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Introduction

a) Why string theory ?

In order to grasp the questions string theory is primarily trying to answer, it is useful to
take a look back to the state of theoretical physics in the second half of the XXth century.
During the first half, two major breakthroughs had revolutionised our understanding of the
laws of nature and granted us access to new scales where classical physics would fail.

The first of these breakthroughs was Quantum Mechanics. Quantum mechanics (QM)
are necessary to understand physical systems below a given length scale, related to Planck’s
constant ~ and typically of the order of the nanometre. They state that nature may not be
understood through deterministic paradigms as small systems are inherently probabilistic ;
it is no longer possible to predict exactly how a system in an initial state will evolve in
time - at least in general - and one has to accept that the only accessible theoretical data
are probabilities the system has to be in a given state. Unlike in classical physics, where
probabilistic features came into play as a palliative to the shortfall of either our experimental
setups or our computational power - or both - and where access to unlimited data and infinitely
fast computers would allow to solve exactly any problem in theory, the probabilistic nature
of QM is not merely a reflection of our own technological weaknesses but a genuine and
inherent property of nature. Another new feature compared to previous theories is that QM
tells us that an observer cannot remain a purely external spectator anymore as the action of
measuring any quantity has an effect on the system of interest. In other terms, to the famous
question “If a tree falls in a forest and no one is around to hear it, does it make a sound ?”, QM
would answer that the tree would not have fallen in the first place if it had not been observed ;
instead, it would have been in a mixed state, both fallen and still standing up in a sense, until
a look is taken at it, projecting it into one of the two above states and sealing its fate. Some
renowned experiments are, for instance, the Davisson–Germer double-slit experiment which
exhibited the wave-like nature of matter and the Stern–Gerlach experiment which showed the
angular momentum quantification.

The second breakthrough was Einstein’s General Relativity. General relativity (GR) is a
theory of gravity and allows to grasp highly energetic systems, the appropriate scale being
there the speed of light c. GR states that space and time are intrinsically related and should
be described as a whole - that is as space-time - instead as independently of one another. In
contrast with Newton’s laws of physics where time was an absolute and unalterable quantity,
its perception is generically different for two observers in Einstein’s theory. Moreover, there
exists a finite limiting speed c - meaning in practice that it would take an infinite amount
of energy to exceed c - which is strongly believed to be the speed of light from experimental
considerations. In addition to these novelties, space-time itself is no longer considered as some

v
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immutable object within which the universe evolves ; instead, it may be deformed by matter -
or more generally by the presence of energy - and should be considered dynamical. According
to GR, gravity is actually a consequence of these local deformations as it states that free
falling particles follow space-time geodesics, which are not straight lines when space-time is
not a Minkowski space. Experimental supports for GR are the fact that it does explain the
perihelion precession of Mercury and the notable Eddington’s experiment which showed that
light is deflected by massive systems - namely by the Sun in this case.

Besides from never having been proven wrong so far, both of the above theoretical frame-
works have granted physicists access to a new range of phenomena, from particle physics to
cosmology, and are pillars of modern physics. However, while QM and GR have answered a lot
of fundamental questions, they have also raised new ones. Taking both special relativity, which
is the restriction of GR in Minkowski space or equivalently GR where gravity is neglected,
and QM into account leads to Quantum Field Theories (QFT) and allows to describe particle
physics. This way, three out of the four known fundamental interactions of nature have been
understood in a unified paradigm, namely the electromagnetic, weak and strong interactions.
Yet, the fourth one - gravity - is a lot harder to incorporate into a quantum theory. If one tries
to naively quantise GR, the resulting theory is nonrenormalisable, meaning that one would
need an infinite amount of experimental data in order to be able to make a computation,
taking away the predictive power of the theory ; as such, it may at most be understood as an
effective field theory whose UV-completion remains out of reach. Phrased differently, naive
quantisation of GR does not grant information on the UV sector, that is on what happens at
length scales small compared to the Plank length, which is of the order of 10−35m. Another
difficulty compared to the three other fundamental interactions is that gravity is by far the
weakest interaction and, as such, far from the reach of the current particle accelerators 1.
Therefore, unlike most problems encountered in physics so far, the road toward a quantum
mechanical description of gravity may hardly be paved with experimental cobblestones.

Along the years, several scenarios have emerged in order to give a quantum mechanical
meaning to gravity, none of which having undoubtedly discarded the others for the moment.
It turns out that the candidate for a quantum theory of gravity we will deal with in the
following has not historically been developed for this matter. Instead, in the late 1960’s,
the foundations of string theory have been laid as an attempt to understand the dynamics
of hadronic particles. The discovery of quantum chromodynamics supplanted it as a theory
of strong interactions due to various theoretical difficulties inherent to string theory, such
as the presence of a massless particle of spin 2, in contradiction with experiment, and of a
tachyon, revealing the instability of the theory, in the spectrum. Nonetheless, after a brief
lost of interest, string theory became even more appealing as before when Schwarz, Scherk
and Yoneya realised that the aforementioned massless spin 2 particle could be interpreted
as a graviton [2, 3], thereby providing a candidate for a quantum theory of gravity whose
low-energy limit identifies to Einstein’s GR.

b) The dimension issue

Now that the reasons for being interested in finding a quantum description of gravity have
been clarified, we can take some time to explain roughly what string theories are and some

1. Gravity is roughly 1025, 1036 and 1038 times weaker than the weak, electromagnetic and strong interac-
tions respectively. The explicit value of the corresponding coupling constants may be found, e.g., in [1].
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of the questions they raise. The standard description of particles in quantum field theory is
that of point-like objects whose trajectory in space-time spans a 0+1-dimensional manifold
referred to as the world-line. In contrast, strings are one-dimensional objects and sweep, as
such, a 1+1-dimensional world-sheet instead. The simplest string theory is a 2-dimensional
non-linear sigma model (to be defined in section II.2.2.b)) on the world-sheet taking values
in a D-dimensional target space interpreted as space-time ; it is known as bosonic string
theory. Although bosonic string theory has been historically invented first, superstring theories
were soon developed in order to take care of some phenomenologically unpleasant features of
bosonic string theory - namely the fact that its spectrum only contains bosonic excitations,
explaining the name of the theory, and a tachyon, reflecting its instability. Superstring adds
to bosonic theories superpartners to the world-sheet bosonic fields, leading to tachyon-free
theories 2 whose spectrum contains bosons and fermions.

Both bosonic and superstring theories exhibit local conformal symmetry at the classical
level. In order to quantise these theories in a consistent way, one must require that no anomaly
comes into play and spoils this invariance. The corresponding anomaly is usually known as the
Weyl or trace anomaly, the latter being due to its relation with the trace of the stress-energy
tensor. Indeed, conformal invariance classically forces this tensor to be traceless ; one may
show (see, e.g., [5]) that local conformal invariance is preserved in the quantum theory if and
only if the vacuum expectation value (VEV) of the trace of the stress-energy tensor vanishes
as well. Moreover, this VEV may be computed to read

〈T aa 〉 = − c

12R

with T the stress-energy tensor, R the world-sheet Ricci scalar and c the central charge of the
theory. In other words, this means that a string theory may only be consistent if its central
charge vanishes.

In order to grasp the consequences of this claim, let us list the various contributions to the
central charge of a string theory. Each free world-sheet boson contributes as 1 to c and each
free world-sheet fermion as 1/2. BRST quantisation also includes ghosts in the theory which
add a negative contribution to the overall central charge ; one computes that cghosts = −26 in
the bosonic case and that cghosts = −15 in the superstring one. This leads to a common major
phenomenological flaw of both bosonic and superstring theories - or at least what would seem
like it at first glance : both theories are only consistent if the target-space, that is space-
time, has strictly more than 4 dimensions. The corresponding dimension is called the critical
dimension ; the critical dimensions for the bosonic and superstring theories are Dbosonic = 26
and Dsuper = 10 respectively 3. Historically, the peculiarity of the D = 26 version of bosonic
string theory has first been noticed in [6], where it was computed that only in this case would
branch cuts cancel out in propagators to be replaced by poles as they should.

This raises an obvious question : how to make sense of a theory claiming that space-time
is not four-dimensional ? We will see in chapter II what theoretical tools may be used to do
so and even how higher-than-four-dimensional theories may be attractive on their own right.
The simplest answer to this problem would be to postulate that space-time may be expressed

2. This is actually only true if one keeps only some of the states of the theory in a consistent way ; the
corresponding procedure is the GSO projection developed in [4].

3. There also exists strings theories known as non-critical which are obtained by finding a way to increase
the central charge without adding new bosons (and fermions in the superstring case). A common example is
the case of a linear dilaton background, see [5] for more details.
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as the direct product of the more familiar Minkowski space and some compact space K small
enough to have escaped detection up to this day. However, as the only restriction on what we
will refer to as the internal space K is its dimension, the number of available geometries is en-
ormous if even finite. We will see however that the details of these geometries lead to different
laws of physics from our four-dimensional perspective ; this has allowed string theorists, if not
to identify a unique possible geometry, to classify them in terms of their phenomenological
relevance. Some features will be of particular interest in this respect : the first one is the
amount of space-time supersymmetry in the four-dimensional theory. Indeed, the only known
consistent string theories naturally incorporate (world-sheet) supersymmetry ; phenomeno-
logically speaking, N > 1-supersymmetric theories prevents chiral interactions and may as
such not describe the world we live in. However, with great amount of supersymmetry comes
great control explaining why models with N > 1 are still very popular. The second interes-
ting feature descend from the fact that the conformal field theory with target space K may
typically be continuously deformed into equally valid models ; renormalisation considerations
show that some of these deformations - known as truly marginal deformations - preserve the
local conformal invariance at the quantum level and therefore lead to equally valid models. To
each of these deformations corresponds a massless scalar field in the low-energy dimensional
theory which is known as a modulus of the theory ; in quantum field theoretical parlance, the
moduli correspond to flat directions in the scalar potential. From an ideological point of view,
these massless scalars are not desirable ; indeed, their vacuum expectation values are uncons-
trained by definition and may as such only be fixed by experimental data instead of theoretical
predictions. From a phenomenological point of view, they are even worse : it would be hard to
explain how these massless scalars could have stayed hidden from the current particle physics
experiments, and the more moduli the harder. For all these reasons, a common concern when
studying reductions of string theories down to four dimensions is moduli stabilisation, that
is strategies to decrease the number of massless scalar fields present in the low-dimensional
model.

Space-time supersymmetry constraints will be shown in section II.1 to restrict the holo-
nomy group of the internal space, which represents roughly how an object transforms when
travelling along loops on a manifold. Several techniques have also been found in order to
deal with the typically great amount of moduli in the four-dimensional theories such as flux
compactifications, which are models in which electromagnetic field strengths (or higher ge-
neralisations thereof) are given a non-trivial VEV. Another possible (and flux-compatible)
approach is given by noticing that our usual notion of geometry may break down at the level
of strings. This is a reflection of the fact that the geometries probed by strings at scales below
the Planck length are very different from those probed by point particles. A very common
consequence of this, which we shall analyse and generalise in section I.3, is the fact that string
theories see no difference between a circle of radius R and another one of radius 1/R (in ap-
propriate units). This means in particular that the geometric tools we have been mentioning
so far, although quite useful, may hide part - and probably most - of the picture. Instead of
considering an internal space K, one could indeed impose the weaker - but more fundamental -
vanishing constraint of the central charges of the two decoupled CFTs, leading to more general
setups. We will refer to dimensional reductions which do not admit a geometric interpreta-
tion as non-geometric models. Such constructions may preserve any amount of space-time
supersymmetry - or more precisely any amount allowed by quantum field theory considera-
tions - unlike their geometric counterparts while typically exhibiting less moduli. Moreover,
unlike flux compactifications, they have the advantage of admitting exactly solvable CFTs.
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Non-geometric constructions constitute the main interest of the present thesis. We will mostly
restrict to models admitting 8 supercharges - that is N = 2 supersymmetry in four dimen-
sions - for various reasons. First, while theories with N > 2 are well-understood, they are too
constrained to exhibit interesting features ; on the other hand, models with N < 2 are a lot
richer but also a lot harder to handle. N = 2 theories lie in between these two extreme cases,
offering both interesting and manageable theories. Then, dual pairs of such models play a key
role in string theory as they typically grant access to non-perturbative features through, for
instance, BPS states - which are protected states related to the existence of central charges in
the supersymmetry algebra - or non-renormalisation theorems. The models we present here
provide a new class of non-geometric N = 2 pairs of dual theories ; we will also show how
the conjectured duality allows to make non-perturbative predictions for theories living in a
non-geometric background.

This work is organised as follows : we will start by reviewing notions which are present
between the lines all along this thesis. More precisely, we will review various dimensional
reduction techniques and some of their features in chapter I, from a quantum field theory
point of view in sections I.1 and I.2 and from a conformal field theory perspective in I.3
and I.4. In a second phase, we specify the analysis to the reduction of superstring theories
which naturally lead to space-time supersymmetry considerations as we mentioned above.

In chapter II, we therefore explain how geometry of the internal manifold and supersym-
metry are correlated before specialising to the case of geometric constructions preserving 16
supercharges ; this allows us in particular to introduce the well-known duality between the
type IIA and heterotic string with a K3 surface and a four-torus as respective internal spaces
which will for our purposes. We then turn to reductions of closed strings on backgrounds
preserving N = 2 supersymmetry in four dimensions, which is also the case of the models to
be considered later. The idea here is also to present some of the key features of such geometric
and flux-free models in order to enlighten the difference with the constructions presented in
chapter III. Finally, we give a brief taste of non-geometric constructions introducing in par-
ticular the notions of gauged supergravities, T-folds and mirror-folds of which the models of
the following chapter are examples.

In chapter III, we have first chosen to review the family of mirror-folds of the type IIA
string developed in [7] despite the fact that the author of the present thesis was not involved
in their construction. This is motivated by the fact that an important part of this thesis
has been devoted to understand these models by identifying dual heterotic theories thereof.
The rest of this chapter is dedicated to presenting the original results corresponding to the
first publication [8] of this thesis. The dual models of the non-geometric type IIA models are
constructed in section III.2 and section III.3 introduces the perturbative BPS states arising
in the heterotic picture and computes the corresponding protected indices. Sections III.4
and III.5 are devoted to an in-depth analysis of the duality consistency conditions and to
deriving additional dual frames for these models.

In chapter IV, we take some time to review generic features of N = 2 supergravities
in four dimensions. This will allow us to introduce tools useful in deriving the perturbative
corrections to the part of the moduli space spanned by scalars living in vector multiplets. In
particular, we show how perturbative dualities of the theory translate to modular constraints
on the associated prepotential.

In chapter V, we present the results constituting the second paper [9] produced during
this thesis which is devoted to understanding the moduli space of the models introduced in
chapter III. While the heterotic description allows for an exact derivation of the hypermultiplet
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moduli space both in the string tension α′ and in the string coupling gs, determining quantum
corrections to the vector moduli space requires more work. However, we show that the method
introduced in [10, 11] which exploited the modular properties of the prepotential may be used
in our case to give access, at least theoretically, to the corrections to the corresponding factor
of the moduli space. An explicit computation example is given for the simplest model at our
disposal, namely the p = 2 case with the notations of chapter III.



Chapitre I
Dimensional reductions

I.1 Kaluza-Klein reduction
The interest of theorists for physical models in more than four dimensions may be traced

back to the early XXth century with the seminal work of Kaluza [12]. When considering
such theories, an immediate problem would be to understand how extra dimensions could
have escaped detection for so long. According to Kaluza, there may be a simple explanation
to this : if these additional dimensions are compact and small enough, our current particle
accelerators may not be able to see them. This may be illustrated by the example of a free
real massless scalar field living in a five-dimensional space-time with action

S = −1
2

∫
M5

d5X (∂MΦ)2 (I.1)

in natural units. In (I.1), M5 is an arbitrary five-dimensional manifold with coordinates{
XM

}
and signature (−+ + + +) ; the associated equation of motion is

∂M∂
MΦ = 0.

Let us now assume thatM5 may be expressed as a product space containing the more familiar
four-dimensional Minkowski space M1,3 as a factor. Requiring the remaining bit of M5 to
be compact lets few freedom as any compact one-dimensional manifold is either topologically
equivalent to a circle or to a closed interval. In order to avoid boundary issues, we will only
consider the former case meaning thatM5 should be expressible as

M5 =M1,3 × S1

with S1 a circle of radius R. We decompose theM5 coordinates as {X} =: {x, y} so that {x}
and y spanM1,3 and S1 respectively. In particular, y must be identified to y + 2πR.

Classically, one may deduce an action expressed as the integral of a Lagrangian density
overM1,3 by performing the integration over y in (I.1), the resulting four-dimensional action
being equivalent to the original one. In order to do so, it is useful to expand Φ(x, y) over
a basis of functions of y. A convenient basis is given by the eigenfunctions of the internal
Laplacian ∂2

y as we now illustrate. These are expressed as

ψn(y) := 1√
2πR

e
in
R
y

1
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as compatibility with the y ∼= y + 2πR identification requires ; the normalisation is chosen so
that

∫
S1 dyψnψm = δn,−m. The five-dimensional field Φ(x, y) may be expanded as

Φ(x, y) =
∑
n∈Z

φn(x)e
in
R
y, (I.2)

with the reality of Φ implying φn(x) = φ−n(x). The Fourier modes φn(x) may then be seen
as fields in the four-dimensional theory. Integrating over the circle variable y in (I.1) leads
straightforwardly to the four-dimensional action

S = −1
2

∫
d4x

∑
n∈Z

(
|∂µφn|2 + n2

R2 |φn|
2
)
. (I.3)

In summary, starting from a single massless scalar field in five dimensions, we end up with
an infinite number of scalar fields in four. Moreover, almost all these fields are massive as φn
has mass m2

n := n2/R2 ; only the zero-mode φ0 remains massless. This illustrates how a small
enough extra dimension may not be visible neither in everyday life nor in experiments. For
R small enough, all non-zero modes of Φ would have very large masses and would therefore
be out of reach from our current particle accelerators. In the range of energies accessible to
us, only the zero mode φ0 would be visible and its higher-dimensional origin far from being
obvious. This is usually what is assumed in string theory as one expects massive particles to
have masses of the order of Planck’s mass.

Even though the actions (I.1) and (I.3) are classically equivalent, dealing with an infinite
tower of fields is not a very appealing feature ; however, considering that all massive fields are
too heavy to be observed, an effective field theory may be derived by retaining only a finite
number of light fields. Performing a dimensional reduction therefore also implies to keep only
a part of the spectrum in a way which is consistent with the original theory. This procedure is
called a truncation and is a rather subtle subject in general as setting all massive fields to zero
does not lead to a theory equivalent to the higher-dimensional one in general. Consistency of a
truncation may either be checked explicitly or argued, typically using symmetry arguments 1.
In the following however, we will always assume that truncation to the massless sector is a
consistent procedure.

Let us slightly generalise our above example by reducing a (D + 1)-dimensional theory
defined on MD+1 := MD × S1 for some D-dimensional manifold MD and for S1 of radius
1/(2π) (the generalisation to an arbitrary radius being straightforward). We start by conside-
ring pure gravity following [12]. Keeping only the massless modes amounts here to requiring
all derivatives with respect to the circle coordinate to vanish ; this condition is usually referred
to as the cylinder condition. In natural units, the pure gravity action is given by

S =
∫

dD+1X
√
−GR̂

with GMN the metric on MD+1 and R̂ the associated Ricci scalar. As before, we split the
coordinates on MD+1 as

{
XM

}
=: {xµ, y} with x and y the coordinates on MD and S1

respectively. We follow the common convention in which M (µ) labels tangent indices on
MD+1 (MD). The metric GMN , which does not depend on y by the cylinder condition,
may easily be decomposed into representations of the D-dimensional Lorentz group. From

1. For a more detailed discussion, see e.g. [13].
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a D-dimensional point of view, Gµν , Gµy and Gyy indeed transform as a metric, a vector
and a scalar field under Lorentz transformations. However, it turns out to be more natural
to consider different combinations of the above degrees of freedom in order to define the
associated D-dimensional field. We parametrise the line element as

dŝ2 := e2αφ ds2 + e2βφ(dy +A)2 (I.4)

instead, with ds2 the line element onMD, A the Kaluza-Klein one-form, φ the radion and α,
β two constants. The Ricci scalar R̂ may then be computed in terms of the metric on MD,
A and φ (see e.g. [14] for more details about the derivation) ; after having performed the
integration over y, the result reads, up to boundary terms,

S =
∫

dDx e(β+(D−2)α)φ√−g
[
R −

(
α2(D − 1)(D − 2) + β(β + α(D + 2))

)
(∂φ)2

− 1
4e

2(β−α)φFµνF
µν
]

with R the Ricci scalar associated to the metric onMD, F := dA the field strength associated
to the Kaluza-Klein one-form A. Going back to the Einstein frame - in which the Lagrangian
is L =

√
−gR + ... - may be done by setting 2 β = −(D− 2)α. Requiring in addition the field

φ to be properly normalised fixes α (up to a sign) and one obtains the D-dimensional form
of the action

S =
∫

dDx
√
−g
(

R− 1
2(∂φ)2 − 1

4e
−2(D−1)αφFµνF

µν
)
,

α2 = 1
2(D − 1)(D − 2) , β = −(D − 2)α.

In summary, starting from pure gravity in (D + 1) dimensions, one obtains a D-dimensional
theory incorporating gravity, a massless scalar field and a U(1) gauge field. Moreover, the
radion φ plays a role similar to a coupling constant for the gauge field A. Although simple,
this example is a nice illustration of why theories with more than four dimensions may be
interesting on their own. Indeed, they allow to unify in a rather straightforward way gravity
and (so far, abelian) gauge theories which seems like an appealing feature.

Since we are ultimately interested in theories with local supersymmetry, we should also
be concerned with what happens to differential forms of arbitrary rank. Let then Â(p) be a
p-form defined on MD+1. The ansatz (I.4) suggests a natural choice of vielbein basis

{
θ̂A
}

with A = 1, ..., D + 1 as

θ̂a = eαφθa, a = 1, ..., d, (I.6)
θ̂D+1 := θ̂y = eβφ(dy +A)

with {θa} a vielbein basis for the metric defined on the lower-dimensional manifoldMD and
with α, β as before. The field strength F̂ (p+1) := dA(p) may then be decomposed as

2. As e2βφ = Gyy, this may only be done if the theory is reduced down to D 6= 2 dimensions.
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F̂ (p+1) = 1
(p+ 1)! F̂

(p+1)
A1...Ap+1

θ̂A1 ∧ ... ∧ θ̂Ap+1

= eα(p+1)φ

(p+ 1)! F̂
(p+1)
a1...ap+1θ

a1 ∧ ... ∧ θap + e(αp+β)φ

p! F̂ (p+1)
a1...apyθ

a1 ∧ ... ∧ θap(dy +A).

It is therefore natural to decompose F̂ (p+1) as F (p+1) +F (p) with F (p+1), F (p) two differential
forms defined onMD with components being given in the local frame basis by

F (p+1)
a1...ap+1 := eα(p+1)φF̂ (p+1)

a1...ap+1 ,

F (p)
a1...ap := eα(p+2−D)φF̂ (p+1)

a1...apy

where we have used the β = −(D − 2)α condition from (I.5). The kinetic term associated to
F (p+1) will therefore contribute to the D-dimensional Lagrangian as

1
2

∫
dy F̂ (p+1) ∧ ?F (p+1) = 1

2e
−2αpφF (p+1) ∧ ?F (p+1) + 1

2e
2α(D−p−1)φF (p) ∧ ?F (p)

where the Hodge star operator ? is understood to be defined with respect to GMN (gµν) on
the left-(right-)hand side of the above equation.

In practice, one may be interested in dimensional reduction on manifolds with more than
one dimension ; this is for instance the case when trying to understand either bosonic or
superstring theories in four dimensions. We then turn to discussing how to reduce a D-
dimensional theory to a d-dimensional one, with d < D. We already know how to do so when
the internal space is a product of (D − d) circles - that is a (D − d)-torus - by applying the
above procedure repeatedly. Each iteration produces a new Kaluza-Klein one-form, a new
radion as well as new scalars from the already existing Kaluza-Klein one-forms known as
axions. In addition, every other p-form splits into a p-form and a (p− 1)-form as we saw.

For various reasons we will mention later, including supersymmetry considerations as
we will detail in II.1, one may want to perform dimensional reductions on more complex
manifolds. Let us consider a theory defined on a D-dimensional manifold MD and assume
we want to interpret it as a theory defined on the d-dimensional manifold Md. This is only
possible ifMD looks, at least locally, like a product spaceMD ×KD−d. We will restrict here
to the case whereMD =Md×KD−d globally but it may be worth noting that different setups
- such as flux compactifications to be discussed in II.4.2 - have been studied in the literature.
In order to perform the reduction, we make the following ansatz for the background metric :

〈GMN (x,y)〉 =
(
gµν(x) 0

0 g̃αβ(y)

)
(I.7)

with xµ and gµν (respectively yα and g̃αβ) the coordinates and metric on Md (respectively
KD−d). Dimensional reduction is then obtained by expanding GMN around its vacuum expec-
tation value. This gives a prescription for computing the d-dimensional Ricci scalar appearing
in the Einstein-Hilbert part of the action, either exactly or perturbatively depending on what
is possible.
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As in the S1 reduction case, the resulting theory has an infinite tower of states almost none
of which are massless. Indeed, let χ(x,y) be a free massless field in the original D-dimensional
theory. Its equation of motion reads

Ddχ = 0

for some differential operator Dd defined on MD of order 2 (1) if χ is bosonic (fermionic).
Using the splitting (I.7), the operator DD may be expressed as a sum of two operators acting
only onMd and KD−d respectively so that the equation of motion of χ may be rewritten as

Ddχ+Dintχ = 0. (I.8)

Similarly to what we have done in the S1 example, we would like to expand χ(x,y) in a
basis of functions on KD−d so as to integrate to original action over the internal manifold ;
the above equation of motion suggests to expand χ over the eigenfunctions Y a of the internal
differential operator Dint as

χ(x,y) = χa(x)Y a(y). (I.9)

The χa’s may be seen as a generalisation of the Fourier modes in equation (I.2). It is clear
from (I.8) that the mass of χa will be given by the eigenvalue of Dint associated to Y a.
Assuming that a truncation to the massless sector is consistent, the Kaluza-Klein reduction
on KD−d may then be performed by keeping only the zero modes of Dint in the d-dimensional
theory. As before, the equivalent action in d-dimensions is obtained by plugging (I.9) into the
action before integrating over KD−d.

We conclude this discussion by analysing the global symmetries of Kaluza-Klein reduced
theories. It is well known that the pure gravity theory in D+ 1 dimensions is invariant under
general coordinate transformations parametrised by

δXM = −ξM , δGMN = (LξG)MN (I.10)

with LξG the Lie derivative of the metric G along the vector field ξ. However, not all transfor-
mations (I.10) preserve the cylinder condition ; imposing that δGMN remains y-independent
may only be done if the transformation parameter ξ satisfies

∂yξ
µ = 0, ∂y∂Mξ

y = 0. (I.11)

The most general solution to (I.11) is given by

ξµ(x, y) = ξµ(x), ξi(x, y) = cy + λ(x) (I.12)

with c constant. In addition to the invariance under D-dimensional general coordinate trans-
formations, the lower-dimensional theory also inherits a U(1) gauge symmetry, parametrised
by λ(x) and associated to the gauge one-form A, and a R global symmetry parametrised by c.
In the more general case of reduction on a d-dimensional torus, the cylinder condition imposes
all fields to be independent of the coordinates

{
yi, i = 1, ..., d

}
of the torus. The generalisation

of (I.13) is therefore

ξµ(x,y) = ξµ(x), ξi(x,y) = cijy
j + λi(x). (I.13)
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As in the circle case, invariance under general coordinate transformation of the non-compact
coordinates is retained ; in addition, there is a local U(1)n invariance and a global GL(d,R)
symmetry encoded by the parameters λi(x) and cij respectively. The GL(d,R) group obtained
here may be understood as the combination of an internal SL(d,R) symmetry - that is which
leaves gµν invariant - inherent to torus reductions and of a scaling symmetry whose presence
in the d-dimensional theory depends on the matter content of the D-dimensional one. For the
pure gravity model, this is the end of the story ; however, the field content of supergravities also
contains differential p-forms Â(p). The theory reduced on T d with d ≥ p then contains scalars
coming from the reduction of Â(p), in addition to those previously considered. This generically
has the effect on enhancing the global symmetry group from SL(d,R) to a continuous group
G ; since the full duality group of the UV-completion should leave a fortiori the low-energy
supergravity invariant as well, it is usually conjectured to be a (discrete) subgroup of G. In
the literature, this duality group is known as the U-duality group.

I.2 Scherk-Schwarz reduction
Dimensional reduction on arbitrary manifolds may become really hard to perform, depen-

ding on the internal space of interest. As we have seen in section I.1, Kaluza-Klein reductions
on tori are quite easy to handle and are therefore attractive in this respect. However, they
suffer some major flaws : since we truncate all massive modes, we loose the ability of genera-
ting masses for the gauge particles. Moreover, there is no scalar potential so that all scalar
fields are moduli. Another important feature is the amount of retained space-time super-
symmetry : phenomenologically, supersymmetric extensions of the standard model of particle
physics may have at most N = 1 supersymmetry as chiral interactions would be forbidden
otherwise. As we will discuss in more details in section II.1, the geometry of the internal
space determines the amount of preserved supersymmetry in Kaluza-Klein models. In a series
of two papers [15, 16], Scherk and Schwarz introduced an alternative to the Kaluza-Klein
ansatz. The main motivation was to find a way to generate mass terms for the gravitini, the-
reby spontaneously breaking supersymmetry. Another interesting consequence is that, due to
the higher-dimensional model supersymmetry, the procedure also generates a scalar potential
allowing to stabilise moduli.

Let us consider the reduction of a (D + 1)-dimensional theory on a circle containing a
field Φ(x, y). If the circle has radius R, then y must be identified to y + 2πR ; in particular,
the action must be invariant under y 7→ y+ 2πR. With the Kaluza-Klein ansatz, Φ(x, y) was
actually independent of y so that Φ(x, y+2πR) = Φ(x, y) was trivially satisfied ; consequently,
the action was indeed invariant under a shift of 2πR of the y coordinate. Let us now assume
that our system admits a global symmetry group G. Then, if Φ(x, y) is such that

Φ(x, y + 2πR) = h · Φ(x, y)

for some element h ∈ G, the action is still invariant under y 7→ y + 2πR and the system
remains consistent 3. This may be achieved by setting

Φ(x, y) = g(y) · φ(x) (I.14)

3. To be precise, Φ(x, y + 2πR) = ρ(h) · Φ(x, y) for some representation ρ of the group G. In order to
lighten the notation, we assume the difference between a group element and its image under ρ is clear from
the context.
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for some y-dependant element of G satisfying

g(y + 2πR) · g(y)−1 = h

for all values of y. The simplest way to fulfil this condition is to choose

g(y) = exp
(
yM

2πR

)
(I.15)

for some elementM in the Lie algebra g of G 4. Then, the field Φ is no longer periodic around
the circle but instead has monodromy

M(g) := eM .

Inserting the ansatz (I.14) into the equation of motion of Φ shows that the mass matrix is
related to M as we will illustrate below ; more precisely, the resulting mass terms are either
linear or quadratic in M depending on whether Φ is fermionic or bosonic. Moreover, the one-
dimensional subgroup of G generated by M becomes a local invariance of the reduced theory
under which the scalar fields are charged. This may be seen by considering the dimensional
reduction of dΦ for instance. Indeed, in terms of the vielbein (I.6), it reads

dΦ = exp
(
yM

2πR

)[
Dφ+ 1

2πRMφθ̂y
]

with Dφ := dφ − 1
2πRAMφ the gauge covariant derivative in the reduced theory and A the

Kaluza-Klein one-form coming from the reduction of the metric on the circle. The Scherk-
Schwarz construction therefore naturally leads to gauged supergravities, to be described in
more details in section II.4.1.

Let us see in more details how a scalar potential emerge in the common case where the
scalar fields in D + 1 dimensions take value in a coset space G/H. Typically, G is a non-
compact Lie group and H its maximal compact subgroup. The scalars may be conveniently
represented by a vielbein V̂(x, y) transforming under rigid G and local H transformations as
V̂ 7→ gV̂h−1(x, y) 5. The kinetic term may be shown to read [17]

Lkin = −

√
−Ĝ
2 Tr

(
V̂−1DM V̂V̂−1DM V̂

)
(I.16)

withD a covariant derivative with respect to aH-connection and with Ĝ andM the metric and
indices corresponding to the (D+1)-dimensional space-time as before. Let η be a H-invariant
metric, that is such that hηhT = η for all element h ofH and let us define theH-invariant field
Ĥ := V̂ηV̂T . The unphysical degrees of freedom of the vielbein V̂ may be removed from the
Lagrangian (I.17) by applying the local H-transformation h(x, y) = ηV̂T (x, y). Using the fact

4. This may always be done whether G is simply connected or not. Indeed, if it is not, it is always possible
to go from a connected component of G to the one connected to the identity element by multiplication by some
(constant) element h0 of G. Since the theory admits G as a global symmetry, any choice for g(y) is physically
equivalent to a theory where g(y) is replaced by h0 · g(y) with h0 · g(y) in the component of G connected to
the identity.

5. We emphasise that the local H invariance is not a gauge symmetry (in the sense that it is not associated
to any propagating gauge field) but is only included as a way to take care of the redundancy of the vielbein
parametrisation.
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that the covariant derivative acting on Ĥ reduces to a simple derivative, the Lagrangian (I.17)
becomes

Lkin =

√
−Ĝ
2 Tr

(
∂MĤ−1∂MĤ

)
. (I.17)

It is now easy to see that the reduction on S1 using the Scherk-Schwarz ansatz V̂(x, y) =
exp

(
yM
2πR

)
V(x) produces a scalar potential proportional to

V (φ,V) = eaφ Tr
(
M2 +MHMTH−1

)
= eaφ Tr

(
M2 + V−1MVη

(
V−1MV

)T
η−1

)
(I.18)

with a a constant depending on the choice of normalisation for the coefficients α and β defined
in (I.4). The vacua of the theory correspond to minima of the potential (I.19) ; since V depends
on the dilaton φ through an exponential factor, it may only be stationary with respect to φ
variations for field configurations V0 satisfying V (φ,V0) = 0. In the usual case where H is
compact, one may always choose a basis such that η is the identity matrix ; in this case, the
potential may be rewritten as

V (φ,V) = eaφ Tr
(
Y 2
)

(I.19)

with Y := V−1MV +
(
V−1MV

)T . Since Y is a real matrix, the vacua are therefore located to
the points where Y = 0 that is where the matrix V−1MV is antisymmetric.

As before, this may be further generalised to reduction on a torus by applying the same
procedure repeatedly ; the corresponding ansatz is then

Φ(x,y) = (g1(y1)...gd(yd)) · φ(x).

for yi-dependants elements gi of G. In order for the monodromies along each cycles of T d
to be well-defined - that is in particular constant - one needs to require that all the gi’s
commute. The gauge group of the resulting theory will then be the direct product of the
groups generated by the matrices Mi defined as in (I.15).

Let us emphasise that different choices for g(y) do not necessarily lead to physically
inequivalent theories. In particular, under conjugation of g(y) by a constant element k ∈ G,
the mass matrix transforms as

g(y) 7→ h · g(y) · h−1, M 7→ h ·M · h−1.

Even though this may seem like a different reduced theory at first sight, it is related to the
original one by redefining all the fields φ as φ 7→ h · φ as may be seen explicitly in the above
example. Therefore, all elements g(y) in the same conjugacy class lead to physically equivalent
theories.

Finally, we note that taking quantum corrections into account generically breaks the
global symmetry group G into a discrete subgroup G(Z) ⊂ G. In the quantum theory, the
monodromy must therefore belong to G(Z) ; the mass matrix will then typically have only
integer entries in some appropriate basis.
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I.3 Toroidal reductions in conformal field theory

I.3.1 The Narain lattice
We now turn to reviewing a specific type of compactification which has the advantage of

admitting a solvable conformal field theory (CFT) description, namely compactification on a
torus. We have already outlined the corresponding dimensional reduction from the quantum
field theory point of view in section I.1 and we will see that a world-sheet description leads to
additional features due to the extended structure of the strings. The models studied in this
thesis and developed in chapter III strongly rely on such constructions and in particular on
toroidal orbifolds which will be reviewed in section I.4.

The simplest example of string theory is a CFT of free bosons (plus their fermionic coun-
terparts in the superstring case), each of which are interpreted as a direction in space-time.
Let us consider as an example the case of critical bosonic string theory where the free bosons
are XM for M = 0, ..., 25. Without any further constraint, the corresponding target space is
the 26-dimensional Minkowski space. Let us assume that one would like to compactify the
theory on S1 so that, say, X25 is the coordinate on a circle of radius R. Then, one should
impose the identification

X25 ∼= X25 + 2πR.

This induces a global difference with the non-compact case, as the topology of the target
space is no longer the same. However, from a local point of view nothing has changed and the
Polyakov action may be quantised in the usual way.

This will also be the case when compactification on an arbitrary-dimensional torus is
considered. Indeed, any (real) torus T d may be seen as the quotient Rd/(2πΛ) for some rank
d lattice Λ. In other words, setting X̃I , I = 1, ..., d the coordinates on T d, the associated CFT
is obtained from the free boson case by imposing

X̃I ∼= X̃I + 2π
√
α′λI (I.20)

for all vectors λ in the quotienting lattice Λ. This also restricts the allowed momenta along
the torus direction. This may be seen easily by considering the string vertex operator

eiP̃IX̃
I

which must be single-valued for the theory to be consistent. This means in particular that√
α′P̃Iλ

I must be an integer for all λ ∈ Λ, meaning that the dimensionless momentum K̃ :=√
α′P̃ must belong to the dual lattice Λ∗.
Parametrising the two-dimensional world-sheet by two real coordinates (τ, σ) so that σ ∼=

σ + 2π for the closed string, the most general action is given by [5]

S = − 1
4πα′

∫ 2π

0
dσ
∫

dτ
(
G̃IJη

αβ − B̃IJεαβ
)
∂αX̃

I∂βX̃
J (I.21)

at leading order in the Regge slope α′ and in conformal gauge. In (I.21), ηαβ has signature
(−,+) in the (τ, σ) basis and G̃IJ , B̃IJ are constant background couplings. It turns out to be
convenient to parametrise the theory in a slightly different way by noticing that, Λ being a
lattice, there must exist a (not uniquely defined) rank-d matrix E such that any vector λ ∈ Λ
may be expressed as
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λ = EW

for some integer-valued vector W . Since Λ has maximal rank by assumption, one may show
that this implies that the momentum P̃ may be expressed as

P̃ = 1√
α′
E−tK

for some integer-valued vector K. In particular, setting X := E−1X̃, the identification (I.20)
translates to

XI ∼= XI + 2π
√
α′W I . (I.22)

Setting G := EtG̃E and B := EtBE, the action (I.21) becomes

S = − 1
4πα′

∫ 2π

0
dσ
∫

dτ
(
GIJη

αβ −BIJεαβ
)
∂αX

I∂βX
J . (I.23)

Even though this action is very similar to (I.21), it has the advantage of having all informations
about the geometry of the torus encoded in the background metric GIJ .

Let us now work out the spectrum of the theory (I.23). Since GIJ and BIJ are constant,
the equation of motion reads

∂+∂−X
I = 0

with ∂± the derivation with respect to σ± := τ ± σ. The usual splitting X(τ, σ) = XL(σ+) +
XR(σ−) thus still holds. However, because of the change in the target space topology with
respect to the non-compact case, the usual closed string condition must be changed. Indeed,
when seen as a function of R, XI is no longer single-valued ; requiring that the string closes
then means that under σ 7→ σ + 2π, the representative of the X coordinate under the identi-
fication (I.22) should not change. X itself therefore satisfies

XI(τ, σ + 2π) = XI(τ, σ) + 2π
√
α′W I

for some integers W I . These integers count the number of times the string winds around each
cycle of the torus and are therefore known as winding numbers. The mode expansion of XL

and XR are then given by

XI
L(σ+) = xIL + α′

2 p
I
Lσ+ + i

√
α′

2
∑
n6=0

1
n
aIne
−inσ+ ,

XI
R(σ−) = xIR + α′

2 p
I
Rσ− + i

√
α′

2
∑
n6=0

1
n
ãIne
−inσ−

with the left- and right-moving momenta satisfying

pIL − pIR = 2√
α′
W I . (I.24)



I.3 Toroidal reductions in conformal field theory 11

The total momentum K may be obtained as usual by integrating the corresponding charge
density over σ ; moreover, K must be an integer-valued vector so that vertex operators remain
single-valued as we argued above. One then has

KI =
√
α′
∫ 2π

0
dσ δS

δ∂τXI
=
√
α′

2
[
GIJ

(
pJL + pJR

)
+BIJ(pJL − pJR)

]
(I.25)

Combining (I.24) and (I.25) finally allows to express pL and pR as

pIL = 1√
α′
GIJ

(
KJ + (GJK −BJK)WK

)
, (I.26)

pIR = 1√
α′
GIJ

(
KJ − (GJK +BJK)WK

)

with, once again, KI and W I integers corresponding to the momentum and winding num-
bers of the string state respectively. This shows in particular that even though the B-field
contribution to the action is a topological term with no local effect, it modifies the string
spectrum. Moreover, introducing the dimensionless left-moving and right-moving momenta
lL,R := (α′/2)1/2pL,R one may give the set

Γd,d =
{

(lL(K,W ), lR(K,W )) , K,W ∈ Zd
}

a lattice structure by equipping it with the scalar product defined by

〈
(lL, lR)(K,W )

∣∣(l′L, l′R)(K ′,W ′)
〉

:= lILGIJ l
′J
L − lIRGIJ l′JR = KIW

′I +K ′IW
I . (I.27)

The lattice Γd,d is known as the Narain lattice in the literature. It turns out that this lattice
is very constrained by (I.26) and by consistency requirements. First, equation (I.26) shows
that the scalar product between any two vectors of Γd,d is integer, showing that Γd,d ⊂ Γ∗d,d
with Γ∗d,d the dual of Γd,d. In addition, Γd,d is an even lattice, meaning that all its vectors
have even squared norm as it is clear by applying (I.27) to the (K ′,W ′) = (K,W ) case. A
final constraint is given by demanding modular invariance of the theory. This may be done
in the following way : compared to the non-compact case, the toroidal compactification only
modifies the bosonic zero modes. Consequently, the (4πα′τ2)−d contribution from integrating
over the momentum of the d formerly non-compact bosons gets replaced by ZΓd,d(τ), with τ
the modular parameter of the world-sheet two-torus and

ZΓd,d(τ) := Tr
(
qL0qL0

)
=

∑
(lL,lR)∈Γd,d

exp
(
iπτ lILGIJ l

J
L − iπτ lIRGIJ lJR

)
.

The evenness of Γd,d ensures the invariance of ZΓd,d(τ) under the τ 7→ τ + 1 generator of
SL2(Z). Its transformation under τ 7→ −1/τ may be deduced by applying Poisson summation
formula 6. One finds that

6. A way to state Poisson formula is the following : let f : R→ C be an integrable function and Λ a lattice.
Then ∑

λ∈Λ

f(λ) = 1
|Λ|

∑
k∈Λ∗

f̂(k)e2iπk·x

with |Λ| the volume of the unit cell of Λ and Λ∗ its dual lattice.
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ZΓd,d

(
−1
τ

)
= 1
|Γd,d|

|τ |dZΓ∗
d,d

(τ). (I.28)

Provided that the non-compact theory is consistent by itself, its toroidal compactification
version is therefore modular anomaly free if and only if Γd,d = Γ∗d,d, that is if Γd,d is unimo-
dular 7.

In summary, the Narain lattice Γd,d must be both even and unimodular. Lattice theory
teaches us that those are such stringent constraints that Γd,d is actually determined up to
isometries. More precisely, the following theorem holds true :

Theorem I.3.1 ([18]). An even unimodular lattice of signature (p, q) exists if and only if
p = q mod 8. Moreover, it is isomorphic to

E8(1)⊕n ⊕ U⊕q

where p − q := 8n is assumed to be positive, where E8(1) is the positive definite root lattice
of the exceptional Lie group E8 and where U is the hyperbolic lattice whose bilinear form is
given by (

0 1
1 0

)
.

If p − q is negative, the corresponding result is obtained by changing the sign of the bilinear
form.

In our case, this shows that Γd,d ∼= U⊕d. However, this is not sufficient to fully characterise
the theory. This may be seen for instance in the following way : imposing level-matching, one
shows that the mass of an arbitrary state of the theory with winding and momentum quantum
numbers W I and KI reads

M2 = 1
α′

(
W K

)(G−BG−1B BG−1

−G−1B G−1

)(
W
K

)
=: 1

α′

(
W K

)
G−1

(
W
K

)
(I.29)

up to integer multiples of 4/α′ due to the oscillator modes. In (I.29), the final equation defines
the matrix G. This shows that two inequivalent backgrounds lead generically to spectra of
states with different sets of masses, that is necessarily to different theories. In summary, even if
Γd,d is constrained to be isomorphic to U(1)⊕d, the details of the theory lie in the background
fields, that is in the details of the isomorphism - or the embedding of Γd,d into R2d - itself.

Even though different backgrounds lead to different theories in general, there exists trans-
formations which preserve all physical observables and which may therefore really be seen
as connecting different formulations of a single theory. Those are known as dualities and we
now show how to derive the duality group of toroidal reduction of string theories. It is worth
noticing that the Hilbert space H(d)

tor corresponding to the compactification of a string theory
on a d-torus may be represented as the tensorial product

H(d)
tor
∼= H⊗HΓd,d

7. This implies in turn that the unit cell volume is |Γd,d| = 1 so that (I.28) shows that ZΓd,d transforms
covariantly under τ 7→ −1/τ as it should.



I.3 Toroidal reductions in conformal field theory 13

where HΓd,d = {|pL, pR〉} corresponds to the winding and momentum states along the torus
and where H is roughly what is left from the Hilbert space of the original non-compact theory.
In particular, H does not contain any Γd,d dependency. Any transformation preserving Γd,d
therefore leads to the same Hilbert space HΓd,d and therefore to physically identical theories.
The duality group then contains as a factor the automorphism group 8

O(Γd,d) :=
{
g ∈ GL2D(R)

∣∣∣∣g · Γd,d = Γd,d, 〈g · x|g · y〉 = 〈x, y|x, y〉 ∀x, y ∈ Γd,d
}

of Γd,d, with 〈·|·〉 the symmetric bilinear form defined by (I.27). O(Γd,d) is isomorphic to
O(d, d;Z), the subgroup of integer-valued matrices of O(d, d). This may be seen by considering
the action of an element of O(Γd,d) on the quantum numbers (W I ,KI). Let us then assume
that those transform as (

W
K

)
7→ A

(
W
K

)
for some matrix A ∈ GL2D(R). Then, the scalar product (I.27) is preserved if and only if

At
(

0 1d
1d 0

)
A =

(
0 1d
1d 0

)
that is if and only if A ∈ O(d, d;R). In order for A to also preserve the lattice Γd,d, the image
and the preimage of (W,K) must both be integer-valued for all values of W I and KI . This
may only be true if both A and A−1 are integer-valued as well, showing that A ∈ O(d, d;Z)
as claimed. The isomorphism between O(Γd,d) and O(d, d;Z) is given by

O(d, d;Z) ∼−→ O(Γd,d)
A 7→ EAE−1

with E = E(G,B) defined by the relation (lL, lR)t =: E(W,K)t and readable directly
from (I.26).

