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1. Introduction

In many theories for multiparticle systems, like the Faddeev equations for
three-particle systems, the input information is not the explicit inter-particle
potentials but rather the two particle transition amplitudes t(f)T ,5; E +ie). How-
ever, two-particle scattering experiments provide direct information only on the
on-the-energy-shell part of these amplitudes, corresponding to Ip' | = Ip | =k,
where k2 /2u =E is the energy, while in the multiparticle theories the scattering
amplitude is in general also needed for off-shell values of the momenta, and for
negative energies.

The methods to extract information on the off-shell parts of t from on-shell
parts in one way or another exploit the assumption that t corresponds to a unitary
S-matrix or, more precisely, that the solutions to the Schrddinger equation cor-
responding to different energies form a complete set. The most well-known
consequence of this so-called unitarity condition on t is of course that the on~
shell transition amplitude itself in every partial wave can be parameterized in

terms of a real function of energy, the phase-shift 62(1{),

6, (k)

Im t)(k,k;E +ie) = - siné(k)e (1.1)
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Other well-known consequences, 1 also applying to partial wave amplitudes, are
that the amplitude can be expressed in closed form in terms of half-off-shell

2,3,4

amplitudes,”’ e.g. , for the imaginary part of t

[
tﬂ(p' ,b; E +ie) = —7rp,ktﬂ(p' Jk; E + ie)tZ‘(k,p; E +i€) (1.2)

and, moreover, that only the modulus of the half-off-shell amplitude depends

on the off-shell momentum, leaving it with the same phase-factor as the



corresponding on-shell amplitude,

tﬂ(p ,k; E +1i¢) = fl(p ,K) tﬂ(k,k; E +ie) (1.3)

where the half-off-shell factor fﬂ(p ,k) is real. Thus, in every partial wave,
the completely off-shell amplitude can be parametrized in terms of the two real
functions 62(1«:) and fﬂ(p,k).

The remaining general restrictions on t due to the unitarity condition3 are
less transparent, since they are expressed in the form of an integral relation
which is quadratic in the half-off-shell amplitude. However, in the important
special case when the transition amplitude corresponds to an interaction potential
which is diagonal in configuration space (a condition that excludes, for instance,
separable interactions) the situation is considerably simplified. From the
solutions to the inverse problem of scattering theory, 5 it is known that in this
case the quadratic unitarity condition can be reduced to a linear integral equa-
tion, through which an in principle unique potential can be deduced using on-
shell and bound state properties of the two-particle system. But once the
potential is known, the off-shell extension of the transition amplitude is obtain-
able as the solution to the Lippmann-Schwinger equation. In this way also the
off-shell amplitude is uniquely determined by the phase-~shift together with, in
the case of a partial wave with bound states, the bound state energies and
normalizations.

The procedure just outlined can obviously be simplified if the potential
itself is of less interest and the main objective is to find the off-shell extension
of a given on-shell amplitude. In the present paper, such a simplified pro-
cedure ig developed, through which the half-off-shell factor fﬂ(p,k) can be obtained

from the phase shift and the bound state parameters, and in which the



intermediate step of actually calculating the potential has been eliminated. The
basic ingredient is the Marchenko integral equation from the theory of the inverse
scattering problem, 5,6 but rather than considering its solution in configuration
space, as in the conventional discussion of the equation, it is shown that a certain
momentum space transform of the solution is closely related to the half-off-shell
factor. After this observation, what remains is essentially to develope methods
to solve the Marchenko equation that are suitable for the subsequent calculation
of thé half-off-shell factor. In this paper, the iterative solution will be discussed
in some detail, but a more general method based on the Fredholm solution will
also be outlined. Finally, it is known that for Bargmann Sﬁ(k)—matrices the
Marchenko equation has a separable kernel and hence a closed form solution.
Through a calculation closely related to the Schmidt process it will be indicated
how this fact can be used to transform the Marchenko equation into a similar
equation for which the é.bove methods of solution are expected to be more rapidly

converging.

