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Summary

Dark matter, dark energy and inflation form the backbone of the current cosmo-
logical model. Collectively, they paint a picture of a universe’s structure sourced
by quantum fluctuations and then billions of years of gravitational clustering in an
expanding universe. These concepts are illustrated in Part I, which serves as an
introduction. This thesis then breaks new ground on all three topics: we simplify
inflationary calculations, showcase the power of current and future large-scale struc-
ture analyses, and advance our understanding of galaxy formation and the nature
of dark energy.

In Part II, we establish a technique to better understand cosmological correlators,
the primary observable in the inflationary universe. Traditionally, cosmological cor-
relators are computed with the standard but complicated Schwinger-Keldysh in-in
formalism. Here, we show that for non-dissipative systems, we can calculate correl-
ators using the more widely used in-out formalism. In de Sitter space, we achieve
this by extending the expanding Poincaré patch with a contracting one. This leads
to simplified calculations with fewer Feynman diagrams and only one propagator.

Part III jumps forward a couple of billion years, and we study the clustering of
dark matter and galaxies in the mildly nonlinear regime using its Effective Field The-
ory. Specifically, we develop the one-loop bispectrum of galaxies in redshift space,
addressing key subtleties about its renormalisation. We then analyse BOSS data
and demonstrate that the inclusion of the bispectrum significantly reduces error bars
in key cosmological parameters compared to using only the power spectrum, show-
casing the importance of including the one-loop bispectrum in future data analyses.
Finally, we forecast the predictive power of two next-generation galaxy surveys,
DESI and MegaMapper, again using the loop power spectrum and bispectrum. Our
analysis focuses on new physics, such as neutrino masses, and, more ambitiously, on
primordial Non-Gaussianity - a key probe of the nature of inflation.

In Part IV, we discuss two topics in the late universe. We develop a method
to obtain direct signals of the formation time of galaxies and show that the large-
scale distribution of galaxies is sensitive to their formation time. This is due to
additional parameters appearing in the bias expansion when assuming galaxies form
over a prolonged period of time. Lastly, we turn to dark energy, where we model
the influence of clustering quintessence on the distribution of galaxies. Again, we
analyse BOSS data, this time with particular emphasis on the dark energy equation
of state parameter.
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1
Introduction

The history of the universe spans incomprehensibly vast scales of time and space.
According to our current cosmological models, we can describe the universe from
approximately 10−35 seconds after the beginning of time. During this infinitesimally
early stage, we believe that one or more quantum fields drove a phase of dramatically
rapid, accelerated expansion, commonly referred to as inflation. Eventually, these
fields decayed, transferring their energy to the Standard Model particles known to
us, such as electrons, photons, quarks, and neutrinos. This period left behind a
crucial signature: tiny quantum fluctuations from inflation seeded slightly denser
(hotter) and less dense (cooler) regions of the primordial universe.

After about 370,000 years, as the universe expanded and cooled sufficiently,
protons and electrons combined to form neutral atoms. Light, no longer bound by
the primordial plasma, was then able to detach and travel freely to reach us today,
forming the Cosmic Microwave Background (CMB) - a snapshot of the very early
universe. Though this afterglow from the Big Bang is extremely uniform, the tiny
ripples visible to us make the CMB the most precise cosmological probe to date.

Over the next hundreds of millions of years, the universe entered a phase of
gravitationally induced magnification of these fluctuations. Matter streamed toward
the denser regions, leaving the slightly underdense areas even emptier. This period
exemplifies the immense hierarchy of scales in physics: It took hundreds of millions
of years of gravitational collapse to eventually light up the first stars. About one
billion years later, the first galaxies formed, and fast forward to today - 13.8 billion
years after the universe’s inception - the gravitational pull resulted in billions of
galaxies in colossal clusters.

The visible narrative is, however, only a small part of the story. Two integral
components of the cosmological model dominate the universe. Dark matter, unlike
ordinary matter, is not visible to us other than through its gravitational effects. We
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Chapter 1: Introduction

can ’see’ it through its gravitational lensing effects 1, it is essential to explain the
measurements of the CMB, and in the large-scale structure, dark matter is necessary
to form the gravitational wells to form galaxies. Meanwhile, dark energy, which
constitutes the majority of the universe’s energy, is driving the accelerated expansion
of space itself, likely driven by a cosmological constant - a constant vacuum energy
with ever-increasing influence as space expands.

Cosmology has now evolved into a precision science, coalesced into a robust
framework known as the ΛCDM - Λ is the symbol for the cosmological constant,
and CDM stands for Cold Dark Matter. The solidity of this base model positions
cosmology at the forefront of efforts to measure physics beyond our current models.
In the mission to extract as much information as possible from the cosmos, the work
presented in this thesis can be roughly categorised into three interwoven efforts of
cosmology.

Our clearest insights into the universe’s composition and evolution - including
early hints at the initial quantum fluctuations - thus far come from studying the
distribution of the fluctuations in the CMB. However, the CMB ultimately only
provides a two-dimensional snapshot of the early epoch of the universe. Recognising
that the early fluctuations gave rise to the structures we see today - galaxies and
a web of dark matter - Large-Scale structure (LSS) cosmology can extract three-
dimensional data from billions of years of cosmic evolution. While this offers greater
sensitivity to the evolution of the universe, the three-dimensional nature of LSS data
also surpasses the information content in the CMB. The challenge lies in untangling
billions of years of gravitational clustering - an issue less dominant in the CMB.
A major theoretical breakthrough in the modelling of gravitational clustering of
dark matter and galaxies is the Effective Field Theory of Large-Scale Structure
(EFTofLSS). It disentangles the large scales of interest from the complicated small-
scale physics while still capturing how the small-scale physics affects the larger
scales. The EFTofLSS has already been able to extract cosmological information
from galaxy surveys [7], and there is a large ongoing effort to refine its predictions
for current and future data sets.

Although ΛCDM explains almost all current observations exceedingly well, it
must be incomplete. It does not integrate with the broader model of high-energy
physics. For example, we have very little knowledge of the particle nature of dark

1Light follows the shortest path in space, which is curved by the presence of dark matter,
effectively bending the light like a lens.
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matter 2, the quantum field theory (QFT) in curved spacetime that underpins in-
flation remains poorly understood, and the nature of dark energy remains an open
question - both theoretically and in light of tensions between early and late time
measurements. This avenue of cosmology pursues more complete models of the
universe, exploring extensions to the standard cosmological model.

Perhaps the most exciting prospect in cosmology is its potential to access en-
ergy scales that are far beyond the energy scales we can test on Earth. Inflation
is estimated to have occurred at an energy scale about 1012 times higher than the
highest energies probed by current colliders, making the early universe the ultimate
observational probe of high-energy physics - possibly even for quantum gravity. This
idea, called the cosmological collider program [8], explores the possibility that high
energy particles in the early universe may have interacted with the inflaton, leaving
an imprint on the distribution of matter. We need to have an extraordinary under-
standing of the inflationary universe to achieve the precision needed to detect these
faint signals - much like our extraordinary understanding of structure formation
and the composition of the universe will likely soon allow us to measure the mass of
neutrinos. If we reach a similar level of understanding of the inflationary universe,
we can probe for the highest of energies in physics.

2The mass of the dark matter particle is among the least constrained numbers in all of physics.
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Chapter 1: Introduction

Overview of this Thesis

This thesis consists of four parts. The first part serves as an introduction, and
the remaining parts are ordered according to the evolution of the universe.

Part I introduces all the cosmological parameters that we discuss in this thesis.
In the process of introducing all of those parameters, we simultaneously also cover
the key concepts upon which the later chapters build. In Ch. 2, we introduce
the Hubble parameter H0, the key fractional densities {Ωm,Ωk, ωcdm, ωb}, the dark
energy equation of state parameter of w, and the sum of neutrino masses

∑
imνi in

the context of the background constituents and evolution of the universe. We then
turn to the perturbed universe in Ch. 3, where we introduce dark matter clustering
parameters, σ8 and S8. This chapter also provides an overview of relativistic and
non-relativistic perturbation theory, including the conceptual introduction to the
EFTofLSS. Finally, Ch. 4 focuses on inflation, where we derive the inflationary
power spectrum, introducing the amplitude parameter As and the spectral index ns.
We complete the set of parameters by presenting the non-Gaussianity parameters
{f loc.

NL , f
eq.
NL, f

orth.
NL }, derived explicitly with in-in calculations from the Effective Field

Theory (EFT) of Inflaton. This discussion also introduces the in-in formalism, which
lays the basis for the next part of this thesis.

Part II aims to better understand cosmological correlators and inflation. Here,
we show that instead of relying solely on the in-in formalism introduced in Ch. 4,
cosmological correlators can also be computed using the more familiar in-out form-
alism. This approach allows us to calculate with standard in-out Feynman rules,
and we can leverage established techniques from the in-out framework to be directly
applied to cosmological correlators. We illustrate this with a number of examples,
such as obtaining correlators as a sum over residues of Feynman propagators, deriv-
ing recursion relations for flat space correlators, and developing new cutting rules.
Finally, with the in-out formalism for cosmological correlators, we can define an
S-matrix that satisfies the standard optical theorem.

Part III is composed of three chapters based on a series of papers in large-scale
structure cosmology, bridging the early and late universe. In Ch. 6, we extend the
introductory EFTofLSS material from Ch. 3 and present the full development of the
power spectrum and bispectrum of galaxies in redshift space at one loop. This is a
very technical chapter showcasing the full renormalisation of these observables. We
then show two applications of this theory. First, in Ch. 7, we analyse BOSS data [9]
using the EFTofLSS power spectrum and bispectrum prediction, highlighting the
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importance of the bispectrum loop. Finally, in Ch. 8, we analyse the constraining
power of future galaxy surveys. In particular, we focus on the detectability of
neutrino masses and primordial non-Gaussianity. The parameters analysed and
forecasted in the latter two chapters have all been introduced in Part I.

Part IV explores two key aspects of late-universe cosmology. In Ch. 9, we invest-
igate how the timescales of galaxy formation imprint themselves on the large-scale
distribution of galaxies - an effect captured by three parameters in the EFTofLSS. In
this process, we find great simplifications for bias expansions in the form of recursion
relations, which we also prove in this chapter. This work extends the discussion of
the non-locality in time from Ch. 3. Finally, we analyse dark energy models mo-
tivated by the EFT of dark energy, specifically clustering and smooth quintessence.
Here, we develop the theory of biased tracers in the presence of quintessence in
the EFTofLSS up to the one-loop power spectrum. This entails doing perturbation
theory with exact time dependence, leading to several subtleties in Ch. 10. Using
BOSS data, we finally analyse the equation of state parameter of dark energy in
great detail.
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Part I

How we Parametrise and Model the
Universe





2
The Smooth Universe

2.1 Introduction

It is ambitious in and of itself to try to describe the universe as a whole. In
this ambitious quest, it is likely the best idea to start as simple as we can. This
is what we start with in this section. We introduce the defining symmetries of the
universe on large scales and discuss the contents of this smooth universe. We can
then, through the general theory of relativity, derive the universe’s evolution at large.
Luckily, our universe is, in fact, quite smooth, and therefore, some parameters that
determine the evolution of the universe can already be introduced in this chapter. In
particular, relevant for Chs. 7 and 8 we here introduce the Hubble parameter H0 and
the dimensionless Hubble parameter h, key fractional densities {Ωm,Ωk, ωcdm, ωb}
as well as the dark energy equation of state parameter w relevant for Ch. 10 and
neutrino masses

∑
imνi for Ch. 8.

2.2 The Background Geometry

As stated in the introduction, cosmology is concerned with describing the uni-
verse as a system. One of the first things we can ask about a system is what its
geometry is. Is the universe flat? Is it evolving? What do we even know about
the universe? The answer to this is in part based on evidence and partly based on
philosophy. The first important observation is that on very large scales, the universe
looks the same in every direction we look. We call this principle isotropy, which is
observationally confirmed to extreme precision [10]. Then, we invoke a philosoph-
ical argument, assuming that Earth, or even the Milky Way, does not have a special
place in the universe. That is, if one were to observe the universe from a completely
different point, the universe would also seem isotropic. We call this principle of the
universe looking the same from every place homogeneity, and of course, it is hard to
test since, on cosmological scales, we cannot really move. Nevertheless, it is difficult
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Chapter 2: The Smooth Universe

to picture a universe that is not homogeneous. Together, homogeneity and isotropy
form the cosmological principle, and to first approximation, almost all cosmology is
described this way.

One can show that only three three-dimensional spaces satisfy homogeneity and
isotropy: flat space, a sphere and hyperbolic space. The principles invoked so far
do not say anything about the evolution of the universe. Historically, there were
many attempts to model the universe as a steady, time-invariant object [11]. There
was, however, overwhelming evidence against it, as well as difficulties modelling it
even mathematically [12, 13]. In the most fundamental geometric construction of
the universe, we, therefore, are inclined to stay neutral about the time evolution of
the universe.

To summarise, we assume the universe is homogeneous and observe the universe
to be isotropic. Furthermore, we are agnostic about its time evolution. This leads us
to the Friedmann-Robertson-Walker (FRW) metric, which describes the spacetime
of a universe satisfying the above principles 1

ds2 = −dt2 + a(t)2
[
dx⃗2 −K

xixjdx
idxj

1−Kx⃗2

]
with K =


+1, spherical,

0, flat,

−1, hyperbolic,

(2.1)

where a(t) is called the scale factor and is a measure of how the universe expands
(or may contract). Through the scale factor, we directly introduce one of the most
important scales in cosmology, called the Hubble rate H = ȧ

a
, where the dot denotes

the time derivative ˙ = d/dt. The Hubble scale 1/H separates the scales for which
the expansion is relevant from the ones it is not relevant. Today, the Hubble radius
is around 14 billion light years and thus cosmic expansion only becomes significant
on scales vastly exceeding those encountered in our daily lives. In contrast, we think
the Hubble radius in the early universe was ∼ 10−35 smaller! Therefore, the present-
day Hubble parameter H0 tells us something about the scale of the universe and, as
we will see further below, also about its age. This is the first of the parameters we
introduce in this section, and we will constrain in Ch. 7 using large-scale structure
(LSS). For simplicity one usually normalises H0 = 100h km s−1Mpc−1, so that we
measure h which is a dimensionless number or order one. The subindex 0 here and
everywhere throughout this thesis indicates the present time value of the parameter.

1Throughout this thesis, we use natural units, i.e. c = ℏ = 1
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2.3. The Background Constituents

We have set up the background geometry of a universe with a homogeneous and
isotropic background. Right now, this universe is empty, which is obviously not
true since, for example, this thesis could not exist otherwise. Hence, in the next
section, we look at how we can populate the universe with ingredients like matter
and radiation and how, in turn, the scale factor behaves because of the matter
content.

2.3 The Background Constituents

As we mentioned in the introduction, on large scales, the universe appears iso-
tropic, and our metric in Eq. (2.1) is currently set out to do exactly that. Therefore,
the background matter fields will also be homogeneous and isotropic. From sym-
metry alone, homogeneity and isotropy completely restrict the background fields to
have an energy-momentum tensor of the form

T̄µν = (ρ̄+ p̄)ŪµŪν + p̄ḡµν , (2.2)

where Ūµ is the fluid’s velocity relative to a comoving observer 2. The functions
ρ̄(t) and p̄(t) are the definitions of the coarse-grained 3 density and pressure of the
fluid. Energy conservation on the level of the energy-momentum tensor means its
divergence vanishes. For the 0 component, this implies

0 = ∇µT̄
0µ = ˙̄ρ+ 3H(p̄+ ρ̄). (2.3)

On large scales, the relation between the pressure and the density can be captured
by a simple equation of state parameter w = p̄/ρ̄. As we discuss below, the equation
of state parameter can be calculated for each of the different constituents of the
universe. While w is known for most of the fields (like dark matter or radiation),
different dark energy models predict different equation of state parameters. We
derive and analyse this from first principles in detail in Ch. 10.

This simple form of Eq. (2.3) allows us to solve it exactly. In almost all scen-
arios, w can be taken as a constant 4 as we assume the physical laws governing the

2Comoving, means an observer moving with the expansion of the universe, but otherwise having
constant spatial coordinates.

3Coarse grained, i.e. averaged over large scales because for now, we do not care what the
microphysics of these fluids are. We care about their macroscopic description, purely relying on
their symmetry properties on large scales.

4In [14], a weakly time-dependent equation of state was introduced to probe some dark energy
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Chapter 2: The Smooth Universe

background fields do not change over the history of the universe. Then we have

ρ̄ = ρ̄0

(
a

a0

)−3(1+w)

, (2.4)

where ρ̄0 and a0 are the density’s and scale factor’s present-day values. The exact
value of w depends on which species of matter we want to consider. We briefly
discuss the most important ones here.

For matter, pressure is caused by particle motion, and the energy density is the
rest mass energy. For non-relativistic matter particles, the rest mass energy is much
greater than the pressure, and therefore, we take wm = 0. Within the total matter
density ρ̄m, we can distinguish between baryonic matter ρ̄b (like galaxies), ρ̄cdm dark
matter, and as we discuss below - neutrinos. We make special mention of these three
components since we will be encountering them throughout this thesis.

By contrast, for massless particles like photons, radiation pressure becomes com-
parable to the energy density. The electromagnetic energy-momentum tensor is
traceless T̄ µµ = 0 5, and therefore −ρ̄ + 3p̄ = 0. Hence, for radiation we have
wγ = 1/3.

Neutrinos need more careful modelling and are in between matter and radiation.
In the early universe, when they were relativistic, we count them towards the radi-
ation with equation of state parameter wν = 1/3. From neutrino oscillations, we,
however, know that the sum of neutrino masses must satisfy

∑
imνi > 0.06eV [15].

This means that with the decrease in temperature over the course of the evolution
of the universe, we expect neutrinos to have become non-relativistic and behave like
matter with wν = 0. This transition from relativistic to non-relativistic leaves an
imprint on the large-scale structure of the universe. In addition, the energy density
of neutrinos at late times is proportional to their masses, i.e. ρ̄ ∝ ∑

imνi . While
there is a lot of ongoing research [16, 17] on how exactly to model neutrinos for cos-
mological structure formation, these two signatures already let us constrain neutrino
masses, and we will come back to this in Ch. 8.

For cosmology, perhaps the most interesting and uncertain equation of state
parameter is the dark energy one. A prime candidate for dark energy is the cosmo-
logical constant, describing a constant vacuum energy parametrised by the constant

aspects capturing a large number of models beyond ΛCDM. There we take w(a) = w0+(a0−a)wa,

and can also be solved exactly to be ρ̄ = ρ̄0

(
a
a0

)−3(1+w0+a0wa)

e−3wa(a0−a).
5One can find that the energy-momentum tensor for radiation must be traceless either through

direct calculation, or purely by the conformal symmetry of Maxwell’s equations.
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2.4. The Background Equations of Motion

Λ, describing the accelerated expansion of the universe exceedingly well. One typic-
ally adds the term Λgµν to the Einstein Field equations, which we will encounter in
the next section, describing the expansion as a purely geometrical property sourced
by the vacuum energy of space. To discuss its properties in terms of the coarse-
grained pressure and density, however, it is insightful to write it as an induced
energy-momentum tensor

T µν = −ρΛgµν , (2.5)

where ρΛ = Λ
8πG

and from Eq. (2.2) we can immediately read off p̄Λ = −ρ̄Λ and
therefore wΛ = −1. It is not clear, however, if the accelerated expansion is indeed
caused by the cosmological constant. From a theoretical point of view, the size of the
cosmological constant, as measured in cosmology, seems to be in stark disagreement
with the vacuum energy predicted by quantum field theory 6. Alternatives to the
cosmological constant are an active area of research, in particular with regards to
the Hubble tension [20, 21] and through recent measurements from DESI [22, 23].
In Ch. 10, we will in detail discuss one such proposal inspired by the Effective
Field Theory of dark energy. We will, in particular, discuss the implications on
the distribution of galaxies if there is a dark energy component with an equation
of state parameter w ̸= −1 and then also constrain this parameter with the data
available. We typically reserve w, without any subscript for the general equation
of state parameter for dark energy; as noted above, this is w → wΛ = −1 for a
cosmological constant.

Finally, we note that, of course, all these constituents are present in the universe
simultaneously, and we have to consider them all together for an accurate picture
of the evolution of the universe. Therefore, for the large-scale behaviour of the
universe, we typically consider an energy-momentum tensor with more than one
field present. The full energy-momentum tensor is thus the sum of the individual
ones so that Tµν =

∑
i T

µν
i and therefore ρ̄ =

∑
i ρ̄i and p̄ =

∑
i p̄i.

2.4 The Background Equations of Motion

In the last two sections, we have described the geometry of our homogeneous and
isotropic spacetime and then analysed the general structure of the components of
such a universe. The way these two parts interact is through the dynamics governed

6This is known as the cosmological constant problem, pointed out over fifty years ago [18, 19].
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by the Einstein Field equations

Rµν − 1

2
Rgµν = 8πG T µν . (2.6)

Note that by homogeneity and isotropy, the entire dynamics of the spacetime is
parametrised through the scale factor. For a general energy-momentum tensor of
the form Eq. (2.2) and the FRW-metric Eq. (2.1), we can then obtain the dynamics
of the spacetime with the equations of motion for a, called Friedmann-equations:(

ȧ

a

)2

=
8πG

3
ρ̄− k

a2
, and

ä

a
= −4πG

3
(ρ̄+ 3p̄). (2.7)

These equations govern the evolution of the scale factor a as a function of the
constituents of the universe described by their pressure and density. As mentioned
at the end of the last sections, the pressure and densities can be the sum of several
types of fields.

A particularly useful way to write the first Friedmann equation is in the form of
an energy budget. For this purpose for each species i, we introduce the fractional
energy densities Ωi =

8πG
3H2 ρ̄i. Combining this with Eq. (2.4) we have

Ωi = Ωi,0
H2

0

H2

(
a

a0

)−3(1+w)

. (2.8)

To bring the curvature into a similar form, we can define Ωk = − K
a2H2 so that we

can relate it to the present day value with

Ωk = Ωk,0
H2

0

H2

(
a

a0

)−2

. (2.9)

The curvature parameter is currently constrained to be extremely close to zero.
This was one of the original motivators to develop the theory of inflation, known as
the flatness problem. This problem states that a small deviation from zero of the
curvature parameter today means an enormously small deviation from zero in the
early universe, which seems highly tuned. Inflation, which we will discuss in more
detail in Ch. 4, gives a mechanism for this and naturally predicts a very small value
for curvature. How small it is and what sign the curvature exactly has, however,
can distinguish between inflationary models. We will discuss the measurability of
Ωk with galaxy surveys in Ch. 8.

With these definitions, we can now rewrite the Friedmann equation as a simple
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2.4. The Background Equations of Motion

energy budget equation ∑
i

Ωi = 1. (2.10)

The power of the above equation is that we can go through the known sources
like radiation, matter, dark energy and neutrinos and see if their fractional energy
densities add up to one. Any deviation from one would imply that we are missing
some new form of matter. In Chs. 7, 8 and 10, we will encounter measurement of
several fractional densities as introduced here. Sometimes, we also define ωi = Ωih

2

to reduce the parameter degeneracy, which is what is measured in the CMB analyses
[24]. We note that in almost all contexts in these chapters unless marked specifically
otherwise, we mean the present-day values of the parameters. Explicitly, we will
discuss ωb and ωcdm, which are the baryon and cold dark matter densities in these
chapters. We will measure and forecast constraints on Ωm, the total fractional
matter density, implicitly Ωd the dark energy fractional density since in the late
universe Ωd + Ωm ≃ 1 and forecast the curvature parameter Ωk.

These parameters are insightful in and of themselves in that they tell us what the
universe consists of at different times. This is imperative, for example, to understand
how the universe will evolve. Therefore, the parameters we have introduced so far
already give us deep information about the universe. One classic example that we
can calculate from the parameters introduced so far is the age of the universe. As
has been verified very well by CMB and LSS measurements, the universe is flat
Ωk ≃ 0, and most of the energy is split between a cosmological constant ΩΛ, matter
Ωm and a little bit of radiation Ωr. So we can write the Friedmann equation as

H2

H2
0

= ΩΛ,0 + Ωm,0

(
a

a0

)−3

+ Ωr,0

(
a

a0

)−4

. (2.11)

In this quite accurate model, we now calculate the age of the universe. So starting
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Chapter 2: The Smooth Universe

the clock at t = 0, and denoting the age of the universe as t0, we have:

t0 =

∫ t0

0

dt (2.12)

=

∫ a0

0

1

aH(a)
da

=
1

H0

∫ 1

0

1

a
√

ΩΛ,0 + Ωm,0a−3 + Ωr,0a−4
da

≃ 13.8 ∗ 109 years,

where from the first to the second line, we used dt = da
aH

and from the second to the
third line, we used the rescaling symmetry of the FRW-metric. The values for H0,
Ωm,0, ΩΛ,0 and Ωr,0 are derived from observations [24].

2.5 The Einstein de Sitter Universe

Sometimes, it is useful to study a toy model of the universe in detail since it
is analytically exactly solvable. These kind of model universes can give rise to
properties that generalise to the real universe, or at least provide motivated approx-
imations. One particularly useful model we take inspiration from in Chs. 6 and 9
is the Einstein de Sitter (EdS) universe 7. We will see that since some formulas
become much simpler in this universe, they lead to informed approximations. In
this model, we assume a flat universe and that the only component is matter, i.e.
Ωm = 1. With the Friedmann equations, we can then solve for the scale factor and
Hubble constant exactly. By finding

H2

H2
0

=

(
a

a0

)−3

, (2.13)

this becomes solvable quite easily, and we can express the scale factor and the Hubble
rate as a function of time: 8

a(t) = a0

(
3

2
H0t

)2/3

, and H(t) =
2

3t
. (2.14)

7We note, in neither of these sections will we be working in an EdS universe, but we draw
inspiration from its analytic structure for approximations. In Ch. 10 in contrast, we explicitly do
not work with this approximation.

8We here chose the expanding solution.
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This model is instrumental since it inspires a lot of simplifications that, to good
approximation, can be used in almost all large-scale structure perturbation theory.
For a complete discussion on perturbation theory in an EdS universe, see App. B.1.1.

Finally, we note that it is possible to solve for the scale factor and the Hubble
rate as in Eq. (2.14) for other ingredients and several fluids. However, beyond
the presence of two different species, it becomes increasingly complex, to the point
where, in practice, it is done numerically to capture the whole physics.

2.6 De Sitter Space

Another spacetime of fundamental importance, especially in the later chapter
about inflation Ch. 4, is de Sitter space. We will see there that we eventually will
need to formulate quantum fluctuations on a (quasi) de Sitter space background.
Then, in Ch. 5, we will delve further into the geometry of de Sitter space to introduce
new techniques for QFT in curved space and give an explicit construction of how
this works in de Sitter space. We here want to give a simple definition of de Sitter
space and highlight some of its features.

There are many ways to introduce de Sitter space 9, we will here view it as a
subclass of an FRW universe 10. The defining property is that the Hubble parameter
H is a positive constant, and we take k = 0. That is, we have

H = const., and a(t) = a0e
Ht. (2.15)

Very typically, in this context, we consider the metric in conformal time, that is,
η = −H−1e−Ht, with η ∈ (−∞, 0). The metric in these new coordinates then has
the nice property that it looks like rescaled Minkowski space, that is

ds2 =
1

(Hη)2
(−dη2 + dx⃗2) , (2.16)

which we will be using when talking about inflation. Note that one of the sym-
metries of de Sitter is dilation symmetry; that is, the metric is invariant under
η → λη, x⃗ → λx⃗, for a positive real λ. This is why dynamics in de Sitter space
end up being the same on all scales, i.e. scale invariant.

9For example, as one of the maximally symmetric spacetimes along with Minkowski and Anti-de
Sitter spacetimes, or as an embedded hyperboloid in higher dimensional Minkowski space.

10Technically, this metric only covers the expanding Poincaré patch and not the entire de Sitter
geometry. For the introduction here, we, however, leave it at that.

17



Chapter 2: The Smooth Universe

Finally, note that a(t) = a0e
Ht implies that ä

a
= H2 and the two Friedmann

equations Eq. (2.7) have the same left-hand side. If we combine them, we get the
condition ρ̄ = −p̄, which is the same as for dark energy. In fact, we could have
introduced de Sitter space, similarly to the EdS universe in the previous section,
simply by demanding ΩΛ = 1, which we can see from Eq. (2.11), to give a constant
Hubble parameter. Indeed, the symmetries for dark energy and the ones we will
encounter for inflation are very similar, even though inflation is a theory of the very
early universe and dark energy dominates only in the late universe.
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3
The Perturbed Universe and the
Effective Field Theory of Large-Scale
Structure

3.1 Introduction

In the last chapter, we saw that on the largest scale possible, the entire universe,
symmetries like homogeneity and isotropy allow us to describe the universe in relat-
ively simple terms. As is often the case in physics, nature becomes more complicated
when we go to smaller scales. In cosmology, small scales encompass galactic phys-
ics, baryonic physics, and active galactic nuclei. Splitting the physics of interest on
large scales from the small-scale physics that we cannot describe with our current
understanding, which is analogous to the situation in particle physics. There, we
assume a fundamental theory of quantum gravity should, in the low-energy limit,
give rise to the standard model of particle physics. In cosmology, we have no hope
of describing the entire universe down to every galaxy, or even every electron, in
detail. Instead, we again focus on the lower energies, i.e. on the larger scales. We
will see that through Effective Field Theory, we can still perturbatively capture the
effects that small-scale physics exerts on the large scales.

To make progress, from our background description in the previous chapter, we
have to alleviate some of the assumptions. If the universe were entirely homogeneous,
no galaxies could exist - we call objects that break homogeneity inhomogeneities.
These inhomogeneities are initially small fluctuations; thus, we can treat them as
perturbations to the background that we discussed in the last section. Even after
they become sizeable, we can still formulate a perturbation theory for the relevant
scales, as we will see in Sec. 3.3.

We will start with relativistic perturbation theory, which has at least three ap-
plications relevant to us. The first application is in the early universe, during re-
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combination 1. Before recombination, the universe was hot, relativistic, and the
different components of the universe, i.e. neutrinos, photons, matter, etc., were in-
teracting with each other. A prime example of this interaction between baryons and
photons are baryon acoustic oscillations (BAO), which are sound waves that arise in
the early universe from the interplay between photon pressure and matter overdens-
ities. We encounter these oscillations even in large-scale structure after billions of
years of gravitational clustering. While relativistic and complicated, perturbations
at that time were very small, and therefore, linearised relativistic perturbation can
be applied.

The task for large-scale structure cosmology can be framed to model the gravit-
ational interaction of those initial perturbations over the evolution of the universe.
Hence, a very well-modelled early universe with all its different parts is the starting
point for large-scale structure cosmology. The second relevant application of relativ-
istic perturbation theory for us is large-scale structure, where we will, in fact, see
how we can reduce it to the Newtonian perturbation theory. In essence, this is be-
cause after the decoupling from the cosmic fluid, matter behaves non-relativistically
on the scales we are interested in. So, we can neglect a lot of the terms from the
relativistic equations.

In the context of large-scale structure, another challenge arises. Throughout the
evolution of the universe, the initially small fluctuations cluster through gravity and
can become large, even larger than the background density. This led to the devel-
opment of the Effective Field Theory of large-scale structures, which smoothes over
the small scales where we have very large overdensities and describes a consistent
theory of the larger, perturbative scales, taking into account the non-linear effects
through effective interactions. In Sec. 3.3, we will discuss in detail the conceptual
ideas behind a consistent effective theory of gravitational clustering on large scales.
We leave explicit calculations to Ch. 6, which builds up the basic calculations from
the equations of motion derived here.

Finally, one can ask why inhomogeneities even exist in the first place 2? We will
answer this when discussing the very beginning of the universe in Ch. 4. The third
application of the perturbation theory discussed in Sec. 3.2 is, therefore, inflation
(and, in fact, dark energy). This is because some of the symmetries are the same,

1Recombination is the name we give to the time in the early, hot universe, when the CMB
was produced when electrons and protons recombined to form neutral hydrogen, letting the now
unbound photons stream freely.

2We note that this is not the original motivator for inflation, but it is a very natural question
that is answered by inflation.
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and there, as well, we consider relativistic perturbations on an FRW background.
The key difference is that in Ch. 4, these perturbations are so small that we have to
treat them quantum mechanically.

3.2 The Perturbed FRW Universe

Now let us go back to the geometry of the universe, and its constituents, this
time assuming there are small perturbations on top of our homogeneous and isotropic
background. We do this both for the geometry of space-time, which is a modification
from Eq. (2.1), and also allow for more complicated behaviour of the constituents
in the universe, leading to a more general approach to Eq. (2.3).

As we will see, a major subtlety in describing the perturbations is the gauge
freedom, that is, the coordinate choice 3. The right choice of coordinates to describe
our theory will be key to simplifying the calculations. This will, in fact, be highly
relevant to the introduction to inflation in Ch. 4 as well.

We will perturb the metric into a time-dependent and a small spatially dependent
piece, that is gµν(x⃗, t) = ḡµν(t) + δgµν(x⃗, t) and similarly for the energy-momentum
tensor Tµν(x⃗, t) = T̄µν(t)+δTµν(x⃗, t), where the background parts ḡµν and T̄µν(t) are
simply Eqs. (2.1) and (2.2). For the metric, we adopt K = 0 from now in Eq. (2.3),
since it is now measured to almost certainty that the universe is flat [25].

A general linearly perturbed FRW-metric, in principle, has scalar vector and
tensor modes. This decomposition is a particularly suitable treatment because, to
linear order, the scalar, vector and tensor modes do not mix. Tensor modes, i.e.
gravitational waves, are a key probe for inflation and an active area of research.
However, this is not the main focus for us in this thesis. Without a continuous
source, vector modes decay away very rapidly and, therefore, are not usually of
key importance in standard cosmology 4. We will, therefore, omit them in this
section. Our focus will be on scalar modes, which are the prime source for large-
scale structure and one of the key interests in inflation.

The most general expression, including only scalar perturbations on top of an
FRW background, includes four functions. There are the “Newtonian" potentials

3For example, to describe the altitude, we choose sea level as the zero point. However, the
freedom to specify the zero point is a key simplification we can exploit, which is called gauge
freedom. There are also Gauge-invariant, physical quantities that do not depend on the Gauge,
like the height of a human.

4For cosmic string or modified gravity theories, they might be a key observable, but this is
beyond the scope of this thesis.
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Ψ(x⃗, t) and Φ(x⃗, t) and the functions A(x⃗, t), and B(x⃗, t). Then, the perturbed
metric is given by

ds2 = −(1 + 2Ψ)dt2 + 2a(t)∂iAdtdx
i + a(t)2 [(1− 2Φ)δij + ∂i∂jB] dxidxj , (3.1)

where we omitted to write the functional dependence of the scalar perturbations
for brevity. As mentioned, a key subtlety is the choice of coordinates or the gauge.
This subtlety, in principle, comes from the fact that perturbing a metric and splitting
small and large scales is not a covariant procedure and introduces a gauge depend-
ence. However, physical observables should be gauge invariant or independent of
who observes them. When only considering the metric, this leads to the “Bardeen
variables, " which is what we will work with in this section. There are two scalar
Bardeen variables, meaning that the four functions in Eq. (3.1) describe only two
physical scalar functions. In the Newtonian gauge 5 we choose coordinates, so that
A = B = 0, and in those coordinates Φ and Ψ coincide with the Bardeen potentials.
Now, given that these variables are gauge-independent, we can calculate observables
in Newtonian gauge, which then will be true in any gauge. The metric, which is the
same as we write in Eq. (6.10), is then given by

ds2 = −(1 + 2Ψ(x⃗, t))dt2 + a(t)2(1− 2Φ(x⃗, t))dx⃗2 , (3.2)

where one can recognise that in the absence of the potentials Φ and Ψ, we simply
have the unperturbed metric Eq. (2.1) for K = 0.

There will be additional important gauge invariant quantities when consider-
ing the matter sector as well. We will encounter this and other gauge choices in
Ch. 4 when discussing inflation. Let us introduce those matter fluctuations then.
Throughout this treatment, while in principle we introduce generic variables, their
interpretability is quite clear. For example, it is quite intuitive to think that a co-
moving observer with the FRW metric, that just moves with the expansion of the
universe, might have an additional velocity on top of that describing a more “in-
dividual" movement. We then treat this velocity as a small perturbation relative
to the cosmic expansion. Formally, we start with describing momentum, πi instead
since it is the more fundamental quantity 6. Momentum and velocity will play a

5The Newtonian Gauge is reminiscent of the weak field limit, which is how we obtain Newtonian
dynamics from the full theory of general relativity.

6Apart from simplifying calculations, it is also the natural moment arising from the Boltzmann
Hierarchy.
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key role in formulating the EFTofLSS and is a big discussion point in Ch. 6 in the
context of renormalisation.

Apart from the momentum, we can also promote the energy density ρ(x⃗, t) =

ρ̄(t) + δρ(x⃗, t) and pressure p(x⃗, t) = p̄(t) + δp(x⃗, t) to also allow for spatial de-
pendence, since we consider effect beyond homogeneity and isotropy. However, we,
for now, do not assume δρ and δp to be small. This is important eventually for
large-scale structure, where the density perturbations can become sizeable. The
splitting is simply to remind that ρ̄(t) and p̄(t) are the quantities we introduced for
the background in Eq. (2.2). Finally, we can also consider anisotropic stress as a
perturbation Πi

j, which is a directional shear that the fluid may experience. The
energy-momentum tensor we then consider is given by 7

T µν =

(
−ρ(x⃗, t) a(t)πj(x⃗, t)

−a(t)−1πi(x⃗, t) p(x⃗, t)δij +Πi
j(x⃗, t)

)
, (3.3)

where one can take the anisotropic stress to have vanishing trace Πi
i = 0 since we can

always absorb it into other components. From here on, we can proceed exactly as in
the previous chapter. We get fluid equations from the energy-momentum tensor con-
servation ∇µT

µ
ν = 0 and then the relationship to the geometry through the Einstein

equation in Eq. (2.6). Let us start with the energy and momentum conservation
equations and start with the ν = 0 component. This is in complete analogy to
Eq. (2.3), just that we now have a perturbed metric and energy-momentum tensor.
Neglecting products of metric perturbations and momentum, we have

∇µT
µ
0 = −ρ̇− 1

a
∂iπ

i − 3H(ρ+ p) + 3Φ̇(ρ+ p) = 0, (3.4)

which is the relativistic continuity equation, linear in metric and momentum perturb-
ations. We will come back to this equation in detail when studying non-linearities.
Let us continue with the spatial components of the energy-momentum conservation.
Again, keeping terms linear in the metric perturbations and momentum perturba-
tions, we have

∇µT
µ
i = aπ̇i + 4aHπi + ∂ip+ ∂jΠ

j
i + (ρ+ p)∂iΨ = 0. (3.5)

Before moving on to the Einstein equations, we want to highlight that in the absence

7For comparison, written in this form, the unperturbed energy-momentum tensor from Eq. (2.2)
reads T̄µ

ν = diag(−ρ̄(t), p̄(t), p̄(t), p̄(t))
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of pressure, and in the Newtonian limit Eqs. (3.4) and (3.5) already resemble the
EFTofLSS equations of motion Eq. (6.12) 8. We will discuss this in much more
detail in the next section, where, in particular, we expand the discussion to account
for the effect of non-linearities.

The Einstein equations tell us more about the evolution of the metric perturba-
tions as well as their interaction with the matter components. We set up the whole
system with Eqs. (3.2) and (3.3) and calculate both sides of Eq. (2.6). In the un-
perturbed case, this gave us the Friedmann equations Eq. (2.7). Here, we instead
get four equations, which, to linear order in perturbations, are 9

3H2(1− 2Ψ)− 6HΦ̇ + 2a−2∂2Φ = 8πGρ (3.6)

∂i(HΨ+ Φ̇) = −4πGaπi (3.7)(
∂i∂j −

1

3
δij∂

2

)
(Φ−Ψ) = 8πGa2Πij (3.8)(

ä

a
+

1

2
H2

)
(1− 2Ψ)− Φ̈−H

(
3Φ̇ + Ψ̇

)
+

1

3a2
∂2(Φ−Ψ) = −4πGp. (3.9)

One can see that in the absence of perturbations, i.e. Φ = Ψ = 0, ρ = ρ̄, and
p = p̄, Eqs. (3.6) and (3.9) give the background Friedmann equations Eq. (2.7).
Furthermore, in the absence of anisotropic stress, or when isotropic stress is very
small, we can take Φ = Ψ, which is what we typically do in large-scale structure.

As mentioned in the introduction of this chapter, there are two (eventually three
when counting inflation) very important limits of these equations to us. In the hot
early universe, photons, matter and neutrinos all interacted with each other and were
highly relativistic. This means the full set of equations is relevant here. However,
both metric and fluid perturbations were small compared to the background, and
we can fully treat them linearly. The set of equations we then have to consider are
the perturbed continuity equations and the Euler equations, yet with slight modific-
ations to capture interactions with each other, like Thomson scattering of photons
and baryons. Photons and neutrinos themselves require extensive modelling with
a much more detailed Boltzmann hierarchy. On top of that, we have the Einstein
equations that should be read with all fluids present simultaneously, i.e. ρ =

∑
α ρα.

