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Abstract

In this work, we study systems operating in a regime where a partially classical, partially

quantum effective description is valid. Our central focus is provided by a recently characterised

general form of classical-quantum dynamics, which allows for a consistent treatment of classical-

quantum systems in terms of both stochastic unravellings and linear master equations. We first

show that these dynamics provide a consistent version of the mean-field and reversible bracket

approaches to backreaction, which we use to provide a precise regime of validity to standard

semi-classical approaches. Utilising partial versions of the W , Q and P quasiprobability rep-

resentations, we then show that these dynamics can be derived from quantum theory in the

classical limit of a quantum subsystem strongly decohered by its environment. Finding the

general necessary and sufficient conditions for classical-quantum detailed balance, we then con-

struct a class of dynamics that allow the thermal state of the combined classical-quantum system

to be preserved, which we use to prove the second law of thermodynamics for classical-quantum

systems. Aside from the three fundamental classes of effective classical-quantum dynamics we

introduce, we provide a number of technical tools important to their study, such as charac-

terising when the quantum system remains pure conditioned on the classical trajectory. We

illustrate our findings by introducing several models, including an analytically solvable model

of a one-dimensional classical system coupled to a qubit, and a numerically solvable model

of a classical-quantum oscillator system that exhibits thermalisation. This work provides the

foundations for general studies of non-relativistic models of effective classical-quantum systems

in a variety of contexts, from continuous quantum measurement to molecular dynamics.
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Impact Statement

Approximating complex quantum systems with simpler models is an essential part of studying

a wide range of important problems in science, from drug discovery to the development of solar

cells. In this work we provide the framework for a new class of approximation methods for

quantum systems, which we refer to as effective classical-quantum dynamics. Here, part of the

system is approximated classically to reduce the complexity of the problem, while the remainder

retains a quantum description to capture important features of the original dynamics.

While effective classical-quantum dynamics have garnered some interest over time, many

early attempts were not consistent, while consistent later attempts were only studied in specific

models and otherwise unconnected from each other. The current work generalises and inter-

relates earlier approaches, providing both new tools for understanding how effective classical-

quantum systems arise, as well as new classes of dynamics to study effective classical-quantum

dynamics in practical settings.

The main achievement of the current work is showing how effective classical-quantum dy-

namics arise as a classical limit of a fully quantum system. Providing the first physical demon-

stration of how consistent classical-quantum dynamics can arise from quantum theory, we use

partial versions of the P , W and Q quasiprobability distributions of quantum optics to demon-

strate how a subsystem may appear effectively classical when decohered strongly by its envi-

ronment.

An important check of the current work is showing how our approach relates to existing

semi-classical methods. In particular, we show how our approach arises as a consistent version

of two semi-classical methods, notably mean-field dynamics and reversible classical-quantum

3



brackets, and demonstrate how our current work may be used to precisely bound the timescales

and states for which semi-classical methods are valid for.

Finally, we demonstrate how these methods can apply in thermal environments, which are

important in the study of molecular dynamics. In doing so, we demonstrate that these dynam-

ics can be explicitly shown to obey the second law of thermodynamics, providing the first steps

towards a general theory of non-equilibrium thermodynamics for classical-quantum systems.

The main technical result here is a general characterisation of sufficient and necessary condi-

tions for classical-quantum detailed balance. We illustrate these findings with two models, one

analytically solvable, the other numerically solvable, which we use to illustrate the applications

of our work to both continuous measurement theory and transitions between adiabatic energy

levels in molecules.
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Chapter 1

Introduction

1.1 Classical and quantum

The central theme of this work is the study of systems with both classical and quantum degrees

of freedom. We refer to these as classical-quantum∗ systems.

The idea of combining classical and quantum is as old as quantum theory itself. Indeed,

the very first attempts at building models of quantum mechanical systems were those built by

mixing classical ideas with newly developed notions of quanta [5]. While much of old quantum

theory described systems in a no-man’s land between our current established theories of classical

and quantum mechanics, the work at this time also provided the first examples of systems where

the classical and quantum degrees of freedom were identified separately and distinctly. In the

earliest models of the atom, the nucleus was assumed to be given a fixed, classical position,

in contrast to the quantised orbits of the electrons [6]. In the analysis of the Stern-Gerlach

experiment, the quantisation of the magnetic field was investigated by studying the resulting

effect on a beam of silver atoms treated classically, so as to relate the splitting of the two beams

to the size of the magnetic moment [7–9]. More fundamentally, Bohr was famous for stressing,

at length, the importance of treating the measurement apparatus of an experiment classically

[10].

∗Of course, one could equally say “quantum-classical”, but this gets the order wrong, both historically and

alphabetically.
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In fact, once the Born rule was introduced [11], early quantum theory could be argued to

provide a clear interpretation of how classical and quantum systems interact. This postulate

tells us that the random outcomes of a measurement, i.e. the change in a classical apparatus, are

determined by the wavefunction of the quantum system. As the classical apparatus randomly

takes on a new configuration, so the wavefunction of the quantum system also collapses, in a

way that is correlated with the change in the classical apparatus.

This sketch provides the blueprint for how all consistent models of classical-quantum systems

behave. Understanding how physically motivated and mechanical versions of this evolution can

arise is main goal of this work.

1.2 Standard classical-quantum dynamics

Despite the suggestive nature of the Born rule, when interpreted as describing a stochastic inter-

action between a quantum system and a classical measurement device, the two early approaches

used to study classical-quantum dynamics were instead deterministic.

The first example of classical-quantum dynamics appears to have arisen in an entirely differ-

ent context to quantum measurement – that of semi-classical gravity. Attempts to understand

how quantum matter should affect a classical theory of gravity led to suggestions that classical

spacetime would be affected by the quantum matter fields according to the expectation value

of the stress energy tensor [12–14]. Written in a more basic form [15], for a classical system

described by two conjugate degrees of freedom q and p, and a quantum system described by

the quantum state |ψ⟩, this dynamics takes the form

d|ψ⟩t = − i

ℏ
H|ψ⟩tdt (1.1)

dqt =
pt
m
dt (1.2)

dpt = −⟨ψ|∂H
∂q

|ψ⟩tdt, (1.3)

where here H = H(q, p) is a Hermitian operator valued function of phase space. Since this

dynamics appears commonly in the context of semi-classical gravity, we shall refer to dynamics

of this kind as standard semi-classical dynamics, or mean-field dynamics. This latter name
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comes from the fact that the force on the classical system is given by the expectation value.

A second early type of classical-quantum approach began from the desire to treat both

classical and quantum parts of the system on equal footing [16–18]. Defined for when the

classical system is described by a phase space and for a Hermitian operator-valued function of

phase space H(q, p), this dynamics is a straightforward generalisation of classical and quantum

Hamiltonian dynamics and takes the form

∂ϱ

∂t
= − i

ℏ
[H, ϱ] +

1

2

({
H, ϱ

}
−
{
ϱ,H

})
, (1.4)

where here {·, ·} denotes the standard Poisson bracket, and ϱ(q, p, t) is an operator-valued

function of phase space describing the classical-quantum system. The first term describes

the standard unitary evolution of quantum mechanics, while the second term, known as the

Alexandrov bracket [17], provides a symmetrised version of the Poisson bracket describing both

the pure classical evolution and the effect of the quantum system on the classical one. Despite

being suggested earlier, we use the terminology of [19], and refer to this dynamics as the

quantum-classical Liouville equation.

There are three important features illustrated in these dynamics that will be extremely

relevant from this point on.

The first is that we see two equivalent descriptions of the classical-quantum system. The first

one, provided in the mean-field dynamics, is that of individual classical and quantum trajectories

in phase space and Hilbert space i.e. qt, pt and |ψ⟩t. The second, given in the quantum-classical

Liouville equation, is an ensemble picture, determined by the operator-valued function of phase-

space ϱ(q, p, t), which we refer to as the classical-quantum state. Understanding how these two

descriptions and their respective dynamics relate in general is a central theme of this work.

The second important feature is that both dynamics attempt to describe the effect of the

quantum system on the classical one. Known as back-reaction, this has historically provided

the main barrier to describing non-trivial interactions between classical and quantum systems –

indeed, consistent models of such interactions were thought for some time to be impossible [20–

22]. Note that in contrast, having the classical system affect the quantum one is straightforward

to achieve by taking any well-defined quantum dynamics which has time-dependent parameters

determined by the configuration of a classical system.
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The third important feature of both of these models is the appearance of the Hermitian

operator-valued function of phase space, H. We shall refer to this object as the classical-

quantum Hamiltonian. This object appears routinely throughout the study of classical-quantum

systems, both for these early models and for the more advanced dynamics we study in this work,

and should be understood as one of the central objects of any classical-quantum description.

1.3 Consistent classical-quantum dynamics

In the intervening years between the development of these two core models and today, a huge

number of dynamics describing how classical and quantum systems can be coupled have been

proposed [15, 23–38]. These range from models writing the entire system in Hilbert space

[16, 28, 33], to models entirely in a classical phase space [32], to models using alternative

formulations of mechanics [29, 30].

Unfortunately, the vast majority of these methods fail one of the two basic requirements

needed for a sensible classical-quantum theory: positivity and linearity. Approaches based

on reversible classical-quantum bracket evolution laws, such as the quantum-classical Liouville

equation [16–19, 24, 29, 32], do not preserve the positivity of the classical-quantum state ϱ(q, p, t)

[15]. This means that these dynamics cannot be understood in terms of individual classical

trajectories in phase space and quantum trajectories in Hilbert space. On the other hand,

the approaches based on the mean-field dynamics or other expectation value laws [15, 35, 38]

necessarily lead to non-linear evolution laws at the level of ϱ(q, p, t), preventing such an object

from having a valid statistical interpretation.

Ironically, the first consistent models of classical-quantum dynamics were those based on

the first identified coupling between classical and quantum systems: measurement. This was

first noted by Blanchard and Jadcyck, who provided jumping models of interacting classical

and quantum systems following the Born rule [23, 39, 40]. These models were made more

physical by Diosi and co-workers [25, 26, 41], who noted that the same process could be applied

to continuous-variable classical systems, using ideas from the recently developed continuous

measurement theory [42, 43].
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The key features of these theories, and all consistent classical-quantum theories, is that

the evolution laws are irreversible. Although known for some time [44, 23], this was recently

re-established by an important theorem known as the CQ Pawula theorem, which characterised

the general form of completely-positive, linear, trace-preserving, Markovian and continuous in

phase space classical-quantum dynamics [45, 46]. This theorem generalises the Pawula theorem

[47], characterising the evolution of positive real-valued functions, to the case where we consider

positive semi-definite operator-valued functions (c.f. Appendix D). The necessary irreversibility

of the theory appears in the form of a trade-off, requiring a minimal amount of decoherence in

the quantum system for a given diffusion in the classical system, whenever the quantum system

back-reacts on the classical one [48].

Providing the main technical basis of our current work, the form of dynamics characterised

by the CQ Pawula theorem allows one to construct a wide range of consistent models of classical-

quantum systems. We shall see that these models may be completely specified by a set of matri-

ces and operators. The bulk of the dynamics, and the part governed by positivity constraints,

is specified by three matrices D0, D1, D2, which correspond to the decoherence, back-reaction,

and diffusion with respect to a given set of coordinates in phase space and operators Lα in

Hilbert space. The rest determines the purely classical or purely quantum parts of the dynam-

ics: a vector DC
1 which determines the drift in the classical system and a Hermitian operator,

which we denote H̄, that controls the unitary part of the quantum evolution.

1.4 Effective classical-quantum dynamics

Equipped with a general form of consistent classical-quantum dynamics, one may be content

that the problem of constructing dynamics for classical-quantum systems is essentially solved.

However, the real world presents us with an unfortunate truth – if we want to model

something and solve the equations of motion, we must pick a specific form of dynamics. This is

most apparent when we note that in standard classical mechanics, we rarely model the motion

of a projectile, or the speed of a block sliding down a slope, from the general form of dynamics

that preserves the positivity of classical probability distributions! Instead, we understand that
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the world is often well-described by specific forms of dynamics, such as Hamiltonian dynamics

in conservative systems, or Langevin equations in situations where the environment is thermal,

and so on.

One is thus faced with a basic problem: what are the general classes of the classical-

quantum dynamics which are expected to apply to classical-quantum systems? Rephrased

in more technical terms, which forms of operators H̄ and Lα, and which D matrices, does one

expect to use to provide a reasonable approximation at modelling a given classical-quantum

system?

In this work, we attempt to answer this question by appealing to the principle of an effective

theory. While this may be interpreted in a number of ways, we shall here take an effective theory

to be one which does not claim to be a true description of a system, but rather captures the

correct features. Indeed, such theories are understood to be useful exactly because they are

effective at describing some observed phenomena in certain settings, even if they do not seem

likely candidates as a fundamental theory. This is an extremely natural philosophy to use for

classical-quantum systems, which by definition combine two distinct types of system into one

description, and thus an odd candidate for a fundamental theory of nature.

In what follows we shall think of effective classical-quantum systems in two distinct ways.

The first is independent of the underlying theory from which classical-quantum mechanics

derives, and instead postulates that an effective classical-quantum description is valid. In this

context, the classicality of a subsystem is guaranteed by being able to assign a well-defined

classical-quantum state ϱ to the system, which remains well-defined by the consistency (i.e.

positivity and linearity) of the dynamics. Here classicality is guaranteed a priori – the challenge

is thus to find dynamics that are physically motivated by requiring relationships with existing

approaches and established principles.

The second way we shall think of effectively classical-quantum theories is as a certain regime

of a fully quantum theory. While there are many notions of classicality within quantum the-

ory [49–61], in this work we utilise the theory of partial quasiprobability distributions, which

represent the state of a bipartite quantum system partly in phase space and partly in Hilbert

space. Defining effective classical-quantum states as those for which the positivity of a partic-
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ular distribution guarantees that there is no entanglement between the effectively classical and

quantum degrees of freedom, and that all measurement statistics are equivalent to a fundamen-

tal classical-quantum theory, we identify effective classical-quantum dynamics in this context

with evolution of a quantum system that preserves the positivity of this distribution in time.

These two viewpoints lead us to consider three different ways of motivating general forms

of consistent classical-quantum dynamics:

1. How can consistent classical-quantum dynamics be related to standard classical-quantum

approaches?

2. Can classical-quantum dynamics be derived as a classical limit of fully quantum models?

3. Which dynamics preserve the thermal state of the combined classical-quantum system?

We shall find that these define three distinct classes of effective classical-quantum dynamics,

that all may be understood to generalise the standard semi-classical approaches in different

ways.

1.5 Main results in miniature

To illustrate the three classes of dynamics which comprise the main results of this work, we will

consider a simple model of a qubit coupled to a classical particle. In particular, let us assume

that the interaction of the two systems is such that when the qubit is the |0⟩ state, the classical

system experiences a potential on the right, and when in the |1⟩ state, a potential on the left.

This gives the basic classical-quantum Hamiltonian as

H(q, p) =
p2

2m
1+ λ(q − lσz)

2 (1.5)

where here σz denotes the z Pauli operator with σz|0⟩ = |0⟩ and σz|1⟩ = −|1⟩, 1 denotes

the identity operator, l is the separation from the minimum of the potential to the origin, λ

controls the strength of the potential, and m, q and p are the mass, position and momentum

of the classical particle.
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1.5.1 A consistent semi-classical dynamics

In this model, the standard semi-classical approach based on the mean-field dynamics of (1.1)

to (1.3) takes the form,

d|ψ⟩t = − i

ℏ
H(qt, pt)|ψ⟩tdt (1.6)

dqt =
pt
m
dt (1.7)

dpt = −2λqtdt+ 2λl⟨σz⟩dt, (1.8)

while the quantum-classical Liouville approach of Eq. (1.4) takes the form

∂ϱ

∂t
= − i

ℏ
[H(q, p), ϱ]− p

m

∂ϱ

∂q
+ 2λq

∂ϱ

∂p
− λl{σz,

∂ϱ

∂p
}+, (1.9)

where here ⟨σz⟩ is shorthand for ⟨ψ|tσz|ψ⟩t and {·, ·}+ denotes the anticommutator. These

two inequivalent dynamics [62] each independently satisfy a single desirable property: the first

dynamics maintains the positivity of the classical-quantum state, while the second ensures the

evolution is linear.

However, one may instead postulate a single dynamics that resembles both of these two

distinct dynamics, with the additional property that the classical-quantum state evolves both

linearly and completely positively. A simple form of such dynamics takes the form in the

trajectory picture

d|ψ⟩t = − i

ℏ
H(qt, pt)|ψ⟩tdt+

λl

σ
(σz − ⟨σz⟩)|ψ⟩tdWt −

λ2l2

2σ2
(σz − ⟨σz⟩)2|ψ⟩tdt (1.10)

dqt =
pt
m
dt (1.11)

dpt = −2λqtdt+ 2λl⟨σz⟩dt+ σdWt, (1.12)

and in the master equation picture

∂ϱ

∂t
= − i

ℏ
[H(q, p), ϱ]− p

m

∂ϱ

∂q
+ 2λq

∂ϱ

∂p
− λl{σz,

∂ϱ

∂p
}+ +

λ2l2

σ2
(σzϱσz − ϱ) +

σ2

2

∂2ϱ

∂p2
(1.13)

where here dWt is the Wiener increment and σ is a free parameter. It is straightforward to see

that the trajectory picture resembles the standard mean-field semi-classical approach, but with

additional terms related to the noise in the classical system. Similarly, we see that the master
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equation takes the form of the quantum-classical Liouville approach, but with additional terms

to ensure complete-positivity.

We may understand the dynamics of Eqs. (1.10) to (1.12) as follows. The classical sys-

tem experiences diffusion, and a back-reaction force as if it were experiencing the force of the

potential centred on either the left or the right. As it evolves, the initial randomness of its

motion means that which potential it is evolving in is not deducible from the initial part of

its trajectory. Only after sufficient time has passed will the motion be clearly deducible to be

based in the potential on the left; in this time, the quantum system will have collapsed (whilst

remaining pure conditioned on the classical trajectory) to the |1⟩ state. An example of how

a typical trajectory appears in a related qubit model is plotted in Figure 3.1. Averaging over

the individual trajectories, and asking what the probability of finding the classical system at

a given q, p, and what the corresponding ensemble average of quantum states arriving at this

point in phase space is, provides the equivalent master equation description of Eq. (1.13).

1.5.2 Effective dynamics from the classical-quantum limit

Rather than postulating a form of consistent dynamics, we may also ask whether one can arrive

at effective classical-quantum dynamics by taking the classical limit of one subsystem in a fully

quantum model i.e. a classical-quantum limit. For the simple model above this corresponds to

the bipartite quantum Hamiltonian

Ĥ =
p̂2

2m
+ λ(q̂ − lσz)

2, (1.14)

where here the C system, that we wish to take the classical limit of, is characterised by position

and momentum operators q̂ and p̂ (with hats to distinguish that these are now treated as

operators), while the Q subsystem, which we wish to remain quantum, is described by the

Pauli operator σz.

While many methods of taking a classical limit exist, we find that a basic method, in which

the environment acts to project the C system onto the coherent states on a timescale τ , leads

to a consistent classical-quantum dynamics in a double scaling limit of ℏ → 0 and τ → 0 such
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that ℏ = Efτ . The unravelling takes the form

d|ψ⟩t =− i

ℏ
[
H(qt, pt)−

ℏλl
Ef

pt
m
σz
]
|ψ⟩tdt+

λls√
Ef

(σz − ⟨σz⟩)|ψ⟩tdWt

+
iλls√
Ef

(σz − ⟨σz⟩)|ψ⟩tdVt −
s2λ2l2

Ef
(σz − ⟨σz⟩)2|ψ⟩tdt

(1.15)

dqt =
pt
m
dt+

√
EfsdVt (1.16)

dpt = −2λqtdt+ 2λl⟨σz⟩dt+
√
Ef

s
dWt, (1.17)

while the corresponding master equation is of the form

∂ϱ

∂t
=− i

ℏ
[H(q, p)− ℏλl

Ef

p

m
σz, ϱ]−

p

m

∂ϱ

∂q
+ 2λq

∂ϱ

∂p
− λl{σz,

∂ϱ

∂p
}+ − is2λl[σz,

∂ϱ

∂q
]

+
2s2λ2l2

Ef
(σzϱσz − ϱ) +

Efs
2

2

∂2ϱ

∂q2
+
Ef

2s2
∂2ϱ

∂p2

(1.18)

Here H is the classical-quantum Hamiltonian given in (1.5) and dVt denotes another Wiener

process increment uncorrelated with dWt, while s is a positive parameter quantifying how

tightly the environment collapses to coherent states peaked in position versus momentum.

We note immediately that this dynamics resembles the postulated form of dynamics given

in Eqs. (1.10) to (1.12), with the addition of diffusion in the position of the effective classical

system, an additional Hamiltonian term, an additional back-reaction term that acts like a

white-noise Hamiltonian term, and a larger overall decoherence to ensure the additional back-

reaction still leads to completely-positive evolution. That the back-reaction operators take the

same form as in the postulated dynamics, i.e. given by derivatives of H, is in fact a feature

of the particularly simple form of Hamiltonian, with a more complex form of back-reaction

operator found in the general case.

1.5.3 Thermal state preserving classical-quantum dynamics

Alternatively, we may ask which dynamics preserves the combined classical-quantum thermal

state of the system i.e. the classical-quantum state

π(q, p) =
1

Z
exp

[
− β

(
p2

2m
1+ λ(q − lσz)

2

)]
, (1.19)
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where Z is the appropriate normalisation. While such a dynamics has no guarantee to arise

from a fully quantum model, the fact that the thermal state is preserved in time guarantees

the thermodynamic consistency of the model, allowing for heat and entropy to be defined in a

manner consistent with the second law of thermodynamics. In this setting, the dynamics may

be understood to be an effective description of a system described by classical and quantum

variables that is in contact with a thermal environment.

In this work, we find a form of dynamics that preserves the thermal state, satisfies detailed

balance, and reduces to standard underdamped dynamics in the appropriate classical limit. For

the model given above this takes the form

d|ψ⟩t = − i

ℏ
H(qt, pt)|ψ⟩tdt+ λl

√
β

2γ
(σz − ⟨σz⟩)|ψ⟩tdWt −

λ2l2β

4γ
(σz − ⟨σz⟩)2|ψ⟩tdt (1.20)

dqt =
pt
m
dt (1.21)

dpt = −2λqtdt+ 2λl⟨σz⟩dt−
γ

m
ptdt+

√
2γ

β
dWt, (1.22)

and in the master equation picture

∂ϱ

∂t
= − i

ℏ
[H(q, p), ϱ]− p

m

∂ϱ

∂q
+ 2λq

∂ϱ

∂p
− λl{σz,

∂ϱ

∂p
}+ + γ

∂

∂p
(pϱ) +

βλ2l2

2γ
(σzϱσz − ϱ) +

γ

β

∂2ϱ

∂p2
.

(1.23)

As before, the dynamics is closely related to the postulated form of dynamics given in Eqs.

(1.10) to (1.12). Here the additional term is a classical friction term with friction coefficient

γ, which ensures that the system reaches the thermal state defined in Eq. (1.19). In general

however, a more complex form of back-reaction operator is required to achieve this for classical-

quantum Hamiltonians H which do not commute with themselves at different points in phase

space.

1.6 Applications of classical-quantum dynamics

Aside from foundational interest in their own right, the study of effective classical-quantum

dynamics has some potential to provide practical insights into areas of physics and chemistry.
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The most direct application is in the study of continuous quantum measurement and feed-

back [42, 43]. As we show in this work, classical-quantum dynamics can be understood as de-

scribing a continuous measurement of a quantum system, in which the signal obtained is used

to apply a force to a classical system, which in turn controls the Hamiltonian and measurement

strength on the classical system. The flip-side of this is that the tools of classical-quantum

dynamics may in principle be used to study continuous measurement and feedback theory, thus

providing a basic arena for applications of our current work and for in-principle experimental

tests of the tools of classical-quantum theories.

In practice, the core aim of this work is to describe classical-quantum systems beyond

the conventional regime of continuous measurement and feedback, and in particular to describe

effective classical-quantum systems in which the interactions between the classical and quantum

sectors are direct, rather than via a series of macroscopic signal processors and amplifiers as

would be found in realisations based on continuous measurement theory. To understand which

experimentally achievable systems may be used to do this is largely beyond the scope of the

current work, but a promising application is in the study of chemical physics. Here, the high

complexity of simulating the quantum many-body system of a molecule, as well as the clear

difference in masses between the nuclei and electrons, means that an effective classical-quantum

description is both necessary and natural in this setting [19, 63, 64]. The current work thus has

the possibility of being both applied as a set of improved methods, and experimentally tested,

by studying non-adiabatic problems in molecular dynamics [65] .

Aside from these applications, the appeal of the current theory is the comparative ease at

constructing and simulating classical-quantum models. In a given setting, and a given choice

of classical-quantum Hamiltonian, one may directly simulate one of the three main classes of

dynamics that we provide, and (the statistics) of observables that result. In this sense, the

current work may have application in a number of theoretical and experimental settings where

a natural split into classical and quantum degrees of freedom has been made, such as in the

study of systems at classical-quantum boundaries [66–68], or semi-classical regimes of optics

[69–71].

Finally, in keeping with one of the earliest motivations of studying the backreaction of
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quantum systems on classical ones, the study of effective classical-quantum dynamics has some

potential to help clarify problems and provide new tools in the study of semi-classical theories

of gravity [15, 25, 41, 72, 46]. While the current work may not be directly applied without a

better understanding of how relativistic models of diffusion and decoherence may be constructed

[73], the current work provides some idea of the features, and potential solutions, a consistent

semi-classical framework based on effective classical-quantum dynamics could provide in these

contexts.

1.7 Summary of the thesis

We first establish a number of important results helping to characterise the structure of classical-

quantum dynamics, in both the trajectory and ensemble pictures. Following the same structure

as the basic qubit-particle model described in Sec. 1.5, we then study effective classical-quantum

dynamics in three distinct ways, which form the three main sections of this work. This leads

to the following four main chapters of this thesis:

Chapter 2: Classical-quantum mechanics

In the first section of this work, we establish the formalism we will use for the rest of the

thesis i.e. the formalism of classical-quantum mechanics. First providing an overview of the

key relations and results regarding the kinematics and dynamics of classical-quantum systems,

we then describe a number of technical results for understanding classical-quantum dynamics:

how to relate classical-quantum unravellings to their master equation forms (Sec. 2.3), how to

understand whether a quantum state is pure conditioned on a classical degree of freedom (Secs.

2.4 and 2.5), demonstrating that one may always “purify” a classical-quantum dynamics by

enlarging the phase space that the dynamics takes place in (Sec. 2.6), showing that classical-

quantum dynamics is able to be constructed as a general form of continuous measurement

and feedback loop (Sec. 2.7), as well as describing an alternative form of classical-quantum

dynamics with simpler sufficient and necessary conditions for positivity (Sec. 2.8)

This chapter is based on the paper [1], which is joint work with Jonathan Oppenheim and
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Zach Weller-Davies, and also includes a technical result appearing in [3], which is joint work

with Harry Miller.

Chapter 3: A consistent semi-classical dynamics

In the second chapter of this work we argue that consistent classical-quantum dynamics should

in some sense reproduce or encompass other effective theory approaches to classical-quantum

dynamics – namely the mean-field and quantum-classical Liouville approaches given in Eqs.

(1.1) to (1.3) and Eq. (1.4). Motivating first the problem from the context of semi-classical

gravity (Sec. 3.1), we begin by analysing the standard semi-classical (or mean-field) dynamics,

which we show fails the basic assumption of linearity of the classical-quantum state (Sec. 3.2).

We then demonstrate that by including additional stochastic terms that the dynamics may be

put in a completely-positive and linear form, given in Eqs. (3.8) and (3.9), which we refer to as

a “healed” semi-classical dynamics (Sec. 3.3). While these forms of dynamics were known in

earlier work for basic Hamiltonians [26], we here are able to provide general forms of dynamics,

with sufficient and necessary conditions for positivity. We show that this provides a tool to

find conditions under which the mean-field approach is approximately valid as a theory (Sec.

3.4). We also show that the dynamics when written in master equation form also describe a

consistent version of the quantum-classical Liouville equation (Sec. 3.5), which we write down

in Eq. (3.15). Finally, we conclude with some possible lessons of this formalism in the context

of semi-classical gravity (Sec. 3.6).

This chapter is based on the paper [1] , which is joint work with Jonathan Oppenheim and

Zach Weller-Davies.

Chapter 4: Effective dynamics from the classical-quantum limit

The second way we motivate classical-quantum dynamics as an effective theory is perhaps the

most important – we investigate how classical-quantum systems can arise as a limit from a

full quantum theory. Referring to such a limit as a “classical-quantum” limit, we first show

why the standard ℏ → 0 classical limit fails (Sec. 4.2), before defining a new notion involving

decoherence into the coherent state basis (Sec. 4.3). The main technical result is finding the
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general form of dynamics under this form of classical limit (Sec. 4.4), which we provide in

Eq. (4.4.5). Defining a notion of an effectively classical subsystem using the technical tools

of partial quasi-probability representations (Sec. 4.5), we show that this dynamics leads to

completely-positive evolution in a particular partial quasi-probability distribution based on the

P representation of quantum optics, and thus correctly describes effective classical-quantum

dynamics arising from a fully quantum theory (Sec. 4.6). Writing the same classical-quantum

limit dynamics in unravelling form in Eqs. (4.7.1) and (4.7.2), we then illustrate how the

limit we provide describes a notion of a stochastic classical limit (Sec. 4.8). Finally, we study

limiting properties of this dynamics using the example of a classical-quantum oscillator system

(Sec. 4.9).

This chapter is based on the paper [2], which is joint work with Jonathan Oppenheim.

Chapter 5: Thermal state preserving classical-quantum dynamics

The third method of motivating classical-quantum dynamics as an effective theory is to assume

that the combined thermal state of the classical-quantum system is preserved in time. A

natural assumption for effective descriptions such as Langevin dynamics which trace out fast

moving degrees of freedom of the thermal environment, this approach is interesting from an

effective theory perspective because we here do not need to specify which theory the effective

classical-quantum description arises from. We begin our investigation by demonstrating that

classical-quantum dynamics which preserve the combined thermal state of the classical-quantum

system necessarily obey the second law of thermodynamics (Sec. 5.2). We then show how a

large class of such dynamics may be constructed with two operators, Lz and Mxy (Sec. 5.3),

which we write down for an underdamped classical system in master equation and unravelling

forms in Eq. (5.3.17) and Eqs. (5.3.18) to (5.3.20). We illustrate these forms of thermal-state

preserving dynamics using an analytically solvable model of a single classical degree of freedom

coupled to a qubit (Sec. 5.4), and a numerically solveable model of two coupled oscillators

(Sec. 5.5). Finally we find the general form of classical-quantum dynamics that satisfy detailed

balance, which we demonstrate holds for the previously introduced dynamics in terms of Lz

and Mxy (Sec. 5.6).
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This chapter is based on the upcoming paper [3], which is joint work with Harry Miller.

Additional material:

Aside from the work that appears in the above four chapters, a number of supporting results

are included in the appendices. Of general relevance is further information on linearity and

complete positivity in classical-quantum theories (Appendix A), conditioning on the classical

degrees of freedom (Appendix B), as well as basic classical-quantum models and their simulation

(Appendix C). We also describe a number of technical steps needed for the main results of

the paper, including how the Pawula and CQ Pawula theorems may be used to check the

positivity of Liouville and quantum-classical Liouville dynamics (Appendix D), the derivation of

a classical-quantum generator using a classical-quantum limit (Appendix E) and the derivation

of the classical-quantum detailed balance conditions (Appendix M).
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Chapter 2

Classical-quantum mechanics

We start by reviewing the framework of classical-quantum mechanics i.e. the kinematics and

dynamics of classical-quantum systems. The key feature we emphasise is that there exist two

equivalent and interchangeable pictures: one in which the combined system is described by

a pair of points in a classical state space and a quantum Hilbert space, the other where the

total state of the system is described by the classical-quantum state, a hybrid object that

generalises both the classical probability distribution and the quantum density operator. We

then introduce the general class of dynamics that allow both descriptions to be used consistently

and interchangeably, taking the form of stochastic unravellings in the trajectory picture and

classical-quantum master equations in the ensemble picture. We then go on to prove a number of

technical results that help characterise these dynamics in both master equation and unravelling

pictures, which provide the main technical basis of the work of [1] and also include a technical

result important for [3].

2.1 Classical-quantum kinematics

We begin by recalling the formalism necessary to collectively describe the kinematics – i.e.

states and observables – of a combined classical-quantum system [17, 18, 15, 23, 74, 46]. The

classical degrees of freedom are characterised by points z in a classical state space M ⊆ Rn

i.e. by n real numbers z = (z1, . . . , zn). This may correspond to phase space, in the case
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of underdamped evolution, or configuration space when the evolution is overdamped. On the

other hand, the quantum system is characterised by a separable Hilbert space H, which may

correspond to single qubit or bosonic quantum systems, or many interacting quantum degrees

of freedom.

The most intuitive picture of classical-quantum systems is that on the level of individual

trajectories [15, 26, 42, 1]. Here, at any given time t, the classical system is described by a point

in classical state space zt ∈ M, while the quantum system is described by a density operator ρt

i.e. a unit trace positive semi-definite operator acting on H. Since the classical and quantum

systems may be subject to noise, one must in general allow for zt and ρt to be random variables.

Considered as functions of time, the random variables zt and ρt thus define stochastic processes,

which we denote using a subscript t and use E[ · ] to denote their expectation value as random

variables. For notational convenience, we will use zit to denote the ith element of the random

variable zt. In general, each realisation of zt and ρt generate distinct individual trajectories

in the classical and quantum state spaces, providing an intuitive picture of classical-quantum

dynamics using the standard classical and quantum frameworks.

An equivalent description at the ensemble level is provided by the classical-quantum state

[15, 74, 46]. Here, the entire information about the classical-quantum system is contained in

an operator-valued function of phase space ϱ(z, t), known as the classical-quantum state, which

must be (1) positive semi-definite at all points z, and (2) normalised to one after integrating

over the classical state space and tracing over Hilbert space i.e.
∫
dz trϱ(z, t) = 1. This object

is given physical meaning by identifying the classical probability distribution P (z, t) with its

trace

P (z, t) = trϱ(z, t), (2.1)

and identifying the quantum state conditioned on a given classical outcome z, which we denote

ρ(z, t), with its normalised value

ρ(z, t) =
ϱ(z, t)

trϱ(z, t)
, (2.2)

each of which are guaranteed to satisfy the required positivity and normalisation properties by

virtue of the two conditions on ϱ(z, t). Using these, the classical-quantum state may also be
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written as

ϱ(z, t) = ρ(z, t)P (z, t), (2.3)

which can be seen to be equivalent to the definition in terms of positivity and normalisation.

From this, we see that the classical-quantum state provides a natural generalisation of the

classical probability distribution or quantum density matrix to the combined classical-quantum

case, and thus is important for characterising both the consistency and properties of classical-

quantum dynamics.

A key feature of this framework is that the trajectory and ensemble descriptions can be

directly related to each other [1]. In particular, the two representations are related by the

fundamental expression

ϱ(z, t) = E[δ(z − zt)ρt], (2.4)

where here δ(z − zt) denotes a delta function centred on the point zt. To see how this relation

arises, we first note that the probability distribution may be written in terms of the random

variable zt as

P (z, t) = E[δ(z − zt)], (2.5)

which follows from the definition of the expectation value, while the quantum state conditioned

on (z, t) may be written as

ρ(z, t) = E[ρt|zt = z] (2.6)

where here E[ · |zt = z] denotes the expectation conditioned on the outcome zt = z. Substituting

these into the definition of ϱ(z, t) given in (2.3), one sees that the two expectation values may

be combined into one due to the presence of the delta function, thus recovering the expression

(2.4).

A subtle but important conceptual feature of classical-quantum systems is that the state

assigned to describe the quantum system depends on the degree of conditioning on the classical

system [1]. Taking first the extreme case, where no information about the classical system is

available, the quantum system is described by the unconditioned state ρ(t), which is found by

integrating over the classical degrees of freedom in the classical-quantum state

ρ(t) =

∫
dz ϱ(z, t). (2.7)
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Using (2.4), one can check that this may be written in the trajectory picture simply as ρ(t) =

E[ρt]. An intermediate case occurs when the only final state of the classical system z is known,

which gives the zt = z conditioned quantum state given in (2.2) and (2.6). Finally, one may

consider the other extreme case, where the entirety of the classical trajectory {zs}s≤t is known

and conditioned upon. Since any remaining ambiguity in ρt at this point would not be physical

(see Appendix B), we will always choose to represent dynamics such that ρt corresponds to the

state of the quantum system conditioned on the entire classical trajectory up to time t i.e.

ρt = E[ρt|{zs}s≤t]. (2.8)

This choice ensures that the state ρt always has a physical meaning by virtue of the reality

of the classical trajectories [75, 1]. In the special case that ρt is pure, individual realisations

of pure states are physically well-defined and unamibiguous, and we shall denote the quantum

system here using the corresponding vector in Hilbert space |ψ⟩t. This may be understood as

directly analogous to the case of perfectly efficient continuous quantum measurement, where

the quantum system remains pure conditioned on the classical measurement signal (c.f. Section

2.7).

Finally, turning to observables, we note that we may define expectation values on both the

level of trajectories [42] and on the level of the ensemble [17, 18, 15]. To start with, we define a

classical-quantum observable to be a Hermitian operator-valued function of phase space, which

we shall denote A(z), B(z), . . . etc. Since this defines a quantum observable, one may define a

stochastic quantity simply by taking the standard quantum expectation value with respect to

a given realisation of zt and ρt

⟨A(z)⟩t = tr[A(zt)ρt]. (2.9)

Referring to this as the trajectory expectation value of A(z), a given realisation of this random

variable corresponds physically to averaging the outcomes of A(z) measurements made on the

quantum system when a specific classical trajectory occurs. On the other hand, we may also

define the ensemble expectation value of a classical-quantum observable by as

⟨⟨A(z)⟩⟩ =
∫
dz tr[A(z)ϱ(z)], (2.10)

where the double angled brackets indicate that here one must integrate over the classical state
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space and trace over the quantum Hilbert space. To relate the trajectory and ensemble expec-

tation values, we may substitute (2.4) into the definition of the ensemble expectation value to

see that

⟨⟨A(z)⟩⟩(t) = E[⟨A(z)⟩t], (2.11)

i.e. the ensemble expectation value of a classical-quantum observable at time t is equal to the

mean value of the corresponding trajectory expectation value.

2.2 Classical-quantum dynamics

Having defined the trajectory and ensemble descriptions, characterised either by zt and ρt or

by the classical-quantum state ϱ(z, t), we now turn to studying dynamics in these two pictures,

which correspond to stochastic unravellings and master equations respectively.

We start by discussing which properties of classical-quantum dynamics are necessary for

the time evolution to be consistent with the trajectory and ensemble pictures of classical-

quantum systems – see Appendix A for further details. Firstly, we note that if a trajectory

level picture exists in terms of zt and ρt, then the corresponding ensemble level classical-quantum

state ϱ(z, t) is necessarily positive semi-definite everywhere in phase space. For the trajectory

picture to remain valid over time, the dynamics must therefore preserve the positivity of the

classical-quantum state. Moreover, for this to be valid when applied to just part of a quantum

system, this dynamics must also be completely-positive. Finally, we note that since the classical-

quantum state has a statistical interpretation, it is important to consider dynamics that is linear

in ϱ(z, t), just as one does when considering dynamics of either quantum density operators ρ(t)

or classical probability distributions P (z, t).

Alongside the necessary assumptions of complete-positivity and linearity, we will make two

additional assumptions on the class of dynamics we work with. Firstly, we will focus our

attention on dynamics that are Markovian in the classical-quantum state, consistent with the

vast majority of proposed classical-quantum dynamics [37]. Secondly, to consistently describe

classical degrees of freedom such as position and momentum, we additionally assume that the

dynamics generate trajectories that are continuous in the classical degrees of freedom.
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To write down the general form of classical-quantum dynamics in the ensemble picture, we

use the formalism of classical-quantum master equations. First developed in [17, 15, 25], one

may write their generic form as
∂ϱ

∂t
= Lϱ, (2.12)

where L is a classical-quantum superoperator that acts as the generator of dynamics. Under the

assumptions made above, i.e. that the dynamics is completely-positive, linear, Markovian and

continuous in phase space, the general form of this generator is characterised by the CQ Pawula

theorem [45, 46]. Denoting by Lα a set of p operators acting on the Hilbert space, and assuming

summation over repeated Roman letters i, j = 1, . . . , n or Greek letters α, β = 1, . . . , p, we may

write this generator in the form

Lϱ =− ∂

∂zi
(DC

1,iϱ) +
1

2

∂2

∂zi∂zj
(D2,ijϱ)

− i[H̄, ϱ] +Dαβ
0

(
LαϱL

†
β − 1

2
{L†

βLα, ϱ}+
)

− ∂

∂zi

(
Dα

1,i
∗Lαϱ+ ϱDα

1,iL
†
α

)
.

(2.13)

The first line describes purely classical dynamics, with the classical drift vector given by DC
1 , a

real vector of length n, and the diffusion matrix denoted D2, a real positive semi-definite n×n

matrix. The purely quantum dynamics is determined by the Hermitian operator H̄ describing

the unitary evolution and the complex positive semi-definite p × p decoherence matrix D0.

Finally, the quantum back-reaction term appears on the final line, controlled by the n × p

matrix D1 with elements denoted Dα
1,i. All of the D matrices and operators H and Lα may

have dependence on z.

For this dynamics to be completely-positive, two positivity conditions must be satisfied.

The first is known as the decoherence-diffusion trade-off

D0 ⪰ D†
1D

−1
2 D1, (2.14)

which states that when the back-reaction on the classical system is non-zero, there must be

a minimum amount of decoherence and diffusion in the system. Here D−1
2 denotes the pseu-

doinverse of the diffusion matrix D2, and A ⪰ B is shorthand notation for the statement that

A − B ⪰ 0 i.e. the matrix A − B is positive semi-definite. The second positivity condition
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controls the degrees of freedom in which diffusion is necessary, and is written as

(I−D2D
−1
2 )D1 = 0. (2.15)

where here I denotes the n × n identity matrix. When the operators Lα are orthogonal and

traceless, positivity conditions (2.14) and (2.15) provide sufficient and necessary conditions for

positivity, but are sufficient to establish positivity for arbitrary Lα.

This dynamics may also be written in the trajectories picture using the formalism of classical-

quantum unravellings. Built using techniques from continuous quantum measurement theory

[42], and appearing as a special case in [26], the general form of classical-quantum unravellings

was provided in [1] (see also [76] for a later discussion). Defining W i
t to be a component of an

n dimensional Wiener process with corresponding increments dW i
t satisfying dW i

t dW
j
t = δijdt,

we may write the general form of classical-quantum unravelling as the following set of stochastic

differential equations

dzit =D
C
1,idt+ ⟨Dα

1,i
∗Lα +Dα

1,iL
†
α⟩dt+ σijdW

j
t

(2.16)

and

dρt =− i[H̄, ρt]dt

+Dαβ
0 (LαρL

†
βdt−

1

2
{L†

βLα, ρt}+)dt

+Dα
1,j

∗σ−1
ij (Lα − ⟨Lα⟩)ρtdW i

t

+Dα
1,jσ

−1
ij ρt(L

†
α − ⟨L†

α⟩)dW i
t

(2.17)

where here in the above ⟨A⟩ denotes tr[Aρt] i.e. the trajectory expectation value given in

(2.9). As before, the D coefficients, H̄ and L may all depend on zt, and this dynamics must

satisfy both (2.14) and (2.15) to be well-defined. We show in Section 2.4 using properties of

the pseudoinverse σ−1 that one may replace all of the appearances of dW i
t in Eq. (2.17) with

dzt,i, verifying that ρt satisfies Eq. (2.8).

A special limit of the dynamics occurs when the decoherence in the system is minimal. In

particular, when the decoherence-diffusion trade-off is saturated

D0 = D†
1D

−1
2 D1, (2.18)
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one can show that the dynamics maintains the purity of initial pure states, which we reproduce

in Section 2.3. In this case, one may rewrite the quantum part of dynamics entirely in terms

of a pure quantum state |ψ⟩t, which takes the form

d|ψ⟩t =− iH|ψ⟩tdt

+Dα0
1,jσ

−1
ij (Lα − ⟨Lα⟩)|ψ⟩tdWi

− 1

2
Dαβ

0 (L†
β − ⟨L†

β⟩)(Lα − ⟨Lα⟩)|ψ⟩tdt

+
1

2
Dαβ

0 (⟨L†
β⟩Lα − ⟨Lα⟩L†

β)|ψ⟩tdt.

(2.19)

The condition (2.8) guarantees that |ψ⟩t may indeed be understood to be the quantum state

conditioned on {zs}s≤t i.e. that the state |ψ⟩t is uniquely and unambiguously determined from

the observations of the classical trajectory up to time t. The two representations for pure states

(2.19) and (2.17) can be shown to be equivalent using the standard Ito rules [42].

Since classical-quantum dynamics may be equipped with a notion of purity, it is natural

to ask whether they may be purified, in the same way that quantum mechanics is purified by

the church of the larger Hilbert space [77]. In Section 2.6 we show this is possible for any

classical-quantum dynamics i.e. a dynamics with D0 ̸= D†
1D

−1
2 D1 may be embedded in a larger

Hilbert space or phase space such that D′
0 = D†

1D
−1
2 D1 is satisfied and thus trajectories of pure

quantum states remain pure condiitoned on the available classical degrees of freedom. We refer

to this latter case as the temple of the large phase space and demonstrate its utility in Chapter

5.

Finally, we note an alternative characterisation of the form of classical-quantum dynam-

ics. Letting Ki denote phase-space dependent operators associated to each classical degree

of freedom zi, L̃α denote traceless phase-space Lindblad operators, and G denoting a generic

phase-space dependent operator, we may write the general classical-quantum generator in the
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form

L(ϱ) =− i

ℏ
[G, ϱ]− ∂

∂zi

(
Kiϱ+ ϱK†

i

)
+

1

2

∂2

∂zi∂zj
(D2,ijϱ)

+D−1
2,ij

(
KiϱK

†
j −

1

2
{K†

jKi, ϱ}+
)

+ L̃αϱL̃
†
α − 1

2
{L̃†

αL̃α, ϱ}+

(2.20)

which is completely positive if and only if

D2 ⪰ 0, G = G† (2.21)

and there exists a complex-valued phase space dependent vector v of length n such that if K

denotes the operator valued vector K = (K1, . . . ,Kn)
T then

(I−D−1
2 D2)K = v1. (2.22)

We show the equivalence of this generator and its positivity conditions to Eqs. (2.13) to (2.15)

in Section 2.8. Aside from a somewhat simpler form than Eq. (2.13), this form proves useful

when studying the positivity conditions for systems where the operators determining the back-

reaction depend on phase space and may naturally include components proportional to the

identity operator.

2.3 Equivalence of unravelling and master equation dynamics

In this section, we prove that equations (2.16) and (2.17) give rise to the continuous CQ master

equation (2.13). To make this section clearer, we denote the stochastic classical variable using

an upper-case Zt. To start with, we note that by the definition ϱ(z, t) = E[δ(Zt − z)ρt], the

dynamics of Zt and ρt induce the following evolution on the CQ state

dϱ(z, t) =
∂ϱ(z, t)

∂t
dt = E[d(δ(Zt − z)ρt)]. (2.23)

One must therefore calculate

E[d(δ(Zt − z)ρt)] = E[dδ(Zt − z)ρt + δ(Zt − z)dρt + dδ(Zt − z)dρt]. (2.24)
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For clarity we shall go through each term individually. Using Ito’s lemma with Eq. (2.16) the

first term in Equation (2.24) reads

E[dδ(Zt − z)ρt] =E[
∂

∂Zi
[δ(Zt − z)]ρt(D

C
1,i(Zt, t) + ⟨Dα∗

1,i(Zt, t)Lα +Dα
1,i(Zt, t)L

†
α⟩)]dt

+ E[
1

2

∂2

∂Zi∂Zj
[δ(Zt − z)]ρtσik(Zt, t)σ

T
kj(Zt, t)]dt.

