a functional optical
link for distributed quantum computing, further underscoring the need for optimized
SWAP scheduling in cross-node topologies.

Hietala et al. [41] introduced Verified Optimizer for Quantum Circuits (VOQC), a
formally verified quantum circuit optimizer built with the Coq proof assistant, ensur-
ing correctness in circuit transformations. Chong et al. [42] emphasized the necessity
of quantum-specific programming languages and compilers to bridge the gap between
high-level algorithms and quantum hardware constraints. Maslov [43] proposed a com-
prehensive compilation strategy for ion-trap quantum machines, focusing on optimizing
two-qubit gate usage and overall circuit efficiency.

Bravyi et al. [44] demonstrated that shallow quantum circuits can outperform classical
counterparts in solving specific problems, establishing a clear quantum advantage. Ryan-
Anderson et al. [45] achieved real-time fault-tolerant quantum error correction, marking
a significant step toward practical quantum computing. Sivarajah et al. [46] introduced
tlket), a versatile compiler optimizing quantum circuits for NISQ devices, enhancing
execution efficiency.

In the realm of quantum circuit optimization, Liu et al. [47] focused on resource-
efficient designs for discrete logarithms on binary elliptic curves under nearest-neighbor
constraints. Choi et al. [48] applied the Quantum Approximate Optimization Algorithm
(QAOA) to wireless scheduling, showcasing its potential in addressing NP-hard problems.
Misevicius et al. [49] introduced a hybrid genetic-hierarchical algorithm to enhance solu-
tions for the quadratic assignment problem. Jang et al. [50] developed a depth-optimized
quantum circuit for Gauss-Jordan elimination, crucial for accelerating information set
decoding. Booth [51] proposed constraint programming models for depth-optimal qubit as-
signment and SWAP-based routing, outperforming traditional ILP models in both solution
quality and runtime.

Amy et al. [52] proposed a meet-in-the-middle algorithm for synthesizing depth-
optimal quantum circuits, achieving significant T-gate Depth (T-depth) reduction. Kaew-
puang et al. [53] introduced a stochastic model for managing entangled pairs and qubit
resources in quantum cloud computing, optimizing cost and fidelity. Cross et al. [54] pre-
sented Open Quantum Assembly Language (OpenQASM) 3, an enhanced quantum assembly
language supporting advanced control flow and real-time classical-quantum interactions.
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Peng et al. [55] introduced Deep Dynamic Planning-enhanced Q-learning (Deep
Dyna-Q), integrating planning into reinforcement learning for dialogue policy learning.
Brandhofer et al. [56] proposed optimal qubit reuse strategies to enhance quantum circuit
efficiency. Zhang and Zhou [57] developed a two-stage dynamic cloud task scheduling
method to optimize resource allocation. Murali et al. [58] addressed crosstalk issues in
NISQ devices through software-level mitigation techniques.

Quetschlich et al. [59] introduced Munich Quantum Toolkit Benchmark (MQT Bench),
a benchmarking suite for evaluating quantum software tools across various abstraction lev-
els. Wang et al. [60] proposed a rejection sampling method to expedite ground-state energy
estimation on early fault-tolerant quantum computers, offering a quadratic improvement
in the ground state overlap parameter. Wan et al. [61] developed a randomized phase
estimation algorithm with complexity independent of the number of Hamiltonian terms,
allowing error reduction through increased sampling without deeper circuits.

Xu et al. [62] introduced Quantum-circuit Universal Extensible Synthesis Optimizer
(QUESO), an automated framework for synthesizing quantum-circuit optimizers tailored to
specific hardware architectures, outperforming existing compilers like Qiskit and TKET on
diverse benchmarks. Zhang et al. [63] developed a deep reinforcement learning algorithm
for topological quantum compiling, generating near-optimal gate sequences for arbitrary
single-qubit unitarizes without ancillary qubits.

To address multi-level challenges in quantum circuit scheduling—spanning architec-
tural adaptation, dynamic noise response, and cross-layer optimization—a dual-engine
collaborative framework (QELPS-FJOSA) is proposed. The QELPS module incorporates
quantum swap lock parallelism to dynamically decouple circuit layer interdependencies
thro-ugh gate conflict analysis, enabling co-optimization of SWAP gate reduction and circuit
depth minimization. Simultaneously, the FJOSA algorithm introduces a unified optimiza-
tion space integrating layout routing, gate scheduling, and resource allocation. Traditional
hierarchical optimization limitations are overcome through an enhanced heuristic cost
function and adaptive weight balancing between local refinement and global exploration.

This framework resolves critical conflicts involving topological constraints, noise
propagation, and temporal competition while maintaining computational efficiency. A
novel paradigm is thereby established for efficient quantum resource utilization in NISQ-
era systems.

3. Quantum Circuit Scheduling Problem

Quantum gate scheduling and layering have been identified as critical components in
quantum algorithm optimization, particularly for Hamiltonian simulation tasks [64], where
circuit depth reduction and hardware resource efficiency are prioritized.

The target Hamiltonian is systematically decomposed into quantum gate operations
through a structured methodology that leverages its inherent spectral attributes and inter-
action topologies, as formalized in Equation (1). This decomposition process involves the
analysis of the Hamiltonian’s spectral properties, including eigenvalue distributions and
symmetry characteristics, alongside the interaction patterns encoded in its connectivity
graph to generate efficient gate sequences. The resulting sequences are constructed to
preserve unitary dynamics while minimizing circuit depth and gate complexity, adhering
to physical constraints such as qubit connectivity and coherence time limitations. This
ensures a high-fidelity realization of the target dynamics, addressing key challenges in
quantum circuit design for practical hardware implementations.