8For the sake of comparison, in those limits we have p = 0, a weakly varying gravitational field
Φ̇ = 0, to linear order Φ = Ψ, and Πij = πiπj

ρ + τ ij . However, we emphasise that in this section,
we derived fluctuations to linear order, and especially the inclusion of non-linear terms in Πij is
purely schematic.

9The spacial Laplacian is simply ∂2 = ∂i∂jδ
ij , and in general, the i and j spatial indices are

raised/lowered with δij .
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This leads to a large and complicated set of equations involving all matter and ra-
diation species. It should not be astonishing that a hot relativistic soup of particles
is difficult to model. To solve these coupled Boltzmann and Einstein differential
equations, we use numerical solvers like CAMB or CLASS [26, 27]. While they were
initially introduced to study the CMB anisotropies, for us, these solvers provide the
initial matter overdensity, which is the starting point of all the gravitational mod-
elling we do afterwards. For Chs. 6, 7, and 10, these codes, is what gives us the
linear power spectrum P11(k). What this object is, we will discuss in more detail in
Sec. 3.4.

This brings us to the other use of these equations, which is the gravitational
clustering of matter. After decoupling, matter largely evolves through gravity and
non-relativistically. This is simpler in a lot of ways to the early universe since now we
effectively only have to consider the matter species and only consider non-relativistic
terms. However, the matter perturbations cannot be treated linearly anymore in
the later universe as clustering leads to very over and under-dense regions such as
galaxies or voids. On top of that, it is computationally infeasible to model all the
effects of galactic physics on the large-scale distribution of matter. This is the reason
the Effective Field Theory of large-scale structure is required. We aim to model the
large-scale distribution of matter while perturbatively taking into account the effects
the small-scale physics has. We will discuss this in detail in the next section.

3.3 The Effective Field Theory of Large-Scale Struc-

ture - Conceptual Aspects

In Ch. 2, we discussed the background evolution of the universe, assuming com-
plete isotropy and homogeneity. There, one can think of the universe as averaged
entirely over all space. Then, in Sec. 3.2, we put small linear perturbations on top
of this smooth background, with, in principle, infinite detail regarding the size of
these fluctuations at any point in space. In the late universe, this level of detail
becomes unfeasible since perturbations become enormously complicated. Just ima-
gine a function ρ(x⃗, t) containing the information of every galaxy, star or electron
in the universe! What we do instead is an approach in between: we smooth over
the very small scales, blurring out the very small-scale physics. This means we have
some sensitivity to the small scales, while still focusing on physics that we can model
relatively well with perturbation theory.
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This framework is called the Effective Field Theory of Large-Scale Structure,
which is the theory of the large-scale dynamics of dark matter. It consistently
incorporates the effects of small-scale physics in a perturbative expansion, allowing
us to model the matter overdensity all the way into the mildly non-linear regime.

3.3.1 The Newtonian Equations of Motion

We first do a lot of simplifications before we delve into the subtleties of non-
linear dynamics. We will see that eventually, the dynamics we encounter will simplify
substantially. This is primarily because we consider the matter to be non-relativistic,
and most importantly, the clustering of dark matter is a causal process hence we
consider sub-horizon scales. More intuitively, we do not consider the whole universe
to affect the clustering of matter, but only the matter that is in causal contact
with each other. This means that we are interested in the length scale λ ≪ H−1.
In practice, this means that the derivative term in Eq. (3.6) dominates 10, and we
simply get the Newtonian limit of the Poisson equation

∂2Φ = 4πGa2δρ. (3.10)

At late times and for matter on sub-horizon scales, anisotropic pressure also becomes
negligible, which through Eq. (3.9) implies that from here on, we can take Ψ = Φ.
We will see that exactly this sub-horizon limit that we took above will also give
us the Euler and continuity equations in the Newtonian limit. To see this, let us
be a bit more specific about the type of energy-momentum tensor we would like to
consider.

From here on, we are interested in the overdensity of matter. The other con-
stituents influence the matter perturbations in the early universe before decoupling
and through the background evolution. However, after decoupling, as the name sug-
gests, the matter perturbations can be described on their own, in particular since
photon and neutrino perturbations are extremely small compared to the matter
perturbations in the later universe. We can then go back to Eq. (2.2) and consider
perturbations and the absence of pressure, but again with a perturbed velocity, or
as we will prefer momentum. We then have

T µν = ρUµUν , (3.11)

10In Fourier space this implies k ≫ aH and hence 3a2H(Ψ +HΦ̇) ≪ k2Φ.
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where in contrast to Eq. (2.2), the four velocity has a general but small velocity
perturbation Uµ = Ūµ+ δUµ. The normalisation condition UµUµ = −1 then implies
that Uµ = (γ(1− Φ), a−1(1 + Φ)vi), where γ(v) is the Lorentz factor. Therefore,
the energy-momentum tensor for matter that we need to consider is given by 11

T µν =

(
−ρ(1 + v2) a ρvj

−a−1 ρvi ρvivj

)
, (3.12)

where we opted to write the entries in terms of the velocity to connect to the four-
velocity we defined above. However, we will shortly go back to using the momentum
πi = ρvi. We note that in the previous section, we derived equations that were
linear in the metric fluctuations, but we never assumed the fluid perturbations to
be small. This comes in handy now, since we can simply take - symbolically -
Πi
j → vivj − 1

3
δijv

2 12, and p → 1
3
v2. The full continuity equation we get from the

energy conservation, just as in Eq. (3.4), is then given by

∇µT
µ
0 = −ρ̇(1 + v2)− 2ρv̇iv

i − 1

a
∂iπ

i − 3Hρ−Hv2 + 3Φ̇ρ+ Φ̇v2 = 0. (3.13)

Again, considering we are interested in non-relativistic physics deep inside the hori-
zon, these equations will simplify to their Newtonian limits. To see this, note that
the size of the velocity terms in the linear regime we have v2 ∼ δρ

ρ
Φ, and so in the

non-linear regime, i.e. δρ ∼ ρ, v2 is at best of the size of a metric perturbation
Φ. This immediately makes the last term second order in metric fluctuations. Fur-
thermore, again, terms with a time derivative are similar in size to those multiplied
by the Hubble parameter, for example, Φ̇ ∼ HΦ, and so again, given we are deep
inside the horizon, and the derivative term ∝ ∂i dominates over the horizon terms
∝ H. In summary, all of the terms involving v2 or Φ̇ in Eq. (3.14) containing go as
HΦ ≪ ∂iπ

i, which is how we get to the Newtonian limit

ρ̇+ 3Hρ+
1

a
∂iπ

i = 0. (3.14)

The same argument can be made for the Euler equation. The full relativistic equa-

11 In order to eventually get the kinetic tensor σij on the right-hand side of the Euler equation
defined as the second moment from the Boltzmann hierarchy as in [28], one could add it in the
space-space part. We neglect it here since it will simply feed into the effective stress tensor we will
motivate below.

12It is this identification that tells us that anisotropic stress is small, i.e. the right-hand side of
Eq. (3.8) is negligible and hence we can set the two metric perturbations equal to each other.
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tion is given by

∇µT
µ
i = aπ̇i + 4aHπi + ∂j(ρviv

j) + ρ∂iΦ +
1

3
v2∂iΦ = 0, (3.15)

where we can again immediately see that the last term is of the size of a second-
order metric perturbation and thus negligible. All other terms are of the size of
linear metric perturbations. Then, the final sub-horizon Euler equation is again
simply the Newtonian limit

π̇i + 4Hπi + a−1∂j

(
πiπ

j

ρ

)
+ a−1ρ∂iΦ = 0, (3.16)

where we again chose to write it in terms of the momentum. We can recognise that
Eqs. (3.14) and (3.16) are now exactly Eq. (6.12), however, without the effective
stress tensor τij, which we will discuss in the next section.

While the above derivation shows in detail how we obtain the Newtonian limit,
when we consider perturbations on sub-horizon scales, the relativistic derivation
somewhat obscures the connection to the Boltzmann equation. Confident, therefore
that the Newtonian limit sufficiently describes perturbations on sub-horizon scales,
we could have alternatively started our discussion by modeling dark matter as a
collisionless fluid described by its phase space distribution function f(x⃗, p⃗, t), as
done for example in [28]. In the Newtonian limit, the equations of motion then stem
from the collisionless Boltzmann equation13

∂f

∂t
+

pi
ma2

∂f

∂xi
−m

∂Φ

∂xi
∂f

∂pi
= 0, (3.17)

where m is the mass of the dark matter particle, which, however, eventually drops
out. The various fluid quantities that we have encountered are simply the moments
of the phase space distribution. The first three are the density ρ, momentum πi and
kinetic tensor σij, and are defined by

ρ =
m

a3

∫
d3pf, πi =

1

a4

∫
d3ppif, σij =

1

ma5

∫
d3ppipjf − πiπj

ρ
, (3.18)

where we omit writing the dependencies for brevity. The equations of motion arise
from integrating successive moments of the collisionless Boltzmann equation: the

13This is the Boltzmann equation one obtains in the sub-horizon limit when starting from the
full relativistic collisionless Boltzmann equation pµ∂µf − Γµ

αβp
αpβ ∂f

∂pµ = 0.
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zeroth moment yields the continuity equation, Eq. (3.14), and the first moment leads
to the Euler equation, Eq. (3.16), now featuring the kinetic tensor on the right-hand
side, as noted in footnote 11. For a perfect fluid, σij vanishes exactly; however,
on small scales, this is not true for dark matter. Applying a smoothing procedure
ensures that the Boltzmann hierarchy can be consistently truncated, but generates a
non-zero stress tensor that contributes to the effective fluid description. This brings
us to the last conceptual point of this section.

3.3.2 Smoothing and the Effective Stress Tensor

So far, we have taken the full theory of general relativity and reduced it to the
scales and limits relevant for gravitational clustering. We have done this by setting
an upper limit on the scales we want to consider, that is the sub-horizon limit, which
are scales smaller than Hubble. As mentioned earlier, the key point of the EFTofLSS
is to set a lower scale of interest as well. We enforce this by smoothing over the very
small scales 14. We will now see that it is this smoothing that leads to the effective
stress tensor on the right-hand side of the Euler equation, show why it is necessary
and finally, how we integrate out the small scales.

The fields we can perturbatively control are the long-wavelength fields Xl, where
X ∈ {ρ,Φ, πi}. The Xl are the original fields but smoothed over with a window
function so as to blur out the very small fluctuations. We will define this moment-
arily. Eventually, we are neither interested in the exact way this smoothing process
works nor over what scales this smoothing happens 15, but we want to make sure to
have a theory that is consistent for the regime we are interested in.

Let us imagine we want to smooth over scales of order 1/Λ with a window

function WΛ(x⃗) =
(

Λ√
2π

)3
e−

1
2
Λ2x2 . We then define the short and long-wavelength

fields to be the convolution with this window function

Xl(x⃗, t) :=

∫
d3x′WΛ(x⃗− x⃗′)X(x⃗′, t), (3.19)

and define the short wavelength field Xs = X−Xl. To see what this does in practice,
we can look at Fig. 3.1, where we illustrate this with a fictitious example of a density
perturbation. While we can see very clear spikes that are perturbatively hard to

14Note that by assuming the matter fields are non-relativistic, we already implicitly assumed
that we are not going to formulate a theory about the smallest scales, since, for example, the
velocity field at the centre of a galaxy is very non-perturbative.

15That is, after renormalisation, the EFT is independent of the cutoff scale.
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Figure 3.1: Fictitious example of raw and smoothed overdensity profiles of dark matter.
The sample is taken from the Millennium Simulation [29] at z = 0 and created through
pixel brightness of a 1D slice of 2048 pixels. The raw overdensity was smoothed with
Eq. (3.19), with different smoothing scales.

control, the reality in nature is, in principle, even worse. We note that Fig. 3.1 was
created by capturing the brightness of a 1D slice containing 2048 pixels. Each pixel
can be viewed as an already smoothed over region, therefore the Λ = ∞ case really
is, Λ ≃ 2048

93.75Mpch−1 = 22hMpc−1, which smoothes over scales just about the size of
the Milky Way.

Now that we have gained some intuition about smoothing, let us see how this
idea manifests in the equations of motion. This is quite straightforward for linear
equations since we can simply smooth the whole equation. For the Poisson and
continuity equation, Eqs. (3.10) and (3.14), this simply implies that

∂2Φl = 4πGa2δρl (3.20)

ρ̇l + 3Hρl +
1

a
∂iπ

i
l = 0.

However, when we have products of fields, as we do in the Euler equation Eq. (3.16),
the smoothing leads to more subtleties. This is because the smoothed products of
fields is not equal to the product of the smoothed fields, i.e. (XY )l ̸= XlYl. In fact,
the smoothed products of fields explicitly depend on the short wavelength fields,
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and we have (see for example [30])

(XY )l = XlYl + (XsYs)l +
1

Λ2
∂iXl∂

iYl +O(Λ−4), (3.21)

where we note that the scales we are eventually interested in are much larger than
1/Λ, hence ∂

Λ
≪ 1. This is a general pattern in the EFTofLSS. We always understand

the product of fields to be the smoothed version of that product. This smoothing
each time then depends explicitly on the short modes and hence needs special care.
We will encounter this subtlety a lot more in Ch. 6 when discussing bias and redshift
space renormalisation.

Now, if we smooth the Euler equation. The last two terms of Eq. (3.16) are non-
linear. Therefore, as exemplified in Eq. (3.21), there will be terms that explicitly
depend on the short modes, and also, we will get higher derivative terms. Let
us collect all of these terms into a quantity we for now just call τij16. Then, the
smoothed Euler equation reads

π̇il + 4Hπil + a−1ρ̄ ∂iΦl = −a−1∂j

(
a−2

4πG

(
∂iΦl∂jΦl −

1

2
δij(∂Φl)

2

)
+
πilπ

j
l

ρl
+ τij

)
,

(3.22)

where we rearranged some terms so that all the linear terms are on the left and the
non-linear ones on the right, and used the Poisson equation.

Now let us discuss τij in detail. In some sense, it is the backbone of the EFTofLSS
as it is the key feature that allows us to formulate a consistent and renormalisable
field theory. This is because the effective stress tensor will eventually give rise to
the counterterms that absorb the UV dependence of the loops.

As mentioned in Eq. (3.21), we will get for example the following terms after
smoothing τij ⊃ a−2

4πG
(∂iΦs∂jΦs)l. Hence, the exact structure of τij is an incredibly

complicated function and dependent on very high-energy physics, far beyond what
we can describe analytically. However, our aim is to capture the effects of the
high-energy physics, relevant for the long-wavelength fields - this is what we call
effective interactions. To capture the effective interaction, we integrate out the
short-scale physics by ensemble averaging 17. This average, by design, only depends
on the long-wavelength fields and introduces a stochastic part uncorrelated to the
dark matter fields. That is, schematically τij = ⟨τ sij⟩ + τ∂ij + τ ϵij, where the second

16This includes the smoothed kinetic tensor, σij
l , introduced at the end of the last section.

17We will discuss what exactly we mean by ensemble averaging in much more detail in Sec. 3.4.
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and third part are the higher derivative and stochastic terms. We will expand the
ensemble-averaged part in an EFT expansion, an expansion based on every term
allowed by the symmetries. To do this, we need to investigate the symmetries of
the problem and the relevant dependence of this effective stress tensor, τij, on the
long-wavelength fields. In short, we need to check what and how τij can depend on.
Let us start with the first.

From here on, we will drop the sub-index Xl → X since all fields we consider in
this thesis from here on are implicitly the long modes. We emphasise that all the
equations in Ch. 6 and onward are meant to represent the long-wavelength fields;
we omit writing the subindex every time. Now, to investigate τij, let us rewrite the
Euler equation in its final form. We have

π̇i + 4Hπi + a−1∂j

(
πiπ

j

ρ

)
+ a−1ρ∂iΦ = −a−1∂jτ

ij, (3.23)

which is just Eq. (3.16) with the additional term on the right-hand side. The sym-
metries of τij are therefore dictated by the left-hand side of the above equation. We
notice immediately that the left-hand side is rotationally invariant, implying that
the right-hand side must be as well. Less trivially, the equations of motion are in-
variant under the subset of diffeomorphisms that keep us in the Newtonian gauge
in the non-relativistic limit. These are the Galilean shifts given by 18

t→ t+ a2ξi(t)xi, xi → xi + ξi(t). (3.24)

It is useful to show how the different fields change under such shifts. We have (see
for example [31])

∂i → ∂i , ∂t → ∂t − ξ̇i(t)∂i , πi → πi + ρ aξ̇i(t), vi → vi + aξ̇i(t) ,

ρ→ ρ, Φ → Φ− a2(ξ̈i(t) + 2Hξ̇i(t))xi , (3.25)

and it is quite simple to see that the left-hand side of Eq. (3.23) is invariant under
these shifts, implying that τ ij must be invariant as well. These symmetry consider-
ations are enough to find the dependence of τij on the long-wavelength fields. One
typically chooses to take Φ and vi for this expansion as we do, for example, in Ch. 6.
Then Galilean invariance tells us that τij can only depend on the metric perturba-

18These are the same shifts we impose for the velocity in Sec. 6.5.2, with the identification
χi = aξ̇i.
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tion with at least two derivatives, so it is of the form ∂i∂jΦ and the velocity field
would need to come with at least one derivative to be an invariant, that is ∂ivj.
Additionally, note that we defined τ ij to also contain the higher derivative terms
mentioned in Eq. (3.21). Finally, as mentioned above, to account for the difference
between a given realisation and the mean when taking the ensemble average of the
short modes, we also introduce a stochastic field ϵ that is uncorrelated with the dark
matter fields. Now that we know what fields the effective stress tensor depends on,
we have to consider what this dependence looks like.

This question boils down to asking how the short modes affect the long modes.
Clearly, the effect of the short modes on the long modes is spatially local; that is,
a galaxy at the other end of the universe will not greatly affect the behaviour of a
long wavelength field here. This makes the dependence local in space. In contrast,
a short mode in the distant past has affected the long modes today. This is because
the short modes evolve over similar time scales to the long modes; hence, the short
modes influence the long modes over their whole history. Therefore, we cannot
simply average over these time scales, making the expansion non-local in time. In
summary, the effective stress tensor must have the following form,

τ ij(x⃗, t) =

∫ t

dt′H(t′)F ij(∂n∂mΦ(x⃗fl, t
′), ∂nvm(x⃗fl, t

′), ∂i, ϵ, t
′, ...) (3.26)

=

∫ t

dt′H(t′)K(t, t′)∂i∂jΦ(x⃗fl(x, t, t
′), t′) + ... ,

where F ij is a completely general rotationally invariant function, and in the second
line, we wrote the first leading term, with K being an arbitrary kernel capturing the
influence of ∂i∂jΦ on the effective stress tensor over its history 19. Finally, we note
that we do not evaluate the fields at x⃗ but at their fluid position over its history,
which is given by x⃗fl. The exact structure of x⃗fl allows us to integrate over the field’s
history while remaining invariant under Galilean shifts. The fluid line element is
recursively given by

x⃗fl(x⃗, t, t
′) = x⃗+

∫ t′

t

dt′′H(t′′)v⃗(x⃗fl(x⃗, t, t
′′), t′′) , (3.27)

and in practice, one can perturbatively expand it in powers of v up to the required
order.

19Local in time would mean K(t, t′) = κ(t)δD(t − t′), which collapses the integral, and makes
the left-hand side only dependent on the values at t.
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On the field level, we have now established all the relevant ideas to discuss the
Effective Field Theory of large-scale structure in the context of dark matter. We
have formulated a consistent theory of the long-wavelength fields, integrating out
the short scales that led to an effective stress tensor. There are standard ways to
perturbatively expand the overdensity and momentum and then solve the Euler and
continuity equation order by order. We refrain from going into the technical details
of this here since it is done in detail in Ch. 6 from the ground up, which is also why,
in this section, we focused on conceptual aspects rather than computational ones.
Nevertheless, in the next section, we briefly connect to what we eventually measure.

We note that the description of galaxies - often called biased tracers - in the
EFTofLSS follows the same symmetry principles we laid out in detail here for τij.
Indeed, in Ch. 6 we proceed in an analogous way, and the general equation we give
Eq. (6.124) is almost the same as for τij in Eq. (3.26). The non-locality in time
we have encountered here is discussed in the context of galaxies in detail in Ch. 9,
where we will see that it becomes a measurable effect.

3.4 Large-scale Structure Observables

In the last sections, we went from describing the uniform background of the
universe to describing linear and then non-linear perturbations. These perturba-
tions, importantly, are functions of space and contain a wealth of information. The
challenge we then face is how we summarise this wealth of information.

While there are more and more approaches as to what the best way is to extract
information from galaxy surveys as for example, in [32, 33], we here focus on n-
point functions, which is what will be relevant for us in the later chapters. We keep
the discussion in the context of dark matter since we just introduced it in the last
section, but it is the analogous concept for any density field. Let us first introduce
the dark matter overdensity that is

δ(x⃗, t) =
ρ(x⃗, t)

ρ̄(t)
− 1, (3.28)

where here and from now on, we drop the subscript m for matter. The most common
observables in cosmology are then the n-point statistics of the overdensity, which
are products of the overdensity field at different points.

The origin of the fluctuations in the universe is likely quantum mechanical, as
we will establish in Ch. 4. So, we understand the origin of the fluctuations as the
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realisation of one of the many possible quantum mechanical outcomes. The expect-
ation values, therefore, should be understood as an ensemble average of different
realisations of the universe. In practice, we have access to only one realisation of the
universe, and therefore, we rely on spatial averaging. This works since sufficiently
distant regions can be causally disconnected and can be viewed as independent real-
isations. Invoking ergodicity, spatial averaging provides a reasonable estimate of
the ensemble average. Depending on how many causally disconnected regions we
have access to, this leads to a better or worse estimate of the ensemble average, and
therefore, there is a sample variance. Given the finite observable volume and, hence,
accessibility to information in the universe, there is an upper bound on the sample
size, which then defines the cosmic variance - the fundamental limit to statistical
precision in cosmology.

Now, let’s go back to the n-point functions. The most straightforward one-
point statistic we have actually already seen is ⟨ρ(x⃗, t)⟩ = ρ̄(t), making the spatial
averaging explicit. Of course, Eq. (3.28) implies for the one point statistic of the
overdensity ⟨δ⟩ = 0 20. The simplest non-zero correlation function is then simply
the 2-point correlation function, which is the most prominent to date in cosmology.
It is defined as

ξ(x⃗1, x⃗2) = ⟨δ(x⃗1)δ(x⃗2)⟩, (3.29)

where we left the time dependence implicit. Now, let us briefly revisit homogeneity
and isotropy on large scales since they greatly simplify the statistics of interest
in cosmology. We have already seen for the one-point function how this ended
up reducing the complexity. While we have established that perturbations explicitly
break homogeneity and isotropy, their statistical properties still obey them. This, for
example, means that no matter in what direction we look, we expect the probability
of two galaxies (or dark matter overdensities) to have a certain distance from each
other to be the same. To be precise, homogeneity and isotropy imply that the two-
point function is only a function of the distance, i.e. ξ(x⃗1, x⃗2) = ξ(|x⃗1 − x⃗2|), and
this generalises to higher n-point functions.

It is often much simpler to analyse the n-point correlation functions in Fourier
space. For example, because on linear scales, the different Fourier modes evolve
independently. We therefore define δ(k⃗, t) as the Fourier transform of Eq. (3.28).

20For the EFT expansion of biased tracers, the vanishing of the mean needs to be implemented
explicitly, in particular in the context of redshift space distortions, as in Ch. 6.
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Then of fundamental importance is the power spectrum, which is given by

⟨δ(k⃗, t)δ(k⃗′, t)⟩ = (2π)3δD(k⃗ + k⃗′)P (k, t), (3.30)

and one can show quite easily that the power spectrum is simply the Fourier trans-
form of ξ. Of great importance is also the 3-point function, or the Fourier space
version, the Bispectrum

⟨δ(k⃗1, t)δ(k⃗2, t)δ(k⃗2, t)⟩ = (2π)3δD(k⃗1 + k⃗2 + k⃗3)B(k1, k2, k3, t). (3.31)

The power spectrum and bispectrum for galaxies in redshift space will be the primary
focus for us in Chs. 6, 7 and 8.

Finally, in our quest to introduce all the cosmological parameters of interest
for this thesis, we here introduce the ones related to the linear dark matter power
spectrum. The linear power spectrum, P11(k), is the power spectrum we obtain from
the Boltzmann codes mentioned at the end of Sec. 3.2, i.e. we get them from the full
relativistic linearised equations of motions. Importantly, this is before gravitational
non-linearities become sizeable. The dark matter parameters are motivated by early
measurements of the dark matter power spectrum in lensing surveys and have gained
more attention because of recent disagreements between their early and late time
measurements. To define them, let us introduce another type of smoothing to the
one we encountered in the last section, which simply averages everything in a sphere
of radius R. this is called a top-hat distribution WR(r) = θH(R−r) 3

4πR3 , where θH is
the Heaviside function. We might then be interested in the variance of fluctuations
on a certain scale. This can be expressed as

σ2
R =

∫
dk

2π2
k2P11(k)W̃

2
R(kR), (3.32)

where W̃R is the Fourier transform of WR. Historically, the scale R = 8h−1Mpc has
been chosen as it roughly marks the transition between linear and non-linear regimes
of structure formation. Another parameter introduced because of particular sensit-
ivity to it in lensing is S8 = σ8

√
Ωm/0.3, where Ωm is the matter density parameter

we have introduced in Sec. 2.4. These parameters have become very familiar in
cosmology and are viewed as benchmarks by some. Therefore, while we measure the
full set of cosmological parameters in Ch. 7, we deduce these benchmark parameters
from galaxy surveys, offerting another late-time datapoint as, for example, in [34].
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4
The Inflationary Paradigm and its
Parameters

4.1 Introduction

Inflation is the leading candidate for a consistent theory of the early universe
and will be one of the key topics in the first two parts of this thesis. At its core,
it describes a period of accelerated expansion at the very beginning of the universe.
Guth initially proposed inflation [35] to solve two shortcomings of the Big Bang
model. One of them is the flatness problem, which we already briefly discussed in
Sec. 2.4, addressing the very small value of the curvature today and its projected even
smaller value in the early universe. The other problem arises from the uniformity
in the CMB, where we see regions that are not in causal contact but are in thermal
equilibrium. This is called the horizon problem, which is an apparent violation of
causality. Even more strikingly, these causally disconnected regions have correlated
density fluctuations. Said intuitively, regions of space seem to have communicated
with each other, even though the time it would have taken them to communicate
is longer than the time the universe existed. The inflationary paradigm proposes
that these very faraway regions were very close to each other in an earlier period,
had time to communicate and then, through a quasi-exponential expansion, were
brought very far apart from each other. This rapid expansion would also decrease
any initial curvature present to a very small value, thus solving both problems and,
in fact, many others 1.

Perhaps the most striking consequence of inflation is that it provides a mechanism
for the seed of structure. This is so striking because inflation was engineered to
solve the problems above but then predicted the primordial distribution of structure
through quantum mechanical formulations of inflation.

1Inflation also gives a mechanism to dilute magnetic monopoles predicted by grand unification
theories and also gives a mechanism for the low entropy in the early universe.
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So far, the story we told is of a smooth universe in Ch. 2, and we put small
relativistic perturbations on top in Sec. 3.2. The initially small matter perturbations
then start to become sizeable through gravitational clustering, which we discussed
in Sec. 3.3. However, we have not answered yet why there even are perturbations
and, more strikingly, why in the very early universe, they appear to be Gaussian to
very good approximation. As we will see, the short answer to this is that this very
rapid expansion was driven by a scalar field that governed the amount of time that
inflation takes place. Through quantum fluctuations in this scalar field, the rapid
expansion of the universe ended slightly sooner or later in some regions of space. So
regions started to dilute sooner or later, making them have slightly lower or higher
energy density. In essence, quantum fluctuations in the early universe are likely
responsible for seeding all the structures we see in the universe today.

The aim of this chapter is twofold, somewhat representative of the state of cos-
mology regarding inflation 2. On the one hand, there remain many open questions
regarding the theoretical framework of inflation as well as the possible models that
can even exist. On the other hand, while slow roll inflation has remarkably predicted
an approximately scale invariant power spectrum that has been well confirmed by
now, there are further discoveries such as non-Gaussianity that would be the smoking
gun confirmation for inflation. In this quest, we derive the relevant inflationary para-
meters that we eventually constrain with large-scale structure surveys.

We start with an introduction to quantum field theory in curved space and in-
troduce the idea of slow-roll inflation. We then move on to more general inflationary
models and will do some more explicit calculations. This does not only highlight
the difference between the calculations that are classically done in inflation as op-
posed to the ones we introduce in Ch. 5 but will also allow us to later derive the
key parameters which we will be forecasting in Ch. 8 coming from the inflationary
bispectrum. In this process, we will also encounter the inflationary parameters from
the power spectrum, which we will be measuring eventually in Ch. 7.

4.2 Inflation - Setting the Stage

Let us go back all the way to the unperturbed geometry discussed in Eq. (2.1) and
again in flat space. As mentioned, inflation aims to describe a period of accelerated
expansion. It can be seen quite quickly why this solves the flatness problem, for

2The potentially third pillar one can consider are string compactifications leading to de Sitter
vacua, setting the stage for inflation [36]. This will not be the focus of this chapter.
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example. From Eq. (2.9), if we want the left-hand side to become small, we need a
period where 1

aH
decreases and the same conclusion can be made to solve the horizon

problem. Now ∂t
1
aH

< 0, is equivalent to ä > 0, which can be viewed as the defining
characteristic of inflation.

There are two more deep insights we obtained from observations of the CMB.
On the one hand, we observe that the small fluctuations for each component have
the same overdensity profile. That is, for example for two species (for example dark
matter and photons), right after inflation, we have δρa

ρ̄a+p̄a
= δρb

ρ̄b+p̄b
. We call this

property adiabaticity. This means fluctuations can be captured by a single function
of space, i.e. a scalar field that affected all other fields similarly. Phrased differently
we believe the initial fluctuations were not created by several complicated processes,
but one fundamental degree of freedom, that gave rise to all fluctuations.

Another implication of CMB measurements is that the perturbations seem to
have the same power on almost all scales. This means that when looking at the fluc-
tuations of the CMB, we see roughly the same distribution of fluctuations, whether
one looks at a very small part of the sky or a very large part of the sky. This is
shown in Fig. 4.1 showcasing the latest CMB results [25]. A constant line there
would mean complete scale invariance. We note, however, that the scale invariance
is approximate, with slightly more power in large fluctuations.

As mentioned in Sec. 2.6, scale invariance is a property that arises for the dy-
namics in de Sitter space. Therefore, the measured approximate scale invariance,
combined with the required accelerated expansion, leads us to believe that the space-
time at the time of inflation was very close to de Sitter, i.e. quasi de Sitter. We saw
that in Sec. 2.6 exact de Sitter space ä

a
= H2. Instead, for quasi de Sitter space, we

introduce deviations from that ä
a
= H2(1− ϵ), where we can see

ϵ = − Ḣ

H2
, (4.1)

and given we are interested in small deviations, we take 0 < ϵ≪ 1 3. The parameter ϵ
is called the slow roll parameter, and as we will see shortly, relates to the potential of
the scalar field responsible for inflation. Inflation ends when ϵ→ 1; this is equivalent
to saying ä → 0. In order to make sure that the accelerated expansion lasts long
enough to solve the horizon and flatness problem mentioned above, ϵ cannot evolve
too fast either. This leads us to introduce a second slow roll parameter ξ2 = ϵ̇

Hϵ
4,

3The positivity of ϵ is given as long as the matter sector satisfies the null energy condition.
4We omit using the letter η as is typical for the second slow roll parameter since we use it as
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Chapter 4: The Inflationary Paradigm and its Parameters

Figure 4.1: Reconstructed primordial power spectrum from the observed power spectrum
of the CMB measurements, showcasing the approximate scale invariance of primordial
fluctuations. The figure is taken from [25], with some variables adjusted to match the
formalism used in this thesis.
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which when assumed to be small, restricts ϵ to only evolve slowly.
Now let us explore the simplest and earliest models of inflationary backgrounds

that can achieve the conditions mentioned above. This means we want to look at
the background evolution in the presence of a scalar field in a for now general FRW
background. To start, let us simply consider a scalar field with some potential

S =

∫
d4x

√−g
[
1

2
(∂µϕ)

2 − V (ϕ)

]
, (4.2)

and to make connections with all the formulas we developed in Ch. 2, we also write
out the energy-momentum tensor given by

Tµν = ∂µϕ∂νϕ− gµν

[
1

2
(∂µϕ)

2 + V (ϕ)

]
. (4.3)

Now we proceed similarly to Ch. 2 with a smooth background, and so we can, for
now, neglect all spatial derivates and focus on the temporal ones only. That is,
we, similarly to the previous matter variables, split the field into a time-dependent
background part called ϕ̄ and a small spatially dependent perturbation, which we
will discuss in the next section. From the energy-momentum tensor and our earlier
definitions of density and pressure, we then get

ρ̄ =
1

2
˙̄ϕ2 + V (ϕ̄), p̄ =

1

2
˙̄ϕ2 − V (ϕ̄). (4.4)

We can get the equation of motion ¨̄ϕ+3H ˙̄ϕ+V ′(ϕ̄) = 0, by plugging in the density
and pressure into Eq. (2.3). Furthermore through Eq. (2.7), we can write ϵ = 3 ˙̄ϕ2

˙̄ϕ2+2V
.

So if we want inflation to start with a very small value of ϵ and end when it becomes
order one, we need to transition from most of the energy being in the potential

1

2
˙̄ϕ2 ≪ V, (4.5)

to a point where the kinetic energy takes over. The second slow roll parameter can
be written as ξ2 = 2

(
¨̄ϕ

H ˙̄ϕ
+ ϵ
)
. In the slow roll regime, this implies ¨̄ϕ≪ H ˙̄ϕ, which

through the equations of motions tells us that H ˙̄ϕ ∼ V ′(ϕ̄). Putting everything
together and also using H2 ∼ V , we therefore get

|V ′| ≪ |V | (4.6)

the conformal time variable throughout the inflation sections and in Ch. 5.

41



Chapter 4: The Inflationary Paradigm and its Parameters

in the slow roll regime. Finally, taking the derivative of H ˙̄ϕ ∼ V ′(ϕ̄) and combining
it with the smallness of the second derivative of ϕ̄, we obtain

|V ′′| ≪ |V |, (4.7)

in the regime where the slow roll parameters are small. So we now have three
equations describing the potential in the slow roll phase, i.e., at the beginning of
inflation. From Eq. (4.5), we see most of the energy is in the potential and not in
the kinetic energy. Then Eqs. (4.6) and (4.7), tell us the potential changes very
little in this regime, and the small slope is also not changing very much. This is why
we called the parameters slow roll this whole time: the scalar field is slowly rolling
down this very slightly varying potential. So to summarise, ϵ≪ 1 makes sure we’re
rolling down this potential slowly, and ξ2 ≪ 1 make sure we do so for a prolonged
period of time 5.

4.2.1 The Comoving Curvature Perturbation

In order to eventually make contact with observations, we have to address a
similar subtlety as we did in Sec. 3.2, with the key difference that the perturbations
we consider are so small that we have to quantise them. In Sec. 3.2, we encountered
the gauge invariant Bardeen potentials, which are combinations of metric perturba-
tions that do not change under changes of coordinates. We said there that there are
more gauge invariant quantities when considering the matter sector as well, which
will be the key for us when discussing inflation. We will focus again just on scalar
perturbations, which allows us to compute all the parameters we will measure and
forecast in Chs. 7 and 8 and is also the primary focus in Ch. 5.

Now with the exact same perturbation variables as defined in Sec. 3.2, and with
q = ∂i

∂2
πi we can recognise that the combination

ζ = Φ− H

ρ̄+ p̄
q, (4.8)

is gauge invariant and is called the comoving curvature perturbation. The correla-
tions of ζ are the key observables of inflation 6, an example of which we have already

5We note that Eqs. (4.6) and (4.7) are a consequence of the smallness of the slow roll parameters,
but only in that regime. That is, the smallness of the parameters implies the potential, but the
potential is not the starting point of our discussion.

6There are, of course, other observables from the tensor or even vector sector, but we here
focus on scalars.
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seen in Fig. 4.1. The reason ζ is such a powerful variable for inflation is that for
single field and adiabatic models ζ̇ = 0 on super-horizon scales (so scales larger than
the horizon at the time), and hence does not evolve [37, 38, 39]. This means that
once the mode exits the horizon, they are frozen in time and, in particular, unaf-
fected by how inflation ended. This is important because we currently have very
little knowledge about how the energy in inflation was passed on to the standard
model particles 7. In turn, this also means that when computing observables in
inflation, we want to predict them at the time of horizon crossing and match that
to observations after horizon re-entry.

In the following sections, we will see how we can capture the quantum mechanical
effects of the perturbed scalar field. We will first do quantum field theory on a curved
spacetime to exemplify how we are quantising those systems and what calculations
they entail, especially including interactions. Then, in Sec. 4.4, we will do explicit
calculations in the Effective Field Theory of inflation. Note that, in the end, to make
contact with observation, we will want to relate the model to ζ that we defined in
Eq. (4.8), which we will do as well in Sec. 4.4.

4.3 Quantum Field Theory in FRW Universes and

the In-In Formalism

In this section, we want to exemplify how we eventually treat fluctuations to the
scalar field we discussed so far in a quantum mechanical way. In particular, we here
assume that the metric is not perturbed. We will address this subtlety in the next
section, where we will see that the theory that eventually describes the inflationary
fluctuations operates exactly in the way we describe here, just with very particular
interactions present. Furthermore, the formalism for the calculations we perform
here is exactly what we challenge in Ch. 5. In order for the notation to be the same
as there and to better discuss the symmetries, we will sometimes switch to conformal
time dt = a(η)dη and use the conformal Hubble parameter H = ∂ηa/a.

Let us start by writing the scalar field as the background and fluctuation part
ϕfull = ϕ̄(η) + ϕ(x, η). While we discussed the background in detail in Sec. 4.2, we,
from here on, will always denote the fluctuation by ϕ, which we will now outline how
we quantise it in curved space. Let us first consider the theory without interactions

7We note, however, that the modes eventually reenter the horizon and, after reentry, directly
affect gravitational clustering.
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with a general mass. We call this the free theory. On a general FRW background,
the action then reads

S =
1

2

∫
d3xdηa(η)4

[
(∂µϕ)

2 +m2ϕ2
]
, (4.9)

and the equations of motion can be read of as

1

a2
(∂2η + 2H∂η − ∂2i + a2m2)ϕ(x, η) = 0. (4.10)

To quantise the field and to solve the equations, we write the field out in its Fourier
modes

ϕ(x, η) =

∫
d3k

(2π)3
eik⃗·x⃗

(
fk(η)ak⃗ + f ∗

k (η)a
†
−k⃗

)
, (4.11)

where ak and a†k are the typical creation and annihilation operators 8, and it is often
useful to call the term in the bracket in Eq. (4.11) ϕ(k, η), which is just the Fourier
transformed field. The mode functions fk are the classical solutions to the equations
of motion in Fourier space, that is

1

a2
(∂2η + 2H∂η + k2 + a2m2)fk(η) = 0. (4.12)

Unfortunately we cannot solve the above equation in full generality. However, there
are several useful examples that we will also use in Ch. 5 to showcase the results
there. The normalisations of the mode functions, i.e. the boundary conditions,
are given by the canonical commutation relations and annihilation of the flat space
vacuum state in the infinite past 9. Then some commonly used constellations are

fk(η) = −i
√
πH

2
ei

π
4
(1+2ν)(−η)3/2H(1)

ν (−kη) (massive, dS), (4.13)

fk(η) = iη
H√
2k
e−ikη (conformally coupled, dS), (4.14)

fk(η) =
H√
2k3

(1 + ikη)e−ikη (massless, dS), (4.15)

fE(t) =
e−iEt√
2E

. (Minkowski, E =
√
k2 +m2), (4.16)

8Typical in the sense that [ak⃗, ak⃗′ ] = 0, [ak⃗, a
†
k⃗′ ] = δ(k⃗− k⃗′) and ak⃗|0⟩ defines the ground state

of the Fock space.
9In de Sitter space, this defines the Bunch Davies vacuum.
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where ν ≡
√

9
4
− m2

H2 , H(1) is a Hankel function and conformally coupled, means
ν = 1/2. These are the same examples we use in Eqs. (5.4) - (5.7). Conformally
coupled are particularly interesting to study (for example [8, 40]) since they are
closely related to the Minkowski ones, where we know quantum field theory very
well. We will see in the next section that for the standard model of single field
inflation, we will mostly be interested in a slightly modified version of the massless
mode function in de Sitter space. The slight modification takes into account that
we are not exactly in de Sitter space, but quasi de Sitter space captured by the slow
roll parameters, and also introduces a general speed of sounds parameter.