(2.25)

To simplify Equation (2.25) we can use some well known facts about the delta functional. Using

the two identities ∂Ziδ(Z−z) = −∂ziδ(Z−z) and f(Z)δ(Z−z) = f(z)δ(Z−z) for any function

f , the right hand side of Equation (2.25) becomes

− ∂

∂zi
E[δ(Zt − z)ρt(D

C
1,i(z) + ⟨Dα∗

1,i(z)Lα +Dα
1,i(z)L

†
α)⟩]dt+

1

2

∂2

∂zi∂zj
E[δ(Zt − z)ρtD2,ij(z)]dt.

(2.26)

The second term in Equation (2.24) is simpler to calculate and gives the pure quantum evolution

terms

E[δ(Zt − z)dρt] = −i[H̄, ϱ] +Dαβ
0

(
LαϱL

†
β − 1

2
{L†

βLα, ϱ}+
)
dt. (2.27)

For the final term in Equation (2.24), only the second order terms dW 2 = dt are relevant. Using

the second positivity condition (2.15), i.e. that σσ−1D1 = D1, then

E[dδ(Zt−z)dρt] = E[
∂

∂zi
[δ(Zt−z)]ρtDα∗

1,i(Zt, t)(Lα−⟨Lα⟩)+Dα
1,i(Zt, t)(L

†
α−⟨L†

α⟩))]dt. (2.28)

Using again the standard properties of the delta function to bring the derivative outside the

expectation, we find that the final term takes the form

E[dδ(Zt − z)dρt] =− ∂

∂zi
(Dα∗

1,i(z)Lαϱ(z) +Dα
1,iϱ(z)L

†
α)dt

+
∂

∂zi
E[δ(Zt − z)ρt(⟨Dα∗

1,i(z)Lα +Dα
1,i(z)L

†
α)⟩]dt,

(2.29)

where here we have used the definition of the classical-quantum state ϱ(z, t) = E[δ(Zt − z)ρt].

Summing the three contributions, we find that terms containing products of expectation values

and ρt cancel to give a linear equation of motion for ϱ(z, t) given by that of the continuous

master equation in Equation (2.13).

2.4 Proof of ρt = E[ρt|{zs}s≤t]

Having demonstrated the equivalence of the unravelling and master equations, it remains to

show that the state of the quantum system is uniquely determined when conditioning on the

38



classical trajectory i.e. ρt = E[ρt|{zs}s≤t]. It is worth first noting that in the case when σ is

invertible this is particularly intuitive – observations of dzt,i here uniquely determine the noise

processes dW i
t , and thus Equation (2.17) may be integrated to uniquely determine the state at

any later time.

To prove this for all real-valued σ it is convenient to first rewrite the dynamics in a vectorised

form. Defining the vectors dzt = (dz1t , . . . , dz
n
t )

T , dWt = (dW 1
t , . . . , dW

n
t )

T for the classical

stochastic processes and L = (L1, . . . , Lp)
T , L∗ = (L†

1, . . . , L
†
p)T for the quantum Lindblad

operators, the dynamics takes the form

dzt = DC
1 dt+ ⟨D∗

1L+D1L
∗⟩dt+ σdWt (2.30)

dρt =− i[H, ρt]dt+ LTD0ρtL
∗dt− 1

2
{L†DT

0 L, ρt}+dt

+ dW T
t σ

−1D∗
1(L− ⟨L⟩)ρt + dW T

t σ
−1D1ρt(L

∗ − ⟨L∗⟩).
(2.31)

To see that the dynamics indeed satisfies ρt = E[ρt|{zs}s≤t}, we first take the transpose of

(2.30) and multiply it by (σσT )−1 to find that

dzTt (σσ
T )−1 = dW T

t σ
T (σσT )−1 + (DC

1 + ⟨D∗
1L+D1L

∗⟩)Tdt (σσT )−1 (2.32)

However, by the properties of the generalised inverse, σ−1 = σT (σσT )−1 for real-valued σ. As

a consequence, we find that

dW T
t σ

−1 =
[
dzTt − (DC

1 + ⟨D∗
1L+D1L

∗⟩)Tdt
]
(σσT )−1 (2.33)

which may be inserted into equation (2.31) to give

dρt =− i[H, ρt]dt+ LTD0ρtL
∗dt− 1

2
{L†DT

0 L, ρt}+dt

+
[
dzTt − (DC

1 + ⟨D∗
1L+D1L

∗⟩)Tdt
]
(σσT )−1D∗

1(L− ⟨L⟩)ρt

+
[
dzTt − (DC

1 + ⟨D∗
1L+D1L

∗⟩)Tdt
]
(σσT )−1D1ρt(L

∗ − ⟨L∗⟩).

(2.34)

Since the evolution of ρt is determined completely by that of zt, this demonstrates that indeed

ρt is unique conditioned on the classical trajectory and thus that ρt = E[ρt|{zs}s≤t}.
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2.5 Conditions for purity preservation

To determine the conditions for purity, we first must calculate dtr{ρ2t } for an initially pure

quantum state. The Ito rules imply that

dtr{ρ2t } = tr{2ρtdρt + dρtdρt} (2.35)

into which one may substitute (2.31). Since the Hamiltonian and stochastic terms first order in

dρt vanish under the trace, and only the stochastic terms are relevant at second order, we find

dtr{ρ2t } =2tr{ρtLTD0ρtL
∗dt− 1

2
ρt{L†DT

0 L, ρt}+dt}

+ tr{dW T
t σ

−1D∗
1(L− ⟨L⟩)ρt dW T

t σ
−1D∗

1(L− ⟨L⟩)ρt}

+ tr{dW T
t σ

−1D∗
1(L− ⟨L⟩)ρt dW T

t σ
−1D1ρt(L

∗ − ⟨L∗⟩)}

+ tr{dW T
t σ

−1D1ρt(L
∗ − ⟨L∗⟩) dW T

t σ
−1D∗

1(L− ⟨L⟩)ρt}

+ tr{dW T
t σ

−1D1ρt(L
∗ − ⟨L∗⟩) dW T

t σ
−1D1ρt(L

∗ − ⟨L∗⟩)}.

(2.36)

Since for pure states tr{AρtBρt} = tr{Aρt}tr{Bρt}, the terms containing D1 twice or D∗
1 twice

vanish, and the mixed terms may be rearranged into one term by taking the transpose on part

of each expression and using the cyclic property of the trace. Doing so gives

dtr{ρ2t } =2tr{ρtLTD0ρtL
∗dt− 1

2
ρt{L†DT

0 L, ρt}+dt}

+ 2tr{ρt(L† − ⟨L†⟩)DT
1 σ

T−1
dWtdW

T
t σ

−1D∗
1(L− ⟨L⟩)ρt}.

(2.37)

Using again the relation tr{AρtBρt} = tr{Aρt}tr{Bρt} and the fact that the noise vectors

satisfy dWtdW
T
t = Idt, the above expression reduces with some rearranging to

dtr{ρ2t } =2⟨L†⟩DT
0 ⟨L⟩ dt− 2⟨L†DT

0 L⟩ dt

+ 2⟨L†DT
1 σ

T−1
σ−1D∗

1L⟩ dt− 2⟨L†⟩DT
1 σ

T−1
σ−1D∗

1⟨L⟩ dt.
(2.38)

To check the conditions for this to equal zero, we note that since D0 ⪰ D†
1(σσ

T )−1D1 we can

write DT
0 −DT

1 σ
T−1

σ−1D∗
1 = B†B and so, defining a new vector of operators L̄ = BL rewrite

the above as

dtr{ρ2t } = 2

p∑
α=1

(⟨ψ|L̄†
α|ψ⟩⟨ψ|L̄α|ψ⟩ − ⟨ψ|L̄†

αL̄α|ψ⟩⟨ψ|ψ⟩)dt. (2.39)
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Since each term in the above sum is less than or equal to zero by the Cauchy-Schwartz inequality,

one can check that dtr{ρ2t } ≤ 0 as expected. All terms are zero if and only if the L̄α|ψ⟩ ∝ |ψ⟩,

but since the L̄α are traceless and this must hold for all |ψ⟩, it must be the case that L̄ = BL = 0.

Thus B is zero and hence we see that dtr{ρ2t } = 0 for an arbitrary pure state ρt if and only

if DT
0 = DT

1 σ
T−1

σ−1D∗
1. Since D0 is Hermitian and σT

−1
σ−1 = (σσT )−1 is real, taking the

complex conjugate shows that the dynamics keeps quantum states pure if and only if the

decoherence-diffusion trade-off [78] is saturated such that D0 = D†
1(σσ

T )−1D1.

2.6 The church of the larger Hilbert space and the temple of

the larger phase space

Recall the decoherence-diffusion trade-off of Equation (2.14),

D0 ⪰ D†
1(σσ

T )−1D1 (2.40)

We have thus far seen that any classical-quantum dynamics of equations (2.16) and (2.17) that

saturate the trade-off such that D0 = D†
1(σσ

T )−1D1, has the property that when initially pure,

both ρt and the quantum state conditioned on the classical trajectory ρ(t|σ{zs}s≤t) remain

pure. We now demonstrate that any dynamics may be purified by a dynamics that saturates

the trade-off in either an enlarged quantum Hilbert space or an enlarged classical phase space.

Note that this is separate from the question of whether the dynamics may be considered within

an entirely quantum theory, and thus purified in a Hilbert space alone – this is instead the

content of Chapter 4.

Consider some general dynamics given by (2.16) and (2.17). Defining D̃0 = D0−D†
1(σσ

T )−1D1,

then since the decoherence-diffusion trade-off is satisfied, this object must be positive semi-

definite. As such, we are free to consider D†
1(σσ

T )−1D1 and D̃0 to be two distinct components

of the decoherence for the classical-quantum dynamics. Since the first component explicitly

saturates the trade-off, the D̃0 component represents the additional decoherence that prevents

the quantum state being pure at all times when conditioned on the classical degrees of freedom.

The idea of purifying the system will be to find some additional degrees of freedom, quantum or

classical, such that when they are traced out they give rise to this additional decoherence. The
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evolution then saturates the trade-off in an enlarged state space, and thus has a description in

terms of pure states |ψ⟩t.

To purify the dynamics using the conventional method of an enlarged Hilbert space, we first

note that the positive semi-definite matrix D̃0(zt) generates the following map on the quantum

state at each time step δt along a trajectory:

ρt+δt = ρt + D̃αβ
0 (zt)LαρtL

†
βδt−

1

2
D̃αβ

0 (zt){L†
βLα, ρt}+δt. (2.41)

Exploiting the singular value decomposition D̃0 = V ΣV † where V is unitary and Σ is a diagonal

matrix with non-negative elements dγ for γ = 1, . . . , rank D̃0, we may define the operators

Mγ(zt) =


√
dγ
∑

α V
α
γ Lα

√
δt γ = 1, . . . , rank D̃0

I − 1
2D̃

αβ
0 L†

βLαδt γ = rank D̃0 + 1

(2.42)

to write the map as

ρt+δt =

rank D̃0+1∑
γ=1

Mγ(zt)ρtM
†
γ(zt). (2.43)

The map is therefore explicitly of the Kraus form and therefore CPTP. It therefore has a

representation in terms of a unitary U that acts on the quantum system in question and an

additional environment Hilbert space HE of dimension d ≥ rank D̃0 + 1. Specifically, if the

unitary acts on the system and a reference state of the environment |0⟩ as

U |ψ⟩|0⟩ =
rank D̃0+1∑

γ=1

M(zt)γ |ψ⟩|γ⟩, (2.44)

then tracing out the environment gives back the map (2.41) (for more details, see for example

[77]). Since this is true for every δt, it must be the case that we can fully describe the evolution

due to D̃0 by pure states in an enlarged Hilbert space. The remaining dynamics not generated

by D̃0 is pure conditioned on the classical degrees of freedom, and thus the whole dynamics

saturates the decoherence-diffusion trade-off in this enlarged space. Note that a more realistic

purification model generated by tracing out a bath would have a Hamiltonian and therefore be

explicitly of the form of Equations (2.16) and (2.19). However, note that in this case one would

also need to make a number of approximations to regain the Lindblad form of (2.41).
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It is also possible to purify the dynamics by introducing additional classical degrees of

freedom, and, in contrast to the quantum case, this leads to an explicit model of purification

without need for approximation. Considering again D̃0 = D0 −D†
1(σσ

T )−1D1 on the original

Hilbert space (i.e. the elements D̃αβ
0 refer to the same set of Lα as in (2.16) and (2.17)), we

now consider an enlarged phase space M×M̃ where M̃ has phase space degrees of freedom z̃i

for i = 1, . . . , rankD̃0. We then consider the following dynamics:

dzit = (DC
1,i(zt) + ⟨Dα∗

1,i(zt)Lα +Dα
1,i(zt)L

†
α⟩)dt+ σij(zt)dWj (2.45)

dz̃it = ⟨D̃α0
1,i(zt)Lα + D̃0α

1,i(zt)L
†
α⟩dt+ σ̃ij(zt)dW̃j (2.46)

and

dρt = −i[H(zt), ρt]dt+Dαβ
0 (zt)LαρL

†
βdt−

1

2
Dαβ

0 (zt){L†
βLα, ρt}+dt

+Dα0
1,jσ

−1
ji (zt)(Lα − ⟨Lα⟩)ρtdWi +D0α

1,jσ
−1
ji (zt)ρt(L

†
α − ⟨L†

α⟩)dWi

+ D̃α0
1,j σ̃

−1
ji (zt)(Lα − ⟨Lα⟩)ρtdW̃i + D̃0α

1,j σ̃
−1
ji (zt)ρt(L

†
α − ⟨L†

α⟩)dW̃i,

(2.47)

Here, z̃it denote the stochastic processes corresponding to degrees of freedom in M̃, and have

associated noise processes dW̃ i
t . D̃1 and σ̃ can be seen in (2.46) to correspond to the drift and

diffusion in the enlarged space, and satisfy the same requirements that D1 and σ do. Note

that these are assumed to solely depend on the degrees of freedom in the original classical

phase space M. Packaging up the dynamics for zit and z̃it as a single classical vector over the

whole phase space, these equations are of the form of Equations (2.16) and (2.17) and are thus

Markovian and linear on the combined classical-quantum state.

We will then impose the condition that D̃†
1(σ̃σ̃

T )−1D̃1 = D̃0. While there may be many

ways of satisfying this in general, one simple and explicit construction is to consider D̃1 =
√
D̃0,

the principle square root of D̃0. This guarantees that rank D̃1 = rank D̃0, and is thus a valid

D̃1 by the earlier choice of dimension of M̃. Since
√
D̃0

†√
D̃0 = D̃0, it suffices for (σ̃σ̃T )−1 = I

and so we see that we can simply choose σ̃ = I. It thus follows that we can always choose a

suitable D̃1 and σ̃ such that D̃†
1(σ̃σ̃

T )−1D̃1 = D̃0.

With this condition satisfied, it is easy to check that the full decoherence-diffusion trade-off
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is saturated for the constructed dynamics. In particular, one has that

D0 =

D1

D̃1

†(σσT )−1 0

0 (σ̃σ̃T )−1

D1

D̃1

 , (2.48)

which is satisfied by virtue of the definition of D̃0 and the above constraints on D̃1 and σ̃. Since

the trade-off is saturated, it follows that the dynamics of (2.47) are purity preserving by the

results of Appendix 2.3. Thus both ρt and the quantum state conditioned on trajectories in

the full phase space ρ(t|{zs, z̃s}s≤t) remain pure if they start pure.

To see that the above dynamics on M×M̃ define a purification of the starting dynamics

(2.16) and (2.17) on M, consider an observer only with access to the degrees of freedom on M.

Denoting the conditioned quantum state as ρ(t|{zs}s≤t), at each time step one must average ρt

over the possible realisations of z̃t. Since the evolution of ρt depends only on degrees of freedom

in M, the only information lost is the realization of the noise processes dW̃j , and thus the

evolution of the conditioned state dρ(t|{zs}s≤t) = E[dρt|{zs}s≤t] is computed by averaging over

these noise processes. Mathematically equivalent to the formalism in continuous measurement

theory of having multiple observers or inefficient detection [42], it follows from the rules of Ito

calculus that E[ρtdW̃ ] = 0, and thus we see that the dynamics of ρ(t|{zs}s≤t) are exactly given

by equation (2.17). It therefore follows that we recover the dynamics (2.16) and (2.17) when

we trace out the portion of the phase space M̃, as originally claimed.

2.7 Continuous classical-quantum dynamics as continuous mea-

surement

Given the similarity of the formalism of the general classical-quantum unravellings appearing

in (2.16) and (2.17) to the formalism of continuous quantum measurement theory [42], it is

natural to ask whether the two may be related in general. In this section we demonstrate that

this is indeed the case. The basic idea is that any continuous classical-quantum dynamics may

be understood as a continuous measurement of a quantum system, where the measurement

depends on the configuration of the classical system and the measurement signal is used to

apply a force back on the classical system. This idea has its origins in [41], with proofs of the
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general case appearing in [1] and [79].

To see this technically, we use the general formalism of continuous measurements given

in [80]. Here the continuous measurement may be understood a series of POVMs given by

the Kraus operators {ΩJ}, where J = (J1, . . . , Jn) is a vector of real numbers parametrising

the outcomes of the POVM, which is performed in the interval [t + dt). The outcome of the

measurement at time t will be labeled by the numbers J1
t . . . J

k
t , and we shall assume that this

determines the force on the classical system. After a time dt, this means that the change in the

classical system is given dzit = DC
1,idt + J i

tdt, where here DC
1 = DC

1 (zt) is a real valued vector

determining the independent dynamics of the classical system. The key assumption is that, in

addition to this effect of the quantum system on the classical, we also allow the classical system

to determine the quantum evolution by allowing the measurement {ΩJ1...Jn} at time t to depend

on zt, i.e, we allow for the measurement to depend on the current state of the classical system,

which we write as {ΩJ(zt)}. Taking then the POVM given

ΩJ(zt) = 1− iH(zt)dt−
1

2
Dαβ

0 (zt)L
†
βLαdt+ LαD

α∗
1,i(zt)(D

−1
2 )ij(zt)J

j
t dt, (2.49)

we see that this defines a valid POVM if and only the normalization conditions∫
dµ0(J)Ω

†
JΩJ = 1, (2.50)

are satisfied. Picking the measure dµ0(J) to be a multivariate Gaussian such that∫
dµ0(J)(J

i
tdt) = 0,

∫
dµ0(J)(J

i
tdt)(J

j
t dt) = (σσT )ij = D2,ijdt, (2.51)

the above condition is satisfied provided we take D0 = D†
1D

−1
2 D1. Calculating the mean of J i

t

we find that ∫
dµ0(J)tr[ρΩ

†
JΩJ ]J

i
t = ⟨Dα

1,i(zt)L
†
α +Dα∗

1,i(zt)Lα⟩+O(dt2), (2.52)

while the second moments give the variance as (σσT )ij . As such, the statistics of the measure-

ment outcomes can be described by the stochastic differential equation

J i
tdt = ⟨Dα

1,i(zt)L
†
α +Dα∗

1,i(zt)Lα⟩dt+ σij(zt)dWj , (2.53)

and thus that the evolution of the classical system is given by

dzit = DC
1 (zt)dt+ ⟨Dα

1,i(zt)L
†
α +Dα∗

1,i(zt)Lα⟩dt+ σij(zt)dW
j
t , (2.54)
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as given in (2.16). To see how to arrive at the quantum evolution (2.17), we note that the

quantum state conditioned on the measurement outcome J = J1 . . . Jn is given

ρ′ =
ΩJρΩ

†
J

tr[ΩJρΩ
†
J ]
, (2.55)

which upon substitution of ΩJ and J i
tdt one finds the change in the state given by the dρ given in

the continuous classical-quantum unravelling which saturates the decoherence diffusion trade-

off i.e. Eq. (2.17) with D0 = D†
1D

−1
2 D1. To obtain the general form of master equation, as in

(2.17), one can simply use the temple of the larger phase space i.e. take this proof to hold in

an enlarged phase space, before tracing over the additional classical degrees of freedom. Any

classical-quantum master equation which does not saturate the trade-off can thus be interpreted

as a continuous measurement process where some measurement outcomes are not recorded i.e.

an inefficient quantum measurement process [42].

Finally, we note that this interpretation of classical-quantum dynamics as a continuous

measurement process provides a particularly simple interpretation of the decoherence-diffusion

trade-off D0 ⪰ D†
1D

−1
2 D1. Here we see that the more weakly we measure the quantum sys-

tem, the less decoherence we necessarily cause on the system – but the corresponding weaker

measurement has greater uncertainty in its outcomes, and thus leads to greater diffusion in the

classical system.

2.8 An equivalent general form of classical-quantum dynamics

For the study of general classical-quantum dynamics, it is useful to have a form of classical-

quantum dynamics for which we know both the sufficient and necessary conditions for positivity.

However, using the form of dynamics provided in Eq. (2.13), written in terms of a fixed basis of

traceless and orthonormal operators Lα, is not convenient for computing the form of dynamics

satisfying generic properties. This is because any operator Lα that includes terms proportional

to the identity will necessarily not be included in this form, even if this is a natural choice, such

as for the {zi, H}, LH
z and Lz operators introduced in the following chapters.

Fortunately, one is able to characterise the completely positive sufficient and necessary
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conditions by an alternative representation of the general form of dynamics, which is given

∂ϱ

∂t
=− i[S, ϱ]− ∂

∂zi

(
Kiϱ+ ϱK†

i

)
+

1

2

∂2

∂zi∂zj
(D2,ijϱ) +D−1

2,ij

(
KiϱK

†
j −

1

2
{K†

jKi, ϱ}+
)

+ D̃αβ
0

(
LαϱL

†
β − 1

2
{L†

βLα, ϱ}+
)

(2.56)

and is completely positive if and only if

D̃0 ⪰ 0, D2 ⪰ 0, S = S†, (2.57)

and there exists a phase space dependent vector v of length n such that if K denotes the

operator valued vector K = (K1, . . . ,Kn)
T then

(I−D−1
2 D2)K = v1. (2.58)

Here the Lα are an arbitrary set of traceless and orthogonal operators that may have phase

space dependence.

To see that this dynamics is equivalent to the general form of dynamics above, we note that

defining

Ki =
1

2
DC

1,i1+ (Dα
1,i)

∗Lα (2.59)

brings the generator of Eq. (2.13) into the form of Eq. (2.56) when

S = H̄ − i

4
DC

1,iD
−1
2,ij(D

α
1,j

∗Lα −Dα
1,jL

†
α) D̃0 = D0 −D†

1D
−1
2 D1. (2.60)

To see that the above conditions are necessary and sufficient for complete positivity, we note

that S is Hermitian iff H̄ is Hermitian, and that D̃0 by definition is positive semi definite iff

D0 ⪰ D†
1D

−1
2 D1. Finally, when (I−D2D

−1
2 )D1 = 0 then

(I−D2D
−1
2 )K =

1

2
(I−D2D

−1
2 )DC

1 1+ (I−D2D
−1
2 )D1L =

1

2
(I−D2D

−1
2 )DC

1 1 (2.61)

i.e. v = 1
2(I−D2D

−1
2 )DC

1 . Conversely, if (I−D2D
−1
2 )K = v1, then we see that

1

2
(I−D2D

−1
2 )DC

1 1+ (I−D2D
−1
2 )D1L = v1 (2.62)

which since the Lα are linearly independent and traceless, implies that (I−D2D
−1
2 )D1 = 0.
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Finally, to find the form of the additional decoherence as given in Eq. (2.20), we note that

when D̃0 is positive semi-definite, one may diagonalise the dissipator to write it in terms of a set

of traceless (but not necessarily orthonormal) operators L̃α. These two forms are equivalent,

since when written in diagonal form, one may always rewrite in a non-diagonal form, with

positive semi-definite D̃0, by decomposing each L̃α in terms of an orthonormal basis.

2.9 Discussion

The main technical results of this chapter can thus be summarised as follows: (1) proving the

equivalence of general classical-quantum unravellings and master equations; (2) showing that

D0 = D†
1D

−1
2 D1 implies the preservation of purity of the quantum state; (3) demonstrating that

the unravelling satisfies ρt = E[ρt|{zs}s≤t]; (4) proving that any classical-quantum dynamics

may be purified using the church of the larger Hilbert space or the temple of the large phase

space; (5) showing the equivalence of the classical-quantum dynamics with continuous mea-

surement and feedback; and (6) providing an alternative characterisation of classical-quantum

dynamics in terms of phase-space dependent, non-zero trace operators with known sufficient

and necessary conditions for positivity.

Together, the results help to provide some basic intuition of the physics behind classical-

quantum dynamics. Continuous, completely-positive and linear master equation pictures of

classical-quantum dynamics may always be unravelled into continuous trajectories in terms of

zt and ρt. When the decoherence is minimal in the quantum system, i.e. D0 = D†
1D

−1
2 D1,

the information gained from observing the classical trajectory is always sufficient to keep any

initially pure quantum states pure. When the dynamics does not satisfy D0 = D†
1D

−1
2 D1, the

additional decoherence D̃0 = D0−D†
1D

−1
2 D1 can be thought of excess decoherence due to either

correlations with another quantum system or from tracing out additional classical degrees of

freedom. Finally, since the dynamics can be thought of in terms of continuous measurement

and feedback, we see that typical classical-quantum interactions can be heuristically thought

of as a process by which the classical system measures the quantum one, causing some collapse

of the quantum system in the process.
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Chapter 3

A consistent semi-classical dynamics

In this short chapter, we discuss how the preceding formalism of general classical-quantum

dynamics may be used to construct general models which improve upon standard approaches to

semi-classical dynamics. Initially motivating these considerations from the perspective of semi-

classical gravity, we first write down the standard semi-classical dynamics in a Hamiltonian

form. We then use the unravelling to write down a more consistent version of this dynamics,

before illustrating this dynamics with some numerical simulations. We then discuss how the

mean-field dynamics is recovered in a certain limit, before concluding with a discussion of the

potential applications of this framework in the context of gravity.

3.1 Motivation and background

Many of the difficulties in modern physics, such as the correct description of black holes, in-

flationary cosmology, or measurement, seem to occur in the semi-classical regime. There are

several reasons for choosing a semi-classical description: there may exist no fully quantum de-

scription, such as in the case of gravity; a full quantum theory exists, but is computationally

unattainable; or that some fundamental degree of freedom, such as the measurement record of

the experimenter or spacetime geometry, is presupposed to be classical in nature. Regardless

of whether semi-classicality is viewed as effective or fundamental, it is important to under-

stand which dynamics of classical and quantum systems are consistent, and which cause the
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semi-classical description to break down.

When the quantum system is controlled by the classical one without back-reaction, the

dynamics is described by unitary quantum mechanics, with the quantum state |ψ⟩ at time t

determined by a Hamiltonian H that depends on classical degrees of freedom z

d|ψ⟩
dt

= − i

ℏ
H(z)|ψ⟩. (3.1)

Such dynamics are consistent with a semi-classical description, in the sense that the standard

rules of quantum and classical mechanics may be applied without modification to each system

independently.

However, defining consistent dynamics where the classical system is affected by the quantum

one, i.e. experiences back-reaction, has proved more difficult. In the case of gravity, the standard

approach to include backreaction is via the semi-classical Einstein equations, which source the

Einstein tensor Gµν by the expectation value of the stress energy tensor Tµν [12–14]

Gµν = 8πG⟨Tµν⟩ (3.2)

(we use units where c = 1, and G here is the gravitational constant). Assuming the quantum

degrees of freedom evolve according to quantum field theory in curved spacetime, Equation (3.1)

with z = (g, π,N, N̄) (i.e. the gravitational degrees of freedom) and Equation (3.2), together

provide the standard theory of semi-classical gravity [81, 82].

Although the equations of semi-classical gravity can be derived from effective low energy

quantum gravity, they are commonly understood to fail when fluctuations of the stress-energy

tensor are large in comparison to its mean value [83–90, 82, 91, 15]. However, the case where

the fluctuations are significant are often precisely the regimes we most wish to understand,

such as in considering the gravitational field associated to Schrodinger cat states of massive

bodies [92, 93], or vacuum fluctuations during inflation [94–97]. In these cases, the equations

of semiclassical gravity fail because they fail to allow for a build up of correlations between the

classical and quantum degrees of freedom. For these regimes, background field methods are not

appropriate, and an alternate effective theory of semi-classical gravity is required.

An early proposal in this direction was provided by [26], which noted the similarity of the

dynamics of continuous measurement theory and that of semi-classical or mean-field approaches
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at coupling classical and quantum degrees of freedom. More recently, other approaches based

on continuous measurement theory [98, 74, 99] have been used to study semi-classical effects in

the Newtonian regime.

The main aim of this chapter is to re-explore this idea, using the general formalism of

classical-quantum dynamics presented in Chapter 2. This allows us to extend these earlier

semi-classical proposals to the case of arbitrary classical-quantum Hamiltonians, complete with

sufficient and necessary conditions on the diffusion in the classical system for the dynamics

to be consistent. While motivated by gravity, the technical conclusions follow equally well for

any systems based on mean-field methods, such as those used in molecular dynamics [63, 64],

and indeed our results demonstrate a connection with another common approach in physical

chemistry, known as the quantum-classical Liouville equation [19].

3.2 Standard semi-classical dynamics

In this section, we introduce the standard approach to constructing semi-classical dynamics,

and study why it does not lead to a consistent treatment of semi-classical physics.

As pointed out in earlier work [15], the equations of semi-classical gravity, Equation (3.1)

with z representing the time local gravitational degrees of freedom and Equation (3.2), may

be understood as a special case of a more general approach taken to describe back-reaction.

In this chapter we shall refer to this as the standard semi-classical approach, though it is also

known in other fields as mean field dynamics [100] or Ehrenfest dynamics [63].

To write down the standard semi-classical dynamics, we first assume the existence of a Her-

mitian operator-valued function of phase space H(z), that we refer to as the classical-quantum

Hamiltonian. This Hamiltonian describes both the standard classical and quantum Hamiltoni-

ans HC(z) and HQ respectively, as well as their interactions via a traceless Hermitian operator-

valued function of phase space HI(z), which arise in the following canonical decomposition of

the classical-quantum Hamiltonian

H(z) = HC(z)1+HQ +HI(z), (3.3)

where 1 is the identity operator on the Hilbert space.
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For a given classical-quantum Hamiltonian H(z), we write down the standard semi-classical

dynamics as follows. The classical evolution is deterministic and has back-reaction given by the

expectation value of the quantum state,

dzit = ⟨{zi, H}⟩dt, (3.4)

where here {·, ·} denotes the Poisson bracket of classical mechanics, the angled brackets denote

the inner product with respect to |ψ⟩t i.e. ⟨A⟩ = ⟨ψ|tA|ψ⟩t, and we implicitly understand all

the classical variables zi appearing on the right hand side to be the values evaluated at t i.e.

zit. Meanwhile, the quantum evolution is given by Hamiltonian evolution that depends on the

phase space degree of freedom

d|ψ⟩t = − i

ℏ
H(zt)|ψ⟩tdt. (3.5)

Note that this dynamics allows initial correlations between the classical and quantum sectors,

and we ignore more pathological versions e.g. in which the phase-space dependence in Equation

(3.5) is an ensemble average over the classical degrees of freedom.

There are number of features of the standard semi-classical equations, (3.4) and (3.5), that

make the dynamics at least at first glance desirable. Firstly, when the interaction Hamiltonian,

HI(z), is zero, it is straightforward to check that that the dynamics reduces to the standard

equations of classical and quantum Hamiltonian mechanics. Secondly, even when the interaction

Hamiltonian is non-zero, the dynamics retains a number of expected features: the classical

system evolves continuously in phase space, the quantum state |ψ⟩t remains normalised, and

the evolution laws are autonomous (i.e. only depend on zs and |ψ⟩s at s = t, with the coefficients

having no explicit dependence on t) as is the case for standard classical or quantum mechanics.

However, it is well-known that the standard semi-classical dynamics comprising Equations

(3.4) and (3.5) lead to a number of violations of the standard principles of quantum theory,

inducing a break-down of either operational no-signalling, the Born rule, or composition of

quantum systems under the tensor product [22, 92, 99, 101]. These arguments appeal to the

fact that the dependence of Zt on |ψ⟩t, generated by Equation (3.4), means that the evolution

of (3.5) need not even be a linear map [102–104], and thus can be ruled due to the inconsistency

of non-linear modifications to quantum mechanics [105–108].
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Alternatively, one can directly rule out the standard semi-classical dynamics as a consistent

theory by observing that the evolution law for ϱ(z, t) is non-linear. To see this, we first note

that by use of the chain rule,

dϱ = E[dδ(z − zt)ρt] + E[δ(z − zt)dρt], (3.6)

where here ρt = |ψ⟩t⟨ψ|t. Using the chain rule with equation (3.4) and (3.5) to compute both

dδ(z − Zt) and dρt to first order in dt, we find that

∂ϱ

∂t
=− ∂

∂zi
E[tr({zi, H}ρt)δ(z − zt)ρt]− i[H(z), ϱ], (3.7)

where we assume summation over the repeated i index. Since the first term contains two

occurrences of ρt, it cannot be written as a linear equation in terms of ϱ, unless each {zi, H} were

proportional to the identity i.e. unless the interaction Hamiltonian HI(z) were everywhere zero.

We thus see that when there is quantum back-reaction on the classical system, the standard

semi-classical dynamics induce an evolution on ϱ that is necessarily non-linear, and therefore

inconsistent, as discussed in Appendix A.

3.3 Healed semi-classical dynamics

The general dynamics for the classical degrees of freedom zt and the quantum state |ψ⟩t, given by

(2.16) and (2.19), provide a general class of dynamics to describe semi-classical systems. Using

the freedom in the D matrices and H, one may attempt to construct sensible semi-classical

dynamics phenomenologically by fitting predictions of these models to data. An alternative

approach is to find a dynamics that explicitly resembles the standard semi-classical dynamics

of (3.4) and (3.5), which we will now turn to in this section.

Starting with Equations (2.16) and (2.17), we take the pure classical part of the drift to

be generated by a classical Hamiltonian HC(z). For the interaction terms, one can use the

freedom in the choice of Lindblad operators to pick Lα = {zα, HI}, whereHI(z) is an interaction

Hamiltonian, and then set D0α
1,i =

1
2δ

α
i . This fixes the decoherence term to be D0 =

1
4(σσ

T )−1,

since by assumption we assume the decoherence-diffusion trade-off is saturated. Finally, we

ensure that that the first term of (2.17) has a Hamiltonian picked that coincides with the
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classical-quantum Hamiltonian i.e. H̄ = H/ℏ for H(z) = HC(z)1 + HQ + HI(z). Using this

definition of H(z) to simplify the various terms, we arrive at a set of equations that we dub

“the healed semi-classical equations”, given as

dzit = ⟨{zi, H}⟩dt+ σijdW
j
t (3.8)

d|ψ⟩t =− i

ℏ
H|ψ⟩tdt+

1

2
σ−1
ij {zj , H − ⟨H⟩}|ψ⟩tdW i

t

− 1

8
σ−1
ij σ

−1
ik {zj , H − ⟨H⟩}{zk, H − ⟨H⟩}|ψ⟩tdt (3.9)

where in the above σ may be any real matrix such that

(I− σσ−1){z,H} = a(z)1, (3.10)

for a real vector a(z) ∈ Rn; that this is a sufficient and necessary condition for complete positiv-

ity follows from the discussion of Section 2.8. As before, while σ may have arbitrary dependence

on z, it cannot have dependence on the quantum state itself. For a given initial quantum state

|ψti⟩ and classical state zti , these coupled stochastic differential equations determine the prob-

ability of ending up in any final pair of states ztf and |ψtf ⟩. An early example of this dynamics

for the special case of linear, constant force coupling between two particles, one classical and

one quantum, was described in [26].

Written in the above form, the differences with the standard semi-classical equations are

clear. The classical evolution of the healed semi-classical Equation (3.8) takes the form of the

standard semi-classical Equation (3.4), i.e. backreaction given by an expectation value, but

with an additional diffusive noise term. Similarly, the quantum evolution of the healed semi-

classical Equation (3.9) takes the form of the standard semi-classical Equation (3.5) i.e. pure

unitary evolution, but with an additional stochastic term that tends to drive the quantum state

towards a joint eigenstate of the operators {zi, H} and H, where one exists, and an additional

deterministic term than ensures that |ψ⟩t remains normalised at all times [109]. Despite the

appearance of an expectation value in the backreaction drift term, the joint dynamics of these

coupled equations gives statistics for Zt as if the classical system were diffusing around a force

given by a random eigenstate of the operators {zi, H}. The free parameters of the model σij

determine both the rate at which the quantum state evolves to an eigenstate and the rate of

54



Figure 3.1: A numerically simulated classical-quantum trajectory for a classical particle interacting with a

qubit, represented by a classical trajectory in phase space (left) and a quantum trajectory on the Bloch sphere

(right). The classical-quantum Hamiltonian is such that the classical system experiences a force either up or

down depending on whether the state is |0⟩ or |1⟩ – the quantum state is then chosen to evolve starting in the

superposition state |+⟩. Initially starting at the origin in phase space, the classical system follows a stochastic

trajectory with positive drift, agreeing with the evolution of the quantum state, which follows a path on the

surface of the Bloch sphere before reaching the fixed point |0⟩. The classical trajectory serves as a measurement

record of the value of the qubit, and conditioned upon it the quantum state remains pure at all times. Since the

classical particle’s motion is stochastic, it takes some time to resolve the value of the qubit. The trajectories shown

here should be contrasted with the standard semi-classical prediction, which predicts zero drift in momentum,

and quantum evolution corresponding to a rotation about the z axis of the Bloch sphere. Further details, such

as the specific Hamiltonian studied and the initial conditions, may be found in Appendix C.

diffusion of the classical system – that these two rates are explicitly inversely related is the ex-

pression of the decoherence-diffusion trade-off. The other positivity condition of (2.15) appears

as the condition (I− σσ−1){z,H} = a(z)1 for some a(z), which ensures that no combination

of the classical degrees of freedom can be constructed such that a classical variable has a drift

depending on a quantum expectation value without an associated noise term. When the back-

reaction is zero, i.e. HI(z) = 0, the positivity condition is satsified for all σ, and thus σ may

be taken to zero. In this limit, the equations reduce to uncoupled deterministic Hamiltonian

classical and quantum mechanics.

To make the above discussion more concrete, consider the numerically simulated dynamics

shown in Figures 3.1 and 3.2, of a qubit interacting with a 1D particle, and a toy model of a test

particle moving in the Newtonian potential of a mass in superposition. Here the trajectories in

phase space are shown on the left, while on the right the trajectory in Hilbert space is represented
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Figure 3.2: A numerically simulated classical-quantum trajectory for a toy model of a classical test particle

moving in the Newtonian potential sourced by a mass in a spatial superposition of left |L⟩ and right |R⟩ states

(positions marked in space by crosses). Initially starting at rest at X = 0 and Y = −0.5, the test particle is seen

to eventually fall toward the mass being on the left, with the small initial motion toward the centre of the two

possible locations accounted for by the diffusion in momentum. This should be contrasted with the prediction

using the standard semi-classical equations, in which the test particle falls directly towards the middle of the two

possible positions of the heavier mass. Since the classical trajectory here is plotted in configuration space, rather

than phase space as in Fig. 3.1, the trajectory does not directly show the stochastic kicks in the momentum of

the classical particle and thus appears comparatively smooth. See Appendix C for for more information.

by a path on the surface on the Bloch sphere. For both, we see that the classical trajectories

correspond to the motion expected if the force on the classical system were determined by

an eigenvalue of {pi, H}, but with additional diffusion around this. The quantum trajectories

are correlated with these classical trajectories, such that when the particle’s momentum has

increased significantly, or when the test mass has moved significantly towards the mass on

the left, the corresponding quantum state is also in the corresponding eigenstate with high

probability. A given change in the classical system is only significant if it is large compared

to the background classical noise σ; this indicates why the changes in the quantum degree of

freedom are inversely proportional to the noise strength in the classical system.

The full details of these models appear in Appendix C, where we simulate a number of

simple toy models that arise as special cases of this general Hamiltonian dynamics, including a

toy model for vacuum fluctuations sourcing the expansion rate in the early universe.

56



3.4 Regime of validity of the standard semi-classical equations

Having derived a general form of consistent semi-classical dynamics, we may test the regime of

validity of the standard semi-classical equations (3.4) and (3.5) by studying when they can be

approximately recovered from the consistent dynamics of (3.8) and (3.9).

The first important observation to make is that that the standard semi-classical equations

cannot be derived as a limit of the healed ones. Specifically, while the free parameters contained

in the matrix σ of the healed semi-classical equations may be varied such that either (3.8)

or (3.9) approximately takes the form of the respective standard semi-classical equation, the

appearance of both σ and σ−1 prevent the recovery of both equations in any limit, with either

the diffusion or decoherence necessarily becoming large as σ → ∞ or σ → 0. In the special

case that σ = 0, the positivity condition reduces to {z,H} = a(z)1 for some a(z) ∈ Rn i.e.

that the classical-quantum Hamiltonian is of the form H(z) = HC(z)1+HQ, meaning that the

quantum backreaction on the classical system must also be zero. As should be expected, the

failure to recover the standard semi-classical equations from their healthier versions unless the

quantum backreaction is zero is consistent with the analysis in Sec. 3.2, where the dynamics

induced on the classical-quantum state was found only to be linear provided HI(z) was zero.

The standard semi-classical equations are thus inconsistent if applied to all states. However,

using Equations (3.8) and (3.9), we can find a regime in which the standard semi-classical

equations are approximately valid for a given initial quantum state |ϕ⟩. Specifically, we will ask

which initial states |ϕ⟩ and timescales τ the healed semi-classical equations can be approximated

by the standard ones i.e. when the additional terms corresponding to diffusion and decoherence

have a negligible impact on observations.

For the classical degrees of freedom to appear to evolve deterministically, one should con-

sider timescales much larger than the noise to signal ratio of the system, such that any noise

fluctuations are removed by coarse-graining in this time window [110]. Provided the classical

system evolves slowly, and is only weakly affected by the quantum one, we may approximate

the signal provided by the ith degree of freedom of the classical system as the square of the

initial drift ⟨ϕ|{zi, H}|ϕ⟩, and the noise in this degree of freedom as (σσT )ii, the initial value

of this component of the diffusion matrix. For the dynamics of (3.8) to reduce to (3.4), one
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must consider timescales τ large compared to the largest possible ratio of the diffusion and the

square of the drifts of all the classical phase space degrees of freedom i i.e.

τ ≫ max
i

(σσT )ii
⟨ϕ|{zi, H}|ϕ⟩2

. (3.11)

On the other hand, for the quantum system to appear to evolve unitarily, one must consider

timescales very short compared to the decoherence time of the quantum system. The decoher-

ence rate may be computed for an initially pure quantum state via the sum of the variances of

the diagonal Lindblad operators L̄i acting on the system [111], which in our case take the form

L̄i = σ−1
ij {Zj , H}. This means that (3.9) only reduces to (3.5) on timescales

τ ≪ 1∑
ijk σ

−1
ij cov|ϕ⟩({zj , H}, {zk, H})σ−T

ki

(3.12)

where here cov|ϕ⟩(A,B) = ⟨AB⟩−⟨A⟩⟨B⟩ with expectation values taken with respect to |ϕ⟩. We

thus see that simultaneously requiring the decoherence and diffusion to be negligible both upper

and lower bounds the timescale τ for which the standard semi-classical equations approximate

the consistent dynamics of the healed semi-classical equations, for a given initial quantum state

|ϕ⟩.

The above conditions on initial quantum states |ϕ⟩ and timescales τ can be adapted to

prove a concise necessary condition on the regime of validity of the standard semi-classical

equations. Firstly, we note that (3.11) implies that τ must be much larger than each of the i

noise to signal ratios, and therefore that ⟨ϕ|{zi, H}|ϕ⟩2 must be much greater than the ratio

of (σσT )ii to τ . Secondly, we note that the denominator of (3.12) may be rewritten as a

trace of a positive semi-definite matrix A = σ−1C|ϕ⟩σ
−T , where C|ϕ⟩ is the matrix of the

covariances introduced previously. Using the inequality trA ≥ (vTAv)/(vT v), which holds for

an arbitrary vector v, it follows from (3.12) that τ must be much smaller than (vT v)/(vTAv)

for all v. Taking v to be given by each of the columns of σ, and using the positivity condition

(I− σσ−1){z,H} = a(z)1 to replace σσ−1C|ϕ⟩σ
−TσT with C|ϕ⟩, one finds that τ is much smaller

that each of the ratios of (σσT )ii to the ith diagonal of the covariance matrix C|ϕ⟩ i.e. the

variance, which we denote var|ϕ⟩({zi, H}) = ⟨ϕ|{zi, H}2|ϕ⟩ − ⟨ϕ|{zi, H}|ϕ⟩2. Rearranging this

final inequality and combining with the ones derived from (3.11), we arrive at the following set

of inequalities

⟨ϕ|{zi, H}|ϕ⟩2 ≫ (σσT )ii
τ

≫ var|ϕ⟩({zi, H}), (3.13)
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which must hold for each i in order for the standard semi-classical equations (3.4) and (3.5) to

be a valid approximation to (3.8) and (3.9). We thus see that for there to exist any timescale

τ for which the standard semi-classical equations are a good approximation to a consistent

semi-classical dynamics, the force on the classical system, either from quantum backreaction or

internal classical dynamics, must be much greater than its variance with respect to the quantum

state. While this condition has been previously postulated [89], the analysis above provides a

rigorous derivation, by requiring the standard semi-classical dynamics to be a valid approxima-

tion of a consistent semi-classical theory. Moreover, for a given quantum state |ϕ⟩ that satisfies

⟨ϕ|{zi, H}|ϕ⟩2 ≫ var|ϕ⟩({zi, H}), the full set of inequalities (3.13) gives the timescale over which

the dynamics will be valid, for a given diffusion/decoherence rate controlled by σ.

In the limiting case that the state |ϕ⟩ is an eigenstate of the operators {zi, H}, the variance

vanishes, and thus the standard semi-classical dynamics are valid approximation for all times

provided the diffusion σσT is sufficiently small. In the Newtonian limit of gravity [4], the

interaction is dominated by the mass density ∂H
∂Φ = m̂(x) and we see that the standard semi-

classical equations are exactly valid only when the quantum state is in an approximate eigenstate

of the mass density operator, which excludes macroscopic superpositions, as well as states which

are spatially entangled: essentially the quantum state of matter must be approximately classical

[88, 89, 94].

However, while the above analysis implies that there can exist certain states and timescales

over which the standard semi-classical approach is a reasonable approximation to a consistent

semi-classical dynamics, it must be emphasised that in practice the regime of validity may be

very limited. The healed equations of (3.8) and (3.9) thus provide a semi-classical dynamics

that extends the regime of validity of the standard semi-classical dynamics to arbitrary states

and timescales.

