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Chapter 1

Introduction

The start of the Large Hadron Collider (LHC) in 2009 located at CERN, Geneva, has
opened a new window for the search of elementary particles and will provide stringent
tests for proposed theoretical frameworks of these particles and their forces. Our current
understanding is described by the Standard Model (SM). This theory describes the in-
teraction of six quarks and six leptons by the strong, weak and electromagnetical force,
mediated by bosons. The model is completed with the Higgs mechanism that provides
mass to the particles, and is largely confirmed by the recent discovery of the what seems
to be SM Higgs boson. The model has been tested to impressive accuracy. Successful
though it is, it fails to provide an explanation for astronomical observations as dark mat-
ter and energy. Moreover, the model only takes three fundamental forces into account,
neglecting the force of gravity. One therefore often views the SM as an effective theory
of a larger model.

Usage of the SM as an effective theory is sufficient to describe previous experiments.
These unanswered questions however, have motivated proposals of more encompassing
theories such as supersymmetry, strong dynamics models, etc.. While we expect the va-
lidity of the SM to be limited, it is a central question of modern particle physics where and
how such new physics will show itself. The collision energy of the LHC is up to seven
times larger than its predecessor the Tevatron at Fermi National Accelerator Laboratory,
USA, and will allow for the testing of such new physics. The question posed translates to
where and how to look for the deviations of the SM as predicted by these new theories,
and this demands an increasingly higher accuracy of SM predictions. Standard Model
predictions for collider observables are made using perturbative expansions in the cou-
pling of the theory. The calculations can be depicted by Feynman diagrams, named after
their inventor, representing a graphical interface for complicated mathematical expres-
sions. The most interesting part of the collision takes place in the heart of the beam pipe
at the primary interaction point, creating both stable and short-lived particles detected
through their decay products. The prediction of a scattering process therefore takes all
possible particles into account that may have propagated the intermediate state, given a
certain initial and final state. The leading order (LO) contribution is defined by the sim-
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plest diagrams, corresponding to those with the fewest vertices, possible in accordance
with the required external particles. The next-to-leading-order (NLO) correction is given
by diagrams that are two orders higher in the coupling. In most cases only the Quantum
Chromodynamics (QCD) corrections, that dominate quark and gluon interactions, need
to be taken into account. An example is given in fig. 1.1. The figure on the left depicts the
leading order contribution to the scattering of a quark-antiquark pair, and the two right-
most figures examples of next-to-leading-order corrections. Being a quantum theory the
predictions require the absolute value squared of the sum of diagrams, which explains that
two orders higher in the coupling yields a diagram with a loop which gets contracted with
a LO diagram, or diagrams with an additional final state particle contracted with itself.

Figure 1.1: Examples of Feynman diagrams for the scattering of a quark and antiquark pair pro-
ducing an intermediate gluon. The figure on the left denotes a LO diagram, and the two rightmost
figures NLO diagrams.

For a proton-proton collider as the LHC the description is complicated by the initial
state. Perturbative QCD cannot describe the strong binding effects that cause bound states
as in the case of a proton. This makes it impossible to describe proton-proton collisions
exactly. The factorization theorem allows one to separate the calculation in two parts,
a hard interaction accounting for the small distance scattering of two partons (quarks or
gluons), and the prediction of finding a certain parton in the proton [1, 2]. The parton
model presents a basic picture of why we are allowed to view partons as individual non-
interacting proton constituents. The relativistic proton is Lorentz contracted, while the
interaction time between partons within the proton is time dilated, and therefore the pro-
ton can essentially be regarded as individual partons with a momentum fraction x while
crossing the colliding proton. It is possible to prove [3] that such a picture holds under the
influence of QCD corrections, with the derivation leading to the factorization theorem.
Parton Distribution Functions (PDF) are fitted to sets of well calibrated data such as from
Deep Inelastic Scattering (DIS). The cross-section σ for a scattering pp→ jl can now be
written as

σpp→jl =
∑
ik

∫
dx1dx2fi/p(x1, µ

2
F )fk/p(x2, µ

2
F )σik→jl(Q2, µ2

F ), (1.1)

with x1 and x2 the energy fractions of the partons i and k, the PDFs are indicated with the
function f , Q2 indicates the scale of the hard interaction and µ2 the factorization scale at
which the hard scattering is separated from long distance interactions.
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Chapter 1. Introduction

The hard scattering process, the perturbatively calculated piece, will yield an expres-
sion dependent on the momenta of the external particles, and needs to be integrated over
unobserved phase space in order to obtain the total cross-section. Generally these ex-
pressions get increasingly more complicated as more massive particles and/or more than
two final state particles are involved. This drives one to the use of numerical methods in
order to solve the integrations. A naive approach uses an estimate of the average value
to calculate the integrand I over its whole domain. For a one-dimensional function g(x),
with x ∈ [a, b] this corresponds to

I =
∫ b

a

g(x)dx ' (b− a)
N

N∑
i=1

g(xi) +O
(

1√
N

)
, (1.2)

with i denoting random points chosen from a uniform distribution between a and b. The
central limit theorem states that the error to this estimate of the integrand may be ap-
proximated by 1/

√
N for large values of N . An obvious improvement of the approach

is to focus on regions that yield the largest contribution to the integral. An interesting
by-product of the calculation is the generation of an ‘event’, associating Feynman di-
agrams with explicit values for the momentum vectors of the particles. The complete
cross-section is approximated by

σ =
∫

dσ(x1, . . . , xn)
dx1 . . . dxn

dx1 . . . dxn. (1.3)

The phase space of a cross-section containing N outgoing particles requires integration
over 3N−4 variables, accounted for by the variables xi. We may naively interpret eq.(1.3)
as the generation of an event with a weight dσ/dx1 . . . dxn. The weight indicates the
importance of that phase-space point to the integrand. Therefore these distributions need
to be unweighted in order for event generators to create events with the same weight.
Such a procedure can be implemented with a ‘hit-and-miss’ approach. The algorithm
requires the sacrifice of some events, to allow for the remainder to share equal weights.
This approach consists of the following steps

• Select an event

• Generate a random number between zero and the maximum weight present.

• If the random number is smaller or equal to the weight accept the event, and reject
otherwise.

We have assumed all weights to be positive definite. An intuitive way of understanding
this, is by comparing the weights of two events, w1 and w2. Assuming w2 > w1, the
probability for accepting w2 is w2/w1 times larger than the probability of accepting w1.
As the random numbers are generated uniformly, we expect that when considering enough
events, there will eventually be w2/w1 times more events accepted that started with a
weight w2 than events that started with a weight w1. Because it can be time consuming
to sacrifice events, the choice is often made to use all events with the allocated weights.
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The previous procedure automatically generates distributions in xi. The accuracy can, in
principle, be made as high as desired given sufficiently large N .

With this description of events it is possible to simulate signals and background, and
thereby explore the influence of new physics in collider events. One approach that is
gaining much interest is to focus on the spin of the particle. The spin of a particle in-
fluences the angular orientation of its decay products. While, for instance, a top quark
always carries spin- 1

2 , the preference for spin up or spin down (polarization) can be dif-
ferent depending on the model. Event simulation is used to investigate if spin information
present in the hard scattering can be measured at the detector level. The top quark decays
before the strong force causes it to hadronize, and thereby retains possibly interesting
spin information in the top decay products. We start with exploring the spin dynamics in
top production in chapter 2 together with the definition of various laboratory frame ob-
servables allowing for a connection between a theory’s parameters and its decay products
through the use of polarization. In chapter 3 the effect of NLO corrections to the observ-
ables is examined for the SM in comparison to Two Higgs Doublet Models. The focus
on top polarization is completed with a survey of its sensitivity to the supersymmetric
parameter space in the context of the MSSM.

For now, we have been generating events based on the Feynman diagrammatic ap-
proach. This treated the hard-scattering as a whole, creating intertwined products of mo-
menta. An alternative way of building up a scattering event is by treating the particle
radiations and interactions iteratively. Instead of requiring a certain initial and final state,
the approach is to start with a specific LO process and radiate particles iteratively off the
remainders of the LO process, a procedure commonly referred to as a parton shower. One
can employ monopole radiation (radiation off one parent particle) or dipole radiation (ra-
diation of a third particle between two parent particles). This transforms the LO process
to a final state with additional partons. An interesting question that has to be addressed
is how to incorporate the knowledge of NLO precision in such an approach. In chapter 5
a review of the VINCIA antenna shower is discussed for a Z boson decaying to two
partons, together with a demonstration of the trivial matching to NLO while chapter 6
focusses on the generalization of consecutive NLO matching for an additional final state
particle. The final chapter contains our conclusions.
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Chapter 2

The Polarized Top Quark

Although the top quark had to settle for second place in particle popularity in the year
2012, its existence is closely related to the #1 particle: the discovered boson, be it the
SM Higgs or an alternative. This relation is manifested by its heavy mass and associated
large Yukawa coupling. It is also the top quark that poses an aesthetic threat to the SM.
The top causes the largest, quadratically divergent, contribution to the SM Higgs one-loop
mass correction thereby creating space for possible new physics to compensate this and
have a natural Higgs mass value. Another important characteristic of the top quark is
its large width, causing the top to decay before hadronizing, thereby retaining possibly
interesting spin information. In this section we concentrate on the latter property and
construct observables that reveal spin information in the top quark decay products. As
we will see in chapter 3 and 4, this spin information is sensitive to new physics, which
motivates the construction of observables that take advantage of this sensitivity.

2.1 The Polarized Top Cross-Section
Processes that produce a top quark, possibly in association with other particles, allow
for the use of top polarization as an indicator for new physics. Polarization is a term
quantifying the extent to which a particle with spin favors one spin direction over the
other. Ideally the new physics will only affect the top production process, leaving the
decay of the top, in essence, insensitive to it. To see that this can indeed be the case [4],
we will start with investigating top production and decay, employing the Narrow Width
Approximation (NWA) for the top quark. This allows us to split the spin-averaged matrix
element squared |M|2 into a part ρ(λ, λ′) that corresponds to the production of an on-
shell top quark, and a part Γ(λ, λ′) that corresponds to on-shell decay of this quark

|M|2 =
4πδ(p2

t −m2
t )

Γtmt

∑
λ,λ′

ρ(λ, λ′)Γ(λ, λ′) . (2.1)
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2.2. Angular Distribution of Top Decay Products

To obtain the averaged matrix element squared |M|2, we have to sum over the top quark
helicities λ and λ′. Here pµt , mt and Γt are the top quark momentum, mass and total
decay width respectively, while ρ(λ, λ′) and Γ(λ, λ′) are matrices given by

ρ(λ, λ′) =Mρ(λ)M∗ρ(λ′) and Γ(λ, λ′) =MΓ(λ)M∗Γ(λ′) ,

with Mρ(λ) the matrix element of the production of a top quark with helicity λ and
MΓ(λ) the corresponding decay amplitude. Instead of summing, we can also project on
these helicities to obtain the polarized cross section. To this end, we define top polariza-
tion vectors Sa,µ that form, together with the top momentum, an orthogonal set and are
normalized to Sa · Sb = −δab. We can then perform the helicity projection using the
identities [5, 6]:

u(pt, λ′)ū(pt, λ) =
1
2
(
δλλ′ + γ5/S

a
τaλλ′

)
(/pt +mt) , (2.2)

v(pt, λ′)v̄(pt, λ) =
1
2
(
δλλ′ + γ5/S

a
τaλλ′

)
(/pt −mt) , (2.3)

with τa the Pauli matrices. Since the transverse polarization is generally small, we will
only consider the longitudinal polarization vector S3 and set S1 and S2 to zero. The
spatial part of S3 is parallel to the top three-momentum, leading to

S3 =
1
mt

(
|~pt|, Et~̂pt

)
. (2.4)

Note that S3 is not a Lorentz vector, reflecting the fact that the top quark helicity is
not a Lorentz-invariant quantity. After phase space integration of ρ(λ, λ′) we obtain the
polarization density matrix σ(λ, λ′). The top longitudinal polarization, defined along the
axis S3, is then equal to

Pt =
σ(+,+)− σ(−,−)
σ(+,+) + σ(−,−)

, (2.5)

where σ(+,+) (σ(−,−)) is the cross section for a positive (negative) helicity top quark.
A negative (positive) polarization therefore corresponds to a left-handed (right-handed)
top quark. Since the transverse polarization vectors are set to zero, the off diagonal ele-
ments σ(±,∓) yield no contribution.

2.2 Angular Distribution of Top Decay Products
The top quark decay always produces a b jet and a short-lived W boson which decays to
leptons or quarks.

t→W+b→ l+νl b (2.6)
→ d̄ub . (2.7)

6



Chapter 2. The Polarized Top Quark

The effect that the polarization of the top quark ensemble has on its decay products is
most easily studied in the top quark rest frame, where the angular distribution of the
decay product f is given by:

1
Γf

dΓf
d cos θf,rest

=
1
2

(1 + κfPt cos θf,rest) . (2.8)

Here Γ is the partial decay width of the top quark, Pt is the degree of polarization in the
top quark ensemble eq. 2.5 and the polar angle θf,rest is the angle between the momentum
of the decay product f and the top spin vector. κf is the analysing power of the decay
product f , it is 100% for a positive lepton, and a d̄ quark. For the u quark and νl its
value is −31% and for the b and W the values are −39% and 39% respectively [7]. Thus
we see that a positively charged lepton is the most efficient polarization analyser since
one cannot easily distinguish the u and d̄ jet in the hadronic decay. Corrections to these
values of κ can originate from any nonstandard tbW couplings and/or from higher order
QCD and QED corrections. The next-to-leading order QCD corrections to κb, κd, κu
and κl are a few percent, decreasing its magnitude very slightly [8]. As shown explicitly
in [9] the value of κf does not receive any corrections from an anomalous tbW coupling
at leading order for l+ and d̄. Thus the angular distribution of the decay charged lepton
in the rest frame reflects the polarization of the decaying quark faithfully even in the
presence of such corrections, and hence is a good measure of polarization effects in the
top production process.

We will focus on the semileptonic decay of the top quark where the top produces
a charged lepton l+, which we take to be an electron or a muon. Here and in what
follows we ignore, for simplicity, off-diagonal elements in the CKM matrix. Also we
only consider top quarks, since anti-tops can be distinguished using the charge of the
lepton.

2.3 Polarization-Dependent Observables
Instead of using the rest frame, we wish to use polarization-dependent observables in the
laboratory frame. Reconstructing the rest frame of the top at LHC is not always easy,
and introduces additional uncertainties as the neutrino is only traced through missing
energy and missing transverse momentum. The correlations between the polarization of
the decaying top and the kinematic variables of the decay product in the lab frame are then
obtained by using eq. (2.8) and appropriate Lorentz transformations. A series of earlier
investigations [4,9,10] indicate that analogously to the situation in the top rest frame, the
energy-integrated decay-lepton angular distributions in the lab frame are unaltered by any
anomalous tbW coupling, to linear order in the deviation. Thus the correlation between
the top polarization and angular (polar and azimuthal) distributions of the decay lepton
is unchanged to the same order and not distorted by new physics influencing the decay
process. It is important to note that the decay-lepton distributions in the lab frame are
influenced by, besides the top quark polarization, the boost from the top quark rest frame
to the laboratory frame.

7



2.3. Polarization-Dependent Observables

x

y

z

φl

~pt

~pl

Figure 2.1: An illustration of the definition of the azimuthal angle of the lepton. The beam axis is
taken in the z-direction and together with the top momentum defines the x − z plane, where we
take the top to be moving in the positive x-direction. The y-axis is constructed corresponding to a
right-handed frame.

In order to discuss the azimuthal distribution of the decay lepton we must define a
reference frame. We chose the z axis as the beam axis. Together with the top quark
direction this defines the top quark production plane, containing the z and x axes, the
x-axis chosen such that the top quark momentum has a positive x component. We then
construct a right-handed coordinate system and define the azimuthal angle φl as the angle
of the decay lepton in the (x,y) plane depicted in fig. 2.1. In the rest frame the azimuthal
distribution does not depend on the longitudinal polarization, but in the lab frame it picks
up a dependence on θl,rest through the top boost. Consequently it can be used as a probe
for the top quark polarization.

An example shape of the φl distribution for pp→ Z ′ → tb̄may be seen in fig. 2.2. For
positively polarized tops it is peaked at φl = 0 and φl = 2π, with a minimum at φl = π.
It should be noted that nonzero transverse momentum pTt also causes the φl distributions
to peak near φl = 0 and φl = 2π, independent of the polarization state of the t quark.
In other words, the peaking at φl = 0 and 2π is caused by kinematic effects, which is
expressed most clearly for an unpolarized top. It is enhanced even further for a positively
polarized top. For a completely negatively polarized top, the pure polarization dependent
effects can sometimes even overcome the peaking caused by kinematical effects. As can
be seen in the figure, the peaks of the distribution then shift a little away from φ = 0
and 2π. More importantly, they lie below those expected for the positively polarized
and unpolarized top. The relative number of leptons near φ = 0 and 2π is thus reduced
progressively as we go from a positively polarized to unpolarized to a negatively polarized
top. For normalised distributions the ordering is exactly the opposite at φ = π where
the relative number of leptons increases as we go from a positively polarized top to a
negatively polarized top. This shape motivates the following definition of the asymmetry
parameter [9] which takes maximal advantage of these shape differences:

Aφ =
σ(cosφl > 0)− σ(cosφl < 0)
σ(cosφl > 0) + σ(cosφl < 0)

, (2.9)
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Chapter 2. The Polarized Top Quark

Figure 2.2: The normalized φl distribution of the positively charged decay lepton of a top quark
produced via pp→ Z′ → tt̄: the SM contribution is shown in black/solid line, the positive helicity
contribution from σ(+,+) is shown in green/big-dashed line and the negative helicity contribution
from σ(−,−) is shown in blue/small-dashed line. The figure corresponds to fig. (4) of [9].

where σ is the fully integrated cross-section. A higher top quark polarization or a stronger
top boost will result in a more sharply peaked φl distribution and thus yield a higher value
of Aφ.

Besides the azimuthal angle, we can also study the distribution of the lab frame polar
angle θl of the lepton with respect to the top quark direction. The linear distribution in
cos θl,rest in the rest frame, eq. (2.8), will be distorted by the boost. The latter will make
the polar angle in the lab frame, θl smaller than its counterpart in the rest frame θl,rest.
Thus, the distribution of θl in the lab frame is more strongly peaked towards θl = 0 for a
stronger top boost as well as for a more positively polarized top quark.

And lastly we can also use energy information of the top decay products. Although
energy observables are not independent of the top quark decay [4, 11], they can provide
additional information about the production process. This is especially the case when the
top quarks are highly boosted, since the resulting collinearity of its decay products ruins
the angular sensitivity. To select highly boosted tops we introduce the boost parameter B
based on the total momentum of the top |~ptop| and the top energy Et

B =
|~ptop|
Et

. (2.10)

It was shown in [12] that distributions in the following ratios are sensitive to the polariza-

9



2.4. Wt Production

tion state of the top quark in a heavily boosted region:

z =
Eb
Et
, u =

El
El + Eb

, (2.11)

where Et, Eb and El are respectively the (lab frame) energies of the top quark, and the b
quark and lepton produced by its decay. The analysis in [12] was at the LO parton level,
but in practical applications one may also consider Eb to be the energy of e.g. a b jet.
Note that the ranges of z and u are given by

0 ≤ z, u ≤ 1, (2.12)

although the extremes are kinematically unavailable at high and low values due to the
finite b quark and W boson masses. One may define these observables for any value of a
cut on the top quark boost parameter B, but at low values of B, both z and u distributions
are increasingly contaminated by contributions that are insensitive to the top quark polar-
ization, thus reducing their effectiveness as discriminators of new physics parameters.

2.4 Wt Production
Polarization of a top quark is most easily studied for the case of Wt production in the
SM. The interaction between the two particles is chiral and influences the spin behavior
of the produced top quark. The coupling of the top quark to theW -field with all momenta
defined incoming is of the form

GW+ t̄q =
ig2

2
√

2
V ∗tqγµ (1− γ5) (2.13)

where Vtq is the element of the CKM matrix describing the mixing between the top quark
and a down-type quark, and g2 the SU(2) gauge coupling. The Vector-Axial coupling
ensures that the top quark is always completely polarized at the moment of production.
The leading order contributions for producing a single top quark with an associated W -

Figure 2.3: Leading order diagrams for single top production with associated W boson in the SM.
The contributing processes are a t-channel (left figure) and a s-channel (right figure) diagram. The
top quark is denoted by the double line.

boson are shown in fig. 2.3. Even though the top quark is completely polarized at the
moment of production the mixing of left- and righthanded modes still occurs through

10



Chapter 2. The Polarized Top Quark

the presence of a massive top quark propagator in the t-channel diagram. Especially at
LHC energies, the mass contribution is notable. Distributions of Wt provide the basis
of comparison against which polarization effects induced by Beyond the Standard Model
(BSM) physics must be measured. Let us briefly review the SM prediction, for which we
employ MadGraph 5 [13, 14] to generate the LO process

pp→ gb→ tW− (2.14)

using LHAPDF [15], setting µR = mt and decaying the top quark as described by
eq. (2.6) for an LHC centre of mass energy of 14 TeV. Fig. 2.4a shows the azimuthal
distribution of the decay lepton of the top quark. We notice that the distribution is similar
to fig. 2.2, symmetric around φl = π and peaking at φl = 0 and 2π. Complementary spin
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Figure 2.4: Angular and energy distributions for the decay charged lepton of the top quark produced
via Wt for LHC14. A boost cut of B > 0.99 has been applied to the u and z distribution to allow
for a comparison with literature.

information can be found in the polar distribution fig. 2.4b. The polarization of this pro-
cess was extracted from the same simulation by limiting the sum over helicity amplitudes
and calculating the polarization manually. We found Pt = −0.26 for the production of
Wt without decay. Therefore, in the rest frame, leptons are mostly emitted in the back-
wards region with respect to the top quark boost direction (as the spin axes are chosen
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2.4. Wt Production

parallel to the top momentum). Fig. 2.4b shows the distribution in the lab frame where
most leptons are found at θl = 0. The shift of the peak position from θ = π to θ = 0
is caused by the boost, and exposes the influence of the kinematics of the production
process. Fig. 2.4d demonstrates the ratio of b-quark energy to top quark energy. The
distribution is in accordance with a rough estimate of what one would expect for a mildly
negative polarization in [12]. In [12] the (unknown) boost from the top rest frame to the
lab frame is parameterized by β which is taken to unity, while we have taken B > 0.99.
The ratio of lepton energy to lepton plus b-quark energy is largely linear fig. 2.4c, with
a small positive inclination (opposite to the polarization). This result is also in accor-
dance with the results of [12]. The plots in fig. 2.4 set the LO benchmark for a single top
quark produced in the SM. The following two chapters will examine if these observables
are a useful probe for BSM physics. We shall especially focus on their robustness when
including higher order QCD corrections and a parton shower.
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Chapter 3

Top Polarization in Ht and Wt
Production

The polarization-dependent observables discussed in section 2.3 were so far studied at
leading order (LO) accuracy. For a given polarization-dependent observable, such a cal-
culation represents a best case scenario in which polarization effects in the production of
the top quark are least diluted by kinematic effects. Beyond this order in QCD perturba-
tion theory, additional radiation may carry away energy and/or angular momentum. In this
section we extend the study to next-to-leading order (NLO) accuracy, including also the
effects of a parton shower. Studying the observables at NLO + shower level and compar-
ing them to the LO result provides a handle on their robustness. We start by introducing
a rather generic physics scenario.

3.1 Two Higgs Doublet Model
When a top quark is produced together with aW boson in the Standard Model, the V −A
nature of the weak interaction eq. (2.13) implies that the top quark is always left-handed
at the moment of production. If the production however is followed by a massive top
propagator mixing terms arise. However, top quarks produced by BSM processes can
have a different polarization than is predicted in the SM. Hence, the polarization of the
produced top can help distinguish between BSM and the SM.

An example is charged Higgs plus top production, a process analogous to Wt pro-
duction in the SM. The leading order contributions to this process are similar to fig. 2.3
with the W replaced by a charged Higgs boson. In contrast to the SM, this theory con-
sists of two Higgs doublets φ1, φ2, predicting therefore not one, but five Higgs bosons.
Motivations for introducing another doublet can for instance be found in the extension of
the SM with supersymmetry. We will elaborate further on the impact of supersymmetry
in the next chapter, but for now it is sufficient to know that supersymmetry postulates a
symmetry between all known SM particles and their supersymmetric partners that differ
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3.1. Two Higgs Doublet Model

by spin- 1
2 . A second Higgs doublet is required in this model to preserve the cancellation

of gauge anomalies, see for instance [16]. The Higgs potential is constructed from her-
mitian combinations of these two doublets subject to the conditions of renormalizability
and gauge invariance. Focussing on the terms quadratic in the doublet fields we find

V (φ1, φ2) =λ1

(
φ†1φ1 − v2

1

)2

+ λ2

(
φ†2φ2 − v2

2

)2

+ λ3

[(
φ†1φ1 − v2

1

)
+
(
φ†2φ2 − v2

2

)]2
+ . . . (3.1)

The occurrence of vi = 〈φi〉 with i = 1, 2 denotes that we are now dealing with two
vacuum expectation values. These parameters are commonly varied together according
to their ratio tan(β) = v2/v1. Observing the production of a charged Higgs particle
would provide very valuable information on the structure of the Higgs sector. Studies
have shown [17,18] that top polarization can be used to extract information on the model
parameters of a Two Higgs Doublet Model (2HDM). However, these analyses were car-
ried out only at LO in perturbation theory. While the higher order corrections coming
from the chirality and parity conserving QCD interactions will not affect the top polarisa-
tion, they can change the kinematics of the produced top quark and hence it is important
to verify that the conclusions of the LO analysis are robust against NLO corrections.

In our investigation of the effects of NLO corrections we will assume that the charged
Higgs boson has a larger mass than the top quark, so that the top quark cannot decay to it.
A general form for a charged Higgs-top quark interaction is

GH−tb = iVtb(a− bγ5).

This reduces to its SM equivalent of Wt production by setting a = b = 1
2
√

2
g, with g

the SU(2) gauge coupling. For later event simulation we must make explicit choices for
these parameters. We have followed the approach of [19], that derives a specific form of
a and b based on the counterterms resulting from the charged Higgs Yukawa couplings.
We will consider a type II two Higgs doublet model, where the up type quarks couple to
one of the Higgs doublets and down type quarks couple to the other Higgs doublet. The
coupling of the charged Higgs to the top and bottom quarks is given by

GH−tb̄ = − i

v
√

2
Vtb

[
mb tanβ(1− γ5) +mt cotβ(1 + γ5)

]
. (3.2)

Here the vacuum expectation values of the two Higgs doublets are v cosβ = v1 and
v sinβ = v2, with v2 = v2

1 + v2
2 . Now that we have established the fundamental interac-

tions for a BSM single top production mode let us discuss the effects of NLO corrections
to the polarization.
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Chapter 3. Top Polarization in Ht and Wt Production

3.2 Effects of NLO Corrections to Polarization Depen-
dent Observables

The NLO correction to the Ht production includes QCD interactions, which conserve
parity and chirality. Kinematic effects on the other hand do change when going to NLO
+ shower accuracy. In particular, as will be shown explicitly in fig. 3.1, the boost of the
top quark, as measured by the B parameter of eq. (2.10), increases a few percent in the
highest bin with respect to the LO boost due to the higher order corrections.

For the LO computation of the H−t production process, we use MadGraph 5 [13,14],
where we extended the Standard Model to include the charged Higgs coupling. Con-
tributing diagrams at LO are comparable to those in fig. 2.3 where the W -boson must
be exchanged with a charged Higgs boson. The NLO calculation matched to a parton
shower was performed using the MC@NLO software package described in [19–24], with
spin correlations between the partons in the hard scattering and the Higgs and/or top decay
products, implemented according to the algorithm of [25]1.

The Wt production process poses a conceptual problem at NLO, due to the fact that
some of the real emission diagrams beyond LO involve an intermediate top quark pair.
The contribution from such diagrams is large when the t̄ becomes resonant, reflecting an
interference between the Wt and top-pair production processes. How to most accurately
model the sum of Wt and top-pair production then becomes a topic of debate, and there
are two main points of view. The first is that all singly and doubly resonant diagrams must
be combined, thus including all interference (and off-shell) effects (see, for example, [31,
32]). A major deficiency of such calculations, however, is that they typically do not
include NLO corrections, which for top pair production are known to be large. NLO
corrections for the WWbb̄ final state have been presented [33], also including decay of
the W bosons [34], in the so-called four flavour scheme in which all initial state b quarks
are explicitly generated via gluon splitting, although these results have yet to be interfaced
with a parton shower.

The second point of view is that singly and doubly resonant contributions may be
safely regarded as separate production processes, which may be meaningfully combined
subject to suitable analysis cuts, an approach followed by e.g. [20, 29, 35, 36]. This
amounts to defining a subtraction term, which removes doubly resonant contributions
from the Wt cross-section. A potential deficiency of such an approach is that gauge in-
variance is violated by terms ∼ O(Γt/mt), where Γt is the top quark width, although
it is usually (convincingly) argued that this is more a problem of principle than one of
practice. Another way to think about this procedure is that the subtraction term avoids the
double counting that would result upon naı̈vely adding the Wt and top pair cross-sections
at NLO. Such on-shell subtraction schemes are in fact a common feature in many NLO
calculations involving extensions to the Standard Model, in which intermediate heavy
particles abound (see e.g. [37–40]). Indeed, in this context, the interference problem is
usually referred to in terms of being a double counting issue.

1Alternative methods for matching NLO computations with a parton shower have been presented in [26,27]
and chapter 5 and 6. See also [28–30] for implementations of the processes discussed in this chapter.
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3.3. Results for H−t Production

It is not our intention to revisit the issue on the validity of on-shell subtraction schemes.
But, in order to discuss Wt production at all, we must necessarily take the view that it
makes sense to separate singly and doubly resonant production modes. For a detailed
recent discussion of this viewpoint, see [41]. In that paper, it was argued that Wt is un-
ambiguous for suitable analysis cuts, and we will assume the validity of this approach in
what follows.

The MC@NLO code for Wt production includes two definitions of Wt production,
labelled Diagram Removal (DR) and Diagram Subtraction (DS), where the difference be-
tween these is intended to represent the systematic uncertainty due to interference with
top pair production. Roughly speaking, DS subtracts doubly resonant (i.e. top pair) con-
tributions at the cross-section level (thus is gauge invariant up to terms ∼ O(Γt/mt)),
and DR subtracts such contributions at the amplitude level. The difference between these
then mostly measures the interference between Wt and tt̄ production, up to ambiguities
in the subtraction term. However, one only trusts each calculation if the DR and DS re-
sults agree closely, which relies upon the imposition of suitable analysis cuts for reducing
the interference. We will not implement such cuts in the calculation of the observables for
H−t production as this study aims to present a first investigation of the effect of NLO cor-
rections + parton shower without the complication of a full experimental analysis. Despite
this, we will show the results obtained from both the DR and DS calculations.

3.3 Results for H−t Production
In the previous chapter, we reviewed the observables which are designed to be sensitive to
the polarization state of produced top quarks. In this section, we study these observables
for single top production in association with a charged Higgs boson. The latter does not
occur in the Standard Model of particle physics, but exhibits a somewhat generic presence
in possible extensions, including supersymmetry.

The top quark polarization in the H−t production process does not follow directly
from eq. (3.2). As explained in detail in Ref. [17], the polarization vanishes if mH =
6mt and if tanβ =

√
mt/mb. The latter point in parameter space cancels the axial

contribution in eq. (3.2). In addition, it was shown in figure 4 of that paper that the tanβ
dependence of the polarization is different for different Higgs masses. For Higgs masses
below 6mt it is negative if tanβ <

√
mt/mb and positive for higher values of tanβ.

The polarization for higher Higgs masses has the opposite behaviour. In the rest of this
section, we will often show distributions for mH = 200 GeV and mH = 1500 GeV as
representative examples. For a given value of tanβ, the former is more strongly polarized
than the latter.

One may study how the observables of section 2.3 vary throughout the two dimen-
sional parameter space (mH , tanβ). In what follows, we will do this at LO and NLO,
as specified in section 3.2. Note that the aim of this section is not to undertake a fully
comprehensive phenomenological analysis, including all relevant backgrounds together
with realistic experimental cuts. Rather, we wish to study the efficiency of the different
observables that reflect the polarization of the parent top, and in particular their robustness
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Chapter 3. Top Polarization in Ht and Wt Production

when one includes higher order effects.
In order to present results, we consider the LHC with a centre of mass energy of 14

TeV, and define parameters as follows: the top mass and width are mt = 172.5 GeV and
Γt = 1.4 GeV respectively. The W mass and width are respectively mW = 80.42 GeV
and ΓW = 2.124 GeV. Factorization and renormalization scales are set to µr = µf =
mt. We calculate LO and MC@NLO results using MSTW 2008 LO and NLO parton
sets [42–44]. Note that the b mass entering the Yukawa coupling is run as in [45], from a
pole mass of mb = 4.95 GeV 2.

As explained in section 2.3, the polarization-dependent observables are affected con-
siderably by the kinematics of the top. Therefore we first briefly discuss the boost param-
eterB and the top transverse momentum pTt . On the left-hand side of fig. 3.1, the distribu-
tion of the boost parameter is shown for two different values of the charged Higgs mass.
On the right-hand side, the LO and NLO + parton shower distributions are compared.
The distribution is much more strongly peaked for the high Higgs mass, as expected from
the fact that the top quark must recoil against the heavy particle. In addition we see that
the NLO+parton shower effects increase the boost parameter slightly. This can be traced
back to the definition of eq. (2.10), coupled with the fact that the energy of the top quark
softens more on average than its momentum when higher order effects are included.

3.3.1 Azimuthal Angle φl
Fig. 3.2 shows the φl distribution defined in section (2.9) for two different values of tanβ,
and two different charged Higgs masses at NLO + parton shower. For tanβ = 5, there is a
pronounced difference between the two φl distributions at different mass values, with the
higher mass value showing more asymmetry. At high tanβ, there is very little difference
between the two Higgs mass values. The reason for this behaviour can be traced back to
the polarization of the top. At low tanβ a light Higgs yields a negatively polarized top,
so in the rest frame the lepton tends to be emitted in the backward direction (cf. eq. (2.8)).
For a heavy Higgs the top is positively polarized for low values of tanβ, so the lepton is
emitted in the forward direction. Since the top is boosted more for higher Higgs masses,
the kinematics enhance this polarization effect. For large tanβ, the top polarization has
the opposite sign, so in that case the kinematics cancel the effect of the polarization.
In fig. 3.3 the φl distribution is shown at LO and MC@NLO level for tan(β) = 5 and
two different charged Higgs masses. The results can be compared to figure 6 of [17],
and indeed the qualititative trend of the curves is the same as in [17]. In the case of a
high Higgs mass the distribution becomes slightly flatter due to the NLO corrections and
parton shower. This is caused by competing kinematic effects. As shown in fig. 3.1, the
top boost increases slightly due to the higher order corrections, but the pTt distribution
is typically softer compared to LO, and progressively more so for higher Higgs masses
as the top then showers more on average. The higher top boost leads to a sharper φl

2Strictly speaking, one should run the bmass at one-loop order for the LO results, and two-loop order for the
NLO results. To facilitate a more direct comparison between the LO and MC@NLO results we adopt the LO
prediction, given that the relative proportion of right- and left-handed H−t couplings is governed by the value
of mb(µr)/mt(µr). We have checked that the difference in running is a small effect.
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Figure 3.1: The distribution of the boost parameter of in H−t production for tanβ = 5 and two
different Higgs masses is shown on the left-hand side. On the right-hand side the boost parameter
is shown at LO and NLO plus parton shower level.
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Figure 3.2: Azimuthal angle (φl) of the decay lepton from the top quark, as defined in the text, at
NLO plus parton shower level.

distribution, but for high Higgs masses the effect of the softer pTt distribution is stronger,
resulting in a flatter distribution in the end. We can quantify this further by calculating the
asymmetry parameter of eq. (2.9). We show this in fig. 3.4, for the two Higgs mass values
used above and a range of tanβ values. Both LO and MC@NLO results are shown for
comparison, where for the MC@NLO results we include an error band stemming from
statistical uncertainty. The shape of fig. 3.4 is very similar to the results of [17]: for
the large charged Higgs mass value, a high asymmetry is observed for low tanβ, which
decreases at large tanβ. For the low charged Higgs mass value, the opposite trend is
seen.

The MC@NLO results show less of a difference between the two Higgs mass values
than the LO results. This is caused by the competing kinematic effects we already saw in
fig. 3.3. The higher top boost leads to a larger value of the asymmetry Aφ, but for high
Higgs masses the effect of the softer pTt distribution is stronger, yielding a net reduction
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Figure 3.3: Azimuthal angle (φl) of the decay lepton from the top quark, as defined in the text,
comparing LO and NLO + parton shower.

βtan 
0 5 10 15 20 25 30 35 40

φ
A

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

βtan 
0 5 10 15 20 25 30 35 40

φ
A

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Figure 3.4: Azimuthal asymmetry parameter for H−t production, as defined in eq. (2.9). LO
(MC@NLO) results are shown in blue (black), formH = 200 GeV (lower curves) andmH = 1500
GeV (upper curves). The error band is statistical. Results for Wt production, using both the DR
and DS approaches in [20], are shown in red.

of Aφ. At NLO, the difference between the two Higgs mass values is smaller than at
LO, even at low tanβ. However, a pronounced asymmetry is still visible, with a strong
dependence on the charged Higgs parameters, so the azimuthal asymmetry appears to be
quite robust with respect to higher order corrections.

