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ABSTRACT
Study of Non-Standard Interactions in Rare Mesonic Decays

The study of rare decays and search for new physics are entangled with each
other. The importance of these decays highly increases if the decay products
contain dineutrinos in their �nal state due to its theoretically cleanest nature. In
this scenario, for detailed illustration, we will use the pure and semileptonic rare
decays of pseudoscalar mesons with missing energy and study the role of NSIs
on Br and non standard parameters �qL

��
and �qR

��
by using model-independent

analysis. We investigate the long distance dominated (in the standard model)
processes D+

s ! K+��, D0 ! �0�� and short distance dominated (in the
standard model) D+

s ! D+�� decays for the purpose of non-standard neutrino
interactions (NSIs). The branching ratios of D+

s ! K+��; D0 ! �0�� and
D+
s ! D+�� decays are calculated in the framework of NSIs. The values of non-

standard parameters �uL�� , �
dL
�� and �

dL
��
for � = � = e or � are found. Analysis of

NSIs are extended by incorporating the second and third generations of quarks.
We investigate that why the only available non-standard parameter constraints
in the literature are �uL�� and �

dL
�� ;and why we are unable to �nd bounds on

non-standard parameters, pertaining to second and third generation, i.e. �bL�� ,
�sL�� ; �

cL
�� and �

tL
�� . Contrary to quark sector, in charged lepton sector, non-

standard parameters �eL�� , �
�L
��and �

�L
�� , relevant to second and third generations,

are good constraints. We investigate D+
s ! K+��; D0 ! �0�� and D+ !

�+�� decays, in which �avor changing neutral current (FCNC) involve only up
type quarks, i.e. c �! u�� as an external particles and down type (d; s; b) quarks
propagating in the loop. While inK+ ! �+��, D+

s ! D+�� and B0s �! B0��
FCNC involves down type quarks, i.e. s �! d�� as an external lines, and up
type (u; c; t) quark propagating inside the loop. The comparative study of the
processes is done to check the generation sensitivity of the parameters of NSIs.
We show that the dominant and comparable contribution of NSI is due to the
�rst and second generation, i.e. (u; d) and (c; s) quarks, while contribution of
(t; b ) quarks is highly suppressed at radiative level, which is contrary to the SM.
Furthermore, We present the comparative study of semileptonic and leptonic
decays of Ds; D� (D ! l���, D ! l�l� , D�

s ! K�l+� l
�
� (v�) along with D !

Ml�l� ; M = �;K and �; � = e; �) within the framework of R-parity violating
Minimal Supersymmetric Standard Model (MSSM). The comparison shows that
combination(��i��

�0
ijq) and product couplings (�

0
�qk�

�0
�jq); contributing to the

branching fractions of the processes D0 ! �+��; D+ ! l��� , D+
s ! l��� ;

D0 ! K�e+�e; D
�
s ! K�l+� l

�
� and D

� ! ��l+� l
�
� (both for � = � and � 6= �

), are either consistent or comparable with the existing experimental data, when
calculating in the R-parity violating SUSY model. Hence the golden channel
for the study of new physics is provided. Contrary to that, processes like D0 !
e+e�; D0 ! ��l+� ��, D

+ ! �0l+� �� and D
0 ! K�l+� �� are accommodated

well in SM, but unfavorable for the study of new physics. We identify such
type of processes in our analyses and single out the important ones, suitable for
exploring in the current and future experiments.
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Chapter 1

Introduction

The reduction principle [1, 2] is the principle that plays a pivotal role in enabling us to study the

properties of the very large variety of macroscopic forms of matter in terms of a few microscopic

particles that interact through electromagnetic, weak and strong interactions. The gradual

diminution of world from macroscopic range to particle physics scale, enables us to explore such

structures by means of atomic and nuclear physics. In this sense, particle physics accommodates

the basic laws of nature with the help of the standard model (SM).

The SM is a remarkable theory of fundamental particles and their interactions; developed

by Salam, Glashow and Weinberg [3]. This theory not only incorporated all those sub-atomic

particles known at that time, but it also predicted the existence of additional particles as well.

These predicted particles were later on discovered experimentally as W� and Z bosons in 1983

[4, 5], top quarks in 1995 [6], the tau neutrino in 2000 [7] and Higgs boson in 2012 [8, 9].

The uni�cation of electromagnetic and weak interaction is provided by the electroweak part

of the SM. The experimental vari�cations have given it the status of a highly precise model.

The SM is based on gauge group SU(3)C � SU(2)L � U(1)Y , where the associated lagrangian

remains invariant under local gauge transformation. The requirement of local gauge invariance

gives birth to di¤erent gauge bosons (gluons, weak vector bosons and photons) and provides

reason for the existence of strong, weak and electromagnetic forces. Here, SU(3)C is a non-

abelian group which deals with chromodynamics and SU(2)L � U(1)Y groups are associated

with the electroweak part of the standard model. SU(2)L is a non-abelian group represent-

ing electroweak isospin having triplet W 1
� ;W

2
� and W 3

� ; while U(1)Y is an abelian group of
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weak hypercharge associated with gauge boson B�: W 3
� and B� are mixtures of physical gauge

bosons (A�and Z�);which are propagators of electromagnetic and weak interactions respec-

tively. Under SU(2)L � U(1)Y gauge groups, all fermions(chiral particles) transform as left

handed doublets and right handed singlets. That is the very reason why masses of all fermi-

ons are protected by chiral symmetry and the masses of all gauge bosons are protected by

gauge symmetry. In order to retain the demand of local gauge invariance and and at the same

time give masses to both gauge bosons and fermions, we have to introduce Higgs mechanism

[10, 11], which is responsible for breaking SU(2)L � U(1)Y symmetry into U(1)em one. In

Higgs mechanism, the weak gauge bosons (W� and Z0) acquire their masses through spon-

taneous symmetry breaking mechanism (SSB), whereas the gauge particle of electromagnetic

interaction, i.e. photon(
), remains massless: While all the charged leptons and the quarks

generate their masses through Yukawa interactions (interaction of fermions with the minimum

of the Higgs �eld). In the Yukawa interactions, each fermion �ips its handedness (L $ R).

As there are no right-handed neutrinos in the SM, Yukawa interaction, in the SM, is therefore

unable to generate the masses of neutrinos. Hence, neutrinos are strictly massless in the SM.

Consequently, lepton �avor is conserved, i.e. each neutral lepton (�e; ��; �� ) is produced in con-

jecture with charge leptons(e�; ��; ��); hence leading to the lepton universality, which depicts

the fact that e� $ �e; �
� $ �� and �� $ �� can proceed through lepton �avour conserving

universal charge current (W�) interaction (LFCUCC), while lepton �avour violating charge

inteactions (e� = ��(�� ); �
� = �e�� and �� = �e��) are not allowed. Similarly, we have

lepton �avour conserving (�e $ �e; �� $ �� and �� $ �� ) universal neutral current (Z0)

interaction (LFV UNC), but �avour changing current transitions (�e = ��(�� ); �� = �e(�� )

and �� = �e(��) )are not allowed. Hence, we can conclude that the �avour changing charge as

well as neutral current are not allowed in lepton sector of the SM at any level.

However, the observational fact of neutrino oscillation provides the evidence that neutrinos

are massive and they do mix. Consequently, we have non-universal (rather than universal)

�avour changing(violating) charge (NUFV CC) as well as neutral (NUFV NC) current inter-

action, which cannot be accomodated in the SM. For this we have to look at some new model,

which can accomodate these new kind of interactions, hence the so called non-standard inter-

action (NSI). In general there are many extentions of the SM, which not only include masses
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and mixing, but also generate these new NSI; and supersymmetry (SUSY ) is one of these

extentions. The main focus of our research is to study the e¤ect of these NSIs in semileptonic

rare decays of mesons having neutrinos in their �nal state, both in the model independent and

model dependent ways. In the model dependent approach, we use R-parity violating SUSY

model.

SUSY (the symmetry between bosons and fermions) is the most fascinating, renormaliz-

able, anomaly free and gauge invariant theory based on the extended quantum �eld theoretical

structure of the SM. This theory not only accomodates the masses of neutrinos, but also helps

to achieve the one of the biggest goals of particle physics, i.e. grand uni�cation of all types

of interactions. Furthermore, it also solves the problem of instability of Higgs mass due to

quardratic divergent radiative correction, the so called Hierarchy problem. The cost which we

have to pay to achieve these big goals is to introduce the new particles, called supersymmetric

particles. The minimal version of SUSY is the one in which we can associate only one SUSY

particle with each SM particle, known as minimal supersymmetric standrad model (MSSM).

Due to double particle spectrum, the number of interactions also increases, as a consequence

of which we get most generalized lagrangian, having Lepton and Baryon number conserving

term (analogous to the SM) as well as the violating (not present in the SM) one. This si-

multaneous presence of lepton and baryon number violating terms has a dangerous impact on

matter, i.e. matter is no more stable (leading to fast proton decay), which is contradictory to

the observational fact.

The standard way to cope with the problem of fast proton decay is to introduce a new adhoc

symmetry, called R-parity (Rp), de�ned as R = (�1)3B+2S+L, where B is the baryon number, L

is the lepton number and S is the intrinsic spin of the particle. According to this de�nition, all

SM particles have(Rp) = +1 and all SUSY particles have (Rp) = �1. This symmetry dictates

that SUSY particles are always produced in pair, and lightest SUSY particle (LSP ) is stable,

which is the candidate of cold dark matter. This is what we call the Rp conserving version of

SUSY. But, on the other hand, introducing certain symmetry just by hand to protect proton

decay is somewhat arti�cial, as it does not endure any internal inconsistency. Therefore, other

symmetries can be presented to prevent proton decay without any obligation of R-parity. These

symmetries lead to the violation of either lepton or baryon number, but not both simultaneously.
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Consequently, we can get production of single SUSY particle, the LSP can decay to the SM

particles and the ordinary SM particles can decay through SUSY particles as their resonance

state. In the last case, constraining Rp violating Yukawa coupling is an important task, which

is one of the aims of our research. The glimpse of chapterwise plan of our research work is

organised as follows:

In Chapter 1, we give the overall introduction of the thesis. Chapter 2 is fully devoted

to the SM. In this chapter, we develop the historical background of the SM in particular and

gauge structure of the SM in general. In sections 2.3 and 2.4, we discuss the theoretical bases

and formulation of the Electroweak part of the SM. In Chapter 3, we carry out the phenom-

enological implication of the SM. In this chapter, our focus is on pure leptonic, semileptonic

and non-leptonic interactions, which lead towards the Cabibbo theory [12], where we discuss

universality of weak interactions and suppression of 4S = 1 weak interactions in section 3.1.

This naturally leads to the non existence of �avour changing neutral current, the so-called GIM

mechanism [13], which we discuss in section 3.2. Section 3.3 deals with the generalization of

GIM mechanism for three generations, i.e. CKM matrix [14], which ensures the absence of

�avour changing neutral current (FCNC) at tree level and incorporates CP violation: there

by providing the reason for matter dominant universe. In sections 3.4 and 3.5, we discuss the

need for "operator product expansion" and "E¤ective Hamiltonian". With this, we develop

su¢ cient background for the uniform treatment of the study of rare weak decays of two and

three bodies, pure and semileptonic pseudoscalar meson decays, (especially with neutrinos in

the �nal state). Sections 3.6 and 3.7 are devoted to this purpose. In section 3.8, we discuss the

limitations of the SM, which prompt us to go beyond the SM, i.e. new physics (NP).

The need for NP pertaining to neutrino is explored in Chapter 4. In sections 4.1-4.3, we

study the leading (oscillation) and subleading (non-standard neutrino oscillation) mechanism

in order to explain neutrino �avour transition. Whereas sections 4.4 and 4.5 address the semi-

leptonic decays of charm mesons in the framework of NSIs. We perform our analysis in model

independent (MI) way. The results obtained by this study are discussed in section 4.6. In

Chapter 5, we extend our analysis of NSI (MI) by incorporating second and third generation

of quarks in the loop and its experimental status. Section 5.4 is devoted to exploration of

NSI, using D+
s ! K+���� ; D

+ ! �+���� and D0 ! �0���� as probe, and results are
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discussed in section 5.5.We opt for model dependent approach in Chapter 6. In this chapter,

we develop necessary background for SUSY model in general, and R-parity violating model in

particular. As a phenomenological implication, we study tree and loop level pure leptonic decays

of charm mesons, (D+; D+
s ! l+� ��) and

�
D0 ! l�� l

�
�

�
; in sections 6.8 and 6.10, respectively.

While sections 6.9 and 6.11 are devoted to the study of semileptonic decays of charm mesons

D ! (�;K+) l+� �� and Ds ! Kl�� l
�
� in R -parity violating SUSY model. Results obtained from

this analysis are discussed in section 6.12. Brief summary of our main results and conclusion

are presented in Chapter 7.
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Chapter 2

The Standard Model of Particle

Physics

2.1 History of the Standard Model

In 1961, Glashow proposed [15] the symmetry group, SU(3)� SU(2)� U(1); for electrorweak

theory. His aim was to unify weak and electromagnetic interactions by using a symmetry group

which contained U(1)em. There was a prediction of four physical vector bosons states, W�; Z

and 
 obtained by the rotation of weak eigen states. Especially, �W rotation de�nes Z weak

boson which was already included in the theory. The inclusion of Z boson mediated current

provided the exact structure of weak neutral current. The gauge symmetry is the custodian of

masslessnees of gauge bosons. The insertion of mass term for the gauge bosons was also making

the theory non-renormalizable.

The Goldstone theorem introduced by Nambu in 1961 [16] and further developed and gen-

eralized by Goldstone, Salam and Weinberg also contributed to its generalization in 1962 [3].

This theorem states that spinless massless particles.are produced if the global symmetries are

spontaneously broken.

The electroweak theory was made by Weinberg and Salam independently in 1968 by using

SU(2)�U(1) gauge group introduced by Glashow. This remarkable theory is known as Glashow-

Weinberg-Salam model or the standard model (SM). Although, it was constructed with the help

of gauge principle but it was equally capable of incorporating all the known phenomenological
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properties of pregauged theories of weak interactions, especially, intermediate vector boson

(IVB) theory. It was developed with the idea of spontaneous symmetry breaking (SSB). The

heart of SSB is the introduction of a Higgs doublet which gives masses to gauge bosons with

out destroying the renormalizability of gauge theory. In the SM, IVB are the associated gauge

bosons, W�; Z and 
. The gauge boson W�; Z acquire masses and electroweak theory still

respects unitarity at all energies as well as renormalizability.

In 1971, t�hooft provided the proof of renormalizability of gauge theories with and without

spontaneous symmetry breaking.

The experimental discovery of weak neutral current in 1983 [4, 5], as predicted by the model,

made it a successful theory of electroweak interactions. The experiment also provided the �rst

measurement of sin(�W ): By using �W and weak coupling gW the SM provided the �rst estimate

of MW and MZ which were discovered experimentally in 1983 at the predicted masses.

The discovery ofW� and Z bosons was made at SpS collider at CERN in 1983 [4, 5]. There

have been plenty of tests of the SM even at quantum level and all of them have been successful

so far. In 2012, discovery of the Higgs particle at LHC has further strengthened the model

[8, 9].

2.2 The Need of SU(2) � U(1) Gauge Group for Electroweak

Uni�cation

The gauge group required for the electroweak uni�cation is SU(2)�U(1). In order to understand

the choice of this group, it is su¢ cient to take only e�� component of charge weak current. this

can be written in the form:

J� = �
�(
1� 
5
2

)e . (2.2.1)

By using (1�
52 )2 = 1�
5
2 and 
�
5 = �
5
�;it can be written as

J� = �L
�eL . (2.2.2)

In doublet form
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	L =

0@ �L

eL

1A ; 	L = ( �L eL ); �� =
1

2
(�1 � i�2) (2.2.3)

� i(i = 1; 2; 3) are Pauli matrices.

�1 =

0@ 0 1

1 0

1A ; �2 =

0@ 0 �i

i 0

1A ; �3 =

0@ 1 0

0 �1

1A .
The generators Ii of SU(2) satisfy the

[Ii; Ij ] = i�ijkIk, and Ii =
� i
2
.

These (unitary and unimodular) form the fundamental representation of SU(2). By using �+

and doublet 	L;eq.(2.2.2) becomes

J� = 	L
��+	L, (2.2.4)

and similarly

Jy� = 	L
���	L. (2.2.5)

For charge current, only two generators are used but SU(2) algebra is not complete. To complete

it we have to use the third generator,

J3� = 	L
��3	L =
1

2
(�L
��L � eL
�eL). (2.2.6)

But,this can not be Jem� which is �e
�e. This implies that SU(2) is not su¢ cient for electroweak

uni�cation. So, the group must be extended and the simplest extension is SU(2)� U(1).

The Gell-Mann Nishijima relation is given as:

Q = I3 +
Y

2
(2.2.7)

where I3=weak isospin, Y=weak hypercharge and Q=elecrtic charge.
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The corresponding relation among the currents can be made as

Jem� = J3� +
1

2
JY� , (2.2.8)

and

JY� = 2(J
em
� � J3�), (2.2.9)

Jem� = (�1)eL
�eL + (�1)eR
�eR, (2.2.10)

J3� = 	L
��3	L =
1

2
(�L
��L � eL
�eL). (2.2.11)

By using eqs.(2.2.10) and (2.2.11) as input, we obtain the output

JY� = (�1)eL
�eL + (�2)eR
�eR + (�1)�L
��L, (2.2.12)

which gives hypercharge of doublet

0@ �e

e

1A
L

as �1 and for singlet eR as �2.

When the symmetry is broken, the two neutral currents Jem� and J3� will mix to form two

physical currents, out of which one must be electromagnetic current and other will be a new

neutral current. These currents will couple to physical vector bosons A� and Z� as follow;

g2J
3
�W

3
� +

1

2
g
0
JY� B� = eJem� A� + gzJ

z
�Z�, (2.2.13)

where

A� = cos �WB� + sin �WW
3
� , (2.2.14)

and

Z� = � sin �WB� + cos �WW 3
� ; (2.2.15)

�W = Weinberg or weak angle

or

W 3
� = sin �WA� + cos �WZ�; B� = cos �WA� � sin �WZ� (2.2.16)
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Thus we get

g2J
3
�(sin �WA� + cos �WZ�) +

1

2
g
0
JY� (cos �WA� � sin �WZ�) = eJem� A� + gzJ

z
�Z� (2.2.17)

So

eJem� = g2J
3
� sin �W +

1

2
g
0
cos �WJ

Y
� = �e(eL
�eL + eR
�eR) (2.2.18)

but using eq.(2.2.16), we have

eJem� =
1

2
g2 sin �W (�eL
�eL+�L
��L)+

1

2
g
0
cos �W ((�1)eL
�eL+(�2)eR
�eR+(�1)�L
��L).

(2.2.19)

Comparing eq (2.2.18), and eq.(2.2.19), we get the following relations

g2 sin �W = e and g
0
cos �W = e

tan �W =
g2
g0
,

and similarly

gzJ
z
� = g2J

3
� cos �W � 1

2
g
0
sin �W (2.2.20)

=
g2

cos �W
(�eL
�eL(

1

2
� sin2 �W ) +

1

2
�L
��L + sin

2 �W eR
�eR), (2.2.21)

Jz� with corresponding coupling gz was the new current. This was the main indication of

electroweak uni�cation.