An important example of where the healed semi-classical dynamics extends the regime

of validity of the standard semi-classical equations, without considerable increased technical

difficulty, is in the low noise, σ → 0, limit of the theory. Here, one considers timescales long

compared to the diffusion in the theory, such that the inequality of (3.11) holds, and the classical

equations can be approximated by (3.4). However, rather than restricting to specific states and
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timescales such that the decoherence is negligible, we instead keep the additional σ−1 dependent

terms in (3.9) that do not appear in (3.5). In the limit that σ → 0, the quantum dynamics

causes the quantum state to almost instantaneously evolve, with probabilities given by the Born

rule, to an eigenstate of the operators {zi, H} [109, 42]. The classical evolution is thus well

approximated by conditioning on eigenstates of the quantum state decohered in this basis, and

then evolving according to classical equations of motion. This is in fact the way in which the

semi-classical Einstein equations are often used in practice to deal with classical mixtures – here

we see that this use of them is a limiting case of the healed semi-classical equations when the

diffusive noise in the classical system is negligible. In this limit, the resulting classical system is

still described by a probability distributions over final states, but this distribution is entirely due

to the probability distribution over eigenstates of {zi, H} provided by the decohered quantum

state.

While the low noise limit of the healed semi-classical dynamics may be a valid regime

in which to study semi-classical physics, more generally one would like to understand what

happens while the quantum state still has coherence. Here, the final probability distribution

of the classical system is due to both the initial quantum state and diffusion in the classical

system itself. In this case σ is finite, and the full machinery presented thus far must be used.

3.5 Conditions for positivity and the quantum-classical Liou-

ville equation

When we previously introduced our healthier version of semi-classical dynamics, we did not

attempt to justify the appearance of the positivity condition (3.10). To see how this arises, we

first write our dynamics in terms of the density operator, which can be written in vectorised

notation (c.f. Section 2.4) as

dρt =− i

ℏ
[H, ρt]dt+ {zt, H}TD0ρt{zt, H}dt− 1

2
{{zt, H}TDT

0 {zt, H}, ρt}+dt

+
1

2
dW T

t σ
−1({zt, H}ρt + ρt{zt, H} − 2⟨{zt, H}⟩ρt),

(3.14)

where here D0 =
1
4(σσ

T )−1. We may then write the dynamics in master equation form, using

the steps outlined in Section 2.3. Doing so we arrive at the master equation representation of
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the healed semi-classical dynamics

∂ϱ

∂t
=− i

ℏ
[H, ϱ] +

1

2

(
{H, ϱ} − {ϱ,H}

)
+Dij

0

(
{zi, H}ϱ{zj , H} − 1

2

{
{zj , H}{zi, H}, ϱ

}
+

)
+

1

2

∂2

∂zi∂zj

(
D2,ijϱ

) (3.15)

where again D0 =
1
4(σσ

T )−1 and D2 = σσT . To find the positivity conditions for this dynamics,

we note that this takes the alternative form of dynamics given in Eq. (2.20) withKi =
1
2{zi, H},

G = H, D2 = σσT and no additional Lindbladian decoherence terms i.e. L̃α = 0. As such, we

see that since G = G† and D2 is positive semi-definite, the sufficient and necessary condition

for positivity provided by (2.58) is given

(I−D−1
2 D2)

1

2
{z,H} = v(z)1, (3.16)

for some vector v(z), which upon using properties of the pseudoinverse and redefining a(z) =

2v(z) gives the positivity condition (3.10) as claimed.

There is an interesting upshot of the above analysis. Namely, we see that the first two lines of

the master equation picture take the form of the quantum-classical Liouville equation dynamics

given in Eq. (1.4), with the backreaction term known as the Alexandrov-Gerasimenko bracket

[17, 18, 15, 19]. The remaining terms can be understood to provide the necessary diffusion and

decoherence on the classical and quantum systems required for complete-positivity [25, 74, 73].

We thus see that despite motivating this approach from the unravelling, mean-field perspective,

we see that our dynamics also provides a consistent version of the other common form of

classical-quantum dynamics, suggesting some importance to this form of Hamiltonian semi-

classical dynamics.

Finally, we note that the conditions (3.11) to (3.13) also provide a regime of validity for the

quantum-classical Liouville equation to hold as a description of an effectively classical-quantum

system. Taking an initial classical-quantum state ϱ(z) = δ(z − z0)|ϕ⟩⟨ϕ|, we see that we can

apply the constraints (3.11) and (3.12), which here describe when the noise is small compared

to average back-reaction on the classical system (i.e. the trace of Eq. (1.4)), and when the

decoherence in the system is negligible. This being said, it is important to emphasise that

outside of this regime of validity, the quantum-classical Liouville equation may in fact provide

a better description of certain quantum dynamics than the healed dynamics we present here
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(c.f. Chapter 4). However, when this is the case, the total system is necessarily no longer well

described by an effective classical-quantum approximation, and thus cannot be unravelled in

terms of individual classical and quantum trajectories.

3.6 Discussion

A consistent version of mean-field dynamics may shed light on some of the open problems in

semi-classical physics. Of potential interest is understanding the role of vacuum fluctuations

in cosmology and structure formation. Since we wish to investigate the role that vacuum

fluctuations play in density inhomogeneity, this is a regime in which the semi-classical Einstein

Equation (3.2) cannot be used. In practice, researchers consider situations in which the density

perturbations have decohered [97, 96, 112–116], so that they can condition on their value and

feed this into the Friedman-Robertson-Walker equation governing the expansion of the local

space-time patch [117–119]. Such an approach is inconsistent with the semi-classical Einstein

Equation [95]. As already discussed, this procedure can in fact be understood as the low noise,

σ → 0, limit of the healed semi-classical equations (3.8) and (3.9).

The semi-classical dynamics we have presented also provides a framework in which to ask

what happens at earlier times when there are genuine quantum fluctuations. The toy model

discussed in Appendix C and simulated in Figure 3.3 gives some indication of what we expect

to happen. The total quantum state of the field can stay pure, even as the density of a local

patch converges to a particular value. In the process, the quantum state of the field must

become less entangled. The density, and thus the expansion factor at any particular point will

be correlated with the density and expansion elsewhere, because the state of the field is initially

highly entangled. In contrast to typical treatments, models in our framework exhibit additional

fluctuations in the classical system due to diffusion, on top of the standard fluctuations due to

the statistics of the decohered quantum state. Additionally, the semi-classical models presented

here may be studied without a priori identifying sources of decoherence. Exploring features

such as these in more realistic models would be of great interest, especially since here we can

consistently evolve the system before the fluctuations have decohered.
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Figure 3.3: A numerically simulated classical-quantum system of five qubits each interacting locally with a

classical degree of freedom, where the |0⟩ (|1⟩) state acts to increase (decrease) the local classical degree of freedom

ϕi. Initially in a cat state, the quantum system evolves to a local product state with no entanglement, while

the local classical degrees of freedom shown at six equal time intervals from t = 0 to t = tf exhibit fluctuations

around the expected increase due to diffusion. The Hamiltonian and initial conditions are provided in Appendix

C.

A challenging, yet important, application of these consistent versions of mean-field dynamics

would be in a consistent treatment of backreaction in the context of black hole evaporation [120].

While it is perhaps difficult to draw any conclusions, given the basic nature of our dynamics

compared to the complexity of a fully relativistic treatment, we conclude by noting two relevant

features of the dynamics we present to this problem.

Firstly, it is evident from equations (3.8) and (3.9) that a consistent treatment of semi-

classical physics must take into account the fact that solutions to the dynamics should be

described by ensembles of classical-quantum trajectories. This has an important consequence

when it comes to ascertaining the purity of a quantum state – while the state of the quantum

system conditioned on some partial classical information will be mixed, the dynamics of equation

(3.9) preserves the purity of ρ(t|{zs}s≤t), such that quantum state conditioned on the full

classical trajectory remains pure. Put more compactly, although the entropy of the quantum

state conditioned on the final classical state zf may be greater than zero, the quantum state

conditioned on the classical trajectory has entropy S(ρ(t|{zs}s≤t)) = 0. Whether or not a
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classical-quantum system appears to map pure quantum states to mixed states, thus depends

on which classical degrees of freedom are available to be conditioned on.

Secondly, we note that the representation of classical-quantum dynamics as a continuous

measurement presented in Section 2.7, provides some clue as to how the loss of predictability

in the classical degrees of freedom in a semi-classical treatment may be reconciled with the

complete predictability provided by a fully quantum treatment. Here, the classical trajectories

are generated by the measurement signals of POVMs applied to the quantum state. In this

case, since every POVM may be viewed as unitary evolution on a larger system containing a

measurement device, and applying unitaries controlled by the measurement device state to a

set of quantum states |z⟩ that span the classical state space, we arrive at a fully quantum, albeit

artificial, model of semi-classicality. Considering the problem in discrete time, with time step

∆t, the action of the unitary at a given time step k is given on an arbitrary quantum state |ψ⟩,

the kth initialised measurement apparatus state |0⟩k and the classical system as

Uk(|ψ⟩ ⊗ |0⟩k ⊗ |z⟩) =
∫

ΩJ(z)|ψ⟩ ⊗ |J⟩k ⊗ |z + (DC
1 + J)∆t⟩dµ0(J). (3.17)

The preservation of the norm for all quantum states |ψ⟩ follows from the definition of the

POVM. While measuring the apparatus state at each time step leads to a discretized version

of the classical-quantum evolution, leaving the system unmeasured leads to a highly entangled

state encoding the full probability distribution of classical-quantum trajectories in the apparatus

degrees of freedom. We can equally view this in the language of many worlds, where the

apparatus states |J⟩k keep track of the branch of the wavefunction. In the case of a unique

final state zf for the classical evolution, the total state would necessarily factorise between the

classical subsystem and the other two subsystems. In this case, any measurements on the final

quantum state appear mixed by virtue of entanglement with an unmeasured reference system.

Ultimately, understanding whether the dynamics we introduce here may be of use in the

study of semi-classical gravity relies upon a successful application of this formalism in this

context, of which efforts are ongoing [46, 4, 121–125, 73]. However, the above considerations do

suggest that if these efforts are successful, a consistent version of semi-classical dynamics has

some potential to provide insight into the remaining deep questions in this field.
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Chapter 4

Effective dynamics from the

classical-quantum limit

In this chapter we consider what may be the most important problem in the topic of effective

classical-quantum dynamics – how to derive classical-quantum dynamics from a fully quantum

theory. The key idea will be to generalise the standard notion of a classical limit, such that

one may take the classical limit of a subsystem. We shall see that we may understand effective

classical-quantum dynamics as arising from quantum dynamics when a particular subsystem is

strongly decohered by its environment.

4.1 Motivation and background

The classical limit describes the emergence of classical physics from quantum theory. Typically

justified in a variety of ways, the most famous of these is to consider action large compared to

the reduced Planck’s constant, ℏ. This leads to the ubiquitous statement that the classical limit

is taking ℏ → 0. As well as explaining the success of classical mechanics for the description of

macroscopic systems, the classical limit provides an important theoretical tool for simplifying

the analysis of quantum systems that are too complex to study directly.

The classical limit allows one to replace a quantum system with an entirely classical descrip-
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tion. However, many systems of interest operate in a regime where both classical and quantum

features are important, and this leads to the following question:

Can we take a limit of a quantum system such that one subsystem behaves classically,

while the rest remains quantum?

A limit of this kind would have a wide variety of applications: from providing first principle

derivations of quantum control and measurement set-ups [126, 127, 43]; to describing systems at

the classical-quantum boundary [66–68]; formalising approaches in quantum chemistry where

the nuclear degrees of freedom are treated as classical and the electronic degrees of freedom

are treated quantum mechanically [63, 64, 19]; and more generally providing a framework to

simplify complex many-body quantum dynamics while retaining essential quantum features.

Beyond these more practical applications, it would be interesting if recently proposed models

of classical-quantum theories of gravity [46, 48, 4, 128, 121, 124, 123] could arise as effective

descriptions of quantum gravity.

In this chapter, we tackle the problem of taking such a classical limit. Since this involves

mapping two quantum subsystems to a quantum subsystem and an effective classical subsystem,

we call this a “quantum-quantum to classical-quantum” limit, or classical-quantum limit for

short. Such a limit could also be referred to as a semi-classical limit, since the resulting effective

theory contains both classical and quantum degrees of freedom, or as a classical limit for

subsystems. We use this terminology in a more general sense than earlier work – this limit is

taken to be able to include the effects of back-reaction on the effective classical system, and

therefore should not be conflated with special cases in which the effective classical system is

unaffected by the quantum one [129, 70].

Two important requirements to make on any classical-quantum limit of quantum theory is

that it be physically motivated and consistent. Although the standard ℏ → 0 classical limit

is often well-motivated physically, we shall see that as a classical-quantum limit it fails to be

consistent, in that it fails to describe an effective classical subsystem. In this case, the resulting

dynamics is known as the quantum-classical Liouville equation [130, 18, 19], and does not lead

to well-defined classical evolution on the subsystem in question [15]. The first example of a
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limit procedure leading to consistent dynamics was provided in the pioneering work by Diósi

[25] who considered two particles, each having a different Planck’s constant. While this allowed

for one of the first examples of consistent classical-quantum dynamics to be derived, it came at

the expense of requiring a number of unphysical considerations, including modified quantum

mechanical evolution laws and ad hoc sources of classical noise.

In the present chapter we demonstrate that a physically motivated and consistent limit

procedure exists, starting from standard unitary quantum mechanics in a closed system. The

key observation we make is the following: such closed system dynamics will always generate

entanglement between subsystems, and thus always lead to a breakdown of classicality, inde-

pendently of any parameter such as ℏ that is usually used to quantify classicality. This means

that the standard notions of a classical limit, such as ℏ → 0, must be supplemented by an

additional mechanism that removes the entanglement generated between subsystems.

In our framework, the classicality of a subsystem is guaranteed by decoherence due to its

external environment. Already well understood to play an important role in the quantum-to-

classical transition [131–136], the coupling to the environment in our framework leads to an

associated decoherence timescale τ of the subsystem in question. By taking τ → 0, one can

ensure that this subsystem is classical at all times. The key conceptual takeaway from this

chapter is that a double scaling limit, in which ℏ → 0 while τ → 0 such that the ratio Ef = ℏ/τ

is fixed, provides a version of a classical limit that may be consistently applied to subsystems

i.e. a classical-quantum limit.

The main technical result of this chapter is computing the explicit form of the dynamics

in this double scaling limit, for arbitrary bipartite Hamiltonians for which a classical limit is

possible, which is given in Equation 4.4.5. In order to prove the consistency of this dynamics,

we show that the dynamics is a special case of the recently characterised completely-positive

form [46, 45], which guarantees that the effective classical subsystem is well-defined. This dis-

tinguishes our dynamics from earlier attempts at deriving effective classical-quantum dynamics

from quantum theory [137, 27], and provides a regime in which the general form of continu-

ous dynamics introduced in [45] could arise as an effective theory. The resulting dynamics is

generically an irreversible open-system dynamics, with decoherence and diffusion controlled by
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the parameter Ef . The complete-positivity ensures the classical-quantum dynamics may be

directly unravelled in terms of continuous classical trajectories in phase space and quantum

trajectories in Hilbert space, which are given in Equations (4.7.1) and (4.7.2).

Alongside the main results, we find a number of related results:

• A partial version of the Glauber-Sudarshan quasiprobability distribution is introduced,

and identified as the correct representation to require positivity of for effective classical-

quantum dynamics in the Hilbert space.

• The dynamics of partial versions of the Glauber-Sudarshan and Husimi quasiprobability

distribution are explicitly computed to O(ℏ0).

• The classical-quantum limit is shown to lead to dynamics independent on the choice of

partial Q, P or W representation.

• The double scaling limit applied to a single system is shown to give a stochastic classical

limit, of the kind described by [138].

• A simplified form of dynamics is found in Equation (4.8.3) for classical-quantum Hamil-

tonians that self-commute, which takes the form of O(ℏ0) partial Glauber-Sudarshan

dynamics with the minimal additional decoherence and diffusion for complete-positivity.

• The explicit form of dynamics for the classical-quantum limit of two quantum harmonic

oscillators is computed.

• The double scaling limit on a single system is shown to recover the standard ℏ → 0 limit

in the low diffusion limit Ef → 0.

• Two distinct behaviours of the effective classical-quantum dynamics are found in the

Ef → 0 limit, namely a quantum Zeno type behaviour, and a coherent quantum control

limit.

The results in this chapter establish that the classical limit of a subsystem has a far richer

structure than the classical limit of a single system, suggesting a new possible arena in which

to apply methods developed to study the quantum-to-classical transition [133, 139, 140]. We
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also provide a number of technical tools and definitions for the study of effective classical-

quantum theories, which may be useful for categorising the large body of existing proposals for

constructing hybrid theories [16, 28, 27, 29, 31, 33, 141, 34, 142]. Our findings also make clear

that effectively classical systems are indeed consistent with quantum theory, and in fact may

be derived from it, contrary to early arguments [20, 143, 22].

Aside from being of foundational interest, the form of dynamics we find in equation (4.4.5)

or their approximated form (4.8.3) may be directly applied to study a wide range of quantum

Hamiltonians in the classical-quantum limit. By using the stochastic unravellings of equations

(4.7.1) and (4.7.2), one may numerically study the statistics of various observables of quantum

systems in a regime where subsystems are effectively classical. This provides a general frame-

work for studying the effects of backreaction from quantum systems on effectively classical ones,

as well as a tool for reducing the complexity of simulations of many-body quantum dynamics

in the presence of strongly decohering environments, which we anticipate could have a wide

variety of applications.

The structure of this chapter is as follows: in Section 4.2 we introduce the Wigner and par-

tial Wigner representations, and demonstrate using the latter how the ℏ → 0 limit is insufficient

in providing a classical limit of a subsystem. In Section 4.3 we introduce a discrete-time, deco-

herence channel model of an environment, and show how this leads to well-defined stochastic

evolution in a double scaling limit. In Section 4.4 we present our main result, which is the

derivation of the general form of classical-quantum dynamics under a bipartite Hamiltonian,

under this double scaling limit. In Section 4.5 we introduce two other partial quasiprobabil-

ity representations, the partial Glauber-Sudarshan and partial Husimi representations. These

are used to illustrate two technical notions useful for characterising effective classical-quantum

dynamics, which we use to determine that the positivity of the partial Glauber-Sudarshan dis-

tribution is a sufficient and necessary measure of the effective classicality of a subsystem. In

Section 4.6 we study the main form of dynamics in the three different quasiprobability distri-

butions introduced, and show the equivalence between them. In Section 4.7 the main results

are unravelled in terms of stochastic trajectories in phase space and Hilbert space. Finally, in

Sections 4.8 and 4.9, special cases of the general form of dynamics are given, in particular the

self-commuting classical-quantum Hamiltonian case, and the low diffusion Ef → 0 limit.
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4.2 The standard ℏ → 0 limit

To motivate the need for an alternate notion of a classical limit, we first begin by looking

at where the standard classical limit succeeds and fails as a technique for deriving classical

equations of motion. To do so, we will look at the simplest model of a quantum system with a

classical limit, i.e. a single quantum system characterised by a canonical commutation relation

with parameter ℏ. However, the results that follow may be reinterpreted in the standard way

for general order parameters controlling the degree of classicality, such as coupling strength g

or number of systems N [144].

4.2.1 ℏ → 0 for a single system

Consider a single quantum system, that we denote C, with Hilbert space HC and trace-one,

positive semi-definite density operators ρ̂ that form a set of states S(HC). We will take this

quantum system to be characterised by the canonical commutation relation [q̂, p̂] = iℏ, and

interpret the operators q̂ and p̂ as the position and momentum of the system. This system will

have an associated Hamiltonian Ĥ which generates the free, unitary evolution of the C system

in the absence of any interactions with other systems.

A typical method of studying the classical limit of such a system is via the Wigner repre-

sentation, which provides an alternate description of quantum mechanics in terms of functions

of phase space [57, 57, 145–147]. Defining the operators Âq,p =
1
πℏ
∫
dy e−ipy/ℏ|q− 1

2y⟩⟨q+
1
2y|,

where |q⟩ denotes the eigenstates of the position operator q̂, one may map operators acting on

HC to functions of phase space M by taking the trace with respect to Âq,p i.e. Ô 7→ tr[Âq,pÔ].

The most important example is the Wigner function W (q, p), the phase space representation

of the quantum state

W (q, p) = tr[Âq,pρ̂]. (4.2.1)

By the properties of Âq,p and ρ̂, it follows that W (q, p) is real-valued and is normalised when

integrated over phase space i.e.
∫
W (q, p) dqdp = 1. Unlike a probability distribution, it is not

guaranteed to be non-negative for all q, p in phase space, and hence is termed a quasiprobability

distribution. To study how unitary dynamics are represented in the Wigner representation, one
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must also consider the Wigner representation of the Hamiltonian Ĥ, given by the real-valued

HW (q, p) = tr[Âq,pĤ]. The free unitary dynamics in the Wigner representation is then given

by the Moyal bracket
∂W

∂t
= − i

ℏ
(HW ⋆ W −W ⋆HW ), (4.2.2)

where here the star product of two phase space functions f = f(q, p) and g = g(q, p) is given

f ⋆ g = f e
iℏ
2
(
←
∂ q

→
∂ p−

←
∂ p

→
∂ q) g, (4.2.3)

and to be interpreted in terms of the series expansion of the exponential, with the arrows

denoting whether each derivative acts on the function on the left or the right. Expressions such

as equation (4.2.2) may be found by using the standard result that products of operators on the

Hilbert space are mapped to the star product of their Wigner representations i.e. f̂ ĝ 7→ f ⋆ g

[145, 147].

The Wigner representation is an entirely equivalent description of quantum mechanics, and

does not a priori have anything to do with classical dynamics. However, by considering the

dynamics to lowest order in ℏ, one arrives at an equation familiar from classical mechanics.

Specifically, to lowest order in ℏ, the dynamics (4.2.2) takes the form

∂W

∂t
= {H,W}, (4.2.4)

where { · , · } denotes the Poisson bracket, and H denotes the classical Hamiltonian i.e. the

O(ℏ0) part of HW [144]. This equation is the Liouville equation, and describes how classical

probability distributions evolve under Hamiltonian flow. This leads to the statement that

ℏ → 0 gives the classical limit of a quantum system. Of course, it is not actually meaningful

to send a dimensionful quantity like ℏ to zero, although it is often a convenient shortcut in

practice. The statement that classical equations of motion are recovered in the ℏ → 0 limit is

better understood as the statement that for a given W (q, p), the higher order derivatives terms

containing ℏ in the expansion are negligible compared to the Liouville equation terms given

above. This may be made more precise still by studying the evolution of quantum observables,

and studying their commutation as a function of ℏ [148, 50].

Even if one did not already know the form of the Liouville equation, one is still led to the

ℏ → 0 limit by considering when the dynamics preserves the classicality of initial states. A

71



full definition of effective classicality will be given in section 4.5, but for the time being we will

simply state that for a quantum state ρ̂ of a single system to be viewed as effectively classical,

it is necessary for the corresponding Wigner function to be positive∗ i.e.

W (q, p) ≥ 0 ∀q, p ∈ M. (4.2.5)

Correspondingly, for the dynamics of the C system to be effectively classical, it must also

be positive i.e. preserve the positivity of all normalised functions of phase space. As should

be expected, the general quantum dynamics of equation (4.2.2) is not positive, except in the

cases that the Hamiltonian is at most quadratic in q and p. To see this, one may appeal

to the Pawula theorem, which characterises the general form of linear, trace-preserving and

positive dynamics for real-valued functions of phase space [47]. The Pawula theorem states

that unless the dynamics contains an infinite number of higher order derivatives with respect to

q and p, any positive dynamics must be of the Fokker-Planck form, with at most second order

derivatives in q and p (see Appendix D for more details). Since the series expansion of (4.2.2)

typically truncates at a finite number of terms (i.e. for Hamiltonians polynomial in position

and momentum), the dynamics in such cases cannot be positive.

Considered in this way, the ℏ → 0 limit may be understood as a method of enforcing

positivity preservation on the quantum dynamics of a single system when represented in phase

space. In particular, since the higher order derivative terms in equation (4.2.2) responsible

for violating positivity also are higher order in ℏ, by truncating the expansion to lowest order

in ℏ the dynamics reduces to a dynamics that maps initial probability distributions to final

probability distributions, and hence preserves the classicality of initial states.

4.2.2 ℏ → 0 for a subsystem

However, let us now consider the same approach when the C system is just a subsystem of a

larger quantum system. Denoting the other subsystem Q, we again denote states of the joint

∗When the quantum state is pure, this holds if and only if the Wigner function is Gaussian [149], while no

such characterisation is available for mixed states. However, since any mixture of pure Gaussian states will have a

positive Wigner distribution, and these pure Gaussian states will become well approximated by delta functions in

the ℏ → 0 limit, this necessary condition for effective classicality allows for any classical probability distribution

to be obtained in the classical limit.
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system as ρ̂ ∈ S(HQ ⊗ HC). Here again we take the closed system unitary evolution to be

governed by an arbitrary Hamiltonian Ĥ, which may include both self-Hamiltonians and an

interaction Hamiltonian between the C and Q subsystems. We now wish to study whether

the above procedure results in a well-defined classical-quantum limit – a limit in which the

C subsystem may be treated classically, while the generic Q system is still described using

standard quantum mechanics. For notational convenience in what follows, we will reserve the

use of hats for operators with support on the C system Hilbert space HC ; operators acting on

HQ alone will be left without.

To adapt the standard classical limit procedure to the case where C is a subsystem, one

may use a partial Wigner representation [15, 19]. This provides an equivalent representation of

quantum mechanics in which one part of the system is described in terms of a phase space, while

the other part remains described by operators in Hilbert space. Specifically, we map operators

that act on HQ ⊗ HC to phase-space dependent operators on HQ by taking the partial trace

with respect to Âq,p i.e. Ô 7→ trC [Âq,pÔ]. The only difference from the Wigner representation

is that the trace is performed over the C subsystem alone, leaving an operator-valued function

of phase space. In this representation, the bipartite quantum state ρ̂ is represented by the

partial Wigner distribution ϱW (q, p), which is an operator-valued function of the phase space

associated to the C system, given by

ϱW (q, p) = trC [Âq,pρ̂]. (4.2.6)

By the properties of Âq,p and ρ̂, it follows that ϱW (q, p) is a Hermitian-valued operator and is

normalised when integrated over phase space and traced over Hilbert space i.e.
∫
trϱW (q, p) dqdp =

1. Analogously to how the real-valued Wigner function is not guaranteed to be positive, the

Hermitian operator-valued function ϱW (q, p) is not guaranteed to be positive semi-definite

for all points in phase space. To study the unitary closed system dynamics of the bipar-

tite quantum system in this representation, one may consider the partial Wigner representa-

tion of the Hamiltonian Ĥ, given by the Hermitian operator-valued function of phase space

HW (q, p) = trC [Âq,pĤ]. The closed system unitary dynamics then takes the form

∂ϱW

∂t
= − i

ℏ
(HW ⋆ ϱW − ϱW ⋆ HW ), (4.2.7)
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which is analogous to (4.2.2) except for the fact that here the quantities are operators that

act on HQ. This may be derived by noting that the relation f̂ ĝ 7→ f ⋆ g, mapping products

of operators to star products of functions, still holds in the case of bipartite operators and

their corresponding operator-valued partial Wigner transforms [19]. This dynamics will appear

frequently in what follows, and it is thus convenient to define the associated generator LW

i.e. the generator of closed system evolution under the Hamiltonian Ĥ in the partial Wigner

representation

LW = − i

ℏ
(HW ⋆ · − · ⋆ HW ), (4.2.8)

where here we use · to denote the input to the generator.

If the argument was to follow as before, then taking ℏ → 0 of the closed system unitary

dynamics in the partial Wigner representation would lead to one system becoming effectively

classical, while the other remaining quantum. Considering equation (4.2.8) to O(1) in ℏ, the

resulting equation

∂ϱW

∂t
= − i

ℏ
[H, ϱW ] +

1

2
({H, ϱW } − {ϱW , H}), (4.2.9)

is known as the quantum-classical Liouville equation [19, 130, 18]. Here H is the O(ℏ0) part of

HW and we will refer to this as the classical-quantum Hamiltonian. The first term takes the

form of a Liouville von-Neumann term, that describes unitary evolution of density operators.

The second term, sometimes referred to as the Alexandrov-Gerasimenko bracket, is a version of

the Poisson bracket that is symmetric in the ordering of the phase space dependent operators

H and ϱW . As before, this form of dynamics will appear repeatedly, and it will be useful to

define the corresponding generator

LW
∣∣
O(ℏ0) = − i

ℏ
[H, · ] + 1

2
({H, · } − { · , H}), (4.2.10)

which is simply the generator LW of (4.2.8) truncated to O(1) in ℏ.

However, there is a key difference between the Liouville and quantum-classical Liouville

dynamics: while the Liouville equation preserves the classicality of the C system, the quantum-

classical Liouville equation does not. Although a full discussion of the effective classicality of

subsystems will be provided in section 4.5, for the time being we will state that for a quantum
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state ρ̂ on the bipartite Hilbert space HC ⊗HQ to be effectively classical on the C subsystem,

it is necessary for the corresponding operator-valued partial Wigner distibution to be positive

semi-definite at all points in phase space i.e

ϱW (q, p) ⪰ 0 ∀q, p ∈ M. (4.2.11)

Taking (4.2.11) as a necessary condition for effective classicality of the C subsystem guarantees

that the state may be written as a positive probability distribution over phase space multiplied

by a corresponding quantum state on HQ at each point, and is the natural generalisation of

(4.2.5) to operator-valued functions. For a dynamics to preserve the classicality of the C subsys-

tem, it therefore must be the completely-positive on all initial operator-valued functions of phase

space. However, while the Liouville equation preserves the positivity of real-valued functions,

the quantum-classical Liouville equation does not preserve the positivity of operator-valued

functions of phase space [15]. This may be seen by appealing to the recently proved analogue of

the Pawula theorem for operator-valued functions [45] (see also [76] for a later discussion of this

result). Known as the CQ Pawula theorem, it showed that every trace-preserving, normalised

and completely-positive Markovian dynamics on operator-valued functions of phase space is

also separated into two classes, with one class truncating at second order in derivatives in phase

space, and the other containing an infinite number of higher derivative terms (see Appendix D).

Since the full dynamics of (4.2.8) typically truncates at a finite number of derivative terms, the

ℏ → 0 limit helps to bring the resulting form of equations closer to a completely-positive form,

by removing all derivative terms second order and higher. However, as we show in Appendix

D, even with these higher order derivatives removed, the resulting dynamics are still not of the

required form for complete-positivity.

The problem ultimately lies in the fact that while ℏ → 0 suppresses non-classicality arising

from the higher order derivatives in q and p, it has no effect on suppressing the entanglement that

is generated between the C and Q quantum subsystems. Since entanglement may be generated

for even linear coupling between subsystems, the quantum-classical Liouville equation (4.2.9)

must also generically describe entanglement build up between the C and Q subsystems, and

thus the generation of states that are not effectively classical on the C subsystem.

Before moving on to see how one may resolve this, we should first address a technical de-
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tail regarding the kinds of Hamiltonian that we consider. Up to this point, we have implicitly

assumed that HW , referring to either the Wigner or partial Wigner representation of the Hamil-

tonian Ĥ, may be written as HW = H+O(ℏ2). This assumption holds when Ĥ is a function of

q̂ and p̂, and in such typical cases, the classical or classical-quantum Hamiltonian H coincides

with the function of phase space obtained by making the substitutions q̂ 7→ q, p̂ 7→ p. In general

however, the Hamiltonian Ĥ may also depend explicitly on ℏ, and in these cases there is no

guarantee that HW = H + O(ℏ2). However, if HW contains any terms of O(ℏ−1) or higher

inverse powers of ℏ, there is no well-defined classical limit as ℏ → 0 [144], and one may check

that the dynamics truncated to O(ℏ0) in such cases are not positive. The only remaining case is

thus where HW contains O(ℏ) terms. We consider this in Appendix F, and find that it amounts

to only a minor modification of the dynamics when HW = H + O(ℏ2). For conceptual clarity

we therefore present the following analysis under the assumption that HW = H +O(ℏ2) – but

this, up to a known modification, describes all possible Hamiltonians which permit a classical

limit.

4.3 Decoherence timescale τ and a double scaling limit

The preceding section introduced the formalism of the Wigner and partial Wigner representa-

tions, and showed how the standard ℏ → 0 limit is insufficient to describe a classical limit of a

subsystem due to the presence of entanglement. In this section, we introduce a simple model

of the effect of an environment on the C subsystem, and show how this leads one to a double

scaling limit involving the decoherence timescale τ of this subsystem.

We begin by noting that it is well-understood that ℏ → 0 is not sufficient to ensure classical-

ity, even in single systems. The key observation is that when ℏ is small, but finite, the evolution

generated by the Liouville equation will generally map an initial state W (q, p, ti) in which the

higher order terms are negligible to a state at later times W (q, p, tf ) in which they are not

[133]. The resolution to this problem was to acknowledge that in practice, all quantum systems

are open systems, and thus interact with their environments. In this case, the interaction with

an environment leads to dispersion in the system, preventing any later states of the Wigner

quasiprobability distribution W (q, p, tf ) from becoming overly peaked in phase space and thus
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preventing the higher order terms contributing, an analysis that has been put on more rigorous

footing in recent work [150, 140]. More generally, acknowledging the role of the environment,

which generically acts to decohere the system, has turned out to be an extremely successful way

of explaining a number of features in the quantum-to-classical transition [131, 132, 134–136].

In what follows, we shall follow the above philosophy by modelling the effect of the environ-

ment on the subsystem that will be classicalised. The basic idea is that the interactions with

an environment will lead to decoherence on the C subsystem that can break the entanglement

with the Q subsystem. In other words, the decoherence induced by an environment will act

to replace the quantum correlations between the C and Q subsystems with purely classical

correlations, which will ensure that the resulting ϱW is positive.

In order to include the effect of an environment, without overly increasing the complexity

of the analysis, we will assume that the effective action of the environment is to collapse the

C subsystem into a classically definite state. The classically definite states will be taken to be

coherent states, which are the states with minimum uncertainty in q and p. Allowing them to

have some squeezing, such that the ratio of the variances in position and momentum is given

by s2 = ∆q
∆p , we will denote the coherent state with expectation values ⟨q̂⟩ = q and ⟨p̂⟩ = p as

|αs(q, p)⟩ [151, 152]. The environment is then modelled as performing a coherent state POVM

with measurement operators M̂ s
q,p = (2πℏ)−1/2|αs(q, p)⟩⟨αs(q, p)|. Assuming for now that the

observer has no access to the environmental degrees of freedom, the effect of the environment is

a decoherence channel ρ̂→
∫
dqdpM̂ s

q,pρ̂M̂
s
q,p. In the partial Wigner representation this amounts

to a convolution of ϱW with a normalised Gaussian with variance ℏs2 in q and ℏs−2 in p. Such

a convolution is known as a Weierstrass transform [153], and has the following representation

as a differential operator

D = e
ℏs2
2

∂2

∂q2
+ ℏ

2s2
∂2

∂p2 . (4.3.1)

This differential operator D provides a representation of the decoherence action of an environ-

ment, and will prove extremely useful.

Although we have specified the action of the environment as collapsing the states of the

system to coherent states, we have not specified over which timescale. To do so, we will specify

explicitly that the environment collapses the state of the system over a time τ . This timescale τ
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is to be understood to be the decoherence timescale of the C subsystem i.e. the time over which

the interaction with the environment has decohered the C subsystem to being in a classically

definite state.

It is important to emphasise that, while providing a simplistic description of environmental

decoherence, the basic features of this model can be identified in explicit physical examples.

Decoherence into the coherent state basis has long been observed in models of decoherence

[154], particularly in the context of quantum Brownian motion [155, 156], and indeed can be

understood as arising under fairly general environmental conditions [157]. In these models,

there are two standard timescales that arise. One is the decoherence timescale, given by τD ∼

ℏ2/∆x2D in the context of quantum Brownian motion, where ∆x is the spread in position

quantum state, and D is a model derived diffusion rate, and is extremely short for typical

macroscopic objects [158, 156, 136]. The other is the typically longer localisation time [156, 136],

which is a state-independent quantity given for quantum Brownian motion by τL ∼
√
ℏ/Dm,

where m is the mass of the system, and has been shown to be associated with the timescale

on which the system diagonalises in the coherent state basis [156]. We leave understanding in

detail which of these two timescales may be most natural to future work, and instead generically

refer to τ as a decoherence timescale without specific reference to either τD or τL
†.

The joint specification of the map D and associated timescale τ leads to something akin

to a Trotterised picture of dynamics, in which the effect of the environment is modelled by a

decoherence channel that acts at discrete time intervals τ . For now leaving aside the unitary

dynamics generated by Ĥ, this explicitly means that the total dynamics in the partial Wigner

representation is given by the application of the differential operator D at times 0, τ, 2τ, . . .

and so on, with no evolution in between. Although different from the standard continuous time

dynamics of typical open systems treatments [160], the advantage of this discrete-time approach

is that after each action of the decoherence channel, the state is in a guaranteed classical state.

†At first glance, the state-independence and decoherence into the coherent basis is suggestive of using τL.

However, applying the double scaling limit of ℏ and τ given below, it is straightforward to see that the resulting

diffusion in momentum Ef/s
2 will not agree with the diffusion rate D, which must be taken to infinity to ensure

a finite Ef . On the other hand, using τD with ∆x2 = ∆q2 = ℏs2 i.e. the spread in position of the coherent state

[159], one finds that τ is in fact proportional to ℏ, with the correct constant of proportionality E−1
f = (Ds2)−1

to ensure that the diffusion in momentum is indeed given by D.
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In order to arrive at a well-defined continuum limit of this discrete-time model of deco-

herence, one would wish to take the decoherence timescale to zero i.e. τ → 0. Since the

environment acts to select classical states on the C subsystem, taking this limit ensures that

the subsystem is in a classical state at all times. However, since each application of the decoher-

ence map causes ϱW to be convolved with a Gaussian with variances proportional to ℏ, taking

τ → 0 while ℏ remains finite would lead to the state of the system becoming infinitely spread

in phase space in finite time. To prevent this from occurring, we observe that simultaneously

taking the limit that ℏ → 0 allows, in principle, for an infinite series of convolutions to still give

a finite effect on the resulting distribution. To see which rates it may be sensible to take ℏ and

τ to zero, one may consider t/τ environmental decoherence steps, which gives the overall effect

of the environment Gt after finite time t as

Gt = lim
ℏ,τ→0

Dt/τ = lim
ℏ,τ→0

e
ℏ
τ

(
s2

2
∂2

∂q2
+ 1

2s2
∂2

∂p2

)
t
. (4.3.2)

Remarkably, one can see that when the ratio ℏ/τ is fixed, the differential operator Gt corresponds

exactly to the semi-group corresponding to a classical diffusion process, with the diffusion

rate in q given by ℏs2/τ and diffusion rate in p given by ℏs−2/τ . Despite starting from a

strong measurement at each step in time, the resulting equations of motion describe continuous

evolution in time and phase space. This motivates the following double-scaling limit as a

candidate method of taking the classical-quantum limit:

ℏ → 0, τ → 0, s.t.
ℏ
τ
= Ef , (4.3.3)

where we have chosen Ef to denote the constant with dimensions of energy that describes

the fixed ratio of the two. As before, the taking of dimensionful quantities to zero should

be more carefully interpreted as statements about the relevant scales in the system. Here

we may interpret the above double-scaling limit as the statement that the action associated

to any observables of interest on the C subsystem are large compared to the scale of ℏ, and

change over much longer timescales than the decoherence time τ of the C subsystem. The ratio

of the reduced Planck’s constant and the decoherence time give a measure of the size of the

fluctuations in the system due to the environment, which is captured by the constant Ef .

Before we move on to study the dynamics that results from taking this limit, it is important

to emphasise that the proposed limit should be understood as the application of the double
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scaling limit to the discrete-time model of decoherence discussed so far. Indeed, it turns out

that simply identifying a double scaling limit of the parameter controlling the decoherence

timescale and ℏ in a model describing environmental decoherence is not in general sufficient to

derive a classical-quantum limit. A straightforward counterexample is provided in Appendix G,

where we consider a continuous time Lindbladian dynamics with a parameter γ controlling the

overall decoherence rate in q̂ and p̂ on the C subsystem. While a double scaling limit γ → ∞,

ℏ → 0 s.t. γℏ2 = Ef leads to identical diffusive evolution in phase space to that described

above, the resulting evolution for a bipartite quantum system is not completely-positive, and

thus does not describe a well-defined classical-quantum limit. The failure of this approach

appears to be related to the lack of equivalence between the two classes of dynamics considered

in one of the earliest works on effective classical-quantum dynamics [137]. Although we will not

consider this type of set-up any further, it turns out it was the first to appear in the discussion

of double scaling classical limits, where the possibility of taking a double scaling limit of ℏ

and a measurement rate of a continuous measurement procedure to arrive at diffusive classical

evolution on a single system was pointed out in the conclusion of [138]. A closer theoretical

set-up to ours appears in the context of the quantum Zeno effect [161]. More recently, another

related model with a different double scaling limit was considered in the context of holography

[162].

4.4 Main results

In this section, we use the discrete-time model of decoherence and associated double scaling

limit of the previous section to arrive at the general form of dynamics when one takes the

classical-quantum limit we have introduced. This main result is given in equation (4.4.5). Since

some of the technical steps are rather long, we reproduce here only the key conceptual points,

and refer the reader to Appendix E for more details.
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4.4.1 Derivation of the generator in the classical-quantum limit

In section 4.3, the effect of the environment was considered in isolation. However, the key ques-

tion of interest is to consider how the environment and the free evolution of a generic quantum

system interplay in the double-scaling limit we have arrived at. To study this, we must consider

the total evolution after a time τ , which should include both the environmental decoherence

effects given by D and the free evolution generated in the partial Wigner representation by

LW . The obvious question then arises of which ordering to choose of the two processes. This

point will be made precise in section 4.6 when alternative partial quasiprobability representa-

tions are considered, but at this time we will simply postulate a reasonable choice, namely a

symmetrised total evolution, in which the action of the environment is divided equally between

one part before the free evolution generated by the Hamiltonian, and one part afterwards

Eℏ
τ = D

1
2 eL

W τD
1
2 . (4.4.1)

The total evolution operator Eℏ
τ describes the action of both the environment and the free

evolution on the partial Wigner representation of the bipartite quantum system CQ, and we

use the superscript and subscript to indicate the functional dependence on both τ and ℏ.

The evolution map Eℏ
τ describes the total change in the partial Wigner representation over

a finite decoherence time τ with a finite value of ℏ. In order to take the classical-quantum limit

described in (4.3.3) one must consider the infinitesimal evolution in τ generated when τ and ℏ

are taken to zero such that ℏ = Efτ . To do so, we first set ℏ = Efτ in Eℏ
τ , and consider the

generator of the evolution map Eτ := EEf τ
τ in the τ → 0 limit, which takes the form

L = lim
τ→0

( ∂
∂τ

Eτ
)
Eτ−1 +

∂

∂τ

(
ln E0

∣∣
Ef=

ℏ
τ

)
. (4.4.2)

The first term is the standard form of the generator often used to formally construct time-

local dynamics [163, 164], and may be found by writing the state of the system at time τ as

ϱ(τ) = Eτϱ(0), studying its rate of change in time, and then using the inverse of the evolution

map E−1
τ to re-express this as a generator as acting on ϱ(τ). We shall see that this part of the

generator captures a large proportion of the dynamics, and importantly the back-reaction of

the quantum system on the classical one. However, by construction, this part of the generator

only captures the τ -dependent part of the dynamics. In fact, one can check that there is an
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additional τ -independent component E0, generated by − i
Ef

[H, · ]. As discussed in Appendix

E, this term may be accounted for by reintroducing ℏ = Efτ , and computing the generator of

this component, corresponding to the second term in (4.4.2). Since this term only effects the

quantum system, the reappearance of ℏ is to be expected: while ℏ → 0 should be interpreted as

the assumption that the relevant classical observables are much larger than ℏ, no assumption

is made on the scale of relevant quantum observables. From this point on, any appearance of

ℏ should be interpreted as characterising the quantum features of the Q subsystem.

To compute the above generator explicitly, one may substitute the evolution map into the

form of the generator provided above. Explicitly, by substituting equation (4.4.1) into equation

(4.4.2) with the O(ℏ0) expression for LW and definition of D given in equations (4.2.10) and

(4.3.1), we arrive at

L =− i

ℏ
[H, · ]

+
1

2
(1 + e

ad −i
Ef

[H,·]
)

(
Efs

2

2

∂2

∂q2
+
Ef

2s2
∂2

∂p2

)

+
e
ad −i

Ef
[H,·]

− 1

ad −i
Ef

[H,·]

(
1

2
{H, ·} − 1

2
{·, H}

)
,

(4.4.3)

where here the ad denotes the adjoint operation with respect to the generators of the classical-

quantum dynamics i.e. (adAB)ϱ = (AB − BA)ϱ. Here the first line corresponds to the second

term of equation (4.4.2), while the second and third lines arise from the first term. The complex

structure of this part of the generator owes itself to the fact that the generators of the exponen-

tial maps that make up Eτ do not commute with themselves for all τ . This means that when

the derivative in (4.4.2) is taken, one must be careful to use the derivative of the exponential

map i.e. if Xτ is a classical-quantum generator with dependence on τ , then

∂

∂τ
eXτ =

eadXτ − 1

adXτ

(
∂Xτ

∂τ

)
eXτ , (4.4.4)

which should be understood as a power series of adX acting on the derivative of Xτ , which

then acts on the exponential of Xτ , as is commonly considered in the derivation of the Baker-

Campbell-Hausdorff formula [165].

To further simplify this expression for the generator of dynamics L, one may explicitly

compute how the adjoint acts on the phase space derivatives that appear in the various series
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in (4.4.3). Amounting to computing part of the Lie algebra corresponding to classical-quantum

generators, this allows allows one to map the expressions involving the adjoint action of classical-

quantum generators (i.e. ad −i
Ef

[H, · ]), to expressions involving the adjoints of quantum operators

(i.e. ad −i
Ef

H). Since the steps involved are rather long, we leave the details of this to Appendix

E.

4.4.2 Classical-quantum limit master equation

Simplifying the dynamics in this way we arrive at our main result: the classical-quantum limit

dynamics in master equation form, given by

∂ϱ

∂t
=− i

ℏ
[H +Heff, ϱ]

− 1

2

∂

∂q
{LH

p , ϱ}+ +
1

2

∂

∂p
{LH

q , ϱ}+

+
is2

2

∂

∂q
[LH

q , ϱ] +
i

2s2
∂

∂p
[LH

p , ϱ]

+
1

2Ef
(L̄ϱL̄† − 1

2
{L̄†L̄, ϱ}+)

+
Efs

2

2

∂2ϱ

∂q2
+
Ef

2s2
∂2ϱ

∂p2
,

(4.4.5)

where

LH
q =

e
ad −i

Ef
H
− 1

ad −i
Ef

H

(
∂H

∂q

)

LH
p =

e
ad −i

Ef
H
− 1

ad −i
Ef

H

(
∂H

∂p

)

L̄ = sLH
q + is−1LH

p ,

(4.4.6)

and

Heff =
ℏs2

4

∂LH
q

∂q
+

ℏ
4s2

∂LH
p

∂p

+
ℏ

4Ef

∞∑
n,m=0

Cnm

(n+m+ 2)!

× {adn−i
Ef

H

∂H

∂q
, adm−i

Ef
H

∂H

∂p
}+.

(4.4.7)
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Here Cnm denote numerical coefficients given by

Cnm =

m∑
r=0

(r + n)!

r!n!
−

n∑
r=0

(r +m)!

r!m!
, (4.4.8)

which we show in Appendix E are antisymmetric coefficients that may be obtained from the

Pascal triangle with integer boundary elements. The operators LH
q and LH

p are Hermitian, and

have an alternative representation as

LH
z = iEf

∂

∂z

(
e
− i

Ef
H)
e

i
Ef

H
, (4.4.9)

for z = q, p. This can be seen to be equivalent to the definition in (4.4.6) with use of the

derivative of the exponential map, as in (4.4.4).