Eventually, we are interested in correlation functions of these fields, at the time
of reheating, which is when inflation ends, i.e. we are no longer in the accelerated
expansion phase. We, therefore, take the limit η → 0 when computing correlators.
For example, the power spectrum is defined as

lim
η→0

⟨0|ϕ(k, η)ϕ(k′, η)|0⟩ = (2π)3δD(k⃗ + k⃗′)Pϕ(k), (4.17)

and for a massless scalar field in de Sitter space, we have

Pϕ(k) = lim
η→0

|fk|2 =
H2

2k3
. (4.18)

While slightly hard to spot, this power spectrum is scale invariant 10. This is re-
miniscent of the approximate scale invariance in Fig. 4.1, and if we were to add
Eq. (4.18) to Fig. 4.1, we would simply see a constant line. We will discuss how
scale invariance is very slightly broken in the next section. The inflationary power
spectrum will also give rise to two parameters that are still of great interest in
observation, one of them measuring the deviation from exact scale invariance.

Note the similarity in the definition of Eq. (4.17) to Eq. (3.30), where we defined
the power spectrum for classical late-time matter perturbations. Here, however,
we are taking vacuum expectation values of a quantum mechanical system. As we
noted there, however, the probabilistic nature of these late-time perturbations does,
in fact, have its origin in the quantum mechanical perturbations we describe here.

Next, let us look at the interacting theory. That is, we allow the action in
Eq. (4.9) to have terms that go as ϕ3 or more. What exact interactions are present
is a very complicated question, which, for single field inflation, we will answer in

10The condition for an n-point function in Fourier space to be scale invariant is for it to scale
as k−3(n−1).
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the next section. The exact interactions determine the shape of the potential we
described in Sec. 4.2. Hence, the parameters we will derive in the next section
that constrain the single-field interactions are fundamental to the understanding of
inflation.

The primary objects we eventually hope to measure in cosmology are the late-
time n-point spectra,

Bn(k⃗1, ..⃗kn) = δD

(
n∑
a=1

k⃗

)
⟨
n∏
a=1

O(k⃗a)⟩, (4.19)

where we defined inflationary n-point correlation functions

⟨
∏
a

O(k⃗a)⟩ := lim
η→0

⟨Ω|
∏
a

O(k⃗a, η)|Ω⟩. (4.20)

For simplicity, we restricted the discussion to equal time correlators, and O might
be any operator of interest, such as ϕ or ζ. Let us briefly comment on our quantum
mechanical picture that is best suited for this calculation 11. In standard quantum
mechanics, we typically work in the Schrödinger picture, where the states capture
the time dependence of the system, and the operators stay fixed. In contrast, in
the equivalent Heisenberg picture, the time dependence is carried by the operators,
and the states are fixed. In perturbation theory, we will work in the commonly
used interaction picture, which is a middle way between the two. By introducing
interactions, we inherently changed the time evolution operator of the theory, i.e.
the Hamiltonian. We split it into the free part, which we discussed above, and
the interaction part that is new here. So we have H = H0 + Hint. The operators
then evolve with the free Hamiltonian, while the states evolve with the interaction
Hamiltonian, assuming we can do so perturbatively.

Now note that we introduced the vacuum of the interacting theory |Ω⟩ in Eq. (4.20).
This vacuum is likely not the same as the one of the free theory. This is for the
simple reason that in the free theory, the lowest energy eigenstate is the absence
of particles. In an interacting theory, we do not per se know the lowest energy
state. The key to even being able to compute any correlators in the presence of
interactions is to find a way to relate the interacting vacuum to the free one. In-
deed, it is this correspondence to the free vacuum that is new in Ch. 5, where we
relate the interacting vacuum to a different free vacuum than is commonly done.

11We note that the result does not depend on what framework we work in; for us, this is simply
a simplification in the calculation.
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Commonly in cosmology, one relates all the interacting vacuums to the free vacuum
in the infinite past, which is where we have a Minkowski-like free vacuum. This is
then what we call the Schwinger-Keldysh [41, 42] in-in formalism, as was revived by
Maldacena in [43]. We will see in Ch. 5 that the correlator, as defined in Eq. (4.20),
is agnostic about this choice of computation technique. For now, we stay with the
in-in formalism and show how we compute correlators in the standard way.

Throughout this section, we will assume unitary time evolution and neglect any
form of dissipation. This is also a crucial assumption for Ch. 5. The time evol-
ution operators satisfy ∂η2U(η2, η1) = −iHint(η2)U(η2, η1) and through unitarity
U(η2, η1) = U †(η1, η2) = U−1(η1, η2). We can formally solve the time evolution
operator by the Dyson formula

U(η2, η1) = T exp
(
−i
∫ η2

η1

dη′Hint(η
′)

)
, (4.21)

where T is the time ordering operator. We mentioned earlier that the primary
purpose of the time evolution operator in this discussion is to relate the interacting
vacuum to the free vacuum in the infinite past. In this process of ’switching off
(on)’ the interactions, a key concept is the adiabaticity, 12 meaning we want to turn
them off slowly and smoothly. To make sure of this when projecting the vacuum,
we introduce a factor Hint → e−ϵ|η|Hint, always with implicitly taking ϵ→ 0 [44]. In
practice, to achieve this, when integrating from the infinite past, we rotate the time
integral slightly so that we get an imaginary part, i.e. we integrate from −∞(1−iϵ).
This is computationally simpler than writing e−ϵ|η|Hint every time and in almost all
cases is equivalent. We are now in the position to relate the interacting vacuum to
the free one, fully writing out Eq. (4.20) in the in-in formalism. We have

⟨Ω|
∏
a

O(ka, η)|Ω⟩ = ⟨0|U(−∞, η)
∏
a

O(ka, η)U(η,−∞)|0⟩ (4.22)

= ⟨0|
[
T̄ e(i

∫ η
−∞(1+iϵ)

dη′Hint(η
′))
]∏

a

O(ka, η)
[
Te(−i

∫ η
−∞(1−iϵ)

dη′Hint(η
′))
]
|0⟩,

where in the first line we can follow the intuition (from left to right) that we start
with an asymptotically free vacuum, we evolve it forward to time η we insert the
operator of interest, and sandwich it with another free theory vacuum that has been
evolved to time η. What in-in (and other) contours look like in the η plane is shown

12The adiabaticity here is not to confuse with the fact that inflation primarily produced adiabatic
perturbations.
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in Fig. 5.3. The important notion here is that we projected both states on the
infinite past vacuum, and interactions were turned off (on) adiabatically.

Apart from the power spectrum, which we have already showcased in Eq. (4.18),
some of the currently more ambitious observables of inflation relate to three-point
function, which we will explicitly calculate in the next section to leading order. For
that, it is useful to explicitly expand Eq. (4.22) to first order. For a three-point
function of a field ϕ to leading order, i.e. the Bispectrum, we have

⟨Ω|
3∏

a=1

ϕ(ka, η)|Ω⟩ = (4.23)

= ⟨0|
[
1 + i

∫ η

−∞(1+iϵ)

dη′Hint(η
′)

] 3∏
a=1

ϕ(ka, η)

[
1− i

∫ η

−∞(1−iϵ)
dη′Hint(η

′)

]
|0⟩

= 2Im

(∫ η

−∞(1−iϵ)
dη′⟨0|

3∏
a=1

ϕ(ka, η)Hint(η
′)|0⟩

)
.

There are extensive Feynman rules to compute these diagrams very efficiently. We
will refer to Sec. 5.3.2 for a full discussion. The three-point function above, at
leading order, can be computed directly, which we show in the next section.

To conclude, we have established how we can compute 2-point correlators of
the free theory in Eq. (4.18), as well as the leading order interaction of a three-
point function in Eq. (4.23). We have not yet specified Hint, or even ϕ, i.e. the
theory we want to compare to observables. In the next section, we will showcase the
interactions we want to consider and parametrise the results to make contact with
observations.

4.4 Bispectrum Shapes and the EFT of Inflation

The exact interactions during inflation are not known, and numerous models
were proposed over the years as possible candidates, including the simple slow roll
model we discussed in Sec. 4.2, k-inflation [45], Dirac-Born-Infeld (DBI) inflation
[46], and many others. The paradigm that emerged as the primary theory to make
contact with observations is the Effective Field Theory of inflation [47]. As the
name suggests, this is the theory that captures the relevant degrees of freedom from
inflation at the inflationary energy scale without relying on knowing the full UV
physics at the time. While primarily all perturbations are considered, including
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metric perturbations, it eventually turns out that we can capture the physics of
single field inflation by very particular interaction on a quasi-de Sitter background.

So let us comment on the Effective Field Theory of inflation since it is a key
motivator for some of the parameters we try to measure nowadays using galaxy
surveys 13. The idea here is to build up an effective theory from the ground up,
relying on symmetries only. The key to this is the fundamental property that infla-
tion is a period of quasi-exponential expansion that had to end. This spontaneously
breaks time-translations, which is the key to formulating the effective theory. In-
tuitively, given that the inflaton chooses a preferred slicing of space, we view it as
a clock, measuring the time until inflation ends. To see how the symmetries play
out here, note that we have explicitly split the field into the background and fluc-
tuation ϕfull = ϕ̄(η) + ϕ(x, η). While ϕfull is a scalar under spatial and temporal
diffeomorphisms, the perturbation ϕ(x, η) is not. Explicitly, we have,

t→ t+ ξ0(t, x⃗), ϕ→ ϕ+ ˙̄ϕξ0(x⃗). (4.24)

To formulate the Effective Field Theory of inflation, we are now going to gauge
away this fluctuation; that is, we choose a coordinate system where ϕ = 0, which is
exactly possible because ϕ is not gauge invariant as we see above. This means that
all the fluctuations are in the metric. This might seem unintuitive, but it is simply a
choice of coordinates that makes it simpler to formulate the Effective Field Theory.
Eventually, we will reformulate the theory in terms of a scalar field. Note that we
fixed the time diffeomorphisms, that is, ξ0, and we only have spatial diffeomorphisms
as a symmetry. In the intuitive picture, where we are describing a clock, this means
we have fixed the space to be characterised by where the clock is set to zero.

The task is now to formulate all the possible terms of the metric that are invariant
under spatial diffs. Of course, the regular general relativity terms are, as they are
invariant under all diffs. The way to construct these building blocks is typically done
in the ADM formalism [50], which splits writes the space in terms of hypersurfaces
of constant time, keeping the spatial diffs manifest on each hypersurface Σt. There
are eventually two fundamental building blocks for the EFT that are invariant under
spatial diffs [51, 47]. Simply the 00 component of the metric g00, and the extrinsic
curvature Kµν of the constant time hypersurfaces. We write the Lagrangian in those
variables, with respect to the unperturbed FRW ones, that is δg00 = 1 + g00 and

13As we will see, the Effective Field Theory of inflation is very similar to the Effective Field
Theory of dark energy [48, 49], and is therefore somewhat relevant to Ch. 10.
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δKµν = Kµν − a2Hhµν , and hµν is the induced metric on the hyper slices. Note
that the situation is extremely similar as in Sec. 3.3.2, where we first established the
symmetries we need to be invariant under and then expanded in all the independent
fields that satisfy the symmetries. Furthermore, as is typical in any EFT, we do
not know the coupling strength of these effective interactions, and we introduce
coefficients in front of all operators that can, in general, be time dependent 14. The
most general spatially invariant Lagrangian in terms of metric perturbations then
reads

S =

∫
d4x

√−g
[1
2
M2

PlR− c(t)g00 − Λ(t) +
1

2!
M2(t)

4(δg00)2 +
1

3!
M3(t)

4(δg00)3 +

−M̄1(t)
3

2
δg00δKµ

µ −
M̄2(t)

2

2
δKµ

µ
2 − M̄3(t)

2

2
δKµ

νδK
ν
µ + ...

]
, (4.25)

where we opted for the same notation as in [47], but in fact, this is the same effective
Lagrangian that we will discuss in the context of dark energy in Ch. 10, in particular
Eq. (10.1), and as we can see there, the background quantities can be related to the
unperturbed terms 15, in particular, c(t) = −2ḢM2

Pl, where M2
Pl = 1/(8πG) is the

Planck mass.
So, we have formulated the most general Lagrangian in terms of metric per-

turbations invariant under spatial diffs. Now, the task remains to formulate this in
terms of the fluctuating scalar degree of freedom that we earlier introduced as being
the clock. We introduce the fluctuations in this clock by shifting t → t + π(x⃗, t),
which restores the time diffeomorphism invariance. Under this shift, the metric 00
perturbation, for instance, changes as

δg00 → 1 + (1 + π̇)2g00 + 2g0i∂iπ + gij∂iπ∂jπ. (4.26)

Finally, a couple of technical considerations show that to the order we work we don’t
have to consider the extrinsic curvature, and mixing with gravity is a higher order
effect. Collecting all the terms from Eqs. (4.25) and (4.26), we finally get the action
for the Goldstone boson π up to third order

Sπ = −
∫
d4x

√−gM
2
PlḢ

c2s

[
π̇2 − c2s

(∂iπ)
2

a2
+
(
c2s − 1

)
π̇
(∂iπ)

2

a2
+ λ1π̇

3

]
, (4.27)

14In Sec. 3.3.2 we even had non-local in time couplings, so there we had time-kernels.
15We have seen similarities between dark energy and inflation already when we discussed de

Sitter space in Sec. 2.6, where we had a negative equation of state parameter w.
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where we defined the speed of sound c−2
s = 1 − 2M4

2

M2
PlḢ

, the coupling constant λ1 =

4
3

c2sM
4
3

M2
PlḢ

−(c2s − 1) and in the process did some normalisations. This is the Lagrangian
we will work with to compute the power spectrum and bispectrum according to the
methods in the previous section. Let us start with the mode functions. We have a
massless scalar in de Sitter, with slightly more complicated normalisation, and the
sole real difference is that every factor of k is accompanied by a speed of sound term.
We therefore have

fk(η) =
i

2
√
M2

Plcsϵk
3
(1 + icskη)e

−icskη, (4.28)

which from here on allows us to use all the formulas derived in the previous section.
The final piece now is that we have to relate the field π we introduced here to the
comoving curvature perturbation Eq. (4.8) that we eventually measure. The two
can be related by simply considering the gauges they are defined in as is done in
[52, 43] to find ζ = −Hπ 16. So, we can start with the power spectrum; we have

Pζ(k) = H2Pπ(k) = H2 lim
η→0

|fk|2 =
H2

4csM2
Plϵk

3
. (4.29)

As mentioned in the last section, the correlations we observe today after reentry
into the horizon have been frozen from the time they exited the horizon at k = aH.
Since H is slowly evolving as given by Eq. (4.1), this means that the different modes
exit the horizon slightly earlier than others, which is exactly what causes the slight
scale dependence in Fig. 4.1. Note that this is a direct consequence of the ’quasi’
de Sitter expansion, and therefore, this scale invariance should depend on the slow
roll parameters. To measure this deviation from scale invariance, we introduce a
parameter ns called the spectral index, defined by 17

ns − 1 =
d log k3Pζ(k)

d log k
≃ 1

H

d

dt
log

(
H2

csϵ

)
= −2ϵ− ξ2 − s, (4.30)

where similarly to [52] we have introduced s = ċs
Hcs

, which is also expected to be
small. So we see that the deviation from scale invariance ns − 1 is directly related
to the slow roll parameters, which are responsible for the small deviation from scale

16In essence we relate the ζ gauge, with spatial metric hij = a(t)2e2ζdx⃗2, and π = 0, to the
gauge here where hij = a(t)2dx⃗2 and π ̸= 0, by a time shift.

17We note again that scale invariance in Fourier space would mean the power spectrum would
go as k−3. Hence we define a measure of the deviation from k3Pζ(k).
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invariance. With this parameter in hand, we typically parameterise the primordial
power spectrum as

Pζ(k) =
2π2

k3
As

(
k

k0

)ns−1

, (4.31)

where k0 is a chosen pivot scale, and we introduced the amplitude As = H2

8π2csM2
Plϵ

.
Current measurements the parameters As and ns and constraints from the CMB are
quite conclusive with As = (2.098 ± 0.023)10−9 and ns = 0.965 ± 0.004 [25], where
a pivot scale of k0 = 0.05Mpc−1. These results can almost be read off from Fig. 4.1;
we simply have to look at the value of the function at the pivot scale to find roughly
ln(1010As) ≃ 3.04 and the slope gives us ns−1. We will encounter these parameters
again in Chs. 7 and 8, where we will constrain and forecast constraints using galaxy
surveys.

If no interactions were present, the free theory predicts a Gaussian distribution
of fluctuations. Now, let us turn to the more ambitious parameters from inflation,
measuring deviations from complete Gaussianity. To leading order, these are the
three-point functions induced by the O(π3) terms. We can see from Eq. (4.27) that
unless the speed of sound is exactly one, the effective theory predicts there must be
non-Gaussianity present. Note that to leading order in interactions, the interaction
Hamiltonian simply splits into two parts Hint = H

π̇(∂iπ)
2

int + H
(π̇)3

int and we distinct
contributions for each of the two interactions in Eq. (4.27). The two bispectra we
get are then given by 18

B
(π̇)3

ζ =
3H4λ1

8c2sM
4
Plϵ

2

1

e3k3T
(4.32)

B
π̇(∂iπ)

2

ζ =
H4

64c2sM
4
Plϵ

2

(
1− 1

c2s

)
6e2k

4
T − 22e3k

3
T + 8e22k

2
T + 8e2e3kT − 24e23 − 2k6T
e33k

3
T

,

where kT = k1 + k2 + k3 is the total energy, and e2 = k1k2 + k2k3 + k1k3 and
e3 = k1k2k3 are the two other elementary symmetric polynomials. Similar to the
power spectrum in Eq. (4.31), we want to parametrise the theory in terms of its
scale-invariant parts and introduce coefficients that capture the new physics. For

18The same discussion about the approximate scale invariance and ns can be done for the
bispectrum. That is, we are still interested in the modes when they exit the horizon. However,
this is a subleading effect here.
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the bispectrum, we define the template

Bζ =
9

10

H4

4M4
Plϵ

2c2s

∑
i

fNL,i
Si(k1, k2, k3)
(k1k2k3)2

, (4.33)

where the numerical prefactor is there for historical reasons and the shape function
has normalisation S(k, k, k) = 1. We made explicit that the total bispectrum can
be a function of many different shape functions, for example, the two we calculated
in Eq. (4.32). There are many other shapes one could consider, and the choice of
basis for the Si is a field in of itself [53].

Now, from the definition of the shape functions and fNL in Eq. (4.33) and the
definitions of the parameters below Eq. (4.27), we get the two non-Gaussianity
parameters as predicted by the EFT of inflation

f
(π̇)3

NL =
5

81
λ1, and f

π̇(∂iπ)
2

NL =
85

324

(
1− 1

c2s

)
, (4.34)

and the shape functions can be read off from Eq. (4.32) immediately. In Eq. (4.33),
it is left implicit what basis of shape functions we use to describe the full bispec-
trum. The canonical choice of using the bispectra that are coming directly from the
theoretical motivation in Eq. (4.32) turns out to not be optimal for the data ana-
lysis. For practical use, optimal templates have been developed to generate shape
functions that are as independent as possible 19. This led to the introduction of the
equilateral and orthogonal templates

Seq.(k1, k2, k3) =
4e2kT − 8e3 − k3T

e3
, (4.35)

Sorth.(k1, k2, k3) =
12e2kT − 26e3 − 3k3T

e3
,

and the parameters can be related to the one directly coming from the EFT of
inflation by a simple linear combination 20

(
f equil.
NL

f orth.
NL

)
=

(
1.040 1.210

0.1079 −0.06572

)(
f
π̇(∂iπ)

2

NL

f
(π̇)3

NL

)
. (4.36)

19The independence can be made quantitative through a scalar product, as developed in [54].
20This change of basis is not exact, as the bases are finite and do not span the exact same

space. However, this deviation is currently a much smaller effect than the size of the error in the
experiments.
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Finally, there is one more type of non-Gaussianity that we are typically interested
in. In contrast to the previous parameters that are direct predictions from the
EFT of Inflation, the historically first template that was introduced in the context
of inflation was done from phenomenological considerations. This first template
for non-Gaussianity was introduced in [55], called the local type template. This is
motivated by the simplest modification to the field itself, assuming the full curvature
perturbation is a local function of the free (i.e. Gaussian) field ζG. Then, the
modification we consider is given by

ζ = ζG +
3

5
f loc.
NL

(
ζ2G − ⟨ζ2G⟩

)
, (4.37)

where we made sure we still have a mean zero field by subtracting the mean and the
prefactor of 3

5
is again for historical reasons. From this modification, we, by design,

get a bispectrum as well that reads

Bloc.
ζ =

6

5
f loc.
NLPζ(k1)Pζ(k2) + 2perms. , (4.38)

and so we get the shape function

Sloc.(k1, k2, k3) =
1

3

k23
k1k2

+ 2perms. . (4.39)

This type of non-Gaussianity is not predicted by the Effective Field Theory and
detection would hence rule out single-field inflation. Indeed, even before the for-
mulation of the EFT of inflation, it was shown to have to be very small in any
single field inflationary model [43]. It was later shown that, while zero in single field
models, it can be generated in multifield models of inflation [56]. Therefore, this
parameter is a direct test of whether multiple fields were present in the inflationary
period.

These are the final three non-Gaussianity parameters that we will eventually be
interested in in this thesis when making contact with observations. We note that
there are now many more templates trying to capture very different effects during
inflation (for example [57, 58, 59]). However, even constraints on the three standard
non-Gaussianity parameters are quite weak at the moment [60], with f loc.

NL = −0.9±5,
f eq.

NL = −26± 47, f orth.
NL = −38± 24. Therefore, we focus on these major inflationary

parameters in Ch. 8, where we will see how galaxy surveys might improve on those
constraints and potentially even lead to a detection.

54



4.4. Bispectrum Shapes and the EFT of Inflation

To conclude, we have introduced five inflationary parameters, two from the power
spectrum Eq. (4.31), and three different types of non-Gaussianity from the bispec-
trum Eq. (4.33). The local type f loc.

NL is a measure of finding out whether there was
more than one field present in inflation. The other two types, f eq.

NL and f orth.
NL give

direct insight into the interactions present in inflation as motivated by the Effective
Field Theory of inflation.
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5
The In-Out Formalism for In-In
Correlators

5.1 Summary

Cosmological correlators, the natural observables of the primordial universe, have
been extensively studied in the past two decades using the in-in formalism pioneered
by Schwinger and Keldysh for the study of dissipative open systems. Ironically, most
applications in cosmology have focused on non-dissipative closed systems. We show
that, for non-dissipative systems, correlators can be equivalently computed using
the in-out formalism with the familiar Feynman rules. In particular, the myriad of
in-in propagators is reduced to a single (Feynman) time-ordered propagator and no
sum over the labelling of vertices is required. In de Sitter spacetime, this requires
extending the expanding Poincaré patch with a contracting patch, which prepares
the bra from the future. Our results are valid for fields of any mass and spin but
assuming the absence of infrared divergences.

We present three applications of the in-out formalism: a representation of cor-
relators in terms of a sum over residues of Feynman propagators in the energy-
momentum domain; an algebraic recursion relation that computes Minkowski correl-
ators in terms of lower order ones; and the derivation of cutting rules from Veltman’s
largest time equation, which we explicitly develop and exemplify for two-vertex dia-
grams to all loop orders.

The in-out formalism leads to a natural definition of a de Sitter scattering matrix,
which we discuss in simple examples. Remarkably, we show that our scattering
matrix satisfies the standard optical theorem and the positivity that follows from it
in the forward limit.
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5.2 Introduction

Conquering of the atomic scale required not only cutting-edge mathematical
structures but also a major overhaul of our ideas of the natural world. The demise
of determinism implied by the uncertainty principle and a new picture of physical
reality were not, and still are not, easy to swallow. Nevertheless, repeated confront-
ation with data and mathematical consistency has left us no choice but to abandon
classical realism and embrace the confounding beauty of the quantum world. Many
of us suspect, hope and fear that the conquering of the Planck scale will similarly re-
quire abandoning cherished principles of physics such as locality and the fundamental
nature of space and time. To be successful we will no doubt need new advanced
mathematics and, at the same time, a tight web of experiments and observation
that yet again leave us no choice but to abandon our old prejudices. Currently,
our best hope for a confrontation with nature about the character of gravity and
spacetime comes from the study of the primordial universe and the treasure trove
of information that is stored in cosmological correlators. Meaningful observational
data might not be collected next year, the next decade, or even during our life span.
Nevertheless, such data will one day be collected and will constitute a milestone of
human civilization. In this work, we put forward a small piece of technology that
we hope will help us better compute and understand cosmological correlators in
quantum field theory.

A correlator is the quantum expectation value of the product of a set of operat-
ors in a given state. When we apply quantum field theory in curved spacetime to
the study of the primordial universe, we are interested in local quantum fields that
we can later measure in cosmological data sets. Moreover, we focus on the unique
de Sitter invariant quantum state that reduces to the Minkowski vacuum on short
distances, namely the Bunch-Davies state [61] (a.k.a. Hartle-Hawking or Euclidean
state [62]). In the past twenty years, these correlators have been studied using the
so-called in-in formalism, following suggestions in [43, 63] (see [64] for a review).
This formalism had been developed much earlier in the pioneering work of Schwiger
[41], Keldysh [42] and Feynman and Vernon [65] for the study of out-of-equilibrium
open quantum systems (see e.g. [66, 67] for modern textbooks). The main raison
d’être of this formalism is to account for the exchange of energy and information
between an open system and its environment, which leads to dissipation, fluctu-
ations and non-unitary evolution. Ironically, the vast majority of applications of the

60



5.2. Introduction

in-in formalism to cosmology have been restricted to closed quantum systems un-
dergoing unitary, non-dissipative time evolution. Here we point out that, for these
non-dissipative systems, we actually have the alternative and equivalent option of
using the in-out formalism, which is more familiar to many from the study of scat-
tering amplitudes.

Indeed, correlators in the Heisenberg picture have no allegiance to in-in or in-
out: they are just correlators of operators on a given state, which is often taken
to be the “vacuum" |Ω⟩ of the interacting theory. The catch is that often we don’t
know non-perturbatively what |Ω⟩ is. Instead, we approximate it via an iteratively
perturbative expansion. This is most apparent in the so-called interaction picture,
where the easy evolution described by the quadratic Hamiltonian is accounted for
by working with free fields and the difficult non-linear interactions appear in the
preparation of the bra and ket of a correlator. It is here that we face a choice.
We can prepare the bra and the ket by adiabatically turning on interactions in the
infinite past and evolving forward or in the infinite future and evolving backwards.
A natural choice may be to mimic the physical problem under investigation. For
example in a scattering experiment we like to think of particles coming from the
infinite past and wandering off to the infinite future and the in-out formalism fits
this intuition. But we don’t have to make this choice. We can perfectly well use the
Lehmann–Symanzik–Zimmermann (LSZ) formula on the in-in correlators instead.
A major advantage of the in-out formalism is that it minimizes bookkeeping: all
operators are in the same time ordering, whether they are fields or interactions in
the Hamiltonian. As a consequence, each Feynman diagram corresponds to a single
product of propagators and vertices and most importantly all propagators are time-
ordered Feynman propagators.

When working with a given physical system, there may be limits in which it is
consistent to adiabatically turn on and off interactions and limits in which this is
not possible. For example, for correlators in de Sitter spacetime in the expanding
Poincaré patch, as relevant for cosmology, we have the spacelike future conformal
boundary and the null past cosmological horizon (which can be reached in finite
proper time but always with an infinite proper volume [68]). The condition of start-
ing with the Bunch-Davies state tells that we can prepare both the bra and the ket
by evolving from the Fock vacuum on the past cosmological horizon and this is why
this has been the prominent choice in the literature so far. Conversely, it seems more
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Figure 5.1: The Penrose diagrams of Minkowski (left) and de Sitter spacetime (right).
The de Sitter diagram has been extended with an additional copy of the contracting Poin-
caré patch that allows one to prepare the bra (blue-shaded region) using the in-out form-
alism. The green shaded region is the preparation of the ket and the red crosses represent
insertions of local operators.
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complicated to turn off interactions towards the future conformal boundary because
of the phenomenon of particle production and the decay instability of particles of
any mass. It turns out that these are not insurmountable obstacles and concrete
constructions have been devised to obtain a well-defined set of amplitudes [68, 69].
Here instead we explore a different possibility: we prepare the ket from the past
null cosmological horizon as usual, but instead we prepare the bra from the future
null conformal horizon of an auxiliary contracting Poincaré patch, as shown in the
right panel of Fig. 5.1. The similarity to Minkowski spacetime is evident. With this
extended spacetime in mind, we set up the in-out formalism and we prove it’s equi-
valent to the traditional in-in formalism, in the context of QFT in curved spacetime.

Our main motivation to develop an in-out formalism was to find a non-perturbative
optical theorem that can be used in cosmology to constrain low-energy theories that
admit a standard UV completion. At the perturbative level, some consequences of
unitary time evolution in FLRW spacetime have been understood in the form of the
cosmological optical theorem [70, 71, 72, 73, 74, 75, 76]. This has been useful to boot-
strap [77] perturbative correlators [78, 79, 80, 81, 82], but it is insufficient to derive
general positivity bounds, where one constrains an unknown and not-necessarily per-
turbative UV-completion. Beautiful progress on the non-perturbative side has been
obtained in [83, 84] using the Kähllen-Lehman representation (see also [85, 86, 87])
and related ideas that leverage group theory and harmonic analysis. In this work,
a non-perturbative constraint from unitarity can be obtained because the textbook
derivation of the optical theorem in Minkowski also applies to our de Sitter scat-
tering matrix (see Sec. 5.7), which is naturally defined in our in-out formalism. We
only preview some results about this topic, which will be discussed in a separate
publication.

Shopping Advice So you have to compute a few correlators explicitly, but don’t
know what formalism to choose? Here are some handy top tips to consider before
you start scribbling away on your tablet:

• In-in formalism.

Pros: It can handle dissipation, fluctuations and non-unitary evolution. Indeed
this was the main reason why this formalism was developed (see e.g. [67]
and [88]). Even if the evolution of a “closed" system such as the universe
is expected to be unitary (but see [89, 90] for a different point of view), if
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we only observe part of the systems we are working with an open system
and at the quantum level we need to use words such as density operator,
Liouvillian, pure-to-mix state evolution and Markovian approximation.

Cons: The large number of propagators (four bulk-bulk and two bulk boundary)
and the exponential proliferation of labellings of diagrams (2V−1 for a
diagram with V vertices) are a considerable nuisance. Moreover, we miss
out on a lot of the intuition coming from the extensive study of scattering
amplitudes.

• In-out formalism.

Pros: There is a single propagator! And it’s everyone’s favourite: the time-
ordered Feynman propagator. The 2V−1 contributions of the in-in calcu-
lation are nicely repackaged into a “single" (nested) integral expression 1.

Cons: It cannot handle dissipation. For scattering experiments, this is not a
problem because of the excruciating care that experimentalists put into
shielding particle collisions from the rest of the world. Conversely, in less
artificial systems such as many condensed matter systems and cosmology,
this limitation prevents us from accessing many beautiful phenomena.

Summary of the Results For the convenience of the reader we summarize here
our main results:

• We developed an in-out formalism to compute unequal time correlators in
Minkowski, de Sitter and more general cosmological spacetimes. The formal-
ism crucially assumes the absence of late-time IR divergences, which in practice
means that the divergence of the flat-slicing volume at future infinity, η → 0,
has to be offset by the decay of fields and their derivatives (see discussion
around Eq. (5.27)). The formalism applies to fields of any mass and spin. The
Feynman rules, outlined around Eq. (5.43), are the same as for the stand-
ard in-out Minkowski correlators (also the same as for amplitudes except one
does not amputate external legs). In particular, all lines, both internal and
external, correspond to a time-order Feynman propagator. As compared to
the in-in formalism, this removes the need to sum over all the possible ways

1To be fair we should point out that in the time domain, the Feynman propagator has two
time orderings. However in the frequency/energy domain in Minkowski both are captured by a
single term, courtesy of the Feynman iϵ prescription, 1/(p2 + iϵ).
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to label each vertex as “left" and “right". We presented a formal argument
for the equivalence of in-in and in-out formalism and some explicit checks in
perturbation theory. The equivalence is depicted in Fig. 5.2.

• We used the in-out formalism to provide two new procedures to compute
correlators, and for concreteness we focus on equal time products of scalars.
These results are obtained with similar manipulations as in a parallel study
of the wavefunction [91]. The first procedure, which we dub “pole bagging",
leverages the simplicity of the Feynman propagator in the energy-momentum
domain in Minkowski to write a (loop integrand of a) correlator as a sum of
residues of products of propagators. This can also be extended to massless and
conformally coupled scalars in de Sitter. The second procedure consists of an
algebraic recursion relation that iteratively removes internal lines of a diagram
reducing it to linear combinations of simpler diagrams. The main novelty of
our results is that we work directly at the level of the observable correlators,
rather than the somewhat more primitive wavefunction.

• Time-ordered and anti-time-ordered products of operators are related by an
operator identity 2, Eq. (5.108), which is sometimes equivalently stated as the
“largest time equation" [94] and leads to the amplitude cutting rules. We use
this identity to derive an infinite number of cutting rules for correlators in
Minkowski and cosmological spacetimes including de Sitter, where we restrict
to massless and conformally coupled scalars. The number of correlator cutting
rules grows quickly with the complexity of the diagram and we provide a sys-
tematic study of one- and two-vertex diagrams (see Sec. 5.6 and the summary
Eq. (5.139)) to all loop orders and discuss three-vertex diagrams in App. A.2.

• The in-out formalism suggests a straightforward definition of a de Sitter S-
matrix describing scattering from the past to the future null horizon (see also
[69] for the discussion of a similar but not identical object). We show some
simple examples for a number of conformally coupled scalars. A main advant-
age of our definition is that amplitudes satisfy the standard optical theorem.
Moreover, the symmetry between the initial and final states ensures that the
imaginary part of the forward scattering amplitudes, which in Minkowski be-
comes a discontinuity under appropriate analyticity assumptions, is positive

2This was used in a related context in [92, 93], where it was called “CFT optical theorem".
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Figure 5.2: An example of the equivalence of the in-in and in-out formalism. Left: the
in-in formalism requires summing over all possibilities to label vertices as “l" (left) or “r"
(right); the bulk-boundary propagators Gr and Gl and bulk-bulk propagators Gll, Glr, Grl

and Gr are then chosen accordingly. Right: the in-out formalism is a single expression
where all propagators are Feynman propagators.

because of unitarity (see Sec. 5.7). A dedicated analysis will appear in a sep-
arate publication.

Relation to Previous Work Some aspects of our discussion are closely related
to previous work (see e.g. [95] for a review of in-in, in-out and Euclidean formalism
in the finite temperature context). In particular, in a series of nice papers initi-
ated with [96, 68], Marolf and Morrison studied perturbation theory in de Sitter.
Particularly relevant for us is their construction of an S-matrix for global de Sit-
ter spacetime by glueing together a contracting and an expanding Poincaré patch
along the common cosmological horizon. An interesting aspect of their setup is that
the cosmological horizon of the Poincaré patch can be reached from anywhere in
global dS in a finite proper time. Hence it is natural to extend the path integral
contour right through this surface. Here we take a similar but complementary route
by glueing two Poincaré patches along their future/past conformal boundaries (see
Fig. 5.1). This has the advantage that our path integral contour runs straight, just
like in Minkowski. In particular, our path integral does not bend on itself creating
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so-called “timefolds" and hence we avoid the associated proliferation of propagators
and labelling of interaction vertices. Conversely, since it takes an infinite amount of
proper time to reach the future conformal boundary, in our construction perturb-
ations can move from one Poincaré patch to the other only in a conformal sense,
i.e. only after jettisoning a divergent conformal factor. While we concede that this
makes the physical interpretation less intuitive, we don’t think this is a problem be-
cause all operators are inserted in a single patch and the second patch is just invoked
as an equivalent preparation of the bra of the correlator. Moreover, we postpone to
future work a discussion of how to apply an LSZ-like reduction to correlators in our
in-out formalism to derive an S-matrix.

The “extended" spacetime in Fig. 5.1 is reminiscent of the suggestion of so-called
“conformal cyclic cosmology" [97]. Here however the (upper) contracting Poincaré
patch is just auxiliary and all operators are inserted in the (lower) expanding patch.
In passing we do notice that correlators of a Lorentzian conformal field theory nat-
urally live on an infinite cylinder, rather than on a single copy of the conformal
Minkowski diagram [98]. This ensures that finite special conformal transformations
don’t violate causality (see e.g. [99]). Since de Sitter is conformally flat it is equally
natural to consider an infinite conformal extension, of which we are only making
partial use here.

The in-out formalism suggests a natural definition of a dS scattering matrix, with
asymptotic states in the past and future null infinities of Fig. 5.1. This S-matrix
turns out to be quite similar to the “Bunch-Davies S-matrix" recently discussed in
[69]. We comment on this in Sec. 5.7.

We are not the first to propose a rotation of the in-in contour that leads to a
simplification of the calculation. One proposal, going back to [43] and then fully
developed in [100] and [84], is to straighten out the closed-time contour by rotat-
ing the time-ordered and anti-time-ordered branches by 90 degrees counterclockwise
and clockwise respectively, so that the contour coincides with the purely imaginary
axis of the complex η plane (see Fig. 5.3). The result is then precisely related to a
perturbative calculation in Euclidean AdS, where the imaginary part of η is inter-
preted as the radial coordinate. A second and related proposal was put forward in
[101] and used again in [102]. It consists of the same contour rotation where one
recognizes that the time and anti-time ordering of the in-in contour combine into
a single anti-time ordered Euclidean Green’s function. Our proposal in this work
shares with previous proposals the idea of straightening the in-in contour so that
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Figure 5.3: The figure shows various equivalent contours that have been proposed for the
calculation of cosmological correlators. In the traditional Schwinger-Keldysh formalism,
the path integral runs forwards over the “in" green line and then backwards over the "in"
orange line. Rotating both contours to the imaginary axis connects to the Euclidean AdS
calculation. The "in-out" contour discussed in this chapter (the green line) rotates the
backwards "in" contour to the forwards "out" contour.

the multiple propagators reduce to a single one. In contrast to previous proposals
our rotation of the anti-time ordered in-in contour goes all the way to the positive
real axis, so that the calculation remains firmly within the realm of Lorentzian time.
All these proposals are summarised and compared in Fig. 5.3. Finally, we should
mention that the relation between in-in and in-out formalisms in Minkowski has also
been investigated recently in [103, 104], where it was shown, among other things,
that imposing initial conditions in the infinite past is a necessary requirement.

The rest of this chapter is organized as follows. In Sec. 5.3 we define the in-out
formalism and prove that it gives the same result for time-ordered unequal time
correlators as the in-in formalism. To this end, we review a formal non-perturbative
argument in Minkowski and adapt it to de Sitter and then provide explicit checks
of the equivalence to various orders in perturbation theory at tree level. In Sec. 5.4
we consider two applications of the in-out formalism to correlators. The first, in
Secs. 5.4.1 and 5.4.2 is a representation of correlators as a sum of residues of the
product of Feynman propagators in the energy-momentum domain. The second,
in Sec. 5.5.2, is a set of purely algebraic set of recursion relations for equal-time
Minkowski correlators, which computes all tree-level diagrams and a large class of
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“melonic" loop diagrams. Next, in Sec. 5.6, we use Veltman’s largest time equation
to derive an infinite set of propagator identities, which can in turn be expressed
in terms of correlator identities. We present explicit formulae for all two-vertex
diagrams to any number of loops and external legs. In Sec. 5.7 we give a preview
of how the in-out formalism leads to a natural definition of a de Sitter scattering
matrix, which moreover obeys the standard optical theorem. We present some simple
examples and consistency checks. Finally, we conclude in Sec. 5.8.