We see that the difference between the DR and DS results is much less than the differ-
ence between Wt and H−t production, which gives us confidence that the interference
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issue does not get in the way of getting an estimate of the asymmetry parameter for Wt.
Thus, the fact that Wt and H−t production lead to rather different Aφ values (for essen-
tially any choice of mH or tanβ), as has already been observed at LO [17], remains true
at NLO and after a parton shower has been applied.

3.3.2 Polar Angle θl
One may also consider the polar angle between the decay lepton and the top quark direc-
tion. Fig. 3.5 shows the NLO+parton shower results for the same extremal values of tanβ
and mH as in fig. 3.2. We see that the distribution is more sensitive to the Higgs mass at
small tanβ than at large tanβ, which is again due to the enhancement (cancellation) of
the polarization effects by the kinematics at low (high) tanβ .

The distribution of θl at LO and MC@NLO level is shown in fig. 3.6. As with the φl
distribution, the NLO distribution strongly resembles the LO results. The NLO distribu-
tion is peaked towards θl = 0 somewhat more due to the slight increase in the top boost
parameter.
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Figure 3.5: Polar angle (θl) of the decay lepton from the top quark, measured with respect to the
top quark direction, at NLO plus parton shower level.

In all cases, the distribution shows a strong peak at low values of θl, with a fall-off
at higher values. For normalized distributions it follows that a distribution which has a
slower fall-off must correspondingly have a lesser peak, and vice versa. This motivates
the definition of the following asymmetry parameter:

Aθ =
σ(θl < π/4)− σ(θl > π/4)
σ(θl > π/4) + σ(θl < π/4)

. (3.3)

We have here used π/4 as representative of the point at which distributions correspond-
ing to different points in parameter space cross each other. However, we have found no
obvious analytic justification for this result, so this number can in principle be varied in
order to enhance the asymmetry.
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Figure 3.6: Polar angle (θl) of the decay lepton from the top quark, measured with respect to the
top quark direction, at LO and NLO plus parton shower level.

Results for the polar asymmetry parameter are shown in fig. 3.7. Again we show both
LO and MC@NLO results, where a statistical uncertainty band is included for the latter.
One sees that the MC@NLO values ofAθ are higher than the LO results, as expected from
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Figure 3.7: Polar asymmetry parameter for H−t production, as defined in eq. (3.3). LO
(MC@NLO) results are shown in blue (black), formH = 200 GeV (lower curves) andmH = 1500
GeV (upper curves). The error band is statistical. Results for Wt production, using both the DR
and DS approaches in [20], are shown in red.

the higher value of the top boost at MC@NLO level compared to LO. In contrast to the
azimuthal asymmetry, there is a significant difference between the extremal charged Higgs
mass values at large tanβ. This makes the polar angle very useful as a complementary
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observable to the azimuthal angle, as the latter is relatively insensitive to the charged
Higgs mass at large tanβ.

Similarly to the azimuthal case, one sees from fig. 3.7 that typical values for the polar
asymmetry are markedly different to the result obtained for Wt production, as estimated
by the DR and DS results. Again this is presumably a reliable conclusion, given that the
difference between the two Wt results is much less than the difference between the H−t
andWt results. This information is a potentially valuable tool in being able to distinguish
charged Higgs boson production from the Wt background.

3.3.3 Energy Ratio Observables
In the previous sections, we presented results for angular distributions of the decay lepton
inH−t andWt production, finding these to be robust discriminators of the charged Higgs
parameter space, as well as of use in distinguishing a charged Higgs signal from the
Standard Model background. In this section, we consider the energy ratios z and u of
eq. (2.11), which were first defined in [12].

Note that both the z and u observables depend on the energy of the b quark emanating
from the top quark decay. In a leading order calculation, this can be straightforwardly
identified. In an experimental environment, one must use event selection cuts which re-
quire the presence of a tagged b jet, and use the energy of this jet in constructing eq. (2.11).
A full phenomenological analysis is beyond the scope of this chapter: we here wish to
present a first analysis of the z and u parameters in the context of H−t production, un-
shrouded by the full complications of an experimental analysis. There is then a choice to
be made regarding which energy to use in presenting results from MC@NLO. One option
is to use the energy of the b-flavoured hadron that contains the b quark from the top decay,
requiring this to be stable. However, to facilitate a more direct comparison with the LO
results, we instead define Eb via the energy conservation relation

Eb = Et − El − Eν , (3.4)

whereEt,El andEν are the energies of the top quark, decay lepton and decay neutrino re-
spectively. The latter is, of course, unmeasurable in a real experiment but can be identified
in a Monte Carlo event generator. Our definition of Eb then means that our comparisons
between LO and MC@NLO results measure the collective effect of a single hard addi-
tional emission (from the NLO matrix element), together with the parton shower, but with
no non-perturbative contributions from e.g. hadronization or the underlying event. We
deem such an approach to be valid in assessing the robustness of energy ratio observables
against perturbative higher order corrections, which is our present aim. For a realistic
situation an alternative definition implementing analysis cuts in terms of jets would allow
for Eb to be the energy of the b-jet which enters the cuts.

The energy ratios of eq. (2.11) are more sensitive to the top quark polarization in the
kinematic region in which the decaying top quark is highly boosted. It is important to
check which values of a cut on the boost parameter are sufficient in order to isolate the
desired sensitivity to the top quark polarization.
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The energy ratios of eq. (2.11) can provide additional information when the top is
boosted and the resolution of the top decay products is insufficient. First we will in-
vestigate the dependence of the influence of a boost cut on the energy ratios z and u of
eq. (2.11) for different values of this cut in fig. 3.8. One sees that the results with a cut
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Figure 3.8: Distribution of u (left-hand plot) and z (right-hand plot) for tanβ = 1 and mH = 200
GeV, at NLO plus parton shower level. Results are shown for different cut values on the boost
parameter B of eq. (2.10).

are markedly different from those with no cut (as expected). However, the difference be-
tween results with B > 0.9 and B > 0.8 is much less, suggesting that a cut of B > 0.8
is sufficient.

The distribution of u at MC@NLO level after the cut B > 0.8 is applied is shown in
fig. 3.9 for two values of mH .
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Figure 3.9: Distribution of u, as defined in eq. (2.11), where a cut on the boost parameter B > 0.8
has been applied, at NLO plus parton shower level. Results are shown for mH = 200 GeV (left-
hand plot) and mH = 1500 GeV (right-hand plot).

The shape of the plots can be compared to the corresponding figures in [12], which are
presented for the ideal case in which the top quark is completely polarized and infinitely
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Figure 3.10: Distribution of u with a cut on the boost parameter B > 0.8.
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boosted, i.e. Pt = ±1 and B → 1. The latter seem to show a much more pronounced
difference between the curves for positive and negative helicity top quarks. This is mostly
due to the fact that in our case the top quarks are not completely polarized. The high
Higgs mass in particular does not yield a strong top quark polarization. For the lower
Higgs mass, the shapes are broadly consistent with the results of [12]: for the negatively
polarized top quarks (tanβ = 1), the distribution falls off more sharply for higher values
of u. Also, the curvature of the distributions is different for lower values of u for the two
different tanβ values.

The u variable at LO and MC@NLO level with a boostcut of B > 0.8 is shown in
fig. 3.10. We see that the general shape does not change when including NLO+parton
shower corrections.

We may also consider the z distribution, which is shown for our two extremal tanβ
values in fig. 3.11. The plots have three distinct regimes. Firstly, there is a sharp fall-off
as z → 0, due to the finite mass of the b quark. Then, there is an intermediate regime
0.1 . z . 0.7, over which the z distribution is approximately linear, with the sign of
the slope correlated with the polarization of the top quark (i.e. positive and negative for
negatively and positively polarized top quarks respectively). Finally, there is another fall-
off as z → 1, due to the finite W boson mass. Again one sees very little correlation for
the charged Higgs mass of 1500 GeV due to the small value of the polarization.

In fig. 3.12 we see that this is not due to the NLO and parton shower effects. The
distribution is changed by these effects, but the correlation with the charged Higgs mass
is not very strong even at LO. For the lower Higgs mass we also see that the NLO+parton
shower corrections change the distribution more than for the angular distributions.

For the angular observables of the previous section, we used asymmetry parameters
which efficiently distill the difference between different regions of the charged Higgs
parameter space into single numbers. It is perhaps useful to also adopt this strategy for
the energy ratios u and z. Regarding the former, one may first note that the normalisation
of the distribution means that a slower fall-off above the peak region entails less events
below the peak region. One may exacerbate this effect by defining the corresponding
asymmetry parameter

Au =
σ(u > 0.215)− σ(u < 0.215)
σ(u > 0.215) + σ(u < 0.215)

. (3.5)

Here u ' 0.215 is chosen as the approximate position of the peak, motivated by the
analysis of [12]. As in the case of the polar angle asymmetry of eq. (3.3), however, this
choice can in principle be varied in order to enhance the result.

The behaviour ofAu is shown in fig. 3.13, for a cut on the boost parameter ofB > 0.8.
For comparison purposes, we also show the result one would obtain with no cut on the
boost parameter, where the u observable suffers significant contamination from contribu-
tions which are insensitive to the top quark polarization. As expected, the Au variable
has more discriminating power for the lower Higgs mass, since the top is more strongly
polarized in that case. In addition one sees that the cut on the boost parameter has a larger
effect for the lower Higgs mass than for the higher one, although this effect is somewhat
weaker at MC@NLO level, where the top is more boosted on average. Generally, there is
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more of a pronounced difference between the LO and MC@NLO values than in the case
of the angular asymmetries considered in the previous section. Furthermore, decorrela-
tion with LO is more pronounced for heavier Higgs masses, due presumably to the fact
that the top quark showers more on average.
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Figure 3.13: The asymmetry parameter Au for H−t production, as defined in eq. (3.5). LO
(MC@NLO) results are shown in blue (black), for mH = 200 GeV (upper curves at large tanβ)
and mH = 1500 GeV (lower curves at large tanβ). The error band is statistical. Results for Wt
production, using both the DR and DS approaches in [20], are shown in red (in the left-hand plot
the DS and DR results are on top of each other).
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Figure 3.14: The asymmetry parameter Az for H−t production, as defined in eq. (3.5). LO
(MC@NLO) results are shown in blue (black), for mH = 200 GeV (upper curves at large tanβ)
and mH = 1500 GeV (lower curves at large tanβ). The error band is statistical. Results for Wt
production, using both the DR and DS approaches in [20], are shown in red (in the right-hand plot
the DR and DS results are on top of each other).

As for the angular asymmetry, we also show results for Wt production in fig. 3.13.
Before a cut on the boost parameter is applied, the Wt result sits more or less in the
middle of the H−t results over most of the range in tanβ. This is not the case once a
cut is applied, and indeed a significant difference is observed between the Wt and H−t

26



Chapter 3. Top Polarization in Ht and Wt Production

results. Admittedly, this difference appears larger (and thus more useful) for smaller
charged Higgs masses, and is only 3% or so for the largest Higgs mass we consider.

We may also define an asymmetry parameter for the energy ratio z of eq. (2.11). This
is perhaps most conveniently done by considering only the linear regime in fig. 3.11,
occuring at intermediate values of z, as it is the sign of the slope in this kinematic region
that distinguishes the cases of positive and negatively polarized tops. We therefore define

Az =
σ(0.1 ≤ z ≤ 0.4)− σ(0.4 < z ≤ 0.7)
σ(0.1 ≤ z ≤ 0.4) + σ(0.4 < z ≤ 0.7)

. (3.6)

We have chosen the values at which to define the intermediate region by eye from fig. 3.11.
Again, these could be varied in order to maximise the resulting asymmetry.

The behaviour of Az is shown in fig. 3.14. A first notable feature is the lack of
smoothness, even in the LO results. This is due to the fact that the boundaries of the
intermediate regime will themselves depend on the value of tanβ, leading to fluctuations
such as those observed in the figure. It may be that such fluctuations can be ameliorated
by tuning of these boundaries, with a corresponding trade-off in the size of the asymmetry
observed. The sign of the asymmetry flips for each charged Higgs mass as the full range
in tanβ is scanned, which is expected since the sign of the polarization changes. Note
that there is again a marked difference between the LO and NLO results, particularly for
the higher Higgs mass, and that the boost cut has a larger effect for the lower Higgs mass.

As before, one may compare theH−t andWt results. Here, though, a note of caution
is necessary, because the difference between the DR and DS results for Wt appears more
pronounced for this parameter. In particular, it varies considerably before and after the
boost cut is applied. This greater variation is perhaps exacerbated by the smallness of
the asymmetry (which is at best only a few percent), but also suggests that interference
with top pair production may be an issue in interpreting the Wt results. It is nevertheless
the case that the difference with Wt is most pronounced at either low Higgs mass and
high tanβ, or high Higgs mass and low tanβ. In both these cases, the sign of the top
polarization in H−t production is opposite to the one in Wt production. This results in a
small asymmetry of opposite sign to the Wt case, but roughly comparable in size.

To summarise, we have here presented results for a number of angular and energy-
related distributions and, building upon the analysis of [9, 17], defined a corresponding
asymmetry parameter for each that efficiently encodes the difference in these distributions
for different regions in the charged Higgs parameter space, as well as the differences
between Wt and H−t production. All of these asymmetries seem to be fairly robust
against NLO and parton shower corrections. In addition, they complement each other,
since different observables are sensitive to different parts of the parameter space. This
suggests that they may indeed be very useful in isolating a charged Higgs boson, with
subsequent identification of its properties. In the following section, we consider a second
context in which such observables may be useful, namely that of isolating Wt production
itself as a signal.
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3.4 Results for Wt Production
In the previous section, we examined the angular and energy distributions introduced in
section 2.3 in H−t production, and defined asymmetry parameters which are potentially
highly useful in elucidating the properties of a charged Higgs boson. In this section, we
investigate whether these same observables have anything useful to say about Standard
Model Wt production.

There are three production modes for a single top quark in the Standard Model. Two
of these, the so-called s− and t− channel modes, have been observed in combination at
both the Tevatron [46–49] and LHC [50–52]. The theoretical state of the art is also highly
advanced, and includes fixed order computations [53–57], NLO plus parton shower im-
plementations [58, 59], resummed results [60], and finite top width corrections [61, 62].
For related phenomenological studies, see [63–66]. As already stated in the introduction,
Wt production offers a complementary window through which to look at top quark inter-
actions, being sensitive to corrections to theWtb vertex, but not to four fermion operators
which may affect the s− and t− channel modes. The investigation of Wt production as
a signal in its own right was first explored in [67]. Since then, computations have been
carried out at NLO [35,36], and also matched to a parton shower at this accuracy [20,29].

The aim of this section is to examine angular observables and energy ratios for both
Wt and top pair production, for semi-realistic analysis cuts, and to reflect upon whether
these results may be useful in enhancing the signal to background ratio of the former
process. To this end, we adopt the following Wt signal cuts, similar to those used in [41]:

Wt signal cuts

1. The presence of exactly 1 b jet with pT > 50 GeV and |η| < 2.5. No other b jets
with pT > 25 GeV and |η| < 2.5.

2. The presence of exactly 2 light flavour jets with pT > 25 GeV and |η| < 2.5. In
addition, their invariant mass should satisfy 55 GeV< mj1j2 < 85 GeV.

3. Events are vetoed if the invariant mass of the b jet and light jet pair satisfies

150 GeV <
√

(pj1 + pj2 + pb)2 < 190 GeV.

4. The presence of exactly 1 isolated lepton with pT > 25 GeV and |η| < 2.5. The
lepton should satisfy ∆R > 0.4 with respect to the two light jets and the b jet,
where R is the distance in the (η, φ) plane.

5. The missing transverse energy should satisfy EmissT >25 GeV.

Here the first cut is the most useful one in getting rid of top pair production, as one
expects two b jets on average in tt̄ production, but only one b jet in Wt. The other cuts
pick out semi-leptonic decays3. That is, one W boson decays to leptons (we would want

3Note that to increase the statistics in our analysis, we will explicitly generate semi-leptonic decays using
MC@NLO. The above analysis cuts, however, will still affect the shapes of distributions.
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this to be the W boson from the top quark decay), and the other decays to quarks. We
thus expect two light jets whose invariant mass reconstructs the W mass, as well as a
lepton and missing energy from the neutrino. The only difference with respect to the cuts
used in [41] is the presence of an additional cut involving the invariant mass of the b jet
and light jet pair, restricting this to be different than the top mass. This ensures that the
selected semi-leptonic events are such that the top quark in Wt decays leptonically, and
the W hadronically, as is required in order to use the decay lepton as a marker of top
quark polarization effects.

It was shown in [41] that, for these signal cuts (minus the invariant mass requirement
for the three jets, which was unnecessary in that analysis), Wt is a well-defined scatter-
ing process in that interference with pair production can be neglected. This was found
by comparing the DR and DS results from MC@NLO. The results in this section were
obtained using the DR subtraction method. Furthermore, the Wt cross-section was found
to be larger than the scale-variation uncertainty associated with the top pair cross-section.
If this had not been true, thenWt production would be swallowed up in the uncertainty of
the top pair prediction, and much more care would be needed in order to be able to claim
that it can be observed independently. We thus use the above cuts as an example of a fairly
minimal analysis which guarantees thatWt is a well-defined signal. We will see that even
for this analysis, the angular and energy-related observables defined in section 2.3 display
pronounced differences between Wt and top pair production.

Note that in this section, in order to be more realistic, we consider distributions con-
structed from the isolated lepton entering the cuts. This is not guaranteed to be the decay
lepton from the top quark, although the likelihood of this is increased by the event se-
lection cuts. Also, we assume that the top quark direction is reconstructed with perfect
resolution. In practice this would be done by considering the four-momenta of the b jet
and isolated lepton passing the cuts, together with missing energy. A full determination
of the uncertainty induced in the reconstruction of the top quark (also including detector
effects) is beyond the scope of the present study. Note that in Wt and Wt̄ production,
we assume that the top and antitop quark is reconstructed respectively. In top pair pro-
duction, one constructs either the top or antitop quark which decays to give the isolated
lepton passing the selection cuts. In contrast to the H−t results of the previous section,
we present results for a centre of mass energy of 7 TeV. Jets are clustered using the kT
algorithm [68] with D=0.7.

We first consider the azimuthal angle φl, whose distribution is shown in fig. 3.15 for
both Wt and top pair production.

The first thing to notice is that there is a distinct shape difference between the Wt
and top pair curves. The Wt results include a slight peak structure at θ = π, due to the
contribution from events in which the W boson decays leptonically, rather than the top
quark. This structure is missing in the case of top pair production, due to the symmetrical
nature of the final state. For the choice of analysis cuts given above, one may evaluate
the asymmetry parameter Aφ, which is shown in tab. 3.1. The values for Wt and top pair
production are significantly different. This is potentially a useful distinguishing feature
between the two production processes.

Next, we consider the polar angle θl, again defined in terms of the isolated lepton
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Figure 3.15: Azimuthal angle distribution of the isolated lepton which enters the Wt signal cuts,
for both Wt and top pair production, at NLO plus parton shower level.
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Bcut Wt Top pair
0 0.33 ± 0.01 0.63 ± 0.02

0.8 0.41 ± 0.02 0.70 ± 0.05
0.9 0.42 ± 0.03 0.70 ± 0.07
0.95 0.44 ± 0.04 0.68 ± 0.08

Table 3.1: Results for the azimuthal asymmetry parameter Aφ of eq. (2.9), evaluated using the
isolated lepton entering the Wt selection cuts, and for different values of a cut B > Bcut on the
boost parameter of the top quark.

Bcut Wt Top pair
0 0.02 ± 0.01 0.26 ± 0.02

0.8 0.18 ± 0.02 0.38 ± 0.04
0.9 0.49 ± 0.03 0.75 ± 0.07
0.95 0.70 ± 0.05 0.97 ± 0.10

Table 3.2: Results for the polar asymmetry parameter Aθ of eq. (3.3), evaluated using the isolated
lepton entering the Wt selection cuts, and for different values of a cut B > Bcut on the boost
parameter of the top quark.

entering the Wt signal cuts. The distribution of this angle is shown in fig. 3.16. There is
a notable difference between the Wt and top pair production, due to the negative polar-
ization of the top in the former case. The corresponding asymmetry parameters Aθ are
shown in tab. 3.2. Again the results are different between the two production processes
which, as in the azimuthal case, is a potentially useful discriminator between the two
processes.

In the case of H−t production considered in section 3.3, we also considered various
observables which depended upon the boost of the top quark. This is clearly of practical
importance for heavy charged Higgs masses, which do indeed lead to heavily boosted
top quarks in a sizeable fraction of events, as is clear from fig. 3.1. One expects boosted
top observables to be less useful in Wt production, due to the fact that the W boson
is much lighter. Nevertheless, it is perhaps worth examining the dependence of various
observables on the boost parameter of the top quark. If sizeable differences between Wt
and top pair production were to be observed, the impact on the signal to background ratio
would then outweigh the loss in signal cross-section.

The distribution of the boost parameter B of eq. (2.10) is shown for both Wt and top
pair production in fig. 3.17, and one sees that there is a reasonable fraction of events in
both cases which have B > 0.8, albeit not as large a fraction as in the H−t case of the
previous section. This is not surprising, given that charged Higgs masses of at least 200
GeV were considered there, so that the top recoiled against a much more massive particle
than a W boson. Here we also have a lower centre of mass energy. The φl distributions
for the two processes are shown in fig. 3.18 for different values of a cut B > Bcut. One
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Figure 3.17: Distribution of the boost parameter B of eq. (2.10), at NLO plus parton shower level.
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Figure 3.20: Distributions of u and z, as defined in eq. (2.11), where a cut on the boost parameter
B > 0.8 has been applied, at NLO plus parton shower level.

sees that, whilst there is some dependency on the boost parameter, the qualitative features
remain identical. The corresponding asymmetries Aφ are given in tab. 3.1. One sees that
the absolute value of the difference between the asymmetries for the two processes is
roughly independent of the boost cut. However, the relative difference decreases.

One expects a much greater effect from the boost on the polar angle distribution, as
the requirement of a boosted top will concentrate the decay products in polar angle. The
θl distributions as a function of Bcut are shown in fig. 3.19.

The effect of the higher boost cut is to increase the peak region of the distribution at
the expense of the tail, as expected. The correspondingAθ values are collected in tab. 3.2.
Unsurprisingly, both sets of results display an increase in Aθ as the boost cut is increased.
This implies that a boost cut is actually detrimental in this case, as the relative difference
between the asymmetry parameters in the two processes decreases.

Finally, we present results for the energy ratios of eqs. (2.11), which were shown to
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be useful for H−t production in section 3.3. In that case, we defined the energy of the b
quark via eq. (3.4), which is possible in a Monte Carlo study but not in a real experiment.
Here, given that we have explicitly implemented analysis cuts in terms of jets, we define
Eb to be the energy of the b jet which enters the cuts. Then the distributions of z and u,
with a cut on the boost parameter ofB > 0.8, are shown in fig. 3.20. The first thing to note
is that the results for the u distribution do not show a significant difference between Wt
and top pair production. This is perhaps not so surprising given that we have already seen
in section 3.3 that oppositely polarized top quarks tend to exhibit smaller differences in
energy-related distributions than in angular distributions. Here we are essentially probing
the difference between a polarized top quark and one which is unpolarized on average,
and thus one expects an even smaller difference in behaviour.

The z distribution in fig. 3.20 shows some difference between the Wt and top pair
distributions. However, the top pair result does not closely resemble the flat profile one
would expect for unpolarized top quarks, due presumably to that fact that the shape has
been sculpted somewhat by the event selection cuts, in particular those which implement
restrictions on jet invariant masses.

Given the above results, it does not seem particularly useful to examine the asym-
metry parameters of eqs. (3.5, 3.6) in the present context. Nevertheless, the fact that a
shape difference persists in the z distribution between Wt and top pair production still
makes this a potentially useful observable in discriminating the two processes, perhaps
as an ingredient in a neural net analysis. One must also bear in mind the result for the
polar asymmetry from above, namely that a boost cut will decrease the relative differ-
ence between the angular asymmetries in Wt and top pair production. Thus, and perhaps
unsurprisingly, the utility of boost cuts in Wt production is somewhat limited.

3.5 Conclusion
In this chapter, we have examined the role that observables that are sensitive to top quark
polarization can play in exploring the parameter space of charged Higgs models, and also
in distinguishing H−t production from (Standard Model) Wt production. In particular,
we examined the azimuthal and polar angles φl and θl of [9, 17], and the energy ratios
z and u of [12], defining corresponding asymmetry parameters analogous to that already
defined for the azimuthal angle in [17]. Importantly, we found that polarization effects
are robust up to NLO and including parton shower corrections4. At this level, each of
the asymmetry parameters showed significant difference between different regions in the
charged Higgs parameter space (mH , tanβ), and also between H−t and Wt production.
The full set of asymmetries taken together thus provides a potentially highly useful probe
of charged Higgs properties. Angular observables are sensitive only to corrections to
the production of a top quark, and the polar angle is able to discriminate between charged
Higgs masses at high tanβ values, where the azimuthal angle cannot. Energy observables
are sensitive to corrections to both the production and decay of top quarks. Although more

4A similar robustness has already been observed in (Standard Model) s− and t− channel single top produc-
tion [66].
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difficult to construct (owing to the need for a cut on the boost parameter of the top quark),
they give useful complementary information, particularly on the value of the charged
Higgs mass at intermediate and high tanβ values.

As a second application of these observables, we considered the problem of distin-
guishing Standard Model Wt production from top pair production, which is a significant
background. Under the assumption that it is meaningful to separate Wt and top pair pro-
duction, we observed significant differences, for semi-realistic Wt analysis cuts, between
angular distributions relating to the isolated lepton entering the cuts. It is worth pointing
out that the cuts we used are fairly minimal in terms of signal to background ratio [41].
Nevertheless, large differences are obtained between the two production processes, which
suggests that our findings would persist in a more realistic study, including detector effects
etc.

One may also consider boosted top quark observables in Standard Model Wt produc-
tion, and we gave a couple of examples in section 3.4. These seem less useful than in
H−t production, however. In the angular observables, a cut on the boost parameter does
not increase the absolute difference between the asymmetry parameters for Wt and top
pair production, and decreases the relative difference. For energy observables, one sees
only a small difference between the u distributions even when a boost cut is applied. This
is due mainly to the fact that one is comparing a polarized top quark in Wt with an (on
average) unpolarized top quark in top pair production, rather than an oppositely polarized
top quark. A larger difference is observed in the z distribution, which may yet be a useful
observable in distinguishing Wt and top pair production.

To summarise, the observables studied in this paper are useful probes of both H−t
and Wt production, and seem to be robust against higher order perturbative corrections.
They therefore deserve further investigation.
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Chapter 4

Top Polarization in Stop
Production

In the previous chapter we have explored the robustness of top quark polarization under
the influence of NLO corrections. These corrections were studied for the production of a
top quark with associated charged Higgs boson for a 2HDM. The influence of polarization
measured in the angular distributions of the top quark decay product was compared to the
mass of the Higgs boson and found to be an interesting probe. In this chapter we will
explore a more stringent model that naturally requires the existence of such an additional
Higgs doublet. We will investigate a significant top quark production mode, and examine
whether polarization can be used as a probe for such a model’s parameters.

4.1 Supersymmetry
As explained in the introduction, the SM leaves a few questions unanswered, for instance
it failed to include gravity. At LHC energies one is still able to ignore this fundamental
force but gravity inevitably becomes more important as we approach the Planck scale.
Other weaknesses of the SM include its inadequacy to provide a dark matter candidate.
These shortcomings create space for new models, based on somewhat more exotic as-
sumptions, to provide a more accurate description. One of these is supersymmetry.

The mass of the Higgs boson in the SM is extraordinarily sensitive to loop corrections
of the fermions as it is not protected by any symmetry in the way chiral symmetry protects
fermion masses. If the SM is regarded as an effective theory, the corrections to the Higgs
mass depend quadratically on the energy scale Λ, where new physics sets in. Therefore
a large amount of fine-tuning is required between the bare mass and the loop corrections
to remain with a Higgs mass of 125 GeV as Λ will be at least a few orders higher. This
artifact of the SM is commonly referred to as the Hierarchy Problem, as it is related
to the hierarchy of energy scales. Supersymmetry (SUSY) postulates the existence of a
symmetry between fermions and bosons that allows for a natural cancellation of these
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4.2. Top Polarization from Stop Decay

quadratic divergences, leaving more benign logarithmic divergences. It also implies the
existence of supersymmetric partners to all known SM particles, with the same mass
and electric charge, but differing by spin- 1

2 . Regarding nomenclature, fermionic partners
receive +s(calar) in front of their name while the names of the supersymmetric partners
of the bosons are appended with +ino in the rear. For a detailed review of supersymmetry
we refer the reader to [16, 69].

Searches for light-flavoured squarks and gluinos at the Large Hadron Collider (LHC)
have so far come up empty [70–73]. Theoretical pointers for the expected mass scales
for SUSY breaking, accounting for SUSY particles to be massive, come from naturalness
arguments [74–76]. In SUSY, the low mass of the observed Higgs boson, is naturally
stable under large radiative corrections, provided the supersymmetry breaking scale is not
too large. In particular, the gluinos and most squarks can be quite heavy, as long as the
top squark, or stop, is relatively light so that SUSY has a solution to offer to the hierarchy
problem as suggested originally [77, 78]. The upper limit on the allowed stop masses for
a given Higgs mass depends on the amount of fine tuning that is tolerated [79–81].

The recent Higgs results [82,83] suggest, in the context of SUSY, a Higgs boson mass
quite close to the upper bound on the mass of the lightest Higgs state. This points towards
at least one relatively heavy stop [84, 85], which naturally leads us to consider models
with one light stop and at least one light neutralino. The lightest neutralino is a mixed
state of the superpartner of the U(1) hypercharge, the superpartner of the W boson and
the neutral higgsinos. This is the minimal ‘light’ SUSY particle content that one needs in
order to account for the observational hints of BSM physics such as Dark Matter (DM)
and Baryon Asymmetry in the Universe (BAU). It is therefore interesting to investigate
possibilities of such a light stop search at the LHC. Current constraints on the gluino mass
increase the interest for a direct stop pair search, even though the cross section is much
smaller than the total squark-gluino cross-section. For example at

√
s = 8 TeV the direct

stop cross section at NLL level is ∼ 85 fb for mt̃ = 500 GeV, [86–89] a value for the
stop mass that is currently allowed by the data. Results on stop searches in direct stop
pair production have been presented both by the ATLAS [90–93], and the CMS [94–97]
collaborations. However, the interpretation of these searches has some model-dependence
and usually limits are quoted in simplified models. In any case, present data allows for
top squarks well below the TeV scale.

One new aspect of the stop search phenomenology is the possible presence of a top
quark, a stop decay product, with possibly non-zero polarization. Since the top quark
decays before it hadronizes, the polarization can have implications for the kinematic dis-
tributions of the decay products of the stop and hence on the search strategies. If a stop is
discovered, the top polarization can play a role in determining the properties of the stop
and light neutralino.

4.2 Top Polarization from Stop Decay
In [98] it was shown that for a top quark originating from stop t̃ decay
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t̃1 → t χ̃0
i , (4.1)

where χ̃0
i , i = 1, 4 accounts for the four neutralinos, the following expression for the

polarization holds

Pt(t̃1 → t χ̃0
i ) =

(
(GRi )2 − (GLi )2

)
f1

(GRi )2 + (GLi )2 − 2GRi G
L
i f2

, (4.2)

where f1 and f2 are kinematical factors which in the stop rest frame reduce to

f1 =
λ

1
2 (m2

t̃
,m2

t ,m
2
χ̃)

m2
t̃
−m2

t −m2
χ̃

, f2 =
2mtmχ̃

m2
t̃
−m2

t −m2
χ̃

, (4.3)

with λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz the Källén function. The quantities
GLi and GRi are the stop couplings to the neutralino χ̃0

i and a left- or right-handed top
respectively. If we ignore mixing in the flavour sector and choose the mixing matrices to
be real, they are given by [99]

GLi = −
√

2g2

(
1
2
Zi2 +

1
6

tan θWZi1

)
cos θt̃ −

g2mt√
2MW sinβ

Zi4 sin θt̃ ,

GRi =
2
√

2
3
g2 tan θWZi1 sin θt̃ −

g2mt√
2MW sinβ

Zi4 cos θt̃ , (4.4)

where g2 is defined in section. 2.4, θW is the weak mixing angle and MW is the W mass.
The polarization then depends on the SUSY parameters through the neutralino mixing
matrix Z, the stop mixing angle θt̃ and the ratio of the two Higgs vacuum expectation
values, tanβ. Moreover it is clear from eq. (4.2) that the top polarization is affected by
the masses involved and, perhaps less obviously, by the stop boost. Let us now discuss
these effects in turn.

4.2.1 Stop and Neutralino Mixing

The top polarization eq. (2.5) depends on the couplings GL,Ri , eq. (4.4), which contain
the stop mixing θt̃ and neutralino mixing. The neutralino mixing matrix is constructed
from the neutral section of the SUSY Lagrangian [100],

Ln =− g2

2
λ3(v1h̃

1
0 − v2h̃

2
0) +

gY
2
λ0(v1h̃

0
1 − v2h̃

0
2) + µh̃0

1h̃
0
2

− 1
2
M2λ3λ3 −

1
2
M1λ0λ0 + h.c. (4.5)

The first and second term arise from mixing terms of the electroweak sector, the third
term comes from the Higgs superfield in the superpotential and the last two terms are soft
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breaking gaugino mass terms contracting using the fully antisymmetric tensor. The Higgs
scalars have taken their vacuum expectation values v1 and v2, λ0, λ3 denote two gaugino
fields and h̃0

1, h̃
0
2 two higgsino field components. g1 is the U(1)Y hyper charge coupling

and g2 as defined in the previous section. Eq. (4.5) can be rewritten as

Ln = −1
2

(ψ0)TMnψ
0 + h.c. (4.6)

with (ψ0)T = (λ0, λ3, h̃
0
1, h̃

0
2). The neutralino mixing matrix, Z is determined by the

diagonalization of the neutralino mass matrix Mn

Mn =


M1 0 −MZcβsW MZsβsW
0 M2 MZcβsW −MZsβcW

−MZcβsW MZcβcW 0 −µ
MZsβsW −MZsβcW −µ 0

 (4.7)


χ̃0

1

χ̃0
2

χ̃0
3

χ̃0
4

 = Z


λ0 = B̃0

λ3 = W̃ 0

h̃0
1

h̃0
2

 , (4.8)

withM1 andM2 the bino and Wino gaugino masses andMZ the Z0 mass, sW = sin θW ,
cW = cos θW , sβ = sinβ and cβ = cosβ.

The stop mixing angle θt̃ is derived in a similar way by diagonalization of the stop
mass matrix in the L−R basis, leading to the mass eigenstates t̃1 and t̃2

M2
t̃ =

(
m2
t̃L

+ ∆L +m2
t −mt(At + µ cotβ)

−mt(At + µ cotβ) m2
t̃R

+ ∆R +m2
t

)
, (4.9)(

t̃1
t̃2

)
=
(

cos θt̃ sin θt̃
− sin θt̃ cos θt̃

)(
t̃L
t̃R

)
, (4.10)

withmt̃L,R
the soft masses of the left- and right-handed stop,At the top trilinear coupling,

µ the Higgs mass parameter, and ∆L = ( 1
2 − 2

3 sin θ2
W )M2

Z cos 2β,
∆R = ( 2

3 sin θ2
W )M2

Z cos 2β.
Our subsequent investigations of the top polarization will be guided by a few salient

aspects in this mixing, which we now discuss.
Firstly, one notes that the strength of the bino (B̃) coupling to stop-top is proportional

to the top hypercharge. As a result, a bino-like neutralino couples more strongly to the
right-handed (RH) components than to the left-handed (LH) ones, yielding a more positive
top polarization than one might naively expect from a given stop mixing.

Secondly, recall that the Wino W̃ only couples to the left-handed stop components,
producing left-handed top quarks only. According to eq. (4.2), a pure Wino thus always
leads to Pt = −f1 in the stop rest frame. As a result, polarization cannot be used to
distinguish between different stop mixing for Wino-type neutralinos. In the rest of the
paper we will thus limit ourselves to neutralinos with a small Wino component.
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Thirdly, for the intermediate to large values of tanβ that are allowed for the Higgs
mass constraint, sinβ ≈ 1, therefore the couplings in eq. (4.4) and hence the top polar-
ization only mildly depend on tanβ.

Finally, the stop-top-neutralino coupling does not involve the first higgsino component
h̃0

1. Ignoring the Wino component, the key variables in the neutralino mixing matrix are
thus the bino component Zi1 and the second higgsino component Zi4. The relative sign
between the bino and the higgsino components can impact the polarization because of
the term proportional to GRi G

L
i in eq. (4.2). This can be seen in fig. 4.1, where the top

polarization in the stop rest frame is plotted as a function of the bino content for both left-
and right-handed stops. The righthand pane in fig. 4.1 zooms into the region with high
bino-content. The results are shown for both relative signs of Zi1 and Zi4 and also for
stops that are not entirely left- or right-handed.
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Figure 4.1: Dependence of the top polarization on the neutralino content in the stop rest frame. The
red thin lines correspond to right-handed stops, while the black thick lines correspond to left-handed
stops. Results are shown for pure as well as slightly mixed stops, and for different relative signs of
Zi1 and Zi4. We have taken Zi4 = ε

p
(1− Z2

i1), ε = ±1 to approximate the higgsino-content
for a given bino-content and have taken mt = 173.1 GeV, mt̃ = 500 GeV, mχ̃ = 200 GeV and
tanβ = 10. The plot on the right shows the behaviour for high bino-content.