2.3 The Electroweak Standard Model

The Electroweak Standard Model (SM) is the most accepted model for fundamental electroweak

interactions [18]. It is a model whose foundation lies on the principle of symmetry. The

gauge group associated with its symmetry is SU(2) � U(1). This symmetry is broken down

spontaneously by introducing the Higgs Mechanism [17]. There are three components that

makes the electroweak part of the SM.

1) Quaks and Leptons: The three generations of quarks and leptons are currently thought to
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�
u
d

�
1st

�
c
s

�
2nd

�
t
b

�
3rd

Table 2.3.1: Three generations of Quarks

�
�e
e�

�
1st

�
��
��

�
2nd

�
��
��

�
3rd

Table 2.3.2: Three generations of Leptons

be the ultimate constituents of matter. The discovery of two heavy quarks charm and bottom

along with tau lepton (�) in 1970s presented a mystery known as generation puzzle

where all up have charge +2
3e and all down have �

1
3e: A quark can only change its �avour

through weak interactions. For leptons we have exactly the three generations, just like quarks.

Similarly we also have three generations of anti-quarks and anti-leptons.

2) Force Carriers: Quarks and leptons interact through four types of forces. The gauge

bosons of spin 1 are mediating these interactions. The electromagnetic and the weak interac-

tions are uni�ed as electroweak interactions in the SM. 
;W� and Z are the gauge bosons for

electroweak interactions.

3) Higgs Mechanism: It is the third component of the SM, and is responsible for the mass

acquisition of gauge bosons. In this regard, we need some theoretical bases for the complete

understanding of the SM.

2.4 The Theoretical Bases

The SM is a gauge theory which should accommodate the massive as well as massless gauge

bosons. But the inclusion of the mass term will destroy the symmetry of the theory. So,

an alternative approach of putting the mass term by hand instead, should be adopted. That

approach is known as Higgs mechanism which breaks the symmetry spontaneously and gives

masses to gauge bosons.
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(a) Gauge invariance

Gauge invariant theories remain invariant under gauge transformations of the fermion �elds:

 ! U : (2.4.1)

U is taken as a phase factor for abelian transformations or unitary matrix for non-abelian

transformations. The transformations are acting on the multiplets of the fermion �eld  . Now,

if we demand that the theory is local gauge invariant then U depends on the space time point

x, the usual space-time. We should also replace @� with covariant derivative D� which contains

a new vector �eld V�:

i@� ! iD� = i@� � gV�, (2.4.2)

g is representing a universal gauge coupling of the system. Local gauge transformations are

also transforming the gauge �eld by a rotation and a shift:

V� ! UV�U
�1 + ig�1 [@�U ]U

�1: (2.4.3)

But curl F of V�,

F�� = �ig�1 [D�; D� ] (2.4.4)

is only rotated.

The Lagrangian of the system of spin12 fermions and gauge bosons for massless particles can

be written as:

L [ ; V ] = � iD � 1
2
TrF 2. (2.4.5)

It incorporates the following interactions:

Fermion-gauge bosons couplings

�g� V  . (2.4.6)

Three bosons couplings

igTr (@�V� � @�V�) [V�; V� ] (2.4.7)
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Four boson couplings
1

2
g2Tr [V�; V� ]

2 . (2.4.8)

(b) Higgs Mechanism

The Higgs mechanism uses the idea of the spontaneous symmetry breaking to generate the

masses of vector bosons. The SU(2) � U(1) gauge invariance keeps massless gauge bosons,

since the mass term for the gauge bosons violates gauge invariance. The Higgs mechanism

incorporates this requirement by beginning with a gauge invariant theory and massless gauge

bosons. Z0 and W� were acquiring their masses by the breakup of the local gauge symmetry

SU(2)L � U(1)Y spontaneously i.e.

SU(2)L � U(1)Y ! U(1)em. (2.4.9)

It is done by the introduction of a self-interacting complex scalar �eld, �, which transforms as

an SU(2) doublet. The �eld � and its complex conjugate contain four independent �elds. Spon-

taneous symmetry breaking (SSB) was achieved by providing a nonzero vacuum expectation

value to one of the neutral �elds,

h�i � h0 j�j 0i = vp
2
6= 0:

Out of the four �elds in the Lagrangian before SSB, three �elds are giving the longitudinal

degrees of freedom for the W�and Z0 (vector bosons) ; the photon still remains massless, being

attached with the remaining symmetry group U(1)em-generators.

This theory predicted a neutral scalar particle for the physical sector. This is so-called

Salam-Weinberg Higgs particle, which SU(2)�U(1) model predicts to exist. This long awaited

(predicted in 1964) particle was discovered in 2012 at LHC.

All bosons and fermions take their masses by interacting with Higgs doublet through Yukawa

couplings. Although, the SU(2)�U(1) model gives prediction for the Higgs particle couplings

with all the existing particles but it does not give any hint regarding its own mass. This could

lie in the foundation of Weinberg-Salam theory, because Higgs particle mass was taken as a

function of the unknown quartic Higgs-boson coupling constant.

13



States
Weak isospin

T T3
Weak hypercharge Charge Q

e of lepton/quark

�e; ��; ��
1
2 +1

2 �1 0

e�L ; �
�
L ; �

�
L

1
2 �1

2 �1 �1
e�R; �

�
R; �

�
R 0 0 �2 �1

uL; cL; tL
1
2 +1

2 +1
3 +2

3

uR; cR; tR 0 0 +4
3 +2

3

d
0
L; s

0
L; b

0
L

1
2 �1

2 +1
2 �1

3

d
0
R; s

0
R; b

0
R 0 0 �2

3 �1
3

Table 2.5.1: Hypercharge and Isospin Relation with electric Charge

2.5 Formulation of the Electroweak Standard Model

The Matter Sector

The fundamental fermions appear as left handed weak isospin doublets and right handed weak

isospin singlets in the fundamental representation of the group SU(2)�U(1). It is also realized

that the symmetry pattern remains same in the generations of leptons,

24 �e

e�

35
L

e�R;

24 ��

��

35
L

��R;

24 ��

��

35
L

��R. (2.5.1)

Here we do not have right handed neutrinos. Just like leptons, we have three generations for

quark sector, 24 u

d

35
L

uR;dR;

24 c

s

35
L

cR; sR;

24 t

b

35
L

tR; bR. (2.5.2)

This symmetry structure cannot be derived by the SM. It is also an experimental fact that in

weak interactions the parity is not conserved. The di¤erent isospin assigned to the left handed

and right handed �eld will produce maximal parity violation in the weak interactions. So the

experimental fact is incorporated in the natural way.

The Gell-Mann-Nishijima relationship is links the electric charge Q with basic quantum

numbers given by the following equation and the numbers are provided in table 2.4.1.

Q = I3 +
Y

2
.
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Interactions

The interactions of the SM are summarized by the three terms in the fundamental Lagrangian:

L = LG + LF + LH (2.5.3)

which are quanti�ed as;

Gauge �elds

SU(2)L � U(1)Y is a non-Abelian group which is generated by the isospin operators I1, I2, I3

and the hypercharge Y . Each of these is associated with a vector �eld: a triplet of vector �elds

W 1;2;3
� with I1;2;3 and a singlet �eld B� with Y . The iso-triplet W a

� , a = 1; 2; 3 and iso-singlet

B� make the �eld strength tensors

W a
�� = @�W

a
� + @�W

a
� + g2"abcW

b
�W

c
� ,

B�� = @�B� � @�B�, (2.5.4)

g2 is de�ned as the coupling constant for SU(2):

Using the equation (2.5.4) the pure gauge �eld Lagrangian can be written as

LG = �
1

4
W a
��W

��;a � 1
4
B��B

�� . (2.5.5)

It is invariant under the SU(2)L � U(1)Y transformation.

Fermion �elds and fermion-gauge interactions

The left-handed fermion �elds of each lepton family can be written as:

 Lj =

0@  Lj+

 Lj�

1A
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Where the family index j are grouped into SU(2) doublets with component index � = �, and

the right-handed �elds into singlets

 Rj =  Rj�:

Each left and right-handed multiplet is an eigenstate of the weak hypercharge Y such that the

relation (2.5.4) is ful�lled. The covariant derivative,

D� = @� � ig2IaW a
� + ig1

Y

2
B�, (2.5.6)

induces the fermion-gauge �eld interaction via the minimal substitution rule

LF =
X
j

� 
L
j i


�D� 
L
j +

X
j;�

� 
R
j�i


�D� 
R
j�. (2.5.7)

g1 represents the coupling constant of U(1).

Higgs �eld and Higgs interaction

The spontaneous breaking of the SU(2)L � U(1)Y symmetry leaves the electromagnetic gauge

group U(1)em unbroken. A single complex scalar doublet �eld with hypercharge Y = 1

� (x) =

0@ �+ (x)

�0 (x)

1A (2.5.8)

is coupled to the gauge �elds through

LH = (D��)
+ (D��)� V (�) (2.5.9)

with the covariant derivative

D� = @� � ig2IaW a
� + ig1

B�
2
.

The Higgs �eld potential

V (�) =
1

2
�2�+�+

�

4

�
�+�

�2 (2.5.10)
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is constructed in such a way that vacuum expectation value of � becomes massless, i.e.

h�i = 1p
2

0@ 0

v

1A ,
with

v =
2�p
�
. (2.5.11)

The �eld in eq (2.5.8) can be written as

� (x) =

0@ �+ (x)

(v +H (x) + i� (x)) =
p
2

1A , (2.5.12)

where the �eld components �+, H, � have zero vacuum expectation values. The pictorial view

of Higgs potential is given in 2.5.

Using the invariance of the Lagrangian, the components �+, � are gauged away; this means

that they are unphysical (Higgs ghosts or would be Goldstone bosons). In this particular gauge,

the unitarity gauge, the Higgs �eld takes the simple form

� (x) =
1p
2

0@ 0

v +H (x)

1A :

The real �eld H (x) which describes small perturbations about the ground state and it describes

the physical Higgs �eld.The Higgs �eld has triplet and quartic self couplings arising from V

and couplings to the gauge �elds via the kinetic term of eq.(2.5.9).

In addition to this, Yukawa couplings of the fermions are introduced to make the fermion

massive. The Lagrangian for the Yukawa term is written as:

LY ukawa = gl
�
�L�

+lR + �lR�
��L + �lL�

0lR + �lR�
0�lL

�
(2.5.13)

17



And similarly for quarks, we have

LY ukawa = �gd(uL�+dR + dR��uL + dL�0dR + dR�0�dL)

�gu(�uR�+dL � dL��uR + uR�0uL + uL�0�uR). (2.5.14)

The fermion mass terms follow from the v- part of �0 and in the unitary gauge [18] we have

LY ukawa = �
X
f

mf f f �
X
f

mf

v
 f fH. (2.5.15)

.

The Lagrangian 2.5.3, describes not only the laws of physics for the electroweak interactions

between the leptons, but also provides the self-interaction between the gauge �elds. Moreover,

the speci�c form of the Higgs interaction generates the mass of the particles and the Higgs

boson itself [19].

Masses and eigenstates of the particles

If we use the unitary gauge then the mass terms are obtained by this substitution �! 0; vp
2
, in

the basic Higgs Lagrangian (2.5.9). The SU(2) symmetry appears to be gone, but it is still there

in hidden form ; the resulting Lagrangian contains an apparent local gauge symmetry, U (1) ;

which can be recognized as the electromagnetic gauge symmetry: SU(2)L � U (1)Y ! U (1)em

[19].

Gauge Vector Bosons

The mass matrix of the gauge bosons, In the basis
�
~W;B

�
; mass matrix of the gauge bosons

has the following form:

M2
V =

1

4
v2

0BBBBBB@
g2W

g2W

g2W gW �gW

gW �gW �g2W

1CCCCCCA : (2.5.16)
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V (�) = 1
2�

2�+�+ �
4

�
�+�

�2
Figure 2.5.1: Higgs Potential
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This gives the mass of the vector boson in non diagonal form. The mass of the charged weak

bosons is obvious

M2
W� =

1

4
g2W v

2.

Since eigenstates are related to the two masses M2
W� , the charged W� boson state can be

de�ned as

W�
� =

1p
2

�
W 1
� �W 2

�

�
. (2.5.17)

For the neutral bosons (
; Z), the mass term from the matrix

M2
VN
=
1

4

0@ g2W gW �gW

gW �gW �g2W

1A v2, (2.5.18)

Since det(M2
VN
) = 0, therefore one of the eigenvalue of M2

VN
is zero. The above matrix is

diagonalized by de�ning the �elds A�, Z�:

A� = cos �WB� + sin �WW
3
� , (2.5.19)

Z� = � sin �WB� + cos �WW 3
� . (2.5.20)

In matrix form the above equations can be written as follows;

0@ A�

Z�

1A =

0@ cos �W sin �W

� sin �W cos �W

1A0@ B�

W 3
�

1A . (2.5.21)

Thus we get

M2
A = 0 A� : photon (2.5.22)

M2
Z =

1

4

�
g2W + �g2W

�
v2

=
1

4
g2W v

2

�
1

cos2 �W

�
, (2.5.23)

where

tan �W =
�gW
gW

(2.5.24)
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i.e. the electroweak mixing angle �W (Weinberg angle) is de�ned by the ratio of the SU(2) and

U(1) couplings.

Introducing a parameter

� =
M2
W

M2
Z cos

2 �W
,

and using the value of M2
Z , we get

� = 1.

This is due to the fact that Higgs �eld is a doublet under SU(2)L [21].

Experimental value of the mixing angle, sin2 �W ' 0:23 [22], shows that the mixing e¤ects

are large. This fact strengthens the argument that the weak and the electromagnetic inter-

actions produce a uni�ed electroweak interaction in spite of the fact that the SU(2) � U (1)

symmetry is not so simple. This provides us with an evidence that the weak and the electro-

magnetic interactions are combined in the Salam-Glashow-Weinberg theory of the electroweak

interactions.

The ground-state or vacuum expectation value of the Higgs �eld is also linked with the

Fermi coupling constant. When the mass relation M2
W� = 1

4g
2
W v

2; is combined with the �

decay low-energy relation GF =
p
2 = g2W =8M

2
W , the value of v becomes:

v = [1=
p
2GF ]

1=2

' 246GeV . (2.5.25)

The typical range for electroweak phenomena, de�ned by the weak masses MW and MZ , is of

the order 100GeV .

Fermions

The fermions acquire their masses by interacting with the Higgs ground state through Yukawa

couplings:

Mf = gf
vp
2
. (2.5.26)

Although the chiral fermions acquire their masses via Higgs mechanism, the Standard Model is

unable to give the experimental values of Yukawa couplings gf , and as a result the masses are
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not predicted. The true theory of the masses is yet to develop.

The Higgs Bosons

The real �eld H (x) which is just quantum oscillations about the minimum energy state provides

us the mass of the physical neutral scalar particle:

MH = �
p
2 =

p
�v. (2.5.27)

As the quartic coupling � is an unknown parameter, so the mass of the Higgs can not be

calculated in the SM.

We conclude this session with these remarks:

A de�nite prediction of electroweak uni�cation is the existence of weak neutral currents with

the same e¤ective couplings as charged currents. This current has been found experimentally.

The existence of the vector bosons W�, Z with de�nite masses have also been discovered. The

theory has one free parameter: sin2 �W .

2.6 Quantum Chromodynamics

For the completeness of discussion on the SM, we give a very brief introduction of the strong

interaction (which is not of our interest here). The third interaction accommodated in the SM

is strong interaction. There are additional quantum numbers given to each quark (known as

colors), namely, Red,Green and Blue. For anti-quarks, we have anti colors (anti-Red, anti-

Green, anti-Blue) . The fact that quarks carry colors as well as electric charge means that they

participate in all types of interactions. The quantum �eld theory describing strong interactions

is known as Quantum Chromodynamics (QCD). The SM incorporates QCD via SU(3) gauge

symmetry. Similar to SU(2);having 22 � 1 = 3 gauge bosons, QCD have 32 � 1 gauge bosons

known as gluons. There are eight gluons and each carries the color combination of

rg; rb; gr; gb; br; bg;
(rr � gg)p

2
and

(rr + gg � 2bb)p
6

. (2.6.1)
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Gluons are the carriers of strong force and they keep the quarks only in the bound states and

these bound states are color singlets. If the bound state is made up of a quark and anti-quark,

it is named as meson; and if they are made up of three quarks then they are known as baryons.

Baryons and mesons are collectively known as hadrons.
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Chapter 3

Weak decays in The Standard Model

Slow decay of unstable particles is due to weak interactions. Weak force is the only force which

exists between all leptons and quarks and is mediated by W� and Z0: Typical decay time

for strong interactions is 10�23Sec; for electromagnetic it is 10�16 but weak interaction takes

� 10�8Sec. Weak interactions can be classi�ed into three types:

(a) Pure Leptonic Interactions

Pure leptonic interactions involve only leptons in their initial and �nal state. The examples are

�� ! e��e�� (3.0.1)

�+ ! e+�e��

and

�� ! ������ (3.0.2)

�+ ! e+�e��

These interactions obey pure vector minus axial vector current (V �A) theory.
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(b) Semileptonic Interactions

In semileptonic interactions, hadrons decay into hadrons and leptons. The hadrons may be

�avored (carrying s; c or b quarks �avour) or non-�avored (carrying only u or d quarks). So

semileptonic decays can be further divided into two categories:

(1) Strangeness Conserving Interactions (�S = 0)

Strangeness Conserving Interactions are without strange hadrons in the initial or �nal state.

These can be divided into three types:

1) Neutron decay

n! p+ e� + �e. (3.0.3)

2) Neutrino reaction (elastic and inelastic)

�� + n! p+ ��, (3.0.4)

�� ! e��e or ����, �� ! � + e� + �e. (3.0.5)

3) Lepton capture

e� + p! n+ �e, (3.0.6)

�� + p! n+ ��. (3.0.7)

(2) Flavour Changing Interactions

a) Strangeness changing j�S = 1j

�0 ! p+ e� + �e, (3.0.8)

K+ ! �+ + ��, (3.0.9)

K+ ! �0 + �+ + ��. (3.0.10)
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b) Charmness changing j�c = 1j, �S = 0

�+c ! �0 + e+ + �e, (3.0.11)

Here �+c is a charmed baryon

c) Bottomness changing j�b = 1j, �S = 1

�0b ! �+c + e
� + �e. (3.0.12)

(c) Non-leptonic Weak Processes

Non-leptonic Weak Processes involve only the hadrons (mesons and baryons) in initial and �nal

states. Example are

1) j�S = 1j

�0 ! p+ ��, K� ! �� + �0, K0
s ! �+ + ��, (3.0.13)

2) j�c = 1j

D0 ! K� + �+;�+c ! �0 + �+;�+c ! �0 +K+ + �0, (3.0.14)

3) j�b = 1j

�0b ! �+c + �
�. (3.0.15)

Leptonic and semileptonic decays of hadrons provide a unique way of studying the rich and

diverse phenomenology of weak interactions. These decays can have a charge lepton in the

�nal state which is the cleanest experimental signature for W mediated process. These are also

simple theoretically, and provide a means to measure standard model parameters as well as

detailed studies of dynamics of the decay.