Notation and Conventions We use a prime to remove the ubiquitous momentum-
conserving Dirac delta,

⟨
n∏
a

ϕ(η,ka)⟩ ≡ (2π)3δ

(
n∑
a

ka

)
⟨
n∏
a

ϕ(η,ka)⟩′ . (5.1)

We denote time-ordered correlators by

⟨T
n∏
a

ϕ(η,ka)⟩′ ≡ Bn({ηa,ka}) , (5.2)

where {ηa,ka} collectively refers to the spacetime positions of the operators. We
define the following two-point functions or propagators as

G+(η1, η2, p) ≡⟨0|ϕ(η1,p)ϕ(η2,p′) |0⟩′ = fp(η1)f
∗
p (η2) , (5.3)

GF (η1, η2, p) ≡⟨0|Tϕ(η1,p)ϕ(η2,p′) |0⟩′

= fp(η1)f
∗
p (η2)θ(η1 − η2) + f ∗

p (η1)fp(η2)θ(η2 − η1) ,

where the mode functions in de Sitter and Minkowski are 3

fk(η) = −i
√
πH

2
ei

π
4
(1+2ν)(−η)3/2H(1)

ν (−kη) , ν ≡
√

9

4
− m2

H2
, (5.4)

fk(η) = iη
H√
2k
e−ikη . (conformally coupled) , (5.5)

fk(η) =
H√
2k3

(1 + ikη)e−ikη (massless, dS) , (5.6)

fE(t) =
e−iEt√
2E

. (5.7)

3Here we restrict our discussion to positive masses, but see [105] for an extensive discussion of
tachyonic fields and their phenomenology.
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Many of the integrals we encounter lead to distributions rather than functions and
should be understood as acting on appropriate test functions. As commonly done
in the physics literature, we will often represent these distributions as the limit of
functions using a small parameter that is taken to zero at the end of the calculation as
for example in the Sokhotski–Plemelj theorem or the Feynman propagator. More in
detail, we specify that a certain integral to t, η = ±∞ should be computed assuming
a positive or negative imaginary part to guarantee convergence even in the absence
of a test function. To convey this in a compact way we use the shorthand notation

±∞+ ≡ ±∞(1 + iϵ) , ±∞− ≡ ±∞(1− iϵ) , (5.8)

where ϵ > 0 is a real and positive parameter that should be taken to zero at the end
of the derivation.

5.3 In-In Equals In-Out

The main motivation behind the construction of the in-in formalism by Keldysh
[42], foreshadowed by the work of Schwinger [41], was to describe the non-unitary
and dissipative evolution of an open system in contact with an environment. How-
ever, it can also be used to study the unitary evolution of isolated systems and
indeed almost all applications of the in-in formalism in early universe cosmology
have considered a situation of this type. As we discussed, for the unitary evolution
of an isolated system, there is an equivalent in-out description that computes cor-
relators. In the following we review a general non-perturbative argument for the
equality between in-in and in-out, we specify the conditions under which this holds
and finally, we present some explicit checks.

First of all, let’s clarify some nomenclature. In the interaction picture, where
states evolve according to the interaction Hamiltonian and operators according to
the free Hamiltonian, we say that a certain matrix element is an in-out correlator
if it contains a single time 4 ordering. This corresponds to a single time evolution
operator, possibly with some insertion of local operators. Conversely, in-in correl-
ators contain two separate time orderings, one going forward in time, which evolves

4Here we focus on time-ordering as opposed to path ordering to set up our nomenclature. When
re-writing these correlators as path integrals one can sometimes combine different time orderings
into a single path ordering, as famously done with the closed time contour of the in-in path integral.

70



5.3. In-In Equals In-Out

the ket, and one going backwards in time, which evolves the bra. With this nomen-
clature in place, we move on to define our main objects of study.

We define an in-out correlator of the product O({t,x}) of local operators at po-
sitions {ta,xa} for a = 1, . . . , n, as the following expectation value in the interaction
picture

Bin-out ≡
⟨0|T

[
O({t,x})e−i

∫+∞(1−iϵ)
−∞(1−iϵ)

Hintdt
]
|0⟩′

⟨0|T
[
e−i

∫+∞(1−iϵ)
−∞(1−iϵ)

Hintdt
]
|0⟩′

, (5.9)

where a prime removes the Dirac delta of momentum conservation. Here Hint is
the interaction Hamiltonian that generates time evolution of states, T denotes time
ordering (early to the right, late to the left) and |0⟩ is the Fock vacuum, a.k.a.
the “vacuum" of the free theory. Notice that the factor in the denominator does
not depend on where the fields are inserted: it is the familiar sum over so-called
vacuum bubbles. Heuristically one can simply justify it by demanding that Bin-out

becomes unity when we don’t insert any operators. In diagrammatic language, the
denominator in Bin-out simply tells us that we should disregard all diagrams that
contain a subdiagram that is not connected to any inserted operator, i.e. a va-
cuum bubble. More precisely this factor arises when we re-write the vacuum of
the interacting theory |Ω⟩ as that of the free theory |0⟩ with interactions turned on
adiabatically. The adiabatic turning on and off of interactions in the asymptotic
past and future is implemented by the iϵ rotations of the boundary of integration
in Eq. (5.9). The correct sign of this imaginary part, namely ±∞(1 − iϵ) can be
simply determined by demanding convergence of the integral in perturbation theory.

Typically we will consider operators of the form

O({t,x}) =
n∏
a

ϕ(ta,xa) . (5.10)

Notice that Bin-out is a very familiar object in QFT: it is precisely the object appear-
ing on the right-hand side of the Lehmann–Symanzik–Zimmermann (LSZ) reduction
formula, which gets amputated and delivers scattering amplitudes in Minkowski.
Since all the operators in Eq. (5.9) appear inside the same time ordering, Bin-out is
computed in perturbation theory from the product of time-ordered two-point func-
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tions, a.k.a. Feynman propagators, stitched together by non-linear interactions.
While we will say more about this later, for the moment the reader should have in
mind that the time foliation of spacetime has been chosen such that t = ±∞ repres-
ents a null “initial" surface and a null “final" surface, as it is familiar from Minkowski.

Next, let’s define in-in correlators of the product O({t,x}) of local operators at
positions {ta,xa} as the following expectation value in the interaction picture

Bin-in ≡ ⟨0| T̄
[
e+i

∫ t0
−∞(1+iϵ)

Hintdt
]
T
[
O({t,x})e−i

∫ t0
−∞(1−iϵ)

Hintdt
]
|0⟩′ . (5.11)

Here T̄ indicates anti-time ordering (early to the left, late to the right) and t0 is an
arbitrary time that is later than any of the ta appearing in the inserted fields, t0 > ta.
Notice the absence of the vacuum bubble factor appearing in Bin-out. Heuristically
this is easily understood noticing that if we insert the identity operator, namely
O = 1, then Bin-in is already equal to 1, just like Bin-out. The imaginary part in the
boundary of integration, namely −∞(1−iϵ) in the time-ordered part and −∞(1+iϵ)

in the anti-time-ordered part, ensure convergence and implement mathematically the
adiabatically switching on of interactions in the infinite past.

Note that our definition of Bin-in is slightly more general than what is usually
considered in the cosmological literature because we allow for unequal time oper-
ators. An even more general possibility would be to insert some operators in the
time ordering, some in the anti-time-ordering and some in between 5. In this case,
we don’t expect it to be possible to find a simple relation to the “straight" in-out
formalism. However these situations are examples of out-of-time-order contours or
“time-folds" and have also been studied extensively (see e.g. [106, 107]).

As long as t0 > t̄ with t̄ = maxa(ta), Bin-in does not depend on t0 because the
time evolution after the latest ta cancels out,

Bin-in = ⟨T̄
[
e+i

∫ t̄
−∞Hint dt

]
U−1(t0, t̄)U(t0, t̄)T

[
O({t,x})e−i

∫ t̄
−∞Hint dt

]
⟩′ (5.12)

= ⟨T̄
[
e+i

∫ t̄
−∞Hint dt

]
T
[
O({t,x})e−i

∫ t̄
−∞Hint dt

]
⟩′ , (5.13)

where we used the following notation for the time evolution operator U in the in-

5The case where all operators are in the anti-time-ordering is trivially related to the case we
consider in this chapter
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teraction picture

T̄ exp

[
+i

∫ t2

t1

Hintdt

]
= U †(t2, t1) = U−1(t2, t1) for t2 > t1 . (5.14)

Notice that our definition of Bin-in is slightly more general than what is usually
encountered in the cosmology literature. Usually one considers the product of oper-
ators at the same time. In that case, it does not matter if the operators are inside
the time ordering, the anti-time-ordering or just in between,

⟨T̄
[
e+i

∫ t̄
−∞Hint dt

]
T
[
O(t̄)e−i

∫ t̄
−∞Hint dt

]
⟩ = ⟨T̄

[
e+i

∫ t̄
−∞Hint dt

]
O(t̄)T

[
e−i

∫ t̄
−∞Hint dt

]
⟩

= ⟨T̄
[
e+i

∫ t̄
−∞Hint dtO(t̄)

]
T
[
e−i

∫ t̄
−∞Hint dt

]
⟩ .

(5.15)

Also, we usually don’t write the time ordering of operators when computing in-in
correlators because we compute them at the same time. When we extend to unequal
time of course we can choose whether to time order or not. The object that nicely
relates to Bin-out is the time-ordered in-in correlator.

5.3.1 A Formal Proof

Here is a formal proof that Bin-out = Bin-in following the intro of [67]. First we
notice that if we start with the Fock vacuum |0⟩, which is annihilated by the lowering
ladder operators of all fields for all momenta, and turn on and off interactions
adiabatically, we expect to go back to |0⟩ up to a multiplicative factor corresponding
to the sum over vacuum bubbles 6

U(+∞,−∞) |0⟩ = |0⟩ ⟨0|U(+∞,−∞) |0⟩ , (5.16)

where we are assuming the normalization ⟨0|0⟩ = 1. This expectation can be justified
in a few ways. Here we simply remark that the standard iϵ rotation of the time
integral contour induces a suppression e−2ϵT (En−E0) for time evolution U(T,−T )
on excited energy eigenstates with eigenvalues En, compared to the lowest energy
state. In the limit T → +∞ all excited states are projected out and only the Fock
vacuum survives. To see this more explicitly, we compute in perturbation theory

6Here we are in the interaction picture and U is the associated time-evolution operator, which
depends on the interaction Hamiltonian H evaluated on free fields (i.e. fields evolved with the free
Hamiltonian H0).
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the projection of the left-hand side of Eq. (5.16) onto an n-particle state |n⟩, with
total energy kT . To lowest order in the coupling constants, the result 7 of the time
integral is proportional to derivatives of a Dirac delta of energy conservation

⟨n|U(+∞,−∞) |0⟩ ∝ ∂nkT δ(kT ) . (5.17)

This distribution does not have support on physical states and hence U(+∞,−∞) |0⟩
does not have support on any excited state 8.

Since unitary evolution preserves the norm, the multiplicative factor on the right-
hand side of Eq. (5.16) is a pure phase

⟨0|U(+∞,−∞) |0⟩ ⟨0|U(+∞,−∞) |0⟩∗ = 1 . (5.18)

This is precisely the vacuum bubble factor, by which we divided out in the defini-
tion of in-out correlators Bin-out, Eq. (5.9). Taking the dagger of Eq. (5.16) (more
precisely using the Riesz representation theorem) gives us

⟨0|U †(+∞,−∞) = ⟨0| ⟨0|U(+∞,−∞) |0⟩∗ . (5.19)

The imaginary rotation of the contour at infinity is quite important in the derivation.
To keep our expression compact we introduce the useful shorthand notation

±∞+ ≡ ±∞(1 + iϵ) , ±∞− ≡ ±∞(1− iϵ) , (5.20)

7The exact result is given in Eq. (5.145) where we also discuss that this matrix element can be
interpreted as a 0 to n scattering in de Sitter.

8This argument might be subtle due to IR divergences in the initial and final state, |η| → ∞
(not at η → 0), where the analogue of soft and collinear divergences might arise. We hope to come
back to this issue in the future.
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Then the derivation proceeds as follows

Bin-out =

⟨T
[∏n

a ϕ(ta)e
−i

∫+∞−
−∞−

Hintdt

]
⟩′

⟨T
[
e
−i

∫+∞−
−∞−

Hintdt

]
⟩′

(5.21)

= ⟨U †(+∞+,−∞+)T

[
n∏
a

ϕ(ta)e
−i

∫+∞−
−∞−

Hintdt

]
⟩′ (5.22)

= ⟨T̄
[
e
+i

∫+∞+
−∞+

Hintdt

]
T
[
e−i

∫+∞−
t0

Hintdt
]
T

[
n∏
a

ϕ(ta)e
−i

∫ t0
−∞−

Hintdt

]
⟩′ (5.23)

= ⟨T̄
[
e
+i

∫ t0
−∞+

Hintdt
]
U †(+∞, t0)U(+∞, t0)T

[
n∏
a

ϕ(ta)e
−i

∫ t0
−∞−

Hintdt

]
⟩′ (5.24)

= Bin-in , (5.25)

where in the second line we used Eq. (5.19) and in the third line the fact that t0 > ta.

This equality can be stated with more evocative language. The only difference
between the in-in and in-out formalism is how the bra is prepared. In both cases, we
would like to prepare it by acting on the Fock vacuum with an evolution operator,
which we can readily expand in perturbation theory for practical calculations. The
in-in formalism prepares this bra by slowly turning on interactions from past (null)
infinity. The in-out formalism instead slowly turns on interactions from future (null)
infinity and evolves “backwards" in time.

An Extended de Sitter Spacetime The equality of in-in and in-out correlators
is not surprising in Minkowski and is already well-known (see e.g. [67]). Here we
claim that the same result also applies to de Sitter spacetime. In particular, we
propose to extend the expanding Poincaré patch of dS by glueing on top of it a copy
of the contracting Poincaré patch, as in Fig. 5.1. This means that the standard
conformal time now can run over all real values, −∞ < η < ∞, with positive
values representing the expanding patch, namely a = e+Ht in cosmological time, and
negative values representing the contracting patch, a = e−Ht. The two patches are
glued together at η = 0, which represents the future and past conformal boundary
of the two Poincaré patches. To be absolutely explicit, we can hence define in-out
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correlators in de Sitter by

Bin-out ≡
⟨0|T

[
O({η,x})e−i

∫+∞(1−iϵ)
−∞(1−iϵ)

Hint(η)dη
]
|0⟩′

⟨0|T
[
e−i

∫+∞(1−iϵ)
−∞(1−iϵ)

Hint(η)dη
]
|0⟩′

. (5.26)

This glueing at η = 0 is consistent as long as no divergences take place at η = 0.
In turn, this means that the divergent volume factor

√−g = (Hη)−4 coming from
the measure of time integration must be more than offset by powers of η coming
from the inverse metric contracting space and time derivatives and by the decay of
massive fields towards η → 0. To be more specific, let the conformal dimension ∆

of a scalar field of mass m be 9

∆ ≡ 3

2
−
√

3

2
−m2H2 . (5.27)

For an interaction involving n fields of dimensions ∆a with a = 1, . . . , n and a
number n∂i of spacial derivatives the condition for tree-level IR finiteness is

n∑
a

∆a + n∂i > 3 . (5.28)

For massless fields, we have ∆ = 0 and then the condition becomes

2n∂η + n∂i > 3 . (5.29)

where n∂η is the number of time derivatives.
In the rest of the chapter, we will assume that there are no IR divergences at

η → 0. It is possible that our result can be extended also to the case of IR divergent
interactions (recently discussed in [109]). This would require introducing an IR
regulator that respects the relation in Eq. (5.16). Our preliminary investigation
suggests that such a regulator exists but we postpone a thorough discussion to
future work.

5.3.2 In-In and In-Out Feynman Rules

The Feynman rules are familiar both for the in-in and in-out formalism. Here
we briefly review them for completeness. In both cases, we consider diagrams with

9For an extension to d spacial dimensions set 3 → d. For the scaling of spinning fields see e.g.
[108].
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V vertices, I internal lines, each connecting two vertices, and n external lines for an
n-point correlator (time runs vertically with the past below the future). For con-
creteness, we use η for time, but the same expressions apply to Minkowski changing
η to t.

In-In Feynman Rules Our definition of the un-equal time in-in correlators in
Eq. (5.11) generalised what is typically used in cosmology, where fields are inserted
at the same time. Hence the Feynman rules below are also slightly different in the
case of un-equal time correlators but “backward compatible" with the equal-time
case. Then, for in-in correlators:

• A vertex can be either a “right” vertex, labelled by “r” or a left vertex, labelled
by “l”. Hence one needs to sum over 2V possible labellings.

• External lines are associated to a momentum ka with a = 1, . . . , n. Each vertex
comes with a momentum-conserving Dirac delta. The L = I − V + 1 internal
“loop" momenta are not fixed by these Dirac deltas and must be integrated
over.

• Internal lines are called bulk-to-bulk propagators and come in four types

• − • = Grr(η1, η2, p) = ⟨0|Tϕ(η1,p)ϕ(η2,p′) |0⟩′ = GF (η1, η2,p) (5.30)

= fp(η1)f
∗
p (η2)θ(η1 − η2) + f ∗

p (η1)fp(η2)θ(η2 − η1) (5.31)

◦ − • = Glr(η1, η2, p) = ⟨0|ϕ(η1,p)ϕ(η2,p′) |0⟩′ = fp(η1)f
∗
p (η2) (5.32)

• − ◦ = Grl(η1, η2, p) = ⟨0|ϕ(η2,p′)ϕ(η1,p) |0⟩′ = G∗
lr(η1, η2, p) (5.33)

◦ − ◦ = Gll(η1, η2, p) = ⟨0| T̄ ϕ(η1,p)ϕ(η2,p′) |0⟩′ = G∗
rr(η1, η2, p) (5.34)

= f ∗
p (η1)fp(η2)θ(η1 − η2) + fp(η1)f

∗
p (η2)θ(η2 − η1) , (5.35)

where fp(η) are the mode functions, namely the solutions of the linearized
classical equations of motion with momentum p. For later use, we denote the
non-time-ordered two-point function as

G+(η1, η2, p) ≡⟨0|ϕ(η1,p)ϕ(η2,p′) |0⟩′ = fp(η1)f
∗
p (η2) , (5.36)

which is not symmetric under the exchange of the time variables. Notice that

Glr = G+ = G∗
rl . (5.37)
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For spinning fields, it is convenient to strip off all polarization tensors from the
propagators and move them to the vertices, where they are contracted with
each other and with derivatives. Here Grr is the Feynman propagator, and Gll

is its complex conjugate.

• External lines connected to external fields at times ηa with a = 1, . . . , n are
called bulk-to-boundary propagators and come in two types 10

•− = Gr(η, ηa, p) = GF (η, ηa, p) , (5.38)

◦− = Gl(η, ηa, p) = G+(η, ηa, p) . (5.39)

Notice that Gr is symmetric in its time arguments while Gl is not. This
is where our definition of in-in correlators generalizes the traditional one for
equal-time correlators where Gr is not time-ordered because one assumes that
η < ηa.

• The time η of a vertex must be integrated over dη with a measure
√−g =

(ηH)−4 and boundaries

right vertex: −∞(1− iϵ) < η ≤ 0 , (5.40)

left vertex: −∞(1 + iϵ) < η ≤ 0 . (5.41)

where we are assuming IR finiteness. As can be seen from Eq. (5.11), right
vertices come with a −i times the appropriate interaction, while for left vertices
we have a +i.

• A discussion of the combinatorial factors can be found in [110].

It turns out that half of the above diagrams are related to the other half simply by
complex conjugation,

D[σ] = D[σ̄]∗(−)ni , (5.42)

where ni is the total number of spatial derivatives. Here D represents a diagram,
σ represents the collection {r, l} labels of its vertices and σ̄ refers to the opposite
labelling, r ↔ l.

10Actually the bulk-boundary propagator Gr coincides with the time-ordered bulk-bulk propag-
ator Grr and the other bulk-boundary propagator Gl coincides with non-time ordered bulk-bulk
propagator Glr.
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In-Out Feynman Rules We now move on to the discussion of in-out rules. These
are exactly the well-known Feynman rules we all learn in introductory courses on
QFT. Because of this we will be very concise and focus only on what’s different with
respect to the in-in rules:

• All interaction vertices and external fields are inside the same time ordering,
they are on the same footing. Hence, there is no need to label them in different
ways or to distinguish between bulk and boundary, as we did in the in-in
formalism. All vertices receive a factor of −i as appropriate for expanding the
time evolution operator e−i

∫
Hint .

• Internal lines connecting two interaction vertices and external lines connecting
a vertex to an external field correspond to one and the same propagator, the
time-ordered Feynman propagator:

• − • = GF (η1, η2, p) = ⟨0|Tϕ(η1,p)ϕ(η2,p′) |0⟩′ (5.43)

= fp(η1)f
∗
p (η2)θ(η1 − η2) + f ∗

p (η1)fp(η2)θ(η2 − η1) . (5.44)

• The time η of a vertex must be integrated over the whole real line, with a
measure

√−g = (ηH)−4 and boundaries

−∞(1− iϵ) < η < +∞(1− iϵ) , (5.45)

where we are again assuming IR finiteness. This contour ensures the con-
vergence of all time integrals for (interaction picture) correlators in the Fock
vacuum where fields are inserted at arbitrary but finite and negative times.

Two comments are in order. First, let us stress that these in-out diagrams should
not be amputated, as we do when computing amplitudes. They include all the
propagators relevant for connecting to external fields. Second, as it is well known,
one should only include diagrams where each propagator is eventually connected
to an external field. This excludes all the vacuum bubble contributions which are
exactly cancelled by the denomination in Bin-out.

5.3.3 Explicit Checks

Here we will present some very simple calculations to see how the equality
between in-in and in-out pans out in practice. Since the calculations are very similar
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between Minkowski and de Sitter, with the simple identification of t with η, we will
discuss both spacetimes jointly in each example.

Tree-Level Contact Diagrams Now consider a simple theory of a scalar with a
cubic interaction 11

Hint(η) =

∫
x

λ

(n!)
F (η∂i, η∂η)ϕ

n(η) (5.46)

where F represents a generic set of space and time derivatives that can act on any
of the fields. Moreover, ϕ can be any set of fields of any mass and spin, but to
simplify the presentation we focus on a single massive scalar. We will now compute
the n-point function to O(λ) with fields inserted at time ηa ≤ 0 for a = 1, . . . , n.
For the in-in formalism, we find (setting for simplicity H = 1)

Bin-in = Br
in-in +Bl

in-in (5.47)

= −iλ
∫ 0

−∞(1−iϵ)

dη

η4
F

n∏
a

GF (η, ηa; ka) + iλ

∫ 0

−∞(1+iϵ)

dη

η4
F

n∏
a

G+(η, ηa; ka)
∗ ,

As long as there are more than four factors of η coming from F and the propagators
this is convergent at η = 0. This is for example the case of any local interaction with
more than three conformally coupled scalars or an interaction of massless scalars
with 2n∂η + n∂i ≥ 4. Using the in-out formalism we find

Bin-out = −iλ
∫ +∞(1−iϵ)

−∞(1−iϵ)

dη

η4
F

n∏
a

GF (η, ηa; ka) . (5.48)

To check that this is equivalent to the in-in expression we compute the difference.
The part of the in-out time integral form −∞ to 0 exactly cancels out the “right"

11This notation is meant to account for both time and space derivatives. A more explicit
notation would specify on which field the time derivative acts, as e.g. in [73]. Since at the end,
the proof proceeds unchanged with or without time derivatives, we prefer to adopt a sloppier but
more streamlined notation.
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contribution of Bin-in and we are left with

Bin-out −Bin-in = (5.49)

= −iλ
∫ +∞−

0

dη

η4
F

[
n∏
a

fa(η)f
∗
a (ηa)

]
− iλ

∫ 0

−∞+

dη

η4
F

[
n∏
a

fa(η)f
∗
a (ηa)

]

= −iλ
n∏
a

f ∗
a (ηa)

∫ +∞(1−iϵ)

−∞(1+iϵ)

dη

η4
Ffa(η) , (5.50)

where the label a on the mode function refers to the different momenta ka, but
may also indicate different fields with different masses. As a warm-up, let’s see
what happens for conformally coupled or massless fields, in which case the mode
functions are just an exponential multiplied by a polynomial in kη (see Eq. (5.5)).
We find

Bin-out −Bin-in ∝
∑
p

∫ +∞(1−iϵ)

−∞(1+iϵ)

dη ηpe−ikT η , (5.51)

where the polynomial in η makes explicit the factors present in the vertex F and in
the mode functions that make the η → 0 limit convergent. The key to computing
this integral is to notice the “mixed" iϵ deformations at the two different boundaries
of the integral. One comes from the in-in and one from the in-out. They are such
that the integral is exponentially converging in both limits, as it should be. These
boundaries invite us to close the contour in the lower-half complex plane, where we
can drop the circle at infinity 12. Since the integrand is analytic in η in the lower-half
complex plane, the integral vanishes and Bin-in coincides with Bin-out.

More generally, we observe that the equivalence of in-in and in-out for contact
diagrams relies on two properties: the mode functions and interaction vertices are
analytic in the lower-half complex plane, and their product vanishes for Im η < 0

and |η| → ∞. For fields of mass m the mode functions are Hankel functions of −kη
times appropriate factors of η,

fk(η) = −i
√
πH

2
ei

π
4
(1+2ν)(−η)3/2H(1)

ν (−kη) , ν ≡
√

9

4
− m2

H2
. (5.52)

We can choose f(η) to have a single branch cut running along the negative real
axis and to be analytic everywhere else. Moreover, fk(η) vanishes for Im η < 0

12Here we are assuming kT ̸= 0. To be more precise we should add a Dirac delta δ(kT ). These
distributional terms were discussed in [111] and in greater detail in [112].
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and |η| → ∞. This can be seen by expanding it in this limit or from the integral
representation

H(1)
ν (z) =

e−iπν/2

iπ

∫ +∞

−∞
eiz cosh t−νtdt , for π < Argz < 0 . (5.53)

These two properties combined tell us that we can close the integral in Eq. (5.50) in
the lower-half complex plane where it is analytic and hence the equivalence between
in-in and in-out is established. Finally, we note that the above calculation can be
easily adapted to Minkowski: switch η to t and drop the time-dependent factors
in the measure of integration η−4 and in the interactions. The conclusion is hence
unchanged.

Tree-Level Exchange Diagram For in-in diagrams, we generally need to con-
sider 2V (2V−1 if we use that half of the diagrams are conjugate) diagrams. We here
give the explicit matching of diagrams from the in-in to the in-out formalism, for
the two-to-two exchange diagram. The correspondence is then readily generalised
to more complicated diagrams. We consider two interactions of the form

Hint =

∫
x

λ1
(n+ 1)!

F1(η∂i, η∂η)ϕ
n+1 +

∫
x

λ2
(m+ 1)!

F2(η∂i, η∂η)ϕ
m+1, (5.54)

where F1 and F2 again capture derivatives. Furthermore, we here focus on a partic-
ular channel with k1, ..., kn attaching to the λ1 vertex and km+1, ..., kn+m attaching
the λ2 vertex. The in-out correlator is then given by

Bin-out = (5.55)

= −λ1λ2
∫ ∞−

−∞−

∫ ∞−

−∞−

dη

η4
dη′

η′4
F1F2

[
GF (η, η

′; s)
n∏
a=1

GF (η, ηa; ka)
n+m∏
b=n+1

GF (η
′, ηb; kb)

]
,

where s is the energy of the internal leg. As we know, the in-in correlator comes in
four parts:

Bin-in = Brr
in-in +Brl

in-in +Blr
in-in +Bll

in-in , (5.56)
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each given by

Brr
in-in = (5.57)

= −λ1λ2
∫ 0

−∞−

∫ 0

−∞−

dη

η4
dη′

η′4
F1F2

[
GF (η, η

′; s)
n∏
a=1

GF (η, ηa; ka)
n+m∏
b=n+1

GF (η
′, ηb; kb)

]
,

Bll
in-in =

= −λ1λ2
∫ 0

−∞+

∫ 0

−∞+

dη

η4
dη′

η′4
F1F2

[
G∗
F (η, η

′; s)
n∏
a=1

Gl(η, ηa; ka)
n+m∏
b=n+1

Gl(η
′, ηb; kb)

]
,

Blr
in-in =

= λ1λ2

∫ 0

−∞+

∫ 0

−∞−

dη

η4
dη′

η′4
F1F2

[
Gl(η, η

′; s)
n∏
a=1

Gl(η, ηa; ka)
n+m∏
b=n+1

GF (η
′, ηb; kb)

]
,

Brl
in-in =

= λ1λ2

∫ 0

−∞−

∫ 0

−∞+

dη

η4
dη′

η′4
F1F2

[
G∗
l (η, η

′; s)
n∏
a=1

GF (η, ηa; ka)
n+m∏
b=n+1

Gl(η
′, ηb; kb)

]
,

where we have used that Gr = Grr = GF , and Glr = Gl = G+, as well as the fact
that a lot of the propagators are conjugates of each other. The trick to match the
two diagrams is now to split the in-out integrals in a similar way

Bin-out = Brr
in-out +Brl

in-out +Blr
in-out +Bll

in-out, (5.58)

83



Chapter 5: The In-Out Formalism for In-In Correlators

where

Brr
in-out := (5.59)

− λ1λ2

∫ 0

−∞−

dη

η4

∫ 0

−∞−

dη′

η′4
F1F2

[
GF (η, η

′; s)
n∏
a=1

GF (η, ηa; ka)
n+m∏
b=n+1

GF (η
′, ηb; kb)

]
,

Bll
in-out :=

− λ1λ2

∫ ∞−

0

dη

η4

∫ ∞−

0

dη′

η′4
F1F2

[
GF (η, η

′; s)
n∏
a=1

GF (η, ηa; ka)
n+m∏
b=n+1

GF (η
′, ηb; kb)

]
,

Blr
in-out :=

− λ1λ2

∫ ∞−

0

dη

η4

∫ 0

−∞−

dη′

η′4
F1F2

[
GF (η, η

′; s)
n∏
a=1

GF (η, ηa; ka)
n+m∏
b=n+1

GF (η
′, ηb; kb)

]
,

Brl
in-out :=

− λ1λ2

∫ 0

−∞−

dη

η4

∫ ∞−

0

dη′

η′4
F1F2

[
GF (η, η

′; s)
n∏
a=1

GF (η, ηa; ka)
n+m∏
b=n+1

GF (η
′, ηb; kb)

]
.

We can now show that each of these four terms exactly cancel each other. Trivially
we can see that Brr

in-out = Brr
in-in. Then for the mixed rl case, we have

Brl
in-in −Brl

in-out = (5.60)

= λ1λ2

∫ 0

−∞−

dη

η4

∫ ∞−

−∞+

dη′

η′4
F1F2

[
Gl(η

′, η; s)
n∏
a=1

GF (η, ηa; ka)
n+m∏
b=n+1

Gl(η
′, ηb; kb)

]

∝
∫ 0

−∞−

dη

η4
F1

[
n∏
a=1

GF (η, ηa; ka)f
∗
s (η)

]∫ ∞−

−∞+

dη′

η′4
F2

[
fs(η

′)
n+m∏
b=n+1

fkb(η
′)

]
,

which vanishes by the same argument given for contact diagrams, since the last
integral is exactly the one found in Eq. (5.50). Note that, from their definition in the
in-out case, some of the Feynman propagators collapsed to unordered propagators
since in the rl case ηb < 0 for all b, and in the in-out definition, η < η′ by the integral
structure. The lr case follows a similar story. The ll case is the one that requires
the most work. First let’s rewrite the in-out case, using that ηa < 0 and ηb < 0.
Moreover, we expand the Feynman propagator into two parts and write everything
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in terms of mode functions

Bll
in-out = (5.61)

= −λ1λ2
n+m∏
a=1

f ∗
ka(ηa)

∫ ∞−

0

dη

η4
F1

[
fs(η)

n∏
a=1

fka(η)

]∫ η

0

dη′

η′4
F2

[
f ∗
s (η

′)
n+m∏
b=n+1

fkb(η
′)

]

−λ1λ2
n+m∏
a=1

f ∗
ka(ηa)

∫ ∞−

0

dη′

η′4
F2

[
fs(η

′)
n+m∏
b=n+1

fkb(η
′)

]∫ η′

0

dη

η4
F1

[
f ∗
s (η)

n∏
a=1

fka(η)

]
,

where we assume that the differential operators in F1 and F2 only act on the mode
functions, not the Heaviside functions in the Feynman propagator. When they act
on the Heaviside functions we go back to the contact diagram we discussed in the
previous example. For the equivalent expressions of the in-in correlator, we get

Bll
in-in = (5.62)

= λ1λ2

n+m∏
a=1

f ∗
ka(ηa)

∫ 0

−∞+

dη

η4
F1

[
fs(η)

n∏
a=1

fka(η)

]∫ η

0

dη′

η′4
F2

[
f ∗
s (η

′)
n+m∏
b=n+1

fkb(η
′)

]

+λ1λ2

n+m∏
a=1

f ∗
ka(ηa)

∫ 0

−∞+

dη′

η′4
F2

[
fs(η

′)
n+m∏
b=n+1

fkb(η
′)

]∫ η′

0

dη

η4
F1

[
f ∗
s (η)

n∏
a=1

fka(η)

]
,

and therefore

Bll
in-in −Bll

in-out ∝
∫ ∞−

−∞+

dη

η4
F1

[
fs(η)

n∏
a=1

fka(η)

]∫ η

0

dη′

η′4
F2

[
f ∗
s (η

′)
n+m∏
b=n+1

fkb(η
′)

]

+

∫ ∞−

−∞+

dη′

η′4
F2

[
fs(η

′)
n+m∏
b=n+1

fkb(η
′)

]∫ η′

0

dη

η4
F1

[
f ∗
s (η)

n∏
a=1

fka(η)

]
.

The general proof that this expression vanishes for fields of arbitrary mass is a bit
lengthy and therefore we postpone it to App. A.1. Here instead we focus on massless
and conformally couples fields, for which the calculation is straightforward. Let’s
focus on the first line of the above expression since the story is analogous for the
second line. The dη′ integrand takes the form

∫ η

0

dη′

η′4
F2

[
f ∗
s (η

′)
n+m∏
b=n+1

fkb(η
′)

]
=

∫ η

0

dη′ Poly(k, s, η′)e−i(kR−s)η′ , (5.63)

where kR =
∑n+m

i=n+1 ki and the polynomial depends on the details of the interaction
and on whether we have massless or conformally coupled scalars. Then the integral

85



Chapter 5: The In-Out Formalism for In-In Correlators

in dη′ can be easily performed and leads to some other polynomial in ka, s and η

times e−i(kR−s)η. The final dη integral can then be easily seen to vanish because the
integrand is analytic and vanishes on the arc at infinity in the lower-half complex
plane,

Bll
in-in −Bll

in-out ∝
∫ ∞−

−∞+

dη

η4
F1

[
fs(η)

n∏
a=1

fka(η)

]
Poly(ka, s, η)e−i(kR−s)η (5.64)

=

∫ ∞−

−∞+

Poly′(ka, s, η)e
−i(kR−s+s+kL)η = 0 , (5.65)

where Poly’ is some other polynomial and kL =
∑m

a=1 ka. Just like for the contact
case, the two key steps of the proof are (i) that the integrand of the dη integral from
+∞(1− iϵ) to −∞(1 + iϵ) is analytic in the lower-half complex plane and (ii) that
it vanishes on the arc at infinity η ∼ ∞eiθ with −π < θ < 0. This is exactly what
we show for general masses in App. A.1.

5.4 Pole Bagging: In-In Correlators from Feynman

Propagators

In this section, we show a first application of the in-out formalism to the cal-
culation of correlators that leverages the simplicity of the Feynman propagator in
energy-momentum space and is dubbed “pole bagging" because it boils down to
summing over poles. We discuss explicitly the case of Minkowski and comment on
how the analysis can be extended to massless and conformally coupled scalars in de
Sitter.

5.4.1 Flat Space

We have argued that in-in correlators equal in-out correlators. In Minkowski,
in-out correlators take a very simple form in energy-momentum space, with both
time orderings combined in a single term by Feynman’s iϵ prescription. Indeed,
tree-level Feynman diagrams in the energy-momentum domain can be computed by
purely algebraic manipulations, no integral needed. Here we want to show how to
use this simplicity to compute correlators in the time domain. The only work we
need to do is to transform energies of the external fields back into time. This is easily
done using the residue theorem because the integrands are simple rational functions
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and the iϵ prescription instructs us to pick up only half of the poles (those in the
upper-half complex plane in our conventions). The result is a very different way to
compute tree-level correlators or integrands for loop correlators simply by evaluating
the products of Feynman diagrams on the relevant poles. Our manipulations below
are analogous to similar manipulations presented in [91]. The main difference is that
(i) we work directly with correlators instead of wavefunction coefficients, and (ii) the
Feynman propagators we encounter are simpler than the wavefunction propagators
in that they don’t have the extra boundary term, which often leads to a considerable
algebraic simplification.

Contact Diagrams Consider the equal-time three-point function of a scalar in
the time-momentum domain. Using the in-out formalism, this is simply the Fourier
transform from frequency to time of the product of Feynman propagators

Bn,in-out = (2π)4δ(4)(
∑
a

pµa)× (−iF )×
n∏
b

i

p2b + iϵ
(contact) , (5.66)

where F is some vertex accounting for derivatives. To see how the calculation
progresses, let’s focus on the simplest case of a cubic polynomial interaction λϕ3/(3!)

so that F = λ and n = 3. The Fourier transform to equal-time correlators then gives

Bflat
3 =

∫ ∞

−∞

dω1dω2dω3

(2π)3
(2π)δ

(
3∑
a

ωa

)
eit

∑
a ωaλ

3∏
b

1

p2b + iϵ
(5.67)

=

∫ ∞

−∞

dω1dω2

(2π)2
λ

(ω2
1 − Ω2

1 + iϵ)(ω2
2 − Ω2

2 + iϵ)((ω1 + ω2)2 − Ω2
3 + iϵ)

, (5.68)

where the prime on the correlator means that we have dropped (2π)3δ(3) (
∑

ka) and

Ω2
a ≡ |ka|2 +M2

a . (5.69)

The integrals can be computed using the residue theorem (we close the contour in
the upper-half plane). The first integral has poles at ω1 = −Ω1 and ω1 = −ω2 −Ω3.
This gives

−iλ
∫
dω2

2π

Ω13

2Ω1Ω3(ω2 − Ω2)(ω2 + Ω2)(ω2 + Ω13)(ω2 − Ω13)
, (5.70)
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where

Ωij = Ωi + Ωj , (5.71)

and we left the iϵ’s implicit. Notice that there is a cancellation between the two
residues which removes two of the zeros in the denominator (ω2 = ±(Ω1 − Ω3)),
leaving only the zeros at ω2 = ±Ω2 and ω2 = ±(Ω1 + Ω3). The iϵ prescription 13

instructs us to pick up only the two poles on the negative real axis, −Ω2 and −Ω13,
which gives

Bflat
3 = − λ

4Ω1Ω2Ω3(Ω1 + Ω2 + Ω3)
. (5.72)

This is indeed the expected results from the bulk time integral with the simple
ET pole and the correct normalization factor for each 1/Ωa. The same calculation
actually works for all contact correlators in just the same way. To see this one can
make repeated use of the master formula∫ ∞

−∞

dωi
2π

1

(ω2
i − Ω2

i )((ωi + ωX)2 − Ω2
j)

= −i Ωij

2ΩiΩj(ω2
X − Ω2

ij)
. (5.73)

This can be understood either as a brute force sum over two residues or as first
separating the integrand into four partial fractions, corresponding to the four poles
and then picking up the two partial fractions with poles on the negative real axis.
At each iteration, one finds an additional factor of the pole Ω and the numerator is
cancelled and substituted by itself plus the new pole. In the last integral one has
ωX = 0 and the numerator cancels the denominator leaving a simple ΩT pole.

Exchange Diagram Here we see explicitly how the same derivation also goes
through for the tree-level exchange diagram. The idea is just the same, namely sum
over the residues along the negative real axis for each of the integrals in dωa. The
only difference is that there are three residues for two of the integrals because of
the extra factor of the exchange propagator. We focus on a single cubic polynomial

13A way to keep clarity in this calculation is to remove the iϵs in the integrand and introduce
a small counterclockwise rotation of the integration contours so that in practice one picks up only
the residues from poles on the negative real axis.
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interaction and on the kinematics of the s-channel. More in detail

Bex.
4 =

∫
d4ωa
(2π)4

eit
∑

a ωaδ (
∑

a ωa)

(ω2
s − Ω2

s + iϵ)
× (−i)2 ×

4∏
a

i

(ω2
a − Ω2

a + iϵ)
(5.74)

=

∫
ω1,2

Ω34

2Ω3Ω4 (ω2
1 − Ω2

1) (ω
2
2 − Ω2

2) ((ω1 + ω2)2 − Ω2
34) ((ω1 + ω2)2 − Ω2

s)
(5.75)

=

∫
ω2

ω2
2Ω1 − Ω134 (Ωs + Ω1) (Ωs + Ω134)

4Ω1Ω3Ω4Ωs (Ωs + Ω34) (ω2
2 − Ω2

2) (ω
2
2 − Ω2

134) (ω
2
2 − (Ωs + Ω1)2)

(5.76)

=− Ωs + ΩT

8Ω1Ω2Ω3Ω4ΩTΩs (Ωs + Ω12) (Ωs + Ω34)
, (5.77)

where

Ω2
s = |k1 + k2|2 +M2 , ωs = ω1 + ω2 . (5.78)

The result exactly agrees with the time-integral calculation and displays the charac-
teristic EL, ER and ET =

∑
Ωa poles, which are present in the quartic wavefunction

coefficient, as well as the Es pole which appears only in the correlator.