2. The Half-Off-Shell Factor and the Marchenko Theory

The system under consideration is two nonrelativistic particles interacting
via the potential v g(r), and the discussion will be restricted to an uncoupled
partial wave in which, for simplicity, there is at most one bound state. Let

fi(k;r) be the solutions to the Schrddinger equation

_14d.24d

d Qe +1) .2 _
rz R dr+ r2 +2u Vﬁ(r) Uﬁ(k,r)—k Uﬂ(k,r) (2.1)

that satisfies the boundary condition at infinity
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hf:) (kr) = ﬂ(kr) +1i jﬁ(kr) are spherical Bessel functions in the notation of Messiah. 7
The Marchenko treatment of the inverse problem of scattering theory is based
on the observation that the solution féi) (k;r) is related to the free particle solu-
tion héi) (kr) via a real Volterra kernel function Aﬂ(r r), >
o
£ gy =0l gy + f ritdr' At )RS gty (2.9)
r!
In order to establish a relation between Aﬂ(r', r'") énd the off-shell transition
amplitude, it is convenient to introduce the outgoing wave scattering solution to

the Schrédinger equation (2. 1),

is,(k) i6,(k)

where the normalization is such that

o0

2 +y* + 1
[ e ey Mo = 5 ow-p) (2.5)
0 p
The momentum space transform of z,béﬂ (k;r) is related to the transition amplitude

through

\/ 2 f r%dr j,(pr) ;z)é*)(k;r) = ;)13 6(p-k) - F—)z-—%ff-z—i; t@.k; E+ie) (2.6)
; K2

Replacing f(;') (k;r) in (2.4) by the expression (2. 3), and using the fact that

<
{
24y ; (+) - D 1
frdr Jﬂ(pr)hﬂ (kr) = Nt 5 (2.7)
0 p -k -ie



it is straightforward to show that
o 0 .
£(p.k) = (ﬁ-)" S f rdr fr’dr’j (PT)A (r, r')Im I:h(+) (kr')el%(k):]
sméﬂ(k) 0 0 f i 2
(2.8)
where fﬂ(p,k) is the half-off-shell factor introduced in section 1.
For partial waves with £> 0, the Marchenko theory as introduced above has some
unsatisfactory features related to the divergence of f(;') (k;r) and hg}') (kr)
at the origin. For example, if f(;) (k;r) from (2. 3) is used in (2.4), ¥ (;')(k;r) on
the left hand side is proportional to rﬂ for small r, while the two terms on the
right hand side individually diverge as r—ﬂ-l. The same difficulty shows up in
(2.8) where the left hand side is finite for p — «, while the two terms on the right
hand side diverge in this limit. In order to overcome this problem, consider a

solution h];{(i)(k;r) to the equation (2. 1) with the boundary condition (2.2) and a

potential
vy(r) = - ) or -1y (2.9)
2ur

where 6(x) =1 for x> 0 and 9(x) =0 for x<0. The behavior of v!z(r) for r<R is
rather arbitrary. One only requires that the Schrédinger equation in this region
is reducible to an effective s-wave equation for which the irregular solution
diverges no worse than r-l at the origin. Another, equally simple choice for

the potential would be to take

e+ f100 1) :
Vﬂ(r)“’gz'u_)@é‘;z‘/ o(R - r) 2.9

so that the potential is continuous at r =R,

Assuming now that hf(i)(k;r) has a representation analogous to (2. 3),

nE ey = 0§ gy + 2 f rrdrt At e el ey (2.10)
rY
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this expression can be combined with (2. 3) to give

f(gi)(k;r’)=hlz(i)(k;r')+'{-'l'" fr”dr"Bg(r',r")hlz(i)(k:r") (2.11)

1
!

where B is again a Volterra kernel. In operator notation, 1+ B = (1+A)(1+AR)—1,
but if AR is a Volterra operator, so is B. If this representation is introduced in
(2.4), the two terms on the right hand side only diverge as r™L at the origin, as
in the £ =0 case, and this divergence is always compensated for by the weight
factor r2 appearing in all integrals. The relation between B and the half-off-shell

factor is obtained in the same way as was equation (2.8):
R

k 2 16, (K)
L@ = (B + - k%) 5in6, %) { r'dr Tm {jyor) b ey -0l ery o
Vi ° 16, (k)
1 R(+) %
+ rdr r'dr’ JQ(pr)B (r,r') Im h kir') e | (2.12)
S )

Here, the integral f r dr(--)) can be evaluated exactly, and it is easy to verify
that it contains a term that exactly cancels the (p/ k) term in (2.12), as expected,
By construction, the half-off-shell factor is independent of the parameter R, and
the expression (2.12) depends on R only to the extent that to different R-values

correspond different kernels Bﬂ(r,r').