Historically, � decay was the �rst semileptonic decay that led not only to a new era in weak

interactions but also to introduction of a new particle named neutrino in the particle physics

dictionary. In beta decay weak transition d ! uW� and then W� ! e��e, was responsible

for the � decay. It was the only weak process discovered before the discovery of muons, pions

and kaons in cosmic rays in late 1930s and 1940s. Drastic change in studies of weak decays

came with the invention of modern accelerators. The decay process k ! �e��e; showed that
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kaons could decay exactly in a similar manner as � decay: s ! uW� and then W� ! e��e:

Such decays in which no hadrons are present in the �nal state, have also played an important

role in revealing the underlying secrets of weak interactions. The amazing 10�4 suppression of

�� ! e��e as compared to �� ! ���� was well explained by weak interactions, and universal

weak couplings of leptons were con�rmed by precision measurements.

3.1 Cabibbo Theory

At the time when there were only three quarks (u; d and s); known, there were two phenomena

motivated Cabibbo [12] to present his theory for weak decays. That is:

(a) Universality of Weak Coupling

When the value of weak coupling GF was calculated experimentally for the reaction

n! p+ e� + �e (3.1.1)

represented by quark level process

(udd)! ( uud) + e� + �e,

it was G�F � (1:136 � 0:003) � 10�5 GeV �2(in natural units): But when it was calculated for

pure leptonic reaction

�� ! e� + �e + �� (3.1.2)

it was G�F � (1:6632 � 0:00002) � 10�5GeV �2: So experimental fact was G
�
F > G�F which did

not match with theory.

(b) Suppression of �S = 1 Weak Interactions

When the strangness changing decays

K+ ! �� + �� or (us)! �� + �� (3.1.3)
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and

�� ! n+ e� + �e or (dds)! (ddu) + e� + �e, (3.1.4)

were compared with

�+ ! �� + ��, (3.1.5)

and

n! p+ e� + �e, (3.1.6)

respectively, then it was found that K+ decay was suppressed 20% as compared to �+. The

only di¤erence in the above mentioned decays is s and d: This was also the case with hadronic

and semileptonic decays of hadrons.

The solutions to these problems were provided by Cabibbo. He presented the idea of rotated

states and argued that weak eigen states were rotated (by an angle � known as cabibbo angle

�c � 12�) with mass eigen states:Weak coupling for these rotated states were exactly equal

to that for leptonic doublets. For beta decay, the coupling was G�F cos(�c). The experimental

di¤erence between two couplings was removed theoretically with the help of �c. In this way the

doublet of quarks 0@ u

d
0

1A ,
where

d
0
= d cos(�c) + s sin(�c), (3.1.7)

restored the universality of weak coupling. Now the cross generation interaction among the

mass eigen states of quarks was possible but with less strength. For s ! u; the coupling

was G�F Si s(�c) instead of G
�
F cos(�c) which was responsible for 20% suppression of �S = 1

processes.
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3.2 GIM Mechanism

Although the Cabbibo theory successfully explained the relationship between di¤erent branch-

ing ratios (Br) of the decays, but, it was silent for very small decay rate of

K0
L ! �+ + �� (3.2.1)

This silence was broken by Glashow, Iliopous and Maiani in 1970 when they collectively intro-

duced GIM mechanism [13]. It can be understood by taking two �S = 1 decays

K+ ! �+ + �� or (us)! �+ + ��with Br 64% (3.2.2)

and

K0
L ! �+ + �� or (ds)! K0

L ! �+ + ��with Br 7:37� 10�7 (3.2.3)

. Even for K+ ! �+ + � + � and K+ ! �0 + �+ + �� semileptonic decays the ratio is

K+ ! �+ + � + �

K+ ! �0 + �+ + ��
� 10�5. (3.2.4)

In the K0
L ! �++�� and K+ ! �++�+� reactions, two down quarks (strangeness changing

neutral current, SCNC) were involved and cabbibo suppression mechanism or any other theory

could not provide any satisfactory answer for such small Br. Such small Br demanded the

cancellation of SCNC at tree level. Cabbibo theory with three quarks gave the current:

+

Figure 3.2.1: u and d bar weak neutral current diagrams
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(uu+ dd cos2 �c + ss sin
2 �c)| {z }

�S=0

+ (ds+ ds) cos �c sin �c| {z }
�S=1

. (3.2.5)

With the proposal of fourth quark �c�and s
0
= s cos �c� d sin �c; Glashow, Iliopous and Maiani

showed that the current became

+

Figure 3.2.2: c quark and s bar neutral current diagrams

(cc+ ss cos2 �c + dd sin
2 �c)| {z }

�S=0

� (ds+ ds) cos �c sin �c| {z }
�S=1

. (3.2.6)

Over all, there were no tree level contributions for �S = 1; however, �S = 0 reactions occurred

at tree level; and for these cabibbo angle was not contributing.

Figure 3.2.3: Cabbibo Rotated states

0@ d0

s0

1A =

0@ cos �c sin �c

� sin �c cos �c

1A0@ d

s

1A . (3.2.7)

It does not mean that �S = 1 processes can not occur; they could occur at loop level given

by �g (3.2.4),
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+

Figure 3.2.4: K zero long decaying to mu mu bar

0@ d0

s0

b0

1A =

0@ Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

1A0@ d
s
b

1A .
Table 3.3.1: CKM matrix

3.3 The Cabibbo-Kobayashi-Maskawa (CKM) Matrix

The generalization of GIM mechanism for three generations was CKM matrix [12, 14]. Here

instead of only SCNC cancellation at tree level, Flavour Changing Neutral Currents (FCNC)

cancellation also occurred at tree level,

Vud = C12C13; Vus = S12C13; Vub = S13 exp(�i�13),

Vcd = �S12C23 � C12S23S13 exp(i�13),

Vcs = C12C23 � S12S23S13 exp(i�13),

Vcb = S23C13,

Vtd = S12S23 � C12C23S13 exp(i�13),

Vts = S12S23 � C12C23S13 exp(i�13),

Vtb = C23C13.

Where Cij = cos �ij ; Sij = sin �ij ; i; j = 1; 2; 3: The angle �12 = �C ; phase angle �13 was
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responsible for CP violation.

Latest experimental [24] values of CKM elements are

0BBB@
0:974 0:225 0:003

0:225 0:973 0:0412

0:008 0:040 0:999

1CCCA ,
when �13 = �23 = 0

0BBB@
cos �12 sin �12 0

� sin �12 cos �12 0

0 0 1

1CCCA .

Consequences of GIM and CKM

(1) Cross generation interaction among the three generations was made possible

(2) Absence of �avour changing neutral current (FCNC) at tree level.

(3) CP violation was incorporated.

(4) Mass eigen states of quarks are di¤erent from �avour eigen states and weak doublets

are; 0@ u

d0

1A0@ c

s0

1A0@ t

b0

1A ,
or 0@ u0

d

1A0@ c0

s

1A0@ t0

b

1A ,
instead of 0@ u

d

1A0@ c

s

1A0@ t

b

1A .
3.4 Operator Product Expansion Approach

The most commonly used theoretical tool for the calculation of decay rates of a FCNC decay

is the operator product expansion (OPE) approach. The idea behind this approach is that the

energy scale for the relevant interaction (weak decays of hadrons having u,d,s,c and b quark)
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is very small as compared to the mass of W boson (propagator in this case). The propagator

of W boson has the form 1
q2�m2

W
, here q is the momentum transferred by the W boson. The

amplitude can be expressed as an expansion of q2

m2
W
term:

M =
�4GFp

2
VCKM�

i
Ci(�)hf jQi(�)jMi[1 +O(

q2

m2
W

)]. (3.4.1)

Here, � is taken as renormalization scale. Short distance physics (shorter than ��1) is contained

in the Wilson coe¢ cients Ci, while long distance physics (Longer than ��1) is element in the

hadronic matrix element hf jQi(�)jMi of the local operator Qi: There are many in�nite terms

in OPE , but, higher dimension operators are contributing less as they are expressed by the

powers of q2

m2
W
. So, the contribution of higher powers in the expansion can be ignored easily.

This is exactly the same thing as Heff , where the short range interactions of massive gauge

bosons can be replaced by the point like interactions. In order to obtain Heff ; the product of

two charge-current operators is expanded as a series of local operators. The contribution of

these operators Qi, is weighted by e¤ective coupling known as Wilson coe¢ cients Ci

Heff =
�4GFp

2
VCKM�

i
Ci(�)Qi. (3.4.2)

Small distance contribution can be calculated by using perturbative theory because of small

�s. But for long distance QCD, uncertainties will be very large and we have to use some model.

� is taken 1GeV for kaons decay and few GeV for D and B decays [26].

3.5 E¤ective Hamiltonian

All FCNC processes have same set of basic e¤ective vertices. The e¤ective Hamiltonian

(Heff );for FCNC decay is an expansion in terms of four fermion local operators which describe

the e¤ective vertices. These local operators can be categorized into six classes [29].
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3.6 Rare Weak Decays of Pseudoscalar mesons

Such decays are not very common and their branching ratios are very small and can occur at

one loop level or higher. Such decays are very useful for the search of new physics. If we have

lepton in �nal state then these are divided into two general types

(1) Leptonic Decay

M ! l�l� ,

(2) Semileptonic Decay

M !M 0l�l� ,

where leptons l� and l�can be charged or neutral, M > M 0 ; (M;M 0 = �;K;D and B mesons)

Standard model only allows � = � but we are interested in weak neutral current, so leptons

are only neutrinos. In this case, only short range force is responsible for the connection between

hadronic and leptonic currents. So, perturbation theory can be used easily for the calculation

and these serve as test for quantum mechanics. These processes can be represented by quark

level process

qi ! qj����.

In the study of rare decays of mesons we use e¤ective Hamiltonian (EH) which is a low

energy approximation of the whole theory. EH is obtained by the use of operator product

expansion (OPE) and renormalization group (RG). By this approach we can easily separate

short-distance contributions and study them within perturbative QCD. The long distance con-

tributions are encoded in the matrix elements of the operators. These matrix elements require

non-perturbative methods for their calculation and hence they are model dependent and carry

uncertainties. In our case Hamiltonian can be written as a product of hadronic and leptonic cur-

rents and matrix element can be obtained from an experimentally measured tree level process.

Hence, these theoretically clean processes are used for the search of new physics beyond Stan-

dard Model. Such processes can be inclusive and exclusive, but inclusive are di¢ cult to measure

experimentally, so we concentrate only on exclusive processes. The feynman diagrams for these

processes are shown in the �g. 3.6.1.
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Figure 3.6.1: Standard Model FCNC diagrams having two neutrinos in the �nal state

3.7 Theory of qi ! qj��

As shown in �g. (3.6.1), these decays proceed through an e¤ective FCNC induced by penguin

and box diagrams. Inclusive qi ! qj�� decays are considered as free of non-perturbative e¤ects

due to quark-hadron duality. For exclusive decays there are necessary �nal state corrections.

Due to the fact that we have only form factors of hadronic currents, special attentions are

given to B ! (K;�)��; D ! (K;�)�� and K ! ��� . Form factors are eliminated by using

experimentally found tree level decays. That is why these decays are thought to be theoretically

clean.

(a) b! q�� Decays

The decay b! (s; d)�� ,both inclusive and exclusive, are thought to be very clean rare decays.

These are extremely sensitive to the new physics, even though it appears at very high energy

scale. Since neutrinos can only interact through weak interactions, (short range interactions),

thus perturbation theory is fully applicable for calculation. Here, QCD is a¤ecting only hadronic

side of the interactions, making these e¤ects, almost controllable. The decay rates of such decays

are small and these would be of prime interest for a super B factory.

The inclusive decays are free from non-perturbative e¤ects because of quark-hadron duality,

but for exclusive decays, �nal state correction must be included. The e¤ective Lagrangian for
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B ! Xs;d�� is given by

Heff =
GFp
2

�em

2� sin2 �W
VtbV

�
tsX(

m2
t

m2
W

)(q
�PLb)(�

�PL�) + h:c. (3.7.1)

Here q = s; d: The GIM mechanism comes into play for the short distance Wilson coe¢ cient X

and produce
( m

2
c

m2
W
)

(
m2
t

m2
W
)
= O(10�3).

Despite the fact that the CKM factor is unable to enhance charm quark contribution, it nev-

ertheless gives a way to the dominant contribution of the top quark only. After summing up

neutrino �avours, the branching ratio (Br) of B ! Xs;d�� is obtained as:

Br(B ! Xs��) = Brexp(B ! Xc��)
�2em

4�2 sin4 �W

jVtsj2
jVcbj2

X2(
m2
t

m2
W
)�

f(m
2
c

m2
b
)�(m

2
c

m2
b
)

where f(z) = 1� 8z + 8z3 � z4 � 12z2 ln(z) with z = m2
c

m2
b

and �(z) = 0:88, � = �(0) = 0:83.

A useful discussion about the factors can be found in [25] and [26]. With the latest values

of the constants, we have the Br

Br(B ! Xc��)SM = 3:6� 10�5.

For exclusive reaction, the e¤ective Hamiltonian will be

HSM
eff =

GFp
2

�em

2� sin2 �W
�

�;�=e;�;�
V �tbVtdX(xt))� (db)V�A(����)V�A,

where V �A in the subscript represents the vector and axial vector current respectively. For

such reactions, charm quark contribution in the loop is negligible in contrast to K decay due to

smallness of o¤-diagonal CKM element; and X(xt) is the loop integral of top-quark exchange

[27]. For this reaction, we have two penguin and one box diagrams [26]; and sum of all gives

the contribution
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X(xt) = �X
xt
8
[
xt + 2

xt � 1
+
3xt � 6
(xt � 1)2

lnxt].

Here xt =
m2
t

m2
w
and �X = 0:985 is the QCD small distance correction. By using the above

Hamiltonian, we can obtain Br as

Br(B+ ! �+��)SM = riso
3�2em

jVubj22�2 sin4 �W
jV �tbVtdX(xt)j2Br(B+ �! �0l+�l),

riso ' 0:94 is the isospin breaking e¤ect for B. It is discussed for K mesons in [28] which

depends on, at least, three things: (1) mass e¤ect (2) a suppression of about 4% in neutral form

factor comes from � � � mixing and (3) about 2% suppression due to absence of log leading

correction.

(b) s! d�� Decays

For strangeness changing FCNC, we have only one possibility: s! d . The e¤ective hamiltonian

is given by

HSM
eff =

GFp
2

�em

2� sin2 �W
�

�;�=e;�;�
(V �cdVcsX

l
NL + V

�
tdVtsX(xt))� (sd)V�A(����)V�A, (3.7.2)

Where xt =
m2
t

m2
W
: Here, charm quark contribution cannot be ignored due to the large e¤ects

of CKM elements. The whole process is on equal footing with top quark. Such processes are

dominated by short distance physics, and reliable perturbation calculation are possible: but

short distance QCD e¤ects are the source of uncertainties. For some processes, we can have

tree level processes, which are linked with these processes by some symmetry. Such tree level

processes are used to absorb the hadronic uncertainties, making these processes theoretically

clean. For example, K+ ! �+�� has isospin linked K+ ! �0e+�:

Branching ratio (Br) of K+ �! �+�� is

Br(K+ ! �+��)

Br(K+ ! �0e+�)
= rK+

�2em
jVusj22�2 sin4 �W

�
�;�=e;�;�

jV �cdVcsX l
NL + V

�
tdVtsX(xt)j2 (3.7.3)
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As h�+ j(sd)V�AjK+i =
p
2h�0 j(su)V�AjK+i

rK+ = 0:901 is isospin e¤ect given in [28];

Using Vus = 0:2252; Vud = 0:97425; �w = 28:7�;BR(K+ �! �0e+�e) = 5:07� 10�2[78]

Br of K+ �! �+�� becomes

(7:8� 0:8)� 10�11[30].

Similarly other processes having same quark level processes can be calculated:
Br(D+

s !D+��)

Br(D+
s !D0e+�)

= �2em
jVusj22�2 sin4 �W

�
�;�=e;�;�

jV �cdVcsX l
NL + V

�
tdVtsX(xt)j2,

and
Br(B0s!B0��)
Br(B0s!B+e+�)

= �2em
jVusj22�2 sin4 �W

�
�;�=e;�;�

jV �cdVcsX l
NL + V

�
tdVtsX(xt)j2.

Although the Br(D+
s ! D0e+�) and Br(B0s ! B+e��) are yet to be observed experimen-

tally but we have very elegantly calculated values for BES-III given in [31], which can be used.

Here we are ignoring e¤ects of isospin breaking D and B mesons. A useful information about

the isospin breaking e¤ects can be found in [32, 28].

Using

Br(D+
s ! D0e+�) = 5� 10�6; Br(B0s ! B+e��) = 4:46� 10�8 [31],

we calculate SM Br as:

Br(D+
s ! D+��)SM = 7:72� 10�15.

Br(B0s ! B0��)SM = 6:86� 10�17.

(c) c! u�� Decays

This is the only reaction available to study FCNC in the up sector for the bound states. Top

quark does not make any bound state and principal decay mod is to decay to b-quark.

Such processes are dominated by the long distance contributions (Figure 3.7.2) [33], so

perturbation theory is not available for the calculations. The e¤ective hamiltonian for short

distance is given by

HSM
eff =

GFp
2

�em

2� sin2 �W
�

�;�=e;�;�
[V �csVusX(xs) + V

�
cbVubX(xb)]� (uc)V�A(����)V�A (3.7.4)
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Figure 3.7.1: Long distance contribution of K decay into Pi neutrino antineurino

but, the dominant contribution for such reactions comes from long distance physics. The exam-

ples are D+
s ! K+����; D

+ �! �+���� and D0 �! �0���� . These are dominated by long

distance e¤ects and hence, new physics might improve the Br of these reactions tremendously.

3.8 Limitations of the SM

The SM is a very elegant and remarkable theory and its validity has been tested to very high

level of precision. But still, it is unable to answer many [23] questions.

(a) Phenomena not incorporated in the SM

1) Gravity. Gravity is not included in the SM. The inclusion of just "graviton" in the SM

will not serve the purpose because experimental observations are not compatible with the

SM calculations. General relativity is the successfull theory that explains the gravitational

phenomena.

2) Dark energy and dark matter. The matter explained by the SM is the visible matter

which is only 5% of the total. Cosmological calculations reveals that 26% is dark matter and

the remaining 69% is dark energy about which the SM is silent.

3) Neutrino masses. Neutrinos are treated as massless in the SM but the results from

neutrino oscillations provide the evidence for mass of neutrinos.
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Figure 3.7.2: Long distance contribution of D+ decays to Pi+ neutrino antineutrino

4) Matter-antimatter asymmetry. The dominance of matter over anti-matter in the universe

is not explained by the SM. According to the SM there should be a symmetry between matter

and anti-matter.

(b) Theoretical problems with the SM

1) Hierarchy problem in

(i) strength of forces

(ii) masses of particles

(iii) quadratic divergence in Higgs mass

All the particles in the SM acquire their mass by the SSB caused by the Higgs particle. In

the SM, quantum correction to the Higgs mass from the virtual particles loops becomes very

large even more than the mass of Higgs itself. So �ne-tuning must be introduced to cancel these

quatum correction and this �ne tuning is unnatural to many theorists.

2) Strong CP violation. Theoretically, there should be a term for CP violation in the strong

sector which is relating matter to anti-matter. There is no evidence for such term from the
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experiments.

3) Large number of parameters. There are at least 19 parameters in the SM. The values

of these parameters are taken from the experiments. But the origin of these parameter is

completely unknown in the SM.

4) Generations of quarks and leptons. Why do we have only three generation of leptons and

quarks?

5) Masses of particles. Masses are found from the experiments; but in the SM, we do not

have the answer for these masses.