To give some intuition about the dynamics, we sketch the role of each line as follows. The top

line describes purely unitary evolution of the quantum system, governed by both the classical-

quantum Hamiltonian H and an effective Hamiltonian Heff that depends on s and Ef . This

additional Hamiltonian term arises due to the fluctuations induced by the environment [166],

and is analogous to the Lamb and Stark shifts that renormalise the bare system Hamiltonian

in standard open systems treatments [160]. The second line describes both the free classical

evolution and the back-reaction of the quantum system upon it, and we shall see that in Section

4.8 that this reduces to the symmetrised Poisson bracket appearing in (4.2.9) for a special class

of classical-quantum Hamiltonians. The third line describes how random fluctuations in the

classical degrees of freedom are correlated with random fluctuations in the unitary dynamics of

the quantum system i.e. noisy Hamiltonian quantum dynamics. The fourth line describes the

Lindblad portion of the dynamics, which acts to decohere the quantum system into a basis de-

termined by the Lindblad operators LH
q and LH

p . Finally, the final line describes the previously

described diffusion in the classical degrees of freedom, with overall strength proportional to Ef

and relative strengths in position and momentum determined by the parameter s.

To understand whether the evolution laws given by the above generator are consistent, it is

important to check that the dynamics are linear, trace-preserving, and completely-positive on a

suitable set of operator-valued functions of phase space. While this seems likely a priori, given

that the generator above was derived from free evolution and environmental decoherence in a full

quantum theory, it is often the case in the study of open quantum systems that approximations
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lead to violations of one or more of these conditions [160]. In order to check this, we note that

the simplified form of the dynamics given in (4.4.5) is of the canonical classical-quantum form of

dynamics, first written in general form by [45] (see also [76] for a later discussion of this). Any

dynamics of this form is linear and trace-preserving, and these properties are straightforward

to directly check by hand. In order to check the positivity of a dynamics of this form, one

must check a series of positivity conditions given by the CQ Pawula theorem [45]. The first

step is to pick a basis of operators, and phase space degrees of freedom, in which to read off

certain decoherence, back-reaction and diffusion matrices. Picking the basis (q, p), (LH
q , L

H
p )

for convenience, one may refer to the general form given in Appendix E to see that that the

decoherence D0, back-reaction D1 and diffusion D2 are given by

D0 =


s2

2Ef
− i

2Ef

i

2Ef

1

2Efs2

 (4.4.10)

D1 =


is2

2

1

2

−1

2

i

2s2

 (4.4.11)

D2 =

Efs
2 0

0
Ef

s2

 . (4.4.12)

The most basic requirements for positivity in the CQ Pawula theorem are the same as those

of the Lindblad and Fokker-Planck equations. For the quantum degrees of freedom, these are

the requirements that for all points in phase space the total Hamiltonian H +Heff is Hermitian

and the decoherence matrix D0 is positive semi-definite. For the classical degrees of freedom,

it is that the real matrix D2 is positive semi-definite for all points in phase space. One may

check that these properties do indeed hold, with Heff = H†
eff following from H = H†. The

key result of the classical-quantum Pawula theorem, is that the remaining conditions sufficient

for complete-positivity of a classical-quantum dynamics are that (I−D2D
−1
2 )D1 = 0 and that

D0 ⪰ D†
1D

−1
2 D1, where I denotes the identity matrix of the dimension of the classical degrees

of freedom, and D−1
2 denotes the pseudoinverse of D2. The first condition ensures that any

classical degree of freedom that experiences quantum back-reaction has noise in it, and this holds
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here since D2 is full-rank. The second condition, known as the decoherence-diffusion trade-off

[78], ensures that decoherence in the quantum system is sufficiently large to to be compatible

with the rate of information gain about it by the classical system. One may explicitly check this

condition with the above matrices and see that the decoherence-diffusion trade-off is satisfied,

and in fact is saturated as D0 = D†
1D

−1
2 D1. Thus, analogously to the standard classical limit of

the Wigner distribution, the classical-quantum limit presented here arrives at a dynamics that

is positive on all initial operator-valued functions of phase space.

As a final technical remark, it is worth noting that the above form of dynamics may be

straightforwardly generalised from one describing a single pair of phase space coordinates (q, p)

to one describing many i.e. (q1, . . . , qn, p1, . . . , pn). To see this, we note that generalising the C

subsystem to [q̂i, p̂j ] = iℏδij for i, j = 1, . . . , n and assuming decoherence into a tensor product

of coherent states on each subsystem, each described by a parameter si, changes the decoherence

map D and the partial Wigner evolution LW in a particularly simple way. In particular, the

only change in D is to include a sum from i = 1 to i = n in the exponential, while LW to O(ℏ0)

has the inclusion of the same sum in the Poisson bracket term. Since these lead to the second

and third lines in equation (4.4.3) respectively, it follows by linearity that the only change in the

final result of equation (4.4.5) is the inclusion of a sum over the pairs of phase space degrees of

freedom i.e. performing the substitution s 7→ si, q 7→ qi, p 7→ pi and summing from i = 1, . . . , n

over any terms that these indices explicitly appear in. This form of dynamics leads to D0,

D1 and D2 matrices that are block diagonal, with each block taking the same form as those

given in (4.4.10), (4.4.11) and (4.4.12), and thus the resulting dynamics is completely-positive

as before.

4.5 Effective classical-quantum states and subset positivity

The analysis of both the insufficiency of the ℏ → 0 limit and the apparent success of the double

scaling limit have thus far been presented using the partial Wigner quasiprobability distri-

bution ϱW . However, the positive semi-definiteness of ϱW was stated to only be a necessary

condition for the classicality of a subsystem. In this section, we introduce two other partial

quasi-probability distributions, the partial Husimi and partial Glasuber-Sudarshan distribu-
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tions, which we denote ϱQ and ϱP , and show how the positivity of ϱP is well motivated as a

definition of the necessary and sufficient condition for the effective classicality of a subsystem.

We then discuss how one may relax this definition, and how the notion of effective classicality

used within this work may be compatible with other notions used in the literature. The con-

siderations in this section and the next do not change the main result of equation (4.4.5), and

those interested in understanding this general form of classical-quantum dynamics better may

instead choose to go straight to section 4.7 or 4.8.

4.5.1 Effective classicality in a single system

We start by noting that a number of different proposals for defining the effective classicality

of a quantum system exist in the literature, from decoherent histories [49–51], and correlations

satisfying certain inequalities [52–54], to systems living in doubled Hilbert spaces [55, 56].

In this work, we shall use a particularly well-known type of effective classicality, based on

the positivity of quasiprobability distributions [57–61]. To motivate this, it will be useful to

introduce two common alternatives to the Wigner quasiprobability representation, the Q and P

representations, well-known for their use in quantum optics [167–169]. In the Q representation,

states are represented by the Husimi distribution Q, which is defined explicitly as

Q(q, p) = tr

[
|αs(q, p)⟩⟨αs(q, p)|

2πℏ
ρ̂

]
, (4.5.1)

while in the P representation, states are represented by the Glauber-Sudarshan distribution P ,

which is defined implicitly by

ρ̂ =

∫
P (q, p)|αs(q, p)⟩⟨αs(q, p)|dqdp. (4.5.2)

While the Q distribution is always a well-defined function of phase-space, the P distribution

in general must be understood as a generalised function [170, 152]. These expressions define

the representation of states in each respective quasiprobability theory, and implicitly define the

representation of measurements (see Appendix H).

One may identify the effective classicality of a single quantum system by studying the

positivity of one of these representations. By construction, the Husimi Q distribution is positive
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for all quantum states. Therefore, the positivity of the Q distribution cannot be useful as a

measure of classicality, since under this definition all quantum states, even those in non-local

superpositions, would be understood as effectively classical. On the other hand, one sees that

the positivity of the P distribution has a clear physical interpretation – that the quantum

state can be written as a statistical mixture of coherent states i.e. a classical mixture of “the

most classical states”. For this reason, we take the positivity of the P distribution to be a

sufficient and necessary condition for the effective classicality of a single quantum system, as

is common within quantum optics [58, 60]. Since the W representation is related to the P

representation by a Weierstrass transform (see Appendix I), if the P distribution is positive,

the Wigner distribution will also be positive. This explains the original statement in section

4.2 that the positivity of the Wigner function is a necessary condition for the classicality of a

single quantum system.

While this provides an intuitive notion of effective classicality, it turns out that it may

be made more precise, and given an operational meaning, by considering the representation

of both states and measurements in the P representation. As we discuss in Appendix H,

the representation of measurements in the P representation is given by the Q function of the

corresponding POVM element. As such, all measurements in the P representation have a

positive representation, and thus when the P function corresponding to the quantum state is

also positive, the statistics of any measurement are equivalent to those obtained from a non-

contextual probability theory [59, 61]. As we show in Appendix H, this provides an alternative

operational definition of the effective classicality of a single quantum system, given by the

states which cannot be distinguished from a fundamental classical system regardless of the

measurement performed.

4.5.2 Effective classicality of a subsystem

To generalise the preceding discussion, and hence define a notion of the effective classicality of

a subsystem, we will introduce two partial quasiprobability representations derived from the Q

and P representations previously introduced. In particular, we may define the partial Husimi
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distribution ϱQ explicitly via

ϱQ(q, p) = trC

[
|αs(q, p)⟩⟨αs(q, p)|

2πℏ
ρ̂

]
, (4.5.3)

and the partial Glauber-Sudarshan distribution ϱP implicitly by

ρ̂ =

∫
ϱP (q, p)⊗ |αs(q, p)⟩⟨αs(q, p)|dqdp. (4.5.4)

Like ϱW , both ϱQ and ϱP are normalised to 1 when traced over Hilbert space and intergrated

over phase space, and are useful for illustrating different properties of a given bipartite quantum

state ρ̂.

The partial Husimi ϱQ is an operationally relevant quantity, giving the actual probabilities

and corresponding quantum states on Q of a coherent state POVM with measurement operators

M̂q,p on the C subsystem, and is consequently positive semi-definite for all q, p. A consequence

of the non-orthogonality of the coherent states is that the set of all operator-valued functions

ϱQ form a strict subset H ⊂ S of positive operator-valued functions, in particular not including

those with uncertainty in position and momentum less than the Heisenberg bound [151, 171, 27].

By contrast, the partial Glauber-Sudarshan ϱP is not necessarily positive semi-definite at

all points in phase space [152], but when it is, one may see from its definition that the bipartite

quantum state is separable between the classical and quantum subsystems i.e. contains no

entanglement [77]. When this is the case, the C subsystem is in a mixture of coherent states

that are classically correlated with the Q subsystem. For this reason, by analogy with the P

distribution for a single system, we shall define the effective classicality of a subsystem by the

positivity of the partial Glauber-Sudarshan distribution ϱP . In other words, we will state that a

bipartite quantum state ρ̂ is an effective classical-quantum state if and only if the corresponding

distribution ϱP is positive semi-definite. Since the partial Wigner ϱW is related to ϱP by a

Weierstrass transform (see Appendix I), any positive semi-definite ϱP necessarily implies that

ϱW is also positive, justifying the original claim that ϱW ⪰ 0 is a neccessary condition for an

effective classical subsystem.

As with the case of the Glauber-Sudarshan P representation for a single system, this identi-

fication of the effective classicality of subsystems may be made more precise by also considering

the representation of measurements in the partial Glauber-Sudarshan representation. As dis-
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cussed in Appendix H, in the partial P representation, POVM elements are represented by the

partial Q function found by replacing ρ̂ with the POVM element in Equation (4.5.3). Since

these are necessarily positive semi-definite, every measurement in the partial P representation

takes the same form as a measurement in a fundamental classical-quantum theory (c.f. Chapter

2). As such, when the partial Glauber-Sudarshan distribution ϱP is also positive, the statistics

of any measurement made on the bipartite quantum state are equivalent to those obtainable

from a classical-quantum theory. As we show in Appendix H, this provides an alternative oper-

ational definition of effective classical-quantum states, as the states which are indistinguishable

from classical-quantum states regardless of the measurement performed.

4.5.3 Relaxing the definition of effective classicality

The preceding discussion showed that the definition of effective classicality we use in this work is

very strong, requiring that the statistics of measurements performed on the bipartite quantum

system to be ‘fakeable’ by a fundamental classical-quantum system.

A basic way of relaxing this definition of effective classicality is to restrict the choices of

measurements performed on the bipartite quantum system. For example, it is well known that

by restricting to Gaussian states and measurements, which all have positive Wigner represen-

tations, dynamics that map positive Wigner functions to positive Wigner functions may also

appear classical [61, 172]. Analogously, in the bipartite case, by restricting to measurements

with positive partial Wigner functions, dynamics that preserves the positivity of the partial

Wigner function alone would be sufficient to guarantee that the dynamics appears effectively

classical. As discussed further in Appendix H, we thus may treat the states with positive

partial quasiprobability distributions in other representations as effectively classical-quantum,

provided the measurements are also understood to be suitably restricted.

Relaxing the requirement of positivity from the partial P representation to other represen-

tations leads to a relaxation of the requirements of the dynamics. To see this, we first note

that every positive semi-definite operator-valued function of phase space defines a valid positive

partial P distribution. This means that the corresponding dynamics in the partial P repre-

sentation must be positive on every initial state in order to define effective classical-quantum
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dynamics. However, the same however does not hold for other partial quasi-probability dis-

tribitions: the set of states of ϱW and ϱQ form strict subsets of all positive operator-valued

functions [151, 171, 27].

In these cases, while completely-positive dynamics defines a valid effective classical-quantum

dynamics, another valid effective dynamics is provided by subset-positive dynamics. Recall that

in Section 4.2, the notion of positivity of dynamics was used to argue for the validity of the

Liouville equation as classical equation of motion, and against the quantum-classical Liouville

equation as having describing a genuinely classical subsystem. The key property was that the

positivity of the dynamics was considered on the set of all positive semi-definite operator-valued

functions S. However, there also exist dynamics which although do not preserve the positivity

of all initial real or operator-valued functions of phase-space states, do preserve positivity of on

a subset of initial conditions. For a given subset of all positive semi-definite functions Λ ⊂ S,

we state that a dynamics is Λ-positive if it is positive for all initial states belonging to that

subset. Since subset-positive dynamics need not be positive on all initial states, it also need

not be characterised by the Pawula [47] or CQ Pawula [45] theorems described in Appendix D.

An important example of such a subset-positive dynamics is provided by partial Husimi

representation dynamics. Since the partial Husimi representation is always positive, the unitary

dynamics in Hilbert space induces a positive dynamics on partial Husimi distributions [27].

However, this map is not positive on all initial states, but instead is H-positive. While this

subset-positive dynamics has many interesting features, the positivity should not be conflated

with the interpretation as having an effectively classical subsystem, for the reason that all

dynamics, even those that generate large amounts of entanglement, may be represented in this

way. A single measurement of such a dynamics will only appear effectively classical-quantum

when the measurements on the bipartite system are severely restricted, in this case to those

with positive partial P representations i.e. to coherent state POVMs on the C subsystem and

Q system measurements conditioned on the POVM outcome.

4.5.4 Compatability with other notions of classicality

The definition of effective classicality in terms of the positivity of the partial Glauber-Sudarshan
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representation was motivated by appealing to the formalism of positive representations of states

and measurements. In this subsection, we discuss how our framework may also be adapted to

fit with alternative notions of classicality.

Firstly, we note that a common notion of classicality is the non-disturbance of measure-

ments, which is codified into tests of classicality such as Legget-Garg [53, 54]. To understand

how measurement disturbance arises in our current framework, let us imagine we have the

unitary bipartite evolution of two quantum systems, and perform a coherent state POVM on

the C subsystem at a time t. The probability distribution of outcomes, and the correspond-

ing conditional measurement outcomes on the Q subsystem are described by ϱQ. However, to

describe the evolution correctly, the unconditioned post-measurement state must be updated,

by a Weierstrass transform, to include the effect of the measurement. The description of mea-

surement outcomes at a series of times t1, . . . , tn thus appears to depend explicitly on which

times the system was measured, and thus appears inherently non-classical. In other words, to

make accurate predictions for future observations, a record must be made of the times at which

measurements were made on the C subsystem, in clear contradiction with standard classical

physics.

A strange, yet natural loophole, is to instead imagine that the C system is always being

measured. In this case, the system may be assigned definite values at every point in time,

but no record is required to be made of which times the system was observed. By constantly

measuring the system, the counterfactual of what would have happened if a measurement were

made never needs to be considered. This exactly coincides with the idea of the environment

playing the role of a witness [134, 135], and we see this explicitly in the discrete time model of

environmental decoherence we introduce, with the POVM acting as a constant measurement

of the system in the limit of τ → 0. In this model each measurement has a disturbing effect

on the system, but in the double scaling limit, this appears as nothing other than a diffusion

process on the classical degrees of freedom, and thus is compatible with a classical description.

Another notion of effective classicality is via the decoherent histories framework [49–51, 137].

In this framework, the probability of a certain classically definite history z1, . . . , zn at times
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t1, . . . , tn is provided by considering the trace of projectors P̂ (zi, ti) = e
i
ℏ ĤtiP̂ (zi)e

− i
ℏ Ĥti i.e.

P (z1, . . . , zn) = tr[P̂ (zn, tn) . . . P̂ (z1, t1)ρ̂P̂ (z1, t1) . . . P̂ (zn, tn)]. (4.5.5)

Choosing projectors P (zi) given by the coherent states |αi⟩⟨αi| (where |αi⟩ is shorthand for

|αs(qi, pi)⟩), and assuming a measurement is performed every time τ , this takes the form

P (z1, . . . , zn) = tr
[
|αn⟩⟨αn|e−

i
ℏ Ĥτ . . . |α1⟩⟨α1|e−

i
ℏ Ĥτ ρ̂e+

i
ℏ Ĥτ |α1⟩⟨α1| . . . e+

i
ℏ Ĥτ |αn⟩⟨αn|

]
(4.5.6)

It is straightforward to see from the above that this exactly describes the discrete-time model

of the environment provided previously, where the bipartite system evolves unitarily for time τ

and then is projected onto the coherent states‡.

To generalise this procedure to also include information about the Q subsystem, we may

instead take the partial trace. In doing so, we arrive at the probability of a classical history,

multiplied by the quantum state conditioned on these measurement outcomes i.e. the classical-

quantum state corresponding to a path in phase space, given by

ϱ(z1, . . . , zn) = trC
[
|αn⟩⟨αn|e−

i
ℏ Ĥτ . . . |α1⟩⟨α1|e−

i
ℏ Ĥτ ρ̂e+

i
ℏ Ĥτ |α1⟩⟨α1| . . . e+

i
ℏ Ĥτ |αn⟩⟨αn|

]
.

(4.5.7)

While this provides some suggestion that the discrete time model and double scaling limit

may be thought of in terms of decoherent histories, one must in practice check that there is

negligible coherence between different classical histories, which is understood as the vanishing

of the decoherence functional [51]. Whether this may be generalised in a similar way to (4.5.7)

and be used to check that the C subsystem has well-defined classical histories even when the

Q subsystem is observed is an interesting question which we leave to future work.

These two examples suggest that the basics of our framework i.e. the discrete time model of

environmental decoherence, and the associated double scaling limit, may be understood in other

frameworks of classicality beyond the positivity of the quasiprobability distributions considered

previously.

We conclude this section by highlighting three subtleties of studying effectively classical

‡Indeed, as we demonstrate in the next section, this ordering of free evolution and projection is exactly the

kind corresponding to the partial Glauber-Sudarshan distribution.
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subsystems. Firstly, it is important to emphasise that a subsystem that is not effectively classical

may become effectively classical when the Q subsystem is traced out. In particular, it is possible

to find examples of ϱP that are not positive despite the fact that their trace trϱP is. As opposed

to being a failure of the definitions we provide, this captures an important feature of classicality:

namely that a given system is only classical with respect to a set of other systems that are

accessible to measure. Indeed, the C system will in general be expected to be entangled with

another unobserved system such as an environment, or have entanglement amongst unobserved

constituent parts (e.g. as in [162]). Secondly, it is worth highlighting that an ambiguity arises

in the above definition of ϱP – namely that the freedom in the squeezing parameter s means

that that one may in principle define different P representations. In our model, we see that the

environment provides a natural choice of s, namely that which is preserved by the dynamics.

While seemingly strange that the dynamics enters this definition, this is also implicitly the case

in standard discussions of P function positivity in quantum optics, where the coherent states

are defined as those displaced from the ground state of the Hamiltonian [169, 168]. Finally, once

one goes beyond a single quantum subsystem that is being classicalised, it is not necessarily

natural for the positivity of the partial Wigner function to even be a necessary condition for

classicality. This is due to the possibility of entanglement amongst the subsystems that make

up the C subsystem, which nevertheless is not manifest at a macroscopic level. Although

beyond the scope of the current work, in this case one expects that some entanglement should

be permitted amongst the individual subsystems that make up the classical system, and thus

the allowed set of measurements should be restricted to reflect that this entanglement is not

detectable.

4.6 Equivalence between partial quasiprobability representa-

tions

In this section, we shed some light onto why the dynamics of equation (4.4.5) is completely-

positive on all operator-valued functions of phase space, and on the original choice of operator

ordering in the definition of Eℏ
τ , by studying the dynamics of the partial Husimi ϱQ and partial

Glauber-Sudarshan ϱP distributions introduced in the previous section. In doing so, we demon-
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strate that the classical-quantum limit we have arrived at preserves the effective classicality of

the C subsystem.

To study the total dynamics of the partial Glauber-Sudarshan and partial Husimi distribu-

tions in the classical-quantum limit, we first note that the decoherence channel used to model

the environment in these representations is identical to that of the partial Wigner distribution,

and so may be modelled as before as D. To study the unitary dynamics generated by the

Hamiltonian in each representation, we show in Appendix I how one may find the generators of

the partial Husimi LQ and the partial Glauber-Sudarshan LP by mapping first to the Wigner

distribution by the differential operator D∓ 1
2 , using the free Wigner evolution, and then map-

ping back using the inverse D± 1
2 , for ϱQ and ϱP respectively. Considering the corresponding

generators to O(1) in ℏ, we find the following generator of partial Husimi evolution

LQ
∣∣
O(ℏ0) =− i

ℏ
[H, · ] + 1

2
({H, · } − { · , H})

− is2

2
[
∂H

∂q
,
∂ ·
∂q

]− i

2s2
[
∂H

∂p
,
∂ ·
∂p

]

− i[
s2

4

∂2H

∂q2
+

1

4s2
∂2H

∂p2
, · ],

(4.6.1)

which was first written down in [27], though without the final term, and the following generator

of partial Glauber-Sudarshan evolution

LP
∣∣
O(ℏ0) =− i

ℏ
[H, · ] + 1

2
({H, · } − { · , H})

+
is2

2
[
∂H

∂q
,
∂ ·
∂q

] +
i

2s2
[
∂H

∂p
,
∂ ·
∂p

]

+ i[
s2

4

∂2H

∂q2
+

1

4s2
∂2H

∂p2
, · ].

(4.6.2)

Using these, one may then construct the generator of evolution Eℏ
τ as in (4.4.1) and take the

double-scaling limit as described previously to find the generator of the dynamics. However,

in order to derive the same evolution map, and thus the same generator, one can check that

one must choose different operator orderings depending on the representation! In particular,

one can see from the above argument using D± 1
2 to map between representations, that three

distinct operator orderings of the free evolution and the environmental decoherence steps lead

to the same evolution map:

Eℏ
τ = eL

QτD = D
1
2 eL

W τD
1
2 = DeLP τ . (4.6.3)
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The key observation to understand the difference in operator ordering in each case is to note

that the environment plays a different role in each partial quasiprobability representation in

order to maintain classicality. As discussed in section 4.5, the unitary dynamics in the partial

Husimi representation are only positive on initial states with sufficient spread in phase space.

Consequently, in this representation the decohering action of the environment must be taken

before the unitary evolution, such that any arbitrarily peaked states in phase space are first

convoluted before they are evolved. Conversely, in the partial Glauber-Sudarshan representa-

tion, the state ϱP is only positive when all entanglement has been removed; in this case the

environment acts after the unitary evolution to ensure any entanglement built up by the uni-

tary evolution is destroyed at the end of each step. Since the partial Wigner representation ϱW

lies exactly half-way between ϱQ and ϱP by Weierstrass transform (see Appendix I for more

details), the original symmetrised dynamics postulated in (4.4.1) turns out to be exactly that

which performs both steps in half-measure. In all of these cases, the map that is defined is

completely-positive on all positive semi-definite operator-valued functions.

The above analysis also guarantees that the dynamics of equation (4.4.5) preserves the

effective classicality of the C subsystem. As discussed in Section 4.5, the positivity of the

partial Glauber-Sudarshan probability distribution provides sufficient and necessary conditions

for the quantum state of the bipartite system to be an effective classical-quantum state. Thus,

by here explicitly showing that the dynamics of ϱP are also positive, we guarantee that the

C subsystem may be treated as effectively classical in the double scaling limit. This may be

equivalently argued using the fact that the map between the different representations becomes

the identity in the limit that ℏ → 0, and thus that ϱW coincides with ϱP in the classical limit.

For the same reason, ensuring that the dynamics in the three representations all agree, as it

does above, provides an important consistency check on the validity of any classical-quantum

dynamics arising from a classical limit.

4.7 Trajectories in the classical-quantum limit

We assumed up to this point that the observer has no access to the environmental degrees of

freedom that store the information about the C subsystem. However, one could assume that
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the observer has sufficient information about the environment to reconstruct the outcome of the

effective coherent state POVM that it induces at each time step [173, 174, 43]. In this case, the

observer has access to the classical system’s trajectory in phase space, and their best estimate

of the quantum state deduced from the motion of the classical system leads to a quantum

trajectory in Hilbert space.

The general form of dynamics describing classical-quantum trajectories allows us to unravel

Equation (4.4.5) into coupled stochastic trajectories of the classical phase space degrees of

freedom zt and mixed quantum states ρt conditioned on these classical trajectories. A key

result of Chapter 2 was that when the trade-off is saturated in the form D0 = D†
1D

−1
2 D1, any

initially pure state of the quantum system remains pure conditioned on the classical trajectory.

Since this is the case here, this means that the general classical-limit dynamics of Equation

(4.4.5) may be unravelled in terms of pure quantum states |ψ⟩t which are unique for a given

classical trajectory. Defining a column vector zt = (qt, pt)
T for the classical degrees of freedom,

and the operator-valued column vector L = (LH
q , L

H
p )T , the stochastic dynamics takes the form

dzt = (D∗
1 +D1)⟨L⟩dt+ σdWt, (4.7.1)

d|ψ⟩t =− i

ℏ
(H +Heff)|ψ⟩tdt

+ (L− ⟨L⟩)TD†
1σ

−T |ψ⟩tdWt

− 1

2
(L− ⟨L⟩)T (DT

0 L−D0⟨L⟩)|ψ⟩tdt.

(4.7.2)

Here ⟨L⟩ = ⟨ψ|tL|ψ⟩t, σ denotes any 2×2 matrix such that σσT = D2, and dWt = (dW 1
t , dW

2
t )

T

denotes a column vector of two uncorrelated Wiener processes. The equations are formally

identical to those used to describe continuous quantum measurement and the associated mea-

surement signals, and we refer the reader to [42] for an excellent introduction to this formalism.

The unravelled form of dynamics makes clear that the semi-classical limit we present here

does not lead to any loss of quantum information, provided an observer has access to the full

classical trajectory (c.f. Secs. 2.4 and 2.5). Since this originates from a full quantum theory,

we see that in principle the irreversibility introduced by tracing out an environment may be

partially recovered in the classical limit.

The most important practical use of the stochastic unravelling equations we provide here

97



is for the simulation of dynamics in the classical-quantum limit. For the same reasons that

unravellings of Lindbladian dynamics provide an important tool for studying open quantum

systems [160], unravellings of classical-quantum master equations allow one to study both the

mean values and statistics of various classical and quantum observables. As discussed for the

master equation approach, these equations may also be generalised to the case where there

are n classical degrees of freedom (q1, . . . , qn, p1, . . . , pn): in this case one must take zt =

(q1t , . . . , q
n
t , p

1
t , . . . , p

n
t )

T , L = (LH
q1 , L

H
p1 , . . . , L

H
qn , L

H
pn)

T , dWt = (dW 1
t , . . . , dW

2n
t )T , and take D0,

D1 andD2 to be block diagonal, with each block given by the form in equations (4.4.10)-(4.4.12),

as discussed in section 4.4. With these modifications to the above equations, the dynamics of

a wide variety of many body systems with bosonic subsystems may be studied numerically in

the classical-quantum limit, and we refer the reader to Chapters 2 and 5 for examples of the

simulation of classical-quantum unravellings.

4.8 Two special cases of dynamics

The general form of generator, given in equation 4.4.5 and their corresponding unravellings

in (4.7.1) and (4.7.2) are the main results from this chapter, describing the general form of

dynamics for a bipartite Hamiltonian Ĥ in the double-scaling classical limit on one subsystem.

To gain some more insight into what this dynamics predicts, we will consider now two special

cases.

The first case we will consider is the effect of the double-scaled classical limit on a single

system. To study this, one can take a bipartite quantum Hamiltonian of the form Ĥ = (p̂2/2m+

V (q̂)) ⊗ 1, where 1 is the identity operator on the Q subsystem i.e. a Hamiltonian with

trivial action on the Q subsystem. The corresponding classical-quantum Hamiltonian may be

computed to be H = (p2/2m+V (q))1, and defines the operators LH
p = (p/m)1, LH

q = ∂qV (q)1,

Heff = 0. Using these definitions in the general dynamics (4.4.5) one finds that the unitary,

Lindbladian, and mixed derivative-commutator terms all vanish, and the mixed derivative-

anticommutator terms combine to give the Poisson bracket. This gives the following stochastic
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dynamics on the classical system

∂ϱ

∂t
= {H, ϱ}+

Efs
2

2

∂2ϱ

∂q2
+
Ef

2s2
∂2ϱ

∂p2
, (4.8.1)

which describes diffusion around the classical Liouville equation given in (4.2.4). This example

shows that the idea that that the limit is specific to subsystems is not neccesary – rather the

double scaling limit we find provides a general notion of a “stochastic classical limit”, that

happens to also give consistent evolution when it is applied to subsystems alone. Although the

existence of stochastic classical limits are somewhat of a folk wisdom in physics, the earliest

concrete proposal we have found in the literature is a discussion in [138].

A second limiting case of the above dynamics is to consider the dynamics under the approx-

imation

adn−i
Ef

H

(
∂H

∂z

)
≈ 0, (4.8.2)

for z = (q, p) and n > 0. This is true exactly when H(q, p) is self-commuting i.e. when

[H(z), H(z′)] = 0 for all z, z′ in phase space, and has an error of O(ℏn) when the classical-

quantum Hamiltonian takes the form H = (p2/2mC)1 + P 2/2mQ + V (q1 − Q), where Q and

P are operators on the quantum subsystem satisfying [Q,P ] = iℏ. Making this approximation,

we find that LH
q = ∂qH, LH

p = ∂pH and Heff = (ℏs2/4)∂2qH + (ℏ/4s2)∂2pH. The dynamics in

(4.4.5) then reduces in form to the following

∂ϱ

∂t
=− i

ℏ
[H, ϱ] +

1

2

(
{H, ϱ} − {ϱ,H}

)
+
is2

2
[
∂H

∂q
,
∂ϱ

∂q
] +

i

2s2
[
∂H

∂p
,
∂ϱ

∂p
]

+ i[
s2

4

∂2H

∂q2
+

1

4s2
∂2H

∂p2
, ϱ]

+
1

2Ef
(L̄ϱL̄† − 1

2
{L̄†L̄, ϱ}+)

+
Efs

2

2

∂2ϱ

∂q2
+
Ef

2s2
∂2ϱ

∂p2
,

(4.8.3)

where we have defined the Lindblad operator L̄ = sLH
q + is−1LH

p as in equation (4.4.6). The

first line gives the unitary evolution and Alexandrov bracket from the quantum-classical Liou-

ville equation (4.2.9). However, the second and third lines, formed from Heff and the mixed

derivative-commutator terms, contain exactly the additional terms associated to the dynamics
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of the partial Glauber-Sudarshan representation i.e. the first three lines give LP |O(ℏ0), previ-

ously found in (4.6.2). We thus see that the total dynamics is exactly the dynamics of the partial

Glauber-Sudarshan representation to lowest order in ℏ, with additional terms corresponding to

noise in the classical and quantum systems. Since the approximation made above occurs at

the level of the operators, the complete positivity of the dynamics is unchanged, and thus may

still be unravelled by using the simplified forms of the operators LH
q , LH

p and Heff in equations

(2.16) and (2.17).

The majority of work in the literature on completely-positive classical-quantum dynamics,

including the earlier Chapter 3, concluded that the natural form of dynamics would take the

form of the quantum-classical Liouville equation with minimal additional noise terms to en-

sure positivity [25, 46, 1]. However, as the above example shows, when derived in a physical

manner from a full quantum theory, a more natural model is instead the O(ℏ0) partial Glauber-

Sudarshan dynamics of (4.6.2) supplemented with the minimal terms necessary for positivity.

This result seems particularly reasonable when one considers that it is the positivity in the par-

tial Glauber-Sudarshan distribution, and not the partial Wigner distribution, that guarantees

the classicality of the C subsystem, as discussed in Section 4.6. The biggest difference between

these models lies in the additional back-reaction terms with first derivatives in position, which

lead to a decoherence rate that is twice as large as that expected by including additional terms

in the partial Wigner representation.

4.9 The Ef → 0 limit

The double scaling limit we have presented leads generically to irreversible dynamics, with the

parameter characterising the diffusion in the classical system given by Ef . A question we now

turn to is whether one may recover a deterministic evolution, as in the standard classical limit,

by tuning this free parameter.
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4.9.1 Ef → 0 for self-commuting Hamiltonians

The first example to look at is the result of the double scaling classical limit on a single sys-

tem. The dynamics in this case was computed earlier in equation (4.8.1), taking the form of

Hamiltonian dynamics with additional diffusion in both position and momentum proportional

to Ef . In the limit Ef → 0, one thus recovers the Liouville equation (4.2.4), i.e. deterministic

evolution under the classical Hamiltonian. This additional Ef → 0 limit may be physically

interpreted as saying that if one considers large macroscopic scales, any noise due to the en-

vironment is negligible, and thus reversible Hamiltonian dynamics is recovered [158]. Indeed,

this is the same kind of limit that permits us to disregard the miniscule effects of Brownian

motion at the macroscopic scales of everyday objects i.e. that the amount of diffusion caused

by the environment is vanishingly small compared to the other forces on macroscopic objects§.

Since the Liouville equation (4.2.4) was previously obtained directly from the standard ℏ → 0

limit, we see that when applied to single systems, the stochastic notion of a classical limit that

we have presented reduces to the standard notion in the Ef → 0 limit.

Given that the Ef → 0 limit recovers a deterministic classical limit on a single system, it is

interesting to consider whether the same may be true when one considers the classical limit of a

subsystem. To explore this question, we will first consider the limiting case described in equation

(4.8.3) for self-commuting classical-quantum Hamiltonians. In this case, the parameter appears

in two places: proportional to the strength of classical diffusion, and inversely proportional to

the strength of the decoherence on the quantum system. One thus sees that while taking Ef

to be small reduces the amount of classical diffusion, it leads to very large decoherence on the

quantum degrees of freedom in a basis determined by the Lindblad operator L̄. In the limit

Ef → 0, decoherence acts to instantaneously select an eigenstate of the operator L̄, and then

freeze the quantum system in this eigenstate, via the quantum zeno effect [175, 161, 39]. In doing

so, the quantum system is essentially classicalised, with any superpositions being supressed by

the strong decoherence. Since the back-reaction on the classical system is determined by the

eigenvalues of the operator L̄, the classical system then undergoes deterministic evolution with

§Indeed, using the definition of τ considered previously in terms of the decoherence time τD, we see that

Ef → 0 corresponds in the physical model of quantum Brownian motion to taking the diffusion coefficient D to

zero, as would occur in e.g. a low temperature limit of the model.
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drift given by the eigenstate that the quantum system is frozen in. Such a dynamics may be

understood to be reversible on a subset of initial quantum states that are eigenstates of the

Lindblad operator L̄, but in general is highly non-deterministic, with a generic initial quantum

state being rapidly decohered by the interaction.

The above example illustrates that in the Ef → 0 limit, dynamics arising from classical-

quantum Hamiltonians that are self-commuting exhibit rapid decoherence in the quantum sys-

tem. It turns out however that this is not a generic feature of dynamics in the Ef → 0 limit,

which we may illustrate with the following example.

4.9.2 Ef → 0 for non self-commuting Hamiltonians: a classical-quantum limit

of two quantum harmonic oscillators

Consider a system of two interacting quantum particles in one dimension, with the Q subsystem

characterised by the canonical commutation relation [Q,P ] = iℏ and the C subsystem as usual

by [q̂, p̂] = iℏ. The system will be taken to have free evolution given by the bipartite quantum

Hamiltonian Ĥ = p̂2/2mC +P 2/2mQ+λ(q̂−Q)2. Taking the classical-quantum limit of the C

subsystem gives a classical-quantum Hamiltonian H = (p2/2mC)1+P
2/2mQ+λ(q1−Q)2. For

this model, one may compute the Lindblad and effective Hamiltonian operators of equations

(4.4.6) and (4.4.7) exactly, exploiting the fact that the adjoint action closes under the set of

linear operators in 1, Q, P to obtain

LH
q =

Ef

ℏ

[√
2λmQ sin

( √
2λℏ

Ef
√
mQ

)
(q1−Q) + [1− cos

( √
2λℏ

Ef
√
mQ

)
]P

]
, (4.9.1)

LH
p =

p

mC
1, (4.9.2)

Heff =
p

2mC

[
2EfmQ

ℏ
[cos

( √
2λℏ

Ef
√
mQ

)
− 1] +

√
2λmQ sin

( √
2λℏ

Ef
√
mQ

)]
Q

+
p

2mC

[
1 + cos

( √
2λℏ

Ef
√
mQ

)
−
√
2mQEf√
λℏ

sin

( √
2λℏ

Ef
√
mQ

)]
P,

(4.9.3)

where we have dropped terms proportional to the identity in Heff. These explicit forms of

Lindblad and effective Hamiltonian operators may be used in the master equation (4.4.5) or

the unravelling equations (2.16) and (2.17) to study the classical-quantum oscillator dynamics

for arbitrary Ef .
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Let us now consider this dynamics in the low diffusion, Ef → 0 limit. The key feature

of interest is that as Ef goes to zero, the non-trivial Lindblad operator LH
q responsible for

quantum back-reaction on the classical system also vanishes. Moreover, one can check that the

parts of L̄ϱL̄† − 1
2{L̄

†L̄, ϱ}+ responsible for decoherence also vanish, at a faster rate than the

rate at which the decoherence strength increases. In other words, in the Ef → 0 limit, both

the back-reaction and decoherence of the quantum system are zero. To study the rest of the

dynamics in the low diffusion limit, we first note that the remaining terms of L̄ϱL̄†− 1
2{L̄

†L̄, ϱ}+

lead to unitary evolution on the quantum system, with a Hamiltonian given by (ℏp/2mCEf )L
H
q .

Remarkably, although this Hamiltonian andHeff do not independently have well-defined Ef → 0

limits, their sum does and has its limit given by (p/mC)P . We thus find that in the Ef → 0

limit, the classical-quantum oscillator dynamics reduces to unitary dynamics on the quantum

system under the classical-quantum Hamiltonian H and an additional term (p/mC)P , and the

classical system experiences no back-reaction:

dqt =
pt
mC

dt, dpt = 0, (4.9.4)

d|ψ⟩t = − i

ℏ
(H +

pt
mC

P )|ψ⟩tdt. (4.9.5)

In this limit, the strong monitoring by an environment on the C subsystem thus acts to ef-

fectively remove the back-reaction of the quantum system on the classical one, leaving simply

coherent control of the quantum system by the classical one, despite the strength of interaction

remaining fixed. Under the additional assumption that the C subsystem is moving sufficiently

slowly, one recovers coherent control under the classical-quantum Hamiltonian. This repro-

duces the results of earlier work on classical-quantum limits, which considered the special case

in which the back-reaction is zero [129, 70]. In our setting, this effect is reminiscent of dynam-

ical decoupling, where the application of unitary pulses on a quantum system may reduce the

interaction with an external environment [176]. Incidentally, one can check that the ℏ → 0

limit of the operators defined in equations (4.9.1) and (4.9.3) are still well-defined, and reduce

the form of dynamics to that given in (4.8.3); the apparent difference in limiting behaviour as

Ef becomes small is due to the non-commutativity of the two limits Ef → 0 and ℏ → 0.

The two examples above show that in the low diffusion limit, Ef → 0, the classical-quantum

dynamics we find can exhibit two very different behaviours; one in which the quantum system

103



rapidly decoheres, and affects the classical system, the other in which it evolves with unitary

evolution, and has no back-reaction on the classical system. In the regime that a classical

system appears to evolve without diffusion, it thus appears to be the case that any quantum

degrees of freedom that are affecting the evolution of the system must be rapidly decohered

and effectively classical, or do not influence the dynamics of the classical system, and undergo

unitary evolution depending on the classical state of the system. It would be interesting to

study how generic the latter case is, and indeed whether there exist other behaviours aside

from these two.

4.10 Discussion

The main results, given in master equation form in (4.4.5) or stochastic unravelling form in

(2.16) and (2.17), provide a physically motivated and consistent effective classical-quantum

dynamics derived from a full quantum theory. A special limiting case of this, given in equation

(4.8.3), provides a form of dynamics close to the quantum-classical Liouville equation that

may be directly unravelled in classical trajectories in phase space and quantum trajectories in

Hilbert space. Beyond the coupled quantum harmonic oscillators example given, understanding

the kinds of dynamics obtained via this classical-quantum limit in further models, from optics

to condensed matter theory, would be of great interest. With the form of Lindblad and effective

Hamiltonian operators computed, the average and statistical properties of such systems may

be numerically simulated using the stochastic unravellings of (2.16) and (2.17).

An important research direction to understand in greater detail is the conditions under which

the above dynamics are a good approximation to a full quantum dynamics. While the work in

this chapter demonstrated that a classical-quantum limit gives a rich dynamical structure, the

analysis was the classical-quantum analogue of the steps leading from the full Wigner dynamics

of equation (4.2.2) to the Liouville equation in (4.2.4). Understanding whether the various

approaches that characterise the conditions under which one may make this approximation

[133, 139, 177, 150, 140] can be generalised to the more complex case of a classical-quantum

limit is an important open question.
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The methods presented here rely on the assumption that the environment may be modelled

in a particularly simple way, as a series of discrete-time decoherence channels on the subsystem

that is classicalised. It would be interesting to understand whether the results we obtain here

may also be derived directly from continuous-time models of an environment (c.f. Appendix G).

Moreover, the effect of the environment in this proposed classical-limit procedure is particularly

simplistic, characterised only by the total strength of phase space diffusion Ef and a parameter

s quantifying the relative strength of diffusion in position and momentum. In real systems, the

environment may induce a large number of additional effects on the dynamics such as friction,

and in such cases we expect the corresponding classical-quantum dynamics to be modified to

reflect this.

Beyond this, it would be interesting to understand dynamics which relax the requirement

of preserving effective classical-quantum states. In its most modest form, this could arise from

restricting the set of measurements performed on a system undergoing Markovian evolution,

using the formalism of section 4.5, such that even in the presence of entanglement the system

appears classical. More generally, dynamics that do not preserve effective classical-quantum

states could arise analogously to how relaxing complete-positivity in the study of open quantum

systems can sometimes approximate full non-Markovian dynamics more accurately than when

the dynamics is of Lindblad form [178]. In this regard, making precise the notions of almost

always classical-quantum, or approximately classical-quantum, are likely to be important.

For these reasons, the classical-quantum limit introduced here is likely to be one of many,

and we anticipate that considerable further work is required to understand the full landscape

and applications of effective classical-quantum dynamics that arise from quantum theory.
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Chapter 5

Thermal state preserving

classical-quantum dynamics

In this chapter, we study dynamics of classical-quantum systems in thermal environments.

This is made possible by identifying two operators, Lz and Mxy, that allow general forms of

dynamics to be constructed that preserve the thermal state of the combined classical-quantum

system. We see that this will allow us to prove explicitly that this class of dynamics is consistent

with the second law of thermodyanmics, which we illustrate in two models. The main technical

result is finding necessary and sufficient conditions for completely-positive, linear, Markovian

and continous in phase space classical-quantum dynamics to satisfy detailed balance.

5.1 Motivation and background

A basic test of any theory is that it is consistent with the laws of thermodynamics. First used

to bound the efficiency of large engines, the principles of thermodynamics are now understood

to apply to the smallest scales, and to systems far from equilibrium. The great utility of

thermodynamics is its universality, with all systems, whether described by classical mechanics

or quantum mechanics, expected to be in accordance with it.
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It is thus natural to expect that the rules of thermodynamics must also apply in contexts

where both classical and quantum degrees of freedom are present. However, despite a huge

range of dynamics having been suggested to describe the interactions between classical and

quantum systems [17, 18, 15, 24–37], the question of whether any can be constructed to be

compatible with the laws of thermodynamics has been largely left unanswered∗. Indeed, this

is in part because the common approaches used to study classical-quantum hybrids, namely

mean-field methods [64] and reversible quantum-classical evolution laws [17–19], manifestly fail

to satisfy both of the basic consistency requirements of a probability theory, namely linear-

ity and positivity, which necessarily lead to violations of the second law of thermodynamics

[179, 180]. While a recent approach based on mean-field dynamics showed success for systems

close to equilibrium using perturbation theory [38], a form of classical-quantum dynamics that

demonstrates consistency with thermodynamics out of equilibrium and for arbitrary coupling

strengths has remained unknown.

In this chapter, we demonstrate that constructing classical-quantum dynamics consistent

with the laws of thermodynamics is indeed possible. The central idea of this chapter is to

identify the inherent irreversibility in classical-quantum dynamics as arising due to a thermal

environment. First suggested in one of the earliest works on the topic [26], this perspective is

natural when considering classical-quantum systems as arising when a quantum subsystem is

decohered strongly enough by its environment for it to become effectively classical, as shown

in Chapter 4. The thermal nature of the environment naturally leads us the main focus of this

chapter: we shall study dynamics which preserve the thermal state of the combined classical-

quantum system in time. While the possibility of such thermal-state preserving dynamics has

been considered for some time in the context of physical chemistry [181–184], the approaches

taken to achieve this are arguably closer to numerical methods than true dynamics, with even

approximate preservation of the thermal state coming at the expense of violating basic physical

assumptions such as the continuity of classical trajectories [185–187].

The main contribution of this chapter is to identify two classes of operators that allow

∗A recent review [37] noted that most models do not demonstrate consistency with thermodynamics; those

that were claimed to do so also fail the basic assumption of positivity, which means that the system cannot be

interpreted as having an effectively classical subsystem, as discussed in Section 4.5.
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for the construction of linear and completely-positive dynamics that preserve general classical-

quantum thermal states. To illustrate this, we provide two general forms of dynamics, cor-

responding to overdamped and underdamped classical particles coupled to arbitrary quantum

systems. Beyond simply reducing to the correct classical limits, we show that our dynamics gen-

eralise the standard approaches of classical-quantum coupling, notably mean-field dynamics [64]

and quantum-classical Liouville dynamics [19], to the case where the dynamics is completely-

positive, linear and preserves the thermal state of the combined classical-quantum system.