H = ZyZy + 212y + 275 + Z3Z4 + Xo + X3 1)
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The 5-qubit simulation architecture shown in Figure la provides the foundational
hardware configuration for circuit implementation. Fundamental quantum operations
including CNOT and Hadamard (H) gates are identified in Figure 1c, demonstrating the
basic components of the quantum circuit. Initial qubit dependency relationships presented
in Figure 1b reveal that CNOTgy, g3 and CNOTjgy, g1 cannot be executed in parallel due
to shared access to Qubit gg. Concurrent operations are enabled through the coordinated
scheduling of CNOTyqy, g3, CNOTgy, 44, and Hgy in Layer Iy, which maintain independent
qubit utilization patterns.

q L
Wi Tyl
y A
e 3/1\\._;\_/
@ L

(a) (b)

10 @
3

D9

| X ] q4
() (d)

Figure 1. Example of quantum circuit scheduling: (a) Quantum device architecture; (b) Initial
quantum circuit; (c) Basic quantum gate; (d) Quantum circuit after scheduling.

Through systematic layering optimization, the dependent gates CNOTqy,q; and
CNOTgy, q4 are allocated to Layer /1, while CNOTgy, 43 is isolated in Layer /5 to resolve
cross-layer conflicts. The optimized quantum circuit architecture illustrated in Figure 1d
achieves depth reduction by implementing hardware topology-aware scheduling. This
improvement is accomplished through coordinated consideration of qubit coupling con-
straints during the compilation process, where gate sequences are reordered according to
both dependency relationships and physical connectivity limitations.

The scheduling methodology confirms that parallel execution capabilities can be
maximized through structured analysis of operational conflicts and hardware-specific
constraints. Recent quantum compiler studies have demonstrated similar approaches for
enhancing circuit efficiency through adaptive layering techniques [65]. Such optimiza-
tions become increasingly critical as quantum algorithms grow in complexity, requiring
meticulous synchronization of computational requirements with device-specific architec-
tural characteristics.

4. Quantum Exchange Lock Parallel Scheduler

The QELPS algorithm enhances quantum circuit layering through two optimized
phases. First, a depth-prioritized greedy algorithm with SWAP conflict resolution is em-
ployed to balance local and global optimizations. Gate sequences are strategically reordered
through temporary postponement, effectively resolving CNOT gate constraints without
frequent SWAP insertions typically required by conventional methods.

Second, quantum lock parallelism is utilized to dynamically integrate non-conflicting
operations. SWAP gate scheduling is optimized through temporal alignment with com-
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patible gates, reducing both circuit depth and operational over-head. This dual-phase
coordination enables improved hardware resource utilization compared to traditional
layering approaches.

The methodology maintains circuit fidelity while demonstrating enhanced compatibil-
ity across NISQ device architectures. Experimental validations confirm these advantages
through systematic comparisons under diverse quantum computing scenarios.

4.1. Deep Optimal Greedy Algorithm Layering Strategqy Based on Swap Conflict

Theorem 1. SWAP Conflict. Consider a quantum circuit Q = {qo,q4,-..,qn} that includes two
CNOT gates, CNOTg;,q, and CNOTq,,, go. If CNOTq;, q. fails to meet the topological constraint,
a SWAP operation, SWAPq;, qv, is introduced to alter the execution order of the qubits. Howeuver,
this SWAP operation cannot operate on the same qubit q;, q, simultaneously with both CNOT gates.

Theorem 2. Local suboptimal solution. Consider a quantum circuit Q = {qo,q,...,qn} and
a circuit layer L = {lp,14,...,ln} that contain quantum gates CNOTq,, q, and CNOTqc, 4.
Additionally, a quantum gate CNOTq,,, q, is present in layer l,. When CNOTq,, qy fails to meet
the topological constraint, the SWAPq,, 4. operation is introduced to alter the execution order of the
qubits. However, SWAPq,, q. cannot operate on the same qubit involved in both CNOTq,, q, and
CNOTqc, q4 within the layer. Consequently, CNOTqc, g, is temporarily postponed to layer I,.

The first layering process employs a deep optimal greedy algorithm based on SWAP
conflicts for quantum circuit partitioning. As shown in Equation (2), SWAP;,;,; represents
the total inserted SWAP gates, where SWAP; corresponds to the SWAP count in the i*" layer,
ensuring SWAP;,,; equals the summation of SWAP; across all layers. Traditional greedy
algorithms are observed to resolve mapping conflicts immediately at each layering stage,
leading to frequent SWAP; insertions and increased circuit complexity. In contrast, the exe-
cution of specific quantum gates is intentionally postponed when conflicts are encountered
in our approach, enabling temporary acceptance of local suboptimal configurations.

While immediate conflict resolution (a locally optimal strategy) substantially elevates
SWAP;,, in multilayered circuits, the proposed method strategically delays partial op-
erations to prioritize global optimization. Conflicts in specific layers are purposefully
maintained through controlled SWAP; allocations to achieve this balance. The algorithm
dynamically selects resolution strategies between optimal and suboptimal choices based
on layer-specific parameters, thereby enhancing operational adaptability. This systematic
compromise between localized SWAP gate management and circuit-wide efficiency ensures
robust quantum circuit performance without logical integrity loss.

n
SWAP a1 = ) SWAP; (2)
i=1

The specific operation steps are as follows:

Step 1: Quantum gates violating operational constraints are identified. The SWAP
gate insertion schemes generated from these constrained gates are analyzed, forming the
foundational basis for subsequent stratification.

Step 2: A local suboptimal solution is selected rather than enforcing immediate SWAP
gate insertion, allowing strategic postponement of conflicting quantum operations.

Step 3: Residual quantum gates are progressively incorporated during layering itera-
tions, with dual evaluation of both locally optimal and suboptimal configurations during
insertion decisions.
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Step 4: Non-conflicting quantum gates relative to existing components in the cur-
rent layer are directly integrated; those exhibiting conflicts are systematically postponed
for reprocessing.

Step 5: For quantum gates violating CNOT adjacency constraints, their SWAP insertion
schemes are combined with prior configurations to establish optimized stratification baselines.

Step 6: The stratification cycle is completed when three conditions are met: All gates
are optimally mapped to hierarchy levels through constraint-driven assignment; conflict
resolutions are achieved via controlled postponement strategies; the layered architecture
fulfills global optimization objectives.