May be these problems are due to the fact that it was developed for the energy scale of

O(100GeV ). We can have some more phenomena at very high energies as compared to the

previous scale. It is generally believed that standard model is a low energy approximation of a

more fundamental theory.

(c) Universality in the SM

Charge bosons W� have universal couplings with the leptons and quarks in the SM..And this

is known as "weak universality" Similarly, all three charge leptons have same coupling strength

for Z0bosons and all three �avors of neutrino have same coupling with Z0. This phenomenon

is called "lepton universality". For the massive neutrinos we can have mixing in the leptonic

sector too, just like quark sector and there will be non universal weak interactions.

41



Chapter 4

Non Standard Neutrino Interactions

4.1 Introduction

Super-Kamiokande [34] was the �rst experiment that established the oscillations of neutrinos

as a leading phenomenon behind �avour transitions of neutrinos. Later on, SNO, KamLand,

MINOS, MINIBooNE and K2K results further put this phenomenon on �rm grounds. These

oscillations predict non zero mass for the neutrinos. Neutrino mass is the only concrete fact

against the SM. There are many dedicated experiments that (like, Daya Bay, ICARUS, IceCube,

KATRIN, Double Chooz, NovA, RENO, OPERA and T2K) are in search of missing neutrinos

parameters.

We can have new physics which may appear as unknown couplings of neutrinos. These

couplings are taken as non-standard neutrino interactions (NSIs). NSIs could e¤ect the product,

propagation and detection of neutrinos.

4.2 Neutrino Oscillations

Neutrinos interact through weak interactions only and for many years it was treated as massless

particle. After the discovery of neutrino �avor transition mechanism it has become evident

that neutrinos have mass. With this development, it was proved that the �avor eigen states

of neutrinos are di¤erent from mass eigen states, which is analogous to quarks. The di¤erence

from quarks doublet comes from charge leptons for which mixed states do not occur. In leptonic
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sector we have PMNS (Pontecorvo�Maki�Nakagawa�Sakata) matrix just like CKM matrix [35]

0BBB@
ve

v�

v�

1CCCA = U

0BBB@
v1

v2

v3

1CCCA =

0BBB@
Ue1 Ue2 Ue3

U�1 U�2 U�3

U�1 U�2 U�3

1CCCA
0BBB@

v1

v2

v3

1CCCA (4.2.1)

U is a unitary matrix establishing relationship between weak eigen states (ve; v�; v� ) and

mass eigen states (v1; v2; v3). It depends on mixing angles (�12; �13; �23), the Dirac CP- violating

phase �; and majorana CP-violating phases (� and �). In the standard parameterization [37],

U is written as

U =

0BBB@
1 0 0

0 c23 s23

0 �s23 c23

1CCCA
0BBB@

c13 0 s13e
�i�

0 1 0

�s13ei� 0 c13

1CCCA
0BBB@

c12 s12 0

�s12 c12 0

0 0 1

1CCCA
0BBB@

ei� 0 0

0 ei� 0

0 0 1

1CCCA (4.2.2)

cij � cos(�ij), sij � sin(�ij).

The time evaluation eq. for neutrinos, like Shrodinger eq. is given as

i
d�

dt
=

1

2E
[MM y + diag(A; 0; 0)]� � H�. (4.2.3)

Here, E is neutrino energy,M = Udiag(m1;m2;m3)U
y is representing the neutrino mass matrix,

and A = 2
p
2EGFNe is the e¤ective potential due to the charge-current weak interactions with

electrons [38, 39]. m1;m2;m3 are the masses of neutrinos and GF = (1:663787� 0:0000006)�

10�5 GeV �2 is the Fermi coupling constant [37], Ne is the electron density along the neutrino

path. The neutrino states are not pure states but quantum mixed states, thus there can be a

�avour transition during propagation. As an example, if we take two �avour mixed state of �e

and ��; then probability of conversion during oscillation along a path L is given by

P (�e ! ��;L) = sin
2(2�) sin(

�m2L

4E
) (4.2.4)
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and similarly survival probability is given by

P (�e ! �e) = 1� P (�e ! ��) = 1� P (�� ! �e) = P (�� ! ��). (4.2.5)

In 4.2.4, � is mixing angle and �m2 is mass square di¤erence. For the case of three �avours,

we have the following formula

P (�� ! �� ;L) = ��� � 4�
iij
Re(U�iU�iU�jU

�
�j)� sin2(

�m2
ijL

4E
)

+2�
iij
Im(U��iU�iU�jU

�
�j) sin(

�m2
ijL

4E
) (4.2.6)

(�; � = e; �; � ). There are many open questions for neutrinos. e.g. nature of neutrino

(Dirac or Majorana), absolute masses of neutrinos, leptonic CP-violation, sterile neutrinos etc.

But, in literature there is a widely asked question, are there NSIs (non standard neutrino

interactions)?

In the neutrino oscillation experiments, some of the neutrino parameters are found with

great precision [34, 40, 41] i.e., �m2
12; j�m2

31j; �12; �13 and �23: Other parameters like the sign

of �m2
31 along with Majorana CP-violating phases (�) and absolute scale for neutrino masses

are completely unknown. Current and future experiments might probe these parameters. New

physics such as NSIs might have e¤ects for these parameters.

4.3 Other Mechanism for Neutrino Flavor Transition

Initially, non standard neutrino interactions (NSIs) were presented as an alternative to the oscil-

lations for �avour transition. But due to careful analysis of experimental data, this assumption

is ruled out. NSIs are still present as a sub leading e¤ect along with oscillations. NSIs can

produce resonance condition [42], which will be the modi�ed version of Mikheyev-Smirnove-

Wolfenstein e¤ect [40, 41, 43].
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(a) Non Standard Neutrino Interactions (NSIs)

The operator used for NSIs can be written as [36]

LNSIeff = �2
p
2GF

24X
�=�

�ff
=P

�� (��
�L��)(f

�Pf) +

X
� 6=�

�fP�� (��
�L��)(f
0

�Pf)

35 (4.3.1)

Here �fP�� have the information about the dynamics, P = L = 1�
5
2 or R = 1+
5

2 and f

and f
0
are usually the fermions (quark or lepton) from the 1st generation. If f 6= f

0
, then

these are charged-current like NSIs, and if f = f= then these are neutral-current like NSIs, and

�ff
=P

�� � �fP�� . It is important to note that operators 4.3.1 are neither gauge invariant nor re-

normalizable. Thus we get dimension 6 operator for NSIs after integrating out heavy degrees of

freedom. In the e¤ective Lagrangian 4.3.1, S,P and T Lorentz stuctures can also be considered,

but this work assumes that only V and A stuctures are the most important. Now by using the

famous relation
GFp
2
' g2W
8m2

W

,

we obtain the e¤ective NSIs parameters [44, 45, 46]

� / m2
W

m2
x

.

Here mW = (80:385� 0:015)GeV ' 0:1TeV [37] is mass of W boson and mx is the mass scale

at which NSIs may be generated [47]. NSIs can e¤ect production, propagation and detection

of neutrinos.

4.4 Semi-leptonic Decays of Mesons in NSIs

These are the decays involving two neutrinos in their �nal state. As discussed earlier, these are

suppressed in SM and can occur only at loop level in the SM. If the neutrino �avour is also

violated then we have to use two loops instead of one in SM. But, we will keep ourself only at

one loop level in the SM. NSIs are considered to be well-matched with the oscillation e¤ects

along with new features in neutrino searches [48, 49, 50, 51, 52, 53, 54]. NSIs may conserve

�avor � = �;for this we have �fPee ; �
fP
�� and �

fP
�� known as �avour diagonal (FD). It can violate
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�avor conservation � 6= �; for which we have �fPe� ; �
fP
e� ; �

fP
�e ; �

fP
�� ; �

fP
�e ; and �

fP
�� known as Flavor

non diagonal (FND). Constraints on NSIs parameter �fP�� have been studied in References

[55, 56, 57, 58]. From scattering in leptonic sectors (f is lepton); constraints are determined

for �rst two generations �fPll (l = e,� ) by tree level processes and could be limited at O(10�3)

by future sin2 �W experiments. For third generation (�) we study decays which occur at loop

level. KamLAND data [59] and solar neutrino data [60, 61] can improve the third generation

(�) limit to (0:3) [55] . Although, the constraints on �fP�l are given by the precision experiments

but they are bounded by O(10�2) [55, 62].

(a) NSIs in Charm Rare Decays

Semileptonic decays of K and B mesons have and will continue their role for exploring NP.

But for D sector due to smallness of the branching ratios in SM and lack of experimental

data, semileptonic charm physics is di¢ cult to study. But now the data from BES-III, B

factory, Super-B and LHC-b for the rare decays will improve our knowledge of charm physics.

A theoretical estimate for CC (charge currents) decays D+
s ! D0e+�e; B

0
s ! B+e��e; D+

s !

D+e+e�and B0s ! B0e+e� is given in [63], for future data at di¤erent luminosities of these

machines. Theoretical values of NSIs could also be calculated for FCNC in charm decays. We

select D (D+
s ! K+��; D+ ! D0��;D0 ! �0��) for this purpose and analyzes them in the

frame work of NSIs.

c! u�� Decays in NSIs

The NSIs diagram of process the c �! u���� is given in Figure 4.4.1 and represented by the

Hamiltonian (eq.4.4.1)

HNSI
c�!u���� =

GFp
2
(

�em

4� sin2 �W
VcdV

�
ud�

dL
�� ln

�

mW
)(����)V�A(cu)V�A. (4.4.1)

For D+ �! �+���� decay NSIs is calculated in [55]

BR(D+ �! �+����)NSI = jV �ud
�em

4� sin2 �W
�dL�� ln

�

mW
j2BR(D+ �! �0e+�e) (4.4.2)
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Figure 4.4.1: NSIs c decays to u neutrino antineutrino

BR(D+ �! �+����)NSI = 2 � 10�8j�dL�� ln �
mW

j2and it is mentioned that as � and � could

represent any lepton, we take �dL�� � 1; �dLll= h1 for l = l= 6= � : Here ln �
mW

� 1:

We point out that the same is applicable to two other processes D+
s �! K+���� and

D0 ! �0����:

BR(D+
s �! K+����)NSI = jV �ud

�em

4� sin2 �W
�dL�� ln

�

mW
j2BR(D+

s �! K0e+�e), (4.4.3)

BR(D0 �! �0����)NSI = jV �ud
�em

4� sin2 �W
�dL�� ln

�

mW
j2BR(D0 �! ��e+�e). (4.4.4)

Using [37] Values BR(D+
s �! K0e+�e) = (3:7 � 1) � 10�3; Vud = 0:97425 � 0:00022; �em =

1
137 ;we get

BR(D+
s �! K+����)NSI = 2:22796� 10�8(�dL��)2j ln

�

mW
j2. (4.4.5)

For �dL�� � 1 and ln �
mW

� 1 ;we get BR(D+
s �! K+����)NSI = 2:22796� 10�8:

Similarly for BR(D
0 �! ��e+�e) = 2:89� 10�3, we have

BR(D0 �! �0����)NSI = 3:21068� 10�8(�dL��)2j ln
�

mW
j2 (4.4.6)

10�8will be in the range of BES-III. If it is not detected then useful limits for new physics can

be suggested.

47



Contour P lot (D0 �! �0���� )NSI as a function of �
dL
�� ; shown on

horizontal axis and new energy scale � (verticle axis)

Figure 4.4.2: Contour plot of NSIs showing dependence of NSIs on new physics scale and NSIs
parameter
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Reaction SM NSIs �dL��
�dL
ll=

l = l= 6= �

BR(D+ �! �+����)
Long Distance < 8� 10�16
Short Distance 3:9� 10�16 [65] 2� 10�8

[55]
� 1
[55]

h1

BR(D+
s �! K+����)

Long Distance < 4� 10�16[64]
Short Distance 1:5� 10�16 2:23� 10�8

[66]
� 1
[66]

h1

BR(D0 �! �0����)
Long Distance < 6� 10�16
Short Distance 4:9� 10�16 [65] 3:21� 10�8

[66]
� 1
[66]

h1

Table 4.4.1: Summary table of NSIs and bounds with d in the loop

Process SM NSIs �uL��
D+
s ! D+�� 6� 10�15

[66]
2� 10�15

[66]
O(102)
[66]

K+ ! �+�� (8� 1:1)� 10�11
[55]

5� 10�11 O(102)
[55]

Table 4.5.1: Comparison of SM and NSIs Branching Ratios and bounds on NSIs for u quark
exchange

4.5 NSIs in D+
s ! D+����

It is short distance dominant process represented by quark level process s ! d ���� just like

K+ ! �+���� for which �uL�� � 8:8�10�3
ln �

mW

is pointed out by [55] and ploted in 3D in �g.4.5.1.

NSIs diagram for s! d ���� is given in �g 4.5.2

The e¤ective Hamiltonian for such reaction is given by 4.5.1

HNSI
eff =

GFp
2
(V �usVud

�em

2� sin2 �W
�uL�� ln

�

mW
)� (����)V�A(sd). (4.5.1)

From this branching ratio of D+
s ! D+����; NSIs Br becomes

Br(D+
s ! D+����)NSI = j

�em

4� sin2 �W
Vud�

uL
�� ln

�

mW
j2BR(D+

s �! D0e+�e) (4.5.2)

Using estimated BR(D+
s �! D0e+�e) = 5 � 10�6 for BES in [63], we get NSIs Br(D+

s !

D+���� ) = 2:33153� 10�15 which could enhance SM value (� 6� 10�15) even at electroweak

scale.
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NSIs Branching Ratio of D0 ! �0����
� is new phyics scale; �dL�� new physics parameter

Figure 4.4.3: 3-D plot of NSIs

NSIs Br of K+ ! �+�� as a function of new physics
scale � and parameter �uL��

Figure 4.5.1: 3D plot of NSIs with u quark in the loop
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Diagram representing the NSIs of s! d ����
Blob is representing the New Physics contribution

Figure 4.5.2: NSIs with u quark in the loop

This cannot be detected in BES-III but there is a chance for them in B-factories or in a

future accelerator. The contour plot of Br ratio as a function of new energy scale � and �uL�� is

given in �g 4.5.3.

4.6 Summary and Discussion

We have investigated D+
s ! K+��, D0 ! �0��. These are long distance dominated processes

and are model dependent. We have found in this case that the contribution from NSIs is

very large as compared to the SM, so the SM contribution can easily be ignored, as depicted

in table 4.4.1. Whereas, D+
s ! D+�� is short distance (SD) dominant process, here SM

contribution can not be ignore, but NSIs can improve SD dominated contribution, as it appears

as an additive term, evident from table 4.5.1. This fact is depicted by the analysis of only

experimentally measured process i.e. K+ ! �+�� .as provided in the table 4.5.1 and �g 4.5.1.

The information (value of NSI ) obtained by this process can be used in D+
s ! D+�� to get

the contribution of NSI in total branching fraction. Thus branching ratios of D+
s ! K+��;

D0 ! �0�� and D+
s ! D+�� decays are 2:23� 10�8, 3:21� 10�8and 2:33� 10�15 respectively

in the frame work of NSIs. From these calculations bounds on �uL�� and �
dL
�� are O(10

�2) and � 1

respectively, �dL
��
< 1 for �; � = e; �. Hence, in the rare decays of charm meson, the long distance

dominated processes are dominated by NSIs, whereas there is a considerable enhancement in

the Br of short distance processe due to NSIs. The bounds on �dL
��
are weak as compared to
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Contour P lot (D+
s �! D+���� ) NSI as a function of �

uL
��

and new energy scale �

Figure 4.5.3: Contour plot
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Branching Ratio of NSI of D+
s ! D+����

� is new phyics scale; �uL�� is new physics parameter
This shows a strong dependence of Br on New Physics parameter and New Energy Scale

Figure 4.5.4: Plot for NSIs of Ds decay to D+, netrino and antineutrino

�uL
��
; but we do not have experimental values for either of these. This fact is providing a room

for the new physics esepecially for the reactions involving �dL
��
:
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Chapter 5

Extension of Non Standard Neutrino

Interactions to Second and Third

Generation of Quarks

Rare decays of mesons having two neutrinos in the �nal state are thought to be a clean signal

for the new physics (NP). These decays provide us with a unique opportunity to study "non

standard neutrino interactions" known as NSIs. NSIs is a very well understood phenomena

now. The e¤ective Lagrangian for it in model independent way is given in [36]

LNSIeff = �2
p
2GF

24X
�=�

�fP�� (��
�L��)(f

�Pf) +

X
� 6=�

�fP�� (��
�L��)(f

�Pf)

35 (5.0.1)

Here NSIs parameter �fP�� carries information about the dynamics. NSIs are assumed to be

well-matched with the oscillation e¤ects along with some new features in neutrino searches

[48, 49, 50, 51, 52, 53, 54]. It is believed that NSIs can have their e¤ects on neutrinos at

production, propagation and detection level. Constraints on NSIs parameter �fP�� have been

studied in many references, i.e., [67, 57, 69]. These interactions are loop induced interactions

in standard model (SM), having charge as well as neutral vertices but NSIs will a¤ect neutral

vertices only [68]. From scattering in leptonic sectors constraints are determined for �rst two

generations �fPll (l = e,� ) by tree level processes and could be limited at O(10�3) by future
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sin2 �W experiments. For third generation (�) decays which occur at loop level are studied; the

limit of O(0:3) is expected from KamLAND data [70] and solar neutrino data [60, 71]. Although,

the constraints on �fP�l are given by the precision experiments but they are bounded by O(10
�2)

[72]. It is pointed out in reference [55] that by using K+ �! �+�� the �uL�� constraints could be

O(10�2):Mostly f is taken as a lepton or quark from �rst generation (u or d). If we take f from

second and third generation of quark we have almost same constraints as for �rst generations,

�uP�� . Similar thing happen to the other partners of c, t quarks s and b: Leptons and quarks

generations are playing on equal footings and in leptonic sector we have �eP�� , �
�P
�� and even �

�P
�� ;.

Although, nobody is talking about these types of e¤ects for the second generation simply due

to the fact that the ordinary matter consist of only of �rst generation of quarks but we point

out that just like second generation of leptons, NSIs are also a¤ected by second generation of

quarks at the production of neutrinos from rare decays of mesons. These could be responsible

for the �avor violating neutrino production.

We investigate K+ �! �+��;D+
s ! D+��;B0s ! B0��;D+ �! �+��;D0 �! �0�� and

D+
s �! K+�� processes to show that three generations of quarks are a¤ecting the NSIs.

These processes can give us NP contributions in terms of NSIs D+
s ! D+�� and B0s !

B0�� are searched for NSIs with c and t quarks. Just like these three other processes D+ �!

�+��;D0 �! �0�� and D+
s �! K+�� are calculated with s and b quarks instead of d quark

in the loop. The results and comparison are provided and conclusion is given at the end of the

chapter.

5.1 Experimental Status

It is expected that at the end of this decade we will be able to detect rare decays of meson

involving neutrinos in the �nal state just like K+ �! �+�� [73]. But so far, it is the only

semileptonic reaction involving two neutrinos in the �nal state whose experimental value is

(1:7 � 1:1) � 10�10[47]. So by using this reaction we can point out exact region for the new

physics. D+
s ! D+��; B0s ! B0��;D+ �! �+��;D0 �! �0�� and D+

s �! K+�� are yet

to be detected. In BES -III, super b-factories and in future super collider, we will have an

opportunity to detect them in a clean environment.
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5.2 NSIs in K+ �! �+��, B0s ! B0�� and D+
s ! D+��

The NSIs e¤ective Hamiltonian for u- quak in the loop is given by

HNSI
eff =

GFp
2
(V �usVud

�em

4� sin2 �W
�uL�� ln

�

mw
)� (����)V�A(sd), (5.2.1)

from which the NSIs Br

Br(K+ �! �+��)NSI = rK+
�2em

jVusj22�2 sin4 �W
jV �usVud 12�

uL
�� ln

�
mw
j2�

BR(K+ �! �0e+�e).

