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Hark to the gentle gradient of the breeze:
It whispers of a more ergodic zone.

from “The Cyberiad” by Stanislaw Lem
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Chapter 1

Introduction

The problem of describing the quantum regime of the gravitational field is still open
(see for example [1, 2, 3] and references therein). There are tentative theories, and
competing research directions. The two largest research programs are string theory
and loop quantum gravity.

String theory (see for example [4, 5, 6, 7, 8] for reviews and introductory material)
is by far the research direction which is presently most investigated. String theory
presently exists at two levels. First, there is a well developed set of techniques that
define the string perturbation expansion over a given metric background. Second,
the understanding of the nonperturbative aspects of the theory has much increased in
recent years [9] and in the string community there is a widespread belief, supported
by numerous indications, in the existence of a full non-perturbative theory, capable
of generating the perturbation expansion. There are attempts of constructing this
non-perturbative theory, generically denoted M theory. One of these attempts is
Matrix-theory [10, 11, 12]. The claim that string theory solves quantum gravity is
based on two facts. First, the string perturbation expansion includes the graviton.
More precisely, one of the string modes is a massless spin two particle with helicity
+2. Such a particle necessarily couples to the energy-momentum tensor of the rest
of the fields [13, 14] and gives general relativity to a first approximation. Second,
the perturbation expansion is consistent if the background geometry over which the
theory is defined satisfies a certain consistency condition; this condition turns out to
be a high energy modification of the Einstein’s equations. The hope is that such a
consistency condition for the perturbation expansion will emerge as a full-dynamical
equation from the yet-to-be-found nonperturbative theory.

The second most popular approach to quantum gravity is loop quantum gravity
[2, 15, 16, 17, 18, 19, 20, 21, 22]. Loop quantum gravity is presently the best
developed alternative to string theory. Like strings, it is not far from a complete
and consistent theory and it yields a corpus of definite physical predictions, testable
in principle, on quantum spacetime. Loop quantum gravity, however, attacks the
problem from the opposite direction than string theory. It is a non-perturbative
and background independent theory to start with. In other words, it is deeply
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rooted into the conceptual revolution generated by general relativity. In fact, the
main lesson of general relativity is that, unlike in any other interaction, space-time
geometry is fully dynamical. This special feature of gravity precludes the possibility
of representing fields on a fixed background geometry and severely constrains the
applicability of standard techniques that are successful in the description of other
interactions.

In fact, successes and problems of loop quantum gravity are complementary to
successes and problems of strings. Loop quantum gravity is successful in provid-
ing a consistent mathematical and physical picture of non perturbative quantum
spacetime; but the connection to the low energy dynamics is not yet completely
clear. The work presented in this thesis is an attempt in the direction of connecting
spinfoam models of loop quantum gravity with measurable quantities.

The general idea on which loop quantum gravity is based is the following. The
core of quantum mechanics is not identified with the structure of conventional

quantum field theory, because conventional quantum field theory presupposes
a background metric spacetime, and is therefore in conflict with general relativity.
Rather, it is identified with the general structure common to all quantum systems.
The core of general relativity is identified with the absence of a fixed observable back-
ground spacetime structure, namely with active diffeomorphism invariance. Loop
quantum gravity is thus a quantum theory in the conventional sense: a Hilbert
space and a set of quantum field operators, with the requirement that its classical
limit be general relativity with its conventional matter couplings. But it is not a
quantum field theory over a metric manifold. Rather, it is a quantum field theory
on a differentiable manifold, respecting the manifold’s invariances and where only
coordinate independent quantities are physical.

Technically, loop quantum gravity is based on two inputs. The first is the for-
mulation of classical general relativity based on the Ashtekar connection [23, 24|, in
which parallel transport, rather than the metric, plays the main role. The version
of the connection now most popular is not the original complex one, but an evo-
lution of the same one, in which the connection is real. The second is the choice
of the holonomies of this connection, denoted loop variables, as basic variables for
the quantum gravitational field [25, 26]. This second choice determines the peculiar
kind of quantum theory being built. Physically, it corresponds to the assumption
that excitations with support on a loop are normalizable states. This is the key
technical assumption on which everything relies. It is important to notice that
this assumption fails in conventional 4d Yang Mills theory, because loop-like excita-
tions on a metric manifold are too singular: the field needs to be smeared in more
dimensions Equivalently, the linear closure of the loop states is a far too big non-
separable state space. What makes general relativity different from 4d Yang Mills
theory, however, is nonperturbative diffeomorphism invariance. The gauge invariant
states, in fact, are not localized at all. They are, pictorially speaking, smeared by
the gauge diffeomorphism group all over the coordinates manifold. More precisely,
factoring away the diffeomorphism group takes down from the state space of the
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loop excitations, which is too big, to a separable physical state space of the right
size [27, 28]. Thus, the consistency of the loop construction relies heavily on diffeo-
morphism invariance. In other words, the diff-invariant invariant loop states (more
precisely, the diff-invariant spin network states) are not physical excitations of a
field on spacetime. They are excitations of spacetime itself.

More specifically!, the configuration variable is an SU (2) connection A’ on a 3-
manifold 3 representing space. The canonical momenta are given by the densitized
triad Ef. The latter encode the (fully dynamical) Riemannian geometry of ¥ and
are the analog of the “electric fields” of Yang-Mills theory. In addition to diffeo-
morphisms there is the local SU (2) gauge freedom that rotates the triad and trans-
forms the connection in the usual way. According to Dirac, gauge freedoms result
in constraints among the phase space variables which conversely are the generating
functionals of infinitesimal gauge transformations. In terms of connection variables
the constraints are: G; = DoEf =0, C, = EpFy =0, S = €/VEE Fay + -+ - = 0,
where D, is the covariant derivative and F}, is the curvature of A!. G, is the famil-
iar Gauss constraint - analogous to the Gauss law of electromagnetism - generating
infinitesimal SU (2) gauge transformations, C, is the vector constraint generating
space-diffeomorphism, and S is the scalar constraint generating “time” reparame-
terization (there is an additional term that has been omitted for simplicity). Loop
quantum gravity is defined using Dirac quantization. One first represents the con-
straints as operators in an auxiliary Hilbert space H and then solves the constraint
equations G:U =0,C,0 =0,SU = 0. The Hilbert space of solutions is the so-called
physical Hilbert space H,pnys. In a generally covariant system quantum dynamics is
fully governed by constraint equations. In the case of loop quantum gravity they rep-
resent quantum Einstein’s equations. States in the auxiliary Hilbert space are repre-
sented by wave functionals of the connection W (A) which are square integrable with
respect to a natural diffeomorphism invariant measure, the Ashtekar-Lewandowski
measure [29]. This space can be decomposed into a direct sum of orthogonal sub-
spaces H =@, H, labeled by a graph v in . The fundamental excitations are given
by the holonomy h; (A) € SU (2) along a path [ in ¥. Elements of H, are given
by functions ¥, (A) = f (h, (A),...,h, (A)), where hy is the holonomy along the
links [ € v and f : SU(2)" — C is (Haar measure) square integrable. They are
called cylindrical functions and represent a dense set in ‘H denoted C'yl. Gauge trans-
formations generated by the Gauss constraint act non-trivially at the end-points of
the holonomy, i.e., at nodes of graphs. The Gauss constraint G; is solved by looking
at SU (2) gauge invariant functionals of the connection. The fundamental gauge
invariant quantity is given by the holonomy around closed loops. An orthonormal
basis of the kernel of the Gauss constraint is defined by the so called spin network
states W, £y 1in) (A) [30, 31, 32]. Spin-networks are defined by a graph 7 in ¥, a col-
lection of spins {j;} - unitary irreducible representations of SU (2) - associated with
links [ € v and a collection of SU (2) intertwiners {i,} associated to nodes n € =.

1T will describe the basics of loop quantum gravity and spinfoam models in a more detailed way
in section 2.3.
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The spin-network gauge invariant wave functional V. ;3 ri.y (A) is constructed by
first associating an SU (2) matrix in the j; representation to the holonomies h; (A)
corresponding to the link [, and then contracting the representation matrices at
nodes with the corresponding intertwiners ¢,

A great deal of progress has been made within the theory. At the mathemat-
ical level, the main achievement is the rigorous definition of the Hilbert space of
quantum geometry, the regularization of geometric operators and the rigorous de-
finition of the quantum Hamiltonian constraint (defining the quantum dynamics).
States of quantum geometry are given by spin network states. From the physi-
cal viewpoint the main prediction of loop quantum gravity is the discreteness of
geometry at the Planck scale. This provides a clear-cut understanding of the prob-
lem of UV divergences in perturbative general relativity: at the Planck scale the
classical notion of space and time simply ceases to exist; therefore, it is the assump-
tion of a fixed smooth background geometry (typically space-time) in perturbation
theory that becomes inconsistent at high energies. The theory successfully incorpo-
rates interactions between quantum geometry and quantum matter in a way that
is completely free of divergences [33]. The quantum nature of space appears as a
physical regulator for the other interactions. Dynamics is governed by the quan-
tum Hamiltonian constraint. Even when this operator is rigorously defined [34] it is
technically difficult to characterize its solution space. This is partly because the 3 +
1-decomposition of space-time (necessary in the canonical formulation) breaks the
manifest 4-diffeomorphism invariance of the theory making awkward the analysis
of dynamics. The situation is somewhat analogous to that in standard quantum
field theory. In the Hamiltonian formulation of standard quantum field theory man-
ifest Lorentz invariance is lost due to a particular choice of time slicing of Minkowski
space-time. The formalism is certainly Lorentz invariant, but one has to work harder
to show it explicitly. Manifest Lorentz invariance can be kept only in the Lagrangian
(path-integral) quantization making the (formal) path integral a powerful device for
analyzing relativistic dynamics. Consequently, there has been growing interest in
trying to define dynamics in loop quantum gravity from a 4-dimensional covariant
perspective. This has given rise to the so-called spin foam approach to quantum
gravity [35, 36, 37, 38, 39].

The spinfoam techniques provide well defined expressions for a Misner-Hawking
“sum over 4-geometries” [40, 41, 42], where finiteness results from the discreteness
of space revealed by loop quantum gravity. The spinfoam formalism provides an
amplitude for quantum states of gravity and matter on a 3d boundary [41, 42, 43].
But no formalism is yet available for deriving particles’ scattering amplitudes from
these boundary amplitudes.

In this thesis I indicate a direction to construct such formalism. The key in-
gredient for developing this formalism is the Minkowski vacuum state, namely the
“no-particle” state, or the coherent semiclassical state associated to the classical
Minkowski solution. The construction of this state is considered a major open prob-
lem in nonperturbative quantum gravity, and it is being studied using a variety of
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different techniques [44]. Here, I propose a tentative explicit expression for comput-
ing the Minkowski vacuum from a spinfoam formalism. I begin by introducing a
certain number of general tools, in the context of the quantum field theory of a free
massive scalar field. Adopting Schrodinger’s representation of quantum field theory,
which I briefly review in Chapter 2, I extend to the case of fields the propagation
kernel introduced by Feynman to describe the quantum mechanics of a single par-
ticle [45]. In this way I obtain a propagation kernel between field configurations
W (@1, t1; 2, ta]. More precisely, W [¢1, t1; @2, t2] describes the evolution of the dy-
namical field ¢ in an infinite strip bounded by two hyperplanes at fixed times ¢; and
ty, with @|,_, = o1 and ¢[,_, = @a. W [p1,t1; 2,12 depends exclusively on the
times ¢; and the boundary conditions ;. I show how the single tool of the propa-
gation kernel allows to reconstruct all the quantities that one may want to extract
from a quantum field theory. For example, the propagation kernel allows to obtain
the two-point functions, and through these, thanks to the LSZ reduction formula
and Wick’s theorem, any particle scattering amplitudes. Moreover, the propagation
kernel also allows to reconstruct the vacuum state, of which I give two different
definitions, distinguishing between the “Minkowski” vacuum state which minimizes
the energy and the “nonperturbative” vacuum state which codes the dynamics.

At first sight it may seem that ordinary quantum field theory techniques like the
ones I just mentioned can be of no help in a theory of quantum gravity. For example,
if gravitation is to be a dynamical field a propagation kernel between hyperplanes at
fixed times is not general enough. More generally, to understand quantum gravity, it
is necessary to understand how to formulate quantum field theory in a background-
independent manner. In the presence of a background, quantum field theory yields
scattering amplitudes and cross sections for asymptotic particle states, and these are
compared with data obtained in the laboratory. The conventional theoretical defi-
nition of these amplitudes involves infinitely extended spacetime regions and relies
on symmetry properties of the background. In a background independent context
this procedure becomes problematic. For instance, consider the 2-point function
Wi(z;y) = (0] ¢ (z) ¢ (y)]0). In quantum field theory over a background, the in-
dependent variables x and y can be related to the spacetime location of particle
detectors. In a background independent context, general covariance implies imme-
diately that W (z;y) is constant for x # y, and therefore it is not clear how the
formalism can control the localization of the detectors [46].

Therefore, the first step to make contact with quantum gravity will be to extend
the formalism of the propagation kernel to the case of finite regions of spacetime. To
this end an essential tool is the general boundary formalism, introduced by Robert
Oeckl [47, 48, 49]. The general boundary formalism is an extension of the standard
formalism of quantum mechanics with the aim of natural compatibility with general
covariance. It should be applicable in particular to quantum general relativity.

The extension as compared to the standard formalism might be sketched as
follows. In the standard formalism one associates a Hilbert space of states with
each time-slice of a global foliation of space-time. An evolution takes place between
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two such time-slices and is represented by a unitary operator. Associated with states
in the two time-slices is a transition amplitude, whose modulus square determines
the probability of finding the final state given that the initial one was prepared. More
explicitly, Hilbert spaces H; and Hs of states are associated to the initial time ¢; and
final time ¢5. The evolution is described by an operator U (t1,t3) : H1 — Hs. The
transition amplitude for an initial state 11 € H; to evolve into a final state ¥y € Hj is
written as (19| U (t1,t2) [11). In terms of a space-time picture an evolution operator
is associated to a region of space-time, namely the product of the time interval with
all of space. The states (initial and final) are naturally associated with the boundary
components of this region. Indeed, the first step of the general boundary formulation
generalization consists of forgetting the a priori distinction between initial and final
state. Instead one considers a state space which is the tensor product of the two state
spaces associated with the time-slices. The new state space is naturally associated
with the boundary as a whole. That such a formulation is consistent is a rather non-
trivial fact. It crucially relies on a symmetry of quantum field theory coming out of
the LSZ reduction that allows to exchange individual particles between the initial
and final state without changing the amplitude. (Of course, a CPT transformation
must be performed on the particle at the same time and phase space measures do
change.)

Formalizing this, a generalized state space Hj, s, is defined that is the tensor
product H; ® H5. A state ¢ in H, 4,) is a (linear combination of) tensor prod-
uct(s) ¥ ® 1y of states in Hy and Ho. The transition amplitude is then a map
Hp, 1) — C which is denoted by py, +,). In terms of the conventional notation,
Pitrta] (V1 @ 2) = (o] U (t1,2) [¢1). In terms of a measurement process, the initial
and final state are both encoded in a state of the generalized state space. The evolu-
tion operator becomes a linear map from the generalized state space to the complex
numbers, associating transition amplitudes to generalized states. The second step is
to generalize from the special regions of space-time that are time intervals extended
over all of space to more general regions. For this to be consistent it is neces-
sary to introduce a composition property. This property requires that when gluing
two regions of space-time together the evolution map associated with the compos-
ite must equal the composition of the evolution maps associated with the original
pieces. This generalizes the composition of time evolutions in standard quantum
mechanics. More precisely, one demands the properties of a topological quantum
field theory [50]. However, one allows more general boundaries than equal-time-
slices in euclidean or minkowskian space, and here is where this formulation goes
beyond the use that is usually made of topological quantum field theory in physical
contexts. In particular, boundaries might have time-like components and one may
glue along such boundaries.

Given a space-time region (4-manifold) M with boundary ¥, Hy is the state space
associated with the boundary. The evolution map (or amplitude) is py : Hy — C.
The situation of conventional quantum mechanics is recovered if M is the product
of all of space R? with a time interval [t;,t,]. ¥ is then the union of two components



1. Introduction 7

¥1UX,, each being all of space R3 times a point in time. By the axioms of topological
quantum field theory this implies that Hs, decomposes into a tensor product of vector
spaces associated to the components Hy, = Hyx, ® Hy,. In this way the expression of
Plt1ts) (Y1 ® 1P2) is recovered. But in general (especially if 3 is connected) there is no
natural decomposition of Hy into a tensor product and thus no longer any natural
distinction between preparation and observation in quantum mechanics. This has
profound interpretational implications.

It might seem that one still supposes an a priori fixed space-time in contrast to
the desire of seeing it emerge from the quantization. However, this is not really the
case. What is presumed is only the topology, but not the geometry. The geometry
and thus the dynamical degrees of freedom of gravity are really to be encoded in
the state.

The main advantage of the general boundary formulation is that local measure-
ment processes can be described using a local region of space-time only. Neither is
recourse made to distant events in the universe nor is any knowledge of its global
structure necessary. This frameworks allows me to define a propagation kernel which
describes the evolution of the dynamical fields inside a finite region R of spacetime
bounded by a closed surface . In the case of the propagation of the field in an
infinite strip the propagation kernel W [p1,%1; ¢o, 1] depends on the times t; and
the boundary conditions ¢;; in the case of a finite region R the propagation ker-
nel W [p, X] depends only on the surface ¥ = 9R and on the boundary condition
¢ = ¢|y. Through W [p, X] it is possible to build a covariant formalism for quantum
field theory entirely in terms of boundary data, in which no reference is made to
infinitely extended spatial surfaces, infinite past or infinite future. I argue that all
physical predictions on measurements performed in the region R, including scat-
tering amplitudes between particles detected in the laboratory, can be expressed in
terms of W [p,X]. The geometry of ¥ codes the relative spacetime localization of
the particle detectors. This picture is near to what actually happens in a laboratory
experiment, where the initial and final state of a scattering event are confined into
finite-size spacetime regions. The relation between particle states that can be de-
fined in such a finite context and the usual particle states of quantum field theory,
defined on an infinite spacelike region, is discussed in [51]. I derive the evolution
equation for W [y, X], which turns out to be a generalization of the Tomonaga-
Schwinger equation [52, 53]. This equation becomes a generalized Wheeler-DeWitt
equation in the background independent context [15].

Next, I consider the application of this formalism to the gravitational context. At
this point the choice of using Schrodinger’s representation of quantum field theory
and the field propagation kernel reveals its full utility. Indeed, in spinfoam mod-
els the framework is pretty much the same, as states are described through wave
functionals and propagation amplitudes between spinnetworks, which in turn can be
expressed as sums over spinfoams, are formally analogous to the propagation kernel
between field configurations.

In the gravitational context, if W [p, Y] is well defined, then background inde-
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pendence implies that it is independent from local variations of the location of .
At first sight, this seems to give rise to the characteristic interpretative obscurity of
background independent quantum field theory: the independence of W [p, ¥] from
is equivalent to the independence of W (z;y) from x and y mentioned above. But
at a closer look, it is not so: in this context the boundary field ¢ includes the grav-
itational field, which is the metric, and therefore the argument of W [p, X] = W [y]
still describes the relative spacetime location of the detectors. This fact allows to
express scattering amplitudes directly in terms of W [p] even in the background-
independent context. I distinguish two distinct notions of vacuum. The first is the
nonperturbative vacuum state |0Ox) that the functional integral on the bulk defines
on the (kinematical) Hilbert space associated to the boundary surface 3. If the
metric on is chosen to be to be spacelike, this is the Hartle-Hawking state [43]. In
the context I am considering, instead, ¥ is the boundary of a finite 4d region of
spacetime, and |Oy) is a background-independent way of coding quantum dynamics.
The second notion of vacuum is (the local approximation to) the Minkowski vac-
uum state |0y7). T will argue that this state is recovered for appropriate values of the
boundary metric. One of the main results of this thesis is an equation connecting
the two vacuum states, and an explicit formula for the Minkowski vacuum state
|0as), in terms of a spinfoam model.

Finally, T study the application of some of the propagation kernel techniques
derived in this thesis to a toy model. The boundary picture I sketched up to now
is pithy and appealing, but its implementation in the full 4d quantum gravity the-
ory is difficult because of the technical complexity of the theory. It is useful to
test and illustrate it in a simple context. I consider riemannian general relativity
in three dimensions. Since the theory is topological, the integral defining W [¢] is
trivial. To further simplify the context, I triangulate spacetime, reducing the field
variables to a finite number [54, 55, 56, 57]. Furthermore, I take a “minimalist”
triangulation: a single tetrahedron with four equal edges. In this way the number
of variables I deal with is reduced to a bare minimum. The result is an extremely
simple system, which, nevertheless, is sufficient to realize the conceptual complex-
ity of a background independent theory of spacetime geometry. I show that this
simple system has in fact a background independent classical and quantum dynam-
ics. The classical dynamics is governed by the relativistic Hamilton function [15],
the quantum dynamics is governed by the relativistic propagator W [¢]. I compute
both these functions explicitly. The classical dynamics, which is equivalent to the
Einstein equations, fixes relations between quantities that can be measured on the
boundary of the tetrahedron. The quantum dynamics gives probability amplitudes
for ensembles of boundary measurements. I describe the two (equivalent) interpre-
tations of the model, in the classical as well in the quantum theory. This work
has been done in collaboration with Daniele Colosi, Winston Fairbairn, Leonardo
Modesto, Karim Noui and Carlo Rovelli; my contribution is limited to the classical
version of the model. Furthermore, I concretely illustrate the distinction between
the nonperturbative vacuum state and the “Minkowski” vacuum that minimizes the
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energy associated with the evolution in 7', and I show that the technique I suggest
in the previous Chapters of this thesis for computing the Minkowski vacuum state
from the nonperturbative vacuum state works in this context.