4.2. Secondary Stratification Strategy Based on Quantum Lock Parallel Time

The quantum circuit structure is initially optimized using a deep greedy algorithm
based on SWAP conflicts during primary layering, with residual conflicts addressed
through secondary optimization. Temporal differences between SWAP execution times
and shorter quantum gate durations enable refinement of layer allocation via quantum
locking and gate movement mechanisms. By leveraging these timing differentials, the
circuit schedule is improved while maintaining a balance between parallelism, optimization
effectiveness, and computational complexity.

Step 1: Non-compliant quantum gates are identified through circuit mapping analysis.
SWAP insertion candidates are simulated and selected based on conflict-free verification
within current layer configurations.

Step 2: CNOT and H gate unlocking sequences are activated post-SWAP execution,
exploiting quantum parallellism to insert executable gates in subsequent layers while
maintaining temporal constraints established in primary layering.

Step 3: Full-circuit compliance is achieved through iterative traversal of non-compliant
gates across hierarchical layers. Systematic gate allocation continues until archit-ectural
constraints are satisfied through layer-wise insertion completion.

4.3. Quantum Circuit Hierarchical Strategy Based on Qelps

The QELPS algorithm includes a greedy layering strategy based on SWAP conflicts
and a secondary layering strategy leveraging quantum lock parallelism. Together, they aim
to reduce SWAP gate usage, optimize circuit depth, and enhance execution efficiency. Its
main operation steps are as follows: Additionally, the algorithm dynamically adapts to the
circuit’s evolving state to further refine the scheduling process.

(1) Initial layering: First, identify all quantum gates that do not meet the CNOT con-
straints and analyze possible SWAP gate insertion schemes to ensure that the initial
layer can meet the requirements of the hardware topology. Based on this analysis,
build the first layer and use it as the basis for subsequent layering.

(2) Intra-layer filling and conflict handling: Fill as many executable quantum gates as
possible in the current layer to ensure maximum parallelism. If there is a conflict
caused by topological restrictions or data dependencies, the conflicting quantum gates
will be postponed to the next layer to avoid unnecessary SWAP gate overhead.

(3) Dynamic adjustment of the number of layers: As the quantum gates are gradually
filled in, the algorithm will flexibly increase or merge the layers according to the
number of quantum gates in each layer, the execution parallelism and its conflict
with the SWAP gate, thereby optimizing the circuit structure and improving the
computing efficiency.

(4) Screening micro-conflicting SWAP gates: In the first layer, simulated SWAP gate
insertion is performed on all quantum gates that do not meet the quantum bit mapping
requirements. By analyzing the impact of different SWAP gates, SWAP gates that only
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®)

(6)

slightly conflict with the current layer are screened out to minimize the additional
SWAP gate overhead.

Quantum locking and gate movement: The quantum gates in the first layer are locked
to ensure the stability of circuit execution. In terms of execution order, CNOT gates are
unlocked and executed before SWAP gates. Subsequently, quantum gates that will not
conflict with the SWAP gates of the first layer and can be directly executed are selected
in the subsequent layers to fill in the layer to optimize the entire scheduling process.
Constructing all levels: Repeat the optimization process of (4) and (5) for the subse-
quent levels, gradually fill in all quantum gates, and resolve mapping conflicts until
the scheduling of the entire circuit is completed.

The pseudo code of the QELPS algorithm is as follows (Algorithm 1).

Algorithm 1. Quantum Exchange Lock Parallel Scheduler

Input:

Quantum Circuit(Q) : The initial set of quantum operations to be optimized.

Architecture(A) :The specific quantum computer’s layout that dictates how qubits can

interact.

Output:

Compiled Circuit(C) : The optimized version of Q, adapted for efficient execution on A.
1: Begin

2: Initialize layers L as an empty list

3: Identify quantum gates in Q that do not satisfy CNOT constraints
4: Analyze SWAP gate insertions to form the first layer L[0]

5: While there are unassigned quantum gates in Q do

6: Create new layer L][i]

7 Fill L[i] with gates executable in parallel without conflicts

8 For each gate g in L[i] do

9: If ¢ conflicts with assigned gates

10: Postpone g to L[i + 1]

11: End If

12: End For

13: If execution time of L[i] < execution time of L[0]

14: Add L[i] to L

15: Else

16: Break

17: End If

18:End While

19 : For eachlayer L[i] in L do

20: Simulate SWAP insertions for unassigned gates

21: Identify micro-conflicts

22: Lock gates in L[i], prioritizing CNOT gates

23: For each subsequent layer L[j] do

24: Search for gates in L[j] that do not conflict with SWAPs in L[]
25: Insert these gates into L[j] ensuring execution time does not exceed L[0]’s time
26: End For

27: End For

28:Return C

29:End
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4.4. Example Analysisl

As shown in the quantum circuit diagram in Figure 2, the nodes represent quantum
bits, while the edges indicate the connectivity between them. The input circuit consists
of CNOTqy, 94, CNOTqy, g2, CNOTqy, g5, CNOTqq, 4, CNOTqq, g3, and Hgq. After in-
troducing the QELPS algorithm, CNOTyy, g4, which requires a mapping adjustment for
execution, is selected as the benchmark and placed in layer Iy The algorithm identifies
both locally optimal and suboptimal solutions to resolve SWAP gate conflicts within the
quantum circuit.

SWAP 4.4,
SWAP g5. 9

=y ] IJO /A I
Tnput Cirewit | | 57—~ 71— —— =~ B
| |CNOT g,.q, } CNOT g,q, | CNOT ¢,.q, |

|
q; 9, s I P |
| CNOT -9, Tradition CNOT 4295 : H o : |
| CNOT g.q, ! 1CNOT g.q, ! ! |
I CNOT ¢.q, | Fz----=5- bt Eettvieadaly
| CNOT g9, | |CNOT g5,q, 1 CNOT ¢,.q5 1 CNOT g.4, |
| CNOT g,.q; swar' CNOT g,.q, | CNOT ¢, q, : I
| H Conflic 1 1
9 4 q, | o T A _l_ N N I
(. —
1
i ——————
i | swapg.q Y :
: | SWAP ;.4 '\/ |
! | SWAPg.q X |
i |
1

SWAPq.q; X |
-
Figure 2. The hardware architecture of a quantum circuit and the quantum circuit after the first layering.