This was calculated in [55] and the writers claimed that �uL�� � 8:8�10�3
ln �

mW

:With latest values

�uL�� � 6:7�10�3
ln �

mW

.

When we insert this value for our processes, we have

Br(B0s ! B0��)NSI =
�2em

jVusj22�2 sin4 �W
jV �usVud 12�

uL
�� ln

�
mw
j2�

Br(B0s ! B+e��).

Numerically we get

Br(B0s ! B0��)NSI = 2:17� 10�17

The Br(D+
s ! D+��)NSI = 2:70� 10�15 is given in [66]

5.3 NSIs with c and t quarks in the loop

Now we generalize the process and take Q in the loop which can be any up-type quark in the

loop instead of u quark

Figure 5.3.1: c,t quark induced NSIs diagram
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The NSIs e¤ective hamiltonian is given by

HNSI
eff =

GFp
2
(V �QsVQd

�em

4� sin2 �W
�cL�� ln

�

mw
)� (����)V�A(sd). (5.3.1)

Here, it is same as that of u quark in the loop and we are simply replacing c with u.

The NSIs Br with c quark becomes

Br(K+ �! �+��)NSI = rK+
�2em

jVusj22�2 sin4 �W
jV �QsVQd 12�

cL
�� ln

�
mw
j2�

BR(K+ �! �0e+�e)

Putting the values from [78] we get �cL�� � 6:2�10�3
ln �

mW

:

When we insert this value for our processes, we have

Br(D+
s ! D+��)NSI =

�2em
jVusj22�2 sin4 �W

jV �QsVQd 12�
cL
�� ln

�
mw
j2�

Br(D+
s ! D0e+�)

Br(B0s ! B0��)NSI =
�2em

jVusj22�2 sin4 �W
jV �QsVQd 12�

cL
�� ln

�
mw
j2�

Br(B0s ! B+e��)

The results are given in the table 5.5.1.

5.4 NSIs in D+
s ! K+����, D+ �! �+���� and D0 �! �0����

The quark level process c �! u���� is representing all above processes. For D+ �! �+���� ;

NSIs with u quark in the loop is calculated in [55]

Br(D+ �! �+����)NSI = jV �ud
�em

4� sin2 �W
�dL�� ln

�

mW
j2BR(D+ �! �0e+�e) (5.4.1)

Br(D+ �! �+����)NSI = 4:49� 10�8j�dL�� ln �
mW

j2 and it is mentioned that as � and � could

represent any lepton, we take �dL�� � 1; �dLll= h1 for l = l= 6= � : Here ln �
mW

� 1:

NSIs diagram with d; s and b quarks is shown in �g. 5.4.1, here q = d; s and b

HNSI
c�!u���� =

GFp
2
(

�em

4� sin2 �W
VcqV

�
uq�

sL
�� ln

�

mW
)(����)V�A(cu)V�A (5.4.2)
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Figure 5.4.1: d,s,and b quark induced NSIs diagram

and Br becomes

Br(D+ �! �+����)NSI = j
V �usVcs
Vcd

� �em

4� sin2 �W
�sL�� ln

�

mW
j2BR(D+ �! �0e+�e) (5.4.3)

Br(D+ �! �+����)NSI = 4:55 � 10�8j�sL�� ln �
mW

j2and it is mentioned that as � and � could

represent any lepton, we take �sL�� � 1; �sLll=h1 for l = l
0 6= � : Here ln �

mW
� 1:We further see that

same is applicable to two other processes D+
s �! K+���� and D0 ! �0���� :

Br(D+
s �! K+����)NSI = j

V �uqVcq

Vcd

�em

4� sin2 �W
�qL�� ln

�

mW
j2BR(D+

s �! K0e+�e), (5.4.4)

Br(D0 �! �0����)NSI = j
V �uqVcq

Vcd

�em

4� sin2 �W
�qL�� ln

�

mW
j2BR(D0 �! ��e+�e). (5.4.5)

Here q is representing any quark of down type, Using [78] Values BR(D+
s �! K0e+�e) =

(3:7� 1)� 10�3; Vud = 0:97425� 0:00022; �em = 1
137 ;we get

Br(D+
s �! K+����)NSI = 2:28� 10�8(�sL��)2j ln

�

mW
j2. (5.4.6)

For �sL�� � 1 and ln �
mW

� 1 ;we get BR(D+
s �! K+����)NSI = 2:28� 10�8.

Similarly for Br(D
0 �! ��e+�e) = 2:89� 10�3 we have

Br(D0 �! �0����)NSI = 3:25� 10�8(�sL��)2j ln
�

mW
j2 (5.4.7)

10�8will be the reach of BES-III, so it is hoped that we might observe these decays there. If

not, even then useful limits for new physics can be suggested. NSIs with d quark are discussed

58



for D+
s �! K+����, and D0 �! �0���� in [66]. All the values are summarized, in the table

5.5.2, for comparison along with the values for three generations of down type quark (d; s and

b quarks).

5.5 Results and Summary

Figure 5.5.1: Plot for NSIs with u quark in the loop

It is evident from the plots given in �gures 5.5.1-5.5.3 and table 5.5.1 that �tL�� = �cL�� =

�uL�� � 10�2. As we have both experimental and theoretical values for K+ decay so we can

specify exact region for new physics. But for other two reactions only expected contribution

from NSIs can be given. The D+
s �! D+�� and B�s �! B��� are decays of B and charm

mesons respectively but the quark decay processes is similar to K meson decay. These are very

heavy mesons and decaying again into heavy mesons so there is a lot of energy required for their

observation. These are sensitive to t and c quarks just like u quark. We know that we have

second and even third generation constraints on free parameter of NSIs for charge leptons, like

�e�� ; �
�
��and �

�
�� but we had only �

uL
�� and �

dL
�� . From the other three reactions D+

s ! K+����,

D+ �! �+���� and D0 �! �0���� we �nd �bL��and �
dL
�� and we come to know that �

bL
�� =�

dL
�� =

�sL�� � 1. The NSIs Br for these decays is given in table 2. So, all generations of quarks
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Figure 5.5.2: Plot for NSIs with c quark in the loop

Figure 5.5.3: Plot for NSIs with t quark in the loop
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Reaction
Standard Model
Branching Ratio

Experimental
Branching Ratio

NSIs
with u

NSIs
with c

NSIs
with t

K+ �! �+��
(us)�!(ud)��

(7:8� 0:8)� 10�11
[30]

(1:7� 1:1)� 10�10
[78]

2:46� 10�11
[66]

2:42� 10�11
[79]

� 10�16
[80]

D+
s �! D+��
(cs)�!(cd)��

7:69� 10�15 not known 2:70� 10�15
[66]

2:57� 10�15
[79]

� 10�20
[80]

B�s �! B���
(sb)�!(bd)��

6:86� 10�17 not known 2:17� 10�17
[66]

2:0� 10�17
[?]

� 10�23
[80]

Table 5.5.1: Comparision of u,c and t quark dependent parameter

Reaction
Standard Model
Branching Ratio

NSIs
with d

NSIs
with s

NSIs
with b

D+ �! �+����
(cd)�!(ud)��

Long Distance Short Distance
< 8� 10�16 3:9� 10�16

[65]

4:49� 10�8
[66]

4:55� 10�8
[80]

� 10�14
[80]

D+
s �! K+����
(cs)�!(us)��

Long Distance Short Distance
< 4� 10�16

[64]
1:5� 10�16 2:23� 10�8

[66]
2:28� 10�8

[66]
� 10�14

[80]

D0 �! �0����
(cu)�!(uu)��

Long Distance Short Distance
< 6� 10�16 4:9� 10�16

[65]

3:21� 10�8
[66]

3:25� 10�8
[80]

� 10�14
[80]

Table 5.5.2: Comparison of d, s and b quark dependence of NSIs parameter

0@ u

d

1A,
0@ c

s

1A and

0@ t

b

1Acould a¤ect NSIs of the rare decays of mesons. The constraints are
summarized in table 5.5.3.

�QL�� � O(10�2) where Q = u; c; t

�qL�� � 1 where q = d; s; b

�qL
ll=
h1; for l = l

0 6= �

Table 5.5.3: Constraints are summarized
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Chapter 6

Elementary Theory of

Supersymmetry

The standard model (SM) of electroweak interactions is thought to be a low-energy approxima-

tion of a more fundamental theory. In the SM, we have to take care of the conservation of lepton

number, which although has been tested very precisely, but is not a requirment of an existing

gauge theory. Therefore, many extensions to the SM have been studied and supersymmetry is

one of them [81].

Supersymmetry (SUSY) provides an elegant way to link fermions with bosons. The most

important thing attached to SUSY is that it can e¤ectively tackle the problem of the divergence

in the mass of Higgs. In SUSY theories, there is always a loop of super-partners accompanying

the loop of normal SM particles. The supersymmetric relations between couplings and masses,

along with the the extra minus that comes with any fermionic loop, guarantee the vanishing of

the divergence. The SUSY is also a concrete worked example of the physics beyond the SM.

One of the advantages of the extension of the SM by using SUSY is that we are hopeful of

discovering the new spectrum of particles at the next energy scale, and the break down of the

electroweak symmetry occurs in SUSY models at the level of perturbation of theory, without

any demand for a new strong interactions. The SUSY naturally accomodates a complex and

large spectrum of new particles. These particles can have some interesting properties which can

test the pro�ciencies of the existing experiments. As SUSY has weak coupling, these signatures
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can be solved quite easliy. Due to large number of undetermined parameters in SUSY, it can

show a great diversity of physical e¤ects. Thus, SUSY enables us to foresee the pictures of

experiments on physics beyond the SM, and we can make preparation for these experiments.

6.1 Nomenclature

SUSY transformation changes a fermionic state into a bosonic state, and vice versa. Q operator

which is responsible for such transformations should be anticommuting and carring spin-12 :

QjBosoni = jFermioni; QjFermioni = jBosoni: (6.1.1)

Due to intrinsically complex nature of the spinors, both Qy and Q (Hermitian conjugate)

should be symmetry generators. Based on the fermionic nature of both Q and Qy operators, it

is clear that SUSY must have a space-time symmetry. The Haag-Lopuszanski-Sohnius exten-

sion of the Coleman-Mandula theorem[84] imposes restrictions on the speci�c forms for such

symmetries in an interacting quantum �eld theory. For realistic theories which, like the SM,

have chiral fermions, the parity-violating interactions, demand that the Q and Qy must ful�ll

an algebra of commutation and anticommutation relations given as:

fQA; Qy:
A
g = P� (6.1.2)

fQA; QAg = fQy:
A
; Qy:

A
g = 0 (6.1.3)

[P�; QA] = [P
�; Qy:

A
] = 0 (6.1.4)

P� is the generator of space-time translations and � is Lorentz index, while QA are Weyl spinors

and A is representing spinor index. .

The single-particle states of the supersymmetry algebra are called supermultiplets.( For

details see section 6.2). These super-multiplets contain both boson and fermion states, called

super-partners of each others. If j
i and j
0i are taken in the same super-multiplet; then j
0i

should be proportional to some combination of Q and Qy operators which are acting on j
i, up

to a rotation or space-time translation. �P 2 commutes with the operators Q, Qyas well as with

all space-time rotation and translation operators, so that particles lying in the same irreducible
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supermultiplet carrying equal eigenvalues of �P 2, equal masses of particles in a supermultiplets

as a consequence. SUSY generators (Q, Qy) are also commuting with the generators of gauge

transformations. Thus the particles in the same supermultiplet get the same value of electric

charges, weak isospin and color.

To prove that each supermultiplet has same number of bosonic and fermionic degrees of

freedom, let us consider the operator (�1)2s( s is the spin). From the application of spin-

statistics theorem, we obtain a value of �1 for a fermionic state and +1 for a bosonic state.

As any fermionic operator will change a fermionic state into a bosonic state and vice versa,

(�1)2s must anticommute with every fermionic operator, especially with Q and Qy. Now we

take the states jii in a supermultiplet with the same eigenvalue p�. According to eq. (6.1.4), any

combination of SUSY operators acting on jii will produce another state ji0i which has the same

eigenvalue of four-momentum . Therefore one can use the completeness relation
P
i jiihij = 1

within subspace of states. Now we can take trace over all such states of the operator (�1)2sP�:

X
i

hij(�1)2sP�jii =
X
i

hij(�1)2sQQyjii+
X
i

hij(�1)2sQyQjii

=
X
i

hij(�1)2sQQyjii+
X
i

X
j

hij(�1)2sQyjjihjjQjii

=
X
i

hij(�1)2sQQyjii+
X
j

hjjQ(�1)2sQyjji

=
X
i

hij(�1)2sQQyjii �
X
j

hjj(�1)2sQQyjji

= 0: (6.1.5)

The 1st equality is obtained by using the supersymmetry algebra relation of eq. (6.1.2); the

2nd and 3rd from the use of the completeness relation; and the 4th from the anticommutation

of (�1)2s with Q. As X
i

hij(�1)2sP�jii = p�Tr[(�1)2s] (6.1.6)

is just proportional to the number of bosonic degrees of freedom nB minus the number of

fermionic degrees of freedom nF in the trace. This implies that we have equal number of boson

and fermion degrees of freedom, i.e.,

nB = nF (6.1.7)
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for a given p� 6= 0 for every supermultiplet.

6.2 Supermultiplets

A supermultiplet contains a single Weyl fermion (2 helicity states make up two fermionic degrees

of freedom) as well as two real scalars, each with one bosonic degree of freedom. It is possible

in SUSY algebra to combine the two real scalar degrees of freedom into a complex scalar �eld,

Feynman rules, supersymmetry violating e¤ects, etc. A combination of a complex scalar �eld

and Weyl fermion is making as a matter or scalar or chiral supermultiplet.

The next possibility for a supermultiplet is to carry a spin-1 vector boson. For a renor-

malizable theory it is recongnized as a gauge boson without any mass, at least before the

spontaneously broken of the gauge symmetry. A massless spin one boson has only two allowed

helicity states (so nB = 2). Super-partner of this boson must be a massless spin one half Weyl

fermion carrying two helicity states, making an equal number of fermionic degrees of freedom.

(The use of a massless spin three half fermion is giving a theory which is not renormalizable.)

Both Gauge bosons and their fermionic partners should transform as the adjoint representation

of the gauge group. This combination of spin-one gauge bosons and spin-half gauginos is known

as a gauge or vector supermultiplet. Any other combination of particles, allowed by eq. (6.1.7),

then such combinations if demonstrate some renormalizable interactions, are always reducible

to chiral and gauge supermultiplets.

So, every fundamental particle should should therefore either be a chiral or gauge super-

multiplet and have a super-partner with spin di¤ering by half unit in the SUSY extension of

the SM [85, 86, 87]. The names given to the spin-zero partners of the leptons and quarks

are baptized by prepending an �s�, hence making sleptons and squarks (short for �scalar lep-

ton�and �scalar quark�). The symbols used for the squarks and sleptons are the same as for

the corresponding fermion, but with a tilde for the super-partner. The super-partners of the

left-handed and right-handed electron of the Dirac �eld are called left-haned and right-handed

selectrons, eeL and eeR. It is essential to note that the �handedness� is not of the selectrons as
they are spin-zero particles, but of their super-partners. The same nomenclature is applicable

for smuons and staus: e�L, e�R, e�L, e�R. In the SM, we only have the left handed neutrinos, so
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the sneutrinos are e�, with a possible subscript indicating the lepton �avour: e�e, e��, e�� . The
list for squarks is eqL, eqR with q = u; d; s; c; b; t. The gauge interactions of these sfermion �elds

remain the same as for the corresponding SM fermion.

One chiral super-multiplet is not considered good enough for Higgs scalar boson. If we have

only one Higgs chiral super-multiplet, the electroweak gauge symmetry will have a triangle

gauge anomaly, which leads to an inconsistent quantum theory. It happens due to the fact that

for cancellation of gauge anomalies we must have

Tr[Y 3] = Tr[T 23 Y ] = 0 (6.2.1)

; where T3 and Y are the third component of weak isospin and the weak hypercharge, respec-

tively, and

QEM = T3 + Y (6.2.2)

In the SM, these requirments are ful�lled automatically by the existing leptons and quarks. In

SUSY, a fermionic partner for a Higgs chiral supermultiplet should be in a weak isodoublet

with weak hypercharge Y = �1=2 or Y = 1=2. Such a fermion will always provide a non-zero

contribution to the traces and hence it will destroy the anomaly cancellation. This situation can

be eliminated if we have two Higgs super-multiplets, with Y = �1=2. So, the anomaly traces

from the two fermionic partners of the Higgs chiral super-multiplets will be zero. These can

also be satis�ed because of the structure of SUSY theories. Here Higgs with Y = +1=2 can only

couple through Yukawa couplings to give masses to charge +2=3 up-type quarks (up, charm,

top), and only a Higgs with Y = �1=2 can have the Yukawa couplings which are essential for

masses of charge �1=3 down-type quarks (down, strange, bottom) and also for charged leptons.

SU(2)L-doublet complex scalar �elds for these two cases (Hu and Hd) will serve the purpose.

The doublet of Hu has weak isospin components T3 = (+1=2, �1=2), electric charges 1, 0

representing H+
u , H

0
u. Similar thing happens with SU(2)L-doublet complex scalar Hd which

have T3 = (+1=2, �1=2) components and denoted by (H0
d , H

�
d ). The linear combination of H

0
u

and H0
d of the neutral component of the scalar represents the physical SM Higgs boson. The

name of a spin-half super-partner is appended with �-ino�to the name of the SM particle, so
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Names Spin 0 Spin 1=2 SU (3)c ,
SU (2)L ,U (1)Y

squarks, quarks
(� 3 families)

Q
�u
�d

�
~uL ~dL

�
~uR�
~dR�

(uL dL)

uyR
dyR

�
3; 2; 16

��
�3; 1;� 2

3

��
�3; 1; 13

�
sleptons, leptons
(� 3 families)

L
e

(~�L ~eL)
~eR�

(�L eL)

eyR

�
1; 2; �1

2

�
(1; 1; 1)

Higgs, Higgsinos
Hu
Hd

�
H+
u H

0
u

��
H0
d H

�
d

� �
~H+
u
~H0
u

��
~H0
d
~H�
d

� �
1; 2; +1

2

��
1; 2; �1

2

�
Table 6.2.1: Supersymmetric mutiplets

the super-partners (fermionic) of the Higgs scalars are known as higgsinos. They are denoted

by eHu, eHd for the SU(2)L-doublet left-handed Weyl spinor �elds, the weak isospin components
are eH+

u , eH0
u and eH0

d , eH�
d .