The same procedure works for arbitrary tree-level diagrams and for the integ-
rands of loop diagrams. However, the bookkeeping becomes a hindrance for more
complicated diagrams. One should develop a more streamlined graphical notation.
In Sec. 5.6 we will see that this can be achieved from a different point of view and
so we refrain from developing this further here.

In passing, we would like to notice that Eq. (5.74) is a springboard for the discus-
sion of the nature of Effective Field Theory for equal-time “bulk" correlators. This
is quite different from the usual expectation of effective field theories for amplitudes.
For example, for amplitudes, we expect that a heavy field with mass M can be re-
moved at tree-level by collapsing its propagators and inserting an infinite sum over
higher derivative operators, which are organised in powers of 2/M2. Conversely, by
expanding Eq. (5.74) in large M one finds terms that are odd in 1/M and are hence
not captured by this expansion (as also noticed in [111]). This is where dissipation
rears its head and we come to appreciate the real power of the in-in formalism. We
will discuss this elsewhere.
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5.4.2 Massless and Conformally Coupled Scalars in de Sitter

For massless and conformally coupled scalars we can generalise the pole bagging
procedure from flat space to de Sitter. The key ingredient is that, when ν a half-
integer, we can re-write the Feynman propagator as

GdS
F (η, η′, k) =

(
1

2πi

)∫ ∞

−∞
dω

2ωfω(η)f
∗
ω(η

′)

ω2 − k2 + iϵ
. (5.79)

This only works for half-integer values of ν because the residue at ω = 0 is only
zero for these masses. Nevertheless, it allows us to compute cosmological correlators
through an interesting integral. For simplicity, we here focus on conformally coupled
fields, but the procedure is exactly the same for massless scalars. We have

Gcc
F (η, η

′, k) =

(
1

2πi

)∫ ∞

−∞
dω
H2ηη′e−iω(η−η

′)

ω2 − k2 + iϵ
. (5.80)

The simplest example is the contact four-point function with a ϕ4 interaction. Since
this interaction is conformally invariant at this order, the calculation is identical to
the Minkowski calculation (technically the η in the four mode functions cancels the
η−4 in the volume measure). A slightly more interesting computation shows the
general strategy of how we can perform a pole bagging calculation in de Sitter and
rephrase it as derivatives of the flat-space result. Consider now the five-point contact
diagram with a ϕ5/(5!) interaction. This interaction is not conformal invariant and
so now the peculiarities of de Sitter will show up. Using the shorthand notation
ωT =

∑5
i=1 ωi we write

Bcc
5 = −iH6

( η0
2πi

)5 ∫ ∞

−∞

(
5∏
i=1

dωi
ω2
i − k2 + iϵ

)
eiωT η0

∫ ∞

−∞
dηηe−iωT η (5.81)

= 2πH6
( η0
2πi

)5 ∫ ∞

−∞

(
5∏
i=1

dωi
ω2
i − k2i + iϵ

)
eiωT η0δ′(ωT )

= −2πiH6
( η0
2πi

)5 ∫ ∞

−∞

dω1dω2dω3dω4(η0((ωT − ω5)
2 − k25))− 2i(ωT − ω5))(∏4

i=1 (ω
2
i − k2i + iϵ)

)
((ωT − ω5)2 − k25 + iϵ)

2

=
(Hη0)

6

(k1 + k2 + k3 + k4 + k5)(16k1k2k3k4k5)

.
Therefore the general strategy is to transfer the derivatives acting on the Dirac
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delta to the rest of the integral, which effectively is the flat space analogue of the
integrals above. The only thing one has to keep track of is the number of these
derivatives. The integrals pick up the poles in the upper half plane and can be
computed in an algorithmic manner. So algorithmic in fact, that we can quite easily
derive the general formula for the conformally coupled contact diagrams for any n.

Conformally Coupled n-Point Correlators With pole bagging, it is quite
simple in fact to do any n-point correlator with a ϕn/(n!) interaction. We solve
the integral

Bcc
n = −iH2n−4

( η0
2πi

)n ∫ ∞

−∞

(
n∏
i=1

dωi
ω2
i − k2i + iϵ

)
eiωT η0

∫ ∞

−∞
dηηn−4e−iωT η (5.82)

= −2πi(i)n−3H2n−4
( η0
2πi

)n ∫ ∞

−∞

(
n∏
i=1

dωi
ω2
i − k2i + iϵ

)
eiωT η0δ(n−4)(ωT )

= −(−iη0)nH2n−4

(
1

2πi

)n−1 ∫ ∞

−∞
∂n−4
ωn

((
n∏
i=1

dωi
ω2
i − k2i + iϵ

)
eiωT η0

)
δ(ωT ).

The derivatives can be fully done using Leibniz rule and then transferred to
derivatives in kn. We have

∂kωn

((
1

ω2
n − k2n + iϵ

)
eiωT η0

)
= (5.83)

=
k∑
l=0

(
k

l

)
(iη0)

k−leiωT η0∂k−lωn

(
1

ω2
n − k2n + iϵ

)

= −
k∑
l=0

(
k

l

)
(iη0)

k−leiωT η0
1

2kn
∂lkn

(
(−1)l

(ωn + kn − iϵ)
− 1

(ωn − kn + iϵ)

)
.

Having done all the derivatives, this is just a flat space correlator, however with the
subtlety that we have some non-square terms in the denominator, such as ωn±(kn−
iϵ). However, we can solve this by seeing that

±knBflat
n =

(
1

2πi

)n−1 ∫ ∞

−∞

dωn
ωn ± (kn − iϵ))

(
n−1∏
i=1

dωi
ω2
i − k2i + iϵ

)
eiωT η0δ(ωT ). (5.84)
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Then putting this back into Eq. (5.82), we get

Bcc
n = (η0H)2n−4

n−4∑
l=0

(
n− 4

l

)
(iη0)

−l ((−1)l + 1
) 1

2kn
∂lkn(knB

flat
n ). (5.85)

While it is nice to know, that we can always write conformally coupled scalars
as derivatives of flat space ones, since we even know what the flat space answer is,
we can fully write the conformally coupled solution. Shifting the index in the sum,
and doing some simplification, we have

Bcc
n = H2n−4(−iη0)nk4−nT

(n− 4)!∏n
i=1 2ki

1

kT

n−4∑
l=0

(iη0kT )
l

l!

(
(−1)n−l + 1

)
. (5.86)

Interestingly, in the n → ∞ limit, this is giving us an exponential. Therefore the
final answer can be written as a Taylor expansion to a certain order in η0 given by

Bcc
n =

(n− 4)!Hn−4(−Hη0)n
(
∏n

i=1 2ki) k
n−3
T

2Re
[
ineiη0kT

∣∣∣∣
n−4

]
. (5.87)

Then shifting n→ n+ 4 gives us the compact formula

Bcc
n+4 =

n!Hn(−Hη0)n+4(∏n+4
i=1 2ki

)
kn+1
T

2Re
[
ineiη0kT

∣∣∣∣
n

]
(5.88)

where the bar indicates the Taylor series in η0 up to that order.
In summary, we wrote this diagram in terms of the derivatives of its flat space

analogue and furthermore got a simple closed-form expression for contact diagrams
of conformally coupled scalars in de Sitter.

This technique can be further developed, for example for exchange diagrams. In
particular, one can show that we can always write diagrams for conformally coupled
scalars as sums of derivatives of the flat space one, as in Eq. (5.86), but we will not
do this in this work. Other examples can be obtained using integration by parts,
perhaps along the lines of [113].

5.5 Correlator Recursion Relations

We here leverage that with the in-out formalism, there is no longer a distinc-
tion between bulk-to-bulk and bulk-to-boundary propagators. This allows us to
find an algebraic recursion relation valid at all loop orders that computes correlat-
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ors in Minkowski, somewhat analogous to the recursion relation for wavefunction
coefficients derived in [91].

5.5.1 From Correlators to Chains in Flat Space

In Minkowski, bulk-to-boundary propagators KE(t) for the calculation of the
wave function have the nice property that

KE1(t)KE2(t) = KE1+E2(t). (5.89)

This allows us to describe a diagram with any number of external legs, by simply
considering the total energy flowing into a vertex [91]. Therefore, it is natural to
summarize a large family of Feynman-Witten diagrams by so-called “chains", namely
diagrams that have exactly one external leg per vertex. Since all vertices have a
single external leg, one often omits to draw them and simply adds an “external"
energy x to each vertex.

For correlators, the situation can in fact be simplified in a similar way. Given
the in-out formalism described in Sec. 5.3, the analogue to a bulk-to-boundary cor-
relator is a Feynman propagator. In flat space, Feynman propagators in the time-
momentum domain obey

GF (t, t
′, E1)GF (t, t

′, E2) =
E1 + E2

2E1E2

GF (t, t
′, E1 + E2). (5.90)

Notice that it is crucial that the propagators have the same time variables, which
ensures that there are only two possible time orderings, which match on the left-
and the right-hand side. More generally, the product of n Feynman propagators
obeys

GF (t, t
′, E1)...GF (t, t

′, En) =
2ET∏n
i=1 2Ei

GF (t, t
′, ET ). (5.91)

We stress that the Feynman rules for the “correlator-chains" we discuss here are
different to the “wavefunction-chains" discussed in [91].

The above discussion leads us to the following set of Feynman-rules for what we
call a chain in the context of correlators:

• Every vertex with energy xi and time ti leads to a Feynman-propagator
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GF (ti, t0, x1). This corresponds to the omnipresent single external line that
we omit to draw.

• Every internal line connecting a vertex {xi, ti} to {xj, tj} leads to a factor
GF (ti, tj, yij), with yij being the exchanged momenta (which could be loops).

Therefore, if we label the energies at vertices of the chain with {x1, ..., xm} and
the external legs of the correlator carry energies {E1, ..., En} (note n ≥ m) we can
write.

correlator =
∏m

i=1 2xi∏n
i=1 2Ei

× chain (5.92)

For example, with x1 = E1 + E2, x2 = E3 and x3 = E4 + E5, we have

∏5
i=1 2Ei

E1 E2 E3 E4 E5

y12 y23
=
∏3

i=1 2xi x1 x2 x3

y12 y23 .

(5.93)

With the rules above, we can comfortably consider chains exclusively and even-
tually relate them easily back to correlators. Let us make two simple examples. The
contact diagram would simply be

x
=
∏n

i=1 2Ei
2x

E1

. . .

E2 . . . En

= − 1
x2

.
(5.94)

And for a single exchange, we have the identification

x1 x2

y =
∏n

i=1 2Ei
4x1x2

E1 . . .Em Em+1. . . En

y
= x1+x2+y

2x1x2y(x1+x2)(x1+y)(x2+y)
.

(5.95)
With these definitions, we can move on to derive recursion relations following [91].

5.5.2 Recursion Relations

In [91], two sets of recursion relations for wavefunction coefficients were derived.
We did not find a counterpart of the “primary" recursion relations obtained by
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inserting the time-translation operator and integrating by part. We will comment
on this at the end of the section. Instead here we focus on the “secondary" recursion
relations derived by integrating one site of a tree-level chain. In that context, the
generalization to loop diagrams was found to be possible but cumbersome because
of the proliferation of diagrams induced by the boundary term in the wavefunction
calculation 14. Here we follow the same logic for the correlators computed in the in-
out formalism and find a remarkable simplification. Since now all the propagators are
Feynman propagators, without any boundary terms, we are able to derive recursion
relations both for tree-level diagrams and for a class of “melonic" loop diagrams.

Tree-Level Relations For the tree-level case, we similarly start with a single
tree-level edge, and an arbitrary remainig tree-level chain. That is

x1
B

x2

y12 ≡
∫ ∞

−∞

∏
v∈B\{2}

i dtv GF (tv, t0, xt)× (5.96)

×
∫ ∞

−∞
i dt2GF (t2, t0, x2)

∏
e∈B

GF (tve , tv′e , yve)I1(y12, t2),

where
I1(y12, t2) ≡

∫ ∞

−∞
i dt1GF (t1, t0, x1)GF (t1, t2, y12). (5.97)

We can fully perform this integral

I1(y12, t2) = (5.98)

=

(
1

2πi

)2 ∫ +∞

−∞
dω1

∫ +∞

−∞
dω2

∫ ∞

−∞
i dt1

eiω1(t0−t1)

ω2
1 − x21 + iε

eiω2(t1−t2)

ω2
2 − y212 + iε

= 2πi

(
1

2πi

)2 ∫ +∞

−∞
dω1

∫ +∞

−∞
dω2δ(ω1 − ω2)

eiω1t0

ω2
1 − x21 + iε

e−iω2t2

ω2
2 − y212 + iε

=

(
1

2πi

)∫ +∞

−∞
dω

eiω(t0−t2)

ω2 − x21 + iε

1

ω2 − y212 + iε

=

(
1

2πi

)∫ +∞

−∞
dω

1

x21 − y212

[
eiω(t0−t2)

ω2 − x21 + iε
− eiω(t0−t2)

ω2 − y212 + iε

]
=

1

x21 − y212
[GF (t0, t2, x1)−GF (t0, t2, y12)] .

14Here we refer to the fact that, since the wave function answers a boundary value question
rather than computing an average like a correlator, its propagator contains both the time-order
Feynman propagator and a homogeneous solution to the equations of motion that enforces the
vanishing of the propagator at the time surface where the wavefunction is evaluated.
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Finally, these Feynman propagators can be viewed as an additional external leg con-
necting to the x2 vertex. Therefore, absorbing the propagators with the appropriate
rules in Eq. (5.90), we can write the recursion relation

x1
B

x2

y12
=

1

x21 − y212

[
x1 + x2
2x1x2

B
x1 + x2

− y12 + x2
2y12x2

B
y12 + x2

]
.

(5.99)

As an example consider the two chain and one chain in Eqs. (5.93) and (5.94), we
have

x1 x2

y =
1

x21 − y2

[
x1 + x2
2x1x2

(
− 1

(x1 + x2)2

)
− y + x2

2yx2

(
− 1

(y + x2)2

)]
.
(5.100)

The way this recursion relation can be used repeatedly was shown in [91], and it
can also iteratively be used for instance to relate the double exchange to a number
of contact diagrams, which works similarly here. The interesting thing in the case
here, however, is that we can generalise this to loops.

Recursion Relations for Melonic Loop Integrands The derivation for the
recursion relation at loop level does in principle require not many more steps. We
simply need to utilise Eq. (5.91). The recursion relations we write here are purely for
the integrand, and all results in this section should be interpreted to be integrated
over internal momenta. Furthermore, we focus on any number of loops, but we keep
the number of vertices fixed, that is, we for instance do not consider box diagrams.
The methods we present here do however generalize to these kinds of diagrams. In
conclusion, we focus on diagrams of the type

x1
B

x2

y1
y2

yn−1
yn

... ≡
∫ ∞

−∞

∏
v∈B\{2}

i dtv GF (tv, t0, xt)× (5.101)

×
∫ ∞

−∞
i dt2GF (t2, t0, x2)

∏
e∈B

GF (tve , tv′e , yve)In({yi}, t2),

where now we have

In({yi}, t2) ≡
∫ ∞

−∞
i dt1GF (t1, t0, x1)

n∏
i=1

GF (t1, t2, yi) =
2yT∏n
i=1 2yi

I1(yT , t2), (5.102)
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where in the last step we related In to I1 using Eq. (5.91). On the level of the
diagrams we, therefore, have

x1
B

x2

y1
y2

yn−1
yn

... =
2yT∏n
i=1 2yi x1

B
x2

yT

.
(5.103)

Of course, as in the previous section we can also fully find In to get a generalisation
of Eq. (5.99) by writing

In({yi}, t2) =
2yT∏n
i=1 2yi

1

x21 − y2T
[GF (t0, t2, x1)−GF (t0, t2, yT )] , (5.104)

which written as diagrams, means

x1
B

x2

y1
y2

yn−1
yn

... =
2yT∏n
i=1 2yi

1

x21 − y2T

[
x1 + x2
2x1x2

B
x1 + x2

− yT + x2
2yTx2

B
yT + x2

]
.

(5.105)
For a simple application, consider a 1-loop exchange diagram. Then we have

x1 x2

ya

yb

=
ya + yb
2yayb

1

x21 − (ya + yb)2

[
x1 + x2
2x1x2

(
− 1

(x1 + x2)2

)
−

−ya + yb + x2
2(ya + yb)x2

(
− 1

(ya + yb + x2)2

)]

=
x1 + x2 + ya + yb

4x1x2yayb(x1 + x2)(x1 + ya + yb)(x2 + ya + yb)
,

(5.106)
and the result for the n-loop exchange can be derived very similarly.

We would like to conclude with a final comment. In [91] the main recursion
relation was derived by using the fact that a time-translation of the Minkowski
wavefunction is simple in terms of the external energies. Upon integration by parts
and by virtue of the properties of the wavefunction propagator, a diagram can
written as an appropriate sum of single cuts. Unfortunately, we were not able to
export this type of recursion relation to the correlators. There are two reasons for
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this. First, for wave function coefficients the time translation operator acts non-
trivially on bulk-bulk propagators, since the boundary term is not time translation
invariant, even in Minkowski. In our case, we simply have Feynman propagators and
get zero. The second reason is that after integrating by parts, in the case of wave
function coefficients, the derivative of the bulk-boundary propagators is proportional
to the bulk-boundary propagator. However, the derivative of the Bulk-boundary
Feynman propagator simply gives us a derivative interaction, that we cannot be
related to the original expression. For the exchange, for example, the results we get
are ∫

dtdt′
[
Gϕϕ̇
F (t0, t, x1)GF (t, t

′, y12)GF (t0, t
′, x2) + (5.107)

+GF (t0, t, x1)GF (t, t
′, y12)G

ϕϕ̇
F (t, t′, x2)

]
= 0,

of which we could not make practical use.

5.6 Cutkosky Cutting Rules for Correlators

Let us now move on to a different application of the in-out formalism: cutting
rules for correlators. Given that the in-out formalism features only one type of
propagator, one might expect that a version of Cutkosky’s cutting rules might ap-
ply [114]. In this section, we confirm this expectation and derive explicit results
for all diagrams with one or two interaction vertices, to all loops. As long as we
consider IR-finite interactions, our results apply to Minkowski as well as to de Sitter
space-time.

The “primum mobile" of Cutkosky’s cutting rules is Veltman’s largest time equa-
tion [94], which in turn can be traced back to the following operator identity:

n∑
r=0

(−1)r
∑

σ∈Π(r,n−r)
T̄
[
Oσ(1)(tσ(1))...Oσ(r)(tσ(r))

]
T
[
(Oσ(r+1)(tσ(r+1))...Oσ(n)(tσ(n))

]
= 0 .

(5.108)

Here Π(r, n − r) is the set of partitions of {1, .., n} into two subsets of lengths r
and n − r, so the sum involves 2n terms. The fields Oi are arbitrary products of
operators at the same time. We will mostly focus on cases where these operators
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are monomials in the fields of the theory and their derivatives. The identity above
can be proven by induction. To lowest non-trivial order, n = 2, Eq. (5.108) simply
restates the well-known fact that the two non-time-ordered propagators and the two
time-ordered and anti-time ordered propagators are related by 15

GF (t, t
′) +G∗

F (t, t
′)−G+(t, t′)−G+(t, t′)∗ = 0 . (5.109)

In this simple case, the connection to the largest time equation becomes apparent:
whatever t and t′ may be, one of the two must be larger 16, say t > t′. Then the
Feynman propagator GF reduces to G+ and the anti-time-ordered propagator G∗

F

reduces to (G+)∗, hence proving the validity of Eq. (5.109).
When one furthermore assumes that all the operators in Eq. (5.108) are Her-

mitian the equation becomes a real equation, even though this is not apparent in
that form. Indeed, we can combine terms pairwise to re-write it as

n/2−1∑
r=0

∑
σ∈Π(r,n−r)

(−1)r2Re⟨T̄
[

r∏
a=1

Oσ(a)

]
T

[
n∏

b=r+1

Oσ(b)

]
⟩ (5.110)

+
∑

σ∈Π(n/2,n/2)

(−1)n/2Re⟨T̄

n/2∏
a=1

Oσ(a)

T
 n∏
b=n/2+1

Oσ(b)

⟩ = 0 ,

for n even and as

(n−1)/2∑
r=0

∑
σ∈Π(r,n−r)

(−1)r Im⟨T̄
[

r∏
a=1

Oσ(a)

]
T

[
n∏

b=r+1

Oσ(b)

]
⟩ = 0 , (5.111)

for n odd, where we left the time arguments implicit.

We now follow a similar route to Veltman’s derivation of cutting rules [94]. We
note, however, that the set of rules we establish here are slightly different form their
amplitude counterparts because we are not amputating the diagrams, and so we
still have to deal with the time ordering acting on the operator insertions. This is
not an issue for amplitudes because the LSZ formula effectively pushes all the field
insertions to future or past infinity for outgoing and incoming particles, respectively.

15Since Eq. (5.108) is an operator identity, this propagator identity is valid in any state of the
theory.

16The case t = t′ is trivial because all propagators are equal in that case and the identity is
trivially satisfied.
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Before getting into the details, let’s summarize our general two-step strategy:

1. From the largest time equation to propagator identities: We use the
largest time equation on the operators appearing inside a correlator to a given
order in perturbation theory. This includes the operators appearing explicitly
in a correlator and any number of powers of the interaction Hamiltonian. The
outcome is a set of identities relating different products of time-ordered and
non-time-ordered propagators. We employ a nifty diagrammatic notation to
write these identities in terms of cut diagrams.

2. From propagator identities to cutting rules for correlators: Using
properties of the propagators, we re-write the above propagator identities as
relations among correlators for which some of the energies have been analyt-
ically continued to negative real values.

We will derive explicitly cutting rules for diagrams with at most two interaction
vertices, with any number of external legs and any number of loops. For three
or more vertices, we can still write propagator identities, but to transform them
into cutting rules for correlators one would need to appropriately generalise our
derivation. Let us now proceed to the derivation of propagator identities.

5.6.1 Propagator Identities

Here we use the largest time equation to find propagator identities. The starting
point is to expand the time-evolution operator in an in-out correlator to some order
in perturbation theory. Then we want to think of the various powers of ϕ and Hint

as the different operators appearing in Eq. (5.108). This gives us a set of identities.
To see how this works, let’s start with 1-vertex diagrams and work our way up to
two vertices. The case of three vertices is discussed in App. A.2.

1-Vertex Diagrams A one vertex diagram has a single power of Hint and n copies
of the field ϕ. As a simple example, consider the choice

O1 = ϕ(x1, t0)
m , O2 = ϕ(x2, t0)

n−m , O3 = Hint(t) , (5.112)

where t0 is an arbitrary time in Minkowski or in de Sitter. Since we restrict our de-
rivation to equal-time correlators we will omit this time dependence in the following.
Inserting the above choice of operators into Eq. (5.111) and sandwiching between
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two ground states we get (in position space)

Im
{
⟨T [ϕnHint]⟩ − ⟨ϕmT [ϕn−mHint]⟩ − ⟨ϕn−mT [ϕmHint]⟩

}
≃ 0, (5.113)

where we omitted to write the time-ordering or anti-time-ordering when a single
time is present. Here we wrote ≃ 0 to indicate that this identity is only valid after
time integration because we dropped the term HintT [ϕ

n]. This is allowed because
every term where a Hamiltonian interaction is not in the same time ordering as a
field, it integrates to zero. Indeed, if the interaction has no relative time ordering to
the boundary, we obtain an integral over the mode functions from minus infinity to
infinity. As discussed previously, the integral over the mode functions in the in-out
formalism is regularized in such a way that it goes to zero in the infinite past and
future, so that the full integral evaluates to zero. We have hence omitted those terms
in this expression and we used the symbol ≃ 0 as a reminder of this simplification.

To find the equivalent of Eq. (5.113) in momentum space we have to deal with
the fact that ϕ(k) is not Hermitian because ϕ(k)∗ = ϕ(−k) by the reality of ϕ(x). To
remove the extra minus sign we have to separate the discussion between interactions
that are even (+) or odd (-) under spatial parity (point inversion). For example, we
have

⟨T [ϕ(k)nHint(t)]⟩PE = +⟨T̄ [ϕ(k)nHint(t)]⟩∗PE , (5.114)

⟨T [ϕ(k)nHint(t)]⟩PO = −⟨T̄ [ϕ(k)nHint(t)]⟩∗PO , (5.115)

where the labels parity even (PE) and parity odd (PO) mean

⟨F (k)⟩PE ≡ 1

2
[⟨F (k)⟩+ ⟨F (−k)⟩] , ⟨F (k)⟩PO ≡ 1

2
[⟨F (k)⟩ − ⟨F (−k)⟩] . (5.116)

Hence in momentum space, the parity-even component satisfies the same equation as
in Eq. (5.113), while for the parity-odd component, the imaginary part is substituted
by the real part.

We notice that the cutting rule is really a statement about the imaginary (parity
even) or real (parity odd) part of Eq. (5.113). As we will see, these are exactly
the parts of the diagrams we are interested in, so this will lead to useful relations
between diagrams. But first, let’s give another example.

2-Vertex Diagrams The procedure for two-vertex diagrams is very similar. We
simply take a different group of operators in an in-out correlator and use the largest
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time equation. Here we will focus on a particular channel, but all other channels can
be discussed in the same way. For example, after expanding the evolution operator
to second order, let’s insert the following identifications in the largest time equation,

O1 = ϕ(t0)
m , O2 = ϕ(t0)

n−m , O3 = H
(1)
int (t) , O4 = H

(2)
int (t

′) . (5.117)

We get in real space

0 ≃ Re
{
⟨T [ϕnH(1)

intH
(2)
int ]⟩ − ⟨ϕmT [ϕn−mH(1)

intH
(2)
int ]⟩ − ⟨ϕn−mT [ϕmH(1)

intH
(2)
int ]⟩

+ ⟨T̄ [ϕmH(1)
int ]T [ϕ

n−mH(2)
int ]⟩+ ⟨T̄ [ϕmH(2)

int ]T [ϕ
n−mH(1)

int ]⟩
}
, (5.118)

where ≃ 0 again indicates that the identity is valid after integrating over the time
of the interactions because we omitted a number of terms that integrate to zero.
This is again due to the fact that the Hamiltonian interactions do not have a time
ordering with respect to the insertions of the operators. In momentum space, the
above expression is unchanged for the parity-even part, while for the parity-odd part,
one needs to change Re → Im. The above procedure is straightforward but leads
to lengthy expressions. Here we show how to streamline it using the diagrammatic
notation of “cut diagrams".

A Diagrammatic Representation: Cut Diagrams We would like to represent
expressions such as Eqs. (5.113) and (5.118) in terms of diagrams. To this end,
consider a Feynman diagram and imagine separating it into two subsets of vertices 17

by a “cut". The meaning of a cut is that (i) all operators on one side of the cut are
time-ordered with respect to each other, (ii) those on the other side are anti-time
ordered with respect to each other and (iii) operators on different sides of the cut
have no relative time ordering. As an intermediate step, let’s introduce Feynman
rules for shaded cuts, where the shading refers to the side that is anti-time-ordered,
while the un-shaded side is time-ordered:

Shaded ∼ anti-time ordered , Un-shaded ∼ time ordered . (5.119)

The Feynman rules for a shaded cut diagram are as follows [94]:

1. A vertex at t on the shaded side of the cut connected to a vertex at t′ on the
17This is different from deciding to cut or not cut each line. For example, for a one-loop two-

vertex diagram we cannot cut only one of the two loop propagators because cutting only one does
not create two separated subsets of vertices.
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un-shaded side of the cut leads to a factor G+(t, t′) = f(t)f ∗(t′).

2. Two vertices t and t′ on the un-shaded side of the cut that are connected to
each other lead to a time-ordered propagator GF (t, t

′).

3. Two vertices t and t′ on the shaded side of the cut that are connected to each
other lead to an anti-time ordered propagator G∗

F (t, t
′).

4. A vertex on the un-shaded (shaded) side gets a −i (+i) factor times the appro-
priate coupling constant. This choice corresponds to the process of expanding
the forward time evolution operator Te−iH on the un-shaded side, and reverse
time evolution operator T̄ e+iH on the shaded side.

Vertex factors and integration over the vertices are as usual. The only difference
from the standard Feynman rules are the propagators. The rules for a right-shaded
cut, are the same just under the exchange of the word ’left’ and ’right’. Finally, an
unshaded cut is the average of the two shadings, that is:

:=
1

2

(
+

)
.

(5.120)

Comments Three comments are in order. The first is that cut diagrams have
a meaning that is independent of the largest time equation. For example, we can
consider the s-channel exchange for the four-point function in Minkowski with two
insertions of a ϕ3/(3!) interaction and directly write

= −
∫ ∞

−∞

∫ ∞

−∞
dtdt′

(
2∏
i=1

G+(t0, t, Ei)

)
GF (t, t

′, s)

(
4∏
i=3

GF (t0, t
′, Ei)

)
,

(5.121)

where s is the energy of the internal line. This emphasises that a cut diagram is
just a diagrammatic representation of the integral of the product of propagators.

Second, we want to discuss how to diagrammatically identify those terms in the
largest time equation that vanish upon integration over time, namely cases where a
Hamiltonian interaction does not appear in the same time ordering as an external
operator. This observation leads to the diagrammatic rule that a diagram integrates
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to zero if it contains an interaction vertex that is separated by the cut from all (fixed)
operator insertions. As an example of this rule, consider a contact diagram in flat
space with a single power of the interaction Hamiltonian, which we take to be a
simple ϕ3/(3!) interaction. This results in a correlator of the form〈

T

(
n∏
a

ϕEa(t0)Hint(t)

)〉
. (5.122)

Applying the largest time Eq. (5.108) to this diagram (viewing ϕ(t0)
n as a single

operator and Hint(t) as a second operator), we obtain a sum over terms, one of which
takes the form∫ ∞

−∞
dt ⟨Hint(t)T (ϕE1(t0)ϕE2(t0)ϕE3(t0))⟩ ∼

∫ ∞

−∞
dt
〈
ϕ(t)3T (ϕE1(t0)ϕE2(t0)ϕE3(t0))

〉
(5.123)

This integrates to zero because the mode functions do

∝
∫ ∞

−∞
dt

3∏
i=1

G+(t, t0, Ei) = 0 . (5.124)

Graphically this corresponds to

= 0. (5.125)

Therefore, the actual number of cut diagrams that we have to consider when re-
phrasing the largest time equation as a propagator identity is less, and often much
less, than the number of parting into two sets appearing in Eq. (5.108).

The third and final comment is that the results derived in this section are valid
for fields of any mass in de Sitter or Minkowski. It is only in the next section that
we will restrict to massless and conformally coupled fields in de Sitter.

V = 1 Cut Diagrams Let’s see now how the one- and two-vertex examples
we considered before look like in terms of cut diagrams. For contact operators
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Eq. (5.113) becomes

E1 . . . En

−

E1 . . .Em Em+1 . . .En

−

E1 . . .Em Em+1 . . .En

= 0. (5.126)

where a diagram without a cut should be understood as having a cut all the way to
the right or, equivalently, to the left. Notice that this relation is valid for the loop
integrand to all loop orders (but only for a single vertex). In other words, we can
contract any number of pairs of fields in Hint, since they are still associated to the
same time in the largest time equation.

V = 2 Cut Diagrams For the exchange diagram we would find that the cut dia-
gram representation of Eq. (5.118) contains five terms. However, if we specify a spe-
cific channel, namely a way to pairwise contract fields and the interaction Hamilto-
nians, the last term in Eq. (5.118) vanishes because an interaction Hamiltonian is
contracted only with fields outside of its time ordering. Dropping this vanishing
term we find the diagrammatic representation

E1 . . .Em Em+1 . . .En

...

−
E1 . . .Em Em+1 . . .En

...

−
E1 . . .Em Em+1 . . .En

...

+

E1 . . .Em Em+1 . . .En

...

= 0.

(5.127)

We will see in the next section how these identities can be transformed into cutting
rules for correlators.

V > 2 Cut Diagrams Here we briefly discuss the general properties of diagrams
with more than two vertices. While it would be interesting to perform a serious
combinatorial analysis of the problem, here we limit ourselves to some simple re-
marks. First of all, we notice that the number of terms appearing in the largest
time equation grows fast and it’s desirable to consider only the new constraints that
arise at higher order. Moreover, the really useful power of these relations arises
when a complicated diagram is reduced to the sum over products of simpler ones.
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To focus on this case, it is convenient to only discuss cases where all the external
fields connected to a single vertex are treated as a single operator in the largest
time equation. Then we have to deal with diagrams where each interaction vertex
is attached to exactly one external line. Very generally we then have V bulk ver-
tices and V external vertices. Given that a cut separates these 2V vertices into two
groups, we know the largest time equation generates 22V terms. These are then
related pairwise by complex conjugation as in Eqs. (5.110) and (5.111) leading to
22V−1 terms. Of these terms, many vanish because of the general rule stated above
Eq. (5.122). We were only able to find an upper bound on the number of vanishing
diagrams by counting all cuts in which interaction vertices are not in the same time
order as an external operator. These can be counted by summing the binomials

(
V
k

)
over 1 ≤ k ≤ V , which gives 2V − 1. This leads to the upper bound on the number
N of non-vanishing terms in the largest time equation (with one external leg per
vertex)

N ≤ 22V−1 − 2V + 1 . (5.128)

For example, for V = 1 we find N ≤ 1. In this case, the bound is saturated and we
have a single term and we find the constraint

= 0. (5.129)

For V = 2 we find N ≤ 5. The actual number of non-vanishing terms is N = 4.
The one diagram that does vanish but is not accounted for in our bound is

= 0 . (5.130)

This is the fifth term in Eq. (5.118) 18, and the external legs connected to each
vertex have been represented graphically as a single line. It will be interesting to
pursue this further in the future.

18Depending on the channel it can be the fourth or fifth.
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5.6.2 Cutting Rules for Correlators

Finally, we would like to relate the propagator identities represented by cut dia-
grams to correlators with shifted kinematics. For technical reasons, we will restrict
our discussion to fields of any mass in Minkowski but only massless and conformally
coupled fields in de Sitter, but we include all derivative interactions. To do this, we
first assume Hermitian analyticity, i.e. for all propagators, we assume

G(η, η′, k) = −G(η, η′,−k)∗ , G(t, t′, E) = −G(t, t′,−E)∗ . (5.131)

In the following, we will therefore restrict ourselves to these three cases, but include
all derivative interactions, as they preserve hermitian analyticity. This is true for
all the fields we consider in this section. Furthermore, we write all expressions at
the leading order of η0 of the uncut correlator 19. As we show in App. A.3 this then
allows us to relate the three types of cuts we consider in this section, to be related
to the contact correlator, Bc

n, and exchange correlator Bex
n in the following way. For

contact diagrams, we find

E1 . . . Em Em+1 . . . En

=
1

2

[
Bc
n({Ei}ni=1) + (−1)mBc

n({−Ei}mi=1, {Ei}ni=m+1))
]
. (5.132)

For exchanges, we consider cuts that run along internal lines, or cuts of external
lines that all connect to the same vertex, as in Eq. (5.127). We then have

E1 . . .Em Em+1 . . . En

y1
y2
...
yL

yL+1

=
1

2

[
Bex
n ({Ei}) + (−1)mBex

n ({−Ei}mi=1, {Ei}ni=m+1))
]
, (5.133)

E1 . . .Em Em+1 . . . En

y1
y2
...
yL

yL+1

= −
Bc,cut
m,L+1({Ei}mi=1, {yi}L+1

i=1 )B
c,cut
n−m,L+1({Ei}ni=m+1, {yi}L+1

i=1 )∏L+1
i=1 P (yi)

,

19This is necessary, because cut diagrams, will in some cases have subleading terms in η0, that
however cancel between terms.
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where P (y), is the power spectrum of ϕ and we defined

Bc,cut
n,L ({Ei}ni=1, {yi}Li=1) = (5.134)

=
1

2

[
Bc
n+L({Ei}ni=1, {yi}Li=1) + (−1)LBc

n+L({Ei}ni=1, {−yi}Li=1))
]
.

1-Vertex Cutting Rules We can in principle get a multitude of cutting rules
from Eq. (5.108), depending on how we identify operators with powers of ϕ and Hint.
We here show one example for contact diagrams. We use the relation Eq. (5.132)
between cut diagrams and analytically continued propagators inside the propagator
identity Eq. (5.126). The result can be manipulated as follows:

Bc
n({Ei}ni=1)−

1

2

[
Bc
n({Ei}ni=1) + (−1)mBc

n({−Ei}mi=1, {Ei}ni=m+1))
]

(5.135)

−1

2

[
Bc
n({Ei}ni=1) + (−1)n−mBc

n({Ei}mi=1, {−Ei}ni=m+1))
]
= 0

We can then see that Bc
n({Ei}ni=1) cancels, and finally the we can invert the first m

energies, to obtain

Bc
n({Ei}ni=1) + (−1)nBc

n({−Ei}ni=1) = 0. (5.136)

2-Vertex Cutting Rules For two insertions of an interaction Hamiltonian, the
number of relations one can obtain from Eq. (5.108) is in principle even larger. The
rules we formulate here for the exchange focus on a particular channel, but the full
rule then simply applies to all permutations.

If we insert O1 = ϕ(t0)
m, O2 = ϕ(t0)

n−m, O3 = H
(1)
int (t), and O4 = H

(2)
int (t

′)

into Eq. (5.108), and denote the s channel where the O1 are connected to the H(1)
int

and the remaining legs to H(2)
int , we obtain the rule for exchange diagrams at L+ 1-

loops given in Eq. (5.127). Before inserting the relations found in Eq. (5.133) into
Eq. (5.127), note that using Eq. (5.136), one can see that

Bc,cut
n,L (−{Ei}ni=1, {yi}Li=1) = (−1)n+1Bc,cut

n,L ({Ei}ni=1, {yi}Li=1) (5.137)

Now, again with Eq. (5.133), we can directly and generally relate to correlators with
flipped energies. We denote the internal energies’ dependence on the internal mo-
menta, by yi = yi(p⃗i). Then, the first three terms of Eq. (5.127) combine, similarly
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to Eq. (5.135), to give

(−1)m+1

2

[
Bex
n ({−Ei}mi=1, {Ei}ni=m+1) + (−1)nBex

n ({Ei}mi=1, {−Ei}ni=m+1)
]
=

=

∫
p⃗1...p⃗L+1

Bc,cut
m,L+1({Ei}mi=1, {yi}L+1

i=1 )B
c,cut
n−m,L+1({Ei}ni=m+1, {yi}L+1

i=1 )∏L+1
i=1 P (yi)

,(5.138)

then flipping {Ei}mi=1 → {−Ei}mi=1 on both sides, and using Eq. (5.137) for the cut
diagrams, we finally find

Bex,s
n ({Ei}ni=1) + (−1)nBex,s

n ({−Ei}ni=1) = (5.139)

= 2

∫
p⃗1...p⃗L+1

Bc,cut
m,L+1({Ei}mi=1, {yi}L+1

i=1 )B
c,cut
n−m,L+1({Ei}ni=m+1, {yi}L+1

i=1 )∏L+1
i=1 P (yi)

.

For L = 0 this simply reduces to a tree-level identity and the integrals can be
ignored. This is a generalisation of the relation found in [70], which we recover for
L = 0, n = 4, and m = 2.

We end this section with a number of comments. The cutting rules we obtained
for the 1-vertex and 2-vertex diagrams here, by no means represent the full inform-
ation one can obtain from Eq. (5.108). For instance in App. A.2, we derive the
propagator identities for the 3-vertex case. Additionally, one could consider more
general choices of operators in the largest time equation. However, the results we
have presented in this work are not yet sufficient to relate these diagrams to correl-
ators with shifted kinematics.

5.7 Scattering in de Sitter: a Preview

In this section, we present a brief discussion of scattering in de Sitter, which
follows naturally from the in-out formalism we have introduced. The S-matrix we
define is similar to an S-matrix that has recently been independently introduced
by Melville and Pimentel in [69]. We comment on the few differences and many
similarities below.