The action of the duality group on the background field is most easily expressed in terms
of the O(d, d;Z) matrix A and may be inferred directly from (I.29) by requiring the mass of
a state to be preserved under the duality. One then obtains the transformation law

G 7→ AGAT (I.30)

where (the inverse of)

G =
(
G−1 −G−1B
BG−1 G−BG−1B

)
has been defined in the mass formula (I.29). The duality group O(Γd,d) is called the T-duality
group. When d = 1 - that is when compactifying on a circle - it is generated by the circle
inversion y 7→ −y and by the renowned duality which maps the theories reduced on circles of
radius R and 1/R.

8. The duality group may also contain other elements coming from transformations acting on the other
parts of the CFT, but O(Γd,d) must always be a factor in the total (perturbative) duality group.
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We now have enough knowledge to derive themoduli space of the theory, that is the space of
parameters leading to physically inequivalent theories. As we have seen, the spectrum depends
on the background fields GIJ and BIJ with I, J = 1, ..., d. Since the former is symmetric and
the latter antisymmetric, there are d2 parameters in total. The only restriction on these
parameters is that GIJ , which represents the metric on the d-dimensional torus, must be
positive definite. From a physical point of view, this is equivalent to requiring the kinetic
term of the scalar fields XI to have the correct sign. We have seen that an equivalent way
of parametrising the theory was to think of it as descending from a specific embedding of
the Narain lattice Γd,d in R2d. Since we know from theorem I.3.1 that there exists an O(d, d)
rotation which maps Γd,d to U⊕d, selecting an embedding of Γd,d amounts to choosing a d-
dimensional, say, space-like space corresponding to the space spanned by the pL basis. The
corresponding parameter space is by definition a Grassmannian and may be expressed as

Td := O(d, d)/(O(d)×O(d)). (I.31)

This may be understood as follows : we are trying to look for an orthogonal basis (ei, fi, i =
1, ..., d) of R2d such that all ei’s (fi’s) are space-like (time-like). By definition, the matrix
(e1, ..., ed, f1, ..., fd) is then an element of O(d, d). However, not any two elements of O(d, d)
parametrise different subspaces in R2d as any rotation among the space-like basis vectors ei
does not lead to a new d-dimensional subspace (and similarly for the fi’s). All elements of
O(d, d) related by a O(d) × O(d) rotation, with the first factor acting on the ei’s and the
second on the fi’s, then parametrise identical d-dimensional subspaces of R2d and should be
identified, leading to the expression (I.31). One may compute that the dimension of Td is d2,
in accordance with the number of parameters coming from the background fields.

The space Td is therefore the space parametrising the different embedding of Γd,d in R2D

- or equivalently the different values allowed for the background fields GIJ and BIJ - and is
usually referred to as the Teichmüller space in this context. As we have seen, not any two
points in Td parametrise different theories ; instead, the moduli space Md of the theory is
obtained by identifying points in Td which are related by T-duality. The moduli space of
conformal field theories on a d-dimensional torus is therefore isomorphic to

Md
∼= O(Γd,d)\O(d, d)/(O(d)×O(d)). (I.32)

An important example for the rest of this thesis is the case of the compactification on a
two-torus. One may conveniently describe the corresponding moduli space in terms of two
complex scalar fields T and U which correspond to the Kähler and complex structure of the
T 2 ; the torus metric and B-field may then be parametrised as

GIJ = T2
U2

(
1 U1
U1 |U |2

)
, BIJ =

(
0 T1
−T1 0

)
with the subscripts 1 and 2 denoting respectively the real and imaginary parts of T and U .
It turns out that the duality group O(Γ2,2) takes in this case the simpler form [19]

O(Γ2,2) = (SL2(Z)T × SL2(Z)U ) o Z2

where SL2(Z)T and SL2(Z)U act on T and U as

(T,U) 7→
(
aT + b

cT + d
,
a′U + b′

c′U + d′

)
, ad− bc = a′d′ − b′c′ = 1
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with all coefficients integers and with unprimed and primed coefficients correspond to the
first and second SL2(Z) factors respectively. The Z2 element corresponds to T-duality along
one of the torus cycles and exchanges T and U as well as the two SL2(Z) factors in (II.22).

I.3.2 Enhanced symmetry

The BRST quantisation of the bosonic string theory shows that physical fields correspond
to CFT operators of conformal dimension 1 [20]. With our notations, the Virasoro generators
L0 and L0 corresponding to zero modes of the stress-energy tensor acts on an arbitrary state
as

L0 = −α
′M2

4 + 1
2 l

2
L := −α

′M2

4 + lILGIJ l
J
L +NL , (I.33)

L0 = −α
′M2

4 + 1
2 l

2
R := −α

′M2

4 + lIRGIJ l
J
R +NR ,

with (lL, lR) ∈ Γd,d and with NL,R regrouping all contributions from the oscillators. As l2L :=
lILGIJ l

J
L and l2R := lIRGIJ l

J
R depend on the real-valued moduli GIJ and BIJ , they are not

integer-valued in general. The massless spectrum therefore contains generically no other states
that those satisfyingNL = NR = 1 and (lL, lR) = (0, 0). However, at some points in the moduli
space, the equations L0 = L0 = 1 admit solutions with non-trivial momentum and/or winding
numbers.

Of particular interest will be the chiral and anti-chiral currents appearing at such points,
that is operators with conformal dimensions (1, 0) and (0, 1) respectively. Focusing on the
former case - as the discussion is identical in the latter - the chiral currents with non-trivial
momentum/winding numbers satisfy 9

l2L := lILGIJ l
J
L = 2, (I.34)

l2R := lIRGIJ l
J
R = 0,

NL = NR = 0.

In particular, since GIJ is non-degenerate, the second line of (I.34) implies that lR = 0.
Whenever (I.34) admits solutions, one may define currents of the CFT as follows

jI(z) := 2i
α′
∂XI(z),

g(lL) := ei
√

2
α′ l

I
LGIJX

J

(z),

for I = 1, ..., d and for all lL satisfying (I.34). It is well-known that currents form algebras in
CFT known as a Kac-Moody algebra (see e.g. [21]). In particular, their zero modes satisfy a Lie
algebra ; the commutators may be computed using the currents operator product expansions
and read

9. States with both lL and lR different from 0 may also appear but they cannot be currents from equa-
tion (I.33).
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[
jI0 , j

J
0

]
= 0,[

jI0 , g
(lL)
0

]
= lILg

(lL),

[
g

(lL)
0 , g

(l′L)
0

]
=


g

(lL+l′L)
0 if lILGIJ l′JL = −1

0 else

In particular, deriving the last commutator in (I.35) requires to notice that the scalar product
lILGIJ l

′J
L may only take very few values. Indeed, since lR = l′R = 0, lILGIJ l′JL must be an

integer ; from the positivity of the metric and the fact that lL, l′L both have squared norm 2,
this integer should be equal to 2 cos θ with θ the angle between the two vectors. Therefore
lILGIJ l

′J
L ∈ {0,±1,±2}. Moreover, one may notice that lL + l′L is solution to (I.34) if and only

if both lL and l′L are and if lILGIJ l′JL = −1.
At a generic point in the moduli space (I.32), only the jI ’s are currents and they rea-

lise a U(1)d algebra with level 1. However, at the points where (I.34) admits solutions, the
commutators (I.35) show that the abelian gauge-symmetry is enhanced to a non-abelian one
with the additional currents given by the g(lL)’s. In fact, one may see

{
jI
}
as associated to

the Cartan subalgebra and
{
g(lL)

}
to the root system of the corresponding Lie group. This

is a crucial difference with the point particle point of view where toroidal reductions cannot
give rise to non-abelian gauge theories ; this may be explained by the fact that the states
associated with the extra currents have necessarily non-trivial winding numbers which may
only occur thanks to the extended nature of the strings.

Such considerations play a special role in the bosonic description of the heterotic string
which, in its simpler form, consists of 10 world-sheet bosons of both chiralities and 16 chiral
ones. In order to give a geometric meaning to the model, the latter must be compactified
leading to quantised winding and momenta numbers as above. However, the corresponding
lattice Γ16 is Euclidean with signature, say, (0, 16) instead of (d, d) as before. According
to theorem I.3.1, such lattices are extremely constrained and would not have existed if the
number of chiral bosons would not have been a multiple of 8. In fact, there are exactly two
such lattices up to isomorphisms, namely the E8 × E8 and Spin(32)/Z2 root lattices [22].
This implies that currents corresponding to either one of the above Lie groups appear in the
world-sheet theory, explaining why there exists two ten-dimensional heterotic string theories.

The points in moduli space where new states become massless are very special and will
be essential in computing moduli spaces related quantities in chapter IV. We can already
sketch briefly a peculiarity of the vicinity of such points regarding the associated Wilsonian
effective field theory (EFT). Deriving an EFT from a UV-complete theory is generically done
by integrating any mode over a given cut-off Λ. Depending on the choice of Λ, it may be
possible to split the fields into two sets, namely the fields φi which are considered to be light
enough to be still observed and the fields ΦI which, on the contrary, are considered too heavy
to be produced. The light fields φi may then be further divided into contributions with low
and high momentum with respect to Λ as φi = φ

(l)
i +φ

(h)
i . A correlation function is computed

by performing the path integral〈
Ô
(
φ̂i, Φ̂I

)〉
=
∫
Dφ(l)

i Dφ
(h)
i DΦIO

(
φ

(l)
i + φ

(h)
i ,ΦI

)
eiS[φi,ΦI ]
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for any field-dependant operator Ô
(
φ̂i, Φ̂I

)
. Therefore, at least theoretically, one could obtain

an equivalent theory containing only the low modes of the light fields φ(l)
i by performing the

path integral over φ(h)
i and ΦI , leading to modified action and operators ; this procedure is

called integrating out the heavy fields. The effective couplings between the light fields are in
particular computed by taking into accounts Feynman diagrams involving the heavy fields
only as virtual states, that is only occurring in loops. Let us now go back to our case of a string
theory compactified on a d-dimensional torus. One may want to derive the corresponding low-
energy theory ; in order to do so, it is usually assumed that all massive fields have a mass of
the order of Planck mass and may therefore be considered as heavy fields and integrated out.
This procedure is perfectly fine almost everywhere in the moduli space, but let us now think
about what happens near a points where gauge enhancement occurs. Let us assume that a
scalar field Φ becomes massless for a given background (G0, B0). Almost everywhere in the
moduli space, Φ is heavy and integrated out but near (G0, B0), Φ becomes lighter and lighter.
At the critical point where the mass of Φ vanishes, the effective couplings involve massless
scalars running in loops and therefore develop logarithmic singularities in four dimensions.
Our analysis so far is of course very qualitative but the main idea is the following : if the
moduli space of the aforementioned theories contains points of enhanced symmetry, then a
Wilsonian EFT may only be defined locally. In chapter V, we will exploit the fact that this
failure of global definiteness is reflected in effective couplings singularities in order to derive
constraints on the low-energy theory from complex analysis considerations.

I.4 Orbifolds
Finally, we turn to a useful extension of the toroidal compactification which is compactifi-

cations on toroidal orbifolds. In general, an orbifold is defined similarly as a manifold except
for a point : instead of looking locally like Rn for some integer n, they are allowed to look
locally like a quotient of Rn by the action of a finite group. In practice, we will only deal with
orbifolds which may be written as global quotients of a manifold. In order to set the notations,
we will then define O :=M/G the orbifold obtained by the quotient of the manifoldM under
the action of the finite group G. If G is freely acting, O is a manifold itself ; else, it has conical
singularities at the fixed points known as orbifold singularities 10.

String theories living on orbifolds of torus also admit a CFT description. Indeed, similarly
to what has been done in the previous section, one may impose the identification

X ∼= Θ(X) ∀Θ ∈ G. (I.36)

One could notice that, up to here, our construction is very similar to the simple toroidal
compactification reviewed in I.3 as we had noticed that a torus could be seen as the quotient
of the real space by a lattice, that is by an abelian group. This procedure may be generalised
here by quotienting by a finite subgroup of the Euclidean group, that is by allowing an
identification of points related either by a translation, a rotation or a combination of both.

10. This may be understood as the following : let U be an open subset ofM containing no fixed point. It is
then always possible to choose U small enough so that g(U) ∩ U = ∅ for all elements g ∈ G. Then, under the
projection π :M→O, one sees that π(U) ∼= U ; sinceM is a manifold, π(U) is then diffeomorphic to a local
subset of Rn by hypothesis. However, if U contains a point p0 which is fixed under the action of G, this is no
longer the case and π(U) will not look like Rn no matter how small U is. The image π(p0) of the fixed point
will then be a conical singularity as claimed.
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This finite subgroup is often referred to as the space group S, which contains elements of the
form (Θ, λΘ) acting on the fields as

(Θ, λΘ) ·X := Θ ·X + 2π
√
α′λΘ (I.37)

with Θ a rotation of the 2d compact fields and λ a 2d-dimensional vector. For convenience,
we also define the point group P as

P :=
{

Θ ∈ O(d, d)
∣∣∣∣∃λΘ : (Θ, λΘ) ∈ S

}
Importantly, Θ should not mix left- and right-moving fields, so as to be consistent with the
conformal symmetry, and therefore actually belongs to O(d)×O(d). In particular, splitting Θ
as diag(ΘL,ΘR) with ΘL(ΘR) ∈ O(d) acting on the left (right) movers, if there exists a base
in which the two matrices ΘL and ΘR are identical, then the orbifold is said to be symmetric.
This means in particular that the internal manifold may be understood geometrically as Rd/G
for some group G. If the orbifold is asymmetric, such a geometrical interpretation is no longer
available. An interesting example is the following : it is well-known that a lattice of rank d
may only admit automorphisms of order p for p such that

φ(p) ≤ d (I.38)
with φ the Euler totient function [23]. Therefore, a geometric orbifold of, say, a four-torus may
only be of order p ∈ {2, 3, 4, 5, 6, 8, 10, 12}. However, since a string actually sees two copies of
a torus, non-geometric orbifolds are not constrained by the bound (I.38) and may consistently
be defined on orbifolds of higher rank. As an example, an orbifold of the four-torus with point
group generated by (ΘL,ΘR) with ΘL and ΘR or order 3 and 5 respectively will be of order
15. We will give explicit realisations of this in chapter III.

From (I.37), one deduces that the identity element is given by (1, 0) and that the group
multiplication and inverse laws read

(Θ, λΘ)
(
Θ′, λ′Θ′

)
=
(
ΘΘ′,Θλ′Θ′ + λΘ

)
,

(Θ, λΘ)−1 =
(
Θ−1,−Θ−1λΘ

)
.

An important subgroup of S is defined as

Γ :=
{
λ ∈ R2d

∣∣∣(1, λ) ∈ S
}
.

Indeed, one may consider a two-steps construction : taking first the quotient of Rd by Γ before
quotienting again the resulting theory by the space group, or more precisely by the group
obtained when identifying elements of S related by a Γ translation. The intermediate theory
is then nothing but the toroidal compactification we have analysed in the previous section,
implying that Γ is constrained to be a Narain lattice - that is even and unimodular. In other
words, the space group S may only lead to a consistent theory if its pure translation subgroup
is a Narain lattice. Consequently, one may consider directly orbifolds of the toroidal theory
with no loss of generality.

An additional remark may be done about the allowed elements of S. Indeed, since S is
finite by assumption, for any (Θ, λΘ) ∈ S there must exist a (Θ-dependent) integer p called
the order of (Θ, λΘ) such that Θp = 1. This implies in particular that
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(Θ, λΘ)p =

1, p−1∑
k=0

ΘkλΘ

 ∈ Γ

where (I.37) has been used and by definition of the subgroup Γ. Then, one gets that

1
p

p−1∑
k=0

ΘkλΘ := PΘλΘ ∈
1
p

Γ

with PΘ the projector onto Θ-invariant states. Therefore, λΘ is not arbitrary either but
quantised in the directions left invariant by Θ. Moreover, consistency requires

(Θ, λΘ)(1, λ)(Θ, λΘ)−1 = (1,Θλ) ∈ S
for all (Θ, λΘ) ∈ S and all λ ∈ Γ. This implies in particular that ΘΓ = Γ for all Θ ∈ P, that
is that P must be a subgroup of the automorphism group of the Narain lattice. Physically,
this is the reason why orbifold constructions may freeze some or all moduli. Indeed, one
may choose a point group P which leaves only subspaces of the moduli space with enhanced
discrete symmetry invariant ; quotienting by P therefore forces the theory to remain in this
subspace. As a simple example, consider the two-torus case. In a geometric construction, the
associated rank two lattice always has the order 2 symmetry −1, but only the square and
hexagonal lattices have an order 4 and 3 symmetry respectively. Identifying points related
by such a transformation may then only be done to the corresponding points in the moduli
space. However, as we discuss below, some other sectors of the spectrum absent from the
original theory must appear in orbifold constructions and generically add new directions to
the moduli space.

Toroidal compactifications may then be considered as the simplest example of orbifold
construction where the point group P is trivial. We now show how to derive the spectrum of
such theories. For convenience, we consider the toroidal theory quotiented by the point group
P instead of the non-compact case quotiented by the space group S, since both constructions
are equivalent. As before, the identification (I.36) shows that the closed string condition may
be generalised to

X(τ, σ + 2π) = Θ ·X(τ, σ) + 2π
√
α′λΘ, (Θ, λΘ) ∈ S. (I.39)

States satisfying (I.39) with g = 1 are similar to the states considered in the previous sec-
tion and are known as untwisted states. Conversely, the twisted states correspond to states
which are not closed in the toroidal theory. In fact, consistency of the theory imposes to
take such states into account as we now show. Since two states related by a point group
transformation are equivalent, what we are really doing here is gauging the discrete group P.
Consequently, the orbifold construction only keeps the subspace of the original Hilbert space
which is invariant under P. A convenient way of selecting all P-invariant states is to insert
the projector

PP := 1
|P|

∑
Θ∈P

Θ, (I.40)

with |P| the order of P, into any correlation function so that evaluating it over the whole
spectrum of the original theory is equivalent to do so over only the surviving states of the
orbifold theory. Let us then try to understand the generic correlators



20 Chapitre I. Dimensional reductions

〈
Ô
〉 [h
g

]
:=
∫
φh

Dφh e−S[φh]gO (I.41)

with O and operator of the theory and g, h elements of the point group and φh field configu-
rations satisfying the periodicity condition (I.39) with Θ = h. We consider one-loop contribu-
tions to (I.41) corresponding to world-sheets of genus 1 - or tori. We have already analysed
such contributions to expectation values in I.3 in order to impose the unimodularity of the
Narain lattice without digging too much into the details of CFTs defined on tori. However, a
remainder of how such theories are constructed may be useful at this point ; more complete
reviews are available in the literature, see e.g. [21] or [24]. Constructing CFTs defined on torus
may easily be done in the following way : let w be the complex coordinate on the world-sheet
torus. Then, there must exist two complex numbers λ1 and λ2 such that w is identified to
w+ 2πλ1,2 and such that arg(λ1) 6= arg(λ2). By rotating and rescaling the torus, one usually
defines the complex parameter τ := λ2/λ1 so that z ∼= w+2π ∼= w+2πτ . Since λ1 and λ2 may
be interchanged freely, one may always choose to set Im(τ) > 0. Elementary complex analysis
then teaches us that two complex parameters τ and τ ′ related by a SL2(Z) transformation
acting as

τ ′ = aτ + b

cτ + d
, a, b, c, d ∈ Z|ad− bc = 1 (I.42)

lead to equivalent complex structures. The moduli space of inequivalent complex structures
on the torus is therefore given by

H/SL2(Z)

with H the complex upper-half plane defined by Im(τ) > 0. We recall that elementary consi-
derations of the expectation values in quantum mechanics allow to relate traces over the
Hilbert space to path integrals as

Tr
(
Ôe−βĤ

)
=
∫

PBC
DxO(x)eiS[x] (I.43)

for any operator Ô, with
∫

PBC the integral over periodic field configurations - that is fields
with Periodic Boundary Conditions. The path integrals in CFTs defined on tori may be
similarly computed as follow. Consider the CFT defined on a cylinder of circumference 1 and
of length 2πτ2. Twisting one end of the cylinder by 2πτ1 and gluing the two ends together
then gives a torus of complex structure τ . Similarly as in (I.43), the path integral may then be
evaluated as follows : going from one end of the cylinder the other amounts as a translation
in (world-sheet Euclidean) time of 2πτ2. Twisting one end of the cylinder may then be done
by shifting the world-sheet space coordinate by 2πτ1 and gluing the two ends is equivalent
to taking the trace over the Hilbert space of the theory. Since translation in world-sheet
time and space are generated respectively by the Hamiltonian H := (L0)cyl +

(
L0
)

cyl
and

momentum P := (L0)cyl −
(
L0
)

cyl
operators, correlation functions for CFTs defined on tori

may be evaluated as〈
Ô
〉

= Tr
(
Ôe−2πτ2H+2iπτ1P

)
= Tr

(
ÔqL0−c/24qL0−c/24

)
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where L0 and L0 are the Virasoro operators on the sphere and where q := exp (2iπτ). Similar
considerations show that the correlation function (I.41) may then be rewritten as

〈
Ô
〉 [h
g

]
(τ) = Trh

(
gOqL0−c/24qL0−c/24

)
(I.44)

where the dependence to the modular parameter τ has been made explicit and with Trh the
trace over the subspace of the Hilbert space with states X twisted by h, that is satisfying

X(w + 2π) = h ·X(w) (I.45)

in accordance with (I.39). We refer to this subspace as the h-twisted sector. According to
what we have just said, the trace over states satisfying X(z + 2πτ) with an insertion of the
point group element g may equivalently be seen as a trace without insertion but over states
satisfying the modified boundary condition

X(w + 2πτ) = g ·X(w). (I.46)

We notice that (I.45) and (I.46) may only be compatible if h and g commute. This allows to
compute the behaviour of the correlation functions (I.41) under modular transformations. For
clarity, let us restore momentarily the λ1,2 formalism so that the torus coordinates satisfies
Z ∼= z + 2πλ1 ∼= Z + 2πλ2. Equations (I.45) and (I.46) then becomes

X(w + 2πλ1) = h ·X(w), (I.47)
X(w + 2πλ2) = g ·X(w).

Let us now assume that λ1,2 transform under the modular SL2(Z) action as

λ′1 = dλ1 + cλ2

λ′2 = bλ1 + aλ2

so that the modular parameter τ ′ transforms as in (I.42). Then, the field periodicity condi-
tions (I.47) become

X(w + 2πλ′1) = h′ ·X(w),
X(w + 2πλ′2) = g′ ·X(w)

with (h′, g′) := (hdgc, hbga). This implies that

〈
Ô
〉 [h
g

]
(τ) =

〈
Ô
〉 [hdgc
hbga

](
aτ + b

cτ + d

)
,

that is that

〈
Ô
〉 [h
g

](
aτ + b

cτ + d

)
=
〈
Ô
〉 [hag−c
h−bgd

]
(τ). (I.48)
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We are now ready to see why consistency of orbifold constructions require states belonging
to twisted sectors to be present in the theory. As we already discussed, correlation functions
in the orbifolded theory may be evaluated in terms of correlation functions in the original
theory with insertion of the projector (I.40). One then obtains

〈
Ô
〉untw

orb
(τ) = 1

|P|
∑
g∈P

Tr1
(
gOqL0−c/24qL0−c/24

)
= 1
|P|

∑
g∈P

〈
Ô
〉 [1

g

]
(τ)

for the contribution of the untwisted sector to correlation function
〈
Ô
〉untw

orb
(τ) in the orbifold

CFT. Equation (I.48) then shows that
〈
Ô
〉untw

orb
(τ) transforms under the action of the modular

group as

〈
Ô
〉untw

orb

(
aτ + b

cτ + d

)
= 1
|P|

∑
g∈P

〈
Ô
〉 [g−c

gd

]
(τ).

Therefore, modular transformation mixes contributions coming from the untwisted and twis-
ted sectors so that no modular invariant theory may be built from the untwisted sector alone.

We now turn to deriving the spectrum of such theories. As we said, the story goes as in
the simpler toroidal case in the untwisted sector provided that one inserts the projector (I.40)
onto P-invariant states. In order to give a taste of what happens in the twisted sectors,
we consider fields satisfying the closed string condition (I.45) with h ∈ P of order p. Since
h ∈ O(d) × O(d) by assumption, one may always go to a basis in which h is diagonal. More
precisely, let X1 and X2 be two, say, left-moving real fields on which h acts as a rotation of
angle 2πk/p for some non-vanishing integer k. Then, defining Z as

Z(z) := X1 + iX2
√

2
,

h acts on Z as

h · Z = e
2iπk
p Z.

On the cylinder, the periodicity condition (I.45) then becomes Z(w+ 2π) = e2iπk/pZ(w). The
mode expansion of Z and its conjugate Z on the plane therefore read

Z(z) = z0 + i

√
α′

2
∑
n∈Z

1
n+ k

p

an+k/p

zn+k/p , (I.49)

Z(z) = z0 + i

√
α′

2
∑
n∈Z

1
n− k

p

an−k/p

zn−k/p

with
{
an+k/p

}
and

{
an−k/p

}
independent operators with commutation relations

[
am+k/p, am+k/p

]
=
[
am−k/p, an−k/p

]
= 0[

am+k/p, an−k/p
]

=
(
m+ k

p

)
δm+n,0.
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Unlike in the usual case where the oscillation number is integer-valued, the orbifold grants
access to fields with rational oscillation quanta. Moreover, in (I.49), selecting P-invariant
states forces the constant term z0 to be a fixed point of the point group ; in other words, it
must satisfy (

1− e
2iπk
p

)
z0 ∈ 2π

√
α′Γ.

This means that states in the twisted sectors must be localised at the fixed points of P ; to
each fixed point then corresponds a vacuum of the theory.

One may check that the Virasoro generators (or, more precisely, the contribution of Z and
Z thereof) are given by

Lm =
∑
n∈Z

◦
◦an+k/pam−n−k/p

◦
◦ + k

2p

(
1− k

p

)
δm,0 (I.50)

where ◦◦ ◦◦ is the creation-annihilation normal ordering, meaning that the annihilation operators{
an+k/p, an+1−k/p, n ∈ N

}
are always placed to the right of the creation ones. This allows to

make an important remark. From (I.48), we see that a necessary condition for the theory
to be modular invariant is that the contribution to any correlation function of the h-twisted
sector should be invariant under τ 7→ τ + p, with p the order of h. In particular, the explicit
dependence of the correlation function in τ read from (I.44) implies that any state should
satisfy

p

(
L0 −

c

24 − L0 + c

24

)
= 0 mod 1. (I.51)

In particular, let us consider now the full theory with h splitting as h = diag(hL, hR), hL
and hR acting on the left- and right-moving fields respectively. We denote kiL and kiR the
associated angles. Then, equation (I.50) shows that (I.51) becomes

∑
i

(
kiL
)2 − (kiR)2

2p = 0 mod 1 (I.52)

in the bosonic string case 11, where we have used the fact that the oscillation numbers are
integer multiples of 1/p. This has first been noticed in [25, 26] and will be used in section III.2.4
to find the values of kiL and kiR leading to consistent orbifold constructions in a particular
setup to be defined in chapter III.

Of particular interest are freely acting orbifolds. Indeed, in such models, there is gene-
rically no massless states coming from the twisted states which is an attractive feature for
moduli stabilisation purposes. We now explain an interesting connection between such orbi-
folds and the field theoretical Scherk-Schwarz construction from section I.2 which has long
been noticed [27, 28]. Let us assume that the space group is generated by the group element
acting on T d ∼= T d−1 × S1 as

(X,Y ) 7→
(

Θ ·X,Y + 2πR
p

)
11. In superstring theories, the world-sheet fermions also contribute non-trivially to (I.52) and must be taken

into account.
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with X and Y coordinates on T d−1 and S1 respectively, with p the order of Θ and with R
the radius of the circle factor. Then, the construction is precisely the same than the Scherk-
Schwarz reduction on a circle of radius R/n with monodromy Θ. It was moreover shown
in [29] that the minima of the scalar potential - that is the vacua of the theory - are precisely
located at the subspace of the toroidal CFT moduli space where identification by the point
group is possible. Turning things around, the minima of the scalar potential in the Scherk-
Schwarz construction form then precisely the space in which a CFT description is available ;
the latter reduction also has the advantage of being applicable anywhere in moduli space
thereby granting access to more generic theories.

So far, we have barely made any mention to the presence or absence of world-sheet su-
persymmetry. We now turn to a the common concern of analysing the amount of space-time
supersymmetry preserved by orbifold constructions in world-sheet supersymmetric theories.
We consider a theory with left-moving fermions ψ(z), the discussion for right-moving ones in
type II theories following uneventfully. In order for the theory to make sense, the world-sheet
supercurrent

TF := i

√
2
α′
ψ ·X

must be invariant under the point group action. If X transform as X 7→ hLX under the point
group, with hL ∈ O(d), this imposes that the fermions should transform as ψ 7→ hLψ as well.
The Ramond ground states therefore transform as

|s1, s2, s3, s4〉 7→ e
2iπ
p

s.kL |s1, s2, s3, s4〉 (I.53)

where si ∈
{
±1

2

}
are the associated spins and kL the vector corresponding to the angles of

the rotation hL as before 12. The amount of preserved supersymmetry may then easily be
understood by counting the number of gravitini surviving the orbifold projection. Since a
gravitino will be obtained by tensoring a Ramond ground state with a state with opposite
chirality and carrying a vector index, massless gravitini are in one-to-one correspondence with
the Ramond ground states invariant under (I.53). The number of preserved supercharges in
the reduced theory is then given by the number of independent solutions to

s.kL = 0 mod p.

As we have seen, the fixed points of the point group P play a special role as they label
vacua in the twisted sectors. Moreover, we have just said that orbifold constructions could also
break some to all space-time supersymmetry. When considering manifolds instead of orbifolds,
preserving some supersymmetry is a feature of Calabi-Yau manifolds as we will detail in II.1.
It turns out that there may be a geometric connection between all these concepts, that is if
the orbifold admits a geometric interpretation. If it were not for the fixed points, an orbifold
O would be locally diffeomorphic to the real space everywhere and would then be a manifold.
There exists a geometrical construction called blowing up the fixed points which amounts to

12. This shows that for an orbifold to have order p, one should impose∑
i

kiL = 0 mod 2.

If it is not the case, the theory may still be consistent but will really be an orbifold of order 2p instead.
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“smooth out” the neighbourhood of the fixed points, turning the orbifold O into a manifold
MO. Since this procedure does not change the global properties of the orbifold, from what we
have just said MO must be Calabi-Yau if compactification on O preserves some space-time
supersymmetry. Apart from the toroidal case, string theories with Calabi-Yau target spaces
generically do not admit a CFT description. However, turning the above discussion upside
down shows that there exists points in the corresponding moduli spaces where the Calabi-Yau
manifold tend to an orbifold. At these points, the string theory does admit a CFT description.
There are other points where the world-sheet theory may be understood in terms of a Gepner
model [20]. In particular, such points have played a key role in the construction of the models
introduced in [7] and reviewed in III.1.

We conclude by illustrating the orbifold procedure with a simple example. Let us assume
that one would like to construct a geometric orbifold starting from the two-dimensional torus.
We assume that the space group G may be generated by a single element g which acts on
the periodic world-sheet bosons as X 7→ g ·X. From section I.3.1, we know that G must be
a finite subgroup of O(Γ2,2)(SL2(Z)T × SL2(Z)U ) o Z2. As we will discuss in more details
in II.4, choosing g ∈ SL2(Z)U leads to a geometric action on the torus. Since g generates a
subgroup of SL2(Z) of finite order, few possibilities remain at this point : indeed, g must be
either be the identity matrix or in the SL2(Z) conjugacy class of one of the following matrices

g2 =
(
−1 0
0 −1

)
, g3 :=

(
0 1
−1 −1

)±1

, g4 :=
(

0 −1
1 0

)±1

, g6 :=
(

0 −1
1 1

)±1

leading to space groups of order 2, 3, 4 or 6 respectively (see e.g. [30] for more details about
SL2(Z) subgroups of finite order). From the background fields transformation rules (I.30),
one deduces that the orbifold puts constraints on the allowed values for U . More precisely,
it selects lattices parametrised by U which admit g as an automorphism ; U is therefore
unconstrained in the Z2 case (as any lattice admits g2 as an automorphism), U ∼ i in the
Z4 case and U ∼ exp

(
2iπ
3

)
in the Z3 and Z6 cases where ∼ means equality up to a SL2(Z)U

transformation. This shows explicitly how moduli (coming from the untwisted sector) may
be frozen in orbifold constructions ; as we have seen, moduli coming the twisted sectors also
generically arise but these may easily given a mass by considering freely acting orbifolds.
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Chapitre II

Superstring compactifications

II.1 Space-time supersymmetry

As we already emphasised, a key tool in string theory is supersymmetry. Usually, super-
symmetric theories are indeed easier to analyse than their non-supersymmetric counterparts
and typically satisfy non-renormalisation theorems. Through mathematical tools such as lo-
calisation techniques in QFT or dualities in string theories, supersymmetry may also grant
access to some non-perturbative features which are in particular missed by a world-sheet
approach. The number of supercharges in a theory is also an interesting parameter for clas-
sification purposes. An essential problem in studying geometric compactifications of string
theories is therefore to understand how supersymmetry may get broken in dimensional re-
ductions. We now show how to extract this information from the geometrical details of the
internal manifold. Since a world-sheet description of dimensionally reduced string theories
is generically not available, we will focus on the corresponding low-energy effective theories
which are supergravities. The strategy here is then to start from the ten-dimensional theory
with either 16 or 32 supercharges, for the type I and heterotic theories or for the type II ones
respectively, and to study their dimensional reduction as in chapter I.

In a quantum theory, a symmetry is unbroken if and only if the associated generator Q
annihilates the vacuum |vac〉. This is equivalent to requiring that

〈
vac
∣∣∣[Q, Ô]∣∣∣vac

〉
= 0 or〈

vac
∣∣∣{Q, Ô}∣∣∣vac

〉
= 0 for all operators Ô, depending on whether Q is bosonic or fermionic.

In other words, the expected value of the variation of any operator under the symmetry
generated by Q should vanish. If Q is a supercharge, there are then two cases one should
consider. The first one is when Ô is bosonic, in which case

{
Q, Ô

}
is fermionic ; its VEV then

automatically vanish as a consequence of Lorentz invariance. The only constraints one gets
from requiring supercharges to be conserved therefore comes from the second case in which Ô
is fermionic. The fermionic content of the ten-dimensional superstring theories depend on the
model of interest. The type II string spectrum contain two gravitini and a dilatino ; the type
I and heterotic models both have a gravitino, a dilatino and 1 and 496 gauginos respectively.

The supersymmetry transformation laws depend on the background fields in general.
However, generic backgrounds do not lead to conformally invariant theories on the world-
sheet [31, 32]. The simplest consistent configuration, at leading order, is the case of a theory
without fluxes and with a constant dilaton. In this case, the supersymmetry of the dilatino
vanishes while those of the gravitini read [33]

27
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δεψM = ∇M ε

with ε the infinitesimal supersymmetry parameter and ∇M the covariant derivative with
respect to the connection on the ten-dimensional space-time. Consequently, requiring unbro-
ken supersymmetry implies the existence of a ten-dimensional metric admitting covariantly
constant spinors. For heterotic theories, the vanishing of the variation of the gluinos also
imposes constraints on the gauge bundle which must in particular be holomorphic [33].

For the sake of simplicity, let us now be more specific and consider the case of a reduction
down to four dimensions - the other cases being analysed in a similar way. We assume that
space-time may be split asM1,3×K6 for some six-dimensional compact manifoldK6. Then, the
supersymmetry parameter ε may be split into the tensor product of four- and six-dimensional
spinors as

ε := ξ4 ⊗ η6 + h.c.. (II.1)

The connection on Minkowski space vanishes and the covariant derivative identifies to the
usual derivative ; requiring ∇µε = 0 then amounts to impose ∂µξ4 = 0, µ = 0, ..., 3 being
indices tangent toM1,3, that is that the spinor ξ4 must be constant. The remaining constraints
are therefore given by

∇mη6 = 0, m = 4, ..., 9 (II.2)

that is that the six-dimensional spinor η should be covariantly constant by itself. In summary,
this shows that under the assumption that the four-dimensional space-time is Minkowski, the
amount of preserved supersymmetries is directly related to purely geometric considerations -
at least as long as geometric compactifications are considered. In addition, the above analysis
grants access to the amount of conserved supercharges as each independent spinor of K6
satisfying (II.2) may be used as a supersymmetry generator.

We recall that the covariant derivative - or the affine connection in a more geometrical
description - may be seen as a way of defining how to transport a vector from the tangent
space of a point in a manifold to the other. Indeed, parallel transport of a field ψ along the
flow curve associated to a vector field X is defined through the differential equation

∇Xψ := Xm∇mψ = 0. (II.3)

The value of the field ψ is then completely determined by its initial value and the connection
∇. In particular, when fields are transported around a closed curve, they do not go back to
their original value but are transformed in general. Defining an appropriate composition law
for the closed curves, one may show that such transformations form a group known as the
holonomy group. However, a covariantly constant field trivially satisfies (II.3) for any vector
field X ; it therefore remains invariant under parallel transport around closed loops. In other
words, it transforms in a singlet representation of the holonomy group. A generic orientable
Riemannian manifold of dimension d has holonomy group SO(d) which means that spinors
of K6 transform under SO(6) or a subgroup thereof. Depending on its chirality, a spinor lives
either in the fundamental or anti-fundamental representation of SU(4) ∼= SO(6). This means
that K6 may only admit a covariantly constant spinor if its holonomy group H is strictly
contained in SU(4) in such a way that the decomposition of, say, the 4 of SU(4) contains
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a H-singlet. In particular, if H ⊆ SU(3), then the 4 of SU(4) contains at least a singlet
as required. In this case, compactification over K6 preserves at least N = 1 supersymmetry
in four dimensions. A 2d-dimensional manifold which may be equipped with a connection
leading to a holonomy group contained in SU(d) is known as a Calabi-Yau manifold 1. More
details about these manifolds are given in appendix A.

In the following sections II.2 and II.3, we will be interested in geometric reductions pre-
serving a given amount of supercharges. The above discussion will then allow us to determine
straightforwardly which internal manifold to choose so as to obtain such four-dimensional
theories, depending on the superstring theory of interest. In the following, we analyse geo-
metric compactifications of the heterotic and type II theories down to six dimensions and
preserving sixteen supercharges.

II.2 Theories with 16 supercharges

II.2.1 Reduction of the heterotic string

We begin by considering the heterotic superstring theories. Those are constructed from
the bosonic string by adjoining chiral superpartners to the world-sheet bosons, by opposition
to the type II theories where there are two sets of superpartners, one for each chirality. As a
result, the heterotic string in ten dimensions has N = (1, 0) supersymmetry. We are looking
for space-times factorising as a product between the six-dimensional Minkowski space M1,5

and a four-dimensional compact space K4. In addition, we want the reduced theory to preserve
sixteen supercharges.

In the non-compact theory, there is only one supersymmetry generator ε. Spinorial ir-
reducible representations of the ten-dimensional Lorentz group SO(1, 9) are Majorana-Weyl
fermions with 16 real degrees of freedom and a fixed chirality. If one wants to obtain a six-
dimensional theory with 16 supercharges, then all degrees of freedom of ε should be kept. In
light of what we have said in section II.1, this means that the holonomy group of internal
manifold K4 should be trivial. This may only be achieved for a vanishing connection, that is
for a flat space ; this narrows down the range of possibilities for K4 to only one, namely to
the four-torus T 4. Following our analysis, splitting ε as in (II.1), one has the decomposition

SO(1, 9) −→ SO(1, 5)× SO(4)
16+ −→ (4+,2+)⊕ (4−,2−) (II.4)

with the ± index indicating the chirality of the spinor. Each of the two terms (4±,2±) are in-
dependent supersymmetry generators in the six-dimensional theory ; since the two generators
have opposite chiralities, the resulting model has N = (1, 1) supersymmetry.

Since we already analysed toroidal compactifications of string theories in some details
in I.3, we will not spend too much time doing this again here. The heterotic string may be
seen as the tensor product of, say, a left-moving supersymmetric sector and a right-moving
bosonic one with critical dimensions 10 and 26 respectively. In order to reduce the theory
down to 6 dimensions, one may therefore take 4 left-moving bosons and 20 right-moving ones
to be periodic and study the corresponding CFT along the same lines as in I.3. This will lead

1. In the literature, and in particular in physics, it is also common to encounter the slightly different
definition that a d-dimensional Calabi-Yau manifold has the whole SU(d) as a holonomy group instead of a
subgroup thereof.
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to the introduction of a shift lattice Γ4,20 of signature (4, 20) which is restricted, by modular
invariance, to be even and unimodular. Theorem I.3.1 then implies that

Γ4,20 ∼= U⊕4 ⊕ E8(−1)⊕2

with E8(−1) the negative definite Cartan matrix associated to the root system of the excep-
tional Lie group E8. As before, the parameters spanning the moduli space may be seen as
reflecting the choice of an embedding of Γ4,20 into R4,20 ; the same considerations as before
show that these correspond to the choice of a - say - four-dimensional space-like subspace
of R4,20. We have seen that the corresponding parameter space is a Grassmannian ; in ad-
dition, one should identify points related by a duality, that is by an automorphism of Γ4,20.
In summary, the moduli spaceMhet of heterotic conformal field theories with target space a
four-torus is given by

M(CFT)
het

∼= O(Γ4,20)\O(4, 20)/(O(4)×O(20)).

In addition to the four-torus metric and B-field, which account in total for 42 = 16 parameters,
there are 4× 16 = 64 flat directions inMhet corresponding to Wilson lines ; from the world-
sheet theory, these correspond to couplings between chiral and non-chiral bosons. Setting all
Wilson lines to zero leads generically to either a E8×E8 or Spin(32)/Z2 gauge group ; turning
them on breaks this gauge group to a smaller one and allows to interpolate continuously
between the two heterotic string theories.

Finally, the moduli space of the total NLSM should also include the dilaton field. It is
believed that the moduli space of the whole theory factorises as [34]

Mhet =M(CFT)
het × R

with R the contribution from the dilaton. In the following, we will assume this is the case
indeed.

II.2.2 Reduction of the type II string

We now turn to the type II string theories, both of which admit 32 independent super-
charges in ten dimensions. More precisely, the type IIA (IIB) supergravity has N = (1, 1)
(N = (2, 0)) supersymmetry before dimensional reduction. We are looking for compactifica-
tions down to six dimensions preserving half the supercharges present in the mother theory ;
as in (II.4), the generators of the ten dimensional supersymmetries decompose as

SO(1, 9) −→ SO(1, 5)× SO(4)
16+ −→ (4+,2+)⊕ (4−,2−)
16∓ −→ (4+,2∓)⊕ (4−,2∓)

(II.5)

where, in the second line, the upper (lower) index corresponds to the type IIA (type IIB)
chirality. Preserving half the supercharges may therefore be done by considering internal
spaces K4 with holonomy preserving only the 2+ (or, equivalently, only the 2−) spinorial
representation of SO(4). This is easily done by noticing that

SO(4) ∼= (SU(2)× SU(2))/{±Id};
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indeed, thinking of R4 as the quaternion space, the action of SO(4) on a quaternion h may
be written as

h 7→ qLhq
−1
R

with qL, qR ∈ SU(2) 2. Requiring K4 to have only one of the two SU(2) factors as holonomy
group therefore preserves only one of the two SO(4) representations 2+ and 2− in (II.5),
leading to 16 supercharges in the six-dimensional theory as expected. This is enough to
identify K4 as a K3 surface, that is a Calabi-Yau space of (complex) dimension 2. In particular,
reduction of the type IIA (type IIB) string on a K3 surface leads to a six-dimensional theory
with N = (1, 1) (N = (2, 0)) supersymmetry.

As we discussed at the end of section I.4, apart from special points in the moduli space
which may be understood in terms as toroidal orbifolds or Gepner models, string theories with
a K3 surface as target space generically do not admit a CFT description. We now analyse
the moduli space of such theories. Before doing so, we recall that conformal invariance on the
world-sheet may be achieved at the quantum level by demanding that G is Ricci-flat, B is
closed and φ is constant. While the Ricci-flatness condition is fulfilled for K3 backgrounds,
we will assume in the following that the other requirements are also met.

In order to compare theories with sixteen space-time supercharges descending from type
II and heterotic string theories, we will derive the associated moduli spaces. As a first step
toward understanding the moduli space of Non-Linear Sigma Models (NLSM) - to be defined
in II.2.2.b) - with target space K3, we will start by deriving the purely geometric moduli
space of Ricci-flat metrics defined on a K3 surface 3.

II.2.2.a) Moduli space of Ricci-flat metrics on a K3 surface

The moduli spaceMricci we are trying to identify here may be understood as a parameter
space in which any two points correspond to different Ricci-flat metrics on a K3 surface. This
may seem like a particularly ambitious task as, up to this day, not even one such Ricci-flat
metric has been explicitly found (although some progress has been made in this direction, see
e.g. [35]). However, Yau’s theorem [36] is of great help here. In substance, it states here that
given a complex structure J on a K3 surface X and a Kähler form Ω, there exists a unique
Ricci-flat metric. This means in particular that determiningMricci may be done without any
actual reference to the K3 metric by focusing on J and Ω instead.

We begin by fixing an even unimodular lattice of signature (3,19) Γ3,19 ⊂ R3,19. As we
have seen before, any two such lattices are isomorphic to each other ; therefore, if X is a K3
surface, there exists an isomorphism α : H2(X,Z) ∼−→ Γ3,19. The choice of such an isometry
is called a marking of the K3 surface and the pair (X,α) is usually referred to as a marked
K3 surface. It turns out that a marking also defines a Hodge structure of weight 2. Indeed,
let ω ∈ ΓC

3,19 := Γ3,19⊗C be the image of the generator of H(2,0)(X,C) which is defined up to
multiplication by a constant factor. Then, using the scalar product defined on Γ3,19, one has

〈ω, ω〉 =
∫
α(X)

ω ∧ ω = 0

2. Since (−qL,−qR) is mapped to the same SO(4) element as (qL, qR), one should indeed identify SU(2)×
SU(2) under the action of {±Id} as claimed.

3. In the following, we give only a sketch of the proofs and arguments used in deriving the moduli space
we are looking for ; the reader interested in a more complete study may find more details in [34].
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as integration of a (p, q)-form over a complex manifold M with dimCM = m may only be
non-zero if p = q = m. Moreover, 〈ω, ω〉 > 0 since this scalar product is the integral of a
non-negative integrand and since the 〈ω, ω〉 = 0 case would imply ω = 0. The aforementioned
Hodge structure of weight 2 may then be defined as :

H(2,0)(ω) := Cω ∈ ΓC
3,19

H(0,2)(ω) := Cω ∈ ΓC
3,19

H(1,1)(ω) :=
[
H(2,0)(ω)⊕H(0,2)(ω)

]⊥
∈ ΓC

3,19

with
[
H(2,0)(ω)⊕H(0,2)(ω)

]⊥
the orthogonal complement of H(2,0)(ω) ⊕ H(0,2)(ω) in ΓC

3,19.
What we have done so far is essentially assigning to the complex structure of a K3 surface a
point ω in the parameter space{

ω ∈ ΓC
3,19

∣∣∣〈ω, ω〉 = 0, 〈ω, ω〉 > 0
}/

C∗. (II.6)

One may actually show that this parameter space is enough to completely characterise the
complex structure of a marked K3 surface [37]. We may now decompose ω into elements of
α∗H2(X,R) by setting

ω := x+ iy.