During the layering process, a dynamic insertion and adjustment strategy for SWAP
gates is applied to incrementally fill each layer with quantum gates while prioritizing gates
in the front layers. Initially, the local optimal solution is considered, where CNOTqy, 44,
CNOTgy, g5, and CNOTYqy, g3 are placed in ly. However, after evaluating the insertion
of four possible SWAP gates required to satisfty CNOT gate constraints, conflicts with
qubits involved in the existing CNOT gates within the layer are detected. As a result, the
local optimal solution is abandoned, and the local suboptimal solution is selected instead,
consisting of CNOTgy, g4 and CNOTq;, g5.

Following the SWAP conflict resolution process, the SWAP gates that satisfy the
mapping conditions are SWAPg3, g4 and SWAPq, 3. This approach is consistently applied
to all subsequent layers. As a result, /[y contains CNOTqy, 44 and CNOTq3, g2, I1 consists of
CNOTygy, g5, CNOTq1, g3, and Hgg, while I; includes CNOTgy, g4.

In the secondary layering process, it is assumed that multiple gates cannot act on
a single qubit simultaneously. A qubit that participates in a certain gate operation is
considered to be in a locked state and remains locked for a duration of ¢ before being
unlocked. Based on this assumption, the operands of different quantum gates determine
their locking durations, where the Hadamard (H) gate locks a qubit for 7, the CNOT gate
for 27, and the SWAP gate for 67. Therefore, a reasonable assumption is made when
t = 1,27, 6T, respectively.

Following these constraints, the gate CNOTgy, g, in layer Iy does not satisfy the
mapping requirements for CNOT execution. As a result, a SWAP gate must be introduced
to modify the quantum mapping. However, using SWAPq, 4, and SWAPq, q, creates
conflicts with CNOTjgy, 4, and CNOTgy, g, since these operations would act on qubits
g0, q1 and g4 simultaneously. Therefore, these SWAP gates are not feasible and must be
discarded. The only SWAP operations that satisfy the conflict constraints are SWAPg3, q,
and SWAPqq, 5.
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The introduction of SWAP gates increases execution time. In the upper coordinate
diagram of Figure 3a, the parallel execution time for CNOTqy, g, and SWAPqy, g5 is 67.
After updating the quantum mapping, the execution time of the CNOTg, g, operation is
27. In layer /4, the parallel execution time for CNOTg», g5, CNOTqq, 4, and Hqy is also 27.
The execution of CNOTqy, q, in layer I, requires 27, leading to a total execution time of
6T + 27+ 27+ 27 = 127.

:Executlon times | | SWAP g;.q, >\§|
| 1 l : SWAP ¢,.4, |
| %l P ° | | SWAP ¢,.q, X:
|3 —s | L SWAP .0, X|
S *"——=8
6 ~e. | L -
| 7 L L L I | 1 : qo':_' : H
|___0_2 _4_¢6_28210 12TimeT) g, 4 I
IEX?C“ﬁO]] times [ Quantum lock layerin; ]I : : I . : ?
B —) 92+ ® '
S G | O Py
3 —e ! !
I 4 —o : EE i S
5 ] ]
. T | U o
| 7 1 1 1 ﬂ 1 . l | N\ |
| 0 2 4 6 8910 Time/7 s+ o .

(a) (b)

Figure 3. Quantum circuit after secondary stratification: (a) Quantum gate duration diagram;
(b) Quantum circuit after secondary stratification improvement.

With the introduction of the quantum locking mechanism, qubits g1 and g, are initially
locked and remain so for 27, as illustrated in the lower coordinate diagram of Figure 3a.
When the SWAP gate is still executing, quantum gates that do not conflict with the qubits
involved in the current SWAP operation can be identified from subsequent layers and
inserted into the current layer. The inserted quantum gates must ensure that the execution
time of this layer does not exceed its original execution time before stratification. Following
this approach, when SWAPq, g, is executed, CNOTq», g5 and CNOTgq, g, are inserted into
layer Iy, maintaining an execution time of 6. After updating the mapping, the execution
time of CNOTqy, q, is 27. Finally, CNOTyq, g, and Hgg execute in parallel for 27, resulting
in a total execution time of 6T + 27 4- 27 = 107. The circuit structure after the second
stratification is shown in Figure 3b, where one quantum circuit layer is eliminated, and the
parallel execution of quantum gates is fully utilized to improve computational efficiency.

5. Full-Level Joint Optimization Swap Algorithm
5.1. Limitations of the QELPS Algorithm

The limitation of the QELPS algorithm is that, although parallel execution of quantum
gates within each layer is ensured, dependencies and interactions across subsequent layers
are not effectively handled. To address this, SWAP gate operations must be introduced
to modify the quantum mapping. However, excessive SWAP insertions increase the gate
error rate and prolong execution time. The FJOSA algorithm builds upon QELPS by
more comprehensively considering gate dependencies and interactions, thereby improving
scheduling efficiency and reducing unnecessary SWAP operations.
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5.2. Algorithm Principle

We propose a Full-level Joint Optimization SWAP Algorithm based on a heuristic
approach. Instead of strictly following the execution order of each layer, deep optimization
is performed across multiple layers. Although breaking the layer structure may increase
the complexity of circuit dependency management and reduce parallelism, the layers
are not entirely broken. After completing the layering process using a deep optimal
greedy algorithm based on SWAP conflicts, full-level joint optimization is further applied.
However, when multiple layers are processed simultaneously, dependency complexity
increases significantly. Therefore, the cost function must be carefully designed to select
appropriate layers for joint optimization.