3. The Marchenko Equation and Its Iterative Solution

Because of the relation (2. 12) between the Marchenko Function Bﬂ(r',r) and
the half-off-shell factor, the problem of computing the half-off-shell continuation
of a given on-shell amplitude is equivalent to the determination of Bﬁ(r',r), or
rather its transform as given in (2.12), from the phase shifts and bound state

parameters only. This is exactly what the Marchenko theory amounts to, and



our goal is a reformulation of this theory such that the calculation of the half-
off-shell factor according to (2.12) becomes simple and straightforward.

As was mentioned in the introduction, one main ingredient in the Marchenko
theory is the completeness relation for the regular solutions (2.4) to the

Schrédinger equation,

S a Py o7 wim + cop e o = % o) (5.1)
0 - f

Here z/)EB (r) is the bound state wave function corresponding to a binding energy
B> 0, and C is a normalization constant. zpé3 (r) is related to Bﬂ(r‘,r) through the
formula (2.11)withk = i 2uB = ik,

el

B R(+) 1 R(+),;
% (x') = hﬂ( )(1 K; T')+ = 4 ridr! BQ(r',r")hQ( )(lK; r't)

(3.2)

Let B be the operator corresponding to the kernel r™ 1¢'™1 By(r',T) §(r-r'). As

an operator relation, the completeness relation (3.1) reads
(1+B)(1-F)1+B") =1 (3. 3)

where the kernel of the operator F is

” 216, (k)
f K2 dk R{h?”’(k;rf) ny agry fe -1)]
0

2

rr FhT) =

(+)*
- C hi{(*') (1x;r') hlz(ﬂ (ir;r) (3.4)
After multiplication with (1 + B)—1 =1+ ﬁ, equation (3. 3) reads

B;(r‘,r) (r'-r) =F£(r‘,r)+;7.dr” Fﬁ(r',r”)B;(r",r) +]N32(r',r)0(r—r')
r
(3.5)

.+.
= Fﬁ(r‘,r)+ _{dr“Fﬁ(r‘,r")Bﬁ (r'',r), r'>r (3.6)
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Equation (3.6) can now for every fixed r be considered as a linear integral equation
for BZ(r',r) in terms of Fﬂ(r',r), where Fﬂ(r',r) only depends on the phaseshift
éﬂ(k) and the bound state parameters « and C in (3.4). Tn the following, equation
(3. 6) will be referred to as the (slightly generalized) Marchenko equation.

When considering methods to solve equation (3. 6) it should be kept in mind
that it is not really BZ (r',r) but rather the expression (2. 12) that is of primary
interest. If the half-off-shell function were to be calculated with the help of
equation (3. 6) as it stands, the first step would be to transform the momentum
space data into the configuration space function Fﬂ(r',r). The next step would be
to solve the equation (3. 6) for Bﬂ(r',r), and the last step to transform the solution
into the momentum space half-off-shell factor fﬂ(p,k). Since in any application of
the theory, the on-shell data are known with limited accuracy and in a finite energy
range, transformations back and forth between momentum and configuration space
should clearly be avoided. 8 The straightforward way to achieve that is to try to
convert equation (3. 6) into a momentum space Marchenko equation. The result
is unfortunately a rather complicated integral equation in two variables with a
singular kernel. 9

The approach to be followed here will be to introduce formal, configuration
space solutions to the Marchenko equation (3. 6) in the expression (2.12) for the
half-off-shell factor, and try to rewrite the result in such a way that all trans-
formations to configuration space are eliminated. For the iterative solution to

the Marchenko equation this approach amounts to interchanging order of integration



in the expression

. o 5, (k)
J wes f e hn[h‘j”)(k;r')e . ]B[(r',r)j,;pr)
o o o . ReH) 16, (k) .

- Z frdr f rdr! fdr”“'dr Im[hﬂ' (k;r')e }Fﬂ(r',r")""Fﬂ(r :T)J,(PT)
n=1 0 r r

(3.7)
so that all r-integrations are carried out before the k-integrations in the Fﬂ(r',r):s.
At least in the { = 0 case this is easily doneb, as will be shown in detail in the next
sectic;n. In section 5 the usefulness from numerical point of the resulting expres-
sion is demonstrated for the test case of an s~wave spherical well interaction with
no bound state. The results in section 7 indicate that this straightforward iterative
series for the half-off-shell factor might not converge if the interaction is strong

enough to support bound states in the partial wave of interest.