Since ω is an element of the space (II.6), one must have 〈x, x〉 = 〈y, y〉 > 0 and 〈x, y〉 = 0. In
particular, this means that x and y must be linearly independent and space-like elements of
α∗H2(X,R).

Let us now consider the image Ω of the Kähler form of X under the isometry α. As it
is the case for any Hermitian manifold of complex dimension m, the volume form of α(X)
may be taken to be Ω∧m = Ω ∧ Ω setting m = 2 [38]. This implies in particular that 〈Ω,Ω〉
is strictly positive so that Ω defines a space-like element of α∗H2(X,R). Moreover, since the
Kähler form of a K3 surface is of bidegree (1, 1) by construction, Ω must belong to H(1,1)(ω).
As before, this means that the integral of Ω ∧ ω over α(X) vanishes, that is that 〈Ω, ω〉 = 0.
In terms of x and y, this means that Ω, x and y are three linearly independent and space-like
elements of α∗H2(X,R). Moreover, unlike that of x or y, the norm of Ω under the Γ3,19 inner
product is important as it is related to the volume of X.

In summary, we have just seen that the choice of a complex structure and of a Kähler
form on a marked K3 surface X defines a three-dimensional space-like plane Σ in the ambient
space R3,19 of Γ3,19. Moreover, (x, y,Ω) define a natural orientation of the three-plane. The
associated parameter space Tricci is then the Grassmannian of oriented space-like three-planes
in R3,19 times a R+ factor which denotes the volume of the K3 surface. Tricci then reads

Tricci = O(3, 19)+/[SO(3)×O(19)]× R+.

Finally, by construction Tricci is the moduli space of Ricci-flat metrics on K3 surfaces but
what we really want is to get rid of the marking α. Let us assume that α and α′ are two
markings for a K3 surface X, that is such that
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H2(X,Z) Γ3,19

H2(X,Z) Γ3,19

α
∼

f g

α′
∼

is a commutative diagram for a global diffeomorphism f of X and for some function g.
Clearly, g is an isometry of Γ3,19 which must preserve its scalar product. Let O(Γ3,19) be the
group of such isometries. It was shown in [39] that the elements of O(Γ3,19) which could be
induced by diffeomorphisms of K3 surfaces were precisely the subgroup O(Γ3,19)+ of O(Γ3,19)
preserving the orientation of the space-like directions. Consequently, the moduli space of
Ricci-flat metrics on a K3 surface reads

Mricci = O(Γ3,19)+\O(3, 19)+/[SO(3)×O(19)]× R+. (II.7)

There is a last remark one could make here which is not necessary but which will allow for an
easier comparison with the moduli space of NLSM on a K3 surface. The indefinite orthogonal
group satisfies O(3, 19) = O(3, 19)+×{±1}. Enhancing the former to the latter may therefore
be done by introducing the extra generator −1 which lies in the center of O(3, 19). This may
therefore be done without affecting the left-right quotient (II.7) so that one could equivalently
write

Mricci = O(Γ3,19)\O(3, 19)/[O(3)×O(19)]× R+.

II.2.2.b) Moduli space of NSLMs on K3

The moduli space we have just derived only takes into account the deformations associated
to the Ricci-flat metric of K3 surfaces and while it will play a role in the discussion to come it
misses part of the information we need here. From the world-sheet point of view, string theories
may be expressed as models mapping a two-dimensional manifold Σ to a D-dimensional target
spaceM. For historical reasons, such theories are referred to as non-linear sigma models. The
most general form of the action is given by

S = 1
4πα′

∫
Σ

(
Gab(X)dXa ∧ ?dXb + iBab(X)dXa ∧ dXb + α′R(2)φ(X) ? 1

)
+ ..., (II.8)

where we have ignored potential fermionic terms. G, B and φ are interpreted respectively as
a background metric, B-field and dilaton. As we already noted, a necessary condition for a
string theory to be well-defined is local conformal invariance on the world-sheet to hold at the
quantum level [5]. This is equivalent to requiring the associated beta functions, computed as
expansions in powers of the Regge slope α′, to vanish. At leading order, a sufficient condition
for conformal invariance to be preserved at the quantum level is to require the metric G to
be Ricci-flat, the B-field to be closed and the dilaton to be constant [34]. Defining a string
theory with target space a K3 surface therefore amounts to specify, in addition to a Ricci-flat
metric on K3, a closed B-field and a constant dilaton ; consequently, the moduli space we are
looking for should also take the latter parameters into account.

There is a rather natural way of embedding the deformations of the metric and B-field
in such a way that the derivation of the moduli space looks familiar to what we have seen
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in II.2.2.a). We begin by fixing an even unimodular lattice Γ4,20 ⊂ R4,20 of signature (4, 20)
which is, according to theorem I.3.1, unique up to isomorphisms as was Γ3,19. We also define
a space-like four-plane Π ⊂ R4,20. A convenient way of embedding Γ3,19 into Γ4,20 is to take
a null vector w ∈ Γ4,20, that is such that 〈w,w〉 = 0, and to define w⊥ as the space of R4,20

vectors whose scalar product with w vanishes. Since w ∈ w⊥ by construction, one may define
the subspace w⊥/w obtained by identifying any two vectors of the form x and x + λw for
x ∈ R4,20 and λ ∈ R. Let us define

Λ3,19 := Γ4,20 ∩
w⊥

w
.

Then, since w ∈ Γ4,20, Λ3,19 is a lattice of signature (3, 19). Moreover, Λ3,19 inherits the
evenness and unimodularity properties of Γ4,20, so that we conclude that Λ3,19 ∼= Γ3,19. The
choice of a null vector w may then be mapped to a choice of embedding of Γ3,19 into Γ4,20.

Now, let us pick a space-like four-plane Π into R4,20. A convenient way to identify a
particular three-plane contained in Π is to use the w vector we have already defined ; indeed,
Σ′ := Π∩w⊥ may be projected onto w⊥/w to give a space-like three-plane which we identify
with the three-plane Σ spanned by x, y and Ω from the previous section. In summary, so far
we have made nothing more than embedding our previous setup into a higher-dimensional
one. However, the advantage of doing so is that we may construct the orthogonal complement
B′ of Σ′ in Π ; projecting B′ onto w⊥/w gives a R3,19 ∼= H2(X,R) vector which may be
identified with the B-field. Finally, normalising B′ by requiring B′.w = 1, one may show that
B′.B′ is the volume of the K3 surface X [34].

In summary, the space of parameters of an NLSM with target space a K3 surface may
be understood as the choice of a particular space-like four-plane in R4,20 ; as before, the
corresponding space Tσ is a Grassmannian which reads 4

Tσ = O(4, 20)/[O(4)×O(20)].

As in the previous section, one should still have to identify points in Tσ which lead to equi-
valent NLSMs. As we have seen before, the global diffeomorphisms of X induce a O(Γ3,19)+

group of transformations on the moduli space which should still be present in the correspon-
ding non linear sigma model. In addition, one sees from (II.8) that any shift of the B-field by
an element of X2(X,Z) - that is a shift of the B vector defined above by a vector of Γ3,19 -
would amount to an addition of a integral multiple of 2πi to the action ; any such transfor-
mation then relates physically equivalent theories. Finally, complex conjugation of the action
provides the −1 generator necessary to enhance O(Γ3,19)+ to O(Γ3,19) as well as reversing
the sign of B. We conclude that the moduli space we are looking for is the quotient of Tσ by
a discrete group Gσ containing the semi-direct product O(Γ3,19) n Γ3,19, that is the group of
rotations and translations of Γ3,19.

However, that is not the end of the story. As in the toroidal case, conformal theories with
distinct target spaces may be physically equivalent and therefore correspond to a same point
in the moduli space. The relevant dualities here are known as mirror symmetries ; we will give
more details about them in section III.1.1. For the moment, all we need to know is that these
mirror symmetries are enough to generate, together with O(Γ3,19) n Γ3,19, the full O(Γ4,20)

4. As we have discussed before how considering only orientation-preserving transformations or not led to
the same space in the end, we drop the “+” superscripts from the beginning.
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group[40]. We conclude that the moduli spaceMσ of NLSMs with target space a K3 surface
is

Mσ = O(Γ4,20)\O(4, 20)/[O(4)×O(20)]. (II.9)

Mathematically, the Γ4,20 lattice may be interpreted as the whole cohomology ringH∗(X,Z) :=
H0(X,Z)⊕H2(X,Z)⊕H4(X,Z) equipped with a bilinear form known as the Mukai pairing.
Let u(i) be the formal sum u0

(i) +u2
(i) +u4

(i) for i = 1, 2, with un(i) ∈ H
n(X,Z). Then, the Mukai

pairing (u(1), u(2)) is defined to be

(u(1), u(2)) := u0
(1) · u

4
(2) + u4

(1) · u
0
(2) + u2

(1) · u
2
(2)

with, as before, · being given by the cup product.

II.2.2.c) Moduli spaces of type II theories

We now turn to analysing the moduli spaces of type II theories. In addition to the Neuveu-
Schwarz Neuveu-Schwarz (NS-NS) moduli analysed above, one should also take massless states
coming from the Ramond-Ramond (RR) sector. In the type IIA and IIB string cases, these
states correspond to differential forms with odd and even rank respectively. As we have seen
in section I.1, massless modes originating from differential forms are in one-to-one corres-
pondence with the harmonic forms of the internal space. Let then C̃(p) be a p-form in the
ten-dimensional theory ; using Künneth theorem, C̃(p) may be rewritten as

C̃(p) =
p∑
i=0

CA(p−i)ω
(i)
A

with ω(i)
A ∈ H i(K4) and CA(p−i) a (p− i) differential form defined onM6. If K4 is a K3 surface,

its Hodge diamond is given by (A.2). In particular, since there is no non-trivial cohomology
element with odd rank the above discussion shows that no massless scalars - that is no moduli
- come from the RR sector in the type IIA case. In weak-string coupling limit, that is the
limit in which the dilaton φ → −∞, the type IIA moduli space is therefore given by (II.9).
It is actually believed that the full moduli space of the theory may be given as the direct
product of the moduli space (II.9) and of the dilaton, as argued in [34]. Assuming this is true,
the moduli space of the type IIA string compactified on a K3 surface then reads

MIIA = (O(Γ4,20)\O(4, 20)/[O(4)×O(20)])× R

with the R factor corresponding to the space spanned by the dilaton.
In the following, we will be less interested in the type IIB case and will therefore not

spend too much time deriving the corresponding moduli space ; instead, we sketch a possible
derivation and refer to [34] for more details. Unlike what happens the type IIA case considered
above, there are massless scalars coming from the RR sector in the type IIB theory. More
precisely, there are 1, 22 and 1 moduli coming from the 0-form, 2-form and self-dual 4-form
of the type IIB spectrum, as b0(K3) = b4(K3) = 1 and b2(K3) = 22. These may be combined
and interpreted as a vector living in the ambient space of the intersection lattice Γ4,20 of
the K3 surface. Counting all corresponding degrees of freedom, holonomy arguments allow to
conclude that the moduli space of the type IIB theory should be given as the Grassmannian
O(5, 21)/(O(5)×O(21)) up to duality identifications. One may also show that the duality
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group may here be understood as the automorphism group of the lattice Γ5,21 defined as
before ; the moduli space of the type IIB theory therefore reads

MIIB = O(Γ5,21)\O(5, 21)/(O(5)×O(21)).

II.2.3 Heterotic - type IIA duality
From the above analysis, one may notice that the theories obtained from compactifying

either the heterotic string on a four-torus or the type IIA string on a K3 surface share some
features : not only do they both lead to N = (1, 1) supersymmetric theories, they also lead
to the same moduli space. Moreover, as noticed in [41], their low-energy limits are equivalent
up to the field redefinition

φhet = −φIIA, (II.10)
ghet = e−2φIIAgIIA,

dBhet = e−2φIIA ? dBIIA,

Ahet = AIIA,

with φ the dilaton, g the six-dimensional metric, B the Kalb-Ramond B-field and A any gauge
one-form coming from reduction on the torus in the heterotic theory and from the RR states
wrapping non-trivial cycles of the K3 surface in the type IIA one.

This leads to a duality conjecture, namely that the heterotic and type IIA strings com-
pactified on a four-torus and on a K3 surface respectively are actually different formulations
of the same theory. One should stress here that this is not in contradiction with the fact that
the corresponding world-sheet theories seem to be incompatible. Indeed, the mapping (II.10)
shows that the sign of the dilaton gets reversed in the duality : in particular, both theories
may not be analysed from perturbation theory at the same point in moduli space. This must
be contrasted to the related four-dimensional duality discussed in II.2.4.

It is worthwhile considering the gauge fields in the six-dimensional theory. In the type IIA
model, the conformal field theory approach shows that there are 24 U(1) gauge fields : 1 comes
directly from the type IIA one-form, 22 from wrapping the three-form around two-cycles of
the K3 and 1 more from dualising it. The gauge group of the theory is therefore U(1)24 and
one may show that no extra non-abelian contribution can come from the CFT approach [34].
However, from the heterotic perspective while the same conclusion generically holds true, we
know from II.2.1 that there are points in the CFT moduli space where the U(1)24 gauge group
gets enhanced to a non-abelian one. More precisely, the set of all states with left and right
momentum pL and pR satisfying

p2
L = 0, (II.11)
p2
R = 2,

if any, form the root lattice of the associated gauge group. Notably, all roots in (II.11) have
equal length showing that the associated Lie group must be simply laced - that is part of the
A-D-E classification. A particular subspace of the heterotic moduli space with non-trivial
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gauge group is given by the subspace with vanishing Wilson lines, in which case the Narain
lattice factorises as Γ4,20 = Γ4,4 ⊕ E8(−1)⊕2, proving that (II.11) does admit solutions. This
may indicate two things : either the conjectured duality is wrong or the corresponding type
IIA gauge group enhancement remains invisible from the world-sheet point of view.

A detailed analysis of the interpretation of the Narain lattice Γ4,20 from both perspectives
shows that the points where states satisfying (II.11) exist correspond to orbifold limits of
the K3 surface from the type IIA perspective. This is no coincidence ; indeed, it was shown
in [41] that a type IIA string compactified on an orbifold could exhibit a non-abelian gauge
group such that the A-D-E classification of the orbifold singularities coincides with that of
the gauge group. Moreover, a Γ4,20 vector α satisfying (II.11) is orthogonal to the space-like
four-plane Π introduced in II.2.2.b), that is to both the space-like three-plane Σ and to the
R4,20 vector B′ which encode respectively the complex and Kähler structure of the K3 surface
and the B-field. Orthogonality with Σ is actually equivalent to saying that the K3 surface
has orbifold singularities [34]. The orthogonality of B′ and α however, leads to an additional
requirement, namely that the component of the B-field along the direction dual to α must be
zero.

From the type IIA point of view, gauge symmetry enhancement come from non-perturbative
effects which may be understood intuitively following [42]. In the type IIA theory, theD-branes
are solitons coming from the RR sector. They may in particular wrap around non-trivial cycles
of the target space, the mass of the associated states being related to the volume of the cycles
and to the B-field. When coming closer to an orbifold limit of a K3 surface and provided that
the B-field vanishes along the appropriate directions, at least some of its cycles shrink down
leading to light D-branes ; at the orbifold point, these become massless and should be kept in
the truncation to the massless sector. These extra massless states may be precisely mapped
to the extra winding and momentum states satisfying (II.11) in the heterotic theory by su-
persymmetry arguments 5. In summary, since D-branes are solitonic, the gauge group in the
type IIA theory gets enhanced indeed but only through non-perturbative effects, explaining
the inability of the conformal field theory to grasp them.

Up to this day, nothing has disproved the above conjectured duality ; we will assume in the
following that it holds true, which will turn out to be essential to the analysis of chapter III.
There, the duality will allow us to probe non-perturbative features of the type IIA model first
described in [7] and reviewed in III.1 by constructing a heterotic dual model ; indeed, since
the duality described above interpolates between the weak and strong coupling regimes of
each theory, it allows to go beyond perturbative considerations as the above enhanced gauge
symmetry points analysis illustrated.

II.2.4 Four-dimensional theories

We now turn to four-dimensional theories with sixteen supercharges, that is with N = 4
extended supersymmetry. Using once again the arguments from section II.1, we find that
requiring space-time to factorise globally as M1,9 = M1,3 × K6 imposes the internal space
K6 to have SU(2) holonomy in the type II theory. While a four-dimensional manifold with
SU(2) holonomy may only be a K3 surface, this is no longer the case for a six-dimensional one.
However, cohomology considerations show that the universal cover of K6 must be isomorphic

5. A complete dictionary may be found e.g.in [43, 44] ; we will give such a dictionary for four-dimensional
theories in the next section.
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to K3 × T 2 [34] ; consequently, any geometric compactification of the type II string down to
four dimensions preserving N = 4 supersymmetry has an internal space of the form

K6 ∼=
(
K3× T 2

)
/G

for some group G. Moreover, as detailed in A.3, the action of G on the K3 piece of K6 must be
symplectic in order to preserve N = 4 supersymmetry. Such an action necessarily has fixed
points on K3 [45] ; in order to avoid quotient singularities, any non-trivial action of G on K3
should therefore be combined with a translation on T 2, which imposes in particular that the
action of G on K3 must be abelian. In summary, our requirements put a lot of constraints on
the quotienting group G and its possible actions on K3 have been fully classified in [46]. Such
models are usually referred to as CHL orbifolds in the literature.

A fair question would be to wonder whether the corresponding type IIA theory would still
admit a heterotic dual constructed as above. In order to answer this question, we start by
noticing that any such theory may be obtained in two steps, by first compactifying the type
IIA string on K3×T 2 and then taking the quotient by the discrete group G. The moduli space
of N = 4 theories in 4 dimensions is quite constrained ; indeed, holonomy arguments show
that the “Teichmüller space” - that is the space of parameters obtained before identifying
duality related points - must factorise as [47]

T N=4
4d = SL(2)

U(1) ×
O(6,m)

O(6)×O(m) (II.12)

with m the number of vector multiplets of the theory. Counting the number of moduli coming
from compactification of the type II string shows that m = 22 for both type IIA and type IIB
theories 6. Assuming that the type IIA string compactified on K3 is dual to the heterotic string
compactified on T 4, it seems natural to assume that the duality still holds when compactifying
both theories over an additional two-torus. Therefore, a natural guess for a potential heterotic
dual is the theory obtained by its reduction on T 4 × T 2 ∼= T 6. In this case, from section I.3
one also finds that the Teichmüller space is given by (II.12) with m = 22. In this case, the
SL(2)/U(1) part corresponds to the axio-dilaton modulus and the O(6, 22)/(O(6)×O(22))
one to the moduli space of conformal field theories on the torus with 6 and 22 left- and right-
moving dimensions. Using (II.10), one may also show that the SL(2)/U(1) factor corresponds
to the Kähler moduli of T 2 in the type IIA picture. Moreover, since T-duality exchanges type
IIA and type IIB theories, one could also derive a new type IIB dual theory by dualising along
a cycle of T 2 ; in this case, the SL(2)/U(1) factor in (II.12) would correspond to the complex
structure of the T 2 as T-duality exchanges Kähler and complex moduli of the two-torus. This
means in particular that the perturbative limit φ→∞ in the heterotic string picture may be
perturbatively understood from both type II perspectives, as it corresponds to a large volume
and degenerate torus limit for the type IIA and IIB theories respectively.

One may now get access to the duality group of the theory and then to the full moduli
space. From the type IIB analysis, where the SL(2)/U(1) factor corresponds to the complex
modulus of T 2, one gets that any two points related by a SL2(Z) transformation are equi-
valent ; from the heterotic point of view, the O(6, 22)/(O(6)×O(22)) part corresponds to
the conformal field theory of 6 chiral and 22 anti-chiral periodic bosons with momenta and

6. In counting the degrees of freedom coming from the RR sector in the type IIB case, one should recall
that the four-form is self-dual.
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Heterotic string on T 6 Type IIA string on K3× T 2

K/1 NS5/1̂ D0 D2/T 2

K/2, 3, 4 NS5/2̂, 3̂, 4̂ D2/ωa D4/
(
T 2 × ωa

)
K/5, 6 NS5/6̂, 5̂ K/5, 6 W/6, 5
W/1 KKM/1̂ D4/K3 D6/(K3× T 2)

W/2, 3, 4 KKM/2̂, 3̂, 4̂ D2/ωa D4/
(
T 2 × ωa

)
W/5, 6 KKM/5̂, 6̂ NS5/6̂, 5̂ KKM/5̂, 6̂
Q1,...,16 HM1,...,16 D2/ωa D4/(T2 × ωa)

Table II.1 – Dictionary between BPS states in the heterotic on T 6 and type IIA on K3×T 2

models given in [48]. Even and odd columns are related by electric-magnetic duality. The
legend goes as follows : K/i is a momentum state along direction i, i = 1, ..., 6. W/i is a
winding state along direction i. NS5/ı̂ is an NS5 brane wrapping all internal directions but
i. KKM/ı̂ is a Kaluza-Klein monopole localised in direction i. ωa is a basis of 2 cycles of K3.
D0, D2, D4 and D4 are 0, 2, 4 and 6 branes ; D2/ωa is a 2-brane wrapping ωa and so on. QI
is a charge of the rank 16 heterotic gauge group. HMI is the corresponding H-monopole.

winding living in a Narain lattice Γ6,22. Any two points related by a Γ6,22 automorphism are
therefore equivalent, leading to the moduli space

MN=4
4d = (SL2(Z)\SL(2)/U(1))× (O(Γ6,22)\O(6,m)/(O(6)×O(m))).

This allows in particular to understand the action of a quotienting group on each side of the
duality as an automorphism of Γ6,22 ∼= Γ4,20 ⊕ Γ2,2 with the action on Γ4,20 being interpreted
as an automorphism of K3 and of the Narain lattice in the type IIA and heterotic pictures
respectively and with a shift along vectors of Γ2,2. Importantly, the quotient may only admit a
geometric interpretation from the type IIA perspective if the orbifold group acts non-trivially
on a sub-lattice of Γ3,19 ⊂ Γ4,20 only as Γ3,19 may then be understood as the intersection
lattice of K3. Moreover, special states known as BPS states are protected by supersymmetry
and should be present in both type IIA and heterotic string, constituting both a non-trivial
test of the conjectured duality and better understanding of the non-perturbative sector of
each theory. Comparing their respective Γ6,22 charges allows to derive the dictionary given in
table II.1. In particular, one may notice that the fundamental string winded around a cycle
of the T 2 in one theory in understood in terms of a NS5-brane wrapping all other directions
of the internal space in the other ; winding modes of the heterotic string around cycles of the
T 4 are by contrast mapped to D-branes wrapping cycles of the K3.

Now that the type II/heterotic duality has been understood for the unquotiented theory,
it is time to consider generic orbifolds as well, the argument being the same for both CHL
and non-CHL constructions. It is not obvious to see whether the duality still holds after
the orbifold procedure ; in fact, explicit examples where it does not have been found in the
literature. In [49], for example, it has been shown that the orbifold of the type IIA string
compactified on K3 by the Z2 group generated by (−1)FL , FL being the left-moving fermionic
number on the world-sheet, is isomorphic to the type IIB string compactified on K3. On
the other hand, quotienting the originally dual heterotic theory by the same automorphism
leads to an anomalous model. A key point here to build dual models from orbifolds is the
adiabatic argument of [49] that we now review. Consider the type IIA theory compactified
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on K3 × S1 with S1 a circle of radius R and a discrete group G acting freely on S1. Since
the action of G on S1 is free, the quotient

(
K3× S1)/G has no singularities ; for R large

enough, a low energy observer will then not be able to tell the difference between S1 and
a non-compact direction. One may therefore get locally a dual description in terms of the
heterotic string by applying the duality fiberwise. Once again, the main difference here with
the duality breaking example considered above is the free action of the quotient group on
the circle, which removes any singularity and allows to consider a smooth decompactification
limit. Of course, this argument alone is not sufficient to identify a heterotic dual as the large
R limit masks some features to a low energy observer who may in particular not observe
non-trivial winding modes in this case. In order to unambiguously identify a dual theory,
one then typically has to rely on consistency requirements such as modular invariance of the
theory. We will explicitly study such an example in chapter III, where we consider models
which may be viewed as non-geometric generalisations of CHL orbifolds using non-symplectic
automorphisms of K3 surfaces instead of symplectic ones.

II.3 Theories with 8 supercharges

II.3.1 Reduction of the type II string

We now turn to the analysis of four-dimensional theories with 8 supercharges, that is with
N = 2 supersymmetry, coming from geometric compactification of string theories. We first
focus on reductions of type II models. As in chapter II.2, requiring a preserved amount of
space-time supersymmetry puts constraints on the holonomy group of the internal space, to
which we keep referring as K6. With similar considerations as in section II.2.2, one shows
that in the type II case, the holonomy group of the internal manifold must be restricted to
SU(3) [33], forcing K6 to be a Calabi-Yau three-fold.

Four-dimensional N = 2 supergravities are quite constrained as we will review in IV. In
particular, two types of multiplets may contain massless scalar fields : vector and hypermul-
tiplets, which contain respectively two and four real scalars. Holonomy arguments show that
the moduli space of such theories split as

MN=2
4d =Mv ×Mh (II.13)

withMv a special Kähler manifold andMh a quaternionic Kähler manifold spanned by the
vector and hypermultiplets respectively [50]. BothMv andMh generically receive quantum
corrections expanded in terms of two parameters : the first one is the string coupling gS ,
related the the dilaton VEV. From a space-time perspective, this may be understood as a loop
expansion corresponding to summation over world-sheet topologies. The second parameter is
the string tension α′, related to the Planck mass. Its appearance is due to the fact that a
generic interacting string theory is not solvable. The usual strategy is therefore to express the
world-sheet fields as X(τ, σ) = X0 +

√
α′δX(τ, σ) and to expand the background parameters

around X0. Such an expansion is therefore necessary only for models which do not admit a
CFT description. It is then particularly useful to determine whether the dilaton and Kähler
modulus lie in a vector or in a hypermultiplet ; the splitting (II.13) implies that eitherMv or
Mh may be evaluated exactly in the perturbative limit φ→∞ - that is exactly in gs and/or
in the large volume limit - that is exactly in α′. Of course, this comes at the cost of the ability
of evaluating the other factor in (II.13) in perturbation theory.
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We start by looking at the NS-NS sector which is identical for both type II theories. We
consider a compactification without flux, meaning that the B-field must be closed, the dilaton
constant and the metric Ricci-flat. This last requirement deserves some special attention as
it constraints the allowed deformations in a non-trivial way. The idea here is to fix a given
Calabi-Yau background around which to expand the metric, that is to set

gmn = g(0)
mn + δgmn

with g(0)
mn the background metric. One may use diffeomorphism invariance and tracelessness

of the metric to impose

g(0)mnδgmn = ∇mδgmn = 0. (II.14)

with ∇ the covariant derivative with respect to the background connection. We emphasise
here that (II.14) should not be seen as physical constraints on δgmn as much as a gauge choice.
By contrast, one should impose the internal space to remain Ricci-flat in order to ensure the
absence of conformal anomaly on the world-sheet. In the “gauge” (II.14), this gives at leading
order the Lichnerowicz equation

∇o∇oδgmn + 2R(0) o p
m n δgop = 0 (II.15)

where we have used the Ricci-flatness of the background metric and where R(0)
klmn is the

Riemann tensor with respect to the background connection. In particular, equation (II.15)
does not intertwine purely (anti-)holomorphic and mixed components of the metric. One may
therefore see (II.15) as two sets of equations, one for the δgij ’s and the other one for the δgi’s
with i, j = 1, ..., 3 holomorphic indices. The latter may easily be embedded into a differential
form, namely into

iδgi dyi ∧ dyj = δJ (II.16)

with J the Kähler form. It turns out that one may similarly construct a differential form from
δgij ; a way to accommodate the symmetry between its indices is to introduce the holomorphic
3-form Ω so as to define the (2, 1)-form

Ω l
ij δgkl dy

i ∧ dyj ∧ dyk . (II.17)

One may then show that (II.15) is satisfied if and only if both forms (II.16) and (II.17) are
harmonic [51]. The 10-dimensional metric may therefore be expanded as

gmn(x, y) = g(0)
mn(x, y) + δgmn(x, y), (II.18)

δgi(x, y) = iva(x)(ωa)i(y),

δgij(x, y) = izk

Ω lm
i (χk)lmj
|Ω|2

(y)

with x and y coordinates on the Minkowski space-time and on the internal Calabi-Yau ma-
nifold and with {ωa} and {χk} bases of the (1, 1) and (2, 1) Dolbeault cohomology group of



42 Chapitre II. Superstring compactifications

the background Calabi-Yau manifold respectively 7. From (II.16), it is clear that the h(1,1)

mixed deformations of the metric correspond to the deformations of the Kähler form. On the
other hand, since the internal manifold is Calabi-Yau, it must always admit a Hermitean me-
tric ; the h(2,1) purely (anti-)holomorphic deformations of the metric must therefore be related
to deformations of the complex structure, that is of the splitting between holomorphic and
anti-holomorphic indices.

The remaining fields coming from the NS-NS sector are the dilaton φ and the Kalb-
Ramond B-field B. They may be expanded in terms of four-dimensional fields as

φ(x, y) = φ(x),
B(x, y) = B(x) + ba(x)ωa(y).

The fields coming from the RR sector are different in each type II theory ; in the type IIA
case, they may be expanded as

C1(x, y) = c1(x),
C3(x, y) = ca1(x)ωa(y) + ξK(x)αK(y)− ξ̃K(x)βK(y)

while in the type IIB model, the expansion reads 8

C0(x, y) = c0(x), (II.19)
C2(x, y) = c2(x) + ca0(x)ωa(y),
C4(x, y) = V K

1 (x)αK(y) + ρa(x)ω̃a(y).

From there, one may insert the above expansions into the ten-dimensional type II super-
gravity and integrate over the Calabi-Yau basis in order to get the four-dimensional action.
While the computation is quite straightforward, it is somewhat cumbersome and not espe-
cially enlightening for the purposes of this thesis. Since what we really care about here is
the repartition of the four-dimensional fields into N = 2 multiplets, which may be unders-
tood from deriving the four-dimensional effective supergravity, we simply state the result in
tables II.2 and II.3, referring e.g.to [52] for more details.

Gravity multiplet (gµν , c1)
Vector multiplets (ca1, ba, va)
Hypermultiplets

(
zk, ξk, ξ̃k

)
Tensor multiplet

(
B,φ, ξ0, ξ̃0

)
Table II.2 – Bosonic part of the N = 2 multiplets of the type IIA string.

7. More details about the notations may be found in appendix A.1.
8. In (II.19), the self-duality of dC4 in ten dimensions has been used ; without this constraint, terms involving

βK and ωa should have been present in the expansion as well .
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Gravity multiplet
(
gµν , V

0
1
)

Vector multiplets
(
V k

1 , z
k
)

Hypermultiplets (va, ba, ca, ρa)
Tensor multiplet (B,φ, c2, c0)

Table II.3 – Bosonic part of the N = 2 multiplets of the type IIB string.

In both cases, the tensor multiplet, which contains the dilaton, may be dualised into a
hypermultiplet. In summary, there are h(1,1) (h(2,1)) vector multiplets and h(2,1) +1 (h(1,1) +1)
hypermultiplets in the spectrum of the type IIA (IIB) string effective action. One may notice
that the spectra of both type II theories are very similar to each other, up to an exchange of
the Hodge numbers h(1,1) and h(2,1). This suggests some kind of symmetry between Calabi-
Yau three-folds ; more precisely, if the type IIA string compactified on X is equivalent to the
type IIB string compactified on X ′ with X and X̃ Calabi-Yau three-folds, then X is defined
to be the mirror of X̃. Of course, from what we have seen above, the Hodge numbers of X
and X̃ are exchanged, meaning that

h(1,1)(X) = h(2,1)(X̃),
h(2,1)(X) = h(1,1)(X̃).

We will see two explicit mirror constructions in section III.1, one specific to K3 surfaces and
the other one allowing to obtain mirror pairs of Calabi-Yau manifolds of any dimension.

We have seen that deformations of the Kähler form were encoded in the fields va from (II.18) ;
we deduce from tables II.2 and II.3 that the Kähler modulus lies respectively in a vector and
hypermultiplet in the type IIA and type IIB theories. Moreover, the dilaton lies in a hyper-
multiplet in both theories ; from our discussion above, this means that the part Mv of the
moduli space spanned by scalars living in vector multiplets may be evaluated directly by
going to the φ → ∞ limit. Similarly, Mh (Mv) may be evaluated exactly in α′ by going
to the large volume limit in the type IIA (IIB) theory. The conclusions about the dilaton
could actually have been made directly from the world-sheet theory. Indeed, in this case the
superconformal algebra has enhanced N = (2, 2) supersymmetry and one may show that this
is enough to constrain the dilaton to live in a hypermultiplet [49]. In this case, space-time
supersymmetry comes from both left- and right-movers on the world-sheet. Another possibi-
lity is the case where all supersymmetry comes from, say, the left-movers ; in this case, the
world-sheet supersymmetry is enhanced to N = (4, 1). Since this kind of compactifications
does not treat both world-sheet chiralities on an equal footing, it may not admit a geometric
interpretation in the usual sense. Along the same lines as in the previous case, one then shows
that the dilaton must lie in a vector multiplet [49]. This is in particular what happens in
the family of models reviewed in section III.1 and which we will be primarily be interested
about. Unlike the common case of Calabi-Yau reductions, this will grant us access to an exact
form for the hypermultiplets moduli space in chapter V ; in addition, we will be able to use in
the same chapter mathematical constraints to derive the full perturbative corrections to the
vector multiplets moduli space.
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II.3.2 Reduction of the heterotic string

As in section II.2.4, geometric compactifications of the heterotic string preserving N = 2
supersymmetry in four dimensions require an internal space of the form

K6 ∼=
(
K3× T 2

)
/G

for some discrete group G whose elements act on K3 as a symplectic automorphism thereof
and on T 2 as a translation. A difference compared to the type II case is the non-abelian gauge
group naturally present in the ten-dimensional theory. Compactification of the heterotic string
is then achieved in general by specifying a vector bundle E → K over the internal space with
structure group contained either in E8 × E8 or in Spin(32)/Z2, depending on the heterotic
model of interest. In the toroidal case, this is exactly what happened : far from the enhanced
symmetry points, the gauge group was broken to the Cartan subgroup U(1)16 of the above
Lie groups. The only data needed to characterise the bundle connection was then contained
in the (16× d)-dimensional matrix formed by the Wilson lines. Conformal invariance was
ensured to leading order in α′ by requiring A to be constant, implying that the gauge bundle
E was flat.

As we briefly mentioned in section II.1, requiring the variation of the gluinos to vanish un-
der supersymmetry transformations amounts to imposing the gauge bundle to be holomorphic
in a flux-free model. Moreover, anomaly cancellation requires [53]

c2(E) = c2(TK6)

with TK6 the tangent bundle of K6. Therefore, in the current case where K6 = K3× T 2, the
gauge bundle may no longer be trivial. Since the main point of interest of this thesis is to
study models obtained as toroidal orbifolds of the heterotic string, we will not spend more
time discussing these models for which the analysis of the gauge bundle would be much harder.
Before closing this section, we briefly mention two facts : first, all space-time supersymmetry
comes from world-sheet fields of the same chirality by construction of the heterotic string.
As we emphasised in section II.3.1, this implies that the dilaton lies in a vector multiplet
whether the construction admits a geometric interpretation or not ; the Kähler modulus,
as for it, may be shown to belong to a hypermultiplet [54]. This motivates in particular a
research of heterotic/type II dual theories preserving N = 2 supersymmetry, as we have seen
before that the dilaton belongs to a hypermultiplet in the reduction of the type II string
on a Calabi-Yau three-fold. Indeed, one could then theoretically have access to both parts
of the whole moduli space (II.13) using perturbation theory only (this is summarised in
table II.4). A second point concerns the potential dual theories. A common conjecture is that
if a compactification of the heterotic string on

(
K3× T 2)/G for some discrete group G as

above is dual to a reduction of the type IIA string on a Calabi-Yau three-fold X and if there
exists a region in the moduli space where both perturbative theories converge, then X must
be constructed as a K3-fibration over a P1 basis [34]. Viewing the

(
K3× T 2)/G internal space

of the heterotic string as a T 4-fibration over P1, this statement may be seen as a fiber-wise
application of the duality conjectured in section II.2.3.

Explicit examples of dualities between four-dimensional N = 2 theories descending from
the duality described in II.2.3 have been found in the literature. An especially relevant
construction for this thesis is the FHSV model introduced in [55]. The type IIA model in-
ternal Calabi-Yau space is obtained as a freely acting Z2 orbifold of K3 × T 2 generated by
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Mv Mh
Type IIA string Exact in gS Expansion in gS

on CY3 Expansion in α′ Exact in α′
Type IIB string Exact in gS Expansion in gS

on CY3 Exact in α′ Expansion in α′
Heterotic string Expansion in gS Exact in gS
on
(
K3× T 2)/G Exact in α′ Expansion in α′

Table II.4 – Consequence of the nature of the dilaton N = 2 multiplet on the control
over the moduli space. For the type II string, φ lies in a hypermultiplet ; Mh therefore
receives corrections from all orders in perturbation theory while Mv may be evaluated in
the perturbative limit φ→∞.

g ∈ O(Γ6,22). The action of g on the K3 intersection lattice Γ3,19 ∼= E8(−1)⊕2 ⊕ U⊕3 is to
exchange two copies of (E8(−1)⊕ U) and to act as −1 on the last U factor while it acts as
an inversion on T 2. The resulting manifold is known as an Enriques surface and is self-dual
under mirror symmetry. This description of g in terms of its action on the charge lattice
Γ6,22 ∼= Γ3,19 ⊕ U ⊕ Γ2,2 is almost enough to determine the action of g in the heterotic pic-
ture. The only freedom left lies in the action of g on the remaining U factor in the above
Γ6,22 decomposition ; from the type IIA perspective, only Ramond-Ramond states are charged
under this U lattice which has then no effect at the perturbative level. From the heterotic
point of view however, this U corresponds to winding and momenta charges and its beha-
viour under g must be understood. It was shown in [55] that g should act as a Z2 shift with
non-vanishing norm in order to have a modular invariant theory. As we will see, there are
interesting similarities as well as differences between the FHSV model and the models to be
analysed in chapter III ; we will therefore return to these constructions in more details in
subsection III.4.3.

II.4 Non-geometric constructions

II.4.1 Gauged supergravities

So far, we have mainly focused on geometric backgrounds in order to understand some of
their features and to emphasise the differences with non-geometric constructions. Actually,
even though they may seem more intuitive at first sight, there is no physical reason why string
theory should admit a classical geometric interpretation. Indeed, let us go back to the reasons
mentioned in the introduction in order to justify the high number of dimensions required by
string theories. We have seen that a necessary and sufficient condition for the local conformal
invariance on the world-sheet to hold at the quantum level is that the central charges of
the two decoupled CFTs associated to the left and right sectors vanishes. The geometric
interpretation associated with the dimension of space-time only comes in a second step when
bosons of opposite chiralities are paired and interpreted as directions in the target space.
However, more exotic CFTs such as Wess-Zumino-Witten models would lead to equivalently
receivable theories. This kind of considerations may also be refined in order to take into
account space-time supersymmetry : for instance, the internal SCFT of a heterotic string
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theory preserving N = 2 supersymmetry in four dimensions may be shown to split into two
pieces with c = 6 and N = 4 supersymmetry and c = 3 and N = 2 supersymmetry [56]. Once
again, no reference is made to any geometrical interpretation in general.

A very important framework in considering generic compactifications of string theories
is supergravity. This is due to several reasons : first and maybe most importantly, there are
a number of reasons to believe that supergravity models may describe accurately our world
(at low energy with respect to the Planck mass) independently from any string theoretical
considerations. Besides from the usual arguments in favour of supersymmetry 9, invariance
under local supersymmetric transformations allows for higher mass degeneracy between the
fields of the standard model and their expected superpartners and are as such more in line
with experiment [17]. Moreover, supergravity theories typically exhibit rich global symmetry
structures and, as we mentioned at the end of section I.1, the full U-duality group of the
UV-complete theory is generally assumed to be a discrete subgroup of the low-energy global
symmetry group. Supergravity may also describe non-perturbative solutions such as branes
which are necessarily missed by a world-sheet approach. When considering non-geometric
constructions, a low-energy point of view also circumvents some of the difficulties as the
details of the string geometry may not be probed below the Planck mass.

Reductions of either ten-dimensional type II or the unique eleven-dimensional supergravi-
ties on Ricci-flat manifolds lead to theories with an abelian gauge group under which all fields
are neutral, as stems from section I.1 for the toroidal case. Such supergravities are known as
ungauged. Ungauged supergravities are quite simple to derive but not very satisfying from
a phenomenological point of view as they generically preserve too much space-time super-
symmetry and exhibit high-dimensional moduli spaces, as for the constructions described
in the previous parts of this chapter. Either from a string theory or supergravity point of
view, most relevant models are given by gauged supergravities which allow for realistic gauge
groups and to generate a scalar potential and mass terms for the gravitini, thereby reducing
the number of moduli of the theory and of preserved supercharges. Indeed, the low-energy
limit of most flux and/or non-geometric compactifications of superstring theories come with
non-abelian gauge groups under which the matter fields are charged, motivating our interest
for such supergravities. A convenient way of deriving gauged supergravity is by considering
first the ungauged theory obtained by toroidal reduction before promoting a subgroup of
the corresponding global symmetry group to a local gauge invariance and coupling it to the
Kaluza-Klein one-forms.

We now see in more details how such models are constructed. We consider the (half-
)maximal ungauged supergravity case where scalar fields live on a coset space G/H. As in I.2,
the scalar fields may conveniently be described by a vielbein V transforming under global
G and local H transformations as V 7→ gVh−1(x) ; once again, H is not a gauge group
but is instead a convenient way of taking care of the redundancy of the degrees of freedom
of V. In addition to the scalar fields, there are in general nv vector fields AMµ , M = 1, ..., nv
granting the theory a U(1)nv gauge group. As described above, we wish to promote a subgroup
G0 ⊂ G into a genuine gauge group. In order to fix the notations, we fix a basis of generators
{tα, α = 1, ...,dimG} of G with structure constants

[tα, tβ] =: f γ
αβ tγ .

9. We recall that incorporating supersymmetry in a gravity model necessarily leads to a supergravity
theory [17].
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Selecting a subgroup G0 then amounts to choosing a set of generators {XM ,M = 1, ..., nv} in
the Lie algebra g of G. A convenient way of parametrising this in a manifestly G-covariant
way is to introduce a constant (nv × dimG) matrix Θ α

M as

XM =: Θ α
M tα. (II.20)

The dimension of the subgroup G0 generated by the XM ’s is then given by the rank of Θ α
M ;

since it encodes the way G0 is embedded in G, this matrix is known as the embedding tensor.
As we are going to see, not any set of generators - and therefore not any embedding tensor
- lead to consistent theories. In particular, a straightforward requirement is that the XM ’s
must form a Lie subalgebra of g, meaning that there must exist a set of constants X P

MN

such that

[XM , XN ] = X P
MN XP .

As we will see however, the numbers X P
MN may not be interpreted as the structure constants

of a Lie group in general ; in particular, they are not anti-symmetric inM andN in general [57].
In view of the action of G on the scalars in the ungauged theory, the vielbein V should

transform as

δV = gΛM (x)XMV (II.21)

under an infinitesimal G0 transformation with local parameter ΛM (x) (in the rest of the dis-
cussion, we will drop the explicit space-time dependence of Λ). In (II.21), we have introduced
a gauge coupling constant g. The most common procedure of promoting a global symmetry
to a local invariance is to replace all derivatives by covariant derivatives involving the gauge
vector field, namely to make the substitution

∂µ → Dµ := ∂µ − gAMµ XM .

The covariant derivative of the vielbein V then transforms covariantly under the action of G0
as expected provided that the vector fields transform as

δAMµ = ∂µΛM + gΛPANµ X M
PN .

The embedding tensor is not invariant under the global symmetry group G ; however, one
must demand its invariance under the gauge group G0 for the theory to make sense. From
the definition (II.20), one show that this translates into

δΘ α
M = ΛNΘ β

N

[
(tβ) P

M θ α
P + Θ γ

M f α
βγ

]
= 0

which is equivalent, up to tα contraction, to

X P
MN = Θ α

M (tα) P
N .

This constraint is quadratic in Θ. There is an additional requirement the embedding tensor
should satisfy as we now explain. From its definition, Θ must live in a R∗⊗Radj representation
of the global symmetry groupG, R∗ being the representation dual to those in which the scalars
V transform and Radj the adjoint representation. Such a representation may be expressed in
terms of irreducible representations as
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R∗ ⊗Radj =
⊕
i

Ri.

for some representations Ri of G. As a matter of fact, one may show that some of the Ri’s
are incompatible with the local supersymmetry algebra ; the additional constraint, which is
linear in Θ, therefore has the effect of selecting only the allowed representations for Θ [58].

Any choice of Θ satisfying both linear and quadratic constraint describes a valid gauging
and may be used to obtain a gauged supergravity. It is not obvious to see from this discussion
only where mass terms for the scalar fields could come from. Actually, the bare replacement
of all derivatives by covariant derivatives alone is not enough to promote G0 to a gauge group
and moreover destroys supersymmetry. The former is due to the differential p-forms in the
action and is taken care of by modifying the associated field strengths and adding a topological
term to the action ; in order to restore the latter, one must add fermionic mass terms and a
scalar potential to the action (in addition to imposing the already mentioned linear constraint
on Θ) [58].

It may be worthwhile noting that we have already encountered gauged supergravities
when discussing Scherk-Schwarz reductions in I.2. The type IIA model to be reviewed in
section III.1 may also be seen as such a twisted reduction ; this explains why the N = 4
supersymmetry present in the original theory - namely the type IIA string compactified on
K3 × T 2 - is broken down to N = 2 as the duality twist generates a mass term for half the
gravitini (more details about the supergravity aspects of these models may be found in the
original work of [7]).