The figure shows that in general the polarization behavior is as expected: dominantly
right-handed stops produce a negative top polarization when they decay to a higgsino, and
a positive polarization when they decay to a bino. Left-handed stops have the opposite
behaviour. Notice that in correspondence to the first aspect mentioned above, for right-
handed stops in particular, even a slight change in the stop mixing angle has a large effect
on the polarization. We observe that the polarization for left-handed stops is not very
sensitive to the exact neutralino content when it is higgsino-like and that the polarization
varies very rapidly from 1 to -1 for an almost pure bino. Moreover, the maximum polar-
ization Pt = ±1 cannot occur for a decay into a pure bino or higgsino due to the mass
effects in eq. (4.2). This effect becomes more pronounced for smaller stop-neutralino
mass differences.

For a complementary perspective we show in fig. 4.2 the dependence of the top po-
larization on the stop mixing for a top quark that originates from a stop that is at rest.
For both the pure bino state and the dominantly higgsino state, the polarization indeed
behaves as one would expect from eq. (4.2). As in fig. 4.1, we see that the polarization
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Figure 4.2: Dependence of the top polarization on the stop mixing in the stop rest frame. The red
thin lines correspond to higgsino-like neutralinos, while the black thick lines correspond to bino-
like neutralinos. Results are shown for pure as well as slightly mixed neutralinos, and for different
signs of µ. We fix the parameters as in fig. 4.1

is very sensitive to small fluctuations in the bino component for Zi1 ≈ 1. In this case,
both terms in the GRi coupling in eq. (4.4) become relevant, the first is suppressed by
the stop mixing and the second by the higgsino mixing, hence the large fluctuation in the
polarization for small values of sin θt̃.

4.2.2 Masses
We have already seen that the stop and neutralino masses influence the polarization. This
effect is shown in fig. 4.3.
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Figure 4.3: Dependence of the top polarization in the stop rest frame on the stop-neutralino mass
difference for a neutralino that is purely bino and different stop mixing. We have takenmt = 173.1
GeV, mχ̃ = 100 GeV and tanβ = 10.

We see that a small mass difference between the stop and the neutralino leads to a
smaller polarization due to the f1 and f2 functions in eq. (4.3). For mass differences of
200-300 GeV, this dependence is negligible as the polarization tends to ±1 as is seen in
the figure. Note that the top originating from a completely mixed stop resembles a right-
handed stop because of the effect of the hypercharge mentioned in the previous section.
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We have seen in figs. 4.1 and 4.2 that masses can have more intricate effects for mixed
states due to the contribution of the f2 function.

4.2.3 Stop Boost
So far we have studied the top polarization in the stop rest frame. However, as we can see
from eq. (2.4), the polarization vector S3 is not a Lorentz vector. Thus the polarization is
frame-dependent. We can quantify this effect using the stop boost parameter

Bt̃ =
|~pt̃|
Et̃

. (4.11)

The dependence of the polarization is plotted in fig. 4.4, showing that the polarization is
reduced with increasing stop boost.
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Figure 4.4: The dependence of the top polarization on the stop boost for a neutralino that is purely
bino (Z11 = 1) and different stop mixing is shown. We have taken mt = 173.1 GeV, mt̃ = 500
GeV, mχ̃ = 100 GeV and tanβ = 10.
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Figure 4.5: The distribution of the stop boost at the LHC with an 8 TeV CM energy for different
stop masses is shown on the left-hand side and 14 TeV CM energy on the right-hand side. Both
distributions have been generated with Madgraph [13, 14].

Note that the polarization is obtained after integration over the top direction, and hence
depends only on the boost. The precise magnitude of the effect depends on the masses
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involved, since the boost-dependence of the result originates from the large mass of the
top quark, more precisely from the fact that the produced top quark is non-relativistic.
For relevant stop and neutralino masses, the boost that the top obtains from the stop decay
has the same order of magnitude as the stop boost. Although this sounds like a serious
complication for studying the polarization at the LHC, the situation is in fact not that
bad. The plots of fig. 4.5 show the distribution of the stop boost at the LHC with a CM
energy of 8 and 14 TeV. We see that within the relevant range of stop masses, the boost
distribution is fairly constant. Thus, the effect of the boost will reduce the polarization for
all stop masses, but the explicit mass dependence due to the boost is small.

4.3 Sensitivity to SUSY Parameters
The top polarization in the stop rest frame is thus mostly sensitive to the stop and neu-
tralino masses and mixing. In the previous section, we have varied one of the relevant
parameters at a time. In this section, we examine the dependence of the polarization on
the MSSM parameters. We choose parameters such that the value of the light stop mass
is around 500 GeV. This mass leads to a large production cross section and has sufficient
phase space for the stop to decay in a top and a neutralino for a wide range of values for
the neutralino mass. Furthermore, this mass satisfies the limits from direct stop produc-
tion at the 7 TeV LHC. The ATLAS Collaboration has excluded a stop up to nearly 500
GeV when the neutralino is massless, but they provide no limit if the LSP is heavier than
150 GeV [91].

First we choose fixed values for the soft parameters in the stop sector, and then vary
M1 and µ, given in eq. (4.5), which show the dependence on the neutralino composition.
The four sets of soft parameters are given in tab. 4.1. We set M2 = 4M1 to decouple
the wino-state by making the wino mass inaccessible and we fix M3 = 1.5 TeV, MA =
1 TeV. For the soft parameters in the sfermion sector, we choose a common mass for all
sleptons,Ml̃ = 800 GeV, and for the first and second generation of squarks,Mq̃i = 2 TeV.
All trilinear couplings except At are set to zero. The supersymmetric spectrum and the
Higgs masses are computed with the program SuSPect [101], which includes radiative
corrections to the masses.

We do not impose any constraints on the model at this point. However, the parame-
ters of the stop sector are chosen such that the Higgs mass is within the measured range
(mH = 125.7 ± 0.4 GeV, the average of CMS and ATLAS results [82, 83]) for a large
fraction of the explored parameter space while allowing for an additional 2-3 GeV theo-
retical uncertainty. Expectations for different observables from the flavour or dark matter
sector are not taken into account at this point. They will be briefly discussed at the end of
this section.

The dependence of the top polarization and stop branching ratioBR(t̃1 → tχ̃0
1) on the

Higgs mass parameter µ and gaugino mass M1 is displayed in fig. 4.6 - 4.9 for the four
different choices of stop parameters presented in tab. 4.1. We only consider the region
where the decay t̃1 → tχ̃0

1 is kinematically accessible. Note that the maximal variation
of the Higgs mass in the |µ| < 1 TeV, M1 < 750 GeV plane is about 3 GeV, within the
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MQ̃3
(TeV) Mũ3 (TeV) At (TeV) tanβ

LH 0.49 2.00 3.00 10
XLH 0.55 1.40 2.40 20
XRH 1.05 0.60 1.88 20
RH 2.00 0.45 2.40 10

Mt̃1
(GeV) sin θt̃ cos θt̃ Mh(GeV)

LH 521. -0.126 0.992 126.4
XLH 510. -0.223 0.975 124.8
XRH 498. 0.946 -0.323 124.0
RH 508. 0.996 -0.095 125.5

Table 4.1: Choices of parameters in the stop sector for two mostly LH and two mostly RH stops. In
each case we also consider a partly mixed light stop (XLH and XRH). The bottom rows specify the
light stop mass, the stop mixing and the Higgs mass for |µ| = 300 GeV, M1 = 250 GeV.

theoretical uncertainties, while corrections to mt̃1
of the order of 30 GeV can be found

for large values of M2 due to the quark/gaugino loop correction.

The dominantly left-handed stop

As we have discussed in the previous section, the case of a left-handed stop implies Pt ≈
−1 when the LSP is bino-like (|µ| � M1) and Pt ≈ 1 when the LSP is higgsino-like
(|µ| � M1). This behavior is illustrated on the left-hand side of fig. 4.6 for µ < 0. Note
the rapid transition between Pt = 1→ −1 in the region where one goes from a bino to a
higgsino LSP (M1 ≈ µ). When the LSP almost becomes pure bino, the top polarization
starts to deviate from −1. For instance at the point M1 = 100 GeV, µ = −600 GeV the
top polarization is only Pt ≈ −0.73. This is caused by the stop becoming mixed instead
of purely LH, with sin θt̃ = −0.127. Finally, the kinematic effects which induce Pt → 0
arise at the boundary of the white region.

In order to exploit the top polarization as an observable, the branching ratio for t̃1 →
tχ̃0

1 must be large enough. The contours of the stop to LSP branching ratio are displayed
in the right panel of fig. 4.6. Large branching ratios are found over most of the parameter
space, with two exceptions. The first occurs near the kinematic limit where the three-
body decay t̃1 → bWχ̃0

1 dominates and the second occurs for low values of M1. The
latter behaviour is a peculiarity due to the fact that we have set M2 = 4M1. Thus for low
values of M1 and of M2 the lightest chargino, which is dominantly wino, drops below the
mass of the stop and the decay t̃1 → bχ̃+

1 becomes dominant. If in addition µ is small,
the decay into the second chargino becomes possible as well.

In the region where the LSP is mostly higgsino |µ| < M1, the mass of the two lightest
neutralinos and of the lightest chargino are of the same order. Thus the stop can decay into
tχ̃0

1, tχ̃
0
2 as well as into bχ̃+

1 . The chargino channel is only at the few percent level while
the decay into the LSP increases with the higgsino component, reaching a maximum of
70%. An important fact to keep in mind is that the two lightest neutralinos will have
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higgsino-components of similar magnitude. Thus the polarization of the top in the two
processes t̃1 → tχ̃0

1,2 is similar for the higgsino LSP. Therefore both decay modes can be
exploited to measure the top polarization, as will be demonstrated below. In the region
where the LSP is a bino, M1 < |µ|, the branching ratio into the LSP is nearly 100%,
except for low values of µ, where the channels bχ̃+

1 (for |µ| < 500 GeV) and tχ̃0
2 (for

|µ| < 380 GeV) also become accessible.
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Figure 4.6: Contours of the top polarization in the top rest frame for µ < 0 and a dominantly LH
stop (left panel) with the LH parameters in tab. 4.1. Branching ratios for t̃1 → tχ̃0

1 (right panel). In
the bottom right corner, the decay is not kinematically accessible.
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Figure 4.7: Same as fig. 4.6 for µ > 0 and a mixed but dominantly LH stop corresponding to the
XLH parameters in tab. 4.1. In the upper right corner the decay is not kinematically accessible.

For µ > 0, the polarization and the branching ratio contours have roughly the same
behaviour, so we do not illustrate this case. Rather, we consider a case where the light
stop is still dominantly left-handed but where the mixing angle is larger, sin θt̃ = −0.223,
see the XLH parameters in tab. 4.1. Fig. 4.7 shows that for the mixed case the polarization
and branching ratio contours are rather similar to the previously discussed LH case. The
main difference lies in the bino region at large µ and small M1, where the polarization
is generally not maximal. As we have explained above, the mixing implies that the main
contribution to the GRi coupling comes from the first term in eq. (4.4), causing |Pt| < 1.
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We therefore conclude that in the bino case, the top polarization is quite sensitive to the
mixing in the stop sector.

The dominantly right-handed stop

Next we consider the case of a dominantly right-handed stop. The polarization con-
tours for µ < 0 are shown in fig. 4.8 for a mixed RH stop and fig. 4.9 for a pure RH stop.
We notice the expected behaviour of Pt ≈ 1 when the LSP is bino-like (|µ| � M1) and
Pt ≈ −1 when the LSP is higgsino-like (|µ| �M1). As before, the kinematic effects (at
the boundary of the white region) bring Pt → 0. Note the rapid sign flip in the polariza-
tion as one goes from the bino/higgsino region. The only impact of larger stop mixing,
as illustrated in fig. 4.8, lies in the higgsino region (µ < M1): when the mixing in the
stop sector is larger, the top polarization is not maximal. This is due to the second term in
eq. (4.4) dominating the GRi coupling, thus leading to a larger value for GRi and |Pt| < 1.

In both the pure and mixed RH stop cases, the behaviour of the branching ratio con-
tours are rather similar. The branching ratio t̃1 → tχ̃0

1 is above 90% in the bino region,
except near the kinematic limit where the stop decays only into 3-body, and at low val-
ues of M1 for the mixed RH stop. As mentioned above, this is caused by the channel
t̃1 → bχ̃+

1 becoming kinematically accessible, which is only possible through the LH
component of the light stop. In the higgsino LSP region, the BR never becomes very
large (up to roughly 25% for tχ̃1 and to 20% for χ̃2, χ̃3). Here the main decay channel
is into bχ̃+

1 which has a partial width that is proportional to the top Yukawa coupling for
a RH stop and is therefore much larger than in the case of a LH stop where the width is
determined by the bottom Yukawa coupling. Thus for a RH stop and a higgsino LSP, it
will be more difficult to measure the top polarization due to the suppressed rate.

Decays into heavier neutralinos

For a higgsino LSP, the branching ratio of the stop into the lightest neutralino can
be rather small. However, in this case the top polarization is almost the same when one
considers the decay t̃1 → tχ̃0

1 or tχ̃0
2 as illustrated in fig. 4.10. For the dominantly

LH stop (left panel), the difference between the polarizations in the two channels never
exceeds 10% when M1 > µ which marks the onset of the higgsino LSP region. For
the RH stop (right panel) the difference between the polarizations can reach 30% when
M1 ≈ µ = 280GeV although both polarizations quickly become almost equal as M1

is increased and thus the higgsino fraction of the neutralinos. The difference between
the top polarization in the two higgsino channels is purely a kinematic effect due to the
smaller mass splitting between the stop and the second neutralino. This effect is more
pronounced for the RH stop case simply because the mass of t̃1 is lower. Note that since
the two lightest neutralinos are almost degenerate, the decay of the second neutralino into
the LSP is accompanied by soft leptons and basically has the same missing ET signature
as the LSP. Therefore both decay channels can be used to determine the top polarization.

In the above, we have considered the behaviour of the top polarization without wor-
rying about other constraints on the model. We will now briefly comment on the impact
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Figure 4.8: Contours of the top polarization in the top rest frame for µ < 0 and a mixed dominantly
RH stop (left). Branching ratios for t̃1 → tχ̃0

1 (right)
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Figure 4.9: Same as fig. 4.8 for µ > 0 and dominantly RH stop.

Figure 4.10: Comparison of the top polarization for the decay t̃1 → tχ̃0
1 (full line) and t̃1 → tχ̃0

2

(dashed line) as a function of the gaugino mass M1 for |µ| = 150 GeV (blue) and |µ| = 300
GeV (red). SUSY parameters are fixed as in tab. 4.1 for a dominantly LH stop (left panel) and a
dominantly RH stop (right panel).
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of these constraints. The dark matter relic density for the bino case is typically much too
large. It is however possible to bring it to a reasonable value. Decreasing the mass of the
sleptons to just above the LSP mass adds an important contribution from coannihilation
processes. This would have no impact on the polarization observables discussed here. By
contrast the relic density is typically too small in the higgsino region. This only means
that the neutralino cannot form all of the dark matter. Moreover constraints on observ-
ables from the flavour sector can easily be satisfied. The branching ratio forBs → µ+µ−,
for instance, remains near the SM value since we are considering only moderate values of
tanβ and a heavy pseudoscalar.

4.4 Top Polarization: Effect on Decay Kinematics and
Observables

We first study the effect of the polarization of the decaying top on the kinematics of
the lepton produced in its semi-leptonic decay in this section, eq. (2.8), and assess the
possible effects top polarization can have for the search strategies for the stop. Further we
study qualitatively if top polarization at the LHC, measured via this semi-leptonic decay
can be a useful probe for the neutralino and stop mixing parameters when there is prior
knowledge on SUSY masses.

To examine the effect of the top polarization on the kinematic distributions of the
semi-leptonic top quark decay product we have generated sets of events with Madgraph
[13,14]. This set of benchmarks has been selected based on the degree of top polarization
in the stop rest frame as well as a roughly constant mass difference between stop and neu-
tralino. The physical parameters corresponding to these benchmarks are listed in tab. 4.2.
We have generated the process

p p→ t̃ ¯̃t→ t χ̃0
1

¯̃t→ l+ νl b χ̃
0
1

¯̃t (4.12)

We took 8 TeV as LHC centre of mass energy and use the following parameter values: the
top mass and width are mt = 173.1 GeV and Γt = 1.50 GeV, and the W mass and width
are mW = 79.82 GeV and ΓW = 2.0 GeV. The factorization and renormalization scales
were set to µR = µF = mt̃. It was shown in the previous chapter that NLO corrections
do not change the qualitative features of the lab-frame observables constructed out of the
angular variables, so we show leading-order (LO) results, which were calculated using the
CTEQ6L1 [102] pdf set. Here we implicitly assume that the anti-stop decays hadronically
and have generated events where only the stop has decayed. Note however that the antitop
could easily be distinguished from the top using the sign of the lepton. Hence, exploiting
the information from events where the stop decays hadronically and the anti-stop leads to
a final state with an (anti)lepton would provide increased sensitivity.

4.4.1 Effect of Top Polarization on El and plT
In this subsection we show the effect of the top polarization on the energy El and the
transverse momentum plT of the lepton produced in the decay of the top in the laboratory
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Pt mt̃ (GeV) mχ̃0
1

(GeV) sin(θt̃) Zi1 Zi4 tan(β)
1 500.0 318.6 0.998 0.958 -0.176 7.8

0.5 500.0 321.1 0.998 0.988 -0.0866 7.8
0 500.0 320.5 -0.124 0.975 -0.128 10.0

-0.5 501.1 319.2 0.995 0.440 -0.618 20.0
-0.8 502.0 319.3 -0.0988 0.0232 -0.190 35.0

1 500.7 130.2 0.9928 0.9976 -0.0188 10.
0.5 499.6 129.7 0.9987 0.9164 -0.2112 29.6
0 500.1 129.3 -0.05954 0.9729 -0.1017 35.0

-0.5 500.1 130.3 -0.05948 0.9865 -0.06113 35.0
-1 499.4 130.0 -0.05911 0.9990 -0.007184 35.0

Table 4.2: Set of benchmarks sorted by polarization. The upper five correspond to small mass
differences and the lower five to large mass differences. The mass of the second neutralino is shown
for the cases where its branching is non-zero.

frame for our benchmark points. These two distributions in the laboratory depend on the
angular distribution of the lepton given in eq. (2.8) in the top rest frame, as well as the
energy and the pT of the decaying top which decides the direction and the magnitude of
the boost to the laboratory frame. Since the angular distribution of eq. (2.8) depends on
the polarization of the decaying top, the El and plT distributions have a dependence on
the top polarization. Most of the decay leptons in the rest frame come in the forward
direction for a positively polarized t quark , i.e. the direction of the would-be momentum
of the t quark in the laboratory. Thus after a boost from the rest frame to the lab frame the
energies of these leptons are increased. Similarly, for negative polarized t quarks most of
the decay leptons come out in the backward direction w.r.t. the lab momentum of the t
quark. This results in an opposite boost direction and hence a decrease in the energy of
the leptons. The effect on the pT distribution of the lepton in the laboratory is further also
affected by the pT of the t quark as well.

Fig. 4.11 shows the El distribution in the laboratory for three different polarizations
of the parent top quark: 1, 0 and −1, being depicted in blue, red and black respectively.
Since, for the three cases in each figure, the mass difference between the stop and the top
is nearly the same, the entire difference in the distributions can only be due to polarization
of the decay top. Consistent with the qualitative argument given above, the peak of the El
distribution shifts to lower energies for the left polarized top with respect to an unpolarized
top and to higher energies for the right polarized one. The shift is higher for the case of
large mass differences (with peaks occurring at respectively 26, 42 and 66 GeV) compared
to the small mass difference (with peaks occuring at 34.5, 37.5 and 40.5 GeV). Since one
puts cuts on the lepton kinematic variables to reduce the background from the SM tops
(which would have polarization zero) one sees that such cuts will be less effective for
a left polarized top and it will be even more so for the case of large mass differences.
The distributions for the transverse momentum of the lepton, shown in fig. 4.12 shows
similar features. For small mass differences the transverse momentum distribution of a
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Figure 4.11: The distribution in the energy of the lepton coming from the decay of the top quark,
for three different polarizations of the decaying t quark: 1,0 and -1 being given by the blue, red and
the black lines respectively. The left graph represents benchmarks with a small mass difference and
the right graph benchmarks with a large mass difference between stop and neutralino.

polarization of −1, 0 and +1 respectively peaks at 24, 26 and 31 GeV. For large mass
differences the distribution of a polarization of −1, 0 and +1 respectively peaks at 23, 23
and 40 GeV. In fact we also notice that the shifts in the plT distributions are substantial
compared to the possible effects which would come from changes in the pt̃T distribution
coming from NLO effects [87, 103, 104]. So, this effect needs to be taken into account
even in an analysis that neglects the NLO effects on the stop production.
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Figure 4.12: The distribution in PT of the lepton coming from the decay of the top quark. The left
graph represents benchmarks with a small mass difference and the right graph benchmarks with a
large mass differences between stop and neutralino.

Thus we clearly see that the current limits quoted on the stop quark mass from direct
production, using the tχ̃0

1 channel, will depend on the amount of top polarization and in
addition the effect of the mass difference mt −mχ̃0

1
. This needs to be kept in mind while

assessing the limits being quoted currently. The observation above also means that the
searches for the stop with SUSY parameters, that give rise to negatively polarized tops
are in fact doubly challenged as the single top background will also produce top quarks
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that are negatively polarized. Whereas for the case of positively polarized top quarks
being produced by SUSY, one can use the above distribution to discriminate effectively
against the background coming from single top quark production.

This also means that, in principle, information on the energy of the lepton may be
used as a ‘measure’ of the parent top polarization. In fact, for heavily boosted top quarks,
studying distributions in fractional energy of the decay lepton and b quark has been shown
to carry information about the top polarization [12]. In fact a recent study demonstrates
their use for the case of hadronically decaying tops, at the 14 TeV LHC [105]. It should be
noted, however, as mentioned earlier, that the energy distributions of the decay products
can be affected by the anomalous tbW coupling and hence are less robust a measure of
the top polarization of the parent top quark, than the angular observables as discussed in
the previous chapter and [4]. We discuss these in the next subsection.

4.4.2 Observables
In this subsection we focus on the observables that will give us a measure of the polariza-
tion of the top quark, using angular observables of the decay lepton. The leptonic decay
has the highest analyzing power and is furthermore unaffected by an anomalous tbW cou-
pling to leading order as explained in chapter 2. We explore utility of various asymmetries
constructed out of the φl and θl distributions, as in [17, 106, 107] and chapter 3.

Azimuthal asymmetries

The azimuthal distributions of the charged lepton from top decay for selected bench-
marks are plotted in fig. 4.13. The left plot contains the benchmarks with a small mass
difference between stop and neutralino, and the right plot those with a large mass differ-
ence. The distributions, in general, follow the behavior as described in section 2.3.
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Figure 4.13: The azimuthal φl distribution of the decay lepton of the top quark. The left graph
represents benchmarks with a small mass difference and the right graph benchmarks with a large
mass difference between stop and neutralino.

The distributions in fig. 4.13 seem to be well separated by their polarization value.
Therefore we quantify this with the asymmetry parameter Aφ eq. 2.9.
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The polarization is influenced by the boost to the stop labframe (section 4.2.3). We
will treat the transverse momentum (pT ) of the top as a crude qualifier of this boost and
apply a cut on pT [9]. Thereby attempting to reduce the polluting effect of the kinematics
on the angular distribution. We have defined an adaptive cut as

pmaxT

x
< pT < xpmaxT . (4.13)

We define both a strict (x = 1.5) and loose (x = 2) cut. The results for these choices are
given in tab. 4.3.

Pt (cut) Aφ (nc) Aφ (lc) Aφ (sc) Aφ (nc) Aφ (lc) Aφ (sc)
+1 0.57 0.51 0.48 0.87 0.90 0.90

+0.5 0.53 0.45 0.41 0.81 0.84 0.84
0 0.48 0.42 0.39 0.69 0.67 0.64

-0.5 0.44 0.37 0.34 0.61 0.60 0.58
-1.0 0.39 0.33 0.29 0.55 0.50 0.46

Table 4.3: Relative azimuthal asymmetry parameter for the process as defined in eq. (4.12). The
left side of the table denotes small mass differences and the right side large mass differences be-
tween stop and neutralino. An adaptive cut is applied on the transverse momentum as defined in
eq. (4.13). The abbreviations following the asymmetry variable, denoted between brackets: nc, lc
and sc respectively indicate no cut, a loose cut and a strict cut.

From tab. 4.3 we notice that the asymmetry parameter Aφ is large for positive po-
larizations, decreases for lower polarizations and reaches its lowest value at a negative
polarization. As expected, the pT cut improves the asymmetry parameter. In the case of
a small mass difference, the effect is small. For large mass differences however, the two
pT cuts in eq. (4.13) enhance the separation of different polarizations. This is natural, as
a large stop-neutralino mass difference endows the top with more kinetic energy.

Polar asymmetries

We can apply a similar analysis to the distribution in the polar angle, defined as the
angle between top direction and decay lepton in the lab frame. The distributions are shown
in fig. 4.14. We notice a peaking in the direction of the top boost which is again strongest
for a positive polarization and weakest for a negative polarization. Again the large mass
difference cases show a stronger correlation with the polarization Pt than the small mass
difference cases. Because the distribution of θl is non-symmetric we have more choice for
an asymmetry parameter definition that quantifies the shape differences and have chosen
the definition of eq. (3.3).

This definition allows for a negativeAθ. It is of course possible to define the asymme-
try parameter such that all values are positive. However, in an experimental analysis, the
definition of Aθ will be tuned to enhance the effects of polarization. As the outcome of
this procedure will depend on the masses of the sparticles, we will use the definition given
in eq. (3.3) to show the qualitative effect. The value of Aθ, shown in tab. 4.4, is lowest for
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Figure 4.14: The polar distribution θl of the decay lepton of the top quark. Polarizations in the left
figure are chosen such that there is a small mass difference between stop and neutralino. In the right
figure the mass difference is large.

Pt (cut) Aθ (nc) Aθ (lc) Aθ (sc) Aθ (nc) Aθ (lc) Aθ (sc)
+1 0.12 0.02 -0.02 0.66 0.66 0.64

+0.5 0.06 -0.05 -0.08 0.55 0.55 0.52
0 -0.001 -0.10 -0.13 0.32 0.25 0.20

-0.5 -0.06 -0.14 -0.17 0.18 0.12 0.07
-1.0 -0.12 -0.20 -0.22 0.06 -0.03 -0.10

Table 4.4: Relative polar asymmetry parameter for the process as defined in eq. (4.12). The left
side denotes benchmarks with a small mass difference and the right side large mass differences
between stop and neutralino. An adaptive cut is applied on the transverse momentum as defined in
eq. (4.13). The abbreviations following the asymmetry variable, denoted between brackets: nc, lc
and sc respectively indicate no cut, a loose cut and a strict cut.

negative polarization, increases as the polarization increases and reaches its highest value
at a polarization of Pt = +1. The adaptive cut again has little effect for the small mass
differences but enhances mildly the separation of Aθ for large mass differences and can
therefore be a useful probe for polarization.

Impact of the stop neutralino mass difference

We have seen in section 4.2.2 that the polarization depends on the mass difference
between the stop and the neutralino, more precisely on ∆m = mt̃1

−mχ̃0
1
−mt, and that

the asymmetry parameter Aφ is highest for a high polarization for both mass differences.
So far we have been studying the effects of polarization whilst keeping this difference
constant. However, when we vary ∆m, the asymmetry values corresponding to different
polarizations are not well separated anymore. For example, we consider a new benchmark
with a mass difference that falls in between the two cases in tab. 4.2. For this point Pt = 0,
mt̃ = 508.9 GeV,mχ̃0

1
= 292.4 GeV, sin θt̃ = 0.1234, and yet the asymmetryAφ = 0.56

is quite similar to the value for the benchmark Pt = 0.5 in tab. 4.3 which has Aφ = 0.53.
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The mass difference for these points varies from ∆m = 43 GeV for the former and
∆m = 6 GeV for the latter. Imposing the adaptive cut on the pT of the top enhances the
differences between the two benchmarks, but neither cuts are able to isolate the purely
polarization induced behavior. For the Pt = 0 benchmark we get Aφ = 0.55(0.53) for
the loose (strict) cut to be compared with Aφ = 0.45(0.41) for the Pt = 0.5 benchmark.
We conclude that varying the mass difference slightly has a large effect on the angular
distributions and therefore pollutes the information about polarization present in these
angular distributions. Thus, detailed mass measurements will be needed in addition to
the polarization-dependent observables, to extract information about the top polarization
from these.

Decays to χ̃0
2, χ̃

0
3

Thus far we have studied the case where the stop decays to one, generic neutralino
type. We next examine the case where we allow for a decay to multiple neutralino types.
Two large mass difference benchmarks of tab. 4.2 have stop branching ratios to several
neutralino types, those with A) Pt = 0.5 and B) Pt = 0. In case A the heavier neutralino
masses are mχ̃0

2
= 207 GeV, mχ̃0

3
= 213 GeV while in case B, mχ̃0

2
= 276 GeV, mχ̃0

3
=

282 GeV. The heavier neutralinos are higgsino-like so that the polarization is close to Pt =
−1 in case A which has a RH stop and to Pt = 1 in case B with a LH stop. We have listed
the separate contributions to Pt and the asymmetriesAφ andAθ in tab. 4.5. The difference
in the asymmetries between various neutralino channels is somewhat less than naively
expected. This is because the mass difference ∆m is smaller for heavier neutralinos, thus
reducing the difference in the asymmetries as discussed above. This effect is particularly
noticeable for the second case where despite the fact that Pt = 0(1) for the light (heavier)
neutralinos, all three neutralinos give rise to almost the same asymmetries.

Case A Case B
decay to Aφ Aθ Pt BR Aφ Aθ Pt BR
χ0

1 0.81 0.55 0.5 6.5% 0.69 0.32 0.0 2.7%
χ0

2 0.53 0.04 -1.0 20% 0.71 0.34 0.99 29.3%
χ0

3 0.53 0.05 -0.88 18% 0.69 0.31 0.96 29.8%

Table 4.5: Azimuthal and polar asymmetry parameter for the process as defined in eq. (4.12) allow-
ing for decays of the stop to a certain neutralino type. The polarization and branching fraction for
the decay into each neutralino channel is also specified. Case A and Case B correspond respectively
to the second and third rows of the large mass difference benchmarks in tab. 4.2 .

With the theoretical prediction on the rest frame polarization per decay mode on the
basis of eqs. (4.3) and (4.4), the lab frame distributions can then be predicted after com-
bination with the appropriate Lorentz transformations. The asymmetry parameter for
all decays is a sum of the individual values weighted by branching ratios. The extent
to which Aφ depends on the angular distribution of a certain decay mode therefore de-
pends strongly on the branching fractions. The results including adaptive cuts for the two
benchmarks of tab. 4.5 are shown in tab. 4.6. Clearly the asymmetries are dominated by

55



4.5. Conclusion

the heavier neutralino decay channels for case A while they receive similar contributions
from all three neutralino channels for case B.

Pt(tχ̃0
1) Aφ (nc) Aφ (lc) Aφ (sc) Aθ (nc) Aθ (lc) Aθ (sc)

A +0.5 0.58 0.53 0.50 0.13 0.03 -0.02
B 0 0.70 0.69 0.68 0.32 0.26 0.22

Table 4.6: Azimuthal and polar asymmetry parameter for the process as defined in eq. (4.12 (al-
lowing for decays of the stop to all neutralino types. An adaptive cut is applied on the transverse
momentum as defined in eq. (4.13). The abbreviations following the asymmetry variable, denoted
between brackets: nc, lc and sc respectively indicate no cut, a loose cut and a strict cut.

4.5 Conclusion
The phenomenology of the third generation sfermions has always been an interesting sub-
ject to explore as this can yield non-trivial information about SUSY parameters. In view
of the ever increasing upper limits on the masses of the strongly interacting sparticles
that are being extracted from LHC data and the observation of a light, single Higgs-like
particle, naturalness considerations within the MSSM leads to the possibility of third gen-
eration sfermions that are much lighter than the first two generations. Thus direct pair
production cross-sections of both stops and sbottoms can be large enough to be probed
within the 8 TeV run of the LHC. The top quarks produced in these decays are generally
polarized and this polarization holds information about mixing in the squark sector, mix-
ing in the chargino/neutralino sectors as well as on the top velocity, hence on the mass
difference between the squark and the neutralino/chargino. The parameters that affect the
top polarization will influence the effectiveness of the searches for stops. Thus, the limits
extracted will not only depend on the stop and neutralino mass but also on the assumed
polarization. Indeed, the polarization can affect the energies of decay leptons and hence
the optimization of cuts to reduce the background from the QCD produced unpolarized
top. Since the top polarization goes to zero in the limit of a small stop-neutralino mass
difference, the polarization-induced kinematic effects will be particularly important for
models where this mass difference is large. This is an important factor to keep in mind
in analyses using simplified models with large mass differences. To obtain a conserva-
tive limit, one should use a model which produces a completely negatively polarized top
quark.

Let us briefly summarize our findings. We have explored the possible values of the
top polarization in the decay of the lightest stop into a top and a neutralino and we have
scanned the parameter space which is consistent with a 125.7 GeV Higgs. We find that
the bino content of the neutralino is a critical parameter and that due to the largeness of
the hypercharge for the right-handed top which drives the bino-stop-top coupling, a mixed
stop often behaves like a RH stop. A dominantly RH stop produces a negative top polar-
ization when it decays into a higgsino and a positive polarization when the decay is into a
bino, and vice-versa for a LH stop. This implies that these events can be separated more
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easily from the top pair background, as a positive top polarization leads to more energetic
leptons. The LH stop with a higgsino LSP and the RH stop with a bino LSP could be more
tightly constrained at the LHC than the other two combinations. We have also shown that
although small branching ratios into the lightest neutralino can occur especially for the
decay into a higgsino, similar polarizations for the decay into the two higgsino states im-
ply that we can exploit both decay modes to measure the top polarization. Finally, a small
mass difference between the stop and the neutralino leads to a very small polarization.

We then analyzed the kinematics of the decay products of the top arising from stop
decay into a top and a neutralino in the laboratory frame. Since the majority of the top
quarks in the SM background are unpolarized the stop search is particularly challenged
in the tχ̃0

1 mode for points in the parameter space which give rise to tops with negative
polarization. The spectrum of the electron energy as well as transverse momentum of
the lepton, softens (hardens) for negatively (positively) polarized top quarks respectively,
compared to an unpolarized top quark. This modification of the position of the peak
increases with increasing value of mt̃ −mχ̃0

1
. For the electron energy spectrum the shift

is−30 GeV formt̃−mχ̃0
1
∼ 320 GeV and−16 GeV formt̃−mχ̃0

1
∼ 130 GeV. Thus we

see that even with the same kinematics, the reach of a particular search using the lepton is
less efficient for negatively polarized tops. This effect is more pronounced for large mass
differences between the stop and the neutralino.

Finally, as in chapter 3, we have studied lab-frame observables and defined asym-
metries in the polar and azimuthal angle. These asymmetries have both a polarization-
dependent and independent part and provide a useful probe for top polarization provided
the masses of the particles involved are known, since the polarization is very sensitive to
mass differences. In conclusion, study of the top polarization can provide useful informa-
tion on supersymmetric parameters at the LHC when the supersymmetric partner of the
top is discovered.
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Chapter 5

Antenna Showers

Many predictions for differential cross-sections at colliders are based on a fixed order de-
scription where matrix elements are computed for all allowed initial states with a given
final state, F, plus a limited number of additional partons. The LO description has the min-
imal number (often zero) of additional partons. For improved accuracy, one includes ma-
trix elements with one extra parton beyond leading order and one loop correction (NLO)
and so forth. Parton showers offer an alternative approach, by iteratively constructing the
particle scattering. One also starts from matrix elements for the desired hard process, F,
but additional radiation is now generated stochastically via a shower algorithm, which is
essentially Markovian. This is a unitary process, with probability one, and therefore does
not change the probability of the underlying hard process to occur. The number of final
state partons is now not predetermined, and can take an infinity of different values. The
two approaches have complementary strengths and weaknesses and current focus lies on
uniting the two prescriptions. Matching procedures have been developed for MC@NLO,
used in chapter 3, and POWHEG [26,108,109]. This chapter will focus on a prescription
for matching the VINCIA antenna shower [27, 110] to NLO accuracy for e+e− → 2
jets. The two parton final state allows for an educational demonstration of the matching
procedure as the NLO correction takes a concise form. The leptonic initial state allows
for a cleaner environment for the development of a matching procedure, which will be
formalized for hadronic initial states in a later stage.