) 4, The S-Wave Iterative Solution J

For the lowest partial wave £ = 0, the change in the order of integrations in

(3.7) is particularly simple. Consider the kernel FO(r',r),

y: ik(r'+r)
Fo(r',r) = %.{dk Re [e (8 4(k) -1)} 4.1)

2i6_ (k)
where So(k) =g is the S-matrix in the ¢ = 0 partial wave, and where it has

*
been assumed that there is no bound state. Since Sﬁ(—k) = S!Z (k), the region of

integration can be extended to (- «, «), so that

o0

k(r'+r
Fo(rr,r) = -2—17; [ dk e (So(k) -1). 4.2) i

The imaginary contributions from the integral cancel. All r-integrations in

(3.7) can now be carried out with the result for the half-off-shell
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factor

o o0
= 2_ 2y L 1 teeodo®? 1
k) =1+ 0" - k) 5= =z w2 f dq'---dgq n
0 B=1  —eo (2m)

i6 (k) . : i}
e GG e W (Sy@” -1+ (8,@)- 1)

X Imije =
k+q +ie q +q +ie

1 - 1 - (4.3)

k+2q'+ - - +2qn+p+ie

X
k+2q'+--- +2qn—p+i€
For the evaluation of the qV -integral, v =1,2, . »n, the modification of the

n+1 = k)

integrand (q
v +1

- 2i6,(q )
0
S50@) -1 - 8,@”)-e (4.4)
does not change the value of the integral but eliminates the (qV * 1+ qV + :'Le)’1

singularily, so that
k+ k-
Ak, =3By - Ak, SR

1 1 Z 5 (4.5)

~ 2 9
fop.k) =1+ @" - k%) 7 510 4 K)

n=1
where
) . n
sin(o (k)+60(q )
_ 1 n 0 n n
aa=- L f 4 . A @a g @e
oo k+q
o0
sin(0 (k) + 6 (q")) i6,(q")
1 0 0 0 1
oy = - L f ag K7 q Im[e m] =7
—00

These expressions are particularly suited for the numerical calculation of fo(p,k)

from 60 (k), as will be discussed in the next section.
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5. A Numerical Example: The Spherical Well

As a first test of the usefulness of the off-shell extension formula (4. 5-7)
from numerical point of view, the s-wave off-shell factor corresponding to a
spherical well of range a =2 Fermi and depth VO =20 MeV has been calculated.
With this choice of parameters, there is no bound state, and the s-wave phase
shift is similar to the s-wave singlet n-p phaseshift at low momenta (figure 1).

The functions An(k,q) of (4. 6-7) have been computed successively on a
24 X 24 mesh (note that An(k,q) = An(—k, -q)) using 24 point Gaussian quadrature.
The values of An_l(qn,qn +q) on the right hand side of (4. 6) were obtained by
means of linear interpolation in the An_l(k,q) matrix, and const/q extrapolation
outside this matrix. Al(k,q) was computed in a more careful manner in order to
account properly both for the singularity at q'+q = 0 and for the rapid variation of
the integrand in the neighborhood of q' = 0. The singularity was first shifted to
the origin, and the 6~function part of it was taken into account explicitly. The

_7‘ and :7' pieces of the remaining principal part integral was then computed
i—lizlividualf)y using identical 24 point Gaussian quadrature. Figure 2 shows the
exact half-off-shell factor fo(p,k) for k=1.0 Fermi_1 together with the result
obtained from the formula (4.5-7) and interpolation in the matrix %1 An(k,q)
for N =5. The discrepancy at high momenta is mainly due to the falzz; that only
4 of the 24 meshpoints are in the region Ipl > 2.0 Fermi !,

With the numerical calculations organized as outlined above, the computation

of An from An— is neither harder nor more time consuming than the computation

1
of A2 from Al, and despite the fact that An is in principle an n-dimensional
integral, the computer time required fo calculate N terms in the series (4. 5)
is just proportional to N. This means that the expansion (4.5-7) is useful from

a numerical point of view even when the rate of convergence is rather low.
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6. The Fredholm Solution