II.4.2 T-folds and mirror-folds
In the following subsection, we give some examples of non-geometric constructions dis-

cussed in the literature. We begin by emphasising that non-geometric constructions may
sometimes be related to geometric ones by duality. In order to illustrate this, we will very
briefly consider the example of the CFT of two scalar fields taking value in a two-torus. In
this case, we recall from section I.3.1 that the moduli space may be spanned by two complex
scalar fields T and U interpreted as the Kähler and complex moduli of the T 2 respectively
and that the automorphism subgroup of the corresponding Narain lattice factorises as

O(Γ2,2) = (SL2(Z)T × SL2(Z)U ) o Z2 (II.22)
where SL2(Z)T and SL2(Z)U act on T and U respectively. Geometric orbifolds may be
obtained from a space group generated by SL2(Z)U transformations which corresponds to
the automorphism group of the torus. In contrast, identifying points related by a SL2(Z)T
transformation- that is points corresponding to tori with different sizes - lead to non-geometric
constructions ; however, as T-duality exchange T and U , these models are related to the afo-
rementioned geometric ones. One may therefore argue that such constructions should be
considered as geometric in the sense that they do admit a geometric interpretation in a dual
frame. By contrast, quotienting simultaneously by non-trivial elements of both SL2(Z) factors
prevents from finding any T-dual theory in which the model may be understood as geometric
and may therefore be regarded as “truly” non-geometric in the above sense. More details
about these constructions from a Scherk-Schwarz reduction perspective may be found in [29].
As a side remark, the models studied in III and which constitute the core of this thesis fall
in the last category as we will show in due time.
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Twisted torus

We now discuss one of the simplest constructions from which one may obtain a non-
geometric “background” 10, namely the case of a three-dimensional rectangular torus with H-
flux turned on and in a constant dilaton background. Non-closed B-fields may be conveniently
taken into account by using Stokes theorem to make the substitution

i

2πα′
∫

Σ
B −→ i

2πα′
∫

Ξ
H

into the NLSM action (II.8), Ξ being any three-dimensional manifold with boundary ∂Ξ = Σ.
One may show that the action may only be independent of the specific choice for Ξ if the
above integral is quantised as [59]

1
2πα′

∫
Ξ
H ∈ 2πZ.

We fix a one-form basis
{
dyi, i = 1, 2, 3

}
normalised such that yi ∼= yi + 2π

√
α′ and in which

the background fields read

ds2 = 1
α′

3∑
i=1

R2
i

(
dyi
)2
, H = h

2π
√
α′

dy1 ∧ dy2 ∧ dy3

for some integer h and some positive real numbers Ri, i = 1, 2, 3, corresponding to the radii
of the T 3 cycles. While this construction is geometric, one may construct a non-geometric
background from it by looking at its image under T-duality transformations. This is analogous
to the situation we described at the beginning of this section where non-geometric orbifolds
with space group G ∈ SL2(Z)T were related to geometric ones. T-duality may be understood
for curved backgrounds from a path integral approach ; the background fields

(
Ĝ, B̂, φ̂

)
of the

corresponding dual theory may be computed using a set of equations known as the Buscher
rules detailed in appendix B

The above background metric admits three Killing vectors ki := ∂i for i = 1, 2, 3. We
may therefore T-dualise our system in the, say, k1 direction. Equations (B.23) show that the
background fields of the dual theory may be expressed as

dŝ2 = α′

R2
1
ξ2 + R2

2
α′

(
dy2

)2
+ R2

3
α′

(
dy3

)2
, (II.23)

Ĥ = 0,

φ̂ = φ− 1
2 log

(
R2

1
α′

)
where we have defined

ξ := dŷ1 − h

2π
√
α′
y3 dy2 ,

with ŷ1 the coordinate dual to y1. In addition, ŷ1 must be periodic with periodicity 2π
√
α′.

We then see that from the dual theory perspective, there is no H-flux in contrast with the
10. It should be emphasised here that while this example is interesting in its own right, it may not be used

as a string theory background as it spoils the world-sheet conformal invariance at the quantum level.
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original theory ; the cost for this is that the metric now has non-trivial off-diagonal entries.
Moreover, while ŷ1 and y2 are still 2π

√
α′-periodic, this is no longer the case for y3 ; instead,

equation (II.23) shows that its periodicity condition must be modified as

(
ŷ1, y3

)
∼
(
ŷ1 + h√

α′
y2, y3 + 2π

)
.

The resulting theory may therefore not be interpreted as a three-torus but instead as a two-
torus - along the ŷ1 and y2 directions - non-trivially fibered over a circle spanned by y3. This
is known as a twisted torus in the literature. The torsion-free spin connection associated to
the dual metric may be computed using Cartan’s structure equation : defining the vielbein as

ê1 :=
√
α′

R1
ξ, ê2 := R2√

α′
dy2, ê3 := R3√

α′
dy3,

one easily computes that the only independent and non-vanishing component of the spin
connection ω̂a := 1

2f
a

bc ê
bêc reads

f 1
23 = α′

2π
h

R1R2R3
.

The H-flux of the original theory may therefore be interpreted in the dual model as a contri-
bution to the spin connection : for this reason, f 1

23 is known as a geometric flux is the
literature.

T-fold

As we mentioned earlier, our original three-torus geometry admits three Killing vectors.
We have seen that T-dualising along any one of them led to a twisted torus geometry ; we
now analyse what happens when applying T-duality along two directions, say along ∂1 and
∂2. Applying once again the Buscher rules (B.23) to the geometry (II.23) shows that the
background fields

(
G̃, H̃, φ̃

)
of the doubly dualised theory read

ds̃2 = 1
ρ

(
R2

2

(
dỹ1

)2
+R2

1

(
dỹ2

)2
)

+ R2
3√
α′

(
dy3

)2
, (II.24)

H̃ = − 1
2π
√
α′

h

ρ2

[
R2

1R
2
2

α′2
−
(

h

2π
√
α′
y3
)2]

dỹ1 ∧ dỹ2 ∧ dy3,

φ̃ = φ− 1
2 log(ρ)

where we have defined

ρ := R2
1R

2
2

α′2
+
(

h

2π
√
α′
y3
)2

and where ỹ1,2 is the coordinate dual to y1,2. As before, both ỹ1 and ỹ2 are still 2π
√
α′-

periodic and therefore span a two-torus while y3 is no longer periodic by itself. One may wish
to supplement the map y3 7→ y3 + 2π

√
α′ with a diffeomorphism so as to preserve ds̃2 as we
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did in the twisted torus case ; however, no such diffeomorphism exist 11. This implies that the
background (II.24) does not admit a geometric description, meaning that we have obtained a
non-geometric background as desired. A way to understand (II.24) in terms of geometric-like
concepts has been proposed in [61] : since this background admits a local description and
since we understand the global structure of its T-dual backgrounds analysed above, it may be
described in terms of a two-torus fibration over a circle with transition functions incorporating
T-duality transformations. Such objects are known as T-folds. As before, one may show that
the original H-flux is now encoded in terms of another flux Q 12

3 which reads [60]

Q 12
3 = α′

2π
h

R1R2R3

and which is a combination of geometric quantities and of the H-field ; consequently, this dual
frame is an example of reduction with a non-geometric flux.

It is tempting to generalise the above construction in order to construct non-geometric
backgrounds understandable as fibrations with transition functions involving various dua-
lity transformations. As first noticed in [29], the Scherk-Schwarz construction reviewed in I.2
provides a perfect framework to do so, granting direct access to the corresponding gauged
supergravities where the U-duality group is contained in the global symmetry group. In parti-
cular, one might want to define mirror-folds as backgrounds constructed from twists involving
mirror symmetry. Although there is nothing wrong in trying to do so, finding examples of
such theories is made particularly hard by the fact that, unlike T-duality, mirror symmetry
is not a self-duality a priori. Mirror-folds obtained from K3 fibrations have been considered
in [62] but were shown to be unstable. The first explicit construction of such background was
introduced in [7] and has played a central role in this thesis as we already mentioned.

The three fluxes considered above H123, f 1
23 and Q 12

3 correspond to gauged supergra-
vities and therefore to non-trivial solutions to the embedding tensor linear and quadratic
constraints. One may then derive a connection between the aforementioned fluxes and the
structure constants of the corresponding embedding tensor. A convenient way to do so is to
think once again in terms of representations of the global symmetry group G of the ungau-
ged supergravity. As we have seen, Θ must satisfy a linear constraint which selects allowed
representations of the U-duality group G ; comparing this with the representation a given
flux lives in then allows to identify the components of the embedding tensor it corresponds
to. In particular, one may notice that not all available gaugings may be related to geometric
fluxes ; consequently, one expects from the gauged supergravity point of view the possibility
of turning on non-geometric fluxes.

II.4.3 Heterotic/type II theories and non-geometric backgrounds

We now generalise the above considerations to toroidal compactifications of the heterotic
string which are richer and more consistent from a string theoretical point of view than the
T-fold model presented in the previous section. With the type IIA/heterotic duality reviewed
in II.2.3 in mind, we will focus to the case where the internal space is a four-torus as we would
not need to explicitly mention the torus dimension in the following discussion anyway. As we
have seen in section I.4, quotienting by a discrete group G may only be done consistently if

11. A simply way of seeing this is to compute the Ricci scalar R̃ associated to ds̃ ; indeed, since R̃ is diffeo-
morphism invariant, it must be invariant under y3 7→ y3 +2π

√
α′. Direct computation shows that R̃ is a degree

two polynomial in y3 and consequently that no such diffeomorphism may exist as claimed [60].
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G is a subgroup of O(Γ4,20), the automorphism group of the Narain lattice. The geometrical
data of the original toroidal reduction is encoded into the metric and B-field on the T 4 as
well as into either the E8 × E8 or the Spin(32)/Z2 gauge bundle. Any geometric quotient
must therefore correspond to an identification under symmetries of these objects. One may
show that the corresponding subgroup of O(Γ4,20) may be generated by changes of bases for
the target space and for the gauge degrees of freedom as well as by B-field and Wilson line
discrete shifts [63]. The remaining part of O(Γ4,20) may only be generated by including a T-
duality involution generator and therefore correspond to symmetries of the underlying CFT
but not of the geometric setup itself in the usual sense. However, as we noticed in the T 2

reduction example from II.4.2, some of the models obtained by using such automorphisms as
generators of the space groups may admit geometric descriptions in dual frames though. In
general however, the resulting backgrounds would be understood as T-folds as we explained
in the previous subsection.

It may be fruitful to also consider the originally dual picture of the type IIA string compac-
tified on a K3 surface. We recall that even if this conjectured duality holds true, it is generically
broken by an orbifolding procedure ; while motivated by duality considerations, the following
discussion does not deal with models dual to the heterotic T-folds previously considered. Once
again, the space group must be contained in the duality group O(Γ4,20) which has however a
very different meaning in the type IIA perspective. We recall from II.2.2.b) that only trans-
formations in the subgroup Ggeom := O(Γ3,19) n Γ3,19, with the first factor corresponding
to rotations of Γ3,19 and the second one to B-field shifts, admit a geometric interpretations.
Indeed, any element of O(Γ4,20) not contained in Ggeom must involve a mirror involution in
the sense developed in subsection III.1.1.a). Similarly as above, an orbifold with space group
generated by such element would therefore correspond to a mirror-fold background.

After this introductory chapter reviewing some important features with regard to this
thesis, we now turn to more recent outcomes. We will first spend a fair amount of time
reviewing the mirror-fold construction developed in [7] ; although these models have been
constructed prior to this thesis, understanding their heterotic dual features has been one
of the main goals of this project. As we will see, these constructions also correspond to
gauged supergravities which exhibit unusual characteristics ; for instance, the minimum of
the potential correspond to N = 2 STU supergravities, to be discussed in the next chapter,
with no massless hypermultiplets. In a second phase, we will review some of the original
results obtained in the last three years.



Chapitre III
Non-geometric constructions and dua-
lity

III.1 Review of the type IIA model

After this review of compactifications of string theories, we now present a family of non-
geometric models we will be interested in in the following. This section is exclusively a review
of the models introduced in [7] and does not contain any original result obtained by the author
of the present thesis.

III.1.1 Two kinds of mirror symmetry

Mirror symmetry is a duality between two models which in particular exchanges super-
charges on the underlying theories. It turns out that in the case of K3 surfaces, two such
kinds of constructions have been found. The first one is the notion of lattice-polarised mirror
symmetry which has first been introduced by Pinkham [64] and independently by Dolgachev
and Nikulin [65, 66, 67]. The second one is closest from the mirror symmetry physicists are
used to and is the Berglund-Hübsch construction [68] which relates mirror Landau-Ginzburg
orbifolds. In the following, we give some more details about each of these constructions in
order to use them in building new models.

III.1.1.a) Lattice-polarised mirror symmetry

We start by defining lattice-polarised (LP) mirror symmetry. In order to do so, we first
need to define a few concepts.

Definition III.1.1 (Primitive lattice). Let L be a lattice and M ⊂ L a sublattice of L. M is
said to be a primitive sublattice if the quotient L/M viewed as an abelian group is torsion-
free. Similarly, a lattice embedding ı : M ↪→ L is said to be primitive if ı(M) is a primitive
sublattice of L.

Definition III.1.2 (Lattice-polarised K3 surface). Let X be a K3 surface and L be an even
lattice of signature (1, ρ − 1) admitting a primitive embedding ı : L ↪→ Γ3,19. If there exists
a primitive embedding  : L ↪→ S(X) with S(X) the Picard lattice of X, X is said to be an
L-polarised K3 surface.

53
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The lattice polarised mirror symmetry construction may now be defined as follows.

Definition III.1.3 (Lattice-polarised mirror symmetry). Let L be an even lattice of signature
(1, t− 1) with t ≤ 18 and with primitive embedding ı ↪→ Γ3,19. If the orthogonal complement
of ı(L) in Γ3,19 admits a primitive embedding ı′ : U ↪→ ı(L)⊥, with U the hyperbolic lattice
bilinear form defined in theorem I.3.1, then the mirror lattice L∨ of L is defined by

ı(L)⊥ = ı′(U)⊕ L∨.

Two K3 surfaces X and X∨ are said to be lattice-polarised mirror of each other if X is
L-polarised and X∨ is L∨-polarised.

LP mirror symmetry therefore mixes the Picard and transcendental lattices of K3 surfaces,
defined in appendix A.2. In the original derivation of (II.9) in [40], the mirror symmetry
element necessary to enlarge the geometric duality group O(Γ3,19)nΓ3,19 to the whole O(Γ4,20)
may actually be seen as a particular example of LP mirror symmetry. In this example, the K3
surface X is polarised by the whole Picard lattice S(X) ; by construction, the transcendental
lattice T (X) is then identified to U ⊕ S(X∨) with X∨ the LP mirror of X. Defining the
quantum Picard lattice

SQ(X) := S(X),

the LP mirror symmetry exchanges T and SQ in this specific case.

III.1.1.b) Berglund-Hübsch mirror symmetry

In this section, we define a construction first introduced in [68] and which may be applied
to Calabi-Yau manifolds of any dimension which are realised as the minimal resolution of a
hypersurface in a weighted projective space, which is a generalisation of a projective space we
know define.

Definition III.1.4 (Weighted projective space). Let V be a (n+1)-dimensional vector space
over a field K. The weighted projective space PnV[w0,...,wn] is defined as the quotient V/ ∼ by
the equivalence relation

(x0, ..., xn) ∼ (λw0x0, ..., λ
wnxn)

for any vector (x0, ..., xn) ∈ V and for any λ ∈ K∗. The coefficients wi are called the weights
of PnV[w0,...,wn].

In the following, we will only consider the K = C and V = Cn+1 case, so that we set
PnCn+1

[w0,...,wn] := Pn[w0,...,wn]. The usual projective space may be seen as a trivial weighted
projective space with every weights equal to 1. Moreover, one may show that for any choice of
weights (w0, ..., wn), there exists integers (w̃0, ..., w̃n) such that the weighted projective space
Pn[w0,...,wn] is isomorphic to Pn[w̃0,...,w̃n] and such that any n of the n+ 1 weights w̃0, ..., w̃n are
coprime [69]. In the following, we will then assume with no loss of generality that this is the
case.

Similarly to the usual projective spaces, sections of the k-th power of the hyperplane bundle
OPn[w0,...,wn]

(k) are given by degree k polynomials ; however, whereas these polynomials had to
be homogeneous in the projective space case, compatibility with the equivalence relation in
definition III.1.4 requires the corresponding polynomials to be quasi-homogeneous of weight
[w0, ..., wn]. We now give the definition of such polynomials.
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Definition III.1.5 (Quasi-homogeneous polynomial). Let Wd : Cn+1 → C be a polynomial.
Wd is said to be quasi-homogeneous of degree d if there exists integers w0, ..., wn such that

Wd(λw0x0, ..., λ
wnxn) = λdWd(x0, ..., xn)

for all λ ∈ C∗. The integers w0, ..., wn are called the weights of x0, ..., xn.

Now let us consider a hypersurface XW defined as the zero-locus of a non-degenerate
quasi-homogeneous polynomial Wd ∈ OPn[w0,...,wn]

in a weighted projective space Pn[w0,...,wn].
The non-degeneracy condition means that one requires that W has an isolated singularity
at the origin and that all fractional weights w0/d, ..., wn/d may be uniquely determined from
Wd. We may compute the Chern class of XW using the adjunction formula, which implies in
this case that[70]

c(TXW ) =
∏n
i=1 (1 + wiξ)

1 + dξ
.

with ξ := c1(OP1) the fundamental generator of H2(P1,Z). In particular, the first Chern class
of XW is given by

c1(TXW ) =
(

n∑
i=1

wi − d
)
ξ (III.1)

so that XW , or at least a minimal resolution thereof, is a Calabi-Yau manifold if and only if
d =

∑n
i=1wi.

We consider only special polynomials Wd for which the number of monomials is the same
as the number of variables ; such polynomials are said to be invertible. In this case, Wd may
be written as

Wd(x0, ..., xn) =
n∑
i=0

n∏
j=0

x
a ji
j (III.2)

with AW := (a ji ) a matrix of positive coefficients. In this case, the non-degeneracy condition
on Wd implies that AW is invertible over Q. We also define the abelian group GW of diagonal
symmetries as

GW :=
{

(µ0, ..., µn) ∈ (C∗)n+1
∣∣∣Wd(µ0x0, ..., µnxn) = Wd(x0, ..., xn)

}
.

and SLW the subgroup of GW consisting of elements of the form

SLW :=
{

(µ0, ..., µn) =
(
e2iπg0 , ..., e2iπgn

)
∈ GW

∣∣∣∣∣
n∑
i=0

gi ∈ Z
}
.

From a physical point of view, SLW corresponds to the subgroup of GW corresponding to
supersymmetry-preserving transformations. GW always contain a subgroup JW (referred to
as the quantum symmetry group in the seminal paper of [68]) generated by the element
jw :=

(
e2iπw0/d, ..., e2iπwn/d

)
by definition of Wd.

We now turn to the n = 3 case which corresponds to Calabi-Yau manifolds of complex
dimension 2, that is to K3 surfaces. Let us define the quotient group G̃ := G/JW , with G a
subgroup of GW satisfying JW ⊆ G ⊆ SLW ; since G̃ is a group of supersymmetry-preserving
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transformations, the minimal resolution XW,G of the orbifold XW /G̃ is also a K3 surface. The
Berglund-Hübsch (BH) mirror symmetry is then defined as follow.

Definition III.1.6. LetXW,G the minimal resolution ofXW /G̃. We define the quasi-homogeneous
polynomial W T as the polynomial of the form (III.2) parametrised by the matrix AWT :=
(AW )T , with (AW )T the usual matrix transpose of AW . We also define the group GT as

GT :=
{
g ∈ GWT

∣∣∣gAWhT ∈ Z∀h ∈ G
}
.

The minimal resolution XWT ,GT of the orbifold XWT /G̃T is defined as the BH mirror of the
surface XW,G.

III.1.2 Construction of the type IIA model

We now turn to the main point of interest of this section which is building the models
introduced in [7]. There is a continuous action of the group O(4, 20) on the moduli space (II.9)
and hence on the type IIA string compactified on K3. The type IIA string compactified on
K3 can be further compactified on T 2 with duality twists through an ansatz in which the
dependence of all fields on the toroidal coordinates y1, y2 is given by a yi-dependent O(4, 20)
transformation :

g1(y1) = eN1y1
, g2(y2) = eN2y2

.

for two commuting Lie algebra generators N1, N2. Then the monodromies are

γ1 = g1(0)−1g1(2πR1) = e2πR1N1 , γ2 = g2(0)−1g2(2πR2) = e2πR2 N2

This compactification has a low energy effective action given by a gauged N = 4 supergra-
vity theory in four dimensions [71, 7]. The scalar potential will have a global minimum with
zero energy, giving a Minkowski space vacuum, if the monodromies are elliptic, i.e. they are
O(4, 20)-conjugate to elements of the compact subgroup O(4)×O(20). Then each monodromy
γi is an element of the discrete group O(Γ4,20) ⊂ O(4, 20) such that there are Ui ∈ O(4, 20)
and Mi ∈ O(4)×O(20) with

γi = UiMiU
−1
i ; Ui ∈ O(4, 20) , Mi ∈ O(4)×O(20) , i = 1, 2.

Each monodromy is of finite order, i.e. there are integers p1, p2 such that

γp1
1 = γp2

2 = 1 ,

and each will have a fixed locus in the Teichmuller space O(4, 20)/O(4) × O(20). We will
denote the coset containing g ∈ O(4, 20) as (g). As a rotation O(4)×O(20) has a fixed point
at the origin (1), the fixed loci of γ1, γ2 will spanned by (U1), (U2) with Ui satifying (III.1.2).

For there to be a global minimum of the potential, the intersection of the two fixed loci
should be non-empty, and we will take U1 = U2 ≡ U inside the intersection. Then there will be
a minimum of the potential be at (U) and each monodromy γi is an O(Γ4,20) transformation
conjugate to a rotation Mi ∈ O(4) × O(20). Conjugating both monodromies by the same
element V of O(Γ4,20) then takes

γi 7→ γ′i = V γiV
−1
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with a point of the fixed locus now at (V U). In this way, one can always arrange for an
element of the fixed locus to be in any given fundamental domain of the Teichmuller space.

Regarding g as a 24× 24 matrix acting in the fundamental representation of O(4, 20), the
left coset O(4, 20)/O(4)×O(20) can be parameterised by the ‘generalised metric’

H(g) = gtg .

The group O(4, 20) acts on this by

H 7→ ktHk, k ∈ O(4, 20) .

Then the stabiliser of a point (g0) ∈ O(4, 20)/O(4) × O(20) is the subgroup H0 ⊂ O(4, 20)
preserving H0 = H(g0) given by

H0 = {g ∈ O(4, 20) : gtH0g = H0} .

At the identity, g0 = 1, H0 = 1 and H0 is the standard O(4)×O(20) subgroup

H(1) = {g ∈ O(4, 20) : gtg = 1}

while for general g0, H0 is a conjugate O(4)×O(20) subgroup

H0 = g−1
0 H(1)g0 = {g ∈ O(4, 20) : g = g−1

0 kg0, k ∈ H(1)} .

We will write this as
H0 = O(4)0 ×O(20)0

where O(4)0 is conjugate to the standard O(4) and O(20)0 is conjugate to the usual O(20) :

O(4)0 = {g ∈ O(4, 20) : g = g−1
0 kg0, k ∈ O(4) ⊂ H(1)},

O(20)0 = {g ∈ O(4, 20) : g = g−1
0 kg0, k ∈ O(20) ⊂ H(1)} .

As a result, any automorphism at (g0) must be in the O(4)×O(20) subgroup H0, and so
the monodromies γ1, γ2 must be in

O(Γ4,20) ∩H0

and we see that (III.1.2) is satisfied with

U−1 = g0

for an O(4)×O(20) matrix M ∈ H(1).
The models that we consider should furthermore preserve eight supercharges in four di-

mensions. Taking the O(4) part of the rotation M to be in

SO(4) ∼ SU(2)L × SU(2)R
Z2

,

the condition for the reduction to preserve 8 of the 16 supersymmetries and so to give N = 2
supersymmetry in four dimensions is that the rotation M is in SU(2)L×O(20) or SU(2)R ×
O(20).
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Then the twisted reduction giving an N = 2 supersymmetric Minkowski vacuum in four
dimensions consists of a duality twist with monodromy γ1 of order p1 on the y1 circle and a
twist of γ2 of order p2 on the y2 circle with

γi = UMiU
−1; U ∈ O(4, 20), Mi ∈ SU(2)×O(20)

At some fixed point in moduli space, the reduction becomes an orbifold by transformations
(γ1, t1), (γ2, t2) where ti is a shift on the i’th circle of order pi

ti : yi → yi + 2π/pi

and the twisted reduction reduces to a freely-acting asymmetric Zp1 × Zp2 orbifold of the
K3× T 2 compactification.

An interesting class of models is that in which one of the monodromies is trivial, γ2 = 1.
Then we have a twisted reduction on one circle with monodromy γ1 and a standard (untwisted)
reduction on the other circle. This is sufficient to break the supersymmetry to N = 2 and
gives a simple class of models that captures many of the features we want to study. We will
focus on the implications of a single twist here ; the second twist would be treated similarly
and doesn’t qualitatively change the physics, but leads to a more general mass spectrum, as
discussed in [7].

For a single twist γ conjugate to a rotation M ∈ SO(4)× SO(20) by (III.1.2), the SO(4)
rotation is characterised by two angles s1, s2 and the SO(20) rotation is characterised by ten
angles r1, . . . r10. For supersymmetry, the SO(4) angles must satisfy s1 = ±s2 [7]. For any
admissible twist, γ satisfying our conditions, V γiV −1 will also be an admissible twist for all
V ∈ O(Γ4,20). Changing from γ to V γiV −1 will move a fixed point in Teichmuller space from
(U) to (V U). As the volume of the K3 is one of the moduli, this change of representative can
change the volume of the K3 ; all such theories related in this way are physically equivalent
as they are related by dualities.

It is a rather non-trivial problem to find 24× 24 integer-valued matrices representing ele-
ments ofO(Γ4,20) that are conjugate to SU(2)×O(20) rotations. In [7], an explicit construction
was given. The starting point was finding a special algebraic K3 surface with a geometric au-
tomorphism σ of order p, and then constructing from this an automorphism σ̂ of the K3
conformal field theory whose action σ̂∗ on the lattice Γ4,20 satisfied all the conditions above,
and so taking γ = σ̂∗ gives the construction of our non-geometric Calabi-Yau space. These
are the mirrored automorphisms and their construction which we now review.

Let us consider p-cyclic K3 surfaces, that is surfaces Xp defined as the zero-locus of a
non-degenerate invertible potential Wp of the form

Wp(x0, x1, x2, x3) = xp0 + f(x1, x2, x3)

in a weighted projective space, with f a quasi-homogeneous polynomial. Such surfaces admit
in particular the automorphism σp : x0 7→ ζpx0 with ζp := e2iπ/p a primitive p-root of unity.
Such an automorphism does not belong to the supersymmetry-preserving transformation
group GW and acts therefore non-trivially on the holomorphic two-form ω(Xp).

As reviewed in appendix A.3, the automorphism σp is therefore non-symplectic. By construc-
tion, the BH mirror of Xp is constructed from the polynomial

W T (x̃0, x̃1, x̃2, x̃3) = x̃p0 + f̃(x̃1, x̃2, x̃3)
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and admits consequently another non-symplectic automorphism or order p defined by σTp :
x̃0 7→ ζpx̃0. In the following, we define S(σp) (S(σTp )) the sub-lattice of the Picard lattice
invariant under the action of σp (σTp ). We will need the following theorem which has been
proven for p = 2 in [72], for p ∈ 3, 5, 7, 13 in [73] and for any other p satisfying φ(p)|12
in [74, 75], with φ the Euler totient function.

Theorem III.1.1. Let XW,G be a S(σp) p-cyclic polarised K3 surface and XWT ,GT its
Berglund-Hübsch mirror polarised by S(σTp ). Then, XW,G and XWT ,GT also form a mirror
pair in the sense of lattice-polarised mirror symmetry.

Let us define SQ(σp) := S(σp) ⊕ U similarly as we defined the quantum Picard lattice
and T (σp) the orthogonal complement of S(σp) in Γ3,19 or, equivalently, the orthogonal com-
plement of SQ(σp) in Γ4,20. We have seen in III.1.1.a) that LP mirror symmetry exchanges
the role of SQ and T ; therefore, the above theorem implies that T (σTp ) is the orthogonal
complement of T (σp) in Γ4,20, that is that

ΓR
4,20 = T (σp)R ⊕ T (σTp )R (III.4)

with, as before, LR := L⊗ R for any lattice L.
However, equation (III.4) does not imply that the lattice Γ4,20 may be identified to the

direct sum T (σp)⊕T (σTp ) as this is not the case in general. As was shown in [7], the diagonal
action of σp and σTp may still be extended to an action over the whole Γ4,20 lattice. We may
therefore define a mirrored automorphism σ̂p as

σ̂p := µ−1 ◦ σTp ◦ µ ◦ σp

with µ the BP/LH mirror involution which maps the K3 surface to its mirror. The auto-
morphism σ̂p is an element of O(Γ4,20) which is not contained in the geometric subgroup
O(Γ3,19) n Γ3,19 and is therefore non-geometrical by construction.

We now give an explicit example of the above construction. Consider the hypersurface X
defined by

w2 + x3 + y8 + z24 = 0 ⊂ P3
[12,8,3,1]. (III.5)

As we have seen in (III.1), the first Chern class of X vanishes implying that X is a K3 surface.
X admits an order 3 non-symplectic automorphism acting as σ3 : x 7→ e2iπ/3x. The invariant
sublattice of Γ4,20 w.r.t. the action of σ3 and its orthogonal complement are given in this case
by

SQ(σ3) = E6 ⊕ U ⊕ U , T (σ3) = E8 ⊕A2 ⊕ U ⊕ U .

where E6 and A2 are the negative-definite lattices associated with the corresponding Dynkin
diagrams. The action of σ3 on the vector space T (σ3) ⊗ R corresponds to an element of the
orthogonal group O(T (σ3)) that can be found explicitly in [7].

The mirror of the K3 surface (III.5), using the Greene-Plesser map [76], is given by an
orbifold of a similar hypersurface

w̃2 + x̃3 + ỹ8 + z̃24 = 0 ⊂ P[12,8,3,1]
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by a discrete symmetry group G ∼= Z2 generated by

g :
{
w̃ 7→ −w̃
ỹ 7→ −ỹ

This mirror surface also admits an order three automorphism σT3 , which acts in a similar
same way to σ3, with σT3 : x̃ 7→ e2iπ/3 x̃. However, the invariant sublattice for σT3 and its
orthogonal complement in Γ4,20 are now

SQ(σT3 ) = E8 ⊕A2 ⊕ U ⊕ U , T (σT3 ) = E6 ⊕ U ⊕ U .

Comparing with the corresponding sublattices (III.1.2) for the original surface (III.5), we see
that the two sublattices have been interchanged. In particular, this means that T (σ3) and
T (σT3 ) are orthogonal complements to each other in Γ4,20 as claimed, allowing one to define
an associated mirrored automorphism.

An important remark is the following : we started our construction by considering non-
symplectic automorphisms of K3 surfaces. In a string theory context, compactification on
an orbifold by such an automorphism breaks all supersymmetry. However, as was discussed
in [77, 7], mirrored automorphisms preserve all space-time supercharges coming from the left-
movers on the worldsheet, while projecting out all that come from the right-movers. This
would not be possible with geometric automorphisms, emphasising the non-geometric nature
of the construction presented here.

The fixed points of mirrored automorphisms, i.e. the K3 CFTs that are invariant under
both the automorphism σp and the automorphism σTp of a mirror pair, can be orbifolded by
the automorphism. Of particular interest are certain models for which there is a duality frame
in which the K3 surface has small volume in string units. These give Landau-Ginzburg (LG)
orbifolds [78] which are special points in the moduli space of non-linear models on algebraic
K3 surfaces at small volume ; when the polynomial defining the surface is of the Fermat type,
as in (III.5), they can be described as Gepner models [79] and are explicitly solvable CFTs.
In this framework, the cyclic group generated by the automorphism σTp of the mirror surface
is an order p subgroup of the ‘quantum symmetry’ of LG orbifolds and the diagonal action
of (σp, σTp ) corresponds to an order p orbifold with a specific discrete torsion, see [77, 7] for
details.

Here, as in [80, 7], we will focus on freely acting orbifolds of the type IIA superstring
compactified on K3×T 2. We supplement the action of the mirrored automorphism σ̂p on the
K3 CFT with an order p translation along a one-cycle of the two-torus.

The orbifold CFT gives in space-time a four-dimensional theory with N = 2 supersym-
metry. Unlike compactifications on CY 3-folds, all space-time supersymmetry comes from the
left-movers, signaling the non-geometric nature of the compactification as we mentioned. An
important consequence is that, from the point of view of the low-energy 4d theory, the dilaton
lies in a vector multiplet and not in a hypermultiplet. Furthermore, a large part, if not all,
of the K3 moduli are lifted, see [80] for a detailed analysis of the massless spectra and for
one-loop partition functions of the models.

To summarise, mirrored automorphisms are non-geometric symmetries of K3 CFTs in the
Landau-Ginzburg regime, and are associated with isometries of the total cohomology lattice
Γ4,20 that have no invariant sublattices. Freely-acting orbifolds constructed from the action of
a mirrored automorphism on a K3 Gepner model together with a translation along the two-
torus give rise to interesting N = 2 non-geometric compactifications of type IIA superstrings,
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providing explicit examples of the general construction outlined in this section. The heterotic
duals of these models will be found in the next section.

We now turn to one of the main goals of this thesis which was to build and understand a
heterotic dual to the models described in this section. Perturbative type IIA vacua preserving
N = 2 supersymmetry in four dimensions can be obtained from compactifications on Calabi-
Yau three-folds (CY3), or from orbifold or Gepner-point limits of these. In these cases the
underlying worldsheet (c, c̄) = (9, 9) conformal field theory (CFT) has an extended (2, 2)
superconformal symmetry and both left- and right-moving R-charges are integer-valued. From
the worldsheet perspective, four of the eight space-time supercharges come from the left-
movers and the other four from the right-movers.

There exists, however, another possibility, in which all eight of the supercharges come
from, say, the left-movers. This happens in a (2, 2) superconformal field theory (SCFT) with
integer-valued R-charges from the left-movers but no integer-valued R-charges from the right-
movers ; examples of this arise in free-fermion constructions or asymmetric toroidal orbifolds
(see e.g. [81]). A large class of non-geometric models with all supercharges arising from left-
movers based on Calabi-Yau compactifications in the Landau-Ginsburg regime were recently
studied in [80, 77, 82], related to older works [78, 83]. These models have a volume modulus
for the target space which is fixed by the construction, so that one cannot continuously take
a large-volume limit, and are intrinsically non-geometric with the number of massless moduli
typically being very small.

In [7], the new class of “compactifications” of type II strings to four dimensions we reviewed
in III.1 was found, based on the work on Landau-Ginzburg models mentioned above, in which
all eight supersymmetries come from the left-moving sector. As we saw, the starting point
is type IIA string theory compactified on K3 with duality symmetry O(Γ4,20), which is the
group of isometries of the charge lattice Γ4,20. This is then followed by a duality-twisted
compactification on T 2 with an O(Γ4,20) monodromy round each circle. The conditions on
the monodromies for this to give a stable four-dimensional Minkowski vacuum preserving
N = 2 supersymmetry were found and an explicit algebraic geometric construction of such
monodromies was given. These give non-geometric backgrounds of type II string theory giving
four-dimensional Minkowski vacua preserving the same amount of supersymmetry as Calabi-
Yau compactifications and, for this reason, such backgrounds were referred to as non-geometric
Calabi-Yau spaces. As the monodromies involve mirror transformations, the non-geometric
internal spaces are mirror-folds [61].

The two monodromies γ1, γ2 ∈ O(Γ4,20) satisfying the conditions for N = 2 Minkowski
vacua are necessarily of finite order, p1, p2, with γp1

1 = γp2
2 = 1 for some integers p1, p2. Each

duality γ satisfying the conditions above has a fixed locus (i.e. locus of fixed points) in the K3
moduli space [7], so that γ is an automorphism of the K3 CFT at any point in moduli space
that is on the fixed locus. Moreover, the K3 surface X admitting the automorphism γ is an
algebraic surface, with a mirror algebraic K3 surface X̃, such that the action of γ on X can be
understood as the composition of four transformations : a diffeomorphism of X followed by
the mirror map to X̃, then a diffeomorphism of X̃ followed by the inverse mirror map back to
X. In the K3 CFT at a Landau-Ginzburg orbifold point, the diffeomorphism of X̃ appears as
a discrete torsion. In [7], such automorphisms were referred to as mirrorred automorphisms ;
it is striking that they involve transformations of both the K3 surface and its mirror.

For the twisted reduction, γ1, γ2 must commute and, if there is to be a Minkowski vacuum,
the intersection of their fixed loci must be non-empty. The orbifold is by transformations
(γ1, t1), (γ2, t2) where the automorphism γi of degree pi is combined with a shift ti on the i’th
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circle of the T 2 by 2π/pi (i = 1, 2). Then at a fixed point the twisted reduction reduces to a
freely-acting asymmetric orbifold of the K3 × T 2 compactification, resulting in the simplest
cases in the asymmetric Gepner models of [80].

Here we will focus on the heterotic duals of these constructions, using the duality between
type IIA string theory compactified on K3 and heterotic string theory compactified on T 4 [84].
Starting from the N = 4 duality in four dimensions between the type IIA string on K3× T 2

and the heterotic string on T 6, one can reach N = 2 dual pairs through (freely-acting)
orbifolds preserving half of the supersymmetry. An important example, the construction of
Ferrara, Harvey, Strominger and Vafa (FHSV) [55], relates the type IIA string compactified
on the Enriques Calabi-Yau three-fold to an asymmetric toroidal orbifold of the heterotic
string. More generally, it is expected that type IIA compactified on a K3-fibred CY3 with a
compatible elliptic fibration is non-perturbatively dual to a heterotic string compactification
onK3×T 2 ; see [34] for a review. Our models extend this to non-geometric dual constructions.

In the six-dimensional heterotic/type IIA duality, the O(Γ4,20) duality symmetry group of
the type IIA string compactified on K3 is identified as the O(Γ4,20) T-duality symmetry group
of the heterotic string, for which Γ4,20 is the Narain lattice. Then the duality-twisted reduction
on T 2 with monodromies γ1, γ2 ∈ O(Γ4,20) has a heterotic realisation as a T-fold [61, 29, 85]
with T-duality monodromies – it is a “compactification” of the heterotic string on a non-
geometric space that has a fibration of T 4 CFTs over a T 2 base, with T-duality transition
functions. Then the heterotic/type IIA duality maps the non-geometric Calabi-Yau mirror-
fold reduction of type IIA to a T-fold reduction of the heterotic string. At a fixed point in
moduli space (a point preserved by both γ1, γ2), the heterotic T-fold reduces to an asymmetric
orbifold of the heterotic string on T 6 by the transformations (γ1, t1), (γ2, t2) consisting of
O(Γ4,20) T-duality transformations on T 4 combined with shifts on T 2. The K3 CFT at the
fixed point in moduli space gives no enhanced gauge symmetry, so the corresponding T 4

heterotic compactification also has no enhanced gauge symmetry – instead it has enhanced
discrete symmetry as in [86].

In a recent article [86], Harvey and Moore made the following point : “It is not, a priori,
obvious that heterotic/type II duality should apply to asymmetric orbifolds of the heterotic
string”. Indeed, while the FHSV model provides an example of such a dual to an asymmetric
heterotic orbifold, no general statement appears to have been made so far. It is usually
assumed that the type IIA side of such a duality should involve a Calabi-Yau three-fold. Here
we show that in many cases an asymmetric orbifold of the heterotic string has a type IIA
dual that is a non-geometric compactification, an orbifold of the type IIA string on K3× T 2

by non-geometric symmetries.
Remarkably, while the IIA construction is a consistent construction for the perturbative

type IIA string, the naive heterotic dual is not perturbatively consistent – it is not modu-
lar invariant. The perturbative heterotic construction can be modified to obtain modular
invariance, but via duality this then introduces non-perturbative modifications to the type
IIA construction. This complies with the adiabatic argument put forward in [49] to relate
non-perturbative dualities with different amounts of supersymmetry. Such non-perturbative
modifications were also seen in the FHSV model. As we shall see, for the asymmetric orbifolds
discussed here, modular invariance of the heterotic models is only obtained if the shifts on
the two-torus are combined with shifts on the T-dual torus, corresponding to introducing
phases dependent on the string winding numbers on the two-torus. Under heterotic/type II
duality, the fundamental heterotic string is mapped to a IIA NS5-brane wrapping K3, so
that new heterotic phases are mapped to phases dependent on NS5 wrapping numbers in the
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IIA string. These NS5-brane contributions give non-perturbative modifications to the non-
geometric Calabi-Yau construction. The corresponding non-perturbative corrections to the
prepotential governing the vector moduli space geometry in the low-energy type IIA effective
action will be analyzed in V.

We will mostly focus here on the case when the second twist γ2 and shift t2 are trivial.
Having one non-trivial twist γ1 is sufficient to break supersymmetry to N = 2 and give an
interesting class of models. This can be thought of as a duality-twisted reduction on a circle to
five dimensions with monodromy γ1 followed by a conventional (untwisted) compactification
on a further circle. This is sufficient for most of our purposes ; the generalisation to two twists
is straightforward and will be discussed briefly.

Once the heterotic dual has been found, non-perturbative aspects of the theory can be
probed. We will study the perturbative heterotic BPS states that are dual to type IIA bound
states of NS5-branes (wrapping a one-cycle of the two-torus and the K3 fibre) and momentum
states on the T 2 by computing the generating function for the helicity supertraces. The map
between BPS states is, in a way, easier to understand than in standard cases of N = 2
heterotic/type II dualities as there are no D-branes bound-states to take into account in the
present context.

The plan of this chapter is as follows. In section III.2 we find the heterotic dual of the non-
geometric Calabi-Yau type IIA models. Section III.3 discusses some of the BPS states that
arise and calculates the corresponding indices. In section III.4 we present the consequences of
perturbative heterotic consistency in the type IIA duality frame. Section III.5 is devoted to a
duality-covariant analysis of our models in four and five dimensions and of the FHSV model,
allowing us to construct further dual forms of these models. Finally conclusions are presented
in section III.6.

III.2 Heterotic Duals of Non-Geometric Type II Compactifications

The remarkable string theory duality between the type IIA superstring theory compacti-
fied on a K3 surface and heterotic string theory compactified on a four-torus [84, 41] is non-
perturbative, in the sense that it maps the strongly-coupled regime of the heterotic string to
the weakly-coupled limit of the type IIA string and vice versa (for a review, see [34]). From
this fundamental duality one can infer numerous other connections between string theories
with lower dimensionality.

The duality-twisted reduction on a further T 2 of the IIA string on K3 reviewed in sections
2 and 3 should then be dual to a duality-twisted reduction on a further T 2 of the heterotic
string on T 4. At a fixed point, the orbifold of the IIA string on K3× T 2 should then be dual
to an orbifold of the heterotic string on T 6. On the IIA side, the orbifold is by the symmetry
(γ, t) where γ is a mirrored automorphism of K3 and t is a shift on T 2. On the heterotic side,
O(Γ4,20) is the heterotic T-duality group, suggesting that the heterotic dual could be the
asymmetric orbifold of the heterotic string on T 6 by (γ, t), where γ is a heterotic T-duality
and t is the same shift on T 2 as before. However, duality and orbifolding do not necessarily
commute in general, so this conjectured dualisation needs further examination.

The general idea behind heterotic/type II duality in four dimensions is to apply fibre-
wise the duality between a K3 fibration over some base B on the type IIA side and a T 4

fibration over B on the heterotic side [87]. Our construction has a base B = T 2 and does not
constrain the size of the T 2 part of the (type IIA) internal space, so that one could go to
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the decompactification limit of the T 2 base ; moreover, the action of the automorphism (γ, t)
is free, so that the quotient does not develop singularities. Under these two conditions the
adiabatic argument of [49] holds and, at least in the limit of a large T 2 base which allows to
perform the dualtiy ’locally’ on the fibre, the heterotic dual should be the asymmetric orbifold
of the heterotic string on T 6 by (γ, t).

We shall show that this correspondence must be refined for small T 2, with heterotic string
winding mode contributions modifying the orbifold (this type of contribution to heterotic/type
II dual pairs was anticipated already in [49]). Specifically, the automorphism (γ, t) must be
supplemented by an order p shift in the T-dual circle conjugate to winding number, so that
the full orbifold is by (γ, t) where now t is a shift on both the original T 2 and the T-dual T 2.
This modification of the heterotic orbifold in turn implies a non-perturbative modification of
the type IIA orbifold.

Our construction has some similarities with the model of Ferrara, Harvey, Strominger
and Vafa (FHSV) [55] which relates type IIA compactified on the Enriques Calabi-Yau 3-
fold, which is a freely-acting orbifold of K3 × T 2, to heterotic strings compactified on a
freely-acting, asymmetric orbifold of T 6. In the FHSV construction, the automorphism acts
freely on the K3 surface and has fixed points on the base. In our case it is the opposite :
the automorphism acts freely on the two-torus and has fixed points on the K3 surface. The
comparison between these two classes of models will be further developed in sections III.4
and III.5.

III.2.1 Type IIA - Heterotic Duality in Six Dimensions

The type IIA string compactified on aK3 surface gives (1, 1) supergravity in six dimensions
at low energies. The moduli space is given by

M6d ∼= O(Γ4,20)\O(4, 20)/
(
O(4)×O(20)

)
× R

where the first factor is the moduli space (II.9) of non-linear sigma-models on K3 and the
second is the dilaton zero-mode. BPS states arise from branes wrapping cycles of the K3, and
include a BPS solitonic string obtained by wrapping an NS5-brane around the K3 surface.

In the duality between the Type IIA string compactified on K3 and heterotic strings
compactified on T 4, the six-dimensional dilatons and metrics are related by φhet = −φiia and
ghet = exp(2φhet) giia. The heterotic moduli space is again (III.2.1), but now with the first
factor being interpreted as the moduli space of Narain lattices of signature (4, 20) [88, 89].
Geometrically, it describes the moduli space of flat metrics and constant B-fields on T 4 and
of U(1)16 Wilson lines on T 4. While the O(4) factor rotates the left-moving bosons of the free
CFT with T 4 target space, the O(20) factor mixes together the right-moving bosons of the
T 4 CFT with the 16 bosons describing the gauge sector. The duality group O(Γ4,20) is the
heterotic T-duality group of the heterotic string on T 4. The second term in (III.2.1) is now
the heterotic dilaton zero-mode.

The heterotic theory has a BPS solitonic string arising from an NS5-brane wrapping the
T 4 ; under the duality, it is mapped to the type IIA fundamental string, while the type IIA
NS5-brane wrapped on K3 maps to the heterotic fundamental string [44]. Such a correspon-
dance will be useful in the analysis of BPS states in section III.3.
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III.2.2 Construction of the Heterotic Dual
The starting point of our construction is a point in the moduli space (II.9) that is invariant

under a Zp automorphism generated by an element γ ∈ O(Γ4,20). Viewing this as a type IIA
construction, this is the type IIA string compactified on K3× T 2, where the K3 is chosen to
be at a Gepner point in the K3 moduli space so that the corresponding CFT is given by a
Gepner model described in [7] (e.g. the K3 at the Gepner point is (III.5) in the example given
in section III.1.2). The automorphism γ acts on the K3 as a mirrored automorphism σ̂.