Fig. 5.1 suggests a natural way to define scattering in the (double) Poincaré
patch of de Sitter: consider a state of n free particles at the past null horizon, let
them evolve in an interacting theory and project the resulting state on the tensor
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product of free particles at future null infinity. In the Schrodinger picture this looks
very familiar:

Sn,n′ = ⟨n′,+∞|n,−∞⟩ . (5.140)

Following Wigner, a “free particle" should correspond to an irreducible representa-
tion of the dS isometry group and is hence characterized by two quadratic Casimir
operators, the conformal dimension ∆ (related to the mass by Eq. (5.27)) and spin s
(we use the notation of [83, 115, 116]), plus a set of eigenvalues for some conveniently
chosen maximal abelian ideal (Cartan subalgebra). We choose to diagonalize the
three (commuting) generators of spatial translations Pi and denote single-particle
states by |∆,k, s, σ⟩, with σ the spin along some direction. These states are created
by acting on the Bunch-Davies vacuum with creation operators, which in turn can
be repackaged in the standard way into fields. We adopt a relativistic normalisation
of the states. The in and out states of the S-matrix are then just tensor products of
free particles,

|n⟩ =
n⊗
a

|∆a,ka, sa, σa⟩ . (5.141)

To compute the S-matrix we work in perturbation theory in the interaction picture
with a time evolution operator given by

Sn,n′ = ⟨n′|U(+∞,−∞) |n⟩ = ⟨n′|Te−i
∫+∞
−∞ Hint(η)dη |n⟩ , (5.142)

where again Hint is the interaction Hamiltonian written in terms of the interaction
picture fields (free fields in the Heisenberg picture). This is the same in-out time-
evolution operator 20 we defined in Eq. (5.26) and hence we are naturally thinking of
the “extended" de Sitter spacetime in Fig. 5.1. In the absence of IR divergences, this
is a well-defined operator, as we discussed previously. The Feynman rules are pretty
much the same as in Minkowski, except that we will use them in the time-momentum
domain, as opposed to time-position or energy-momentum domains that are more
familiar in Minkowski. The detailed prescription can be extracted from Eq. (5.142),

20There is subtlety here. If we use the same iϵ prescription as for computing in-out correlators,
namely Eq. (5.45), we find a divergence because some incoming or outgoing particles have been
inserted before or after all Hamiltonian interactions. In other words, since we are not projecting
onto the vacuum of the free theory we should not use the iϵ rotation of the contour. Rather, we
should adiabatically turn on interactions à la Gell-Mann and Low, namely with the shift Hint →
e−ϵ|η|Hint [44].
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but it is easier to notice that the S-matrix is related to the in-out correlators simply
by replacing each off-shell external leg by an on-shell mode function evolving an
incoming (outgoing) particle all the way to past (future) null infinity, as dictated by
the LSZ projection. In our setup, this procedure works very similarly to Minkowski
with the difference that one needs to use the dS mode function appropriate to the
fields corresponding to the particle under consideration. This was nicely discussed in
[69] (see also [111] for a similar projection of in-out correlators to the wavefunction).

We define amplitudes A by

⟨f |U(+∞,−∞)− 1 |i⟩ = i(2π)4δ(3)(kin − kout)Aif , (5.143)

for |i⟩ and |f⟩ some initial and final states respectively. Similarly to Minkowski, A
is proportional to the matrix element of T = −i(S − 1) but a crucial difference is
that we strip off only the momentum-conserving Dirac delta and not the energy-
conserving Dirac delta. The reason will be clear momentarily.

We are now in the position to compute the simplest scattering process of n to
n′ particles of mass m2 = 2H2, corresponding to a conformally coupled scalar, with
the simple negative-frequency mode function 21

fk(η) = η
He−ikη√

2k
. (5.144)

We choose a simple polynomial interaction Hint = λϕn+n
′
/(n + n′)! and restrict to

n + n′ ≥ 4 to ensure the absence of IR divergences. The relativistic normalization
of the states gives us

|∆,k⟩ =
√
2|k|a†k |0⟩ . (5.145)

Then to linear order in λ the result is

Ann′ = −λ (−iH∂ET
)n+n

′−4δ(ET ) , (5.146)

where ET is the total energy accounting for the opposite sign of incoming and

21Note that we here drop the factor of i for conformally coupled scalars from Eq. (5.4), for
simplicity. This simply corresponds to a different choice of normalisation.
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outgoing particles

ET = −
n∑
a

|ka|+
n′∑
b

|kb| , (5.147)

and we found the (n+ n′ − 4)-th derivative of the Dirac delta. Notice that, at least
in perturbation theory, the S-matrix enjoys crossing symmetry and so could simply
choose all particles to be outgoing (this was also noticed in [69]), so that ET is the
usual positive sum of norms.

As a less trivial example, consider the exchange diagram mediating the elastic
scattering of 3 + r particles mediated by the interaction λϕ4+r/(4 + r)!. This is IR
finite as long as r ≥ 0, hence the unusual definition of r. A direct calculation gives

A3+r,3+r =
λ2H2r

2

r∑
l=0

bl
(kin − Ein)

1+r−l + (kin + Ein)
1+r−l

2kin(−E2
in + k2in)

1+r−l ∂r+lδ(Ein − Eout) ,

(5.148)

where

Ein =
3+r∑
a=1

|ka| , Eout ≡
6+2r∑
a=4+r

|ka| , (5.149)

kin =
3+r∑
a=1

ka kout ≡
6+2r∑
a=4+r

ka bl ≡
r!

l!
(−1)l . (5.150)

A useful check is that we should recover the tree-level single-exchange Minkowski
amplitude for r = 0, in which case the ϕ4 interaction is classically conformal. In this
case, the sum disappears, the numerator cancels the factor 2kin at the denominator
and we are left with the familiar 1/S with S the Mandelstam variable S = −E2

in+k2
in.

The absence of a mass is what we would expect since a conformally coupled scalar
is massless in Minkowski, where the Riemann tensor vanishes.

Unitarity and Positivity The amplitudes defined in Eq. (5.143) satisfy the text-
book generalised optical theorem

Aif − A∗
fi = i

∑
X

∫
dΠX (2π)4δ(3)(kin − kX)AiXA

∗
fX , (5.151)
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where the sum is over all possible states and the only difference from Minkowski is
that we have not removed any energy-conserving Dirac deltas, and so none needs to
be added explicitly on the right-hand side. A powerful consequence of this theorem
is that the right-hand side is manifestly positive for forward scattering and this
constrains the imaginary part of Aii non-perturbatively.

Let’s check explicitly the optical theorem for the tree-level elastic scattering of
four conformally coupled scalars in de Sitter with a polynomial interaction λϕ5/(5!).
We can copy the result from Eq. (5.146) and the right-hand side is simply computed
as

RHS = i

∫
dk3X
(2π)3

1

2EX
(2π)4δ(3)(kin − kX)|A4,1|2 (5.152)

= 2πiλ2H2δ′(Eout − Ein)
δ′(Ein − kin)

2Ein
. (5.153)

The left-hand side can be computed from Eq. (5.148) setting r = 1. Two terms
appear in the sum over l:

LHS =
λ2H2

2
2i Im

[
− 1

(−E2
in + k2in)

δ′′(Ein − Eout) +
k2in + E2

in

kin(E2
in − k2in)

2
δ′(Ein − Eout)

]
(5.154)

In the first term, corresponding to l = 1, the Dirac delta needs to be integrated by
parts. Hence the two terms can be combined and the numerator cancels the negative
energy poles at Ein = −kin in the denominator, leaving only the positive-energy pole,
at Ein = kin, as expected for a physical and on-shell exchanged particle,

LHS = i
λ2H2

kin
δ′(Ein − Eout) Im

1

(Ein − kin + iϵ)2
. (5.155)

One can now re-write Im(Ein − kin + iϵ)−2 = ∂kin Im(Ein − kin + iϵ)−1. Then, using
the Sokhotski–Plemelj theorem, Im(x+ iϵ)−1 = −πδ(x), we have ∂kin Im(Ein − kin +

iϵ)−1 = −πδ′(Ein − kin) to obtain precisely the same expression as the right-hand
side in Eq. (5.153).

5.8 Conclusions and Outlook

In this work, we have developed an in-out formalism that computes cosmolo-
gical correlators. Our formalism is equivalent to the well-known in-in formalism for
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unitary, non-dissipative evolution and in the absence of IR divergences. The in-out
formalism offers a welcome simplification of the Feynman rules and involves only
the Feynman propagator. We have discussed a few applications of this formalism,
such as the derivation of recursion relations for Minkowski correlators and cutting
rules for de Sitter and Minkowski correlators.

Our results open many avenues for new exciting research:

• Already from Fig. 5.1 it is natural to define a scattering S-matrix in de Sitter
by complete analogy with Minkowski. This S-matrix can be readily computed
from the Feynman rules we have given for in-out correlators (with the usual
amputation of external lines, which become on-shell mode functions). This
S-matrix is very close to that recently introduced in [69], modulo some minor
technical differences. The in-out S-matrix is interesting because it connects
unitarity to positivity via the optical theorem, just like in Minkowski.

• Our formalism might be useful to make progress on understanding the renor-
malization of ultra-violet divergences in cosmological correlators (see [117] for
progress in this direction). Some of the outstanding issues include the appar-
ent inequivalence of regularization procedures [63, 118], the characterization
of counterterms and a systematic formulation of effective field theories in an
expanding spacetime.

• The in-out formalism might simplify calculations and lead to new constraints
in the cosmological bootstrap [77], both for the de Sitter [40] and the boostless
case [119].

• Our results might provide the key insight to understand the relation between
the analytic structure of correlators and wavefunction coefficients. A study of
the latter commenced in [91] and was systematized and generalised recently in
[111], where an identification and classification of singularities in Minkowski
spacetime were presented. Later, in [120], it was proven that the branch cuts
in the total energy appearing in the wavefunction always cancel in correlators
(this fact had previously been noticed in a particular case in [121]). In [122], it
was shown that wavefunction singularities can be classified in "amplitude-like"
singularities, which appear also in S-matrix elements, and "wavefunction-type"
singularities that don’t. There it was conjectured that only the amplitude-like
singularities survive in correlators, while wavefunction-type singularities cancel
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out. The equivalence between in-in and in-out formalism seems to provide a
rational for this phenomenon.

• We have provided a formal argument for the equivalence of the in-in and in-out
formalism, but we have presented explicit checks only at tree level. It would
be important to make an explicit check at loop order. Moreover, our cutting
rules for correlators might be useful to understand the peculiar behaviour of
loop contributions to parity-odd correlators, recently computed in [121]. The
surprising simplicity of the parity-odd loop correlators might be clarified by
relating them to tree-level diagrams and leveraging the nice results derived in
[123].

• As it is clear from our results, the number and complexity of the possible
relation among correlators, such as the cutting rules, grow quickly for larger
diagrams. It would be very interesting to see if a more abstract and probably
geometric organising principle emerges, in analogy to the role that polytopes
play in understanding wavefunction coefficients [91, 124, 125, 125, 112]. Per-
haps the techniques developed in [126, 127] can help systematize our derivation
of cutting rules.

Our main result, namely the derivation of an in-out formalism for cosmological
correlators, is a technical one. However, it is not rarely the case that a different
technical formulation of a problem leads to a new conceptual understanding or new
unexplored connections. Posterity will judge.
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6
Theory: The One-Loop Bispectrum
of Galaxies in Redshift Space from
the EFTofLSS

6.1 Summary

We derive the Effective Field Theory of Large-Scale Structure kernels and coun-
terterms for the one-loop bispectrum of dark matter and of biased tracers in real
and redshift space. This requires the expansion of biased tracers up to fourth order
in fluctuations. In the process, we encounter several subtleties related to renor-
malization. One is the fact that, in renormalizing the momentum, a local coun-
terterm contributes non-locally. A second subtlety is related to the renormalization
of local products of the velocity fields, which need to be expressed in terms of the
renormalized velocity in order to preserve Galilean symmetry. We check that the
counterterms we identify are necessary and sufficient to renormalize the one-loop
bispectrum at leading and subleading order in the derivative expansion. The ker-
nels that we present here will be used for the analyses of the one-loop bispectrum
in Chs. 7 and 8.
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6.2 Introduction and Conclusion

The Effective Field Theory of Cosmological Large-Scale Structure (EFTofLSS) [30,
28] describes the long distance dynamics of matter and galaxies in the universe. It
is quite a complex endeavor. The dark matter [30, 28] and baryons [128, 31] are
described through their density and momenta, and satisfy some equations of motion
that resemble those of fluids. Galaxies are described as composite operators in terms
of the dark-matter long-wavelength fields (see e.g. [129, 130, 131, 132, 133, 134, 135],
and also [136]). The effect on short fluctuations of long wavelength modes that rep-
resent displacements needs to be resummed [137, 138, 139, 140, 141]. Predictions
for observables, such as correlation functions of galaxies in redshift space, typically
involve all of these ingredients. It took quite a large and long endeavor to develop
all of this formalism.

Starting from [7, 142, 143], the EFTofLSS has been successfully applied to large-
scale structure data, specifically to BOSS data [9], where the analysis of the full
shape of the power spectrum has led to the measurement of all the ΛCDM paramet-
ers using just a prior from Big Bang Nucleosynthesis. Since then, many applications
to data have followed.

In Ch. 7 we will perform the analysis of the BOSS data using the one-loop
prediction of the bispectrum of galaxies in redshift space. Doing such an analysis
requires the development of the kernels for biased tracers in redshift space up to
fourth order, and the real and redshift space counterterms up to second order in the
fluctuations and at subleading order in the derivatives (i.e. at order k2/kNL

2 with
k being the typical wavenumber of interest, and kNL the wavenumber associated to
the non-linear scale).

While naively it might appear that there is only a computational challenge facing
us, i.e. the need to write all possible operators for biased tracers in redshift space
up to fourth order, in reality there are also two conceptual subtleties we will need
to face, and that we now explain. The first such subtlety stems from the non-
local Green’s function associated to the momentum operator, while the second is
associated to the renormalization of composite operators involving the velocity.

The Local Counterterm that Contributes Non-Locally: Let us start from
the first subtlety, focussing initially on the case of dark matter. So far, the coun-
terterms in the EFTofLSS have been explored at high order only for dark matter in
real space. This fact has prevented the emergence of a subtlety that, on hindsight,
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is rather straightforward. The equations in the Newtonian limit contain the Poisson
equation, whose solution is famously not local in space. This is mapped for example
in the non-locality of the perturbative kernels. In fact, even though the absence of
a tree-level speed of sounds makes the kernels just space dependent (rather than
spacetime dependent), the dependence on the spatial wavenumber is not analytic,
so that, once written in real space, they are non-local. For example, the solution
of the locally-observable tidal tensor of the gravitational field, Φ, due to a density
perturbation, δ, is, schematically,

∂i∂jΦ(x⃗, t) ∼ H2∂i∂j
∂2

δ(x⃗, t) ∼ H2

∫
d3x′

1

|x⃗− x⃗′|
∂

∂x′i
∂

∂x′j
δ(x⃗′, t) , (6.1)

with H being the Hubble constant. This is non-local unless i = j and we sum over
i.

As we discuss in more detail later, counterterms are local, i.e. the response of
the stress tensor to the long-wavelength fields is local. But the way the counterterms
contribute to the fields is through a convolution with the Green’s functions of the
fields themselves, which, as we mentioned, are not local. This subtlety does not show
up for linear counterterms, though. At that order, for the dark matter overdensity,
only the divergence of the momentum matters, which in turn is affected, at linear
level, by Φ only through ∂2Φ ∼ δ. So, the linear equation and the resulting Green’s
function are accidentally local. In this way, once one uses the counterterms at linear
order (i.e. not multiplied by other fields), one obtains a local contribution.

But this local result is an artefact of the density field and of low order in the
perturbative series, which limits the available tensorial structures. Already once
one looks at the momentum, πi, one finds that the traceless part of ∂iπj, which is
observable, is affected at linear order by the traceless part of ∂i∂jΦ, which, as argued
above, is non-local. So the associated Green’s function will be non-local. Therefore,
unless accidental cancellations happen, one should expect the local counterterms to
contribute non locally. This is the situation we will encounter in this chapter, as
the momentum is important for redshift space distortions where, additionally, the
anisotropy induced by the line of sight provides a richer tensorial structure where
accidental cancellations are more rare.

Explicitly, we find that for the momentum, πi, we need a counterterm that
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contributes in a way schematically given by

πi ⊃ 1

H

∂i∂j∂k
∂2

τ jk(2) , (6.2)

where τ jk is the stress tensor, and the subscript (n) or superscript (n) indicates n-th
order in perturbations. Now, among the second-order response terms for the stress
tensor, we have terms such as

τ ij(2) ⊃
ρ̄

kNL
2H2

∂i∂kΦ∂k∂jΦ , (6.3)

with ρ̄ being the background density. This is indeed local. This term affects non-
locally the gradient of the momentum as

∂jπ
i ⊃ ρ̄

kNL
2H2

∂j∂i∂k∂m
H∂2

(∂k∂lΦ∂l∂mΦ) . (6.4)

In turn, in redshift space, the dark matter overdensity, δr, at second order is affected
as

δr(x⃗) ⊃
1

Hρ̄
ẑiẑj∂iπ

j(x⃗) ∼ ẑiẑj
∂i∂j∂k∂m

kNL
2∂2

(
∂k∂l
H2

Φ(x⃗)
∂l∂m
H2

Φ(x⃗)

)
. (6.5)

The 1/∂2 does not simplify in the final expression: this is a counterterm that contrib-
utes non-locally to the observable δ in redshift space. There are several such terms
in the perturbative expansion, and similar terms appear also when considering the
stochastic counterterms. As discussed in more detail later, these terms are linked to
the generation of vorticity in the cosmological fluid. As a validation of the above, we
explicitly find that these terms are needed to renormalize the redshift-space matter
overdensity bispectrum at one-loop order. 1

When passing to biased tracers, a further subtlety arises. In the EFTofLSS, the
biased-tracer density in redshift space, which is constructed as combinations of the
biased-tracer density and momentum, is written as a spatially local linear combina-
tion of composite operators of the matter field [129]. We do not have the equations
of motion and the associated Green’s function for them. This was the way that
we identified the non-locally-contributing counterterm in dark matter: by simply
solving the equations of motion in the presence of a local stress tensor. But because

1At this point, one might wonder why counterterms are local to start with. The terms that we
have identified have the property that the region that can non-locally affect a mode is at most of
order of the wavelength of the mode itself. For counterterms, for example in τ ij , we are integrating
out short modes, and so this can affect at most regions within 1/kNL, which is equivalent to a
normal local response.
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of the local relation to dark matter, it is expected that the non-locally-contributing
counterterms should be completely determined by the one of dark matter. This is so
even for the momentum of biased tracers, which, for dark matter, was the operator
being affected by the non-locally-contributing counterterm. Indeed, by the equival-
ence principle, biased tracers should have the same velocity as the underlying dark
matter field at leading order in derivatives. In fact, there is a symmetry argument
based on this idea connecting the two: the non-locally-contributing counterterm for
biased tracers has the same functional form and coefficient as for dark matter. We
confirm and discuss this argument in detail later, and we check again that this result
is sufficient for renormalizing the one-loop bispectrum of tracers in redshift space.

Renormalization of Local Products of the Velocity Field: Let us now pass
to the second main subtlety that we encounter in this chapter. In redshift space,
there appear several contact operators involving the long-wavelength velocity. Con-
tact operators are operators made of products of long-wavelength fields at the same
location. Performing a product of long-wavelength fields at the same location is a
process sensitive to arbitrary short-distance fluctuations, and so needs to be renor-
malized [137, 144]. For operators involving the velocity vi, care must be taken
in preserving the non-trivial transformations under the Galilean group (which is
nothing but the non-relativistic limit of the group of diffeomorphisms), and this is
complicated by the fact that the velocity is itself a contact operator and so needs to
be renormalized [145, 146]. In order to have the correct transformation properties
under the Galilean transformation vi → vi + χi, we wish to have, for example,

[vi]R → [vi]R + χi ,

[vivj]R → [vivj]R + [vi]Rχ
j + [vj]Rχ

i + χiχj ,
(6.6)

where [vi]R and [vivj]R are respectively the renormalized velocity and the renor-
malized velocity-squared. While satisfying this constraint is quite straightforward
for the velocity, we see that the velocity-squared needs to have a transformation
involving the renormalized velocity itself. One way to write renormalized quantities
satisfying the above in terms of the non-renormalized fields is therefore to write the
renormalized velocity-squared in terms of the renormalized velocity and additional
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counterterms,

[vi]R = vi +Oi
v ,

[vivj]R = [vi]R[v
j]R +Oij

v2 ,
(6.7)

where all of the O terms are Galilean scalars. In our calculation of the one-loop
bispectrum, we will have to implement this procedure for products up to four powers
of the velocity or four powers of the velocity and one power of the overdensity.

On top of addressing these two conceptual challenges, the rest of the chapter
is devoted to developing the full calculation of the kernels of the one-loop bispec-
trum in redshift space both for dark matter and for tracers, including the relevant
counterterms, and finally to checking that indeed all the ultraviolet (UV) depend-
ence of the loop diagrams can be cancelled by a suitable choice of the resulting
Effective Field Theory (EFT) parameters. Indeed, we find that both including the
non-locally-contributing counterterms and implementing the correct redshift space
renormalization procedure are crucial for matching the UV limits of the loops. We
will perform first the study for dark matter, and then repeat it for biased tracers.
As mentioned, the resulting kernels will be instrumental in performing the one-loop
analyses of the bispectrum of galaxies in large-scale structure in Chs. 7 and 8.

One final observation that is worthwhile to make is the following. The generic
expression of biased tracers is non-local in time [129]. If δh is the tracer overdensity,
we have

δh(x⃗, t) =

∫ t

dt′
∑
i

Keri(t, t
′) Oi(x⃗fl(x⃗, t, t

′), t′) (6.8)

where Oi(x⃗, t
′) are all the scalar operators that can be built from the long-wavelength

fields, x⃗fl(x⃗, t, t′) represents the position at time t′ of the fluid element that at time
t is at location x⃗, and Keri(t, t

′) are generic kernels, assumed to have a time scale of
order Hubble. Up to fourth order in the operators, we checked that this expression
is accidentally degenerate with an analogous expression where one assumes that
Keri(t, t

′) ∝ δD(t− t′), i.e. as if the biases where local in time.

6.3 Dark-matter Equations and Notation

Here we collect the relevant background equations and notation for the cold
dark-matter field. We assume a background ΛCDM expansion, with metric ds2 =
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−dt2 + a(t)2dx⃗2, where a(t) is the scale factor, which will often be used as the time
variable. The dark-matter field is described in terms of the mass density ρ(x⃗, a) and
the velocity field vi(x⃗, a). The background expansion is driven by a non-relativistic,
time-dependent, background mass density ρ̄(a) 2 which is given by

ρ̄(a) = ρ̄0

(
a

a0

)−3

, (6.9)

where subscripts 0 refer to current-day values, and the Hubble rate is H = ȧ/a (we
use the dot to denote time derivatives, i.e. ġ = ∂g/∂t for generic functions g).

We describe scalar perturbations in the metric with the metric potentials Φ and
Ψ, 3 by writing

ds2 = −(1 + 2Ψ)dt2 + a(t)2(1− 2Φ)dx⃗2 . (6.10)

In terms of the momentum density πi, defined by

πi(x⃗, a) ≡ ρ(x⃗, a)vi(x⃗, a) , (6.11)

the equations of motion for dark matter are (see e.g. [30, 28, 147])

ρ̇+ 3Hρ+ a−1∂iπ
i = 0 ,

π̇i + 4Hπi + a−1∂j

(
πiπj

ρ

)
+ a−1ρ ∂iΦ = −a−1∂jτ

ij ,
(6.12)

along with the Poisson equation

a−2∂2Φ =
3

2
ΩmH

2δ , (6.13)

which is in terms of the overdensity δ, given by

δ(x⃗, a) ≡ (ρ(x⃗, a)− ρ̄(a))/ρ̄(a) , (6.14)

and the time-dependent matter fraction Ωm(a). 4 The quantity τ ij appearing in
Eq. (6.12) is the EFTofLSS stress tensor [28], which we will describe in much more

2For clarity we will call the matter overdensity ρm in Ch. 10. Here however we always mean
the matter density and overdensity hence we drop it.

3Anisotropic stress is small and can be neglected for our purposes, in which case the Einstein
equations imply Φ = Ψ, which we assume throughout this work.

4This is defined by Ωm(a) ≡ ρ̄(a)/(3M2
PlH(a)2), where MPl is the Planck mass, related to

Newton’s constant GN by M2
Pl = 1/(8πGN ). In ΛCDM, the Hubble rate can be parameterized by

H(a)2/H2
0 = Ωm,0(a/a0)

−3 + (1− Ωm,0).
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detail later. Using the Poisson equation Eq. (6.13), we can write

ρ̄ δ ∂iΦ = 2M2
Pla

−2∂j

(
∂iΦ∂jΦ− 1

2
δij(∂Φ)

2

)
, (6.15)

and consequently the equations of motion Eq. (6.12) become

ρ̄ δ̇ + a−1∂iπ
i = 0 , (6.16)

π̇i + 4Hπi + a−1ρ̄ ∂iΦ = −a−1∂j

(
2M2

Pla
−2

(
∂iΦ∂jΦ− 1

2
δij(∂Φ)

2

)
+
πiπj

ρ
+ τ ij

)
.

Next, we can decompose the momentum density into a scalar and a vector part

πS ≡ ∂iπ
i , and πiV ≡ ϵijk∂jπ

k , (6.17)

which gives

πi =
∂i
∂2
πS − ϵijk

∂j
∂2
πkV , (6.18)

where ϵijk is the three-dimensional totally antisymmetric Levi-Civita symbol (with
ϵ123 = 1). With this decomposition, we can write the equations of motion in terms
of the scalar and vector parts

ρ̄ δ̇ + a−1πS = 0 , (6.19)

π̇S + 4HπS +
3

2
aρ̄ΩmH

2δ =

= −a−1∂i∂j

(
2M2

Pla
−2

(
∂iΦ∂jΦ− 1

2
δij(∂Φ)

2

)
+
πiπj

ρ
+ τ ij

)
,

π̇iV + 4HπiV = −a−1ϵijk∂j∂l

(
2M2

Pla
−2∂kΦ∂lΦ +

πkπl

ρ
+ τ kl

)
.

We see that the scalar part πS is determined entirely by δ, and the vector part πiV
is only sourced non-linearly. For reference, the full differential equation for δ is

a2δ′′ +

(
2 +

aH′

H

)
aδ′ − 3

2
Ωmδ = (6.20)

=
∂i∂j
H2ρ̄

(
2M2

Pla
−2

(
∂iΦ∂jΦ− 1

2
δij(∂Φ)

2

)
+
πiπj

ρ
+ τ ij

)
,

where H = aH, and the prime denotes a derivative with respect to the scale factor,
i.e. g′ = ∂g/∂a for generic functions g. For dark matter in real space, all renor-
malization and counterterms enter through the stress tensor τ ij, which is a Galilean
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scalar, a tensor under spatial rotations, and a local-in-space and non-local-in-time
function of second derivatives of the metric and gradients of the velocity (because
of the equivalence principle), in the equations of motion above. We will return to
the stress tensor in much more detail below. We also note that while the equation
of motion for πi is non-local (because of the appearance of ∂iΦ on the left-hand side
of Eq. (6.16)), the equations of motion for πS and πiV Eq. (6.19) are local.

In this work, we use the following notation

∫
k⃗1,...,⃗kn

≡
∫

d3k1
(2π)3

· · · d
3kn

(2π)3
,

∫ k⃗

k⃗1,...,⃗kn

≡
∫
k⃗1,...,⃗kn

(2π)3δD(k⃗ −
n∑
i=1

k⃗i) , (6.21)

where δD is the Dirac delta function, and our Fourier conventions are

f(x⃗, t) =

∫
k⃗

f(k⃗, t) eik⃗·x⃗ . (6.22)

For a three-dimensional vector k⃗, we write k ≡ |⃗k| for the magnitude, and k̂ ≡ k⃗/k

for the unit vector parallel to k⃗. We use Latin letters like i, j, k, l to denote spatial
indices, in general we do not distinguish between upper and lower spatial indices, and
repeated indices imply summation. We also use the prime on correlation functions,
⟨·⟩′ to denote the correlation function with the factor of (2π)3 and Dirac delta
function of translation invariance stripped off.

6.3.1 Perturbative Solutions and Observables in SPT

In this work, we use the so-called Einstein-de Sitter (EdS) approximation to
solve the above equations which allows us to separate the time dependence from
the spatial (momentum) dependence and is known to be accurate to percent level
[148, 135, 149] (we give details about the EdS Green’s function in App. B.1.1). Let
us start with the standard perturbation theory (SPT) contribution, which is the
solution ignoring EFTofLSS counterterms, i.e. with τ ij = 0. First, the solution to
the linear equation for δ is called the growth factor D(a), which solves

a2D′′ +

(
2 +

aH′

H

)
aD′ − 3

2
ΩmD = 0 . (6.23)
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For the perturbations, we write

δ(k⃗, a) =
∑
n

δ(n)(k⃗, a) , and vi(k⃗, a) =
∑
n

vi(n)(k⃗, a) (6.24)

where, assuming that the velocity field is irrotational, 5

δ(n)(k⃗, a) = D(a)n
∫ k⃗

k⃗1,...,⃗kn

Fn(k⃗1, . . . , k⃗n)δ̃
(1)

k⃗1
· · · δ̃(1)

k⃗n
,

vi(n)(k⃗, a) = i
ki

k2
H(a)f(a)D(a)n

∫ k⃗

k⃗1,...,⃗k2

Gn(k⃗1, . . . , k⃗n)δ̃
(1)

k⃗1
· · · δ̃(1)

k⃗n
,

(6.25)

δ̃
(1)

k⃗
is the time-independent initial field, 6 Fn and Gn are the standard symmetric

kernels for dark matter (see [150, 151], for example), and the growth rate f is defined
by

f(a) ≡ aD′(a)

D(a)
. (6.26)

In general, we use the tilde to denote time-independent fields, in particular

δ̃(n) ≡ δ(n)(a)

D(a)n
, (6.27)

and we will often drop spatial or momentum arguments when the understanding is
clear. The above expressions for δ and vi solve the equations of motion under the
approximation

Ωm(a) ≈
(
aD′(a)

D(a)

)2

, (6.28)

which is approximately true in our universe [148, 135, 149]. For the one-loop bispec-
trum, we need to consider up to n = 4. The SPT expression for πi can be derived
from δ and vi using Eq. (6.11).

In this work, we are eventually interested in computing the one-loop power spec-
trum and the one-loop bispectrum of galaxies in redshift space, but we start in this
section with dark matter in real space. In Fourier space, the power spectrum P and

5In the absence of counterterms, it can be shown that an initially irrotational velocity remains
so. In our universe, the initial vorticity is negligible. EFT counterterms induce a vorticity, though,
matching what is observed in simulations [147], and we discuss this in more detail in Sec. 6.4.3.

6We normalize D(ain) = 1 for some initial time ain in matter domination where initial condi-
tions are given, so that P11 is the linear power spectrum at ain.
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bispectrum B are defined by

⟨δ(k⃗, a)δ(k⃗′, a)⟩ = (2π)3δD(k⃗ + k⃗′)P (k, a) ,

⟨δ(k⃗1, a)δ(k⃗2, a)δ(k⃗3, a)⟩ = (2π)3δD(k⃗1 + k⃗2 + k⃗3)B(k1, k2, k3, a) .
(6.29)

The total one-loop power spectrum is

P1-loop tot.(k, a) = D(a)2P11(k) +D(a)4(P22(k) + P13(k)) , (6.30)

where ⟨δ̃(1)
k⃗
δ̃
(1)

k⃗′
⟩ = (2π)3δD(k⃗ + k⃗′)P11(k) defines the linear power spectrum P11 at

the initial time ain, and the one-loop terms are

P22(k) = 2

∫
q⃗

F2(q⃗, k⃗ − q⃗)2P11(q)P11(|⃗k − q⃗|) ,

P13(k) = 6P11(k)

∫
q⃗

F3(q⃗,−q⃗, k⃗)P11(q) .

(6.31)

The total one-loop bispectrum is

B1-loop tot. = D(a)4B211 +D(a)6
(
B222 +B

(I)
321 +B

(II)
321 +B411

)
, (6.32)

where the tree-level bispectrum is

B211(k1, k2, k3) = 2F2(k⃗1, k⃗2)P11(k1)P11(k2) + 2 perms. , (6.33)

and the one-loop contributions are

B222(k1, k2, k3) = 8

∫
q⃗

P11(q)P11(|⃗k2 − q⃗|)P11(|⃗k1 + q⃗|)

× F2(−q⃗, k⃗1 + q⃗)F2(k⃗1 + q⃗, k⃗2 − q⃗)F2(k⃗2 − q⃗, q⃗) ,

B
(I)
321(k1, k2, k3) = 6P11(k1)

∫
q⃗

P11(q)P11(|⃗k2 − q⃗|)

× F3(−q⃗,−k⃗2 + q⃗,−k⃗1)F2(q⃗, k⃗2 − q⃗) + 5 perms. ,

B
(II)
321 (k1, k2, k3) = 6P11(k1)P11(k2)F2(k⃗1, k⃗2)

∫
q⃗

P11(q)F3(k⃗1, q⃗,−q⃗) + 5 perms. ,

B411(k1, k2, k3) = 12P11(k1)P11(k2)

∫
q⃗

P11(q)F4(q⃗,−q⃗,−k⃗1,−k⃗2) + 2 perms. .

(6.34)
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6.3.2 Dark-matter Counterterm Contributions

As is well known [28], the loop contributions Eqs. (6.31) and (6.34) are UV
sensitive because they depend on momenta q much larger than the non-linear scale
of structure formation where the theory is out of perturbative control. The role of
the EFT counterterms in τ ij is to cure this UV sensitivity and allow the theory to
match reality. Concretely, we write (suppressing spatial dependence for convenience)

τ ij(a) = τ ijΛUV
(a) + τ ijfinite(a) . (6.35)

Here, the piece τ ijΛUV
(a) must give the same time dependence as in Eqs. (6.31) and

(6.34) in order to cancel the dependence of the loop integrals on the UV cutoff ΛUV.
The other piece, τ ijfinite(a), does not have a fixed time dependence in general, and
its role is to give the correct amount of ΛUV-independent contribution that matches
observations.

For simplicity in this chapter, we focus on the contribution τ ijΛUV
(a) which has a

fixed time dependence. All of our main points will be evident in this case, and we
will be able to do explicit calculations with explicit numerical factors. Additionally,
we want to check that the general form of τ ij that we write is able to capture all
of the UV behavior present in the loops Eqs. (6.31) and (6.34), and this requires
assuming the same time dependence as the loops. Inclusion of a general τ ijfinite(a) is
straightforward, as it is based on the same k-dependent kernels.

In general, the EFTofLSS is local in space, but non-local in time [147]. To obtain
the EFT expansion one expands the stress tensor as a local function of second spatial
derivatives of the gravitational potential Φ and gradients of the velocity (because of
the equivalence principle), along with stochastic fields, organized, as in any EFT,
in an expansion in powers of the fields and spatial derivatives, integrated along the
past trajectory of the fluid element [147, 129]. More specifically, we have

τ ij(x⃗, a) =

∫ a da′

a′

∑
α

κα(a, a
′)T ijα (x⃗fl(x⃗, a, a

′), a′) , (6.36)

where the fluid element is defined by

x⃗fl(x⃗, a, a
′) = x⃗+

∫ a′

a

da′′

(a′′)2H(a′′)
v⃗(x⃗fl(x⃗, a, a

′′), a′′) , (6.37)

the T ijα (x⃗, a) are all local-in-time Galilean scalars (and tensors under rotations on
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the i and j indices), and the κα(a, a′) are unknown EFT kernels describing the non-
locality in time. The T ijα (x⃗, a) are then organized in a local spatial-derivative ex-
pansion of the long-wavelength fields (∂i∂jΦ(x⃗, a), ∂ivj(x⃗, a), etc.) and of stochastic
fields ϵij(x⃗, a). Since we do perturbation theory in this work, we can write each
scalar as a sum over perturbative orders

T ijα (x⃗, a) =
∑
n

T ijα,(n)(x⃗, a) , (6.38)

and because the linear solutions are scale independent, we have a simple scaling
time dependence for the n-th order perturbative pieces

T ijα,(n)(x⃗, a
′) =

(
D(a′)

D(a)

)pα,n

T ijα,(n)(x⃗, a) , (6.39)

for some power pα,n. This means that Eq. (6.36) becomes

τ ij(x⃗, a) =
∑
α

∑
n

Kpα,n
α (a)T ijα,(n)(x⃗, a)

+
∑
α

∑
n,m

1

m

(
Kpα,n−m
α (a)−Km+pα,n−m

α (a)
) ∂kθ(m)(x⃗, a)

∂2
∂kT

ij
α,(n−m)(x⃗, a) + . . . ,

(6.40)

where we have defined

Kp
α(a) ≡

∫ a da′

a′
κα(a, a

′)

(
D(a′)

D(a)

)p
, (6.41)

used the definition of the velocity field in Eq. (6.25) along with θ = −∂ivi/(faH),
and the . . . in Eq. (6.40) are terms coming from Taylor expanding T ijα (x⃗fl(x⃗, a, a

′), a′)

around x⃗ in Eq. (6.36), i.e. higher powers of v⃗, all of which should be included up to
the desired order. The point is that the integral over da′ coming from expanding x⃗fl
can be formally done as in Eq. (6.41) and leaves distinct functions of a, Kp

α(a). The
same happens with the higher order terms in the Taylor expansion of x⃗fl(x⃗, a, a′),
since v⃗(n) also has a simple scaling time dependence, see Eq. (6.25). This means
that, in perturbation theory, the expansion of the stress tensor can be manipulated
so that the time integrals disappear, in the way indicated by Eq. (6.40). In this
chapter, we only need counterterms from the stress tensor up to second order, so
Eq. (6.40) is sufficient for our purposes. This is the same approach taken for the
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bias expansion in Sec. 6.6.2. 7

Given this, we write the contribution to δ from τ ij relevant to the one-loop
bispectrum, which we call δτ , generally as

δτ (k⃗, a) = δ
(1)
ct (k⃗, a) + δ

(2)
ct (k⃗, a) + δ(1)ϵ (k⃗, a) + δ(2)ϵ (k⃗, a) , (6.42)

where the subscript ct denotes the response counterterms, and ϵ denotes the stochastic
(and semi-stochastic) counterterms. Assuming the time dependence needed to can-
cel UV loop contributions, we have

δ
(1)
ct (k⃗, a) = D(a)3δ̃

(1)
ct (k⃗) , δ

(2)
ct (k⃗, a) = D(a)4δ̃

(2)
ct (k⃗) ,

δ(1)ϵ (k⃗, a) = D(a)2δ̃(1)ϵ (k⃗) , and δ(2)ϵ (k⃗, a) = D(a)3δ̃(2)ϵ (k⃗) ,
(6.43)

where we use the tilde to denote the appropriate time-independent factor. Similarly,
we have the solution for πi which we write as

πiτ (k⃗, a) = πict,(1)(k⃗, a) + πict,(2)(k⃗, a) + πiϵ,(1)(k⃗, a) + πiϵ,(2)(k⃗, a) , (6.44)

with

πict,(1)(k⃗, a) = −aHρ̄fD(a)3π̃ict,(1)(k⃗) , πict,(2)(k⃗, a) = −aHρ̄fD(a)4π̃ict,(2)(k⃗) ,

πiϵ,(1)(k⃗, a) = −aHρ̄fD(a)2π̃iϵ,(1)(k⃗) , and πiϵ,(2)(k⃗, a) = −aHρ̄fD(a)3π̃iϵ,(2)(k⃗) .

(6.45)

To remove clutter, we will sometimes use the notation A∗ to mean both Act and Aϵ.
We note that in SPT, the time dependence of πi, πS, and πiV are all the same for
each field above linear perturbations. 8 However, as can be seen in Eq. (6.19), if
∂i∂jτ ij and ϵijk∂j∂lτ kl have different time dependence, then πS and πiV will as well.
For simplicity, in this work, we assume that the counterterms have the same time
dependence as needed to cancel UV divergences in the SPT loops, in which case πS
and πiV have the same time dependence as in Eq. (6.45) for πi.

7Note that for the growing mode solutions that we consider in this work, we have K
pα,2
α (a) =

K
1+pα,1
α (a), which shows that Eq. (6.40) is of the correct form for Galilean scalars discussed in

Sec. 6.5.3.
8At linear level, we have πi

V,(1) = ρ̄ϵijk∂jv
k
(1) = 0 because velocity vorticity is zero. Then, at

higher orders, πi
V becomes non-zero because of the growing mode in δ in the definition of πi. So,

above linear perturbations, πS , πi
V , and πi all have the same time dependence, which one can

deduce from the definition of πi in terms of δ and vi.
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6.4 Dark-Matter Renormalization in Real Space

6.4.1 Counterterm Solutions up to Second Order

We now present the solutions for δ and πi that are sourced by the stress tensor
τ ij in Eq. (6.19) up to second order, leaving the derivation to App. B.1. We start
by writing

τ ij =
ΩmH2ρ̄

kNL
2

(
D3τ̃ ijct,(1) +D4τ̃ ijct,(2) +D2τ̃ ijϵ,(1) +D3τ̃ ijϵ,(2)

)
, (6.46)

where the quantities with subscript ct source the pure response solutions of δ and πi,
the quantities with subscript ϵ source the stochastic and semi-stochastic solutions
of δ and πi, and the number in parentheses indicates the order in fields. Again,
quantities with tildes are time independent, and the time dependence given above
is chosen to lead to Eq. (6.43) (the factor of Ωm(a) can be seen from App. B.1.1).
As described in more detail in App. B.1, the second-order solutions here come from
two sources. The first is directly from the second-order stress tensors in Eq. (6.46),
and the second is from plugging the first-order counterterm solutions back into the
equations of motion Eq. (6.19).

