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Abstract

The efficient implementation of quantum computing is contingent upon high-fidelity
quantum operations. Nevertheless, the fidelity of these operations is constrained by
the precision of quantum system evolution control. The optimization of quantum con-
trol pulses is essential for improving the manipulation accuracy of superconducting
qubits. Traditional optimization methods, including gradient descent and the gradi-
ent ascent pulse engineering algorithm, frequently encounter challenges such as slow
convergence and susceptibility to local optima in pulse optimization problems. This
study introduces an adaptive open-loop optimization algorithm based on the adaptive
moment estimation (Adam) optimizer, capitalizing on the benefits of momentum and
adaptive learning rate adjustments inherent in Adam. We conduct experimental anal-
ysis on the algorithm’s hyperparameters to achieve optimal solutions with a higher
fidelity range at a faster convergence speed, effectively improving the fidelity and
optimization efficiency of quantum gate operations. Through numerical simulations
on the QuTiP platform, we validate the excellent performance of the Adam algorithm in
quantum gate optimization. In optimizing the X and SWAP gates, its fidelity improved
by 0.03% and 0.0016%, respectively, compared to the GRAPE algorithm. Compared
to the CRAB method, the initial convergence speed of the Adam method increased
fivefold, enabling it to achieve the target fidelity more rapidly. Future research will
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investigate closed-loop optimization strategies, utilizing feedback derived from the
fidelity results of actual quantum computers to further augment quantum control per-
formance

Keywords GRAPE - Quantum gate - Adam algorithm - Pulse optimization

1 Introduction

In the context of rapid technological advancements today, the importance of quantum
computing is increasingly prominent, with its influence extending far beyond the field
of computation itself, reaching into disciplines such as materials science [1], drug
design [2], and cryptography [3]. The core advantage of quantum computing lies in its
tremendous potential to tackle complex problems, primarily due to the superposition
and entanglement properties of qubits. However, quantum systems are susceptible
to environmental noise and interactions with the environment during their evolution,
leading to decoherence of quantum states and deviations in the evolution path, thereby
affecting the precision of quantum computations. This has become a critical bottleneck
in achieving efficient quantum computing. Consequently, quantum optimal control
theory has emerged, aiming to precisely design and manipulate the evolution paths of
quantum systems to achieve specific quantum state transformations or quantum gate
operations, thereby enhancing the fidelity of quantum operations [4—6].