5.1 The VINCIA antenna shower
We will start with a discussion of the basic principle of an antenna shower which will also
serve as an introduction to the basic notation and conventions that will be used in later
sections and the next chapter.
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5.1. The VINCIA antenna shower

5.1.1 The Formal Basis of Antenna Showers
Antenna showers are based on the factorization of (squared) colour-ordered QCD ampli-
tudes in soft and collinear limits, which can be expressed as follows

|M(. . . , pi, pj , . . .)|2
i||j→ g2

s C
P (z)
sij
|M(. . . , pi + pj , . . .)|2 (5.1)

|M(. . . , pi, pj , pk, . . .)|2
jg soft→ g2

s C Ag(sij , sjk, sijk) |M(. . . , pi, pk, . . .)|2 (5.2)

with g2
s = 4παs the strong coupling and the subscript g in the second line emphasizing

that the soft limit is only relevant for gluons. In the collinear limit (first line), P (z) are
the Altarelli-Parisi splitting kernels [111], z is the energy fraction taken by parton i (with
a fraction (1 − z) going to parton j), and C is a colour factor, which we discuss below.
This limit forms the basis for traditional parton showers, such as those in the PYTHIA
generator [112].

In the soft-gluon limit (second line), the function A has dimension GeV−2, and is
called an antenna function, with the parent particles labelled with i and j and the addi-
tional radiation taking on an index k as illustrated in fig. 5.1 for a quark antiquark antenna.
For unpolarized massless partons1, its leading term is the so-called eikonal or dipole fac-

i

j

i

k

j

Figure 5.1: Illustration of our labeling convention for a quark antiquark antenna. The parent partons
are labelled with index i and j and the radiated gluon receives index k.

tor,

AEik(sij , sjk, sijk) =
2sik
sijsjk

, (5.3)

where sik = sijk − sij − sjk for massless partons. It was found early on that this
factor can be reproduced by a traditional parton shower by imposing the requirement of
angular ordering of subsequent emissions [114]. This gave rise to the angular-ordered
showers [115, 116] in the HERWIG and HERWIG++ generators [117, 118] as well as
the imposition of an angular-ordering constraint [112,119] in the JETSET and PYTHIA
generators [120, 121].

In fixed-order calculations, dipole [122] and antenna [123–125] functions are fre-
quently used to define subtraction terms. These functions include additional subleading

1In the context of massive particles, replace sab by 2pa·pb in all expressions. For a more complete treatment,
see [113].
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terms, beyond the eikonal one, which are necessary to correctly describe both soft and
collinear limits in all regions of phase space. In the parametrization we shall use, their
most general forms, for the branching process IK → ijk, are

AEmit(sij , sjk,m2
IK)=

1
m2
IK

(
2yik
yijyjk

+
yjk(1− yjk)δig

yij
+
yij(1− yij)δkg

yjk
+ FEmit

)
(5.4)

ASplit(sij , sjk,m2
IK)=

1
m2
IK

(
y2
jk + y2

ik

2yij
+ FSplit

)
, (5.5)

for gluon-emission and gluon-splitting processes, respectively, with the parent antenna
invariant mass, m2

IK = (pI + pK)2 = (pi + pj + pk)2 and the scaled invariants,

yij =
sij
m2
IK

; yjk =
sjk
m2
IK

, (5.6)

and we use the notation δig = 1 if parton i is a gluon and zero otherwise. The func-
tions FEmit and FSplit allow for the presence of non-singular terms, which are in prin-
ciple arbitrary. A logical choice would be F = 0, but this would not be invariant un-
der reparametrizations of the antenna functions across the gluon-collinear singular lim-
its [110]. Since the F functions can anyway be made useful in the context of uncertainty
estimates [27, 110], we therefore leave them as functions whose forms we are free to
choose.

In the soft-gluon limit, the eikonal factor is reproduced by the first term in eq. (5.4). In
the collinear q → qg limit, the AP splitting kernel also is reproduced. For collinear g →
gg and g → qq̄ branchings, one must sum over the contributions from two neigbouring
antennae, which together reproduce the AP splitting kernel. Limits that are both soft and
collinear are also correctly reproduced [125].

In the antenna context, the colour factors are 2CF for qq̄ → qgq̄, CA for gg →
ggg2, and 2TR for gluon splitting to qq̄, again using the normalization convention adopted
in [110]. However, for qg → qgg there is a genuine subleading ambiguity whether to
prefer, say, 2CF , CA, or something interpolating between them [126]. At fixed order,
the question of subleading colour can in fact be dealt with quite elegantly, by using CA
for all antennae and then including an additional qq̄ antenna with a negative colour factor,
−CA/N2

C , spanned between the two endpoint quarks, for each qg . . . q̄ chain [127]. In the
context of an antenna-based shower, however, it is desirable to use only positive-definite
antenna functions, and a prescription for absorbing the negative one into the positive
ones was given in [110]. In the context of this work, however, we shall largely ignore
subleading-colour aspects and, unless explicitly stated otherwise, assign a colour factor

2Note that in a process like H0 → gg, there are two gg antennae at the Born level, and hence the antenna
approximation to H0 → ggg is twice as large as the single gg → ggg antenna. Likewise, the collinear limit of
a gluon is obtained by summing over the contributions from both of the dipoles/antennae it is connected to. One
must also include a sum over permutations of the final-state gluons, if comparing to a summed matrix-element
expression.
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CA to the qg → qgg antenna function, thereby overcounting the collinear limit in the
quark direction by a factor CA/(2CF ) ' 1 + 1/N2

C .
The renormalization scale used to evaluate the strong coupling in the antenna function,

g2
s = 4παs(µPS), is typically chosen proportional to p⊥ (following [128]). As alterna-

tives, we shall also consider µ2
PS ∝ m2

D = 2min(sij , sjk), and, as an extreme case which
connects with fixed-order calculations, the invariant mass of the antenna, µ2

PS ∝ m2
IK .

A final aspect concerns the phase-space factorization away from the collinear limit.
Within the framework of collinear factorization (and hence, in traditional parton show-
ers), the momentum fraction, z, is only uniquely defined in the exactly collinear limit;
outside that limit, the choice of z is not unique. In addition, a prescription must be
adopted for ensuring overall momentum conservation, leading to the well-known am-
biguities concerning recoil strategies (see e.g. [129]). In antenna showers, on the other
hand, the antenna function is defined in terms of the unique branching invariants, sij and
sjk, over all of phase space, and the phase space itself has an exact Lorentz-invariant and
momentum-conserving factorization,

dΦn = dΦn−1 × dΦAnt , (5.7)

with
dΦAnt =

1
16π2m2

IK

dsijdsjk
dφ
2π

(5.8)

for massless partons (for massive ones, see [113]), with the φ angle parametrizing ro-
tations around the antenna axis, in the CM of the antenna. Note the equality signs; no
approximation is involved in this step. The only remaining phase-space ambiguity, out-
side the singular limits, is present when specifying how the post-branching momenta are
related to the pre-branching ones. This is defined by a kinematics map, the antenna equiv-
alent of a recoil strategy, which we here take to be of the class defined by [27, 123].

5.1.2 Constructing a Shower Algorithm
In a shower context, the amplitude and phase-space factorizations above imply that we
can interpret the radiation functions (AP splitting kernels or dipole/antenna functions) as
the probability for a radiator (parton or dipole/antenna) to undergo a branching, per unit
phase-space volume,

dP (Φ)
dΦ

= g2
s C A(Φ) , (5.9)

where we use Φ as shorthand to denote a phase-space point. (If there are several par-
tons/dipoles/antennae, the total probability for branching of the event as a whole is ob-
tained as a sum of such terms.)

An equally fundamental object in both analytical resummations and in parton showers
is the Sudakov form factor, which defines the probability for a radiator not to emit any-
thing, as a function of the shower evolution parameter, Q (i.e., similarly to a jet veto, with
Q playing the role of the jet clustering scale; we return to the choice of functional form
for the shower evolution scale in section 5.1.3). In the all-orders shower construction,
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these factors generate the sum over virtual amplitudes plus unresolved real radiation, and
hence their first-order expansions play a crucial role in matching to next-to-leading order
matrix elements. We here recap some basic properties. The Sudakov factor, giving the
no-emission probability between two values of the shower evolution parameter, Q1 and
Q2 (with Q1 > Q2), is defined by

∆(Q2
1, Q

2
2) = exp

(
−
∫ Q2

1

Q2
2

dP (Φ)
dΦ

dΦ

)
= exp

(
−
∫ Q2

1

Q2
2

g2
s C A(Φ) dΦ

)
, (5.10)

where it is understood that the integral boundaries must be imposed either as step func-
tions on the integrand or by a suitable transformation of integration variables, accompa-
nied by Jacobian factors.

This description has a very close analogue in the simple process of nuclear decay,
in which the probability for a nucleus to undergo a decay, per unit time, is given by the
nuclear decay constant,

dP (t)
dt

= cN . (5.11)

The probability for a nucleus existing at time t1 to remain undecayed before time t2, is

∆(t2, t1) = exp
(
−
∫ t2

t1

cN dt
)

= exp (−cN ∆t) . (5.12)

This case is especially simple, since the decay probability per unit time, cN , is constant.
By conservation of the total number of nuclei (unitarity), the activity per nucleon at time
t, equivalent to the “resummed” decay probability per unit time, is minus the derivative
of ∆,

dPres(t)
dt

= −d∆
dt

= cN ∆(t, t1) . (5.13)

In QCD, the emission probability varies over phase space, hence the probability for
an antenna not to emit has the more elaborate integral form of eq. (5.10). By unitarity, the
resummed branching probability is again minus the derivative of the Sudakov factor,

dPres(Φ)
dΦ

= g2
s C A(Φ) ∆(Q2

1, Q
2(Φ)) , (5.14)

with Q2(Φ) the shower evolution scale (typically chosen as a measure of invariant mass
or transverse momentum, see section 5.1.3), evaluated at the phase-space point Φ.

In shower algorithms, branchings are generated with this distribution, starting from a
uniformly distributed random numberR ∈ [0, 1], by solving the equation,

R = ∆(Q2
1, Q

2) (5.15)

forQ2. For an initial distribution of “trial” branching scales, we do not use the full antenna
function, eq. (5.4), as the evolution kernel, but only its leading singularity,

AT =
2m2

IK

sijsjk
=

2
p2
⊥A

, (5.16)
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where p⊥A is the ARIADNE definition of transverse momentum [130], which is also the
one used in VINCIA. This reflects the universal 1/p2

⊥ behaviour of soft-gluon emissions.
In addition to the trial scale, Q, two complementary phase-space variables are also gener-
ated (which we usually label ζ and φ [110]), according to the shape of AT over a phase-
space contour of constant Q. From these, the model-independent set of trial phase-space
variables (sij , sjk, φ) are determined by inversion of the defining relations Q(sij , sjk)
and ζ(sij , sjk), and the full kinematics (i.e., four-momenta) of the trial branching can
then be constructed [27].

To decide whether to accept the trial or not, we note that the function AT differs from
the eikonal in eq. (5.3) by the replacement of sik in the numerator by m2

IK . By accepting
the trial scales generated by AT with the probability

Peik =
Aeik

AT
=

sik
m2
IK

≤ 1 , (5.17)

the eikonal approximation can be recovered, by virtue of the veto algorithm [129, 131,
132]. Crucially, any other function that has the eikonal as its soft-collinear limit could
equally well be imprinted on the trial distribution by a similar veto. Two particularly rel-
evant choices are the full physical antenna function, eq. (5.4) (which includes additional
collinear-singular terms in addition to the eikonal) and the GKS-corrected antenna func-
tion (which also incorporates a multiplicative factor that represents tree-level matching in
VINCIA),

PLL
accept =

AEmit

AT
, (5.18)

PLO
accept = PLL

acceptRn , (5.19)

with AEmit given in eq. (5.4) and Rn the n-parton tree-level GKS matching factor [110],
to which we return in section 5.2.1.

Note that, for gluon-splitting antenna functions (Xg → Xqq̄), we use Q = mqq̄ , with
a trial function ∝ 1/m2

qq̄ , and again implement the physical antenna function, eq. (5.5),
and LO matching corrections by vetos. We also include the so-called ARIADNE factor,
PAri, defined by

ASplit → PAriASplit =
2sN

sP + sN
ASplit , (5.20)

with sN the invariant mass squared of the colour neighbour on the other side of the split-
ting gluon and sP = m2

IK the invariant mass squared of the parent (splitting) antenna.
This does not modify the singular behavior (as will be elaborated upon below), and was
shown to give significantly better agreement with the Z → qqq̄q̄ matrix element in [133].

Explicit solutions to eq. (5.15) using the trial function defined by eq. (5.16) were pre-
sented in [110], for fixed and first-order running couplings. In the context of the present
work, two-loop running has been implemented using a simple numerical trick, as follows:
given a value of αs(MZ), we determine the corresponding two-loop value of Λ2−loop

QCD .
We then use that Λ value in the one-loop solutions in [110], and correct the resulting
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distribution by inserting an additional trial accept veto:

P 2−loop
accept =

α2−loop
s (Q,Λ2−loop

QCD )

α1−loop
s (Q,Λ2−loop

QCD )
. (5.21)

Due to the faster pace of 2-loop running, α2−loop
s (Q,Λ) < α1−loop

s (Q,Λ), hence this
accept probability is guaranteed to be smaller than or equal to unity.

A final point concerns if there are several “competing” radiators (equivalent to several
competing nuclei, and/or several competing available decay channels for each nucleus).
In this case, the trial with the highest value of Q is selected (corresponding to the one
happening at the earliest time, t), and consideration of any other branchings (decays)
are postponed temporarily. After a branching, any partons involved in that branching
are replaced by the post-branching ones, and any postponed trial branchings involving
those partons are deleted. The evolution is then restarted, from the scale Q of the new
configuration, until there are no radiators left with trial branching scales larger than a
fixed, lower, cutoff, normally identified with the hadronization scale, Qhad ∼ 1 GeV.

5.1.3 Evolution and Ordering
In order to solve eq. (5.15) we need to specify the form of eq. (5.10), which takes us from
one scale Q2

1 to a lower scale Q2
2. We change variables to parametrize the integral by the

ordering variable, Q, and another, complementary (but otherwise arbitrary), phase-space
variable which we denote by ζ. The generic evolution integral now reads

A
(
Q2

1, Q
2
2

)
=
∫ Q2

1

Q2
2

g2
s C dQ2dζ |J |A(Q2, ζ) (5.22)

with |J | denoting the Jacobian of this transformation. For branchings involving gluon
emission, we consider three possible choices for the ordering variable: dipole virtuality
mD, transverse momentum, and the energy of the emitted parton, E∗j (in the CM of the
parent antenna), with the following definitions,

Q2
E1 = m2

D = 2m2
IK min(yij , yjk) , (5.23)

Q2
E2 = 4p2

⊥ = 4m2
IK yijyjk , (5.24)

Q2
E3 = 4E∗2j = m2

IK (yij + yjk)2 = x2
j m

2
IK , (5.25)

with the energy fraction xj = 2E∗j /mIK .
All three options are available as ordering variables in the VINCIA shower Monte

Carlo. They are illustrated in fig. 5.2, where contours of constant value of yE = Q2
E/m

2
IK

are shown for each variable, as a function of yij and yjk. For completeness, we show both
the case of a linear (top row) and quadratic (bottom row) dependence on the branching
invariants, for each variable. Since the ordering variable raised to any positive power will
result in the same relative ordering of emissions within a given antenna, the distinction
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Figure 5.2: Contours of constant value of yE = Q2
E/m

2
IK for evolution variables linear (top)

and quadratic (bottom) in the branching invariants, for virtuality-ordering (left), p⊥-ordering (mid-
dle), and energy-ordering (right). Note that the energy-ordering variables intersect the phase-space
boundaries, where the antenna functions are singular, for finite values of the evolution variable.
They can therefore only be used as evolution variables together with a separate infrared regulator,
such as a cut in invariant mass, not shown here.

between linear and quadratic forms does not affect individual antenna Sudakov factors.
It does, however, affect the “competition” between different antennae, and the choice
of restart scale for subsequent evolution after a branching has taken place, as will be
discussed further below.

In labeling the columns in fig. 5.2, we have also emphasized that mass-ordering, as
defined here, corresponds to choosing the smallest of the daughter antenna masses as
the “resolution scale” of the branching, whereas p⊥ and energy correspond to using the
geometric and arithmetic means of the daughter invariants, respectively. Naively, each of
these could be taken as a plausible measure of the resolution scale of a given phase-space
point. We shall see below which ones lead to better agreement with the one-loop matrix
elements.

66



Chapter 5. Antenna Showers

yE = Q2

sijk

m2
jk

s
m2
D

s
m4
D

s2
2p⊥√
s

4p2
⊥
s

2E∗√
s

4E∗2

s

|J(yE , ζ1)| yE
(1−ζ1)2

yE
4(1−ζ1)2

1
8(1−ζ1)2

yE
4ζ1(1−ζ1)

1
8ζ1(1−ζ1) yE

1
2

|J(yE , ζ2)| 1 1
2

1
4
√
yE

yE
2ζ2

1
4ζ2

1 1
2
√
yE

Note : |J(Q2, ζ)| = sijk|J(yE , ζ)|

Table 5.1: Jacobian factors for all combinations of evolution variables and ζ choices.

We consider two possible definitions for the complementary phase-space variable ζ,

ζ1 =
yij

yij + yjk
(5.26)

ζ2 = yij . (5.27)

We emphasize that the choice of ζ has no physical consequences, it merely serves to
reparametrize the Lorentz-invariant phase space. We may therefore let the choice be
governed purely by convenience, and, for each antenna integral, select whichever of the
above definitions give the simplest final expressions. The corresponding Jacobian factors,
for each of the evolution-variable choices we shall consider, are listed in tab. 5.1.

Note that, for the special case of the m2
D and m4

D variables, which contain the non-
analytic function min(yij , yjk), the ζ definitions in eqs. (5.26) and (5.27) apply to the
branch with yij > yjk. For the other branch, yij and yjk should be interchanged. With
this substitution, the Jacobians listed in tab. 5.1 apply to both branches3.

For branchings involving gluon splitting, g → qq̄, we restrict our attention to two
possibilities, ordering in p⊥, defined as above, and ordering in gluon virtuality, defined as

Q2
E4 = m2

g∗ = m2
qq̄ (for gluon splitting) . (5.28)

Note that the normalization factors for the ordering variables have in all cases been chosen
such that the maximum value of the ordering variable is m2

IK .
Since the phase space for subsequent branchings is limited both by the scale QE of

the previous branching (according to strong ordering) and by the invariant mass of the
antenna mj , the effective “restart scale”, after a branching in a strongly ordered shower,
is given by

Q2
Rj = min(Q2,m2

j ) , (5.29)

for each antenna j.
Depending on the choice and value of Q, one or both daughter antennae after a split-

ting may have a non-trivial restriction on the phase space available for subsequent branch-
ing. Conversely, if Q > mj , there is no such restriction. Physically, we distinguish be-
tween the case in which the strong-ordering condition implies a non-trivial constraint on
the evolution of the produced antennae, eating into the phase-space that would otherwise
be accessible, and the case in which the strong-ordering condition does not imply such a
constraint.

3This corresponds to replacing yij by max(yij , yjk) in the numerator of eq. (5.26) and in eq. (5.27).
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Figure 5.3: Illustration of the regions of 3-parton phase space in which the subsequent evolution of
the qg and gq̄ antennae is restricted (from above) by the strong-ordering condition. See the text for
further clarification of this plot. Black: both antennae restricted. Dark Gray: one antenna restricted,
the other unrestricted. Light Gray: both antennae unrestricted. Top/Bottom: Q2 linear/quadratic
in the branching invariants, for mass-ordering (left), p⊥-ordering (middle), and energy-ordering
(right).

The regions of qq̄ → qgq̄ phase space in which either zero, one, or both of the daughter
antennae (qg and gq̄ respectively) are constrained by the ordering condition are illustrated
in fig. 5.3, for each of the choices of evolution variable under consideration. The black
shaded areas correspond to regions in which both the qg and gq̄ antennae are restricted,
by having Q < mj . The darker gray shaded areas show regions in which only one of
the antennae is restricted, while the other will still be allowed to evolve over its full phase
space. In the light-gray shaded areas, both of the antennae are allowed to evolve over all of
their available phase spaces, equivalent to the ordering condition imposing no constraint
on the subsequent evolution. We recall that we are here discussing the upper boundary on
the subsequent evolution, hence the infrared4 (IR) poles are not affected.

To further clarify the meaning of the plots in fig. 5.3, let us discuss panel (e) as an
example. The coordinates, (yij , yjk), represent the 3-parton state before it evolves to a

4Note: we use the word infrared to refer collectively to soft and/or collinear regions of phase space.
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4-parton state, and each point corresponds to a specific value of the evolution variable at
hand, cf. fig. 5.2. Assuming ordering in p⊥ and using subscript (3) for quantities evaluated
in the 3-parton state, the value of the evolution variable for a specific (yij , yjk) point is
Q2
E(3) = 4p2

⊥(3) = 4yijyjks, with s = m2
Z at the Z pole. The further evolution of the

shower, from a 3- to a 4-parton state, involves a sum over all possible branchings of the qg
and gq̄ antennae. Consider the qg one. Its branchings can again be characterized by two
invariants (s1, s2), both of which will be smaller than m2

qg. However, depending on the
value ofm2

qg (or, equivalently, yij) the p⊥ of the new configuration, 4p2
⊥(4) = 4s1s2/m

2
qg

may actually be larger than 4p2
⊥(3). In a strongly ordered shower, such configurations are

not allowed, and would be discarded. Whether this situation can occur or not, for one or
both of the qg and gq̄ antennae, as a function of (yij , yjk), is what fig. 5.3 reveals, for
each type of ordering variable.

The mathematical consequence is that, in the dark- and black-shaded regions, respec-
tively, the upper boundary of one or both of the qg and gq̄ antenna integrals is set by the
evolution variable, rather than by phase space. This creates an important difference be-
tween the integrals generated by a shower algorithm and those used for IR subtractions in
traditional fixed-order applications (for which the integrals always run over all of phase
space). In particular, we see that the strong-ordering condition will generate additional
logarithms involving sij/Q2

E(3) as argument. For a “good” choice of evolution variable,
these logarithms should explicitly cancel against ones present in the one-loop matrix ele-
ments, a question we shall return to in detail in section 6.2.

Several interesting structures can be seen in fig. 5.3. Firstly, the linearized variables
imply less severe constraints on the subsequent evolution than the quadratic ones. This
is easy to understand given that the linearized variables, Qlin, are related to the quadratic
ones, Qqdr, by

Q2
lin = QqdrmIK , (5.30)

and henceQlin > Qqdr, implying a higher absolute restart scale for the linearized ordering
variables.

It is also apparent that, for a given choice of linearity, mass-ordering reduces the
phase-space for further evolution more than p⊥-ordering does, which in turn is more con-
straining than energy-ordering. In this comparison, however, it becomes important to
recall that the traditional ordering variables used, e.g., in VINCIA, are the linearized
mass-ordering and the quadratic p⊥ and energy-ordering variables5. Within that group,
p⊥-ordering appears to be the most restrictive, followed by energy-ordering, with (tradi-
tional, linearized) mass-ordering leading to the most open phase space for the subsequent
evolution.

We are now able to fully specify the boundaries of the evolution integrals in eq. (5.22).
For each QE contour (see fig. 5.2), the integration limits in ζ are listed in tab. 5.2. Com-
bined with a QE interval and an antenna function, these boundaries account for the in-
tegrated tree-level splitting probability when going from one scale Q2

1 to another Q2
2, as

5This distinction comes about from using quantities that are similar to a squared mass, squared transverse
momentum, and squared energy, respectively.
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Ordering Q2
E ζmin(Q2

E) ζmax(Q2
E) 3→ 4 restriction

p⊥
l 2m2

IK
√
yijyjk

1∓
√

1−Q4
E/m

4
IK

2 θ
(
m2

ant − 2√sijsjk
)

s 4m2
IK yijyjk

1∓
√

1−Q2
E/m

2
IK

2 θ
(
m2

ant − 4 sijsjks

)
mD

l 2m2
IK min(yij , yjk) Q2

E

2m2
IK

1− Q2
E

2m2
IK

θ
(
m2

ant − 2 min(sij , sjk)
)

s 4m2
IK min(y2

ij , y
2
jk)

√
Q2
E

4m2
IK

1−
√

Q2
E

4m2
IK

θ
(
m2

ant − 4min(s2ij ,s
2
jk)

s

)
E∗

l m2
IK (yij + yjk) 0 1 1

s m2
IK (yij + yjk)2 0 1 θ

(
m2

ant − (sij+sjk)2

s

)
Table 5.2: Boundaries corresponding to the ordering variables portrayed in fig. 5.2, with m2

ant

corresponding to the active 3 → 4 dipole sqg or sgq̄ , and s = m2
Z at the Z pole. The labelling l

and s in the ordering column indicate the choice of linear and squared for the ordering variables.
We have chosen ζ2 as the energy sharing variable for mD and p⊥ ordering and ζ1 for E∗ ordering,
with ζ defined as in eq. (5.26) and eq. (5.27). The energy variable will lead to infinities if the
hadronization scale is not imposed as a cut-off.

expressed by eq. (5.22). The last column in tab. 5.2 tells when the 3→ 4 ordering condi-
tion is active. In fig. 5.3 this corresponds to a region darkening due to the restriction, with
its shade determined by the amount of restricted dipoles.

Finally, we note that the dependence onQ in eq. (5.29) causes explicit non-Markovian
behavior at the 4-parton level and beyond, since the value of Q then depends explicitly
on which branching was the last to occur. A more strictly Markovian variant of this
is obtained by letting the min() function act on all possible Q values (corresponding
to all possible colour-connected clusterings) of the preceding topology. In that case, a
single Q value can be used to characterize an entire n-parton topology, irrespective of
which branching was the last to occur. Since the distinction between Markovian and non-
Markovian shower restart conditions only enters starting from the 4→ 5 parton evolution
step, it will not affect our discussion of the second-order 2 → 3 branching process. For
completeness, we note that the strongly ordered showers in VINCIA are of the ordinary
non-Markovian type, while the smoothly ordered ones are Markovian.

5.1.4 Smooth Ordering
In addition to traditional (strongly ordered) showers, we shall also consider so-called
smooth ordering [110]: applying the ordering criterion as a smooth dampening factor in-
stead of as a step function. This is not as radical as it may seem at first. Applying a jet
algorithm to any set of events will in general result in some small fraction of unordered
clustering sequences. This is true even if the events were generated by a strongly ordered
shower algorithm, if the jet clustering measure is not strictly identical to the shower or-
dering variable. An example of this, for strong ordering in p⊥ and in mD, clustered with
the kT algorithm, can be found in [134].

In smooth ordering, the only quantity which must still be strictly ordered are the an-
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Figure 5.4: The smooth-ordering factor (solid) compared to a strong-ordering Θ function (dashed).

tenna invariant masses, a condition which follows from the nested antenna phase spaces
and momentum conservation. Within each individual antenna, and between competing
ones, the measure of evolution time is still provided by the ordering variable, which we
therefore typically refer to as the “evolution variable” in this context (rather than the “or-
dering variable”), in order to prevent confusion with the strong-ordering case. The evo-
lution variable can in principle still be chosen to be any of the possibilities given above,
though we shall typically use 2p⊥ for gluon emission and mqq̄ for gluon splitting.

In terms of an arbitrary evolution variable, Q, the smooth-ordering factor is [134]

Pimp =
Q̂2

Q̂2 +Q2
, (5.31)

where Q is the evolution scale associated with the current branching, and Q̂ measures the
scale of the parton configuration before branching. A comparison to the strong-ordering
step function is given in fig. 5.4, on a log-log scale.

In the strongly-ordered region of phase-space, Q � Q̂, we may rewrite the Pimp

factor as

Pimp =
1

1 + Q2

Q̂2

Q<Q̂
= 1− Q2

Q̂2
+ . . . . (5.32)

Applying this to the 2 → 3 antenna function whose leading singularity, eq. (5.16), is
proportional to 1/Q2, we see that the overall correction arising from the Q2/Q̂2 and
higher terms is finite and of order 1/Q̂2; a power correction. The LL singular behaviour
is therefore not affected. However, at the multiple-emission level, the 1/Q̂2 terms do
modify the subleading logarithmic structure, starting from O(α2

s), as we shall return to
below.

In the unordered region of phase-space, Q > Q̂, we rewrite the Pimp factor as

Pimp =
Q̂2

Q2

1

1 + Q̂2

Q2

Q>Q̂
=

Q̂2

Q2

(
1− Q̂2

Q2
+ . . .

)
, (5.33)
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which thus effectively modifies the leading singularity of the LL 2 → 3 function from
1/Q2 to 1/Q4, removing it from the LL counting. The only effective terms ∝ 1/Q2

arise from finite terms in the radiation functions, if any such are present, multiplied by the
Pimp factor. Only a matching to the full tree-level 2→ 4 functions would enable a precise
control over these terms. Up to any given fixed order, this can effectively be achieved by
matching to tree-level matrix elements, as will be discussed in section 5.2.1. Matching
beyond the fixed-order level is beyond the scope of this chapter. We thus restrict ourselves
to the observation that, at the LL level, smooth ordering is equivalent to strong ordering,
with differences only appearing at the subleading level.

The effective 2 → 4 probability in the shower arises from a sum over two different
2→ 3⊗ 2→ 3 histories, each of which has the tree-level form

Â Pimp A ∝
1
Q̂2

Q̂2

Q̂2 +Q2

1
Q2

=
1

Q̂2 +Q2

1
Q2

, (5.34)

thus we may also perceive the combined effect of the modification as the addition of a
mass term in the denominator of the propagator factor of the previous splitting. In the
strongly ordered region, this correction is negligible, whereas in the unordered region,
there is a large suppression from the necessity of the propagator in the previous topology
having to be very off-shell, which is reflected by the Pimp factor. Using the expansion for
the unordered region, eq. (5.33), we also see that the effective 2 → 4 radiation function,
obtained from iterated 2→ 3 splittings, is modified as follows,

P2→4 ∝
1
Q̂2

Q̂2

Q2

1
Q2
→ 1

Q4
+O(...) , (5.35)

in the unordered region. That is, the intermediate low scale Q̂, is removed from the
effective 2→ 4 function, by the application of the Pimp factor.

Finally, to illustrate what happens to the Sudakov factors, we illustrate the path through
phase space taken by an unordered shower history in fig. 5.5. An antenna starts shower-
ing at a scale equal to its invariant mass,

√
s, and a first 2 → 3 branching occurs at the

evolution scale Q̂. This produces the overall Sudakov factor ∆2→3(
√
s, Q̂). A daugh-

ter antenna, produced by the branching, then starts showering at a scale equal to its own
invariant mass, labeled

√
s1. However, for all scales larger than Q̂, the Pimp factor sup-

presses the evolution in this new dipole so that no leading logs are generated. To leading
approximation, the effective Sudakov factor for the combined 2→ 4 splitting is therefore
given by

∆eff
2→4 ∼ ∆2→3(

√
s, Q̂) , (5.36)

in the unordered region. Thus, we see that a dependence on the intermediate scale Q̂
still remains in the effective Sudakov factor generated by the smooth-ordering procedure.
Since Q̂ < Q in the unordered region, the effective Sudakov suppression of these points
might be “too strong”. This situation is of course better than in the strongly ordered case,
in which these points are zero, but it does suggest that a correction to the Sudakov factor
may be desirable, in the unordered region. A study of Z → 4 jets at one loop would be
required to shed further light on this question.
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Figure 5.5: Illustration of scales and Sudakov factors involved in an unordered sequence of two
2 → 3 branchings, representing the smoothly ordered shower’s approximation to a hard 2 → 4
process.

Having presented introductory aspects of (antenna) showers, we now turn to a detailed
discussion of how we match them to higher fixed-order calculations.

5.2 Matched Antenna Showers
In this section we will discuss the matching of the antenna shower to fixed-order accuracy,
thereby restoring knowledge concerning the finite terms.

5.2.1 Tree-Level Matching
The strategy for matching to tree-level matrix elements used in VINCIA was defined by
GKS in [110] and is tightly related to the veto algorithm outlined above. The philosophy
is to view the shower produced by the smoothly ordered antenna functions as generating
an all-orders approximation to QCD, which can be systematically improved, order by
order, by including one more factor in the accept probability, called the matrix-element
correction. For a given trial branching, the full trial accept probability, up to the highest
matched number of partons, is then obtained as a product of the ordinary trial-accept
probability in the shower, multiplied by this extra correction factor.

Since the shower is already correct in the soft and collinear limits, the matrix-element
correction factor will tend to unity in those limits, but it can deviate on either side of
unity outside those limits. As long as the combined accept probability is still smaller than
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unity, a probabilistic accept/reject step can still be applied, without having to worry about
reweighting the events (which would be required if the total accept probability should
exceed unity). It is also important to define the factor only in terms of physical cross
sections (here represented by LO matrix elements), which guarantees positivity. (Again, if
it were allowed to become negative, one would have to introduce negative-weight events,
but this is avoided in the GKS strategy as defined in [110]).

As we have seen, the shower furnishes an all-orders approximation to QCD. The aim
is, for each resolved parton/jet multiplicity, to match the answer provided by the shower
to an, ideally, all-orders exact expression, by applying a multiplicative correction factor,
schematically [110, 112]

Matched = Approximate
Exact

Approximate
. (5.37)

At tree level, we in fact know only the first term in the expansion of the numerator, and we
therefore expand the shower approximation to the same level. For n partons, assuming
the approximation has already (recursively) been matched to the preceding order,

Exact → |Mn|2 (5.38)

Approximate →
∑
j

g2
Tj CTj ATj Paccept |Mn−1j |2

=
∑
j

g2
j Cj Pimp PAri Aj |Mn−1j |2 , (5.39)

where the subscript “T” indicates trial quantities (cf. section 5.1.2), we have suppressed
the dependence on phase-space points, Φ, and the subscript j in the (n−1)-parton matrix
element indicates the configuration obtained by performing the inverse shower step that
removes parton j from the n-parton state.

The factors in eq. (5.39) are easy to calculate if a tree-level matrix-element (ME) gen-
erator is available to provide the |M |2 factors. The total ME-corrected accept probability
is thus simply eq. (5.19),

PLO
accept = Paccept Rn = Paccept

|Mn|2∑
j g

2
j Cj Pimp PAri Aj |Mn−1j |2

. (5.40)

As mentioned above, this factor should be positive and smaller than unity, in order to avoid
having to reweight any events. In practice, we have found the trial function defined in
eq. (5.16) to guarantee this for all processes we have so far considered, mainly consisting
ofZ → n andH → n partons. As shown in [110], it is also possible to absorb subleading-
colour corrections into this matching factor in a positive-definite way, but since subleading
colour goes beyond the scope of our study we do not reproduce the arguments here.

The fact that these factors change the distribution of the final set of generated events
to the correct matrix-element answer can be explained by following the steps of the al-
gorithm and summing over all possible branching histories. We start from Born-level
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Chapter 5. Antenna Showers

matrix-element events, and generate trial shower branchings, for a trial approximation to
the (B + 1)-parton matrix element of:

|MTrial
B+1 |2 =

∑
i

g2
Ti CTiATi |MLO

Bi |2 , (5.41)

with i running over all possible single-parton clusterings that correspond to allowed shower
branchings. Applying the LO accept probability, eq. (5.40), changes this to

→
∑
i

g2
Ti CTiATi PLO

accept |MLO
Bi |2

=
∑
i

g2
i Ci Pimp PAriAi

|MLO
B+1|2∑

j g
2
sj Cj Pimp PAriAj |MLO

Bj
|2 |M

LO
Bi |2

= |MLO
B+1|2 . (5.42)

That is, summed over shower histories, numerators and denominators are designed to
cancel exactly, leaving only the LO matrix element for B+1 partons, as desired. Due
to the full phase-space coverage and explicitly Markovian nature of the smoothly ordered
shower algorithm, this procedure is straightforward to iterate for Born + 2, 3, etc partons6.

To provide a connection with antenna subtraction, which will be useful when we ex-
tend to NLO matching below, we can rewrite the ratio in eq. (5.37) by a trivial rearrange-
ment,

Matched = Approximate
(

1 +
Exact− Approximate

Approximate

)
. (5.43)

The numerator in this equation is very similar to a standard antenna-subtracted matrix
element, though we emphasize that our antennae are of course modified by the presence
of the Pimp and PAri factors.

Let us finally re-emphasize that since we apply the correction factor to the antenna
functions themselves, thereby modifying the probability for a branching to occur, the
probability for a branching not to occur is also modified. These corrections will therefore
also be present in the Sudakov factors generated by the corrected shower evolution. The
fact that the correction factor, Rn, is unity in all LL singular limits (since the shower
functions are guaranteed to match the matrix-element singularities there) implies that the
LL properties of the Sudakov factors are not affected by this modification. However, the
tower of subleading logarithms is changed, for better or worse. While it is known that
finite terms do not exponentiate our corrections here also include a more subtle aspect,
namely a resummation of the subleading logarithms present in the higher-order matrix el-
ements. At this level, however, we cannot be sure that this procedure produces the correct
subleading logarithms of a formally higher-order resummation. Therefore, we view it at

6That is not the case for ordinary strongly ordered frameworks, due to the presence of dead zones in phase
space and to the generally non-Markovian shower restart conditions. For such algorithms, addition of events in
the dead zones [135], with CKKW-like Sudakov-factor prescriptions for multi-leg matching [136, 137], would
presumably be necessary.
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5.2. Matched Antenna Showers

present merely as an interesting, and hopefully beneficial, side-effect of unitarity-based
matching. The examination of formally subleading terms carried out in the next chapter
is a first step towards a more rigorous study of these aspects.