In this section a more general method to find the half-off-shell continuation
of the on-shell amplitude will be outlined. It is based on the Fredholm solution
to the Marchenko equation (3. 6)10

+
B!Z (r',r) = Y('13r)/Ar) (6.1)

where r is treated as a parameter, and where

Y('rir) = ) Y (r'rr) (6.2)
n=0
Afr) = 1+AY(r) = Z A (r) (6. 3)
n=0

[~ o]
Yn(r',r”;r)=fdp Yn_l(r‘,p; r)Fﬁ(p, r”)+Fﬂ(r',r“)An(r),

r ;
]
r>r, r'>r (6.4) - |
o0
1

A r) = - = -{dr' Y, (x'rhr) (6. 5)

Yo(r',r";r) =Fﬂ(r',r”), r'>r, r">r (6.6)
Ayr) =1 (6.7)

The index £ has been suppressed on all Y:s and A;s. For the calculation of the
half-off-shell factor according to equation (2.12), it is suitable to rewrite ‘>

equation (6.1) as

By (r',r) = Y(r',x;r) - B, (r',r) A'(r) (6.8)

-13 -



and introduce a notation for the transform of BZ_(r', r) that appears in (2, 12)

P * i6_ (k)
Bﬂ(k,p) =pk frdr ,,[ r'de' Im [hlz(ﬂ(kr')e . ]BZ(r',r)jﬂ(pr)
0 T (6.9)

In terms of Bﬂ(k, p), the relation (6.8) is an integral equation
=] 0
i6 (k)
R(+ [ .
Bﬂ(k,p) =pkf rdr f r'dr' Im[hﬁ( )(kr')e ]Y(r‘,r; r)]ﬂ(pr) (6.9)
- O r .

- [ aaB &9 a@p) (6.10)

with the kernel

a@p=a = f e )i er)a) (6.11)
T 0 j} £

If in equation (6. 10) the r-integrations in the inhomogeneous term and in the
kernel are carried out before the k-integrations in the Fﬂ(r', r)-factors, in
the same manner as in the expression (3. 7) for the iterative method, all
transforms back and forth between momentum and configuration space are
eliminated. The final step of solving equation (6. 10) once the inhomogeneous
term and the kernel have been calculated should be straightforward.

The £ =0 case is again particularly simple, and the calculations can be
carried through in almost the same way as in section 4. Here, however, the

procedure is expected to work also if bound states are present.

7. The Schmidt Process

As an introduction to the use of the Schmidt process10 when solving the
Marchenko equation, the model problem of finding the half-off-shell factor
corresponding to a Bargmann type s-wave S-matrix will be studied. In this case

not only can the half-off-shell factor be written down in closed form but all the
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integrations in the expansion (3. 7) can also be carried out. It is then possible to
estimate the rate of convergence in the expansion.

Let So(k) be a Bargmann type S--matrix,11

S}03(k) =R(-k)/R(k), R(k) = (k-i«)/(k + ib) (7.1)

If x >0, this S-matrix corresponds to a bound state pole at k =ix, an additional
pole atk =ib, b > « > 0 (to represent the dynamical cut), and no other singularities
for Im k >0. K g <0, there is no bound state, énd only the ""dynamical cut'' pole
remains in Im k > 0.

If there is a bound state, it is further assumed that the normalization constant

i 1
Cin Fo(r , ),

o0
3 i _ '
F (r',r) = == f dk " TN Bly gy - S omHET ) g gy
0 2m 0 K 2
—-00
is just 2:{3 T, T =(+«)/(b - «), so that the contribution from the bound state
pole in a contour integration evaluation of F O(r', r) exactly cancles the explicit
bound state term. This choice of C corresponds to a Bargmann potential with a
range ~ b_l, while any other choice would correspond to a potential with a longer
-1 11

range, ~« In this way the kernel Fo(r',r) of the Marchenko equation has a

form that is independent of the sign of «,

Fo(r',r) =-2bT e PT o7br (7.3)

Moreover, Fo(r',r) is separable in r' and r, so that the Marchenko equation has

a closed form solution

e-br' e—br
——— r'sr (7.4
2br )

B; (r',r) =-2bI =
1+Te
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The half-off-ghell factor can also be written in closed form:

k +ib

i6 (k) . p: -2br .
fo(p,k) =1 -(p2 —k2 L1 m[e 0 21b f dr *—1:9;—-—27)—- elkrsinpr.