In superconducting quantum systems, the optimization of quantum control pulses
is key to improving the precision of qubit manipulation. In superconducting quantum
systems, the optimization of quantum control pulses is key to improving the preci-
sion of qubit manipulation. Traditional optimization methods, such as the gradient
descent algorithm, iteratively adjust control parameters by moving in the opposite
direction of the gradient of the objective function to minimize it, thereby reducing the
distance between the quantum state and the target state [7]. This algorithm has better
convergence, and thus, most quantum optimal control algorithms are optimized based
on gradient descent. Khaneja et al. proposed the Gradient Ascent Pulse Engineer-
ing (GRAPE) algorithm for designing nuclear magnetic resonance pulse sequences.
This algorithm approximates control functions with piecewise constant functions and
derives explicit derivatives, effectively balancing the speed and memory usage in
computing fidelity, making it suitable for designing idealized pulse sequences. In the
TorchQC framework proposed by Dimitris Koutromanos in 2025, researchers fur-
ther integrated the GRAPE algorithm with PyTorch’s automatic differentiation (AD)
capability, achieving enhanced quantum gate fidelity through GPU acceleration [8].
Building on the work in reference [9], Larocca and Wisniacki proposed the K-GRAPE
algorithm, which uses the Krylov subspace to estimate quantum states during time
evolution [10]. Another class of quantum optimal control algorithms is based on the
chopped random basis (CRAB) optimal control technique, which describes the con-
trol space through a series of basis functions, parameterizes control waveforms, and
optimizes over randomly chosen basis functions, effectively avoiding local minima in
high-dimensional parameter spaces, suitable for quantum systems with complex con-
trol requirements [11, 12]. The Krotov algorithm is a gradient descent method suitable
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for time-continuous control fields, ensuring monotonic fidelity increase by gradually
adjusting control parameters at each time step [13]. The Gradient Optimization for
Analytic Controls (GOAT) is a gradient optimization method based on analytic con-
trols, particularly suitable for complex quantum systems [14]. It is noteworthy that
existing studies exhibit significant methodological divergence in gradient-based opti-
mization approaches: In 2019, Mohamed et al. addressed the high computational
complexity of open quantum systems by developing a gradient optimization method
combining quantum trajectories with automatic differentiation [15]. In 2022, Michael’s
team tackled the challenge of non-analytic objective functions by creating a semi-
automatic differentiation (Semi-AD) technique that hybridizes analytical gradients
with automatic differentiation [16]. These seminal works have established important
references for control optimization in closed quantum systems. However, the evolu-
tion of quantum systems is often described by nonlinear equations, and the nonlinear
nature of these equations makes the relationship between quantum state evolution and
quantum gate fidelity control parameters complex, leading to non-convexity in the
objective function for optimization. Non-convex optimization can have multiple local
minima, and its solution space is complex, resulting in a slow optimization process.
Therefore, the aforementioned methods often face challenges such as slow conver-
gence and susceptibility to local optima when dealing with non-convex optimization
problems. The complexity and noise of quantum systems also increase the difficulty of
optimization, making traditional methods seem inadequate in addressing these chal-
lenges, thus necessitating the integration of optimization algorithms to improve the
efficiency of pulse optimization. In recent years, the Adaptive Moment Estimation
(Adam) optimization algorithm has gained widespread attention for its efficiency and
stability in handling large-scale and complex optimization problems [17]. Although
initially designed for optimizing deep neural networks, the Adam algorithm is also
applicable to quantum pulse control. The evolution of quantum systems is typically
described by nonlinear Schrédinger equations, making the relationship between quan-
tum state evolution and quantum gate fidelity control parameters extremely complex.
In this context, the Adam algorithm, by combining momentum and adaptive learning
rate adjustments, can accelerate convergence without significantly increasing com-
putational costs. This paper proposes an adaptive open-loop optimization algorithm
for quantum control, leveraging the advantages of Adam to enhance the efficiency
and accuracy of waveform optimization. Unlike traditional optimization algorithms,
the Adam algorithm utilizes reverse evolution from the target state to the initial state
and decomposes the optimization problem into low-dimensional subsystems, quickly
achieving the target fidelity of quantum gates. Our numerical simulations demonstrate
that the application of the Adam algorithm in quantum systems significantly improves
optimization speed and quantum gate fidelity.

The structure of this paper is as follows: Chapter 2 introduces the theoretical foun-
dation of quantum systems, including Hamiltonian descriptions and quantum control
objectives. Chapter 3 provides a detailed description of the Adam algorithm and its
implementation. Chapter 4 presents numerical simulations and experimental valida-
tions on quantum systems. Finally, Chapter 5 discusses potential improvements and
future applications of the Adam algorithm.
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2 Background
2.1 Mathematical model of quantum control