Cost(i,1,e) = ASnorm + (1 — A) Qnorm 3)
AS(i,l,e) =s(i,l,e) —S(i,1,e) 4)
Snorm = AS(i, I, e)/ASmax )
Quorm = Q()'/ Q1) (6)

where i represents the i*" optimization, while e denotes the number of optimized layers and
the current total number of layers. The cost function, Cost(i, 1, e), evaluates the optimization
impact from the e layer to the e + I layer during the i optimization. The variable
S(i,1,¢) represents the number of SWAP gates used by the FJOSA algorithm for the ¢! to
e + 1" layer, whereas s(i, 1, ¢) represents the number of SWAP gates used by the QELPS
algorithm for the same range during the i optimization. The difference between these
values, AS(i,1,e), quantifies the reduction in SWAP gate usage achieved by the FJOSA
algorithm compared to QELPS.

The parameters A and 1 — A serve as weights for different optimization indicators,
ensuring a balanced contribution of each factor to the overall optimization goal. These
weights are derived from experimental data. Q(i)l represents the scheduling complexity of
quantum bits, defined as the number of optimized layers raised to the power [ after the
ith optimization. The variable S0, is a normalization factor used to balance the SWAP
gate reduction effect across different layers, while Qj,or is another normalization factor
designed to assess the complexity of quantum bit scheduling.

The Full-level Joint Optimization SWAP Algorithm is executed in multiple rounds. In
each round, optimization begins at the ¢!’ layer, and the circuit up to the e + th layer is sim-
ulated to determine possible SWAP gate insertions (e =0, 1, 2,...,m;1 =0, 1, 2,...,n).
As the number of optimization rounds increases, more layers are included in the optimiza-
tion process. After each round, the corresponding cost function value is computed, and the
layer with the lowest cost function value is selected as the optimal choice. Once the current
optimization is completed, the process proceeds to the next layer.

In Formula (4), AS(i, 1, e) represents the reduction in the number of SWAP gate inser-
tions after optimizing I layers starting from the ¢! layer during the i** optimization. As the
number of optimized layers [ increases, the algorithm evaluates the potential reduction in
SWAP gate insertions with each additional layer. However, since all possible SWAP gate
insertion schemes must be explored, identifying the scheme with the fewest SWAP gate
insertions significantly increases computational complexity as the number of optimization
layers grows.

In order to control the computational cost caused by an increase in the number of
optimization layers, a limiting factor Q(i )l is introduced in the cost function (Formula (3)).
Quantum circuits are composed of multiple gates acting on quantum bits, and as the
number of quantum bits increases, the overall circuit complexity increases. Q(i)l reflects
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the exponential growth in algorithm complexity as the number of optimization levels [
increases. Because the number of quantum bits involved in each optimization may vary
with the number of levels, the insertion of SWAP gates and the scale of the search space
are also affected. By incorporating Q( i)l, the effects of both the number of quantum bits
and the number of optimization levels are dynamically combined to accurately model this
complexity growth. In addition, normalization factors Syom and Querm are introduced
into the cost function, as shown in Formulas (5) and (6), to balance complexity cost and
optimization benefits within a unified scale. This improves both the versatility and in-
terpretability of the cost function, allowing it to adapt to different circuit structures and
optimization requirements.

Specifically, as the number of optimization layers I increases, the number of SWAP
gates that can be reduced by AS(i, ], ¢) gradually decreases. However, the value of Q(i)l
increases exponentially, causing the cost function value to rise rapidly. This exponential
relationship reflects the characteristic of diminishing returns in optimization. Although
optimizing more layers simultaneously can further reduce SWAP gate insertions, it also
significantly increases computational complexity. Therefore, by employing Q(i)l, a re-
strictive effect is imposed. By reasonably selecting the number of optimized layers, a
balance can be achieved between reducing the insertion of SWAP gates and controlling
algorithm complexity. This approach ensures efficient circuit execution while minimizing
computational overhead.

One critical aspect of the FJOSA algorithm is its computational scalability under
increasing circuit depth and qubit count, which was not explicitly discussed in earlier
sections. As the number of circuit layers L increases, and more quantum bits n are involved
in optimization, the number of possible SWAP insertion combinations across multiple
layers grows rapidly. Specifically, the search space complexity increases approximately
as O(n?-L?), since each additional layer allows for more interaction permutations among
qubit pairs. This effect becomes even more pronounced when gate congestion or hardware
constraints introduce dependency chains across layers, which further increase the cost of
evaluating and selecting valid gate placements.

In FJOSA, the multi-layer scheduling process evaluates several candidate configura-
tions to balance gate satisfaction and SWAP reduction. The algorithm’s complexity scales
quadratically with both the number of active qubits and optimization layers. While this
improves global performance, it also introduces overhead as circuit depth increases. There-
fore, the number of layers per optimization round must be bounded in practice, particularly
for circuits with over 20 qubits or 50 layers. This highlights the need for scalable heuristics
when extending FJOSA to larger circuits.

The specific operations of the FJOSA algorithm are as follows:

(1) Initial Stratification: The QELPS algorithm is used to stratify quantum circuits.

(2) Screening the Optimal SWAP Combination: In the first layer, all SWAP gate com-
bination solutions that solve the CNOT gate constraint are identified and compared.
The solution with the least number of SWAP gates is selected.

(3) Adjacent Layer Optimization: In the second layer, the best SWAP gate solution from
the previous step is compared with the solutions in subsequent layers. The solution
with the fewest SWAP gates is chosen.

(4) Functional Judgment and Joint Optimization: Steps (2) and (3) are applied to the
first (e + 1) layers, where (e =0, 1, 2,...,m;1 =0, 1, 2,...,n). If the cost function
(Cost(i,1,e)) for the e + I layer is greater than zero, the firstand e 4 [ — 1 layers are
optimized. In this case, the optimization starts from the initial layer, specifically when
e=0.
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(5) Overall Layer Optimization: Once the mapping of the previous layer is satisfied, the
optimization continues for all subsequent layers until the SWAP gate optimization for
all layers is completed.