A major result of this chapter is to show that our dynamics, and indeed any thermal-state

preserving, completely-positive and linear classical-quantum dynamics, necessarily satisfy the

second law of thermodynamics for arbitrary initial states. Defining notions of entropy and

heat for the combined classical-quantum system, the framework we provide allows one to study

both entropy production and heat fluctuations in classical-quantum systems arbitrarily far

from equilibrium. This chapter thus provides the first steps towards a general theory of non-

equilibrium classical-quantum thermodynamics, combining the respective theories of classical

and quantum non-equilibrium thermodynamics [188, 189] into one cohesive framework.

An important application of our framework is in the study of measurement and control

of quantum systems. With Bohr’s original conception of quantum theory as inherently de-

scribing the interactions between a quantum system and classical measuring device, we may

understand the present framework as a physical and thermodynamically consistent description

of this process. Since any interaction between classical and quantum systems is fundamen-

tally irreversible [44, 23, 25, 45, 46], this chapter provides a framework for studying this using

quantitative measures such as entropy production. Aside from any foundational interest, since

classical-quantum theories are equivalent to measurement-based feedback [79] (c.f. Sec. 2.7),

this chapter paves the way for a wide range of models that describe autonomous incoherent

feedback systems embedded in thermal environments. This is expected to become increasingly

relevant as quantum technologies are further developed into the regime in which fluctuating

mesoscopic classical degrees of freedom are used to read out and control microscopic quantum

degrees of freedom.

A second key application of this chapter is to provide a thermodynamically consistent frame-
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work for improving upon existing semi-classical methods used in physics and chemistry. No-

tably, since the dynamics we provide reduces to a completely-positive and linear version of

mean-field dynamics in the trajectory picture, we see that our dynamics provides a method of

studying transitions between adiabatic energy levels due heat fluctuations, whilst ensuring that

the classical and quantum degrees of freedom still evolve continuously.

To illustrate the framework in these two contexts, we introduce and solve two classical-

quantum models. The first is a model of a mesoscopic overdamped classical degree of freedom

coupled to a two-level quantum system. While this only provides a toy model, we show that

the resulting dynamics admit an analytic solution for arbitrary initial states, which to our

knowledge provides the first non-perturbative analytic solution of a classical-quantum master

equation. We use this toy model to investigate entropy production during quantum measure-

ment, and how the relaxation of a classical control system in a thermal environment can be

used to perform a unitary transformation on a quantum system. The second model we in-

troduce is a thermodynamically consistent model of a classical oscillator linearly coupled to a

quantum oscillator. Using simulation methods developed originally in the context of continuous

measurement theory [190–192], we numerically solve this model to show how our dynamics can

exhibit thermalisation in the adiabatic basis, as well as showing how the second law bounds the

statistics of heat fluctuations for thermalising systems.

Finally, we turn our attention to a particular class of thermal state-preserving dynamics

satisfying a property known as detailed balance. Ensuring that there are no persistent currents

flowing through the system in thermal equilibrium, detailed balance is known to give rise

to many important results in non-equilibrium thermodynamics such as fluctuation theorems

[193, 194], Onsager relations [195] and reaction kinetics [196].

The main technical result of this chapter is the full characterisation of classical-quantum

detailed balance, for dynamics that are completely-positive, linear, Markovian and continuous in

phase space. This is given in form of Equations (5.6.35) to (5.6.40), which provide constraints on

the unitary, diffusion, back-reaction and decoherence parts of the classical-quantum dynamics

in order to satisfy detailed balance with respect to a given fixed point. Generalising the work of

[197–199] to the classical-quantum setting, we use these conditions to prove that the overdamped
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and underdamped dynamics that we introduce satisfy detailed balance. Our findings provide an

important tool for characterising a range of classical-quantum systems with fixed points, which

we expect could provide insights into a number of recent applications of linear and completely-

positive classical-quantum dynamics, from measurement and feeedback theory [200] to recent

interest in fundamentally stochastic theories of gravity [46, 1, 201, 48, 4, 128, 121, 124, 123, 125].

The outline of the chapter is as follows. In Section 5.2 how the notions of entropy, energy

and the second law can arise classical-quantum systems. In Section 5.3 we introduce two

operators that allow us to construct overdamped and underdamped thermal state preserving

dynamics, and demonstrate how our dynamics generalises the mean-field and quantum-classical

Liouville approaches to dynamics that are completely-positive and linear. In Sections 5.4 and

5.5 we introduce and solve two models to illustrate the general features of our dynamics and

its applications. Finally, in Section 5.6 we find the general conditions for classical-quantum

detailed balance for Markovian classical-quantum with continuous classical trajectories, which

we demonstrate are satisfied by the dynamics we introduce.

In the majority of the chapter, to streamline the notation without significant loss of clarity,

we will opt to denote operators on Hilbert space simply using capital letters (e.g. H, Lz, Mxy)

or Greek letters (e.g. ρ, ϱ) that are otherwise undistinguished from other scalar quantities

(e.g. S, E, Σ). However, for pedagogical reasons, in Sections 5.4 and 5.5 we include hats to

distinguish operator-valued quantities from real numbers, and these sections may be used as a

reference for any other parts of the chapter where ambiguity arises.

5.2 Entropy production and the second law for classical-quantum

dynamics

In this section we introduce the main concepts relating classical-quantum dynamics to ther-

modynamics. After introducing notions of classical-quantum thermal states and entropy, we

show how if a classical-quantum dynamics preserves the thermal state, and satisfies the basic

consistency requirements of complete-positivity and linearity, it necessarily obeys the second

law of thermodynamics.
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5.2.1 Classical-quantum entropy, energy and thermal states

We begin by defining the entropy of a classical-quantum system. The entropy associated to a

classical-quantum state ϱ(z, t) can be defined as a hybrid of both the Shannon and von-Neumann

entropies [202], namely

S(ϱ(z)) = −
∫
dz trϱ(z) ln ϱ(z), (5.2.1)

Just as with the standard Shannon or von-Neumann quantum entropy, one may use this to

quantify the uncertainty of the classical-quantum state and similarly its information content.

Since we deal with continuous variable classical systems, the entropy associated to the classical

degrees of freedom is strictly speaking a differential entropy, and thus only well-defined for

certain subsets of states [203]. In practice, we shall typically only use the classical-quantum

relative entropy, which may be defined between two classical states as

S[ϱ(z)||σ(z)] =
∫
dztrϱ(z)

[
ln ϱ(z)− ln σ(z)

]
. (5.2.2)

This is a divergence measure that acts as a hybrid between the quantum relative entropy

and classical Kullback-Liebler divergence, and is well-defined for arbitrary bounded classical-

quantum states. An important property of the classical-quantum relative entropy is that it is

monotonic under the action of a completely-positive and linear map Λ i.e. that

S[Λ(ϱ)||Λ(σ)] ≤ S[ϱ||σ]. (5.2.3)

Known in information theory as the data processing inequality [203], the fact that this holds

even for the classical-quantum states and maps that we have presented here follows from a

straightforward embedding of the classical-quantum system into a fully quantum system – see

e.g. [76].

Alongside entropy, the other key ingredient of a theory of thermodynamics is that of energy.

To define a notion of energy in the combined classical-quantum system, we assume the existence

of a Hermitian operator valued function of phase-space that we refer to as the classical-quantum

Hamiltonian, and denote by H(z). While assigning a Hamiltonian to open systems may be
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subject to some ambiguity [204–206], we leave any subtleties arising from this for future study.

The classical-quantum Hamiltonian determines the average energy E in the classical-quantum

system by the formula

E =

∫
dztr[H(z)ϱ(z)] (5.2.4)

which we write in the notation of (2.10) as E = ⟨⟨H(z)⟩⟩. Rather than taking the classical-

quantum Hamiltonian to directly determine the form of dynamics in the system, as with the

standard mean-field or quantum-classical Liouville approaches, H(z) here simply determines

the energetics of the combined classical-quantum system. Assigning energy to both the indi-

vidual classical and quantum systems, as well as to their interactions, H(z) can be generically

decomposed as

H(z) = HC(z)1+HQ +HI(z) (5.2.5)

where the classical Hamiltonian HC(z) is a real-valued function, 1 is the identity operator on

the Hilbert space, the quantum Hamiltonian HQ is a Hermitian valued operator independent of

phase space, and the interaction Hamiltonian HI(z) is traceless. The eigenbasis of the classical-

quantum Hamiltonian as a function of phase space is commonly referred to as the adiabatic

basis [63] and will be denoted as

H(z)|n(z)⟩ = ϵn(z)|n(z)⟩ (5.2.6)

where ϵn(z) are the corresponding eigenvalues, giving the energy for a given energy level and

classical configuration.

The concepts of entropy and energy naturally lead to a notion of a classical-quantum thermal

state. If a given classical-quantum system has a known average energy E, then applying the

maximum entropy principle [202] with the constraint ⟨⟨H(z)⟩⟩ = E one finds that the classical-

quantum thermal state π is given by

π(z) =
e−βH(z)

Z
. (5.2.7)

Here Z is given by

Z =

∫
dztr[e−βH(z)]. (5.2.8)

which together with H(z) = H(z)† ensures that π(z) defines a valid classical-quantum state,

while β defines the inverse temperature. It is straightforward to see that when H(z) reduces to
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HC(z)1 or HQ, the above thermal state definition reduces to standard classical and quantum

thermal states.

5.2.2 Heat exchange and entropy production

In thermodynamic systems, an important role is played by the environment, which allows the

system to gain or dissipate heat and become more or less ordered. While we shall remain

agnostic about the nature of the environment to the classical-quantum system, other than

assuming that it can always be assigned a fixed temperature and that it is sufficiently large

that the dynamics of the classical-quantum system are well-approximated as Markovian, we

will need to define a number of quantities that implicitly rely on the ability of the system to

exchange energy and information with its surroundings.

The first such quantity that we shall define is the heat exchanged with the environment.

Taking the initial time to be ti, we define the average heat exchanged between then and time t

on the level of the ensemble as

Q(t) = ⟨⟨H(z)⟩⟩(t)− ⟨⟨H(z)⟩⟩(ti). (5.2.9)

At the same time, on the level of trajectories, we define the stochastic heat exchanged via the

difference in trajectory expectation values of the classical-quantum Hamiltonian

Qt = ⟨H(z)⟩t − ⟨H(z)⟩ti . (5.2.10)

When the quantum state is pure, this amounts to computing the change in ⟨ψ|H(z)|ψ⟩ along a

trajectory. These ensemble and trajectory definitions of heat are related by taking the expec-

tation value over trajectories

Q(t) = E[Qt], (5.2.11)

which follows from (2.11). We thus see that this framework allows one to study both the

average transfer of heat with the environment, as well as study the stochastic fluctuations of

this quantity.

The second quantity that we shall define is the entropy production in a classical-quantum

system. A central quantity in non-equilibrium thermodynamics, entropy production provides
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a measure of the irreversibility of a process, and is defined by balancing the rate of change of

the system entropy with outgoing currents. Using the above definitions of entropy and heat for

the classical-quantum system, we may define entropy production Σ in the classical-quantum

context as

Σ(t) = ∆S(t)− βQ(t) (5.2.12)

where here ∆S(t) denotes the change in the system entropy from time ti to time t. The rate of

change of this quantity is denoted Σ̇ and is known as the entropy production rate, taking the

form

Σ̇(t) = Ṡ(t)− βQ̇(t), (5.2.13)

where here Q̇ and Ṡ to denote the rate of change in time of the heat exchange and entropy

respectively.

5.2.3 Thermal state preservation and the second law

We first establish a basic requirement to make of any classical-quantum dynamics that is con-

sistent with thermodynamics. If two systems at the same temperature are put into contact, one

expects, on average, that no energy flows between the two. In our case, this means that the

state of a classical-quantum system in contact with a thermal environment at inverse tempera-

ture β should not change if the initial state of the classical-quantum system is a thermal state

at the same inverse temperature. Written in terms of a generic classical-quantum generator L

as introduced in (2.12), this leads us to the basic assumption that

L(π) = 0, (5.2.14)

i.e. that the thermal state is preserved in time by the dynamics. A typical assumption in both

classical and quantum non-equilibrium thermodynamics [188, 160], and sometimes discussed

in the classical-quantum context [183, 202, 185], dynamics satisfying Eq. (5.2.14) represent a

subset of generic classical-quantum dynamics which have a well-defined fixed point.

The preservation of the thermal state has an important consequence for classical-quantum

dynamics that also satisfy the basic properties of complete-positivity and linearity. We start by
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noting that it is well known from open quantum system theory any linear, completely positive

dynamics with a fixed point is sufficient to guarantee a non-negative entropy production rate

consistent with the second law of thermodynamics [207–209, 189]. To see that the same holds

in the classical-quantum case, we first rewrite the entropy production rate in terms of the

classical-quantum relative entropy as

Σ̇(t) = − ∂

∂t
S[ϱ(z, t)||π(z)], (5.2.15)

which follows from the definitions of the classical-quantum thermal state π and heat transfer

Q. As anticipated from both classical and quantum thermodynamics, we see that the classical-

quantum entropy production rate quantifies how the distinguishability between the classical-

quantum state ϱ(z) and the thermal state π changes over time. Using the fact that the dynamics

satisfies L(π) = 0, this may be rewritten as

Σ̇(t) = lim
δt→0

S[ϱ(z, t)||π(z)]− S[eδtLϱ(z, t)||eδtLπ(z)]
δt

. (5.2.16)

The entropy production rate thus depends on the difference of two relative entropies, differing

by the application of the exponential map of the classical-quantum generator L. Provided

the generator L is completely-positive and linear, the right hand side is therefore necessarily

positive by the data-processing inequality (5.2.3), and thus we see that the classical-quantum

entropy production rate is necessarily positive

Σ̇(t) ≥ 0. (5.2.17)

This provides a general formulation of the second law in a classical-quantum system, with the

entropy production rate Σ̇(t) quantifying the irreversibility of the dynamics. Integrating this

over time, and comparing to Eq. (5.2.12), we can rewrite this as a Clausius inequality

∆S(t) ≥ βQ(t), (5.2.18)

recovering the standard formulation of the second law as bounding the change in the system

entropy by the heat transfers into an external environment.

We thus see that classical-quantum dynamics that are simultaneously linear, completely-

positive and preserve the thermal state are necessarily consistent with the second law of ther-

modynamics – we shall refer to such dynamics as thermodynamically consistent. Although such

115



terminology may seem hasty, given that we have only shown agreement with one of the laws

of thermodynamics, it turns out that in practice this is the most important one to achieve.

To arrive at a first law of thermodynamics for our dynamics, one allows for a time-dependent

classical-quantum Hamiltonian, which means that part of the change in the ensemble expec-

tation value of classical-quantum Hamiltonian also is due to the deterministic changing of

parameters in the system, which gives the change in energy two distinct components, identifi-

able as work and heat [188]. The remaining laws, i.e. the zeroth and third, are then understood

as arising from particular applications of dynamics that are consistent with these two laws see

e.g. [188] or [210].

Finally, is important to emphasise that the same argument of thermodynamic consistency

cannot be made for dynamics failing the basic requirements of complete-positivity or linearity.

In the case of the quantum-classical Liouville equation (4.2.9), since initially positive states

can evolve to negative states, the relative entropy will not increase monotonically under the

evolution, and indeed will generically not be well-defined. Similarly, for the mean-field dynamics

of Eqs. (1.1) to (1.3), the failure of the evolution to generate a linear map on the initial classical-

quantum state means that it fails a basic assumption needed to apply the data processing

inequality. Furthermore, the non-linearity at the level of the unravelling leads to non-linear

evolution of the quantum state, known to be in violation of the second law of thermodynamics

[179]. We thus see that complete-positivity and linearity are natural assumptions to make on

classical-quantum dynamics, purely on thermodynamic grounds.

5.3 Thermal state preserving classical-quantum dynamics

In this section we introduce two general classes of completely-positive and linear classical-

quantum dynamics that preserve the classical-quantum thermal state. We show that these

dynamics can be understood as generalisations of the standard overdamped and underdamped

dynamics of a classical system to the case where it is interacting in the limit of a trivial quantum

system. In the high temperature limit, the dynamics takes the form of a completely-positive

completion of the standard forms of coupling between classical and quantum systems.
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5.3.1 Overview of the problem

In the previous section, we saw that if a completely-positive and linear classical-quantum dy-

namics preserves the thermal state in time, the system has a well-defined second law of ther-

modynamics. Since the general form of classical-quantum dynamics that is Markovian and

continuous is known to take the form of Eq. (2.13), the problem amounts to finding matrices

D and operators Lα and H̄ such that L(π) = 0. For such dynamics to be useful, it must be

applicable to arbitrary π(z) i.e. arbitrary classical-quantum Hamiltonians H(z), rather than

those satisfying special properties e.g. being simultaneously diagonaliseable everywhere in phase

space in a fixed basis.

In contrast to the purely classical or quantum cases, there are a number of features that

make even finding an example of such a dynamics extremely challenging. Firstly, the generator

L includes both classical and quantum dissipative processes as well as coupling between the

two systems via the unitary and back-reaction parts of the dynamics – each of these terms or

combinations of them must vanish when applied to π in order to preserve the thermal state.

Secondly, the fact that the thermal state is an operator-valued function of phase space means

that the diffusive and back-reaction parts of the dynamics involve derivatives of π(z) that

do not in general commute with π(z) itself. This means that the operators Lα and H̄ must

necessarily be dependent on phase space and in general non-diagonaliseable in the same basis

as π(z). Finally, any dynamics must also simultaneously satisfy the two non-trivial positivity

constraints (2.14) and (2.15).

Surprisingly, we demonstrate in this section that such a dynamics may indeed be found.

Moreover, the dynamics satisfies a number of desirable properties, such as reducing to the cor-

rect classical limit, preserving the purity of quantum states conditioned on classical trajectories,

and recovering a consistent form of standard approaches to classical-quantum coupling in the

high temperature β → 0 limit. The key feature that allows us to construct such dynamics is the

identification of two kinds of operators defined in terms of the thermal state π, which ultimately

will be seen in Sec. 5.6 to be related to the general conditions for a classical-quantum dynamics

to satisfy detailed balance.

117



5.3.2 L and M operators

To construct classical-quantum dynamics that preserve the classical-quantum thermal state,

i.e. L(π) = 0, we first introduce two classes of operators. The first of these is a phase-space

dependent operator, defined for each classical coordinate z as

Lz = − 2

β

∂π
1
2

∂z
π−

1
2 . (5.3.1)

These operators act to both determine the back-reaction and decoherence in the dynamics

we consider. Although these operators are not in general Hermitian, they each satisfy the

important property

Lzπ
1/2 = π1/2L†

z, (5.3.2)

which will be frequently used to verify thermodynamic properties of the resulting dynamics.

The second important class of operators to introduce are phase-space dependent operators

defined for each ordered pair of classical coordinates (x,y) as

Mxy =
iℏ
2

∫ ∞

0
e−sπ

1
2 [L†

xLy, π
1
2 ]e−sπ

1
2 ds. (5.3.3)

This operator is Hermitian when x = y, and controls part of the unitary dynamics of the quan-

tum system. Since Mxy takes the form of a solution to a Lyapunov equation, it is equivalently

defined by the equation

Mxyπ
1
2 + π

1
2Mxy =

iℏ
2
[L†

xLy, π
1
2 ]. (5.3.4)

As with (5.3.2), this implicit definition ofMxy will useful to prove properties of these dynamics.

While both Lz and Mxy are defined in terms of the square root of π, there are two useful

relations that relate these operators to π itself. The first of these is

Lzπ + πL†
z = − 2

β

∂π

∂z
, (5.3.5)

follows directly from the definition (5.3.1) while the second

− i

ℏ
[Mxy, π] = −LxπL

†
y +

1

2
{L†

xLy, π
1
2 }+, (5.3.6)

follows from (5.3.2) and (5.3.4). These two relations are important for proving that the dynamics

that we construct satisfies L(π) = 0.
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Finally, it is important to recognise a particular limiting form of these operators. To see

how these arise, we first note that we may use the definition of the derivative of the exponential

map [165] to rewrite Lz as

Lz =
e
ad−βH

2 − 1

ad−βH
2

(
∂H

∂z

)
(5.3.7)

where adAB = [A,B] and the above fraction is interpreted as the series

e
ad−βH

2 − 1

ad−βH
2

=
∞∑
n=0

1

(n+ 1)!
adn−βH

2

. (5.3.8)

For sufficiently simple commutation relations, this series may be computed explicitly even when

the series does not truncate. However, it is useful to note that in two cases, the series truncates

to zeroth order. The first case occurs for a special class of Hamiltonians that satsify the property

that H(z) and H(z′) commute for all z, z′ ∈ M, which we refer to as self-commuting. The

second case occurs in the high temperature β → 0 limit of the dynamics for arbitrary H(z). In

both cases, all of the terms in the series with n > 0 vanish, with Lz reducing to ∂zH. For our

other class of operators, Mxy, we note that (5.3.2) implies that the right-hand side of (5.3.4)

vanishes when Lx and Ly are Hermitian. Since the above form of Lz is Hermitian for any z, it

must also be the case that Mxy = 0. In summary, we thus arrive at

Lz =
∂H

∂z
Mxy = 0 (5.3.9)

if H is self-commuting or β → 0.

These limiting forms of the Lz and Mxy operators are useful for studying dynamics of simple

models, such as that given in Section 5.4, as well as studying the classical and high-temperature

limits of the dynamics we will present.

5.3.3 Overdamped dynamics

The first class of dynamics we introduce is an overdamped dynamics. Taking a single one-

dimensional classical degree of freedom x, with mobility given by µ, we describe its interactions
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with a quantum system either via the following master equation

∂ϱ

∂t
=− i

ℏ
[H +

µβ

8
Mxx, ϱ] +

µ

2

∂

∂x
(Lxϱ+ ϱL†

x)

+
µ

β

∂2ϱ

∂x2
+
µβ

8
(LxϱL

†
x −

1

2
{L†

xLx, ϱ}+),
(5.3.10)

or via a stochastic unravelling as

dxt = −µ
2
⟨Lx + L†

x⟩dt+
√

2µ

β
dWt (5.3.11)

dρt =− i

ℏ
[H +

µβ

8
Mxx, ρt]dt

+
µβ

8
(LxρtL

†
x −

1

2
{L†

xLx, ρt}+)dt

−
√
µβ

8
(Lxρt + ρtL

†
x − ⟨Lx + L†

x⟩ρt)dWt,

(5.3.12)

where here dWt defines the increment of a one dimensional Wiener process. This dynamics

describes how an overdamped classical system subject to thermal noise is affected by the back-

reaction from a quantum system, as well as how this interaction leads to noise in the otherwise

unitary evolution of the quantum system.

While the above dynamics is ultimately postulated, it is straightforward to check that it

satisfies a number of desirable properties. Firstly, the dynamics is completely-positive and linear

at the level of the master equation. Secondly, the dynamics is thermodynamically consistent i.e.

the thermal state is preserved in time. Additionally, the dynamics saturates the decoherence-

diffusion trade-off, meaning that the quantum state of the system remains pure conditioned

on the classical trajectory. Finally, the model correctly reproduces the standard overdamped

classical dynamics in the classical limit.

To see how these properties arise, we first compare the form of (5.3.10) to the general form

of completely-positive generator given in (2.13). Doing so, we see that it is of the same form,

guaranteeing that the dynamics is norm-preserving and linear, with parameters given

H̄ =
H

ℏ
+
µβ

8ℏ
Mxx L = Lx

D0 =
µβ

8
D1 = −µ

2
D2 =

2µ

β
.

(5.3.13)

In order for the dynamics to be completely-positive, the two positivity constraints (2.14) and

(2.15) must also be satisfied. The second of these trivially holds since D2 has an inverse, and

120



multiplying the scalar D coefficients we see that (2.14) also holds. Since here D0 = D2
1/D2, we

see that the dynamics saturates the decoherence-diffusion trade-off, meaning that the dynamics

has minimal decoherence and keeps intially pure quantum states pure, as shown in Section 2.5.

It is also straightforward to see that this dynamics preserves the thermal state i.e. satisfies

L(π) = 0. To do so, one must evaluate the right hand side of (5.3.10) with ϱ = π and check

that the result is zero. Doing so, one sees using (5.3.5) that the back-reaction and diffusion

terms cancel, and using (5.3.6) that the Mxx unitary term cancels with the decoherence term.

Since the rest of the unitary term vanishes, due to H commuting with π, we see that indeed

L(π) = 0 for this dynamics.

To see that this dynamics reduces to the standard dynamics in the classical limit, we consider

the case where the classical-quantum Hamiltonian is proportional to the identity operator,

H(x) = HC(x)1. Since H(z) here is self-commuting, we may use the simplified forms of Lx

and Mxx given in (5.3.9). Substituting these into the above dynamics, and using the fact that

the operatorH is proportional to the identity operator, we find that the above dynamics reduces

to

∂ϱ

∂t
= µ

∂

∂x
(
∂H

∂x
ϱ) +

µ

β

∂2ϱ

∂x2
(5.3.14)

in the master equation picture or

dxt = −µ∂H
∂x

+

√
2µ

β
dWt (5.3.15)

in the unravelling picture. We thus see that our dynamics reduces to that of a single overdamped

particle in a potential, with a diffusion coefficient that satisfies the Einstein relation.

As a final remark, we note that the above model may be generalised in a number of ways.

Firstly, we show in Appendix J that one may straightforwardly use the Lz and Mxy operators

to construct a dynamics that saturates the decoherence-diffusion trade-off for n overdamped

particles, as well as allowing for x-dependent correlations in the noise. Secondly, one may also

add additional decoherence to the system, such that the decoherence-diffusion relation is not

saturated. While a general method of doing so is discussed in 5.6, we may straightforwardly

add additional decoherence in this model by adding in an additional dissipator term with

Lindblad operators L̃ = Lx and decoherence coefficient D̃0, which will also preserve the thermal
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state provided an additional D̃0Mxx term is added to the generator of the unitary part of the

dynamics. We thus see that in general that the decoherence in the Lx basis is given

D0 ≥
µβ

8
, (5.3.16)

which provides a lower bound on the amount of decoherence in a quantum system interacting

with an overdamped classical system, that arises by assuming that the dynamics is completely-

positive and that the Einstein relation holds.

5.3.4 Underdamped dynamics

The second class of dynamics we will introduce is an underdamped dynamics. Taking the

position of the classical degree of freedom to be q and its conjugate momentum p, we make the

standard assumption that the only dependence of the Hamiltonian on the classical momentum p

is a classical kinetic term (p2/2m)1. Choosing γ to denote the friction coefficient, the dynamics

takes the form

∂ϱ

∂t
=− i

ℏ
[H +

β

8γ
Mqq, ϱ]

+
1

2

∂

∂p
(Lqϱ+ ϱL†

q)−
p

m

∂ϱ

∂q

+ γ
∂

∂p
(
p

m
ϱ) +

γ

β

∂2ϱ

∂p2

+
β

8γ
(LqϱL

†
q −

1

2
{L†

qLq, ϱ}+),

(5.3.17)

which for initially pure states may also be unravelled as

dq =
p

m
dt (5.3.18)

dp = −1

2
⟨Lq + L†

q⟩dt−
γ

m
pdt+

√
2γ

β
dWt (5.3.19)

d|ψ⟩t =− i

ℏ
(H +

β

8γ
Mqq)|ψ⟩dt

− β

16γ
(L†

qLq − 2⟨L†
q⟩Lq + ⟨L†

q⟩⟨Lq⟩)|ψ⟩dt

−

√
β

8γ
(Lq − ⟨Lq⟩)|ψ⟩dWt.

(5.3.20)

122



The above describe in the ensemble and trajectory pictures how a classical particle subject to

thermal noise and friction responds to a quantum potential, as well as how the quantum system

sourcing this potential is affected by the decoherence that arises from this interaction.

As in the overdamped case, this underdamped dynamics satisfies a natural set of properties:

(1) complete-positivity and linearity; (2) preserves the classical-quantum thermal state; (3)

preserves pure quantum states when conditioned on the classical trajectory; and (4) recovers

the correct classical limit.

Looking first at the properties of complete-positivity and pure-state preservation, we com-

pare the master equation dynamics to (2.13) to find that the dynamics is characterised by

H̄ =
H

ℏ
+

β

8γ
Mxx L = Lq DC

1 =
p

m

 1

−γ



D0 =
β

8γ
D1 =

1

2

 0

−1

 D2 =

0 0

0 2γ/β

 .

(5.3.21)

Computing the pseudoinverse of D2 and multiplying the D matrices, we see that the dynamics

satisfies (2.14), (2.15) and (2.18), ensuring that the dynamics both preserves the positivity of

the classical-quantum state, and the purity of any initial state ρt that starts off in a pure state.

This latter property ensures that the unravelling given in Eqs. (5.3.18) to (5.3.20) indeed is

equivalent to the master equation (5.3.10).

To see that the dynamics preserves the thermal state, we again replace ϱ with π on the

right hand side of the master equation and check that all the terms cancel. In particular, we

see here that the combination of the first and fourth lines of (5.3.17) vanish due to (5.3.6) and

[H,π] = 0, while the second and third lines each vanish independently due to the inclusion of

(p2/2m)1 in H and the identity (5.3.5), ensuring that the dynamics preserve arbitrary thermal

states π.

Finally, we check that the dynamics correctly reduces in the classical limit to the standard

underdamped dynamics. Taking again the simplified forms appearing in (5.3.9) and taking H

proportional to the identity, we find the dynamics reduce in the master equation and unravelling
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pictures to
∂ϱ

∂t
= {H, ϱ}+ γ

∂

∂p
(
p

m
ϱ) +

γ

β

∂2ϱ

∂p2
(5.3.22)

and

dq =
p

m
dt (5.3.23)

dp = −∂H
∂q

dt− γ

m
pdt+

√
2γ

β
dWt (5.3.24)

as expected, describing the standard underdamped dynamics of a diffusing particle satisfying

the Einstein relation.

As in the case of the overdamped dynamics, this dynamics may be generalised to include

a range of additional phenomena not captured in the above model. Firstly, it straightforward

to generalise the above dynamics to multiple particles and dimensions, by including an Lq

operator for each degree of freedom and direction and replacing each q and p with a sum over

qi and pi. Secondly, in the above, we assume that H(q, p) contains no coupling between the

momentum p and the quantum degrees of freedom, which guarantees that the only necessary

noise in the system is in p directly. However, one may also write down models with noise in

q and p such that arbitrary Hamiltonians H(q, p) may be considered, and we provide such an

example in Appendix J. Finally, we note that as in the overdamped case, one may include excess

decoherence in the above model. Aside from using the general formalism given in Section 5.6,

it is simple to see that one may include excess decoherence in the Lq basis by replacing the

β/(8γ) coefficient of Mqq and the quantum disspator with a generic D0. In this case, we see

that the decoherence rate in the Lq basis must necessarily obey

D0 ≥
β

8γ
, (5.3.25)

which as in the overdamped case, provides a lower bound on the decoherence of a quantum

system interacting with a classical system that obeys the Einstein relation.

5.3.5 The β → 0 limit

Up to this point, the overdamped and underdamped dynamics we have provided have been

written down as examples of completely-positive and thermal-state preserving dynamics, which
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have minimal decoherence and are consistent with the classical limit. However, it turns out that

our dynamics can also be understood as a completely-positive and linear version of the standard

approaches to coupling classical and quantum systems, namely the mean-field dynamics and

the quantum-classical Liouville equation, that preserves the classical-quantum thermal state

even at low temperatures.

To see this, we first consider the high temperature, β → 0, limit of the underdamped

dynamics in the master equation representation. One may do so using the limiting forms of the

operators Lz and Mxy provided in (5.3.9), which we can substitute into our dynamics to find

our dynamics to lowest order in β as

∂ϱ

∂t
=− i

ℏ
[H, ϱ] +

1

2

({
H, ϱ

}
−
{
ϱ,H

})
+ γ

∂

∂p
(
p

m
ϱ) +

γ

β

∂2ϱ

∂p2

+
β

8γ

(
∂H

∂q
ϱ̂
∂H

∂q
− 1

2
{∂H
∂q

2

, ϱ̂}+
)
,

(5.3.26)

where we have rewritten two of the drift terms using the Poisson bracket. It is straightforward

to see that the top line exactly coincides with the quantum-classical Liouville equation, given

previously in (4.2.9). Since the completely-positivity of the dynamics is unchanged by the limit

of the operators, we can understand the additional diffusion and decoherence terms as providing

the minimal additional decoherence and diffusion required to supplement the quantum-classical

Liouville equation to be completely-positive, as first noted was possible in [25]. However, while

the dynamics of (5.3.26) satisfies complete-positivty and linearity, the thermal state π will only

be preserved approximately at high temperatures. The full underdamped dynamics given in

(5.3.17) may therefore be understood as a completely-positive generalisation of the classical-

quantum Liouville equation, that additionally satisfies the important requirement of preserving

the classical-quantum thermal state π for arbitrary inverse temperature β.

Moving now to the trajectory representation, we find that a similar conclusion may be found

in the β → 0 limit of the stochastic unravelling of the underdamped dynamics. Using again the

limiting forms of operators given in (5.3.9), we find that the unravelling equations (5.3.18) to

(5.3.20) take the form

dq =
p

m
dt (5.3.27)
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dp = −⟨∂H
∂q

⟩dt− γ

m
pdt+

√
2γ

β
dWt (5.3.28)

d|ψ⟩t =− i

ℏ
H|ψ⟩dt

− β

16γ

(
∂H

∂q
− ⟨∂H

∂q
⟩
)2

|ψ⟩dt

−

√
β

8γ
(
∂H

∂q
− ⟨∂H

∂q
⟩)|ψ⟩dWt.

(5.3.29)

Comparing to (1.1), we see that this dynamics takes the form of the mean field dynamics, with

additional temperature and friction dependent terms in the classical momentum and quantum

state evolution. Previously written down as a “healed version” of the mean field equations

[26, 1], we note again that since the limit occurs at the level of the operators, this dynamics is

necessarily still linear at the level of the classical-quantum state. However, as an unravelling of

(5.3.26), it will only preserve the thermal state approximately at sufficiently high temperatures.

We thus can understand the full unravelling dynamics (5.3.18) to (5.3.20) as a generalisation

of the mean-field equations that satisfies both linearity and preserves the thermal state of the

combined classical-quantum system.

5.4 Model I

In this section we introduce a simple toy model consisting of a classical particle that is over-

damped (i.e. described by a single degree of freedom) that interacts with a quantum two-level

system. We will use this analytically solvable model to illustrate both the entropy production

during the measurement of a quantum two-level system, and how a quantum gate may be

performed by allowing a classical control system to relax to equilibrium.

5.4.1 Set-up

In what follows, we consider a one-dimensional classical degree of freedom x, coupled to a

quantum two-level system. In principle, this degree of freedom could be interpreted in a number

of different ways, such as a classical signal arising from a continuous measurement of a two level

system, or a current observed in a circuit coupled to a qubit – but we shall take the basic
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picture and imagine that x simply describes the position of an overdamped classical degree

of freedom. Taking Ẑ to be the standard Pauli spin-Z operator, we will consider a classical-

quantum Hamiltonian of the form

Ĥ(x) = λ(x1̂− lẐ)2. (5.4.1)

We may understand this Hamiltonian as a classical quadratic potential that depends on whether

the quantum system is in the |0⟩ or |1⟩ state. The strength of the potential is controlled by the

parameter λ, while the minimum of the potential is either l or −l depending on whether the

quantum state is |0⟩ or |1⟩ respectively.

Assuming that this classical-quantum system is in contact with a thermal environment, the

thermal state corresponding to this system is given

π̂(x) =
1

Z
e−βĤ(x), (5.4.2)

where here Z is given by

Z = 2

√
π

βλ
, (5.4.3)

which ensures that π̂(x) is normalised.

5.4.2 Analytic solution

Since the Hamiltonian we study in this case takes a simple form, it turns out that the dynamics

may be analytically solved in the master equation representation. Our first step is to compute

the L̂x and M̂xx operators for this model. Since the classical-quantum Hamiltonian Ĥ(x) is

self-commuting, i.e. [Ĥ(x), Ĥ(x′)] = 0 for all x, x′, we may use the limiting forms provided in

(5.3.9). Here, the L̂x operator may be computed by simply taking the derivative of Ĥ(x) with

respect to x, while the M̂xx vanishes. The dynamics of this model is thus summarised by

L̂x = 2λ(x1̂− lẐ), M̂xx = 0. (5.4.4)
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Plugging these operator definitions into (5.3.10) and expanding the classical-quantum state in

the eigenbasis of Ẑ we obtain three independent equations,

∂ϱ00
∂t

= µ
∂

∂x
(2λ(x− l)ϱ00) +

µ

β

∂2ϱ00
∂x2

∂ϱ01
∂t

= µ
∂

∂x
(2λxϱ01) +

µ

β

∂2ϱ01
∂x2

+ (
i

ℏ
4λxl − µλ2l2β)ϱ01

∂ϱ11
∂t

= µ
∂

∂x
(2λ(x+ l)ϱ11) +

µ

β

∂2ϱ11
∂x2

(5.4.5)

where we leave out the dynamics of ϱ10 since the solution is given by ϱ10(z, t) = ϱ∗01(z, t).

From the above dynamics, we can see explicitly that each component of the classical-quantum

state evolves under different dynamics. The ϱ00 component, corresponding to the positive

eigenvalue of Ẑ, experiences diffusion with a restoring force to the point x = l, while the

ϱ11 component experiences diffusion instead with a restoring force to the point x = −l. The

component corresponding to coherence, given by ϱ01, experiences diffusion with a restoring

force given by the average value of the two i.e. to the point z = 0. At the same time, the

coherence simultaneously picks up a complex phase and is damped by a term corresponding to

the decoherence in the system, with larger damping as any of µ, β, λ or l increase.

Assuming that initial state of the quantum system is known to be in the state ρ̂0 with

components ρ00, ρ01, ρ10 and ρ11, and that the classical system starts at the point x0, the

combined classical-quantum state at t = 0 is given ϱ̂(x, 0) = ρ̂0δ(x− x0). It is straightforward

to check that with this initial condition, the above set of equations have an analytic solution of

the form

ϱ00(x, t) = ρ00

√
βλ

π(1− e−4µλt)
exp

[
− βλ(x− l(1− e−2µλt)− x0e

−2µλt)2

1− e−4µλt

]
(5.4.6)

ϱ01(x, t) =ρ01

√
βλ

π(1− e−4µλt)

× exp
[
− βλ(x− x0e

−2µλt)2

1− e−4µλt
+
i

ℏ
2l(x+ x0)

µ
tanhµλt− µλ2l2βt− 4l2(µλt− tanhµλt)

µ2λβℏ2
]

(5.4.7)

ϱ11(x, t) = ρ11

√
βλ

π(1− e−4µλt)
exp

[
− βλ(x+ l(1− e−2µλt)− x0e

−2µλt)2

1− e−4µλt

]
(5.4.8)
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Since the initial quantum state ρ̂ can be taken to depend on x0, this solution also provides a

Green’s function for the dynamics with arbitrary initial conditions.

The ρ00 and ρ11 components describe classical probability distributions relaxing to a prob-

ability distribution peaked around z = ±l. The first term of the off-diagonal components to

appears to show relaxation around the origin, with the second component giving the average

cumulative phase due the unitary dynamics for a particle at z in phase space at time t. How-

ever, there is also simultaneously decoherence of this part of the classical-quantum state, given

by the third and fourth terms. The first of these is primary decoherence, due to the action

of the operators L̂x, while the other is secondary decoherence, which arises from destructive

interference of the different phases picked up by the various classical paths that end up at (x, t).

5.4.3 Measurement and entropy production

We first consider a regime in which the classical degree of freedom acts as to measure the

quantum system in the z-basis. In doing so, we can study the total entropy production of the

measuring apparatus and quantum system during a quantum measurement.

We start by reviewing the concept of a quantum measurement in a classical-quantum for-

malism. Here, a quantum system in an initial state ρ̂0 is allowed to interact with a classical

system that acts as a measurement device. The interaction with the classical system causes

the quantum system to decohere in a particular basis, while the quantum back-reaction on the

classical system causes the final classical configuration to be correlated with the quantum state.

Conditioning on the final classical state, the observer deduces information about the final state

of the quantum system, which may correspond to a projective measurement if the set of final

states are orthogonal pure states.

To see that this arises in this model, we note that at long times, the above analytic solu-

tion tends to a stationary distribution ϱ̂st(x), which we may normalise locally in phase space

ϱ̂st(x)/trϱ̂st(x) to find the quantum state conditioned on the final classical position x, denoted

ρ̂st(x). This takes the form

ρ̂st(x) =

ρ00(ρ00 + ρ11e
−4βλxl)−1 0

0 ρ11(ρ11 + ρ00e
4βλxl)−1

 . (5.4.9)
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In the limit that l → 0, the final quantum state contains no dependence on the final classical

position, and simply corresponds to the intial quantum state ρ̂0 decohered in the Ẑ eigenbasis.

However, in general, the dependence on x indicates that observing the classical configuration

provides information about the quantum state. In the limit of large l, the conditioned quantum

state reduces to being either the pure state |0⟩ or |1⟩, depending on whether x > 0 or x < 0.

This provides the projective measurement regime of this model, in which the observations x > 0

or x < 0 of the final classical position x correspond to the measurement outcomes ±1 of the

operator Ẑ in the standard quantum observables formalism. In general, the parameter l here

provides a measure of how successful a given measurement is at distinguishing the |0⟩ and |1⟩

states.

Having established that the dynamics of this model resemble that of a (possibly imperfect)

measurement of the operator Ẑ, we now may turn to understand the entropy production in such

a model. To do so, we initialise the classical state in a Gaussian probability distribution around

the origin with variance σ2, and take the initial quantum state to be ρ̂0. Using the analytic

solution as a Green’s function, we may integrate over the x0 variable for this initial condition

to find the subsequent evolution of the classical-quantum state. Numerically evaluating the

integrals needed to compute the change in entropy and heat at each time t, we may plot the

entropy production over time to find Σ(t)=∆S(t) − βQ(t), for different initial conditions and

parameters of the model. In Figure 5.1 we plot the entropy production and change in entropy

over time for two different initial states, ρ̂0 = |+⟩⟨+| and ρ̂0 = 1
2 1̂. We see here that the

maximally mixed state configuration has decreasing entropy, due to the classical configuration

becoming more ordered as the system relaxes. By contrast, the initially pure state configuration

has an overall gain of entropy, with the entropy gain due to a loss of coherence outweighing the

entropy loss due to the changes in the classical degrees of freedom. In both cases, the combined

classical-quantum system experiences the same loss of heat into its surroundings over time,

leading to an overall positive entropy production, that tends to a steady value as the system

relaxes.

The above model demonstrates explicitly that measurements of quantum states with coher-

ence lead to greater entropy production than those without. While intuitively reasonable, given

the clear difference in entropy changes in the two cases, the current framework provides a real
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Figure 5.1: The entropy production Σ and change in entropy ∆S over time for a classical-

quantum system with the quantum state either in a pure state |+⟩ or a maximally mixed state

1
2 1̂, over the course of a Ẑ measurement. Here the classical system starts in a Gaussian state

centered on the origin with variance σ. We here plot this with free parameters β, λ, l, µ, ℏ and

σ all equal to 1.

time description of this process. Understanding the consequences of this in general settings, or

in more physically motivated models, is likely to be an interesting area of future study.

5.4.4 Coherent control via relaxation

The previous example showed how this toy model may be used to study the non-equilibrium

thermodynamics of quantum measurements. We now turn to illustrate how one may also use

this model to understand quantum control in a thermodynamic setting in which both thermal

fluctuations and quantum back-reaction affect a classical control system.

As with the previous example, we first review the concept of quantum control in the classical-

quantum setting. Here, a quantum system evolves with a Hamiltonian that depends on the

state of a classical system. Since the state of the classical system can change with time, it may

act as a controller of the quantum dynamics, allowing the quantum system’s Hamiltonian to

be switched on or off such that a specific unitary operation is performed after a desired time.
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In addition to this unitary part of the dynamics, the quantum system will experience some

additional decoherence, either due to its environment or due to noise in the classical control

system. To correctly describe this latter type of decoherence, one must average over all possible

realisations of the noise in the classical controller, i.e. study the unconditioned quantum state.

To see how the overdamped particle controls the implementation of a unitary on the qubit

in our toy model, we first revisit the analytic solution. Integrating over the classical degree

of freedom in the solution for the classical-quantum state ϱ̂(x, t) given in equations (5.4.6) to

(5.4.8), we find the unconditioned quantum state ρ̂(t) takes the form

ρ̂(t) =

 ρ00 ρ01 exp [iθ(t) + Γ(t)]

ρ10 exp [−iθ(t) + Γ(t)] ρ11,

 (5.4.10)

where the phase θ and damping factor Γ are given as the following functions of time

θ(t) =
2lx0
µℏ

(1− e−2µλt), (5.4.11)

Γ(t) = −l2
(
µλ2β +

4

µβℏ2

)
t+

l2(3 + e−4µλt − 4e−2µλt)

µ2λβℏ2
. (5.4.12)

Considering first the phase θ(t), we see that the quantum state undergoes a unitary transfor-

mation corresponding to a rotation about the z axis of the Bloch sphere. Moreover, since at

long times θ(t) tends to fixed value, the evolution of the phase corresponds to applying the

following unitary on the initial state

Û = eiϕẐ ϕ =
x0l

µℏ
, (5.4.13)

provided t≫ (µλ)−1. The “switching off” of the Hamiltonian evolution that enables this specific

unitary to be implemented at long times is due to the time evolution of the classical system,

which turns off the interaction as it relaxes towards the origin. Since the total unitary applied

is dependent on the x0, we see that the toy model provides a model of quantum control where

choosing an initial non-equilibrium classical state, and allowing the system to relax towards a

fixed point, allows for a specific unitary gate to be performed on a quantum system.

The success of performing this unitary transformation is determined by the loss of coherence.

In this toy model the decoherence is in the Ẑ eigenbasis and is entirely determined by Γ(t), which

must remain small over a timescale t ≫ (µλ)−1 in order for the unitary to be performed with
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low noise. Immediately, we see that a key parameter to achieve this is the spacing l between

the two potential sites, which must remain small in order for the unitary to be performed

accurately. Since the spacing of the potentials does not affect the timescale after which the

unitary has been implemented, we see that provided l can be made arbitrarily small, and that

x0 may be made sufficiently large to compensate this to achieve a given choice of unitary, the

model describes a unitary control operation with arbitrary accuracy.

Although this toy model provides a proof-of-principle of how quantum control may be

implemented via an relaxation process, it fails a number of requirements needed for a realistic

description of an experimental platform. For starters, the Hamiltonian of the model we consider

is decomposeable in terms of 1̂ and Ẑ, meaning that it is limited to performing rotations around

the z-axis. Moreover, since l must be small, a high degree of control of the parameters l and x0

would be needed here to achieve a high precision unitary. However, the above method, where

the dynamics are solved to find the unconditioned quantum state ρ̂(t), which may have its phase

and decoherence compared to find optimal parameters of performance, provides a blueprint for

future studies in more complex realistic models.

5.5 Model II

In this section we numerically study a model of a classical oscillator interacting with a quan-

tum oscillator via a linear coupling. As we shall see, this model features a classical-quantum

Hamiltonian that is not self-commuting in phase space, and illustrates a number of interesting

features, including thermalisation. As with the previous example, in the entirety of this section

we denote operators with hats.

5.5.1 Set-up

We consider here a one-dimensional model of an underdamped classical oscillator coupled to

a quantum oscillator. The position and momentum of the classical system are denoted q, p,

while the corresponding operators for the quantum system will be denoted q̂, p̂ and satisfy the

canonical commutation relation. The classical-quantum Hamiltonian that governs the dynamics
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of this system is given

Ĥ(q, p) =
p̂2

2mq
+

1

2
mqω

2(q1̂− q̂)2 +
( p2
2mc

+
1

2
mcΩ

2q2
)
1̂. (5.5.1)

Here the first two terms describe the quantum oscillator and its coupling to the classical system,

while the last two terms proportional to the identity describe the classical harmonic oscillator.