In quantum computing, the dynamics of a quantum system’s evolution are determined
by its Hamiltonian and initial state. The Hamiltonian is a self-adjoint operator that
describes the system’s energy. According to the Schrodinger equation ih% [V (1)) =
H|y(¢)) [18], the time evolution of a quantum state can be expressed as follows.
For the density matrix, the system’s evolution follows the Liouville-von Neumann
equation ih%p(z) =[H, p(t)] [19], where [H, p(t)] denotes the commutator of the
Hamiltonian and the density matrix. The state of a quantum system can be described
by a state vector or a density matrix. The state vector is typically used to describe
pure states and is a unit vector in Hilbert space, usually denoted as |i). For an n-qubit
system, the state vector can be represented as a complex vector of dimension. However,
in practical quantum computing, due to environmental noise and interactions between
the system and the environment, quantum systems often exist in mixed states, in which
case the density matrix is used p to describe the system state. The density matrix is
a positive-definite, self-adjoint matrix that satisfies Tr(p) = 1. For pure states, the
density matrix can be expressed as p = [1) (¥ |. Noise can be represented using non-
unitary Kraus operators [20]. For example, in a transmon qubit, we can divide the
Hamiltonian into a time-dependent drift Hamiltonian and a controllable Hamiltonian,
setting the single-qubit Hamiltonian as H = %az + Q(t)oy + A(t)oy , where w is
the intrinsic frequency of the qubit, usually related to the energy level difference of
the qubit; o, oy, oy is the Pauli matrix; €2(¢) is the amplitude of the driving field,
typically a time-dependent function used to control the state of the qubit; and A(?) is
the phase of the driving field, also usually a time-dependent function. For multi-qubit
systems, the Hamiltonian becomes more complex as it includes not only single-qubit
terms but also terms describing interactions between qubits. In a two-qubit system,
the Hamiltonian can be expressed as H = Hy ® I + [ ® H> + Hin, where H| and
H; describe the single-qubit Hamiltonians of the two qubits, and Hjy; describes the
interaction between the two qubits [21]. Precise control of the Hamiltonian allows for
accurate manipulation of quantum states, which is the core task of pulse optimization
in quantum computing.

The specific optimization steps are as follows. First, we need to define a phys-
ical model of system dynamics H (1) = Hy + > (u1(t)He, + u2(t)Hey + .. ),
which can be described by a composite Hamiltonian . H(¢) is the time-dependent
Hamiltonian, H,, is the constant part known as the drift Hamiltonian, and Hy is the
time-varying part known as the control Hamiltonian, scaled by control amplitude
functions u (). Next, by adjusting control parameters such as the amplitude €2 (¢)
and phase A(t) of the driving field, the target transformation of the quantum state is
achieved. Optimization of control parameters typically involves defining an objective
function that quantifies the difference between the current state of the system and
the target state. Common objective functions include state fidelity F (o, prarget) =

Tr ( NP Prarget/P ) , energy minimization F(p, prarget) = Tr ( A/ P Prarget/ P ), etc.
The waveform optimization problem can be defined as minimizing the objective func-
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tion while satisfying the system’s dynamic constraints. Mathematically, this can be
expressed as miny ) |||y ) — U(T, 0, u(0))|¥o) %, where [ r) is the target state,
|¥o)is the initial state, and U (T, 0, u(¢)) is the evolution operator determined by the
control parameters u(¢). Constraints usually include physical limits on control param-
eters, such as bounds on amplitude and phase [22, 23]. The numerical simulations
in this work are based on a closed quantum system framework, neglecting environ-
mental noise and non-unitary evolution effects (e.g., decoherence or relaxation). This
idealized assumption enables us to focus on comparative performance evaluation of
optimization algorithms under controlled conditions, while future studies will extend
this framework to open quantum systems.

2.2 GRAPE pulse optimization method

In quantum control waveform optimization, gradient-based optimization methods are
key technologies for achieving high-fidelity quantum operations. The GRAPE algo-
rithm is one of the most representative methods. This algorithm discretizes the pulse
sequence and optimizes the control parameters at each discrete time point to maximize
the fidelity function. The core idea of the GRAPE algorithm is to compute the gradient
of the objective metric with respect to the control parameters to determine the direc-
tion of adjustment for each parameter. In each iteration, parameter values are updated
based on gradient information, gradually improving the target fidelity. This process is
repeated until the desired convergence condition is met. Figure 1 illustrates the opti-
mization process of the GRAPE algorithm. For a single-qubit system, its Hamiltonian
can be expressed as H = Hy + > Hy, where Hy is the internal coupling Hamilto-

k

nian of the system, and Hj is the external control Hamiltonian. By discretizing the
time function of the control Hamiltonian into multiple control vectors and updating
the parameter values in these vectors, optimization of the target fidelity function can
be achieved. On the basis of the GRAPE algorithm, second-order optimization meth-
ods such as the BFGS (Broyden—Fletcher—Goldfarb—Shanno) algorithm have been
introduced to accelerate convergence and improve optimization stability [23, 24]. The
BFGS algorithm uses second-order derivative information (Hessian matrix) of the
objective function to update control parameters. Specific steps include: initializing
control parameters and control waveforms, calculating the objective function under
the current waveform, using the GRAPE method to compute the gradient, estimating
or calculating the Hessian matrix, and finally updating parameters using the BFGS
algorithm. These steps are repeated until convergence conditions or a predetermined
number of optimizations are reached.