In the dual heterotic interpretation, the moduli space (II.9) is viewed as the moduli space
of Narain lattices of signature (4, 20), acted on by the heterotic T-duality group O(Γ4,20).
The special point in moduli space corresponds to a Narain lattice with enhanced discrete
symmetry but without enhanced non-Abelian gauge symmetry. 1

Then γ is an element of the discrete group O(Γ4,20) that is O(4, 20)-conjugate to an
element M of the compact subgroup O(4) × (20), i.e. there is a U ∈ O(4, 20) and M ∈
O(4)× (20) so that (III.1.2) holds. The transformation M in O(4)× (20) is specified by two
angles characterising a rotation in O(4) and 10 angles characterising a rotation in O(20). As
it satisfies Mp = 1, the angles in O(4) are 2πs1/p, 2πs2/p for integers s1, s2 and the angles in
O(20) are 2πr1/p, . . . 2πr10/p for integers r1, . . . , r10. An important result from [7] is that for
a mirrored automorphism none of the angles is zero, so that no directions are left invariant
by the rotation.

Recall from section III.1.2 that at a point in the moduli space (II.9) given by the coset
representative (g0), the stabilizer is

H0 = O(4)0 ×O(20)0 ,

where O(4)0 and O(20)0 are the subgroups of O(4, 20) defined in eqns. (III.3,III.3). An im-
portant point is that, in the heterotic string realisation, at the point (g0) in the moduli
space O(4)0 acts only on the left-movers of the heterotic string and O(20)20 acts only on the
right-movers. In particular, the vector Π at (g0) encoding the heterotic momenta and winding
numbers and taking values in the lattice Γ4,20 decomposes into a 4-component momentum ΠL

with contributions only from left-moving degrees of freedom and transforming under O(4)0
but not O(20)0 together with a 20-component momentum ΠR with contributions only from
right-moving degrees of freedom and transforming under O(20)0 but not O(4)0. Taking (g0)
to be the special point in moduli space, the twist γ is in O(4)0 ×O(20)0.

If γ corresponds in the dual type IIA picture to a mirrored automorphism σ̂p, a lemma
from [7] shows that the matrix M representing it can be diagonalised over the complex
numbers to give

M =



ζpIq 0 · · · · · · 0

0 . . . ...
... ζkp Iq

...
... . . . 0
0 · · · · · · 0 ζp−1

p Iq


, (III.6)

where ζp is a primitive p’th root of unity and k takes all values from 1 to p − 1 satisfying
gcd(k, p) = 1 ; put differently, γ has an eigenspace of dimension q for each primitive p’th

1. For instance, the heterotic lattice associated with the dual type IIA Gepner model for the K3 sur-
face (III.5) has a discrete symmetry [(Z2 × Z3 × Z8 × Z24)/Z24]× Z24.
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root of unity. The dimension q is therefore equal to 24/ϕ(p), where ϕ(p) is the Euler totient
function (that is the number of integers k with k ≤ p satisfying gcd(k, p) = 1). For prime
orders p ∈ {2, 3, 5, 7, 13}, the eigenspaces of γ are then all 24/(p− 1)-dimensional.

The type IIA construction is an orbifold of the IIA string on T 2×K3 by the Zp symmetry
generated by (γ, t) where γ is a mirrored automorphism and t is a shift of order p on one of
the circles. On the heterotic side, we have a Zp orbifold by the twist γ acting as a T-duality
automorphism of the Narain lattice together with a shift t. In the large volume limit of the T 2

base, the shift should agree with that on the type II side, but as discussed above, we will need
to consider more general shifts here. As explained e.g. in [63], any component of a shift vector
along directions in which the twist acts non-trivially may be absorbed by a redefinition of
the origin of the coordinates, so that without loss of generality one may consider a shift only
along the directions in which γ acts trivially. In other words, decomposing the full Narain
lattice of winding and momenta as

Γ6,22 ∼= Γ4,20 ⊕ Γ2,2,

we quotient by an order p twist γ in O(Γ4,20), so acting non-trivially on the Γ4,20 lattice only,
together with a shift t defined by a lattice vector δ such that p δ ∈ Γ2,2 but δ /∈ Γ2,2.

It is easy to check that N = 2 supersymmetry is preserved by the heterotic orbifold in
this picture. Indeed, the action of γ on the world-sheet fermions is deduced from its action
on the left-moving bosons, as usual, by requiring world-sheet supersymmetry to be preserved.
The group SO(4)0 acts on the left-handed Ramond ground states as a spinor, transforming
as a (2, 1) + (1, 2) under Spin(4) ∼ SU(2) × SU(2). If s1 = ±s2, the twist is in just one of
the two SU(2) subgroups and so half the spinor degrees of freedom remain massless.

III.2.3 Geometric and Non-geometric Twists
The twist γ is in the intersection of the O(Γ4,20) and O(4)0×O(20)0 subgroups of O(4, 20).

If the O(20)0 part of the twist is in fact in an O(4)0×O(16)0 subgroup, then the twist can be
regarded as an O(4)0×O(4)0 ⊂ O(4, 4) transformation acting on the T 4 CFT and an O(16)0
transformation acting on the gauge degrees of freedom. If moreover it is in the diagonal
subgroup O(4)diag ⊂ O(4)0 × O(4)0, then it is a geometric transformation (rotation) on the
T 4 and the orbifold is a conventional (not asymmetric) orbifold of T 4 combined with an
(unconventional) orbifold action on the gauge sector. This of course requires choosing an
O(4) subgroup of O(20), and acting with O(Γ4,20) can change such a ‘geometric’ orbifold to
a non-geometric one. However, the twist in O(16)0 may not be related to the orbifold limit of
an ordinary vector bundle. This will be discussed further in section III.5.

Bearing this in mind, we now address the question of whether a given theory is dual to a
geometric orbifold via an O(Γ4,20) transformation. The answer turns out to depend strongly
on the order of the orbifold. For simplicity we discuss only the cases with p prime below.

In the p = 2 case, Γ4,20 is quotiented by the involution which flips all directions of the
lattice ; therefore, as the twist γ may be represented here by −1, it does not mix space-time
and gauge degrees of freedom, so that its restriction to the four-torus admits a standard
geometric interpretation (as the same involution that gives a T 4/Z2 orbifold). Moreover, γ
therefore remains the same under O(Γ4,20) conjugation so that the resulting theory always
has a geometric interpretation. 2

2. According to [49], this action on the Γ4,20 lattice is the same as the action of (−1)FL on type IIA
compactified on K3.
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In the p = 3 case, looking for a representative of the conjugacy class of a twist which
belongs to O(4)diag×O(16)0 is not straightforward in general. However, it is possible to show
that the explicit example of an order 3 twist given in [7] may be understood as having a
geometric action (this may be seen using for instance the parametrisation of O(Γ4,20) of [63]).
Therefore, there exist models in the p = 3 case which are equivalent to geometric theories
from the heterotic point of view.

The p = 5 case is more tricky, as no explicit matrix representation of σ̂5 is known by
the authors. It is known that there are no supersymmetric T 4 orbifolds of order five, see
e.g. [90]. A simple argument given in [91] rules out the possibility of a left-right symmetric
action of the orbifold on the T 4. Let us assume first that there is an order 5 twist γ with
a geometric action, that is such that γ ∈ O(4)diag × O(16)0 ; then, looking at the action
on T 4, N = 2 supersymmetry imposes the trace of its matrix representation to be equal to
8cos

(
±2π

5

)
= 2(

√
5 − 1) through the |s1| = |s2| condition derived in section III.1.2. This is

incompatible with the requirement that the twist belongs to the duality group of the lattice, as
this forces in particular the trace of its matrix representation to be integer-valued. Therefore,
although there exist rank-4 Euclidean lattices admitting an order five symmetry, it is not
possible to find a twist whose action would admit a geometric interpretation in the p = 5
case.

In the p = 7 and p = 13 cases, the orbifold must be asymmetric by construction. Indeed,
such a construction could only be obtained if the twist were acting as an automorphism in
O(4)diag (together with an action on the gauge degrees of freedom). A result from lattice
theory states that there exist euclidean lattices Λ admitting an order N symmetry if and only
if rank Λ ≥ ϕ(N), ϕ being Euler’s totient function as before [23]. It is then immediate that
no rank-4 lattice may admit an order-p symmetry when p = 7 or 13. The asymmetry of the
construction between left- and right-movers on the T 4 is even more striking in the p = 13
case in which there are exactly two angles of absolute value 2πk/13 for each k between 1 and
6 ; therefore, the N = 2 supersymmetry condition s1 = ±s2 ensures us that there may be no
angle rI equal to any of the si’s, making the asymmetric nature of the model obvious in this
case. Once again, we can therefore conclude that this construction does not admit a standard
geometric interpretation in the heterotic framework either.

III.2.4 Modular Invariance and Restrictions on the Shift Vector

We now turn to the choice of shift vector in the heterotic orbifold. The twist γ is to be
accompanied by a translation by a shift vector δ with pδ ∈ Γ2,2. The choice of group action
Zp ⊂ U(1)2 ∼= T 2 on the type IIA side of the duality fixes the momentum associated with this
shift vector , i.e. the generator of translations along the corresponding one-cycle, but not its
action on states with winding number.

It has long been known that in order to preserve modular invariance in orbifold models,
there must be a relation between twists and shift vectors [25, 26]. For later convenience, we
define the charge vector ∆ ∈ Γ2,2\ (pΓ2,2) so that the shift vector δ satisfies ∆ = p δ. As
discussed in section III.1.2, preserving N = 2 space-time supersymmetry imposes s1 = ±s2.
Using this, it is possible to show that the necessary and sufficient condition for modular



68 Chapitre III. Non-geometric constructions and duality

invariance of our theory is given by 3 [25, 26]

∆2 +
10∑
I=1

r2
I = 0 mod fp where f =

{
1 if p is odd
2 if p is even (III.7a)

Furthermore, the spectrum of γ is completely fixed ; indeed, equation (III.6) shows that, of
the 12 angles, there are exactly 12

ϕ(p) angles equal to k
p mod 1 for each value of k between 1 and

p− 1 such that gcd(k, p) = 1. Then, as shown in appendix C, the quantity
∑10
I=1 r

2
I +

∑2
i=1 s

2
i

may be explicitly computed for any p, so that equation (III.7a) may be simplified to become

∆2 = 2Ψp mod fp (III.8)

where
Ψp := s2 −

∏
q|p

q prime

(−q)

with the product running over the distinct prime divisors q of p. We parametrise the shift
vector as δ = (αi, βi) so that ∆ = p(αi, βi) is a lattice vector and the shift is generated
by αiki + βiw

i where ki and wi are respectively the momentum and winding charges ; the
constraint (III.8) then becomes the condition

p2αiβi = Ψp mod p , (III.9)

which prevents β from vanishing, as Ψp may never be vanishing modulo p (since any q in the
above product is a divisor of p and as such is not invertible over Zp, unlike s2 ∈ Z×p ). This
translates into a non-perturbative modification of the orbifold from the type IIA perspective
that will be discussed in section III.4. As a side remark, we may note that whenever p is
square-free, the condition (III.8) simplifies to

∆2 = 2s2 mod fp ; (III.10)

in particular, equation (III.10) holds for p prime. One can further simplify this condition by
choosing s = 1, i.e. that the rotation in O(4)0 corresponds to the angles 2π/p and ±2π/p
(any other choice is related to this one by relabelling the orbifold sectors), so that

∆2 = 2 mod fp .

Let us now derive the partition function of the theory in order to check explicitly the
relations (III.7). As usual with conformal field theories defined on orbifolds, the partition
function of the model may be expressed as a sum

Z(τ, τ̄) = 1
p

p−1∑
k,l=0

Z

[
k

l

]
(τ, τ̄)

3. To be precise, there are two additional constraints in the case of even p, namely that s1 + s2 = 0 mod 2
and (v, γp/2v) = 0 mod 2 for all v ∈ Γ6,22 ; however, the first condition must be fulfilled as a consequence of
the N = 2 supersymmetry preserved by the orbifold. Moreover, as γp/2 acts as minus the identity operator
on Γ4,20 and trivially on Γ2,2 for any even p, the second condition is taken care of by the fact that Γ6,22 is an
even lattice.
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over all allowed boundary conditions (that is, twisted or untwisted), with the contribution
from the (k, l) sector defined as

Z

[
k

l

]
(τ, τ̄) := TrHk

(
glqL0− c

24 q̄L̄0− c̄
24
)
,

where g is the element of the point group whose action combines a twist by γ and a shift by
t and where TrHk stands for the trace over states in the sector twisted by gk. The various
blocks of the partition function are then computed in the usual way to give 4

Z

[
0
0

]
= 1

2τ2

ΘΓ4,20(τ, τ̄)×ΘΓ2,2(τ, τ̄)
η12(τ)η̄24(τ̄)

1∑
α,β=0

(−1)α+β+αβϑ4
[
α

β

]
(τ |0)

Z

[
k

l

]
=
κ
[k
l

]
2τ2

exp
{ iπkl
p2

(
2Ψp −∆2

)} Γ
[k
l

]
(τ)

|η(τ)|12 F̄
[k
l

]
(τ̄)

×
1∑

α,β=0
(−1)α+β+αβϑ2

[
α

β

]
(τ |0)

2∏
i=1

ϑ
[α+2ksi/p
β+2lsi/p

]
(τ |0)× ϑ̄

[1+2ksi/p
1+2lsi/p

]
(τ |0)

ϑ
[1+2ksi/p

1+2lsi/p
]
(τ |0)

, (III.11a)

where the second equation is only valid for (k, l) 6= (0, 0). In the above equations, we have
defined ΘΛ as the sum over charges lying in the lattice Λ, the sum over the lattice Γ

[k
l

]
as

Γ
[
k

l

]
(τ) :=

∑
Q∈Γ2,2+kδ

qQ
2
L/2q̄Q

2
R/2e2iπ〈Q,δ〉,

the function F
[k
l

]
as

F

[
k

l

]
(τ) := 1

η12(τ)

10∏
I=1

ϑ

[
1 + 2krI/p
1 + 2lrI/p

]
(τ |0)

2∏
i=1

ϑ

[
1 + 2ksi/p
1 + 2lsi/p

]
(τ |0)

and the “degeneracy factor” κ
[k
l

]
as

κ

[
k

l

]
:=
∏
d|p

(
d

gcd(k, l, d)

) 12
ϕ(p) gcd(k,l,d)µ( pd)

.

One may notice that the phase factor in the partition function block (III.11a) may be set to
one by choosing an appropriate representative of the shift vector δ ∈ 1

pΓ2,2/Γ2,2, as shown in
appendix C. As discussed in the introduction, the Narain lattice Γ4,20 appearing in the (0, 0)
sector lies at a point in moduli space corresponding, on the type IIA side, to a Gepner model
admitting a mirrored automorphism of order p.

Anticipating the following section, we emphasise here that no sum over the charge lattice
Γ4,20 appears (except for the term with (k, l) = (0, 0)), which is due to the fact that the twist γ
acts non trivially on the whole lattice ; hence any state with non-vanishing momentum in Γ4,20
is projected out in the orbifolding procedure (see e.g. [25] for an extensive discussion). On the

4. Conventions and properties of the Jacobi ϑ-functions are collected in appendix C.
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type IIA side of the duality, it means that there is no lattice of BPS D-brane charges, which
is easy to understand as that theory has no massless Ramond-Ramond ground states [80].
There is no non-abelian gauge group enhancement coming from Γ4,20 on the heterotic theory
as we are at a point in the moduli space corresponding to a non-singular K3 CFT.

The full partition function of the heterotic orbifold CFT, given by the sum (III.2.4) over
all sectors, is therefore modular invariant provided that

Z

[
k + p

l

]
= Z

[
k

l + p

]
= Z

[
k

l

]
, ∀ k, l .

This is precisely what is ensured by the equations (III.7) which are therefore interpreted, in
the heterotic picture, as necessary constraints on the shift vector to obtain a (perturbatively)
well-defined string vacuum. In short, a non-vanishing winding shift is imposed by the modular
invariance constraints.

III.3 BPS States
BPS states have dual interpretations in the two dual theories, the type IIA theory on

K3 × T 2 and the heterotic string on T 4 × T 2 [84] (see e.g. Table 1 of [48]). In particular,
winding and momenta along one-cycles of the four-torus in the heterotic theory correspond to
D-branes wrapping cycles of K3 in the type IIA description of the theory, while momentum
and winding states on T 2 in the heterotic picture are respectively understood as momentum
states on T 2 and as NS5 branes wrapping K3×S1 ⊂ K3×T 2 from the type IIA perspective.
On the type IIA side, after the quotient by the mirrored K3 automorphism, no D-brane
states remain ; this is due to the fact that space-time supersymmetry is entirely carried by
left-movers so that there are no massless Ramond-Ramond p-forms hence no BPS Dp-branes.
In the heterotic dual, this corresponds to the fact that fundamental strings with momentum
and/or winding on the 4-torus are projected out, as the automorphism used in the quotient
leaves no cycle of T 4 invariant. Fundamental heterotic strings with winding around a one-
cycle of the T 2 are dual to the type IIA NS5-brane wrapping the same one-cycle of the base
together with the K3 fibre ; on taking the quotient, this descends to what can be thought of
as an NS5-brane wrapping a ‘cycle’ of the non-geometric Calabi-Yau background. 5

In this section, we shall study the BPS states that arise in the perturbative spectrum of the
heterotic string orbifold. The type IIA duals of these states will in general be non-perturbative
states carrying NS5-brane charge.

III.3.1 Helicity Supertraces
In practice, a powerful tool in studying BPS states is the computation of helicity su-

pertraces, that are protected quantities which do not change when the string coupling is
increased ; however, in four-dimensional theories with N = 2 supersymmetry, they can jump
across walls of marginal stability in the moduli space. It can be shown (see e.g. [19] for a
review of helicity supertraces properties and references therein) that in N = 2 theories the
only non-vanishing helicity supertrace is

Ω2(R) := TrR
[
(−1)2J3J2

3

]
,

5. For a discussion of branes in non-geometric backgrounds, see e.g. [92] and references therein.
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for any representation R of the N = 2 algebra, with J3 the space-time helicity operator. Ω2
vanishes for any (long) massive representation of N = 2 supersymmetry while it is unchanged
under recombinations of two BPS multiplets into a long multiplet or vice versa, making it a
well-defined quantity on the moduli space.

In the heterotic frame, it will receive contributions from the perturbative Dabholkar-
Harvey (DH) half-supersymmetric BPS states [93] that are heterotic fundamental strings in
their left-moving superconformal ground state characterized by their winding and momentum
charges on the torus. It is possible to extract Ω2 from the partition function by introducing
a chemical potential for the helicity ; more precisely, defining

Z(τ, τ̄ |v, v̄) := TrH
[
(−1)2J3e2iπvJ(L)

3 +2iπv̄J(R)
3 qL0 q̄L̄0

]
,

with TrH the trace over the whole Hilbert space of the theory and with J (L)
3 and J (R)

3 the left
and right moving components of the helicity respectively, Ω2 is generated by the function B2
defined as

B2(τ, τ̄) :=
( 1

2iπ
∂

∂v
+ 1

2iπ
∂

∂v̄

)2
Z(τ, τ̄ |v, v̄)

∣∣∣∣∣
v=v̄=0

=
∑
Q∈Λ

Ω2(Q)qL0 q̄L̄0 . (III.12)

where Λ stands for the lattice of electric charges of the orbifolded theory, given here by

Λ =
p−1⊕
k=0

(Γ2,2 + kδ) .

Using the results from section III.2 and identities from appendix C, one may then show
that the modified partition function reads

Z(τ, τ̄ |v, v̄) = 1
p

p−1∑
k,l=0

Z

[
k

l

]
(τ, τ̄ |v, v̄),

where the orbifold blocks are now

Z

[
0
0

]
(τ, τ̄ |v, v̄) = 1

τ2

ΘΓ4,20(τ, τ̄)×ΘΓ2,2(τ, τ̄)
η12(τ)η̄24(τ̄) ξ(τ |v)ξ̄(τ̄ |v̄)ϑ4

1

(
τ |v2

)

Z

[
k

l

]
(τ, τ̄ |v, v̄) =

κ
[k
l

]
τ2

exp
[
iπkl

p2

(
2Ψp −∆2

)] Γ
[k
l

]
(τ)

|η(τ)|12 F̄
[k
l

]
(τ̄)

× ξ(τ |v)ξ̄(τ̄ |v̄)ϑ2
1

(
τ |v2

) 2∏
i=1

ϑ
[1+2ksi/p

1+2lsi/p
] (
τ |v2

)
× ϑ̄

[1+2ksi/p
1+2lsi/p

]
(τ |0)

ϑ
[1+2ksi/p

1+2lsi/p
]
(τ |0)

.

Here, ξ(τ |v) is the usual space-time transverse bosons helicity generating function defined as

ξ(τ |v) :=
∞∏
n=1

(1− qn)2

(1− qne2iπv)(1− qne−2iπv) .
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Differentiating Z(v, v̄) with respect to v and v̄ gives the index B2 :

B2 = − 1
2pτ2

∑′

k,l

exp
[
iπkl

p2

(
2Ψp −∆2

)] κ
[k
l

]
Γ
[k
l

]
(τ)

η̄6(τ̄)F̄
[k
l

]
(τ̄)

2∏
i=1

ϑ̄

[
1 + 2ksi/p
1 + 2lsi/p

]
(τ |0) (III.14)

where the primed sum
∑′
k,l stands for the sum running over all values of (k, l) in Zp×Zp except

(0, 0). Note that the term with (k, l) = (0, 0), i.e. the untwisted sector contribution with no
quotienting group element insertion, does not contribute to the index. This illustrates once
more the absence, in the orbifolded theory, of states with charges lying in the Γ4,20 lattice.

As the automorphism generating the Zp group we are quotienting by has a non-trivial
action on the charge lattice, one cannot factorise the BPS index as the product of a sum
over the charge lattice by a function with well-defined modular properties ; however, it is still
possible to split it into smaller blocks which factorise in a similar way by expressing the charge
lattice as

Λ =
p−1⊕
k,a=0

Λ(k,a),

where we define Λ(k,a) as

Λ(k,a) :=
{
v + kδ ∈ Γ2,2 + kδ

∣∣∣∣〈v, δ〉 = a

p
mod 1

}
.

Each Γ
[k
l

]
may then be expressed in terms of the theta functions associated with the lattices

Λ(k,a), for a between 0 and p− 1. This allows one to extract from the BPS index (III.14) the
indices for each sublattice Λ(k,a) of the charge lattice, as all charges in a given Λ(k,a) transform
in the same way under the whole automorphism gp. Defining as before Θ(k,a) as

Θ(k,a) :=
∑

Q∈Λ(k,a)

qQ
2
L/2q̄Q

2
R/2,

the whole B2 index may be expressed as B2 =
∑p−1
k,a=0B

(k,a)
2 Θ(k,a) with

B
(k,a)
2 := − 1

2pτ2

p−1∑
l=0

exp
[
iπkl

p2

(
2Ψp + ∆2

)
+ 2iπal

p

]

×
κ
[k
l

]
η̄6(τ̄)F̄

[k
l

]
(τ̄)

2∏
i=1

ϑ̄

[
1 + 2ksi/p
1 + 2lsi/p

]
(τ̄ |0) (III.15)

There is a subtlety to take into account here ; the definition (III.12) of B2 implies that
two different charges Q and P will contribute to the same index Ω2 if they satisfy Q2

i = P 2
i

for i = L,R (QL and QR standing for the left and right components of the charge vector
Q respectively, as before). In particular, this means that opposite charge vectors Q and −Q
always contribute to the same index Ω2(Q) ; from a more physical point of view, this is a
reflection of the CPT invariance of the theory which imposes that any representation of the
N = 2 supersymmetry algebra must be accompanied by its CPT conjugate, which has charge
−Q, to form a CPT-invariant multiplet. This means that the index Ω2(Q) must be computed
by taking into account not only the contributions from B

(k,a)
2 but also from the possible

non-trivial degeneracies of states in the sum over the charge lattice.
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III.3.2 Some Explicit Results
A straightforward check of the validity of the above indices may be obtained by evaluating

the constant term in B
(0,0)
2 ; indeed, this will give the index of the N = 2 supersymmetry

multiplets whose charge Q has vanishing norm. At a generic point in moduli space, these
are the only massless multiplets of the theory so that this gives some insight about the
dimension of the Coulomb and Higgs branches. More precisely, one may show (see e.g. [19])
that the supergravity and vector multiplets each contribute +1 to B2 while hypermultiplets
each contribute −1. The classical vector moduli space was shown to be that of the STU model
in [7].

With three vector multiplets and one supergravity multiplet, one expects the constant
term to be 4− nH , with nH the number of hypermultiplets remaining in the orbifold theory.
An explicit expansion of B(0,0)

2 in power series yields results that match the analysis of the
moduli space that will be given in V : one finds for instance respectively 20, 10, 4, 2 and 0
massless hypermultiplets in the p = 2, 3, 5, 7 and 13 theories. 6

For each specific value of Q, it is also possible to extract the index Ω2(Q) from the
formulæ given above. Let us consider for simplicity the five-dimensional theory one would get
from an orbifold of T 4×S1, a decompactification limit of the case we have studied so far. The
charges may then be parametrised as Q = (n,w), n and w being the momentum and winding
numbers of the string respectively. Finding Ω2(Q) may easily be done by identifying in which
sublattice Λ(k,a) Q lies and using the level-matching condition

Q2

2 = N + αk, (III.16)

where N is the level of the BPS state and αk arises from the difference i ground state energy
between left- and right-movers. Setting |si| = 1 mod p for i = 1, 2 (which amounts to choosing
a generator of the cyclic group γ ∈ Zp), αk may be explicitly computed and is

αk = k2

p2 −
k

p
−
(gcd(k, p)

p

)2 ∏
q|p

q prime

(−q) +
{ 1

2 −
k
p if 0 ≤ k ≤ p

2
k
p −

1
2 if p

2 ≤ k ≤ p− 1

for 1 ≤ k ≤ p− 1 and, of course, α0 = −1 as usual.
Let us take a simple example, say Q = (1, 5) in the above notation, and consider also a

model with p = 3 ; then, setting once again δ = (1/3, 1/3), one has 〈Q, δ〉 = 0 mod 1 which
indicates that Q ∈ Λ(0,0) with the above notations. Now, as Q2

2 = 5, Ω2(Q) is simply given by
the coefficient of the q̄5 term in the power expansion of B(0,0)

2 ; computing the first terms in
this expansion gives in this specific case Ω2 [Q = (1, 5)] = 176. One should remember here that
Ω2 does not represent a degeneracy, per se, as contributions from integer and half-integers
spin multiplets are counted respectively positively and negatively 7. This explains for instance
that for other values of Q, one may find negative values of Ω2 (e.g. Ω2 [Q = (2, 2)] = −90).

One may also consider BPS states lying in twisted sectors, which have non-integer charges
in general ; explicit computations show that |Ω2| seems to grow faster with the level N in the

6. The numbers of hypermultiplets 20, 10, 4, 2 and 0 are the quaternionic dimensions of the corresponding
hypermultiplet moduli spaces.

7. Here, the “spin of a multiplet” is understood to be the spin of the middle state of the multiplet. This
make sense as we are only considering here short multiplets, since any long multiplet has vanishing contribution
to B2 as explained earlier.
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twisted sectors than in the untwisted one (e.g. Ω2
[
Q =

(
1
3 ,

10
3

)]
= −236196, while the two

untwisted-sector examples considered above had higher values of N but lower values of Ω2.).
In [48], it was noted that Ω2 is generically exponentially smaller in untwisted sectors than in
twisted ones in N = 2 orbifold models ; explicit expansions of the various B(k,a)

2 in powers of
q̄ seem to confirm this statement.

The asymptotic behaviour of Ω2(Q) is also accessible for high values of Q2 following the
procedure described in [48] which we will briefly review here. As illustrated above with a few
examples, the power expansion of the B(k,a)

2 ’s gives us access to the Ω2 indices ; more precisely,
writing B(k,a)

2 as
B

(k,a)
2 (q̄) :=

∑
N

a
(k,a)
N q̄N−αk ,

it is clear from (III.15) and from the level-matching condition (III.16) that Ω2(Q) = ε(k, a)a(k,a)
Q2/2

for Q ∈ Λ(k,a), where ε(k, a) is a factor taking into account the fact that both Q ∈ Λ(k,a) and
−Q ∈ Λ(−k,−a) contribute to Ω2(Q) (explicitely, ε(k, a) = 1 if Λ(−k,−a) = Λ(k,a) and 2 else).
Performing an inverse Laplace transform, it is possible to compute a(k,a)

N to find

a
(k,a)
N =

∫ ε+iπ

ε−iπ

dt
2iπ e

NtB
(k,a)
2

(
e−t
)
. (III.17)

When N reaches high values, the imaginary exponential in (III.17) becomes rapidly oscillating
so that the integral is dominated by the behaviour of the integrand around t ∼ ε. In this
regime, the ε → 0 limit of this integral is dominated by a function of e−t ∼ 1 so that the
power expansion of B(k,a)

2 is not useful here ; however, one may use the modular properties of
B

(k,a)
2 to replace it by a function of e−4π2/t which is a small parameter when t goes to 0. The

above integral becomes

a
(k,a)
N =

∫ ε+iπ

ε−iπ

dt
2iπ e

Nt
(
S ·B(k,a)

2

)(
e−

4π2
t

)
,

so that expanding S ·B(k,a)
2 instead in powers of q̄ lead to an approximation of the asymptotic

behaviour of Ω2(Q) for large values of Q2

2 . Here, S is the usual generator of SL(2,Z) acting
on the world-sheet parameter τ as τ 7→ −1/τ .

We consider below the models with p a prime number. Explicit computations to leading
order show that the asymptotic behaviour of Ω2 in the untwisted sector is given, up to a
multiplicative constant, by

Ωuntw
2 (Q) ∼

Q2�1



−
√

Q2

2 J1

(
4π
3

√
Q2

2

)
p = 3

−
√

Q2

2 I1

(
4π
5

√
Q2

2

)
p = 5

−
√

Q2

2 I1

(
4π
√

5
7

√
Q2

2

)
p = 7

−
√

Q2

2 I1

(
4π
√

29
13

√
Q2

2

)
p = 13

(III.18)

Here, J1 (I1) is the (modified) Bessel function of first kind. In the twisted sectors, the asympto-
tic behaviour of the BPS index is surprisingly identical for any order prime p of the quotienting
group ; it is then given in all these cases by
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Ωtw
2 (Q) ∼

Q2�1
−

√
Q2

2 I1

4π

√
Q2

2

 . (III.19)

Replacing the Bessel functions by their asymptotic expansions in equations (III.18) and (III.19)
then confirms the exponentially small growth of |Ω2(Q)| in the untwisted sector compared to
that of |Ω2(Q)| in the twisted ones discussed in [48].

III.4 The Non-Perturbative Type IIA Construction and Duality

In section III.2 modular-invariance constraints on the heterotic duals of the type IIA
non-geometric Calabi-Yau backgrounds were analyzed. It was found that perturbative consis-
tency of the heterotic constructions leads to the constraint (III.9) on the shift vector for the
two-torus and this implies the shift vector should have non-vanishing winding charge. In this
section we will examine the consequences of this condition on the type IIA side of the dua-
lity, where it leads to a non-perturbative modification of the K3 × T 2 orbifold. For clarity
of the presentation, we will restrict ourselves here to the case in which the order p of the
automorphism is a prime number.

III.4.1 Interpretation of the Shift Vector

For both the type IIA and heterotic constructions, we have an orbifold by a twist γ ∈
O(Γ4,20) and a shift t on the two-torus by a vector δ = (αi, βi) with p δ ∈ Γ2,2. The momentum
vector ki (i = 1, 2) on the 2-torus combines with the string winding charges wi to form a
generalised momentum vector ΠI = (ki, wi) ∈ Γ2,2. The shift acts on a momentum state
|Π〉 = |k,w〉 with ki, wi ∈ Z as :

|Π〉 7→ exp
(
2πiδIΠI

)
|Π〉

so that
|k,w〉 7→ exp

(
2πi[αiki + βiw

i]
)
|k,w〉

For a shift symmetry of order p, i.e. isomorphic to Zp, we take ∆ = p δ ∈ Γ2,2 to be a lattice
vector, with norm

∆2 = p2δ2 = 2p2αiβi .

If the momenta ki are realised on the periodic coordinates yi ∼ yi + 2π of the 2-torus in
the usual way, exp

(
2πiαiki

)
generates the shift

yi 7→ yi + 2παi

If dual coordinates ỹi conjugate to the winding charge are introduced then exp
(
2πiβiwi

)
generates the dual shift

ỹi 7→ ỹi + 2πβi

so the shift acts on the coordinates Y I = (yi, ỹi) of the doubled torus as

Y I 7→ Y I + 2πδI .
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In both type IIA and heterotic constructions with a single twist, we can take the shift to
be on a single cycle of the 2-torus, so that p δ ∈ Γ1,1 ⊂ Γ2,2. In the perturbative type IIA
construction, we had

δ = (α1, 0, 0, 0), α1 = 1
p
,

giving a shift
y1 7→ y1 + 2π

p
.

For the heterotic string, the modular invariance constraint

∆2 = 2p2αiβi = 2 mod p

obtained in section III.2, eqn. (III.2.4), implies that both α and β are non-zero. Setting
α1 = 1/p (in order to match with the perturbative type IIA construction in the large T 2

limit) one can solve this constraint with

δ = (α1, 0, β1, 0), α1 = 1
p
, β1 = 1

p
.

This vector generates the shifts

y1 7→ y1 + 2π
p
,

ỹ1 7→ ỹ1 + 2π
p
.

It was to be expected that the shift in y1 should agree in the two pictures, but we see
that there is a surprising difference in that a shift in the dual coordinate ỹ1 is essential for
heterotic modular invariance but there was no corresponding shift on the type IIA side in our
construction.

In our models, the perturbatively consistent type IIA construction determines the heterotic
dual in the large volume limit of the T 2, with an orbifold by a twist γ ∈ O(Γ4.20) and a
shift of the coordinate y1 of a cycle of T 2. However, away from the decompactification limit
this heterotic construction is not perturbatively consistent and must be modified by winding
number shifts. Then duality implies that there should be a dual modification of the type IIA
theory. This modification is non-perturbative in the type IIA theory, so does not affect the
perturbative consistency of the original construction. This is in accord with the discussion
of [49], where it is argued that duality does not completely determine the shift vector, and
consistency conditions, such as level matching and modular invariance are needed to fix the
shift vector.

A similar situation was encountered in the FHSV model [55]. We will discuss further this
example in subsection III.4.3, and compare it with our models. In both cases, it is natural
to speculate that the modifications in the type IIA theory could arise from a condition for
non-perturbative consistency of the IIA string.

III.4.2 The Non-Perturbative Type IIA Construction
A convenient way of representing the modifications to the type IIA construction is as

follows. The transformation t acts on a heterotic state with momentum k and winding w by

|k,w〉 7→ exp
(
2πi[αiki + βiw

i]
)
|k,w〉
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The type IIA dual of the heterotic momenta ki and winding charges wi are some charges
xi and zi in the Γ6,22 lattice of type IIA compactified on K3 × T 2. For our construction, xi
remains the momentum on the torus, so ki = xi, and zi is the winding charge on the i’th
circle for the solitonic string obtained by wrapping the IIA NS5-brane on K3, so that zi is
the NS5-brane charge for NS5-branes wrapping K3 × S1, with the S1 being the i’th circle.
(For the FHSV model, x1 and z1 are D0-brane and D4-brane charges, as we will discuss in
the next subsection.)

Then for the models considered here, the heterotic transformation (III.4.2) becomes the
type IIA transformation

|k, z〉 7→ exp
(
2πi[αiki + βiz

i]
)
|k, z〉

where ki is the momentum on the i’th circle and zi is the winding number of the solitonic
string (from the NS5-brane wrapped on K3) on the i’th circle. From eq. (III.4.1), consistency
of the heterotic perturbative limit is satisfied with α1 = β1 = 1/p an α2 = β2 = 0.

Non-perturbative type IIA states with non-zero winding number for the solitonic string
around the first circle of T 2 are therefore charged under the symmetry used to obtain the
non-geometric Calabi-Yau background. For perturbative states with z = 0, the transforma-
tion (III.4.2) is of course the same as the one used in the perturbative construction with shift
vector (III.4.1).

As we have seen, the action of t on a heterotic state |k,w〉 given by (III.4.2) gives a shift
of the coordinates yi conjugate to ki together with a shift of the dual coordinates ỹi conjugate
to wi. Similarly, for the IIA string, if we introduce coordinates ŷi conjugate to zi, then the
action of t on a type IIA state (III.4.2) can be understood as a shift of the coordinates yi, ŷi.
In general, phase rotations of this kind dependent on brane charges can be reinterpreted as
shifts of suitable dual coordinates, justifying our referring to t as a shift ; this will be discussed
further in the next section.

The above discussion implies, using heterotic/type IIA duality, that non-perturbatively
consistent non-geometric Calabi-Yau backgrounds in type IIA superstring theory should be
defined using a shift symmetry of the form (III.4.2) that includes a non-perturbative contribu-
tion. In the FHSV construction that we will discuss below, a similar type of non-perturbative
modification of the shift symmetry occurs, involving D-brane charges rather than NS5-brane
charges.

III.4.3 The FHSV Model

The starting point for the FHSV construction [55] is a special K3 surface admitting a
freely acting Z2 involution, such that the quotient of K3 by this is an Enriques surface.
This non-symplectic K3 automorphism acts on the lattice Γ4,20 of total K3 cohomology by
interchanging two E8 ⊕ U sublattices, acting as −1 on one sublattice U and leaving the final
U invariant. 8 This is then combined with the reflection yi 7→ −yi on the coordinates of T 2

to give a freely acting automorphism γ of K3 × T 2. The quotient of K3 × T 2 by this gives
a Calabi-Yau manifold with Euler number zero, called the Enriques Calabi-Yau 3-fold. It is
a K3 fibration over P1 with a monodromy around each of the four singularities of the base
given by the Enriques involution.

8. This involution is a geometric automorphism, i.e. a large diffeomorphism of K3, whose action is an
element of O(Γ3,19). The invariant sublattice U is the lattice generated by H0(K3;Z) and H4(K3;Z), see [94]
for details.
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The action of γ on the charge lattice of IIA strings on K3× T 2

Γ6,22 ∼= (E8 ⊕ U)⊕ (E8 ⊕ U)⊕ [U ⊕ U ⊕ U ]⊕ U

is then to interchange the two (E8⊕U) terms, act as −1 on U ⊕U ⊕U and to leave the final
U invariant.

To find the heterotic dual of the FHSV orbifold, Γ6,22 is interpreted as the Narain lattice
for the heterotic string compactified on T 6, with the six sub-lattices U associated with the
lattice Γ6,6 of heterotic momenta and winding numbers on the six-torus. The action of γ on
the charge lattice and moduli space then defines an action on the heterotic string theory (as
we have done in section III.2 for our models). In particular, the involution leaves one of the
six circles invariant.

However the quotient of the heterotic string theory by this involution is not modular
invariant. This was remedied in [55] by supplementing the twist γ by a shift t on the circle
that is invariant under the involution. The shift vector δ is such that ∆ = 2δ ∈ U (where this
U is the last factor in (III.4.3), i.e. the invariant sub-lattice) and modular invariance requires
∆2 = 2, so that δ = (1/2, 1/2). Then the shift y → y + π on the circle is accompanied by a
shift ỹ → ỹ + π on the dual circle.

While this heterotic description looks quite similar to what happens in our models, in
the type IIA duality frame the physics is rather different. The identification of the heterotic
and type IIA charge lattices under duality relates the heterotic momentum k and winding w
on the invariant circle with the type IIA D0-brane charge x and the charge z for D4-branes
wrapping K3 :

k = x, w = z

In the type IIA duality frame, the action of the ‘shift’ t is then given as a phase rotation of
the form

|x, z〉 7→ exp(2πi[αx+ βz])|x, z〉 = exp(πi[x+ z])|x, z〉

Then the IIA involution is supplemented by multiplying by the phase (III.4.3) depending on
the D0-brane and D4-brane charges. That is, the involution (γ, t) consists of the geometric
involution on K3 × T 2 (the freely acting involution of K3 combined with the reflection on
T 2) supplemented by the phase rotation (III.4.3). These modifications to the Calabi-Yau
compactification are visible to D-branes but not to fundamental strings, and so will not affect
the perturbative type IIA string.

III.5 Duality Covariant Formulation and New Non-Geometric
Constructions

III.5.1 Dualities and Quotients

Suppose we have a theory X on a background M with a symmetry G, together with
a duality map that takes this to a theory X ′ on a background M ′ with a symmetry G′.
Then we can consider the quotient of X on M by G and the quotient of X ′ on M ′ by G′
and ask whether they are dual, i.e. whether taking the quotient commutes with the duality
transformation. As discussed in [49], in general the quotients will not be dual, but in some
special cases, such as those in which the adiabatic argument applies, they can be dual. As
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usual, without a non-perturbative formulation of string theory the duality cannot be proved,
but we can seek non-trivial tests of the duality.

We have already seen here a case where they are not dual. Taking X on M to be the
IIA string on K3 × S1 and taking G to be the group Zp generated by a twist of the K3
CFT (corresponding to a mirrored automorphism) and a shift in a circle coordinate, then the
heterotic dual of this is not modular invariant and so not consistent. In this case we modified
the heterotic symmetry G′ to include a winding contribution to the shift, and then made the
dual modification to the action of G, involving non-perturbative NS5-brane contributions.
Then a necessary condition for the quotients to be dual is that the group G is chosen so that
both are perturbatively consistent. Further duals could then give further non-perturbative
constraints on the group G.

Here we are interested in two examples : our non-geometric Calabi-Yau construction and
the FHSV model for the type IIA string, together with the conjectured heterotic duals that
were discussed in section III.4. Consistency of the heterotic dual required modifications of
the original symmetry to include D0- and D4-brane contributions in the FHSV model and
NS5-brane contributions for the non-geometric Calabi-Yau construction. However, as we shall
see, this is not enough to completely determine the non-perturbative action of the symmetry
in each case. In our non-geometric Calabi-Yau construction, the adiabatic argument provides
strong support for the duality with the heterotic T-fold.

We now turn to the action of duality transformations on our model and that of FHSV to
obtain new dual constructions. For this, a duality covariant viewpoint is useful.

III.5.2 Compactifications to five dimensions
We consider first compactifications to five dimensions, in both heterotic and type II duality

frames.

Symmetries and Automorphisms

The heterotic string compactified on T 5 or type IIA string compactified on K3× S1 has,
at generic points in the moduli space, a symmetry

[O(Γ5,21) n U(1)26]× U(1) .

The U(1)26 × U(1) is a gauge symmetry associated with 26 + 1 abelian vector fields, and
at special points in the moduli space this is enhanced to a non-abelian group. A subgroup
U(1)5 arises from isometries of the heterotic five-torus. The extra U(1) symmetry arises in
five dimensions as the NS-NS two-form b2 (in either the heterotic or type IIA string) can be
dualised to a vector field, with a further U(1) gauge symmetry that commutes with O(Γ5,21).
There are 26 + 1 electric 0-brane charges (ZI ,K) corresponding to the gauge symmetry, with
ZI transforming as the 26-dimensional representation of O(5, 21).The charge K is a singlet
under O(5, 21) ; the 5-dimensional supersymmetry algebra has 5+1 central charges, consisting
of the 5 electric charges for the U(1)5 gauge symmetry associated with the gauge fields in the
supergravity multiplet and the singlet charge K.

In the heterotic string, the BPS states carrying the charge K are heterotic five-branes
wrapping T 5. This charge can be thought of as the winding number on S1 of the solitonic
string obtained from wrapping the heterotic five-brane on T 4. The solitonic string of the
heterotic theory is dual to the fundamental string of the type IIA theory, so in the type IIA
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theory the singlet charge K is the winding number of fundamental type IIA strings on the
S1 in K3 × S1. In the IIA string theory on K3 × S1 there is not a T-duality relating the
winding number K to the momentum on S1, as that T-duality is not a proper symmetry of
the IIA theory, but instead maps the IIA string theory on K3× S1 to the IIB string theory
on K3× S1.

We are interested in automorphisms that consist of a twist γ ∈ O(Γ5,21) and a shift
t ∈ U(1)27 in which t commutes with γ. One possibility is to choose the shift t to be generated
by the singlet charge K, and then any γ ∈ O(Γ5,21) can in principle be used. Another is to
choose a sub-lattice Γ4,20 ⊕ Γ1,1 ⊂ Γ5,21 so that the symmetry algebra has a subgroup

[O(Γ4,20) n U(1)24]× [O(Γ1,1) n U(1)2] ,

and to use a twist γ ∈ O(Γ4,20) from the first factor and a shift t ∈ U(1)2 from the second
factor, and these indeed commute. The automorphisms that we used in earlier sections are of
this form.

The Heterotic String Perspective

The moduli space of heterotic strings compactified on T 5 is

M5d ∼= O(Γ5,21)\O(5, 21)/
(
O(5)×O(21)

)
× S1 × R ,

where the extra S1 factor corresponds to a Wilson line for the gauge field dual to b2 and the
R factor is the zero mode of the heterotic dilaton. A T 5 CFT has a moduli space

O(Γ5,5)\O(5, 5)/
(
O(5)×O(5)

)
identified under the T-duality group O(Γ5,5). Then choosing a subgroup O(5, 5) ⊂ O(5, 21)
with corresponding sublattice Γ5,5 ⊂ Γ5,21 splits the heterotic degrees of freedom into degrees
of freedom on T 5 described by a CFT on T 5 and the remaining right-moving modes repre-
senting the gauge degrees of freedom. This choice is not unique, and acting with the duality
group O(Γ5,21) will change the split into torus and gauge degrees of freedom.

For a twist γ ∈ O(Γ4,20) from the first factor in (III.5.2) and a shift t ∈ U(1)2 from the
second factor in (III.5.2), it is natural to choose a torus T 4 × S1 so that the first factor of
(III.5.2) acts on the heterotic string on T 4 and the second acts on the CFT on S1. Then the
heterotic momentum k and winding number w on the S1 factor are the charges generating
the U(1)2 and transforming as a doublet under O(1, 1). A shift generated by (k,w) then
gives a heterotic automorphism of the kind discussed in earlier sections. It can in principle be
augmented by a shift generated by the singlet charge K. The 3 charges (k,w,K) take values
in a lattice Γ1,1 ⊕Z and transform as a 2 + 1 under O(1, 1), with k and w forming a doublet.

The general construction could then involve a shift vector δ = (α, β, κ) with three com-
ponents, so that

δ ·Π = αk + βw + κK .

This would then lead to a charge-dependent phase exp(2πiδ ·Π) in the automorphism. The
transformation generated by K is non-perturbative and does not affect the perturbative he-
terotic string. Perturbative consistency requires that (α, β) satisfy some modular invariant
constraints, but places no constraint on κ. For the models considered in this article, the
condition (III.9) is satisfied for αβ = 1/p2. As we shall see, perturbative consistency of dual
forms of the theory will impose further constraints on the shift.
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Acting with O(Γ5,21) will transform k and w into two other linear combinations of the 26
non-singlet charges, and in particular can lead to shifts that involve charges from the gauge
sector. This can also be thought of as changing the original choice of split into T 5 degrees of
freedom and gauge degrees of freedom to a new choice. It will also transform the twist γ to
a conjugate twist γ̃.

Alternatively, we can take the shift t to be generated by the singlet charge K, and take
γ ∈ O(Γ5,21). Then the shift is

δ ·Π = κK

for some κ. This shift does not affect the perturbative heterotic string, so the perturbative
construction is simply a quotient by γ ∈ O(Γ5,21). In general, this will have fixed points and
will result in a non-freely acting asymmetric orbifold of the heterotic string. This then restricts
γ to satisfy the constraints of [25, 26] for the asymmetric orbifold to be modular invariant.