5.2.2 One-Loop Matching at the Born Level
For the Born level, at NLO, the GKS matching strategy [110] reduces to the POWHEG
one [26, 108, 109]. We nonetheless begin by recapitulating the steps used to derive the
one-loop correction to the Born-level matrix element, in our notation to demonstrate the
matching in an educational way. We then continue to higher multiplicities.

As our basis for one-loop matching we take the tree-level strategy described in sec-
tion 5.2.1. Since the corrections are applied as modifications to the branching proba-
bilities, without adding, subtracting, or reweighting events, the total inclusive rate after
tree-level matching to any number of partons, is still just the leading-order, Born-level
one. By the same token, after one-loop matching, at the integrated level, the total NLO
correction to the inclusive rate must therefore just be the NLO “K-factor”,

KNLO =
σNLO

inc

σLO
inc

. (5.44)

For processes like Z decay, where the NLO correction has no dependence on the Born-
level kinematics, this is trivial to implement as an overall reweighting factor on the Born-
level events,

KNLO
Z = 1 + VZ = 1 +

αs
π
, (5.45)

where we have introduced the notation V for the NLO correction term, anticipating a sim-
ilar notation for the multileg case below. Note that one could equally trivially normalize
to NNLO or to data, as desired for the application at hand (we note though that such a
normalization choice does not, by itself, ensure NNLO precision for any quantity besides
the total inclusive rate).

However, for more complicated cases, where the NLO correction does depend on the
Born-level kinematics, it is worth illustrating the general procedure for deriving a fully
differential K-factor, that can be applied to the Born-level events, for each phase-space
point. This also serves as a useful warm-up exercise for the multi-leg case below.

At NLO, we may distinguish between inclusive and exclusive rates for the first time.
Either can in principle be used to derive matching equations between showers and fixed-
order calculations, but the exclusive one is best suited for deriving expressions at the fully
differential level. We recall that the exclusive n-jet cross section is defined as the cross
section for observing n and only n jets, while the inclusive n-jet cross section counts the
number of events with n or more jets. One therefore has the trivial relation

σincl
n (Q) =

∑
k≥n

σexcl
k (Q) . (5.46)

with Q the resolution scale of whatever (IR safe) algorithm is used to define the jets.
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Inclusive Born

The total inclusive rate produced by the tree-level matched shower is just the Born-level
matrix element,

Approximate → |M0
2 |2 , (5.47)

where the subscript indicates the parton multiplicity (2 for Z → qq̄ decay) and the super-
script indicates the loop order beyond the Born level (0 indicates the Born loop order).
Because cancellation of real and virtual corrections is exact in both the unmatched shower
as well as in the tree-level matching scheme described above, there are no further correc-
tions to consider for the inclusive rate. In other words, the total integrated cross section
produced by the shower is obtained merely by integrating eq. (5.47) over all of the Born-
level phase space. We now seek a correction term, V2, such that

Matched → (1 + V2Z) |M0
2 |2 (5.48)

gives the correct inclusive NLO rate. From eq. (5.45), we know that the correction term
for Z decay is

V2Z =
αs
π
. (5.49)

A systematic way of deriving this result, which can be applied to arbitrary processes,
is provided by considering the cross section at the exclusive level.

Exclusive Born

The shower expression for the exclusive Z → qq̄ rate (defined at the hadronization cut-
off, which is the lowest meaningful resolution scale in the perturbative shower) is

|M0
2 |2 ∆(s,Q2

had) = |M0
2 |2
(

1−
∫ s

Q2
had

dΦant g
2
s C Ag/qq̄ +O(α2

s)

)
, (5.50)

where we have expanded the Sudakov factor ∆ to first order. Due to the presence of the
hadronization scale, this expression is IR finite and can be defined in 4 dimensions. The
colour factor for qq̄ → qgq̄ is

Cg/qq̄ = 2CF , (5.51)

and we assume that the antenna function, A, is either the one derived from Z decay [138]
or has been matched to it, using LO matching. That is,

g2
s 2CF Ag/qq̄ =

|M0
3 |2

|M0
2 |2

. (5.52)

We first consider the limit Qhad → 0, in which case the expression becomes

|M0
2 |2 ∆(s, 0) = |M0

2 |2
(

1−
∫ s

0

dΦant g
2
s 2CF Ag/qq̄ +O(α2

s)
)
, (5.53)
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which can only be defined in the presence of an IR regularization scheme. We shall here
use dimensional regularization, working in d = 4 − 2ε dimensions. Below, we rederive
the matching equations in 4 dimensions, for Qhad 6= 0, and show that the same final
matching factors are obtained in both cases.

At NLO, the exclusive Z → qq̄ rate at “infinite” perturbative resolution is

|M0
2 |2 + 2 Re[M0

2M
1
2
∗
] = |M0

2 |2
(

1 +
2 Re[M0

2M
1
2
∗]

|M0
2 |2

)
, (5.54)

where we have written the right-hand side in a form similar to eq. (5.53), in d dimensions.
Because the resolution scale has been taken to zero, there are no unresolved 3-parton
configurations to include. The virtual matrix element is

2 Re[M0
2M

1
2
∗]

|M0
2 |2

=
αs
2π

2CF
(
2Iqq̄(ε, µ2/s)− 4

)
, (5.55)

with the function Iqq̄ used to classify the ε divergences [125,139,140]. Note that we have
modified the definition of I to make it explicitly dimensionless, see appendix A. On the
shower side, the integral of the Z → qgq̄ antenna in eq. (5.53) is [125]∫ s

0

dΦant 2CF g2
s Ag/qq̄ =

αs
2π

2CF

(
−2Iqq̄(ε, µ2/s) +

19
4

)
, (5.56)

and, not surprisingly, the difference comes out to be exactly αs/π × |M0
2 |2. Writing this

correction as a multiplicative K-factor, we obtain eq. (5.45).
As a cross-check, we now repeat the derivation in 4 dimensions, reinstating the hadroniza-

tion scale. The fixed-order side is then

|M0
2 |2
(

1 +
2 Re[M0

2M
1
2
∗]

|M0
2 |2

+
∫ Q2

had

0

dΦant g
2
s C Ag/qq̄

)
, (5.57)

where the integral that has been added corresponds to unresolved 3-parton configura-
tions, with A again given by eq. (5.52). Though eq. (5.50) is now defined entirely in
4 dimensions, we still need dimensional regularization to regulate the two last terms in
the fixed-order expression. In principle, the integral in the last term could be carried out
explicitly, but it is simpler to rewrite it as∫ Q2

had

0

dΦant g
2
s C Ag/qq̄ =

∫ m2
Z

0

dΦant g
2
s C Ag/qq̄ −

∫ m2
Z

Q2
had

dΦant g
2
s C Ag/qq̄ (5.58)

where the first term is just the full antenna integral, eq. (5.56), and the second term is
identical to the one appearing in eq. (5.50), with which it cancels completely, cf. the
definition of the tree-level matching, eq. (5.52). The final correction term is therefore
again exactly equal to αs/π × |M0

2 |2.
Note that the scale and scheme dependence of the αs/π correction is not specified

since its ambiguity is formally of order α2
s. For definiteness we take the renormal-

ization scale for this correction to be proportional to the invariant mass of the system,
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µR = kinc
µ

√
ŝ (so that µR = kinc

µ mZ at the Z pole), with kinc
µ thus representing the free

parameter that governs the choice of renormalization scale for the total inclusive rate for
Z → hadrons. We shall consider both one-loop and two-loop running options. The value
of αs(mZ) will be determined from LEP data in the next chapter.

5.3 Conclusion
This chapter started with an introduction of the VINCIA antenna shower. The shower can
be evolved by three different types of ordering variables pT , mD and E∗. Implications
of the strong ordering requirement were investigated for e+e− → 3 partons. Moreover,
a different type of ordering, allowing for a higher phase space occupation in comparison
with strong ordering was introduced. The smooth ordering allows a restart scale for the
shower which is slightly above the generated emission scale. It was demonstrated that the
procedure of smooth ordering only affects the subleading terms generated by the shower.
The VINCIA shower therefore provides an ordering prescription that lies in between a
strong ordered and unordered shower, and reduces the dead zone of additional radiation.
Then we proceeded to derive NLO matching terms for e+e− → 2 jets. It was shown that
such a matching may be derived for an exclusive cross-section. The case of two jets was
special however, as the lack of additional radiation on the Born amplitude only allows
NLO accuracy by changing the weight of the event. In the next chapter, the consecutive
matching to three jets of the shower will be implemented for NLO accuracy by adapting
the branching probability.
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Chapter 6

One-Loop Matching for Z → 3
Partons

In the previous chapter the VINCIA antenna-shower algorithm was presented followed
by a first description for NLO matching for Z → 2 partons. The two parton case is
special for two reasons. Firstly because of the absence of renormalization terms and
secondly, since the lack of additional radiation required a special treatment to match the
event to NLO accuracy, by adapting the weight. Consecutive NLO matching will employ
a rescaling of the accept probability to incorporate knowledge of the NLO calculation in
a unitary approach. This chapter will focus on generalizing the approach for an additional
parton in the final state and is therefore the key step to a fully general framework that
allows for an arbitrary number of partons.

6.1 Constructing a Matching Term
The approximation to the 3-parton exclusive rate produced by a shower matched to (at
least) NLO for the 2-parton inclusive rate and to LO for the 3-parton one, is

Approximate → (1 + V2) |M0
3 |2 ∆2(m2

Z , Q
2
3) ∆3(Q2

R3, Q
2
had) , (6.1)

where M0
3 is the tree-level Z → qgq̄ matrix element and QR3 denotes the “restart scale”.

For strong ordering, QR3 is equal to Q3, while, for smooth ordering, it is given by the
nested antenna phase spaces, i.e., by the successive antenna invariant masses. The sub-
scripts on the two Sudakov factors ∆2 and ∆3 make it explicit that they refer to the event
as a whole, see the illustration in fig. 6.1. Again, we have the choice whether we wish
to work in 4 dimensions, with a non-zero hadronization scale, Qhad, or in d dimensions
with the hadronization scale taken to zero. We have maintained the hadronization scale in
eq. (6.1), though we shall see below that the dependence on it does indeed cancel in the
final result.
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0

QE

mZ

∆qg(Q
2
R, 0) ∆gq̄(Q

2
R, 0)

∆qq̄(m
2
Z , Q2

E)

ag/qq̄
QR

dσqq̄

Figure 6.1: Illustration of the evolution scales and Sudakov factors appearing in the exclusive 3-jet
cross section, eq. (6.1).

The 2-parton Sudakov factor, ∆2, is generated by the (matched) evolution from 2 to 3
partons,

∆2(m2
Z , Q

2
3) = 1−

∫ m2
Z

Q2
3

dΦant g
2
s 2CF Ag/qq̄ +O(α2

s) , (6.2)

withAg/qq̄ again defined by eq. (5.52). Notice that the integral only runs from the starting
scale, m2

Z , to the 3-parton resolution scale, Q2
3, hence this integral is IR finite, though it

does contain logarithms. In the remainder of this chapter, we shall work only with the
leading-colour part of the Sudakov and matrix-element expressions, hence from now on
we replace 2CF in the above expression by CA,

∆LC
2 (m2

Z , Q
2
3) = 1−

∫ m2
Z

Q2
3

dΦant g
2
s CA Ag/qq̄ +O(α2

s) . (6.3)

The 3-parton Sudakov factor, ∆3, imposes exclusivity and is given by

∆3(Q2
R3, Q

2
had) = 1−

2∑
j=1

∫ Q2
R3

Q2
had

dΦant g
2
s (CA AEj + 2TR ASj) +O(α2

s) , (6.4)

where the index j runs over the qg and gq̄ antennae, and we use subscripts E and S for
gluon emission and gluon splitting, respectively. We have implicitly assumed smooth
ordering here, which implies that the upper boundaries on the integrals are given by the
respective dipole invariant masses (squared), sj . Note also that we must take into account
all modifications that are applied to the LL antenna functions, including Pimp, PAri, and
LO matrix-element matching factors. (We do not write out these factors here, to avoid
clutter.) I.e., the antenna functions in the above expression must be the ones actually
generated by the shower algorithm, including the effect of any modifications imposed by
vetos.
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For strong ordering, there are no Pimp factors, and the upper integral boundary is
instead min(Q2

3, sj),

∆3(Q2
3, Q

2
had) = 1−

2∑
j=1

∫ min(Q2
3,sj)

Q2
had

dΦant g
2
s (CA AEj + 2TR ASj) +O(α2

s) .

(6.5)
However, since strong ordering is not able to fill the entire 4-parton phase space [110,
141], full NLO matching can only be obtained for the smoothly ordered variant. It is
nonetheless interesting to examine both types of shower algorithms, since even in the
strongly ordered case, we may compare the Sudakov logarithms arising atO(α2

s) to those
present in the fixed-order calculation.

On the fixed-order side, the expression for the 3-parton exclusive rate is simply

Exact → |M0
3 |2 + 2 Re[M0

3M
1∗
3 ] +

∫ Q2
had

0

dΦ4

dΦ3
|M0

4 |2 , (6.6)

where the last term represents 4-parton configurations in which a single parton is unre-
solved with respect to the hadronization scale. For Z decay, d-dimensional expressions
for the virtual matrix element have been available since long [125, 139, 142, 143]. De-
tails on the calculation and in particular its renormalization, are given in appendix B, in a
notation convenient for our purposes.

We now seek a fully differential matching factor,K3 = 1+V3, such that the expansion
of

Matched = (1 + V3) Approximate , (6.7)

reproduces the exact expression, eq. (6.6), to one-loop order. (“Approximate” here stands
for the tree-level matched shower approximation, eq. (6.1).) Trivial algebra yields

V LC
3 =

[
2 Re[M0

3M
1∗
3 ]

|M0
3 |2

]LC

− V2 (6.8)

+
∫ m2

Z

Q2
3

dΦant g
2
s 2CA Ag/qq̄ +

2∑
j=1

∫ sj

0

dΦant g
2
s (CA AEj + 2TR ASj)

+
∫ Q2

had

0

dΦ4

dΦ3

|M0
4 |2

|M0
3 |2
−

2∑
j=1

∫ Q2
had

0

dΦant g
2
s (CA AEj + 2TR ASj) ,

where we have reinstated d-dimensional forms of the one-loop matrix element and of the
divergent 3 → 4 terms. For a shower matched to |M0

4 |2 at leading order, the last two
terms will cancel, by definition of the matched antenna functions (even for an unmatched
shower, the difference could at most be a finite power correction in the hadronization
scale, since the matrix element and the shower antenna functions have the same singular-

83



6.1. Constructing a Matching Term

ities), yielding:

V LC
3Z =

[
2 Re[M0

3M
1∗
3 ]

|M0
3 |2

]LC

− V2Z

+
∫ m2

Z

Q2
3

dΦant g
2
s 2CA Ag/qq̄ +

2∑
j=1

∫ sj

0

dΦant g
2
s (CA AEj + 2TR ASj) .

(6.9)

Rewriting the remaining integrals in terms of a set of standardized antenna subtraction
terms, writing out the ordering functions for gluon emission and gluon splitting, OE and
OS , explicitly, and denoting the ARIADNE factor for gluon splitting by PA, we arrive at
the following master equation for the second-order correction to the 3-jet rate:

V LC
3Z =

[
2 Re[M0

3M
1∗
3 ]

|M0
3 |2

]LC

− V2Z +
2∑
j=1

∫ sj

0

dΦantg
2
s

(
CAA

std
Ej + nFA

std
Sj

)
+
∫ m2

Z

Q2
3

dΦant g
2
s CA A

std
g/qq̄ +

∫ m2
Z

Q2
3

dΦant g
2
s CA δAg/qq̄ (6.10)

−
2∑
j=1

∫ sj

0

dΦant g
2
s

(
CA (1−OEj) Astd

Ej + nF (1−OSj) PAj Astd
Sj

)
+

2∑
j=1

∫ sj

0

dΦantg
2
s (CA δAEj + nF δASj)−

2∑
j=1

∫ sj

0

dΦantg
2
snF

(
1− PAj

)
Astd
Sj ,

with the standardized Gehrmann-Gehrmann-de Ridder-Glover (GGG) subtraction terms
defined by [125]:

Astd
g/qq̄ = a0

3 ( = A0
3) ,

∫ s

0

dΦant g
2
s A

std
g/qq̄ =

αs
2π

(
−2I(1)

qq̄ (ε, µ2/s) +
19
4

)
Astd
g/qg = d0

3 ,

∫ s

0

dΦant g
2
s A

std
g/qg =

αs
2π

(
−2I(1)

qg (ε, µ2/s) +
17
3

)
Astd
q̄/qg = e0

3 ( = 1
2E

0
3) ,

∫ s

0

dΦant g
2
s A

std
q̄/qg =

αs
2π

(
−2I(1)

qg,F (ε, µ2/s)− 1
2

)
(6.11)

whose IR limits and integrated pole structures were examined thoroughly in [125, 139,
140], though we have here rewritten the IR singularity operators I(1) in explicitly dimen-
sionless forms, see appendix A. (The alphabetical labeling in eqs. (6.11) corresponds to
the notation used in [125].)

The first line and first term on the second line in eq. (6.10) represent a standard
antenna-subtracted one-loop matrix element, normalized to the Born level, with the stan-
dardized subtraction terms tabulated in eq. (6.11), and the additional finite term V2Z orig-
inating from the NLO matching at the preceding order; see section 5.2.2, eq. (5.49).
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The subsequent terms express the difference between the simple fixed-order subtrac-
tion carried out in the first line and the actual terms that are generated by a matched
Markovian antenna shower. Physically, these terms represent the difference between the
evolution of a single dipole (the original qq̄ system) and evolution of two dipoles (the
post-branching qgq̄ system), with a transition occuring at the branching scale Q3. As
mentioned above, the OEj and OSj factors in the third line represent the ordering crite-
rion imposed in the evolution, either strong or smooth. For smooth ordering, they are

1−OEj = 1− Q2
3

Q2
Ej +Q2

3

, (6.12)

1−OSj = 1− Q2
3

m2
qq̄ +Q2

3

, (6.13)

with QEj the evolution variable used for gluon emissions, while for strong ordering, the
factor (1− Oj) can be removed if the integral boundaries are replaced by [Q2

3, sj ] (note:
this replacement should only be done in the third line).

The last term in eq. (6.10) is an artifact of the ARIADNE factor, PAri, which was in-
troduced in section 5.1.2 and is applied to gluon-splitting antennae in VINCIA. Summed
over the two “sides” of the splitting gluon, this produces the same collinear singularities
as the standard gluon-splitting antenna, but in highly asymmetric configurations in which
the splitting gluon is near-collinear to a neighbouring colour line, the ARIADNE factor
produces a strong suppression, which improves the agreement with the tree-level 4-parton
matrix element [133], and which then generates an additional logarithm.

Notice that all but the δA terms are defined in terms of standarized antenna functions,
and the corresponding integrals can be carried out analytically, once and for all. We
give explicit forms for each of these terms, for each choice of evolution variable, in the
following section.

The only terms of eq. (6.10) that need to be integrated numerically are thus the δA
terms, which express the difference between the standardized antenna functions and those
generated by the actual (matched) shower evolution, which may have different finite terms
and/or be matched to the LO 4-parton matrix element. Nonetheless, since the previous
lines already contain most of the structure, we expect these functions to be relatively well-
behaved and numerically sub-leading. Specifically, the δA terms for gluon emission and
gluon splitting, respectively, are defined by

δALC
Ej = OEj

(
RLC

4EA
LL
Ej − Astd

Ej

)
, (6.14)

δALC
Sj = OSj PAj

(
R4SA

LL
Sj − Astd

Sj

)
, (6.15)

with ALL the unmatched shower antenna function (as defined in [113, 133]) and the
second-order LO matching factors, R4E and R4S (for Z → qggq̄ and Z → qq̄′q′q̄, re-
spectively), defined as in eq. (5.40), but including only the leading-colour terms in RLC

4E .
For strong ordering, similarly to above, the Oj factors can be removed by changing the
integration boundaries of the δA terms to [0, Q2

3].
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Finally, we note that one could in principle equally well have defined eq. (6.10) with-
out the terms on the third line. The δA terms in eqs. (6.14) and (6.15) would then like-
wise have to be defined without Pimp and PAri factors. However, while this would give
a seemingly cleaner relation with standard fixed-order subtraction, the behaviour of the
(numerical) integrals over the δA terms would be more difficult, due to over-subtraction in
the unordered regions. (Showers without either a strong-ordering condition or a smooth-
ordering suppression greatly overestimate the real-radiation matrix elements in the un-
ordered region [110, 133, 144].) Numerically, it is therefore more convenient to integrate
the contributions represented by the third line in eq. (6.10) analytically, leaving only the
suppressed terms in eq. (6.15) to be integrated over numerically.

To be specific, the numerical integration over the δA terms is performed by rewriting
the δA integrals in dimensionless MC form, as:

αs
2π
CA

2∑
j=1

1
4

1
N

N∑
i=1

( sj δAj(Φi) ) , (6.16)

and similarly for the gluon-splitting terms, with Φi a number of random (uniformly dis-
tributed) antenna phase-space points. The common factor 1/4 arises from combining
the prefactor 8π2 above with the area of the phase-space triangle, 1/2, and the factor
1/(16π2) from the phase-space factorization, dΦant. For smooth p⊥-ordering with an
arbitrary normalization factor N⊥ (so Q2

E = N⊥p
2
⊥), the ordering factors, Oj , reduce to:

OE(qigj , q̄k → qagbgc, q̄k) =
yjk

yjk + xabxbc
, (6.17)

OE(qi, gj q̄k → qi, gagbq̄c) = same with i↔ k , (6.18)

OS(qigj , q̄k → qaq̄
′
bq
′
c, q̄) =

N⊥yjk
N⊥yjk + xbc

, (6.19)

OS(qi, gj q̄k → qi, q̄
′
cq
′
bq̄a) = same with i↔ k , (6.20)

where we have used y with ijk indices for the scaled invariants in the original qgq̄ topol-
ogy and x with abc indices for the integration variables in the antenna phase space. Note
also that the y values are normalized to the full 3-parton CM energy (squared), while the
x values are normalized to their respective dipole CM energies (squared).

6.1.1 The Renormalization Term
A further ingredient to be discussed is the choice of renormalization scale on both the fixed
order and parton shower sides of the calculation, as these scales are in general chosen
differently in both sides. Hence a translation term arises at second order, which must
account for this difference, keeping in mind that, as the scale evolves from one to the
other, flavour thresholds are passed. Our aim is to have the flexibility to use fixed order
matrix elements renormalized according to their usual scheme, while maintaining the
freedom to make a different choice on the shower side.
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Chapter 6. One-Loop Matching for Z → 3 Partons

The fixed order calculations for Z-decay to jets to which we match are customar-
ily renormalized in a version of the MS scheme called the Zero-Mass Variable Flavour
Number Scheme (ZM-VFNS). In this scheme the bare QCD coupling is renormalized as

gb = µεg(µ2
R)
[
1 +

αs(µ2
R)

8π

{(
−1
ε

+ γE − ln 4π + ln
µ2
R

µ2

)
β0

}]
(6.21)

with β0 = (11CA − 2nF )/3 ≡ βF0 and nF is the number of light flavours. One thus
ignores flavours that are heavier than the scale of the calculation, both in the virtual and
in the real calculations. Once all the UV poles are cancelled, one has a running coupling
that depends on the number of light flavours for the scale µR at hand. One then changes
the flavour number when a threshold is crossed. For our present case of Z boson decay to
jets we take nF = 5 for µR not too different from the Z-boson mass.

Let us be more specific about the matching of αs across flavour thresholds. At one
loop,

α(nF )
s (µR) =

4π/βF0
ln(µ2

R/Λ
2
F )

. (6.22)

The value of ΛF depends on the number of active flavours, as follows. When passing
flavour thresholds the following one-loop matching conditions are imposed

α(5)
s (mb) = α(4)

s (mb), α(4)
s (mc) = α(3)

s (mc) . (6.23)

These conditions can be satisfied if ΛF obeys the matching conditions

ln
Λ2
F

Λ2
F+1

=
2

3βF0
ln
m2
F+1

Λ2
F+1

. (6.24)

With these conditions one can also express αs values for different flavour numbers into
eachother. E.g. if mc < µR < mb, one can express α(4)

s (µR) in terms of α(5)
s (µR) by the

relation
α(4)
s (µR) = α(5)

s (µR)
1

β4
0
β5

0
+
(

1− β4
0
β5

0

)
α

(5)
s (µR)

α
(5)
s (mb)

. (6.25)

For completeness we briefly review how this nF -dependent UV singularity occurs in
the context of the (inclusive) 3-jet rate, in the case where we only consider massless
quarks [142,143]. In the virtual contribution, the only one-loop diagram for Z → qq̄g that
is sensitive to the number of flavours is the quark self-energy correction on the external
gluon. The self-energy diagram itself, being scaleless, is zero in dimensional regulariza-
tion. However, renormalization of the coupling amounts to adding a nF counterterm on
the exteral gluon line proportional to

nF
2
3ε

(
µ2

µ2
R

)ε
. (6.26)
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The real contribution contributes a nF dependent (collinear) 1/ε pole as well, from gluon-
splitting

− nF
2
3ε

(
µ2

s

)ε
. (6.27)

In the sum over real and virtual contributions the poles cancel, as guaranteed by the KLN
theorem, leaving a logarithm of the form

nF
2
3

ln
(
s

µ2
R

)
. (6.28)

On the shower side a related prescription is used, in which the running coupling is
evaluated at a shower scale µPS, such that the scale again depends on the number of
flavours. Depending on the value of µPS, a corresponding value of nF is chosen, as well
as of the QCD scale ΛF . This is often different from that for a fixed order calculation.
To give a specific example, matrix elements will typically be renormalized at a scale
characteristic of the total CM energy, i.e., µ2

ME = s an event-independent value, while
resummation arguments imply one best chooses a running scale, such as µPS = p⊥, for
shower applications [128, 145], which can differ per event.

Shifting to a different scale for αs of a given flavour number is quite straightforward.
Translating from a shower scale µPS to a matrix-element scale µME amounts to replacing,
for an antenna function

ag/qq̄
∣∣
µR=µPS

→
(

1 + αs
11NC − 2nF

12π
ln
(
µ2

ME

µ2
PS

)
+O(α2

s)
)
ag/qq̄

∣∣
µR=µME

.

(6.29)
For coherent parton-shower models, the arguments presented in [145] also motivate a

change to a “Monte Carlo” scheme for αs, in which ΛQCD is rescaled, for each nF , by
the so-called CMW factor ∼ 1.5 (with some mild flavour dependence), relative to its MS
value. If the shower model being matched employs this scheme, then a further rescaling
of the renormalization-scale argument, µPS → µPS/kCMW, should be used in eq. (6.29),
with

kCMW = exp
(

67− 3π2 − 10nF /3
2(33− 2nF )

)
=


1.513 nF = 6
1.569 nF = 5
1.618 nF = 4
1.661 nF = 3

(6.30)

for Nc = 3. The translation of renormalization scale (and scheme) yields then an addi-
tional term to be added to the definition of V3 in eq. (6.10),

V3µ = −αs
2π

11NC − 2nF
6

ln
(
µ2

ME

µ2
PS

)
= −αs

2π
β0

2
ln
(
µ2

ME

µ2
PS

)
. (6.31)

By inserting the above term, which enters at overall order α2
s ln(µ2

ME/µ
2
PS), the two cal-

culations can be compared consistently at one-loop accuracy.
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Chapter 6. One-Loop Matching for Z → 3 Partons

Note that if several different shower paths populate the same fixed-order phase-space
point, then each path will in general be associated with a distinct µPS value. Thus, one
V3µ term arises for each shower path, weighted by the relative contribution of each path
to the total. Since for our case there is only one antenna contributing to Z → qgq̄, this
particular complication does not arise here.

We finally alert the reader regarding the use of different flavour number αs’s in the
master equation (6.10). In that equation cancellation of 1/ε divergences take place, al-
ready in the first line of the right hand side. For this cancellation it is important that the
subtraction terms, originating from the shower expansion and listed in eq. (6.11), use α(5)

s

renormalized as in the fixed order calculation. All subsequent terms in the master equa-
tion are finite, and constitute differences of unordered and strongly ordered shower based
terms, which are also finite, and beyond NLO.

6.1.2 Leading-Colour One-Loop Correction for Z→ 3 Jets
Combining the results above, in particular eqs. (6.10), (6.11), and (6.31), we obtain the
complete expression for the leading-colour1 one-loop correction for Z→ 3 Jets,

V3Z(q, g, q̄) =
[

2 Re[M0
3M

1∗
3 ]

|M0
3 |2

]LC

− αs
π
− αs

2π

(
11NC − 2nF

6

)
ln
(
µ2

ME

µ2
PS

)

+
αsCA

2π

[
− 2I(1)

qg (ε, µ2/sqg)− 2I(1)
qg (ε, µ2/sgq̄) +

34
3

]

+
αsnF

2π

[
− 2I(1)

qg,F (ε, µ2/sqg)− 2I(1)
gq̄,F (ε, µ2/sgq̄)− 1

]

+
αsCA

2π

[
8π2

∫ m2
Z

Q2
3

dΦant A
std
g/qq̄ + 8π2

∫ m2
Z

Q2
3

dΦant δAg/qq̄

−
2∑
j=1

8π2

∫ sj

0

dΦant (1−OEj) Astd
g/qg +

2∑
j=1

8π2

∫ sj

0

dΦant δAg/qg

]

+
αsnF

2π

[
−

2∑
j=1

8π2 PAj

∫ sj

0

dΦant(1−OSj) Astd
q̄/qg

+
2∑
j=1

8π2

∫ sj

0

dΦant δAq̄/qg −
1
6
sqg − sgq̄
sqg + sgq̄

ln
(
sqg
sgq̄

)]
,

(6.32)

where:
1We use the usual MC definition of leading colour and include terms ∝ CA and ∝ nF but neglect ones

∝ 1/CA.
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• the first line contains the full (leading-colour) one-loop matrix element, the V2Z

correction from one-loop matching at the preceding order, and the V3µ term from
the choice of shower renormalization scale;

• the second line contains the standardized subtraction term arising from the qg →
qgg and gq̄ → ggq̄ antennae;

• the third line contains the standardized subtraction term arising from the qg → qq̄′q′

and gq̄ → q̄′q′q̄ antennae;

• the fourth to last lines contain the terms arising from the difference between the
(matched) shower evolution and the standardized subtraction terms, including the
consequences of ordering choices and modification factors such as those arising
from the Ariadne factor and from matching to the LO matrix elements.

We denote the singular subtracted 1-loop matrix element by SVirtual

SVirtual =
[

2 Re[M0
3M

1∗
3 ]

|M0
3 |2

]LC

+
αsCA

2π

[
− 2I(1)

qg (ε, µ2/sqg)− 2I(1)
qg (ε, µ2/sgq̄) +

34
3

]

+
αsnF

2π

[
− 2I(1)

qg,F (ε, µ2/sqg)− 2I(1)
gq̄,F (ε, µ2/sgq̄)− 1

]
(6.33)

In section 6.2, we compute the analytical integrals corresponding to each of the shower-
generated terms, for different choices of evolution variable, ordering criterion, and an-
tenna functions.

With the one-loop matrix element expressed as in appendix B.2, it is easy to see
that the infrared singularity operators in eq. (6.33) cancel, leaving only explicitly finite
remainders (which may still contain logarithms of resolved scales). This then constitutes
the description of the one-loop matching for Z → 3 jets, having already discussed the
case for two jets. In the context of eq. (5.46) we have now corrected the first two terms
on the rhs to NLO accuracy.

6.1.3 One-Loop Correction for Born + 2 Partons
To illustrate how the formalism presented here generalizes to higher multiplicities, we
take the case of the NLO correction to Z → 4 partons. For simplicity, however, we
continue to restrict our analysis of the correction factor to the leading-colour level. At
NLO, the exclusive Z → 4 partons rate at “infinite” perturbative resolution (similarly to
above) is

Exact → |M0
4 |2 + 2Re[M0

4M
1∗
4 ] . (6.34)

Labeling the 4 partons by Z → i, j, k, `, there are two possible antenna-shower his-
tories leading to each 4-parton configuration, with j and k the last emitted parton, re-
spectively. Those two contributions both enter in the definition of the tree-level 4-parton
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matching factor,

R4 =
|M0

4 (i, j, k, `)|2
Aj/IK |M0

3 (I,K, `)|2 +Ak/JL|M0
3 (i, J, L)|2 , (6.35)

such that their sum reproduces the full 4-parton matrix element. Note that a separate
such factor is applied to Z → qggq̄ and Z → qq̄′q′q̄, and that we have suppressed
colour and coupling factors here, for compactness (we ignore the small, non-singular
extra interference terms for the special case where all four quarks have the same flavour).
The antenna functions, A, are understood to include all such factors, as well as any Pimp

and Pari factors appropriate to the branchings at hand. For a general n-parton matrix
element, the denominator contains one term for each possible clustering.

Labeling the IK → ijk history by A and the JL → jk` one by B, the sum over the
two histories yields

R4∆4(Q4, 0)
∑

α∈A,B
Aα3→4|Mα

3 |2∆2(m2
Z , Q

α
3 )∆3(Qα3 , Q

α
4 )

3∏
m=2

(1 + V αm) , (6.36)

where it is understood that α is an index, not a power, and the last product factor takes
into account the NLO matching at the preceding multiplicities. Expanding the Sudakov
factors to first order and using the definition of the NLO correction factor at the preceding
multiplicity, eq. (6.9), this becomes

R4

(
1−

∑
k

∫ sk

0

dΦantR5A4→5

) ∑
α∈A,B

Aα3→4|Mα
3 |2 ×1 +

2Re[M0
3M

1∗
3 ]α

|Mα
3 |2

+
∑
j

∫ Qα4

0

dΦantA
α
3→4

 , (6.37)

which we can rewrite as

|M4|2
(

1−
∑
k

∫ sk

0

dΦantR5A4→5

)

+ R4

∑
α∈A,B

Aα3→4|Mα
3 |2
2Re[M0

3M
1∗
3 ]α

|Mα
3 |2

+
∑
j

∫ Qα4

0

dΦantA
α
3→4

 ,(6.38)

where we again emphasize that the antenna functions are understood to include all rele-
vant coupling, Pimp, and Pari factors. The first term represents the new subtraction that
the shower generates at 4 partons, while the second represents part of the NLO correction
to the preceding multiplicity. For one of the histories (the one followed by the “current”
event), this correction has already been evaluated and can be reused. The contribution
from the other history will have to be recomputed, however. In general, there will be one
subtraction to perform at the n-parton level, and there will be m ∼ n − nBorn − 1 new
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6.2. Sudakov Integrals

subtractions that have to be done at the (n − 1)-parton level, in addition to the one that
was already done during the evolution of the current event.

Clearly, there is an undesirable scaling behavior built into this, which will make NLO
matching at many partons quite computing intensive. An alternative, which eliminates the
sum over histories, is that of sector showers, see e.g., [133, 146].

6.2 Sudakov Integrals
In this section, we work out the standardized Sudakov integrals appearing in the second
and third line of eq. (6.10), for each choice of evolution variable. We also study the soft
and collinear limits of the Sudakov integrals and compare them to those of the one-loop
matrix element. This provides an explicit check of whether the first-order expansion of the
Sudakov factors generates the correct logarithms present in the fixed-order calculation.

Given our choice of the GGG antenna functions as our standard ones, the relevant
terms are

g2
s

CA s∫
Q2

3

a0
3 dΦant −

2∑
j=1

CA

∫ sj

0

(1−OEj ) d0
3 dΦant

−
2∑
j=1

2TR nFPAj

∫ sj

0

(1−OSj ) e0
3 dΦant

 (6.39)

The general form of the first term, which originates from the 2→ 3 branching step, is

g2
sCA

s∫
Q2

3

a0
3 dΦant =

αsCA
2π

(
5∑
i=1

KiIi(s,Q2
3)

)
(6.40)

where the definitions for theKi and the Ii functions are given in appendix C, for each type
of antenna function and ordering variable. Their derivation and soft/collinear structure
will be discussed more closely below, for each choice of ordering and evolution variable.
The form of the 3 → 4 integrals depends on whether we work in the context of strong
or smooth ordering. We shall now consider each of those cases in turn, beginning with
strong ordering.

6.2.1 Strong Ordering
For strong ordering, the inverted ordering conditions in eq. (6.10), (1−OEj/Sj ), reduce to
step functions expressing integration over the unordered region. The integration surface
is thus limited from below by the phase-space contour defined by the evolution scale of
the first branching, Q2, and from above by the edge defined by the invariant mass of the
antenna.
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The expression generated by the 3→ 4 splitting case for gluon emission is

− g2
s

2∑
j=1

CA

∫ sj

0

(1−OEj ) d0
3 dΦant

= −αsCA
2π

(
5∑
i=1

KiIi(sqg, Q2
3)

)
− αsCA

2π

(
5∑
i=1

KiIi(sgq̄, Q2
3)

)
. (6.41)

where Ki and Ii are the same as those for the 2→ 3 term above, though they here appear
with different arguments. The remaining case is the 3→ 4 gluon splitting defined by

− g2
s

2∑
j=1

nFPAj

∫ sj

0

(1−OSj ) e0
3 dΦant

= −αsnF
2π

PAqgH(sqg, Q2
3) − αsnF

2π
PAgq̄H(sgq̄, Q2

3). (6.42)

with H defined in appendix C and PAj as defined in eq. (5.20). We will discuss the
derivation of these terms in more detail in the following three sections, for strong mD-,
p⊥, and energy-ordering, respectively.