This thesis is organized as follows. In Chapter 2 I briefly review the formal-
ism which forms the basis of the work described in this thesis, that is, Feynman’s
path integral formulation of quantum mechanics, and Schrédinger’s representation
in quantum mechanics and quantum field theory, and sketch the basics of loop quan-
tum gravity and spinfoam models. In Chapter 3 I introduce the propagation kernel
defined on an infinite strip, showing how it allows to reconstruct the two-point func-
tion and through it scattering amplitudes, and the vacuum state, of which I give two
different definitions. In Chapter 4 I then proceed to sketch the general boundary
formulation of quantum mechanics and quantum gravity, as introduced by Robert
Oeckl, and to develop the propagation kernel formalism in the case of a finite region
of spacetime, describing a possible application to quantum gravity. In Chapter 5
I describe the derivation of the generalized Tomonaga-Schwinger equation, for the
propagation kernel, and finally in Chapter 6 I outline an application of the tools
derived in the preceding chapters to a toy model which describes of the dynamics
of a tetrahedron. The new results are in Chapter 3, in the section 4.2 of Chapter 4
and in Chapters 5, 6, and they appear in the papers [58, 59, 60].
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Chapter 2

Basic formalism

In the following I will adopt Schrodinger’s representation for quantum field theory,
and use the extension of the Feynman’s path integral formulation in this represen-
tation. The reason for doing this has already been sketched in the introduction:
the ultimate goal of this research is that of writing down scattering amplitudes
in loop quantum gravity, and more precisely in its formulation through spinfoam
models. The formalism that allows to make contact with this models more easily
is Schrodinger’s representation, since one of the fundamental tools of the spinfoam
models is the propagation amplitude between spinnetworks [15], which is formally
similar to the field-to-field propagator in Schrédinger’s representation which I will
define in Chapter 3. Therefore, to set up a convenient background for what follows,
in this chapter I will briefly review Feynman’s path integral formulation of quantum
mechanics [45, 61| and Schrodinger’s representation [62, 63, 64, 65, 66, 67]. In the
final section of this Chapter I will briefly review the basics of loop quantum gravity
and of spinfoam models.

2.1 Feynman’s path integral formulation

The core of Feynman’s path integral formulation of quantum mechanics consists in
introducing a probability amplitude associated with every method whereby an event
in nature can take place. This probability amplitude is proportional to the classical
action associated to the specific method considered. It is possible to associate an
amplitude, called kernel, with the overall event by adding together the amplitudes
of each alternative method. For example, in the case of the propagation of a particle
from point a to point b the kernel K is given by the sum of the amplitude associated
to every possible path in space and time,

K@bx Y exp%S[m(t)] | (2.1)

all paths
from a to b

11
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where S [z (t)] is the classical action, calculated over paths z (¢) such that
T (ta> =z, (22)

The absolute square of the overall amplitude is interpreted as the probability that
the event will happen.

It is useful to make a brief comparison with the situation in classical mechanics.
In the latter, the propagation of a particle from a to b is described by a unique path,
the classical path z (t), determined by the principle of least action. The action
calculated on the classical path is also called Hamilton function [15]. In quantum
mechanics, not just the particular path of extreme action contributes; all paths
contribute. In the classical approximation, even a small change in the path, small
on the classical scale, will correspond to huge changes in the action, huge when
compared to h; contributions to the action for generic paths will average out, except
for the classical path, according to the principle of the stationary phase. Actually
trajectories differing from the classical path can still contribute as long as their
action is within h of its extremal value. The classical trajectory is indefinite to this
slight extent, and this rule serves as a measure of the limitations of the precision of
the classically defined trajectory.

(2.1) can be rewritten as a path integral, that is, a functional integral over all
paths joining a and b:

by
K (a,b) :/ exp ES[x O] Dx(t)] . (2.4)

In quantum mechanics, the kernel K is solution of the Schrodinger equation, in both
variables

ih%[( (a,b) = H,K (a,b) (2.5)

.0

ih—K (a,b) = HyK (a,b) ; (2.6)
oty

thus the knowledge of K relative to a system at a given time ¢ implies its knowledge
at all subsequent times, which translates in a complete knowledge of the evolution
of the system. The knowledge of K allows a complete description of the system
and its evolution in time. Given the wave function of the system at the time 0, the
kernel K allows to calculate the wave function at a subsequent time ¢

b (2,1) = / dyK (z,t:9,0) 0 (5,0) . (2.7)

This can be made clear by considering a representation of the kernel K in the base
of eigenstates |x) of the position operator:

K (a,b) = (b|e” """ |a) (2.8)
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where H is the hamiltonian of the system. Then it’s easy to see why (2.7) holds:

wlat) = (ale 0 1P) = [[dy el o) (o1P) = [ dy (ale ™ 5) 6 (1.0)
(2.9)
The representation (2.8) also allows to derive easily a representation of the kernel
K in terms of eigenstates of the energy ¢,

(bl e |a) = K (a,b) = 3 (bln) (n] =) Ja) = (2.10)

n

=D T (bln) (nla) = B 707G, (B) 7 (a)

n

where |n) are eigenkets of the energy.

2.2 Schrodinger’s representation

In nonrelativistic quantum mechanics, the starting point is a hamiltonian operator
which is canonically quantized by postulating commutation relations between po-
sition operators and their conjugate momenta. Using Schrodinger’s representation
amounts to choosing the basis where the position operator X is diagonal:

X|z) =xlz) | (2.12)

where |x) is the eigenstate with eigenvalue z. The coordinate representation of a
state |P), that is, its projection on the eigenstates |z) is the corresponding wave-
function 1 (x):

¥ (x) = (z|P) (2.13)
Y (x) is the probability density of finding the particle in the position z. The
Schrodinger equation becomes a differential equation whose solutions, the eigen-
functions of the hamiltonian differential operator, represent possible states of the
system.

This should not be confused with the set of formalisms, called Schrodinger’s and
Heisenberg’s representations, which apply time evolution respectively to quantum
states or to quantum operators.

I’ll now transport this formalism in quantum field theory, obtaining a description
of quantum field theory in terms of fields rather than particles. Obviously the two
descriptions are equivalent; in particle physics the second is preferred because the
object of study is the dynamics of particles. T’ll consider the case of a free scalar
field ¢ in the minkowskian, with lagrangian

L4 = % 6 () 9 () — %m2gb2 (z) — g6* () . (2.14)
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The conjugate variables are ¢ (x) and ¢ (x); there’s a pair of such variables for every
point of space (not of spacetime). ¢ () is a hermitian field, it satisfies the equal-time
commutators:

[é (#,1), ¢ (4, t)} =0 (2.15)

6@1). 6.0 =10 (#-7)

this means that field operators evaluated in different points can be simultaneously
diagonalised. In the coordinate Schrodinger representation a basis for the Fock space
is used where the operator ¢ (), now time independent, is diagonal. Then in the
space of states the following relation holds:

¢ (@) [Y) =v (@) [¢) (2.16)

with the important difference that ¢ (Z) is an operator while v (Z) is a function.
|t)) are the eigenstates of the field operator with eigenvalues v (Z). Coordinate
representations of state vectors or elements of Fock space are given by the projection
of a state |P) on the basis of eigenstates |i) of the field operator:

(WIP) =V [y] (2.17)

where W [¢] is a wave functional which determines the possible field configurations.
U [¢)] is a functional in ¢ and represents the probability amplitude for a field mea-
sure on the state |P) to give the classical field v (Z). The situation is completely
analogous to nonrelativistic quantum mechanics, where the scalar product (x|P)
gives the probability amplitude for the particle in the generic state |P) to be found
at position x.

Just like in quantum mechanics the states |x) are normalised to a 0 (z — z’), here
the eigenstates [¢)) are normalised to a functional delta:

W) =[]0 @ @) —v' () ; (2.18)

that is, the scalar product is nonzero only if the two configurations coincide every-
where. This formula contains an infinite product, which will recur often when dealing
with the functional formalism, potentially rendering equations ill-defined. However,
infinities pose no real obstacle, since it has been proved that the Schrodinger repre-
sentation is renormalizable, both in the case of static [68, 69] and time-dependent
[70, 71] problems .

In this representation the field operator ¢ (Z) acts in this way:

V(@) VY] = (¢ (7) [P) = (T) @IP) (2.19)
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Y (Z) W [¢] is a functional of ¢ which depends also on z. This reproduces the situ-
ation of nonrelativistic quantum mechanics, where in the basis where x is diagonal
one has

z (z) = (z|z |P) = x (x| P) . (2.20)

The scalar product between wave functionals is also an obvious extension:
alon) = [ TI00 @) alo) wion) = [T @w@ww) . 22y

In the Schrodinger representation of nonrelativistic quantum mechanics, one uses a
differential representation of the commutators by replacing the conjugate momenta
with derivatives:

Iz, plle) = ih{yla);  (ylpla) = —iha% (yla) (2.22)

= p— —ihd)0z . (2.23)

In quantum field theory, the equal-time commutators (2.15) are given a functional
differential representation through similar steps:

(0162 |P) = =iz (01P) = =iz [0 (2.21)
YO S
= ¢(7) = ﬁ(w @ (2.25)

where 1 (x) is the function defined in (2.16). The differential representation of the
field momentum turns the hamiltonian operator associated to the lagrangian (2.14)
into a functional differential operator

= [ (LS @ e @t @) L e
— )\ T2 e T2 . g Ve ). s
and the Schrodinger equation in a functional differential equation

Gl [ 2o (g T @ @) v
(2.27)

whose solutions, the eigenfunctionals of the hamiltonian functional differential op-
erator, represent possible states of the system. For time-independent hamiltonians
it is possible to separate the variables

U] =] (2.28)
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obtaining a functional eigenvalue problem for the time-independent Schrédinger
equation
2

3 _h_2 62 1 a2+ 2w 4 (7 I — /
[t (<G s+ 3 (T + @)+ 90 D) ¥ 1 Ewm(z,zg)

where W' [¢)] is independent of time.

Thanks to the functional derivative representation of the operator ¢ (2.25) it is
possible to write down the creation and destruction operator in this representation,
thus formalizing the particle interpretation of the theory:

a <E> = /d?’xe”;f (wkw (Z) + %) (2.30)

ol (/2) - / dBre= i <wkw () — %@) . (2.31)

The ground state ¥ |:1;:| , written in term of the Fourier transform 1; of the field v,

can be easily found by imposing the condition a (/Z) v, [QZ] = 0; the result is:

wo[ﬁ]_g(%)iexp(_g [#rgmai () @)

where wy is the energy: wp = V k2 +m2. It is now evident that the ground state
is the infinite product of ordinary harmonic oscillator ground state wave functions.
The ground state energy eigenvalue, Ey, is given by

Ey = % / d*kwd® (0) . (2.33)

Excited states can be easily built from W, [@Z)} :

v, M:M% M:(Ml)%(a)% B e

2wy, (27)° (27)°

The momentum operator, P?, generates infinitesimal spatial displacements and in
ordinary quantum mechanics it is represented by —i d/0dx;. The momentum operator
acting on the field operator should have the same effect, namely

a beg .
o (@t) (2.35)

it is possible to satisfy this requirement with the operator

P=— / BPz¢ () 0 (z) (2.36)

(B ¢ (Z,8)] = —i
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through the equal-time commutators (2.15). In the Schrodinger representation P,
becomes the functional differential operator

— 3 2\ A. 0
P, = Z/d x) (T) (91(w @ (2.37)
It is now possible to verify that ¥y [ﬂ is a momentum eigenstate:
A a1 3 - 8 2wk1 % )
P, M —i / dav (7) 5 ((%)3) (2.38)
. /dgy exp (—iE1§> 6@ (z —y) T, [1@] = (2.39)
= (k1); W1 [@Z} : (2.40)

Since U, [1;] is an energy eigenstate with energy wy, relative to the vacuum and a

momentum eigenstate with momentum El, this allows to identify ¥, [ﬂ as a state
describing one particle with 4-momentum k; and mass m.

2.3 Basics of loop quantum gravity and spinfoam
models

In this section I skecth the basics of loop quantum gravity and the spinfoam formula-
tion. There is a vast literature, a good entry point are [2, 15, 16, 17, 18, 19, 20, 21, 22]
and references therein.

2.3.1 Founding hypotheses

The main physical hypotheses on which loop quantum gravity relies are only general
relativity and quantum mechanics. In other words, loop quantum gravity is a rather
conservative quantization of general relativity, with its traditional matter couplings.
Of course quantization is far from a univocal algorithm, particularly for a nonlinear
field theory. Rather, it is a poorly understood inverse problem (find a quantum
theory with the given classical limit). More or less subtle choices are made in
constructing the quantum theory. I illustrate these choices below.

The main idea beyond loop quantum gravity is to take general relativity se-
riously. General relativity introduces the idea that the spacetime metric and the
gravitational field are the same physical entity. Thus, a quantum theory of the
gravitational field is a quantum theory of the spacetime metric as well. One could
conventionally split the spacetime metric into two terms: one to be consider as a
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background, which gives a metric structure to spacetime; the other to be treated as
a quantum field. This, indeed, is the procedure on which old perturbative quantum
gravity, perturbative strings, as well as current non-perturbative string theories (M-
theory), are based. In following this path, one assumes, for instance, that the causal
structure of spacetime is determined by the underlying background metric alone,
and not by the full metric. Contrary to this, in loop quantum gravity one assumes
that the identification between the gravitational field and the metric-causal struc-
ture of spacetime holds, and must be taken into account, in the quantum regime as
well. Thus, no split of the metric is made, and there is no background metric on
spacetime. Spacetime can still be described as a (differentiable) manifold (a space
without metric structure), over which quantum fields are defined. A classical met-
ric structure will then be defined by expectation values of the gravitational field
operator. Thus, the problem of quantum gravity is the problem of understanding
what is a quantum field theory on a manifold, as opposed to quantum field theory
on a metric space. This is what renders loop quantum gravity different from or-
dinary quantum field theory. In all versions of ordinary quantum field theory, the
metric of spacetime plays an essential role in the construction of the basic theo-
retical tools (creation and annihilation operators, canonical commutation relations,
gaussian measures, propagators... ); these tools cannot be used in quantum field
over a manifold. Technically, the difficulty due to the absence of a background
metric is circumvented in loop quantum gravity by defining the quantum theory
as a representation of a Poisson algebra of classical observables which can be de-
fined without using a background metric. The idea that the quantum algebra at
the basis of quantum gravity is not the canonical commutation relation algebra,
but the Poisson algebra of a different set of observables has long been advocated
by Chris Isham [72], whose ideas have been very in in the birth of loop quantum
gravity. The algebra on which loop gravity is based is the loop algebra [26]. The
particular choice of this algebra is not harmless. Indeed, in choosing the loop alge-
bra as the basis for the quantization, one is essentially assuming that Wilson loop
operators are well defined in the Hilbert space of the theory. In other words, that
certain states concentrated on one dimensional structures (loops and graphs) have
finite norm. This is a subtle non trivial assumptions entering the theory. It is the
key assumption that characterizes loop quantum gravity. If the approach turned
out to be wrong, it will likely be because this assumption is wrong. The Hilbert
space resulting from adopting this assumption is not a Fock space. Physically, the
assumption corresponds to the idea that quantum states can be decomposed on a
basis of Faraday lines excitations (as Minkowski quantum field theory states can
be decomposed on a particle basis). Furthermore, this is an assumption that fails
in conventional quantum field theory, because in that context well defined opera-
tors and finite norm states need to be smeared in at least three dimensions, and
one-dimensional objects are too singular. The assumption does not fail, however,
in two-dimensional Yang-Mills theory, which is invariant under area preserving dif-
feomorphisms, and where loop quantization techniques were successfully employed
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[73]. What distinguishes gravity from Yang-Mills theories, however, and makes this
assumption viable in gravity even if it fails for Yang-Mills theory is diffeomorphism
invariance. The loop states are singular states that span a huge non-separable state
space. (Non-perturbative) diffeomorphism invariance plays two roles. First, it wipes
away the infinite redundancy. Second, it smears a loop state into a knot state, so
that the physical states are not really concentrated in one dimension, but are, in a
sense, smeared all over the entire manifold by the nonperturbative diffeomorphisms.

Conventional field theories are not invariant under a diffeomorphism acting on
the dynamical fields. (Every field theory, suitably formulated, is trivially invariant
under a diffeomorphism acting on everything.) General relativity, on the contrary
is invariant under such transformations. More precisely every general relativistic
theory has this property. Thus, diffeomorphism invariance is not a feature of just
the gravitational field: it is a feature of physics, once the existence of relativistic
gravity is taken into account. Thus, one can say that the gravitational field is not
particularly special in this regard, but that diff-invariance is a property of the phys-
ical world that can be disregarded only in the approximation in which the dynamics
of gravity is neglected. What is this property? What is the physical meaning of
diffeomorphism invariance? Diffeomorphism invariance is the technical implemen-
tation of a physical idea, due to Einstein. The idea is a deep modification of the
pre-general-relativistic notions of space and time. In pre-general-relativistic physics,
it is assumed that physical objects can be localized in space and time with respect to
a fixed non-dynamical background structure. Operationally, this background space-
time can be defined by means of physical reference-system objects, but these objects
are considered as dynamically decoupled from the physical system that one studies.
This conceptual structure fails in a relativistic gravitational regime. In general rela-
tivistic physics, the physical objects are localized in space and time only with respect
to each other. Therefore if one displaces all dynamical objects in spacetime at once,
one is not generating a different state, but an equivalent mathematical description of
the same physical state. Hence, diffeomorphism invariance. Accordingly, a physical
state in general relativity is not located somewhere [15, 74] (unless an appropri-
ate gauge fixing is made). Loop quantum gravity is an attempt to implement this
relational notion of spacetime localization in quantum field theory. In particular,
the basic quantum field theoretical excitations cannot be localized somewhere as,
say, photons are. Intuitively, one can understand from this discussion how knot
theory plays a role in the theory. First, one defines quantum states that correspond
to loop-like excitations of the gravitational field, but then, when factoring away
diffeomorphism invariance, the location of the loop becomes irrelevant. The only
remaining information contained in the loop is then its knotting (a knot is a loop
up to its location). Thus, diffeomorphism invariant physical states are labeled by
knots. A knot represents an elementary quantum excitation of space. It is not here
or there, since it is the space with respect to which here and there can be defined.
A knot state is an elementary quantum of space. In this manner, loop quantum
gravity ties the new notion of space and time introduced by general relativity with
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quantum mechanics. The existence of such elementary quanta of space is then made
concrete by the quantization of the spectra of geometrical quantities.

2.3.2 Formalism of loop quantum gravity

The starting point of the construction of the quantum theory is classical general
relativity, formulated in terms of the Sen-Ashtekar-Barbero connection [23, 75, 76].
Detailed introductions to the complex Ashtekar formalism can be found in [77, 78].
The real version of the theory is presently the most widely used. Classical general
relativity can be formulated in phase space form as follows [77, 76]. Consider a
three-dimensional manifold M (compact and without boundaries), a smooth real
SU (2) connection A% (x) and a vector density E¢ (x) (transforming in the vector
representation of SU (2)) on M. The notation is as follows: a,b,... = 1,2,3 for
spatial indices and 7,j,... = 1,2,3 for internal indices. The internal indices can
be viewed as labeling a basis in the Lie algebra of SU (2) or the three axis of a
local triad. Coordinates on M are indicated with z. The relation between these
fields and conventional metric gravitational variables is as follows: E®(z) is the
(densitized) inverse triad, related to the three-dimensional metric g, (x) of constant-
time surfaces by

99" = E'E) (2.41)

where g is the determinant of ¢?, and
A, (2) = T (2) + 9k, (2) (2.42)

I (z) is the spin connection associated to the triad, defined by 9y, 62] = Ffaeb]j,
where €’ is the triad. k! (z) is the extrinsic curvature of the constant time three
surface. In (2.42), 7 is a constant, denoted the Immirzi parameter, that can be
chosen arbitrarily (it will enter the hamiltonian constraint) [79, 80, 81]. Different
choices for « yield different versions of the formalism, all equivalent in the classical
domain. If v is choosen to be equal to the imaginary unit, v = /—1, then A is
the standard Ashtekar connection, which can be shown to be the projection of the
selfdual part of the four-dimensional spin connection on the constant time surface.
With the choice v = 1 one obtains the real Barbero connection. The hamiltonian
constraint of lorentzian general relativity has a particularly simple form in the v =
v/—1 formalism, while the hamiltonian constraint of euclidean general relativity has
a simple form when expressed in terms of the v = 1 real connection. Other choices
of v are viable as well. In particular, it has been argued that the quantum theories
based on different choices of + are genuinely physical inequivalent, because they
yield geometrical quanta of different magnitude [82]. Apparently, there is a unique
choice of v yielding the correct 1/4 coefficient in the Bekenstein-Hawking formula
[83, 84, 85, 86]. The spinorial version of the Ashtekar variables is given in terms of
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the Pauli matrices oy, i = 1,2, 3 or the su (2) generators 7; = —%Ui, by
E () = —iE (z) 0; = 2E% () 7; (2.43)
A, (z) = —%AZ ()o; = A ()75 . (2.44)

Thus, A, (z) and E®(z) are 2 x 2 anti-hermitian complex matrices. The theory
is invariant under local SU (2) gauge transformations, three-dimensional diffeomor-
phisms of the manifold on which the fields are defined, as well as under (coordinate)
time translations generated by the hamiltonian constraint. The full dynamical con-
tent of general relativity is captured by the three constraints that generate these
gauge invariances [75, 77]. As already mentioned, the lorentzian hamiltonian con-
straint does not have a simple polynomial form if one uses the real connection (2.42).
For a while, this fact was considered an obstacle for defining the quantum hamil-
tonian constraint; therefore the complex version of the connection was mostly used.
However, Thiemann has succeeded in constructing a lorentzian quantum hamiltonian
constraint [87, 88, 89] in spite of the non-polynomiality of the classical expression.
This is the reason why the real connection is now widely used. This choice has the
advantage of eliminating the old reality conditions problem, namely the problem of
implementing non-trivial reality conditions in the quantum theory.

Loop algebra

Certain classical quantities play a very important role in the quantum theory. These
are: the trace of the holonomy of the connection, which is labeled by loops on the
three manifold; and the higher order loop variables, obtained by inserting the E field
(in n distinct points, or “hands”) into the holonomy trace. More precisely, given a

loop a in M and the points s1, Sa, ..., S, € a one defines
T o) = =Tr U] (2.45)
Tla](s) = —Tr [Ua (s, 5) B <s)] (2.46)

and, in general

T [a] (s1,. ) = =T |Ua (s1,55) B (53) U (s, sv-1) - B (s1)|
(2.47)
where U, (s1,$2) ~ Pexp {f:’f A, (a(s)) ds} is the parallel propagator of A, along
a, defined by ; dow (5
EUQ (1,s) = s
see [28] for more details. These are the loop observables, introduced in Yang Mills
theories in [90, 91], and in gravity in [25, 26]. The loop observables coordinatize the

Ao (@ (s))Ua(L,5) | (2.48)



22 2. Basic formalism

phase space and have a closed Poisson algebra, denoted the loop algebra. This alge-
bra has a remarkable geometrical flavor. For instance, the Poisson bracket between
T [o] and 7*[f] (s) is non vanishing only if 3 (s) lies over a; if it does, the result is
proportional to the holonomy of the Wilson loops obtained by joining o and [ at
their intersection (by rerouting the 4 legs at the intersection). More precisely

{T o], T*[B](s)} = Ao, B ()] [T [a#B] = T [a#57']] . (2.49)
Here It
Ao, 2] / dso‘d—s(s)53 (a(s), ) (2.50)

is a vector distribution with support on o and a# is the loop obtained starting at
the intersection between o and 3, and following first o and then 3. 57! is 3 with
reversed orientation. A (non-SU (2) gauge invariant) quantity that plays a role in
certain aspects of the theory, particularly in the regularization of certain operators,
is obtained by integrating the F field over a two dimensional surface S

B(S.f)= [ ds.Bif 2:51)
S
where f is a function on the surface S, taking values in the Lie algebra of SU (2).