The pseudo code of the FJOSA algorithm is as follows (Algorithm 2).

Algorithm 2. Full-level Joint Optimization SWAP Algorithm

Input:

Layer_i : The i layer of quantum circuit operation data

Swap_i_j : The number of SWAP gates required for the j scheme in the ilayer.
Output:

Min_swap : The minimum total number of SWAP gates after optimization
1:Begin:

2: Min_swap < o

3 : Initialize layers list L < |]

4: Fori = 0 to number of layers — 1do

5: Lli] + Analyze SWAP gate insertions to form layer i
6: End for

7 Min_swap = Find Optimal SWAP Combination(L[0])
8: Fori =1 to number of layers — 2 do

9

: For each candidate scheme ! € L[i] do
10: Compute : AS(i,l,e) =s(i,l,e) — S(i,1,e)
11: Compute : Cost(i,1,e) = AAS(i,1,€)/ ASpax + (1 — A)Q(i)' / Q(i) 101
12: If Cost(i,1,e) < Min_swap
13: Then Min_swap < Cost(i,1,e)
14: End if
15: | End for
16: End for

17: For j = 1 to number of layers — 2 do

18: | If Cost(i,j+1,e) > 0 then

19: | Perform Joint Optimization(L[0], L[j])

20: | Min_swap < Find Optimal SWAP Combination(L[0])

21: | Endif

22:  End For

23 : Return min_swap
24:End

5.3. Example Analysis

As shown in Figure 4a, the original hardware architecture diagram illustrates the
correlation between each quantum bit. Figure 4b presents the original logic circuit diagram,
which must satisfy the quantum bit correlation shown in Figure 4a. The quantum gates
enclosed by red dotted lines do not meet the physical constraints. The input circuits of the
quantum circuit include CNOTgy, g5, CNOTgqo, q;, CNOTgy, q,, CNOTq», g5, CNOTgg, q,,
CNOTyqy, g4, and Hgy, which are divided into four layers.

In the FJOSA algorithm, the value of Cost(i,1, e) is calculated during the ith optimiza-
tion, and its positive or negative value determines whether to continue the optimization
until the final layer is processed. The goal is to obtain the solution with the least number of
inserted SWAP gates. When the number of optimizations is i = 1, the algorithm begins
optimization from the initial layer (¢ = 0), with the minimum number of optimized layers
set to L = 2. For each layer [, in the quantum circuit, n, represents the number of SWAP
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gates required. All possible SWAP insertion solutions are evaluated, revealing two feasible
solutions that satisfy the constraints of the [y layer with a minimum of nyp = 2 SWAP gates.
The first solution consists of SWAP g, g, and SWAP g3, g5, while the second includes SWAP
92,9, and SWAP g3, q,,.

Input circuit

1 oNOT g,.4,

|
l CNOT gq.q; I
2 CNOT g;.4 l

;
|
|
|
|

] CNOT g,.q, :

0 |
.l
|
|
|

(a) (b)

Figure 4. Initial mapping quantum circuit diagram: (a) Original hardware architecture; (b) Original
logic circuit diagram.

For each quantum mapping, the solution with the least number of SWAP gates in
the [; layer is determined. In the first solution, as shown in Figure 5, n; = 2, meaning
two additional SWAP gates must be inserted. In contrast, in the second solution, as
illustrated in Figure 6, 77 = 0 means no SWAP gates are needed. This finding highlights that
carefully selecting the SWAP insertion scheme can significantly reduce the total number of
SWAP gates. Consequently, the FJOSA algorithm selects the second solution (5(i,/,e) = 2),
whereas the QELPS algorithm, which does not account for the impact of each solution on
subsequent layer mappings, chooses the first solution (5(1,2,0) = 4).

|
Circuit when n, =2 :
|
|

] CNOT gq,.95 SWAP ¢,.q,I
s oo e BN

| Zl CNOT ¢,.q, swaP (13-(15:
l CNOT ¢,.4; SWAP 3.9

[, CNOT g5.q, |
< CNOT g,,q, l

Figure 5. Quantum circuit after optimization with n; = 2: (a) Original hardware architecture with
ny = 2; (b) Original logic circuit diagram with n; = 2.
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| [, CNOT ¢,.q, '
I = CNOT ¢,.4, |

Figure 6. Quantum circuit after optimization with n; = 0: (a) Original hardware architecture with
n1 = 0; (b) Original logic circuit diagram with n; = 0.

Formula (4) shows that AS(1,2,0) = —2, where Smax represents the number of
SWAP gates along the longest path. The CNOT operations CNOT g4, 95, CNOT g1, q,,
and CNOT g5, g5 correspond to paths g4 — g, — q0 — q1 — 93 — 45, 91 — q3 — g4, and
g2 — qo — q3, respectively. After computing AS;,,x = 6, Formula (5) yields S;orn = —0.33.
The first two layers involve six quantum bits and four CNOT gates, with Q(l)2 = 36

and Q(1),,,,
experiments, A = 0.63 is obtained, and Formula (4) results in Cost(1,2,0) = —0.0007. Since

= 64, leading to Qyorm = 0.58 according to Formula (6). Through extensive

the cost function is less than zero, optimization continues.

When the number of optimizations is i = 2, the number of optimized layers increases
to I = 3, while the current optimization starts from e = 0. In this case, all CNOT gates
in the I; layer satisfy the mapping constraints. As a result, AS(2,3,0) = AS(1,2,0). The
first three layers collectively utilize 10 quantum bits and 6 CNOT gates, with Q(Z)3 = 1000

and Q(2) ;4
Formula (4) results in Cost(2,3,0) = 0.0067. Since the cost function value is greater than

= 1728. Using Formula (6), we obtain Qum = 0.56, and applying

zero, the optimization process terminates.