Dipole Virtuality

We begin with dipole virtuality as evolution variable, which is perhaps the simplest case.
We start by repeating the integrals of eq. (6.10) with the one-particle phase space defined
as in eq. (5.8). In the case of dipole virtuality the contours are triangular (fig. 5.2a). We
recall that, for the g → qq̄ terms, it is the qq̄ invariant mass that is used as evolution
variable, regardless of what choice is made for gluon emissions. The mD scale of the
previous emission still enters, however, since that defines the ordering scale applied to
both emissions and splittings. The explicit forms of the terms in eq. (6.39) are:

=
αs
4π

CA
s

s−min(sqg,sgq̄)∫
min(sqg,sgq̄)

ds1

s−s1∫
min(sqg,sgq̄)

ds2 a
0
3(s1, s2)

−

CAsgq̄ Θ (sgq̄ − 2sqg)

sgq̄−sqg∫
sqg

ds1

sgq̄−s1∫
sqg

ds2 +
CA
sqg

Θ (sqg − 2sgq̄)

sqg−sgq̄∫
sgq̄

ds1

sqg−s1∫
sgq̄

ds2


× d0

3(s1, s2)

−

nF
sqg

Θ (sqg − sgq̄)PA1

sqg∫
sqg

ds1

sqg−s1∫
0

ds2 +
nF
sgq̄

Θ (sgq̄ − sqg)PA2

sgq̄∫
sgq̄

ds1

sgq̄−s1∫
0

ds2


× e0

3(s1, s2)

]
, (6.43)
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with PA1 = 2sqg
sqg+sgq̄

and PA2 = 2sgq̄
sqg+sgq̄

as defined in eq. (5.20) and the gluon-splitting
antenna e0

3 has its singularities in s1.
For compactness, we only show the integration for the double-pole (soft-collinear

eikonal) terms present in both a0
3 and d0

3 here, which are the only sources of transcendentality-
2 terms. The full antenna integrals, including also the lower-transcendentality terms orig-
inating from single poles and finite terms, are given in appendix C. The T = 2 part of the
a0

3 integral is
αsCA

4π

[∫ s−min(sqg,sgq̄)

min(sqg,sgq̄)

ds1

∫ s−s1

min(sqg,sgq̄)

ds2
2

s1s2

]
. (6.44)

To evaluate this expression, we first rewrite it in a dimensionless form in terms of the
rescaled integration variables yi = si/(s − 1

2Q
2
3), with upper boundary 1 and lower

boundary

ξmin =
min(sqg, sgq̄)

s−min(sqg, sgq̄)
. (6.45)

The integration is over a triangular surface. The lower integration boundary cuts off the
evolution variable at the value of the 3-parton evolution scale. The other boundary is
determined by the total energy of the dipole before branching which here is

√
s. We use

the integral∫ 1

x

dy
y

ln
(

1− y + x

x

)
= ln2(x)− ln(x) ln (1 + x)−Li2

(
1

1 + x

)
+ Li2

(
x

1 + x

)
.

(6.46)
to obtain

αsCA
2π

[
ln
(

s

min(sqg, sgq̄)

)
ln
(
s−min(sqg, sgq̄)

min(sqg, sgq̄)

)

− Li2

(
s−min(sqg, sgq̄)

s

)
+ Li2

(
min(sqg, sgq̄)

s

)]
. (6.47)

To discuss the 3 → 4 Sudakov terms, let us for definiteness assume that we are in a
3-parton phase-space point with sqg > sgq̄ . The opposite case is symmetric. Again we
only include the T = 2 terms explicitly here, with the details of the full antenna integrals
relegated to appendix C.

αsCA
4π

[ ∫ sqg−sgq̄

sgq̄

ds1

∫ sqg−s1

sgq̄

ds2
2

s1s2

]
. (6.48)

The integration is again over a triangular surface. The total energy of the dipole before
branching is now √sqg . The integral in eq. (6.48) corresponding to the sum over an-
tenna integrals only contains one d0

3 integral because the other has equal upper and lower
integration boundaries. Note that this integral actually vanishes for sqg ≤ Q2

3, which
amounts to the dipole-virtuality ordering allowing the 3→ 4 branchings to populate their
full respective phase spaces (i.e. no correction term is necessary).
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Focusing on the case sqg > 2sgq̄ for which the second integral is nonvanishing (which
now amounts to the ordering condition imposing a nontrivial restriction on the 3 → 4
phase space, see fig. 5.3a), we obtain, including the 2→ 3 term

αsCA
4π

[∫ 1

ξmin

dy1

∫ 1−y1+ξmin

ξmin

dy2
2

y1y2
−
∫ 1

ξ′min

dy′1

∫ 1−y′1+ξ′min

ξ′min

dy′2
2

y′1y
′
2

]
,(6.49)

y′i = si/(sqg − sgq̄) and boundaries

ξ′min =
sgq̄

sqg − sgq̄
. (6.50)

with lower-transcendentality terms again available in appendix C. For the mirror case
sgq̄ > 2sqg essentially symmetric expressions are obtained, while for the intermediate
cases in which the two invariants are within a factor 2 of each other, the second integral
in eq. (6.49) simply vanishes.

The full double-logarithmic term from the expanded Sudakov terms in eq. (6.43), for
strong ordering in dipole virtuality, is then

αsCA
2π

[
ln
(

s
1
2Q

2
3

)
ln
(
s− 1

2Q
2
3

1
2Q

2
3

)
− Li2

(
s− 1

2Q
2
3

s

)
+ Li2

( 1
2Q

2
3

s

)

+Θ
(
smax −Q2

3

)(
− ln

(
smax
1
2Q

2
3

)
ln
(
smax − 1

2Q
2
3

1
2Q

2
3

)
+Li2

(
smax − 1

2Q
2
3

smax

)
− Li2

( 1
2Q

2
3

smax

))]
, (6.51)

where the Θ function ensures that the second term is only active if

smax = max(sqg, sgq̄) > 2 min(sqg, sgq̄) = Q2
3 , (6.52)

so that the expression applies over all of phase space.
We shall now consider the infrared limits of this result, and compare them to those

of the one-loop matrix element. For this comparison we keep only terms that involve
logarithms of the invariants. The soft limit corresponds to vanishing Q2

3 (ξmin → 0). The
first line of eq. (6.51) represents the contribution of the 2→ 3 expanded Sudakov. To find
the contribution in the soft limit, we choose to approach the limit along the diagonal of
the phase space triangle. Parametrizing this by sqg/s = sgq̄/s→ y we find for this term

ln2(y)− π2

6
.

The contributions of the 3 → 4 Sudakovs in the soft limit are examined in two separate
cases corresponding to the two regions in fig. 5.3a. In the first case given by smax <
2smin, corresponding to the light grey area in the figure, the step function in eq. (6.51)
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6.2. Sudakov Integrals

yields zero. In the second case given by smax > 2smin, corresponding to the dark grey
area in the figure, the step function is equal to one. The double logs and dilogarithms now
yield a finite contribution that does not diverge in the soft limit. We can understand this
by parametrizing the soft limit by λ

sqg = λs sgq̄ = pλs s′1 = λκs s′2 = λµs p > 2 , (6.53)

so that the integral becomes∫ smax−smin

smin

ds1

∫ smax−s1

smin

ds2
1

s1s2
→
∫ p−1

1

dκ
∫ p−κ

1

dµ
1
κµ

. (6.54)

This implies that the integration variable scales with the integration limits and is inde-
pendent of the soft limit. We can also expect this behaviour from examing fig. 5.2a. The
shape of the different regions does not change for different values of Q2

3, in contrast with
the case of transverse momentum, as we will see below.

After the poles cancel in eq. (6.32), the pole-subtracted version of the one-loop matrix
element, SVirtual , defined in eq. (6.33), contains all the relevant terms on the matrix-
element side. The transcendentality-2 terms of SVirtual are given by

−R(y1, y2) = Li2 (y1)+Li2 (y2)− π
2

6
− ln y1 ln y2 +ln y1 ln(1−y1)+ln y2 ln(1−y2) .

(6.55)
Including the transcendentality-1 terms (see appendix B), taking the soft limit by sending
sqg/s = sgq̄/s = y → 0, and keeping only logarithmic terms, the pole-subtracted matrix
element (ME) reduces to

ME: sqg/s = sgq̄/s = y → 0
αsCA

2π

[
− ln2(y)− 10

3
ln(y)

]
+
αsnF

6π
ln(y),

(6.56)

The single log proportional to CA originates from the renormalization term and the single
log of the closed quark loops (proportional to nF ) arises due to the definition of the
infrared singularity operator, defined in the appendix in eq. (A.3).

Taking the same limit of the Sudakov integrals for dipole virtuality eq. (6.43), but
omitting for the time being the renormalization term, V3µ, we find for the parton shower
(PS),

−PS: sqg/s = sgq̄/s = y → 0
αsCA

2π

[
ln2 y +

3
2

ln(y)
]
. (6.57)

We see that the soft limit almost cancels against eq. (6.56). For an NLL-accurate
shower, however, all divergent terms should match precisely, leaving at most a finite re-
mainder in the final matching correction, eq. (6.32). In the expressions above, this holds
for the ln2(y) term but not for the single logarithms (different coefficient). Interestingly,
the remainder is proportional to the QCD β function, specifically

ME− PS → −αs
2π

1
2
β0 ln(y) . (6.58)

96



Chapter 6. One-Loop Matching for Z → 3 Partons

It can therefore be absorbed in the choice of renormalization scale by solving for µPS in
V3µ, which yields:

µ2
PS ∝ y s . (6.59)

This tells us that, in the soft limit, the specific choice of a renormalization scale that is
linear in the branching invariants will absorb all logarithms up to and including α2

s ln(y).
Interestingly, this reasoning would rule out µ2

R ∝ p2
⊥, since our p⊥-definition is quadratic

in the invariants, p2
⊥ = sijsjk/s. A better choice of renormalization scale would appear

to be µR ∝ mD, specifically

µ2
PS = min(sij , sjk) =

1
2
m2
D . (6.60)

Taken at face value, this seems to contradict the standard literature [128] on p⊥ as the op-
timal universal renormalization-scale choice. However, as we shall see below in fig. 6.2,
there is in fact no choice of renormalization scale that absorbs all logarithms for this
particular evolution variable; the choice µR ∝ mD merely manages to reabsorb the ad-
ditional logarithms that are generated by the ordering condition as y → 0, but leftover
logs in other parts of phase space will remain uncanceled, ruining the NLL precision. In
that sense, choosing µR ∝ p⊥ would simply leave a different set of uncanceled logs,
nonvanishing as y → 0.

Before we show the results over all of phase space however, we first investigate a
complementary interesting limit, the hard-collinear one, which is characterized by one
of the invariants becoming maximal while the other vanishes. In this limit, the pole-
subtracted one-loop matrix element, SVirtual , becomes

ME: sqg/s→ 1, sgq̄/s = y → 0
αs
2π

[
−5

3
CA +

1
6
nF

]
ln(y) (6.61)

There are no log-squared terms in this limit, and both of the single-log terms are half as
large here as they were in the soft limit.

The Sudakov integrals for mD-ordering yield one divergent term,− 1
6CA ln(y), in the

hard-collinear region, modulo a factor αs/(2π). The Sudakov integral for gluon splitting
in the neighbouring antenna, represented by the first term on the second-to-last line of
eq. (6.32) is specified in the last line of eq. (6.43). The step function is only non-zero
for the first term in the hard-collinear limit sqg → s, sgq̄ → 0 and produces a term
1
6PAjnF ln(y). The numerator of the corresponding Ariadne factor contains the invariant
of the neighboring dipole sgq̄ which vanishes in this limit and causes the dipole splitting
contribution to reduce to zero. The nF -dependent contribution is instead shifted to the
last term of eq. (6.32), which has the same limit but without the Ariadne pre-factor. The
hard-collinear limit of the shower terms, including only terms involving logarithms of the
invariants and not including the V3µ term, is therefore

−PS: sqg/s→ 1, sgq̄/s = y → 0
αs
2π

[
−1

6
CA +

1
6
nF

]
ln(y) . (6.62)
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Again, the combination (ME − PS) relevant for computing the correction factor is pro-
portional to the QCD β function, and in fact has exactly the same form as eq. (6.58). The
conclusion is therefore that, also in this limit, all logarithms through α2

s ln(y) can be ab-
sorbed by choosing a renormalization scale which is linear in the vanishing invariant. The
particular choice which is linear in both the soft and collinear limits is µPS ∝ mD. To
illustrate this, we show the full NLO Z → 3 jets correction factors, (1 + V3Z), for mD-
ordering with a few different choices of renormalization scale and scheme, in fig. 6.2.
Note that the axes are logarithmic, in ln(yij) = ln(sij/s), to make the infrared limits
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Figure 6.2: NLO correction factor for strong mD-ordering, with GGG antennae. Top row: µR =√
s (left), µR = p⊥ (middle), and µR = mD (right). Bottom row: using the CMW ΛMC, with

µR = 1
2
mD (left) and µR = mD (right). For all plots, αs = 0.12, nF = 5, and gluon splittings

were evolved in mqq .

clearly visible.
Without the V3µ term, the correction factor looks as depicted in the top left-hand plot

in fig. 6.2. The increasing contours towards the axes indicate uncanceled logarithms in
the correction factor. The middle pane shows the correction factor derived for µPS = p⊥.
As discussed above, there is an uncanceled logarithm in the soft limit (lower left-hand
corner of the plot), since p⊥ is quadratic in the vanishing invariants there. However, in
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Chapter 6. One-Loop Matching for Z → 3 Partons

the hard-collinear limits (upper left-hand and lower right-hand corners), p⊥ is linear in the
vanishing invariant, and hence the contours remain bounded there. In the right-hand pane,
we show the choice µPS = mD, which can be seen to lead to bounded correction factors
(below ∼ 1.3) in all three phase-space corners. Nonetheless, there is still an uncanceled
divergence between the soft and hard collinear limits. We shall see in the section on
p⊥-ordering below that the cure for this is basically to choose a better evolution variable.

In the bottom row of fig. 6.2, we show a few variations on µPS = mD, specifically we
include the CMW rescaling of ΛQCD, as defined by eq. (6.30), and show how a variation
of the renormalization scale by a factor of 2 affects the correction factor. In the left-hand
pane, we show µPS = 1

2mD and in the right-hand one µPS = mD. Of these, the choice
µPS = 1

2mD, with CMW rescaling, leads to the smallest correction factors (best LO
behaviour), and this could therefore be taken as a useful default for mD-ordering, e.g. for
uncertainty estimates.

Transverse Momentum

For a shower ordered in p⊥, the antenna phase-space integrals in eq. (6.10) are performed
over contours such as those depicted in fig. 5.2e. The curved contours motivate a co-
ordinate transformation from (s1, s2) to a basis defined as the dimensionless evolution
variable y = Q2

s = 4s1s2
s2 , complemented by an energy-sharing variable, which we de-

fine as z = s1
s . Note that the coordinate transformation depends explicitly on the total

invariant mass s of the 2 → 3 dipole. For the 3 → 4 integrations, the invariant mass s
is replaced by the invariant mass of the appropriate dipole (either sqg or sgq̄). The in-
tegration boundaries in z are determined by the intersection of the invariant mass of the
dipole with the evolution parameter Q2. The choice of y and its integration boundaries
make the effect of strong ordering especially clear since we see integration fromQ2 to the
total invariant mass of the dipole (the unordered region). As before, the integration over
the gluon-splitting antenna

(
e0

3

)
makes use of a different phase space integration, in mqq̄ ,

and only uses the evolution parameter as a cut-off in the singularity of the corresponding
dipole.
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6.2. Sudakov Integrals

The contributing terms are:

g2
s

CA ∫ s

Q2
3

a0
3 dΦant −

2∑
j=1

CA

∫ sj

0

(1−OEj ) d0
3 dΦant

−
2∑
j=1

2TR nFPAj

∫ sj

0

(1−OSj ) e0
3 dΦant


=
αs
4π

[
CA sA1

[
Q2

3

s
, 1
]
− CAsqg A2

[
4sgq̄
s
,max

(
4sgq̄
s
, 1
)]

− sgq̄ CAA3

[
4sqg
s
,max

(
4sqg
s
, 1
)]

− nF
(
PA1

sqg

∫ max(Q2
3,sqg)

Q2
3

ds1

∫ sqg−s1

0

ds2e
0
3(s1, s2)

+
PA2

sgq̄

∫ max(Q2
3,sgq̄)

Q2
3

ds1

∫ sgq̄−s1

0

ds2e
0
3(s1, s2)

)]
(6.63)

with

An [a, b] =
∫ b

a

dyn
∫ znmax

znmin

dzn |Jn|An(yn, zn) for n = 1, 2, 3, (6.64)

and

yn = 4
s1s2

m4
IK

, zn =
s1

m2
IK

, |J1| =
m4
IK

4zn
, znmax

min
=

1
2

(
1±

√
1− yn

)
. (6.65)

For n = 1 we set m2
IK = s, for n = 2 m2

IK = sqg and for n = 3 m2
IK = sgq̄ . The

Ariadne factor PAj is defined in eq. (5.20). The max condition on the outer integration
boundary of A2 and A3 reflect that the correction term disappears if the generated Q2

3

is larger than the invariant mass of the dipole. As for mD-ordering, we here work out
the most divergent behavior explicitly, by focussing on the double log terms arising from
the eikonal term in the antenna, and relegate the full form of the antenna integrals to
appendix C. The double poles give rise to terms

αs CA
2π

∫ 1

Q2
3
s

dy1

∫ zmax

zmin

dz1
1

y1z1
,

which lead to the following generic transcendentality-2 integrals,∫ 1

x

dy1

y1
ln
(

1 +
√

1− y1

1−√1− y1

)
= Li2

(
1
2
(
1−
√

1− x
))
− Li2

(
1
2
(
1 +
√

1− x
))

+
1
2

ln
(x

4

)
ln
[
−
(−2 + 2

√
1− x+ x

x

)]
. (6.66)
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The double logarithm in the shower expansion is generated by a combination of the 2→ 3
and 3→ 4 Sudakov integrals, with the respective pieces adding up to

αsCA
2π

[
−π

2

6
+

1
2

ln
(sqgsgq̄

s2

)2

+
π2

3
− 1

2
ln
(sqg
s

)2

− 1
2

ln
(sgq̄
s

)2
]
. (6.67)

We see that a partial cancellation arises between the first two terms (which come from the
2 → 3 Sudakov expansion) and the last three (which come from the 3 → 4 expansion).
What remains is a log squared in both invariants ln (sqg/s) ln (sgq̄/s).

At the single-log level, the 3→ 4 terms give a numerically larger coefficient than the
2→ 3 ones, leading to a single log remainder. The gluon-splitting term also reduces to a
single log. The overall result in the soft limit is then

− PS: sqg = sgq̄ = y → 0
αsCA

2π

[
ln2(y)− 1

3
ln(y)

]
+
αsnF

6π
ln(y)

(6.68)
Comparing with the result of the virtual correction in the soft limit, eq. (6.56), we see

that the shower generates the double log terms correctly, and, similarly to the case ofmD-
ordering, there is a single-log remainder which is proportional to the QCD β function.
However, for p⊥-ordering the constant of proportionality is 1, rather than 1

2 , a difference
which translates to the optimal renormalization-scale choice being quadratic in the invari-
ants in this case, rather than linear. Before commenting further on this difference, let us
first consider the complementary, hard-collinear, limit.

In the hard-collinear limit, we find the same as for mD-ordering,

−PS: sqg = y → 0, sgq̄ → s
αs
2π

[
−1

6
CA +

1
6
nF

]
ln(y) . (6.69)

Double logs (eikonal parts of the antenna) also appear at both the 2 → 3 and 3 → 4
levels, but cancel among each other as almost all other antenna terms do; what remains
at the single-log level is the integrated difference between a quark-antiquark antenna and
a quark-gluon antenna, plus the nF -dependent ‘Ariadne Log’. The only contributing Su-
dakov gluon splitting contribution is the second term in the last line of eq. (6.63). Integra-
tion over the sgq̄ dipole, however, is associated with an Ariadne factor carrying sqg in the
numerator and therefore reduces to zero. As before, we can write the remainder as half
the QCD β function, which implies that a renormalization scale linear in the vanishing
invariants can absorb the logarithm.

To summarize, for p⊥-ordering we find that the optimal renormalization-scale choice
must be quadratic in the vanishing invariants in the soft limit and linear in the hard-
collinear limit. Those conditions are fulfilled by p⊥ itself, thus

µ2
PS ∝ p2

⊥ =
sijsjk
sijk

(6.70)

absorbs all logarithmic terms up to and including α2
s ln(y) in the LO couplings.

Illustrations of the full NLO correction factors, (1 + V3Z), are given in fig. 6.3. The
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Figure 6.3: NLO correction factor for strong p⊥-ordering, with GGG antennae. Top row: µPS =√
s (left), µPS = p⊥ (middle), and µPS = mD (right). Bottom row: using the CMW ΛMC, with

µPS = p⊥ (left) and µPS = 2p⊥ (right). For all plots, αs = 0.12, nF = 5, and gluon splittings
were evolved in mqq .

ordering of the plots in the top row are the same as in fig. 6.3, showing, from left to right,
µPS =

√
s, µPS = p⊥, µPS = mD. Similarly to the case of strong mD-ordering, both

of the latter two choices exhibit no logarithmic divergences in the hard-collinear regions
(top left and bottom right corners of the plots), but in the soft region (bottom left corner)
it is here µPS = p⊥ which leaves the correction factor free of logarithms. Indeed, we
see that the combination of evolution and renormalization in p⊥ leads to a rather flat
correction factor over all of phase space, showing that this combination is indeed “better”
than mD-ordering.

In the bottom row of plots in fig. 6.3, we include the CMW factor and show the cor-
rection factors for µPS = p⊥ (left) and µPS = 2p⊥ (right). In particular on the left-hand
pane, the NLO correction factor is essentially unity in the soft limit, while the corrections
in the hard-collinear regions remain less than ∼ 20%. This gives some additional weight
to the arguments for p⊥-ordered showers with p⊥ as renormalization scale being the best
default choice for strongly ordered dipole-antenna showers. It also provides some ratio-
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nale why one typically finds a rather large value of αs(mZ) ∼ 0.13 (with CMW rescal-
ing, or αs(mZ) ∼ 0.14 without it) when tuning such models to LEP event shapes; there
is still a genuine order 20% NLO correction in the hard resolved region (upper right-hand
corner). We return to this in more detail in the context of full LO + NLO matching in
section 6.3.

Energy

To put the differences betweenmD and p⊥ in context, we now briefly examine the case of
energy ordering, which is known to produce the wrong DGLAP evolution in the collinear
limit [144, 147, 148], and hence we should find larger (possibly divergent) NLO correc-
tions.

Slicing phase space with the energy variable Q2
3 = sijk(yij + yjk)2, see fig. 5.2f,

requires the use of an explicit infrared cut-off because the contours otherwise allow for
the invariants to hit singular regions for every value of the contour. We will here use
a cut-off in transverse momentum (a cut-off in dipole virtuality is also possible). The
cutoff motivates us to switch to a different choice of integration variables. Therefore
integration is transformed from (s1, s2) to the dimensionless evolution parameters y2

E =
Q2

s = (s1+s2)2

m2
IK

and completed with the energy sharing variable ζ = s2
m2
IK

. The interesting
integrals arising from expanding the Sudakov form factor then are

g2
s

CA ∫ s

Q2
3

a0
3 dΦant −

2∑
j=1

CA

∫ sj

0

(1−OEj ) d0
3 dΦant

−
2∑
j=1

2TR nFPAj

∫ sj

0

(1−OSj ) e0
3 dΦant


=
αs
4π

[CA {AE1(s, 1)−AE2(min[sqg, 1], 1)−AE3(min[sgq̄, 1], 1)}

− nF
(
PAqg
sqg

∫ max(Q2
3,sqg)

Q2
3

ds1

∫ sqg−s1

0

ds2e
0
3(s1, s2)

+
PAgq̄
sgq̄

∫ max(Q2
3,sgq̄)

Q2
3

ds1

∫ sgq̄−s1

0

ds2e
0
3(s1, s2)

)]
(6.71)

with

AEn(m2
IK , 1) =

∫ 1

Q2
3

m2
IK

dy2
E

∫ 1

0

dζ ′
1
2
AE0

n(y2
E , ζ

′).

With AE0
1 = a0

3, AE0
2 = d0

3 and AE0
3 = e0

3. The inner integral has been rescaled to make
it independent of the outer integral with ζ = yEζ

′. To establish the cut-off, we use the
relation 4 s1s2s2 = 4p2

⊥/s, which we demand to be larger than the cut-off ∆. In terms of
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our variables we then have the condition

4ζ ′(1− ζ ′) > ∆
y2
E

. (6.72)

The upper and lower limits on ζ ′ are then

ζ ′− < ζ ′ < ζ ′+, ζ ′± =
1
2

(
1±

√
1− ∆

y2
E

)
. (6.73)

Focussing on the eikonal integral

αsCA
4π

∫ 1

y2
E=

Q2
3
s

dy2
E

y2
E

∫ ζ′+

ζ′−

dζ ′

ζ ′
, (6.74)

the result for this integral is

αs
2π

[
Li2

(
1
2

(
1−
√

1−∆
))
− Li2

(
1
2

(
1 +
√

1−∆
))

+
1
2

[
−2 atanh

(√
1− ∆

y2
E

)
× ln(4) + atanh

(√
1−∆

)
ln(16) + ln2

(
1−
√

1−∆
)
− ln2

(
1 +
√

1−∆
)

− ln2

(
1−

√
1− ∆

y2
E

)
+ ln2

(
1 +

√
1− ∆

y2
E

)]
− 2Li2

(
1
2

(
1−

√
1− ∆

y2
E

))

+Li2

(
1
2

(
1 +

√
1− ∆

y2
E

))]
. (6.75)

In the soft limit y2
E = 4y2 → 0 this reduces to

−1
2

ln2(∆)− ln2

(
∆

4y2

)
− 2 ln(4y4) ln(2)− Li2

(
∆

64y2

)
(6.76)

Thus we see that there are explicit non-cancelling double-logarithmic terms that involve
the hadronization cutoff, ∆. Depending on the ratio between the dipole mass and the
cutoff, these would lead to asymptotically divergent correction factors.

One might wonder whether using a linearized form of energy ordering would make a
difference, see fig. 5.2c. Rather than go through the derivations again, we merely show
the full NLO corrections in fig. 6.4, for both linear (top row) and squared (bottom row)
energy ordering, for an (arbitrary) dimensionless cutoff value of ∆ = 10−7.

From left to right in both rows, we show the three renormalization-scale choices,
µPS = p⊥ (left), µPS = mD (middle), and µPS = QE (right), with the latter equal to lin-
ear energy in the top row and squared energy in the bottom one. Interestingly, the contours
in the linear case are increasing towards the soft region, while they ultimately decrease in
the squared case. It is clear, however, that no intelligent choice of renormalization scale
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Figure 6.4: NLO correction factor for strong energy-ordering, with GGG antennae, for various
renormalization-scale choices and linear (top row) and squared (bottom row) scaling of the evolu-
tion variable with gluon energy.

can absorb the infrared divergences. Moreover, any other choice of ∆ would have led to
different contours, due to the explicit ln(∆) terms, hence even if a “least bad” choice was
found, it would not be universal.

As mentioned above, the main point of showing these comparisons is to place the
comparison between mD and p⊥ in the previous subsections in perspective. Thus, while
we saw that p⊥ was generating a better-behaved correction factor than mD, the one for
mD is still far better behaved than is the case for energy ordering. From this perspective,
we still believe it could make sense, e.g., to use mD-ordering, with the NLO correction
factor included, as a conservative uncertainty variation for a central prediction based on
p⊥-ordering.
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6.2.2 Smooth Ordering
We will now discuss the same Sudakov integrals as in the previous subsections but for the
case of smooth ordering (section 5.1.4). This is especially interesting given that smooth
ordering is the way VINCIA is able to fill all of phase space without significant under-
or overcounting at the LO level [110]. As discussed in section 5.1.4, however, this does
involve some ambiguity in what Sudakov factors are associated with the unordered points,
and the NLO 3-jet correction factors should tell us explicitly whether this ambiguity gen-
erates problems at this level.

The Sudakov integrations are actually more straightforward for smooth ordering than
was the case for strong ordering, since the Pimp factor regulates the integrands on the
boundaries. Therefore the integrations always run over the full phase space of the system.
The 2 → 3 splitting generates the same terms as in the strong-ordering case, eq. (6.40).
Including also the 3 → 4 terms, the expanded Sudakov generates the following antenna
integrals,

g2
s

CA ∫ s

0

a0
3 dΦant −

2∑
j=1

CA

∫ sj

0

Q2
Ej

Q2
Ej

+Q2
3

d0
3 dΦant

−
2∑
j=1

2TR nFPAj

∫ sj

0

m2
qq̄

m2
qq̄ +Q2

3

e0
3 dΦant

 , (6.77)

where Q3 is the evolution scale evaluated on the 3-parton configuration and QEj (mqq̄)
is the scale of the 3→ 4 emissions (splittings) being integrated over. The full answer for
the 3→ 4 case for gluon emission is

− g2
s

2∑
j=1

CA

∫ sj

0

Q2
Ej

Q2
Ej

+Q2
3

d0
3 dΦant

= −αsCA
4π

(
5∑
i=1

KiLi(sqg, Q2
3)

)
− αsCA

4π

(
5∑
i=1

KiLi(sgq̄, Q2
3)

)
. (6.78)

where Ki and Li can be found in appendix C. The full answer for the 3 → 4 case for
gluon splitting is

− g2
s

2∑
j=1

nFPAj

∫ sj

0

m2
qq̄

m2
qq̄ +Q2

3

e0
3 dΦant

= −αsnF
4π

G(sqg, Q2
3) − αsnF

4π
G(sgq̄, Q2

3). (6.79)

where G can be found in the appendix. We will discuss the derivation of these terms in
more detail in the following two subsections, for smooth mD- and p⊥-ordering, respec-
tively.
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Dipole Virtuality

Since the 2 → 3 emission terms remain the same as in the case of strong mD-ordering,
we only need to rederive the 3→ 4 contributions to V3Z , which are

− g2
s

 2∑
j=1

CA

∫ sj

0

(1−OEj) d0
3 dΦant +

2∑
j=1

2TR nFPAj

∫ sj

0

(1−OSj) e0
3 dΦant


= −αs

4π

[
CA
sqg

(∫ 1
2 sqg

0

ds2
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s2

ds1OE1 +
∫ 1

2 sqg

0

ds1
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ds2OE2

)
d0

3

+
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sgq̄

(∫ 1
2 sgq̄
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2 sgq̄
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ds1
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3
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(
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sqg

∫ sqg

0

ds2
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0

ds1 +
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∫ sgq̄

0

ds2
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0

ds1

)
OS e

0
3

]
(6.80)

with OEj = Q2
3

Q2
Ej+Q

2
3

, OSj = Q2
3

m2
qq̄+Q

2
3

as defined in eq. (6.12), OE1 = 2s2
Q2

3+2s2
, OE2 =

2s1
Q2

3+2s1
, OS = s1

s1+Q2
3

and eq. (6.13), Q2
3 = 2 min(sqg, sgq̄), and e0

3 carrying the singu-
larity in s1. We will focus again on deriving the transcendality-2 terms explicitly, with
the full expressions given in the appendix. We start by recalling the expression for the
strongly-ordered 2→ 3 branching,

αsCA
2π

[
ln
(

s
1
2Q

2
3

)
ln
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2Q
2
3

1
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)
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( 1
2Q

2
3

s

)]
.

To this we add the results from the eikonal term 2sqg
s1s2

of one 3 → 4 gluon emission, the
first line in eq. (6.80),

− 2αsCA
π
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(
2
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3

)]
(6.81)

where we have transformed yi = si
sqg

for i = 1, 2 and y2
3 = Q2

3
sqg

= 2 min(1, sgq̄sqg ).
Taking the limit for the soft region y2

3 → 2 (since we take the invariants as vanishing
simultaneously), we see that the remainder is just a finite term that contains no logarithms
of the vanishing invariants,

αsCA
8π

[
2 ln2(2) + Li2

(
1
4

)]
. (6.82)
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Figure 6.5: NLO correction factor for smooth mD-ordering, with GGG antennae, and µPS = mD

(left), µPS = 1
2
mD (middle), and µPS = 1

2
mD with CMW rescaling (right). For all plots, αs =

0.12, nF = 5, and the evolution scale for gluon splittings was mqq .

We will receive this contribution twice. Including all divergent logarithmic contributions
and disregarding constant terms such as in eq. (6.82) , we find the same as in the strong-
ordering case,

− PS: sqg = sgq̄ = y → 0
αsCA

2π

[
ln2(y) +

3
2

ln(y)
]
, (6.83)

and hence the preferred choice of scale in the soft limit remains one which is linear in the
vanishing invariants, such as µPS ∝ mD.

In the hard collinear limit the Sudakov integrals plus the ‘Ariadne Log’ reduce to

− PS: sqg = y → 0, sgq̄ → s
αsCA

2π

[
−1

6
CA +

1
6
nF

]
ln(y) , (6.84)

again the same as in the strongly ordered case, cf. eq. (6.62).
To summarize, we do not expect any qualitatively different limiting behaviour in the

smoothly ordered case with respect to the strongly ordered one, though details may of
course still vary. To illustrate this, we include the plots in fig. 6.5. In all cases, we use a
renormalization scale∝ mD, but with different prefactors, from left to right: µPS = mD,
µPS = mD/2, and finally µPS = mD/2 with CMW rescaling. In particular the latter
gives correction factors very close to unity in both the soft and hard collinear limits, while
we still see the leftover divergence inbetween those limits that was also present in the case
of strong mD-ordering, cf. fig. 6.2. Nonetheless, it is worth noting that for a large region
of phase space, say with mij > 0.1m (corresponding to ln(yij) > −4.6), the corrections
are still quite well behaved and relatively small, less than ∼ 20%.
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Transverse Momentum

Again we only need to recompute the contributions from the 3→ 4 Sudakov terms, as the
2 → 3 ones are the same as in the strongly ordered case. The 3 → 4 Sudakov integrals
are

− g2
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(6.85)

withOEj , OSj as defined eq. (6.12) en eq. (6.13), specified byOE = 4s1s2
Q2

3sqg+4s1s2
, OS =

s1
s1+Q2

3
. As before we focus on explicitly calculating the transcendentality-2 contribution

arising from the eikonal part of the antenna in the first term in the first line of eq. (6.85),
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(6.86)

where we have transformed yi = si
sqg

and y2
3 = Q2

3
sqg

. In the limit smin/s, smax/s = y → 0
so that y2

3 → 0, this yields

αsCA
2π

[
−1

2
ln2(y)

]
. (6.87)

Adding the contributions from the 2→ 3 splitting and transcendentality-1 terms, we find
the following result for the soft limit

− PS: sqg = sgq̄ = y → 0
αsCA

2π

[
ln2(y)− 1

3
ln(y)

]
+
αs
6π
nF ln(y) ,

(6.88)
as in the strongly ordered case. The double logarithm matches with SVirtual and the
single logarithm can be absorbed by choosing a renormalization scale that is quadratic in
the vanishing invariants, such as µPS ∝ p⊥.

In the hard collinear limit, the shower integrals behave as

−PS: sqg = y → 0, sgq̄ → s
αs
2π

[
−1

6
CA +

1
6
nF

]
ln(y) , (6.89)
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Figure 6.6: NLO correction factor for smooth p⊥-ordering, with GGG antennae, without (top row)
and with (bottom row) the CMW rescaling of ΛQCD. The left-hand panes use µPS = p⊥ and the
right-hand ones µPS = 2p⊥. For all plots, αs = 0.12, nF = 5, and the evolution scale for gluon
splittings was mqq .
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Figure 6.7: NLO correction factor for smooth p⊥-ordering, with GGG antennae: variations of how
gluon splittings are interleaved with gluon emissions, see text. We used αs = 0.12, nF = 5, and
µPS = p⊥.

the same as in all the other cases. This completes the argument that indeed µPS ∝ p⊥ is
the appropriate choice also for smooth p⊥-ordering.

In fig. 6.6, we show the NLO correction factors, (1 + V3Z), for smooth p⊥-ordering.
The top row shows the correction factors without using the CMW rescaling of ΛQCD,
and the plots in the bottom row include it. For the left-hand panes, we used a shower
renormalization scale of µPS = p⊥, and for the right-hand ones we used µPS = 2p⊥.

We see that all correction factors are essentially well-behaved, with no runaway logs,
similarly to the case of strong p⊥-ordering. However, for the case of smooth p⊥-ordering,
it looks as if the CMW rescaling (bottom row) is almost doing “too much” in the soft
region. Given that the CMW arguments [145] were derived explicitly by considering the
subleading behaviour of strongly ordered (coherent) parton showers, we do not perceive
of this as any major drawback. Instead, one should merely be aware of the slight shifts
in the NLO corrections that result from applying it or not, recalling that a rescaling of Λ
by the CMW factor ∼ 1.5 is within the ordinary factor 2 variation of the renormalization
scale that is often taken as a standard for uncertainty estimates.