) - I —
p 51n60(k) 0 L+Te

(7.5)

On the other hand, the iterative expansion for £ O(p,k) is obtained from (2.12) and

(3.7)
6 (k) .
_ 2 2.1 1 o®) i
folp.k) =1+ (" - k) 5 simo (&) ™| © K+1b

. (7.6)

o /
n 1 1
X nz=:1 O erre T k+21nb-p>

It is easy to verify that (7.6) is the result that is obtained if the integral in (7. 5)

is evaluated with the help of the expansion
o0
(1+T e-—Zbr)—l _ Z (_Un I1n e—2nbr (7.7)
n=0

The expansion (7. 6) for the half-off-shell factor evidently converges when
| T1 <1. In other words, when there is no bound state. This result suggests that
the absence of bound states is the criteria for convergence of the iterative expan~
sion also in the general case.

Observe that any Bargmann type S-matrix corresponds to a sum of separable
terms for F!Z (r',r), so that the correspdnding Marchenko equation has a closed
form solution. This suggests that the Schmidt process can be used in a natural
way to rearrange the original Marchenko equation into a form for which the iterative
and Fredholm solutions are more rapidly convergent, and for which the iterative

solution converges when the iterative solution to the original Marchenko equation
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diverges. As an example, let

1 — B [ 1 1
Fo(r ,T) Fo(r , 1) +F0(r , 1) (7.8)
where
0 -
B, ., - 1 K('+r)[Boy 1. C" -k(r'+r)
Fo(r ,T) 5m f dk e So(k) 1 ) e
—o0
- t
= —2br P 1) (7.9)

1
! 1 = ol
FO(r ' T) 2m

AN

dk ¢lK(r" + 1) [so(k> - SOB(kgj‘ Lo e M r)
K
(7.10)

Here, C'' =2 3P, and C' =C - C'" (if there is no bound state, C =C' =C'* =0
and k <0 is a free parameter). In this way the kernel in the Marchenko equation
has been split into a separable term and a non-separable remainder, and through
a calculation similar to that familiar from the Schmidt process, the Marchenko

equation is transformed into

+ e—br’ e—br e, e—br'e—bp'"l
By (r',r) =-2bT ————p + f dp'dp |6(r' - p') ~2bT ———r Flp'sp)
1+Te r 1+re J
4
x [«5(p - ) + By(p, r)],, r'>r (7.11)

The iterative solution to this equation can now be used in equation (3.9) to generate
a new series expansion for the half-off-shell factor. As in section 4, the r- and
p-integrations can be carried out before the k-integrations in the Fb(r',r)-factors,
with the only complication that the final r-integration cannot be handled as neatly
as before. If the parameters of SOB(k) are suitably chosen, the resulting expansion
should converge faster than the expansion (4. 3), and it can also be expected to

converge in some cases when (4. 3) diverges.
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The Fredholm solution to equation (7.11) can be treated as was the Fredholm

solution to the Marchenko equation in section 6.

8. Summary

The problem of computing the off-shell continuation of a given on-shell,
partial wave scattering amplitude has been discussed when the underlying inter-
action is diagonal in configuration space. It has been shown that the methods of
the inverse problem of scattering theory can be recast in a form which allows the
(in this case essentially unique) half-off-shell continuation of the amplitude to be
calculated entirely in momentum space. This avoids the potentially troublesome
fourier transforms of the experimental and hence imperfectly known Sﬂ(k)—matrix.
The procedure proposed here has been shown to be satisfactory from a numerical
point of view in the simple but not entirely trivial case of an s-wave spherical well
interaction, with parameters chosen to simulate the singlet n-p interaction. In
more complicated cases, that is in the presence of bound states and/or for
higher partial waves, the numerical calculations are still expected to be managable

although less straightforward.
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Figure Captions

The s-wave phase-shift § 0(k) for a spherical well with range 2 fermi and
depth 20 MeV. h =c =2u =1,

The s-wave half-off-shell factor fo(p,k) for a spherical well with range 2
fermi and depth 20 MeV, fork =1 Fermi—l. The solid line is the exact

value, and the dashed line is obtained from formula (4.5) with n < 5.
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