The Type IIA String Perspective

As we have seen, there are many ways of choosing a split of the heterotic degrees of
freedom into degrees of freedom on T 5 and gauge degrees of freedom. For any such choice of
T 5, one can choose a T 4 ⊂ T 5 in a number of ways, and for each choice one can dualize the
heterotic T 4 to a type IIA K3 . Thus there are many ways of choosing a K3 moduli space as a
subspace of the five-dimensional moduli space (III.5.2) – the choices correspond to choosing
an O(Γ4,20) subgroup of O(Γ5,21) – and acting with O(Γ5,21) will change this choice. Then
there is no canonical way of choosing which degrees of freedom are associated with K3 and
which with S1, and it can be changed by acting with O(Γ5,21) ; it can result in different dual
forms of a given compactification.

For a twist γ ∈ O(Γ4,20), it is natural to choose a split such that the twist γ acts on K3
and the shift t on S1, and we now investigate this choice. In the type IIA string, the NS-NS
2-form is dualised to a vector field with charge ẑ. This is the charge for NS5-branes wrapped
on K3×S1. This can also be thought of as the winding charge for the solitonic string obtained
from wrapping NS5-branes on K3 and so is dual to the heterotic string winding number. In
addition, there is a momentum k̂ and a winding ŵ of the type IIA string on the extra circle.
There are again 3 charges, and duality relates these to heterotic charges : k = k̂, w = ẑ and
K = ŵ. Thus for the type IIA string, it is (k, ẑ) that form a doublet under O(1, 1) and ŵ is
a singlet.

The general construction involves a shift vector δ = (α, β, κ) with three components,
giving the heterotic shift (III.5.2) which is realised in the type IIA string as

δ ·Π = αk + βẑ + κŵ .

This shift leads to a charge-dependent phase exp(2πiδ ·Π) in the automorphism.

The Type IIB String Perspective

T-duality on the S1 takes the IIA string on K3 × S1 to the IIB string on K3 × S1. If
the IIB string has momentum kB and winding ŵB on the S1, and NS5-brane charge ẑB for
NS5-branes wrapping K3× S1, these are related to the IIA string charges k, ŵ, ẑ by

kB = ŵ, ŵB = k, ẑB = ẑ .
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Then the shift with shift vector δ = (α, β, κ) acts on the type IIB string through

δ ·Π = αŵB + βẑB + κkB .

Models

The original type IIA construction reviewed in section III.1.2 had α 6= 0. Perturbative
consistency of the heterotic dual theory required β 6= 0, with αβ = 1/p2. Perturbative consis-
tency of the type IIA construction was achieved with no type IIA winding contributions, so
this means it is consistent to take κ = 0. Then with α = β = 1/p and κ = 0 we obtain a
theory which is modular invariant in both the perturbative heterotic and perturbative type
IIA formulations. Taking α = β = 1/p but with κ 6= 0, type IIA level-matching requires
κ = 0 mod p, so that the shift κŵ is by a lattice vector and so the corresponding phase is
trivial. There is then no loss of generality in taking κ = 0. In this case the perturbative IIB
formulation is also consistent.

Acting with O(Γ5,21) will in general take the twist γ to a conjugate transformation that
acts not just on the K3 CFT but which acts on the full K3 × S1 CFT. Note that for p = 2
the action of the conjugate transformation on the string theory may include the world-sheet
parity-reversing transformation Ω, leading to an orientifold, or (−1)FL . A factor of Ω is needed
whenever the conjugate transformation reverses the space-time parity. At the same time, the
O(Γ5,21) transformation will rotate the charges k, ẑ to other charges for the U(1)26 symmetry.
The singlet charge K = ŵ does not change. (This can instead be viewed as changing which
subsector of the theory is to be interpreted as corresponding to the K3 CFT.) For example,
there is a transformation that takes k to the D0-brane charge Z0 and ẑ to the charge Z4 for
D4-branes wrapping K3. This would give a shift

δ ·Π = αZ0 + βZ4 + κŵ

which is completely non-perturbative, giving a phase rotation to any given state depending
on its D0,D4 and NS5 charges. For the perturbative theory, this is simply a Zp orbifold of the
type IIA string on K3 × T 2 by γ̃, with γ̃ now acting non-trivially on K3 × T 2 (i.e. not just
acting on K3). Perturbative consistency of this then does not depend at all on the parameters
α, β, κ and only depends on the choice of twist γ. However, this is still dual to the heterotic
construction, and perturbative consistency of the heterotic dual constrains α and β, as above.
Similarly, the original IIA version sets κ = 0.

Finally, we can instead take the shift t to be generated by the singlet charge K, and take
γ ∈ O(Γ5,21). Then the shift becomes

δ ·Π = κŵ

for the type IIA string. ŵ is a perturbative charge for the type IIA string, but it is not
constrained by IIA modular invariance since the shift vector involves a winding charge but
no momentum. In this case, the only constraint is that pκŵ is a lattice vector, so κ = n/p for
some integer n < p.

III.5.3 Compactifications to four dimensions
We now turn to compactifications to four dimensions, which allow more general construc-

tions.
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Symmetries and Automorphisms

The heterotic string compactified on T 6 or type IIA string compactified on K3× T 2 has,
at generic points in the moduli space, a symmetry

[O(Γ6,22)× SL(2,Z)] n U(1)56 .

There is a U(1)28 gauge symmetry associated with 28 gauge fields, and, formally, a further
U(1)28 symmetry associated with the S-dual gauge fields. In different S-duality frames, dif-
ferent subgroups U(1)28 ⊂ U(1)56 will be realised as fundamental gauge symmetries. There
are 28 electric and 28 magnetic charges, transforming in the (28, 2) representation under
O(6, 22)× SL(2).

Here we will focus on twists in O(Γ6,22) and not consider twists involving S-duality. The
discussion is then very similar to the 5-dimensional case above. We will consider an automor-
phism (γ, t) consisting of a twist γ ∈ O(Γ6,22) and a shift t ∈ U(1)56 where t commutes with
γ.

Choosing a sub-lattice Γ5,21 ⊕ Γ1,1 ⊂ Γ6,22, the symmetry algebra of the theory has a
subgroup

[O(Γ5,21) n U(1)52]× [O(Γ1,1) n U(1)4] .

We can then use a twist γ ∈ O(Γ5,21) from the first factor and a shift t ∈ U(1)4 from the
second factor, and these indeed commute.

We will also consider choosing a sub-lattice Γ4,20 ⊕ Γ2,2 ⊂ Γ6,22, selecting a subgroup of
the symmetry algebra

[O(Γ4,20) n U(1)48]× [O(Γ2,2) n U(1)8]

and using a twist γ ∈ O(Γ4,20) from the first factor and a shift t ∈ U(1)8 from the second
factor. One class of examples arises in taking a reduction to 5 dimensions of the kind considered
in the previous subsection, with a twist γ ∈ O(Γ4,20) and a shift on a circle, followed by a
standard reduction (no twist or shift) on a further circle ; such cases have been the main focus
in this paper. We can also consider reductions by (γ1, t1) and (γ2, t2) where γ1, γ2 are two
commuting twists in O(Γ4,20) and t1, t2 are two shifts in U(1)8 (see [7] for an analysis of models
with two twists). Note that the 8-charges for U(1)8 transform as a (4, 2) under O(2, 2)×SL(2).
Using O(2, 2) ∼ SL(2)× SL(2), this is the (2, 2, 2) representation of SL(2)× SL(2)× SL(2).

The Heterotic String Perspective

Consider first the case with a twist γ ∈ O(Γ5,21) from the first factor in (III.5.3) and
a shift t ∈ U(1)4 from the second factor in (III.5.3). It is natural to choose a split so that
the sub-lattice Γ5,21 is associated with the heterotic string compactified on T 5 and the sub-
lattice Γ1,1 with a further circle compactification. The charges for the U(1)4 symmetry are
the heterotic momentum k and winding w on the extra circle, the heterotic 5-brane charge z
for heterotic 5-branes wrapping T 5 and the Kaluza-Klein (KK) monopole charge q. 9

Then the general shift vector is given by δ = (α, β, λ, κ) with four components, so that

δ ·Π = αk + βw + λq + κz .

9. The KK monopole charge arises from solutions of the form R×ALF ×T 5 where R is a timelike direction
and ALF denotes an ALF gravitational instanton with charge q (so that for q = 1 we have self-dual Taub-NUT
space). The ‘extra circle’ is the fibre of the ALF gravitational instanton.



84 Chapitre III. Non-geometric constructions and duality

The shifts involving z, q do not affect the perturbative theory. For the models of section III.2
– with γ ∈ O(Γ4,20) – perturbative consistency is achieved if both α and β are non-zero with
αβ = 1/p2. A similar analysis can be done for the general case with arbitrary γ ∈ O(Γ5,21).

The case with a twist γ ∈ O(Γ4,20) from the first factor in (III.5.3) and a shift t ∈ U(1)8

from the second factor in (III.5.3) is very similar. Choosing the natural split in which the
sub-lattice Γ4,20 is associated with the heterotic string compactified on T 4 and the sub-lattice
Γ2,2 with a further T 2 compactification, the charges for the U(1)8 symmetry are the heterotic
momenta ki and windings wi on the T 2, the heterotic 5-brane charges zi for heterotic 5-branes
wrapping T 5 and the Kaluza-Klein monopole charges qi, where i = 1, 2 is a coordinate index
on T 2, which has coordinates yi. The charge zi is for a 5-brane wrapping the yi circle and the
T 4, so it is the winding number for the solitonic string from the 5-brane wrapping T 4. The
general shift is then of the form

δ ·Π = αiki + βiw
i + λiq

i + κizi

For the models of section III.2, perturbative consistency requires αiβi = 1/p2. Taking the
only non-zero coefficients to have, say, i = 1 reduces this to the previous case.

The Type IIA String Perspective

For the case with a twist γ ∈ O(Γ5,21) from the first factor in (III.5.3) and a shift t ∈ U(1)4

from the second factor in (III.5.3), the natural choice of split has the lattice Γ5,21 associated
with the type IIA string compactified on K3 × S1 and the lattice Γ1,1 associated with a
further compactification on a circle with coordinate y1. In this case the U(1)4 charges are
the momentum k̂ and type IIA winding ŵ on the y1 circle, the charge ẑ from an NS5-brane
wrapping K3 and the y1 circle, and the KK monopole charge q̂ associated with the y1 circle.

Then heterotic-type II duality relates these to heterotic charges : k = k̂, w = ẑ and z = ŵ,
q = q̂. The general shift vector δ = (α, β, λ, κ) gives (III.5.3) in the heterotic picture and

δ ·Π = αk̂ + βẑ + κŵ + λq̂

for type IIA. This shift again leads to a charge-dependent phase exp(2πiδ ·Π) in the auto-
morphism. Level matching of the perturbative type IIA string with α 6= 0 leads to κ = 0, as
in the five-dimensional analysis above but places no constraints on β, λ as they correspond
to non-perturbative contributions for the IIA string. Requiring perturbative consistency of
both the IIA and heterotic formulations is satisfied (for the models of section III.2) with
α = β = 1/p, κ = 0 but puts no constraints on λ. The perturbative IIB formulation gives no
further constraints.

As in the five dimensional case, we can consider acting on a dual pair with a duality
transformation. This will transform the charges appearing in the shift, and take the twist to
a conjugate one, which for p = 2 might include factors of Ω or (−1)FL .

S-Duality

To find a constraint on the parameter λ, one could seek a duality that transforms q to
a perturbative charge that would enter into the perturbative constraints in the dual theory.
Such a duality is provided by the heterotic string S-duality.
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The heterotic charges (k,w, z, q) transform as a (2, 2) under O(Γ1,1) × SL(2,Z), with
(k,w) and (z, q) transforming as doublets under the T-duality O(Γ1,1) and (k, q) and (w, z)
transforming as doublets under the S-duality SL(2,Z). Then acting with the SL(2,Z) element(

0 1
−1 0

)

takes the shift (III.5.3) to
δ ·Π = −κw − λk + αq + βz .

while leaving the twist unchanged. If we were to demand perturbative consistency of this
S-dual theory, this would be achieved only if both λ and κ are non-zero with λκ = 1/p2

once again for the models of section III.2. We then learn that perturbative consistency of the
heterotic string and of the S-dual heterotic string would require all four components of the
shift vector to be non-zero, and we could satisfy these requirements by taking

α = β = λ = κ = 1
p

However, in this case S-duality doesn’t commute with the quotient – the strong coupling
behaviour of the N = 2 supersymmetric theory arising from the quotient is not given by the
strong coupling behaviour of the original N = 4 supersymmetric theory. Then the constraint
λκ = 1/p2 should not be applied to the original theory, and we can keep κ = 0, as found
above.

One can see directly why the adiabatic argument fails in this case. Heterotic S-duality
corresponds, in type IIA variables, to a double T-duality on the two-torus, sending the torus
area A to (α′)2/A. The adiabatic argument holds in the limit where the T 2 base is large,
hence is not compatible with this duality transformation.

The FHSV Model Revisited

The lattice Γ5,21 is given by

Γ5,21 ∼= E8 ⊕ E8 ⊕ U ⊕ U ⊕ U ⊕ U ⊕ U .

Consider then the automorphism γ given by interchanging two E8⊕U sublattices and acting
as −1 on the remaining sublattice U ⊕U ⊕U . This twist γ ∈ O(Γ5,21) can be associated with
the first factor in (III.5.3) and combined with a shift t ∈ U(1)4 from the second factor in
(III.5.3), with shift vector δ = (α, β, λ, κ).

The heterotic string dual of the FHSV model discussed in subsection III.4.3 is of precisely
this form. With the natural choice of split in which the the sub-lattice Γ5,21 is associated
with the heterotic string compactified on T 5 and the sub-lattice Γ1,1 with a further circle
compactification, the shift is δ · Π = αk + βw + λq + κz. Perturbative consistency required
both α, β to be non-zero with αβ = 1/4 [55].

In the FHSV model, γ is not taken to act on K3× T 2 in the way we have referred to as
‘natural’. In choosing the sub-lattice Γ5,21 ⊕ Γ1,1 ⊂ Γ6,22, we take the Γ1,1 part of the charge
lattice to be the one corresponding to D0-brane charge and D4-brane charge (for D4-branes
wrapping K3). Then γ acts on K3 through the Enriques involution and on T 2 as a reflection.
For the model of [55, 94], the shift was taken to be

δ ·Π = αZ0 + βZ4 ,
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where Z0 is the D0-brane charge and Z4 the charges of D4-branes wrapping K3, giving a
phase rotation to any given state depending on its D0 and D4 charges. The general heterotic
shift δ ·Π = αk+ βw+ λq + κz would correspond to extending the FHSV construction must
be extended by taking λ, κ non-zero, giving

δ ·Π = αZ0 + βZ4 + κZ2 + λZ6

where Z2 is the charge for D2-branes wrapping T 2 and Z6 is the charge for D6-branes wrapping
K3×T 2. Perturbative consistency of the FHSV construction places no constraint on the four
parameters.

However, we can instead make the following choice, giving a type IIA dual of the heterotic
FHSV model which looks different from the original Enriques Calabi-Yau type IIA compac-
tification. In choosing the sub-lattice Γ5,21 ⊕ Γ1,1 ⊂ Γ6,22, we now take Γ5,21 to be the charge
lattice for the IIA string on K3×S1, so that γ acts as an involution of K3×S1, with a fixed
point locus, and Γ1,1 is associated with a further circle reduction. Then the shift is

δ ·Π = αk̂ + βẑ + κŵ + λq̂

where k̂ is the IIA momentum, ẑ is the NS5-brane charge. ŵ is the IIA string winding number
and q̂ is the KK monopole charge. The perturbative charges are k̂, ŵ.

In this case, the transformation given by this twist and shift is not quite a symmetry of
the IIA string on K3 × T 2. The twist involves a reflection y → −y on the circle in K3 × S1

and this must be combined with a world-sheet parity transformation Ω to give a symmetry.
We then have an orientifold of the IIA string on K3× T 2 by Ω combined with the shift and
twist described above. For the shift δ ·Π = αk̂ this is an orientifold analysed in [49] as a dual
to the FHSV model. We can consider generalising this by extending the shift to (III.5.3).
Perturbative consistency of the IIA theory then leads to κ = 0 as before. The heterotic dual
gives αβ = 1/4. As noted in [49], the adiabatic argument supports the duality between this
orientifold and the heterotic dual, but does not apply to the duality between the FHSV model
and its heterotic version.

This type IIA orientifold is non-geometric, following the analysis of section III.1.2 ; the
action on the K3 CFT is in O(Γ4,20) but not in O(Γ3,19), and the shift corresponding to the
second circle has both momentum and winding components. However through heterotic/type
IIA duality it is expected to be non-perturbatively equivalent to type IIA compactified on the
Enriques Calabi-Yau threefold.

III.5.4 Non-Geometric Constructions
The general class of construction we have been discussing consists of a quotient of a string

theory background by a twist γ of order p in a duality group O(Γn,n+16) for n = 4 or n = 5
together with a shift t. From the discussion in section 2, when t is a simple shift t : y 7→
y + 2π/p of a circle coordinate y, this can be seen as a special point in the moduli space of a
duality twisted reduction, with the dependence of all fields on y given by a continuous duality
transformation g(y) ∈ O(n, n+16) with monodromy γ. If the monodromy transformation acts
geometrically, this constructs a bundle over a circle with fibre T 4 or T 5 or K3 or K3 × S1.
For example, starting from type IIA compactified on K3 × S1 with γ ∈ O(Γ3,19) ⊂ O(Γ4,20)
acting as a K3 diffeomorphism, the duality twisted reduction can be understood as a geometric
compactification of the type IIA string on a K3 bundle over S1. More generally, the result
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is non-geometric. If γ involves T-duality transformations, we have a T-fold and if it includes
mirror transformations, we have a mirror-fold.

Our heterotic construction involved a shift vector δ = (α, β) so that the shift is generated
by

2πiδ ·Π = αk + βw

with αβ = 1/p2. As we have seen in section III.4, this can be thought of as acting as a phase
rotation on a state with momentum k and heterotic winding number w, or as giving a shift
on the 2-dimensional doubled circle with coordinates y, ỹ with y → y + 2πα, ỹ → ỹ + 2πβ.
The theory can be formulated as a double field theory with fields depending on both y
and ỹ. Then this is a special point in the moduli space of a duality twisted reduction in
which the dependence of all fields on y, ỹ is given by a continuous duality transformation
g(y, ỹ) ∈ O(n, n+ 16) with monodromy γ :

g(y, ỹ)−1g(y + 2πα, ỹ + 2πβ) = γ

(This is a special case of a more general construction in which there could be different mo-
nodromies in the y and ỹ directions.) For geometric monodromy in GL(n,Z) acting as a
diffeomorphism of Tn, this constructs a Tn bundle over the doubled circle, while for a T-
duality monodromy in O(Γn,n) this constructs a bundle of a 2n-dimensional doubled n-torus
over the doubled circle, which gives the geometric realisation of a T-fold in the doubled for-
malism [61]. For a general monodromy in O(Γn,n+16), this is a bundle with fibre the heterotic
doubled torus Tn,n+16 of dimension 2n+ 16 over the 2-dimensional doubled circle, which can
be regarded as a configuration for heterotic double field theory.

Our general construction involved further charges QI , so that the shift vector was of the
form δ = (α, β, λI)

2πiδ ·Π = αk + βw + λIQI

These too can be geometrised by going to an extended field theory with further coordinates
uI on which the charges QI act as translations :

QI = −i ∂
∂uI

Then in the extended field theory, the coordinates that the fields depend on include y, ỹ, uI
and the shift t acts as a translation on y, ỹ, uI , resulting in a generalised bundle over a base
space (typically a torus) with coordinates y, ỹ, uI .

III.6 Summary
In this chapter, we have proposed a four-dimensional N = 2 non-perturbative duality

relating non-geometric Calabi-Yau compactifications of the type IIA superstring to T-fold
compactifications of the heterotic superstring and have shown that this duality follows from
the adiabatic argument. The non-geometric type II backgrounds were constructed in [7] as
K3 fibrations over T 2 with monodromy twists associated with the action of mirrored K3
automorphisms on the K3 CFT. The K3 automorphisms are realised in the heterotic string
as element of the T-duality group, and the heterotic duals are T 4 fibrations over T 2 with
T-duality monodromy twists. At points in the moduli space which are fixed under the action
of the monodromy automorphisms, the construction reduces to an asymmetric orbifold on the
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heterotic side and to an asymmetric Gepner model in type IIA. At these fixed points, there
is no enhanced gauge symmetry but there is enhanced discrete symmetry.

These models preserve N = 2 supersymmetry in four dimensions. The automorphism acts
on the lattice Γ4,20 by an isometry in O(Γ4,20) that leaves no sublattice of Γ4,20 invariant.
For the heterotic string on T 4, all of the four left-moving and twenty right-moving chiral
bosons transform. On the type II side of the duality, the D-brane charge lattice is Γ4,20 and
the fact that no sublattice is left invariant by the twist means that all BPS D-brane states
are projected out by the orbifold. This is consistent with the fact that there are no Ramond-
Ramond ground states in these theories, since all space-time supersymmetry comes from the
left-movers.

The naive heterotic dual of the type IIA construction is not modular invariant. We found a
modification of the heterotic construction that is modular invariant, and this modification led
in turn to a non-perturbative modification of the type IIA model. A similar story applies to
the FHSV model. For the type IIA string, the modification can be viewed as necessary for non-
perturbative consistency. Although we do not have a complete non-perturbative formulation,
it seems that a necessary condition for the non-perturbative consistency of a model should
be that the theory is modular invariant in all possible duality frames, and in any given frame
this can require non-perturbative corrections, as we have seen. Our models are perturbatively
consistent in the IIA, IIB and heterotic duality frames. Acting with a duality transformation
then takes us to a new perturbative theory (which can also be thought of as choosing a different
modulus of the original theory as a coupling constant) and we again require consistency in
this new perturbative theory.

Let us explore this further. It is believed there is a non-perturbatively consistent string
solution that can be treated as a perturbation theory in terms of the IIA coupling constant,
the IIB coupling constant or the heterotic coupling constant. The perturbative heterotic
theory is the heterotic string compactified on T 6, while the perturbative IIA (IIB) theory
is the IIA (IIB) string compactified on K3 × T 2. The theory is believed to have an exact
non-perturbative symmetry (III.5.3) and we are interested in taking quotients of the theory
by a Zp subgroup of this. The key question is which Zp subgroups lead to consistent theories.
We have seen that different restrictions arise from requiring perturbative consistency as a
IIA, IIB or heterotic theory. Acting with a symmetry in (III.5.3) maps the Zp subgroup to a
conjugate Zp subgroup embedded differently in the symmetry group and gives a new quotient.
The new quotient will not in general be dual to the original one, but in an important class of
cases, such as the ones studied here in which the adiabatic argument can be applied, this gives
a new dual of the original construction. Perturbative consistency of each such dual theory
gives further constraints. In this way, we find a set of necessary conditions for the consistency
of the quotient. Knowing whether these are sufficient would require an understanding of the
non-perturbative theory, but these conditions give us important information about the non-
perturbative theory that it would be interesting to investigate further.

The Zp symmetries we have been quotienting by are generated by a transformation (t, γ)
consisting of a twist γ ∈ O(Γ5,21) and a shift t ∈ U(1)4 (or a twist γ ∈ O(Γ4,20) and a shift
t ∈ U(1)8). The adiabatic argument led us to use the same twist in each duality frame, but we
found different consistency conditions on the shift in different duality frames. In our original
IIA construction, the shift was a simple order-p shift of a circle coordinate y 7→ y + 2π/p
and this was sufficient for IIA modular invariance. For the heterotic dual, heterotic modular
invariance required also shifting the T-dual coordinate ỹ 7→ ỹ + 2π/p, or, equivalently, the
action of t on a state with momentum k and winding w on the circle was to multiply by a
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phase exp(2πi(k + w)/p). Transforming back to the IIA theory, the heterotic winding number
w is mapped to the NS5-brane wrapping number, and so action of t on the IIA string involves
a phase depending on the NS5-brane charge, giving a non-perturbative modification of the
theory. The general picture involves a phase depending on four charges for a shift t ∈ U(1)4

or eight charges for a shift t ∈ U(1)8, and acting with a duality transformation can change
which charges they are. For example, the FHSV construction involved a phase depending on
the D0- and D4-brane charges, while the dual we found had a phase depending on the type
IIA momentum and NS5-brane charge.

We now return to Harvey and Moore’s question. There are two classes of N = 2 heterotic
toroidal orbifolds with a known type II dual : quotients by symmetries that preserve a D-
brane charge lattice, corresponding to IIA on Calabi-Yau three-folds, and quotients that
do not preserve any charge lattice, corresponding to non-geometric compactifications based
on mirrored automorphisms. In general, an orbifold of the heterotic string on T 4+n by a
symmetry G is mapped to an orbifold of the type IIA string on K3×Tn by the dual G which
now acts on the type IIA string ; this will require that the orbifold is non-perturbatively
consistent, so that in particular it is modular invariant in both the heterotic and type IIA
duality frames. Consider for example a general Zp orbifold of the heterotic string on T 4×S1 by
(γ, t), where γ ∈ O(Γ4,20) acts as a heterotic T-duality and the shift gives a phase depending
on the momentum and the heterotic winding number on the S1. This is then mapped to an
orbifold of the type IIA string on K3 × S1 by the transformation (γ, t) in which γ acts as
a K3 automorphism and t gives a phase depending on the momentum on the S1 and the
NS5-brane charge for NS5-branes wrapping K3 × S1. In some cases the type IIA dual is a
CY compactification, but in general it will lead to a non-geometric construction. It will be
interesting to explore this duality further, for example for the models of [80, 77, 82].

In the next chapter, we turn to a problem we have left untreated so far which is the de-
termination of the moduli space of the theory. After a brief review of essential tools regarding
in particular special geometry, we will derive the scalar moduli space partially from the type
IIA dual of the theory, completing the results of [7], and entirely from the heterotic one.
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Chapitre IV

Special geometry

The following part is devoted to derive the explicit form - or at least to give a general
method to do so - for the moduli space of the theory defined in III.1.2. This is a rather natural
thing to do as moduli spaces are both phenomenologically relevant and useful in testing
duality conjectures, since two dual models should of course lead to the same conclusions. At
the moment, no such test may be done though because the exact form of the full moduli space
- and in particular the non-perturbative contributions thereto - has not been computed.

Let us start by recalling an important fact about the moduli space of four-dimensional
N = 2-supersymmetric theories. We will refer to the aforementioned moduli space as M.
When parallel transported along a path in M, the supercharges generically transform and
form therefore a priori non-trivial representations of the holonomy group of M. One may
actually show that requiring that the supersymmetry algebra is preserved under such trans-
formations impose that the holonomy group may be factorised with the R-symmetry group as
a factor [95]. So far, what we have said applies to any supersymmetric theory ; focusing now
on four-dimensional theories with N = 2 supersymmetries, the R-symmetry group is given by
U(2) ∼= U(1)×SU(2). It turns out that two kinds of N = 2 supermultiplets contain massless
scalars : vector multiplets and hypermultiplets, which transform trivially under SU(2) and
U(1) respectively. In this case, a mathematical result proved by de Rham shows thatM must
factorise locally as 1

M =Mv ×Mh.

where Mv and Mh are spanned by scalars living in vector multiplets and hypermultiplets
respectively. Moreover, in can be shown thatMv is a special Kähler manifold and thatMh
is quaternionic Kähler (see e.g. [50]).

The hypermultiplets moduli space has been partially understood in [7] from the type IIA
perspective and will be derived from the heterotic side in V.3. In order to study the vector
multiplets moduli space, it will be convenient to introduce in the next section a few notions
about the underlying effective field theory and its (special) geometry.

1. The theorem we have used here may be found together with a proof in [96], theorem 5.4. Even though
this theorem is actually only valid for simply-connected manifolds, as far as we are concerned it would be
sufficient to consider the universal cover ofM in the case it does not meet this condition.
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IV.1 Special Kähler geometry
In this section and in the followings, we give a brief review of chosen topics on N = 2

supergravity in four dimensions. The purpose here being to introduce some tools necessary
to fully grasp the analysis of section V.2, we are not looking to be in any way exhaustive in
the treatment made and refer the reader to the already existing and by far more complete
reviews available in the literature (see [50] for instance).

A convenient way to derive supergravity actions is called superconformal tensor calculus.
Supergravity theories are, by definition, theories with local super-Poincaré invariance - that is
invariance under supersymmetry and Poincaré transformations. One may exploit the fact that
the super-Poincaré group is a subgroup of the superconformal group as it is easier to write
down actions with local invariance under the former. Supergravity theories are then recovered
after having gauge-fixed the superfluous generators. This procedure has first been introduced
in the context of N = 1 supergravity in [97, 98, 99]. Since an explicit computation may be
somewhat lengthy, we will not go into much details regarding these sorts of computations and
state the results we need directly.

From now on, we focus on a N = 2 supergravity theory with n + 1 abelian vector su-
perfields, one of which containing the graviphoton. We denote the scalars in these vector
multiplets as XI , I = 0, ..., n. Superconformal tensor calculus then shows that the action
may be encoded into a holomorphic function F (X) of the scalars. In addition, F must be
homogeneous of degree 2 [50], meaning that

F (λX) = λ2F (X) , ∀λ ∈ C∗. (IV.1)

In particular, deriving (IV.1) with respect to λ and setting λ = 1 leads to the useful identities

FIX
I = 2F, FIJX

J = FI , FIJKX
I = 0 (IV.2)

where we use the standard convention that FI1...Ir stands for the r-th derivative of F with
respect to XI1 , ..., XIr . The function F is known as the prepotential of the theory and contains
all the information about the action as we will see in the following for the bosonic sector of the
theory. Superconformal tensor calculus also shows that gauge fixing the dilatations in such a
way that the kinetic terms for the scalars and for the graviton decouples forces the physical
scalar to span a n-dimensional hypersurface defined by the condition [100]

Im
(
X
I
FI
)

= constant.

The embedding of the n-dimensional hypersurface may be done by expressing the scalars as

XI = yZI(zα)

with zα, α = 1, ..., n, coordinates on the n-dimensional surface. One may then show that the
manifold spanned by the physical scalar fields is Kähler whose Kähler potential is given by

K(z, z) = − log
(
iZ

I(z)FI(z)− iZI(z)FI(z)
)
.

where we have used the homogeneity of the prepotential F to define

FI(XI) = FI(yZI(z)) := y2FI(ZI(z)).
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We emphasize that with this definition, FI(Z) may also be viewed as the derivative of F(Z)
with respect to ZI with F(Z) being formally the same function as F (X). Finally, we note
that a convenient choice for the functions ZI is to set

Z0(z) = 1 , Zα(z) = zα , α = 1, ..., n. (IV.3)

This set of coordinates is called the set of special coordinates and may equivalently be written
as

zα = Xα

X0 .

IV.2 Gauge sector
Having defined all the above notations, we now turn to analysing the gauge field sector

of the theory. We recall that in four-dimensional Minkowski space, the Hodge dual squares
to minus identity on the field strengths FI , I = 0, ..., n. Therefore, the associated eigenvalues
are ±i and we define

F±I := FI ∓ i ? FI
2

satisfying ?F±I = ±iF±I , I = 0, ..., n. The Lagrangian for the (n + 1) abelian gauge fields
reads [50]

Lgauge = 1
2 Im

(
NIJF+I ∧ ?F+J

)
(IV.4)

with NIJ the matrix of complexified gauge couplings, whose imaginary and real part gives
the effective gauge coupling and the theta angles respectively. N is related to the prepotential
F by the relation

NIJ := F IJ + 2i Im(FIK)XK Im(FJL)XL

Im(FKL)XKXL
. (IV.5)

It turns out to be useful to introduce another field GI , which may be viewed as some sort of
magnetic counterpart to the field strength F I , using NIJ ; we then define

GI := NIJFJ (IV.6)

so that the Lagrangian (IV.4) may be rewritten as

Lgauge = 1
4 Im

(
F+I ∧ ?G+

I

)
, (IV.7)

G±I being defined similarly as F±I . From (IV.7), one may compute the gauge fields equations
of motion which read, together with the Bianchi identities

Bianchi identities : d Re
(
F+I

)
= 0,

Equations of motion : d Re
(
G+
I

)
= 0.



94 Chapitre IV. Special geometry

Having formulated the theory in terms of F+I and G+
I shows that the set of Bianchi identities

and equations of motion is invariant under linear transformations of F+I and G+
I , that is under

ˆF+I = AIJF+J +BIJG+
J , (IV.8)

Ĝ+I = CIJF+J +D J
I G+

J

with A, B, C and D real matrices only constrained so far by the requirement that (IV.8)
must be invertible. However, in order to recover equivalent theories, one must require that
F̂+I and Ĝ+

I form dual fields in the sense of (IV.6), that is that there must exist a symmetric
matrix N̂ such that Ĝ+

I = N̂IJ ˆF+J . From (IV.8), one deduces the matrix N transforms as

N̂ = (C +DN )(A+BN )−1. (IV.9)

Therefore, imposing the symmetricity of N̂ implies, up to an overall multiplication of F+I

and G+
I by a real constant, that(

F̂+I

Ĝ+
I

)
=
(
A B
C D

)(
F+I

G+
I

)
=: S

(
F+I

G+
I

)

with S a Sp(2(n+ 1),R) matrix, that is such that

(
A B
C D

)T(
0 1n+1

−1n+1 0

)(
A B
C D

)
=
(

0 1n+1
−1n+1 0

)
. (IV.10)

The transformations (IV.8) do not preserve the Lagrangian (IV.7) in general and should
therefore be viewed as dualities rather than as symmetries of the action. The transformation
of the gauge kinetic term indeed shows that (IV.8) defines a symmetry of the Lagrangian only
when B = C = 0 (implying D = A−T in accordance with (IV.10)). However, (IV.9) shows
that under a transformation with only B = 0 the matrix of complexified gauge couplings
transforms as

N̂ = A−T (N + Λ)A−1

where D = A−T and where we defined C := A−TΛ with Λ = ΛT a real symmetric matrix
in virtue of (IV.10). This transformation therefore induces a shift in the theta angles ; for
transformations in a discrete subgroup of Sp(2(n+ 1),R), the transformation with B = 0 and
C non-vanishing therefore amounts to an integral shift in the theta angles which does not
modify the path integral and may therefore be seen as a symmetry of the theory. We will see
later how such shifts play a role in our analysis.

The transformations (IV.8) also induce an action on XI and FI . First, one may notice
using (IV.2) and (IV.5) that XI and FI are dual in the same sense as F+I and G+

I , that is
that

FI = NIJXI . (IV.11)

Having (IV.11) in mind, it is straightforward to see that the transformation
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X̂I = AIJX
J +BIJFJ , (IV.12)

F̂I = CIJX
J +D J

I FJ

is compatible with the transformation (IV.9) of the N matrix. It turns out than ax explicit
computation using the N = 2 supersymmetry shows that XI and FI transform as in (IV.12)
indeed [11]. The dual theory may however not admit a prepotential itself, that is that there
may be no function F̂ (X̂) satisfying

F̂I = ∂F̂ (X̂)
∂X̂I

.

Indeed, a prepotential may exist (at least locally) if and only if the first line of (IV.12) is inver-
tible so that the Jacobian ∂X̂I/∂XJ is as well. In this sense, the symplectic vector

(
XI , FI

)
may be seen as more fundamental than the prepotential itself F (X). In the next section, we
apply the tools developed here in order to draw conclusions about the loop corrections to the
vector multiplets modular space of a large class of theories.

IV.3 Compactifications of heterotic and type IIA superstring theories

IV.3.1 Tree-level analysis

As we are ultimately interested in compactifications of the heterotic and type IIA super-
strings dual to each other, we now turn to models compatible with such theories. From the
heterotic point of view, the dilaton must sit in a vector multiplet and is therefore expected
to be a coordinate of Mv. If all other moduli can be understood from a world-sheet pers-
pective, then in the perturbative regime the moduli space described by the conformal field
theory point of view should become exact ; in other words, we expect that in this limit,Mv
factorises as Mcft ×Mdilaton. It was shown in [101] that a special Kähler manifold could
only factorise if it was locally of the form

SU(1, 1)
U(1) × SO(2, n− 1)

SO(2)× SO(n− 1) . (IV.13)

In the classical limit, that is at tree-level, the potential of the N = 2 supergravity corres-
ponding to the effective field theory of such a compactification therefore identifies to the
prepotential corresponding to (IV.13), which may be written as

F (X) := X1

X0X
aηabX

b (IV.14)

with a = 2, ..., n and ηab a constant metric of signature (+,−n−2). Since we have not used
any assumption about the heterotic compactification of interest other than the amount of
preserved space-time supersymmetries, the tree-level prepotential (IV.14) is actually universal
for this class of models.

It turns out that a different set of periods
(
X̂I , F̂I

)
is more convenient for our purposes ;

it is defined by
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X̂1 = F1 ,X̂
i = Xi , i = 0, 2, ..., n (IV.15)

F̂1 = −X1 ,F̂i = Fi , i = 0, 2, ..., n.

Equation (IV.10), ensures that such a transformation leads to a physically equivalent theory.
However, this formulation does not admit a prepotential as we anticipated at the end of
section IV.2 because in this case the relation X̂I = X̂I(X) is not invertible. Replacing F1 by
its explicit value in (IV.15), one gets

X̂1 = F1 = XaηabX
b

X0 = X̂aηabX̂
b

X̂0
;

the new periods X̂I therefore satisfy the constraint

X̂I η̂IJX̂
J := −X̂0X̂1 + X̂aηabX̂

b (IV.16)

where the constant metric η̂IJ of signature
(
+2,−n−1) is defined by (IV.16), with I, J =

0, ..., n. One may furthermore explicitly check that the new periods
(
X̂I , F̂I

)
satisfy the

relation

F̂I = 2Sη̂IJX̂J (IV.17)

where S is one of the variables {zα} (using special coordinates, S := z1 = X1/X0). S is
actually the variable spanning the SU(1, 1)/U(1) part of (IV.11) and may as such be identified
with the axio-dilaton.

IV.3.2 Quantum corrections
Because of the universality of the tree-level prepotential in heterotic compactifications

with N = 2 space-time supersymmetries, any interesting feature really lie in the quantum
corrections to the prepotential. In the following section, we will show that perturbative cor-
rections are subjected to stringent constraints which we will be able to exploit in V.2.

Non-renormalisation theorems proven in [102, 103, 104] show all quantum corrections
to the prepotential of N = 2 supersymmetric theories come from either one-loop or non-
perturbative contributions ; the exact potential of the theory may then be written as

F = F (0) + F (1) + F np (IV.18)

with F (0) the tree-level universal prepotential (IV.14) and F (1) and F np the one-loop and non-
perturbative contributions respectively. Before moving on, we present the argument of [11]
which explains very briefly why no higher-than-one-loop contributions to the prepotential
may appear from a string theoretical point of view. In the following, we will not be concerned
about non-perturbative corrections and therefore drop the F np term from (IV.18). We start
by giving the special coordinates version (of the perturbative part) of (IV.18) by defining

F (i)(X) = F (i)(yZ(z)) :=
(
X0
)2
f (i)(z) , i = 0, 1

where we have used the definition (IV.3) of the special coordinates, which implies in particular
that y = X0. Let us set as before the axio-dilaton field S = X1/X0 ; since the dilaton may
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be seen as a loop-counting parameter in string theory, one expects f (0) to be proportional
to S - which is the case from (IV.14) - and f (1) to be independant of S. Similarly, any
higher loop contribution would be proportional to a strictly negative power of S. However,
in string theory there is a discrete Peccei-Quinn symmetry at all orders in perturbation
theories which acts as a shift of the axion, that is as a shift of the real part of S. Under
such a shift, the tree-level prepotential is not invariant, but it may be seen as a symplectic
transformation (IV.12) with B = 0 ; as we have argued in section IV.2, such transformations
amount to an integral shift of the theta angles and do not change the path integral. Concerning
the one-loop contribution to the prepotential, it is independent of S and therefore inert under
the Peccei-Quinn symmetry. However, since any higher-loop contribution should contain S
at a negative power, the only way they do so compatible with the Peccei-Quinn symmetry
is that only Im(S) actually appears with a strictly negative power. Since this conflicts the
requirement from supersymmetry that the prepotential must be holomorphic, this shows that
no higher-than-one-loop contribution may correct the perturbative prepotential as claimed.

Let us now perform the same transformation as in (IV.15). Because F (1) is a one-loop
contribution, it does not depend on the dilaton and therefore on X1. Consequently,

X̂1 = F1 = F
(0)
1

so that the expression of X̂1 in terms of
{
XI , I = 0, ..., n

}
does not change compared to the

tree-level case ; in particular, the constraint (IV.16) still holds. However, equation (IV.17) is
no longer satisfied. Noticing that F (1)

1 = ∂F (1)/∂X1 = 0, it may nonetheless be conveniently
replaced by

F̂I = 2Sη̂IJX̂J + F
(1)
I . (IV.19)

This gives us a way to extract the one-loop correction to the prepotential F (1) in terms of the
periods (X̂I , F̂I) ; indeed, multiplying (IV.19) by X̂I and summing over I gives

F̂IX̂
I = 2SX̂I η̂IJX̂

J + F
(1)
I X̂I = 0 + F

(1)
I XI = 2F (1)

where the constraint (IV.16) and the homogeneity of F (1) have been used together with the
fact that F (1)

I X̂I = F
(1)
I XI , since X̂i = Xi for i 6= 1 and F (1)

1 = 0. In summary, F (1) may be
expressed as

F (1) = 1
2 F̂IX̂

I . (IV.20)

This gives an explicit way to check how F (1) transforms under the duality transforma-
tions (IV.12). In particular, let us consider one more time the special case where

X̂I 7→ AIJX̂
J

F̂I 7→
(
A−T

) J

I
ΛKJX̂J +

(
A−T

) J

I
F̂J

which is the most general case of transformation of the form (IV.12) satisfying B = 0 and
therefore, as we argued, which may directly be seen as a symmetry of the theory. Then,
(IV.12) together with (IV.20) show that
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F (1) 7→ F (1) + 1
2ΛIJX̂IX̂J . (IV.21)

In particular, even if A = 1 - that is even if X̂I is mapped to itself - the one-loop correction to
the prepotential may undergo a shift. This is perfectly acceptable from an effective field theory
point of view since the prepotential is only defined up to transformations leaving physically
relevant quantities invariant ; in particular, it may be shown that the transformation (IV.21)
only modifies the action by a total derivative. On the other hand, this signals that the function
F (1) may have singularities around which closed monodromies may give rise to such shifts.

Singularities in the prepotential may be understood by thinking about how effective field
theories are derived. Let us consider a given model which is described by a (UV-complete)
theory ; for various reasons, one would be interested in studying instead a simpler theory (for
instance, the UV-complete theory may not be known or too complicated). A solution is to
consider an effective field theory, meaning a theory which is obtained by considering only
low-energy excitations. In practice, this involves integrating out fields which are too massive
to be observed at energies below the chosen UV cut-off. Let us now consider the situation
we have here : the supergravity limit theory of string theory is obtained by truncating the
spectrum in a consistent way, meaning that all massive excitations are considered to be of the
order of Planck’s mass and as such integrated out 2. However, the actual mass of the fields
generically depends on the moduli and it may happen that some otherwise massive fields
become massless at some isolated points in the moduli space, leading for instance to enhanced
gauged symmetry. In a small enough neighbourhood of such points, the corresponding fields
may no longer be considered as heavy leading into a breakdown of the effective field theory. As
a consequence, several effective field theory descriptions may be necessary in order to patch the
whole moduli space, generically overlapping close to such problematic points. This explains
the singularities of the prepotential, which are simply due to the integration of massless scalar
fields.

Without going into further details for now, we conclude by giving the form of (IV.21) in
special coordinates. We set

S := X1

X0 , T := X2

X0 , U := X3

X0 , φ
α := Xα

X0 for α = 4, ..., n.

As before, S is understood as the dilaton, T and U as the Kähler and complex structure of
the two-torus respectively and φα the potential Wilson lines. A generic theory in superstring
theory will have a duality group containing transformations of T acting as

T 7→ aT + b

cT + d
(IV.22)

with (
a b
c d

)
∈ GT

for some discrete duality group GT . GT is generically a congruence subgroup of SL2(Z), that
is a group which admits Γ(N) as a subgroup for some integer N with Γ(N) the principal

2. In practice, consistent truncations may be more subtle than only throwing away all massive fields. For
simplicity, we assume here that the described procedure it consistent.
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congruence subgroup, that is the group of 2× 2 matrices with unit determinant and equal to
the identity modulo N . In special coordinates, this gives in particular

f (1)(z) 7→ f (1)(z) + Ξ(z)
J(S, z) , (IV.23)

S being the symplectic transformation of (IV.10), with

Ξ(z) := 1
2ΛIJ

X̂I

X̂0
X̂J

X̂0
,

J(S, z) := A0
I

X̂I

X̂0
A0

J

X̂J

X̂0
.

Equation (IV.23) will turn out to be extremely useful in section V.2 where we use it to derive
the expression of f (1) as a function of the moduli.

A simple and familiar example is the following : let us assume that a choice of periods
(XI , FI) has been made so that the tree-level prepotential reads

F (0) = X1

X0

(
X2X3 −XαδαβX

β
)

with α = 4, ..., n (this may always be achieved by starting from (IV.14) and applying suitable
transformations (IV.12)). Then, the transformation parametrised in the (X̂I , F̂I) basis by

A =



d 0 c 0 0 ... 0
0 a 0 b 0 ... 0
b 0 a 0 0 ... 0
0 c 0 d 0 ... 0
0 0 0 0

1n−3
...

...
...

...
0 0 0 0


, (IV.24)

B = C = 0 and D = A−T is a classical symmetry provided that ad−bc = 1. It leaves invariant
the axio-dilaton field S and may therefore be a symmetry of the theory in the perturbative
regime. Its action on T is given by (IV.22) while it maps U and φα to

U 7→ U − φαδαβφ
β

cT + d
,

φα 7→ φα

cT + d
.

The non-trivial transformation of U is a consequence of the trivial action of (IV.24) on the di-
laton. According to the analysis from above, under such a transformation f (1) would transform
as

f (1)(T,U, φα) 7→ f (1)(T,U, φα)
(cT + d)2 .

This gives the usual (cT + d)−2 factor we will encounter extensively in the following.
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Chapitre V
Moduli spaces of non-geometric type
II/heterotic dual pairs

V.1 Introduction
Non-perturbative dualities between N = 2 compactifications to four dimensions play a

pivotal role in our understanding of string theory dynamics, see [95] for a review. A classical
example is the duality relating heterotic strings compactified on K3× T 2 to type IIA super-
strings compactified on a Calabi–Yau three-fold that is a K3 fibration [105, 55] ; by applying
the duality fiber-wise, as was suggested in [49], this four-dimensional duality is obtained from
a more fundamental six-dimensional duality between heterotic on T 4 and type IIA on a K3
surface [84]. More general N = 2 dualities can be obtained by considering, on the heterotic
side, quotients of K3× T 2 by supersymmetry-preserving discrete symmetries (that were ori-
ginally considered in type II [106, 107, 108] as duals of CHL compactifications [109]), see [110]
for a recent work.