The shifts caused by CMW rescaling and/or by renormalization-scale prefactors are of
course fully taken into account in our implementation in the VINCIA code, and are thus
reabsorbed into the one-loop matching coefficient at the matched order, stabilizing the
prediction. Differences at higher orders will result from the fact that the CMW rescaling,
if applied, is used for all shower branchings, while the NLO correction derived here is
only applied at the Z → 3 stage of the calculation.

Because smooth p⊥-ordering is the default in VINCIA we wish to understand this
case as best as we can, and therefore we include some further comparisons with non-
default settings in fig. 6.7.

In fig. 6.7a, we modify the normalization of the evolution variable from the VINCIA
default Q2

E = 4p2
⊥ to the ARIADNE choice Q2

E = p2
⊥. Though the normalization
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factor cancels in the Pimp factor for sequential gluon emissions, it is relevant for deciding
the relative ordering between gluon emissions and gluon splittings. As this plot shows,
however, the modification only produces quite small differences in the NLO correction
factor, and with the “wrong” sign. Thus, we retain N⊥ = 4 as the default in VINCIA.
In fig. 6.7b, we change the evolution variable for gluon splittings to be the same as that
for gluon emissions, i.e., p⊥, with similar conclusions as for the previous variation. In
fig. 6.7c, we switch off the Ariadne factor for gluon splittings. We notice that the NLO
corrections get slightly larger. There is no change along the diagonal yij = yjk since
the Ariadne factor is unity there, but along the edges of the plots, the NLO corrections
become larger, which further motivates the choice of keeping the Ariadne factor switched
on by default in VINCIA.

The overall result is that the infrared limits are generally well-behaved for p⊥ evolu-
tion with µPS ∝ p⊥. Remaining differences amount to small finite shifts of order 10%-
20% away from unity. At that level, the effective finite terms of the antenna functions
also play a role, hence it is too early to draw definite conclusions just based on the plots
presented here. The impact of finite terms will be studied in section 6.3 in the context of
matching to the LO matrix elements for Z → 4 partons, which effectively fixes the finite
terms with respect to the pure-shower answers studied here.

6.2.3 Tables of Infrared Limits
The results of the preceding subsections on the infrared limits of the pole-subtracted
matrix elements and of the Sudakov integrals generated by the various evolution-scale
choices are collected here, in parametric form, for easy reference. The renormalization
terms, V3µ, are not included. Tab. 6.1 expresses the limits of SVirtual , while tab. 6.2
contains the Sudakov-integral limits.

SVirtual soft
(
−L2 − 10

3 L− π2

6

)
CA + 1

3nFL

hard collinear − 5
3LCA + 1

6nFL

Table 6.1: Limits of SVirtual , with L denoting ln(y), and sqg/s = sgq̄/s = y → 0, omitting an
overall factor of αs/2π.
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strong smooth

p⊥
soft

(
L2 − 1

3L+ π2

6

)
CA + 1

3nFL
(
L2 − 1

3L− π2

6

)
CA + 1

3nFL

hard col. − 1
6LCA + 1

6nFL
(
− 1

6L− π2

6

)
CA + 1

6nFL

mD
soft

(
L2 + 3

2L− π2

6

)
CA

(
L2 + 3

2L− π2

6

)
CA

hard col. − 1
6LCA + 1

6nFL
(
− 1

6L− π2

3

)
CA + 1

6nFL

Table 6.2: Limits of strong and smooth p⊥ and mD ordering, with L denoting ln(y), with sqg =
sgq̄ = y → 0. Non divergent terms, such as π2 have been omitted in the calculation of V3Z , and
the renormalization term in V3Z is set to zero. An overall factor of αs/2π is suppressed. Therefore
pT in the soft limit will yield a correction of V3z = −β0 while the hard collinear region of pT and
both the soft and hard collinear region of mD add a correction of V3z = − 1

2
β0.

6.3 Results Including both LO and NLO Corrections
In the preceding section, we focussed on deriving the analytic forms of the shower in-
tegrals and comparing their infrared limits to the matrix-element expressions. It is now
time to include also the finite terms arising from matching to the 4-parton tree-level ma-
trix element, expressed by the δA terms in eq. (6.32). Our ultimate aim in this section is
to include the full leading-colour one-loop corrections through second order in αs (i.e.,
up to and including Z → 3 partons) and combine these with the full-colour tree-level cor-
rections through third order in αs (i.e., up to and including Z → 5 partons, the default in
VINCIA). However, since we shall perform the δA integrals numerically, adding those
terms to the analytic ones derived in the previous section, we first wish to examine the
numerical size and precision required on the δA terms themselves.

6.3.1 Finite Antenna Terms and LO Matching Corrections
Finite-term variations of the antenna functions (and in particular fixing the finite terms via
unitary LO matching corrections, such as is done in VINCIA [110]) will affect the terms
generated by the 3 → 4 Sudakov expansions in the following way. Larger finite terms
will cause an increased amount of 3 → 4 branchings, which in turn will decrease the
associated Sudakov factor (in the sense of driving it closer to zero). This will feed into the
NLO correction factor, which compensates and drives the final answer back towards its
NLO-correct value. (Note that similar variations will not occur for the 2 → 3 branching
step, since we treat that as fixed to the LO 3-parton matrix element throughout.) This
feedback mechanism is encoded in the δA terms in eq. (6.32).

Following the reasoning above, we should expect larger antenna finite terms to in-
crease the NLO correction factor (since, to stabilize the 3-parton exclusive rate, it must
compensate for losing more 3-parton phase-space points to 4-parton ones), and vice versa:
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Figure 6.8: NLO correction factor for strong (top row) and smooth (bottom row) p⊥-ordering, for
MIN (left), VINCIA default (middle), and MAX (right) antenna functions. We use µR = p⊥
combined with CMW rescaling, αs = 0.12, and gluon splitting in mqq .

smaller finite terms should result in a decrease of the NLO correction. At the pure-
shower level (i.e., without LO matrix-element corrections to fix the finite terms), this is
illustrated by fig. 6.8.

For ease of comparison, all plots use the CMW rescaling of ΛQCD, µPS = p⊥, nF =
5, and αs(mZ) = 0.12. The default antenna functions in VINCIA2 are shown in the
middle panes, for strong (top row) and smooth (bottom row) ordering, respectively. A
variation with smaller finite terms for the 3 → 4 antenna functions is shown to the left,
and one with larger finite terms on the right. As expected, the NLO correction factors
react by becoming lower for smaller finite terms and higher for larger finite terms, for
both strong and smooth ordering.

We emphasise that the plots in fig. 6.8 are shown purely for illustration, to give a
feeling for the changes produced by finite-term variations. In the actual matched shower

2Note that VINCIA was recently updated with a set of helicity-dependent antenna functions [149], so the
defaults shown here are not identical to the GGG ones, but are instead helicity sums/averages over the functions
defined in [149].
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Figure 6.9: Size of δA terms differences between GGG and VINCIA default antennae.

evolution, the constraint imposed by matching to the LO 4-parton matrix elements fixes
the finite terms, via the unitary procedure derived in [110], which was briefly recapped in
section 5.2.1. The effective finite terms then depend on the full LO 4-parton matrix ele-
ments, and have a more complicated structure than the simple antenna functions we have
so far been playing with. We shall therefore not attempt to integrate them analytically, but
prefer instead to let VINCIA compute a numerical MC estimate for us.

Each point in that MC integration will involve computing at least one LO 4-parton
matrix element, hence it is crucial to know how many points will be needed to obtain
sufficient accuracy. Since everything else is handled analytically, this will be the deciding
factor in determining the speed of the NLO-corrected algorithm. We shall perform a speed
test below in section 6.3.4, but first we need to determine the accuracy we need on the δA
integral.

A first analytic estimate of the size of the δA terms can be obtained by simply comput-
ing the ones produced by switching from GGG to the VINCIA default antennae (summed
and averaged over helicities [149]), with the following O(1) finite-term differences:

qg → qgg : F VINCIA
Emit − FGGG

Emit = 1.5− (2.5− yij − 0.5yjk) = −1 + yyij + 0.5yjk ,
(6.90)

qg → qq̄′q′ : F VINCIA
Split − FGGG

Split = 0.0− (−0.5 + yij) = 0.5− yij , (6.91)

with FEmit and FSplit defined in eqs. (5.4) and (5.5). The δA terms produced by these
differences are plotted in fig. 6.9, for strong ordering inmD (left) and p⊥ (centre), and for
smooth ordering in p⊥ (right), respectively. As expected, they do come out to be numer-
ically subleading, roughly of order αs/(2π), relative to LO (unity), yielding corrections
ranging from a few permille to about a percent of the LO result.

Finally, in fig. 6.10, we include the full LO 4-parton matrix elements and plot the
distribution of numerically computed δA terms during actual VINCIA runs, for 100,000
events. The result is now represented by a one-dimensional histogram, with δA on the x-
axis and relative rate on the y-axis. On the left-hand pane, the δA distribution with default
settings is shown on a linear scale, while the right-hand pane shows the same result on a
logarithmic scale, including variations with higher numerical accuracy.
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Figure 6.10: Distribution of the size of the δA terms (normalized so the LO result is unity) in actual
VINCIA runs. Left: linear scale, default settings. Right: logarithmic scale, with variations on the
minimum number of MC points used for the integrations (default is 100).

As mentioned above, the integration is done by a uniform Monte Carlo sampling of
the δA integrands. We require a numerical precision better than 1% on the estimated size
of the term (relative to LO) and, by default, always sample at least 100 MC points for
each antenna integral. In the left-hand pane of fig. 6.10, we see that, even with the full
4-parton LO matrix-element corrections included, the size of the δA terms remains below
one percent for the vast majority of 3-parton phase-space points.

On the logarithmic scale in the right-hand pane of fig. 6.10, however, it is evident
that there is also a tail of quite rare phase-space points which are associated with larger
δA corrections. Numerical investigations reveal that this tail is mainly generated by the
integrals over the g → qq̄ terms, in particular in phase-space points in which the gluon
is collinear to one of the original quarks. This agrees with our expectation that these
terms are the ones to which the pure shower gives the “worst” approximation, and hence
they are the ones that receive the largest matrix-element corrections. As a test of the
numerical stability of the NLO corrections for these points, we increased the minimum
number of MC points used for the δA integration from the default 100 (shown with “+”
symbols) to 400 (“×” symbols) and 1600 (“∗” symbols), cutting the expected statistical
MC error in half with each step, at the cost of increased event-generation time. Though
we do observe a slight broadening of the distribution between the default and the higher-
precision settings, the shifts should be interpreted horizontally and remain well under the
required percent-level precision with respect to LO. The default settings are therefore kept
at a minimum of 100 MC points, though we note that future investigations, in particular
of more complicated partonic topologies, may require developing a better understanding
of, and perhaps a better shower approximation to, these integrals, especially the g → qq̄
contribution.

For completeness, we note that the runs used to obtain these distributions were per-
formed using the new default “Nikhef” tune of VINCIA’s NLO-corrected shower, which
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will be described in more detail in the following subsection. Parameters for the tune are
given in appendix D.

6.3.2 LEP Results
Since we have restricted our attention to massless partons in this work, we shall mainly
consider the light-flavour-tagged event-shape and fragmentation distributions produced
by the L3 experiment at LEP for our validations and tuning, see [150]. We consider three
possible VINCIA settings:

• New default (NLO): uses two-loop running for αs, with CMW rescaling of ΛQCD.
From the comparisons to event-shape variables presented in this section, we settled
on a value of αs(MZ) = 0.122. A few modifications to the string-fragmentation
parameters were made, relative to the old default, to compensate for differences in
the region close to the hadronization scale. The revised parameters are listed in
appendix D, under the “Nikhef” tune.

• New default (NLO off). Identical to the previous bullet point, but with the NLO
correction factor switched off.

• Old default (LO tune): uses one-loop running for αs, without CMW rescaling of
ΛQCD, and αs(MZ) = 0.139. The string-fragmentation parameters are those of
the “Jeppsson 5” tune, see appendix D.

The three main event-shape variables that were used to determine the value ofαs(MZ)
are shown in fig. 6.11, with upper panes showing the distributions themselves (data and
MC) and lower panes showing the ratios of MC/data, with one- and two-sigma uncertain-
ties on the data shown by darker (green) and lighter (yellow) shaded bands, respectively.
The Thrust (left) and C-parameter (middle) distributions both have perturbative expan-
sions that start at O(αs) and hence they are both explicitly sensitive to the corrections
considered in this chapter. The expansion of the D parameter (right) begins at O(α2

s). It
is sensitive to the NLO 3-jet corrections mainly via unitarity, since all 4-jet events begin
their lives as 3-jet events in our framework. It also represents an important cross-check
on the value extracted from the other two variables.

For a pedagogical description of the variables, see [150]. Pencil-like 2-jet configu-
rations are to the left (near zero) for all three observables. This region is particularly
sensitive to non-perturbative hadronization corrections. More spherical events, with sev-
eral hard perturbative emissions, are towards the right (near 0.5 for Thrust and 1.0 for C
and D). The maximal τ = 1 − T for a 3-particle configuration is τ = 1/3 (correspond-
ing to the Mercedes configuration), beyond which only 4-particle (and higher) states can
contribute. This causes a noticeable change in slope in the distribution at that point, see
fig. 6.11a. The same thing happens for the C parameter at C = 3/4, in fig. 6.11b. The
D parameter is sensitive to the smallest of the eigenvalues of the sphericity tensor, and
is therefore zero for any purely planar event, causing it to be sensitive only to 4- and
higher-particle configurations over its entire range.
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Figure 6.11: L3 light-flavour event shapes: Thrust, C, and D.
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Both the new NLO tune (solid blue line with filled-dot symbols) and the old LO one
(dashed magenta line with open-triangle symbols) reproduce all three event shapes very
well. With the NLO corrections switched off (solid red line with open-circle symbols), the
new tune produces a somewhat too soft spectrum, consistent with its low value of αs(MZ)
not being able to describe the data without the benefit of the NLO 3-jet corrections.

As a further cross check, we show two further event-shape variables that were in-
cluded in the L3 study in fig. 6.12: the Wide and Total Jet Broadening parameters, BW
and BT , respectively. These have a somewhat different and complementary sensitivity
to the perturbative corrections, compared to the variables above, picking out mainly the
transverse component of jet structure. They are equal at O(αs), but BT receives some-
what larger O(α2

s) corrections than BW . Again, we see that both the old (LO) and new
(NLO) defaults are able to describe the data, and that the spectrum with the new default
value for αs(MZ) is too soft if the NLO corrections are switched off.

Finally, as an aid to constraining the Lund fragmentation-function parameters, the L3
study also included two infrared-sensitive observables: the charged-particle multiplicity
and momentum distributions, to which we compare in fig. 6.13, with the momentum
fraction defined as

x =
2|p|√
s
. (6.92)

There is again no noteworthy differences between the old and new default tunes.
Having determined the value of αs(MZ) and the parameters of the non-perturbative

fragmentation function, we extended the validations to include a set of jet-rate and jet-
resolution measurements by the ALEPH experiment [151] (now without the benefit of
light-flavour tagging), using the standard Durham kT algorithm for e+e− collisions [152],
as implemented in the FASTJET code [153]. We also compared to default PYTHIA 8
and, for completeness, checked that the relative production fractions of various meson
and baryon species were indeed unchanged relative to the old VINCIA default.

Rather than presenting all of this information in the form of many additional plots,
tab. 6.3 instead provides a condensed summary of all the validations we have carried out,
via

〈
χ2
〉

values for each of the models with respect to each of the LEP distributions,
including a flat 5% “theory uncertainty” on the MC numbers. Already from this simple
set of χ2 values, it is clear that the LO models/tunes are already doing very well3. This
agreement, however, comes at the price of using a very large (“LO”) value for αs, which
is not guaranteed to be universally applicable.

The main point of the overview in tab. 6.3 is that an equally good agreement can be
obtained with an αs(mZ) value that is consistent with other NLO determinations [158],
specifically

αs(mZ) = 0.122 , (6.93)

once the NLO 3-jet corrections are included. This should carry over to other NLO-
corrected processes, and hence the fragmentation parameters we have settled on should be

3Both VINCIA and PYTHIA are known to give quite good fits to LEP data [110, 149, 154, 155]. For
comparisons including other generators and tunes, see mcplots.cern.ch.
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Figure 6.12: L3 light-flavour event shapes: jet broadening
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Figure 6.13: L3 light-flavour fragmentation observables: charged-track multiplicity and momentum
distribution.

applicable to future NLO-corrected studies with VINCIA, and can also serve as a start-
ing point for NLO-level matching studies with PYTHIA 8. In the latter context, the 2-loop
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˙
χ2
¸

Shapes T C D BW BT

PYTHIA 8 0.4 0.4 0.6 0.3 0.2
VINCIA (LO) 0.2 0.4 0.4 0.3 0.3
VINCIA (NLO) 0.2 0.2 0.6 0.3 0.2˙
χ2
¸

Frag Nch x Mesons Baryons

PYTHIA 8 0.8 0.4 0.9 1.2
VINCIA (LO) 0.0 0.5 0.3 0.6
VINCIA (NLO) 0.1 0.7 0.2 0.6˙

χ2
¸

Jets rexc
1j ln(y12) rexc

2j ln(y23) rexc
3j ln(y34)

PYTHIA 8 0.1 0.2 0.1 0.2 0.1 0.3
VINCIA (LO) 0.1 0.2 0.1 0.2 0.0 0.2
VINCIA (NLO) 0.2 0.4 0.1 0.3 0.1 0.3˙

χ2
¸

Jets rexc
4j ln(y45) rexc

5j ln(y56) rinc
6j

PYTHIA 8 0.2 0.3 0.2 0.4 0.3
VINCIA (LO) 0.3 0.1 0.1 0.0 0.0
VINCIA (NLO) 0.2 0.2 0.1 0.2 0.1

Table 6.3:
˙
χ2
¸

values for: Top: L3 light-flavour event shapes and fragmentation variables [150],
and LEP average meson and baryon fractions [156, 157]. Bottom: Durham kT n-jet rates, rnj , and
jet resolutions, yij , measured by the ALEPH experiment [151]. For the latter, the

˙
χ2
¸

calculation
was restricted to the perturbative region, ln(y) > −8. A flat 5% theory uncertainty was included
on the MC numbers. Both default PYTHIA and the VINCIA (LO) tune use αs(mZ) = 0.139
while the VINCIA (NLO) tune uses αs(mZ) = 0.122.

running in particular could be retained, while the soft fragmentation parameters would
presumably have to be somewhat readjusted to absorb differences between VINCIA and
PYTHIA 8 near the hadronization scale4.

6.3.3 Uncertainties
As in previous versions of VINCIA, we use the method proposed in [110] to compute
a comprehensive set of uncertainty bands, which are provided in the form of a vector of
alternative weights for each event. Each set is separately unitary, with average weight
one5. The difference with respect to previous versions is that each variation now benefits

4The differences in soft fragmentation parameters between existing LO VINCIA and PYTHIA-8 tunes
could be used as an initial guideline for such an effort, see, e.g., appendix D.

5VINCIA currently does not attempt to give a separate estimate of the uncertainty on the total inclusive
cross section. The uncertainties it computes only pertain to shapes of distributions and the effects of cuts on the
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fully from the inclusion of NLO corrections.
When setting the parameter Vincia:uncertaintyBands = on, the uncertainty

weights are accessible through the method

double vincia.weight(int i=0);

with i = 0 corresponding to the ordinary event sample, normally with all weights equal
to unity, and the following variations, for i =:

1. Default: since the user may have chosen other settings than the default, the default
is included as the first variation.

2. alphaS-Hi: all renormalization scales are decreased to µ = µdef/kµ, where µdef =
p⊥ for gluon emission and µdef = mqq̄ for gluon splitting. The default value of
kµ = 2 can be changed by the user. A second-order compensation for this variation
is provided by the renormalization-scale sensitive term V3µ.

3. alphaS-Lo: µ = µdef ∗ kµ, with similar comments as above.

4. ant-Hi: antenna functions with large finite terms (MAX [149]). This variation is
already compensated for by LO matching and is not explicitly affected by the NLO
corrections.

5. ant-Lo: antenna functions with small finite terms (MIN [149]), with similar com-
ments as above.

6. NLO-Hi: branching probabilities are multiplied by a factor (1 + αs) to represent
unknown (but finite) NLO corrections. Is canceled by NLO matching.

7. NLO-Lo: branching probabilities are divided by a factor (1 + αs). Is canceled by
NLO matching.

8. Ord-pT1: p⊥ ordering with alternative (user-definable) N⊥ normalization factor in
Q2
E = N⊥p

2
⊥. Compensated at first order by LO matching, and at second order

(Sudakov corrections) by NLO matching via ordering-sensitive terms in V3Z .

9. Ord-mD: smooth mD ordering, with similar comments as above.

10. NLC-Hi: qg emission antennae use CA as colour factor. Compensated at first order
by LO matching. Not affected by NLO matching since we only operate at leading
colour.

11. NLC-Lo: qg emission antennae use 2CF as colour factor, with similar comments
as above.

total inclusive rate.
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We emphasize that these variations are not all independent (for instance the αs and NLO
variations are highly correlated) and hence the corresponding uncertainties should not be
summed in quadrature. In the VINCIAROOT plotting tool included with VINCIA, the
uncertainty band is constructed by taking the max and min of the variations. See the
VINCIA HTML manual for more information about the uncertainty bands and [110] for
details on their algorithmic construction.

6.3.4 Speed
Although the CPU time required by matrix-element and shower/hadronization genera-
tors is still typically small in comparison to that of, say, full detector simulations, their
speed and efficiency are still decisive for all generator-level studies, including tuning and
validation, parameter scans, development work, phenomenology studies, comparisons to
measurements corrected to the hadron level, and even studies interfaced to fast detector
simulations. For this wide range of applications, the high-energy simulation itself consti-
tutes the main part of the calculation. An important benchmark relevant to practical work
is for instance whether the calculation can be performed easily on a single machine or not.

Higher matched orders are characterized by increasing complexity and decreasing un-
weighting efficiencies, resulting in an extremely rapid growth in CPU requirements (see
e.g. [149]). At NLO, the additional issues of negative weights and/or so-called counter-
events can contribute further to the demands on computing power. With this in mind, high
efficiencies and fast algorithmic structures were a primary concern in the development of
the formalism for leading-order matrix-element corrections in VINCIA [110, 133, 149],
and this emphasis carries through to the present work. We can make the following re-
marks.

• The only fixed-order phase-space generator is the Born-level one. All higher-
multiplicity phase-space points are generated by (trial) showers off the lower-multiplicity
ones. This essentially produces a very fast importance-sampling of phase-space that
automatically reproduces the dominant QCD structures.

• Likewise, the only cross-section estimate that needs to be precomputed at initial-
ization is the total inclusive one. Thus, initialization times remain at fractions of a
second regardless of the matching order.

• The matrix-element corrected algorithm works just like an ordinary parton shower,
with modified (corrected) splitting kernels. In particular, all produced events have
the same weights, and no additional unweighting step is required.

• Since the corrections are performed multiplicatively, in the form of (1+correction),
with 1 being the LO answer, there are no negative-weight events and no counter-
events. The only exception would be if the correction becomes larger than the LO
answer, and negative. This would correspond to a point with a divergent fixed-order
expansion, in which case the use of NLO corrections would be pointless anyway.
Moreover, as demonstrated by the plots in the previous sections, our definitions of
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6.4. Outlook and Conclusions

LO level NLO level Time / Event Speed w.r.t. PYTHIA
Z → Z → [milliseconds] 1

Time / PYTHIA 8

PYTHIA 8 2, 3 2 0.4 1
VINCIA (���NLO) 2, 3, 4, 5 2 2.2 ∼ 1/5
VINCIA (NLO) 2, 3, 4, 5 2, 3 3.0 ∼ 1/7

Table 6.4: Event-generation time in VINCIA 1.0.30 compared to PYTHIA 8.176.

the corrections are analytically stable (and numerically subleading with respect to
LO) over all of phase space, including the soft and collinear regions, for reasonable
renormalization- and evolution-variable choices.

• The parameter variations described in section 6.3.3 can be performed together with
the matching corrections to provide a set of uncertainty bands in which each varia-
tion benefits from the full corrections up to the matched orders. These are provided
in the form of a vector of alternative weights for each event [110], at a cost in CPU
time which is only a fraction of that of a comparable number of independent runs.

These attributes, in combination with helicity dependence in the case of the leading-order
formalism [149], allow VINCIA to run comfortably on a single machine even with full-
fledged matching and uncertainty variations switched on.

The inclusion of NLO corrections will necessarily slow down the calculation. The
relative increase in running time relative to PYTHIA 8, is given in tab. 6.4, including the
default level of tree-level matching, with and without the NLO 3-jet correction6. Without
it (but still including the default tree-level corrections which go up to Z → 5 partons),
VINCIA is 5 times slower than PYTHIA. With the NLO 3-jet correction switched on,
this increases only slightly, to a factor 7. For a fully showered and hadronized calculation
which includes second-order virtual and third-order tree-level corrections, we consider
that to still be acceptably fast. Importantly, an event-generation time of a few millisec-
onds per event implies that serious studies can still be performed on an ordinary laptop
computer.

6.4 Outlook and Conclusions
In this work, we have investigated the expansion of a Markov-chain QCD shower algo-
rithm to second order in the strong coupling, for e+e− → 3 partons, and made systematic
comparisons to matrix-element results obtained at the same order. Using these results,
we have subjected the subleading properties of shower algorithms with different evolu-
tion/ordering variables and different renormalization-scale choices to a rigorous exami-
nation. At the analytical level, we have compared the logarithmic structures at the edge

6The numbers include both showering and hadronization and were obtained on a single 3.05 GHz CPU, with
gcc 4.7 -O2, using default settings for PYTHIA 8 and the “Nikhef” NLO tune for VINCIA.
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Chapter 6. One-Loop Matching for Z → 3 Partons

of phase space, and at the numerical level we have illustrated the difference between the
expanded shower algorithm and the one-loop matrix element.

We find that the choice of p⊥-ordering, with a renormalization scale proportional to
p⊥ yields the best agreement with the one-loop matrix element, over all of phase space.
This elaborates on, and is consistent with, earlier findings [128, 145]. Using the antenna
invariant mass, mD, for the evolution variable still gives reasonable results in the hard re-
gions of phase space, but leads to logarithmically divergent corrections for soft emissions,
the exact form of which depends on the choice of renormalization variable. In the VIN-
CIA code, we retain the option of using mD mainly as a way of providing a conservative
uncertainty estimate.

With the NLO 3-jet corrections included as multiplicative corrections to the shower
branching probabilities, we find that we can obtain good agreement with a large set of LEP
event-shape, fragmentation, and jet-rate observables with a value of the strong coupling
constant of αs(MZ) = 0.122. This is in strong contrast with earlier (LO) tunes of both
PYTHIA and VINCIA which employed much larger values ∼ 0.14 to obtain agreement
with the LEP measurements.

This chapter is intended as a first step towards a systematic embedding of one-loop
amplitudes within the VINCIA shower and matching formalism. To arrive at a full-
fledged prescription, this will need to be extended to hadron collisions, ideally in a
way that allows for convenient automation. A first step towards developing the under-
lying shower formalism for pp collisions was recently taken [159], and more work is in
progress.

In addition, further studies should be undertaken of the impact of unordered sequences
of radiation that can occur for the smooth-ordering case (it may be necessary to adopt a
strategy similar to the truncated showers of the MC@NLO approach), and the mutually
related issues of total normalization and how much of the (hard) corrections are expo-
nentiated (similar to the differences between the POWHEG and MC@NLO formalisms,
but here occurring at one additional order, where the relevant total normalization is the
NNLO one). Finally, it would be interesting to develop an extension of this formalism
that would allow second-order-corrected antenna functions to be used at every stage in
the shower, thereby upgrading the precision of the all-orders resummation, a project that
would involve examining the second-order corrections to branchings of qg and gg mother
antennae as well.
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Chapter 7

Conclusion

The large and increasing data sets from the LHC allow for a look into scenarios of possible
new physics and will therefore submit the SM to additional tests of its validity. New
physics should answer questions that cannot be explained by the SM. Attention therefore
goes to the development of both physics observables and event generation that can assist
in detecting implications of new theories.

The top quark plays a central role in this thesis as a possible window to new physics
scenarios. The polarization of this heavy particle can be influenced if it is produced with or
by new (unseen) particles which affects the distributions of its decay products. This is only
possible because the top quark decays before it hadronizes. A second important aspect
of our approach is that the top decay is insensitive to leading order to an anomalous Wtb
couplings. The polarization is therefore only altered in the production process, making
it a good probe for new physics. We demonstrated this in chapter 2. Moreover, we have
presented a variety of laboratory frame observables there, that can be used to distinguish
between different polarization types which in turn can be related to the parameters of a
model.

In chapter 3 we have investigated the implications of this approach for a 2HDM, with
a particular focus on the effect of NLO corrections + parton shower. We have constructed
asymmetry parameters for both the polar and azimuthal angles of the decay lepton of
the top quark. These observables were shown to give complementary information on the
mass of a charged Higgs boson, when it is produced in association with the top quark.
Moreover, the asymmetry parameters indicate a clear separation from the pure SM case.
The effect of NLO corrections + shower slightly weakens the signal as was expected, but
the signal remains strong enough to communicate interesting information on the model’s
parameters. Additionally we have also reviewed the NLO effect on energy observables for
the case of a highly boosted top quark. The energy observables are affected by an anoma-
lous Wtb coupling, and therefore are a less robust probe for polarization but still contain
interesting information in the region where the angular observables lose their predictive
power. The definition of a useful asymmetry parameter was found to be more challenging
for these observables. The chapter was completed by employing the asymmetry param-
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eter as a probe to distinguish between single top in the Wt channel and tt̄ production, a
very challenging background. We found that such asymmetries can be very helpful in this
separation.

In chapter 4 we investigated the dependence of top polarization on the SUSY param-
eter space in the context of the MSSM. We started by investigating the effect of stop and
neutralino mixing and mass effects for a stop decaying to the top quark in the stop rest
frame. Additionally we investigated the influence of the stop boost to the lab frame on
the top polarization. We also scanned part of the SUSY parameter space that is consistent
with a 125 GeV Higgs and studied the polarization and branching ratio’s dependence on
the neutralino content. We find that the bino content of the neutralino is a critical parame-
ter and that due to the large size of the hypercharge for the right-handed top, which drives
the bino-stop-top coupling, a mixed stop often behaves like a RH stop. The scan also
revealed that the LH stop with a higgsino LSP and the RH stop with a bino LSP could
be more tightly constrained at the LHC than the same handed stop with switched LSP
content. In the analysis of the decay products of the top arising from stop decay in the
stop lab frame we noticed a shift in lepton energy and transverse momentum for polarized
tops. The spectrum softens (hardens) for a negatively (positively) polarized top compared
to an unpolarized top. Finally we studied the asymmetry parameters which are found to
be an interesting probe when the masses of the particles involved are known.

Chapter 5 changed focus to event generation with an antenna based shower. A brief
review of the formalism driving the VINCIA shower was presented together with the
available ordering variables. We proceeded with an investigation of strong ordering impli-
cations for e+e− → 3 parton phase space. An investigation of the matching of e+e− → 2
partons to NLO accuracy showed that matching may be derived for an exclusive fixed-
order calculation corresponding to a shower prescription that takes the hadronization scale
to infinite resolution. The two-parton case however is special as the lack of additional ra-
diation only allowed adaptation of the weight for incorporating NLO accuracy. Therefore
the generalization to an additional parton was presented in chapter 6. This also required
a thorough treatment of the renormalization term for the parton shower when fixing the
renormalization term of the fixed order description as is generally the case. The matching
term was constructed using standardized subtraction terms to allow for a generic descrip-
tion. We investigated the subleading properties of shower algorithms for the various or-
dering types and found pT ordering, with a renormalization scale proportional to pT yields
the best agreement with the one-loop matrix element. Comparison to LEP data showed
good agreement with an αS(mZ) = 0.122, in comparison to LO tunes that required a
higher value.

We conclude that spin information of the top quark is an interesting window for the
discovery of new physics. To implement such an approach in search strategies would re-
quire extending the present study to the detector level. The first theoretical investigations
however, show promising results. We also conclude that the NLO matching prescrip-
tion developed for the VINCIA shower allows for consecutive matching. The unitary
approach shows impressing results on speed which would enhance the current status for
event simulation. Therefore it will be very interesting to extend NLO matching in VIN-
CIA for hadronic initial states.
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Appendix A

Infrared singular operators

Here we list the IR singularity operators from [125, 139, 140] as they are used in section
5.2.

I
(1)
qq̄

(
ε, µ2/sqq̄

)
= − eεγ

2Γ (1− ε)

[
1
ε2

+
3
2ε

]
Re
(
− µ

2

sqq̄

)ε
(A.1)

I(1)
qg

(
ε, µ2/sqg

)
= − eεγ

2Γ (1− ε)

[
1
ε2

+
5
3ε

]
Re
(
− µ

2

sqg

)ε
(A.2)

I
(1)
qg,F

(
ε, µ2/sqg

)
=

eεγ

2Γ (1− ε)
1
6ε

Re
(
− µ

2

sqg

)ε
(A.3)
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Appendix B

One-Loop Amplitudes

B.1 Renormalization
Because a detailed derivation of the calculation of Z → 3 jets can be found in [143] we
restrict ourselves to listing the result in form that is convenient for our purpose. Diver-
gences are regulated using dimensional regularization with d = 4−2ε. Our results, before
ultraviolet renormalization, are cross-checked with [143] where one must undo the renor-
malization in their case. In order to cancel the ultraviolet poles we need to renormalize
the coupling according to (see also section 6.1.1)

αbares = αs(µ2
R)µ2ε

[
1− β0

ε
Sε

(
αs(µ2

R)
4π

)(
µ2

µ2
R

)ε]
(B.1)

where
β0 =

11Nc − 2nF
3

(B.2)

and Sε = (4π)ε exp(−ε γE) contains the factors characterizing the MS scheme. Due
to the renormalization, the leading order calculation will generate a term quadratic in
αs(µ2

R),

− αs(µR)2

4π
β0

ε

[
1 + ε ln

(
µ2
R

µ2

)]
Born , (B.3)

which directly cancels the ultraviolet poles of the next-to-leading order calculation.

B.2 One-loop Matrix Element
The fixed-order expression relevant to matching in the VINCIA context is the one-loop
matrix element normalized by the tree-level one. We decompose this into leading- and
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Appendix B. One-Loop Amplitudes

subleading-colour pieces, as follows:

2 Re
[
M

(1)
3 M0∗

3

]
|M0

3 |2
=
αs
2π

(LC +QL+ SL) , (B.4)

with the LC piece containing the CA part of the gluon loops, the QL one containing the
quark loops, proportional to nFTR, and the SL piece containing the subleading gluon-
loop corrections, proportional to −1/NC . As usual in MC applications, we usually refer
to “Leading Colour” as including both the NC and TR pieces. These are both associated
with so-called planar colour flows that are simple to relate to the colour-flow representa-
tions used in Monte Carlo event generators, see e.g. [129, 160]. The subleading-colour
piece is included below for completeness, but has so far been left out of the NLO matching
corrections implemented in the VINCIA code.

The notation of the infrared pole structure of these terms has been written similar to
the integrated antenna in [125], with the difference that we have chosen to expand the
scale factor µ in the integrated antenna terms in order to obtain explicitly dimensionless
logarithms.
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B.2. One-loop Matrix Element

The quark has been labelled 1, the anti-quark 2 and the gluon 3.

LC =NC
[(

2I(1)
qg (ε, µ2/s13) + 2I(1)

qg (ε, µ2/s23)
)

(B.5)

+
(
−R(y13, y23) +

3
2

ln
(
s123

µ2
R

)
+

5
3

ln
(
µ2
R

s23

)
+

5
3

ln
(
µ2
R

s13

)
− 4
)

+
1

s123 a0
3

[
2 ln(y13)

(
1 +

s13

s12 + s23
− s23

s12 + s23
− s23s13

4(s12 + s23)2

)
+ 2 ln(y23)

(
1− s13

s12 + s13
+

s23
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− s23s13
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)
+

1
2

(
s13

s23
− s13

s12 + s13
+
s23

s13
− s23

s12 + s23
+
s12

s23
+
s12

s13
+ 1
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QL =2nFTR
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)

(B.6)

+
1
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)
+ ln

(
s13

µ2
R

))]
SL =

1
NC

[(
2I(1)
qq̄ (ε, µ2/s12)

)
(B.7)
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+
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12

(s13 + s23)2

)
+

1
2
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+

1
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s23
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+
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s13
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s12 + s13
+

s12
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)]]
with

R(y, z) = ln(y) ln(z)− ln(y) ln(1−y)− ln(z) ln(1−z)+
π2

6
−Li2(y)−Li2(z) , (B.8)

a0
3 =

|M0
3 |2

g2
s CF |M0

2 |2
=

1
s123

(
(1− ε)s13

s23
+

(1− ε)s23

s13
+ 2

s12s123 − εs13s23

s13s23

)
(1−ε) ,

(B.9)
and the infrared singular operators, I(1), given in appendix A.
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With the one-loop matrix element expressed in this form, cancellation of the infrared
poles against the integrated antennae (see below) coming from the shower will be partic-
ularly simple and will yield an expression purely dependent on the renormalization scale,
µR, and on the kinematic invariants s12, s23, and s12, but not on the scale factor µ.
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Appendix C

Antenna integrals

In this appendix we list the results of antenna integrals over phase space corresponding to
the various evolution variables.