Loop quantum gravity

The kinematics of a quantum theory is defined by an algebra of elementary oper-
ators (such as x and ihd/dz, or creation and annihilation operators) on a Hilbert
space H. The physical interpretation of the theory is based on the connection be-
tween these operators and classical variables, and on the interpretation of H as the
space of the quantum states. The dynamics is governed by a hamiltonian, or, as
in general relativity, by a set of quantum constraints, constructed in terms of the
elementary operators. To assure that the quantum Heisenberg equations have the
correct classical limit, the algebra of the elementary operator has to be isomorphic
to the Poisson algebra of the elementary observables. This yields the heuristic quan-
tization rule: promote Poisson brackets to commutators. In other words, define the
quantum theory as a linear representation of the Poisson algebra formed by the
elementary observables. For the reasons illustrated in the preceding subsection, the
algebra of elementary observables we choose for the quantization is the loop algebra,
defined above. Thus, the kinematic of the quantum theory is defined by a unitary
representation of the loop algebra. Here, this representation will be constructed
following a simple path. One can start a la Schrodinger by expressing quantum
states by means of the amplitude of the connection, namely by means of functionals
U (A) of the (smooth) connection. These functionals form a linear space, which
one promotes to a Hilbert space by defining a inner product. To define the inner
product, one chooses a particular set of states, which are denoted cylindrical states
and begin by defining the scalar product between these. Pick a graph I, say with n
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links, denoted ~q,...,7,, immersed in the manifold M. For technical reasons, one
requires the links to be analytic. Let U; (A) = U,,, i =1,...,n be the parallel trans-
port operator of the connection A along ;. U; (A) is an element of SU (2). Pick a
function f (g1,...,9,) on [SU (2)]". The graph I' and the function f determine a
functional of the connection as follows

These states are called cylindrical states because they were introduced in [29, 92, 93]
as cylindrical functions for the definition of a cylindrical measure. Notice that it is
always possible to enlarge the graph, in the sense that if I' is a subgraph of I one
can always write

Yr g (A) =Y g (A) (2.53)

by simply choosing f” independent from the U;’s of the links which are in I but not
in I'. Thus, given any two cylindrical functions, one can always view them as having
the same graph (formed by the union of the two graphs). Given this observation,
one defines the scalar product between any two cylindrical functions [94, 29, 92, 93]
by

(Ur g, Yrp) = / dgi---dgnf(g1---gn)h (g1 9n) (2.54)

SU@2)™

where dg is the Haar measure on SU (2). This scalar product extends by linearity
to finite linear combinations of cylindrical functions. It is not difficult to show that
(2.54) defines a well defined scalar product on the space of these linear combinations.
Completing the space of these linear combinations in the Hilbert norm, one obtains
a Hilbert space H. This is the (unconstrained) quantum state space of loop gravity.
‘H carries a natural unitary representation of the diffeomorphism group and of the
group of the local SU (2) transformations, obtained transforming the argument of
the functionals. An important property of the scalar product (2.54) is that it is
invariant under both these transformations. H is non-separable. At first sight, this
may seem as a serious obstacle for its physical interpretation. But after factoring
away diffeomorphism invariance it is possible to obtain a separable Hilbert space
(see below). Also, standard spectral theory holds on H, and it turns out that
using spin networks (discussed below) one can express H as a direct sum over finite
dimensional subspaces which have the structure of Hilbert spaces of spin systems;
this makes practical calculations very manageable. Finally, in Dirac notation one
can write

U (A) = (AT) | (2.55)

in the same manner in which one may write ¢ () = (x[¢) in ordinary quantum
mechanics. As in that case, however, one should remember that |A) is not a nor-
malizable state.
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Loop states and spin network states

A subspace Hy of H is formed by states invariant under SU (2) gauge transfor-
mations. The next step is defining an orthonormal basis in Hy. This basis was
introduced in [31] and developed in [32, 95]; it is denoted spin network basis. First,
given a loop « in M, there is a normalized state 1, (A) in H, which is obtained by
taking I' = aw and f (¢9) = —Tr (g). Namely

Vo (A) = =TrU, (A) . (2.56)

By introducing a Dirac notation for the abstract states, this state is denoted as |a).
These states are called loop states. Using Dirac notation, one can write

Vo (A) = (Ala) . (2.57)

It is easy to show that loop states are normalizable. Products of loop states are
normalizable as well. Traditionally, a denotes also a multiloop, namely a collection
of (possibly overlapping) loops {a1, ..., a,}; a multiloop state is

Yo (A) =ty (@) X -+ X Y0, (A). (2.58)

(Multi-)loop states represented the main tool for loop quantum gravity before the
discovery of the spin network basis. Linear combinations of multiloop states (over-
)span H, and therefore a generic state 1 (A) is fully characterized by its projections
on the multiloop states, namely by

V() = (Ya,¥) . (2.59)

The old loop representation was based on representing quantum states in this man-
ner, namely by means of the functionals 1 («) over the loop space defined in (2.59).
Equation (2.59) can be explicitly written as an integral transform. Next, consider
a graph I'. A coloring of I' is given by the following. First, associate an irreducible
representation of SU (2) to each link of I'. Equivalently, one may associate to each
link ~; a half integer number s;, the spin of the irreducible representation, or, equiv-
alently, an integer number p;, the color p; = 2s;. Next, associate an invariant tensor
v in the tensor product of the representations s;...s,, to each node of I' in which
links with spins s; ...s, meet. An invariant tensor is an object with n indices in the
representations s; ... s, that transform covariantly. If n = 3, there is only one invari-
ant tensor (up to a multiplicative factor), given by the Clebsh-Gordan coefficient.
An invariant tensor is also called an intertwining tensor. All invariant tensors are
given by the standard Clebsch-Gordan theory. More precisely, for fixed s; ... s,, the
invariant tensors form a finite dimensional linear space. Pick a basis v; in this space,
and associate one of these basis elements to the node. Notice that invariant tensors
exist only if the tensor product of the representations s; ...s, contains the trivial
representation. This yields a condition on the coloring of the links. For n = 3, this
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is given by the well known Clebsh-Gordan condition: each color is not larger than
the sum of the other two, and the sum of the three colors is even. A colored graph
is indicated by {I', §, 7}, or simply S = {I', 5,0}, and called a spin network. Given
a spin network S, it is possible to construct a state Wg (A) as follows. One takes
the propagator of the connection along each link of the graph, in the representation
associated to that link, and then, at each node, one contracts the matrices of the
representation with the invariant tensor. The result is a state Wg (A), which is also
written as

s (A) = (AlS) . (2.60)

One can then show the following.

e The spin network states are normalizable. The normalization factor is com-
puted in [28].

e They are SU (2) gauge invariant.

e Each spin network state can be decomposed into a finite linear combination
of products of loop states.

e The (normalized) spin network states form an orthonormal basis for the gauge
SU (2) invariant states in H (choosing the basis of invariant tensors appropri-
ately).

e The scalar product between two spin network states can be easily computed
graphically and algebraically. See [28] for details.

The spin network states provide a very convenient basis for the quantum theory.
The spin network states defined above are SU (2) gauge invariant. There exists also
an extension of the spin network basis to the full Hilbert space (see for instance
[96, 97], and references therein).

The representation

The quantum operators, corresponding to the 7-variables, can be defined as linear
operators on H. These form a representation of the loop variables Poisson algebra.
The operator 7 [a] acts diagonally

T [a] U (A) = —TrU, (A) T (4) . (2.61)

Indeed, products of loop states and spin network states are normalizable states.
Higher order loop operators are expressed in terms of the elementary grasp operation.
Consider first the operator 7¢ (s) [a], with one hand in the point « (s). The operator
annihilates all loop states that do not cross the point « (s). Acting on a loop state

|3), it gives
T (s) [0] 18) = 15A" [B, 0 (s)] [la#tB) — |at57)] (2.62)
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where the elementary length [ is such that

1 67ThGNewt0n
03

If = hG = = 16713 ner (2.63)
and A is defined in (2.50), where also # is defined. This action extends by linearity,
continuity and by the Leibniz rule to products and linear combinations of loop
states, and to the full H. In particular, it is not difficult to compute its action on
a spin network state [28]. Higher order loop operators act similarly. It is simple
to verify that these operators provide a representation of the classical Poisson loop
algebra. All the operators in the theory are then constructed in terms of these basics
loop operators, in the same way in which in conventional quantum field theory
one constructs all operators, including the hamiltonian, in terms of creation and
annihilation operators. The construction of the composite operators requires the
development of regularization techniques that can be used in the absence of a back-
ground metric. These have been introduced in [98] and developed in [99, 28, 100,
101, 96).

Algebraic version (loop representation) and differential version (connec-
tion representation) of the formalism, and their equivalence

It is possible to build directly the quantum theory in the spin-network (or loop)
basis, without ever mentioning functionals of the connections. This representation
of the theory is denoted the loop representation. A section of the first paper on
loop quantum gravity by Rovelli and Smolin [26] was devoted to a detailed study of
transformation theory (in the sense of Dirac) on the state space of quantum gravity,
and in particular on the relations between the loop states

¥ (@) = (i) (2.64)

and the states 1 (A) giving the amplitude for a connection field configuration A,
and defined by

¥ (A) = (Alp) . (2.65)

Here |A) are eigenstates of the connection operator, or, more precisely (since the
operator corresponding to the connection is ill defined in the theory) the generalized
states that satisfy

T o] |A) = —Tr [PeRa A} A) (2.66)

However, at the time of [26] the lack of a scalar product made transformation theory
quite involved. On the other hand, the introduction of the scalar product (2.54)
gives a rigorous meaning to the loop transform. In fact, one can write, for every
spin network S, and every state 1) (A)

0 (8) = (SIY) = (s, ¥) (2.67)
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This equation defines a unitary mapping between the two presentations of H: the
loop representation, in which one works in terms of the basis |S); and the connection
representation, in which one uses wave functionals ) (A). The complete equivalence
of these two approaches has been firmly established. In particular, the work of
Roberto De Pietri [102] has proven the unitary equivalence of the two formalisms.
For a more recent discussion see also [103].

Diffeomorphism invariance

The next step in the construction of the theory is to factor away diffeomorphism
invariance. This is a key step for two reasons. First of all, H is a huge non-separable
space. However, most of this redundancy is gauge, and disappears when one solves
the diffeomorphism constraint, defining the diff-invariant Hilbert space Hp;ss. This
is the reason for which the loop representation, as defined here, is of great value
in diffeomorphism invariant theories only. The second reason is that Hp;ss turns
out to have a natural basis labeled by knots. More precisely by s-knots. An s-knot
s is an equivalence class of spin networks S under diffeomorphisms. An s-knot is
characterized by its abstract graph (defined only by the adjacency relations between
links and nodes), by the coloring, and by its knotting and linking properties, as
in knot-theory. Thus, the physical quantum states of the gravitational field turn
out to be essentially classified by knot theory. There are various equivalent way
of obtaining Hp;ss from H. One can use regularization techniques for defining the
quantum operator corresponding to the classical diffeomorphism constraint in terms
of elementary loop operators, and then find the kernel of such operator. Equivalently,
one can factor H by the natural action of the diffeomorphism group that it carries.

Namely
H

Hpisy Diff () (2.68)
There are several rigorous ways for defining the quotient of a Hilbert space by the
unitary action of a group. See in particular the construction in [100], which follows
the ideas of Marolf and Higuchi [104, 105, 106]. Apparently, there is the problem that
a scalar product is not defined on the space of solutions of a constraint C, defined
on a Hilbert space H. This, however, is a false problem. It is true that if zero is
in the continuum spectrum of C' then the corresponding eigenstates are generalized
states and the H scalar product is not defined between them. But the generalized
eigenspaces of C , including the kernel, inherit nevertheless a scalar product from H.
This can be seen in a variety of equivalent ways. For instance, it can be seen from
the following theorem. If C' is self adjoint, then there exist a measure z(\) on its
spectrum and a family of Hilbert spaces H (A) such that

M= / du(NHO) (2.60)

where the integral is a continuous sum of Hilbert spaces. H (A) is the kernel of C
equipped with a scalar product. There are two distinct ways of factoring away the
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diffeomorphisms in the quantum theory, yielding two distinct version of the theory.
The first way is to factor away smooth transformations of the manifold. In doing so,
finite dimensional moduli spaces associated with high valence nodes appear [107],
so that the resulting Hilbert space is still nonseparable. The physical relevance of
these moduli parameters is unclear at this stage, since they do not seem to play
any role in the quantum theory. Alternatively, one can consistently factor away
continuous transformations of the manifold. This possibility has been explored by
Zapata in [108, 27], and seems to lead to a consistent theory free of the residual non
separability.

Dynamics

Finally, the definition of the theory is completed by giving the hamiltonian con-
straint. A number of approaches to the definition of a hamiltonian constraint have
been attempted in the past, with various degrees of success. Recently, however,
Thiemann [87, 88, 89] has succeeded in providing a regularization of the hamiltonian
constraint that yields a well defined, finite operator. In the following I describe the fi-
nal form of the constraint, following [109]. For the euclidean hamiltonian constraint,

one has ) A
His)=> 3> > Awpi-.-pn) Dinee ls) (2.70)

i (1J) e=+1e=+1

Here i labels the nodes of the s-knot s; (1.J) labels couples of (distinct) links emerging
from 7. py._p, are the colors of the links emerging from 1. ZA)Z-;( 1.7),ce 18 the operator
that acts on an s-knot by: (i) creating two additional nodes, one along each of the
two links I and J; (ii) creating a novel link, colored 1, joining these two nodes,
(iii) assigning the coloring p; + € and, respectively, p; + € to the links that join the
new formed nodes with the node i. The coefficients A. (p; ... pn), which are finite,
can be expressed explicitly (but in a rather laborious way) in terms of products of
linear combinations of 6 — 7 symbols of SU (2), following the techniques developed
in detail in [28]. Some of these coefficients have been explicitly computed [97]. The
lorentzian hamiltonian constraint is given by a similar expression, but quadratic in
the D operators. The operator defined above is obtained by introducing a regularized
expression for the classical hamiltonian constraint, written in terms of elementary
loop observables, turning these observables into the corresponding operators and
taking the limit. The construction works thanks the fact, first noticed in [110], that
certain operator limits O, — O turn out to be finite on diff invariant states, thanks
to the fact that for ¢ and € sufficiently small, O, |¥) and Ou |¥) are diffeomorphic
equivalent. Thus, here diff invariance plays again a crucial role in the theory.

2.3.3 Spinfoam models

Just as a spin network is a graph with edges labeled by spins and vertices labeled by
intertwining operators, a spin foam [35, 36, 37, 38, 39] is a 2-dimensional piecewise
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linear cell complex - roughly, a finite collection of polygons attached to each other
along their edges - with faces labeled by spins and edges labeled by intertwining
operators. As with spin networks, one may think of spin foams either abstractly
or embedded in spacetime. Either way, a generic slice of a spin foam “at fixed
time” gives a spin network. Edges of this spin network come from faces of the
spin foam, while vertices of the spin network come from edges of the spin foam.
As we move the slice “forwards in time”, the spin network changes topology only
when the slice passes a vertex of the spin foam. In their joint work, Reisenberger
and Rovelli [111] arrive at spin foams through the study of quantum gravity on a
manifold of the form R x S for some 3-manifold S representing space. They begin
with the Hamiltonian constraint H with constant lapse function as an operator on
the space of kinematical states. The actual form of this operator is currently a
matter of controversy: Thiemann has proposed a formula [87], but it is far from
universally accepted. Luckily, Reisenberger and Rovelli’s argument depends only
on some general assumptions as to the nature of the operator H. Under these
assumptions, they are able to compute the transition amplitude (¥, exp (—itH) ®)
as a formal power series in ¢ for any spin network states ¥ and ®. The coefficient
of t" in this power series is a sum over certain equivalence classes of spin foams
embedded in spacetime with U as their initial slice, ® as their final slice, and a total
of n foam vertices. Each spin foam contributes an amplitude given by a product
over its vertices of certain “spin foam vertex amplitudes”.

Spin foams play a role much like that of Feynman diagrams. In standard quan-
tum field theory transition amplitudes are computed as sums or integrals over graphs
with edges labeled by irreducible unitary representations of the relevant symmetry
group. Typically this group is the product of the Poincaré group and some internal
symmetry group, so the edges are labeled by momenta, spins, and certain internal
quantum numbers. To compute the transition amplitude from one basis state to an-
other, one sums over graphs going from one set of points labeled by representations
(and vectors lying in these representations) to some other such set. The contribu-
tion of any graph to the amplitude is given by a product of amplitudes associated to
its vertices and edges. Each vertex amplitude depends only on the representations
labeling the incident edges, while each edge amplitude, or propagator, depends only
on the label of the edge itself. The propagators are usually computed using a free
theory about which one is doing a perturbative expansion, while the vertices rep-
resent interactions. Similarly, one can consider spin foam models for an arbitrary
symmetry group G, generalizing the case considered by Reisenberger and Rovelli,
in which G = SU (2). In this more general context a spin network is defined as a
graph with oriented edges labeled by irreducible unitary representations of G and
vertices labeled by intertwining operators from the tensor product of the represen-
tations labeling “incoming” incident edges to the tensor product of representations
labeling “outgoing” edges. By analogy, a spin foam is defined to be a 2-dimensional
piecewise linear cell complex with oriented faces labeled by irreducible unitary rep-
resentations of G and oriented edges labeled by intertwining operators. In such a
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model we compute the transition amplitude between two spin networks as a sum
over spin foams going from the first spin network to the second. Each spin foam
contributes to the amplitude an amount given by a product of amplitudes associated
to its vertices, edges, and faces. In a model with crossing symmetry, the amplitude
of any vertex depends only on the isotopy class of the spin network obtained by in-
tersecting the spin foam with a small sphere centered at the vertex. The amplitude
of any edge depends only on the intertwining operator labeling that edge and the
representations labeling the incident faces. The amplitude of any face depends only
on the representation labeling that face. By analogy with Feynman diagrams, the
edge and face amplitudes can be thought of as propagators. Spin foam vertices can
be thought of as interactions, and the vertex amplitudes characterize the nontrivial
dynamics of the theory.



Chapter 3

Propagation kernel defined on an
infinite strip

In this Chapter I will give a first definition of the propagation kernel between field
configurations, and investigate some of its properties. The results here described
are reported in the paper [58].

3.1 Definition

v

Lb

Figure 3.1: Infinite strip

The main tool used in this thesis is the propagation kernel between field con-
figurations. In this Chapter I deal with the propagation kernel W [p1,t1; ¢a, to]
which evolves the dynamical field on an infinite strip, that is, an infinite region of
spacetime bounded by two hyperplanes at fixed time, see figure 3.1. More precisely,
W 1, t1; a2, ta] propagates the field ¢ from the field configuration ¢|,_, = ¢; de-
fined on the spatial hyperplane at time t; to the field configuration ¢|t:t2 = (o
defined on the spatial hyperplane at time t5. It is an extension of the propagation
kernel K (a,b) propagating a particle from position z, at time ¢, to position x,
at time t,. I will now proceed to define it both on minkowskian and in euclidean
space; I will denote the propagation kernel in the minkowskian and euclidian case
respectively as Wy, and Wg, leaving the notation W for situations where both cases
are concerned. In the minkowskian case the propagation kernel can be defined by

31
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generalizing either (2.4)

?
Wi lontivatd = [ ewiS6IDs . 3.)
p1,t1;p2,t2
or (2.8)
War [p1,t1; 0o, ta] = (ipa] e 71 o) (3.2)

From this last definition an extension of (2.11) easily follows, inserting sums on
eigenstates of the energy,

W o1, t1s 2, ta] = (po| e HET ) = (3.3)
= > (ool ) (W e [0 (Ufipr) = (34)
=" Valpa] U ] e B (35)
It is now easy to see why the kernel W is a field-to-field propagator; indeed:
U {ipa, ta] = (2| ¥) = /D% (pal e 1) (1| W) = (3.6)
= /D%W (2, t2; 01, t1] W lpr] . (3.7)

The state space at time t;, H;,, is Fock space, where the hamiltonian H is defined.
The corresponding definitions of the propagation kernel in the euclidean case are
straightforward extensions of the above expressions to imaginary time.

3.2 Calculation

I will now calculate the explicit expression of the propagation kernel in a specific
case. | will consider a real massive scalar field ¢, both in minkowskian space and in
euclidean space; for simplicity I will consider the free case, and set ¢t; =0, to =T

3.2.1 Minkowskian case

In this case, (3.1) reads

poesw (5 [ 0 @0 0)0% ) - m2e?)
(3.8)

W [¢1,0; 902, T] = /

»1,0502,T

where I introduced the notation

T T +oco
/ d4x:/ d:):o/ P . (3.9)
0 0 —00
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(3.8) is a gaussian integral; as such it can be solved by finding the extremal value
of the exponent, which corresponds to the classical solution, and then solving the
functional integral as the integrand calculated in the classical solution times the in-
tegral calculated on a fluctuation around the classical solution, with the appropriate
boundary conditions.