2.3 Adam optimizer

Adam is an adaptive learning rate optimization algorithm initially proposed by
Diederik P. Kingma and Jimmy Ba in 2014. It was designed to achieve fast and stable
convergence in complex optimization problems, making it particularly suitable for
scenarios requiring efficient optimization [17]. Adam combines the advantages of the
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Fig. 1 Optimization process of the GRAPE

momentum method and the RMSProp algorithm, effectively accelerating the conver-
gence process through adaptive learning rate adjustments for each parameter. Its core
mechanism involves using estimates of the first and second moments to dynamically
adjust the learning rate. The first moment (i.e., the exponentially weighted average
of the gradient) accumulates historical information about the gradient, similar to the
concept of momentum in physics, allowing the optimization process to consider the
direction and magnitude of previous gradients when updating parameters, thereby
accelerating convergence and reducing oscillations. The second moment (i.e., the
exponentially weighted average of the squared gradient) accumulates historical infor-
mation about the squared gradient, measuring the degree of change in the gradient. By
adaptively adjusting the learning rate, it helps the optimizer better adapt to the gradi-
ent changes of different parameters, thereby improving the stability and efficiency of
optimization. In deep learning, the Adam algorithm is widely used to train various neu-
ral network models, such as convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and variational autoencoders (VAEs) [25-27]. It performs excel-
lently when handling large-scale datasets and complex models. For example, in image
classification tasks, Adam can quickly adjust network weights, enabling the model
to achieve high accuracy in fewer iterations [28, 29]. In natural language processing
tasks, Adam can efficiently optimize the parameters of language models, enhancing
the performance of text generation and understanding [30, 31].

3 Pulse optimization algorithm based on Adam

In quantum control pulse optimization, the Adam algorithm iteratively optimizes con-
trol parameters, gradually reducing the gap between the quantum system’s evolution
and the target state, thereby finding better control strategies in complex quantum sys-
tems. This process first involves selecting the time evolution, determining the total
evolution time, and dividing the time axis of the control amplitude into multiple
time slices. Next, it requires initializing the waveform sequence, including setting
initial waveform parameters, configuring algorithm hyperparameters, and generating
the initial waveform sequence. The hyperparameters that affect algorithm performance
mainly include step size, momentum factors, and the number of iterations. Since these
hyperparameters fall under the category of experimental design rather than the core
part of the algorithm logic, they will be discussed in detail in Chapter 4 and not in
Algorithm 1. Then, starting from an initial value « of a waveform, a gradient-driven
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search is initiated. In each iteration, the Adam algorithm updates the first and second
moments and calculates the infidelity error between the target gate and the actual gate.
Infidelity is a metric that measures the difference between the target unitary trans-
formation and the actual evolution, usually defined as Infidelity = 1 - f. Finally, the
optimization process is terminated by setting stopping conditions, such as reaching a
specified number of iterations or meeting convergence conditions. For different quan-
tum gates, we set different control Hamiltonians and drift Hamiltonians according
to the specific needs of the system to achieve optimal control effects. The overall
algorithm flow is shown in Algorithm 1.

