
Fractional Charge in the Infinite Volume Limit 

The origin of fractional fermionic charge is investigated by quantizing the system 
in a finite volume and examining the infinite volume limit. Special emphasis is 
given to the need to eliminate zero modes in order to have an unambiguous charge. 

The occurrence of fractionally charged states in fermionic theories 
which describe integrally charged particles is of continuing inter­
est.1 This happens2 when fermions move in a background field with 
nontrivial topology such as a scalar kink in one spatial dimension 
or a non-Abelian magnetic monopole in three spatial dimensions. 
The vacuum state in the presence of such a background is found 
to be a charge:eigenstate3 with fractional, even irrational,4 charge. 

Although this phenomenon has been given a solid mathematical 
development, the existence of eigenstates with fractional charge 
remains somewhat mysterious. How does it arise that a theory with 
integrally charged particles describes states with fractional charge? 
To answer this question we examine an appropriate one-dimen­
sional fermionic theory quantized in a finite region. The advantage 
of quantizing in a finite volume is the discreteness of the energy 
spectrum; since the vacuum charge is given in terms of a sum over 
the single particle energy spectrum with each state contributing 
+ 1 (particle) or -1 (antiparticle) . the vacuum charge cannot be 
an irrational number. In fact, for the particuar theory presented 
here the total vacuum charge vanishes. However, the spatial var­
iation of the charge density is such that there is an accumulation 
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of charge at the spatial boundary . When the infinite volume limit 
is taken, this boundary charge escapes to infinity , leaving behind 
a fractional charge . 

To be specific, we study the fermionic charge in one spatial 
dimension 

Q = J dx j 0(x) . (1) 

The current operator's expectation value may be computed in terms 
of the fundamental bilinear, 5 the Green's function, G, satisfying 

{E - H} G(E) = l. (2) 

In the above we use an abstract operator notation with H the Dirac 
Hamiltonian describing the interaction of an otherwise free fermi 
field with a background potential. In terms of this Green's function, 
the expectation value of the charge density has the expression 

J 
dE 

(j0(x)) = -. tr(x!G(E)lx), 
27rz 

(3) 

with tr denoting a diagonal sum over any discrete indices. The 
specification of the state in which j 0(x) is to be evaluated supplies 

E - plane 

FIGURE 1 The contour of integration in the complex energy plane which defines 
the Green's function . Crosses denote the location of poles of G(E). 
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the boundary condition which uniquely defines the otherwise un­
defined integration contour over the energy Green's, function in 
Eq, (3). For the ground state , this is the familiar positive frequency 
condition,6 which requires the contour shown in Fig , L This pre­
scription uniquely defines the ground state Green's function and 
the vacuum charge so long as there are no normalizable zero energy 
bound states of the single particle Hamiltonian, 

Hl\10 = 0. (4) 

If such a zero mode is present, then an ambiguity arises which 
cannot be resolved by the usual positive frequency condition, One 
may define G(E) by either running the contour of integration in 
Fig. 1 above or below this zero energy pole, corresponding to 
whether or not the state of l\Jo is filled. Clearly, the two ground 
states so defined are degenerate in energy. Without physical mo­
tivation to pick one or the other state, the theory is ill defined and 
correspondingly, so is the ground state charge. It is often the case 
that in the presence of nontrivial background fields, the Dirac 
Hamiltonian does possess normalizable zero energy states. In fact, 
the original model for fractional fermionic charge 2 has a single 
normalizable zero mode. The vacuum charge was found to be 
± 1/2, with the ambiguity in sign due precisely to the ambiguity 
described above. This ambiguity must be resolved in order to make 
precise the notion of fractional charge. The resolution is to modify 
the interaction potential so as to move any normalizable bound 
states away from zero. With such a modification, the vacuum charge 
remains fractional and the original, unmodified theory is regained 
in a well-defined limit. 4 

An appropriate Hamiltonian in one spatial dimension is 

H = ap + f3m e;aa<xl. (5) 

The matrices a and f3 are the Dirac matrices satisfying 

{a, f3} = 0, (6) 

(7) 

while the constant m is the mass of the fermion and p is the single 
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particle momentum operator. The background potential 0(x) is 
given by a time-independent step function 

0(x) {
0+, x > o, 
0_, x < o, 

M = 0+ - 0_, 0 < M < 1T. 

(8) 

(9) 

This configuration is the simplest with the topology of a kink, and 
is sufficient to illustrate the main features of fractionization. The 
particular form of the Hamiltonian is motivated by allowing the 
mass m to vary spatially and writing 

(10) 

where 

<l>o = m cos 0; <!>1 = m sin 0. (11) 

Upon setting <l>o to zero, the Hamiltonian becomes 

(12) 

with cj> 1 also having a kink behavior. This Hamiltonian is the orig­
inal model for charge fractionization, 2 and as discussed earlier is 
ill defined due to the presence of a zero energy bound state. The 
addition of the nonzero background, <l>o =/=. 0, serves to move this 
state away from zero giving a unique ground state with an un­
ambiguous charge. 

For the system quantized in a finite region, - L ~ x ~ L, 
boundary conditions must be adjoined which maintain the Her­
miticity of the Hamiltonian and the charge operator. For simplicity, 
periodic boundary conditions are taken, although the results pre­
sented here are not specific to this choice . It is not difficult to 
calculate the ground state Green's function. Rotating the integra­
tion contour to run along the imaginary axis, we find that 

. 0 _ m2 J"' dE (sin M) sinh K(L - 2lxl) 
(J (x)) - - 2 - oo 21T (sinh KL)(m2 cos2(M/2) + E2)' 

(13) 
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FIGURE 2 The fermionic charge density for a bdx with mL = 10 and Ila = Tri2. 
The charge at the kink is - 1/4. 

where K = Vm2 + E2. For the physically relevant case of the box 
much larger than the Compton wavelength of the particle, mL > > 
1, 

sinh K( L - 2lxl) = e -2Klxl - E - 21<(L - lxl) 

sinh KL ' 
(14) 

and one sees that the charge density has the behavior shown in 
Fig. 2. The charge at the boundaries (x = ± L) is opposite in sign 
to the charge at the kink. The occurrence of an accumulation ·of 
charge at the location of the kink is expected, while the accumu­
laton of charge at x = ± L is explained by the boundary condi­
tions-with periodic boundary conditions there is an effective kink 
at the boundary of equal magnitude but opposite sign to that at 
the center. By integrating the expression for (j 0(x)/ over the full 
spatial domain, the total charge is easily seen to vanish. 

One is tempted to conclude that the total charge also vanishes 
in the infinite box limit, L ~ oo. However, this limit is nonuniform. 
By taking the boundaries to infinity before spatially integrating 
over the charge density, one finds instead of zero, 
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which is the usual result for the infinite length system. 4 This dem­
onstrates that fractional charge is regained in the L---'> x limit by 
having the compensating charge at the spatial boundaries escape 
to infinity. 7 These boundary charges decouple from the theory as 
verified from a calculation of the charge density-charge density 
correlation function. The correlation between charge at the bound­
aries and that near the kink vanishes as the system size grows. 3 

One's intuition, that since each energy level contributes an in­
teger ( ± 1) to the ground state charge, then that charge must be 
a natural number, is now seen to be correct. In a finite volume, 
the spectrum is discrete and this intuition applies. It is only i~ the 
infinite volume limit, where the spectrum is no longer discrete, 
that this intuition fails and an irrational charge can appear. 
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