As such, mq and mc are the quantum and classical particle masses, while ω represents the

angular frequency of the coupling between the classical and quantum systems in terms of the

quantum mass, and Ω denotes the classical oscillator’s angular frequency. In this system, the

classical oscillator will experience friction, with a corresponding friction coefficient γ. The whole

classical-quantum system is also assumed to be in an environment with inverse temperature β.

To find the adiabatic basis for this model, we must solve the eigenvalue problem for the

operator Ĥ(q, p). Since the non-trivial part of this Hamiltonian corresponds to a quantum

harmonic oscillator Hamiltonian displaced from the origin by q, it is intuitive that the adiabatic

basis is given by displaced eigenstates of the quantum harmonic oscillator Hamiltonian. Letting

|n⟩ denote the number states, the adiabatic basis takes the form

|n(q, p)⟩ = e−
i
ℏ qp̂|n⟩ (5.5.2)

i.e. the standard number eigenstates of the quantum harmonic oscillator |n⟩ displaced by

distance q. The corresponding eigenvalues of Ĥ(q, p) are

ϵn(q, p) = ℏω(n+
1

2
) +

p2

2mc
+

1

2
mcΩ

2q2. (5.5.3)

which can easily be seen to be the sum of the quantum oscillator energy for a given energy

eigenstate |n⟩ and the classical oscillator energy for a given q, p.

The thermal state corresponding to this system is given

π̂(q, p) =
1

Z
e−βĤ(q,p) (5.5.4)

where here

Z = ZCZQ (5.5.5)

for the classical and quantum thermal partition functions

ZC =
2π

βΩ
, ZQ =

1

2 sinh βωℏ
2

. (5.5.6)
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These may be found by representing the thermal state in the adiabatic basis, and taking the

trace and integrating over phase space to ensure normalisation.

5.5.2 Computing L̂q and M̂qq

Before studying properties of this dynamics, the first step is to explicitly compute the operators

L̂q and M̂qq for the classical-quantum Hamiltonian Ĥ of this model. To do so, we shall need to

exploit a number of relations describing power series of ad−βĤ
2

= −(β/2)[Ĥ, ·] .

To begin, we first note that the commutator of Ĥ with operators linear in q1̂− q̂ and p̂ takes

a particularly simple form. In particular, the commutator of Ĥ with q1̂ − q̂ gives −iω2p̂/mq,

while when applied to p̂ gives imqω
2ℏ(q1̂− q̂). We thus see that representing the operators as

vectors

q1̂− q̂ 7→

1

0

 p̂ 7→

0

1

 , (5.5.7)

we can represent the adjoint ad−βĤ
2

as the following 2× 2 matrix

ad−βĤ
2

7→

 0
imqω2βℏ

2

− iβℏ
2mq

0

 . (5.5.8)

Moreover, since the adjoint action acting on an operator linear in q1̂− q̂ and p̂ produces another

operator linear in these operators, ad−βĤ
2

closes on these operators, and thus the action of

arbitrary series of ad−βĤ
2

on linear combinations of q̂ and p̂ may be computed by finding the

corresponding series for the 2× 2 matrix (5.5.8).

Having established this, we first consider L̂q. Using the series form of L̂z given in (5.3.7),

we may compute L̂q as a series of ad−βĤ
2

acting on the derivative of the classical-quantum

Hamiltonian
∂Ĥ

∂q
= mcΩ

2q1̂+mqω
2(q1̂− q̂). (5.5.9)

While the first term commutes with Ĥ, and thus appears unmodified in L̂q, the rest of L̂q must

be computed by acting with the series of ad−βĤ
2

given in Eq. (5.3.8) on the second term in Eq.

(5.5.9). To find a closed form expression for this, we simply compute the corresponding series
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for the 2× 2 matrix (5.5.8), which gives

e
ad−βĤ

2 − 1

ad−βĤ
2

7→

 2 sinh ℏωβ
2

βωℏ
−2imq(1−cosh ℏωβ

2
)

βℏ
2i(1−cosh ℏωβ

2
)

mqβℏω2

2 sinh ℏωβ
2

βωℏ

 . (5.5.10)

Applying this matrix to (mqω
2 0)T , the vector representing the second term of Eq. (5.5.9), one

finally arrives at the form of L̂q as

L̂q =
2mqω

ℏβ
sinh

ℏωβ
2

(q1̂− q̂) +
2i

ℏβ
(1− cosh

ℏωβ
2

)p̂+mcΩ
2q1̂. (5.5.11)

Taking the β → 0 limit of this operator, one finds that L̂q indeed reduces to the expression in

Eq. (5.5.9), in agreement with the general result of Eqs. (5.3.9).

To compute M̂qq, we will exploit two identities that allow one to swap the position of q̂ and

p̂ with the square root of the thermal state π̂
1
2 . These are given

π̂
1
2 (q1̂− q̂) =

[
cosh

ℏωβ
2

(q1− q̂)− i

mqω
sinh

ℏωβ
2
p̂
]
π̂

1
2 , (5.5.12)

and

π̂
1
2 p̂ =

[
imqω sinh

ℏωβ
2

(q1̂− q̂) + cosh
ℏωβ
2
p̂
]
π̂

1
2 . (5.5.13)

To prove these, we note that

e−
β
2
ĤAe

β
2
Ĥ = e

ad−βĤ
2 A (5.5.14)

for any operator Â, and that for operators linear in q1̂−q̂ and p̂ we may represent the exponential

of the adjoint as

e
ad−βĤ

2 7→

 cosh ℏωβ
2 imqω sinh ℏωβ

2

− i
mqω

sinh ℏωβ
2 cosh ℏωβ

2

 . (5.5.15)

Applying this matrix to the two vectors in (5.5.7) to compute the right hand side of (5.5.19),

and then acting both sides on π̂
1
2 , we recover the two identities (5.5.12) and (5.5.13).

To compute M̂qq using these identities, we assume that M̂qq takes the form of a Hermitian

operator that is at most quadratic in q1̂ − q̂ and p̂. Plugging this form of M̂qq into the left

hand side of (5.3.4), and the previously computed L̂q into the right hand side, we may use the

commutation relations (5.5.12) to rearrange both sides of (5.3.4) to have π̂
1
2 on the right most

side. Acting with π̂
1
2 on both sides, and comparing terms, we find the solution as

M̂qq =
2mqω

ℏβ2
(sinh

ℏωβ
2

− tanh
ℏωβ
2

){q̂ − q1̂, p̂}+ +
2mcΩ

2

β
(1− cosh

ℏωβ
2

)p̂. (5.5.16)
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Since the solutions to Eq. (5.3.4) are unique, we see that the original assumption that M̂qq was

at most quadratic in q1̂ − q̂ and p̂ was correct. It is straightforward to check that in the high

temperature limit, β → 0, M̂qq correctly reduces to zero, consistent with the previously derived

expression in Eqs. (5.3.9).

5.5.3 Relative position representation

Having found the operators L̂q and M̂qq, one may in principle directly study the dynamics

of Eqs. (5.3.18) to (5.3.20) to understand properties of the system. However, we will first

introduce an alternate representation for describing the quantum system, which makes the

dynamics simpler to both solve and interpret.

In the unravelling picture of classical-quantum dynamics, |ψ⟩ represents the state of the

quantum system in absolute space. However, given that the interactions between the two

systems depend on their relative positions, it is convenient to describe the quantum system

using a state vector that represents the quantum system relative to the classical position q.

We refer to this as the relative position representation, and denote the quantum state in this

representation |ψr⟩. The absolute and relative position descriptions are related by the standard

unitary transformation

|ψr⟩ = e
i
ℏ qp̂|ψ⟩. (5.5.17)

In order for expectation values to be correctly computed in this representation, observables

must also be transformed by a unitary transformation

Âr(q, p) = e
i
ℏ qp̂Â(q, p)e−

i
ℏ qp̂, (5.5.18)

which ensures that ⟨ψr|Âr|ψr⟩ = ⟨ψ|A|ψ⟩. To compute this in practice, we will make use of a

version of the identity (5.5.19), namely that

e
i
ℏ qp̂Âe−

i
ℏ qp̂ = e

ad i
ℏ qp̂Â. (5.5.19)

It is straightforward to check using this that the map Â 7→ Âr amounts to replacing every

appearance of q̂ − q1 with q̂.

The utility of this representation is apparent when we consider the relative position repre-

sentation of the states and operators specific to our current model. Taking first the adiabatic
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basis, we see that

|nr(q, p)⟩ = |n⟩ (5.5.20)

i.e. that the adiabatic basis in the relative position representation is simply the number basis

of the quantum harmonic oscillator. Representing dynamics in terms of |ψr⟩ thus allows us

decompose the dynamics in a fixed basis, independent of the current state of the classical

system, that nevertheless describes the adiabatic basis of the system.

This representation also simplifies the form of operators. Making the substitution q̂ − q1

with q̂ it is straightforward to see that the classical-quantum Hamiltonian in this representation

takes the form

Ĥr(q, p) = Hr
C(q, p)1̂+ Ĥr

Q (5.5.21)

where

Hr
C(q, p) =

p2

2mc
+

1

2
mcΩ

2q2 (5.5.22)

is the Hamiltonian of a classical harmonic oscillator and

Ĥr
Q =

p̂2

2mq
+

1

2
mqω

2q̂2 (5.5.23)

is the Hamiltonian of a quantum harmonic oscillator. Solving the eigenvalue problem in this

representation, it is therefore straightforward to see both why the adiabatic basis is given by

(5.5.2), and why the energy eigenvalues ϵn(q, p) are those written in (5.5.3).

Finally, we note an intuitive relation that connects unravellings to classical-quantum states

in the relative position representation. If one takes ϱ̂(q, p), and maps this using (5.5.18), we

find the classical-quantum state in the relative position representation ϱ̂r(q, p). Using the fact

that E[f(zt)δ(z− zt)] = f(z)E[δ(z− zt)], it is simple to see that this may equivalently be found

using

ϱ̂r(q, p, t) = E[|ψr⟩t⟨ψr|tδ(q − qt)δ(p− pt)], (5.5.24)

i.e. using the relation (2.4) and replacing |ψ⟩t with |ψr⟩t. This identity is useful since it means

that we may compute the classical-quantum state in the relative position representation directly

from the distribution of trajectories in terms of |ψr⟩t, qt and pt.
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5.5.4 Numerical solution

To study the dynamics of this model, we shall use the unravelling approach introduced in

Chapter 2, studying solutions to equations (5.3.18) to (5.3.20). To study these numerically

in an efficient manner, we will use a simplified set of dynamics, employing both the relative

position representation introduced in the previous section, and a particular invariance property

of the dynamics under changes to the classical part of the Hamiltonian.

We begin by finding the equations of motion in the relative state representation. Since the

expectation values remain the same provided both the states and operators are transformed

as in (5.5.17) and (5.5.18), the classical equations for q and p remain unchanged. To find the

equation of motion for |ψr⟩t, we take the derivative of (5.5.17) with respect to time. Doing

so is straightforward to see two changes in the dynamics of the relative quantum state |ψr⟩t

versus the absolute quantum state |ψr⟩t. The first is that the time dependence of qt leads to

an additional unitary term in the dynamics, with Hamiltonian −ptp̂/mc. The second is that,

in order to put write the dynamics in terms of |ψr⟩t, the operators L̂q, M̂qq and Ĥ must all be

replaced with their transformed versions L̂r
q, M̂

r
qq and Ĥr.

To further simplify the form of the dynamics, we first use a particular invariance property

of the general dynamics presented in Section 5.3. Namely, as we show in Appendix K, one may

always remove the part of L̂z proportional to the identity and corresponding term in M̂zz, and

instead include it as an additional drift term in the dynamics. Guaranteeing that the form of

decoherence and back-reaction is independent of any additional purely classical dynamics, in

this case it allows us to remove the dependence of L̂r
q and M̂

r
qq on the classical angular frequency

Ω and replace it with an additional classical drift term −mcΩ
2qdt in equation (5.3.19). Finally,

we drop from Ĥr(q, p) the term proportional to the identity, Hr
C(q, p)1.

Taken together, the two steps lead to the following form of equations for qt, pt and |ψr⟩t

dqt =
pt
mC

dt (5.5.25)

dpt = −1

2
⟨L̂r

q + L̂r†
q ⟩dt−mcΩ

2qtdt−
γpt
mc

dt+

√
2γ

β
dW (5.5.26)
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d|ψr⟩t =− i

ℏ
(Ĥr

Q +
β

8γ
M̂ r

qq −
pt
mc

p̂)|ψr⟩tdt

− 1

2

β

8γ
(L̂r†

q L̂
r
q − 2⟨L̂r†

q ⟩L̂r
q + ⟨L̂r†

q ⟩⟨L̂r
q⟩)|ψr⟩tdt

−

√
β

8γ
(L̂r

q − ⟨L̂r
q⟩)|ψr⟩tdWt

(5.5.27)

where here the expectation values are all taken with respect to |ψr⟩t, and the operators L̂r
q and

M̂ r
qq are defined as

L̂r
q = −2mqω

ℏβ
sinh

ℏωβ
2
q̂ +

2i

ℏβ
(1− cosh

ℏωβ
2

)p̂, (5.5.28)

M̂ r
qq =

2mqω

ℏβ2
(sinh

ℏωβ
2

− tanh
ℏωβ
2

){q̂, p̂}+. (5.5.29)

To simulate these equations efficiently, we employ a numerical method introduced in the context

of continuous measurement theory, known as Rouchon’s method [190–192]. In this case, it allows

one to simulate the coupled set of stochastic differential equations (5.5.25) to (5.5.27) in discrete

time. Taking ti = 0 and tf = Nsteps∆t, where Nsteps is the number of timesteps and ∆t is the

time increment, we define ∆W (n) as the nth sample of a Gaussian random variable with mean

zero and variance ∆t. We then compute the values of q, p and |ψr⟩ at time t = (n + 1)∆t by

iterating the following set of equations

q(n+1) = q(n) +
p(n)

mc
∆t (5.5.30)

p(n+1) =− 1

2
⟨ψr

(n)|L̂
r
q + L̂r†

q |ψr
(n)⟩∆t−mcΩ

2q(n)∆t

− γp(n)

mc
∆t+

√
2γ

β
∆W (n)

(5.5.31)

R(n) =1− i

ℏ
(Ĥr

Q +
β

8γ
M̂ r

qq −
p(n)

mc
p̂)∆t

− β

16γ
L̂r†
q L̂

r
q∆t

+
β

8γ
⟨ψr

(n)|L̂
r
q + L̂r†

q |ψr
(n)⟩L̂

r
q∆t

−

√
β

8γ
L̂r
q∆W

(n)

+
β

16γ
(L̂r

q)
2((∆W (n))2 −∆t)

(5.5.32)

|ψr
(n+1)⟩ =

R(n)|ψr
(n)⟩√

⟨ψr
(n)|R

†
(n)R(n)|ψr

(n)⟩
. (5.5.33)
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Figure 5.2: Simulations of trajectories for two coupled oscillators, one classical and one quantum, for

parameters ω = mC = mQ = ℏ = 1, β = γ = 3 and Ω = 10−5 between t = 0 and t = 10. (left) The

classical position qt and expected position of the quantum state ⟨q⟩t is simulated and plotted for a single

realisation, with Nmax = 20 and Nsteps = 2×104. Here the classical system starts at the origin of phase

space, while the quantum system starts in a coherent state with ⟨q̂⟩0 = 1 and ⟨p̂⟩0 = 0. (middle) The

classical position qt is plotted with 6 distinct snapshots of the real (solid line) and imaginary (dashed

line) parts of the wavefunction for a pair of trajectories starting at the origin in phase space and the

3rd excited adiabatic state, with Nmax = 50 and Nsteps = 105. On the right of each wavefunction, we

denote the main components of the wavefunction in the adiabatic basis. (right) The expected values of

the classical position qt and the trajectory expectation value ⟨q⟩t are plotted, performed by averaging

over 2000 individual trajectories with the same initial conditions, Nmax and Nstep as in the left hand

panel.

To represent the quantum state and operators for numerical simulation, we use the adiabatic

basis in this representation i.e. the standard harmonic oscillator number states |n⟩. Truncating

these at a finite maximum energy level Nmax, we may thus represent |ψr
(n)⟩ as a complex vector

of length Nmax, and the operators q̂ and p̂ as Nmax×Nmax restrictions of their standard infinite

dimensional number state representations. [211].
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5.5.5 Individual and average trajectories

Having established a numerical method for studying the dynamics of this system, we begin to

gain some insights into these dynamics by considering both individual and average trajectories

of the joint classical-quantum system.

We begin by considering a typical trajectory, for which we plot both qt and ⟨q̂⟩t in the

left panel of Figure 5.2. Here we start the classical system at the origin, and the quantum

system in a coherent state with ⟨p̂⟩ = 0 and ⟨q̂⟩ = 1. The mean position of the quantum

system is noticeably less continuous than that of the classical system, which is due to the fact

that the quantum state is conditioned on the classical momentum, which itself is experiencing

fluctuations due to the environment.

It is also insightful to see how the wavefunction evolves along an individual trajectory,

and how the quantum state is decomposed in the adiabatic basis. In the middle panel of

Figure 5.2 we plot qt, and additionally plot the real and complex parts of the wavefunction

ψ(x, t) = ⟨q|ψ⟩t at equal instances in time, for an initially excited state beginning in |ψr⟩0 = |4⟩

i.e. the third excited adiabatic state. The number of components for which the probability of

occupation |⟨n|ψr⟩|2 is higher than 0.1 is indicated on the right hand side. We see here that the

dynamics damps the excited components of the wavefunction, with the state after t = 4 being

predominantly made up of the adiabatic ground state |ψr⟩ = |0⟩.

Finally, while each individual classical trajectory will differ due to fluctuations, it is possible

to see the effect of quantum backreaction on the classical system by averaging the trajectories

over many realisations. In the right hand panel of Figure 5.2 we plot both E[qt] and E[⟨ψ|q̂|ψ⟩t]

i.e. the ensemble averages over trajectories. Choosing the parameter Ω to be small as in the

previous simulations such that the purely classical potential is negligible, we see from this plot

that the quantum backreaction has a non-trivial effect on the mean classical evolution, with

the two systems appearing to accelerate back and forth towards each other. The damping of

the oscillations occurs due to the friction in the classical system, which dissipates the original

energy stored in the interaction with the quantum oscillator.
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5.5.6 Thermalisation

The dynamics describes a quantum system that remains pure conditioned on the classical trajec-

tory. It is perhaps surprising therefore, that the joint classical-quantum system simultaneously

appears to demonstrate thermalisation at the level of the classical-quantum state.

To begin, we first compute the form of the thermal state in the relative position represen-

tation. In particular, one may check that it takes the particularly simple form

π̂r(q, p) =
1

Z
e−βĤQe−βHC(q,p), (5.5.34)

where here Z is the same as in Eq. (5.5.5). Since this expression factorises, we see by comparison

to (5.5.24) that we may check that the classical-quantum state ϱ̂(q, p) approaches the thermal

state π̂(q, p) by checking in the relative position representation that

lim
t→∞

E[|ψr⟩t⟨ψr|t] =
1

ZQ
e−βĤr

Q (5.5.35)

lim
t→∞

E[δ(q − qt)δ(p− pt)] =
e−βHC(q,p)

ZC
(5.5.36)

lim
t→∞

ϱ̂r(q, p) = E[|ψr⟩t⟨ψr|t] E[δ(q − qt)δ(p− pt)] (5.5.37)

i.e. that the reduced quantum and classical distributions approach the standard thermal states

of the corresponding classical and quantum oscillators, and that the correlations between the

classical and quantum degrees of freedom vanish.

Considering first the quantum dynamics, we first plot in the top of Figure 5.3 the numerically

simulated ensemble average of the populations in the adiabatic basis i.e. E[|⟨n|ψr⟩|2]. Starting in

the state |ψr⟩0 = |1⟩, we find that these approach the corresponding populations of the thermal

state of the quantum harmonic oscillator. Despite the quantum state along any trajectory

remaining pure, the diagonal part of the density matrix ρ̂r(t) = E[|ψr⟩⟨tψr|t] thus appears to

thermalise in the adiabatic basis. Turning to the classical dynamics, we verify that the marginals

of the classical thermal state are reached by plotting histograms of the position and momentum

against the theoretical prediction, as shown in the middle and bottom of Figure 5.3.

While the above provides a strong indication of thermalisation, it is necessary to also check

the remaining properties: (1) that the coherences of the quantum state in the adiabatic basis are
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Figure 5.3: Three plots demonstrating the thermalisation of the classical-quantum state over 104 nu-

merically simulated trajectories. Here the initial quantum state is in the first excited state |ψr⟩0 = |1⟩,

while the classical system is in a Gaussian probability distribution centered at the origin with standard

deviations σq = σp = 10−3. The model parameters are given ω = mC = mQ = ℏ = β = γ = Ω = 1,

while the numerical simulation has Nmax = 10 and Nsteps = 5000, and is run from from t = 0 to t = 10.

(top) The average populations in the adiabatic basis of the density operator in the relative position

representation are shown up to the 4th excited state, which appear to converge to the corresponding

values predicted from Eq. (5.5.35). (middle and bottom) The marginal distributions (solid orange line)

of the classical thermal state appearing in Eq. (5.5.36) are plotted against a histogram of the numerically

simulated final position and momentum of the classical system.
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also damped in time (2) that the correlations between position and momentum vanish (3) that

correlations between the classical and quantum degrees of freedom vanish. We explore these in

Appendix L, and find evidence that the dynamics also causes coherences in the adiabatic basis

to relax to zero, as well as the correlations (in the relative position representation) between the

various degrees of freedom.

While the above numerical evidence does not rule out the existence of particular initial

states which do not thermalise, it does suggest strongly that typical initial configurations relax

to the thermal state given in Eq. (5.5.4). Proving this rigorously, such as using techniques from

the theory of stochastic differential equations to demonstrate that Eqs. (5.5.35) to (5.5.37)

indeed hold, is an interesting question that we leave to future work.

5.5.7 Heat fluctuations and the second law

Having developed both a numerical framework for simulating trajectories, and establishing

that the model we describe appears to demonstrate thermalisation, we finally turn to combine

these to demonstrate how the model illustrates fluctuations in the heat it exchanges with the

environment, and how the average value of these fluctuations are bounded by the second law

of thermodynamics.

We begin by computing the entropy of a particular initial classical-quantum configuration.

We first note that since the classical-quantum entropy in (5.2.1) is invariant under phase-

space dependent unitary transformations, we may compute the entropy directly in the relative

position basis. Assuming the quantum system is in a pure quantum state in the relative position

representation |ψr⟩0 and the classical probability distribution is normally distributed around the

origin in phase space with variances σ2q and σ2p, the combined system is uncorrelated between

the classical and quantum degrees of freedom, and thus the entropy is simply a sum of the

entropies of the classical and quantum degrees of considered separately. Since the quantum

state is initially pure, the quantum entropy is zero. Computing the classical part of the entropy

is here well-defined since the classical probability distribution is Gaussian [203]. This gives the

initial entropy of the classical-quantum system as

S(ϱ̂0) = 1 + ln 2πσqσp. (5.5.38)
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Figure 5.4: Distributions of the heat exchanged into the classical-quantum system as the system ther-

malises, with model parameters ω = mC = mQ = ℏ = β/γ = Ω = 1. (top) Heat distribution with

β = γ = 3, σq = σp = 0.1, Nmax = 10, Nsteps = 5000 over 2 × 104 trajectories simulated from t = 0 to

t = 10. (bottom) Heat distribution with β = γ = 1, σq = σp = 1, Nmax = 10, Nsteps = 104 over 2× 104

trajectories simulated from t = 0 to t = 20.

For an arbitrary final state, one may compute the entropy to find ∆S. Here we shall assume

we are considering timescales long enough that the system has relaxed to the thermal state

given in Eq. (5.5.4). Again utilising the fact that the entropy S is invariant under unitary

transformations, we may compute the entropy of π̂r, the thermal state in the relative position

representation, which takes the simple uncorrelated form given in Eq. (5.5.34). As before,

it is straightforward to compute the entropy here as the sum of the classical and quantum

contributions

S(π̂) = 1 + ln
4π

βΩ
+
βωℏ
2

coth
βωℏ
2

− ln
[
2 sinh

βωℏ
2

]
, (5.5.39)

which gives the total change in entropy as

∆S = ln 2− lnβΩσqσp +
βωℏ
2

coth
βωℏ
2

− ln
[
2 sinh

βωℏ
2

]
. (5.5.40)

From Eq. (5.2.18) and Eq. (5.2.11), we see that this provides a bound on the ensemble average

of the heat exchanged into the system on along trajectory, given these initial conditions.
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We may now compare the bound on heat exchange derived from the second law to the

statistics of the heat exchange along individual trajectories. In the top of Figure 5.4 we plot

the distribution of heat Qt, for an initial state in which |ψr⟩0 = |0⟩ i.e. in which the quantum

system starts in the adiabatic ground state, and where the classical system is close to its ground

state i.e. the origin in phase space. As expected, the vast majority of realisations lead to the

system gaining energy, with the mean energy increase given by the vertical solid line. This can

be seen to lower than the maximum upper limit of E[Qt] allowed by the second law, which is

marked by the dotted line. While the average satisfies the second law, individual realisations

may gain more heat than their mean value, as evidenced by the small but non-zero set of counts

to the right of the dashed line, which appear to fall off exponentially. In the bottom half of

Figure 5.4 we plot the heat distribution at a higher temperature and lower friction, in the same

quantum state but with a classical state with greater variance in phase space. Here we see

more pronounced fluctuations of energy increase above the entropy bound, though a greater

number of realisations dissipating heat into the environment ensure than the average satisfies

the second law.

5.6 Detailed balance

While an equilibrium state is a minimal requirement for thermodynamic stability, a wide range

of open systems in both classical and quantum regimes satisfy a stronger notion of detailed bal-

ance. In this section we extend the concept of detailed balance to hybrid classical-quantum sys-

tems, deriving the general sufficient and necessary conditions under which a classical-quantum

system satisfies detailed balance. Using these conditions, we show that the two classes of

dynamics introduced in 5.3 both satisfy classical-quantum detailed balance.

5.6.1 Alternative representation of the classical-quantum generator and the

classical-quantum adjoint

Before starting our discussion of detailed balance in classical-quantum systems, we first remind

the reader of two important forms of classical-quantum generators that will be needed in the
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following sections.

The first is the alternative representation of the generator of completely-positive classical

quantum dynamics introduced in Chapter 2. This is given by the generator (2.20), with asso-

ciated positivity conditions (2.21) and (2.22). In this representation, the Hermitian operator

G determines the purely unitary quantum evolution. To avoid confusion with the classical-

quantum Hamiltonian, which G does not necessarily coincide with, we refer to this operator

as the generator of unitary dynamics, or unitary generator for short. The back-reaction on

each classical degree of freedom zi is determined by phase-space dependent operators Ki, which

we shall refer to as the “backreaction operators”. Rather than assuming these operators are

traceless, and describing purely classical evolution by a separate drift term, the component of

Ki proportional to the identity operator describes the purely classical drift on the ith classical

degree of freedom. The necessary decoherence corresponding to this backreaction is encoded in

the decoherence term involvingKi and the pseudoinverse of the diffusion matrixD2. Finally, the

Lindblad operators L̃α determine any additional decoherence on top of the minimum required

by the coupling to the classical system. These are thus necessarily zero if the decoherence-

diffusion trade-off is saturated i.e. when the unravelling preserves the purity of initially pure

quantum states.

The advantage of this representation is that sufficient and necessary conditions for complete-

positivity may be checked without relying on a decomposition of the back-reaction operators in

an orthonormal basis of operators. It turns out that this is extremely useful for checking detailed

balance, as it allows operators such as the Lz to be studied without needing to compute their

explicit forms (such as was done for the classical-quantum oscillators model in 5.5.2). Aside from

this, this form of dynamics provides some conceptual simplicity, such as explicitly separating

out the decoherence necessary for positivity from additional kinds, and making it explicit which

operator back-reacts on each classical degree of freedom.

The second generator we shall define is the adjoint generator of classical-quantum dynamics.

As with the adjoint of the Fokker-Planck equation [198] or the GKLS equation [195], one

may define the adjoint in the classical-quantum setting by studying the evolution of classical-

quantum observables. Considering the definition of the expectation value given in (2.10), we

148



define the adjoint of the generator L as the classical-quantum superoperator L† that satisfies∫
dztrL(ϱ)A =

∫
dztrϱL†(A), (5.6.1)

i.e. that governs the evolution of classical-quantum observables in the Heisenberg representa-

tion. Assuming that the classical-quantum state ϱ satisfies vanishing boundary conditions at

infinity, it is straightforward using integration by parts and properties of the trace to show that

this can be written in the general form

L†(A) =
i

ℏ
[G,A] +K†

i

∂A

∂zi
+
∂A

∂zi
Ki

+
1

2
D2,ij

∂2A

∂zi∂zj

+D−1
2,ij

(
K†

iAKj −
1

2
{K†

jKi, A}+
)

+ L̃†
αAL̃α − 1

2
{L̃†

αL̃α, A}+.

(5.6.2)

As should be expected, this dynamics takes the form of a generalisation of the standard classical

and quantum adjoint dynamics, and as such satisfies many of the same properties. A particular

property that is useful to note is that this map is unital i.e. that L†(1) = 0, since in this case

the derivative, dissipator and commutator terms all vanish.

5.6.2 Defining detailed balance in classical-quantum systems

In this section we begin our discussion of classical-quantum detailed balance, providing a general

definition of detailed balance in hybrid systems. This definition arises as a natural generalisation

of the definitions of detailed balance of classical and quantum systems when characterised in

terms of their generators, and we refer the reader to [197–199] for further details on this topic.

To define detailed balance in the classical-quantum setting, we must first introduce the

concept of time-reversal. Taking a video of a particle in flight, and playing it in reverse, one

sees that while the position q of the particle remains unchanged, the momentum p reverses sign.

In a similar manner, for any set of classical variables z = (z1, . . . , zn), a subset known as the

even variables will remain constant under time-reversal i.e. zi 7→ zi, while the odd variables

will each be multiplied by minus one i.e. zi 7→ −zi. To capture this, we follow [198] and use
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the notation

ϵz = (ϵ1z1, . . . ϵnzn) (5.6.3)

where here ϵi = ±1 depending on whether the ith classical variable is even or odd. Using this

notation, a function f(z) of the classical variables is thus transformed under time-reversal to

f(ϵz). To denote the time-reversal of differential operators, such as the generator of dynamics L,

we use the shorthand notation Lϵ, which implies changing all occurrences of zi to ϵizi, including

in derivatives.

An important feature of detailed balance is that it is always defined with respect to a given

state. Although up to now we have focused on classical-quantum fixed points π that are of the

standard thermal form π ∝ exp(−βH), for the remainder of our discussion of detailed balance

we allow π to be a generic fixed point. Aside from generalising the discussion, this is also a

natural choice given the earlier form of our dynamics, where the key operators Lz and Mxy

depended explicitly on π rather than the H. For this section, we therefore allow π to be a

generic fixed point, that may be written generally in the form

π(z) =
1

Z
e−Φ(z), (5.6.4)

where Φ(z) is a Hermitian operator that we refer to as the potential. In order to define detailed

balance with respect to this state, we shall need to make three assumptions that are standard

in the classical and quantum cases [197–199]. Firstly, we will assume that π has boundary

conditions such that it vanishes at infinity in the classical configuration/phase space; this ensures

that the state can be normalised, and that the representation of the adjoint generator introduced

in (5.6.2) may be used. Secondly, we assume that the state π is invertible at every point in

phase space i.e. the quantum degrees of freedom must always have a non-zero probability of

being in an arbitrarily excited state. Finally will assume that π is invariant under time-reversal

i.e. π(ϵz) = π(z), as is the case for the thermal state for time-reversal invariant Hamiltonians.

Having defined the notion of time-reversal and the requirements of the fixed point π, we

may define detailed balance in the hybrid setting. A classical-quantum dynamics described by

the generator L will be said to satisfy detailed balance with respect to π if and only if there

exists a Hermitian, time-reversal invariant operator X that commutes with π such that

π−1/2L(π1/2Aπ1/2)π−1/2 = L†
ϵ(A)− 2i[X,A] (5.6.5)
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for all operator-valued functions of phase space A.

To motivate this definition as the correct definition of detailed balance in the classical-

quantum setting, we consider two limiting cases. Firstly, taking π and A to be proportional to

the identity operator, one may check that this definition reduces to the requirement that

π−1(z)L(π(z)f(z)) = L†
ϵ(f(z)) (5.6.6)

holds for all functions f(z), where here L denotes a general generator of Fokker-Planck dynam-

ics. This equation, alongside the assumption that π is invariant under time-reversal, exactly

coincides with the definition of detailed balance in the classical setting, when using the charac-

terisation of detailed balance in terms of generators developed by Risken [198]. Secondly, taking

π and A to have no dependence on z, we find that the detailed balance condition reduces to

π−
1
2L(π

1
2Aπ

1
2 )π−

1
2 = L†(A)− 2i[X,A] (5.6.7)

for all operators A, where here X is any Hermitian operator such that [X,π] = 0. This provides

a definition of detailed balance in the quantum setting [199]. Although other definitions of

detailed balance are available in the quantum setting due to alternative operator orderings of

π̂, this “symmetric” definition is the weakest possible, and thus encompasses the broadest class

of dynamics.

From the above, it is straightforward to see that the definition of classical-quantum detailed

balance we provide is a straightforward generalisation of these two definitions, generated by

combining the uniquely classical and quantum structures associated to each. Namely, by using

the left-hand and right-hand sides of definition (5.6.7) which respect operator ordering, while

including the time-reversal operation arising in definition (5.6.6) we arrive at the definition of

detailed balance provided in (5.6.5). The only ambiguity that arises is whether X is chosen to

be invariant under time-reversal or not, since X and time-reversal only simultaneously appear

in the full classical-quantum case. In our definition we opt for the former, which ultimately is

supported by the identification of X with the classical-quantum Hamiltonian H when we come

to study detailed balance for the main dynamics introduced in Sec. 5.3.

Finally, we note an important feature of classical-quantum detailed balance that connects

this concept to the earlier sections of this chapter. Taking A to be the identity operator, and
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independent of z, we see that the left hand side of (5.6.5) reduces to π−
1
2L(π)π−

1
2 . Doing the

same for the right hand side, we see that the commutator with X vanishes, leaving simply

L†
ϵ(1). Since the adjoint map under time-reversal remains unital, we see that the entirety of

the right hand side vanishes. Acting with π1/2 on either side of the lefthand side, we thus see

that that L(π) = 0. It therefore follows that classical-quantum detailed balance implies thermal

state preservation i.e.

L satisfies DB

w.r.t. π
=⇒ L(π) = 0. (5.6.8)

Understanding how in practice to relate this condition to the thermal state preserving dynamics

we have already provided in terms of Lz andMxy will be the main aim of the rest of this section.

5.6.3 Detailed balance conditions for purity-preserving dynamics

In this section we derive conditions on the basic components of the classical-quantum master

equation, such as the diffusion matrix and back-reaction operators, that are satisfied if and

only if a dynamics satisfies classical-quantum detailed balance. To derive this general set of

conditions, we first restrict ourselves to the subset of dynamics that preserve the decoherence-

diffusion trade-off – this is later generalised in Section 5.6.4 to cases where the quantum state

does not remain pure conditioned on the classical trajectory.

In order to derive a set of sufficient and necessary conditions, we first define a set of operators

that are characterised by how they transform under time-reversal. In particular, we may define

the symmetric and anti-symmetric parts of the Hamiltonian as

GS(z) =
G(z) +G(ϵz)

2
(5.6.9)

GA(z) =
G(z)−G(ϵz)

2
(5.6.10)

and the reversible and irreversible parts of the classical drift and backreaction operators Ki as

Krev
i (z) =

Ki(z)− ϵiKi(ϵz)

2
(5.6.11)

Kirr
i (z) =

Ki(z) + ϵiKi(ϵz)

2
. (5.6.12)
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These operators satisfy the following relations

GS(ϵz) = GS(z) (5.6.13)

GA(ϵz) = −GA(z) (5.6.14)

Krev
i (ϵz) = −ϵiKrev

i (z) (5.6.15)

Kirr
i (ϵz) = ϵiK

irr
i (z), (5.6.16)

and hence allow the dynamics under time-reversal to be written in terms of quantities dependent

on z rather than ϵz.

Having defined this alternate set of operators, we are now able to derive necessary and

sufficient conditions on these in order for classical-quantum detailed balance to hold. Since we

are initially considering dynamics that saturates the trade-off i.e. that preserves the purity of

quantum states in the unravelling, we first assume that all of the Lindblad operators responsible

for additional decoherence vanish i.e. L̃α = 0 for all α. Rewriting this simplified form of the

generator L given in (2.20) in terms of Krev
i ,Kirr

i ,GS and GA, it is straightforward to compute

the form of L†
ϵ by performing the time-reversal operation on the L† and using the relations given

in (5.6.13) to (5.6.16). Substituting in the forms of L and Lϵ into the definition of detailed

balance (5.6.5), we find a sum of terms containing A, ∂iA and ∂i∂jA that must equal zero. Since

these must hold for all A, the Hermitian and anti-Hermitian parts of each expression containing

different derivatives of A lead to independent conditions on the dynamics for detailed balance.

Using the positivity conditions (2.21) and (2.22), in Appendix M we show that this leads to the

following sufficient and necessary conditions for classical-quantum dynamics that saturate the

decoherence-diffusion trade-off to also satisfy detailed balance

D2,ij(ϵz) = ϵiϵjD2,ij(z) (5.6.17)

Krev
i π1/2 − π1/2Krev

i
† = iaiπ

1/2, (5.6.18)

Kirr
i π1/2 + π1/2Kirr

i
†
=

1

2

∂D2,ij

∂zj
π1/2 +D2,ij

∂π1/2

∂zj
(5.6.19)

− i

ℏ
{GS , π1/2}+ = OS − i{X,π1/2}+ (5.6.20)

− i

ℏ
[GA, π1/2] = OA, (5.6.21)
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where here ai are the elements of a real vector a(z) that satisfy ai(ϵz) = −ϵiai(z), X is a Her-

mitian operator that is symmetric under time-reversal and commutes with π, and the operators

OS and OA are defined as

OS =
1

2

∂

∂zi
(Kirr

i π1/2 − π1/2Kirr
i

†
)

− 1

2
(I−D2D

−1
2 )ij(K

irr
i

∂π
1
2

∂zj
− ∂π

1
2

∂zj
Kirr

i
†
)

− 1

4
D−1

2,ij

∂D2,ik

∂zk
(Kirr

j π1/2 − π1/2Kirr
j

†
)

+
i

2
D−1

2,ijai(K
rev
i π1/2 + π1/2Krev

i
†)

+
1

2
D−1

2,ij [K
rev
i

†Krev
j +Kirr

i
†
Kirr

j , π1/2],

(5.6.22)

and

OA =
1

2

∂

∂zi
(Krev

i π1/2 + π1/2Krev
i

†)

+
1

2
(I−D2D

−1
2 )ij(K

rev
i

∂π
1
2

∂zj
+
∂π

1
2

∂zj
Krev

i
†)

− 1

4
D−1

2,ij

∂D2,ik

∂zk
(Krev

j π1/2 + π1/2Krev
j

†)

+
i

2
D−1

2,ijai(K
irr
i π1/2 − π1/2Kirr

i
†
)

+
1

2
D−1

2,ij{K
rev
i

†Kirr
j +Kirr

i
†
Krev

j , π1/2}+.

(5.6.23)

We refer to these five conditions as the diffusion constraint, reversible back-reaction con-

straint, irreversible back-reaction constraint, symmetric unitary generator constraint and anti-

symmetric unitary generator constraint respectively. These are extended to the case where

classical-quantum dynamics does not necessarily saturate the decoherence-diffusion trade-off in

the next section.

Before moving on, we observe some basic consequences of these conditions. Firstly, we

see that the diffusion constraint is identical to the known classical condition on the diffusion

matrix for detailed balance [197, 198] – we shall further investigate how these conditions reduce

to the classical case in 5.6.5. Secondly, we see that the reversible and irreversible back-reaction

constraints, which state that the back-reaction operators must be related to both π1/2 and

its first derivatives, are reminiscent of those for Lz given in (5.3.2) and (5.3.1) respectively.

Similarly, we see that as with the definition of the Hermitian Mxy operators of (5.3.4), the
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equation for GS takes the form of a Lyapunov equation, and thus can be directly solved to give

GS = iℏ
∫ ∞

0
e−sπ1/2

OSe−sπ1/2
ds+X. (5.6.24)

Turning now to the antisymmetric unitary generator constraint, it is important to note that

while the constraint for GS purely constraints the quantum unitary evolution, the equation for

GA includes a constraint on the form of Kirr, Krev and D2 independent of GA, namely that

⟨n(z)|OA|n(z)⟩ = 0 ∀n (5.6.25)

where |n(z)⟩ is the adiabatic basis defined for the generic fixed point π i.e. the eigenstates of the

potential operator Φ(z). Although the solution for GA is not unique, since any time-reversal

anti-symmetric Hermitian operator that commutes with π1/2 may be added to it, the part of

the operator that does not commute with π1/2 may be uniquely solved in terms of the adiabatic

basis, giving the off-diagonal elements of GA in this basis as

GA
nm = iℏ

⟨n(z)|OA|m(z)⟩
√
pm −√

pn
n ̸= m (5.6.26)

where here pn is the eigenvalue of π corresponding to the adiabatic state |n(z)⟩. Finally, we

note that the time-reversal property of the vector a ensures that each of the detailed balance

conditions is consistent under time-reversal.

5.6.4 Detailed balance conditions for general dynamics

To extend the derivation from the case where the decoherence diffusion trade-off is saturated,

to the case where it is not, we exploit the result in Section 2.6 that states that a generic

classical-quantum dynamics may always be embedded in a larger classical phase space where

the trade-off is saturated. This so called “temple of the larger phase space” is useful, because

it allows us to leverage the expressions previously derived in the comparatively simpler setting

where the trade-off is saturated.

To begin with, we take L to be an arbitrary completely-positive continuous CQ generator

i.e. of the form of (2.20) with L̃α non-zero, and fix a given fixed point π to consider detailed

balance with respect to. We then introduce an auxiliary classical degree of freedom yα for each

independent traceless Lindblad operator L̃α. These classical degrees of freedom may be taken
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to be even under time reversal symmetry without loss of generality. In this enlarged phase

space, we then define a new classical-quantum generator L̃, which takes the form

L̃(A) = L(A) + 1

2

∂2A

∂yα∂yα
− ∂

∂yα
(K̃αA+AK̃†

α), (5.6.27)

where the traceless auxiliary back-reaction operators K̃α have no dependence on the auxiliary

degrees of freedom yα, and satisfy

D(K̃α) = D(L̃α), (5.6.28)

and

K̃α(z)π
1
2 + π

1
2 K̃†

α(ϵz) = 0. (5.6.29)

The first of these conditions, (5.6.27) guarantees that the generator L̃ recovers L upon tracing

over the auxiliary degrees of freedom. The second condition (5.6.28) ensures that the L̃ is both

completely-positive and saturates the decoherence-diffusion trade-off. Finally, (5.6.29) amounts

to stating that the purification we have chosen is not arbitrary, but is adapted to the choice of

fixed state π that we wish to prove the detailed balance of L with respect to.

Turning now to detailed balance, it is straightforward to prove using (5.6.27) and (5.6.29)

that

π−
1
2 L̃(π

1
2Aπ

1
2 )π−

1
2 − L̃†

ϵ(A) = π−
1
2L(π

1
2Aπ

1
2 )π−

1
2 − L†

ϵ(A). (5.6.30)

An immediate consequence of this is that

L satisfies DB

w.r.t. π
⇐⇒

L̃ satisfies DB

w.r.t. π
(5.6.31)

i.e. that checking detailed balance for L̃ with respect to π is sufficient and necessary to conclude

the same for L.

Since L̃ saturates the decoherence-diffusion trade-off, we can apply each of the detailed

balance conditions already proven in equations (5.6.17) to (5.6.21), this time including the

additional diffusion, decoherence and back-reaction associated to the auxiliary classical degrees

of freedom yα, to find iff constraints for L to satisfy detailed balance. In the enlarged space,

one can check from (5.6.27) that condition (5.6.17) is trivially satisfied on the auxiliary degrees

of freedom, and thus provides no additional constraint. Similarly, computing the reversible and
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irreversible parts of the auxiliary back-reaction operators K̃α and substituting into (5.6.18) and

(5.6.19), one finds that since π is independent of yα and the K̃α are traceless, the constraints on

the auxiliary backreaction operators K̃α are equivalent to that of (5.6.29) and that the vector of

real numbers aα is zero. The only additional constraints come from considering the symmetric

and anti-symmetric effective Hamiltonians, which in this case take the form

− i

ℏ
{GS , π1/2}+ = OS − i{X,π1/2}+ +

1

4
[K̃†

βK̃β + K̃†
β(ϵz)K̃β(ϵz), π

1
2 ] (5.6.32)

− i

ℏ
[GA, π1/2] = OA +

1

4
{K̃†

αK̃α − K̃†
α(ϵz)K̃α(ϵz), π

1
2 }+, (5.6.33)

i.e. are modified by an additional term in terms of K̃α.

To relate the conditions (5.6.29), (5.6.32) and (5.6.33) on K̃α to conditions on L̃α, we utilise

(5.6.28). In particular, since the two GKLS disspators will be equal iff the Lindblad operators

are related via unitary matrix [212, 213, 199], we can always rewrite the auxiliary back-reaction

operators K̃α as

K̃α = uαβL̃β (5.6.34)

where uαβ are the coefficients of some unitary matrix u that may depend on phase space.

Plugging this relation into the modified constraints (5.6.29), (5.6.32) and (5.6.33), we finally

arrive at the final set of necessary and sufficient conditions for detailed balance with respect to

π as

D2,ij(ϵz) = ϵiϵjD2,ij(z) (5.6.35)

Krev
i π1/2 − π1/2Krev

i
† = iaiπ

1/2, (5.6.36)

Kirr
i π1/2 + π1/2Kirr

i
†
=

1

2

∂D2,ij

∂zj
π1/2 +D2,ij

∂π1/2

∂zj
(5.6.37)

− i

ℏ
{GS , π1/2}+ = OS − i{X,π1/2}+ +

1

2
[ÑS , π

1
2 ] (5.6.38)

− i

ℏ
[GA, π1/2] = OA +

1

2
{ÑA, π

1
2 }+ (5.6.39)

L̃α(z)π
1/2 = −(u†(z)u∗(ϵz))αβπ

1/2L̃†
β(ϵz), (5.6.40)

where here we have defined ÑS and ÑA as the symmetric and anti-symmetric parts under

time-reversal of the operator

Ñ = L̃†
αL̃α. (5.6.41)
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We thus see that when the decoherence-diffusion trade-off is not saturated, the symmetric

and anti-symmetric unitary generator constraints found previously are modified to depend on

the excess decoherence, while a sixth constraint (5.6.40), that we refer to as the decoherence

constraint, provides conditions on the Lindblad operators of the excess decoherence that must

be satisfied in order for the dynamics to satisfy detailed balance. This new set of conditions

satisfies similar properties to before, in particular with analogous relations to (5.6.24), (5.6.25)

and (5.6.26) that are straightforward to find using the same arguments.

5.6.5 Classical and quantum detailed balance

Having found the general form of conditions for a classical-quantum dynamics to satsify detailed

balance, we now turn to check that these indeed correctly reproduce the known conditions in

the purely classical and quantum cases.