Then, the first-order response solutions are

δ̃
(1)
ct =

1

9kNL
2∂i∂j τ̃

ij
ct,(1) , and π̃ict,(1) =

1

3kNL
2

∂i∂j∂k
∂2

τ̃ jkct,(1) , (6.47)

and the second-order response solutions are

δ̃
(2)
ct =

2 ∂i∂j

33kNL
2

[
τ̃ ijct,(2) +

∂iδ̃
(1)

∂2
∂kτ̃

jk
ct,(1) −

1

6
δij
∂kδ̃

(1)

∂2
∂lτ̃

kl
ct,(1)

]
, (6.48)

and

π̃ict,(2) =
2

9kNL
2

[
∂j τ̃

ij
ct,(2) +

1

11

∂i∂j∂k
∂2

(
τ̃ jkct,(2) +

∂j δ̃
(1)

∂2
∂lτ̃

kl
ct,(1)

)
(6.49)

− 2

11
∂i

(
∂j δ̃

(1)

∂2
∂kτ̃

jk
ct,(1)

)
+

1

2
∂l

(
∂iδ̃

(1)

∂2
∂mτ̃

lm
ct,(1) +

∂lδ̃
(1)

∂2
∂j τ̃

ij
ct,(1)

)]
.

To find the above, we used Eq. (6.19), solved for πS and πiV separately (which are
given in App. B.1), and then combined them to form πi using Eq. (6.18). Above, as
we will justify in the next section, we have assumed that ∂i∂j∂kτ̃ jkct,(1) = ∂2∂j τ̃

ij
ct,(1).
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Similarly, for the first-order stochastic solutions, we have

δ̃(1)ϵ =
2

7kNL
2∂i∂j τ̃

ij
ϵ,(1) , and (6.50)

π̃iϵ,(1) =
1

kNL
2

[
4

7

∂i∂j∂k
∂2

τ̃ jkϵ,(1) −
2

5

(
∂i∂j∂k
∂2

τ̃ jkϵ,(1) − ∂j τ̃
ij
ϵ,(1)

)]
,

and for the second-order stochastic solutions, we have

δ̃(2)ϵ =
∂i∂j

9kNL
2

[
τ̃ ijϵ,(2) + 2

∂iδ̃
(1)

∂2
∂j∂k∂l
∂2

τ̃ klϵ,(1) −
3

7
δij

(
∂kδ̃

(1)

∂2
∂k∂l∂m
∂2

τ̃ lmϵ,(1)

)

− 4

5

∂iδ̃
(1)

∂2

(
∂j∂k∂l
∂2

τ̃ klϵ,(1) − ∂lτ̃
jl
ϵ,(1)

)]
,

(6.51)

and

kNL
2π̃iϵ,(2) =

2

7
∂j τ̃

ij
ϵ,(2) +

1

21

∂i∂j∂k
∂2

(
τ̃ jkϵ,(2) + 2

∂j δ̃
(1)

∂2
∂k∂l∂m
∂2

τ̃ lmϵ,(1)

)
(6.52)

− 1

7
∂i

(
∂j δ̃

(1)

∂2
∂j∂k∂l
∂2

τ̃ klϵ,(1)

)

+
2

7
∂l

(
∂iδ̃

(1)

∂2
∂l∂m∂n
∂2

τ̃mnϵ,(1) +
∂lδ̃

(1)

∂2
∂i∂m∂n
∂2

τ̃mnϵ,(1)

)

− 4

105

∂i∂j∂k
∂2

(
∂j δ̃

(1)

∂2

(
∂k∂l∂m
∂2

τ̃ lmϵ,(1) − ∂lτ̃
kl
ϵ,(1)

))

− 4

35
∂l

(
∂iδ̃

(1)

∂2

(
∂l∂m∂n
∂2

τ̃mnϵ,(1) − ∂mτ̃
lm
ϵ,(1)

)
+
∂lδ̃

(1)

∂2

(
∂i∂m∂n
∂2

τ̃mnϵ,(1) − ∂mτ̃
im
ϵ,(1)

))
.

In the above stochastic expressions, as we will discuss further in the next section,
we have not assumed that ∂i∂j∂kτ̃ jkϵ,(1) = ∂2∂j τ̃

ij
ϵ,(1).

As a final note, we point out that all of the various numerical coefficients above
come from the linear equations of motion and the assumed time dependence D(a)n

for the various contributions; they represent different combinations of Green’s func-
tions integrated over different kernels in the EdS approximation. We give the EdS
Green’s function in App. B.1.1.
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6.4.2 Explicit Expression for the Stress Tensor

We can now write down the most general stress tensor local in second spatial
derivatives of Φ and gradients of the velocity, following the discussion in Sec. 6.3.2,
up to second order, that obeys the symmetries of the problem, which are rotation
and Galilean invariance. We focus on the leading order in derivatives, which, because
of mass and momentum conservation, is O(k2P11) for P13, O(k2P 2

11) for B411 and
B

(II)
321 , O(k4) for P22, O(k6) for B222, and O(k4P11) for B(I)

321. For the response terms,
we have

τ̃ ijct,(1) = c1
∂i∂j δ̃

(1)

∂2
+ c3δij δ̃

(1) , (6.53)

and

τ̃ ijct,(2) =c1
∂k∂i∂j δ̃

(1)

∂2
∂kδ̃

(1)

∂2
+ c3δij∂kδ̃

(1)∂kδ̃
(1)

∂2

+ c2
∂i∂j δ̃

(2)

∂2
− c2

∂k∂i∂j δ̃
(1)

∂2
∂kδ̃

(1)

∂2
+ c4δij δ̃

(2) − c4δij∂kδ̃
(1)∂kδ̃

(1)

∂2

+ c5
∂i∂j δ̃

(1)

∂2
δ̃(1) + c6

∂i∂kδ̃
(1)

∂2
∂k∂j δ̃

(1)

∂2
+ c7δij δ̃

(1)δ̃(1) ,

(6.54)

where all of the ci are time independent. To determine the above list of operators,
we follow the procedure laid out in Sec. 6.3.2 (which is the same approach as [129]
for biased tracers, which we detail in Sec. 6.6.2 and App. B.3); we first write all con-
tractions of ∂i∂jΦ and ∂ivj with the same tensor structure as τ ij up to second order
in fields and zeroth order in derivatives, and then we expand the fluid element and
do the remaining time integrals which define the ci. We then check for degeneracies
in the resulting operators, and only use the minimal basis, which is given above.

For the stochastic terms, we have

τ̃ ijϵ,(1) = ϵij1 , and τ̃ ijϵ,(2) = ∂kϵ
ij
1

∂kδ̃
(1)

∂2
+ ϵijkl3

∂k∂lδ̃
(1)

∂2
, (6.55)

where, in momentum space, we define the correlation of the stochastic fields ϵij...n as
an expansion in powers of k⃗ of all of the terms allowed by rotation invariance [144],
for example

⟨ϵija (k⃗)ϵklb (k⃗′)⟩′ = c
(1)
a,bδ

ijδkl + c
(2)
a,b(δ

ikδjl + δilδjk) (6.56)

+kNL
−2
(
c
(3)
a,bδ

ijkkkl + c
(4)
a,bδ

klkikj + c
(5)
a,b(δ

ikkjkl + δilkjkk)
)
+ . . . .

We also do a similar expansion for three-point functions of stochastic fields, for
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example

⟨ϵija (k⃗1)ϵklb (k⃗2)ϵmnc (k⃗3)⟩′ = c
(1)
a,b,cδ

ijδklδmn +
1

2
c
(2)
a,b,cδ

ij
(
δlnδkm + δlmδkn

)
(6.57)

+
1

2
c
(3)
a,b,cδ

mn
(
δikδjl + δilδjk

)
+

1

2
c
(4)
a,b,cδ

kl
(
δinδjm + δimδjn

)
+
1

8
c
(5)
a,b,c

(
δim(δjlδkn + δjkδln) + δil(δjnδkm + δjmδkn)

+δik(δjnδlm + δjmδln) + δin(δjlδkm + δjkδlm)
)
,

where we only need the terms up to k0 for the stochastic three-point functions
for dark-matter renormalization in this chapter. 9 We note that the free coefficients
appearing in two-point and three-point functions of stochastic fields can in general be
independent, although they can be related under the assumption that the stochastic
fields are purely Poissonian, for example. Since we expand the stochastic fields in all
possible tensor structures, it is clear that Eq. (6.55) is the most general expression
satisfying the equivalence principle.

Terms containing ∂iδ̃
(1)/∂2 are sometimes referred to as leading infrared (IR)

terms. This is because they can lead to contributions O(k/q) as the momentum
q⃗ of some field goes to zero. These terms are completely fixed by Galilean invari-
ance. The correct terms are generated by expanding in the fluid line element, as
in Secs. 6.3.2 and 6.6.2, and App. B.3.2, leading to the so-called flow terms [129].
We explicitly derive the expressions in Eq. (6.55) and point out a clarification of
[129, 131] regarding the stochastic fields in App. B.1.5.

As expected, the counterterms above, when plugged into the relevant expressions
for δ, allow us to absorb all UV divergences in the one-loop power spectrum and
bispectrum, and we give explicit values for the free coefficients that absorb the UV
divergences of the loops in App. B.1.6. In the rest of the chapter, we will often
refer to the choice of counterterms that cancels UV parts of SPT loops as ‘UV
matching,’ and in particular, we always choose signs so that the UV part cancels
in the sum of the loop and the counterterms. Our results become much more

9The coefficients c
(i)
a,b,c in the contraction Eq. (6.57) are defined with respect to the specific

ordering of the fields on the left-hand side of Eq. (6.57), i.e. they are not necessarily symmetric
in {a, b, c}. However, we can derive relations among the coefficients with different orderings of
{a, b, c} by permuting the {k⃗i}. For example, since at the order that we work, the right-hand side
is independent of the {k⃗i}, by permuting the {k⃗i} on the left-hand side, we obtain relations like
c
(1)
a,c,b = c

(1)
a,b,c, c

(3)
a,c,b = c

(4)
a,b,c, and c

(4)
b,a,c = c

(2)
a,b,c, so that all permutations of {a, b, c} can be related

back to the canonical ordering (a, b, c). This ensures that all of the correlations obey the relevant
symmetries.
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interesting when performing renormalization in redshift space, where non-locally-
contributing counterterms in πi are necessary, and we discuss this in much more
detail in Secs. 6.4.3, 6.5.4, and 6.5.5.

As mentioned in Sec. 6.4.1, we assumed that ∂i∂j∂kτ̃
jk
ct,(1) = ∂2∂j τ̃

ij
ct,(1), but

∂i∂j∂kτ̃
jk
ϵ,(1) ̸= ∂2∂j τ̃

ij
ϵ,(1), and now we can see why. For the first-order response stress

tensor, τ̃ ijct,(1), the only two terms that we can write are δij δ̃(1) and ∂i∂j δ̃(1)/∂2, which
both separately satisfy ∂i∂j∂kτ̃ jkct,(1) = ∂2∂j τ̃

ij
ct,(1). For the stochastic terms, however,

this is not the case. This is essentially because we allow all tensor structures when
contracting stochastic fields. For example, if we have

⟨ϵij1 (k⃗1)ϵkl2 (k⃗2)⟩′ ⊃ a1δ
ijδkl + a2(δ

ikδjl + δilδjk) , (6.58)

then the combination in question gives

ki1k
j
1k

k
1⟨ϵjk1 (k⃗1)ϵ

ab
2 (k⃗2)⟩′ − k21k

j
1⟨ϵij1 (k⃗1)ϵab2 (k⃗2)⟩′ = a2(2k

i
1k

a
1k

b
1 − k21δ

iakb1 − k21δ
ibka1) ,

(6.59)

which is not zero. While we find that this makes no difference in real space, we
find that the terms proportional to ∂i∂j∂kτ̃ jkϵ,(1)/∂

2− ∂j τ̃
ij
ϵ,(1) in stochastic expressions

Eqs. (6.50), (6.51), and (6.52) lead to contributions in the redshift space quantities
B
r,(I),ϵ
321 and Br,ϵ

222 (see App. B.1.7 for definitions and Sec. 6.5.5 for a discussion) that
have a unique functional form and are not captured by any other terms that we have
discussed, and indeed they are necessary to match the UV structures of Br,(I)

321 and
Br

222.

6.4.3 Appearance of Non-Locally-Contributing Counterterms

As a main result of this work, we would like to draw particular attention to
the way that the second-order stress tensors τ̃ ij∗,(2) enter the counterterm solutions.
Although they enter with a unique derivative structure in δ̃

(2)
∗ , i.e. ∂i∂j τ̃

ij
∗,(2), the

second-order stress tensors appear in both of the structures

∂j τ̃
ij
∗,(2) , and

∂i∂j∂k
∂2

τ̃ jk∗,(2) , (6.60)

in the second-order solutions π̃i∗,(2) in Eqs. (6.49) and (6.52). The second term
above is a spatially non-local contribution to πi, although it originates from local
contributions to πS and πiV , as can be seen in Eq. (6.19), and we will often refer to

137



Chapter 6: Theory: The One-Loop Bispectrum of Galaxies in Redshift Space from the
EFTofLSS

it as the new ‘non-locally-contributing counterterm.’ The non-locality comes simply
from the Green’s function for the πi equation, as evident in Eq. (6.18), and we
discuss this in more detail in Sec. 6.6.3 for biased tracers.

First, we point out that the appearance of these two structures relies on πS and
πiV having two different Green’s functions. To see this, notice that the equations of
motion Eq. (6.19) imply that

πS ∼ αS∂i∂jS
ij
τ , and πiV ∼ αV ϵ

ijk∂j∂lS
kl
τ , (6.61)

for some constants αS and αV coming from the EdS Green’s functions (which are
simply numerical constants in the EdS approximation, see App. B.1.1), where we
have defined

Sijτ ≡
[
2M2

Pla
−2

(
∂iΦ∂jΦ− 1

2
δij(∂Φ)

2

)
+
πiπj

ρ

]
τ

+ τ ij , (6.62)

and used the notation [·]τ to mean that the term inside of the brackets is sourced
by at least one insertion of the stress tensor τ ij in perturbation theory. Using the
definition of πi in Eq. (6.18), these expressions lead to

πi ∼ αV ∂jS
ij
τ + (αS − αV )

∂i∂j∂k
∂2

Sjkτ , (6.63)

so we see that the last term would vanish if αS = αV , i.e. if the Green’s functions
for πS and πiV are the same. Second, we note that the new term is also absent if
∂i∂j∂kS

jk
τ,(2) = ∂2∂jS

ij
τ,(2), which is true for any terms in Sijτ,(2) proportional to δij, for

example. Thus, terms in Eq. (6.54) that lead to the new non-locally-contributing
counterterm structure are the ones proportional to c5 and c6 and the flow terms
proportional to c1 and c2. The term ∂i∂j∂k(∂lτ̃

kl
ct,(1)∂j δ̃

(1)/∂2)/∂2 in Eq. (6.49) also
allows c3 to contribute to the non-local structure.

The two structures in Eq. (6.60) have distinct dependence on the momenta of the
fields in τ̃ ij∗,(2), and so can give distinct momentum dependence for EFT counterterms.
Notice, however, that for correlators that only involve δ, like the power spectrum
and bispectrum of δ in real space in Sec. 6.3.1, this difference does not show up
(as can be seen from Eq. (6.20) where τ ij only contributes locally). The situation
is different, though, in redshift space where the structures in Eq. (6.60) contribute
in different ways so that one must include both possibilities in the counterterms to
correctly describe the UV physics. Indeed, both terms are necessary to match the
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UV structures of the loop integrals in redshift space, and we describe this in more
detail in Secs. 6.5.4 and 6.5.5. The bottom line conclusion from renormalization of
dark matter in real space is that as long as one correctly solves the equations of
motion, all renormalization comes through a stress tensor that is a local-in-space
function of ∂i∂jΦ and ∂iv

j, as expected. The bottom line conclusion that we will
find in Sec. 6.5 for dark matter in redshift space is that, as long as one correctly
solves the equations of motion (especially for πi), renormalization happens through
a local-in-space stress tensor and local-in-space redshift space counterterms.

We would like to point out, as a side note, that renormalization of the dark-
matter one-loop bispectrum requires the generation of vorticity in the velocity field.
Although absent in SPT, velocity vorticity ωi is sourced from the symmetric stress
tensor through [147]

ωi ∼ ϵijk∂j
(
ϵkmnvmωn − ρ−1∂lτ

lk
)
. (6.64)

For simplicity, we focus on the response terms. In this case, since ωi(1) = 0, ωi

starts being sourced at second order from the stress-tensor term ρ−1∂lτ
lk, which in

turn means that the term ϵkmnvmωn starts at third order. We can thus ignore the
latter term for this discussion. One can then check that the parameters in the stress
tensor Eqs. (6.53) and (6.54) that source vorticity at second order are c1, c2, c5, and
c6, and we have explicitly verified that it is impossible to renormalize the one-loop
bispectrum (specifically B411) if all of these parameters are zero.

Finally, let us briefly comment on some potentially confusing aspects of the renor-
malization and UV matching of B(I)

321 with the stochastic terms, explicitly shown in
Eqs. (B.11) and (B.12). Although we defined B

(I),ϵ
321 by summing over all permuta-

tions in Eq. (B.12), we could have done the UV matching in terms of our Galilean
invariant stress tensor by considering all terms with an external P11(k1), i.e. just
symmetrizing over k⃗2 and k⃗3 and considering

B̄
(I),ϵ
321 (k1, k2, k3) ≡ ⟨δ̃(1)(k⃗1)δ̃(1)ϵ (k⃗2)δ̃

(2)
ϵ (k⃗3)⟩′ + ⟨δ̃(1)(k⃗1)δ̃(1)ϵ (k⃗3)δ̃

(2)
ϵ (k⃗2)⟩′ . (6.65)

A curious point about absorbing the UV divergences of B(1)
321 with B̄(1),ϵ

321 is that it is
still possible to do even if the leading IR part of the counterterm solution Eq. (6.51)
(i.e. those ensuring the correct Galilean properties) were wrong. However, this is
only true because the IR part of Eq. (6.51) actually does not contribute to B̄

(I),ϵ
321
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after symmetrization over k⃗2 and k⃗3. 10 However, as we will see in Sec. 6.5.5,
this is no longer the case in redshift space, and the precise form of the IR terms
in Eq. (6.51) is crucial to obtaining the correct renormalization and UV matching.
This clarifies some statements made in [152] about this renormalization.

6.5 Dark-Matter Renormalization in Redshift Space

6.5.1 General Redshift-Space Equations

The distribution of matter is roughly homogeneous and isotropic in the comoving
coordinate x⃗, but since we use redshift to assign distances, the coordinate that we
actually measure for each galaxy is (see for example [153])

x⃗r = x⃗+
ẑ · v⃗
aH

ẑ , (6.66)

where ẑ is the line of sight direction. Mass conservation implies that ρ(x⃗r)d3xr =

ρ(x⃗)d3x, which gives

δr(k⃗, ẑ) = δ(k⃗) +

∫
d3x e−ik⃗·x⃗

(
exp

[
−i(ẑ · k⃗)

aH
(ẑ · v⃗(x⃗))

]
− 1

)
(1 + δ(x⃗)) , (6.67)

in Fourier space. Since we will compute up to the one-loop bispectrum, we expand
to fourth order, which gives

δr = δ − ẑiẑj

aHρ̄
∂iπ

j +
ẑiẑj ẑkẑl

2(aH)2ρ̄
∂i∂j(π

kvl) (6.68)

−
∏6

a=1 ẑ
ia

3!(aH)3ρ̄
∂i1∂i2∂i3(π

i4vi5vi6) +

∏8
a=1 ẑ

ia

4!(aH)4ρ̄
∂i1∂i2∂i3∂i4(π

i5vi6vi7vi8) + . . . ,

in position space. We now see the appearance of πi contracted in a non-isotropy-
preserving way, since isotropy is broken in redshift space by the preferred direction
ẑ.

The n-th order expression for δr in SPT, i.e. with τ ij = 0 and redshift space
EFT counterterms (related to contact operators in Eq. (6.68) that we will discuss

10This is for a reason very similar to why the LSS consistency relations are trivial for the tree-
level bispectrum, because the leading term when q⃗ → 0 has to be zero because of permutation
symmetry in (q⃗, k⃗2, k⃗3).
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in the subsequent sections) set to zero, can be written

δ(1)r (k⃗, ẑ, a) = D(a)F r
1 (k⃗; ẑ)δ̃

(1)

k⃗
,

δ(n)r (k⃗, ẑ, a) = D(a)n
∫ k⃗

k⃗1,...,⃗kn

F r
n(k⃗1, . . . , k⃗n; ẑ)δ̃

(1)

k⃗1
· · · δ̃(1)

k⃗n
,

(6.69)

for n ≥ 2, where the redshift space kernels F r
n up to n = 3 can be found in [153], for

example. The observables that we are interested in are defined analogously to those
in Sec. 6.3.1. In the plane-parallel approximation that is common in redshift space
and that we use in this chapter, the power spectrum and bispectrum are defined by

⟨
2∏
i=1

δr(k⃗i, ẑ, a)⟩ = (2π)3δD(k⃗1 + k⃗2)P
r(k1, k̂1 · ẑ, a) , (6.70)

⟨
3∏
i=1

δr(k⃗i, ẑ, a)⟩ = (2π)3δD(k⃗1 + k⃗2 + k⃗3)B
r(k1, k2, k3, k̂1 · ẑ, k̂2 · ẑ, a).

Notice that since translation invariance is preserved, the correlation functions still
have the Dirac delta functions for total wavenumber conservation. However, since
isotropy is broken, the spectra can depend on angles with respect to ẑ.

The total one-loop power spectrum is

P r
1-loop tot.(k, k̂ · ẑ, a) = D(a)2P r

11(k, k̂ · ẑ)+D(a)4(P r
22(k, k̂ · ẑ)+P r

13(k, k̂ · ẑ)) , (6.71)

where
P r
11(k, k̂ · ẑ) = (1 + f(k̂ · ẑ)2)2P11(k) , (6.72)

is the famous Kaiser result, and

P r
22(k, k̂ · ẑ) = 2

∫
q⃗

F r
2 (q⃗, k⃗ − q⃗; ẑ)2P11(q)P11(|⃗k − q⃗|) ,

P r
13(k, k̂ · ẑ) = 6P11(k)F

r
1 (k⃗, ẑ)

∫
q⃗

F r
3 (q⃗,−q⃗, k⃗; ẑ)P11(q) .

(6.73)

The total one-loop bispectrum is

Br
1-loop tot. = D(a)4Br

211 +D(a)6
(
Br

222 +B
r,(I)
321 +B

r,(II)
321 +Br

411

)
, (6.74)

where here and below we suppress the argument (k1, k2, k3, k̂1·ẑ, k̂2·ẑ) of the bispectra
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terms to remove clutter. The tree-level bispectrum is

Br
211 = 2F r

1 (k⃗1; ẑ)F
r
1 (k⃗2; ẑ)F

r
2 (k⃗1, k⃗2; ẑ)P11(k1)P11(k2) + 2 perms. , (6.75)

and the one-loop contributions are

Br
222 = 8

∫
q⃗

P11(q)P11(|⃗k2 − q⃗|)P11(|⃗k1 + q⃗|) (6.76)

×F r
2 (−q⃗, k⃗1 + q⃗; ẑ)F r

2 (k⃗1 + q⃗, k⃗2 − q⃗; ẑ)F r
2 (k⃗2 − q⃗, q⃗; ẑ) ,

B
r,(I)
321 = 6P11(k1)F

r
1 (k⃗1; ẑ)

∫
q⃗

P11(q)P11(|⃗k2 − q⃗|)

×F r
3 (−q⃗,−k⃗2 + q⃗,−k⃗1; ẑ)F r

2 (q⃗, k⃗2 − q⃗; ẑ) + 5 perms. ,

B
r,(II)
321 = 6P11(k1)P11(k2)F

r
1 (k⃗1; ẑ)F

r
2 (k⃗1, k⃗2; ẑ)

∫
q⃗

P11(q)F
r
3 (k⃗1, q⃗,−q⃗; ẑ) + 5 perms. ,

Br
411 = 12P11(k1)P11(k2)F

r
1 (k⃗1; ẑ)F

r
1 (k⃗2; ẑ)

×
∫
q⃗

P11(q)F
r
4 (q⃗,−q⃗,−k⃗1,−k⃗2; ẑ) + 2 perms. .

As a final point, we note that we have explicitly displayed and factored out the major
source of time dependence, which is through the factors of D(a)n in Eq. (6.69), in
the above equations. The kernels F r

n in Eq. (6.69) are in fact time dependent as well,
coming from factors of f(a) that enter Eq. (6.68) through the factors of v⃗. While
we fully take into account this time dependence, we do not explicitly write the time
argument in the F r

n kernels, to remove clutter; all kernels and observables with the
redshift space marking ‘r’ are understood to contain this time dependence through
f(a). For details on how to evaluate the above integrals, see App. B.2.

6.5.2 Renormalization of Dark Matter in Redshift Space

Ultimately, we want a renormalized expression for the redshift space overdens-
ity δr in Eq. (6.68). The first two terms, containing only δ and πj, have already
been renormalized in Sec. 6.4, and this is entirely determined by the local stress-
tensor counterterms in τ ij. The non-linear terms in Eq. (6.68), however, are contact
operators (i.e. UV sensitive) and must be separately renormalized [137], which
essentially amounts to adding new counterterms directly to Eq. (6.68). Here we
present a systematic renormalization that preserves Galilean transformation prop-
erties, extending [144], and address some subtleties that appear since we are going
to quadratic order in the counterterms.
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As can be seen in Eq. (6.68), we ultimately want to renormalize products like
πivjvk · · · . In order to build up to that, let us start with the renormalization of
velocity products, up to [vivjvkvl]R, where [·]R denotes a renormalized quantity. In
order to have the correct transformation properties under the Galilean transform-
ation vi → vi + χi (here and elsewhere χi is a constant vector), we wish for the
renormalized quantities to transform in the same way as the bare operators, so we
have

[vi]R → [vi]R + χi , (6.77)

[vivj]R → [vivj]R + [vi]Rχ
j + [vj]Rχ

i + χiχj,

[vivjvk]R → [vivjvk]R + ([vivj]Rχ
k + 2 perms.) + ([vi]Rχ

jχk + 2 perms.) + χiχjχk,

[vivjvkvl]R → [vivjvkvl]R + ([vivjvk]Rχ
l + 3 perms.) + ([vivj]Rχ

kχl + 5 perms.)

+([vi]Rχ
jχkχl + 3 perms.) + χiχjχkχl .

One way to write renormalized quantities satisfying the above in terms of the non-
renormalized fields is

[vi]R = vi +Oi
v , (6.78)

[vivj]R = [vi]R[v
j]R +Oij

v2 ,

[vivjvk]R = ([vivj]R[v
k]R + 2 perms.)− 2[vi]R[v

j]R[v
k]R +Oijk

v3 ,

[vivjvkvl]R = ([vivjvk]R[v
l]R + 3 perms.)− ([vivj]R[v

kvl]R + 2 perms) +Oijkl
v4 ,

where all of the O terms are Galilean scalars. The last expression is not unique in the
sense that other operators could have been used that are not independent from the
ones shown, like [vi]R[v

j]R[v
k]R[v

l]R and [vivj]R[v
k]R[v

l]R, for example. Definitions
using different bases can differ in their scalar parts O. Note that vi is renormalized
here because it is the composite operator πi/ρ [147].

We can similarly renormalize products involving δ. Demanding again that renor-
malized quantities transform in the same way as bare ones under Galilean transform-
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ations means that we want

[δvi]R → [δvi]R + [δ]Rχ
i , (6.79)

[δvivj]R → [δvivj]R + [δvi]Rχ
j + [δvj]Rχ

i + [δ]Rχ
iχj ,

[δvivjvk]R → [δvivjvk]R + ([δvivj]Rχ
k + 2 perms.) + ([δvi]Rχ

jχk + 2 perms.)

+ [δ]Rχ
iχjχk ,

[δvivjvkvl]R → [δvivjvkvl]R + ([δvivjvk]Rχ
l + 3 perms.) + ([δvivj]Rχ

kχl + 5 perms.)

+ ([δvi]Rχ
jχkχl + 3 perms.) + [δ]Rχ

iχjχkχl .

One way to write renormalized quantities satisfying the above in terms of the non-
renormalized fields is

[δ]R = δ +Oδ , (6.80)

[δvi]R = [δ]R[v
i]R +Oi

vδ ,

[δvivj]R = [δvi]R[v
j]R + [δvj]R[v

i]R − [δ]R[v
i]R[v

j]R +Oij
v2δ ,

[δvivjvk]R = ([δvivj]R[v
k]R + 2 perms.)− 2

3
([δvi]R[v

j]R[v
k]R + 2 perms.)

+
1

3
([δ]R[v

ivj]R[v
k]R + 2 perms.)− 1

3
([δvi]R[v

jvk]R + 2 perms.) +Oijk
v3δ ,

[δvivjvkvl]R = ([δvivjvk]R[v
l]R + 3 perms.)− 1

2
([δvi]R[v

jvkvl]R + 3 perms.)

− ([δvivj]R[v
k]R[v

l]R + 5 perms.) +
1

2
([δvi]R[v

jvk]R[v
l]R + 11 perms.)

+
1

2
([δ]R[v

ivjvk]R[v
l]R + 3 perms.)− ([δ]R[v

ivj]R[v
kvl]R + 2 perms.) +Oijkl

v4δ .

The above expressions were determined by imposing the correct transformation law
Eq. (6.79) and having the correct limit to Eq. (6.78) when δ → 1. The expression
for [δvivjvk]R is not uniquely determined by these constraints, but the difference is
immaterial; any other definitions for [δvivjvk]R differ by Galilean invariant terms,
in terms of free EFT coefficients, which vanish when δ → 1.

Now, we can combine the above expressions to get the terms in Eq. (6.68) relevant
for redshift space distortions. Specifically, we write

[πi1vi2 · · · vin ]R ≡ [ρvi1vi2 · · · vin ]R = ρ̄([vi1vi2 · · · vin ]R + [δvi1vi2 · · · vin ]R) (6.81)

to define the renormalized quantities involving πi. After doing that, we find it more
convenient to expand the above expressions Eqs. (6.78) and (6.80) in terms of the
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non-renormalized fields and write

[δ]R = δ +Oδ , (6.82)

[πi]R = πi + viOρ +Oi
π ,

[πivj]R = πivj + vivjOρ + viOj
π + vjOi

π +Oij
πv ,

[πivjvk]R = πivjvk + vivjvkOρ + (vivjOk
π + 2 perms.)

+(viOjk
πv + 2 perms.) +Oijk

πv2 ,

[πivjvkvl]R = πivjvkvl + vivjvkvlOρ + (vivjvkOl
π + 3 perms.)

+(vivjOkl
πv + 5 perms.) + (viOjkl

πv2 + 3 perms.) +Oijkl
πv3 ,

One can show that all of the Oπvn tensors above (which are all Galilean scalars) can
be written in terms of δ, Oδ, the Ovn , and the Ovnδ. Explicitly, we have

Oρ = ρ̄Oδ , Oi
π = ρ̄

(
(1 + δ +Oδ)Oi

v +Oi
vδ

)
, (6.83)

Oij
πv = ρ̄

[
(1 + δ +Oδ)Oi

vOj
v +Oi

vOj
vδ +Oj

vOi
vδ +Oij

v2 +Oij
v2δ

]
, (6.84)

Oijk
πv2 = ρ̄

[
(1 + δ +Oδ)Oi

vOj
vOk

v +Oijk
v3 +Oijk

v3δ (6.85)

+Oi
v

(
Ojk
v2 +Ojk

v2δ

)
+Oj

v

(
Oki
v2 +Oki

v2δ

)
+Ok

v

(
Oij
v2 +Oij

v2δ

)
+Oi

vOj
vOk

vδ +Oj
vOk

vOi
vδ +Ok

vOi
vOj

vδ −
1

3
Oij
v2Ok

vδ −
1

3
Ojk
v2Oi

vδ −
1

3
Oki
v2Oj

vδ

]
,

and

Oijkl
πv3 = ρ̄

[
(1 + δ +Oδ)

(
Oi
vOj

vOk
vOl

v −Oij
v2Okl

v2 −Oik
v2Ojl

v2 −Oil
v2Ojk

v2

)
(6.86)

+Oijkl
v4 +Oijkl

v4δ − 1

2
Oijk
v3 Ol

vδ −
1

2
Oijl
v3Ok

vδ −
1

2
Oikl
v3 Oj

vδ −
1

2
Ojkl
v3 Oi

vδ

+

(
Oi
v

6

(
Ojkl
v3 +Ojkl

v3δ −
1

3
Ojk
v2Ol

vδ −
1

3
Ojl
v2Ok

vδ −
1

3
Okl
v2Oj

vδ

)

+
Oi
vOj

v

4

(
Okl
v2 +Okl

v2δ

)
+

1

6
Oi
vOj

vOk
vOl

vδ + 23 perms. of {i, j, k, l}
)]

.

We note that the counterterms above associated with contact operators are in
general local-in-space [147]. This can be seen by considering two operators σ1(x⃗)
and σ2(x⃗). In the EFT, the ambiguity in the product σ(x⃗) ≡ σ1(x⃗)σ2(x⃗) comes from
the fact that σ̃(x⃗) ≡ σ1(x⃗+δx⃗)σ2(x⃗) is just as good of a definition as σ(x⃗) as long as
|δx⃗| is below the EFT length cutoff. The two definitions differ by higher derivatives
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of the original σ1 and σ2 fields. Thus, the origin of the non-locally-contributing
counterterms in [πi]R is not from the fact that it is a contact operator, but rather
from the equations of motion Eq. (6.19) and the definition Eq. (6.18).

An important point about Eq. (6.82) is keeping track of how lower-order coun-
terterms must enter higher-order renormalized products in order to preserve Galilean
invariance. To renormalize the contact operators in Eq. (6.68), we simply replace
all of them with the corresponding renormalized operators in Eq. (6.82). This leads
us to the renormalized redshift space overdensity [δr]R which for renormalization up
to the one-loop bispectrum we can write as

[δr]R(k⃗, ẑ, a) = δr(k⃗, ẑ, a) + δ
(1)
r,ct(k⃗, ẑ, a) + δ

(2)
r,ct(k⃗, ẑ, a) + δ(1)r,ϵ (k⃗, ẑ, a) + δ(2)r,ϵ (k⃗, ẑ, a) ,

(6.87)
where the subscript ct denotes the response counterterms, and ϵ denotes the stochastic
(and semi-stochastic) counterterms. Assuming the time dependence needed to can-
cel UV loop contributions, we have

δ
(1)
r,ct(k⃗, ẑ, a) = D(a)3δ̃

(1)
r,ct(k⃗, ẑ) , δ

(2)
r,ct(k⃗, ẑ, a) = D(a)4δ̃

(2)
r,ct(k⃗, ẑ) ,

δ(1)r,ϵ (k⃗, ẑ, a) = D(a)2δ̃(1)r,ϵ (k⃗, ẑ) , and δ(2)r,ϵ (k⃗, ẑ, a) = D(a)3δ̃(2)r,ϵ (k⃗, ẑ) ,
(6.88)

where we use the tilde to denote the appropriate time-independent factor.
Given the results of Sec. 6.4.1 for dark-matter renormalization, the linear terms

in Eq. (6.68), δ and πi, are automatically renormalized by the stress tensor τ ij. As
can be seen in Eq. (6.82), though, we still need the explicit expression for Oρ and
Oi
π in terms of τ ij to use in higher product renormalizations. Explicitly, we have

Oρ = ρ̄ δτ , (6.89)

where δτ is the solution sourced by τ ij, Eq. (6.42). Then, given this, we can solve
for

Oi
π = πiτ − viOρ , (6.90)

where πiτ is the solution sourced by τ ij, Eq. (6.44). The counterterms Oπvn entering
the higher products are free functions of Galilean scalars and introduce new coun-
terterms in addition to those coming from τ ij. We give explicit expressions for the
redshift space counterterms relevant to this work in Secs. 6.5.4 and 6.5.5.
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6.5.3 IR-Limit Checks

Let us briefly pause to make some comments about the counterterm solutions
that we found in Sec. 6.4.1. A useful consistency check is to confirm that the
expressions have the correct IR behavior for their Galilean transformation types. In
perturbation theory, a Galilean scalar Σ (like δ or τ ij) satisfies

Σ(2)
∣∣
IR

= ∂iΣ
(1)∂iδ

(1)

∂2
, (6.91)

where we use the notation |IR to mean the leading term when the momentum of one
of the fields goes to zero, which is a straightforward generalization of [154, 155, 156],
for example. We can also find the IR behavior of the momentum counterterms
directly from Eq. (6.90), since we have πiτ = Oi

π + viOρ. Then since Oρ and Oi
π are

Galilean scalars, we must have

πiτ,(2)
∣∣
IR

= ∂jOi
π,(1)

∂jδ
(1)

∂2
+ ρ̄ vi(1)δ

(1)
τ , (6.92)

where we have used Eq. (6.89).
First, we point out that the stress tensor that we wrote down in Eqs. (6.53),

(6.54), and (6.55) is indeed a Galilean scalar, since

τ̃ ij∗,(2)
∣∣
IR

= ∂kτ̃
ij
∗,(1)

∂kδ̃
(1)

∂2
, (6.93)

for both the response and stochastic contributions, respectively ∗ = ct, ϵ. This is
of course by construction, since we introduced the flow terms as in [129] (with the
clarification in App. B.1.5 for the stochastic terms) specifically to make τ ij a Galilean
scalar.

Now we move on to the counterterm solutions for δ and πi sourced by τ ij. By
inspection, one can indeed see that

δ̃(2)∗
∣∣
IR

= ∂iδ̃
(1)
∗
∂iδ̃

(1)

∂2
, and π̃i∗,(2)

∣∣
IR

= ∂jπ̃
i
∗,(1)

∂j δ̃
(1)

∂2
+
∂iδ̃

(1)

∂2
δ̃(1)∗ , (6.94)

which are the correct equations in terms of all of the tilde fields. These are much
more nontrivial checks. In particular, going through the algebra to check these, one
can see how both the second-order stress tensors and the first-order stress tensors
plugged back into the equations of motion combine to give the correct answer.

One can also see this in another way. Following [156], we can start with the linear
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equation of motion and introduce all of the non-linear leading IR terms directly into
the equation of motion. For example, focusing on the counterterm solutions, we
have the linear equation

δ̈(1)∗ + 2Hδ̇(1)∗ − 3

2
ΩmH

2δ(1)∗ =
1

a2ρ̄
∂i∂jτ

ij
∗,(1) . (6.95)

Then, the equation of motion for the leading IR piece of the second-order field is(
δ̈(2)∗ + 2Hδ̇(2)∗ − 3

2
ΩmH

2δ(2)∗

) ∣∣∣
IR

= (6.96)

=
1

a2ρ̄
∂i∂jτ

ij
∗,(2)
∣∣
IR

− a−1(v̇i∂iδ
(1)
∗ + 2vi∂iδ̇

(1)
∗ +Hvi∂iδ

(1)
∗ ) .

This way, one can see the contribution coming from the IR part of τ ij∗,(2), and the
part coming from plugging the linear solution δ(1)∗ back into the equation of motion.
Indeed, one can show that the solution to Eq. (6.96) for δ(2)∗ is given by Eq. (6.94).

6.5.4 Redshift Space Counterterms: Response Terms

We now write down the explicit response counterterms (up to second order and
number of derivatives discussed above Eq. (6.53), which is the same in real space
and redshift space) needed to renormalize the product operators in Eq. (6.68). We
start with [πivj]R. Since Oρ and Oi

π are already known from Eqs. (6.89) and (6.90),
we only need Oij

πv, which we can expand as

Oij
πv,(0) = (aHf)2ρ̄

D2

kNL
2 δijc

πv
DM,0 , (6.97)

Oij
πv,(1) = (aHf)2ρ̄

D3

kNL
2

(
cπvDM,1

∂i∂j δ̃
(1)

∂2
+ cπvDM,3δij δ̃

(1)

)
, (6.98)
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and

Oij
πv,(2) = (aHf)2ρ̄

D4

kNL
2

(
cπvDM,1

∂k∂i∂j δ̃
(1)

∂2
∂kδ̃

(1)

∂2
+ cπvDM,3δij∂kδ̃

(1)∂kδ̃
(1)

∂2
(6.99)

+cπvDM,2

∂i∂j δ̃
(2)

∂2
− cπvDM,2

∂k∂i∂j δ̃
(1)

∂2
∂kδ̃

(1)

∂2
+ cπvDM,4δij δ̃

(2) − cπvDM,4δij∂kδ̃
(1)∂kδ̃

(1)

∂2

+cπvDM,5

∂i∂j δ̃
(1)

∂2
δ̃(1) + cπvDM,6

∂i∂kδ̃
(1)

∂2
∂k∂j δ̃

(1)

∂2
+ cπvDM,7δij δ̃

(1)δ̃(1)

)
.