Deriving the quantum moduli space of N = 2 four-dimensional compactifications is an
essential quantitative test of non-perturbative dualities (see e.g. [105, 111, 112, 113]), as
quantum corrections on one side are typically mapped to classical expressions on the other
side of the duality. As we saw at the beginning of IV, by supersymmetry, the moduli space
of an N = 2 compactification splits, at least locally, into the vector multiplets moduli space
and the hypermultiplets moduli space :

M∼=Mv ×Mh , (V.1)

where the first factor is a special Kähler manifold and the second factor a quaternionic Kähler
manifold. Depending on the duality frame used, each factor may receive α′ corrections (if the
corresponding factor contains Kähler moduli) as well as gs corrections (if the dilaton belongs
to one of the corresponding multiplets).

For standard dualities between type IIA compactified on Calabi-Yau 3-folds and heterotic
on K3× T 2, the quantum vector multiplets moduli space has been studied in great detail as,
on the type II side, mirror symmetry allows to solve the problem exactly. The hypermultiplets
moduli space is much less understood, as it receives worldsheet instanton corrections on the
heterotic side and D-brane and NS5-brane instanton corrections on the type IIA side. 1

1. See [114] for a review about corrections to the hypermultiplets moduli space and more specifically [115]
for recent advances in understanding heterotic/type II duality in the hypermultiplets sector.
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For the dual pairs described in III, the situation is quite different on the type IIA side.
While for IIA compactifications on Calabi–Yau threefolds, such as in the FHSV model [55],
the two space-time supersymmetries correspond respectively to a left-moving and to a right-
moving worldsheet vertex operator, in the present case both space-time supersymmetries
correspond to left-moving vertex operators. As a result, the action of these charges on the
axio-dilaton generates a vector multiplet, rather than a hypermultiplet. Therefore,Mv may
receive one string-loop corrections as well as non-perturbative corrections on both sides of
the duality and there is no duality frame where the problem can be solved classically. We will
argue below that the one-loop corrections to the prepotential vanish on the type IIA side, and
compute the corrections to the prepotential – hence to the metric on the vector multiplets
moduli space – on the heterotic side, extending the method used in [10, 11].

By contrast, the hypermultiplet moduli spaceMh is tree-level exact in both heterotic and
type II duality frames. Deriving this moduli space on the type IIA side using algebraic geome-
try tools is not easy as mirrored automorphisms lack, by definition, a geometrical description,
see [7] for a discussion. Here, using the heterotic description as an asymmetric toroidal orbi-
fold, we are able to derive the exact hypermultiplets moduli space (both in α′ and gs).

This chapter is organized as follows. In section V.2 we discuss the general structure of
the vector multiplet moduli space as well as the duality groups appearing in the perturbative
limits ; an explicit computation of the one-loop corrections to the prepotential for some of the
models is presented in subsection V.2.5. In section V.3 we provide a description of the exact
hypermultiplets moduli space.

V.2 One-loop corrections to the prepotential

In this section we will analyse the spaceMV spanned by the scalars in the vector multiplets
(see equation (V.1)). As it has long been known, N = 2 supersymmetry imposes that MV
is a special Kähler manifold [116], whose geometry is completely encoded in a holomorphic
function f of the moduli, the prepotential, from which one can derive a Kähler metric on
MV.

As the axio-dilaton sits in a vector multiplet in both type IIA and heterotic perspectives,
the prepotential (and consequently the Kähler metric) generically receives corrections from
quantum contributions in both cases. It is well known then that, due to the Peccei-Quinn
symmetry of the axio-dilaton vector multiplet, any perturbative correction to f higher than
one-loop must vanish as a consequence of N = 2 supersymmetry [117, 113, 10, 11, 118] :

f = f (0) + f (1) + fnp, (V.2)

f (0), f (1) and fnp being the tree-level, the one-loop and the non-perturbative contributions
to the prepotential respectively.

The tree-level contribution to the vector multiplets moduli space is rather easy to unders-
tand, as there are generically only three vector multiplets for all values of p, and is similar to
the moduli space of more ordinary N = 2 compactifications like heterotic strings on K3×T 2

without Wilson lines, see e.g. [11, 10]. One of them contains the axio-dilaton and will be
named S in the heterotic description :

S = a+ ie−φ ,
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where the scalar a is the four-dimensional dual of the NS-NS two-form. The other two are
associated with the moduli of the two-torus. The moduli parametrise a "Teichmüller space"
TV which may be expressed as the direct product

Tv =
(
SL(2)/U(1)

)
S
×
(
O(2, 2)/O(2)×O(2)

)
T 2
,

where the SL(2)/U(1) and the O(2, 2)/ [O(2)×O(2)] factors correspond to the axio-dilaton
and the two-torus moduli spaces respectively. The latter may be further split to give

Tv =
(
SL(2)/U(1)

)
S
×
(
SL(2)/U(1)

)
T
×
(
SL(2)/U(1)

)
U
.

with the second SL(2)/U(1) factor (resp. the third) corresponding in the heterotic description
to the complexified Kähler (resp. complex structure) moduli space of the 2-torus, respectively
T and U . This is the Teichmüller space of the STU model which has already been extensively
studied in the literature. The actual classical moduli space is the quotient of this Teichmüller
space by the discrete duality group that will be described in subsection V.2.2, which is a
subgroup of the T-duality group (V.9) of two-torus compactifications.

The interesting piece of information accessible to a perturbative study therefore lies in
the one-loop correction f (1) ; as usual with one-loop diagrams in string theory, an explicit
computation would involve an integration over the worldsheet two-torus complex structure
which turns out to be hard to handle technically.

In particular, as was shown in [8], for the heterotic models at hand, the integrand of the
modular integral does not factorise into a product of a Narain lattice and a modular form
(neither for SL(2,Z) nor for a congruence subgroup associated with the orbifold) because
the shift vector has a non-zero norm. As a consequence, the powerful procedure developed
in [119, 120, 121, 122] in order to compute one-loop integrals in string theory, based on an
expansion of the modular form into Niebur-Poincaré series, cannot be applied to our models.
For similar reasons (non-factorisability of the integrand), the older ’unfolding trick’ developed
in [123] by Dixon, Kaplunovsky and Louis would also not be helpful here. This can be seen
by recalling how the unfolding methods works. In order to evaluate the modular integral :

I :=
∫
F

d2µ F (τ)Γ(τ, τ̄),

with
∫
F d2µ :=

∫
F

d2τ
τ2
2

the usual integration over the SL(2,Z) fundamental domain F of the
upper-half plane, one introduces a function jG which may be written as

jG(τ, τ̄) =
∑
g∈G

̃G(g · τ, g · τ̄)

for some subgroup G of SL(2,Z) and for some “seed" ̃G. The usual strategy is then to write
I as

I =
∫
F

d2µ F (τ)Γ(τ, τ̄)× jG
jG

=
∫
FG

d2µ F (τ)Γ(τ, τ̄)× ̃G
jG

where FG is the integration domain obtained by unfolding F alongG 2. From there, integration
may be done if jG cancels the non-holomorphic part of the integrand of I. This cannot be

2. For example, in the appendix of [123], the group G used is SL(2,Z)/ 〈T 〉, with 〈T 〉 the group of SL(2,Z)
transformations preserving ∞. As a result, FG is the usual strip |τ1| ≤ 1/2, τ2 > 0 in this case.
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done in our case, as Γ contains a sum over the charge lattice of the spacetime two-torus which
is not left invariant by any congruence subgroup of level p (with p the order of the orbifold)
because the shift vector has non-zero norm, as has been shown in [8]. 3

Our strategy will therefore be close in essence to the one already used in, e.g., [10, 11],
and consists in using modularity in the space-time moduli T and U rather than modularity
in the worldsheet modulus τ . The third derivatives of the one-loop prepotential f (1)(T,U)
are modular forms in both variables, and their behaviour under the T-duality group of the
orbifolded theory, together with the localization of physical singularities related to accidental
massless states, gives very stringent constraints on them. Using results from modular functions
theory and physical requirements may then be enough to fix the one-loop correction to the
prepotential, granting access to all perturbative corrections to the vector multiplets moduli
space at once while preserving manifest T-duality covariance. We will show in this section
how this strategy works in general and an explicit result for f (1) in the p = 2 case will be
provided.

V.2.1 One-loop correction to the vector multiplet moduli space
It has long been known that the one-loop correction to the prepotential in N = 2 theories

is related to the new supersymmetric index of [124] ; as shown in [117], the one-loop correction
to the Kähler potential may be explicitly written as

K(1)(T,U) = i

16(2π)3

∫
F

d2µ η̄−2TrR
(
J0(−1)J0qL0− c

24 q̄L̄0− c̄
24
)

(V.3)

with J0, L0 and L̄0 the respective zero-modes of the U(1) R-current and of the Virasoro
generators. One can then relate the one-loop prepotential f (1) to the modular integral (V.3),
using (see [10]) :

∂T∂T̄K
(1) = − i

8T 2
2

(
∂T + i

T2

)(
∂U + i

U2

)
f (1) + h.c. (V.4)

where we have decomposed the heterotic prepotential as :

f(S, T, U) = STU + f (1)(T,U) + fnp(S, T, U) ,

respectively the tree-level, one-loop and non-perturbative contributions (the latter being ex-
ponentially suppressed in the limit |S| → ∞) following equation (V.2).

Under perturbative symetries (i.e. T-dualities) the one-loop prepotential f (1) does not
transform covariantly in general. For heterotic compactifications with a T 2 factor, it trans-
forms as a modular function of weight (−2,−2) in T and U under PSL(2,Z)T ×PSL(2; ,Z)U
up to order-two polynomials due to monodromies around the singularities of the prepotential
due to the appearance of additional massless states [11, 10] ; therefore f (1) may not be ex-
pressed in terms of modular forms. In our case the story is similar but, as we will see shortly,
the duality group is different.

However, even though the n-th derivative of a modular function is generically not modular,
the third derivative of a modular function of weight -2 turns out to always be a genuine

3. In very restricted cases (orthogonal torus with no B-field), one could in principle unfold along the cycle
of the space-time two-torus left invariant under the action of the orbifold while canceling the jG denominator.
However, even then the integrand would remain non-holomorphic so that no good way of evaluating the
corresponding modular integrals has been found by the authors.
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modular function of weight 4 ; therefore, ∂3
T f

(1) is a modular function of weight (4,−2) in T
and U respectively. It turns out that ∂3

T f
(1) may be directly extracted from (V.4) as [10]

∂3
T f

(1) = −16iU2
2

T 2
2

∂TT
2
2 ∂T∂ŪT

2
2 ∂T∂T̄K

(1). (V.5)

In the same way, ∂3
Uf

(1) is a modular function of weight (−2, 4) in T and U respectively. As
explained in [10] (see in particuliar eqn. (2.24) there) it allows to derive the actual form of
f (1)(T,U), up to a quadratic polynomial in T and U depending on the path of integration in
the T and U planes. This ambiguity is due to the non-trivial quantum monodromies around
singular points in the vector multiplet moduli space.

We are then finally ready to extract ∂3
T f

(1) from (V.3). As usual in orbifold theories,
traces must be taken over all (un)twisted sectors and projection onto orbifold-invariant states
should be enforced, leading to summing over boundary conditions ; schematically the one-loop
Kähler potential (V.3) can be decomposed as :

K(1) =
p−1∑
h,g=0

∫
F

d2µφ

[
h

g

]
Γ
[
h

g

]
(T,U) (V.6)

where φ
[h
g

]
(τ) would be, in a standard K3 × T 2 compactification without Wilson lines, a

modular form of the congruence subgroup of PSL(2,Z)T × PSL(2,Z)U associated with the
orbifold 4 and Γ

[h
g

]
is the usual sum over the charge lattice of the two-torus defined as

Γ
[
h

g

]
:=

∑
Q∈Λh

q
|QL|

2
2 q̄

|QR|
2

2 e2iπg(Q,δ)

where we keep the convention from [10] for the expression of the left and right charges,
namely :

QL := µ1Ū − µ2 + ν1T̄ + ν2T̄ Ū√
2T2U2

, QR := µ1Ū − µ2 + ν1T + ν2TŪ√
2T2U2

, (V.7)

and where
(µi, νi) ∈ Z4 + hδ

are the corresponding coordinates of the charges in the sub-lattice Λh of the Narain lattice
associated with the h-th twisted sector.

Inserting the worldsheet modular integral (V.6) into the general formula (V.5) then finally
gives :

∂3
T f

(1) =16iπ2U2
T 2

2

p−1∑
h,g=0

∫
F

d2µφ

[
h

g

]

× τ2∂τ∂τ̄τ
2
2∂ττ

2
2
∑
Q∈Λh

QLQ̄
3
Rq
|QL|

2
2 q̄

|QR|
2

2 e2iπg(Q,δ) .

(V.8)

4. It is not the case for our non-geometric heterotic models, since the contributions from the K3 factor and
the T 2 factor are no longer separately modular-invariant, see [8] for details.
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The above expression should of course be properly renormalised in order to give a well-defined
expression for ∂3

T f
(1) (see e.g. [125]) ; however, it is already useful in the present form in order

to determine the location of its poles as well as to understand the duality group of the theory.
One may also verify that ∂3

T f
(1) behaves as a modular function of weight (4,−2) with respect

to (T,U) under a transformation of the T -duality group to be derived in the following section
from equation (V.8) as anticipated.

Obtaining ∂3
T f

(1) from its modular and analyticity properties requires the knowledge of
what happens at large distances in the vector moduli space, i.e. when either T or U tends to a
cusp. Any such limit may be understood as a decompactification limit as we will explain below.
While this is obvious for the T → ∞ limit, the cases of the other cusps (T → s for s ∈ Q)
correspond to a two-torus of vanishing volume with a constant B-field background. It is not
generically a decompactification limit of the theory of interest per se, but it is always possible
to find another theory for which the corresponding limit is a genuine decompactification limit
by acting on T with a SL(2,Z) element. The limits obtained by taking U close to a cusp may
be understood in a similar fashion by considering the dual torus instead. As argued in [126],
it follows then from EFT considerations that one does not expect any pole for ∂3

T f
(1) at the

cusps.
In the following, we will derive the duality group – or at least a subgroup thereof – of

the theory as well as its behavior when one of the moduli gets close to a cusp in both the
heterotic and type IIA pictures.

V.2.2 Vector multliplets moduli space : dualities
As explained above, the actual classical moduli space is given by the quotient of the

Teichmüller space (V.2) by the perturbative duality group acting on the second factor. Deri-
ving this duality group, or at least a sufficiently large subgroup thereof, is essential in order
to constrain sufficiently the modular functions ∂3

T f
(1)(T,U) and ∂3

Uf
(1)(T,U). After some

general remarks we will study first the perturbative duality group of the type IIA models,
and second of their heterotic duals.

V.2.2.a) Deriving the perturbative duality group

It is a generic feature of orbifold compactifications to have a duality group different from
the parent theory, as some symmetries of the latter may not be present in the daughter theory
and vice-versa. As far as the vector multiplet moduli space is concerned, the relevant orbifold
action of the models described in section III.1.2, either in type IIA and in heterotic, is the
action on the two-torus that corresponds to a translation. In the following, we will call G the
duality group acting onMV.

In the parent heterotic theory, the duality group acting on the torus moduli T and U is
given by O(Γ2,2)T 2 , Γ2,2 being the charge lattice of the T 2. A convenient decomposition is :

O(Γ2,2)T 2 ∼= P
[
SL(2,Z)T × SL(2,Z)U

]
n
(
Z2 × Z2

)
. (V.9)

In this expression, P [SL(2,Z)T×SL(2,Z)U ] is the quotient of the group SL(2,Z)T×SL(2,Z)U
by the involution (g, h) 7→ (−g,−h), while the two Z2 factors correspond respectively to the
exchange 5 of T and U and to (T,U) 7→ (−T̄ ,−Ū).

5. In the corresponding type IIA duality group the Z2 factor associated with the S ↔ U exchange is mirror
symmetry on T 2 and maps type IIA to type IIB.
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In general, a shift vector δ will break O(Γ2,2)T 2 into a smaller subgroup. In order to un-
derstand the unbroken symmetries of the orbifold models, let us consider a one-loop correction
of the schematic form

〈
f(Q̂)

〉(1)
(T,U) =

∫
F

dµ
p∑

h,g=1
Φ
[
h

g

]
(τ)F

[
h

g

]
(τ ;T,U) (V.10)

with f(Q̂) depending on the internal charge operators Q̂ of the theory, taking values in the
lattice (V.7). A necessary and sufficient condition for a transformation acting on (T,U) to
leave (V.10) invariant – and then to be a duality of the theory – is that it should mix the
sectors (h, g) in such a way that the sum over all sectors remains invariant. This is obtained
for instance by allowing (T,U) to transform as

F

[
h

g

]
(τ ;T,U) 7→ F

[
h

g

]
(τ ;T ′, U ′) = F

[
h′

g′

]
(τ ;T,U)

with Φ
[h′
g′
]
(τ) = Φ

[h
g

]
(τ).

The function F
[h
g

]
may be explicitly written in terms of a sum over the charge lattice and

reads :

F

[
h

g

]
(τ ;T,U) =

∑
Q∈Λh

f(Q)e−πτ2M2(Q;T,U)+iπτ〈Q,Q〉+2iπg〈Q,δ〉 (V.11)

where the scalar product 〈·, ·〉 is defined with respect to Γ2,2 and where the mass function is
given by :

M2
(
Q =

[(
µ1
µ2

)
,

(
ν1
ν2

)]
;T,U

)
:= 1

T2U2

∣∣∣∣∣(1 T
)(µ1 −µ2

ν2 ν1

)(
U
1

)∣∣∣∣∣
2

. (V.12)

An arbitrary transformation ĝ ∈ G acts on X = T,U as

X 7→ ρX(ĝ) ·X

with ρX some representation of G. It may easily be seen from equation (V.11) that F
[h
g

]
may

only transform into F
[h′
g′
]
under the action of ĝ if there exists some representation ρ of G such

that
M2(Q; ρT (ĝ) · T, ρU (ĝ) · U) =M2(ρ(ĝ) ·Q;T,U)

for any Q ∈ Λ. Then, setting (T ′, U ′) := (ρT (g) ·T, ρU (g) ·U) for clarity, F
[h
g

]
(T,U) transforms

as :

F

[
h

g

]
(τ ;T ′, U ′) =

∑
Q∈ρ(ĝ)·Λh

f(ρ(ĝ−1) ·Q)e−πτ2M2(Q;T ′,U ′)+iπτ〈ρ(ĝ−1)·Q,ρ(ĝ−1)·Q〉+2iπg〈ρ(ĝ−1)·Q,δ〉

Therefore, a necessary condition for F
[h
g

]
(τ ;T ′, U ′) to be identified to F

[h′
g′
]
(τ ;T,U) for

some h′ and g′ is to have〈
ρ(ĝ−1) ·Q, ρ(ĝ−1) ·Q

〉
= 〈Q,Q〉 ∀Q ∈ Λh .
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Assuming furthermore that ρ(ĝ) acts on the charges Q linearly, this is equivalent to requiring
that ρ(ĝ) belongs to O(Γ2,2 ⊗ R). Imposing this restriction, the above equation now reads :

F

[
h

g

]
(τ ;T ′, U ′) =

∑
Q∈ρ(ĝ)·Λh

f(ρ(ĝ−1) ·Q)e−πτ2M2(Q;T,U)+iπτ〈Q,Q〉+2iπg〈Q,ρ(ĝ)·δ〉 .

The transformation (T,U) 7→ (T ′, U ′) may then be a duality of the theory only if it
preserves the full charge lattice, that is if ρ(ĝ) · Λ = Λ, and if

f(ρ(ĝ)−1 ·Q) = J(ĝ;T,U)f(Q) ∀Q ∈ Λ

for some function J independent of the charge vector Q. The first condition will allow us in
the following to identify the duality group of the theory from either type IIA and heterotic
points of view while the second one is only reflecting the usual behaviour of modular covariant
correlator functions.

V.2.2.b) Perturbative type IIA symmetries

The perturbative duality group acting on Teichmüller space (V.2) will be very different
depending on whether one considers the theory in the type IIA or in the heterotic perturbative
regime. In addition to the exchange of the T and S moduli (that follows from heterotic/type
IIA duality in four dimensions), the shift vectors δiia and δHet used in the respective pertur-
bative limits are of different nature (light-like in the former case but not in the latter) as we
have reviewed in section III.1.2.

We will start by looking at the type IIA duality frame, where S and U are the two-torus
moduli and T the axio-dilaton. The model is understood as an orbifold of K3× T 2 acting as
an order p mirrored automorphism on the K3 factor and as a shift along the two-torus. In
the type IIA theory, the shift vector satisfies δ 2

iia = 0 hence may be chosen as :

δiia =
(1
p
, 0, 0, 0

)
, (V.13)

i.e. as an order p momentum shift along one circle.
Let us first focus on the component of O(Γ2,2 ⊗ R) connected to the identity, which acts

on the moduli of the torus as :

(S,U) 7→ (gS · S, gU · U) :=
(
aS + b

cS + d
,
a′U + b′

c′U + d′

)
, ad− bc = a′d′ − b′c′ = 1.

The parametrisation given in (V.12) allows one to infer straightforwardly the corresponding
action on the charges of the lattice :(

µ1 −µ2
ν2 ν1

)
7→
(
d b
c a

)(
µ1 −µ2
ν2 ν1

)(
a′ b′

c′ d′

)

with (µi, νi) ∈ Z4+hδiia in the h-th twisted sector. As we have just seen, a necessary condition
for a transformation to give rise to a duality of the theory is that it must preserve the charge
lattice Λ. As a result, gS and gU must have the form :

gS = 1√
e

(
ae b
cp de

)
, gU = 1√

e

(
a′e b′p
c′ d′e

)
, e|p , gcd

(
e,
p

e

)
= 1 .
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These are the Atkin-Lehner involutions 6 already encountered in [122, 127]. Such an action
on S and U is not generically a duality of the theory though as a vector Q in the h sector is
mapped to another one in the h′ sector, with h′ = da′he+ bc′n1

p
e and n1 the winding number

of Q around the first circle of T 2. An arbitrary transformation then generically splits Γ
[h
g

]
into

a sum of contributions coming from various sectors, so that deriving the full duality group
would require a more in-depth analysis of the details of the model.

For our purposes it will be sufficient to identify only a simpler subgroup of the whole
duality group, by restricting to transformations which preserve each sub-lattice Λh separa-
tely. This may easily be obtained from the above transformations by setting e = 1 ; the
corresponding transformations all belong to Giiap , defined as :

Giiap :=
{

(g, g′) ∈ Γ0(p)S × Γ0(p)U
∣∣∣g11 = g′11, g22 = g′22 mod p

}
with Γ0(p) (resp. Γ0(p)) the group of SL2(Z)-matrices whose lower (resp. upper) off-diagonal
component vanishes modulo p. One has in particular

Γ1(p)S × Γ1(p)U ( Giiap ( Γ0(p)S × Γ0(p)U

with the congruence subgroups Γ1(p) = {g ∈ Γ0(p)|g11 = g22 = 1 mod p} and, in a similar
way, Γ1(p) =

{
g ∈ Γ0(p)

∣∣g11 = g22 = 1 mod p
}
.

We now turn to a brief analysis of the behavior of the models at the cusps of Γ0(p). First,
the S → i∞ limit is the type IIA decompactification limit of the two-torus and, due to the
freely-acting nature of the orbifold that acts as a momentum shift along T 2, it is described
by a type IIA theory compactified on K3 (see e.g. [128]), thereby effectively restoring N = 4
supersymmetry.

When S gets close to one of the other inequivalent cusps, one may analyse the situation
by performing a double T-duality along the two-torus and going to the decompactification
limit of this dual torus. Following [127], the type IIA worldsheet theory obtained by a double
T-duality can be described as an orbifold (M/〈σ̂p〉 × S̃1)/Gp × S̃1, where M/〈σ̂p〉 is the
quotient of the K3 CFT M by the mirrored automorphism σ̂p and Gp is an order p cyclic
group acting on the first factor as the quantum symmetry of the orbifoldM/〈σ̂p〉 and on the
second factor as an order p shift.

A crucial property of the mirrored automorphisms is that the orbifoldM/〈σ̂p〉 is actually
isomorphic to the original K3 CFTM, owing to fractional mirror symmetry [77]. Hence the
theory obtained after double T-duality is exactly of the same type as the original theory, so
that the same conclusions hold for the behavior at all cusps : N = 4 is restored.

The analysis of the cusps in the U -plane is similar to what we have obtained for the
behavior at the cusps in the S-plane, considering the mirror type IIB model instead of type
IIA.

V.2.2.c) Perturbative heterotic symmetries

We now consider the heterotic dual of the model, i.e. an orbifold of T 4 × T 2 acting as
an automorphism of the Γ4,20 Narain lattice on T 4 and as a shift along the two-torus whose
Kähler moduli is T and whose complex structure moduli is U . We restrict the analysis to the

6. The term “involution" is related to the fact that the square of an Atkin-Lehner involution is in Γ0(p)
and acts therefore trivially on the corresponding modular forms.
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case of an orbifold by a group isomorphic to Zp ; then, as shown in [8], one may choose the
shift vector to have components 7

δhet =
(1
p
, 0, 1

p
, 0
)

with no loss of generality, see eqn. (III.10).
The derivation of the perturbative duality group in this case goes along the same lines

as in the type IIA case. The non-vanishing norm of the shift vector forbids in this case any
sector-mixing behavior comparable to what we had observed in the type IIA case ; to be more
precise, a vector in Λh may only be mapped to a vector in Λh′ if h2 = h′2 mod p. In particular,
for p prime, this means that Λh may only be mapped to Λ±h. Let’s consider a transformation :

(T,U) 7→ (gT · T, gU · U) :=
(
aT + b

cT + d
,
a′U + b′

c′U + d′

)
, ad− bc = a′d′ − b′c′ = 1 .

In order to avoid unnecessary complications, we will restrict from now to the cases where all
coefficients in the above equations are integers, the rationale being that possibile dualities
with non-integer coefficients will not be needed for the analysis of the prepotential below.

First, one realizes that the two Z2 factors of (V.9) from the mother theory duality group
remain symmetries of the daughter theory. Indeed, though preserving one Z2 was expected
as the orbifold leaves a one-cycle of the two-torus invariant, preserving the second one as well
is somewhat more unusual. As this T-duality exchanges momentum and winding number, it
may remain a symmetry of the orbifold theory only if the shift of the orbifold acts in a similar
fashion on both the two-torus and its dual, which is the case with the shift vector (V.2.2.c)).

Second, imposing in addition that a duality must preserve the charge lattice Λ and keeping
in mind that Φ

[h
g

]
in equation (V.10) must be equal to Φ

[−h
−g
]
as a result of CPT invariance,

one can check that the perturbative duality group of the heterotic theory must contain :

Ghetp :=
{
(g, g′) ∈ SL2(Z)T × SL2(Z)U

∣∣g′ = ±σ3gσ3 mod p
}
n
(
Z2 × Z2

)
.

as a subgroup, σ3 being the third Pauli matrix. Equivalently, one has

Ghetp =
(
SL(2,Z)× Γ(p)

)
n
(
Z2 × Z2

)
,

since the condition g′ = ±σ3gσ3 mod p can be solved as g′ = ±γσ3gσ3 with g ∈ SL(2,Z)
and γ ∈ Γ(p), Γ(p) := {g ∈ SL(2, Z)|g = I mod p} being the principal congruence subgroup
of level p.

Acting non-trivially on only one of the complex moduli of T 2 (that is, setting either g = I
or g′ = I in the above definition) gives the subgroup :

Γ(p)T × Γ(p)U n
(
Z2 × Z2

)
( Ghetp . (V.14)

For the rest of the discussion, we will focus on this subgroup and won’t attempt to derive the
full heterotic perturbative duality group of the theory.

The behavior of the theory when going to large distances in the moduli space may be
extracted directly from e.g. the partition function of the model in this case along the lines

7. Here, it is understood that the shift vector is chosen so that the heterotic theory is dual to the type IIA
theory with shift vector defined in (V.13).
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of [128] and using its explicit form computed in [8]. It turns out that when either T or U
tend to any cusp of Γ(p), the theory may be described by a heterotic string theory on a
four-torus, restoring once again N = 4 supersymmetries (for the U modulus, this is requested
by heterotic/type IIA duality).

It is worth mentioning that the fact that the gravitini masses vanish in those limits, thereby
restoring N = 4 supersymmetry, does not imply in general the vanishing of quantities which
would vanish in a “genuine" N = 4 theory ; in particular, it does not imply that the Yukawa
coupling ∂3

T f
(1) tends to zero when T or U tends to a cusp. 8

As explained in [128], while the mass of the two massive gravitini tend to zero, some
charged states may be lighter in this limit. Those light charged states would always keep
track of the original N = 2 behavior of the theory no matter how small one makes the
gravitini mass ; consequently, there would be no reason to expect, say, ∂3

T f
(1) to be vanishing

in this limit.
We will now argue that this is the case for the models considered in this work. Let us first

consider the string states corresponding to the massive gravitini, and the large volume limit
|T | → ∞. These states are of the form :

|Ψg〉 =
(
|s0; pµ〉r ⊗ |s′; 0〉r ⊗ |ŝ;PL〉r

)
⊗
(
α̃µ−1|p

µ〉 ⊗ |0〉 ⊗ |PR〉
)
,

where we have chosen for the T 4 CFT a Ramond ground state |s′; 0〉r with unit charge under
the action of the Zp orbifold. The momentum (PL, PR) along the T 2 is chosen such that |Ψg〉
is even under the orbifold projection associated with the shift vector (V.2.2.c)). Given the
mass formula (V.12) the lightest such state has µ1 = 1 and µ2 = ν1 = ν2 = 0 (i.e. one
unit of momentum along the first circle of the two-torus) and the gravitino mass is given by
Mg = |U |/

√
U2T2.

Light charged states can be obtained easily from the Kaluza-Klein modes of the T and U
vector multiplets. Specifically, consider a state of the form

|Ψk〉 =
(
|s0; pµ〉r ⊗ |s; 0〉r ⊗ |ŝ;QL〉r

)
⊗
(
|pµ〉 ⊗ |0〉 ⊗ α̃1

−1|QR〉
)
,

where the Ramond ground state |s; 0〉r of the T 4 CFT is neutral under the orbifold action,
and where the oscillator α̃1

−1 is along the first circle of the two-torus. The lightest such states
that are invariant under the orbifold projection have µ2 = 1 and µ1 = ν1 = ν2 = 0 (i.e.
one unit of momentum along the second circle of the two-torus) and their mass is given by
Mk = 1/

√
U2T2.

Thus Mg/Mk = |U | which is greater than one inside the fundamental domain F0 of
SL(2,Z)U . The other parts of the fundamental domain of Γ(p)U are obtained as g · F0 for
some g ∈ SL(2,Z) and can be analyzed along the same lines, by transforming the shift vector
accordingly.

Finally, one may wonder whether the vector multiplets moduli space of the putative non-
perturbative N = 2 theory has an exact duality group, related to the perturbative groups
Ghetp and GIIA

p . On general grounds one expects that the heterotic vector multiplets moduli
space gets corrected by NS5-branes instanton effects breaking the perturbative duality group
(see however [55] as an exception to this rule). It has been shown for instance that T-dualities
of heterotic strings on K3 × T 2 do not survive quantum effects as can be seen from the

8. Imposing those constraints on the modular form ∂3
T f

(1) would actually be too stringent for most values
of p.
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Calabi–Yau type IIA dual, where the corresponding worldsheet instanton effects are known
thanks to mirror symmetry [129]. In the present case, since there is no duality frame in which
the vector multiplets moduli space is classical, there is no obvious way to adress this question.

Dualities acting on the (SL(2,Z)/U(1))U factor of the space (V.2) alone, given that there
is no frame in which U is the axio-dilaton, may still be exact symmetries of the quantum theory
if they appear on both sides of the duality. We have shown above that the IIA perturbative
group contains a congruence subgroup Γ1(p)U , while the heterotic perturbative group contains
a smaller congruence subgroup Γ(p)U of SL(2,Z).

A duality g ∈ Γ1(p)U\Γ(p)U is a symmetry on the type IIA side but does not belong to the
factorized subgroup (V.14) on the heterotic side. If we consider the larger subgroup (V.2.2.c))
of the heterotic duality group, g ∈ Γ1(p)U\Γ(p)U remains a symmetry of the theory if accom-
panied by a non-trivial transformation in SL(2,Z)T .

From the type IIA side, this could be a problem as T is now the axio-dilaton. However, for
any such g =

(
1 b
0 1

)
mod p, an appropriate transformation of T would be given by g′ =

(
1 b
0 1

)
,

i.e. by an integral shift of the NS-NS axion T 7→ T + b, b ∈ Z. This transformation preserves
the perturbative regime Im (T ) → ∞ and this discrete Peccey-Quinn symmetry is expected
to remain a symmetry of the quantum theory.

In conclusion, one may speculate that Γ1(p)U acting on the vector moduli space is an
exact duality of the N = 2 quantum theory. Other exact dualities symmetries acting on
the hypermultiplets moduli space, which does not receive gs corrections, will be given in
section V.3.

V.2.3 Heterotic case : singularities of the prepotential

Our goal in this subsection is to derive ∂3
T f

(1)(T,U), which is a modular function of weight
(4,−2) in T and U , using its singularity structure and its behavior at the cusps, applying
theorems of modular forms.

Understanding the location of the singularities is fairly easy from an effective field theory
(EFT) point of view. To get an effective N = 2 supergravity theory from the underlying
string theory, one has to integrate all heavy fields ; there may be points in the vector moduli
space where otherwise massive states become massive, resulting in a breakdown of the original
effective field theory. As a result, the prepotential becomes singular at such a point leading
in a pole of order one in ∂3

T f
(1) [11].

From the conformal weights of the operators of the heterotic theory, one learns that the
mass of a state satisfies :

m2

2 = |QL|
2

2 +NL + aL = |QR|
2

2 +NR + aR

with NL (NR) the excitation number and aL (resp. aR) the zero-point energies of the left-
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(resp. right-) moving fields. aL and aR where explicitly computed in [8] and read :

aL =


h
p −

1
2 if h ≤ p

2

−h
p + 1

2 if h ≥ p
2

aR = h2

p2 −
h

p
−
(gcd(h, p)

p

)2 ∏
q|p

q prime

(−q)

in the h-th twisted sector (the inequalities in the expression of aL being valid for the repre-
sentative of h in Zp such that 0 < h < p). In the untwisted sector, aL = −1

2 and aR = −1 as
usual ; a state with non-vanishing charge may therefore be massless in this sector if and only
if 

|QL|2 = 0

|QR|2 = 2
.

While there is no such state in general, equation (V.7) implies that a state of charge Q =
(mi, ni) ∈ Z4 may become massless if

T =
(
−m1 m2
n2 n1

)
· U and

(
−m1 m2
n2 n1

)
∈ SL2(Z) . (V.15)

So far, the situation is the same as in the mother theory ; the orbifold projection will
furthermore select some allowed charges Q. At the end of the day, assuming as before that
the basis is chosen such that the shift vector has non-vanishing components along the first
cycle of the two-torus only, see eqn. (V.2.2.c)), the generically massive states which become
massless at some points in the vector moduli space have charges satisfying :(

−m1 m2
n2 n1

)
=
(
a+ ε b
c a

)
mod p ,

with ε ∈ {0,±1}. The states satisfying the above equation with ε = 0 belong to N = 2 vector
multiplets and correspond to non-abelian enhancements of the gauge symmetry ; in contrast,
the case ε = ±1 corresponds to states belonging to charged hypermultiplets, then resulting in
additional matter states without any enhancement of the gauge group. In either case, these
states are responsible for the appearance of single poles in ∂3

T f
(1) at the lines of the moduli

space given in (V.15).
New singular lines absent in the mother theory could also occur if extra charged massless

states come from the twisted sectors, which may happen only if the zero-point energy of the
right-moving fields aR is negative. It is worthwhile noticing that such a state would necessarily
belong to a hypermultiplet, as only twisted oscillators of the T 4 have a small enough conformal
dimension to fulfill the massless condition coming from the supersymmetric side of the CFT.
As it turns out, even though the analysis of the situation goes along the same lines as in the
untwisted sector case, it may not be performed keeping p (and h, the label of the twisted
sector) generic.
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As usual, finding which states may become massless or not for given values of the moduli
T and U may also easily be done by computing the new supersymmetric index I of [124],
whose worldsheet modular integral gives the one-loop Kähler potential (V.3). Defining I

[h
g

]
as the contribution from the h-th twisted sector with the insertion of the generator of the
orbifold to the power g, it is easy to show that :

I
[
0
g

]
= − i

η̄6(τ)

 ∏
d
∣∣ p

(g,p)

η̄(dτ)−µ
(

p
d×(g,p)

)
24/ϕ

(
p

(g,p)

) ( 2∏
i=1

ϑ̄

[
1

1 + 2gsi/p

])
Γ
[
0
g

]

for g 6= 0 and I
[0
0
]

= 0, as usual. 9 It is quite straightforward to obtain from there any I
[h
g

]
acting with elements of SL2(Z) on the above ; if p is prime, the contribution Ih from the h-th
twisted sector to I then reads :

I0 = − ip
12/(p−1)

pη̄6(τ)

(
η̄(τ)
η̄(pτ)

)24/(p−1) p−1∑
g=1

( 2∏
i=1

ϑ̄

[
1

1 + 2gsi/p

])
Γ
[
0
g

]

Ih6=0 = ip12/(p−1)

pη̄6(τ)

p−1∑
g=0

 η̄(τ + h−1g)
η̄
(
τ+h−1g

p

)
24/(p−1)( 2∏

i=1
ϑ̄

[
1 + 2hsi/p
1 + 2gsi/p

])
Γ
[
h

g

]

with h−1 the inverse of h in Z×p .
Charged massless states give rise to divergences in ∂3

T f
(1) through the contribution of

unphysical tachyons coming from the non-supersymmetric side of the worldsheet CFT ; the-
refore, the knowledge of Ih allows to look for such tachyons in its expansion around τ → i∞.
This way, one may check for instance that no charged states coming from the twisted sector(s)
become massless at any point of the T 2 moduli space for p = 2. Of course, the new super-
symmetric index also gives information about the residues of ∂3

T f
(1), even though those may

also be determined by purely effective field theory considerations. In general, one finds [11]

Res
U→γ·T

∂3
T f

(1) = βγ
16π2

det2(γ)
J4(γ, T ) (V.17)

where βγ is the beta function coefficient associated to the gauge group under which the
corresponding charged massless fields are charged and where J(γ, T ) := cT + d for

γ =
(
a b
c d

)
.

V.2.4 Vector multiplets moduli space : quantum corrections

In the following, we show that the above is sufficient to determine a closed form for ∂3
T f

(1)

in terms of modular functions of Γ(p) for any value of p, at least in principle. We then proceed
to the explicit computation of the corrections for the models with p = 2.

9. In the above derivation, equation (C.25) has been used in order to derive an expression more suited for
numerical computations but equivalent to the more traditional form involving more ϑ-functions.
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Type IIA viewpoint

The above analysis has been mainly focused on the heterotic side of the theory because
the derivation of ∂3

T f
(1) is more involved in this case. Indeed, in the perturbative type IIA

regime, unlike in heterotic, there is no non-Abelian enhancement of the gauge symmetry in
the (S,U) moduli space, hence no associated logarithmic singularities of the gauge couplings.
We have checked as well that, at least for p = 2, there are no charged hypermultiplets from the
twisted sectors of the asymmetric orbifold of the Gepner model that could become massless.

As argued in [126, 11], using simple effective field theory considerations, the second deri-
vatives of f (1)

iia (S,U), i.e. the gauge couplings, should grow at most linearly in S and U in the
decompactification limit hence one does not expect a pole of f iia(S,U) at the cusps S = i∞
and U = i∞. Moreover, as we have argued in section V.2.2.b), the theory obtained when S
or U tend to any other cusp may be equivalently described in terms of a theory isomorphic
to the original ones, so that the same arguments show that hiia(S,U) is holomorphic at all
cusps.

In conclusion, using the fact that the space of negative weights modular forms is empty
for any congruence sugroup, the type IIA perturbative corrections should vanish :

f
(1)
iia (S,U) = 0 .

Therefore, on the type IIA side, all the corrections to the prepotential in (V.2) are of non-
perturbative nature.

Heterotic viewpoint

In the heterotic picture, the one-loop correction to the prepotential f (1)
het cannot vanish as

it would be inconsistent with the analysis of its poles and of their residues.
The idea here is to express ∂3

T f
(1)
het in terms of modular functions of Γ(p), thereby making

duality (V.14) manifest. It is a standard fact from modular form theory that a modular
function fk of weight p with respect to Γ(p) satisfies 10 [30]

∑
x∈X(2)

ordx(fk) = k

2 if p = 2

∑
x∈X(p)

ordx(fk) = k

24 |SL2(Z) : Γ(p)| if p > 2

where X(p) is the compactification of the quotient of the upper-half plane H by Γ(p) (that is
the space H/Γ(p) to which one add the corresponding cusps) and where ordx(fk) is the order
of fk at x in the complex analysis sense, that is the least power in the Laurent expansion of
fk around x with non-vanishing coefficient.

Let us then consider our function ∂3
T f

(1)
het(T,U) as a function of U with fixed parameter

T for a moment. As we have seen, the only poles of ∂3
T f

(1)
het must be simple and located along

singular lines of the form U = γ ·T in the (T,U) moduli space ; we will denote in the following

10. The p = 2 case must be treated separately because Γ(2) is the only principal congruence subgroup
containing −I, leading to a difference from a factor of 2 between the two equations.
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the set of all such γ’s as Γsing. This means that the orders of ∂3
T f

(1)
het – seen as a function of

U only – must satisfy : 
ordU∂3

T f
(1)
het = −1 ∀U ∈ Γsing · T

ordU∂3
T f

(1)
het ≥ 0 ∀U /∈ Γsing · T

.

Recalling that ∂3
T f

(1)
het is a modular function of weight (4,−2) under Γ(p)T ×Γ(p)U , equa-

tion (V.18) shows that there is no much freedom left by these requirements ; to be more
specific, there will be exactly 5 free parameters if p = 2 and

|Γsing| −
1
12 |SL2(Z) : Γ(p)|

free parameters if p > 2 left unfixed by just imposing the location of the poles of ∂3
T f

(1)
het.

Mathematically, these free parameters correspond to the location of the zeroes of ∂3
T f

(1)
het and

are as such harder to fix through physical requirements only in general.
The additional data about the residues of ∂3

T f
(1)
het give even more information and allows

to fix at least some of the above parameters. Focusing on the divisor of ∂3
T f

(1)
het seen as a

function of U fixes it up to an overall multiplicative constant with respect to U , that is up
to an overall multiplicative function of T only ; each residue computation lead to a constraint
on the free parameters from above. Fixing the overall multiplicative function of T leaves then
|Γsing| − 1 constraints in total, which are non-necessarily independent.

At the end of the day, we have more constraints than free parameters and are as such
entitled to hope that these would be enough to completely determine ∂3

T f
(1)
het for any p. If it

happened not to be the case for some orders p though, fixing the remaining free parameters
would have to be done in a different but not necessarily cumbersome way ; indeed, computing
only the first few terms in the expansion of ∂3

T f
(1)
het would be enough to fix it completely.

At worst, our analysis would then allow to express an infinite series expansion in terms of
somewhat easier to handle modular forms. We now turn to illustrating the above strategy in
the p = 2 case.

V.2.5 p = 2 case : explicit derivation

In the following subsection, we will illustrate the strategy outlined above by computing
explicitely the one-loop corrections to the prepotential for non-geometric models based on
orbifolds of order p = 2, from their modular properties. 11

The analysis of section V.2.3 show that there are 6 singular lines in the (T,U)-moduli
space mod Γ(2)T × Γ(2)U ; more precisely, along the T = U,U + 1,−1/U and U/(U + 1)
lines, one additional vector multiplet becomes massless, resulting in a U(1)2 → SU(2) ×
U(1) gauge symmetry enhancement. Along the T = −1/(U + 1) and (U − 1)/U lines, two
charged hypermultiplets become massless, leading to additional matter content without gauge
symmetry being enhanced.

11. This particular class of compactifications has previously been considered in the litterature [49], albeit
formulated in a different way. Indeed, in the type IIA picture, such orbifold of Gepner model may be understood
as acting as (−1)FL (together with a momentum shift along the T 2). However, as far as the authors know, no
derivation of the corrections to the prepotential had been given for this model before.
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Accidentally, it turns out that a more compact way of parametrising the singular lines
exist for p = 2 ; indeed, one may notice from the above that there is actually a singular line
at T = γ · U for any γ ∈ SL2(Z)/Γ(2) – which is not generalisable for arbitrary p.

Using the notations introduced in appendix E, ∂3
T f

(1)
het may therefore be written as :

∂T3 f
(1)
het = f(T )× g10(T,U)∏

γ∈SL2(Z)/Γ(2)
[
V∞(U)(λ(U)− λ(γ · T ))

]
where the modular forms V?(T ) have a single zero at the corresponding cusp, see eqn. (E),
and where g10(T,U) is a modular form of weight 10 with respect to Γ(p)U ; as such, it may
be expanded on a basis of Γ(p)U modular forms in the variable U as :

g10(T,U) =
5∑

n=0
an(T )X5−n

1 (U)Xn
2 (U) .

Computing the residue of ∂3
T f

(1)
het when U → γ · T is made especially easy using equa-

tion (E.28). One obtains :

Res
U→γ·T

∂3
T f

(1)
het = f(T )g10(T, γ · T )

∆(T )∂j(T ) J
−14(γ, T ) != − εγ

4π2
det2(γ)
J4(γ, T )

where equation (V.17) has been used to obtain the right-hand side. Here, εγ is 1 (resp. -
1) for singular lines corresponding to vector multiplets (resp. hypermultiplets) ; these signs
reflect the respective values of the beta-function coefficient βγ , which is -4 for a SU(2) without
charged hypermultiplet (resp. +4 for a U(1) with two hypermultiplets of charge 1 in absolute
value) in the four-dimensional EFT.

This data provides the necessary information about the behaviour of g10(T,U) under the
action of SL2(Z) on its second variable. As moreover Γ(p) is normal in SL2(Z) for any value
of p, the ring of modular functions of the former is closed under the action of the latter.
Therefore, g10(T, γ · T ) is a modular form of weight 10 with respect to Γ(2) whose explicit
form may be computed in terms of {an(T )}, leading to 5 independent equations allowing one
to fix all the an’s (up to an overall multiplicative function of T ).

These equations may easily be solved and finally leads to the fully explicit result (see
appendix E) :

∂3
T f

(1)
het = i

995328π
P10,10(T,U)

V0(T )V1(T )V∞(T )∆(U) [j(T )− j(U)] (V.19)

with P10,10(T,U) a modular form of weight (10, 10) with respect to Γ(p)T × Γ(p)U that is
given by eqn. (E.29) in appendix E.

Since T ↔ U exchange is part of the heterotic perturbative duality group, we get imme-
diately the expression of ∂3

Uf
(1)
het by exchanging the roles of T and U on the right-hand side

of (V.19).