Algorithm 1 Pulse Optimization Algorithm Based on Adam

Require: Initial pulse sequence parameters u; time slices f,; number of iterations R; evolution operator
U (t) of the quantum system

Ensure: Optimized control parameters u; final fidelity F'

1: Evolution:

2: Initialize control parameters u

3: Initialize first moments m and second moments v to 0

4: Pulse amplitude constraints: umin < u < Umax

5: Set iteration counter r = 0

6: while r < R and stopping condition not met do

7. Initialize the list of backward propagation operators Uy, and forward propagation operators U ¢
8:  for each time slice do

9: Compute backward propagation operator: Up, jis;[m] — Up i [0]

10: Compute the backward state of time: P = Uy, jjg/[m]- U

11: Compute the current Hamiltonian: Hops[n]

12: Compute the forward state of time: Q = 1 - dt - Hops[j1- Uy _jis¢[m]
13: Compute gradient: du = —2 - overlap(P, Q) - overlap(U_ji5¢[m], P)
14: Update m and v

15:  end for

16:  Update control parameters u using bias-corrected momentum and variance
17:  Compute the fidelity of the current iteration: Fj

18:  Check if stopping conditions are met

190 r=r+1

20: end while

21: return Optimized control parameters « and final fidelity F

When performing pulse gradient evolution, it is first necessary to determine the total
evolution time and divide the time axis of the control amplitude into N slices. Choosing
an appropriate number of time slots and total evolution time is crucial because it is
necessary to ensure that the duration of each time slot is sufficiently small relative to the
system’s dynamics to guarantee the accuracy of the evolution approximation. Under
this division, the control amplitude is considered constant within each time slot, so
the evolution within each time slot can be calculated using U (tx) = exp (—i H (t;)dt),
where dt is the duration of the time slot. By combining the evolutions of all time
slots, the evolution at the final time U (7T') can be approximately obtained from the
identity transformation U (0) at the initial moment ¢ = 0. This method ensures that the
evolution approximation within segmented time slots is accurate, thereby effectively
describing the overall evolution process of the system.
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3.1 Initialization of waveform sequence

In the Adam algorithm, we need to prepare two related parameters for the waveform:
one is the iterative parameter of the waveform, and the other is the initial waveform
sequence. The iteration of the waveform is controlled by three parameters: R, J, and
M, where R is the number of iterations, J is the number of pulse divisions, and M is the
number of controllable Hamiltonians. For the waveform sequence, we can set different
initial waveforms uq on the control Hamiltonians according to the actual situation of
the quantum system and impose constraints on the waveform amplitude. The amplitude
constraints of the waveform are mainly related to the physical system and need to be
referenced to the actual situation. Random waveforms or periodic waveforms, such
as periodic sine waves, periodic cosine waves, and frequency-doubled sine waves,
can also be generated. We first initialize the iterative parameters of the waveform and
perform calculations with the generated waveform sequence to produce the waveform
form that needs algorithm optimization.

3.2 Iteration and update

In each iteration, the Adam optimizer uses momentum and variance matrices to update
the control pulses. The momentum matrix m; is used to accumulate historical infor-
mation about the gradient, similar to the concept of momentum in physics. It allows
the optimization process to consider the direction and magnitude of previous gra-
dients when updating parameters, thereby accelerating convergence and reducing
oscillations. In each iteration, the momentum matrix is updated using the formula
m; = Bimy—1 + (1 — B1)g:, where B is the decay rate of the first moment, and g; is
the current gradient. The update of m; is an exponentially weighted average process,
allowing earlier gradient information to gradually decay over time. The variance matrix
vy is used to accumulate historical information about the squared gradient, measuring
the degree of change in the gradient. In contrast, the GRAPE method typically uses
a fixed learning rate that needs to be manually adjusted to suit different optimization
problems. The Adam optimizer can adaptively adjust the learning rate, and the variance
matrix v; helps the optimizer better adapt to the gradient changes of different parame-
ters, thereby improving the stability and efficiency of optimization. In each iteration,
the variance matrix v; is updated using the formula v, = Bov;—1 + (1 — ,BZ)gtz, where
B2 is the decay rate of the second moment, and gt2 is the square of the real part of the
current gradient. The update of v; is also an exponentially weighted average process.
Specifically, the update process is as follows:

First, compute the bias-corrected momentum and variance. To make the updates of
the momentum and variance matrices more stable in the initial stage, they need to be
bias-corrected. The bias-corrected momentum and variance are calculated as follows:
m; = % and v, = 1_”—’/‘& Next, update the control pulses. Using the bias-corrected
momentum 71, and variance ¥, along with the learning rate « and a small constant €

to prevent division by zero, update the control pulses: u; = u;_| — \/O‘Af‘ .
Vs +€
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3.3 Setting termination conditions