The first step is to find the extremal value of the exponent. The variation of the
action

0SS = i/o d*z (0,0 (x) 009 (x) — m*¢d¢) = (3.10)

— 0,6 (2) 66 (2)[T — / 43006 (z) 56 (z) — i / dzm’ese . (3.11)

0 0
after imposing the boundary conditions

dop(t=0)=0p(t=T)=0 (3.12)
gives
T
5 = —i / d'z (0,6 (x) + m6 (2)) 66 (x) (3.13)
0
the requirement 0.5 = 0 gives the classical equation
(O, +m*) ¢(z) =0 . (3.14)

It is now necessary to solve this equation in the infinite strip bounded by the two
hyperplanes ¢t = 0 and ¢ = T', with the boundary conditions

¢ (7,0) = o1 (7)

This is easily done by considering the Fourier transform ¢ (k) of the field ¢ (z); the
resulting classical solution ¢ () is

W= 53];3 [ gt 2@t — o @sine (e =T
—00 i

(3.15)

Y

(3.16)

wr = \/ B24+m? . (3.17)

Now the functional integral can be solved by substituting ¢ (z) = ¢ (z) + 1 (),
where 7 (x) is a fluctuation:

sin w1’

—00

with

Warlontientl= [ poe(§ [ a0 -nist) = @19

#1,0;02,T

-
&
+
33
o
Nt
N——

i [T 4 - 2 2
N / Dnexp (é/ d'z (0,0 (2) + Oun ()" —m? (
©1,0;02,T 0
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by using (3.14) and the fact that the boundary conditions for n (z) are n (Z,t = 0) =
n(Z,t =T) =0, this becomes

Wi [p1, 0502, T] = (3.20)
[P (3 [t (06 @) = m°8 @)+ @) — i )

which can in turn be simplified

War 01, 0; 2, T] = exp (% /0 "t ((0,6(2))" - m?@?)) . (3.22)

- / _ Drew (5 / e (@ (2))? m%f)) - (3.23)

2/
Using the explicit expression of ¢ (z) (3.16) this is easily found to be

War [p1, 0502, T] = exp (5 / °°d3x<5<x>axoa3<x>\if) (det (-0 —m?)) * =
(3.25)

X e (Z /+oo p /+oo e / A3k —ik(§-7) (3.26)
) (i ) . o - .
Nl O IR T b

, (_ ©1 (§) g2 (T) + 1 (T) g2 (¥)
sin w T’

— exp (i / " e b (2) 0,00 (@) ) (det (<O —m2)) ¢ . (3.24)

VI

T cobwnT (g2 () 02 () + 1 (9) @)))) ,
(3.27)

where again w; = VA2 +m?2. The infinite factor (det (—0 — m?2)) "2 will be dealt
with later, in section 3.3, where I will find the normalization factor of the propagation
kernel.

3.2.2 FEuclidean case

I will now calculate explicitly the propagation kernel for a free massive scalar field
in the euclidean space, using a slightly different method that will be used again in
Chapter 5 in the calculation of the generalized Tomonaga-Schwinger equation.

The notation is in strict analogy with the preceding subsection dealing with the
minkowskian case. The definition (3.1) of the propagation kernel this time reads

Lt 2 42
WE[gol,O;(pg,T]:/ ) TngeXp <—§/0 dx(('?“(b(x)a“qﬁ(x)—l—m o )> :
¥Y1,U592,
(3.28)
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with identical steps one arrives at the classical equation
(O, —m*) ¢ (z)=0 . (3.29)

I will now solve this equation with a Green function technique. That is, I will look
for the function G (x,y) that solves

(O, —m?) G (z,y) = =W (x —y) . (3.30)

As a first step I will rewrite the classical solution ¢ (z) to the equation (3.29) in
terms of G (x,y). (3.30) can be rewritten as

/0 d*z (G (z,y) (O; — m?) ¢ (z) — ¢ (z) (O, — m?) G (z,y)) = (3.31)
:/0 oW (z—y) o (x)d*z (3.32)

that is
¢ (y) = /0 d'z (G (z,y) Dat (2) — ¢ (2) 0,6 (2,y)) = (3.33)

-/ Lt / 800 (6 0.0) T b (@) + 00 (G o) Dt (@)]
- (3.34)

where I introduced the notation G?qﬁ = G0¢ — pOG. Supposing that G (z,y) and
¢ (x) go to zero fast enough at spatial infinity the first term of the sum is zero, and

+0o0
3 (y) = / Pz (G (7,T,y) 008 @) oy — 00C (@,9)|o_po (B) +  (335)
- G(f>0>?/) axo&(w)’xozo + 8x0G(aj>y>‘x0:0 1 ('f» : (336)

To reproduce the boundary conditions (3.15) the Green function G must be zero in
x0=0,20=1T, yo=0 and yg = T. Then

¢ (y) = / d*z (0,0G (7,0, y) o1 (7) = 0 G (Z,T,y) 2 (F)) - (3.37)
I now solve (3.30) with a “spatial” Fourier transform:
3k~ o
G(z,y) = / 3G (0, yo) e Y (3.38)
(2m)
3 0= —
I (@ =) = [ 58 o= ) D (3.39)
(2m)
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the solution is easily found by imposing G (0, 10) = G (T, o) = 0: it is

Ckiap (L eleo-wl
G (x’ y) = (27T>3€ 2—%6 + (340)
e~ wkYo p—wiT _ o—wk|T—yol e~ wk(T—yo) _ g=wryowiT
WETo —WgTo
+ 2wy, (ewrT — e=wrT) € + 2wy, (ewrT — e=wrT) ) ’
(3.41)

now substituting in (3.37) it is straightforward to find the classical solution:

—

oo d®k  _zxasinhwtps (§) — sinhw (t — T) ¢y ()
_ 3 —ik(Z—7) 2 1 49
¢(@) /_oo ! y/ 2n)° sinh wT - (342)

The functional integral can be solved exactly like in the preceding minkowskian case,
to obtain

1
N V/det (=0 + mQ).

1 +oo +oo d3k —
h (‘5/ dg””“/ dgy/ Gtk (3.44)

. (_ 1 (Y) @2 (T) + 1 (Z) @2 ()
sinh w; T

W 1,05 92, T (3.43)

T cothwnT (g2 (§) 02 (&) + 01 (5) o1 <f>>)) ;
(3.45)

again, the normalization will be fixed later, in section 3.3.

3.3 Normalisation factor

3.3.1 Minkowskian case

To find the correct normalisation factor for the propagation kernel, it is useful to
recur to the Schrodinger equation, which the propagation kernel must solve

0
Za—TWM (01,0509, T] = (3.46)
— 1/d3x — & + |V (f)|2 +m?o3 (%) ) Wy o1, 0; 9o, T (3.47)
2 A : el
with

Vo> = 0,00'¢ . (3.48)



3. Propagation kernel on an infinite strip 37

By rewriting the propagation kernel as Wy, [p1,0; @2, T] = M (T) exp (iS (1, p2)),
(3.46) reads as

0 0
iexp (15 (@1, p2)) 6TM(T) — W [¢1,0; 02, ]8T5(901,<p2) (3.49)
1
= 5/di”zWM [1,0; @0, T] - (3.50)

. _Z'M M ? AR 202 (2 .
(( 0¢5 () +< D (%) >>+(|wz()| + soz())> . (3.51)

this can be greatly simplified by remembering that S (¢1, p2) is the Hamilton prin-
cipal function, that is, the classical action calculated on the boundary conditions,
and as such it must obey

08 08\ _08 1 [ 9S\’ A

(see [15]), to obtain

0 . ) 3 ) 828(()01,902>
iexp (S (s oa)) M (1) = =5 [ W o Dion T) 5 22 (353

Now inserting the explicit expression of the propagation kernel one obtains
aM(T) 1M(T)v/ &k \ k2 +m2cot [ \/ k2 +m2T (3.54)
=—= - m m .
or 2 (2m)? ’
where V' is a volume. The normalization factor M (T') can then be written as

mwy 1% A3k _
H 5 © ( 5/(2—311181an> : (3.55)

m)

where the infinite product before the exponential can be found by direct analogy
with the single particle case.

3.3.2 FEuclidean case

In the euclidian case, the equation that the propagation kernel has to obey is the
euclidianized version of the Schrodinger equation:

0
a7 VE [1,0; 02, T] = (3.56)

_ 1 3 52 =\ |2 2 2 (= .
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By rewriting the propagation kernel as Wg [p1,0; 92, T] = E (T) exp (=S (1, ¥2))
this becomes

0 d
—exp (=S (¢1,902)) 7 5T E(T) + Wg [p1,0; o, ]aTS(wmoa) (3.58)
1
= 5/cz?’ZM/E [©1,0; 09, T] - (3.59)

([ PS(pre2) | [0S (01,02)\ I
(( 043 () +( dpa (7) )>+(|W2()I + w())) . (3.60)

which can be simplified by remembering that the Hamilton principal function S (¢1, ¢2)
has to obey the euclidianized version of (3.52)

a8 a8 as 1 95\ ?
-4 H =) = 3 - 2 202 | =
0 a7 (@27 8g02> o7t /d ((8802) + V| +m %) 0

(3.61)
From now on the calculation proceeds exactly like in the minkowskian case, to obtain

H m ( l;lnsinth) . (3.62)

3.4 Physical dimensions of the kernel

The normalization factor allows to find the physical dimensions of the propagation
kernel. As one could expect, they are infinite. Indeed, considering for example the

minkowskian case,
[mwy, _1
. 2mh ] [ } ’ ( )

the propagation kernel has the physical dimensions of an infinite product of factors
L=t

(Wt [p1, 0502, T] = [M (T)] =

3.5 Properties of the kernel
It is easy to check that the propagation kernel must obey the following properties.

1. Limit T" — 0O:

lim W oy, 03 0o, T Ha (1 (7) = 2 () (3.64)

where the functional delta must be interpreted as specified in section 2.2.
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2. Convolution property:

/dZW [801a0; 9027T2] w [S02,T2;¢3,T3] = W[%,O; ¢3,T3] ; (3-65)

this nonlinear equation fixes unambiguously the normalisation of the propa-
gation kernel, which can however be calculated more easily with the method
outlined in section 3.3.

3.6 Relation with the vacuum state

The vacuum state wave functional is (see chapter 2, where however it was written
in terms of the Fourier transform ¢ of the function ¢):

%Mzm(éfm&/§§wﬁﬂﬂ%%@w@ . (3.60)

This functional corresponds to the vacuum state defined as the state with the lowest
energy. In the following I will call Minkowski vacuum the vacuum state defined in
this way, to distinguish it from another vacuum state which I'm going to define
shortly.

First of all, using the explicit expression of the propagation kernel it’s easy to
check that W [¢)] propagates into itself, as it should:

Volu) = [ Do [6.0:0. 71 W0 lo] (3.67)

More importantly, the Minkowski vacuum can be calculated using the propagation
kernel alone. Indeed, from the definition (3.5) of the propagation kernel

Tim W o1, 05 02, 7] = Tim > W o] W 1] €757 = W [a] Wi [n] 5 (3.68)

this limit being valid in theory with a mass gap, that is, if £y and F; are separated.
To obtain precisely the vacuum state it is necessary to set 1 = 0:

This result can be easily verified with the explicit expression of the propagation
kernel and of the vacuum state functional. In the euclidian case the limit 7" — oo
is straightforward, in the minkowskian case it can be made rigorous with stationary
phase arguments.

Considering now only the euclidian case, in which it is easier to render calcu-
lations rigorous, I'm going to give a new definition of vacuum, which I will call
nonperturbative vacuum. First of all, consider the surface X1 consisting of the union
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of the two spatial hyperplanes at times t = 0 and ¢t = T. 1 define a kinematical
Hilbert space Ky, associated to the entire surface Xp, as the tensor product

Ks, =Hp®Hig (3.70)

where the notation H* indicates the dual of the Hilbert space H; of course H* is
canonically isomorphic to ‘H. Ky, can be called a kinematical Hilbert space for
reasons that will become clear in the course of what follows. I will denote a field on
Y1 by ¢ = (¢1,¢2). The field basis of the Fock space induces in Ky, the basis

19) = |1, 02) = (P2limp @ [01) =g (3.71)
which in the language of wave functionals translates as
U [g] = ¥ [p1, 2] = (o1, 2|¥) . (3.72)

In the kinematical Hilbert space Ky, the propagation kernel W [y, 0; o, T'] defines
the preferred (bra) state

(Os7l0) = W 1, 0502, T] (3.73)

in this Hilbert space. I call the state |Ox,.) the nonperturbative vacuum, or covariant
vacuum. This state expresses the dynamics from ¢t =0 to ¢t = 7. As a state in Ky,
which is the tensor product of two Hilbert spaces, it defines a linear mapping between
the two spaces H;—o and H;—p. This linear mapping is precisely the imaginary time
evolution exp (—T'H) . Indeed, from the above equations and the euclidian version
of the definition (3.2) one finds

(05| (2] @ 101)) = (2l e |go1) (3.74)
which can be rewritten as
(Ospler) = e e1) . (3.75)

It is important to point out that the bra/ket mismatch is apparent only, as the three
states live in different Hilbert spaces. Taking the limit 7' — oo of (3.74) gives the
result of (3.68)

lim (O, | (2] ® [i21)) = (02[0ar) (Onalion) . (3.76)

where |0,/) denotes the state that I called Minkowski vacuum. I can therefore write
the relation between the two notions of vacuum that I have defined as

Jim [0s,) = 03} ® (O] (3.77)

The tensor product of two quantum state spaces describes the ensemble of the
measurements described by the two factors. Therefore Ky, is the space of the
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possible results of all measurements performed at ¢ = 0 and at ¢t = T [15, 112,
113, 114, 115, 47, 48, 49]. Observations at two different times are correlated by the
dynamics. Hence Ky, is a kinematical state space in the sense that it describes
more outcomes than the physically realizable ones. Dynamics is then a restriction
on the possible outcome of observations [15, 112, 113, 114, 115, 47, 48, 49]. It
expresses the fact that measurement outcomes are correlated. The state (Ox..|, seen
as a linear functional on Ky ., assigns an amplitude to any outcome of observations.
This amplitude gives the correlation between outcomes at ¢ = 0 and outcomes at
t = T. Therefore the theory can be represented as follows. The Hilbert space Ky,
describes all possible outcomes of measurements made on Y. Dynamics is given by
the single linear functional

p:Kg, —C (3.78)
|U) — (0n,|T) . (3.79)

For a given collection of measurement outcomes described by a state |¥), the quan-
tity (Os,|V) gives the correlation probability amplitude between these measure-
ments.

3.7 Relation with the two-point function

I now wish to clarify the relation between the propagation kernel and the ordinary
particle propagator, also called Feynman propagator. The latter is defined as [116]
the two-point function

iAp (11— x3) = (0] T (¢ (1) ¢ (22)) |0) (3.80)

where the fields ¢ must be fundamental fields, that is, fields that create the particle
whose propagation the propagator describes and not composite operators of any
kind. In this case the two-point function (0|7 (¢ (z1) ¢ (z2))|0) is also the Green
function for the equations of motion of the particle. It is defined as

(01T (6 (1) 6 (2)) |0) = (3.81)
=0 (a3~ 23) (016 (1) & (22)[0) = 0 (23 — 29) (O 6 (1) G (1) [0) ,  (3.82)

where the plus sign holds for bosons and the minus for fermions. It is also possible
to write an extension to a greater number of particles, for example the three-point
function is

(O T (¢ (1) ¢ (22) ¢ (x3)) 0) = (3.83)
=0 (27 — 29) 0 (25 — 23) (0] ¢ (z1) ¢ (x2) & (x3) |0) + permutations .  (3.84)
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In the minkowskian case, the two-point function (0| T (¢ (z1) ¢ (x2)) |0) can be ex-
pressed via the propagation kernel in this way

(O] T (¢ (1) & (22)) |0) = (0] & (Z2) exp (—iH (t2 — t1)) ¢ (1) [0) = (3.85)
W [o1, tis 2, o] o1 (Z) War [0, =T 01, t1] (3.87)

where I assumed z{ > zJ (otherwise it is enough to rename them). Since the

equation involves a limit 7" — oo it will be easier to perform the calculation in the
euclidian case, where it is easy to find

<¢ (951) ¢ (1’2)> = (3-88)
~ Jim / D1 Ds W 02, £ 0, T 53 () - (3.89)
-We @1, 1502, 2] 01 (T1) We [0, =T 01, t1] = (3.90)

d3q e—ii(fg—fl) (
= exp (=@ +m?(ty — t ) , 3.91
/ 9 (271')3 \/m p q ( 2 1) ( )

where the last line is the euclidian particle propagator for a free scalar field (see for
example [116]). This shows that with the mere use of the propagation kernel it is
possible to write down the two-point function, that is, the particle propagator for the
given theory. However, this result allows to do much more than that. Indeed, the
quantities that allow to make contact with experiment, that is, the scattering ampli-
tudes like {(q; ...q, out |p;...p, in), can be rewritten in terms of n-point functions
via the Lehmann-Symanzik-Zimmerman reduction formulas [116, 117]. For example,
in the case of four scalar particles,

{q1q2 out |p1ps in) = (\/ZZ_O) /d4x1d4x2d4x3d4x4- (3.92)
o (1) fop (22) £, (23) £, (24) - (3.93)
(Opy +m?) (Opy +m?) (Opy +m?) (Opy +m?) - (3.94)
(0] T (O (1) O (22) O (x3) O (24)) [0) (3.95)

where Zj is the residue in the pole of the Fourier transform of the propagator. f (x)
is a solution of the equation of motion, which in this case is Klein-Gordon’s equation,
so that f (z) can be for example a plane wave; and f* () is its complex conjugate.
The operator O can be any operator that has nonzero expectation value between
the vacuum and the particle states |p1), |p2), |¢1), |¢2)-
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In turn, n-point functions can be rewritten in terms of two-point functions, that
is, propagators, thanks to Wick’s theorem. This leads to the crucial result that the
single tool of the propagation kernel allows to reconstruct scattering amplitudes via
the propagators, that is, it allows to reconstruct any quantity of physical interest
that can be derived from quantum field theory. Therefore the propagation kernel
formulation, whose usage I advocate in order to make contact with the case of loop
quantum gravity, allows to completely reformulate quantum field theory.

3.8 Description of the interaction

I have shown in the previous section how with the use of the propagation kernel
it is possible to reconstruct particle propagators, in the first place, and from those
any scattering amplitude occurring in ordinary quantum field theory. In the final
section of this chapter I wish to clarify the relationship between the descriptions of
the interaction given by the propagation kernel formulation and the usual Feynman
propagator formulation. Usually scattering amplitudes are written through Feyn-
man propagators in momentum space; here I will consider the Feynman propagators
written in spacetime which, though more awkward, allow to see more clearly where
and when the interaction happens.

The first obvious difference between the two formulations is that the propagation
kernel formulation deals with fields, and describes the field evolution from a given
configuration to another, whereas the Feynman propagator deals with particles. But
there is another difference which at first look might appear deeper: the propagation
kernel describes the evolution only between the times corresponding to the initial
and the final field configuration, while the Feynman propagator, even though it
deals with incoming and outgoing particles that are located in specified positions in
space and at given moments of time, it allows the interaction to happen everywhere,
at any moment, even at times previous or later than all the times corresponding
to incoming and outgoing particles respectively. If the interaction concerns two
incoming particles at positions x; and zo at time t; and two outgoing particles
at positions x3 and x4 at time t,, the description of the interaction given by the
propagation kernel can be pictorially sketched as in figure 3.2, while the description
of the interaction given by the Feynman propagator can be represented as in figure
3.3.  This can be understood for example by looking at the explicit expression of
the scattering amplitude for the scattering of four particles in a scalar theory. The
four-point function is given by

S

W (2, 2, 73, 22) — / Dé6 (1) b (02) 6 (3) 6 (za) e . (3.96)

where x1, 29 are the locations of the incoming particles, and x3, x4 those of the

outgoing ones; for simplicity I will suppose that there is an ordering 2% = 29 = t; <

2 = 29 = t;. The action S can be separated in a free action Sy and an interaction
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t

Figure 3.2: Interaction described by the propagation kernel

X3 X,

t,

Figure 3.3: Interaction described by the Feynman propagator

term

S =5+ )\/d4x¢4 (x) . (3.97)

Discarding disconnected components and to first order in A, the four-point function
can be rewritten as

+00 +00
W (21, x9, 3, 24) = / dxo/ BBz W (x1,2) W (29, 2) W (z3,2) W (24, 2)
- - (3.98)

where W (z;, x) are the propagators that connect the x; and the point z where the
interaction happens. From the limits of the integration on ¥ and z( it can be seen
that indeed the interaction can happen anywhere and at any moment. However, it
is easy to verify that by imposing a restriction on the integrand the interaction can
be constrained to happen at times later than z and earlier than 2. Indeed, by
requiring that the integrand in (3.98) contains only positive frequencies, one finds

that (3.98) can be rewritten as

tf —+o00
W (xy1, z9, 3, 24) :/ dmo/ dEaW (w1, 2) W (29, 2) W (23, 2) W (24, 7)
t; —0o0

(3.99)
This is an integration over the spacetime bounded by two infinite spatial hyperplanes
att = t; and t = ty, that is, over a region analogous to the one the propagation kernel
deals with. To sum up, if one writes down scattering amplitudes via the Feynman
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propagators, and then impose that the integrals only contain positive frequencies,
that is, that the propagation of every particle be only forward in time, one obtains an
interaction constrained to happen later than the beginning and earlier than the end
of the experiment, that is, the very description of the interaction the propagation
kernel gives.
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Chapter 4

Extension to the case of a finite
region of spacetime

The formalism developed in the past Chapter 3 referred to the evolution of fields in
an infinite region of spacetime bounded by two infinite spatial hyperplanes at fixed
time. To be able to apply the tools developed in the past Chapter to a quantum
theory of general relativity, however, it is necessary to consider the evolution of
fields in regions of spacetime bounded by more general surfaces. In this Chapter
I'm going to consider the case of closed surfaces. The theoretical framework for
studying the evolution of fields in closed surfaces is provided by the so called “general
boundary formulation” of quantum field theory, introduced by Robert Oeckl [47, 48,
49]. Therefore, as a first step I review the basics of the general boundary formulation
for quantum field theory and quantum gravity, as introduced by Robert Oeckl. Then
I extend the propagation kernel formalism in the case of a finite spacetime region.

4.1 (General boundary formulation

One obstacle in the quest for a quantum theory of gravity appears to be the fact
that the foundations of quantum mechanics are inherently non-covariant. On the
other hand, quantum field theory can be formulated in a covariant way. The price
for this is a globality (manifest in the path integral expression for n-point functions)
that fixes space-time to be minkowskian. Well known difficulties result from this
already for the extension of quantum field theory to curved space-times. The gen-
eral boundary formulation is an approach to formulating quantum theories that is
at the same time local and inherently compatible with special or general covariance.
The main idea is firstly, to associate state spaces with boundaries of general regions
of space-time. Secondly, amplitudes are determined by a complex function for each
region and associated state space. Crucially, (and contrary to standard quantum
mechanics) connected boundaries of compact regions are the main focus of attention.
In this sense the formulation is holographic, i.e. the information about the interior
of a region is encoded through the states on the boundary. These structures are

47
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required to be coherent in the sense of topological quantum field theory [50]. This
does not mean that the underlying structure is necessarily topological. For quantum
mechanics and quantum field theory the relevant background structure is the metric.
Only for quantum gravity the theory would be topological (more precisely differen-
tiable) in the usual sense. This does not imply a lack of local degrees of freedom.
Since the association of states with possibly time-like hypersurfaces is a quite radical
step for quantum mechanics it is crucial to understand their physical meaning. This
is particularly true for particle states in quantum field theory. Thus it makes sense
even with the goal of quantum gravity in mind first to reformulate non-relativistic
quantum mechanics and quantum field theory in the general boundary sense. It
turns out that Feynman’s path integral approach is particularly suitable to achieve
this goal, and the general boundary formulation is a rather straightforward gener-
alization of it. It is designed so as to produce general boundary theories of the type
described above. It is holographic not only in the sense mentioned above but also in
the sense that the underlying classical configuration space on the boundary should
be chosen such that it uniquely encodes a solution of the equations of motions in
the interior.