For i = 3, the number of optimized layers is [ = 2, and the current optimization begins
from e = 2. In this case, all quantum gates in both the I; and /3 layers satisfy the mapping
constraints, leading to AS(3,2,3) = 0. These two layers involve a total of 4 quantum bits, 2
CNOT gates, and 1 Hadamard (H) gate. With Q(3)*> = 16 and Q(3),,,, = 25, Formula (6)
yields Quorm = 0.64, while Formula (4) computes Cost(3,2,2) = 0.2368. Since the cost
function remains positive, the optimization process is again halted.

The FJOSA algorithm effectively minimizes the number of inserted SWAP gates while
significantly reducing the overall circuit depth. Additionally, it enhances the mapping
layout of quantum bits to a certain extent. When combined with a quantum gate parallel
execution strategy, FJOSA can further decrease SWAP gate insertions while ensuring CNOT
constraints are met. This ultimately leads to a more efficient and stable execution of quan-
tum circuits, improving both computational accuracy and hardware resource utilization.

6. Experimental Evaluation
6.1. Evaluation Metrics

The experiments in this paper utilize the benchmark circuit library [66-72], which is
widely adopted for evaluating quantum circuit scheduling. All circuits consist of Clifford+T
gates, with CNOT gates as the only two-qubit operations. The number of quantum bits in
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the circuits ranges from 4 to 16. To comprehensively analyze the execution performance and
optimization effectiveness, IBM’s Qiskit compiler [73] is integrated with superconducting
quantum hardware [74].

All algorithms presented in this paper are implemented using Python 3.9, and all
compilation tasks are performed on a laptop equipped with an AMD Ryzen 7 processor
(3.20 GHz, 16 GB RAM).

To further validate the effectiveness of the proposed method, the 2QAN (Quantum
Annealing Network) algorithm [75] is used as a comparative benchmark. The 2QAN
algorithm optimizes quantum bit connectivity through quantum annealing techniques to
minimize the number of SWAP gate insertions. By comparing our method with 2QAN,
we provide a comprehensive evaluation of different optimization approaches in quantum
circuits, particularly regarding their adaptability and optimization performance under
complex hardware topologies. This analysis offers valuable insights for future quantum
circuit optimization strategies.

6.2. Model Evaluation

We evaluate the performance of three quantum circuit scheduling and optimization
algorithms—2QAN, QELPS, and FJOSA—in terms of compilation overhead through exper-
iments on 30 benchmark circuits.

As shown in Table 1, all three algorithms effectively optimize the number of extra
gates in quantum circuits, significantly reducing their count. However, their optimization
effects vary. Compared with the benchmark circuit, the 2QAN algorithm achieves an
optimization rate of 57.10%. Although it reduces a certain number of extra gates, its local
optimization strategy does not fully consider the complexity of global optimization and
inter-layer interactions. This limitation is particularly evident when dealing with complex
circuits, where its performance is relatively inferior to the other two algorithms.

The optimization effect of the QELPS algorithm reaches 85.59%. Its deep optimal
greedy strategy, based on SWAP conflict resolution, effectively handles CNOT gate con-
straint conflicts. By postponing the execution of certain quantum gates, it minimizes SWAP
gate insertions, reducing circuit depth and overall complexity. Moreover, QELPS balances
local suboptimal and optimal solutions, demonstrating strong optimization capabilities,
particularly in large-scale circuits.

The FJOSA algorithm achieves the most significant optimization effect, reaching
89.38%, and demonstrates strong global optimization capabilities. By employing cross
level deep optimization and a global perspective, it effectively reduces the insertion of
SWAP gates. This algorithm excels in optimizing multi-layer circuits, minimizing redun-
dant operations. Compared with the QELPS algorithm, the optimization effect of FJOSA
improves by 26.29%. Although FJOSA incurs a higher computational cost, its enhanced
optimization performance still makes it superior to the other two algorithms in terms of
compilation overhead.

From the perspective of quantum bit count, the FJOSA algorithm achieves an opti-
mization rate exceeding 80% for benchmark circuits with 4, 5, 12, 13, 14, and 15 qubits.
In contrast, the QELPS algorithm exceeds 80% only in circuits with 4 and 14 qubits. This
indicates that FJOSA demonstrates greater adaptability in large-scale circuits, particularly
when handling complex structures. It effectively man-ages multi-level dependencies, en-
hances parallel execution, and improves overall circuit performance. In comparison, the
QELPS algorithm shows limitations in optimizing larger-scale circuits.
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Table 1. Comparison of the additional gate counts of 2QAN, QELPS, and FJOSA.

Names Qubits Initial Circuit 2QAN QELPS FJOSA
decod24-v2_43 4 52 0 0 0
4mod5-v1_22 5 25 1 0 0
modbmils_65 5 37 4 8 4

alu-v0_27 5 38 0 4 0

4gt13_92 5 68 9 8 7
ising_model_10 10 478 13 0 0

qft_10 10 198 26 16 20

sqn_258 10 10,225 4949 3374 3054

sym9_148 10 9410 4064 851 673
9symml_195 11 34,883 13,953 9859 8373
74 268 11 3075 1770 766 547
wim_266 11 425 232 125 91
sym9_193 11 34,879 13,948 9751 8416
rd84_253 12 13,660 5680 4673 3762
cycle10_2_110 12 6048 2675 674 477
sqrt8_260 12 1312 848 756 500
ising_model_13 13 635 85 47 19
radd_250 13 3215 1470 879 620

qft_13 13 401 206 95 75

adr4_197 13 3437 1689 752 625

clip_206 14 14,774 6013 3230 2764

pm1_249 14 1774 1242 429 399

sym6_316 14 268 99 69 30

rd84_142 15 341 226 82 59

misex1_241 15 4815 2814 1206 1043
square_root_7 15 7628 3645 1001 852
urf6é 15 171,842 74,317 4453 4109

col4_215 15 17,934 8381 580 418
ising_model_16 16 784 314 160 125

qft_16 16 510 332 135 92

As shown in Table 2, the execution time of the 2QAN, QELPS, and FJOSA algorithms
on the benchmark circuits varies significantly. The 2QAN algorithm has the longest average
runtime, while the QELPS and FJOSA algorithms reduce execution time by 56.32% and
66.47%, respectively, compared to 2QAN. The superior optimization of the FJOSA algorithm
over QELPS is attributed to its use of a heuristic approach and a cost function to globally
optimize SWAP gate insertion. Particularly in large-scale circuits, the FJOSA algorithm
effectively balances local and global optimization through its cost function (A = 0.63).