We calculate the fidelity of quantum gate operations through quantum process tomog-
raphy, where fidelity can be viewed as the similarity between the ideal quantum process
and the actual quantum process [32, 33]. Calculating fidelity involves computing the
ideal Choi matrix and the actual Choi matrix. In a unitary system, the value of fidelity
ranges between 0 and 1, with fidelity closer to 1 indicating greater similarity between
the two operations. In experiments, we first construct the Choi matrix of the ideal
quantum gate and then compute it with the Choi matrix of the actual quantum process
to obtain the Frobenius distance between the two matrices, thereby calculating the
infidelity. The goal of the optimization process is to minimize infidelity. When the
fidelity results after iterations tend to stabilize, the optimization can be considered
complete.

3.4 Factors affecting performance

In the Adam algorithm, there are three important factors: the step size (learning rate),
momentum factors 81 and $,, and the number of iterations. During the optimization
process, the step size functions similarly to the learning rate «, determining the mag-
nitude of parameter updates in each iteration. A larger step size may lead to faster
convergence but also increases the risk of oscillations near local minima. Conversely,
a smaller step size may result in slower convergence but allows for a more precise
approach to the optimal solution. By adjusting the step size, a balance can be achieved
between the convergence speed and stability of the algorithm. An appropriate step
size ensures that the algorithm maintains a fast convergence speed while avoiding
oscillations near local minima. Although the Adam optimizer can adaptively adjust
the step size based on gradient changes, the initial step size remains a crucial factor in
determining optimization efficiency.

4 Simulation verification

To verify the advantages of the Adam algorithm, we designed and implemented a
series of experiments focusing on the three hyperparameters. Each experiment was
run under the same initial conditions, including the same initial waveform and target
state. We conducted the experiments using the Quantum Toolbox in Python platform
(QuTiP) platform without considering noise. QuTiP is an open-source Python library
for simulating quantum systems, offering various pulse optimization algorithms and
solvers capable of simulating the evolution of quantum systems [34, 35].

For this experiment, we selected two single-qubit gates and one two-qubit gate as
targets: the single-qubit X gate, the single-qubit H gate, and the two-qubit SWAP gate.
These gates were chosen for their diversity and representativeness. The X and H gates
are the most basic and commonly used single-qubit gates in quantum computing,
used for qubit flipping and creating superposition states, respectively. The SWAP
gate is a typical two-qubit gate used to exchange the states of two qubits. By testing
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Fig.2 Control pulse sequence for the X gate generated by QuTiP’s pulse optimization function

these fundamental gates, we can evaluate the performance of the Adam algorithm on
quantum gates of varying complexity.

During the experiments, we recorded the fidelity changes throughout the opti-
mization process, running each algorithm 1024 times to ensure the reliability of the
results. In the experiments, we assumed that the dynamics of the simulated system
are described by a drift Hamiltonian Hy and a set of control Hamiltonians Hy. The
system’s drift Hamiltonian is oz, and the control Hamiltonians are oy, oy, and 0.
We set the evolution time 7 to 5 microseconds, divided into 300 time slices. We then
defined the target optimization gate U. Taking the X gate as an example, we generated
a random control pulse as shown in Figure 2, where Uy, Uy, and U, represent the
evolution of the control qubit in the X, y, and z directions, respectively.

4.1 Step size optimization

First, we tested the H gate. The experiment revealed that due to the different update
mechanisms and objective function characteristics of various algorithms, there are
different applicable step sizes. Therefore, in the optimization of different gates, the
two algorithms chose different step size ranges, all compared within the range where
the gate error rate is minimized. Figure 3 shows the experimental results of the H gate
under the Adam and GRAPE algorithms, with the applicable range of EPS (step size)
being from 0 to 0.2. It can be seen that as EPS increases, the Adam algorithm can
quickly reach a minimum error of 1 x 1073 and tends to stabilize, compared to the
GRAPE algorithm.
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Fig.4 X gate step size optimization