V.3 Hypermultiplets moduli space
In this section we describe the manifoldMh spanned by the massless scalars in the neutral

hypermultiplets of the N = 2 low-energy four-dimensional theory, which is a quaternionic
Kähler manifold [130, 131].
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V.3.1 Hypermultiplet moduli space in the type IIA description
From the type IIA perspective, the situation is very different from the usual case of com-

pactifications on Calabi–Yau three-folds. While in the latter case Mh contains the complex
structure moduli of the CY3, the scalars from the Ramond–Ramond forms and the axio-
dilaton (hence receives gs corrections), in the present case the axio-dilaton lies in a vector mul-
tiplet and there are no massless fields from the Ramond–Ramond sector [80]. Hence one does
not expect any correction in the string coupling gs, either perturbative or non-perturbative.

A preliminary analysis of Mh in type IIA was done in [7] and we will summarize now
the main results. The models can be viewed as orbifolds of a product of a K3 Gepner model
G and a T 2 by a Zp cyclic group acting as a non-geometric automorphism of the Gepner
model G and as a shift along the T 2. Massless hypermultiplets are obtained from the moduli
of the type IIA compactification on the K3 surface (around the Gepner point G) invariant
under the action of the orbifold. Since the orbifold is freely-acting, we cannot get any new
hypermultiplet from the twisted sectors of the orbifold.

These considerations indicate that Mh ⊂ Mσ, i.e. that this moduli space is a subset of
the moduli space (II.9) of type IIA compactifications on K3. An incomplete description of
this moduli space was obtained in [80]. Consider a K3 surface X described by a hypersurface
of the form

z p1 + f(z2, z3, z4) = 0

in a weighted projective space, where f is a quasi-homogeneous polynomial of the appropriate
degree. One considers the automorphism σp : z1 7→ e2iπ/p z1 and denote by S(σp) the sub-
lattice of the K3 lattice Γ3,19 invariant under the action of σp on the second cohomology. If
the K3 surface X is polarized by the lattice S(σp) one has an unambiguous notion of complex
structure on X. Then, following recent mathematical results [132], one can determine the
moduli spaceMp

cs of complex structures on X compatible with the action of σp.
Consider in the same way X∨, the Greene–Plesser/Berglund–Hübsch mirror of the sur-

face (V.3.1), which is a quotient of a hypersurface of the form

z̃ p1 + f∨(z̃2, z̃3, z̃4) = 0 ,

in terms of the transpose polynomial f∨ [68], and also admits an order p automorphism acting
as σ̃p : z̃1 7→ e2iπ/p z̃1. One can determine in the same way the moduli space M̃p

cs of complex
structures on the S(σ̃p)-polarized surface X∨ that are compatible with the action of σ̃p.

As shown in [80], the mirrored automorphism σ̂p can be viewed as the diagonal action
of the automorphisms σp and of σ̃p on a conformal field theory with target space X. Then
Mp

cs × M̃p
cs ⊂ Mσ is a sub-manifold of the moduli space of conformal field theories on K3

surfaces invariant under the action of σ̂p, that can be viewed as the moduli space of CFTs on
S(σp)-polarized K3 surfaces invariant under the action of σ̂p.

Using the mathematical results known to us, it was not immediate to infer fromMp
cs×M̃p

cs
the full hypermultiplets moduli spaceMh. As we will see below, on the heterotic side of the
duality, one can get on the nose the exact form ofMh by rather standard arguments.

V.3.2 Heterotic perspective
As in type IIA, the heterotic dilaton sits in an N = 2 vector multiplet, therefore the

hypermultiplet moduli spaceMh does not receive corrections either in the string coupling on
the heterotic side, hence can be computed exactly at the perturbative level.
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The heterotic description of the non-geometric models [8] is an order p orbifold acting as
an order p O(Γ4,20) isometry of a heterotic compactification on T 4 together with an order p
shift along an extra two-torus. The free action of this orbifold prevents any (neutral) moduli
to arise from the twisted sectors so that the moduli space of the theory should be directly
inherited of that of the parent theory, that is the heterotic string on T 4×T 2, and the moduli
lying in hypermultiplets come from the allowed deformations of the Γ4,20 lattice associated
with the T 4 compactification.

Considering the quotient by the automorphism σ̂p only makes sense for lattices Γ4,20
which admit σ̂p as a symmetry, which means that the moduli space we are looking for may be
interpreted as the space of deformations of such lattices. Phrased differently, the local form
of MH may be accessed by picking such a particular lattice and studying its deformations
compatible with σ̂p-invariance.

At this stage, one may emphasise the peculiarity of the p = 2 model : first of all, one
may notice that equation (III.6) implies that the matrix M2 associated with the action of σ̂2
is simply M2 = −I24 ; as any lattice admits this order two symmetry, all the deformations
of Γ4,20 are still allowed in the orbifolded theory, which is clearly not the case for any other
admissible value of p. Therefore, in the p = 2 case, the hypermultiplets moduli space is directly
given by the T 4 moduli space of the six-dimensional compactification :

Mp=2
h ∼= O(Γ4,20)\O(4, 20)/O(4)×O(20)

Let us then consider the other cases where p > 2. The deformations of the Narain lattice
Γ4,20 in the parent theory correspond locally to choices of embedding of this lattice into R4,20,
that is to fixing a space-like 4-dimensional plane ΠL(Γ4,20) in the ambient space of Γ4,20 (or
equivalently to fixing a time-like 20-dimensional plane ΠR(Γ4,20)).

Given that, in the type IIA description, the automorphism σp acts by definition on the
holomorphic two-form ω as ω 7→ ζpω and that

∫
ω∧ ω̄ > 0, there exists a space-like eigenspace

associated with the eigenvalue ζp of the automorphism. Further, on the heterotic side, N = 2
space-time supersymmetry of the asymmetric orbifold [8] indicates that there must exist a
basis of ΠL(Γ4,20)⊗ C in which Mp = diag(ζpI2, ζ−1

p I2).
Then, given the diagonal action of Mp onto ΠL(Γ4,20)⊗C, the only freedom left amounts

to choosing which directions correspond to left-movers in the eigenspace of σ̂p corresponding
to, say, ζp. Moreover, equation (III.6) states that the eigenspace of any eigenvalue of σ̂p
has dimension 24/ϕ(p), so that the moduli lying in hypermultiplets may be understood as
arising from the freedom of choice of a space-like 2-dimensional complex plane into a 24/ϕ(p)-
dimensional complex space. Therefore, MH may be locally understood as a Grassmannian
space of complex spaces and has the local form :

T p 6=2
h ∼= SU

(
2, 24

ϕ(p) − 2
)
/S
[
U(2)× U

(
24
ϕ(p) − 2

)]
.

The global form ofMh is then obtained by identifying the corresponding duality group ;
this is done by noticing that this theory inherits its dualities from the mother toroidal theory.
Indeed, as the orbifold procedure keeps only σ̂p-invariant states, any element g of the duality
group must commute with the induced action σ̂?p of the automorphism on the states of the
theory. Then, any element g of the duality group of the original theory, that is O(Γ4,20),
satisfying such a condition must belong also to the duality group of the resulting theory.
Furthermore, a little bit of thought also shows that no other duality element may be present
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here, as O(Γ4,20) already includes all acceptable duality relations inside a given sector ; indeed,
new elements would necessarily mix states from different sectors, which is not possible as they
would have different conformal weights due to the free action of the orbifolds we are interested
in. In summary, defining

Ôp :=
{
γ ∈ O(Γ4,20)

∣∣∣γ ◦ σ̂?p = σ̂?p ◦ γ
}
,

the full moduli space spanned by scalars in hypermultiplets reads

Mp 6=2
h ∼= Ôp\SU

(
2, 24

ϕ(p) − 2
)
/S
[
U(2)× U

(
24
ϕ(p) − 2

)]
.

We have checked that the above analysis is also compatible with the BPS indices obtained
in [8], from which one can infer in particular the difference nV − nH between the number of
massless vector and hypermultiplets. It may also be noted that similar types of hypermultiplets
moduli spaces have already been considered in the literature, see e.g. [133], where it was
noticed in particular that (V.3.2) was indeed a quaternionic Kähler manifold.

This hypermultiplets moduli space does not receive by construction corrections in the
string coupling gs. Crucially, one can argue that it does not receive α′ corrections as well.
The moduli space is derived in the heterotic description from an exact toroidal CFT on the
worldsheet and, due to the freely-acting nature of the orbifold, there are no moduli from
the twisted sectors. Besides this, as was shown in chapter III, the heterotic models at hand
do not admit any non-abelian gauge bundle hence there are no small-instanton singularities
anywhere in the moduli space.

V.4 Summary
In this chapter, we have derived the moduli space of N = 2 four-dimensional compacti-

fications on non-geometric backgrounds, using both their description in the type IIA duality
frame as non-geometric Calabi-Yau backgrounds [7] and their description in the heterotic
frame as asymmetric and freely-acting toroidal orbifolds [8].

We have first analyzed the vector multiplets moduli space, which receives corrections
in the string coupling both in type IIA and in heterotic frames. While, as we have shown,
there are only non-perturbative corrections to the prepotential in the type IIA variables,
the heterotic prepotential receives both one-loop and non-perturbative corrections w.r.t. the
heterotic dilaton.

Thanks to an analysis of the perturbative duality group acting on the heterotic vector
multiplets moduli space – or at least of a subgroup of it – we have shown how to obtain
an explicit expression of the third derivative of the one-loop prepotential, using that the
latter is a modular form in the T and U variables (i.e. the moduli of the heterotic T 2) with
respect to a Γ(p) × Γ(p) subgroup of the duality group. We have given explicitely the result
for mirrored automorphisms of order p = 2 and explained how to generalize this result to
mirrored automorphisms of arbitrary order p > 2. It would be interesting to obtain explicit
results in those cases as well.

Finally we have studied the hypermultiplets moduli space, which is exact in the string
coupling constant on both sides of the duality. While obtaining the hypermultiplets moduli
space from a type IIA perspective is not trivial (see [7] for a discussion), the heterotic des-
cription of the models as asymmetric toroidal orbifold allowed us to get an exact description
of these moduli spaces both in α′ and in gs.
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For the models studied here the situation is in some way the opposite of what was found
for dualities between type IIA on Calabi-Yau threefolds and heterotic on K3 × T 2. In the
latter case, there exists a duality frame in which the vector moduli space can be computed
classically, while the hypermultiplets receives corrections in both frames (either in gs or in α′)
that are not yet fully understood. In the present case, while the hypermultiplet moduli space
is exact (in a rather mundane way) the vector multiplets moduli space receives gs corrections
in any duality frame.
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Conclusion

In this thesis, we have been interested in giving better understanding and control over a
recent class of non-geometric constructions developed in [7] which provided the first expli-
cit example of mirror-fold. From the adiabatic argument, we have been able to derive non-
perturbative dualities between these models and toroidal orbifolds of the heterotic string.
From this dual perspective, it became clear that the original type II orbifold had to be mo-
dified to be non-perturbatively consistent ; since the corresponding modification has no effect
on the type IIA perturbation theory, a dual picture was necessary to realise this. The story
is quite similar to what happens in the FHSV model [55] in this respect. From the heterotic
picture, modular covariance imposes the rotation of the Γ4,20 lattice to be accompanied not
only by a shift along the two-torus T 2 but also along its T-dual T̃ 2 ; in this sense, the heterotic
backgrounds may be seen as realisations of T-folds.

We have also analysed the moduli spaces of such models and while the whole story has not
yet been fully understood, very non-trivial results have been derived. The moduli space of four-
dimensional N = 2 theories is known to split into two contributionsMv andMh spanned by
scalars living in vector and hypermultiplets respectively. As opposed, this time, to the FHSV
model, the dilaton lies in a vector multiplet in both dual frames. This means in particular that
non-perturbative corrections toMv may not be understood directly from either perspective.
On the other hand, this allowed us to determine the hypermultiplet moduli space exactly in
gS , from what we just said, and in α′, since the derivation has been made directly from a
solvable CFT description. This is very unusual in Calabi-Yau compactifications where one
typically has a lot less control overMh than overMv. Moreover, while it is not clear how to
determine the fullMh from the type IIA perspective, the problem was tackled in the heterotic
frame using standard arguments. The perturbative corrections toMv, which is universal at
tree-level, were shown to vanish in the type II theory from complex analysis requirements ;
in the heterotic picture we have been able to compute the perturbative corrections to Mv
extending the modular form analysis of [10, 11].

A possible extension of the work summarised in this thesis would be to try and systematise
the construction of dual pairs related to those described in chapter III. In particular, these
kinds of models may easily be handled from a heterotic perspective ; instead of motivating the
research of a heterotic dual by an interesting type IIA model, one could hope to derive new
non-geometric background for the type IIA string from heterotic toroidal orbifolds. In the same
direction, we noticed that our theories could not admit points of gauge enhancement from
states charged under the Γ4,20 lattice. From the type II picture, this is expected as all space-
time supersymmetry comes from the left-movers, implying the absence of Ramond-Ramond
ground states. From the heterotic perspective, it may be understood by the fact that the
quotienting automorphism leaves no Γ4,20 sublattice invariant. An intriguing question worth
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investigating would therefore be to understand whether similar orbifolds could preserve such
a sublattice in the heterotic picture and, if they could, to understand the gauge symmetry
enhancement in the dual type IIA theory. It would also be interesting to generalise this
construction in order to obtain N = 1 dual pairs instead. However, although non-geometric
Calabi-Yau backgrounds are known for the type II string [134, 135, 136], it is far from being
obvious whether the duality may still hold in that case ; indeed, as far as four-dimensional
theories are concerned, compactification on a Calabi-Yau three-fold leaves no room for a shift
along an extra circle allowing to apply the adiabatic argument. One may therefore expect the
duality to take a different form from what we have seen here, if any.

Another interesting direction would come from the gauged supergravity aspect of this
work. Indeed, the low-energy limit of the models described here correspond to gauged super-
gravities that is, from what we discussed in II.4.1, to non-trivial solutions to the embedding
tensor constraints. In particular, it should be possible to relate the corresponding gauging to
fluxes as we emphasised at the end of subsection II.4.2. Working out the embedding tensor
components in details would therefore be an interesting extension of this work. Finally, in
addition to their utility as duality consistency checks, the supersymmetry-protected indices
computed in III.3 might theoretically be used to derive results about the macroscopic entropy
of the corresponding new N = 2 black hole solutions.
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A Calabi-Yau manifolds

A.1 Calabi-Yau manifolds
Because of the relation between space-time supersymmetry and holonomy of the under-

lying internal space, manifolds of restricted holonomy play a special role in string compacti-
fications. In this section, we recall a few useful facts needed throughout this thesis.

In general, the holonomy group h of orientable d-dimensional Riemannian manifolds is
contained in SO(d). Restricting h to be contained in a subgroup of SO(d) puts constraints on
the allowed geometries ; in particular, for even-dimensional manifolds with d := 2n, manifolds
with holonomy group contained in U(n) and SU(n) are respectively Kähler and Calabi-Yau
manifolds [137]. These complex manifolds may be defined as follows.

Definition A.1 (Kähler manifold). Let X be a complex manifold equipped with a Hermitian
metric g and with an almost complex structure I. Define the Kähler form J by

J(u, v) := g(Iu, v)

for any two tangent vectors u and v. X is defined to be a Kähler manifold if its Kähler form
I is closed.

Calabi-Yau manifolds are a special kind of Kähler manifolds which may be defined in
several equivalent ways. We have chosen here to present a definition involving the holonomy
group as it may lead to the most straightforward connection to space-time supersymmetry
considerations as we discussed in II.1.

Definition A.2 (Calabi-Yau manifold). A Calabi-Yau n-foldX is a compact Kähler manifold
of complex dimension n satisfying one of the following equivalent conditions [138] :

— The holonomy of X is contained in SU(n).
— X admits a globally defined nowhere vanishing holomorphic n-form Ω.

In particular, one may show using Yau’s theorem that a Calabi-Yau manifold always ad-
mits a Ricci-flat metric [138] ; consequently, a flux-free background consisting of a Calabi-Yau
metric with constant dilaton provides a solution to the string equations of motion. Another
slightly different definition commonly found in the literature is to require to holonomy group
to be identified to SU(n).

Truncations of dimensionally reduced models to the massless sector typically involves
harmonic forms of the internal space. The Hodge decomposition gives a natural isomorphism
between the vector space of harmonic p-forms and the p-th cohomology group which motivates
the study of the latter. From general theorems, one may derive relations between the Dolbeault
cohomology groups Hp,q(X) of a manifold X. In particular, the Hodge numbers h(p,q) :=
dim (Hp,q(X)) of a complex manifold X must satisfy

bp,q = bn−p,n−q (A.20a)

bp,q = bq,p (A.20b)

where (A.20a) and (A.20b) are a consequence of Serre duality [139] and of the fact that
Hp,q(X) and Hq,p(X) are related by complex conjugation. In addition, for Calabi-Yau mani-
folds the (n, 0)-form naturally induces an isomorphim Hp,0(X) ∼= Hn−p,0(X) by associating
to any (p, 0)-form α(p,0) the unique (n− p, 0)-form β(n−p,0) satisfying
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Cohomology group Basis Indices
H1,1(X) ωa a = 1, ..., h(1,1)

H2,2(X) ω̃a a = 1, ..., h(1,1)

H2,1(X) χk k = 1, ..., h(2,1)

H3(X)
(
αK , β

K
)

K = 0, ..., h(2,1)

Table A.1 – Basis of harmonic forms for a Calabi-Yau three-fold X with holonomy SU(3).

∫
αp,0 ∧ βn−p,0 ∧ Ω = 1.

Consequently, Hodge numbers associated to Calabi-Yau manifolds satisfy the additional constraint

h(p,0) = h(n−p,0). (A.21)

We now restrict temporarily to the case where X is a Calabi-Yau three-fold with SU(3)
holonomy. In this case, one may show that h(1,0) = 0 [138]. Equations (A.20) and (A.21) then
imply that the Hodge diamond of X reads

1
0 0

0 h(1,1) 0
1 h(2,1) h(2,1) 1

0 h(1,1) 0
0 0

1

The remaining unconstrained topological invariants are therefore the Hodge numbers h(1,1)

and h(2,1).
We fix a basis

{
ωa, a = 1, ..., h(1,1)

}
of complex forms ωa for the cohomology groupH1,1(X) ;

this also naturally suggests to define a basis
{
ω̃a, a = 1, ..., h(1,1)

}
for elements of H2,2(X) as

∫
ωa ∧ ω̃b = δba.

There are two convenient ways to expand harmonic 3-forms which we use here, depending
on the context. The first one is to define a complex basis

{
χk, k = 1, ..., h(2,1)

}
for H(2,1)(X) ;

the second one is to define a basis of real forms
{(
αK , β

K
)
,K = 0, ..., h(2,1)

}
for the whole

H3(X) satisfying
∫
αK ∧ βL = δLK .

We summarise our notations in table A.1.
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A.2 K3 surfaces
A Calabi-Yau manifold of dimension 2 may fall into two categories 12 : when equipped

with a Ricci-flat metric, its holonomy group may either be trivial or be equal to SU(2). The
corresponding manifold is either a 2-dimensional complex torus in the former case or a K3
surface in the latter. In the following, we will focus on the latter which will be of the utmost
importance in building theories in section III.1. Using equations (A.20a) and (A.20b), the
Hodge diamond of a K3 surface is

1
h(1,0) h(1,0)

1 h(1,1) 1
h(1,0) h(1,0)

1

.

Computing h(1,0) and h(1,1) may be done quite straightforwardly by noticing a very important
mathematical fact about K3 surfaces : unlike 3-dimensional Calabi-Yau manifolds with SU(3)
holonomy which may have very different topologies, any two K3 surfaces are diffeomorphic
to each other [34]. This means in particular that one could study any suitable K3 surface X
and deduce all the topological invariants of any other K3 surface X ′ at once. This is done,
e.g., in [34] and lead to the result

1
0 0

1 20 1
0 0

1

.

The middle line of the above Hodge diamond plays an important role in studying K3 surfaces ;
consequently, we shall take some time to talk about some of its features. First of all, one may
show that the cup product defines a non degenerate symmetric bilinear form on H2(X,Z)×
H2(X,Z) for any K3 surface X and that H2(X,Z) is torsion-free, giving H2(X,Z) a lattice
structure [45] ; we will refer to this lattice in the following as the intersection lattice, the
scalar product between two elements u and v of H2(X,Z) being equivalently given by the
intersection number Du.Dv of the associated divisors Du and Dv. Moreover, one may show
that this lattice must have signature (3, 19) and that it is even and unimodular [37] ; by
theorem I.3.1, it is therefore isomorphic to

Γ3,19 := E⊕2
8 ⊕ U⊕3

with E8(−1) and U defined in the aforementioned theorem. Γ3,19 is usually referred to as
the K3 lattice in the litterature. This lattice structure of the second cohomology group of
K3 surfaces is the reason why lattice theory plays such an important role in the study of
Calabi-Yau 2-folds.

In the following, we shall define additional mathematical objects which will play a crucial
role in understanding the models to be defined in section III.1. The first of these is the Picard
group of a variety.
12. Some authors define Calabi-Yau manifolds as compact Kähler manifold with holonomy SU(n), unlike

what we defined in A.2 where the honolomy condition is weaker. According to this modified definition, K3
surfaces would be the only kind of Calabi-Yau manifolds of dimension 2.
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Definition A.3 (Picard group). The Picard group Pic(X) of a variety X is the abelian group
of isomorphism classes of line bundles on X. The addition law is the following : let L and L′
be line bundles over X. Then, we define

[L] + [L′] := [L⊗ L′]

with [L], [L′] the corresponding elements of Pic(X).

Equivalently, one may think about the Picard group in the following sense : to any element
g of Pic(X) corresponds a line bundle L such that c1(L) = g [34]. Compatibility with the
above definition A.3 is ensured by the fact that c1(L⊗ L′) = c1(L) + c1(L′) for any two line
bundles L and L′ (see e.g. [140]). For K3 surfaces, the Picard group may be inferred from the
cohomology groups and in particular from the intersection lattice ; the connection between
these two objects is given by the Lefschetz theorem on (1, 1)-classes.

Theorem A.1 (Lefschetz theorem on (1,1)-classes [37]). Let X be a compact Kähler manifold
of dimension 2. Then, the Picard group of X satisfies 13

Pic(X) ∼= H1,1(X) ∩H2(X,Z).

The above theorem shows in particular that the Picard group is defined with respect to a
given complex structure and that the rank ρ(X) of the Picard group of a K3 surface X - also
known as the Picard number of X - may not take arbitrary large values as dimH1,1(X) = 20.
In fact, one may show that if X is a projective K3 surface, then ρ(X) ≥ 1 and moreover the
Picard group has signature (1, ρ(X)− 1) [34].

The second lattice we need to introduce for our analysis is the transcendental lattice T (X)
of a K3 surface X.

Definition A.4 (Transcendental lattice). Let X be a K3 surface. A sub-Hodge structure
L ∈ H2(X,Z) is said to be primitive if the quotient group H2(X,Z)/L is torsion-free. The
transcendental lattice T (X) of X is defined as the minimal primitive sub-Hodge structure of
X whose complexification TC(X) satisfies

T 2,0
C (X) = H2,0(X).

It is fairly easy to see that definition A.4 implies that the transcendental lattice is the
orthogonal complement of the Picard lattice in H2(X,Z) for any K3 surface X. Indeed, it
implies that any integral class of X orthogonal to T (X) must in particular be orthogonal to
H2,0(X) and therefore be an element of Pic(X) by theorem A.1, leading to T (X)⊥ ⊂ Pic(X).
Moreover, theorem A.1 also implies that H2,0(X) is orthogonal to Pic(X) ; by minimality of
T (X), this in turn shows that T (X) ⊂ Pic(X)⊥. Recalling that L ⊂ L⊥⊥ for any lattice L,
the two above inclusions prove that Pic(X) = T (X)⊥. Since the intersection form is non-
degenerate as we have seen, this is equivalent to saying that T (X) = Pic(X)⊥.

13. The notation H2(X,Z) is a little misleading here but lighter than a more rigorous one. To be precise,
what we call H2(X,Z) here is actually its image under the natural embedding H2(X,Z) ↪→ H2(X,C).
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A.3 K3 automorphisms

We conclude this appendix by discussing properties of the automorphism group of K3
surfaces, which are of great importance for building the models reviewed in III.1. To begin
with, we first define what we call Hodge isometries in order to state a theorem which plays a
crucial role in analysing and classifying K3 automorphisms, namely Torelli theorem.

Definition A.5 (Hodge isometry). A Hodge isometry between two K3 surfaces X and Y
is a map ϕ : H2(X,Z) → H2(Y,Z) which preserves the cup product and maps H2,0(X) to
H2,0(Y ).

Theorem A.2 (Global Torelli theorem [37]). Two K3 surfaces X and Y are isomorphic if
and only if there exists a Hodge isometry ϕ : H2(X,Z)→ H2(Y,Z). If ϕ maps a Kähler class
on X to a Kähler class on Y , then the unique isomorphism f : X ∼−→ Y identifies to the
pullback φ∗ of the above Hodge isometry.

In particular, the second part of theorem A.2 states a very important mathematical fact :
any isomorphism from a given K3 surface X to itself - that is any automorphism of X - may
be equivalently described as an automorphism of the underlying lattice H2(X,Z). Phrased
differently, lattice theory may be (and is) used in order to understand automorphisms of K3
surfaces.

That being said, there is an immediate consequence one can note about automorphism
groups of finite order of K3 surfaces. Indeed, letX be a K3 surface, G ⊂ Aut(X) be a subgroup
of its automorphisms and ωX be a generator of the 1-dimensional Dolbeault cohomology group
H2,0(X). As any element g of G preserves the decomposition of H2(X,C) into (p, 2 − p)
forms and as dimH2,0(X) = 1, it follows in particular that the pullback g∗ may only act on
ωX by multiplication by a non vanishing scalar α(g). One may construct this way a group
homomorphism α : G → C×. Therefore, if G has finite order, α(G) is a subgroup of C× of
finite order and must then be cyclic. Two situations may then happen : either α maps g to
1 ∈ C× or to a non-trivial element of C×. In the first case, g therefore acts trivially on the
holomorphic (2, 0)−form and is said to be a symplectic automorphism ; in the latter, g acts
non-trivially on ωX and is said to be non-symplectic.

Classifying automorphisms of K3 surfaces depending on whether they preserve the holo-
morphic (2, 0)−form has an immediate interest from a physical point of view. As we have
seen before, a globally defined (2, 0)−form may only exist on a manifold whose holonomy in
contained in SU(2). Let us then consider a string theory compactified on the quotient X/G.
Depending on whether G preserves ωX or not, ωX will still be globally defined on X/G or
not. If it is the case, quotienting by G still preserves half the maximal number of supercharges
whereas if it is not, all supersymmetry is generically broken [141].

In constructing the models we will consider in the following, we will only deal with purely
non-symplectic automorphisms of K3 surfaces, that is with automorphisms which act on the
holomorphic (2, 0)−form as multiplication by a primitive root of unity. As a matter of fact,
any K3 surface admitting a non-symplectic automorphism is algebraic [45] and therefore
projective [142]. This will allow us to restrict to such K3 surfaces in section III.1 and to study
them as target spaces of sigma models.
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B Buscher rules
This short section is devoted to give a set of equations known as the Buscher rules and

originally derived in [143, 144]. The Buscher rules allow to relate background fields from
two theories T-dual to each other. T-duality may be understood for NLSMs with curved
background from a path integral approach. In particular, each vector field k with a nowhere
vanishing norm and satisfying

LkG = 0 (B.22)
ιkH = dv
Lkφ = 0

may be used to generate a T-duality transformation acting on the NLSM with background
fields (G,B, φ). The first line of (B.22) shows that k is a Killing spinor of the metric G while
the second one defines a one-form v up to an exact form. Working in a set of coordinates{
xi, θ

}
such that k = ∂θ, one shows that the background fields

(
Ĝ, B̂, φ̂

)
of the corresponding

dual theory may be expressed as [60]

Ĝij = Gij + vivj − kikj
|k|2

, (B.23)

Ĝiθ̂ = vi
|k|2

,

Ĝθ̂θ̂ = 1
|k|2

,

B̂ij = Bij + kivj − kjvi
|k|2

,

B̂iθ̂ = ki
|k|2

,

φ̂ = φ− 1
2 log |k|2.

where |k|2 := kiGijk
j and with θ̂ the coordinate dual to θ. These equations may also be seen

in the simpler context where LkB is actually vanishing instead of just being exact ; in this
case, one may choose to set v = −ιkB, leading to the more familiar rules

Ĝij = Gij + BiθBjθ −GiθGjθ
Gθθ

,

Ĝiλ = Biθ
Gθθ

,

Ĝλλ = 1
Gθθ

,

B̂ij = Bij + GiθBjθ −GjθBiθ
Gθθ

,

B̂iλ = Giθ
Gθθ

.
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C Partition Function Computations

ϑ functions
In this section, we give our conventions for ϑ functions and recall some of their modu-

lar properties that are useful in our computations. We define the Jacobi ϑ function with
characteristic as

ϑ

[
α

β

]
(τ |v) :=

∑
n∈Z

q
1
2(n+α

2 )2
e2iπ(n+α

2 )(v+β
2 ),

where α, β ∈ R and where q is defined, as usual, by q := exp(2iπτ). ϑ also admits the product
representation [20]

ϑ
[α
β

]
(τ |v)

η(τ) = eiπα(v+β
2 )q

α2
8 −

1
24

∞∏
n=1

(
1 + qn+α−1

2 e2iπ(v+β
2 )) (1 + qn−

α+1
2 e−2iπ(v+β

2 )) ,
where η(τ) is the Dedekind η function defined by

η(τ) := q1/24
∞∏
n=1

(1− qn).

The well-known modular properties of the ϑ functions makes them functions are a powerful
tool in constructing modular invariant quantities. Their behaviour under the generators of
SL(2,Z) are given by

ϑ

[
α

β

]
(τ + 1|v) = e−

iπ
4 α(α−2)ϑ

[
α

α+ β − 1

]
(τ |v) ,

ϑ

[
α

β

](
−1
τ

∣∣∣∣vτ
)

= e
iπ
2 αβ+ iπ

τ
v2
ϑ

[
−β
α

]
(τ |v) .

It is also easy to show that the arguments α and β satisfy the periodicity properties

ϑ

[
α+ 2
β

]
(τ |v) = ϑ

[
α

β

]
(τ |v) and ϑ

[
α

β + 2

]
(τ |v) = eiπαϑ

[
α

β

]
(τ |v) .

In the following, we will drop the explicit τ dependence of the ϑ functions and write only
ϑ
[α
β

]
(v) (or simply ϑ

[α
β

]
if v = 0). An especially useful identity when it comes to computing

BPS indices for instance is the famous Jacobi abstruse identity which allows one to sum over
spin structures and which reads [19]

1
2

1∑
α,β=0

(−1)α+β+αβ
4∏
i=1

ϑ

[
α+ hi
β + gi

]
(vi) = −

4∏
i=1

ϑ

[
1− hi
1− gi

]
(v′i)

provided that
∑
i hi =

∑
i gi = 0 ; here,

v′1 = 1
2(−v1 + v2 + v3 + v4) , v′2 = 1

2(v1 − v2 + v3 + v4)

v′3 = 1
2(v1 + v2 − v3 + v4) , v′4 = 1

2(v1 + v2 + v3 − v4).
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As recalled in equation (III.6), the eigenvalues of the Γ4,20 automorphism σ̂p used to
generate the Zp orbifold of section III.1.2 are all primitive p-th roots of unity, each with the
same multiplicity. Consequently, when computing one-loop quantities, the product

Θ(p)
g (τ) :=

p−1∏
t=1

(t,p)=1

ϑ

[
1

1− 2gt/p

]
(τ)

usually appears through the contribution of the untwisted sector. Here, (t, p) is a shorthand
notation for gcd(t, p). It will then be helpful, at least for numerical computations, to notice
that Θ(p)

g may be rewritten as

Θ(p)
g (τ) = e

iπ
2 (1−g)ϕ(p)ηϕ(p)(τ)

Φxg(1)
∏
d|xg

η(dτ)2µ(xgd )


ϕ(p)
ϕ(xg)

(C.25)

with xg := p
(g,p) , ϕ the Euler totient function as before, µ the Möbius function and Φn(x) the

n-th cyclotomic polynomial.

Restrictions on the shift vector

Let us first show that it is always possible to find a representative of the shift vector in
1
pΓ2,2/Γ2,2 such that

p2αiβi = Ψp ,

so equation (III.9) holds strictly, not just modulo p. First, one may note that Ψp and p must
be coprime, as follows from gcd(s, p) = 1 - the latter being imposed by equation (III.6).
Assuming that one starts with a shift vector δ satisfying equation (III.9), this means now
that gcd(α1, α2, p) = 1 as well since equation (III.9) would not admit a solution for β1 and β2
otherwise. In such a case, it is always possible to define α̃1 := α1 and α̃2 := α2 + tp for some
integer t so that gcd(α̃1, α̃2) = 1 ; indeed, the existence of a solution to{

t = 1 mod q ∀ prime q | gcd(α1, α2)
t = 0 mod q′ ∀ prime q′ | α1 and q′ - gcd(α1, α2)

is guaranteed by the Chinese remainder theorem 14, and one may show that such an integer
t would lead to gcd(α̃1, α̃2) = 1 as required. Bézout’s identity 15 then finally ensures us that
there exist integers β̃1 and β̃2 with β̃i = βi mod p such that α̃iβ̃i = Ψp, so that we can indeed
choose a representative of any given vector shift δ satisfying (III.9) strictly.

14. Which proves more generally the existence of a solution to

x = xi mod pi i = 1, ..., n

for any set or pairwise coprime integers {pi, i = 1, ..., n}.
15. Which states that

αx+ βy = γ

admits a solution for (α, β) if and only if gcd(x, y) | γ ; in particular, it therefore ensures the existence of
solutions to the above equation for any integer γ in the case where x and y are coprime integers.
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We now give more details about how one gets to equation (III.8). First, it may be shown
(see e.g. [145]) that

p∑
a=1

gcd(a,p)=1

ak =
∑
d|p

µ

(
p

d

)(
p

d

)k d∑
a=1

ak

for any integers k and p, µ being here the Möbius function (that is the inverse of the constant
function 1 under Dirichlet involution). This allows one to show in particular that

p∑
a=1

gcd(a,p)=1

a = 1
2pϕ(p)

p∑
a=1

gcd(a,p)=1

a2 = ϕ(p)

1
3p

2 + 1
6
∏
q|p

q prime

(−q)


for all p > 1, where the product in the last equation runs over prime factors of p. The
repartition of the eigenvalues of γ given in (III.6) then leads to the simplification (III.8) as
claimed in section III.2.4.

D Modular forms
In this appendix, we briefly review important features of modular forms which play a key

role in the discussion of chapter V. In string theory, the discrete group SL2(Z) of integer-
valued matrices with unit determinant and subgroups thereof are commonly encountered. In
particular, the complex structure of a two-torus is only defined up to SL2(Z) transformations
which implies that any one-loop correlation function - that is computed on the torus - must
be SL2(Z) invariant with respect to the modular parameter (denoted τ in this thesis). We
also recall from section I.3.1 that compactifications involving a two-torus are expected to have

O(Γ2,2) = (SL2(Z)T × SL2(Z)U ) o Z2

as a subgroup of the perturbative duality group. Orbifolds thereof typically break SL2(Z) to
a subgroup Γ(Z) as illustrated in V.2.2. Perturbative corrections to correlation functions are
expected to be well-behaved under such duality transformations. This motivates our analysis
of modular forms, to be defined in D.1. A complete introduction to the subject as well as
proofs for every claim in this appendix may be found in [30].

An important subgroup of SL2(Z) is the principal congruence subgroup of level N Γ(N),
defined as

Γ(N) :=
{(

a b
c d

)
∈ SL2(Z)

∣∣∣∣∣
(
a b
c d

)
=
(

1 0
0 1

)
mod N

}
.

In particular, Γ(1) identifies to the whole SL2(Z). A subgroup Γ(Z) of SL2(Z) is called a
congruence subgroup if there exists an integer N such that Γ(N) ⊂ Γ(Z). Principal congruence
subgroups trivially satisfy this condition ; another example appearing in this thesis is the Hecke
congruence subgroup of level N Γ0(N) defined as
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Γ0(N) :=
{(

a b
c d

)
∈ SL2(Z)

∣∣∣∣∣c = 0 mod N

}
.

In the following, we will be interested in functions of the upper-half complex plane H :=
{τ ∈ C, Im τ > 0} and more precisely of its “compactification” (in the mathematical sense)
Ĥ := H ∪ {∞}.. From what we have said above, it might seem interesting to find functions
f(τ) such that f(γ · τ) = f(τ) for any γ in a given congruence subgroup Γ(Z), where γ acts
on τ as a fractional linear transformation

γ · τ := aτ + b

cτ + d
, γ =

(
a b
c d

)
∈ Γ(Z)

as in the string theoretical context. However, one may show that there are infinitely many
linearly independent such functions. It turns out to be more fruitful to turn our invariance
requirement into a covariance one and to add holomorphicity constraints ; introducing the
factor of automorphy j(γ, τ) as

j(γ, τ) = cτ + d, γ =
(
a b
c d

)
∈ Γ(Z),

we then define a modular form of weight k with respect to Γ(Z) as follows.

Definition D.1 (Modular form with respect to a congruence subgroup). Let Γ(Z) be a
congruence subgroup of SL2(Z) and let k be an integer. A function f : H → C is a modular
form of weight k with respect to Γ(Z) if

— f is holomorphic,
— f satisfies the covariance condition

f(γ · τ) = jk(γ, τ)f(τ)

for all γ ∈ Γ(Z),
— The function f [γ]k defined by

(f [γ]k)(τ) := j−k(γ, τ)f(γ · τ)

is holomorphic at ∞ for all γ ∈ Γ(Z).

Modular functions may then be seen as functions of Riemann surfaces given by the quotient
FΓ(Z) := Ĥ/Γ(Z) ; FΓ(Z) is known as the fundamental domain of Γ(Z).

A modular function with respect to a congruence subgroup of level N then satisfies in
particular f(τ +N) = f(τ), as (

1 N
0 1

)
∈ Γ(N).

Consequently, there exists a minimal integer h ∈ N such that f(τ+h) = f(τ) ; f may therefore
be expanded as 16

16. The series (D.27) run over positive integers only as a consequence of the holomorphicity of f at ∞.
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f(τ) =
∞∑
n=0

anq
n/h. (D.27)

Moreover, it is easy to see from definition D.1 that the spaceMk of modular forms of weight k
form a vector space over C ; by contrast, a very non-trivial statement is that this vector space
has finite dimension [30]. This means that any modular form of weight k may be expressed
in terms of a finite number of basis functions forMk. In other words, one only need to know
a finite number of terms in the expansion (D.27) to fully characterise f .

Generically, a point in the upper-half plane H is only preserved by γ ∈ Γ(Z) if γ = ±1.
However, depending on the congruence subgroup of interest, some special points may be
preserved by non-trivial transformations ; such points, if any, are known as elliptic points.
One may show that elliptic points may be either related to i or to ρ := exp

(
2iπ
3

)
by a SL2(Z)

transformation ; the subgroup preserving them has order 4 in the former case and 6 in the
latter. In a more physical context, elliptic points are typically related to points in the moduli
space where states become massless. As an example, this explains - from a complex analysis
point of view - the location of the points of enhanced symmetry in the vector multiplet moduli
space of the reduction of the heterotic string on K3× T 2 analysed in [11].

Another class of interesting points is given by the set of images of ∞ under SL2(Z)
with Γ(Z)-related points identified ; these images belong to (Q ∪ {∞})/Γ(Z) and are known
as the cusps of Γ(Z). Understanding why these points are important from a physical point
of view may be done by considering an example relevant to the analysis of chapter V. Let
us then assume that we are looking at the moduli space of a theory reduced on a two-
torus and that the congruence subgroup of interest is contained in SL2(Z)T , the part of
O(Γ2,2) acting non-trivially on the Kähler modulus T only. In this context, the cusps of Γ(Z)
correspond to limits of T leaving the complex structure U fixed. Let us consider first the
cusp ∞, corresponding to the T → ∞ limit ; as Im(T ) is the volume of the two-torus, this
corresponds to a decompactification limit of the system 17. As we argue in V.2.1, the other
cusps may be also be understood in terms of decompactification limits as far as the models
analysed in this thesis are concerned.

In the following section, we give explicit formulas for the modular functions of the principal
congruence subgroup of level 2 Γ(2) which are used in particular in section V.2.5 so as to give
an example illustrating the strategy developed in chapter V.

E Γ(2) modular forms

The ring of modular forms of Γ(2) is known to be isomorphic to the ring of modular
forms of Γ0(4) (the set of SL2(Z elements with vanishing lower-left component modulo 4),
see e.g. [121] for details.

A basis of the modular ring of Γ(2) is given by the modular forms X1 and X2, defined as :

X1(τ) := E2(τ)− 2E2(2τ) X2(τ) := E2

(1
2τ
)
− 4E2(2τ) ,

17. More precisely, the, say, T →∞, U fixed limit correspond to the limit where the radii of both cycles of
the two-torus tend to infinity.
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with E2 the Eisenstein series of weight 2 defined as :

E2(τ) := 1− 24
∞∑
n=1

σ1(n)qn ,

σ1(n) being the sum of the divisors of n, which is not a modular form.

Modular forms of weight 2k of Γ(2) have exactly k zeroes ; it will therefore be useful to
also define :

V0(τ) := 6X1(τ)−X2(τ)
48

V1(τ) := −X2(τ)
48

V∞(τ) := 3X1 −X2(τ)
24

so that Vs vanishes as
√
q +O(q) around the cusp s, with s = 0, 1,∞ and q := exp(2iπτ).

The Hauptmodul for the congruence subgroup Γ(2) is the well-known λ function, expressed
in terms of the above as follows :

λ(τ) := 16 V1(τ)
V∞(τ) .

A useful relation, allowing one to compactly write the results of section V.2.5, is :

∏
γ∈SL2(Z)/Γ(2)

[
λ(U)− λ(γ · T )

]
= ∆(U)
V 6
∞(U)

[
j(U)− j(T )

]
(E.28)

with j the Klein j function, that is the SL2(Z) j-invariant, and ∆(U) the cusp form of SL2(Z).

This peculiar occurrence of modular functions of SL2(Z) instead of just Γ(2) is proper to
the p = 2 case. It is linked to the fact that the singular lines are located at T = γ ·U for all γ in
the coset SL2(Z)/Γ(2), so that in the end one has a singular line whenever T = g ·U for any g
in SL2(Z) (even though every such g would not lead to physically equivalent configurations).

The modular form P10,10 appearing in equation (V.19) reads, in terms of the above modular
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forms,

P10,10(T,U) = −32X1(T )5X2(U)5 + 288X1(T )5X1(U)X2(U)4

− 576X1(T )5X1(U)2X2(U)3 + 24X1(T )4X2(T )X2(U)5

− 8X1(T )4X2(T )X1(U)X2(U)4 − 2304X1(T )4X2(T )X1(U)2X2(U)3

+ 12672X1(T )4X2(T )X1(U)3X2(U)2 + 20736X1(T )4X2(T )X1(U)5

− 25920X1(T )4X2(T )X1(U)4X2(U)− 4X1(T )3X2(T )2X2(U)5

− 192X1(T )3X2(T )2X1(U)X2(U)4 + 2848X1(T )3X2(T )2X1(U)2X2(U)3

− 20736X1(T )3X2(T )2X1(U)5 − 13248X1(T )3X2(T )2X1(U)3X2(U)2

+ 26496X1(T )3X2(T )2X1(U)4X2(U) + 88X1(T )2X2(T )3X1(U)X2(U)4

+ 7488X1(T )2X2(T )3X1(U)5 − 1104X1(T )2X2(T )3X1(U)2X2(U)3

+ 4960X1(T )2X2(T )3X1(U)3X2(U)2 − 9792X1(T )2X2(T )3X1(U)4X2(U)
− 1152X1(T )X2(T )4X1(U)5 − 15X1(T )X2(T )4X1(U)X2(U)4

+ 184X1(T )X2(T )4X1(U)2X2(U)3 − 816X1(T )X2(T )4X1(U)3X2(U)2

+ 1576X1(T )X2(T )4X1(U)4X2(U) + 64X2(T )5X1(U)5

+X2(T )5X1(U)X2(U)4 − 12X2(T )5X1(U)2X2(U)3

+ 52X2(T )5X1(U)3X2(U)2 − 96X2(T )5X1(U)4X2(U)

(E.29)
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Sujet : Compactifications Calabi-Yau non-géométriques en théorie
des cordes

Résumé : Les théories des cordes font partie des candidats à une description quantique de la
gravité tout en offrant un cadre théorique unifié permettant de décrire les quatre interactions
fondamentales connues à ce jour. Vers le milieu des années 1990 a été émis l’hypothèse que les
cinq théories des supercordes cohérentes étaient reliées entre elles par des relations de dualité.
Dans cette thèse, nous construisons les duaux hétérotiques de modèles non-géométriques obtenus
à partir de la réduction de la corde de type IIA sur un orbifold libre deK3×T 2; en particulier, nous
montrons comment des conditions de cohérence non-perturbatives doivent être prises en compte.
Ces modèles préservent N=2 supersymétries en quatre dimensions. Nous calculons en particulier,
dans l’approche hétérotique, des indices protégés par la supersymétrie construits à partir d’états
privilégiés appelés états BPS et fournissant des renseignements sur les états solitoniques dans la
théorie type IIA. Enfin, nous analysons l’espace des modules sous-jacent - c’est-à-dire la variété
engendrée par les champs scalaires de masse nulle - dans les formulations hétérotiques et type
IIA. En particulier, contrairement au cas standard de réduction (géométrique) sur une variété de
Calabi-Yau où la sous-variété engendrée par les champs scalaires vivant dans des hypermultiplets
est difficile à analyser, nous montrons qu’il est possible d’obtenir dans notre cas son expression
exacte en théorie des perturbations.

Mots clés : Non-géométrique, dualité, non-perturbatif, modules, hétérotique, type IIA

Subject : Non-geometric Calabi-Yau compactifications in string
theory

Abstract: String theories are candidates for a quantum formulation of gravity and grant a
unified framework to describe all known interactions. In the mid-90s, it was conjectured that all
superstring theories were related to one another through a web of dualities; these dualities play
a key role in string theory as they allow to understand non-perturbative features which would
otherwise remain out of reach. In this thesis, we derive dual heterotic models to a class of non-
geometric constructions obtained from the reduction of the type IIA string on a free orbifold of
K3×T 2; in particular, we show how non-perturbative consistency conditions invisible from either
description alone must be taken into account. These models preserve N=2 supersymmetry in four
dimensions; while such models only contain non-chiral multiplets and may therefore not, as such,
be phenomenologically relevant, they are very important from a theoretical point of view as they
are both simple enough to allow for a detailed analysis and unconstrained enough to exhibit
interesting features. We compute in particular supersymmetry-protected indices, constructed
from special states in the spectrum known as BPS states, in the heterotic frame which are
expected to give informations about solitonic states in the type IIA perspective. Finally, we
analyse the moduli space – that is the manifold spanned by massless scalar fields – from both
heterotic and type IIA formulations; in particular, while the submanifold spanned by scalars
living in hypermultiplets is hard to analyse for usual (geometric) Calabi-Yau compactifications
of the type II string, we show that it may be exactly derived in perturbation theory in our case.

Keywords : Non-geometric, duality, non-perturbative, moduli, heterotic, type IIA
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