All of the chiral super-multiplets needed for a minimal extension of the SM are summarized

in Table 5.1.1. These are also classi�ed under the SM gauge group SU(3)C �SU(2)L�U(1)Y ,

which combines �; eLand uL; dL into SU(2)L doublets. Here we are also following the standard

convention and putting all chiral super-multiplets in terms of left-handed Weyl spinors,and their

conjugates are the right-handed quarks and leptons as shown in Table 5.1.1. This convention

turns out to be very useful for constructing supersymmetric Lagrangians. Here Q stands for the

SU(2)L-doublet chiral super-multiplet containing euL; uL (weak isospin component T3 = +1=2),
and edL; dL (with T3 = �1=2), while u represents the SU(2)L-singlet super-multiplet havingeu�R; uyR. There are three families for each of the quark and lepton in the super-multiplets, but
only the �rst-family is used in Table 5.1.1. Here, a family index i = 1; 2; 3 is given which must

be read as. (e1; e2; e3) = (e; �; �). The bar on top (u, d, e) of �elds is part of the name, not a

conjugate state.

It is worth noting that the Higgs chiral super-multiplet Hd (consist of H0
d , H

�
d ,

eH0
d , eH�

d )

has the same SM gauge quantum numbers as the (e�, eeL, �, eL)L. One can assume that we could
have been more economical by adopting a neutrino and a Higgs scalar to be the super-partners

of each other. This would make the Higgs boson and a sneutrino the same particle. It would

be welcomed as it served a role in making a connection between SUSY and phenomenology,[85]
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Given Names Spin 1=2 Spin 1 SU (3)c ,
SU (2)L ,U (1)Y

gluino, gluon ~g g (8; 1; 0)

winos, W bosons ~W�, ~W 0 W�, W 0 (1; 3; 0)

bino, B boson ~B0 B0 (1; 1; 0)

Table 6.2.2: Supersymmetric patners of gauge bosons

but, unfortunately it is now known not to work. Even keeping the anomaly cancellation problem

apart, many other phenomenological problems would arise, e.g., lepton number violation and

a mass of the neutrinos have a violation to experimental bounds. Hence, all the super-partner

should be taken as new particles.

The vector bosons of the SM reside in gauge super-multiplets along with their fermionic

super-partners known as gauginos. The gluons are QCD mediators, whose spin-half SUSY

partner is the gluino. The symbols for the gluon and gluino are g and eg respectively. The
electroweak gauge symmetry SU(2)L�U(1)Y has associated bosons of spin-one, W+;W 0;W�

and B0, whose spin-half super-partners are fW+;fW 0;fW� and eB0, called winos and binos. After
the break up of electroweak symmetry, the gauge eigenstates mix to give W 0, B0 mixtures

represent mass eigenstates of Z0 and 
; having super-partner fW 0 and eB0 which are called zino
( eZ0) and photino (e
). Table 5.1.2 gives the gauge super-multiplets of a minimal supersymmetric
extension of the SM.

6.3 Ingredients for Supersymmetric Lagrangian

Now after the introduction of the nomenclature of the supersymmetry and the supersymmetric

algebra we are in a position to go forward and construct a supersymmetric Lagrangian. But

before doing this, �rst of all we discuss the transformations under which this supersymmetric

Lagrangian will be invariant and then, vector and chiral super�elds.
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(a) Superspace

The superspace formalism

Superspace gives a geometric picture of supersymmetry and provides representations of the

supersymmetry algebra which are not restricted by any mass shell conditions. This is taken

care of, just like, Lorentz invariance which inherently manifests in the 4-dimensional Minkowsky

space. The superspace formalism, originally introduced by Salam and Strathdee [89], is also

constructed such that supersymmetry is inherently manifest in the formalism. Since the super-

symmetry algebra has anticommuting elements we should extend Minkowsky space-time with

four-independent anticommuting, Grassmann number coordinates. These coordinates can be

represented by a Majorana spinor or, using the two component Weyl formalism,

f�AgA = 1; 2; and f�� _Bg _B = _1; _2;

which satisfy the following anti-commutation relations:

f�A; �Bg = 0

f�� _A; �� _Bg = 0

f�A; �� _Bg = 0

(6.3.1)

The elements of superspace are the super-coordinates (xA; �A; �� _A). Using the anticommuting

Grassmann numbers, the graded Lie algebra of super symmetry is transformed into an ordinary

Lie algebra by the following relations:

[�AQA; �� _B
�Q
_B] = 2�A��

A
:
B
��
_B
P� (6.3.2)

[�AQA; �
BQB] = 0 = [�� _A

�Q
_A; �� _B

�Q
_B] (6.3.3)

where �A and �� _A anti-commute also with spinor QA and
�Q _A.
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Fierz and Spinor identities

After the super coordinates (x�; �A; �� _A); we prove a number of spinor and Fierz identities

involving variables and '; �'; �; �� �elds:

����' � �A��
A
:
A
'
_A = ��' _A��

A
:
A
�A (6.3.4)

= ��'��� (6.3.5)

'���� =
i

4
�AB'B(�

�

A
:
A
���

:
AC � ��

A
:
A
��

:
AC)�CD�

D

= � i
4
�AB�D��

A
:
E
�
:
E
:
F � :
F
:
A
�
:
AC�CD'B +

i

4
(�! �)

=
i

4
�(���� � ����)'

which provide

'���� = �����' (6.3.6)

Similarly

�'����� = �������'

and one can also write

�A�B = �1
2
�AB�� , �A�B =

1

2
�AB�� (6.3.7)

�

:
A
�

:
B

=
1

2
�
:
A
:
B�� , � :

A
� :
B
= �1

2
� :
A
� :
B
�� (6.3.8)

Also, we have the relations

�'�� � �A'A�
B�B

= �1
2
���'

���'���� = �1
2
�'������ (6.3.9)
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and

' ���� =  '����

= �(�����')( ����) (6.3.10)

where upon using (3) we get

' ���� =
1

2
('����)( �

���) (6.3.11)

Similarly

�'� �� =
1

2
(�'����)( ��

��)

Fierz identities are general in�nitesimal global supersymmetric transformations of the compo-

nent �elds.

The General Super�elds

The super�eld is a function in superspace and the supersymmetry algebra transforms as a scalar

under the following in�nitesimal transformations

�x� = i��� � i���� (6.3.12)

�� = �; �� = � (6.3.13)

which are given as an in�nitesimal two-component spinorial parameters �A; � :
A
.

A general super�eld � is an operator-valued function de�ned on superspace. It is a power

series expansion in � and �. Since � and � are anticommuting, this power series expansion is

in�nite

�(z) = �(x; �; ��) = f(x) + �A'A(x) +
�� _A��

_A(x) + (��)m(x) + (���)n(x)

+(����)V�(x) + (��)� :
A
��

:
A
(x) + (��)�A'A(x) + (��)(��)d(x)(6.3.14)

where, (��) = �A�A and (�� _A
��
_A
) = ��. Only the above mentioned combinations will survive,

since
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i)Any combination of more than two ��s must disappear:

(��)�1 = �B�B�
1 = (�1�2 � �2�1)�1 = �(�1�2 � �2�1)�1 = �(��)�1 (6.3.15)

because

2(��)�1 = 0

)

(��)�1 = 0

similarly for �2 and (��)� _A

ii) Any higher Lorentz tensor term must vanish, since ��� = i
4(�

���� � �����)

����� = �(����') (6.3.16)

where

(�����) = 0

iii) (�����) does not appear since

����� = �(�����) (6.3.17)

and �nally, we have only the Lorentz scalar or pseudoscalar allowed by these conditions.

f(x); '(x); ��(x);m(x); n(x); V� (x); ��(x); '(x) and d(x) are known as component �elds. Pro-

vided that �(x; �; ��) is a Lorentz scalar or pseudoscalar of Lorentz group, the properties of the

component �elds are.

� m(x); n(x); f(x) are complex scalar or pseudoscalar �elds.

� '(x);  (x) are left handed Weyl spinor �elds.

� ��; �� ; are right handed Weyl spinor �elds.

� V�(x) is a Lorentz four-vector �eld.

� d(x) is a scalar �eld.

Weyl equations need not be conserved under parity transformations f(x); and m(x) may be

sums of pseudoscalar and scalar contributions as long as super�eld gets a well-de�ned parity
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when we rewrite it in 4� 4 Dirac formulation.

Supersymmetric Transformation

A �nite SUSY transformation is written as

exp
�
i
�
�Q+Q� � x�p�

��
;

which can be compared with a non-abelian gauge transformation exp (i�aT
a): T a are the

generators. The objects of these SUSY transformations should depend on � and �. So, we have

an introduction of super�elds, which are the functions of � and � and the superspace coordinate

x� . Since � and � are de�nitely the two-component spinors, hence supersymmetry doubles the

dimension of space-time. The new dimensions are fermionic.

The in�nitesimal SUSY transformations can be written as

�S
�
�; �
�
�
�
x; �; �

�
=

�
�
@

@�
+ �

@

@�
� i

�
���� � ����

� @

@x�

�
�
�
x; �; �

�
. (6.3.18)

Here �; � are Grassmann variables and � is a super�eld. This implies that SUSY generators

can be written as:

QA =
@

@�A
� i��

A
:
B
�

:
B
@�; (6.3.19)

Q :
A

= � @

@�

:
A
+ i�B��

B
:
A
@� (6.3.20)

The SUSY-covariant derivative will anti-commute with the transformation in the eq. 6.3.18:

DA =
@

@�A
+ i��

A
:
B
�

:
B
@�; (6.3.21)

D :
A

= � @

@�

:
A
� i�B��

B
:
A
@�. (6.3.22)

The eqs. 6.3.18-6.3.21 provide mass dimension �1
2 ; to A and �, while Q and D have dimension

+ !
2 .

Eqs 6.3.18-6.3.20 treat � and � on equal footing . The chiral representations treat � and �,
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slightly di¤erently. ( The spinor indices are suppressed from now on ):

L� represenation

�S�L =

�
�
@

@�
+ �

@

@�
= 2i����@�

�
�L; (6.3.23)

DL =
@

@�
+ 2i���@�; (6.3.24)

DL = � @

@�
(6.3.25)

and

R� represation

�S�R =

�
�
@

@�
+ �

@

@�
� 2i����@�

�
�R;

DL = � @

@�
� 2i���@�; (6.3.26)

DR =
@

@�
(6.3.27)

By using the following identity we can switch between the representations:

�
�
x; �; �

�
= �L

�
x�; i����; �:�

�
= �R

�
x� � i����; �; �

�
. (6.3.28)

Here, we need two types of super�elds of SUSY algebra ; vector-super�elds.and chiral-

super�elds

Chiral Super�elds

The chiral super�elds are derived by the fact that in the SM fermions are chiral particles. We,

therefore, require such super�elds which cannot only accommodate the two fermionic degrees

of freedom, but then describe components (the left- or right-handed) of a SM fermion, along

with bosonic partners and the S-fermions.

Such super�elds can be constructed by imposing the condition

D�L � 0 (6.3.29)
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or

D�R � 0. (6.3.30)

These conditions are ful�lled by SUSY-covariant derivatives and chiral representations of

SUSY generators. We can expand �L as :

�L (x; �) = � (x) +
p
2�� � (x) + �

������F (x) (6.3.31)

��� is a two dimensional anti-symmetric tensor. Given mass dimension +1 to scalar �eld � are

then provides the mass dimension +3
2 for  (fermionic �eld); and �x the unusual mass dimension

+2 for scalar �eld F . The � itself carries mass dimension +1. Since the square of each of the

components vanishes, so expansion of eq.6.3.31 is exact and � only has two components. The

F and � are complex scalar �elds,  is a Weyl spinor. It appears that �L contains four bosonic

degrees of freedom and only two of them are fermionic ones; however, it will be clear later on

that not all of them happen to be bosonic �elds (represent physical degrees of freedom). The

expansion of �R is very similar; just replace � by �.

Applying eq. 6.3.24, is allowing the SUSY transformation for the left-chiral super�eld 6.3.31

results in;

�S�L =
p
2�� � + �

��� 2�� F + 2i����
�
:
�
�
:
�@�� (6.3.32)

+2
p
2i����

�
:
�
�

:
�
��@� � , (6.3.33)

= �S�+
p
2��S + ���SF . (6.3.34)

The �rst two terms in eq. 6.3.33 comes from the application of @
@� part of �S , while the last

two come from the @� part. The last term in eq.6.3.33 survives and there are only three factors

of � in it. There are no �� terms in eq 6.3.33, so an expansion, like in the eq 6.3.31, should be

applicable to it. Now, the following terms remain:

(boson-fermion)

�S� =
p
2� (6.3.35)
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(fermion-boson)

�S =
p
2�F + i

p
2���@�� (6.3.36)

(F is the total derivative )

�SF = �i
p
2@� �

�� (6.3.37)

Notice that the result 6.3.37 implies that

Z
d4xF (x)

is invariant under SUSY transformations.

Vector Super�elds

The chiral super�elds describe spin-0 bosons and spin �1
2 fermions, e.g. the quarks and leptons

of SM and the Higgs bosons. However, we need the spin-1 gauge bosons of the SM, for that we

should introduce vector self-conjugate �elds V :

V (x; �; �) � V y(x; �; �). (6.3.38)

The representation of V in the component form:

V (x; �; �) = (1 +
1

4
����@�@

�)C(x) + (i� +
1

2
�����@�)�(x)

+
i

2
�� [M(x) + iN(x)] + (�i� + 1

2
�����@�)�(x)

� i
2
�� [M(x)� iN(x)] + ����A�(x) + i����(x)

�i����(x)� i����D(x), (6.3.39)

where C;M;N and D are the scalars and � and � are Weyl spinors. A� describes a gauge boson

and V transforms as an adjoint representation of the gauge group. We have many more gauge

degrees of freedom in the supersymmetric theories, since the gauge parameters are themselves
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representing the super�elds. A non abelian supersymmetric gauge transformation of V is:

egV �! e�ig�
y
egV eig� (6.3.40)

here, �(x; �; �) is a chiral super�eld and g is coupling. This transformation can be simply:

V �! V + i(�� �y)(abelian case). (6.3.41)

The chiral super�eld has four degrees of freedom (bosonic) and a Weyl spinor. One can use

transformation eq.6.3.40 or eq.6.3.41 to choose

�(x) = C(x) =M(x) = N(x) � 0. (6.3.42)

This is so-called �Wess-Zumino�(W-Z) gauge. It is understood as the SUSY analogue of the

unitary gauge, since it absorbs un-physical degrees of freedom. In � only three out of four

bosonic degrees of freedom are used. So, we are still using the ordinary gauge freedom,

A�(x) �! A�(x) + @�(x) + @��(x). (6.3.43)

We can say that the W-Z gauge can be combined with any of the usual gauges. The dimension

of A� is +1 assigning the canonical mass dimension +3
2 for the �eld � , and with the �eld D has

the unusual mass dimension +2, just as the the case of F -component of the chiral super�eld in

the eq:6.3.31. The super�eld V has no mass dimension.

Only the important result after applying SUSY transformation to equation 6.3.39,

�SD = ����@��+ ���@�� (6.3.44)

is quoted. This gives the D component of a vector super�eld that transforms into the total

derivative. These results will be used in the next section.
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(b) Allowed Terms in the Lagrangian

Now we are equipped to construct a supersymmetric Lagrangian for �eld theory. As usual, we

want the action under supersymmetric transformations to remain invariant, i.e.

�S

Z
d4xL(x) = 0. (6.3.45)

This is only possible when L transforms into a total derivative. We have already mentioned

that the highest components (those maximum number of � and � factors) of vector and chiral

super�elds satisfy this requirement; so they can be used for the construction of the Lagrangian.

The action S is written schematically as

S =

Z
d4x(

Z
d2�LF +

Z
d2�d2�LD) (6.3.46)

where the integration is de�ned (over Grassmann variable) as

Z
d�� = 0;

Z
��d�� = 1 (6.3.47)

and no summation over � is taken.

where LF and LD in eq. 6.3.46 represents the chiral and vector super�elds and give rise to

F and D-terms respectively. Now, let us calculate the product of two left-chiral super�elds;

�1;L�2;L = (�1 +
p
2� 1 + ��F1)(�2 +

p
2� 2 + ��F2

= �1�2
p
2�( 1�2 + �1 2) + ��(�1F2 + �2F1

� 1 2) (6.3.48)

as (��� = 0). It can be taken as a candidate which is contributing to LF ; the term in the

action, eq.6.3.46. The last term in eq 6.3.48 seems to be a mass term for fermion. So we have

identi�ed a �rst term in the Lagrangian.

We can compute the highest component involved in the product of three such �elds:

78



Z
d2��1;L�2;L�3;L = �1�2F3 + �1F2�3 + �2�3F1

� 1�2 3 � �1 2 3 �  1 2�3 (6.3.49)

Last three terms in eq. 6.3.49 represents the Yukawa interactions, and give masses to quarks

and leptons. So we have identi�ed �rst interaction term in the SUSY Lagrangian too. If �1is the

Higgs �eld , and  2 and  3 are the left-and right handed components of top quark respectively,

eq 6.3.49 will not only produce the desired top-top-Higgs interaction, but will also produce

interactions between a fermionic �higgsino�
�
h and the scalar top

�
t and top quark with equal

strength . This is the �rst example of relationship between couplings introduced by SUSY.

We have not yet found any kinetic energy terms involving in the derivatives . If we multiply

more and more left-chiral super�elds with each other then this will give rise to terms with mass

dimension > 4 in the Lagrangian, making the interactions, non-renormalizeable. Since, we are

forced to use the same representation of the SUSY generators everywhere, we have to write the

chiral super�eld in the Lrepresentation, using eq. 6.3.28;

[�L(x; �)]
y = �� � 2i����@��� � 2(�����)(����)@�@���

+
p
2� � 2

p
2i(����)@

�(� ) + ��F � (6.3.50)

No doubt, �L�
y
L is a self conjugate vector super�eld. So it contributes to the D-terms in the

action.6.3.44 :

Z
d2�d2��L�

y
L = FF � � �@�@��� � i ��@� (6.3.51)

The above equation gives kinetic energy terms for the scalar � and fermionic component  ,but

no kinetic energy terms for F . It means F �eld is non-propagating, an auxiliary �eld which can

be integrated out by using equations of motion. It has equal numbers of propagating fermionic

and bosonic degrees of freedom.

79



Let us see how the F -�elds can be removed from the Lagrangian by using superpotential f :

f(�i) =
X
i

Ki�i +
1

2

X
i;j

mij�i�j +
1

3

X
i;j;k

�i�j�k (6.3.52)

where �i are all left-chiral super�elds, and gijk;mij and Ki are constants with mass dimension

0; 1; 2 respectively. So far we have identi�ed the following contribution in the Lagrangian:

L =
X
i

Z
d2�d2��i�

�
i +

�Z
d2�f(�i) + h:c

�
(6.3.53)

L =
X
i

(FiF
�
j + j@��j

2 � i ��@� i)

+

24X
j

@f(�i)

@�j
Fj �

1

2

X
j;k

@2f(�i)

@�j@�k
 j k + h:c]

35 . (6.3.54)

In eq.6.3.54 f is a function of scalar �elds �i, not of the super�eld. The equations of motion

for auxiliary �elds Fj ; are simply given by @L
@�j
,

Fj = �
�
@f(�i)

@�j

��
. (6.3.55)

The insertion of this value in equation 6.3.54 gives,

L = Lkin �

24X
j;k

@2f(�i)

@�j@�k
 j k + h:c

35
�
X
j

����@f(�i)@�j

����2 , (6.3.56)

where Lkin is the kinetic part given by the �rst line of equation 6.3.54. The second term in

equation 6.3.56 is providing the masses for fermions and Yukawa interactions. The last term

gives scalar mass and scalar interactions. There should be many relationships between the

coupling constants, as both terms.are determined by the single function f

Now, let us introduce guage interaction. A SUSY version of the familiar �minimal coupling�

is:
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Z
d2�d2���y �!