Next, we tested the X gate, with the applicable range of EPS being from 0 to 0.2.
Figure 4 shows the experimental results for the X gate. It can be observed that the
convergence speed of both algorithms is essentially the same. As EPS increases, the
error rates of both algorithms tend to stabilize. When EPS reaches 0.008, the final error
rate of the Adam algorithm stabilizes around 1 x 10~3. When EPS reaches 0.036, the
final error rate of the GRAPE algorithm stabilizes around 1.3 x 1073. The error rate
of the Adam algorithm is significantly lower than that of the GRAPE algorithm.
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Fig.5 SWAP Gate Step Size Optimization

Finally, we tested the SWAP gate, with the applicable range of EPS being from 0
to 0.4. Figure 5 shows the experimental results for the SWAP gate. It can be seen that
compared to the GRAPE algorithm, the Adam algorithm can achieve a stable error rate
more quickly. When the step size for the Adam algorithm is 0.01 and for the GRAPE
algorithm is 0.032, the error rates of both algorithms tend to stabilize. The error rate
of the Adam algorithm remains around 4 x 10~3, while the error rate of the GRAPE
algorithm remains around 2 x 1077,

The experimental results indicate that during pulse optimization, the Adam algo-
rithm can quickly demonstrate a significant advantage in convergence speed within a
fixed step size range. Compared to the GRAPE algorithm, it can achieve high fidelity
in a faster step size search process. Moreover, the final fidelity optimized by the Adam
algorithm is higher than that of the GRAPE algorithm. Specifically, in the waveform
optimization of the H gate, X gate, and SWAP gate, the Adam algorithm can achieve
fidelity of over 99.94%, 99.88%, and 99.9%, respectively. The H gate and SWAP
gate show improvements of 0.03% and 0.0016% compared to the GRAPE algorithm.
Since the Adam algorithm can achieve the target fidelity within a smaller step size
range and in a shorter time, this may lead to savings in computational resources and
time, especially in large-scale quantum computing tasks. Therefore, the efficiency
and performance advantages demonstrated by the Adam algorithm in quantum gate
optimization problems support its use as a preferred optimization tool.

4.2 Sensitivity analysis of momentum factors

Next, we conducted a sensitivity analysis on the momentum factors 81 and B> in
Adam’s hyperparameters to evaluate the impact of different settings on algorithm
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Fig. 6 Hyperparameter optimization results

performance. Theoretically, the values of B8; and B, typically range from O to 1.
Using the optimization of the H gate as an example, we employed a combination of
grid search and random search methods to perform fine-grained parameter scanning
within the ranges of 81 and B,. Specifically, we first conducted a broad scan of both
parameters within the O—1 range. After determining a more suitable parameter interval,
we performed a more detailed narrow-range scan, where 81 was uniformly distributed
between 0.7 and 0.8, and 8, was uniformly distributed between 0.899 and 0.999. For
each combination of momentum factors, we recorded the error rate during the quantum
gate training process and verified the reliability of the results through multiple runs.
The experimental results are shown in Figure 6.

The experimental data revealed that, under a broad parameter scan, the error rate
increased as 8, decreased while keeping 81 constant. This may be due to the stability
of the second moment estimation, as 8, is the momentum factor used for the expo-
nentially weighted moving average of the squared gradients. A larger 5, value implies
a smoother and more stable estimation of past squared gradients. This smoothness
helps reduce the impact of noise during updates, making parameter updates more
stable. Within the finer parameter scan range, the gate error rate ranged from 10~*
to 107!, indicating significant performance differences in quantum gates under dif-
ferent momentum factor combinations. As shown in Table 1, specifically, when the
momentum factors were (0.73, 0.94), the quantum gate had the lowest error rate of
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Table 1 Optimal momentum factors and final fidelity

A1 B2 Computation time (s) Convergence iterations Final fidelity
0.74 0.94 25 300 6.77 x 1074
0.31 091 30 300 1.3 x 1072
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Fig.7 Iteration count and fidelity

6.77 x 1074, Conversely, when the momentum factors were (0.79, 0.91), the error rate
was highest at 1.3 x 1072, The experimental results indicate that selecting the optimal
combination of momentum factors within the studied range can significantly enhance
the accuracy and efficiency of quantum gate implementation, effectively reducing the
error rate.