We first turn to the purely classical limit. To do so, we first set L̃α = 0, allowing us to use

the characterisation of detailed balance for dynamics that saturates the trade-off given in Eqs.

(5.6.17) to (5.6.21). Setting G = 0, Ki =
1
2D

C
i 1, where D

C is a real-valued vector represent-

ing the classical drift, and letting π be proportional to the identity, the constraints simplify

considerably. We first note that in this case the reversible back-reaction constraint (5.6.18) is

trivially satisfied and implies that ai is zero for all z. Since this means that OS also vanishes, we

see that the symmetric unitary generator constraint is also necessarily satisfied. Turning now

to the anti-symmetric unitary constraint, we note while GA vanishes, the additional condition

(5.6.25) nevertheless provides a non-trivial condition on the classical dynamics. In particular,

we see that since π is proportional to the identity, every vector is a valid adiabatic state, and

thus that the entire expression for OA must vanish for detailed balance to hold. Writing this

final constraint alongside the diffusion and irreversible back-reaction constraints, and making

the appropriate simplifications given the form of Ki and properties of the pseudoinverse, we

find the following three constraints in the classical limit

D2,ij(ϵz) = ϵiϵjD2,ij(z) (5.6.42)

DC,irr
1,i =

1

2

∂D2,ij

∂zj
+D2,ij

∂π1/2

∂zj
π−1/2 (5.6.43)
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∂

∂zi
(DC,rev

1,i π) = 0. (5.6.44)

Additionally assuming that D2 is full rank, such that its inverse is well-defined, and using the

explicit form of π provided in (5.6.4), it is straightforward to check that these conditions coincide

with the necessary and sufficient conditions for classical detailed balance found in [197, 198].

To study the purely quantum dynamics, we take K = 0 and D2 = 0, and assume that L̃, S

and π have no dependence on phase space. In this case the only non-trivial constraints are

L̃απ
1/2 = −(u†u∗)αβπ

1/2L̃†
β, (5.6.45)

and

− i

ℏ
{G, π1/2}+ =− i

ℏ
{X,π1/2}+ +

1

2
[L̃†

βL̃β, π
1
2 ]. (5.6.46)

Defining the additional unitary matrix v = u†u∗, this exactly reproduces the known conditions

of [199]. In fact, the form that we derive makes it explicit that the unitary matrix v must also

be symmetric, which follows by taking the complex conjugate of Eq. (5.6.45).

5.6.6 Proving detailed balance for Lz, Mxy dynamics

Having derived the form of sufficient and necessary conditions for detailed balance in classical-

quantum systems and checked it agrees with the known conditions for classical and quantum

detailed balance, we finally turn to show that the dynamics presented in Section 5.3 satisfies

classical-quantum detailed balance.

Considering first the overdamped dynamics, we begin by finding the form of the symmetric

and antisymmetric parts of the generator of the unitary dynamics, as well as the reversible and

irreversible parts of the back-reaction operators. Comparing the form of (5.3.10) to (2.20) to

read off G and Kx, and using the definitions (5.6.9) to (5.6.12), we find the dynamics to be

entirely characterised by the following operators

GS = H +
µβ

8
Mxx GA = 0

Krev
x = 0 Kirr

x = −µ
2
Lx D2 =

2µ

β

(5.6.47)
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Here we see that both H and Mxx are time-reversal invariant, while the anti-symmetric part

of the unitary generator GA vanishes. As expected for an overdamped particle dynamics, the

reversible part of the dynamics also vanishes.

To check detailed balance in the overdamped dynamics, we use the sufficient and necessary

conditions derived in Sections 5.6.3 and 5.6.4. Since this dynamics saturates the trade-off,

in this case we may use the simpler conditions given in (5.6.17) to (5.6.21) to check whether

detailed balance is satisfied. Since the diffusion coefficient is constant and x is an even variable

under time-reversal, it is immediate to see that the diffusion constraint (5.6.17) is satisfied.

Substituting in the definition of Lx given in (5.3.1) it is straightforward to verify the the

irreversible back-reaction constraint (5.6.19) holds, while Krev = 0 implies that the reversible

back-reaction constraint also holds with a(x) = 0. To see that the symmetric unitary generator

constraint (5.6.20) holds, we first compute OS . Since here D2 is full rank, a is zero, and

Lx satisfies (5.3.2), we see that OS simplifies to simply (µβ/16)[L†
xLx, π

1/2]. Comparing the

resulting symmetric unitary generator constraint with the definition ofMxx provided in (5.3.4),

we see that Equation (5.6.20) holds, with the time-reversal invariant Hermitian operator X

being identified with the classical-quantum Hamiltonian H divided by ℏ. Finally, one may

use the same relations to see that OA = 0, which since the antisymmetric part of the unitary

generator GS is zero implies that the antisymmetric unitary generator constraint (5.6.21) is

also satisfied. The overdamped dynamics thus satisfies classical-quantum detailed balance with

respect to π as claimed.

Turning now to the underdamped dynamics, we again first find the explicit forms of the sym-

metric and anti-symmetric parts of G and the reversible and irreversible parts of K. Comparing

(5.3.17) to (2.20) and using the defintions as before we find

GS = H +
β

8γ
Mqq GA =

iℏ
16
β
p

m
(L†

q − Lq)

Krev =
1

2

−p/m1

−Lq

 Kirr =
1

2

 0

−γp/m1


D2 =

0 0

0 2γ/β


(5.6.48)

Here we see that the reversible parts of the dynamics are associated to terms that previously

160



made up the Alexandrov bracket in the high temperature limit (c.f. Section 5.3.5), while the

irreversible part of the dynamics relates to the friction. The appearance of an anti-symmetric

component of the unitary generator GA arises due the inclusion of the classical drift into the the

back-reaction operators, which leads to an additional term in the unitary part of the dynamics

that acts to cancel the new cross terms in the decoherence part of the dynamics.

To show that the underdamped dynamics also satisfies detailed balance, we check the dy-

namics against the conditions in (5.6.17) to (5.6.21). As before, the diffusion constraint is

straightforward to check is satisfied, given that the only non-zero component is D2,pp, which

does not change under time-reversal. To check the reversible back-reaction constraint, we note

again that the property of the Lz operators (5.3.2) means that the constraint is trivially satis-

fied with a(q, p) = (0, 0)T , while the irreversible back-reaction constraint is straightforward to

check is satisfied using the fact that the thermal state in this dynamics is assumed to contain a

classical kinetic term p2/(2m)1. To check the symmetric unitary generator constraint, we first

compute OS , which in this case simplifies to β/(16γ)[L†
qLq, π

1/2]. As in the overdamped case,

comparing this to the definition of Mxx we see that this is indeed satisfied, with X identified

with H/ℏ. Finally, we check the anti-symmetric unitary generator constraint. To do so, we

first compute OA. In this case, D2 is not full-rank, and thus we must retain a number of

terms that vanished in the overdamped case. Computing this explicitly, we find that OA takes

the form (βp)/(16m)[L†
q − Lq, π

1/2]. This final constraint is therefore exactly satisfied, given

the value of GA, thus demonstrating that the underdamped dynamics we provide also satisfies

classical-quantum detailed balance.

5.7 Discussion

In this chapter, we introduced classical-quantum dynamics compatible with the laws of ther-

modynamics. There were three main technical contributions to achieve this: (1) the proof in

Section 5.2 that thermal-state preserving, completely-positive and linear dynamics necessarily

obeys the second law of thermodynamics; (2) the identification in Section 5.3 of the Lz and

Mxy classes of operators, given in Eqs. (5.3.1) and (5.3.3), which we showed could be used

to construct such dynamics; and (3) the definition and characterisation of detailed-balance in
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classical-quantum systems in Section 5.6, which we showed also applied to our Lz, Mxy con-

structed dynamics. While we presented basic forms of such dynamics for the case of overdamped

and underdamped classical systems in Eqs. (5.3.10) and (5.3.17), the Lz andMxy operators may

be used to construct dynamics to treat a wide variety of systems, with some straightforward

generalisations presented in Appendix J.

One expects that these dynamics may applied in a wide range of settings. Aside from the

applications to continuous measurement theory and molecular dynamics, illustrated via the an-

alytically and numerically solved toy models in Sections 5.4 and 5.5, one could use the dynamics

to study systems in quantum optics where part of the system behaves semi-classically [69], in

many-body systems where local effective classical systems acting as monitoring devices, or in-

deed models designed to probe classical-quantum coupling [38] extended to non-perturbative

regimes. The key step in any application is the identification of a fixed point of the combined

system, which is then used to find the operators Lz and Mxy. While the computation of these

operators may in general prove challenging, the simplified forms of Lz andMxy in the high tem-

perature limit, given in Eqs. (5.3.9), provides a starting point for studying these dynamics that

also makes connection with existing mean-field and quantum-classical Liouville approaches, as

shown in Section 5.3.5. Since these models relate to both existing semi-classical methods moti-

vated from quantum theory, and are motivated by fundamental physical principles, we expect

them to be successful in describing a range of quantum systems operating in an effectively

classical-quantum regime.

Aside from understanding the current thermodynamic framework as an effective theory that

arises from quantum mechanics, it is interesting to consider what it may say about quantum

mechanics itself. Since quantum mechanics is inherently random, at the level of the interaction

between the classical measurement apparatus and the quantum system, it is reasonable to

imagine that this stochastic behaviour could arise due to tracing out a number of microscopic

degrees of freedom. If the underlying dynamics of these microscopic degrees of freedom is

symmetric under time reversal [197], then one expects the resulting macroscopic theory of the

combined classical-quantum system to satisfy detailed balance. In principle, we thus see that

whether or not the detailed balance conditions (5.6.35) to (5.6.40) are satisfied in practice for

classical measurement devices and quantum systems provides a test of their underlying physics.
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If the dynamics satisfy detailed balance, one may be tempted to consider the possibility that

quantum mechanics itself is an effective description of a microscopic T-symmetric theory, while

if not, the description of quantum mechanics as the fundamental theory, in which measurement

is an inherently irreversible process, becomes a more attractive option.

Finally, given that thermodynamics fundamentally is a theory that puts limitations on the

allowable transformations of a system [214], it is interesting to consider what general bounds

may be derivable from a consistent thermodynamic theory of classical and quantum systems.

For the class of dynamics introduced in Section 5.3, it was remarked that since both the Einstein

relation and the decoherence-diffusion trade-off relate back-reaction in the classical-quantum

system to the diffusion, they could be used to derive bounds on decoherence rates, given in

Eqs. (5.3.16) and (5.3.25) for the overdamped and underdamped cases. Beyond these ba-

sic model-dependent bounds, we expect the theory we present here to provide a number of

general thermodynamic bounds on systems described by a classical-quantum framework, and

thus bounds on the achievability of a number of transformations, from electronic transitions in

molecules to allowable state preparation in measurement-based feedback.
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Chapter 6

Concluding remarks

We have demonstrated in the above work that completely-positive and linear classical-quantum

dynamics can appear naturally as a physically-motivated effective description of different sys-

tems. Indeed, the features in common between the dynamics we have found, despite starting

each time from independent motivations, adds some support to the idea that these dynam-

ics, rather than merely being theoretical constructs for probing our understanding of how to

construct physical theories, may indeed prove useful in studying a range of physical phenom-

ena, from gravitational systems in semi-classical regimes, to molecular dynamics and quantum

measurement and control systems.

Perhaps the most remarkable aspect of our study lies in the form of operators describing

back-reaction and decoherence in the effective classical-quantum dynamics we study. Writing

these explicitly, the effective dynamics arising from quantum theory in Chapter 4 is determined

by the operators

LH
z = iEf

∂

∂z

(
e
− i

Ef
H)
e

i
Ef

H
, (6.0.1)

while for the thermal state preserving dynamics of Chapter 5, the operators take the form

Lz = − 2

β

∂

∂z

(
e−

β
2
H
)
e

β
2
H . (6.0.2)

It is immediate from the above definitions that these operators coincide up to the Wick rotation

i

Ef
↔ β

2
. (6.0.3)
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The entirely independent appearance of the same structure of operator from both thermody-

namically consistent theories and those arising from a fully quantum theory suggests some

deeper relationships between the different effective theories of classical-quantum dynamics that

we present here.

However, given that we did not derive the same dynamics each time, it is sensible to ask

a basic question – which dynamics is relevant in different situations? As a guiding principle,

one may expect that the basic dynamics of Eqs. (3.8) to (3.9) and Eq. (3.15), which provided

a completely-positive and linear version of the standard mean-field and quantum-classical Li-

ouville approaches, should provide a good description of effective classical-quantum dynamics

when the noise in the classical system is large and friction is small. This is because in this case,

Ef is large and β is small, and thus all three main forms of the operators determining back-

reaction and decoherence become approximately equal i.e. LH
z ≈ Lz ≈ ∂zH. In this regime,

we find that all three forms of dynamics that we introduce also take the same approximate

structure i.e. that which appears in the healed semi-classical dynamics Eqs. (3.8) to (3.9) and

Eq. (3.15), up to terms that do not affect the back-reaction on the classical system, nor the

basis in which the quantum system decoheres.

However, outside of this regime, the three dynamics will in general differ for Hamiltonians

that do not commute with themselves at different points in the classical phase space. Rather

than suggesting one or the other theory is incorrect, we instead see a natural feature of effective

theories arising – that the underlying theory that the effective classical-quantum description

arises from has some effects on the resulting dynamics. In this case, we expect that the physically

motivated dynamics of Eq. (4.4.5) coming from a full quantum theory, or the dynamics in

(5.3.17) arising from a thermal environment, should provide improvements on the dynamics of

Eqs. (3.8) to (3.9) and Eq. (3.15) that are not apparent at high temperatures/large noise in

the classical system. Understanding which of LH
z and Lz may be used in these contexts, and

indeed whether linear combinations or other hybridisations of the two operators may be used,

is an interesting question we leave to future work.

Of course, in practice, none of the dynamics are likely to provide an exact fit to experiment.

Like for most real world models, the true dynamics will likely require a number of additional
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bespoke features added, such as including additional sources of noise on the system. However,

the dynamics we provide here provide a starting point for constructing such models, that are

grounded in basic physical principles. Moreover, the tools we provide, such as being able to

characterise purity, or move between unravelling and master equation pictures, or numerical

methods for simulating the dynamics, provide basic building blocks to understand a wide range

in consistent dynamics of classical and quantum systems.

Finally, we end with a somewhat philosophical remark. At the beginning of this work,

it was noted that quantum theory itself suggested the correct way of coupling classical and

quantum systems. While this appears in the Born rule, the sudden instantaneous nature of

this collapse appeared incompatible with any standard mechanical explanation. However, after

the development of continuous measurement theory, this collapse process could be effectively

slowed, allowing the dynamics of the classical measuring apparatus and quantum system to

be put in the setting of continuous evolution. In this work, we see that one can take this

measurement process one step further into the realm of a physical theory, by treating the

measuring device as a mechanical classical system that exchanges heat and information with

its environment. These models of classical and quantum systems provide a version of quantum

mechanics that is both mechanical at the level of unitary dynamics and mechanical at the level

of the measurement. Whether effective classical-quantum dynamics can help render quantum

theory any less strange, or suggest how it itself emerges as an effective theory remains to be

seen – but they at least breathe some new life into an old theory.
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[76] Lajos Diósi. Hybrid completely positive markovian quantum-classical dynamics. Physical

Review A, 107(6):062206, 2023.

[77] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information,

2002.

173

https://doi.org/10.1103/PhysRevLett.89.018301
https://doi.org/10.1103/PhysRevLett.130.193603
https://doi.org/10.1038/s41567-024-02579-w


[78] Jonathan Oppenheim, Carlo Sparaciari, Barbara Šoda, and Zachary Weller-Davies. Grav-
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Appendix A

Linearity and complete-positivity

A key feature common to both classical probability theory and quantum theory is that the states

in the theory, i.e. probability distributions P (z, t) and density operators ρ(t), are assumed to

have positive and linear evolution. In this work we shall assume the same must hold for the

classical-quantum state ϱ(z, t), and we will take this to be required for any classical-quantum

dynamics to be consistent. Since ϱ(z, t) is defined as E[δ(z − zt)ρt], requiring the consistency

of the evolution of ϱ(z, t) puts constraints on the possible allowed dynamics of ρt and zt.

To see why positivity and linearity of the dynamics of ϱ(z, t) are important properties

for consistency, we first note that probability distributions, density operators, and classical-

quantum states, all satisfy the requirements of a more general definition of states. Specifically,

statistical mixtures of different configurations are represented by convex combinations of states,

and expectation values are computed by a map that is linear on both the states and observables

of the theory. This means that the classical-quantum states we present here are the same as the

states discussed in a more general class of probability theories known as GPTs [215, 216, 101].

In such theories, the requirement for a consistent probabilistic interpretation of measurement

outcomes leads to constraints on the evolution of states. If the evolution laws do not preserve the

positivity of the state, then the theory will predict negative probabilities for some measurement

outcomes. If the evolution laws of states are not linear, it leads to the non-physical result that

outcomes of experiments depend on whether independent measurement records are deleted
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before or after the evolution. To see this, take ω1, ω2 to be two states of a theory, generated

with probabilities p and (1− p) respectively, and define the evolution map Et as the map which

takes every initial state to its final state at time t. If an observer forgets which state was

prepared immediately, they predict the final state to be Et(pω1 + (1 − p)ω2), which should be

the same as pEt(ω1)+(1−p)Et(ω2), the state they predict if they wait to delete the measurement

record until after the evolution [217, 215, 218, 219].

Although we have simply stated that the dynamics of ϱ(z, t) should be positive, in the

context of quantum mechanics, a stronger notion of positivity is required for the dynamics to

be consistent when acting on part of a larger system. This is called complete-positivity, and

ensures that when the dynamics is applied to half of an entangled quantum state, negative

probabilities do not arise [77]. We will assume the same holds in the classical-quantum case.

Taken together, we thus will state that a dynamics is consistent with a classical-quantum

description, or simply consistent, whenever the dynamics of zt and ρt lead to dynamics that is

completely-positive and linear on the classical-quantum state ϱ(z, t). It is worth emphasising

that this is a very weak set of conditions, and indeed is a strict subset of the consistency

conditions of [15]. This being said, given that it was shown in the same work that no dynamics

could be constructed that satisfies the full set of these consistency conditions, we see that

taking a weaker set of conditions is a necessary step to constructing examples of consistent

classical-quantum dynamics.

Finally, it is important to emphasise that a consistent theory may still have primary quanti-

ties that uniquely determine the state of a system, which nevertheless do not themselves evolve

linearly. For example, in the Madelung formulation of unitary quantum mechanics, an auxiliary

scalar and vector field are used to describe the quantum wavefunction, and evolve according

to a set of non-linear equations [220, 221]. The distinction to be drawn is that objects such as

these do not define states in the sense we have so far considered, since, for example, they are

not related to the expectation values of the theory via a linear map. To check the consistency

of dynamics in such theories, it is necessary to directly compute the evolution of the states of

the theory. In this work, this has an important consequence: the evolution equations of zt and

ρt need not necessarily be linear, provided the overall dynamics induced on ϱ(z, t) is.
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Appendix B

Conditional quantum states

When a projective measurement is made in conventional quantum mechanics, the state of the

quantum system conditioned on the measurement outcome is pure. However, if the measure-

ment outcome is not conditioned on, the act of measurement will generically cause the quantum

state to lose purity i.e. decohere.

To see how this feature also arises in classical-quantum systems, we first note that when

an observer has some partial information Y , the conditional expectation of f(zt, ρt), denoted

E[f(zt, ρt)|Y ], defines the improved estimate based on this information. This information will

typically correspond to knowing some classical quantity y(zt) for a subset of time t ∈ I, and so

is formally described by the σ-algebra generated by this set of random variables, which we can

denote σ{y(zs)}s∈I or simply {y(zs)}s∈I for short [222].

If an observer were to repeat an experiment many times, each time measuring the quantum

system at time t and recording no information about the classical system, the quantum state

they would infer from their observations would be ρ(t) = E[ρt]. However, if each time they per-

formed the experiment they additionally recorded some partial information about the classical

trajectory Y = {y(zs)}s∈I , the quantum state determined from their observations would be the

conditional quantum state [223]

ρ(t|Y ) = E[ρt|Y ]. (B.1)

i.e. an average only over realisations of the quantum state ρt that occur with the classical

191



observation Y . It is straightforward to prove, using the Jensen inequality [222], that the entropy

S of the unconditioned state will always be greater than or equal to the average entropy of the

conditioned state i.e.

S(ρ(t)) ≥ E[S(ρ(t|Y ))]. (B.2)

The above inequality tells us that if there are correlations between the classical and quantum

systems i.e. E[f(zt)g(ρt)] ̸= E[f(zt)]E[g(ρt)], then conditioning on a particular outcome of the

classical trajectory will generically give us an improved estimate of the state of the quantum

system. This improved estimation will correspond to a state with greater purity.

An important example of a conditioned quantum state is the quantum state conditioned

on the full classical trajectory up to time t, ρ(t|{zs}s≤t) = E[ρt|{zs}s≤t]. The information

corresponding to this state is maximal, in the sense that an observer that has access to the

full classical trajectory has as much information about the combined classical-quantum system

as is possible without disturbing it with a quantum measurement. Perhaps surprisingly, even

in this case, there can exist classical-quantum trajectories for which E[ρt|{zs}s≤t] ̸= ρt. When

this is the case, the individual trajectories of ρt are not physical. This is because in this

case the entropy of the conditioned quantum state ρ(t|Y ) is greater than that of ρt, and thus

the non-uniqueness of the decomposition of mixed quantum states means there are physically

equivalent ρ′t which cannot be experimentally distinguished. This is an exact analogue of the

case considered in the unravelling of quantum master equations, where individual realisations

of pure states of the quantum system only take on physical meaning when they are correlated

with a measurement apparatus monitoring the system [43].

For this reason, we make a specific requirement on the representation of the classical-

quantum dynamics we will study. Specifically, we will always choose to represent dynamics

such that

ρt = E[ρt|{zs}s≤t], (B.3)

where this equality is taken to hold except on a set of measure zero i.e. almost surely. In more

technical language, this means restricting to stochastic processes of the quantum state ρt such

that the they are adapted to the σ-algebra σ{zs}s≤t [222]. To achieve this, it is necessary to

allow the quantum system to be decomposed in terms of mixed states, ρt, rather than pure
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states |ψ⟩t. In particular, if one was restricted to decompose the quantum system in terms of

|ψ⟩t, one would find that in any setting where the quantum system undergoes decoherence from

the perspective of an observer with maximum information, one would be forced to decompose

the dynamics into a particular non-unique choice of pure quantum states. By contrast, since

classical probability distributions can always be uniquely decomposed in terms of delta functions

δ(z−zt) in phase space, we suffer no loss of generality by assuming an unravelling of the classical

system in terms of pure states i.e. in terms of zt.
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Appendix C

Toy models of healthier

semi-classical dynamics

In this section we discuss a few simple toy models of the general dynamics illustrated above,

specifically those generated by a Hamiltonian that saturate the decoherence-diffusion trade-off.

Example trajectories for each of the models are simulated using basic numerical methods and the

code can be found in [224]. The simulations include toy models of a Stern-Gerlach experiment, a

spin confined in a potential, a mass in a superposition of two locations generating a gravitational

potential, and vacuum fluctuations as a source for the expansion rate of the universe.

The forms of the dynamics that we numerically study here are closely related to those used

to study unravellings of quantum dynamics (c.f. Section 2.7), which have a long history of

simulation [212, 80, 160]. While it would be interesting to study further the convergence of the

numerical methods used here by using these earlier models as benchmarks, and to find ways of

improving upon them, here we will be content with simply extracting the qualitative behaviour

of the toy models along single realisations of the dynamics. Comparing the number of timesteps

that we use (around N = 105) to those in earlier work (N = 5000 in [212]), we see that these

individual trajectories are likely to be accurate, and indeed demonstrate a number of features

in common with earlier work [212, 80], such as rotation around the Bloch sphere and collapse

to the z-axis.

194



Vectorised notation

First, we restate the healed semi-classical equations (3.8) and (3.9), this time in the vectorised

notation previously used for Equations (2.30) and (2.31) that is convenient for computing the

dynamics in models such as these:

dzt = ⟨{z,H}⟩dt+ σdWt (C.1)

d|ψ⟩t = −iH|ψ⟩tdt+
1

2
dW T

t σ
−1
[
{z,H} − ⟨{z,H}⟩

]
|ψ⟩t

− 1

8

[
{z,H} − ⟨{z,H}⟩

]T
(σσT )−1

[
{z,H} − ⟨{z,H}⟩

]
|ψ⟩tdt

(C.2)

where the sufficient and necessary condition for complete positivity is that (I− σσ−1){z,H} = a(z)1

for some a(z) ∈ Rn.

Linear Diosi model

In this section we turn our attention to a simple case of the Hamiltonian dynamics of Equations

(C.1) and (C.2). In particular, we will consider a qubit coupled to a classical particle moving

in one dimension. As a consequence, for any dynamics and at all times, we can characterise the

classical-quantum system by a point (q, p) in phase space and a point in the Bloch sphere.

We will consider dynamics generated by the Hamiltonian

H(q, p) =
p2

2m
1− 2λqZ + ϕZ, (C.3)

corresponding to a Stern-Gerlach type interaction. The interaction couples the classical particle

by a linear potential to the Pauli Z operator of the qubit, with the coupling strength determined

by the parameter λ ∈ R. Since the Hamiltonian is linear in phase-space coordinate q and we use

a single Lindblad operator, such CQ models which are continuous in phase space corresponds to

the constant force models discussed in [25, 225, 226]. Jumping models were previously simulated

in [75]. This same Hamiltonian constrains the qubit dynamics, which evolves according to both

the interaction with the classical system, and a purely quantum Hamiltonian ϕZ, for ϕ ∈ R.

In this case, since backreaction is only in p, we see that picking noise in momentum only
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i.e.

σ =

0 0

0 σpp

 , (C.4)

gives

(I− σσ−1){z,H} =

1 0

0 0

(p/m)1

2λZ

 =

p/m
0

1, (C.5)

as required for complete positivity, where from now on we drop the subscript from σpp ∈ R

for convenience. Having idenitified H and a valid σ given this, we can substitute these into

Equations (C.1) and (C.2) to find the following dynamics:

dqt =
pt
m
dt (C.6)

dpt = 2λ⟨Z⟩tdt+ σdWt, (C.7)

and

d|ψ⟩t = −i(−2λqt + ϕ)Z|ψ⟩dt+ λ

σ
(Z − ⟨Z⟩)|ψ⟩dW − λ2

2σ2
(Z − ⟨Z⟩)2|ψ⟩dt. (C.8)

These equations form a coupled set of stochastic differential equations, and may be easily

simulated using stochastic finite difference methods such as the Euler-Maruyama or Milstein

methods. An example of a classical-quantum trajectory generated by the Euler-Maruyama

method for this classical-quantum dynamics is shown in Figure 3.1 for a classical particle initially

at the origin in phase space and a quantum system initially in the state |+⟩ for m = λ = σ = 1

and ϕ = 2 between t = 0 and t = 1 for stepsize ∆t = 10−5. This model is also simulated in

Figure C.1 for m = λ = 1, ϕ = 2, σ = 0.8 and step size ∆t = 10−5 between t = 0 and t = 0.45,

where dynamics given by the standard semi-classical approach, i.e. via Equations (3.4) and

(3.5), is also simulated to allow a clear comparison of the two theories.

Since the current goal of simulation is only to illustrate the generic features of typical

trajectories of these models, a reasonable check of the accuracy of these simulations may be

made by measuring the distance of the quantum state from the surface of the Bloch sphere,

which in this case has a reasonably small maximum violation of the order of 10−3. For numerical

simulations leading to quantitative results, such as those requiring comparison to experiment,

one would need to check the convergence in probability of the chosen numerical scheme to the

random processes described by the stochastic differential equations [227].
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Figure C.1: Classical-quantum trajectories, represented by a classical trajectory in phase space

(left) and a quantum trajectory on the Bloch sphere (right), for both the standard semi-classical

equations (red, dashed lines) and two distinct realisations of their healed versions (orange upper-

half lines/blue lower-half lines). Here we can clearly see that in the classical and quantum

trajectories are correlated, as random variables – this should be compared to the the standard

semi-classical result, for which the correlations are lost. The above figure also makes it clear

that if one were to average over many quantum trajectories, the fact that half move upwards

and half move downwards means that there would be a loss of purity of the quantum state,

with the quantum state decohering to the centre of the Bloch sphere.
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A well and a barrier in superposition

We now come to an example that requires the general form of classical-quantum dynamics

as presented in the main section, specifically by including an interaction Hamiltonian that

is non-linear in q, and choosing a phase space-dependent diffusion process. Considering the

qubit-particle set-up of the previous section, we now choose the Hamiltonian

H(q, p) =
p2

2m
1+ λ

√
qZ. (C.9)

The model describes a ±λ√q potential centred at q = 0, i.e. either a potential well +λ
√
q

corresponding to the state |0⟩ or a potential barrier −λ√q for the quantum state |1⟩. Although

we could consider
√
|q|, for simplicity we will just consider the dynamics while q > 0. To

ensure the decoherence-diffusion trade-off is saturated, we will consider the form of Equations

(C.1)/(3.8) and (C.2)/(3.9). The remaining degree of freedom is in choosing the size of the

diffusion in momentum, which by the argument from the previous section is the minimal noise

required, and we choose it such that σ(q) = γ(
√
q)−1 for some coupling constant γ ≥ 0. This

gives the following dynamics

dqt =
pt
m
dt (C.10)

dpt = − λ

2
√
qt
⟨Z⟩dt+ γ

√
qt
dW, (C.11)

and

d|ψ⟩t = −iλ√qtZ|ψ⟩dt−
λ

4γ
(Z − ⟨Z⟩)|ψ⟩dW − λ2

32γ2
(Z − ⟨Z⟩)2|ψ⟩dt. (C.12)

Since the strength of the noise process also increases with proximity to the centre of the potential

q = 0 by a factor of
√
q, the average rate of change of the quantum state is constant in time.

In other words, even very close to a potential barrier, a strong repulsive force could equally be

due to a large random kick in momentum by the diffusion process. As before, we simulate this

model using the Euler-Maruyama method, and display the results in Figure C.2.
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Figure C.2: A classical-quantum trajectory for the ±√
q coupling for a step size ∆t = 10−5

between times t = 0 and t = 2, and parameters m = λ = 1 and γ = 0.5. Initially starting

at the q = 1 and with momentum p = −1, the particle appears to rebound from a potential

barrier +
√
q, agreeing with the evolution of the superpostion state |+⟩ to a state close to |1⟩

corresponding to a potential barrier, not a potential well. With probability 1/2, the particle

will instead encounter the potential well. At early times its evolution does not allow one to

determine which of the two situations it is encountering.

A toy model of a mass in superposition

We now come to a slightly more complex example, using the same philosophy as before that

the quantum state of a qubit can be used to control a potential. Here we will consider the qubit

to encode the position of a mass as either on the left or the right, and consider the motion

of a second test mass in the Newtonian potential generated by the heavier mass. For ease of

discussion one can refer to the heavier mass as the planet, although of course the motivation

comes from interest in the gravitational field of particles which can be put in superposition

[228]. The dynamics considered here can be contrasted with that of the standard semi-classical

prediction where the test mass falls towards the centre of the two possible positions. Although

this is a completely consistent classical-quantum theory, it is distinct from the models considered

in which the gravitational field itself diffuses [125, 124, 123].

We will consider the Hamiltonian

H(r,p) =
p · p
2m

1− GMm

|r− Zd|
+ ϕZ, Z = |L⟩⟨L| − |R⟩⟨R|, (C.13)
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where r and p are the position and momentum of the test mass, and ±d is the position of

the planet from the mean position. Choosing there to be only diffusion in momentum of the

test particle that is given by a constant σ for each direction, we find the dynamics for the

components i = x, y, z

dqit =
pi

m
dt (C.14)

dpit = ⟨∂i
GMm

|r− Zd|
⟩+ σdWi (C.15)

and

d|ψ⟩t =− iH(z)|ψ⟩dt+
∑

j=x,y,z

1

2σ
(∂jH − ⟨∂jH⟩)|ψ⟩dWj (C.16)

−
∑

j=x,y,z

1

8σ2
(∂jH − ⟨∂jH⟩)2|ψ⟩dt (C.17)

where the usual t subscripts have been dropped for notational convenience, and H(zt) and ∂iH

refer to the Hamiltonian and partial spatial derivatives of the Hamiltonian.

Considering first the case where ϕ = 0, an example classical-quantum trajectory is shown for

this dynamics in Figure C.3, which clearly shows the test mass approaching one planet or the

other. As we can see, this model gives negligible rotation around the pole of the Bloch sphere;

we may arrive at a dynamics that has a clearer representation of trajectories (and equivalent

physics to an observer solely monitoring the classical test particle) by letting ϕ be non-zero.

Such a dynamics is simulated and plotted in Figure 3.2 for ϕ = 5, for otherwise the same choices

of parameters and initial conditions as for Figure C.3.

A toy model of vacuum fluctuations sourcing expansion

In this toy model, we consider n qubits, each coupled to a local classical degree of freedom.

This provides a discretized toy model of a quantum field interacting with a classical field. We

will consider the quantum system to initially be in an entangled Greenberger–Horne–Zeilinger

(GHZ) or cat state [229], and dynamics such that each subsystem back-reacts locally on a

classical degree of freedom. Since the vacuum is a highly entangled state, this simulation serves

as a very crude toy model for vacuum fluctuations which source the expansion of the universe
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Figure C.3: A classical-quantum trajectory for a test mass and a planet in superposition, for

a step size ∆t = 10−5 between times t = 0 and t = 0.35, and parameters G = 1, M = 10,

m = 0.01, σ = 2m, ϕ = 0 and d = 1, with the momentum dimensions of phase space suppressed.

Initially starting at rest at X = 0 and Y = −0.5, the initial motion of the test mass towards the

centre of the two masses (as predicted by the standard semi-classical theory) is due to a large

random kick in momentum in the simulated realisation of the noise process. Due to negligible

rotation around the z axis, the z component on the Bloch sphere is inset.

during inflation. Here, we find that the initially entangled quantum state back-reacts locally

on a classical degree of freedom, so that the configurations of the classical degrees of freedom

become correlated and the quantum state becomes unentangled. In the same way, we expect

local expansion factors during inflation to be imprinted with correlations of the vacuum.

Let the local classical degrees of freedom be denoted (ϕi, πi) for i = 1, . . . , n, and the local

Pauli operator be Zi. We will then take the system to evolve under the Hamiltonian

H(ϕ1, . . . , ϕn, π1, . . . , πn) = λ
n∑

i=1

ϕiZ
i +

π2

2m
1. (C.18)

Here λ ∈ R controls the strength of the coupling between the classical and quantum fields.

As before, we will use the purity preserving Hamiltonian theory of equations (C.1)/(3.8) and

(C.2)/(3.9), and so the only remaining freedom is in choosing the σij . The situation here is

more interesting than in the previous models, since the noise process on different lattice sites

can be chosen to be correlated. Here however we will take the simplest case and assume that

the noise in momentum is uncorrelated between lattice points with σpi,pj = δijσ, and that there
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is no diffusion in ϕ, arriving at the dynamics

dϕit =
πit
m
dt (C.19)

dπit = −λ⟨Zi⟩dt+ σdW i
t , (C.20)

and

d|ψ⟩t = −iλ
n∑

i=1

ϕitZ
i|ψ⟩tdt−

λ

2σ

n∑
i=1

(Zi − ⟨Zi⟩)|ψ⟩dWi −
λ2

8σ2

n∑
i=1

(Zi − ⟨Zi⟩)2|ψ⟩tdt, (C.21)

where the usual t subscripts have been dropped for notational convenience. While the classical

degrees of freedom evolve based on the local noise and reduced quantum state, the evolution

of the total n-partite quantum state is highly non-local and preserves the initial purity of the

quantum state for all times.

An example classical-quantum trajectory, where a highly entangled GHZ or cat state evolves

to a local state with no entanglement, and the local classical degrees of freedom exhibit fluctua-

tions about a mean value, is shown in Figure 3.3. The simulation used a step size ∆t = 5×10−6,

and parameters m = σ = λ = 1. Note that each local degree of freedom ϕi is correlated. Here

the evolution of the quantum trajectory is represented by the vector (⟨σ̂⊗n
x ⟩, ⟨σ̂⊗n

y ⟩, ⟨Z⊗n⟩),

which captures the non-local dynamics that take an initial cat state 1√
2
(|0⟩⊗n + |1⟩⊗n) to the

|0⟩⊗n state – this follows a path on the surface of the Bloch sphere for odd n. Had the cat state

collapsed to the |1⟩⊗5 state instead, the particle positions would be driven on average in the

opposite direction.

It is important to note that the fluctuations here are entirely due to the noise process, rather

than the initial state, which here provides the same force at each site. These models thus, when

the low noise, σ → 0, limit is not taken, provide additional fluctuations on top of the purely

“quantum” fluctutations due to the inital quantum state alone.
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Appendix D

Pawula and CQ Pawula theorems

For convenience, we reproduce the two theorems relevant for characterising positivity of dynam-

ics, namely the Pawula theorem [47] and the CQ Pawula theorem [45]. We then explain how

the Liouville equation (4.2.4), quantum-classical Liouville equation (4.2.9), and the classical-

quantum generator (4.4.5) satisfy (or not) the various required forms for positivity.

Pawula (1957) The general form of Markovian, linear, trace-preserving and positive dy-

namics of a real-valued function of phase space P is either of Fokker-Planck form

∂P

∂t
= − ∂

∂zi
(D1,iP ) +

1

2

∂2

∂zi∂zj
(D2,ijP ) (D.1)

or it contains an infinite number of higher order derivative terms in phase space. The i, j, . . .

indices run from 1 to n, the number of phase space degrees of freedom zi, and there is summation

of repeated indices. Here, D1,i are the elements of a real vector of length n, D1, and D2,ij are

the elements of a real positive semi-definite n × n matrix D2. All of the D coefficients are

allowed to have dependence on phase space.

CQ Pawula (2022) The general form of Markovian, linear, trace-preserving and completely-

positive dynamics of an operator-valued function of phase space ϱ is either of the form

∂ϱ

∂t
=− ∂

∂zi
(DC

1,iϱ) +
1

2

∂2

∂zi∂zj
(D2,ijϱ)

− i[H̄, ϱ] +Dαβ
0

(
LαϱL

†
β − 1

2
{L†

βLα, ϱ}+
)

− ∂

∂zi

(
Dα

1,i
∗Lαϱ+ ϱDα

1,iL
†
α

)
,

(D.2)
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where

D0 ⪰ D†
1D

−1
2 D1, (I−D2D

−1
2 )D1 = 0, (D.3)

or it contains an infinite number of higher order derivative terms in phase space. Here, the

i, j, . . . indices run from 1 to n, the number of phase space degrees of freedom zi, while the

α, β, . . . indices run from 1 to p, the number of traceless and orthogonal Lindblad operators Lα

in Hilbert space. We assume summation over repeated indices of either kind. The various D

coefficients are organised as follows: Dαβ
0 are the elements of an p × p complex positive semi-

definite matrix D0, D
α
1,i are the elements of a complex n × p matrix D1, which has conjugate

transpose D†
1, while D

α
1,i

∗ denotes the complex conjugate of Dα
1,i. Additionally, DC

1,i are the

elements of a real vector of length n, DC
1 , and D2,ij are the elements of a real positive semi-

definite n × n matrix D2, which has the generalised inverse D−1
2 . Finally, H̄ is Hermitian

operator. All the D coefficients and H̄ may have arbitrary dependence on z.

When the Lindblad operators are not chosen traceless and orthogonal, the above conditions

on the dynamics can be shown to still be sufficient for complete-positivity, even when dependent

on phase space. In this case, the role of classical drift vector DC
1 is essentially played by the

component of the Lα proportional to the identity.

Liouville equation

The Liouville equation (4.2.4) satisfies the Fokker-Planck form given by (D.1) for

D1,q =
∂H

∂p
D1,p = −∂H

∂q

D2 =

0 0

0 0

 ,

(D.4)

where here H is the classical Hamiltonian.
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Quantum-classical Liouville equation

The quantum-classical Liouville equation, when written in the form of (D.2) with phase space

dependent Lindblad operators, has

Lq =
∂H

∂p
, Lp = −∂H

∂q
, H̄ =

H

ℏ
, DC

1 = (0, 0)T

D0 =

0 0

0 0

 D1 =

1
2 0

0 1
2

 D2 =

0 0

0 0

 .

(D.5)

where H is the classical-quantum Hamiltonian. Since D2 and D0 are zero everywhere, but D1 is

not, the positivity conditions (D.3) are not satisfied, and thus the dynamics is not completely-

positive.

Classical-quantum dynamics of L

By the same reasoning as above, one may read from (4.4.5) the three matrices D0, D1 and

D2 given in (4.4.10),(4.4.11),(4.4.12) by taking the Lindblad operators to be LH
q and LH

p . The

remaining degrees of freedom are H̄ = (H +Heff )/ℏ and DC
1 = (0, 0)T . Since H̄ is Hermitian

and the D coefficients satisfy the requirements of (D.3), the dynamics is completely-positive.
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Appendix E

Derivation of the classical-quantum

limit generator L

In this appendix, we provide the technical details needed to go from the dynamical map of

equation (4.4.1) to the form of generator given in equation (4.4.3) and equation (4.4.5).

To compute L given by equations (4.4.3) and (4.4.5) we first write out the evolution map

Eτ = EEf τ
τ explicitly as

Eτ = e
1
2
(
Efs2

2
∂2

∂q2
+

Ef

2s2
∂2

∂p2
)τ
e
− i

Ef
[H, · ]+ 1

2
({H, · }−{ · ,H})τ+O(τ2)

e
1
2
(
Efs2

2
∂2

∂q2
+

Ef

2s2
∂2

∂p2
)τ
. (E.1)

The most important part of this expression to notice immediately is that the first term in the

middle exponential has no τ dependence – this term is ultimately responsible for most of the

subsequent structure of the generator L.

To go from this dynamical map to a generator, we will use equation (4.4.2). This expression

generalises the standard method for constructing generators to the case where the dynamical

maps which do not reduce to the identity map at τ = 0. This arises by identifying two

separate contributions to the short-time dynamics, L1 and L2, corresponding to the first and

second terms of (4.4.2). The first part L1 can be understood as the standard one, defined as

L1 = limτ→0 L1,τ , where L1,τϱ(τ) = ∂τϱ(τ). This describes how the state of the system changes
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from t = 0 to a short time t = τ later as τ → 0. This may be computed from the dynamical

map by noting that ϱ(τ) = Eτϱ(0) and ϱ(0) = E−1
τ ϱ(τ), which may be substituted into the

definition of L1,τ to arrive at the first term of (4.4.2). The second part of the generator L2

can be understood as arising from the part of the dynamical map at τ = 0, which in contrast

to standard treatments, is not proportional to the identity. That the map is not proportional

to the identity here occurs as a result of inadvertently taking ℏ → 0 even for purely quantum

degrees of freedom, and so should be corrected for by restoring Ef = ℏ/τ .

We first turn to explicitly finding an expression for the second term of equation (4.4.2), and

providing further justification for its appearance, using equation (E.1). As described above,

this term arises from the part of the dynamical map at τ = 0, which is given

E0 = e
− i

Ef
[H, · ]

. (E.2)

After N = t/τ evolution steps, the total contribution of this part of the dynamics is

EN
0 = E t/τ

0 = e
− i

Ef τ
[H, · ]t

(E.3)

and thus is generated by the unitary term − i
ℏ [H, · ] if we restore ℏ = Efτ . This agrees with

the expression given by the second term of equation (4.4.2). Although in principle the unitary

steps occur in between steps generated by the τ -dependent part of the generator, any changes

to the generator from the non-commutativity of these terms are of O(τ), and thus vanish in the

τ → 0 limit, meaning that the resulting dynamics is captured by the generator L2 = − i
ℏ [H, · ].

To compute the first part of the generator L, denoted above as L1, we take the derivative

of Eτ to give

∂

∂τ
Eτ =

1

2

(Efs
2

2

∂2

∂q2
+
Ef

2s2
∂2

∂p2
)
Eτ

+ e
Ef
2

Dτ e
ad −i

Ef
[H,·]+O(τ)

− 1

ad −i
Ef

[H,·]+O(τ)

(
1

2
{H, ·} − 1

2
{·, H}+O(τ)

)
e−

Ef
2

DτEτ

+
1

2
Eτ
(Efs

2

2

∂2

∂q2
+
Ef

2s2
∂2

∂p2
)
,

(E.4)
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where here D =
Ef s

2

2
∂2

∂q2
+

Ef

2s2
∂2

∂p2
. This gives the first component of the generator L as

lim
τ→0

( ∂
∂τ

Eτ
)
E−1
τ =

1

2

(Efs
2

2

∂2

∂q2
+
Ef

2s2
∂2

∂p2
)

+
e
ad −i

Ef
[H,·]

− 1

ad −i
Ef

[H,·]

(
1

2
{H, ·} − 1

2
{·, H}

)

+
1

2
e
− i

Ef
[H, · ](Efs

2

2

∂2

∂q2
+
Ef

2s2
∂2

∂p2
)
e

i
Ef

[H, · ]

(E.5)

where theO(τ) terms disappear in the τ → 0 limit and we have used the fact that limτ→0 e
±

Ef
2

Dτ

is the identity operator. Noting that we may use the following equality between the exponential

of the adjoint and the adjoint of the exponential

eadBA = eBAe−B (E.6)

we find the quoted form of the generator in equation (4.4.3).

To compute the form of the generator given in (4.4.5) is a little more work. Denoting the

following term T1

T1ϱ =
1

2
e
ad −i

Ef
[H,·]
(
Efs

2

2

∂2

∂q2
+
Ef

2s2
∂2

∂p2

)
ϱ (E.7)

where we introduce an aribtrary CQ state ϱ to make the action of this generator explicit, one

may use the equality between the exponential of the adjoint and the adjoint of the exponential

as in equation (E.6) to rewrite this as

1

2
e
− i

Ef
[H, · ](Efs

2

2

∂2

∂q2
+
Ef

2s2
∂2

∂p2
)
e
+ i

Ef
[H, · ]

ϱ (E.8)

and then use it again, noting that ± i
Ef

[H, · ] = ad ±i
Ef

H , to give

1

2
e
−i
Ef

H(Efs
2

2

∂2

∂q2
+
Ef

2s2
∂2

∂p2
)
(e

i
Ef

H
ϱe
−i
Ef

H
)e

i
Ef

H
. (E.9)

One may then compute this expression explicitly, taking care to note that whenever a derivative

is made of the exponential of a z = q, p dependent operator, that

∂

∂z
e
− i

Ef
H

= − i

Ef

e
ad −i

Ef
H
− 1

ad −i
Ef

H

(
∂H

∂z

)
e
− i

Ef
H

= − i

Ef
LH
z e

− i
Ef

H
,

(E.10)
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and

∂

∂z
e

i
Ef

H
=

i

Ef
e

i
Ef

H e
ad −i

Ef
H
− 1

ad −i
Ef

H

(
∂H

∂z

)

=
i

Ef
e

i
Ef

H
LH
z .

(E.11)

Using these formulae, one may show that

1

2
e
− i

Ef
H ∂2

∂z2
(e

i
Ef

H
ϱe

− i
Ef

H
)e

i
Ef

H
=− i

2Ef
[
∂LH

z

∂z
, ϱ] +

i

Ef

∂

∂z
[LH

z , ϱ]

+
1

E2
f

(
LH
z ϱL

H
z − 1

2
{LH

z
2
, ϱ}+

)
+

1

2

∂2ϱ

∂z2
,

(E.12)

which gives the overall generator T1 as

T1ϱ =− i[
s2

4

∂LH
q

∂q
+

1

4s2
∂LH

p

∂p
, ϱ] +

is2

2

∂

∂q
[LH

q , ϱ] +
i

2s2
∂

∂p
[LH

p , ϱ]

+
s2

2Ef
(LH

q ϱL
H
q − 1

2
{LH

q
2
, ϱ}+) +

1

2Efs2
(LH

p ϱL
H
p − 1

2
{LH

p
2
, ϱ}+)

+
1

2

(Efs
2

2

∂2ϱ

∂q2
+
Ef

2s2
∂2ϱ

∂p2
)
.