The word “holography” calls to mind the holography principle introduced by 't
Hooft, and more generally, the works of Bousso, Susskind, Maldacena (there is a
vast literature, some entry points can be [118, 119, 120, 121, 122, 123, 124, 125,
126, 127, 128, 129]), so it is in order to clarify the difference between the way it is
used in the context of the general boundary formulation and by the authors I just
mentioned!. While I am no expert of their work, there are a few key points which
can clarify this difference.

First it is important to point out that in both cases the word “holography” is
called into play because the theory attempts to describe the physics in a bounded
region (called bulk) through the information encoded in the boundary, that is, a
region of smaller dimensions. In the classical works on the holographic principle
[118, 119, 120, 121, 123, 124, 125, 126], the bulk is a three dimensional region of
space, so that the boundary is a two-dimensional surface; Bousso [122] extended the
principle to arbitrary space dimensions. While in the general boundary formulation,
the bulk is a region of four-dimensional spacetime, and consequently the boundary
is a three-dimensional region of spacetime. Generally the scope of the works on the
holographic principle is to make use of it to produce entropy bounds, which at the
moment are not considered in the general boundary formulation. The holographic
principle is also present in Maldacena’s AdS/CFT conjecture [127, 128, 129], which
states that superstring theory in a curved ten-dimensional space, which is a five-
dimensional anti-de Sitter space times a five-dimensional sphere, is equivalent to a
conformal field theory in four dimensions with N = 4 supersymmetry. It is evident
that this is a very specific setting, different from the one adopted in the general
boundary formulation.

'T would like to thank Robert Oeckl for clarifications on this point.
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In the following sections I will follow the analysis presented in [47, 48, 49] of
a quantum mechanical measurement, explaining how such an analysis suggests the
introduction of a general boundary formulation, and describe the general boundary
formulation for quantum field theory and quantum gravity.

4.1.1 A quantum mechanical measurement procedure

Conventionally, the problem of quantum mechanical measurement is treated as
something that can be considered in the context of a classical (and even non-special-
relativistic) space-time. This is what the formalism of quantum mechanics is based
on. It is then assumed that a quantization of space and time is merely a second
step which can be performed within the formalism thus set up. But the applica-
tion of principles of quantum mechanics itself to space-time suggests a modification
(or rather generalization) of the standard formalism. Consider a very schematic
quantum mechanics measurement procedure: a box which contains some quantum
mechanical system which after a time At may or may not have changed its state?.
The experimenter closes the box (that is, isolates the system from its environment)
and after a time At checks the state of the system. Quantum mechanics allows to
predict the probability p (t) with which the system will change its state, but not the
outcome of any single experiment, that is, it forbids to assume a definite classical
evolution to take place inside the closed box. Generally, the measurement process
involves a quantum domain and a classical domain. The system on which the mea-
surement is performed (here the interior of the box) is part of the quantum domain
while the observer is part of the classical domain (here the surroundings). In the
quantum domain no definite classical evolution takes place and it does not make
sense there to ascribe classical states to the system. The conventional mathematical
description of the experiment is as follows. Associated with the system is a Hilbert
space ‘H of states. At the time t;the observer prepares the system in a state 1 € H.
Then the observer isolates the system (closes the lid) and lets the system evolve for
a time At, which is described by a unitary operator U (At) acting on H. At time ¢,
the observation is performed. That is, the observer checks whether the system is in
a state n € H*. The probability p that the system changed its state is the modulus
square of the corresponding transition amplitude: p (At) = [(n| U (At) [¢)].

So fat it has been implicitly assumed that space and time provide a fixed classical
background structure. But taking seriously the principle that nothing classical is
known about the interior of the box implies extending it to space and time also.
Outside the box on the other hand time remains a classical entity as part of the
classical domain of observations. To examine the implications of this it is necessary
to pay more attention to how the notion of time enters into my measurement process.
After closing the lid the observer continuously watches an external clock to check
that time At has elapsed. But how can the system know about the time At elapsed
on the external clock when no definite evolution of time inside the closed box can be

2An example of this is Schrodinger’s cat’s thought experiment.
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assumed? The sensible answer seems to be that the system does stay in contact with
its environment while the lid is closed. More precisely, it stays in contact with the
space-time as classically experienced by the observer. The information about the
space-time structure surrounding the box is a boundary condition to the experiment.
It encodes in particular the elapsed time At on the clock. This boundary condition
must be regarded an integral part of the quantum mechanical measurement process.
Putting the clock inside the box would of course not help to avoid this conclusion,
since it would not be possible for the observer to know that a time At has elapsed.

On the conceptual level the above argument can also be seen as stating some-
thing about the observer. This is what in [47, 48, 49] is called the “principle of
the integrity of the observer”. This means that the whole measurement process
(including preparation and observation proper) pertains to one connected classical
domain in which the observer describes reality. In the above thought experiment
this connectedness is manifest in the clock and in the observer watching the clock
while the box is closed. This means that it does not make sense for the observer to
consider preparation and observation as disconnected interactions between classical
and quantum domains. To the contrary, to relate the two it is essential that the
observer has a classical existence in between (with a classical time duration At).

The consequences of the thought experiment can be formalized as follows. To
simplify it is easier to assume that the classical and quantum domains can be strictly
identified with the corresponding regions of space-time. In the present experiment
the quantum domain is thus the world 4-volume of the box in the time interval
[t1,t2]. The classical domain is everything outside. The ambient classical space-
time is a boundary condition to the experiment in the following sense. According
to quantum mechanics the interaction between observer and system (preparation
and observation) should take place at the interface between the classical and quan-
tum domains. Thus, the relevant spatio-temporal information should reside in the
metric space-time field on the three- dimensional boundary that separates the two.
This three-dimensional connected boundary B consists of three parts: the space-like
boundary S; consisting of the inside of the box at the time ¢; of preparation, the
time-like boundary T of the spatial boundary of the box while waiting for the time
At to elapse and again the space-like boundary Sy of the inside of the box at the
time t9 of observation. To what extent a metric on a connected surface such as B
determines or over-determines a solution of the Einstein equations inside is a difficult
initial value problem. Due to the similarity with the thick sandwich problem [130]
one can assume that the intrinsic metric is sufficient. However, the exact validity
of such an assumption is probably not a crucial ingredient for a quantum theory of
general relativity.

4.1.2 General boundary formulation: definition

To calculate a transition amplitude, then, three pieces of information are needed.
The initial state b on Sp, the final state 7 on Sy and the intrinsic metric g on
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the whole of B = S; UT U .S,. This suggests a mathematical description as follows.
Associated with B is a state space Hp and (¢, 1, g) can be thought of as determining
an element in this space®. The amplitude for such a state is given by a map p :
Hp — C. The associated probability (density) p is as usual the modulus square of
the amplitude, that is

p=lp@.n9)* . (4.1)

To recover the conventional mathematical description of the experiment the state
space can be split into a tensor product corresponding to the boundary components
Hp = Hs, ® Hr ® Hg,. Correspondingly, the metric living on the different com-
ponents is labeled by g1, g7, g2. Then one can recover H = (Hg,|g1), that is, the
state space H is the space of states in Hg, which are partly fixed to ¢; (namely in
their metric information), correspondingly H* = (Hg,|g2). H and H* will be called
reduced state spaces. The amplitude is then equal to

p(W:1,9) = (g | U (97) [g1) - (4.2)

The indices on the states indicate that they live in the reduced state spaces with
fixed metric and the argument of U that it depends (apart from the state spaces H
and ‘H*) on the metric gr. In particular g7 contains the information about the time
duration At.

I will now give the definition of general boundary formulation. It consists of a
suitably adapted notion of topological quantum field theory. Let M be a region of
space-time, that is, a four-dimensional 2 manifold, and S its boundary hypersurface.
For the moment I do not specify what background structure this entails*. The
following properties hold.

T1 Associated with each such boundary S is a vector space Hg of states

T2 If S decomposes into disconnected components S = S;U---U.S,, then the state
space decomposes into a tensor product Hg = Hg, ® --- @ Hg,,.

T3 Besides considering boundaries as “in” one can also regard them as “out”. For a
given boundary S, changing its orientation, that is the side on which it bounds
a region M, corresponds to replacing Hg with the dual space H5.

T4 Associated with M is a complex function p,; : Hg — C which associates an
amplitude to a state. One may also dualize boundaries. This means that one
may convert py @ Hg, ® -+ ®@ Hg, — C to a function pp; : Hg, ® - @ Hg, —
Hs,,, ® - @ Hyg,, replacing spaces with dual spaces. Mathematically both

3In a truly quantum description of space and time g should be imagined as a quantum state
peaked at a classical metric rather than a classical metric itself.

4For quantum gravity the background structure coming with space-time regions and their
boundaries is just a differentiable structure. One obtains essentially a proper topological quantum
field theory. For quantum mechanics and quantum field theory the background structure is a fixed
metric (usually that inherited from minkowskian space).
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versions of M are equivalent, giving one determines the other (hence the same
notation).

T5 A crucial property is the composition rule. Let M; and M, be two regions of
space-time that share a common boundary S. Let M; also have a boundary S
and My a boundary S,. Consider pyy, : Hs, — Hs and pyy, : Hs, — Hg. (The
state spaces are chosen with respect to suitable orientations of the boundaries.)
Then gluing gives M = M, U M, with boundaries S; and S5. The composition
rule demands the equality py = par, © pas, -

The crucial point is that one allows more general boundaries than equal-time-
slices in euclidean or minkowskian space, and here is where this formulation goes
beyond the use that is usually made of topological quantum field theory in physical
contexts. In particular, boundaries might have time-like components and one may
glue along such boundaries. Rather than a composition of time-evolutions this
would be a composition in space. Physically, this might for example correspond to
the formation of a composite system out of separate systems. Since this is really
a quantum composition in the same sense as the composition of time-evolutions is,
the consistency of this operation is ensured.

An implication of allowing rather arbitrary boundaries is that the distinction
between “in” and “out” states becomes arbitrary, in turn blurring the distinction
between preparation and observation proper in the measurement. Even the “in”
and “out” notions of topological quantum field theory become inadequate. More
precisely, they become purely technical notions that can essentially be turned around
at will (by dualization, see above). The physical notions of “in” (as preparation) or
“out” (as observation) become necessarily disentangled from this technical one.

In fact, there is no need for this separation into physical “in” and “out”. Indeed,
this is manifest in quantum field theory in a remarkable feature of the LSZ reduc-
tion [117]. Consider the time ordered correlation function (in momentum space)
of n fields, (0| T (¢ (p1)--- ¢ (pn))|0). Its modulus square is a probability density
in several ways. Given incoming particles with momenta py, ..., p; it is essentially
the probability density for observing outgoing particles with momenta pyi1,...,py.
How many particles are regarded as incoming (that is, which value is taken for k) is
arbitrary. For each choice the right answer is given by the very same quantity. How
the state is split up into prepared part and observed part is arbitrary. Note though
that exchanging “in” and “out” states requires to exchange positive with negative
energy. But this fits the associated orientation reversal in the time direction of the
topological quantum field theory description. In the same sense the function p is to
be regarded as giving an amplitude for a state. Whether a part of this state is to
be considered as prepared or as observed does not alter the associated probability
density. It is rather to be viewed as an ingredient of the experimental circumstances.
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4.1.3 Application to quantum field theory and quantum grav-
ity

Considering first a classical field theory will help clarify the meaning of the properties
T1-T5 above. Consider the theory of a single scalar field with action S [¢]. Now
let Ks be the space of field configurations on a hypersurface S bounding a region
M. The guiding principle is here, that the amount of boundary data encoded in Kg
should be such that it essentially uniquely determines a classical solution inside M
in a generic situation (e.g. M a 4-ball). The space of states Hg associated with S
is the space of complex valued functions C' (Kg) on Kg. This amounts to adopting
a state functional picture. The amplitude p;; for a state ¥ € Hg is given by

pu@)= [ Dowwion) [ Doet (4.3)
Ks Bls=co
The first integral is over field configurations ¢y on S. The second integral is over all
(not necessary classical) field configurations ¢ inside M that match the boundary
data ¢ on S. Note that adopting a state functional picture gives a prescription for
T1 and ensures T2, since for S = 57 U Sy a disjoint union, Kg = Kg, x Kg, and
hence C (Kg) = C (Kg,) ® C(Kg,). T4 is determined by (4.3). The dualization
of boundaries corresponds simply to leaving the evaluation with a state on those
boundaries open. Let M have boundaries S; and S; and consider states ¥, € Hg,
and 1, € Hg,. Then pys (1) is an element of Hg , that is a linear map Hg, — C

by mapping ¥y to

D¢y D Doersl? 4.4
/I{Sl><KSQ ¢1 ¢2¢1(¢1)¢2(¢2)ﬁ|&:¢1 pe (4.4)

¢ls,=¢2

This also explains T3. The composition property T5 is also rather natural. Consider
an integral over all field configurations in two regions with fields fixed on a common
boundary and integrate also over the boundary values. Then this is the same as doing
the unrestricted integral over field configurations in the union of the regions. This
heuristic quantization procedure based on the path integral thus leads to general
boundary type quantum theories. The topological quantum field theory-like axioms
T1-T5 are automatically satisfied. It can be called holographic quantization since
the information about the interior of a region is encoded through the states on the
boundary. The following step would be to divide out symmetries either from the
configuration space Kg or from the functions C' (Kj) on it to arrive at the physical
state space Hg. In quantum gravity an important step would be to divide out
diffeomorphism symmetry.

I now move to quantum field theory. Space-time is minkowskian and coordinates
will be denoted by = = (#,t). I start by considering regions R determined by time
intervals [t1,ts]. In this case, the formalism proceeds as I described in Chapter 3;
through the use of the propagation kernel it is possible to reconstruct all the in-
formation one may wish to extract from the field theory. Having once established
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the formalism for the special time-slice boundaries the generalization to arbitrary
boundaries is straightforward. States on time-slices can be pulled-back to any kind
of boundary using the composition rule T5, as ensured by the form of (4.3). The
resulting description is not only local but also natural in terms of typical experi-
mental setups. Consider for example a scattering experiment in high energy physics.
A typical detector has roughly the form of a sphere with the scattering happening
inside (for example, a collision of incoming beams). The entries for particles and
the individual detection devices are arranged on the surface. At some time t; the
beam is switched on and at o it is switched off. The space-time region M relevant
for the experiment is the region inside the sphere times the time interval [tq,ts].
The particle inflow and detection happens on the boundary S of M . What seems
unusual is that the parts of S that are really interesting and carry the particle states
are its timelike components. On the spacelike components at t; and ¢, there are no
particles (one can imagine the switching to happen smoothly). Concerning the inter-
action term in the lagrangian it is now natural to turn it on only inside M. Indeed,
the particles detected on the boundary S should (as usual) be thought of as free.
For calculational reasons it will usually be still advantageous to use particle states
that are asymptotic (indeed, the difference has negligible effects on the resulting
amplitudes, as I will show in the following section 4.2.1). However, there no longer
seems to be a fundamental reason to do this. This becomes rather important for the
construction of a non-perturbative theory of quantum gravity. There, asymptotic
states in terms of a minkowskian space are not expected to be a useful fundamental
concept. The advantage of a local description is thus crucial.

Both, the general boundary formulation of quantum theories as well as the holo-
graphic quantization prescription are mainly designed for a quantum theory of grav-
ity. Then, the background structure for the topological quantum field theory-type
axioms is just that of differentiable manifolds and their boundaries. Going down
to three dimensions it is well known that pure quantum gravity is a topological
quantum field theory [131], that is, it satisfies T1- T5. What is more, this topolog-
ical quantum field theory is obtainable by following the quantization prescription
sketched at the beginning of this section. Using connection variables the configura-
tion space Kg associated with a boundary S of a region M is basically the space of
flat spin connections on S. The path integral (4.3) is rigorously defined through a
discretization of M as a spin foam model. The role of diffeomorphism invariance is
the following here: if one thinks of the spin connection as specified by a connection
1-form A, () then Ky is the space of equivalence classes of such 1-forms under gen-
eral gauge transformations. These general gauge transformations are now both the
SU (2) gauge transformations and diffeomorphisms. Also four-dimensional quantum
gravity can be approached through the general boundary formulation. Indeed, the
path integral approach to quantum gravity is well established [40, 41]. The crucial
new ingredient is the admission of arbitrary (in particular connected) boundaries
and their interpretation. A promising context for a non-perturbative realization
of this appear to be spin foam models [37] in connection with a renormalization
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procedure.

In the previous section 4.1.1 it has been shown how careful analysis of a quantum
mechanical measurement procedure naturally leads to a description of quantum me-
chanics in terms of closed boundaries. Such a description can be called holographic
in the sense mentioned above, that all relevant information is coded in the boundary
of the spacetime region of interest. Significantly, the principle of the integrity of the
observer implies the connectedness of the boundary at the interface between classi-
cal and quantum domain. One might object that ordinary quantum mechanics can
very well deal with disconnected boundaries. But this is due rather to simplifications
(especially due to the fixed space-time background) than to fundamental reasons.
A typical system of interest has a finite extent. Outside this extent nothing relevant
happens that requires really a quantum mechanical treatment. This argument also
remains valid if the system is infinitely extended. The crucial point is that the ob-
server remains excluded so that there is a boundary between him and the system.
Pushing this further one might even consider the observer’s world line as surrounded
by a boundary outside of which the quantum mechanics happens. The connectedness
of the boundary is rather significant for the interpretation of theories of quantum
gravity and quantum cosmology. I will now compare this to the more traditional
point of view that is often adopted in approaches to quantum gravity (for example in
the Wheeler-DeWitt approach [132, 133], in euclidean quantum gravity [41] and also
in loop quantum gravity [15, 19]). Consider two spacelike boundaries (say Cauchy
surfaces) S; and S, which are closed and extend to infinity in the universe. One then
considers transition amplitudes between quantum states of the metric on S; and on
Sy. The question how a time duration At (along some path) between an event on
S1 and an event on S5 is to be encoded is then answered as follows. Given a solution
of Einstein’s equations consider the two non-intersecting spatial hypersurfaces S;
and S5. Then, generically, it is conjectured that this solution can be reconstructed
(up to diffeomorphism) given the intrinsic metrics on S; and Sy. This is the thick
sandwich problem [133]. This implies that such intrinsic metrics contain the infor-
mation about the time difference in the above sense. At least for quasi- classical
states in a suitable sense it should be appropriate to talk about time durations ¢
(with some uncertainty) between initial and final state. Nevertheless, this approach
has the disadvantage that it cannot be directly related to a measurement process of
the type considered above. What has been called the principle of the integrity of the
observer is violated. To remedy this one would presumably have to fix some spatial
region (where the observer lives) and its world-line to be classical. But this would
essentially amount to introducing extra boundary components that connect S; and
S5, thus introducing a connected boundary through the back door. In the proposed
approach the relevant boundary S is connected from the outset. There is no need
to refer to temporal distances between boundaries. Temporal (or spatial) distances
related to a measurement process can be evaluated on paths on the boundary using
the intrinsic metric only.

Apart from an analysis of the measurement process there are other reasons to
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look for a topological quantum field theory type description of quantum gravity
using compact connected boundaries. An important reason is locality. Compact
connected boundaries allow for an adaption of the mathematical description to the
size of the system considered. There is no need a priori to include things (even
empty space) at infinity. Of course, going to infinity might not change the math-
ematical description much or might even simplify it (like the usage of asymptotic
states in quantum field theory). However, while this is certainly true in quantum
mechanics and quantum field theory on minkowskian space, it is very unlikely to be
true in a non-perturbative theory of quantum gravity. Also, the program of euclid-
ean quantum gravity uses compact manifolds and connected boundaries. However,
there the motivation is a mathematical one rather than a physical one. Indeed the
interpretation of corresponding quantities in that program markedly differs from the
interpretation that emerges in the present context [43].

There is a widespread belief that classical general relativity is not a topological
theory and hence its quantization cannot be a topological quantum field theory.
However, this could be due to a misuse of the word topological. In the first instance
it refers to the classical theory having no local degrees of freedom, in the second to the
fact that the background structures of the quantum theory are topological manifolds
and their cobordisms (although differentiable would be more appropriate here). The
second does not imply the first. Indeed, consider the classical limit. Then states on
boundaries which are peaked at a classical metric determine up to diffeomorphisms
essentially a unique classical solution of general relativity inside. There is no reason
to think that a quantum theory cannot incorporate this, for example as the dominant
contribution to a path integral. Indeed, this is for example a vital ingredient of the
euclidean quantum gravity program. One should not be misled by the fact that
many interesting topological quantum field theories that have been constructed can
be viewed as quantizations of topological theories (see for example [134]). This
seems rather related to the fact that the vector spaces associated with boundaries
there are finite dimensional (which would not be expected for quantum gravity).

4.2 Propagation kernel defined on a finite region
of spacetime

I now extend the definition of the propagation kernel to the case of a finite region
of spacetime [58]. That is, I consider the case where the region R where the fields
propagate, instead of being the infinite strip between two spatial hyperplanes at
t =0 and t =T, is an arbitrary finite region of spacetime. Let > be the boundary
of R, that is a closed, connected 3d surface with the topology (but in general not
the geometry) of a 3-sphere. Let ¢ be a scalar field on ¥ and consider the functional

W e, X] = /¢ | Dge 51 (4.5)
»=¥
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The integral (4.5) is over all 4d fields on R that take the value ¢ on ¥. In the
following I will specialize to the euclidean case. In the free theory the integral is
a well defined Gaussian integral and can be evaluated. The classical equations of
motion with boundary value ¢ on ¥ form an elliptic system and in general have a
solution ¢4 [¢], which can be obtained by integration from the Green function for
the shape R. A change of variable in the integral reduces it to a trivial Gaussian
integration times e~5&l9. Here e 5%l is the field theoretical Hamilton function:
the action of the bulk field determined by the boundary condition . This function
satisfies a local Hamilton-Jacobi functional equation and solves the classical field
theoretical dynamics [15, 135].