Z
d2�d2��ye2gV �

= jD��j2 � i ��D� + g��D�

+ig
p
2(��� � � �) + jF j� (6.3.57)

The W-Z gauge 6.3.42 had been used in the second step, and we have introduced the usual

gauge-covariant derivative

D� = @� + igA
a
�Ta (6.3.58)

this Lagrangian not only describes the interactions, but also provides the gauge-strength.

Finally, with the help of super�eld we can describe the kinetic energy terms of gauge �elds

as;

W� = (D :
�D :

�
2
:
�
:
�)e�gVD�e

gV (6.3.59)

Where D;D SUSY-covariant derivatives, carry spinor subscripts with themselves. For abelian

symmetries, this will reduce to

W� = (D :
�D :

�
2
:
�
:
�)D�V (6.3.60)

As D :
�D :

�
� 0; D :

�W� � 0 , so W� is a left-chiral super�eld. Now we show that product W�W
�

is also a gauge invariant term;

1

32g2
W�W

� = �1
4
F a��F

��
a +

1

2
DaD

a

+

�
� i
2
�a��@

��a +
1

2
gfabc�a��A

�
b �c

�
+ h:c (6.3.61)

This has a kinetic energy term for gauginos �a, along with canonical couplings of the gauginos

to the gauge �elds, which is contained in the structure constants fabc.

As the equation 6.3.61 does not contain a kinetic energy term for Da �elds, therefore these

are auxiliary �elds. It is apparent from equations 6.3.61 and 6.3.57 that their equation of motion
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is

Da = �g
X
i;j

��iT
ij
a �j (6.3.62)

where we have used group indices explicitly. The �eld D in equation 6.3.61 is equal to
P
aDaT

a

which is in exact analogy with gauge �elds. We can combine the third term in the second line

in equation 6.3.57 and second term in equation 6.3.61 as follows:

�VD = �
1

2

X
a

������
X
i;j

g��iT
a
ij�j

������
2

(6.3.63)

The scalar interactions in the Lagrangian are explicitly �xed by the gauge couplings. This

completes the terms in a Lagrangian for the renormalizable supersymmetric �eld theory.

(c) Supersymmetry Breaking

The supersymmetric Lagrangian satis�es the equation

m ~f = mf (6.3.64)

which provides equal masses of the super-partners and their SM particles. As there is no

selectron with mass 511 KeV, nor a smuon with mass 106 MeV etc, so condition given in 6.3.64

is not possible. The super-parteners are yet to be discovered and the searches at e+e� collider

LEP gives us information that these must be heavier than 60 to 80 GeV. The Tevatron pp

collider results also provide bounds on squark and gluino masses between 150 and 220 GeV

[90, 91]. For these reasons, supersymmetry must be broken.

The great success of the SM with its broken SU(2)�U(1)Y symmetry, we are well aware of

the usefulness of broken symmetries, especially spontaneous symmetry breaking. Unfortunately

it is not so easy to break SUSY, spontaneously. The de�nition of the SUSY algebra implies

that

1

4

�
Q1Q1 +Q1Q1 +Q2Q2 +Q2Q2

�
= P 0 � H > 0 (6.3.65)

H is the Hamiltonian (energy operator). Being the sum of perfect squares, it cannot be negative.
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If the vacuum state j0i is also supersymmetric,then, we have

Q� j0i = Q :
� j0i = 0

and

Evac � h0jH j0i = 0 (6.3.66)

If the vacuum state is not supersymmetric, then at least one generator does not annihilate the

vacuum, so we have,

Evac > 0 (6.3.67)

The above equation 6.3.67 gives the condition that if the global supersymmetry is not broken

spontaneously, then we have a de�nite positive vacuum energy. But, all this will result in a

troublesome cosmological constant [92].

In most of the phenomenological analysis, we need not to understand the dynamical breaking

of SUSY; however, it is su¢ cient to parametrize it by inserting some soft breaking term into the

Lagrangian. Here the word "soft" means the cancellation of quadratic divergences. It can be

shown that all the quadratic divergencies still cancel even if we insert (at least up to one-loop

level)

i) scalar mass terms �m2
�i
j�ij and

ii) trilinear scalar interactions �Aijkj�i�j�k + h:c

into the Lagrangian .Girardells and Grisaru [94] have calculated this in all orders in pertur-

bation theory. They identi�ed three additional types of soft breaking terms .

a) gaugino mass terms -12ml�l�l ,where l again labels the group factors;

b) bilinear terms �Bij�i�j + h:c ; and

c) linear terms �Ci�it:

The linear terms are only gauge invariant for gauge singlet �elds as shown in [95]. It

is important to note that additional masses for Chiral fermions beyond those contained in

the superpotential are forbidden. The relations between dimensionless couplings imposed by

supersymmetry should not be broken as well.
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6.4 Supersymmetric Lagrangian and Supersymmetric Potential

The Lorentz invariant and renormalizable Lagrangian of SUSY, in its simplest form can be

written as [96, 97, 98]

Lint = �
1

2
W ij i j + c:c:;

here, W ij is a function of some bosonic �elds, and can also take the form

W ij =
�2

��i��j
W;

and

W =
1

2
M ij�i�j +

1

6
yijk�i�j�k: (6.4.1)

W is known as super-potential which is an analytical function of �i0s(the complex scalar �elds)

. M ij is mass matrix for fermions and the Yukawa couplings are yijk. By using the chiral and

the vector super�elds, W can take the following form [97, 98]

W = "ab[h
E
ij
bHa
1
bLbi bEcj + hDij bHa

1
bQbi bDc

j + h
U
ij
bHa
2
bQbi bU cj � � bHa

1
bHb
2] + (6.4.2)

"ab[
1

2
�ijkbLai bLbj bEck + �0ijkbLai bQbj bDc

k] +
1

2
�00ijk bU ci bDc

j
bDc
k:

"ab are antisymmetric and are used to raise and lower the spinors:indices

"12 = "21 = 1; "12 = "21 = �1; "11 = "22 = 0:

bE; bU and bD denotes the right chiral super�elds singlets and bL, bQ, bH1 and bH2 describe the
left chiral super�elds doublet . The term in the �rst bracket looks like SM Lagrangian. This

describes the SUSY extension of the SM . The term � bHa
1
bHb
2 appears as Higgs mass but

here it can be made to vanish after rotating the super�elds bHa
1 and bHb

2 [98]. The second

bracket introduces certain decays which are not allowed in the SM, like proton decay. Such

decay processes involve baryon and lepton numbers violation. No such processes have yet

been detected in the experiments. This means that additional symmetries are required to

accommodate the conservation of these quantum numbers: R-parity is introduced, which serves

the purpose [97, 99, 98].
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6.5 Matter Parity or R-Parity

The second term in eq.6.4.2, is responsible for the rapid decay of proton, because it allows the

following decay processes

p+ ! �0e+; �0�+

�(p! e+�0) �
m5
proton �

i=2;3

���011i�0011i��2
m4edi ; (6.5.1)

if the Yukawa couplings (�00ijk; �
0
ijk) have a value greater than one. But, the experimental limits

imposed on proton decay is 1034.

To avoid this problem, a new symmetry is imposed (i.e., R-parity). This parity is not

only taking care of lepton and baryon numbers but also the spin quantum number, in order to

distinguish particles and their super-partners.It is de�ned as

RP = (�1)3(B�L)+2S (6.5.2)

R-parity is +1 for SM particles and �1 for super-partners. At each vertex of SUSY Feynman

diagram the product of R-parity should be equal to +1. It applications are:

� The lightest supersymmetric particle (LSP ) remains stable, which can be identi�ed as a

candidate for the dark matter.

� Sparticles can only be produced in pairs.

R-parity is put by hand and can be relaxed by assuming that the �0ijk�
00
lmn product can not

survive, then this would be a case of R-parity violation.

6.6 R-parity violation

When R-paity is violated by keeping the Yukawa couplings very small, then we can have lepton

and baryon number violating processes too. The potential for such interactions is given by,

[97, 99, 98].

W /R
p

= "ab[
1

2
�ijkbLai bLbj bEck + �0ijkbLai bQbj bDc

k] +
1

2
�00ijk bU ci bDc

j
bDc
k: (6.6.1)
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Now we have sparticles as mediators in the processes which results in lepton number and �avour

violation within MSSM [97]. This makes the �avor changing neutral currents, possible at tree

level within MSSM [97, 98].

The Yukawa coupling ( �ijk; �0ijk , �
00
ijk) are the parameters of MSSM. �ijkand �

00
ijk are

antisymmetric in the �rst two and last two indices respectively.

�ijk = ��jik; �00ijk = ��00ikj :

This makes 45 coupling parameters for R-parity violating SUSY model: 9 each from �ijk

and �0ijk, and 27 from �00ijk. The operators LiLjE
c
k and LiQjD

c
k contribute to leptonic and

semi-leptonic decays of hadrons. Bounds on Yukawa coupling can be found by using the decays

of D and Ds mesons. This analysis will enable us to specify the region for the new physics.

6.7 Decays of Mesons in R-Parity Violating Model

(a) (D+; Ds)! l+� �� In /Rp SUSY

The e¤ective Lagrangian for the decay of (D+; Ds)! l+� + �� in the quark mass basis is given

as:

LeffRP=
�
c �! q + l+� + ��

�
=
4GFVcqp

2

24 Acq�� (�c

�PLq)

�
l�
�PL��

�
�Bcq�� (�cPRq)

�
l�PL��

�
35 ; (6.7.1)

where �; � = e; � and q = d; s. The dimensionless coupling constants Acq��and B
cq
�� are given as

Acq�� =

p
2

4GFVcq

3X
j;k=1

1

2m2fdck
Vcj�

0
�qk�

0�
�jk

Bcq�� =

p
2

4GFVcq

3X
i;j=1

1

m2elci
Vcj��i��

0�
ijq (6.7.2)

Thus the decay rate of the �avor conserving process D+ ! l+� �� is given by
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D0 ! ��l+� ��; D
+ ! l+� ��; D

+ ! �0l+� ��

Figure 6.7.1: Tree level diagram in R-parity violating model c decays to q, charge lepton and a
neutrino

�
�
M� ! l���

�
=
1

8�
G2F j Vcq j2 f2DM3

D

�
1� �2�

�2 j (1+Acq��)���� MD

mc +md;s

�
Bcq�� j2 (6.7.3)

where �� =
m�
MD

is mass of charged lepton l, MD is the mass of charm meson, and fM is the

pseudoscalar meson decay constant. Here, following PCAC (partial conservation of axial-vector

current) relations have been used:

< 0 j qc
�
5qq jM(p) >= ifMp
�
M

< 0 j qc
5qq jM(p) >= ifM
M2
M

mqc +mqq

(6.7.4)

(b) D ! (�;K)l+� �� decay in /Rp SUSY

The e¤ective Lagrangian for the decay of D ! (�;K)l+� + �� in the quark mass basis is given

as
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D0 ! K�l+� ��; D
+
s ! l+� ��; D

+ ! K0l+� ��

Figure 6.7.2: Tree level diagram in R-parity violating model c decays to s, charge lepton and a
neutrino

LeffRP=
�
c �! q + l+� + ��

�
= �4GFVcqp

2

24 Acq�� (�c

�PLq)

�
l�
�PL��

�
�Bcq�� (�cPRq)

�
l�PL��

�
35 ; (6.7.5)

where �; � = e; � and q = d; s. The dimensionless coupling constants Acq��and B
cq
�� are given as,

Acq�� =

p
2

4GFVcq

3X
j;k=1

1

2m2fdck
Vcj�

0
�qk�

0�
�jk

Bcq�� =

p
2

4GFVcq

3X
i;j=1

1

m2elci
Vcj�i���

0�
ijq (6.7.6)

Thus the decay rate of D ! Kl+� �� induced by the quark level process c ! q l+� v� is given

by[101]:

�
�
c! q l+� v�

�
=

m5
D

192�3
G2F j Vcq j2 (j A

cq
�� j

2 + j Bcq�� j
2): (6.7.7)
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(c) D0 ! l�� l
�
� In /Rp SUSY

The e¤ective Lagrangian for the decay of D0 ! l�� l
�
� in the quark mass basis is given as

Leff/R p

�
c �! u+ l�� + l

�
�

�
=
4GFp
2

h
Acu��

�
l�


�PLl�
� �
u
�PRc

� i
; (6.7.8)

where �; � = e; �:The dimensionless coupling constants Acu�� is given by

Acu�� =

p
2

4GF

3X
m;n;i=1

V yn2V1m
2m2edci

�
0
�ni�

0�
�mi (6.7.9)

The decay rate of the processes M ! l�� l
�
� is given by

�
h
M (cu)! l�� l

�
�

i
=
1

8�
G2F f

2
MM

3
M

r
1 +

�
�2� + �

2
�

�2
� 2

�
�2� + �

2
�

�
j Acu�� j2 [(�2�+�2�)�(�2���2�)2]

(6.7.10)

where �� � m�
MM

: m� is mass of lepton, MM is the mass of meson and fM is the pseudoscalar

meson decay constant which is extracted from the leptonic decay of each pseudoscalar meson.

(d) Ds ! Kl�� l
+
� decay in /Rp SUSY

In MSSM the relevant e¤ective Lagrangian for the decay process Ds ! Kl�� l
+
� is given by[100]

Leff/R p

�
c �! u+ l�� + l

+
�

�
=
4GFp
2

h
Acu��

�
l�


�PLl�
� �
u
�PRc

� i
: (6.7.11)

Where �; � = e; �: The �rst term in eq.(2) comes from the up squark exchange (where c and u

are up type quarks). The dimensionless coupling constant Acu�� is given by

Acu�� =

p
2

4GF

3X
m;n;k=1

V yn2V1m
2m2fdck

�0�nk�
0�
�mk; (6.7.12)

The inclusive decay rate of the process is given by[101]

�
h
c! u l+� l

�
�

i
=

m5
D+

192�3
G2F j Acu�� j2 : (6.7.13)

89



Do ! (e+e�; �+��); Ds !
Ke+e�

Figure 6.7.3: c decays to u lepton lepton

6.8 Results and Discussions

We have plotted �gs.6.8.1-6.8.8 by using data[78]. Tables 6.8.1,6.8.2 and 6.8.3 summarize the

new bounds on the branching fraction of the given decay processes. In table 6.8.2, and 6.8.3,

we have calculated branching fraction and Yukawa coupling bounds within 1� error. These

bounds on the Yukawa couplings can be compared with the bounds from [102, 103]:

Fig.6.8.1, shows a comparison between di¤erent processes (D� ! ���+��,D0 ! �+��; Ds !

K��+��) having common set of Yukawa coupling products(�0�231�
0
232). This comparison shows

that /Rp MSSM contribution to D0 ! �+�� is 3 times smaller than the current experimental

limits. This is signi�cantly much better than the case of D0 ! e+e�. This is because the

branching fraction of the pure leptonic decay depends directly on the square of lepton to me-

son mass ratio. A comparison between D� ! ���+�� and D�
s ! K��+�� shows that /Rp

MSSM contribution to these processes is comparable with the experimental limits: So this is a

promising decay process to be explored at Fermilab and CLEO.

Fig.6.8.2, shows a comparison between di¤erent processes (D� ! ��e+e�, D0 ! e+e� and

D�
s ! K�e+e�):having a common set of Yukawa coupling product (�0�131�

0
132). This comparison

shows that /Rp MSSM contribution to D0 ! e+e� is suppressed as compared to the current

experimental limits. While a comparison between D� ! ��e+e� and D�
s ! K�e+e� shows
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that /Rp MSSM contribution to D�
s ! K�e+e� and D� ! K�e+e� is 10 times smaller than

the current experimental limits.

Fig.6.8.3, shows a comparison between di¤erent processes (D� ! ��e+��, D0 ! e+�� and

D�
s ! K�e+��) having a common set of Yukawa coupling product (�0�231�

0
132). This �g. shows

a comparison between D� ! ��e+�� and D�
s ! K�e+��: This comparison shows that /Rp

MSSM contribution to D�
s ! K�e+�� is similar to the current experimental limits. Therefore,

it is one forbidden process, promising enough to be explored at Fermilab and CLEO.

Fig.6.8.4, shows a comparison between (D0 ! ��e+�e,D+ ! e+ve andD� ! �0e+�e):having

a common set of Yukawa coupling product (�0�133�
0
113 and �

0�
321�131). This comparison shows

that /Rp MSSM contribution to D0 ! ��e+ve is solely by squark exchange Yukawa couplings

(�0�133�
0
113) while /Rp MSSM contribution to D+ ! e+ve is mostly by sneutrino exchange Yukawa

couplings (�0�321�131). The contribution to Br(D
+ ! e+ve) from squark exchange Yukawa cou-

pling products (�0�133�
0
113) is comparable with SM contribution but negligible as compared to

existing bounds. D+ ! �0e+ve receives negligible contribution from �0�321�131 i.e. (10
3) times

smaller than the experimentally measured branching fraction:

Fig.6.8.5, displays a comparison between processes (D0 ! ���+v� and D+ ! �+v�) having

a common set of Yukawa coupling product (�0�233�
0
213 and �

0�
321�232). This comparison shows that

/Rp MSSM contribution toD0 ! ���+v� is dominated by squark exchange. The contribution to

Br(D+ ! �+v�) from squark Yukawa couplings (�0�233�
0
213) is comparable with SM, while slepton

exchange Yukawa couplings (�0�321�232) exchange Yukawa terms also contributes to D
+ ! �+v�.

Fig.6.8.6, displays a comparison betweenD0 ! K��+v� andD+
s ! �+v�: This comparison

shows that /Rp MSSM contribution to D0 ! K��+v� and D+
s ! �+v� is consistent with

available experimental data. The contribution to Br(D+ ! �+v�) from squark Yukawa coupling

products is comparable with SM.

Fig.6.8.7, displays a comparison between D0 ! K�e+ve and D+
s ! e+ve having a com-

mon set of couplings (�0�123�
0
123): This comparison shows that /Rp MSSM contribution to D0 !

K�e+ve is solely by squark exchange Yukawa couplings (�
0
�qk�

0�
�jk), while /Rp MSSM contribu-

tion to D+
s ! e+ve is by slepton exchange Yukawa couplings (��i��

0�
ijq). Table 3 also shows

that the contribution made by squark exchange Yukawa terms to the branching fraction of

(D+
s ! e+ve) is suppressed but is consistent with the prediction of the SM.
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The comparison in table 6.8.1, shows that the branching fraction of some decay processes like

(D�
s ! (��;K�)l�� l

�
� ;�; � = 1; 2) receives contribution from squark Yukawa coupling products

�
0
�qk�

0�
�jk that is comparable with experimental limits placed on the branching fraction of the

these processes. Thus these processes can be explored for observing the e¤ects of /RpYukawa

coupling products. D� ! ��e+e�; D0 ! �+�� and D0 ! e+�� receives slightly less contri-

bution from /RpYukawa coupling products i.e. ~ (1 � 10): D0 ! e+e� is the most unfavorable

process for the study of the e¤ects of /RpYukawa coupling products.