(E.13)

The other component of L that remains to be computed we will denote T2 and is given

T2ϱ =
e
ad −i

Ef
[H,·]

− 1

ad −i
Ef

[H,·]

(
1

2
{H, · } − 1

2
{ · , H}

)
ϱ. (E.14)

Since the fraction ead−1
ad is to be interpreted as describing a power series, and using the symmetry

of second derivatives of H to rewrite the Alexandrov-bracket as the derivatives of anticommu-

tators, we may rewrite this generator more explicitly as

T2ϱ =

∞∑
n=0

1

(n+ 1)!
adn−i

Ef
[H,·]

(
− 1

2

∂

∂q
{∂H
∂p

, · }+ +
1

2

∂

∂p
{∂H
∂q

, · }+
)
ϱ. (E.15)

To compute this infinite series, we will first need to find the commutation relations of the

algebra generated by − i
Ef

[H, ·], as one would do for the case for a Lie algebra of a Lie group

– for some related work in the purely quantum case, see [230]. To simplify this subsequent

analysis, we will use a shorthand L(A, · , B) to denote a generic component of a Lindblad

decoherence generator i.e.

L(A, ϱ,B) = AϱB − 1

2
BAϱ− 1

2
ϱBA. (E.16)
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One may then compute the commutation relations between − i
Ef

[H, ·] and the various terms

that appear: (a) with the derivative of an anticommuator

ad −i
Ef

[H, · ]

∂

∂z
{A, · }+ =

∂

∂z
{ad −i

Ef
HA, · }++

i

Ef
L(
∂H

∂z
, · , A)− i

Ef
L(A, · , ∂H

∂z
)+

i

Ef
[
1

2
{A, ∂H

∂z
}+, · ],

(E.17)

(b) with the component of the Lindblad decoherence generator

ad −i
Ef

[H, · ]L(A, · , B) =L(ad −i
Ef

HA, · , B) + L(A, · , ad −i
Ef

HB), (E.18)

and (c) with a unitary generator

ad −i
Ef

[H, · ] − i[A, · ] = −i[ad −i
Ef

HA, · ]. (E.19)

Since the above generators are closed under the repeated action of ad −i
Ef

[H, · ], these relations

are sufficient to compute the above series.

To actually compute the series, we will consider each kind of generator (a)-(c) separately.

Starting with (a), the derivative of an anticommutator, we note that the adjoint action of the

commutator with H is equivalent to the adjoint action with H on the operator in question.

This gives the first part of T2 as

T (a)
2 =

∞∑
n=0

1

(n+ 1)!

(
− 1

2

∂

∂q
{adn−i

Ef
H

∂H

∂p
, · }+ +

1

2

∂

∂p
{adn−i

Ef
H

∂H

∂q
, · }+

)
= −1

2

∂

∂q
{LH

p , · }+ +
1

2

∂

∂p
{LH

q , · }+,
(E.20)

where we have again used the series expansion of ead−1
ad .

To compute T (b)
2 , the part corresponding to the Lindblad terms, we first write down the

form of the O(E−n
f ) order term, which is given

i

2Ef

n−1∑
k=0

{
L(

1

(k + 1)!
adk−i

Ef
H

∂H

∂p
, · , 1

(n− k)!
adn−1−k
−i
Ef

H

∂H

∂q
)

−L(
1

(k + 1)!
adk−i

Ef
H

∂H

∂q
, · , 1

(n− k)!
adn−1−k
−i
Ef

H

∂H

∂p
)

} (E.21)

We will now show by induction that this is true for all n ≥ 1. When n = 1, all the Lindblad

terms come from the application of (E.17) on the Alexandrov-bracket, which one can check
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agrees with the above expression (being careful to include the factor of 1/(1 + 1)! coming from

(E.15)). For an arbitrary term of order n+1, it follows from (E.17)-(E.19) that all terms must

come from the application of 1
n+2ad −i

Ef
[H, · ] to either the previous nth order term in (E.21) or

to the nth order term of (E.20). This gives the (n+ 1)th order term in total as

i

2Ef

1

n+ 2

n−1∑
k=0

{
L(

1

(k + 1)!
adk+1
−i
Ef

H

∂H

∂p
, · , 1

(n− k)!
adn−1−k
−i
Ef

H

∂H

∂q
)

+L(
1

(k + 1)!
adk−i

Ef
H

∂H

∂p
, · , 1

(n− k)!
adn−k
−i
Ef

H

∂H

∂q
)

−L(
1

(k + 1)!
adk+1
−i
Ef

H

∂H

∂q
, · , 1

(n− k)!
adn−1−k
−i
Ef

H

∂H

∂p
)

−L(
1

(k + 1)!
adk−i

Ef
H

∂H

∂q
, · , 1

(n− k)!
adn−k
−i
Ef

H

∂H

∂p
)

}
+

i

2Ef

1

(n+ 2)!

{
L(
∂H

∂p
, · , adn−i

Ef
H

∂H

∂q
) + L(adn−i

Ef
H

∂H

∂p
, · , ∂H

∂q
)

−L(
∂H

∂q
, · , adn−i

Ef
H

∂H

∂p
)− L(adn−i

Ef
H

∂H

∂q
, · , ∂H

∂p
)

}
.

(E.22)

Considering first the Lindblad terms with one entry adn and the other ad0, we see that the

numerical prefactors of these terms are given

1

n+ 2

1

n!
+

1

(n+ 2)!
=

1

(n+ 1)!
, (E.23)

with the term on the left hand side coming from k = n− 1 or 0 terms, and the right hand side

coming from the bottom two lines. Analogously, for a generic Lindblad term with one entry

adm and the other adn−m for 0 < m < n we have two terms coming from the sum over k, given

1

n+ 2

(
1

m!

1

(n−m+ 1)!
+

1

(m+ 1)!

1

(n−m)!

)
=

1

(m+ 1)!(n+ 1−m)!
, (E.24)

which implies that the (n+ 1)th order terms may be written as

i

2Ef

n∑
k=0

{
L(

1

(k + 1)!
adk−i

Ef
H

∂H

∂p
, · , 1

(n+ 1− k)!
adn−k
−i
Ef

H

∂H

∂q
)

−L(
1

(k + 1)!
adk−i

Ef
H

∂H

∂q
, · , 1

(n+ 1− k)!
adn−k
−i
Ef

H

∂H

∂p
)

} (E.25)

which indeed is the expression (E.21) with n → n + 1. Since this expression is only the nth
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order term, we may write T (b)
2 as the sum over all these terms

i

2Ef

∞∑
n=1

n−1∑
k=0

{
L(

1

(k + 1)!
adk−i

Ef
H

∂H

∂p
, · , 1

(n− k)!
adn−1−k
−i
Ef

H

∂H

∂q
)

−L(
1

(k + 1)!
adk−i

Ef
H

∂H

∂q
, · , 1

(n− k)!
adn−1−k
−i
Ef

H

∂H

∂p
)

} (E.26)

which noting that L is linear each of its arguments can be simplified to

T (b)
2 =

i

2Ef
L(LH

p , · , LH
q )− i

2Ef
L(LH

q , · , LH
p ) (E.27)

i.e.

T (b)
2 ϱ = − i

2Ef
(LH

q ϱL
H
p − 1

2
{LH

p L
H
q , ϱ}+) +

i

2Ef
(LH

p ϱL
H
q − 1

2
{LH

q L
H
p , ϱ}+). (E.28)

The final component of T2 to compute is the unitary part, which we will keep track of by

defining an associated Hamiltonian Hqp+pq via T (c)
2 = −i[Hqp+pq, · ]. From (E.17)-(E.19) it is

apparent that any contributions to Hqp+pq are generated by the action of ad −i
Ef

[H, · ] on deriva-

tives of anticommutator terms, given by (E.20), and then the subsequent action of ad −i
Ef

[H, · ]

on the unitary terms generated by these. The numerical factor coming from the repeated action

in (E.15) may be kept track of by simply noting that the O(E−n
f ) terms have a factor 1/(n+1)!.

This lets us write down the Hamiltonian Hqp+pq as

Hqp+pq =
1

4Ef

∞∑
n,m=0

1

(n+m+ 2)!
adn−i

Ef
H

[
{adm−i

Ef
H

∂H

∂p
,
∂H

∂q
}+ − {adm−i

Ef
H

∂H

∂q
,
∂H

∂p
}+
]
, (E.29)

with the sum over m indicating the initial creation of a unitary term via (E.17), and the sum

over n giving the subsequent action via (E.19). Using the fact that

adn−i
Ef

H
{A,B}+ =

n∑
k=0

(
n

k

)
{adn−k

−i
Ef

H
A, adk−i

Ef
H
B}+ (E.30)

where
(
n
k

)
is the binomial coefficient, and collecting terms, we finally arrive at the form

Hqp+pq =
1

4Ef

∞∑
n,m=0

Cnm

(n+m+ 2)!
{adn−i

Ef
H

∂H

∂q
, adm−i

Ef
H

∂H

∂p
}+. (E.31)

Here the coefficients Cnm, explicitly given by

Cnm =

m∑
r=0

(r + n)!

r!n!
−

n∑
r=0

(r +m)!

r!m!
, (E.32)

may be written out pictorially to show that they are generated by a version of the Pascal triangle,

here with the same addition rules but with the boundary elements given by the integers Z i.e.
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0

-1 1

-2 0 2

-3 -2 2 3

-4 -5 0 5 4

-5 -9 -5 5 9 5

-6 -14 -14 0 14 14 6

Finally, combining the components − i
ℏ [H, · ], T1 and T2, using the definition

Heff =
ℏs2

4

∂LH
q

∂q
+

ℏ
4s2

∂LH
p

∂p
+ ℏHqp+pq (E.33)

gives the form quoted in (4.4.5).
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Appendix F

Including O(ℏ) contributions in the

classical-quantum Hamiltonian

If instead of assuming HW = H +O(ℏ2) we had assumed HW = H + ℏH1 +O(ℏ2), we would

find that the equations of motion for the Liouville equation are unchanged, but that there is a

change in the quantum-classical Liouville equation. Specifically, the O(ℏ0) part of the partial

Wigner generator now takes the form

LW =− i

ℏ
[H, · ]− i[H1, · ] + 1

2
({H, · } − { · , H}) +O(ℏ). (F.1)

Following the same steps as before in computing the generator, the only change is found at the

level of the T2 component given in (E.14), which now has the additional term T 1
2

T 1
2 =

e
ad −i

Ef
[H,·]

− 1

ad −i
Ef

[H,·]

(
− i[H1, · ]

)
. (F.2)

To put this in canonical form, we note that ad[A, · ][B, · ] = [adAB, · ], which follows from the

Jacobi identity, and thus using the series expansion of ex−1
x and resumming we find

T 1
2 = −i[e

− i
Ef

H
− 1

ad −i
Ef

H

H1, · ]. (F.3)

Considering an HW with O(ℏ) terms thus simply leads to an additional unitary term, and does

not affect the resulting complete-positivity of the dynamics.
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Appendix G

Double scaling limit of a continuous

Lindbladian evolution

In this appendix we consider a double scaling limit of a continuous time Lindbladian dynamics,

and illustrate the difference with the classical-quantum limit we present. In particular, we

show that while this set-up can reproduce the stochastic classical dynamics of (4.8.1), it does

not coincide with (4.4.5) and in fact does not describe completely-positive dynamics. This

example illustrates that one must be careful in constructing classical-quantum limits simply by

identifying scaling limits that leave diffusion in the classical degrees of freedom.

To start with, consider the following model of bipartite dynamics on the C and Q subsystems

∂ρ̂

∂t
=− i

ℏ
[Ĥ, ρ̂] +

γ

s2
(q̂ρ̂q̂ − 1

2
{q̂2, ρ̂}+) + γs2(p̂ρ̂p̂− 1

2
{p̂2, ρ̂}+). (G.1)

where γ is positive parameter controlling the overall rate of decoherence, while s is a positive

parameter controlling the relative strength of decoherence between position and momentum.

This model is of the GKSL form [231, 232], and is thus completely-positive at the level of

the quantum dynamics. To consider how this dynamics appears in the partial Wigner repre-

sentation, we first rewrite each Lindblad term as a double commutator with −i/ℏ prefactors

i.e.

ẑρ̂ẑ − 1

2
{ẑ2, ρ̂}+ =

ℏ2

2

(
− i

ℏ
[ẑ, − i

ℏ
[ẑ, ρ̂] ]

)
, (G.2)

for ẑ = q̂, p̂. Using the mapping of operators to the partial Wigner representation f̂ ĝ 7→ f ⋆ g,
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which here amounts to identifying the commutators with −i/ℏ prefactors with Poisson brackets,

one arrives at the partial Wigner representation of this dynamics

∂ϱW

∂t
=− i

ℏ
[H, ϱW ] +

1

2
({H, ϱW } − {ϱW , H})

+
γℏ2

2s2
{q, {q, ϱW }+ γℏ2s2

2
{p, {p, ϱW }

+O(ℏ),

(G.3)

where the O(ℏ) terms are those truncated in (4.2.7) to arrive at (4.2.9).

In this case, the natural limit to take if one wishes to remove the O(ℏ) terms and additionally

preserve the terms containing γ is the double scaling limit

ℏ → 0, γ → ∞ s.t. γℏ2 = Ef . (G.4)

Doing so with the above dynamics whilst naively ignoring O(ℏ−1) terms gives the final form of

master equation as

∂ϱW

∂t
=− i

ℏ
[H, ϱW ] +

1

2
({H, ϱW } − {ϱW , H})

+
Ef

2s2
∂2ϱW

∂p2
+
Efs

2

2

∂2ϱW

∂q2
.

(G.5)

At first glance, this appears to be a valid classical-quantum limit incorporating the affects of

decoherence. Indeed, substituting in a trivial HamiltonianH = H(q, p)1 as in 4.8, one finds that

this dynamics reduces exactly to the stochastic Liouville dynamics given in (4.8.1). However,

comparing the form of this dynamics to the general form of completely-positive Markovian

classical-quantum dynamics given in Appendix D, one sees that the dynamics is in fact not a

valid dynamics; it has non-zero back-reaction and diffusion, but without any decoherence on the

quantum degrees of freedom. Moreover, repeating the above steps in either the partial Husimi

ϱQ or the partial Glauber-Sudarshan ϱP representations using (4.6.1) and (4.6.2), one can see

that the resulting form of dynamics is dependent on the choice of phase space representation

used, even in the ℏ → 0 limit. This example suggests some importance of the specific model of

decoherence that is used to construct the classical-quantum limit we propose.
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Appendix H

Effective classicality via

representations of states and

measurements

In this subsection, we show how the framework of characterising the non-classicality of a quan-

tum system in terms of its states and measurements [59, 61] can be used to motivate the defi-

nition of effective classicality of a subsystem as the positivity of the partial Glauber-Sudarshan

representation ϱP . In particular, we see that our definition coincides with an operational def-

inition of classicality: that regardless of the measurements performed on a bipartite quantum

system, the statistics are indistinguishable from that of an underlying classical-quantum prob-

ability distribution.

Quasi-probability representations of states and measurements

We consider first a single quantum system denoted C as in section 4.2. First, note that the

general framework for discussing measurements is that of POVMs {Êi}, where Êi denote the

POVM elements [77]. A quasiprobability representation R is the assignment to every state ρ̂

and every set of POVM elements Êi the real-valued functions of phase space R(z) and ER
i (z)
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respectively, such that

tr[ρ̂Êi] =

∫
dz R(z)ER

i (z). (H.1)

This allows for the statistics of every measurement performed on the quantum system to be

represented in terms of functions in phase space, with the Wigner representation introduced

in section 4.2 providing one such example. As in the case of the Wigner representation, the

functions R(z) and ER
i (z) will not be positive for all states and measurements, and thus cannot

always be interpreted as a classical probability distribution with an associated distribution over

classical measurement outcomes. However, when a restricted set of states {ρ̂λ} and measure-

ments {{Êi}, {F̂i}, . . .} are considered, it turns out it is possible to find subtheories for which

both states and measurements are represented positively. In particular, we will say that a set

of states and POVMs admit a classical description when there exists a representation R such

that Rλ(z) and E
R
i (z), F

R
i (z), . . . are non-negative for all z. Important examples of subtheories

that admit classical descriptions are the measurements and states associated with Gaussian

quantum optics [61, 172] and stabilizer circuits in quantum computing [233, 234].

The above framework allows one to distinguish when a set of states and measurements in

a quantum theory can be explained by a classical one. However, since a non-contextual theory

of classical physics does not need to make reference to measurements, it is reasonable to expect

that for taking a classical limit, one should use a definition of classicality that is independent

of any choice of measurements performed on the system. In order to do so, we note that a

special case of a quasiprobability representation is one for which every set of POVM elements

{Êi} is specified by a set of non-negative real-valued functions ER
i (z) i.e. every measurement

has a classical representation. In such a representation, any states for which R(z) ≥ 0 for all

z necessarily permit a classical explanation, and we will refer to quantum states which satisfy

this property as effectively classical states. Providing a measurement-independent notion of

classicality, the advantage of this approach is that one may guarantee the effective classicality

of dynamics without needing to additionally study the choice of measurements being performed.

To study the representation of measurements, and in particular POVMs, one may ask what

form EQ
i (q, p) and EP

i (q, p) must take, given the definitions of Q(q, p) and P (q, p) above, in

order for equation (H.1) to hold. By substitution and using the linearity of the trace, it is
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straightforward to check that the form of POVMs is reversed compared to the states between

the two representations: namely that EP
i (q, p) is obtained by using Êi in place of ρ̂ in equation

(4.5.1), while EQ
i (q, p) is defined implicitly by equation (4.5.2) but with Êi in place of ρ̂. Just

as the Q distribution is positive for all quantum states, this means that the P representations

of measurements, EP
i (q, p), are always positive functions of phase space. Given the definition

of effective classicality given above, this means that states which have positive P distributions

should be considered to be effectively classical according to this definition.

Partial quasi-probability representations of states and measurements

We will now generalise the above discussion to study the effective classicality of subsystems. To

make this concrete, we begin by defining in general terms the notion of a partial quasiprobability

representation. Recall that a more general treatment of measurements is that of POVMs

{Êi}, where Êi denote the POVM elements. A partial quasiprobability representation R is the

assignment to every state ρ̂ and every set of POVM elements Êi the operator-valued functions

of phase space ϱR and ER
i acting on HQ, in such a way that

tr[ρ̂Êi] =

∫
dz tr[ϱR(z)ER

i (z)]. (H.2)

Here the trace on the left-hand side is over the C andQ subsystem Hilbert spaces, while the trace

on the right-hand side is just over HQ. By definition, every measurement may be represented

in this way, and thus the partial quasiprobability representation provides an entirely equivalent

description of bipartite quantum mechanics. The partial Wigner representation described in

Section 4.2 provides an example of this. Note that in this example the same map is applied to

both states ρ̂ and POVM elements Êi to generate the representation, but in general the states

and observables are treated differently.

To identify when a given set of bipartite quantum states {ρ̂λ} and measurements {{Êi}, {F̂i}

, . . .} may be described using an effectively classical subsystem, it is necessary to study the

positivity of their representations. This was first demonstrated in [59], where the criterion

for whether a given set of quantum states and measurements could be modelled classically

was identified as when the representations of both the states and POVM elements were non-

negative real-valued functions of phase space. To generalise to the case of an effectively classical
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subsystem, we will say that a set of states and POVMs admit an effective classical-quantum

description whenever there exists a representation R in which ϱR and ER
i are positive semi-

definite for all z in phase space, by direct analogue with the purely classical case. As in the

case of defining an effective classical description of a quantum system [59, 61], only a restricted

set of all measurements and states in quantum theory permit an effective classical-quantum

description.

For a restricted set of measurements, many quantum states may admit an effective classical-

quantum description of the combined set of measurements and states. However, a special class

of states are those which may be modelled using a classical-quantum description for all possible

bipartite measurements on the system. Translated to the technical language above, we will

call a bipartite density operator ρ̂ an effective classical-quantum state whenever there exists a

representation where the corresponding partial quasiprobability distribution is positive semi-

definite ϱR ⪰ 0 and the representation of all POVMs are positive semi-definite. This provides

an operationally relevant definition of states with an effective classical subsystem, since it means

that regardless of the form of measurement performed on the joint bipartite quantum system,

the statistics are reproducible via an underlying classical-quantum (or partially non-contextual)

model [59].

Using this definition, it is straightforward to see that the positivity of ϱP gives sufficient

and necessary conditions for the effective classicality of the C subsystem. To see this, we

may substitute the definition of ϱP given in equation (4.5.4) into equation (H.2) to see that

the representation of POVM elements in the partial P representation are in fact given by the

partial Q representation, and thus are always positive semi-definite. By the definition given

above, if the partial Glauber-Sudarshan representation ϱP for a bipartite state ρ̂ is positive,

this state must therefore be an effective classical-quantum state.
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Appendix I

Relating states and dynamics in

partial quasiprobability

representations

A well known property of the three common quasiprobability distributions is that they may

be related via convolution with a Gaussian (also known as a Weierstrass transform). Specifi-

cally, the Wigner distribution W may be obtained from the Glauber-Sudarshan P distribution

by a convolution with a Gaussian with variance 1
2ℏs

2 in q and 1
2ℏs

−2 in p, and in turn the

Husimi Q representation may be obtained from the Wigner representation by the same convo-

lution [152, 43, 151]. These relations are unchanged by when one considers instead the partial

quasiprobability representations ϱW , ϱP , ϱQ, and so using the differential operator representa-

tion [153] of the convolution

D
1
2 = e

1
2
( ℏs

2

2
∂2

∂q2
+ ℏ

2s2
∂2

∂p2
)
, (I.1)

we may write them as

ϱW (q, p) = D
1
2 ϱP (q, p)

ϱQ(q, p) = D
1
2 ϱW (q, p).

(I.2)

For the different representations to be all equivalent, the mapping between the quasiprobability

distributions must be bijective, and thus the convolutions must be invertible. While this is not
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possible for general functions on phase space [153], in this case it is possible on the restricted

domain formed by the sets of all possible partial Husimi andWigner distributions [171]. In terms

of the differential operator D, these inverse maps may be written in terms of the differential

operator

D− 1
2 = e

− 1
2
( ℏs

2

2
∂2

∂q2
+ ℏ

2s2
∂2

∂p2
)

(I.3)

which gives

ϱP (q, p) = D− 1
2 ϱW (q, p)

ϱW (q, p) = D− 1
2 ϱQ(q, p).

(I.4)

Having specified the maps between states in the three representations, one may construct the

dynamics in any representation from another by mapping the state, evolving in that represen-

tation, and then mapping back to the original representation. In particular, using the form

of the generator in the partial Wigner representation LW , given in (4.2.8), one may construct

generators for LQ and LP , which take the form

LQ = D
1
2LWD− 1

2 = e
ad ℏs2

4
∂2

∂q2
+ ℏ

4s2
∂2

∂p2 LW (I.5)

LP = D− 1
2LWD

1
2 = e

−ad ℏs2
4

∂2

∂q2
+ ℏ

4s2
∂2

∂p2 LW , (I.6)

where we have used the relation eadBA = eBAe−B. To compute the generators to O(1) in ℏ, one

can use the definition of the exponential of the adjoint, and the generator of LW , and expand

in orders of ℏ. Taking first the generator of partial Husimi dynamics, we find

LQ =

[
1 + ad ℏs2

4
∂2

∂q2
+ ℏ

4s2
∂2

∂p2
+

1

2
ad2ℏs2

4
∂2

∂q2
+ ℏ

4s2
∂2

∂p2

+ . . .

] (
− i

ℏ
[H, · ] + 1

2
({H, · } − { · , H}) + . . .

)
= − i

ℏ
[H, · ] + 1

2
({H, · } − { · , H}) + ad ℏs2

4
∂2

∂q2
+ ℏ

4s2
∂2

∂p2

(
− i

ℏ
[H, · ]

)
+O(ℏ).

(I.7)

Computing the adjoint action explicitly gives

LQ
∣∣
O(ℏ0) =− i

ℏ
[H, · ] + 1

2
({H, · } − { · , H})

− is2

2
[
∂H

∂q
,
∂ ·
∂q

]− i

2s2
[
∂H

∂p
,
∂ ·
∂p

]− is2

4
[
∂2H

∂q2
, · ]− i

4s2
[
∂2H

∂p2
, · ],

(I.8)
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as given in (4.6.1). Similarly, one may compute the same for the partial Glauber-Sudarshan

dynamics, which differs only by a minus sign, giving

LP
∣∣
O(ℏ0) =− i

ℏ
[H, · ] + 1

2
({H, · } − { · , H})

+
is2

2
[
∂H

∂q
,
∂ ·
∂q

] +
i

2s2
[
∂H

∂p
,
∂ ·
∂p

] +
is2

4
[
∂2H

∂q2
, · ] + i

4s2
[
∂2H

∂p2
, · ],

(I.9)

as in (4.6.2).
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Appendix J

A broader class of thermal state

preserving dynamics

In this appendix we provide a explicit forms of dynamics satisfying both L(π) = 0 and detailed

balance that generalise the models provided in Section 5.3.

Overdamped dynamics with correlated noise

Consider a thermal fixed point π = e−βH(z)/Z and consider a general classical-quantum dy-

namics that both saturates the trade-off and satisfies detailed balance i.e. takes the form (2.20)

and satisfies the equations (5.6.17) to (5.6.21). If we additionally assume that D2 is full rank,

Krev = 0 and Kirr
i π1/2 = π1/2Kirr

i
†
, then the dynamics significantly simplifies, and may be

written in a closed form.

To begin with, one may use Krev = 0 and Kirr
i π1/2 = π1/2Kirr

i
†
to show that the Lindblad

operators Ki take the form

Ki =
1

4

∂D2,ij

∂zj
+

1

2
D2,ij

∂π
1
2

∂zj
π−1/2 =

1

4

∂D2,ij

∂zj
− β

4
D2,ijLj , (J.1)

where here we use Lj to denote the Lz operator for z = zj . On the other hand, since D2 is

full rank, I −D2D
−1
2 = 0, which along with Krev = 0 and Kirr

i π1/2 = π1/2Kirr
i

†
implies that

OA = 0. This means that there are no additional constraints on Ki in terms of D2,ij , and
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additionally that GA is 0 up to an arbitrary component that we set equal to zero. This means

that the unitary part of the dynamics is described by a unitary generator G that is purely

symmetric under time-reversal, which takes the form

G = H − iℏβ
32

D2,ij
∂D2,il

∂zl
D2,jk(L

†
k − Lk) +

β2

16
D2,ijMij , (J.2)

where Mij is Mxy for x = zi and y = zj . When we take the case of uncorrelated noise that

satisfies the Einstein relation D2,ij =
2µ
β δij , and take the number of degrees of freedom n = 1,

we recover the model given in (5.3.10).

Underdamped dynamics for arbitrary H(q, p)

Consider a thermal fixed point π = e−βH(q,p)/Z, where H(q, p) may have any functional de-

pendence on q and p provided it is invariant under time-reversal. In this case, there may be

backreaction on both the classical momentum p and classical position q, and thus for positivity

of the dynamics, there must be corresponding diffusion in both momentum and position. Al-

though phase-dependent and correlated noise may be studied using the methods discussed in

the previous section, a simple choice is

D2 =
2

β

γq 0

0 γp

 , (J.3)

where γq and γp are constants. Taking the following choices for K = Krev +Kirr and S

Krev =
1

2

 Lp

−Lq

 Kirr =
1

2

−γqLq

−γpLp

 S =
β

8
(γq + γ−1

p )Mpp +
β

8
(γp + γ−1

q )Mqq +H,

(J.4)

it is straightforward to check that these satisfy the detailed balance constraints, and thus that

the dynamics satisfies detailed balance, and hence L(π) = 0.
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Appendix K

Invariance of interaction under

changes to the classical Hamiltonian

For the interaction between the classical and quantum subsystems to be meaningfully defined, it

is reasonable to expect that it is independent of the particular choice of classical Hamiltonian.

In other words, changing the classical potential should only affect the drift of the classical

system, and not affect the structure of the dynamics related to the quantum system.

To see that this is indeed the case, consider the affect of modifying the classical-quantum

Hamiltonian by

H 7→ H + V (z)I. (K.1)

The corresponding change to Lz is easily computed to be

Lz 7→ Lz +
∂V

∂z
1, (K.2)

and the change in Mzz may also be solved, using (5.3.4) and (5.3.2), to give

Mzz 7→Mzz −
iℏ
2

∂V

∂z
(Lz − L†

z). (K.3)

As expected, the change to Lz leads to an additional drift term in the classical part of the

dynamics. However, at first glance the change in Mzz makes it appear that the unitary part of

the quantum dynamics is affected by the choice of classical potential V . However, the change

in Lz also affects the decoherence part of the dynamics, and it turns out that the additional
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term that arises exactly cancels the change in Mzz described above. The overall effect of the

transformation (K.1) is thus simply captured by

L(ϱ) 7→ L(ϱ) + µ∂x((∂xV )) (K.4)

or

L(ϱ) 7→ L(ϱ) + {V, ϱ}. (K.5)

Aside from being physically reasonable, this property means that purely classical parts of the

dynamics may be included by including additional classical drift terms, independent of Lz and

Mzz, rather than needing to include such effects directly via these operators.
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Appendix L

Thermalisation additional material

In this appendix, we include additional material showing evidence that the coherences in the

adiabatic basis, correlations between position and momentum, and the correlations between

the classical and quantum systems, all vanish over time in the relative position representation.

Along with the thermalisation properties shown in Section 5.5.6, this provides evidence that

the classical-quantum state for this model does indeed thermalise for typical initial conditions

and model parameters.

We first turn to look at the coherences in the adiabatic basis in the relative position rep-

resentation i.e. the coherences in the number state basis when expressed in terms of |ψr⟩. To

study this, we consider a pure state whose probabilities of occupying the adiabatic basis states

is given by the thermal state, namely that |ψr⟩ =
∑

n

√
pn|n⟩ where pn ∝ exp(−βϵn). Plotting

the coherences between the first 5 adiabatic energy levels in Fig. L.1 we see that their each

of their values appear to tend to zero. The same behaviour may be found for other initial

conditions with coherence in this basis.

We must also check that the classical variables qt and pt are indeed uncorrelated at long

times. To check this, we plot the covariance function between the two variables in Figure L.2

for an initial condition in which the system either starts at q0 = p0 = 1 with |ψr⟩ = |1⟩ or

q0 = p0 = −1 with |ψr⟩ = |0⟩ with equal probability i.e. with the initial condition

ϱ̂r(q, p) =
1

2
δ(q − 1)δ(p− 1)|1⟩⟨1|+ 1

2
δ(q + 1)δ(p+ 1)|0⟩⟨0|. (L.1)

228



0 5 10 15 20 25 30
t

0.0

0.1

0.2

0.3

0.4

|
[n

|
|m

]|

n = 0, m = 1
n = 0, m = 2
n = 0, m = 3
n = 0, m = 4
n = 1, m = 2

n = 1, m = 3
n = 1, m = 4
n = 2, m = 3
n = 2, m = 4
n = 3, m = 4

Figure L.1: Absolute value of the coherences between the first five energy levels plotted from

t = 0 to t = 30. Here we take parameters ω = mC = mQ = ℏ = β = γ = Ω = 1, while

Nmax = 20 and Nsteps = 104, and compute the average over 104 trajectories.

We see here that the initially non-zero covariance between the two classical variables vanishes

at long times, up to remaining fluctuations limited by the achievable number of trajectories in

the simulation.

Finally, we study the correlations between the classical and quantum degrees of freedom in

the relative position representation, using the same correlated distribution as described by Eq.

(L.1). As before, we may compute the covariance, here between the random variable qt or pt and

the density matrix ρ̂rt = |ψr⟩t⟨ψr|t. Since this gives in both cases a Hermitian matrix, plotting

the eigenvalues of this matrix provides a measure of the covariance between the classical and

quantum degrees of freedom – if all of the eigenvalues tend to zero then this is sufficient to

conclude that the covariance between the classical and quantum degrees vanishes. Plotting the

first five eigenvalues of these matrices in Figure L.3 we see that the initial correlations due to

the initial conditions rapidly die off, again up to fluctuations due to limitations in the number

of trajectories that are averaged over.

Strictly speaking, the vanishing of the covariance function in the above two cases does

not guarantee that the two variables in each case are not correlated, since we have not also

demonstrated that they also are not jointly Gaussian distributed. While this appears likely,

given that the drift and back-reaction operators are linear in both q, p and in q̂, p̂, we leave this,

and a more rigorous theoretical characterisation of thermalisation, to future work.
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Figure L.2: The covariance between qt and pt from t = 0 to t = 30 for an initial state given in

Eq. (L.1) with ω = mC = mQ = ℏ = β = γ = Ω = 1, while Nmax = 10 and Nsteps = 5000, and

computed over 2× 104 trajectories.
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Figure L.3: Eigenvalues of the covariance between qt (left) and qt (right) with the quantum

state in the relative position basis ρrt, with the same initial conditions and parameters as in

Figure L.2.
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Appendix M

Derivation of the detailed balance

conditions

In this section we demonstrate how the detailed balance conditions (5.6.17) to (5.6.21) may be

derived from the definition of detailed balance (5.6.5), using the positivity conditions of (2.21)

and (2.22). Note that here we assume the trade-off is saturated i.e. L̃α = 0.

We start by explicitly writing out the forms of both the generator π−
1
2L(π

1
2Aπ

1
2 )π−

1
2 and

the adjoint generator under time-reversal L†
ϵ(A), in terms of the operators Krev

i , Kirr
i , GS , and

GA. It is straightforward to check that these take the form

π−
1
2L(π

1
2Aπ

1
2 )π−

1
2 =

− i

ℏ
π−

1
2 [GS +GA, π

1
2Aπ

1
2 ]π−

1
2 − π−

1
2
∂

∂zi

(
Krev

i π
1
2Aπ

1
2 + π

1
2Aπ

1
2Krev†

i

)
π−

1
2

− π−
1
2
∂

∂zi

(
Kirr

i π
1
2Aπ

1
2 + π

1
2Aπ

1
2Kirr†

i

)
π−

1
2 +

1

2
π−

1
2

∂2

∂zi∂zj
(D2,ijπ

1
2Aπ

1
2 )π−

1
2

+D−1
2,ijπ

− 1
2
[
(Krev

i +Kirr
i )π

1
2Aπ

1
2 (Krev

j +Kirr
j )† − 1

2
{(Krev

j +Kirr
j )†(Krev

i +Kirr
i ), π

1
2Aπ

1
2 }+

]
π−

1
2

(M.1)
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L†
ϵ(A)− 2i[X,A] =

− 2i[X,A] +
i

ℏ
[GS −GA, A] + (Kirr

i −Krev
i )†

∂A

∂zi
+
∂A

∂zi
(Kirr

i −Krev
i ) +

1

2
ϵiϵjD2,ij(ϵz)

∂2A

∂zi∂zj

+ ϵiϵjD
−1
2,ij(ϵz)

[
(Kirr

i −Krev
i )†A(Kirr

j −Krev
j )− 1

2
{(Kirr

j −Krev
j )†(Kirr

i −Krev
i ), A}+

]
,

(M.2)

where here all quantities are dependent on z rather than ϵz unless indicated otherwise.

Since the detailed balance condition (5.6.5) must hold for all A, the terms containing each

order of derivative of A must cancel separately. Starting with the second order derivative terms,

we see that all the dependence on π cancels to give

1

2
D2,ij

∂2A

∂zi∂zj
=

1

2
ϵiϵjD2,ij(ϵz)

∂2A

∂zi∂zj
. (M.3)

This holds for all A if and only if

D2,ij(z) = ϵiϵjD2,ij(ϵz) (M.4)

which is exactly equivalent to the diffusion constraint of (5.6.17).

Turning now to the first derivatives of A, collecting terms and defining the operators Bi as

Bi = −π−
1
2Krev

i π
1
2 − π−

1
2Kirr

i π
1
2 +

1

2

∂D2,ij

∂zj
+D2,ijπ

− 1
2
∂π

1
2

∂zj
−Kirr†

i +Krev†
i , (M.5)

we see that

Bi
∂A

∂zi
+
∂A

∂zi
B†

i = 0 (M.6)

must hold for every choice of operator A, which is true if and only if BiC + CB†
i = 0 holds

for every choice of operator C. Taking the trace with C = 1, we see that each Bi must be

anti-Hermitian. Decomposing this as B = iJ where J = J†, we see that the above relation

implies that J commutes with every operator i.e. is proportional to the identity operator. We

thus see that we can write this condition in the form

−π−
1
2 (Krev

i +Kirr
i )π

1
2 +

1

2

∂D2,ij

∂zj
+D2,ijπ

− 1
2
∂π

1
2

∂zj
− (Kirr

i −Krev
i )† = −iai1, (M.7)

where here ai is some real number that may depend on phase space. Acting on the left with

the operator π
1
2 and setting the Hermitian and anti-Hemtitian parts equal separately, we see

that we recover the reversible and irreversible backreaction constraints given in (5.6.18) and
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(5.6.19). For these constraints to be self-consistent, we see that ai must transform as the

reversible back-reaction operators do i.e. ai(ϵz) = −ϵiai(z).

The final conditions that follow from the terms proportional to A are a little more complex

to compute. To start with, we consider the expression E1, made up of moving all the terms

which have operators acting on both sides of A to the left hand side of the equation, which

takes the form

E1 =

− π−
1
2 (Krev

i +Kirr
i )π

1
2A

∂π
1
2

∂zi
π−

1
2 − π−

1
2
∂π

1
2

∂zi
Aπ

1
2 (Krev

i +Kirr
i )†π−

1
2 +D2,ijπ

− 1
2
∂π

1
2

∂zi
A
∂π

1
2

∂zi
π−

1
2

+D−1
2,ij

[
π−

1
2 (Krev

i +Kirr
i )π

1
2 ]A
[
π

1
2 (Krev

i +Kirr
i )†π−

1
2
]
−D−1

2,ij(K
irr
i −Krev

i )†A(Kirr
i −Krev

i ).

(M.8)

Here we have here used the diffusion constraint (M.4) to rewrite ϵiϵjD
−1
2,ij(ϵz) as simply D−1

2,ij .

From the above expression, it is apparent that some of the terms will cancel upon replacing

appearances of π−
1
2 (Krev

i +Kirr
i )π

1
2 and its conjugate with (Kirr

i −Krev
i )† and its conjugate

using Eq. (M.7). Substituting these in, and using the properties of D2 and its pseudoinverse

that follow from the positivity conditionD2 ⪰ 0, such asD2D
−1
2 = D−1

2 D2 andD2D2D
−1
2 = D2,

we find that this expression takes the form

E1 =− (I−D2D
−1
2 )ij

[
(Krev

i −Kirr
i )† +

1

2

∂D2,ik

∂zk
+ iai

]
A
∂π

1
2

∂zj
π−

1
2 + h.c.

+D−1
2,ij(K

rev
i −Kirr

i )†(
1

2

∂D2,jk

∂zk
− iaj)A+

1

8
D−1

2,ij

∂D2,ik

∂zk

∂D2,jl

∂zl
A+

1

2
D−1

2,ijaiajA+ h.c.

(M.9)

where here h.c. denotes the Hermitian conjugate (treating A as Hermitian) of all of the terms

explicitly written on a given line. We see from this expression that the only terms that are not

of the form of only a single operator to the left or right of A are on the top line. However, let us

recall that in addition to the positivity condition D2 ⪰ 0, we also have the condition of (2.22).

Writing this out explicitly, we see that this implies the existence of a phase space dependent

vector v such that

(I−D2D
−1
2 )(Krev +Kirr) = v1. (M.10)

Acting on the left with π−
1
2 and the right with π

1
2 , we may use the expression in (M.7) to
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rewrite this as

(I−D2D
−1
2 )
[
(Krev −Kirr)† +

1

2

∂D2

∂z
+ ia

]
= v1, (M.11)

where here we have dropped a term usingD2D
−1
2 D2 = D2. We thus see that the main expression

of the top line of (M.9) is proportional to the identity, and thus may be commuted with A to

give an expression of E1 entirely in the form of operators on the left or right hand side of A.

Returning now to include the terms already of this form, we see that the constraint setting the

entirety of the terms proportional to A to zero takes the form

FA+AF † = 0 (M.12)

for all operators A, where F is defined as the operator

F =− i

ℏ
(π−

1
2GSπ

1
2 +GS)− i

ℏ
(π−

1
2GAπ

1
2 −GA) + 2iX

− π−
1
2
∂

∂zi

(
(Krev

i +Kirr
i )π

1
2

)
+

1

4

∂2D2,ij

∂zi∂zj
+ π−

1
2
∂D2,ij

∂zi

∂π
1
2

∂zj
+

1

2
π−

1
2D2,ij

∂2π
1
2

∂zi∂zj

− 1

2
D−1

2,ij

[
π−

1
2 (Krev

i +Kirr
i )†(Krev

j +Kirr
j )π

1
2 + (Kirr

i −Krev
i )†(Kirr

j −Krev
j )

]
− (I−D2D

−1
2 )ij

[
(Krev

i −Kirr
i ) +

1

2

∂D2,ik

∂zk
− iai

]
π−

1
2
∂π

1
2

∂zj

+D−1
2,ij(K

rev
i −Kirr

i )†(
1

2

∂D2,jk

∂zk
− iaj) +

1

8
D−1

2,ij

∂D2,ik

∂zk

∂D2,jl

∂zl
+

1

2
D−1

2,ijaiaj .

(M.13)

Noting as before that this implies that F = ib1, where b is a real number dependent on phase-

space, we may act with π
1
2 on the left to find the analogue of (M.7) for the zeroth order

derivative terms

− i

ℏ
(GSπ

1
2 + π

1
2GS)− i

ℏ
(GAπ

1
2 − π

1
2GA) + i(Xπ

1
2 + π

1
2X)

− ∂

∂zi

(
(Krev

i +Kirr
i )π

1
2

)
+

1

4
π

1
2
∂2D2,ij

∂zi∂zj
+
∂D2,ij

∂zi

∂π
1
2

∂zj
+

1

2
D2,ij

∂2π
1
2

∂zi∂zj

− 1

2
D−1

2,ij [K
rev†
i Krev

j +Kirr†
i Kirr

j , π
1
2 ]− 1

2
D−1

2,ij{K
rev†
i Kirr

j +Kirr†
i Krev

j , π
1
2 }+

− (I−D2D
−1
2 )ij

[
(Krev

i −Kirr
i ) +

1

2

∂D2,ik

∂zk
− iai

]∂π 1
2

∂zj

+D−1
2,ij(

1

2

∂D2,ik

∂zk
− iai)π

1
2 (Krev

j −Kirr
j )† +

1

8
D−1

2,ij

∂D2,ik

∂zk

∂D2,jl

∂zl
π

1
2 +

1

2
D−1

2,ijaiajπ
1
2 = ibπ

1
2 .

(M.14)

234



In the above, we have used the property that X commutes with π to rewrite the term con-

taining X as an anti-Hermitian term, as well as rewriting the D−1
2,ij term into commutator and

anti-commutator parts. To derive the symmetric and anti-symmetric unitary generator con-

straints from this expression, we consider the anti-Hermitian and Hermitian parts of the above

expression separately. The anti-Hermitian part of this equation takes the form

− i

ℏ
(GSπ

1
2 + π

1
2GS) + i(Xπ

1
2 + π

1
2X)

− 1

2

∂

∂zi
(Krev

i π
1
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1
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i )− 1

2

∂

∂zi
(Kirr

i π
1
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1
2Kirr†

i )

− 1

2
D−1

2,ij [K
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i Krev

j +Kirr†
i Kirr

j , π
1
2 ]

− 1

2
(I−D2D

−1
2 )ij

[
(Krev

i −Kirr
i )

∂π
1
2

∂zj
− ∂π

1
2

∂zj
(Krev

i −Kirr
i )†

]
+ iai(I−D2D

−1
2 )ij

∂π
1
2

∂zj

− i

2
aiD

−1
2,ij(K
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j π

1
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1
2Krev†

j ) +
i

2
aiD

−1
2,ij(K

irr
j π

1
2 + π

1
2Kirr†

j )

− 1

4
D−1

2,ij

∂D2,ij

∂zk
(Krev

j π
1
2 − π

1
2Krev†

j ) +
1

4
D−1

2,ij

∂D2,ij

∂zk
(Kirr

j π
1
2 − π

1
2Kirr†

j ) = ibπ
1
2 .

(M.15)

Substituting in the reversible and irreversible backreaction constraints (5.6.18) and (5.6.19)

wherever Krev
i π1/2 − π1/2Krev†

i or Kirr
i π1/2 + π1/2Kirr†

i explicitly appear, one finds that the

equation simplifies to

− i

ℏ
(GSπ

1
2 + π

1
2GS) =

− i(Xπ
1
2 + π

1
2X) +

1

2

∂

∂zi
(Kirr

i π1/2 − π1/2Kirr
i

†
)
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2 )ij(K
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1
2
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Kirr

i
†
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D−1

2,ij

∂D2,ik

∂zk
(Kirr

j π1/2 − π1/2Kirr
j

†
)

+
i

2
D−1

2,ijai(K
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i π1/2 + π1/2Krev

i
†) +

1
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j +Kirr
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†
Kirr

j , π1/2]

− i
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2 )ij
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∂zj
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2 )ij(K
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1

2

∂ai
∂zi

)π
1
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(M.16)

Since the left-hand side of this equation is symmetric under time-reversal, the right-hand side

must also be. Performing the time-reversal transformation, noting the previously found form

of time-reversal for ai, we see that all of the terms are symmetric, other than the three terms

on the final line. Returning to the positivity condition (M.10), we note that since this holds for
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both the reversible and irreversible components separately i.e.

(I−D2D
−1
2 )Krev = vrev1, (I−D2D

−1
2 )Kirr = virr1, (M.17)

one may rearrange the two terms containing I−D2D
−1
2 on the final line into the form

1

2
(I−D2D

−1
2 )ij

[
Krev

i π
1
2 − π

1
2Krev

i − iaiπ
1
2
]
π−

1
2
∂π

1
2

∂zj
, (M.18)

which clearly vanishes due to the reversible back-reaction constraint. For the final term con-

taining b to vanish, we see that b must have an anti-symmetric component equal to −1
2∂iai

such that this final term cancels. Since the remaining component is purely symmetric and real,

this term can be absorbed into the definition of X by including a term b
21; since the above

condition required the existence of a real-number b, and detailed balance required the existence

of the operator X, we see that we may do this without loss of generality. Doing so, and defining

the operator OS as in (5.6.22), we find the form of the symmetric unitary generator constraint

quoted in (5.6.20).

Finally, turning to the Hermitian part of (M.14), we find this takes the form
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(M.19)

As before, substituting in the expressions for Krev
i π1/2−π1/2Krev†

i or Kirr
i π1/2+π1/2Kirr†

i from
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(5.6.18) and (5.6.19), we find that this equation simplifies to take the form
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(M.20)

As before, we perform the time-reversal operation on both sides to see that all but the final line

as written are antisymmetric under time-reversal. Using now the relation for Kirr in (M.17)

we see that this final time-reversal symmetric line vanishes in an analogous way to before, this

time by using the irreversible back-reaction constraint. Defining the operator OA in (5.6.23),

we thus recover the antisymmetric unitary generator constraint (5.6.21).
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