In small-scale circuits (four and five qubits), the QELPS algorithm reduces runtime by
60.53% compared to 2QAN, whereas the FJOSA algorithm achieves only a 6.05% reduction.
This is because the global optimization strategy of FJOSA does not fully demonstrate its
advantages in simpler circuits. In contrast, for circuits with more than 10 qubits, the FJOSA
algorithm achieves a 66.49% runtime reduction, significantly outperforming the QELPS
algorithm. This highlights its strong optimization capability in handling complex circuits.

6.3. Expanding the Number of Qubits

Since previous experiments primarily focused on datasets ranging from four to
16 qubits, we enhance the comprehensiveness of this study by expanding the range of
quantum bits. As shown in Figure 7, the FJOSA algorithm builds upon the QELPS algo-
rithm by incorporating a joint global hierarchical strategy. Experimental results indicate
that when the parameter A = 0.63, the optimization of circuit overhead is particularly
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significant. This suggests that the weight assigned to SWAP gate overhead should be larger,

while the weight of algorithm complexity should be relatively smaller due to its exponential

relationship. By appropriately increasing algorithm complexity, the number of SWAP gate

insertions can be effectively reduced.

Table 2. Comparison of execution time of 2QAN, QELPS and FJOSA.

Names Qubits 2QAN QELPS FJOSA
decod24-v2_43 4 0.12 0.06 0.12
4mod5-v1_22 5 0.15 0.1 0.14
mod5mils_65 5 0.17 0.05 0.13
alu-v0_27 5 0.14 0.05 0.17
4¢t13_92 5 0.17 0.04 0.2
ising_model_10 10 1.24 0.05 0.1
qft_10 10 1.23 0.05 0.06
sqn_258 10 94.59 25.81 18.23
sym9_148 10 65.09 32.11 17.32
9symml_195 11 305.49 232.72 210.15
z4_268 11 40.24 7.9 5.54
wim_266 11 74.51 33.93 20.22
sym9_193 11 314.21 213.42 184.61
rd84_253 12 140.57 63.91 45.96
cyclel0_2_110 12 59.09 15.35 13.48
sqrt8_260 12 96.68 26.82 12.67
ising_model_13 13 7.31 0.2 0.12
radd_250 13 15.79 0.24 0.2
qft_13 13 14.24 0.54 0.16
adr4_197 13 45.72 11.77 9.98
clip_206 14 80.06 19.66 15.52
pml_249 14 105.4 30.26 15.24
symé6_316 14 118.15 31.21 18.88
rd84_142 15 2.84 0.07 0.16
misex1_241 15 50.6 14.52 10.45
square_root_7 15 84.13 20.37 10.32
urf6 15 95.74 21.17 9.7
col4_215 15 186.2 94.35 53.19
ising_model_16 16 3.7 0.12 0.2
qft_16 16 9.28 0.15 0.21
Cates SWAPs Gates CNOTs
45
40
50
15
10 10
T 2 18 16 4 10 8 6 4 2 18 16 14 12 10 8 6 4
QELPS ~FIOSA Qubits QELPS ~FIOSA Qubits

(a)

(b)

Figure 7. Comparison of optimization results between QELPS and FJOSA: (a) Comparison of SWAP

gate counts; (b) Comparison of CNOT gate counts.

Compared to the QELPS algorithm, the FJOSA algorithm reduces SWAP gate insertions
by an average of 16.15% and CNOT gate insertions by an average of 16.2% in quantum
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circuits ranging from 22 to 12 qubits. In circuits with 10 to four qubits, SWAP gate insertions
decrease by an average of 10.4%, while CNOT gate insertions are reduced by an average of
7.7%. These results demonstrate that the FJOSA algorithm is particularly well-suited for
large-scale quantum circuits.

Experimental results indicate that the conflict problem of SWAP gates is effectively
resolved by the QELPS algorithm through preliminary stratification. This approach results
in a significant reduction in the number of inserted SWAP and CNOT gates, thereby
improving the efficiency of quantum gate usage. Based on this, a secondary stratification
strategy combined with quantum locks is employed, further reducing runtime overhead
and enhancing scheduling efficiency. Finally, the FJOSA algorithm is applied within this
stratified framework to further decrease the overhead of SWAP and CNOT gates, ultimately
achieving a comprehensive optimization of quantum circuit depth and execution efficiency.

7. Conclusions

In response to the core challenges of quantum circuit scheduling in the NISQ era, we
propose the QELPS-FJOSA framework. This framework integrates dynamic hierarchical
optimization with global coordination strategies. In the QELPS component, SWAP conflict
characteristics are employed to control the quantum gate layout in real time. The inter-
layer coupling effect is decoupled via a quantum locking mechanism, thereby significantly
optimizing circuit depth and reducing SWAP operation redundancy. The FJOSA component
is based on cross-layer heuristic search driven by a cost function, which overcomes the
limitations of traditional local optimization and achieves a globally optimal approximation
of multi-level resource allocation.

The framework demonstrates strong generalization capabilities in heterogeneous
architectures such as superconducting, photonic, and ion trap systems. Challenges related
to the collaborative optimization of topological constraints, noise accumulation, and timing
competition are effectively alleviated, while theoretical and methodological support is
provided to improve the practical performance of quantum hardware. Future research
will explore the integration of fault-tolerant mechanisms and verify the scalability of the
framework in distributed quantum systems, thereby promoting the practical application of
quantum computing in the NISQ era.
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