4.3 Iteration count comparison

Finally, we conducted a comparative experiment on error rates and iteration counts
using the CRAB, GRAPE, and Adam methods. Similarly, we set the same initial con-
trol waveform for the H gate and defined a target fidelity of 99.99%, with a maximum
iteration count of 1000 for each algorithm. During the experiment, we performed mul-
tiple independent experiments to eliminate the impact of randomness on the results
and recorded the fidelity changes at each iteration to analyze the convergence speed
and final optimization accuracy of each algorithm. The experimental results are shown
in Fig. 7.

Figure 8 displays the optimized pulse sequences for the H gate using three different
methods. The CRAB-optimized pulse sequence exhibits significant high-frequency
oscillations due to its random basis approach. While these wide fluctuations demon-
strate the method’s global search capability in parameter space, they compromise
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Fig.8 Comparison chart of H gate control pulse sequences optimized by three methods

experimental feasibility. In contrast, the Adam-optimized pulses show substantially
lower peak amplitudes than CRAB, with no high-frequency oscillations, thereby
reducing risks of hardware nonlinear distortion. Compared to GRAPE-optimized
waveforms, Adam maintains comparable pulse smoothness while achieving higher
H gate fidelity.

The experiment shows that the Adam method exhibits a faster convergence speed
in the initial stage, quickly approaching the target fidelity around the 100th iteration.
This may be attributed to its effective combination of adaptive learning rates and
momentum factors, allowing it to find the optimization path more efficiently in the
parameter space. In contrast, while the GRAPE method shows a stable convergence
trend in the mid-to-late stages, its initial convergence speed is relatively slow. The
CRAB method exhibits significant volatility throughout the iteration process, eventu-
ally reaching fidelity around the 500th iteration, but its convergence path is less stable
than the Adam and GRAPE methods. Compared to the GRAPE and CRAB methods,
the fidelity for the H gate also improved by 3.125%. Considering convergence speed,
final fidelity, and computational efficiency, the Adam algorithm demonstrates superior
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overall performance in various application scenarios, providing an important reference
for selecting optimization algorithms in quantum control tasks.

5 Conclusion and future work

In this study, we conducted an in-depth analysis of the application of the Adam wave-
form optimization algorithm in quantum control tasks. The algorithm features an
adaptive learning rate, which provides advantages in gradient computation. By main-
taining first-order and second-order moment estimates of the gradients, the Adam
algorithm adjusts the learning rate for each parameter. The adaptive learning rate
characteristic of the Adam algorithm can mitigate the problem of gradient explo-
sion to some extent. Additionally, the introduction of momentum factors allows
the Adam algorithm to consider historical information in gradient updates, thereby
alleviating the issue of local minima and increasing the likelihood of global conver-
gence.

The experimental results demonstrate that the Adam algorithm exhibits excellent
convergence speed in quantum control tasks. Compared to other optimization algo-
rithms, Adam can quickly approach the target fidelity in the initial stages, which
is crucial for quantum computing tasks that require rapid response. Its efficient
parameter adjustment capability not only enhances optimization efficiency but also
significantly reduces the consumption of computational resources. This advantage
makes the Adam algorithm highly stable and reliable when dealing with complex
quantum systems, providing technical support for achieving high-fidelity quantum
operations.

In practical applications, the fast convergence and high-precision characteristics of
the Adam algorithm enable it to play a significant role in various quantum operation
scenarios, especially in complex quantum systems that require efficient optimization.
In summary, this study demonstrates the significant advantages of the Adam algorithm
in optimizing quantum control pulses, achieving higher fidelity and faster convergence
compared to traditional methods. Future research will focus on closed-loop optimiza-
tion strategies, utilizing feedback from actual quantum computers to further enhance
quantum control performance. Additionally, we plan to extend this framework to open
systems by incorporating dissipative terms and environmental noise models.
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