Fractional Charge in the Infinite Volume Limit

The origin of fractional fermionic charge is investigated by quantizing the system
in a finite volume and examining the infinite volume limit. Special emphasis is
given to the need to eliminate zero modes in order to have an unambiguous charge.

The occurrence of fractionally charged states in fermionic theories
which describe integrally charged particles is of continuing inter-
est.! This happens? when fermions move in a background field with
nontrivial topology such as a scalar kink in one spatial dimension
or a non-Abelian magnetic monopole in three spatial dimensions.
The vacuum state in the presence of such a background is found
to be a charge ‘eigenstate® with fractional, even irrational,* charge.

Although this phenomenon has been given a solid mathematical
development, the existence of eigenstates with fractional charge
remains somewhat mysterious. How does it arise that a theory with
integrally charged particles describes states with fractional charge?
To answer this question we examine an appropriate one-dimen-
sional fermionic theory quantized in a finite region. The advantage
of quantizing in a finite volume is the discreteness of the energy
spectrum; since the vacuum charge is given in terms of a sum over
the single particle energy spectrum with each state contributing
+1 (particle) or —1 (antiparticle), the vacuum charge cannot be
an irrational number. In fact, for the particuar theory presented
here the total vacuum charge vanishes. However, the spatial var-
iation of the charge density is such that there is an accumulation
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of charge at the spatial boundary. When the infinite volume limit
is taken, this boundary charge escapes to infinity, leaving behind
a fractional charge.

To be specific, we study the fermionic charge in one spatial
dimension

0 = [ ax 0. 1)

The current operator’s expectation value may be computed in terms
of the fundamental bilinear,> the Green’s function, G, satisfying

{E - HHGE) = 1. 2)
In the above we use an abstract operator notation with H the Dirac
Hamiltonian describing the interaction of an otherwise free fermi

field with a background potential. In terms of this Green’s function,
the expectation value of the charge density has the expression

G0N = | 22 wlG(E) ®

with tr denoting a diagonal sum over any discrete indices. The
specification of the state in which j°(x) is to be evaluated supplies

-

B —J;K—-)?——f*qku—x—xrn KRN -

E - plane

FIGURE 1 The contour of integration in the complex energy plane which defines
the Green’s function. Crosses denote the location of poles of G(E).
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the boundary condition which uniquely defines the otherwise un-
defined integration contour over the energy Green’s function in
Eq. (3). For the ground state, this is the familiar positive frequency
condition,® which requires the contour shown in Fig. 1. This pre-
scription uniquely defines the ground state Green’s function and
the vacuum charge so long as there are no normalizable zero energy
bound states of the single particle Hamiltonian,

Hi, = 0. (4)

If such a zero mode is present, then an ambiguity arises which
cannot be resolved by the usual positive frequency condition. One
may define G(E) by either running the contour of integration in
Fig. 1 above or below this zero energy pole, corresponding to
whether or not the state of , is filled. Clearly, the two ground
states so defined are degenerate in energy. Without physical mo-
tivation to pick one or the other state, the theory is ill defined and
correspondingly, so is the ground state charge. It is often the case
that in the presence of nontrivial background fields, the Dirac
Hamiltonian does possess normalizable zero energy states. In fact,
the original model for fractional fermionic charge? has a single
normalizable zero mode. The vacuum charge was found to be
+1/2, with the ambiguity in sign due precisely to the ambiguity
described above. This ambiguity must be resolved in order to make
precise the notion of fractional charge. The resolution is to modify
the interaction potential so as to move any normalizable bound
states away from zero. With such a modification, the vacuum charge
remains fractional and the original, unmodified theory is regained
in a well-defined limit.*
An appropriate Hamiltonian in one spatial dimension is

H = ap + Bm ™™, Q)

The matrices o and B are the Dirac matrices satisfying
{a, B} = 0, (6)
@ =1=p, )

while the constant m is the mass of the fermion and p is the single
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particle momentum operator. The background potential 6(x) is
given by a time-independent step function

6+r X >0a
0(x) = (8)
g, ¥<0,
A0 =6, —06_, 0<AD <. 9)

This configuration is the simplest with the topology of a kink, and
is sufficient to illustrate the main features of fractionization. The
particular form of the Hamiltonian is motivated by allowing the
mass m to vary spatially and writing

m e = ¢, + iad,, (10)
where
$y = mcos 8, ¢y = m sin 6, (11)
Upon setting ¢, to zero, the Hamiltonian becomes
H' = o + Bad,, (12)

with ¢, also having a kink behavior. This Hamiltonian is the orig-
inal model for charge fractionization,? and as discussed earlier is
ill defined due to the presence of a zero energy bound state. The
addition of the nonzero background, ¢, # 0, serves to move this
state away from zero giving a unique ground state with an un-
ambiguous charge.

For the system quantized in a finite region, —L = x = L,
boundary conditions must be adjoined which maintain the Her-
miticity of the Hamiltonian and the charge operator. For simplicity,
periodic boundary conditions are taken, although the results pre-
sented here are not specific to this choice. It is not difficult to
calculate the ground state Green’s function. Rotating the integra-
tion contour to run along the imaginary axis, we find that

m? (% de  (sin A®) sinh k(L — 2|x|)

UGN = = 5 ] . 2 (sinh «L)(m? cos2(a02) + &) P
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FIGURE 2 The fermionic charge density for a box with mL = 10 and A8 = =/2.
The charge at the kink is —1/4.

where k = \/m? + €. For the physically relevant case of the box
much larger than the Compton wavelength of the particle, mL >>
1,

sinh k(L — 2x|) il erudn i)
sinh kL ¢ . ’ (14
and one sees that the charge density has the behavior shown in
Fig. 2. The charge at the boundaries (x = = L) is opposite in sign
to the charge at the kink. The occurrence of an accumulation ‘of
charge at the location of the kink is expected, while the accumu-
laton of charge at x = *L is explained by the boundary condi-
tions—with periodic boundary conditions there is an effective kink
at the boundary of equal magnitude but opposite sign to that at
the center. By integrating the expression for (j°(x)} over the full
spatial domain, the total charge is easily seen to vanish.

One is tempted to conclude that the total charge also vanishes
in the infinite box limit, L. — . However, this limit is nonuniform.
By taking the boundaries to infinity before spatially integrating
over the charge density, one finds instead of zero,
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(O s = fx dx lim (j°00), = - A—g, (15)

L—= 2

which is the usual result for the infinite length system.* This dem-
onstrates that fractional charge is regained in the L — < limit by
having the compensating charge at the spatial boundaries escape
to infinity.” These boundary charges decouple from the theory as
verified from a calculation of the charge density—charge density
correlation function. The correlation between charge at the bound-
aries and that near the kink vanishes as the system size grows.?

One’s intuition, that since each energy level contributes an in-
teger (£1) to the ground state charge, then that charge must be
a natural number, 1s now seen to be correct. In a finite volume,
the spectrum is discrete and this intuition applies. It is only in the
infinite volume limit, where the spectrum is no longer discrete,
that this intuition fails and an irrational charge can appear.
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