4.2.1 Relation with the case of two infinite spatial hyper-
planes

Choose now X to be a cylinder X gy, with radius R and height T, with the two bases
on the surfaces t = 0 and ¢t = T. Given two compact support functions ¢; and
9, defined on t = 0 and ¢ = T respectively, it is always possible to choose R large
enough for the two compact supports to be included in the bases of the cylinder.
Then it can be expected that

W @1, 0509, T) = I%EI;OW [o1, 02, ZRrr| (4.6)

because the euclidean Green function decays rapidly and the effect of having the side
of the cylinder at finite distance goes rapidly to zero as R increases. In section 3.7 I
have shown how scattering amplitudes can be computed from Wg [¢1,0; @2, T]. In
turn, equation (4.6) indicates how Wg [¢1, 0; w9, T| can be obtained from W [¢, X],
where ¥ is the boundary of a finite region. Therefore the knowledge of Wg [p, X]
allows to compute physical scattering amplitudes. I expect that this should remain
true in the perturbative expansion of an interacting field theory as well, where R
includes the interaction region.

Wg [¢,X] can be directly defined in the minkowskian regime as well. For a
cylindrical box in minkowskian space, let ¢ = (@out Pin, Pside) be the components of
the field on the spacelike bases and timelike side. Consider the field theory defined
in the box, with time dependent boundary conditions ¢4, and let U [@giqe] be
the evolution operator from ¢ = 0 to ¢ = T generated by the (time dependent)
hamiltonian of the theory. Then

W [Spv Z] = <§00ut’ U [@side] ’@m> . (47)

When @4 is constant in time, this can be obtained by analytic continuation from
the euclidean functional.

At first sight, the limits T, R — oo seem to indicate that arbitrarily large surfaces
Y. are needed to compute vacuum and scattering amplitudes. Notice however that
the convergence of W [p1, 0; pg, T to the vacuum projector is dictated by (3.5): it is



58 4. Case of a finite region

exponential in the mass gap E1, or the Compton frequency of the particle. Thus 7" at
laboratory scales is largely sufficient to guarantee arbitrarily accurate convergence.
In the euclidean, rotational symmetry suggests the same to hold for the R — oo
limit. Thus the limits can be replaced by fixing R and T at laboratory scales.
Problems could arise for the analytical continuation, which might not commute
with the limits, but these problems do not affect the determination of the vacuum
state, where no analytical continuation is required.

The fact that it is possible to define the vacuum state, or particle states, lo-
cally seems to contradict the fact that the notions of vacuum and particle states are
global. Some comments on this delicate point are therefore in order. The conven-
tional notions of vacuum and particle states are global, but particle detectors are
finitely extended. In fact, it is possible to distinguish two distinct notions of particle
[51]. Fock particle states are “global”, while states detected by a localized detector
(eigenstates of local operators describing detection) are “local” particles states. Lo-
cal particle states are very close to (in norm), but distinct from, the corresponding
“global” particle states. On a background, it is possible to conveniently approxi-
mate the local particle state detected by the detectors, using global particle states,
which are far easier to deal with. The global nature of the conventional definition
of vacuum and particles is therefore an approximation adopted for convenience, it
is not dictated by physical properties of particles detected in the laboratory.

By replacing the limits R — oo and 1" — oo with finite macroscopic R and 7' I
miss the exact global vacuum or n-particle state, but I can nevertheless describe local
experiments. The restriction of quantum field theory to a finite region of spacetime
must describe completely experiments confined to this region and states detected
by finitely extended particle detectors.

4.3 Application to quantum gravity

In quantum gravity, making the formulation described above concrete is a complex
task. The problem that I consider here is only how to interpret a functional integral
for quantum gravity defining a functional of the boundary states, assuming this
is somehow given. Concrete definitions of W [p, ¥] are rather well developed in
the context of the spinfoam formalism. Lorentzian and Riemannian version of the
formalism have been studied, and some finiteness results have been proven to all
orders in a perturbative expansion [136, 137]. Background independence implies
immediately that the gravitational functional W [y, ¥] defined by an appropriate
version of (4.5) is independent from any local variation of . Fixing the topology of
Y., it is possible to write

Wi s = Wiel . (4.8)

At first sight, this seems the sort of independence from position and time, that
renders background-independent quantum field theory difficult to interpret. For
instance, consider the 2-point function W (z;y) = (0| ¢ (z) ¢ (y)|0). In quantum
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field theory over a background, the independent variables  and y can be related to
the spacetime location of particle detectors. In a background independent context,
general covariance implies immediately that W (z;y) is constant for = # y, and
therefore it is not clear how the formalism can control the localization of the detectors
(see for instance [46].) The independence of W [p] from ¥ is analogous to the
independence of W (z;y) from x and y just mentioned. However, the property of X
that codes the relative spacetime location of the detectors is the metric of 3. In the
gravitational case, the metric of ¥ is not coded in the location of on a manifold: it is
coded in the boundary value of the gravitational field on ¥. Therefore the relative
location of the detectors, lost with > because of general covariance, comes back with
©, as this includes the boundary value of the gravitational field. Therefore, if one
is given a functional integral for gravity, one can interpret it exactly as I did for
the scalar field. The boundary value of the gravitational field plays the double role
previously played by ¢ and . In fact, this is precisely the core of the conceptual
novelty of general relativity: there is no a priori distinction between localization
measurements and measurements of dynamical variables. Once this observation is
acquired, it is possible to claim that W [p] allows to calculate particle scattering
amplitudes (see [138] for details).

W [p] determines a preferred state |Oy), defined by (Os|p) = W [p] in the kine-
matical state space KC associated with the boundary. This is the covariant vacuum,
and codes the dynamics. It satisfies a dynamical equation analogous to the equation

)
dzt (T)

' (7) Wip, 3] = H(T)W e, X] (4.9)
which in the Chapter 5 I will prove for the propagation kernel W [, ¥, but with the
difference that in the case of W [p] the operator H (7) is the hamiltonian constraint
density operator. But since W [¢] is independent from 3 by general covariance, the
left hand side of (4.9) vanishes, leaving

H(F)Wp, 3] =0 (4.10)

which is the (lorentzian) Wheeler-DeWitt equation [41, 42].

4.3.1 Minkowski vacuum in quantum gravity

In section 3.6 I defined the quantum state |07) that describes the Minkowski vac-
uum. Such a state is not singled out by the dynamics alone in quantum gravity.
Rather, it is singled out as the lowest eigenstate of an energy Hp which is the vari-
able canonically conjugate to a nonlocal function T of the gravitational field defined
as the proper time along a given worldline.

This situation has an analogy in the simple quantum system formed by a single
a relativistic particle. In the Hilbert space of such a system there is no preferred
vacuum state. But it is possible to choose a preferred Lorentz frame, and therefore
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a preferred Lorentz time 2°. The conjugate variable to 2 is the momentum pg, and
there is a (generalized) state of minimum py.

To find the Minkowski vacuum state, I can repeat the very same procedure used
above. The only difference is that the bulk functional integral is not over the bulk
matter fields, but also over the bulk metric. This difference has no bearing on the
above formulas, which regard the boundary metric, which, in the two cases, is an
independent variable.

As a first example, a boundary metric can be defined as follows. Consider a

three-sphere formed by two “polar” “in” and “out” regions and one “equatorial”
“side” region. Let the matter+gravity field on the three-sphere be split as

Y = (onuta Pin, Soside) . (411)

Fix the equatorial field ¢g;4. to take the special value gy defined as follows. Con-
sider a cylindrical surface X zy of radius R and height 7" in R*, as defined previously.
Let ¥;, (and X,,) be a (3d) disk located within the lower (and upper) basis of X g,
and let X4, be the part of X zr outside those disks, so that

2RT - Zin U 2out ) Zsiale . (412>

Let ggrr be the metric of Y4 and let wrr = (grr, 0) be the boundary field on ;4
determined by the metric being grr and all other fields being zero. Given arbitrary
values ¢,,; and ¢;, of all the fields, included the metric, in the two disks, consider
W [(@outs Pin, ¢rr)]- In writing the boundary field as composed by three parts as
© = (Couts Cin, Psidze) 1 am in fact splitting the kinematical state space K as

K=H,:®H, & Hgge . (4.13)

Fixing ¢siqse = @rr amounts to contracting the covariant vacuum state |Og) in &
with the bra state (pgr| in Hgge. For large enough R and T, one can expect the
resulting state in H,,; ® H}, to reduce to the Minkowski vacuum. That is

lim (prr|0s) = [0ar) ® (Orr| . (4.14)

R, T—oc0

Therefore for a generic “in” configuration, and up to normalization,

Uarlp] = lim W (¢out: Pins Prr)] (4.15)
gives the vacuum functional for large R and T'. In the rest of this chapter I shall
use a simpler geometry for the boundary.

One may hope that the convergence in R and 7T is fast. These formulas allow
to extract the Minkowski vacuum state from a euclidean gravitational functional
integral. n-particle scattering states can then be obtained by generalizations of the
space formalism, and, if it is well defined, by analytic continuation in the single
variable T. This is precisely the case of time independent (4., where analytical
continuation may be well defined.
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4.3.2 Spinnetworks and spinfoams

The argument of W is not a classical field: it is an element of the eigenbasis of
the field operator. In the gravitational case, (functions of) the gravitational field
operator can be diagonalized, but eigenvalues are not continuous fields. In loop
quantum gravity, eigenstates of the metric are spin network states |s). Therefore
the quantum gravitational W must be a function of spin network states W [s] on X,
and not of continuous gravitational fields on 3. In fact, this is precisely what a spin
foam model provides.

A spinfoam sum where the degrees of freedom are not cut off by the choice of a
fixed triangulation is defined by the Feynman expansion of the quantum field theory
over a group, studied in [139, 140, 141, 142]. T will recall here the basic equations
of the formulations, referring to [139, 140, 141, 142, 15] for motivations and details.
Let ¢ (g1,-..,94) be a field on [SO (4)]4, satisfying

¢ (91592, 93, 94) = ¢ (919, 929 939, 9a9) (4.16)
for all g € SO (4). Consider the action

1 5 A 5
= §/¢ —l-a/(PHﬁb) : (4.17)
Here Py is defined by

Pr¢ (91,92, 93, 91) = (4.18)

=/ dhy - - - dhyo (91h1,92h2793h3,g4h4) ) (4-19)
H4

where H is a fixed SO (3) subgroup of SO (4), and f ¢° is a short hand notation for
/¢5 /Hdgzcb (91, 92, 93, 94) ¢ (94, 95, 96, 97) - (4.20)

- ¢ (97, 93, 98, 99) @ (99, 96 92, G10) ¢ (910, 98, 95, G1) - (4.21)

The Feynman expansion of this theory is a sum over spinfoams and can be inter-
preted as a well-defined version of the Misner-Hawking sum over geometries. Tran-
sition amplitudes between quantum states of space can be computed as expectation
values of SO (4) invariant operators in the group field theory. In particular, the
boundary amplitude of a 4-valent spin network s can be computed as

~ [Dorforee (4.22)

The spinfoam polynomial is defined as

ny )Bn jng ) Bn in 1l2
H/dgn1 ' d.gn4 géjm ) ' ( nl) T R‘g‘]n;) ) (9”4) Uﬁm"'ﬁm H(Sl l ’
l
(4.23)
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where ny, ..., n4 indicate four links adjacent to the node n, and n; = Il; (or n; = ls)
if the i-th link of the node n is the outgoing (or ingoing) link /.

I can now implement equation (4.15) in this theory. Instead of the cylindrical
boundary consider above, I will choose a simpler geometry. Let the spin network s’
be composed by two parts connected to each other, s’ = s#sp. Let s be arbitrary
and sr is to be a weave state [101] for the three-metric gr. Take a 3-sphere of
radius 7 in R*. Remove a spherical 3-ball of unit radius. g7 is the three-metric of
the three-dimensional surface (with boundary) formed by the sphere with removed
ball. T recall that a weave state for a metric g is an eigenstate of (functions of the
smeared) metric operator, whose eigenvalues approximate (functions of the smeared)
g at distances large compared to the Planck length.

The quantity

Wiy [s) = (sl0w) = Jim [ Dofupe, 6] (4.21)

is then a tentative ansatz for the quantum state describing the Minkowski vacuum
in a ball of unit radius. This quantity can be computed explicitly [139, 140, 141, 142]
and may be finite at all orders in A [136, 137].



Chapter 5

Generalized Tomonaga-Schwinger
equation

In this Chapter I derive the equation of evolution for the propagation kernel Wp, ¥]
defined on a closed surface ¥ with boundary conditions ¢ on ¥, defined in equation
(4.5) which I copy here for convenience,

W[<,p,2]:/qzs ) Dgpe=5101 (5.1)

This evolution equation will be a generalization of an equation studied by Tomonaga
and Schwinger [52, 53]. To derive the equation I will be using a Green function
technique, similar to the one which I used in the derivation of the propagation
kernel in the euclidean case (see Subsection 3.2.2).

There have been worries [143] that such an equation would not be viable, since
it would give rise to a nonunitary evolution. However, I wish to point out that
the study [143] was carried out in a slightly different setup. Firstly, the authors
considered the evolution from a flat initial surface to a generic final surface, which
is clearly a different case from the present closed surface . Secondly, the authors
considered a compactified model of space. And finally, should even their worries
apply to this case as well, I think it possible that nonunitarity be circumvented, and
that a time evolution could be conceived even in that case.

The results described in this Chapter are reported in the paper [59].

5.1 Introduction

It was argued in [58] that W[y, 3] should satisfy a local functional equation governing
the variation of W, ¥] under arbitrary local deformations of ¥, namely an equation
of the form

J

Wi, 3] _ H<¢(s),V¢(8),m) Wip, X . (5.2)

% (s)
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Here s is a coordinate on >, and the precise meaning of the other symbols will be
defined below. When X is formed by two parallel planes, (5.1) becomes the field
propagator, and its variation under a parallel displacement of one of the planes
is governed by the functional Schrodinger equation. The possibility of extend-
ing this equation to variations of arbitrary spacelike 3d surfaces was explored by
Tomonaga and Schwinger already in the late forties [52, 53]. These authors de-
rived a well-known local generalization of the functional Schrodinger equation, called
the Tomonaga—Schwinger equation. The functional equation (5.2) generalizes the
Tomonaga—Schwinger equation, since it holds for arbitrary boundary surfaces. In-
deed, if the general philosophy of the boundary approach is correct, the distinction
between the initial and final fields on spacelike portions of ¥ on the one hand, and
the boundary values of the field on the timelike portions of >, should become of
secondary relevance.

Equation (5.2) has been derived in [144] on the basis of a lattice regularization of
the functional integral (5.1) defining Wy, ¥, and under certain hypotheses on the
existence of the continuum limit. Here, working in the context of a free euclidean
theory, I show that this equation can be derived from the functional integral defi-
nition of W{p, ¥] directly in the continuum, using a formula by Hadamard which
expresses the variation of a Green function under variation of the boundary [145].
Although incomplete, I think that this is a relevant step towards establishing the
general viability of an equation of the form (5.2).

Furthermore, as a preliminary step in the derivation of (5.2), I derive its classical
limit, which is a generalized Hamilton—Jacobi functional equation of the form

R I COR O s 5:3)

satisfied by the classical Hamilton function S|y, 3]. This equation is a generaliza-
tion of equation (3.52) previously mentioned in Chapter 3. The Hamilton function
Slp, X is the value of the action computed on the solution of the equations of motion

that takes the value ¢ on ¥ (see [15].) The generalized Hamilton—Jacobi equation
(5.3) is extensively discussed in [15].

5.2 Definitions

5.2.1 Surface and surface derivative

Consider a finite region R in the euclidean 4d space R*. I use cartesian coordinates
x,y,2... on R where z = (2#), p = 1,2,3,4. Let ¥ = 9Ryx be a compact 3d
surface that bounds a finite region Ry. I denote s,¢,u ... coordinates on X, where
s =(s%), a=1,2,3. Then X is given by the embedding

Yoost—at(s) . (5.4)



5. Generalized Tomonaga-Schwinger equation 65

The euclidean 4d metric, which raises and lowers the p indices, induces the 3d metric

0x*(s) 0z, (s
Gan(5) = 88(“ ! 8/;(1’ )

(5.5)

on Y, which can be used to raise and lower the three dimensional a indices. The
surface gradient V is defined as

Ve=q"— . (5.6)

The normal one-form to the surface is

_ ox”(s) 0xP(s) 0x7(s)

"u(8) = €ppo ost  0s?2  0s?

(5.7)

I orient the coordinate system s so that n, is outward directed. Its norm is easily
seen to be equal to the determinant of the induced metric

n,n* =detq . (5.8)
In the following, I will use the normalized normal
n, = (det q)_% ny, (5.9)
and the induced volume element on
dY(s) = (det q(s))2 ds . (5.10)

(I shall simply write d> when the integration variable is clear from the context.)
Notice that the combination dX n, does not depend on the metric, since

d(s) nu(s) = d®s i, (s) . (5.11)

Given a functional F[¥] that depends on the surface, I define the functional
derivative with respect to the surface as the normal projection of the functional
derivative with respect to the embedding (5.4) that defines the surface

(5.12)

Here the functional derivative on the right hand side is defined in terms of the
volume element d¥. That is [145], 0F' [X]/d%(s) is defined as the distribution that
satisfies

/dZ(s) N(s) 53(5) = /dZ N(s) n*(s) 5
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where N(s) is the field describing the amount of displacement in the normal direc-
tion, and Y.y is the surface defined by the embedding

Yen 1 8" — 2t (s) +eN(s)nt(s) . (5.14)

Geometrically, this derivative gives the variation of the functional under an infini-
tesimal displacement of the surface in the normal direction.

The surface derivative takes a simple form for certain simple functionals. Con-
sider a scalar field f(x) on R*. Let F[X] be the integral of f in the region Ry
bounded by ¥; that is

Ff[E]Z/Rd“xf(x) : (5.15)
Then easily

OFy[X]

o 1) (5.16)

That is, the variation of the bulk integral under a normal variation of the surface is
the integrand in the variation point. Similarly, consider a vector field v(x) on R*.
Let F,[¥] be the flux of v*(z) across ¥; that is

F,[X] :/sz(S) nu(s)v"(s) . (5.17)

Then Stokes theorem gives easily

0F, (3]

3505) = 0, v"(x(s)) . (5.18)

That is, the variation of the flux by a normal variation of the surface is the divergence
of the vector field.

5.2.2 Field theory and Tomonaga-Schwinger equation

I consider a free euclidean scalar field ¢(z), defined in R, with assigned boundary
conditions ¢(s) on X. That is

o(z(s)) = w(s) . (5.19)
The dynamics of the field is governed by the lagrangian density
1 1 5,
L= S0,00"0 + ym’6 (5.20)
and the equation of motion is

(-0, +m*) ¢(2) =0, z€V (5.21)
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with the boundary conditions (5.19) on ¥. Here O, = 0/dz, 0/0x". By choosing
one of the coordinates z*, say z* as a “time” coordinate, it is possible to derive the
hamiltonian density
1., 1 s 1 5 5
H(¢,Vg,1II) = 23 (Vo)™ — gm e (5.22)

where II is the canonical momentum associated to the field ¢ and V is the gradient
on the o* = constant surface.

For this theory, the integral in (5.1) is a well defined gaussian functional integral.
Therefore Wy, 3] is well defined. I show in this paper that W [, ¥] satisfies the
generalized Tomonaga-Schwinger equation

W e, X

o
s = (99, Vplo) s ) WheD

dp(s)
(5.23)
1 5

_ (5 <_5¢(s)) -3 (Vep(s))” — %meQ(S)) Wi, 3]

5.3 Green functions

The tool I use to prove (5.23) is a Green-function technique, analogous to the strat-
egy sketched in subsection 3.2.2. Given X, let the Green function Gx(x,y) be the
solution of the inhomogeneous equation

(-0, +m?) Gs (z,y) = sW(x —y) (5.24)
in the region R, satisfying the boundary condition
Gz (z(s),y) =0 , (5.25)
namely that vanishes when x is on 3. I introduce the following useful notation:

8G2(l‘, y)

0;Gs(s,9) = n'(s) =22

(5.26)

z=x(s)

and similarly for 9:Gx(y, s), 030LGx(s,t), and so on. The solution of (5.21), with
the boundary condition (5.19), namely with the boundary value ¢ on X, is then
given by

60 (5) == [ d5(s) (o) BGCis(sny) (527
)
To see that this is indeed the solution, one can write the equality

o (y) = /d4$ (gb (x) (—Dx + m2) Gys (z,y) — Gy (z,y) (—Dx + m2) ) (35)) ,
(5.28)
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which is satisfied because of (5.24) and (5.21). The right hand side can easily be
written as a surface integral, which gives (5.27) using the boundary conditions (5.19)
and (5.25).

The propagator W]y, ] can be written explicitly in terms of the Green function.
In fact, it is possible to solve the gaussian integral (5.1) using the fact that the
classical solution (5.27) is an extremal value of the exponent in (5.1). The integral
is then a gaussian integral over the fluctuations. The action on the classical solution
with given boundary conditions is called the Hamilton function [146]:

1
S[(,D, E] = S[gb%g] = 5/ d4fL’ [(8Mgb%g)2 + m2¢>%22} . (529)
Vs
Inserting (5.27), it is possible to write this as
Sl 5 = =5 [ dSEHS) ¢(s) ¢t G Gs(sst) . (530
)

It is then easy to perform the gaussian integration in (5.1), which gives

_exp(=Sdys])
Wle.x] = Vdet (=0 + m2)

= /det Gy, (z,y) exp <é/2d2(s)d2(t) ©(s) o(t) 828;(?2(3,75))

(5.31)

In the following, it is necessary to have an expression for the variations of Green
function Gy, with respect to a displacement of the surface . This can be done using
Hadamard’s formula [145]

5GZ (17, y)

73(5) =0:Gx(s,x) 0:Gx(s,y) - (5.32)

I sketch a proof of this formula in the Appendix A.