C.1 Strong Ordering Gluon Emission
The expressions for a gluon emitting antenna is given in eq. (5.4). With a redefinition the
same antenna function reads

ag/IK(y1, y2) =
1

m2
IK

[
2(1− y1 − y2)

y1y2
+
y1

y2
+
y2

y1
− δIg

y2
2

y1
− δKgy

2
1

y2

+C00 + C10y1 + C01y2] (C.1)

where y1, y2 correspond to yij , yjk of eq. (5.6), respectively. Recall that the last three
terms serve to give a flexible and explicit way of tracking extra non-singular terms in
antennae. The phase space integral over these antenna, as determined by the evolution
variable, can be written as

1
16π2m2

IK

∫ m2
IK

Q2
E

ag/IK |J (Q2, ζ)|dQ2 dζ. (C.2)

All antenna integrals in eq. (6.10) have been written in such a way that they are integrated
over their whole invariant mass plus a correction term running from the evolution variable
to the total invariant mass. The integrals running over the whole invariant mass contain
singular regions and therefore poles while the correction terms yield finite corrections.
These finite corrections are discussed per evolution variable below. We define the inte-
grals
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DQζ =
1

m4
IK

∫
dQ2 dζ |J | (C.3)

I1 = DQζ
1

y1(Q2, ζ)y2(Q2, ζ)
(C.4)

I2 = DQζ
1

y2(Q2, ζ)
= DQζ

1
y1(Q2, ζ)

(C.5)

I3 = DQζ
y1(Q2, ζ)
2y2(Q2, ζ)

= DQζ
y2(Q2, ζ)
2y1(Q2, ζ)

(C.6)

I4 = DQζ
y2

2(Q2, ζ)
2y1(Q2, ζ)

= DQζ
y2

1(Q2, ζ)
2y2(Q2, ζ)

(C.7)

I5 = DQζ
[
C00 + C01y1(Q2, ζ) + C10y2(Q2, ζ)

]
. (C.8)

So that, in these terms, the results read

1
16π2m2

IK

∫ m2
IK

Q2
E

dQ2dζ |J(Q2, ζ)| ag/IK =
1

8π2

(
5∑
i=1

KiIi

)
(C.9)

where
K1 = 1 , K2 = −2 K3 = 2, K4 = −δIg − δKg, K5 = 1. (C.10)

We now turn to specific cases.

C.1.1 Dipole Virtuality
The results for the individual contributing parts of the antenna function as defined in
eq. (C.4) - eq. (C.8) with ξ = min(sqg,sgq̄)

m2
IK−min(sqg,sgq̄)

are

I1 =
[

Li2

(
ξ

1 + ξ

)
− Li2

(
1

1 + ξ

)
+ ln (ξ) ln

(
ξ

1 + ξ

)]

I2 =
[−1 + ξ − ln (ξ)

1 + ξ

]
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C.1. Strong Ordering Gluon Emission

I3 =
−3 + 3ξ2 − (2 + 4ξ) ln (ξ)

8 (1 + ξ2)

I4 =
(ξ − 1) (11 + ξ (20 + 11ξ))− 6 (1 + 3ξ (1 + ξ)) ln (ξ)

36 (1 + ξ)3

I5 =
(−1 + ξ)2 (C01 + C10 + 2(C01 + C10)ξ + 3C00(1 + ξ))

12 (1 + ξ3)

In the case of integration over the 3→ 4 splittings, the definition of the integrals remains
the same. Only the definition of ξ changes with

ξ3→4 =
min (sqg, sgq̄)

max (sqg, sgq̄)−min (sqg, sgq̄)
(C.11)

C.1.2 Transverse Momentum
The results for the individual contributing parts of the antenna function as defined in
eq. (C.4) - eq. (C.8) are
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√
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With y2
3 = Q2

3
m2
IK

and m2
IK = s. In the case of the 3 → 4 splittings the only adaptation

takes place in the former definition where m2
IK is set equal to sqg or sgq̄ dependent on

which dipole is being integrated over.

C.1.3 Energy Ordering
The results for this evolution parameter are
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with ∆ used as a cut-off on 4p2
⊥ and y3 = (sqg+sgq̄)

2

s2 .

138
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C.2 Strong Ordering Gluon Splitting
The branching of a gluon splitting into a quark antiquark pair can only take place at
the 3 → 4 level splitting. The generation of a gluon splitting takes place through an
alternative form of phase space generation than the discussed mD, p⊥ and En variables.
Instead phase space is sampled in a triangular surface comparable to mD ordering, yet in
this case using only one cutoff, the Q2 generated at the 2→ 3 level, to avoid the singular
region of the gluon splitting antenna. The gluon splitting antenna is given by

aq̄/qg(y1, y2) =
1

m2
IK

(
(1− 2y1)

2y2
+
y2

1

y2
+ C00 + C01y1 + C10y2

)
. (C.12)

Because the integration surface is similar for all evolution types only depending on the
cutoff Q2 the integration is demonstrated for all types

H =
1

2m2
IK

∫ m2
IK

Q2
E

ds2

∫ m2
IK−s2

0

ds1aq̄/qg(s1, s2)

=
m2
IK

2

∫ 1

yE=
Q2
E

m2
IK

dy2

∫ 1−y2

0

dy1aq̄/qg(y1, y2) (C.13)

=
1
72
[
−13 + 6C01 + 6C10 + 18C00(−1 + yE)2 + 18yE+

yE (−6C10(3 + (−3 + yE)yE + yE(−9 + 4yE + 6C01(−3 + 2yE)))− 12 ln(yE)]

Where the factor a half has been added for the sake of consistency with respect to the
treatment of gluon emission. The factor m2

IK needs to be replaced by either sqg or sgq̄
dependent on which dipole is being integrated.

C.3 Smooth Ordering Gluon Emission
The phase space integral in the case of smooth ordering differs from strong ordering by
allowing integration over the whole phase space region. The inclusion of a damping
factor regulates the accessible region of phase space which generates a different phase
space occupancy than in the case of strong ordering. A general form for smooth ordering
integration of a gluon emission antenna is

1
16π2m2

IK

∫ m2
IK

0

ds1

∫ m2
IK−s1

0

ds2

Q2
Ej

Q2
Ej

+Q2
3

ag/IK(s1, s2) (C.14)

Where we use the definition of eq. (C.1) with si = yim
2
IK , Q2

3 denotes the branching
scale and QEj indicates the evolution variable used for gluon emission. We define the
following integrals
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Ds =
1

m4
IK

∫ m2
IK

0

ds1

∫ m2
IK−s1

0

ds2

Q2
Ej

Q2
E2
j

+Q2
3

(C.15)

L1 = Ds
m4
IK

s1s2
(C.16)

L2 = Ds
m2
IK

s1
= Ds

m2
IK

s2
(C.17)

L3 = Ds
s1

2s2
= Ds

s2

2s1
(C.18)

L4 = Ds
s2

1

2m2
IKs2

= Ds
s2

2

2m2
IKs1

(C.19)

L5 = Ds
[
C00 + C01

s1

m2
IK

+ C10
s2

m2
IK

]
. (C.20)

So that, in these terms, the results read

1
16π2m2

IK

∫ m2
IK

0

ds1

∫ m2
IK−s1

0

ds2

Q2
Ej

Q2
E2
j

+Q2
3

ag/IK =
1

8π2

(
5∑
i=1

KiLi

)
(C.21)

where
K1 = 1 , K2 = −2 K3 = 2, K4 = −δIg − δKg, K5 = 1. (C.22)

We now turn to specific cases.

C.3.1 Smooth Mass Ordering
The only term from eq. (C.14) that requires specification is the damping factor

Q2
Ej

Q2
Ej

+Q2
3

=
min(s1, s2)

min(s1, s2) + min(sqg, sgq̄)
. (C.23)

The computation of the individual antenna parts will require separating the phase space
triangle in two regions (s1 > s2 and vice versa) in order to make the damping factor
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definite. After summing over these two regions we obtain the following values for gluon
emission contributions

L1 = 2
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2
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L2 =− 1 + 2y2
3 arccoth(1 + 2y2

3)− 1
2
y2

3arccoth(1 + y2
3) ln(4) + ln

(
2 +

1
1
2y

2
3

)
+

1
2
y2

3

(
Li2

(
− 1
y2

3

)
+ Li2

(
1

1 + 1
2y

2
3

)
− Li2

(
1

2 + y2
3

))

L3 =
1
8

[
−3 + ln(4) + 2 ln

(
1 +

1
y2

3

)
+ 2y2

3

(
1
2
y2

3 ln(2) ln
(

1 +
1

1
2y

2
3

)
− ln

(
4y2

3

1 + 2y2
3

)
+ ln

(
1 +

1
1 + 2y2

3

))
− y4

3

(
Li2

(
− 1
y2

3

)
+Li2

(
1

1 + 1
2y

2
3

)
− Li2

(
1

2 + y2
3

))]

L4 =
1
36

(
−11− 3

2
y2

3(1 + y2
3)− 6 ln

(
2y2

3

1 + 2y2
3

)
+

3
2
y2

3

(
4
(

3 +
1
2
y4

3

)
× arccos(1 + 2y2

3)− ln(8) + 3y2
3

(
−1

2
y2

3arccos(1 + y2
3) ln(4)− ln(2y2

3)

+ ln(2 + 4y2
3) + ln

(
1 +

1
1 + 2y2

3

)))
+ 6 ln

(
2 +

2
1 + 2y2

3

)
+

18
8
y6

3 Li2

(
− 1
y2

3

)
+ Li2

(
1

1 + 1
2y

2
3

)
− Li2

(
1

2 + y2
3

))

L5 =
1
48
[
4(3C00 + C01 + C10) + 3(8C00 + C01 + C10)y2

3 − 6(C01 + C10)y4
3

−12y2
3(1 + y2

3)(4C00 + C01 + C10 − (C01 + C10)y2
3) arccoth

(
1 + 2y2

3

)]
.

With y2
3 = 2 min(sqg,sgq̄)

m2
IK

.

C.3.2 Smooth Transverse Momentum Ordering
In the case of smooth ordering for transverse momentum we find the following result for
the ordering requirement

Q2
Ej

Q2
Ej

+Q2
3

=
s1s2
m2
IK

s1s2
m2
IK

+ sqgsgq̄
s

. (C.24)
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Where m2
IK should be replaced by sqg or sgq̄ dependent on the dipole of integration. In

combination with eq. (C.14) we find the following results for the partial gluon emission
antenna parts
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With y2
3 = 4sqgsgq̄

sm2
IK

C.4 Smooth Ordering Gluon Splitting
Additionally we also need to consider the gluon splitting antenna function for smooth
ordering. Similar to the strong ordering case, the separate generation of gluon splitting
variables allows for a new choice for evolution variable and thereby a different phase
space surface. As in the case of gluon emission we allow for integration over the whole
phase space, using the damping factor to limit the accessible area. A general notation is
the following

G =
1

m2
IK

∫ m2
IK

0

ds1

∫ m2
IK−s1

0

ds2

Q2
Ej

Q2
E2
j

+Q2
3

aq̄/qg(s1, s2). (C.25)

With the definition for the gluon splitting antenna as in eq. (C.12).
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C.4.1 Dipole Mass
With the gluon splitting antenna as defined in eq. (C.12) and the phase space integral
eq. (C.25) we find the following result for the dipole mass evolution type

G =
1

72s3
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(
−12(s3

P + 3(−1 + 2C00 + C10)y2
3s

2
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3
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(C.26)

With y3 = N ′min(sqg,sgq̄)
s and sP = max(sqg, sgq̄)/s. Note that the gluon splitting

antenna has been defined with the singularity in y2 which determines the form of the
damping factor.

C.4.2 Transverse Momentum
With the gluon splitting antenna defined in eq. (C.12) and the phase space integral eq. (C.25)
we find the following result for the transverse momentum evolution type

G =
1
72
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− 13 + 18C00 + 6C01 + 6C10 + 3(−4 + 12C00 − 6C01 + 9C10)y2

3
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(C.27)

With y2
3 = Nsqgsgq̄

sm2
IK

.
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Appendix D

NLO Tune Parameters

In tab. D.1 below, we list the perturbative and non-perturbative fragmentation parameters
for the Nikhef NLO tune of VINCIA. For reference, we compare them to the current
(LO) default Jeppsson 5 tune, which was used for comparisons to LO VINCIA in this
paper.
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NLO Tune LO Tune
Parameter (Nikhef) (Jeppsson 5) Comment
! * alphaS
Vincia:alphaSvalue = 0.122 = 0.139 ! alphaS(mZ) value
Vincia:alphaSkMu = 1.0 = 1.0 ! Renormalization-scale prefactor
Vincia:alphaSorder = 2 = 1 ! Running order
Vincia:alphaSmode = 1 = 1 ! muR = pT:emit and Q:split
Vincia:alphaScmw = on = off ! CMW rescaling of Lambda on/off

! * Shower evolution and IR cutoff
Vincia:evolutionType = 1 = 1 ! pT-evolution
Vincia:orderingMode = 2 = 2 ! Smooth ordering
Vincia:pTnormalization = 4. = 4. ! QT = 2pT
Vincia:cutoffType = 1 = 1 ! Cutoff taken in pT
Vincia:cutoffScale = 0.8 = 0.6 ! Cutoff value (in GeV)

! * Longitudinal string fragmentation parameters
StringZ:aLund = 0.40 = 0.38 ! Lund FF a (hard fragmentation supp)
StringZ:bLund = 0.85 = 0.90 ! Lund FF b (soft fragmentation supp)
StringZ:aExtraDiquark = 1.0 = 1.0 ! Extra a to suppress hard baryons

! * pT in string breakups
StringPT:sigma = 0.29 = 0.275 ! Soft pT in string breaks (in GeV)
StringPT:enhancedFraction = 0.01 = 0.01 ! Fraction of breakups with enhanced pT
StringPT:enhancedWidth = 2.0 = 2.0 ! Enhancement factor

! * String breakup flavour parameters
StringFlav:probStoUD = 0.215 = 0.215 ! Strangeness-to-UD ratio
StringFlav:mesonUDvector = 0.45 = 0.45 ! Light-flavour vector suppression
StringFlav:mesonSvector = 0.65 = 0.65 ! Strange vector suppression
StringFlav:mesonCvector = 0.80 = 0.80 ! Charm vector suppression
StringFlav:probQQtoQ = 0.083 = 0.083 ! Diquark rate (for baryon production)
StringFlav:probSQtoQQ = 1.00 = 1.00 ! Optional Strange diquark suppression
StringFlav:probQQ1toQQ0 = 0.031 = 0.031 ! Vector diquark suppression
StringFlav:etaSup = 0.68 = 0.68 ! Eta suppression
StringFlav:etaPrimeSup = 0.11 = 0.11 ! Eta’ suppression
StringFlav:decupletSup = 1.0 = 1.0 ! Optional Spin-3/2 Baryon Suppression

Table D.1: Parameters of the “Nikhef” NLO tune, compared to those of the “Jeppsson 5” LO tune.
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[118] M. Bähr, S. Gieseke, M. Gigg, D. Grellscheid, K. Hamilton, et. al., Herwig++
Physics and Manual, Eur.Phys.J. C58 (2008) 639.

[119] M. Bengtsson and T. Sjöstrand, A Comparative Study of Coherent and
Noncoherent Parton Shower Evolution, Nucl. Phys. B289 (1987) 810.

155

http://xxx.lanl.gov/abs/hep-ph/0211136
http://xxx.lanl.gov/abs/1107.2597
http://xxx.lanl.gov/abs/hep-ph/0409146
http://xxx.lanl.gov/abs/1002.2581
http://xxx.lanl.gov/abs/1102.2126
http://xxx.lanl.gov/abs/1108.6172
http://xxx.lanl.gov/abs/hep-ph/0310083
http://xxx.lanl.gov/abs/hep-ph/0011363


BIBLIOGRAPHY
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[131] T. Sjöstrand, A Model for Initial State Parton Showers, Phys.Lett. B157 (1985)
321.
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Summary

Particle physics aims to discover, understand and describe the elementary particles that
are the building blocks of all matter present in the universe. Constituents of matter are
most easily found by demolition, and our universe would not look the way it does if ele-
mentary particles would reveal themselves easily. This forces scientists to an aggressive
approach, colliding (composite) stable particles at the highest energy available by accel-
erating them to nearly the speed of light. The most powerful accelerator built so far, the
Large Hadron Collider (LHC) has become operable in 2009. The LHC is designed to col-
lide protons at approximately 14 TeV, equivalent to the kinetic energy present in a flying
mosquito. The LHC squeezes this energy into a proton, an object which is approximately
1014 times smaller. The energy determines the masses of the particles that are created in
the collisions as can be seen in Einstein’s law of E = mc2.

Before the LHC became operational, its predecessors had already discovered a variety
of elementary particles. These particles are grouped into families whose members behave
similarly in interactions with other particles. Three main groups can be distinguished: the
leptons, quarks and bosons. The existence of an omnipresent Higgs field with associated
Higgs boson, was predicted during the construction of the Standard Model (SM), the the-
ory describing all these particles and their interactions. Only by postulating the existence
of a new unseen particle, were theorists able to allocate masses to observed particles in
the model. The discovery of the Higgs boson in 2012 comes 48 years after its prediction
in 1964, characterizing the large time scales related to the construction of big accelerator
experiments.

The Standard Model has been tested to impressive accuracy which leaves little room for
unknown physics at minute length scales explored so far. However, tests of the Standard
Model’s validity are also provided at extremely large length scales: the movement of large
scale objects in the universe studied by astrophysicists. For instance, the movement of
galaxies governed by gravity, implies the existence of unseen dark matter, as the amount
of the visible matter alone cannot explain it. Dark matter must also be made of parti-
cles, however the Standard Model does not provide a candidate particle. This motivates
among other reasons, the development of more theories. One such idea is supersymme-
try, a theory that postulates the existence of superpartners to all known Standard Model
particles and that does provide a dark matter candidate. The supersymmetric particles
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must have masses beyond currently explored limits, otherwise they would have already
been observed in accelerator experiments. The supersymmetry can therefore only exists
at very high energies, allowing a lower energy scale mechanism to break the symmetry in
the particle masses. Other models are also interesting, as long as they contain the Stan-
dard Model supplemented with ideas that provide answers or insights to open questions.
Collectively such theories are therefore often referred to as Beyond the Standard Model
(BSM) theories .

While the development of increasingly large accelerator experiments requires some tens
of years before they collect data, theoretical work on BSM theories continues. One of
the LHC’s tasks will be to exclude, or confirm, as much as possible of BSM physics and
simultaneously perform precision measurements that test the Standard Model’s validity.
The development of strategies that distinguish between the Standard Model and BSM the-
ories is thus of crucial importance for the LHC. This translates to isolating parts of the
BSM that deviate from SM behavior. A very interesting approach is based on a property
of subatomic particles called spin.

Spin is quantum property of a particle that relates to the physical conservation law of
angular momentum. This law is comparable to Einstein’s E = mc2, where in this case
the angular momentum of a particle is transferred elsewhere when the spin is changed.
Spin was discovered by two Dutch physicists Uhlenbeck and Goudsmit in Leiden in 1925.
Leptons and quarks have spin 1

2 , commonly referred to as fermions, while bosons have
spin 0 or 1. Bosons and fermions behave very differently. For instance bosons can be in
the same state while fermions always need to be in different states (when they are in one
place with the same velocity). Spin relates peculiarly to our general interpretation of mea-
suring. The type of particle (boson or fermion) determines the amount of spin to be either
1
2 or 1 times the unit of spin (spin 0 is a trivial measurement). It is a quantum property
that the spin is always found along the measuring axis either in the up or down direction,
even if the measurement is followed by a measurement in perpendicular direction. Spin
is thus always pointing in either way of your measuring axis regardless of the direction of
your measuring axis.

Both the Standard Model and BSM theories produce particles with up and down spin
(along some axis), but models can differ in their preference to produce spin up or spin
down type particles. This difference can be exploited to distinguish between Standard
Model and BSM theories. The asymmetry in spin is measured with polarization, which
effectively compares the amount of particles produced with up spin, to the amount of
particles produced with spin down. Interestingly, this difference is most notable when
spin is measured along the direction of movement (longitudinal polarization). We use the
top quark to study polarization in this thesis, as this quark immediately decays into other
elementary particles instead of forming a bound state as lighter quarks do. The decay
allows for the tracing of spin information. The angular distributions of the the top quark
decay products can easily be correlated with polarization in the top rest frame. This is
more complicated in the laboratory frame, where the top quark is moving, which focusses
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the decay products towards the top quark direction of movement. As a result the trace of
polarization in the angular distributions of the top quark decay products is weakened in
the laboratory frame. It is interesting to study polarization in the laboratory frame as this
relates more obviously to LHC data. The main goal of chapter 3 and 4 is to investigate
the sensitivity of the angular distributions of the top decay product, to the polarization of
a top quark produced in the Standard Model and a BSM theory in the laboratory frame.
This approach is supplemented with a study of the correlation between polarization and
the energy of the top decay product for cases where it is difficult to accurately measure
the emission angle of the decay particle.
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= LO + NLO + ........

Figure D.1: Graphical representation of the prediction of a particle scattering calculated in pertur-
bation theory.

The above approaches require accurate theoretical predictions, based on Standard Model
and BSM theories, to test the robustness of polarization. For this we use perturbation
theory, an approach that makes successively better predictions. The simplest approxima-
tion is called Leading Order (LO) and the first correction to it the Next-to-Leading-Order
(NLO) term and so on. To use perturbation theory wisely requires thorough knowledge
on the precision of calculations. Predictions of Standard Model observables are known to
increase up to 30% when higher order corrections to the simplest approximation are taken
into account. Lacking a thorough investigation of the influence of higher order terms for
Standard Model observables can cause measurements to be mistaken for Standard Model
deviations (and deviations are interpreted as signs for BSM). While the benefit of NLO
predictions might be obvious, the calculations become increasingly complicated with each
step in the perturbative series.

The idea of using polarization as a probe to distinguish between the Standard Model and
BSM theories was already known. Though it had not been investigated prior to the work
in this thesis, how the inclusion of NLO corrections influenced the usefulness of such ap-
proaches . Chapter 2 examined the effect of higher order corrections for producing a top
quark in the Standard Model and a Two Higgs Doublet Model, a BSM with a larger Higgs
sector. We found that the inclusion of NLO weakens the signal of polarization slightly,
but that it remains sufficiently strong to distinguish between the Standard Model and BSM
and provide information on the BSM parameters. A similar result was found for the en-
ergy distributions, although relating these distributions usefully to the BSM parameters
was found to be more challenging and dependent on the model’s parameters. This result
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motivated the work in the next chapter to be carried out, at LO, where we investigated
how supersymmetric parameters influence the polarization of a top quark in the context
of a supersymmetic BSM. As supersymmetry has not yet been discovered, these parame-
ters can take a wide range of values. We found that polarization can be a useful probe for
supersymmetric parameters when the masses of sparticles are known.
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Figure D.2: Simulation of an event with an antenna shower. Initial particles a and b form a new
particle that decays into particle c and d. The latter two particles then form an antenna and radiate
off particle e. At the point illustrated by the second dotted line, there are two competing antennae
c− e and e− d. A computer algorithm will decide which antenna will win the competition and is
allowed to radiate a particle. The line type indicates the type of particle, straight for a quark and
wiggly and curly lines denote different gauge bosons.

The polarization studies have used computer simulations of particle collisions (event sim-
ulation). A very fast way to simulate events is by building up the collision iteratively. The
starting point is a LO calculation of a particle scattering denoted in fig. D.4 by particles a
and b scattering into particle c and d through a short lived particle. Additional final state
particles are generated by forming an antenna between particles c and d, that together
radiate a third particle e. The next evolution step has two antennae to choose from, and
a computer algorithm will decide which competing antenna will win the right to radiate
off another particle. The evolution is guided by a timelike parameter that terminates the
shower at a preset time. In order for the generated event to behave according to what
the prediction of the Standard Model or BSM theory predicts requires an additional step
called matching. We have discussed the VINCIA antenna shower including its matching
procedure in detail in chapter 5. The shower already contained a LO matching prescrip-
tion, and the work in this thesis generalized this to a NLO matching procedure in chapter 6
for an electron and positron (anti-electron) decaying into three massless particles. Our ap-
proach shows impressive results on speed in comparison to existing generators.
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Deeltjesfysica wil de elementaire deeltjes die de bouwstenen van materie vormen ontdek-
ken, begrijpen en beschrijven. Het slopen van materie biedt daarbij de makkelijkste kijk
in de bestanddelen, en ons universum zou er niet uitzien zoals het doet, als elementaire
deeltjes zichzelf makkelijk prijs zouden geven. Dit dwingt wetenschappers tot een agres-
sieve methode, het botsen van stabiele (samengestelde) deeltjes op een zo hoog mogelijke
energie door ze te versnellen tot bijna de lichtsnelheid. De meest krachtige versneller ge-
bouwd tot nu toe, de Large Hadron Collider (LHC) is in 2009 in gebruik genomen. The
LHC is gebouwd om protonen met ongeveer 14 TeV te laten botsen, te vergelijken met de
bewegingsenergie van een vliegende mug. De LHC propt deze energie in een proton, een
object dat ongeveer 1014 keer kleiner is. De energie bepaalt de massa’s van de deeltjes
die geproduceerd worden in de botsing volgens Einstein’s E = mc2.

Voordat de LHC operationeel werd, was al een verscheidenheid aan elementaire deel-
tjes ontdekt door zijn voorgangers . Deze deeltjes worden gegroepeerd in families wiens
leden zich vergelijkbaar gedragen in interacties met andere deeltjes. Die deeltjes kunnen
opgedeeld worden in drie basisgroepen: leptonen, quarks en bosonen. Het bestaan van
een overal aanwezig Higgsveld, en het daaraan gekoppelde Higgs boson, werd voorspeld
tijdens de ontwikkeling van het Standaard Model (SM), de theorie die al deze deeltjes en
hun interacties beschrijft. Alleen door aan te nemen dat er nog een nieuw deeltje bestond,
waren theoretici in staat om de geobserveerde deeltjes massief te maken in het model. De
ontdekking van het Higgs boson in 2012 komt 48 jaar na zijn voorspelling in 1964, wat
de lange tijdschaal van grote versneller experimenten kenmerkt.

Het Standaard Model is tot op indrukwekkende nauwkeurigheid getest, en dat laat weinig
ruimte voor nieuwe ontdekkingen op de onderzochte lengteschalen. Proeven komen ech-
ter ook van extreem grote lengteschalen: de beweging van grote objecten in het universum
bestudeerd door astrofysici. De beweging van de melkweg, gedomineerd door zwaarte-
kracht, kan niet worden verklaard op basis van alle zichtbare materie, wat duidt op de
aanwezigheid van donkere materie. Donkere materie moet ook opgebouwd zijn uit deel-
tjes, maar het Standaard Model heeft geen kandidaatdeeltje. Dit, onder andere redenen,
motiveert de ontwikkeling van alternatieve modellen. Een idee heet supersymmetrie, een
theorie die het bestaan van superpartners voorspelt van alle Standaard Modeldeeltjes en
die wel een kandidaatdeeltje heeft voor donkere materie. De supersymmetrische deeltjes
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moeten grotere massa’s hebben dan huidig onderzochte limieten, anders waren ze al ge-
vonden in versneller-experimenten. De supersymmetrie kan daarom alleen op hele hoge
energieën bestaan, zodat een mechanisme ervoor kan zorgen dat op lagere energieën de
symmetrie tussen de massa’s gebroken is. Andere modellen zijn ook interessant, zolang
zij het Standaard Model bevatten, aangevuld met ideeën die antwoorden of inzichten bie-
den aan openstaande vragen. Zulke theorieën worden vaak collectief Boven het Standaard
Model (BSM) theorieën genoemd.

Terwijl het ontwikkelen van een nieuw versneller-experiment vaak tientallen jaren duurt
voordat er botsingen plaats vinden, gaat het theoretische werk aan BSM theorieën door.
Een van de taken van de LHC is om zoveel mogelijk BSM gevallen uit te sluiten, of aan te
tonen, terwijl er simultaan precisiemetingen worden uitgevoerd die het Standaard Model’s
voorspellende kracht testen. De ontwikkeling van methodes die onderscheid maken tus-
sen het Standaard Model en BSM theorieën is daarom van cruciaal belang voor de LHC.
Dit betekent zoeken naar metingen waarbij een BSM iets anders voorspelt dan het Stan-
daard Model. Een interessante strategie is gebaseerd op een eigenschap van subatomaire
deeltjes genaamd spin.

Spin is een kwantumeigenschap van een deeltje die te maken heeft met de fysische be-
houdswet van rotatie-energie. Deze wet is vergelijkbaar met Einstein’sE = mc2, waarbij
in dit geval de rotatie-energie ergens heen wordt overgedragen als de spin wordt veran-
derd. Spin is ontdekt door de twee Nederlandse natuurkundigen Uhlenbeck en Goudsmit
in Leiden in 1925. Leptonen en quarks hebben spin 1

2 , en worden fermionen genoemd,
terwijl bosonen spin 0 of 1 hebben. Bosonen en fermionen gedragen zich heel anders.
Bosonen mogen bijvoorbeeld in dezelfde toestand zitten terwijl fermionen altijd in an-
dere toestanden moeten zitten (als ze op dezelfde plek met dezelfde snelheid zijn). Verder
is het maar vreemd om te interpreteren wat er met spin gemeten wordt. Het type deeltje
(boson of fermion) bepaalt dat de hoeveelheid te meten spin 1

2 of 1 keer de spin-eenheid
is (spin 0 is een triviale meting). Het is een kwantumeigenschap dat de gehele spin al-
tijd gevonden wordt langs de metingsas in de omhoog of omlaag richting, zelfs als die
meting wordt gevolgd door een meting met een as loodrecht op de vorige as. Spin staat
dus altijd in de richting van de as waaraan je meet, onafhankelijk van hoe de as gekozen is.

Zowel het Standaard Model als BSM theorieën produceren deeltjes met spin omhoog
en omlaag (ten opzichte van een as), maar de mate waarin ze liever deeltjes met spin
omhoog produceren dan spin omlaag kan wel verschillen. Dit kan gebruikt worden om
onderscheid te maken tussen het Standaard Model en BSM theorieën. De asymmetrie in
spinkeuze wordt gemeten met polarisatie, wat effectief het aantal deeltjes met spin om-
hoog vergelijkt met het aantal deeltjes met spin omlaag. Dit verschil is het grootst als de
spin wordt gemeten langs de as van bewegen (longitudinale polarisatie). We gebruiken
het top quark om polarisatie te bestuderen, omdat de top onmiddellijk vervalt in andere
deeltjes in plaats van een geboden toestand te vormen zoals lichtere quarks. Het verval
maakt het mogelijk om spin-informatie te traceren. De hoekverdelingen van de vervals-
produkten van het top quark kunnen makkelijk gecorreleerd worden met polarisatie in
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het rustsysteem van de top. In het systeem waarin de top beweegt (het laboratorium sys-
teem), is dit lastiger omdat de beweging van de top ervoor zorgt dat de vervalsprodukten
sterker in de richting van beweging gefocust zijn. Als gevolg verzwakt het spoor van po-
larisatie in de hoekverdelingen van de top vervalsprodukten in het laboratoriumsysteem.
Toch is het interessant om in het laboratoriumsysteem te werken, omdat dit makkelijk aan
LHC data gerelateerd kan worden. Het doel van hoofdstuk 3 en 4 was om de gevoelig-
heid in de hoekverdelingen van de top vervalsprodukten te meten voor verschillen tussen
het Standaard Model en een BSM theorie in het laboratorium systeem. Deze strategie is
aangevuld met een studie tussen de polarisatie en de energie van het vervalsdeeltje voor
situaties waar de hoek niet goed te bepalen is.
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= LO + NLO + ........

Figuur D.3: Grafische weergave van de voorspelling van een deeltjesbotsing in storingstheorie.

Bovenstaande methodes vereisen nauwkeurige theoretische voorspellingen, gebaseerd op
Standaard Model en BSM theorieën, om de robuustheid van polarisatie te testen. We ge-
bruiken hier storingstheorie voor, een benadering die stapsgewijs betere voorspellingen
geeft. De simpelste benadering wordt Leidende Orde (LO) genoemd, en de eerste cor-
rectie hierop de Na-Leidende-Order (NLO) term en zo door. Storingstheorie kan alleen
verantwoord gebruikt worden met gedegen kennis van de nauwkeurigheid van een bereke-
ning. Voorspellingen van waarneembare grootheden uit het Standaard Model kunnen wel
30 % groter worden als hogere orde correcties op de simpelste voorspelling worden toe-
gevoegd. Wanneer de invloed van hogere orde correcties niet goed is uitgezocht, kunnen
de waarneembare grootheden worden geı̈nterpreteerd als een afwijking van het Standaard
Model (en dat wordt weer als teken voor BSM gezien). Het is duidelijk dat NLO correc-
ties daarom van groot belang zijn, helaas worden de berekeningen steeds complexer met
iedere stap in de storingsreeks.

Het principe van onderscheid maken tussen het Standaard Model en BSM theorieën op
basis van polarisatie was al bekend. Maar voor het werk in dit manuscript was nog niet
onderzocht hoe het meenemen van NLO correcties de kracht van het signaal zou ver-
anderen. Hoofdstuk 2 onderzocht het effect van hogere orde correcties wanneer een top
quark wordt geproduceerd in het Standaard Model en een Twee Higgs Doublet Model, een
BSM met een grotere Higgs sector. We vonden dat NLO correcties het polarisatie-signaal
iets verzwakken, maar dat het voldoende sterk blijft om onderscheid te maken tussen het
Standaard Model en de BSM, en bovendien informatie geeft over BSM parameters. Een-
zelfde resultaat werd gevonden voor de energiedistributies, alhoewel het moeilijker was
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om deze verdelingen zinvolle voorspellingen te laten doen over de parameters van het
model. Dit resultaat motiveerde om het onderzoek in het volgende hoofdstuk op LO uit
te voeren, waar we onderzochten hoe supersymmetrische parameters de polarisatie van
een top quark beı̈nvloeden in de context van een supersymmetrische BSM. Omdat super-
symmetrie nog niet ontdekt is, kunnen de parameters nog veel waardes aannemen. Ons
onderzoek toont aan dat polarisatie een nuttige indicator is voor supersymmetrische pa-
rameters mits de massa’s van de supersymmetrische deeltjes bekend zijn.
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Figuur D.4: Simulatie van een botsing met een antenne-regen. Binnenkomende deeltjes a en b
vormen een nieuw deeltje dat vervalt in deeltje c en d. De laatste twee deeltjes vormen samen een
antenne en stralen een nieuw deeltje af. Op het punt geı̈llustreerd met de tweede stippellijn zijn er
twee strijdende antennes c − e en e − d. Een computer-algoritme zal beslissen welke antenne de
competitie wint en een nieuw deeltje af mag stralen. Het lijntype duidt aan wat voor deeltje propa-
geert, een rechte lijn staat voor een quark en de wiebel- en krullijn voor verschillende ijkbosonen.

De polarisatiestudies hebben gebruik gemaakt van computersimulaties van botsingen.
Een hele snelle methode bouwt een botsing iteratief. Het startpunt is een LO berekening
van een botsing, weergeven in fig. D.4 door deeltjes a en b die verstrooien naar deeltjes
c en d via een onstabiel deeltje. Nieuwe deeltjes in de eindtoestand worden gegenereerd
door een antenne te vormen tussen deeltjes c en d, die samen deeltje e afstralen. De vol-
gende evolutiestap kan kiezen tussen twee antennes, en een computer-algoritme zal kiezen
welke antenne het recht wint om een deeltje af te stralen. Deze evolutie wordt gefacili-
teerd door een tijdachtige parameter die de evolutie op een gezette tijd stopt. Om ervoor te
zorgen dat de gegenereerde botsing zich uiteindelijk gedraagt zoals het Standaard Model
of de BSM voorspelt, vereist een extra stap die de koppeling naar storingstheorie maakt.
We hebben in hoofdstuk 5 de VINCIA antenne-regen uitgebreid besproken inclusief ge-
bruikte koppelingsmethode. De antenne-regen bevatte al een LO koppeling, en het werk
in dit manuscript heeft dat uitgebreid naar een NLO koppeling in hoofdstuk 6 for een elec-
tron en positron (antielectron) die vervalt naar drie massaloze deeltjes. De methode blijkt
bijzonder snel te zijn vergelijkbaar met andere methodes.
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Bovendien creërde jij het platform waarop de top-polarisatie artikelen tot stand kwamen.
Bedankt voor je onbegrensde vertrouwen in mijn vermogen om dit alles succesvol af te
sluiten en je geduld om mij een kritische blik bij te brengen.

It feels like I had two additional mentors during the course of my PhD besides Eric.
First I would like to thank Rohini Godbole, for sharing your knowledge of top polarization
in BSM physics and especially providing excellent ideas for projects described in this
thesis. Rohini, you have been a very fun and inspiring person to work with and I would
like to thank you for your time and willingness to explain things. Next I would like to
thank Peter Skands, unitarity matching pioneer, to give a very important project to me on
a pure leap of faith. The distance between us and limited literature made this project very
challenging in the start-up phase, but it had a very successful finish. Thank you also for
your time, your guidance and encouragement during the course of this project. And all the
fun moments we had in between or after work. I would also like to thank Stefan Prestel
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