The comparison in table 6.8.2, shows that the branching fraction of some decay processes

like (D+ ! l+�l(l = e; �); D0 ! K�l+� ��(� = 1; 2); D
+
s ! �+��) receives contribution from

squark Yukawa coupling products �
0
�qk�

0�
�jk that is compareable to experimental limits placed

on the branching fraction of these processes. Thus these processes can be explored for observing

the e¤ects of /RpYukawa coupling products. D
0 ! ��e+�e and D+

s ! e+�e receive negligible

contribution from /RpYukawa coupling and are unfavorable processes for the study of the e¤ects

of /RpYukawa coupling products �
0
�qk�

0�
�jk.

The comparison in table 6.8.3, shows that the branching fraction of some decay processes

like (D+ ! l+� ��; D
+
s ! l+� ��) receives contribution from slepton Yukawa coupling products

��qk�
0�
�jk that is comparable to experimental limits placed on the branching fraction of these

processes. Thus these processes can be explored for observing the e¤ects of /RpYukawa coupling

products. (D0 ! ��l+� ��, D
0 ! K�l+� �� ;� = 1; 2 and D+ ! �0e+�e) receives negligible

contribution from /RpYukawa coupling and are thus unfavorable processes for the study of the

e¤ects of /RpYukawa coupling products ��qk�
0�
�jk.

In summary, we have analyzed decay processes (D�
s ! K�l+� l

�
� (v�); D

0 ! l+� l
�
� ; D

� !

��l+� l
�
� (v�)) and compared their branching fractions against a common parameter �

0
�n1�

0�
�m2:

The analysis distinguishes important processes to be studied at various accelerator facilities like

Beijing Electron Positron Collider(BEPC), Fermilab and CLEO detector[104, 105, 106]. All the

�gures and tables in this chapter are used in [107]
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Process
Quark level
Process

Branching
Fraction

Branching
Fraction

Branching
Fraction

(Experimental) SM ( /Rp contribution)
D0 ! e+e� < 7:9� 10�8 1:52� 10�24 � 2:1� 10�13

D�
s ! K�e+e� c! u e+e� < 3:7� 10�6 4:3� 10�8 � 3:7� 10�6

D� ! ��e+e� < 1:1� 10�6 2� 10�6 � 6� 10�7
D0 ! �+�� < 1:4� 10�7 4:76� 10�20 � 5� 10�8

D�
s ! K��+�� c! u �+�� < 2:1� 10�5 4:3� 10�8 � 2:1� 10�5

D� ! ���+�� < 3:9� 10�6 1:9� 10�6 � 3:4� 10�6
D0 ! e+�� < 2:6� 10�7 � 2:6� 10�8

D�
s ! K�e+�� c! u e+�� < 1:4� 10�5 � 1:4� 10�5

D� ! ��e+�� < 2:9� 10�6 � 2:4� 10�6

Table 6.8.1: A comparison of Ds, D+ and D zero leptonic and semi-leptonic decays

(a) Bounds on
���0�113�0123�� (< 5:61� 10�4) have been obtained from the experimental

limits on Br(D�
s ! K�e+e�

(b) Bounds on
���0�213�0223�� (< 1:34� 10�3) have been obtained from the experimental

limits on Br(D�
s ! K��+��)

(c) Bounds on
���0�213�0123�� (< 1:09� 10�3) have been obtained from the experimental

limits on Br(D�
s ! K�e+��)
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The dotted line shows the experimental bound on D�
s ! K��+��:�

0
232�

0�
231 is

expressed as 1

(edL=100GeV 2) :

Figure 6.8.1: Graphs showing relation between branching fraction of leptonic and semileptonic
decay of charm meson.
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The dotted line shows the experimental bound on D�
s ! K�e+e�:�

0
123�

0�
113 is

expressed as 1
(medL=100GeV )2 :

Figure 6.8.2: Graphs showing relation between branching fraction of leptonic and semileptonic
decay of charm meson.
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The dotted line shows the experimental bound on
D�
s ! K�e+��:�

0
123�

0�
213 is expressed as

1
(medL=100GeV )2 :

Figure 6.8.3: Graphs showing relation between branching fraction of leptonic and semileptonic
decay of charm meson.
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The dotted line shows the experimental bound on D ! e+�e: �
0
113�

0�
123 is

expressed as 1
(medL=100GeV )2 :

Figure 6.8.4: Graphs showing relation between branching fraction of leptonic and semileptonic
decay of charm meson.
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The dotted line shows the experimental bound on D ! e+�e: �
0
311�

0�
321 is

expressed as 1
(melL=100GeV )2 :

Figure 6.8.5: Graphs showing relation between branching fraction of leptonic and semileptonic
decay of charm meson.
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The dotted line shows the variation of D0 ! ���+��: �322�
0�
321 is expressed in

the units of 1
(melL=100GeV )2 :�

0
213�

0�
223 is expressed in the units of

1
(medL=100GeV )2

Figure 6.8.6: Graphs showing relation between branching fraction of leptonic and semi-leptonic
decays of charm meson
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The dotted line shows the variation of Ds ! �+��:�
0
223�

0�
223 is

expressed in the units of 1
(medL=100GeV )2

Figure 6.8.7: Graphs showing relation between branching fraction of leptonic and semi-leptonic
decays of charm meson
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The dotted line shows the variation of D+ ! e+�e: �311�
0�
322 is

expressed in the units of 1
(melL=100GeV )2 :�

0
123�

0�
123 is expressed in the

units of 1
(medL=100GeV )2

Figure 6.8.8: Graphs showing relation between branching fraction of leptonic and semi-leptonic
decays of charm meson
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Processes
Quark level
Process

Branching
Fraction

Branching
Fraction

Branching Fraction

(Experimental) SM ( /Rp contribution)
D0 ! ��e+ve (2:89� 0:08)� 10�3 < 2:0� 10�7
D+ ! e+ve (c! u e+ve) < 8:8� 10�6 1:18� 10�8 < 9:4� 10�9
D+ ! �0e+ve (4:05� 0:18)� 10�3 < 5� 10�7
D0 ! ���+v� (c! d �+v�) (2:37� 0:24)� 10�3 < 1:5� 10�6
D+ ! �+v� (3:82� 0:33)� 10�4 5� 10�4 < 3:96� 10�4
D0 ! K�e+ve (c! s e+ve) (3:55� 0:04)% < 3:55%
D+
s ! e+ve < 1:2� 10�4 1:5� 10�7 < 3:8� 10�7

D0 ! K��+v� (c! s �+v�) (3:30� 0:13)% < 1:93� 10�3
D+
s ! �+v� (5:90� 0:33)� 10�3 6:5� 10�3 < 5:90� 10�3

Table 6.8.2: Comparison of Branching Ratios in SM and SUSY with experiments

(Ds; D0; D�). Squark Yukawa couplings products are normalized as 1=(mfdc3=100GeV )2:
Bounds on �

0
123�

0�
123 (< 2:22� 10�1) have been calculated from Br(D0 ! K�e+ve)

Bounds on �
0
223�

0�
223 (< �1:45� 10�2) have been calculated from Br(D+

s ! �+v�)
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Processes
Subquark
Process

Branching
Fraction

Branching
Fraction

Branching
Fraction

(Experimental) SM ( /Rp contribution)
D0 ! ��e+ve (2:89� 0:08)� 10�3 < 1:51� 10�6
D+ ! e+ve (c! u e+ve) < 8:8� 10�6 1:18� 10�8 < 8:8� 10�6
D+ ! �0e+ve (4:05� 0:18)� 10�3 < 1:42� 10�6
D0 ! ���+v� (c! d �+v�) (2:37� 0:24)� 10�3 < 7:41� 10�7
D+ ! �+v� (3:82� 0:33)� 10�4 5� 10�4 < 3:82� 10�4
D0 ! K�e+ve (c! s e+ve) (3:55� 0:04)% < 9:79� 10�6
D+
s ! e+ve < 1:2� 10�4 1:5� 10�7 < 1:2� 10�4

D0 ! K��+v� (c! s �+v�) (3:30� 0:13)% < 1:54� 10�4
D+
s ! �+v� (5:90� 0:33)� 10�3 6:5� 10�3 < 6:23� 10�3

Table 6.8.3: Normalized Yukawa couplings

(Ds; D0; D�). Slepton Yukawa couplings products are normalized as 1=(melc3=100GeV )2:
Bounds on

���0�321�311�� (< 4:33� 10�4) have been calculated from Br(D+ ! e+ve)

Bounds on
���0�3j1�322�� (< 5:0� 10�4) have been calculated from Br(D+ ! �+v�)

Bounds on
���0�332�311�� (< 1:82� 10�3) have been calculated from Br(D+

s ! e+ve)
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Processes
Quark
Process

Yukawa
Couplings

Bounds Bounds

(New) (Old)
D�
s ! K�e+e� (c! u e+e�)

���0�113�0123�� < 5:61� 10�4 < 8� 10�4
D+ ! e+ve (c! u e+ve)

���0�321�311�� < 8:8� 10�6
D�
s ! K�e+�� (c! u e+��)

���0�213�0123�� < 1:09� 10�3 < 2:8� 10�3
D0 ! K�e+ve (c! s e+ve)

���0�123�0123�� < 2:22� 10�1
D+
s ! e+ve (c! s e+ve)

���0�332�311�� < 1:82� 10�3
D�
s ! K��+�� (c! u �+��)

���0�213�0223�� < 1:34� 10�3 < 4:0� 10�3
D+ ! �+v� (c! u �+v�)

���0�321�322�� < 5:0� 10�4 < 1:01� 10�2
Ds ! Ke+�� (c! u e+��)

���0�213�0123�� < 1:09� 10�3 < 9:0� 10�3
D+
s ! �+v� (c! s �+v�)

���0�223�0223�� < 1:45� 10�2 < 1:0� 10�2

Table 6.8.4: Comparison of Yukawa couplings
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Chapter 7

Summary and Discussion

Currents, connecting fermions of the same electric charge, but with di¤erent �avours, are called

�avour changing neutral current (FCNC). It is widely believed that FCNC processes are very

rare in the standard model (SM) due to GIM suppression. FCNC performs dual fuction: on the

one hand, it is an important and critical test of the radiative structure of the SM, and, on the

other hand, it acts as a sensitive and e¤ective probe of physics beyond the SM : "new physics".

This belief becomes more �rm when we concentrate on those FCNC processes, which have two

neutrinos in their �nal state. Neutrino is the only matter content, which is treated massless in

SM, while the results from all existing neutrino experiments clearly indicate the fact that neu-

trinos are massive.This implies that the present SM of particle physics is not the whole story.

Hence, it needs to be revised or extended in order to accommodate neutrino masses, mixing

and other properties related to it. In general, there are many extensions of SM which not only

include masses and mixing, but also generate new kind of interactions known as non-standard

interaction (NSI). NSI could establish the SM gauge principle at energies near electroweak

breaking, including new nonstandard bosons, induced at eight dimensional operators. Regard-

less of the origin, quantifying the strength of a new interaction is very important, which may ap-

pear in the form of unknown couplings. this is usually referred to as non-standard non-universal

couplings. These new interactions do not spoil the several SM predictions, but improve the

theoretical calculations, which are consistent with the present experimental picture; and hence

provide the additional information in terms of known physical phenomena, justifying more pre-

cise measurements. In this scenario, for a detailed illustration, we use the pure and semileptonic
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rare decays of pseudoscalar mesons with missing energy, i.e. (M0 ! ����;M
0�;0 !M 0�;0����

and M�;0
X ! M 0�;0����; notice that M > M 0; where M = B;D;K and M 0 = �;K;D, here

subscript X = S;C): At the quark level, all M�;0
X ! M�;0���� decays are represented by

q ! q0 ���� (q = b; c; s; d); and all these processes can be divided into two categories on the

bases of lepton �avours, i.e.,

1: lepton �avour conserving (� = �); and

2: lepton �avour violating (� 6= �) decays.

The �rst type of decays q ! q0 ���� (� = e; �; �) is absent in the SM at tree level, however

it is induced by GIM mechanism at the quantum loop level, which makes their e¤ective strength

very small. Further suppression is caused by the weak mixing angles of the quark �avor rotation

matrix, called Cabibbo-Kobayashi-Maskawa (CKM) matrix. These two types of suppressions

make FCNC decays very rare. Furthermore, these processes provide indirect test of high

energy scales through a low energy process. Such type of processes (if q = b; c; s) have only

short distance dominant contribution, whereas long distance contribution is subleading. As we

analyze pure and semileptonic decays, which can be accurately predicted in the SM due to

the fact that the only relevant hadronic operators are just the current operators, whose matrix

elements can be extracted from their respective leading decays.

The second type of decays q ! q0 ���� ((� 6= �; �; � = e; �; �) is strictly forbidden to all

orders in SM due to lepton �avour violation, and so the only possible explanation for these

type of processes are non standard/new interactions. Hence, one can say that these are the

"golden channels" for the study of new physics.

In this thesis, we have analyzed the above mentioned decays in SM (for � = �) and in none

standard model (for � = � and � 6= �), by using model independent and model dependent

(R parity violating Supersymmetric Model) approaches. Our aim is to predict the branching

fraction (in some cases) and limits on NSI parameters.

We started our venture by developing our understanding of the SM, its limitations and

phenomenological implications. Our focus is to analyze theK+ �! �+e�e+, D+ �! �+�+��,

D0 �! K��+��, B+ �! D
0
l+�l, K+ �! �+�� and B+ �! �+�� and other processes. As

the outcome of this analysis, we have learned that most of the pure and semileptonic two and

three body decays of pseudoscalar mesons that proceed through tree level Feynman diagram
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(�avour conserving charge and neutral current processes), can be explained very well within

the framework of the SM�. Therefore, these processes put stringent constraint (because of

high theory-experiment compatibility) on physics beyond the SM. Contrary to that, all the

FCNC processes are suppressed when we have di-charge lepton of same �avour, and are highly

suppressed when we have di-neutral lepton of the same �avour due to GIM cancellation and

chiral suppression factor, within the framework of SM. This type of processes can be explained

well beyond the SM.

In support of our argument, we have investigated the D+
s ! K+��, D0 ! �0�� decays.

These are long distance dominated processes and are model dependent. In this case, we have

found that the contribution from NSIs is very large as compared to the SM, so the SM contri-

bution can easily be ignored, as depicted in table 4.4.1. Whereas D+
s ! D+�� is short distance

(SD) dominant process, here SM contribution cannot be ignored, but NSIs can improve SD

dominated contribution (as it appears as an additive term, evident from table 4.5.1). Fortu-

nately, this fact is depicted by the analysis of the only one experimentally measured process,

i.e. K+ ! �+��, as given in table 4.5.1 and �g 4.5.1. The information (value of NSI ) obtained

from this process can be used in D+
s ! D+�� to get the contribution of NSI in total branching

ratios. Thus the branching ratios of D+
s ! K+��; D0 ! �0�� and D+

s ! D+�� decays are

2:23� 10�8, 3:21� 10�8and 2:33� 10�15 respectively, in the framework of NSIs. The values of

non-standard parameters are: �uL�� and �
dL
�� are O(10

�2) and � 1 for � = � = � , and �dL
��

< 1

for � = � = e or �. Hence, we can conclude that, in the rare decays of charm mesons, the long

distance dominated processes are dominated by NSIs, whereas there is a considerable enhance-

ment in the Br of short distance processes due to NSIs (see tables 4.4.1 and 4.5.1). The details

of this work are provided in chapter 4.

The afore-mentioned analyzes of NSIs is extended by incorporating second and third gener-

ations of quarks. The reason for doing so is to investigate why the only available non-standard

parameter constraints in the literature are �uL�� and �
dL
��
y; and why we are unable to �nd bounds

on non-standard parameters, pertaining to second and third generation, i.e., �bL�� , �
sL
�� ; �

cL
�� and

�Except those mension in Table [6.12.2]
yAs the term NSI is coined in neutrino interaction, and it is assumed that neutrino interact with matter and

normal matter contains only up and down qauak as a stable matter content. This picture is true for the study
of scattering not for decays.
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�tL��
z. Contrary to quark sector, in charged lepton sector, non-standard parameters �eL�� , �

�L
��and

��L�� relevant to second and third generations are good constraints [56]

In order to say something concrete about the sensitivity of di¤erent generations/�avours,

we have investigated two sets of processes; one, in which FCNC involve only up type quarks,

i.e. c �! u�� as an external particles and down type (d; s; b) quarks propagating in the

loop. The example of such processes are D+
s ! K+��; D0 ! �0�� and D+ ! �+�� de-

cays (see table 5.5.2); while the other FCNC involves down type quarks, i.e. s �! d�� as

an external lines and up type (u; c; t) quark propagating inside the loop. Such processes,

K+ ! �+��;D+
s ! D+�� and B0s �! B0��; are presented in table 5.5.1. The comparative

study of the aforesaid processes indicates that the NSI parameters are highly generation sen-

sitive. In the �rst case, we observe that the dominant and comparable contribution of NSI is

due to the d and s quark, while b is highly suppressed at radiative level. The same is true

for the second class of processes, where dominant and comparable contribution of NSI is due

to the u and c quark, while t is highly suppressed at radiative level. Hence, we can conclude

that the contribution due to third generation of quarks is highly suppressed in NSIs, con-

trary to SM. Whereas, the contribution from the �rst and second generations are comparable

in size and can not be ignored. This is discussed in details in Chapter 5. In this chapter,

we perform only model independent analysis by exploiting the facts of massive neutrinos and

non-universal coupling. But, as it is known, we have at least one model in which neutrinos

can acquire Majorana type masses via the mixing with gauginos and higgsinos at weak scalex,

known as the SUSY Model. The R-parity violating part of this model is unique in the sense

that it provides the potential to study FCNC at tree level. In this model, the SM particles

decay through sparticle (as a resonance state) into ordinary SM particles. So the R-parity

violating (Yukawa) coupling can be detected by using the usual particle detector. Therefore,

it is really important to know what kinds of couplings are severely constrained by the present

experimental data to provide the evidence for existence of supersymmetric particles. Keeping

this in mind, we have analyzed the whole spectrum of pseudoscalar charm meson Ds; D� decays

zIn principle in the framework of the SM FCNC decays occur at the loop level, where heavy quarks (c, t)
exchanged contribution maximally. Therefore the same type of contribution is expected in NSI at the vertex
where quarks are involved.

xThis mechanism does not involve physics at large energy scale (Mint10
12GeV ) in contrast with see-saw

mechanism, hence makes it accessible for experimental searches.
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�
D ! l���; D ! l�l�; D

�
s ! K�l+� l

�
� (v�) and D !Ml�l�; M = �;K and �; � = e; �

�
: The tech-

nique that we have adopted is to make a comparison between those processes, represented by

the same Feynman diagram in the R-parity violating SUSY Model, and hence, having a common

set of combination (��0) and product (�0�0) Yukawa couplings. The comparison shows that the

contribution of the combination and product couplings (��i���0ijq; �
0
�qk�

�0
�jq) to the branching

fractions of the above processes is consistent with or comparable to the experimental measure-

ments in most of the cases. However, there exist some cases, where these contributions are

highly suppressed (e.g., D0 ! ��e+ve; D+ ! �0e+ve etc.). This is evident in tables 6.8.1-6.8.4

and �gs.6.8.1-6.8.8. We identify such cases in our analyzes and single out the important ones,

suitable for exploring in the current and future experiments (e.g., D+ ! �+v�; D
+
s ! �+v�

etc.). So we conclude that, it is important to improve the precision of the measurements, to

see whether or not a signal for new physics can be found. If not, tighter limits on the coupling

products can be achieved.
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