5.4 Hamilton—Jacobi equation

In this section I prove that the Hamilton function (5.30) satisfies the generalized
Hamilton—Jacobi equation (5.3). From (5.22), this reads

0S[p, D] 1 (6S[p,E]\* 1 , , 1 )
5%(s) +§< o(s) > —5me(s) = 5 (Ve(s)" =0 . (5.33)

To calculate the first term of this expression, I use the form (5.29) of the Hamilton
function

6Slp, ¥ 0 1

05(s)  0%(s) é/nzd% [(Butps)” +mPopx?] (5.34)
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I use (5.16) for the variation of the integration region, integrate by parts, use the
equations of motion, to obtain

6S[p,X]

) = (0405 (a()))” + m6,5(a(5))") + /R d'z 0, (a¢§§—())

(5.35)

The second term can be written as a surface integral. Using (5.27), this becomes

S[p, 2] 1

S =2 (Oubes@) +m20.n(e(s))") +

5 (o) (5.36)
b3 ((u
— [ dS(t)dS(t) p(t) 80" G (t, u) —2s——
[ as0as) o) ;0.0 e

To compute d¢, 5, (x) /63(s) observe that by defining the field p(x) in the neigh-
borhood of the surface by ¢(z(s)) = ¢(s) and O,p(x(s)) = 0, the right hand side of
(5.27) is the flux of the vector field

v (z) = —p(z) %Gz(ﬂw) : (5.37)

Therefore it is possible to use (5.18) to obtain

Hen ) 0oty g (51 + (5:35)
)

- /E d450) o) () 5 5; 8’@ | (5.39)

In the first term, I separate the normal and tangential component of the sum over
p and recall that ¢(x) is constant in the normal direction, and in the second term I
use the Hadamard formula (5.32). This gives

—&ng ) Vap(5) G (5(5), ) — ()0, (0(s), ) +

(5.40)
_/zd2<t) o(t) n*(t) 0;Gx(s, ) 0,0;Gx(s,t)

But the tangential derivative of the Green function on the boundary surface van-
ishes, since the Green function itself vanishes. So does its Dalambertian, since
(=0, +m?)Gx (2 € ¥,y) = 0). Therefore the first two terms vanish, and using
(5.27) again, the result is

0P ()

53(s) = 0.Gx (5,2) 0dex(s) (5.41)



70 5. Generalized Tomonaga-Schwinger equation

where I have used the notation (5.26) also for ¢, . After inserting this in (5.36),
and using (A.2) the result is

S[p,X] 1

550 2 (Oudes@()) + mions(a(s))’) +

(5.42)
+ /E ds(t) ¢(t) 956(s) 0;0Cx(t, s)

The derivative §S[p, 3]/dp (z) can be easily obtained from the definition (5.30).
The Hamilton-Jacobi equation (5.33) finally reads

[ 45(0) 930(2) ¢lt) 020Gt + 5 (@20(5))" +
2 (5.43)

+ / dX(t)dE(u) o(t) o(u) 8L0Gx(s,t) 0 0 Gs(s,u) =0

DN | —

Calculating 0,¢(s) from (5.27) it is easy to show that this is an identity.

5.5 Generalized Tomonaga-Schwinger equation

It is possible to write the propagator (5.31) in the form

Wip,¥] = v/det Gy exp (—S[p, X]]) = exp (%tr InGy, — S[(p,Z]) . (b.44)

The variation with respect to the surface (dropping the arguments from the notation)
is
oW ) 1
=W —trinGy, — S ; 5.45
0x(s)  o%(s) (2 rEE ) ’ (5.45)
so that the generalized Tomonaga-Schwinger equation (5.23) becomes

16(trInGy) s
2 0%(s)  6%(s) (546)

1 %S 1 65 S 1 s 1

2 2 2 5 : 5.47

250(5)00(s) T 200() (s 2 VO T gmen(e) (5.47)

Using the Hamilton-Jacobi equation (5.33) derived in the last section, this equation
reduces to

d(trInGy) 525
) 7= A4
e (500 04
The left hand side of this equation can be calculated again using Hadamard’s formula
(5.32) and (5.24)

otrln Gy,
0% (s)

6GZ (Q?, y)

e . (5.49)

=tr | (-0, +m?) = 0,0,Gx (21, 2)]

t=u=s
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while the right hand side can be directly obtained from (5.30), giving

52

1_ s Ot _ at qu P
ST LSS0 9(s) plt) B0l t) = 0kC (),

(5.50)
showing that the equation is satisfied.
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Chapter 6

Application to a toy model:
dynamics of a tetrahedron

In this chapter I apply some of the techniques and formulas derived in Chapter
3 to a simple toy model, in order to understand how physical information can be
extracted from a background independent quantum system. For example, I will be
using the strategy outlined in section 3.6 to obtain the vacuum state, of which again
two different definitions are given. There’s however a slight difference with the limit
used to obtain the vacuum state in section 3.6; indeed, there the limit was taken in
an euclidian setting but in imaginary time; here the limit will be taken in real time.

I use an extremely simple system that models a finite region of 3d euclidean
quantum spacetime with a single equilateral tetrahedron. I will show that the phys-
ical information can be expressed as a boundary amplitude, and illustrate how the
notions of evolution in a boundary proper-time and vacuum can be extracted from
the background independent dynamics.

This work has been done in collaboration with Daniele Colosi, Winston Fairbairn,
Leonardo Modesto, Karim Noui and Carlo Rovelli [60]. My contribution is limited
to the classical model, that is, to sections 6.1, 6.2, 6.3.

6.1 Elementary geometry of an equilateral tetra-
hedron

Consider a tetrahedron immersed in three-dimensional euclidean space. Let a be the
length of one of the edges (I will call it the top edge) and b the length of the opposite
(bottom) edge, namely the edge disjoint from the top edge. Assume that the other
four (side) edges have equal length c¢. See Figure 6.1. I call such a tetrahedron
“equilateral”. I call 6, 0y, 0. the (respectively bottom, top and side) dihedral angles

73
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Figure 6.1: The equilateral tetrahedron

at the edges with length a, b, c. Elementary geometry gives

. 0, b
Sin — = ————
2 4¢? — a?
. Gb . a
Yy = Vie o (o)
b
cosf,. = a4

V(42 —a?) (42 —1?)

where the last equation can be easily obtained from the scalar product of the normals
to two adjacent triangles, by working in the orthonormal basis determined by the
top and bottom edges, and the tetrahedron axis. It follows from (6.1) that

0, o,

cosf. = sin —sin — . 6.2

5 S (6.2)
For later purpose, I consider also the case in which ¢ > a,b. In this case, to the
first relevant order

b
0, = -
c
a
0, = — .
= (63
0 — T ab 7w 0,0
2 42 2 47
I consider also the three external angles at the edges
ko (a,b,c) =m — 0, (a,b,c)
ky (a,b,¢) =1 — 6y (a,b,c) (6.4)

ke(a,b,c) =1 — 0. (a,b,c)
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It is interesting to notice that they express the discretized extrinsic curvature of the
surface of the tetrahedron. This is why I have denoted them with the letter k, often
used for the extrinsic curvature. Using (6.1) and (6.4), the relation between the
edge lengths a, b, ¢ and the external angles k,, k;, k. can be written in the form

k
a = vV4c? — b2 cos Eb
kq
b= V4c? — a?cos 5 (6.5)

b = —/(07 = @) (47 — P cosk,

while (6.2) reads

k,, k
cos k. = — cos 5 cos Eb : (6.6)

6.2 Classical theory

6.2.1 Regge action

Consider the action of general relativity, in the case of a simply connected finite
spacetime region R. In the presence of a boundary ¥ = OR it is necessary to add a
boundary term to the Einstein-Hilbert action, in order to have well defined equations
of motion. The full action reads

Scr 9] :/dnm\/deth—l— d"'zy/det gk | (6.7)
R s

where g is the metric field, R is the Ricci scalar, n is the number of spacetime dimen-
sions, while ¢ is the metric, and k the trace of the extrinsic curvature, induced by g
on Y. For a discussion on different choices of boundary terms in three-dimensional
gravity, see [147]; here I am focusing on variations of the action at fixed value of the
boundary metric. In general, the Hamilton function of a finite dimensional dynami-
cal system is the value of the action of a solution of the equations of motion, viewed
as a function of the initial and final coordinates; the general solution of the equations
of motion can be obtained from the Hamilton function by simple derivations [146].
In field theory, the Hamilton function can be defined as the value of the action of
a solution of the equations of motion, integrated on a finite region R, viewed as
a function of value of the field on the boundary ¥ [15]. In general relativity, the
Hamilton function S [g] is the value of the action (6.7), computed on the solution g,
of the equations of motion determined by the boundary value ¢:

Sla) = Sarlggd - (6.8)

If g, is not unique, S[g] is multivalued. It is important to note that S[¢] is in-
dependent from (local deformations of) ¥, because of diffeomorphism invariance.
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Since the bulk action vanishes on a vacuum solution of the equations of motion, the
Hamilton function of general relativity reads

Slq) = g d"'zy/detqk[q] (6.9)

where the extrinsic curvature k [g] is a nonlocal function, determined by the Ricci-
flat metric g, bounded by ¢. In the following I consider only the three-dimensional
riemannian case, where n = 3 and the signature of g is [+ + +]. In this case,
it is necessary to add an overall minus sign in (6.7) and (6.9) (see for instance
the Appendix C of [148]). Furthermore, I consider the discretization of the theory
provided by a Regge triangulation [54]. Let i be the index labelling the links of the
triangulation and call [; the length of the link 7. In three dimensions, the bulk Regge

action is
SRegge (li) = — Z l; (277 - Z O; ¢ (l)> ; (6.10)
i t

where 6;; (1) is the dihedral angle of the tetrahedron ¢ at the link 4, and the angle
in the parenthesis is therefore the deficit angle at 7. The boundary term is

Sboundary (ll) = - Z lz <7T - Z ei,t <l>> ) (611>

boundary 1

where the angle in the parenthesis is the angle formed by the boundary, which
can be seen as a discretization of the extrinsic curvature. I choose the minimalist
triangulation formed by a single tetrahedron, and, furthermore, consider only the
case in which the tetrahedron is equilateral. Then there are no internal links, the
Regge action is the same as the Regge Hamilton function, and is given by

S (a,b,c) = —ak, (a,b,c) — bky (a,b,c) — 4cke (a,b,c) . (6.12)

The expression for the dihedral angles as functions of the edges length, for a flat
interior geometry, is given in (6.1) and (6.4). Inserting these equations into (6.12)
gives the Hamilton function

: b , a
S ((Z, b7 C) =a (2 arcsi m - 7T> +b <2 arcsl) ———— m — 7T) +
(6.13)

+ 4c | arccos ab -7
V(42 — a?) (42 — b?)

6.2.2 The dynamical model and its physical meaning

The Hamilton function (6.13) defines a simple relativistic dynamical model. The
model has three variables, a, b and c¢. These are partial observables in the sense
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of [112]. That is, they include both the independent (time) and the dependent
(dynamical) variables, all treated on equal footing. The general formalism and the
interpretation of these general relativistic systems is discussed in detail in [15]. The
equations of motion are obtained following the general algorithm of the relativistic
Hamilton Jacobi theory [15]: it is enough to define the momenta

S (a,b,c
Pa (a,b,¢c) = % (6.14)
S (a,b,c
Py (a7 ba C) = % (615)
0S (a,b,c
Pe (CL, b7 C) = % (616)
and equate them to constants
pa (CL?b?C) :pa
(@, b, c) = py (6.17)
Pe (CL, b? C) = Pe

These equations give the dynamics, namely the solution of the equations of motion.
Explicitly, the calculation of the momenta is simplified by the observation that the
action is a homogeneous function of degree one, hence

S (a,b,c)  0S(a,b,c)  0S(a,b,c)

e ; (6.18)

this allows to identify immediately

S(a,b,c) =a

Pa (a,b,¢) = =k, (a,b, c)
o (a,b,¢) = —ky (a, b, c) (6.19)
pe(a,b,¢) = —k.(a,b,c)

Inserting the explicit form (6.1) of the angles, it is easy to obtain the evolution
equations

a=V4c® —b? COS%
b= V4c® — a?cos % (6.20)

ab = —/(4c% — a?) (4c2 — b?) cos % ,

which reproduce (6.5). This result deserves various comments.
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e First, a technical comment. Notice that the variation of the action with respect

to the lengths is completely determined by the variation of the first length
factor in (6.11): the variation of the length in the argument of the angles
has no effect on the action. The fact that this variation vanishes was already
pointed out by Regge [54]. It is the discrete analog of the well-known fact that
in deriving the Einstein equations from the Einstein-Hilbert action I can ignore
the change of the Levi-Civita connection under a variation of the metric.

It is interesting to notice that boundary lengths a, b, ¢ determine the intrinsic
geometry of the boundary surface. Their conjugate momenta p,, py, p. are
determined by the dihedral angles and are given by the external angles at
the links. That is, they measure the extrinsic curvature of the boundary
surface. This is precisely as in the ADM hamiltonian framework [149], where
the momentum variable conjugate to the metric is the extrinsic curvature.
Equation (6.19) is the discrete analog of the ADM relation between momenta
and extrinsic curvature.

The evolution equations (6.20) are not independent, as is always the case in
relativistic systems (for instance, out of the four equations of motion of a
relativistic particle, only three are independent). It is possible to take the first
two equations as the independent ones. They express relations between the
lengths and dihedral angles of the tetrahedron.

How are the evolution equations (6.20) related to the Einstein equations?
They are essentially equivalent. In three dimensions, the vacuum Einstein
equations R,, = 0, where R, is the Ricci tensor, imply that the Riemann
tensor vanishes, namely that spacetime is flat. This implies that the tetrahe-
dron is immersed in a flat 3d spacetime. But if spacetime is flat, the extrinsic
curvature of the boundary at the edge is exactly equal to 7 minus the dihedral
angle. Hence these equations express the flatness of spacetime, namely they
have the same content as the Einstein equations R,, = 0. In other words,
I have derived the relation (6.1) between length and angles assuming a flat
3d space: viceversa, the fact that these relations are satisfied implies that, in
the approximation captured by the triangulation, 3d space is flat, namely the
Einstein equations hold.

The physical interpretation of the model is as follows. I assume that it is
possible to measure the three lengths a, b and ¢ and the three external angles
ka, kp» and k. (these are six partial observables in the sense of [112]). These
are all local observations that can be made on the boundary surface. They
refer to the intrinsic as well as the extrinsic geometry of the surface itself.
The classical theory establishes relations between these measurable quantities.
These relations are the physical content of the theory and are given by the
equations (6.20). They are equivalent to the statement that spacetime is flat
(to the given approximation).
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e The fact that the equations of motion are not independent is reflected in a
relation between the momenta. The relation is of course the one given by
equation (6.6), that is

H (pa pp, pc) = cos Pe + cos PacosZ =0 (6.21)

4 2 2

From this it is possible to read out directly the Hamilton-Jacobi equation
satisfied by S (a, b, c)

108 105 108
cosé—l%—l-cosé%cosé% =0 . (6.22)

The function H (pa, pp, pe) given in (6.21) is the relativistic hamiltonian [15],
or hamiltonian constraint, of the system.

e Finally, in the limit in which ¢ > a, b the action is given simply by
ab
S(a,byc)=——(a+b+2c)m (6.23)
c

and the evolution equations (6.20) become

a=c(pp+m) (6.24)
b=c(p,+m) (6.25)
ab= —c*(p. +2m) . (6.26)

6.3 Time evolution

In the description given so far, no reference to evolution in a preferred time variable
was considered. I now introduce it here. I consider the direction of the axis of
the equilateral tetrahedron as a temporal direction. In particular, I interpret b as
an initial variable and a as a final variable (b for before and a for after). The
length ¢ of the side links can then be regarded as a proper length measured in the
temporal direction, namely as the physical time elapsed from the measurement of
a to the measurement of b. Indeed, had the spacetime had signature [+ + —], and
assuming the tetrahedron axis had been oriented in a timelike direction, ¢ would
precisely be the physical time measured by a real clock on the boundary of the
spatial region considered, the worldline of the clock running along one of the side
edges. To emphasize this interpretation of the variable ¢, in this section I change
its name, renaming ¢ as 7. The Hamilton function reads then S (a,b,T) and can
now be interpreted as the Hamilton function that determines the evolution in T of a
variable a. The variable b is interpreted as measured at time 7' = 0 and the variable
a at time T'; therefore b can be viewed as an integration constant for the evolution
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Figure 6.2: Large T', at constant b and #,, implies 6, — 0 and a ~ T

of a in T'. b is not necessarily the same variable as a, namely 7" = 0 does not imply
a = b. For comparison, I recall that the Hamilton function of a free particle moving
from a position b to a position a in a time 7' is

m (a — b)?

o7 (6.27)

Sfree particle (CL, ba T) =

which completely describes the free particle dynamics: equations (6.17) give in fact

98 (a,b,T) a—b

Pa (a,0,T) = 5 = m 7 = Da (6.28)
_08(a,b,T)  b—a
pp (a,b,T) = — = m 7 = Db (6.29)
98 (a,b,T) m(a—b)?
pe (a,b,T) :8—T:_T:pT 7 (6.30)

which can be readily recognized as the evolution equation for coordinate and mo-
mentum

a(T)=ao+ VT (6.31)
pa (T)=mV | (6.32)
where ag = b and V = —p,/m, and the relation between energy (E = —pr) and
momentum
v}
E=Hp)=7- (6.33)

2m
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which defines the hamiltonian function H (py). Returning to the system under study,
the hamiltonian that evolves the system in the time 7', which can be called proper-
time hamiltonian, can obtained from the energy

S (a,b,T) ab

= 471 — 4 arccos (6.34)

E _ — p—
br oT JAT? — @) (AT? — i?)

by using the equations of motion to express the initial position b as a function of
the position a and momentum p,. This gives

acos B
H (a,p,, T) = 4w — 4 arccos . (6.35)
VAT? — (4T? — a?) cos? B¢

Notice that the angle 6. can vary between 0 and 7/2, and therefore so does the arccos.
Therefore the energy can vary between 27 and 47. The fact that the domain of the
energy is bounded has important consequences. For instance, one should expect
time to become discrete in the quantum theory.

In this way, the relativistic background independent system can be reinterpreted
as an evolution system, where the proper time on the boundary of the region of
interest is taken as the independent time variable. The Hamilton equation generated
by the hamiltonian for a (7") and p, (T') are

da(T) OH _ 4aT (6.36)
dI" Op, AT?sinZ + a2cos? Be '
dpo (T) _ OH _ 4T sin p, (67)
dT da  AT?sin® B 4 a%cos? B2 :
The solution of these equations is
a(T) =v41? — 62008%
b (6.38)

pa (T) = —2arccos :
AT?sin® 2 + b2 cos? &

where b and p, are integration constants. These solutions are immediately recognized
as the equations (6.5). Therefore the dynamics generated by the hamiltonian is the
same as the general relativistic dynamics defined in a-temporal terms in the previous
section.

It is interesting to consider the long time evolution of the system. In the large
T limit the following behavior is found

a(T) — const T'

const (6'39)

Pa (T) —

— T ,



82 6. Application to a toy model

which is precisely (6.3), identifying the two integration constants with the initial data
0, and a. Therefore p, (T') tends to —m as T  increases. It is easy to understand this
behavior geometrically. See Figure 6.2: at fixed values of the bottom length b and
bottom angle 8, = m + py, as the side length T grows, the top angle 8, = 7+ p, — 0
and a grows proportionally to 7.
The energy is not constant (there is no reason for the energy to be constant) and
tends to
E(T)— 27 (6.40)

which is its minimal value. This result can also be obtained by considering the
hamiltonian for large T'. Starting from (6.23), it is possible to obtain

_0S(a,b,T)  ab _a(m—pa)
The equations of motion
da(T) OH a
pu— = — -42
dr op, T (6.42)
dp, (T H a
pa(T) _ OH _ m+p (6.43)

ar  9a T
are solved by (6.39) and yield (6.40). Notice that the convergence of the “velocity”

to the attraction point p, — —7 and the energy to its minimal value, resembles a
dissipative system, such as a point particle under a constant force in a fluid.

6.3.1 Phase space and extremal configurations

Figure 6.3: The flat tetrahedron: the bottom and top edges touch.

Viewed as a dynamical system evolving in 7', the system under study has a
phase space coordinatized by a € [0,00[ and p, € [0,—n]|. The maximum value
of the energy (6.35) on this phase space is Ep;, = 4w, which is attained along the
boundary p, of the phase space I'. These are states with vanishing external angle
at the top edge. They are configuration in which the tetrahedron is flattened: its
volume is zero, and the upper and bottom edges touch. The value of a is arbitrary.
See Figure 6.3. Notice that these configurations evolve into one another. In fact, if
P = 0, (6.38) gives

a(T) = VAT? =12 (6.44)
pa(T)=0 . (6.45)



6. Application to a toy model 83

Therefore these states grow in T remaining flattened and with the the energy re-
maining constant in 7' at the value £ = 47. In all the other states, the energy
changes with time. As T' grows a generic state evolves towards a state of the form

9T cos % (6.46)

S|
I

Pa = (6.47)

|
|
3

with the energy converging to the value £/ = 2m. These states minimize the energy
and form the boundary p, = —m of I'. I call these states Minkowski vacuum states,
since they minimize the energy. Notice that their definition depends on the choice
of the time variables made. Therefore the 2d phase space has two notable subsets:

A
W

Pa
-
0

0

Figure 6.4: The phase space of the system with some typical configurations. The
“Minkowski” states are the ones along the p, = —m boundary.

the line p, = 0 forms an independent sector evolving into itself, given by the energy-
maximizing states; while the line p, = —m is an attractor for the rest of the phase
space, and is formed by the energy-minimizing states that I have called Minkowski
states. See Figure 6.4. Notice that the variable 7" is bounded by |T'| > b/2 from
(6.38), therefore it is not possible to continue the solution for arbitrarily small 7. It
is natural to introduce the time variable

b2 b
2 — for T'> = (6.48)

t=1\/T
4 2

which geometrically represents the height of the triangular face of the tetrahedron
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with base b, and which arrives at zero. The evolution equations read then

a(T) = 2t cos % (6.49)

b
\/4t2 sin? % + b2

pa (T) = —2arccos (6.50)

Notice that the equations of motions can be extended also for negative ¢ and negative
a and p, . It is natural to interpret this as an evolution in which the tetrahedron
crosses the point a = 0, p, = 0 in which it has zero volume, and grows on the
other side, overturned as a glove. See Figure 6.5. By considering this extension, it
is possible to take the phase space to be given by a € R and p, € [—m,7]. In the
following I will not consider this extension.

Figure 6.5: The extension to negative a and negative t.

6.4 Quantum theory

In this section I review the extension of the model described in the previous sec-
tions to the quantum case. This work is due to Daniele Colosi, Winston Fairbairn,
Leonardo Modesto, Karim Noui and Carlo Rovelli [60].

6.4.1 Kinematics

The first step is to construct the boundary Hilbert space K, on which the operators
representing the boundary (partial) observables are defined. Consider the triad
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Figure 6.6: The tetrahedra T' (continuous lines) and 7™ (pointed lines).

formalism for three-dimensional euclidean general relativity. The variables are the
triad ¢!, (z), p = 1,2,3, i = 1,2,3 and its SO(3) spin connection A} (x). The
canonical boundary variables can be taken to be the SO(3) connection A’ (x), a =
1,2 and the inverse densitized triad E¢ (z) induced on the boundary surface.

Spacetime will be discretized in terms of a single tetrahedron 7. Call fP, p =
1,2,3,4 the faces of the tetrahedron, eP? the oriented edge separating the face p
from the face ¢ (say oriented rightward in going from p to ¢). To define the discrete
dynamical variables, consider the dual tetrahedron 7™ defined by vertices v, in the
face fP of T'. The edges ey, of T™ connect the vertex p to the vertex ¢; they are
dual, and cut the corresponding edges eP? of T'. It is possible to discretize the
boundary field A’ (z) by replacing it with six group elements U, associated to the
six edges e,,, interpreted as the parallel transport matrix of the connection along
epg- As usual in quantum gravity, it is possible to take U,, € SU (2) (the classical
theory is determined by the algebra, not the group) and write U,, = Uq;l. Gauge
transformations act on the vertices v,; they are determined by four group elements
V, and the group elements U, transform as

Upg = %qu‘/;;il : (6.51)

The quantum theory can be defined starting from the Hilbert space I of the Haar-
square-integrable functions 1 (U,,) of the six dynamical variables U, that are gauge-
invariant under the transformations (6.51), namely

6 (Up) = 0 (VUV,) (6.52)

These gauge transformations depend on four group elements, therefore

K =L, [(SU (2))° / (SU (2))4] where the action of (SU (2))* on (SU (2))° is the one
given in (6.51). The notation U = (U,,) represents the 6-tuplet of group elements,
and thus write states as ¢ (U). Similarly, a 6-tuplet of spins is indicated as j = (Jpq)-
As well known (see for instance [15]), a basis in /C is given by the spin-network states

43(0) = () = omgmg
‘ A ' | - ~ (6.53)
R (Uy) RS (Usg) RIS (Ura) B (Uns) R (Ug) RS (Uss)
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where the Ril are the matrix elements of the SU (2) representation j and v**! are the
normalized invariant tensors. The index structure of equation (6.53) is determined
by the geometry of the tetrahedron. The function v; (U) is the spin-network function
for a spin network having 7™ as graph. See [15] for details. 11 fi The left invariant
vector field on each group can be identified as the operator associated to the triad
field integrated along the edges of T'. The integral of the SU (2)-norm of these gives
the length of the edge; therefore the Casimir operators C,, of the (pq)-th group

Cpq |J> = Jpg (qu + 1) |.]> (6-54)

can then be naturally identified as the operator giving the length square of the
edge eP? [150]. The tensor structure of the algebra of the SU (2) representations
implements the triangular relations satisfied by the length. The spectrum of the
length of the edges e, is therefore given by

lpg = \/ Jpa (qu +1) . (6.55)

The fact that the lengths have discrete spectrum is an immediate consequence of
their conjugate variables being angles, and thus vary on a compact domain. Follow-
ing [15], it is possible to interpret the spectral properties of the partial observables
as physical predictions of the quantum model.

6.4.2 Dynamics

The quantum dynamics is completely captured by the propagator, as I described
in Chapter 3. In a general relativistic theory, the propagator is formally expressed
as the function of the boundary variables given by (4.5). However, in general the
propagator is not a function of classical boundary variables; the reason is that the
boundary quantities may fail to have continuous spectrum. If they have discrete
spectrum, the propagator depends on the quantum numbers that label the discrete
eigenvectors of the boundary quantities, and not on the corresponding continuous
classical variables [15]. In the present case, the propagator can be written in the
basis (6.53), where it will be a function W (jj,,). To find this function, recall that the
classical dynamics requires three-dimensional space to be flat. This means that any
parallel transport along a three-dimensional closed path must be trivial. Consider
the four “elementary” closed paths vy, on 7™, where v, is defined by the sequence
of edges ejaeagesr, that circle the vertex opposite to the face f*, and so on. The
requirement is expressed by the parallel transport around each of these paths being
trivial

UppUssUs =1 (6.56)

and similarly for the other three. Therefore it is possible to write the 3d flatness
requirement (the Einstein equations) in the form

(U12U23U31 — 1) =0 s (657)
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where p # ¢ # r. Then the main dynamical equation of the quantum theory can be
written in the form

(U12U23U31 - 1) Yo (U) =0 , (6-58)
which can be interpreted as a Wheeler-DeWitt equation. Its general solution is
Yo (U) = £ (U) [ 6 UpgUpUsp) (6.59)

pgr

where the delta function is the one on the group (for the Haar measure) and f (U)
is an arbitrary gauge invariant function. This equation defines the physical states
1o that solve the dynamics of the theory. To express these states in the j basis, one
simply projects them on the basis states (6.53)

%o (G) = / UG (U) £ (U) [ 6 Uyl Usy) (6.60)

pgr

It is easy to see that by gauge invariance, it is possible to gauge fix all U,, to unity
in the integral, giving

bo (§) = / UG (U) £ (U) [ 6 (Upy) = (6.61)

ijk, olm, prn

= 0;0 1010 O1rOms Ont 0 0O MPT 95t 6.63
JP~Rq

The constant ¢ = f (1) can be absorbed in the normalization. The last line is the
definition of the Wigner 6-5 symbol, usually written as

w)= (42 h) < o) (6:64)
J34  J24  J23

Thus, it is possible to conclude that there is a single state |0) (up to normalization)

in IC that solves the dynamics, and that this state is proportional to the Wigner 6-j

symbol.

The physical amplitude of an arbitrary kinematical state 1) € H is determined
by its projection on the state that solve the dynamical equation, namely by its
projection on the state |0)

AY) =Ofy) . (6.65)
The state |0) is called the “non-perturbative” vacuum state [15]. It expresses the
dynamics of the theory. In other words, the physical amplitude for having the

boundary configuration j,, is the Wigner 6-j symbol. Namely the propagator of the
theory is Wigner 6-5 symbol

W (§) = (j|0) = (;12 J13 ‘7.14> . (6.66)
34 J24 J23
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Now, this is precisely the result obtained by Ponzano and Regge on the basis of
a physical ansatz on the discretization of the lengths, and a discretization of the
Einstein-Hilbert action [151]. In this minimalist model, the functional integral (4.5)
is trivial because there are no bulk degrees of freedom. Its result is therefore propor-
tional to the exponential of the action. Ponzano and Regge found that the Wigner
6-7 symbol (6.66) can in fact be viewed as a discretization of (the real part) of the
exponential of the action. The result is also equivalent (up to a phase) to the spe-
cialization to a single tetrahedron of the boundary amplitude computed in [55] and
in [147]. In the present case, the discretization of the length is not introduced as
an ansatz, but it is a standard quantum-mechanical consequence of the conjugate
variable being an angle.

6.4.3 Quantum equilateral tetrahedron

So far, an arbitrary quantum tetrahedron has been considered. Now the formalism
will be specialized to the case of an equilateral tetrahedron. The simplest way to do
so is to consider only the states where four of the six edge lengths are equal. More
precisely, the equilateral tetrahedron is selected by setting

Ja = J13 (6.67)
Jb = Jo4 (6.68)
Je=J12 = J23 = Jaa = Ja1 (6.69)

and considering only the states

|ja7jb7jc> - Uc’jaajmjcajbajc> . (67())

Accordingly, the states 1 (U,,) can be restricted to the subset of (SU (2))° deter-
mined by U12 = U23 = U34 = U41, and

Ua = U13 (671)
Ub = U24 (672)
UC = Ulg = U23 = U34 = U41 . (673)

The gauge transformations that preserve the resulting subspace are the ones for
which

Vi=Va=V, (6.74)
h=Vi=V; . (6.75)
under which the states ¢ (U,, Uy, U,.) transform as

O (Ua, Uy, Ue) — (VU V, ViUV, VLUV (6.76)
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Using these gauge transformations, it is possible to transform U,, Uy, U. to three
rotations around three orthogonal axes, of three angles k,, ky, k.. The interpretation
of these angles is simple. Since spacetime is flat, it is possible to choose the gauge
in which the internal space is directly identified with spacetime. Then the rotation
along the edge e, of T™ can be identified as the physical rotation that one undergoes
in crossing the edge eP? of T. These are precisely the external angles that were
denoted kg, ks, k. in the previous section. For an SU (2) matrix, Tr(U) = 2 cos (¢/2),
where ¢ is the rotation angle. Therefore one can consider the operator

k
T, =Tr(U,) = 2cos Ea = 2cos % : (6.77)

which is now gauge invariant. The action of this operator is easily obtained from
SU (2) representation theory:

Ta |ja>jb>jc> =

2 2

A E . r

Ja + —,ch> + Ja — —,Jb,Jc> : (6.78)
and similarly for the other edges. In the next section it will be shown that the
commutator between this operator and the length reproduces the classical Poisson
brackets.

In summary, the boundary Hilbert state K is spanned by the states |jq, jp, je)-
The boundary observables a, b, ¢, pa, pp, P that measure the length of the edges
of the tetrahedron and the external angles are represented by Casimir and trace
operators, and the dynamics is given by the propagator

o Ja Je Je
W (Jas Joge) = | 25 25 7 , 6.79
(Jas Joe) (]b i jc) (6.79)
which expresses the probability amplitude of measuring the lengths determined by
Jas Jb, Je- This concludes the definition of the quantum theory. The predictions of the
theory are given by the quantization of the lengths and by the relative probability
amplitude (6.79).

6.5 Time evolution in the quantum theory

So far, the system under study has been viewed as a general relativistic system, in
which predictions are expressed in terms of (probabilistic) relations between bound-
ary partial observables, or probability amplitudes for boundary configurations. The
system will now be reinterpreted as a system evolving in a time variable, as I did in
the classical case. Thus, say, b and p, are considered as initial variables, a and p,
as final variables, and j. as a time parameter. It is necessary to identify the Hilbert
space of the system at fixed time.

The final state is described by the operators C, and T, that act on the variable U,.
The boundary Hilbert state K, spanned by the states |jq, Js, J) can be decomposed
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as (a subspace, because of the Clebsch-Gordan relations of) the tensor product of
three spaces IC,, Ky, K. spanned by states |7.), |7s), |je) respectively. K, can be
interpreted as the state space at fixed time; it can be simply expressed as the space
of the class functions (¢ (U,), that is, the functions satisfying

O (Us) = (VaUaV,h) (6.80)
The basis |j,) is defined by the characters

(Ualja) = Xjo (Ua) = s ((zszrU_f) Ua) . (6.81)

The Casimir and trace operators act as

Colin) = o (34 3 ) i) (6:52)

. . 1
Ta|]a> = ]a+§>+

jam %> | (6.83)

where the second relation is easily derived from the properties of the characters. It
is convenient to define also the operator
1
jo — = , 6.84
i) (6.5)

AN
Jat 5

that satisfies T2 + S? = 4, and is therefore a function of T,

Sulia) =1

S, =+/4—T2 . (6.85)

Since T, has been identified with 2 cos (p,/2), it follows that also S, and 2sin (p,/2)
can be identified. The classical Poisson brackets

{a,pa} =1 (6.86)
give, for T, = 2 cos (p,/2),
{a,T,} = sin% = %\/@ . (6.87)
Consider the operator J, defined by C, = J, (J, + 1) and acting as

Ja |.7a> = Ja ‘]a> ; (6'88>

a straightforward calculation gives

[T, T.] = %Sa - % i-T12 . (6.89)
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Therefore the operators J, and 7, define a linear representation of the classical
Poisson algebra defined by the observables a and 2 cos (p,/2). There are then two
options. The first is to identify the classical quantity a with the operator J,. The
second is to identify a with the square root of the Casimir. Both choices give the
correct classical limit, since they become the same in the limit of large quantum
numbers. The first gives a quantum theory in which the length is quantized in half-
integers j,; the second gives a quantum theory in which the length is quantized as

Ja (ja +1). The second choice can be identified with the quantization defined in
the previous section.

A discrete time evolution is determined by the propagator (6.79), seen as a
propagator from the state |j,) to the state |j,) in a (discrete) time j.. In the classical
theory the long time evolution drives the system to the “Minkowski” configurations
where p, = —m. The next step is studying the quantum evolution for long times.
For j. — oo the following relation holds [54]

. . . —(Jatio+2jc)
L. Ja Je  Je (_1)
W (Jar o, Je) = 5 5 ) — . 6.90
Grodde) = (22990 - (6.90)
This can be written as
(_1)*(ja+jb+2T)
w (][l?jb?T) Tjoo oT - (691>
o—27(T) - —iEyT
= e = S G e ) - (692)
That is, for large T' the evolution projects on the (generalized) state
Vo (Ja) = (Ja|Onr) = €79 . (6.93)

It is easy to see that this is the generalized eigenstate of p, with eigenvalue —m
(since p, itself is not an operator in the theory, this means, of course, a generalized
eigenstate of T, = 2 cos (p,/2) with eigenvalue 2 cos (—7/2) = 0)

208 (Pa/2) Yo (o) = Tye Ha™ = =Vt /DT | p=ilia=1/2m (6.94)
= ¢ T (™2 + e7) = 2cos (—7/2) Yo (Ja) - (6.95)

Therefore it has been shown that the quantum dynamics converges to the classical
dynamics on long times. It is appropriate to call |0p/) the “Minkowski” quantum
state, since it minimizes the energy. It has been shown that the nonperturbative
vacuum state |057) in K becomes a projector on |0,/) in the 77 — oo limit. Therefore
it is possible to write

jligrgo 10) = [0ar) One| (6.96)
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The bra/ket mismatch is only apparent: the Lh.s is a ket in IC, while the r.h.s. is
an element of the tensor product between I, and its dual, which can be identified
with a subspace of K under

lda) ol < 1das Jos Je) - (6.97)

See [15] for details. Equation (6.96) is the expression I proposed in Chapter 3 for
computing the Minkowski vacuum state for spinfoam transition amplitudes. So one
finds that in the present case this equation is correct. Notice, however, that in this
euclidean context the limit is taken for real times. Alternatively, it is possible to
study the continuous time evolution determined by quantizing the classical hamil-
tonian (6.35). Notice that (6.35) can be easily written in terms of the operators that
have been defined

1 T,

H (a,pq,T) = 47 — 4arccos | /C, Y (6.98)
Ty
\/4T2 — (472 - C,) (%)

Choosing this ordering (where the inverse and the arccos are defined by spectral de-
composition) gives immediately that the eigenstate of the p, with eigenvalues — is
an eigenstates of the hamiltonian, with energy 27, in accord with the corresponding
classical result.



Chapter 7

Conclusions

In this thesis I put forward a proposal concerning a possible strategy to make contact
between background independent quantum gravity and conventional calculations of
particle scattering amplitudes. I studied thoroughly this strategy in the case of
ordinary quantum field theory. In the following I will illustrate the logical scheme
of this proposal.

Field propagation kernel defined on an infinite strip The first step has been
to write down a formulation of quantum field theory in terms of the propaga-
tion kernel W [¢y,t1; ¢, t2] (see Chapter 3). In the context of a Schrédinger
picture of quantum field theory, where the primary objects of interest are the
fields, I considered a scalar massive field theory. 1 then calculated in this
case the extension of the propagation kernel introduced by Feynman in the
description of the quantum mechanics of a single particle [45, 61], that is, the
propagation kernel between field configurations defined on infinite spatial hy-
perplanes at fixed time. I then performed some other calculations to show that
through this single tool it is possible to reconstruct all physical information
that can be extracted from a field theory. For example, the propagation kernel
allows to calculate two-point functions and therefore, through Wick’s theorem
and the LSZ reduction formulas, any scattering amplitude. Furthermore, us-
ing the propagation kernel it is possible to obtain the vacuum state, of which
I gave two different definitions. The first is the definition of the Minkowski
vacuum state |0yr), the second is that of a nonperturbative vacuum state |Ox).
The two are related by a limit on the time interval between the initial and
final field configuration. The results described in this Chapter are illustrated
in [58].

Extension to a finite region of spacetime Since the final scope of my study is
to find a technique to a possible strategy with which to extract physical pre-
dictions, such as particle scattering amplitudes, from a quantum theory of
spacetime, of course a propagation kernel defined on a special region of space-
time (an infinite strip) is not general enough. More generally, it is the picture
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of initial state, evolution and final state, which was quite appropriate in the
non-relativistic context of the founding days of quantum mechanics, which
becomes inadequate when including space and time in the quantum mechani-
cal realm itself. Therefore in Chapter 4 I proceeded to extend the formalism
to generic regions of spacetime, and more specifically closed ones. This can
be done by adopting a the framework of the so-called “general boundary for-
mulation” of quantum field theory, introduced by Robert Oeckl [47, 48, 49|,
which consists in adopting a topological-quantum-field-theory-like description
of quantum field theory allowing at the same time the evolution of the fields be-
tween generic boundary surfaces, for example closed surfaces. This framework
entails a number of implications. Among them are a somewhat radical depar-
ture from the static Hilbert space picture of quantum mechanics. Related to
that is a necessary duality between “in” and “out” states, or preparation and
observation. In particular, states are physically meaningful even if associated
with boundaries that have time-like components. In section 4.2 I then special-
ized the propagation kernel formalism to the case of a closed boundary surface
enclosing a finite region R [58]. Quantum field theory can be formulated in
terms of a state space Ky associated to the boundary ¥ of R. States in Ky
represent measurement outcomes on Y. I have defined the propagation kernel
W [p, %] depending on ¥ and the boundary values ¢ of the dynamical fields
on X. Wp,X] can be used to compute the Minkowski vacuum state |0y/),
taking the appropriate limit on ¥; it is enough to consider propagation in imag-
inary time for a laboratory scale. Through W [¢, ¥] it is also possible to define
the nonperturbative vacuum (Os| in Ky, which expresses the dynamics since
it gives the amplitude for any complete set of measurements. Measurements
of the boundary field ¢ are represented by the basis |¢). Particle detection
determines particle states in Ky, which can be obtained acting with the field
operator on |0y/). This formulation can be used to modify present approaches
to quantum gravity, with a view towards obtaining physically meaningful am-
plitudes. This applies notably to loop quantum gravity [19, 15] and spin foam
models [35, 37]. In a background independent theory, n particle functions
W (x1,...x,) become meaningless, because they are independent from the co-
ordinates; while W [p, ¥], which now must rather be written as W [p], main-
tains its physical meaning, in spite of the fact that it is independent from 3.
This is because in a gravitational theory the relative location of the detectors
is coded in ¢ and not in ¥. Localization measurements are on the same foot-
ing as the dynamical variables measurements. Through the functional W [p] T
also defined a state |Oyx) that codes the dynamics of the theory by determining
the correlation amplitudes between boundary measurements. The Minkowski
vacuum state |0p/) can be computed from nonperturbative quantum gravity
by choosing appropriate boundary values of the gravitational field; a tentative
formula giving the Minkowski vacuum state in terms of a spinfoam model is
given by equation (4.24). Relevant analytical continuation is in the proper
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length of the boundary, not in the time coordinate.

Generalized Tomonaga-Schwinger equation The following step is studying which
kind of evolution equation the propagation kernel W [p, 3] obeys [59]. In
Chapter 5 I have derived the generalized Tomonaga—Schwinger equation (5.2)
from its functional integral definition (5.1), in the case of a free euclidean
scalar field. To this end I used a Green function technique and in particu-
lar Hadamard’s formula, which describes the change of Green functions under
modifications of the surface over which they are defined. The result I derived
undercuts some a priori arguments against the general possibility of an equa-
tion as the form (5.2), and renders the equation more plausible. The difficulty
of using functional integral techniques is that integrals that converge in the
euclidian oscillate in the lorentzian case. If convergence of the integrals can be
controlled, I expect that it should be possible to prove the validity of the gen-
eralized Tomonaga—Schwinger in the lorentzian case using the same strategy
as here.

Application to a toy model Finally, in Chapter 6 I considered the application
of some of the techniques I developed in the previous Chapters to a toy model.
The model is very simple, but it gives an idea of how quantum field theory
can be defined and consistently interpreted in the absence of a background
spacetime. This is a study I carried out in collaboration with Daniele Colosi,
Winston Fairbairn, Leonardo Modesto, Karim Noui and Carlo Rovelli [60]; my
contribution is limited to the study of the classical version of the model. The
model consists of a single equilateral tetrahedron. Observables can be defined
on a closed finite boundary. The classical dynamics can be expressed as a set
of relations between these observables. The quantum theory can be defined in
terms of a boundary Hilbert space I, on which operators representing bound-
ary observables are defined. The boundary observables are partial observables:
they represent quantities whose measurements can be operationally defined in
principle, but whose value cannot be predicted from the knowledge of the
state, in general [112]. The spectral properties of these boundary operators
are physical kinematical predictions of the theory. Dynamical predictions do
not refer to values of partial observables, but rather to relations between these
values. The quantum dynamics is captured by the nonperturbative vacuum
state |0), or, equivalently, by the propagator (6.79). A temporal interpreta-
tion of the model is not necessary, but it is possible [152]. By interpreting
the “side” length ¢ as a time variable, the propagator W (ja, Js, Jc) can be in-
terpreted as the transition probability amplitude from the initial state [j,) to
the final state |j,) in a discrete time j.. The energy that drives this evolution
has minimum value on a state (denoted as the “Minkowski” state) that can
be obtained from the propagator: the propagator becomes proportional to a
projector on this state in the large time limit.
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Appendix A

Hadamard formula

I sketch here the demonstration of the Hadamard formula (5.32). Consider two
surfaces X1 and Yo, where Y5 coincides with ¥, except for an infinitesimal outward
bulge around a point. Consider the difference Gy, (z,y) — Gy, (z,y). This difference
satisfies the equation of motion (5.21). If x € 3j:

GEQ (l’,y) - GZl <x7y)‘1622 = _021 (x,y) ) (A1>

taking y € 3 in (5.27) shows that

—0°Gy (r,y € X) = 6O (x — y)|yEE , (A.2)
so that
Gs, (0.9) = G, (0.9) = [ d%a(6)0iCi, (2,2) G, () - (A3)
3o
The region of ¥y where ¥y = ¥; doesn’t contribute to this integral because of

(5.25). In the region where 3y # 3, Gy, (z,y) is infinitesimal, so it is possible to

approximate
GEl (Z, y) = aTZLG22 (Z7 y) on ) (A4)

where n is the normal to ¥, positive in the outgoing direction. As a consequence
it is easy to find Hadamard’s formula:

5GZ (l’, y)

55(5) =0:.Gyx (2,2) 0:Gx (2,y) . (A.5)
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