We have arrived at this list of counterterms using the same procedure as in Sec. 6.4.2.
The only difference is that we now allow a constant term, which did not contribute
through the stress tensor because there are derivatives acting on it. Next we move to
[πivjvk]R. Since we are only going up to second order, and because it is not possible
to make a Galilean scalar of the form Oijk

πv2 at the order of fields and derivatives that
we need, no new counterterms are needed, although the term viOjk

πv still contributes.
The situation is similar for [πivjvkvl]R. For the same reasons, only the term vivjOkl

πv

contributes, and so again, no new counterterms are needed.
We can now build the response counterterm kernels F r,ct

1 and F r,ct
2 , which are

defined explicitly in App. B.1.7. We have found that the parameters c1, c2, c6,
and cπvDM,0 are degenerate in these expressions, so we have set them to zero in the
following. For the first-order kernel, we have

F r,ct
1 (k⃗; ẑ) =− k2

18kNL
2

(
2c3 + 3f(2c3 + 3fcπvDM,3)(k̂ · ẑ)2+ 9f 2cπvDM,1(k̂ · ẑ)4

)
,(6.100)

while for the second-order kernel we have

F r,ct
2 (k⃗1, k⃗2; ẑ) =

11∑
i=1

αDM
i eF2

i (k⃗1, k⃗2; ẑ) , (6.101)

with

αDM
i = {c3, c4, c5, c7, cπvDM,1, c

πv
DM,2, c

πv
DM,3, c

πv
DM,4, c

πv
DM,5, c

πv
DM,6, c

πv
DM,7} , (6.102)

where the basis functions eF2
i are defined, and the explicit UV matching to SPT

loops is given, in App. B.1.7.
This brings us to one of the main results of this chapter. The UV limit of Br

411
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contains a term

Br
411

∣∣
UV

⊃ 2(c5 − c3)

99

f(k21 − k22)
2(k21 + k22)(k1µ1 + k2µ2)

2

kNL
2k21k

2
2k

2
3

P11(k1)P11(k2)

+ 2 perms. ,
(6.103)

where we choose to write the bispectrum using the variables (k1, k2, k3, µ1, µ2), the
coefficients c3 and c5 are given in Eq. (B.37), and here and elsewhere, µi ≡ ẑ · k̂i.
This should be compared to P11(k1)P11(k2)/(k

2
1k

2
2)+ 2 perms. in Eq. (B.35) for dark

matter in real space. The fact that Eq. (6.103) contains an explicit factor of 1/k23
is a new development, novel to redshift space. 11 A term like this can only appear
as a counterterm in the bispectrum, through Br,ct

411 (expressions for the counterterm
solutions and which loops they renormalize are given in App. B.1.7), because of
the appearance of the differential operator ∂i∂j∂k/∂2 acting on two fields in π̃ict,(2)
in Eq. (6.49), and thus proves the necessity of the new non-locally-contributing
counterterm. Indeed, the expression for F r,ct

2 in Eq. (6.101) and the values of c3 and
c5 given in Eq. (B.37) explicitly cancels the UV contribution in Eq. (6.103).

To see how this kind of term can be generated from the counterterms, let us
consider some example counterterms and try to reproduce the form of Eq. (6.103).
Given that there is a factor P11(k1)P11(k2) upstairs, this term should come from a
contraction like

⟨δ(1)(x⃗1)δ(1)(x⃗2)δ(2)r,ct(x⃗3)⟩ , (6.104)

and, since there is a single factor of f , it must come from

δ
(2)
r,ct(x⃗3) ∼ f ẑiẑj∂iπ̃

j
ct,(2)(x⃗3) , (6.105)

so let us consider the various contributions to π̃ict,(2) from Eq. (6.49). First of all,
only ∂j τ̃

ij
ct,(2) and the term with ∂i∂j∂k/∂

2 have a chance of giving a factor of 1/k23
because they contain a 1/∂2 acting on two fields whose sum of momenta is −k⃗3.
However, it cannot come from ∂j τ̃

ij
ct,(2) because in the only term that had a chance,

11The reader may notice that if one were to use µ3 as one of the angle variables in Eq. (6.103),
the factor (k1µ1+k2µ2)

2 = k23µ
2
3 in the numerator would cancel the factor of k23 in the denominator.

In this case, the novel feature of the expression would be that there is a factor of µ2
3 upstairs without

an accompanying k23.
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τ ijct,(2) ∼ c2∂i∂j δ̃
(2)/∂2, the 1/∂2 is canceled after being hit by ∂j. So we must have

δ
(2)
r,ct(x⃗3) ∼ f ẑiẑj∂i

∂j∂k∂l
∂2

(
τ̃ klct,(2)(x⃗3) +

∂kδ̃
(1)(x⃗3)

∂2
∂mτ̃

lm
ct,(1)(x⃗3)

)
. (6.106)

Even still, some terms in the expression for τ̃ klct,(2) in Eq. (6.54), like ∂k∂lδ̃(2)/∂2 and
those proportional to δkl, will not give what we want when plugged into Eq. (6.106),
since again, the 1/∂2 gets canceled. However, many will. Consider the term propor-
tional to c6 in Eq. (6.54). This gives

δ
(2)
r,ct(x⃗3) ∼ f ẑiẑj∂i

∂j∂k∂l
∂2

(
∂k∂mδ̃

(1)(x⃗3)

∂2
∂m∂lδ̃

(1)(x⃗3)

∂2

)
, (6.107)

which in Fourier space, contains the form Eq. (6.103) that we desired. This and
similar terms, like c3 and c5 that appear in Eq. (6.103), are the origin of the 1/k23

in Eq. (6.103), and we have pinpointed that it is due to the differential operator
∂i∂j∂k/∂

2 appearing in the solution for πi and being contracted in an isotropy-
breaking way (i.e. with ẑ). In terms of the basis eF2

i that we use, the new non-
locally-contributing counterterm enters in eF2

1 and eF2
3 in Eq. (B.51) and originates

from the bias basis function eK2
7 in Eq. (B.101).

As a final point, although we have freedom in defining the various operators in
the second-order stress tensor Eq. (6.54), notice that the new term ∂i∂j∂kτ̃

jk
ct,(2)/∂

2

appears with a fixed coefficient relative to ∂j τ̃ ijct,(2) in Eq. (6.49). This is important to
preserve Galilean invariance, and in fact it is not possible to match the UV structure
of the loops if the relative coefficient is made different, because Galilean invariance
would be broken. Overall, we find that for the renormalizations of P r

13 and Br
411 at

one loop, the expressions given above give a total of 15 free coefficients, 11 of which
are independent, and all 11 of those are needed to match the UV parts of the loops.

6.5.5 Redshift Space Counterterms: Stochastic Terms

The stochastic terms are the final step in fully renormalizing the one-loop power
spectrum and bispectrum of dark matter in redshift space, and we follow the same
logic as the previous sections. As in Sec. 6.5.4, we start with [πivj]R. Similar to
the case in Sec. 6.4.2, the only explicit counterterms that we have to add, for our
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purposes, are

Oij
πv,(1) = (aHf)2ρ̄

D2

kNL
2 ϵ
ij
4 ,

Oij
πv,(2) = (aHf)2ρ̄

D3

kNL
2

(
∂kϵ

ij
4

∂kδ̃
(1)

∂2
+ ϵijkl5

∂k∂lδ̃
(1)

∂2

)
.

(6.108)

The contractions of the stochastic fields should be expanded as in Eqs. (6.56) and
(6.57). For dark-matter renormalization, expansion up to k0 suffices because there
are two derivatives acting on Oij

πv in Eq. (6.68) already. Because we include all
possible tensor structures in contractions of the stochastic fields, Eq. (6.108) is
clearly the most general expression we can have up to second order that obeys the
equivalence principle. Again, we find that the UV matching is no longer possible
if the coefficients in Eq. (6.52) are modified, showing the importance of correctly
including the terms from the dark-matter stress tensor. Additionally, as a followup
to the discussion for real space, it is now the case in redshift space that UV matching
is not possible if the numerical coefficients of δ(2)ϵ in Eq. (6.51) are modified (i.e.
Galilean invariance is broken). As mentioned in Sec. 6.4.3, the reason that changing
the coefficients in δ

(2)
ϵ in real space did not ruin UV matching was due to the fact

that the IR terms simply did not contribute because of invariance of B(I),ϵ
321 (k1, k2, k3)

under permutations of (k⃗1, k⃗2, k⃗3).
Additionally, new functional forms appear in the UV limits of Br,(I)

321 and Br
222

which can only be captured by the new terms ∂i∂j∂kτ̃ jkϵ,(2)/∂
2 (for reasons similar to

those in the discussion near Eq. (6.103)) and ∂i∂j∂kτ̃ jkϵ,(1)/∂
2 − ∂j τ̃

ij
ϵ,(1) (which is zero

for the response terms) coming from the momentum-density renormalization. In
particular, the UV limits of Br,(I)

321 and Br
222 contain terms, for example, of the form

B
r,(I)
321

∣∣
UV

⊃ β1f
3k1µ1k

2
2µ

2
2(k1µ1 + k2µ2)

2

k21k
2
2k

2
3

(
k1µ1k

2
2(k

2
1 − k22 + k23) (6.109)

+k2µ2(k
2
2 − k23)(k

2
1 − k22 − k23)

)
P11(k1) + 2 perms. ,

and

Br
222

∣∣
UV

⊃ β2f
5k21µ

2
1k

2
2µ

2
2(k1µ1 + k2µ2)

2 ((k1µ1 + k2µ2)
2 + k23(µ

2
1 + µ2

2))

k23
, (6.110)

for some cutoff-dependent (but momentum independent) parameters β1 and β2.
Again, these differ from the real-space expressions in Eqs. (B.39) and (B.40) because
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they are proportional to an overall 1/k23. For Br,(I)
321 , the reason is exactly the same

as the one given in Sec. 6.5.4 for Br
411, specifically the differential operator ∂i∂j∂k/∂2

in Eq. (6.52) applied to two fields whose momenta add up to −k⃗3. For Br
222, the

explanation is slightly different, since the counterterm Br,ϵ
222 (expressions for the

counterterm solutions and which loops they renormalize are given in App. B.1.7)
is made from the contraction of first-order stochastic fields. In this case, the 1/k23

comes from the fact that ∂i∂j∂kτ̃ jkϵ,(1)/∂
2−∂j τ̃ ijϵ,(1) is non-zero for the stochastic terms,

as explained below Eq. (6.58). In both cases, the difference comes because isotropy is
broken in redshift space and indices can be contracted with the line-of-sight direction
ẑ.

Because dark-matter renormalization of the stochastic terms starts at O(k4),
there are more independent counterterms than we will find for biased tracers later.
For the sake of space, we do not write their explicit expressions in this chapter.
However, the expressions, along with the values of the EFT coefficients that match
the UV limits of stochastic loops, can be found in the accompanying Mathematica file
of [2]. We write the general formulas, which match the notation of the Mathematica
file, here for reference. For the power spectrum and bispectrum counterterms, we
write

P r,ϵ
22 (k, k̂ · ẑ) =

1

n̄DM

5∑
i=1

cStDM,r,ie
(22)
DM,r,i(k, k̂ · ẑ) , (6.111)

B̄
r,(I),ϵ
321 (k⃗1, k⃗2, k⃗3; ẑ) =

1 + f(k̂1 · ẑ)2
n̄DM

P11(k1)
19∑
i=1

cStDM,r,ie
St
DM,r,i(k⃗1, k⃗2, k⃗3; ẑ) ,

Br,ϵ
222(k⃗1, k⃗2, k⃗3; ẑ) =

1

n̄2
DM

10∑
i=1

c
(222)
DM,r,ie

(222)
DM,r,i(k⃗1, k⃗2, k⃗3; ẑ) ,

where B̄r,(I),ϵ
321 is defined analogously to Eq. (6.158) and n̄DM ∼ kNL

3 is the number
density of regions of linear size kNL

−1 with δ ∼ 1. Overall, for P r,ϵ
22 and B

r,(I),ϵ
321 , we

find 19 free parameters, all of which are needed to match the UV limits of the loops,
and for Br,ϵ

222, we find 10 free parameters, all of which are needed to match the UV
limit of the loop.
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6.6 Biased Tracers in Redshift Space

6.6.1 General Formulas

We start with the general equations needed for the one-loop bispectrum of biased
tracers in redshift space (ignoring EFT counterterms for now, which we will return
to in Sec. 6.6.3), which are up to fourth order in perturbations. The overdensity of
biased tracers in redshift space, δr,h is given by

δr,h(k⃗, ẑ) = δh(k⃗) +

∫
d3x e−ik⃗·x⃗

(
exp

[
−i(ẑ · k⃗)

aH
(ẑ · v⃗(x⃗))

]
− 1

)
(1 + δh(x⃗)) ,

(6.112)
where δh is the tracer overdensity in real space defined by δh(x⃗)−⟨δh(x⃗)⟩ = (ρh(x⃗)−
ρ̄h)/ρ̄h, where ρh(x⃗) is the tracer density, and ρ̄h ≡ ⟨ρh(x⃗)⟩ is the background tracer
density. In Sec. 6.6.2 we give our explicit bias expansion for δh, which will not satisfy
⟨δh(x⃗)⟩ = 0. This means that in Eq. (6.112) we should replace δh → δh−⟨δh⟩, which
we choose to do explicitly in the renormalized [δh]R in Sec. 6.6.3. Also, there is no
velocity bias at leading order in derivatives, i.e. v⃗h = v⃗ where v⃗ is the dark matter
velocity. In configuration space this becomes

δr,h = δh −
ẑiẑj

aHρ̄h
∂iπ

j
h +

ẑiẑj ẑkẑl

2(aH)2ρ̄h
∂i∂j(π

k
hv

l) (6.113)

−
∏6

a=1 ẑ
ia

3!(aH)3ρ̄h
∂i1∂i2∂i3(π

i4
h v

i5vi6) +

∏8
a=1 ẑ

ia

4!(aH)4ρ̄h
∂i1∂i2∂i3∂i4(π

i5
h v

i6vi7vi8) + . . . ,

where the tracer momentum density πih is defined by

πih ≡ ρ̄h(1 + δh)v
i . (6.114)

As always, we expand in perturbations

δr,h(k⃗, ẑ, a) = δ
(1)
r,h(k⃗, ẑ, a) + δ

(2)
r,h(k⃗, ẑ, a) + δ

(3)
r,h(k⃗, ẑ, a) + δ

(4)
r,h(k⃗, ẑ, a) + . . . (6.115)

and define the redshift space kernels Kr,h
n by

δ
(1)
r,h(k⃗, ẑ, a) = D(a)Kr,h

1 (k⃗; ẑ)δ̃
(1)

k⃗
,

δ
(n)
r,h (k⃗, ẑ, a) = D(a)n

∫ k⃗

k⃗1,...,⃗kn

Kr,h
n (k⃗1, . . . , k⃗n; ẑ)δ̃

(1)

k⃗1
· · · δ̃(1)

k⃗n
,

(6.116)

154



6.6. Biased Tracers in Redshift Space

for n ≥ 2. The power spectrum P r,h and bispectrum Br,h are defined by

⟨
2∏
i=1

δr,h(k⃗i, ẑ, a)⟩ = (2π)3δD(k⃗1 + k⃗2)P
r,h(k1, k̂1 · ẑ, a) , (6.117)

⟨
3∏
i=1

δr,h(k⃗i, ẑ, a)⟩ = (2π)3δD(k⃗1 + k⃗2 + k⃗3)B
r,h(k1, k2, k3, k̂1 · ẑ, k̂2 · ẑ, a) .

We write the total one-loop power spectrum as

P r,h
1-loop tot.(k, k̂·ẑ, a) = D(a)2P r,h

11 (k, k̂·ẑ)+D(a)4(P r,h
22 (k, k̂·ẑ)+P r,h

13 (k, k̂·ẑ)) , (6.118)

where
P r,h
11 (k, k̂ · ẑ) = Kr,h

1 (k⃗; ẑ)Kr,h
1 (−k⃗; ẑ)P11(k) , (6.119)

and

P r,h
22 (k, k̂ · ẑ) = 2

∫
q⃗

Kr,h
2 (q⃗, k⃗ − q⃗; ẑ)2P11(q)P11(|⃗k − q⃗|) ,

P r,h
13 (k, k̂ · ẑ) = 6P11(k)K

r,h
1 (k⃗, ẑ)

∫
q⃗

Kr,h
3 (q⃗,−q⃗, k⃗; ẑ)P11(q) .

(6.120)

The total one-loop bispectrum is

Br,h
1-loop tot. = D(a)4Br,h

211 +D(a)6
(
Br,h

222 +B
r,h,(I)
321 +B

r,h,(II)
321 +Br,h

411

)
, (6.121)

where here and below we suppress the argument (k1, k2, k3, k̂1·ẑ, k̂2·ẑ) of the bispectra
terms to remove clutter. The tree-level bispectrum is

Br,h
211 = 2Kr,h

1 (k⃗1; ẑ)K
r,h
1 (k⃗2; ẑ)K

r,h
2 (k⃗1, k⃗2; ẑ)P11(k1)P11(k2) + 2 perms. , (6.122)
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and the one-loop contributions are

Br,h
222 = 8

∫
q⃗

P11(q)P11(|⃗k2 − q⃗|)P11(|⃗k1 + q⃗|) (6.123)

×Kr,h
2 (−q⃗, k⃗1 + q⃗; ẑ)Kr,h

2 (k⃗1 + q⃗, k⃗2 − q⃗; ẑ)Kr,h
2 (k⃗2 − q⃗, q⃗; ẑ) ,

B
r,h,(I)
321 = 6P11(k1)K

r,h
1 (k⃗1; ẑ)

∫
q⃗

P11(q)P11(|⃗k2 − q⃗|)

×Kr,h
3 (−q⃗,−k⃗2 + q⃗,−k⃗1; ẑ)Kr,h

2 (q⃗, k⃗2 − q⃗; ẑ) + 5 perms. ,

B
r,h,(II)
321 = 6P11(k1)P11(k2)K

r,h
1 (k⃗1; ẑ)K

r,h
2 (k⃗1, k⃗2; ẑ)

×
∫
q⃗

P11(q)K
r,h
3 (k⃗2, q⃗,−q⃗; ẑ) + 5 perms. ,

Br,h
411 = 12P11(k1)P11(k2)K

r,h
1 (k⃗1; ẑ)K

r,h
1 (k⃗2; ẑ)

×
∫
q⃗

P11(q)K
r,h
4 (q⃗,−q⃗,−k⃗1,−k⃗2; ẑ) + 2 perms. .

For details on how to evaluate the above integrals, see App. B.2.

6.6.2 Bias Expansion to Fourth Order

With the general expressions for tracers in redshift space in hand, we turn next
to the bias expansion, which is the missing piece from Eq. (6.113). For notational
convenience, we define all of the perturbations, kernels, power spectra, and bispectra
for tracers in real space using the notation in Sec. 6.6.1, but with subscripts or
superscripts ‘r, h’ replaced by ‘h.’ From Eq. (6.113), we see that the tracer quantities
in real space can be obtained from the respective quantities in redshift space by
setting f = 0.

As has been previously laid out in [129], by the equivalence principle the tracer
overdensity δh can only depend on second derivatives of the gravitational potential
and first derivatives of the velocity field, as well as higher derivative and stochastic
terms. Additionally, since the tracer overdensity depends on these fields in a non-
local-in-time way, we integrate over time along the fluid element x⃗fl. In summary
we can schematically write the tracer overdensity as

δh(x⃗, t) =

∫ t

dt′H(t′)fh

(
∂i∂jΦ(x⃗fl, t

′), ∂iv
j(x⃗fl, t

′),
∂ixfl
kM

, ϵ(x⃗fl, t
′), t′

) ∣∣∣∣∣
x⃗fl=x⃗fl(x⃗,t,t′)

,(6.124)
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where fh is some complicated function describing tracer clustering, x⃗fl is given by

x⃗fl(x⃗, t, t
′) = x⃗+

∫ t′

t

dt′′

a(t′′)
v⃗(x⃗fl(x⃗, t, t

′′), t′′) , (6.125)

and kM is the scale controlling the clustering of the tracer. 12

As has been subsequently shown in [131, 132], using the approach of [136] (i.e.
defining linear combinations of the dark-matter fields) still results in functional
degeneracies, and so we will build our bias expansion straight from the contractions
of the underlying fields and systematically remove degeneracies in a second step.
For the remainder of this subsection we will only focus on the lowest-derivative,
non-stochastic, real-space, bias terms and we include higher-derivative real-space
and redshift-space EFT counterterms and stochastic terms in Secs. 6.6.3 and 6.6.4.

To make sure we include all possible operators, we consider all possible scalar
contractions of ∂i∂jΦ and ∂iv

j. With O representing any scalar of Galilean trans-
formations and rotations, such as δ, ∂ivi, ∂i∂jΦ∂i∂jΦ, etc., we have the general
expansion

δh(x⃗, t) =
∑
O

∫ t

dt′H(t′)cO(t, t
′)O(x⃗fl(x⃗, t, t

′), t′) , (6.126)

and we give the full list of the operators O needed to go to fourth order in fields in
Eq. (B.78). The cO(t, t′) are incalculable (within the EFT) time kernels describing
the non-locality in time. We then Taylor expand the operators evaluated at x⃗fl
around x⃗. Going up to order N (for this work we are interested in N = 4), and
assuming growing mode solutions, an operator Om starting at m-th order has Taylor
expansion

Om(x⃗fl(x⃗, t, t
′), t′)

∣∣∣
N
=

N∑
α=m

(
D(t′)

D(t)

)α( N∑
n=α

C(n)
Om,α−(m−1)(x⃗, t)

)
, (6.127)

where the notation |N means expansion up to and including N -th order in fields,
the C(n)

Om,i
are all n-th order in fields, and the index i labels different descendants of

Om at order n. The Taylor expansion in the fluid element up to fourth order for
general operators O is derived in App. B.3.2. Furthermore, given that in the above
equation, the full t′ dependence is isolated in powers of the growth factor, we can

12This is to distinguish it from kNL, which is the scale controlling dark-matter clustering. How-
ever, for simplicity in this chapter, we let kM = kNL. The difference is easily restored if desired.
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symbolically do the time integrals in Eq. (6.126), allowing us to define

cOm,α−(m−1)(t) ≡
∫ t

dt′H(t′)cOm(t, t
′)

(
D(t′)

D(t)

)α
, (6.128)

and therefore the sum Eq. (6.126) becomes

δh(x⃗, t)
∣∣∣
N
=
∑
Om

N∑
α=m

cOm,α−(m−1)(t)

(
N∑
n=α

C(n)
Om,α−(m−1)(x⃗, t)

)
, (6.129)

up to order N .
Doing this for all operators allowed by the equivalence principle Eq. (B.78), we

obtain Eq. (B.84). However this expansion is overcomplete, as the C(n)
O,i are not

linearly independent. A full list of degeneracies is given in Eq. (B.86). We then
obtain the final bias expansion up to fourth order

δh(x⃗, t) = b1

(
C(1)
δ,1(x⃗, t) + C(2)

δ,1(x⃗, t) + C(3)
δ,1(x⃗, t) + C(4)

δ,1(x⃗, t)
)

(6.130)

+b2

(
C(2)
δ,2(x⃗, t) + C(3)

δ,2(x⃗, t) + C(4)
δ,2(x⃗, t)

)
+ b3

(
C(3)
δ,3(x⃗, t) + C(4)

δ,3(x⃗, t)
)

+b4 C(4)
δ,4(x⃗, t) + b5

(
C(2)

δ2,1(x⃗, t) + C(3)

δ2,1(x⃗, t) + C(4)

δ2,1(x⃗, t)
)

+b6

(
C(3)

δ2,2(x⃗, t) + C(4)

δ2,2(x⃗, t)
)
+ b7C(4)

δ2,3(x⃗, t) + b8

(
C(3)

r2,2(x⃗, t) + C(4)

r2,2(x⃗, t)
)

+b9C(4)

r2,3(x⃗, t) + b10

(
C(3)

δ3,1(x⃗, t) + C(4)

δ3,1(x⃗, t)
)
+ b11C(4)

r3,2(x⃗, t)

+b12C(4)

δ3,2(x⃗, t) + b13C(4)

r2δ,2(x⃗, t) + b14C(4)

δ4,1(x⃗, t) + b15C(4)

δr3,1(x⃗, t) ,

which through the procedure defined above, is the minimal set of linearly inde-
pendent functions for the bias expansion up to fourth order. This parametrization
is the same as the one used in the data analysis in Chs. 7 and 8. The operators
up to third order are the same as in the basis of [131, 132], except that we use
C(3)

r2,2 = C(3)

s2,2 +
1
3
C(3)

δ2,2, as it was easier to generalize. The new fourth order C(4)
O,i

are explicitly given in App. B.3.4, and expressions for C(n)
O,i for n ≤ 3 can be found

in [131, 132]. In this way, our expression Eq. (6.130) extends the so-called basis
of descendants to fourth order. The dark-matter kernels are obtained by setting
b1 = b2 = b3 = b4 = 1, with all of the other bias parameters equal to zero. A bias
expansion to fourth order in real space was also given in [157, 158], and has the
same number of bias parameters as Eq. (6.130).

The procedure described above ensures that we include all possible operators,
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including those related to non-locality in time. However, it is interesting to compare
the basis of functions in Eq. (6.130) to what one would get assuming a strictly local-
in-time expansion, which in Eq. (6.126) corresponds to setting cO(t, t′) = cO(t)δD(t−
t′)/H(t) and not including any convective derivatives in the set of operators O
included. As we show explicitly in App. B.3.3, up to fourth order, the two expansions
are mathematically equivalent. 13

In terms of the bias parameters in Eq. (6.130), we have the following dependencies
of perturbative contributions

P r,h
11 [b1] , P

r,h
13 [b1, b3, b8] , P

r,h
22 [b1, b2, b5] , B

r,h,(I)
321 [b1, b2, b3, b5, b6, b8, b10] ,

Br,h
211[b1, b2, b5] , B

r,h,(II)
321 [b1, b2, b3, b5, b8] , B

r,h
411[b1, . . . , b11] , B

r,h
222[b1, b2, b5] ,

(6.132)

where
P r,h
11 (k, k̂ · ẑ) = (b1 + f(k̂ · ẑ)2)2P11(k) , (6.133)

is the famous Kaiser result from linear theory, for example. In general, we have the
following dependancies of the kernels on the bias parameters

Kr,h
1 [b1] , K

r,h
2 [b1, b2, b5] , K

r,h
3 [b1, b2, b3, b5, b6, b8, b10], and Kr,h

4 [b1, . . . , b15] . (6.134)

Notice that the diagrams P r,h
13 , Br,h,(II)

321 , andBr,h
411 depend on less bias parameters than

the kernels in Eq. (6.134) would suggest. This happens because, in the particular
momentum configuration of the kernels that enter the loops in Eqs. (6.120) and
(6.123), some bias parameters can be removed with bias redefinitions. Let us explain
this in detail.

To the order that we work in this chapter, we have

⟨δh(x⃗)⟩ ≈ ⟨δ(2)h (x⃗)⟩ =
∫
q⃗

Kh
2 (q⃗,−q⃗)P11(q) =

−b1 + b2 + b5
2π2

∫
dq q2P11(q) , (6.135)

13We disagree with some references, including [130, 157], which have claimed that the local-in-
time expansion in terms of ∂i∂jΦ and ∂iv

j is not sufficient as a fourth-order basis. For example,
they mention a term that they write as tr(Π[1]Π[3]) which they claim cannot be written in the
local-in-time basis. However, we explicitly find that, in terms of the basis of descendants that we
use in this work,

tr(Π[1]Π[3]) = −21

8
C(4)

r2,3 −
17

6
C(4)

r3,2 +
1925

16
C(4)

δ,4 (6.131)

+
441

64
C(4)

r2δ,2 +
51

16
C(4)

r3δ,1 −
15015

128
C(4)

δ2,3 +
1729

16
C(4)

δ3,2 −
12681

128
C(4)

δ4,1 .

Because we find the basis of descendants equivalent to the local-in-time basis, this means that
tr(Π[1]Π[3]) can be written in the local-in-time basis (which by definition is also local in space).
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which as mentioned below in Sec. 6.6.3, we will explicitly subtract when renormaliz-
ing δh. We also note that since number and momentum are not conserved for tracers,
the loops P r,h

13 , Br,h
411, and B

r,h,(II)
321 start at k0 (as opposed to k2 for dark matter) as

k → 0. As described in [159, 136], this is best understood as the renormalization of
lower-order bias parameters. We explicitly find that the redefinitions

b1 → b1+
13b1 + 34b2 − 47b3 + 42b5 − 110b6 − 82b8 − 63b10

42π2

∫
dq q2P11(q) , (6.136)

b2 → b2 −
1

1260π2

(
− 469b1 − 96b2 − 1099b3 + 1664b4 − 1260b6 + 3554b7 − 2520b8

+ 5150b9 + 6489b11 + 1890b12 + 5691b13 + 2205b15
) ∫

dq q2P11(q) ,

(6.137)

and

b5 → b5 +
1

8820π2

(
− 1001b1 + 3876b2 + 1729b3 − 4604b4 + 5460b5 + 14280b6

− 34214b7 − 7140b8 − 7250b9 + 13230b10 + 17451b11 − 56070b12

− 1911b13 − 26460b14 + 6615b15
) ∫

dq q2P11(q) ,

(6.138)

absorb the k0 UV limits of these loops. After these redefinitions, b12, b14, and b15

are eliminated from our observables. Additionally, once the k0 pieces are removed
from the terms proportional to b7 and b13 in particular, these two operators become
degenerate, and so b13 can also be set to zero.

6.6.3 Renormalization of Biased Tracers in Redshift Space

In some ways, renormalization of biased tracers is more straightforward than
dark matter because there are no equations of motion to solve, one simply writes
all of the terms relevant for the final expressions. On top of this, we express the
contact operators of redshift-space distortions in terms of the long-wavelength fields.
We start directly with the renormalized operators that enter redshift space (the same
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as Eq. (6.82) but with ρ̄→ ρ̄h and δ → δh)

[δh]R = δh +Oδh , (6.139)

[πih]R = ρhv
i + viOρh +Oi

πh
,

[πihv
j]R = ρhv

ivj + vivjOρh + viOj
πh

+ vjOi
πh

+Oij
πhv

,

[πihv
jvk]R = ρhv

ivjvk + vivjvkOρh + (vivjOk
πh

+ 2 perms.)

+(viOjk
πhv

+ 2 perms.) +Oijk
πhv2

,

[πihv
jvkvl]R = ρhv

ivjvkvl + vivjvkvlOρh + (vivjvkOl
πh

+ 3 perms.)

+(vivjOkl
πhv

+ 5 perms.) + (viOjkl
πhv2

+ 3 perms.) +Oijkl
πhv3

,

where again, all of the O terms are Galilean scalars, and we specifically have
Oρh ≡ ρ̄hOδh , which is the higher-derivative halo bias or counterterms. Although πih
may seem to not be a composite operator, in terms of vi, it is given by the composite
expression Eq. (6.114), and so must also be renormalized. Note that we choose to
include the non-zero mean of δh in the renormalized [δh]R, so that Oδh ⊃ −⟨δh⟩. The
non-trivial step now is to understand how non-locally-contributing terms containing
the differential operator ∂i∂j∂k/∂2 in the renormalization of πi enter the renormal-
ization for biased tracers. In the dark-matter case, the form is dictated entirely by
having a local stress tensor τ ij and solving the equations of motion. However, biased
tracers do not have an explicit equation of motion from which to derive the form of
all of the counterterms.

To proceed, we write the renormalization of the tracer momentum density in
terms of the dark-matter momentum density, which we know from Sec. 6.4 and
contains the new non-locally-contributing counterterm. The term Oi

πh
in Eq. (6.139)

gives the counterterms that we explicitly add to the renormalized tracer density
[πih]R, so we would like to write that in terms of dark-matter quantities. By the
equivalence principle, we know that [129, 130, 133]

[vih − vi]R = Oi
∆v , (6.140)

where Oi
∆v is a higher-derivative Galilean scalar built of spatially-local products of

∂i∂jΦ and ∂ivj, that vanishes when the wavenumber of [vih−vi]R goes to zero. Now,
we recall that the renormalized velocity is given by [147]

[vi]R =
[πi]R
[ρ]R

+Oi
v,HD , (6.141)
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where Oi
v,HD are the standard higher-derivative Galilean scalar counterterms used

when defining the renormalized velocity of dark matter, which arise because vi is a
contact operator in terms of πi and ρ (for the same reason as described in Sec. 6.5.2).
Using an analogous expression to Eq. (6.141) for [vih]R, and plugging [vi]R and [vih]R

into Eq. (6.140) gives

[πih]R =
[ρh]R
[ρ]R

[πi]R + [ρh]R
(
Oi

∆v −Oi
vh,HD

+Oi
v,HD

)
, (6.142)

which using Eqs. (6.82) and (6.139) to plug in the expressions for [πi]R and [πih]R

implies

(ρh +Oρh)v
i +Oi

πh
=

[ρh]R
[ρ]R

(
(ρ+Oρ)v

i +Oi
π

)
+ [ρh]R

(
Oi

∆v −Oi
vh,HD

+Oi
v,HD

)
.

(6.143)

Finally, using ρ+Oρ = [ρ]R and ρh +Oρh = [ρh]R, we have

Oi
πh

= ρ̄h(1 + δh +Oδh)

( Oi
π

ρ̄(1 + δ +Oδ)
+Oi

∆v −Oi
vh,HD

+Oi
v,HD

)
. (6.144)

On the right-hand side of the above expression, Oi
π is already the solution for the

dark-matter momentum in terms of the local stress tensor (see Eqs. (6.90) and
(6.49)), and so contains the non-locally-contributing Green’s function. The other
terms Oi

∆v, Oi
vh,HD

, and Oi
v,HD, are local functions of the dark-matter fields, so Oi

π

is the only term with non-locally-contributing terms already at field level. Thus, we
have

Oi
πh

∣∣
NLC

ρ̄h
=

1 + δh +Oδh

1 + δ +Oδ

Oi
π

∣∣
NLC

ρ̄
, (6.145)

where O|NLC stands for the non-locally-contributing terms in O. Thus, we see
that, because of the equivalence principle and locality of the renormalization of
contact operators, the non-locally-contributing counterterms in [πih]R are determined
by those in [πi]R (and the ratio of renormalized densities [δ]R and [δh]R).

We now specialize to the order relevant to this chapter. The non-locally-contributing
counterterms start at second order in fields in Oi

π, so we have

Oi
πh,(2)

∣∣
NLC

ρ̄h
=

Oi
π,(2)

∣∣
NLC

ρ̄
+ . . . , (6.146)

where the . . . above stand for higher order terms (note that we have also left off
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the constant contribution ⟨δh⟩ from Oδh since ⟨δh⟩ counts as two powers of δ(1),
as can be seen from Eq. (6.135)). Then, since it is actually the ratios Oi

π/ρ̄ for
dark matter and Oi

πh
/ρ̄h for tracers that enters the renormalization of the redshift-

space overdensity (as can be seen from Eqs. (6.68) and (6.113)), this means that
the relevant EFT coefficients for dark matter and tracers are actually equal at this
order. This fact has some intriguing consequences. First, measurement of this
quantity in galaxy clustering data is a direct measurement of the underlying dark-
matter properties. In fact, one can also imagine using dark-matter simulations
directly to set expectations for the size of this parameter, since it is unaffected by the
bias. Any mismatch between the measured value and the value expected from dark
matter would point to a violation of the equivalence principle or locality. Second,
since this EFT coefficient is the same for all tracers, the common value should enter
any analysis of multiple tracers or sky patches at the same redshift, thus reducing
the number of overall parameters of the theory. Finally, the same parameter will
enter any lensing analysis (which only depends on the overall mass distribution,
dominated by dark matter), thus again reducing the number of parameters of the
theory and providing interesting physical consistency checks. We leave exploration
of these exciting topics to future work.

6.6.4 Biased Tracers in Redshift Space Counterterms

We can now write down the most general local-in-space counterterms in a de-
rivative expansion of ∂i∂jΦ and ∂ivj, up to second order, that obey the symmetries
of the problem, which are rotation and Galilean invariance. We focus on the first
few orders in derivatives, which, because number and momentum of galaxies is not
conserved, is O(k2P11) for P13, O(k2P 2

11) for Br,h
411 and B

r,h,(II)
321 , O(k0) and O(k2)

for P r,h
22 , O(k0) and O(k2) for Br,h

222, and O(k0P11) and O(k2P11) for Br,h,(I)
321 . The

O(k0P11) in P r,h
13 and O(k0P 2

11) in Br,h
411 and Br,h,(II)

321 are taken care of by shifts in the
bias parameters in Sec. 6.6.2.

For the response terms, we include the counterterms

kNL
2Oρh

ρ̄h
= D3ch1∂

2δ̃(1) +D4

(
ch1∂i∂

2δ̃(1)
∂iδ̃

(1)

∂2
+ ch2∂

2δ̃(2) − ch2∂i∂
2δ̃(1)

∂iδ̃
(1)

∂2

+ ch3∂
2(δ̃(1)δ̃(1)) + ch4∂

2

(
∂i∂j δ̃

(1)

∂2
∂i∂j δ̃

(1)

∂2

)
+ ch5∂iδ̃

(1)∂iδ̃
(1)

)
,

(6.147)
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kNL
2Oi

πh

ρ̄haHf
= D3cπ1∂iδ̃

(1) +D4

(
cπ1∂j∂iδ̃

(1)∂j δ̃
(1)

∂2
+ cπ2∂iδ̃

(2) − cπ2∂j∂iδ̃
(1)∂j δ̃

(1)

∂2
(6.148)

+ cπ3∂i(δ̃
(1)δ̃(1)) + cπ4∂i

(
∂j∂kδ̃

(1)

∂2
∂j∂kδ̃

(1)

∂2

)
+ cπ5

∂i∂j∂k
∂2

(
∂j∂lδ̃

(1)

∂2
∂l∂kδ̃

(1)

∂2
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,

and

kNL
2Oij

πhv

ρ̄h(aHf)2
= D2δijc

πv
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(
cπv1

∂i∂j δ̃
(1)
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+ cπv3 δij δ̃

(1)

)
+D4
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(1)∂kδ̃

(1)
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− cπv2 ∂k

∂i∂j δ̃
(1)

∂2
∂kδ̃

(1)

∂2
+ cπv4 δij δ̃

(2)

− cπv4 δij∂kδ̃
(1)∂kδ̃

(1)

∂2
+ cπv5 δ̃

(1)∂i∂j δ̃
(1)

∂2
+ cπv6

∂i∂kδ̃
(1)

∂2
∂k∂j δ̃

(1)

∂2
+ cπv7 δij δ̃

(1)δ̃(1)

)
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(6.149)

We cannot write down any terms in Oijk
πhv2

or Oijkl
πhv3

that are Galilean scalars and
contribute at the order that we work. In addition to the terms explicitly written
above, we also need to include the terms in Eq. (6.139) that are inherited from the
Galilean transformation properties. The ones that contribute to the order that we
work are viOρh , viOj

πh
+ vjOi

πh
, (viOjk

πhv
+ 2 perms.), and (vivjOkl

πhv
+ 5 perms.).

Also, notice that the last two terms just mentioned here are only present because
we allow a constant piece in Oij

πhv
.

We also point out the presence of the new non-locally-contributing counterterm
proportional to cπ5 , which is included with a free coefficient following the argument in
Sec. 6.6.3 and is indeed needed to match the UV limit of Br,h

411, for example. 14 A nice
check of Eq. (6.146) is to consider the UV matching with SPT loops, and compare
the matching of coefficients for the non-locally-contributing terms in Oi

πh
/ρ̄h for

biased tracers and Oi
π/ρ̄ for dark matter. For biased tracers this comes from cπ5 ,

and for dark matter this comes from c1, c2, c3, c5, and c6, as mentioned under
Eq. (6.63). Specifically, decomposing the dark-matter terms in Eq. (6.54) into the
biased tracer basis in Eq. (6.148), we find that Oi

π,(2)|NLC/ρ̄ = Oi
πh,(2)

|NLC/ρ̄h implies
cπ5 = (2/99)(2c1 − c2 + c3 − c5 − c6), which is indeed true for the UV matching that
we found in Eqs. (B.102) and (B.37).

14Even though cπ5 is determined by the dark-matter value, this is still an unknown number for
the sake of galaxy-clustering data analysis, which justifies the choice in Chs. 7 and 8 to treat it as
a free parameter.

164



6.6. Biased Tracers in Redshift Space

For the stochastic terms, we include the counterterms

kNL
2Oρh

ρ̄h
= D2ϵ1 +D3

(
∂iϵ1

∂iδ̃
(1)

∂2
+ ϵij3

∂i∂j δ̃
(1)

∂2
(6.150)
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)
,

kNL
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ρ̄haHf
= D2ϵi6 +D3

(
∂jϵ

i
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∂j δ̃
(1)

∂2
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+ϵijkl9

∂j∂k∂lδ̃
(1)

∂2
+
∂i∂j∂k
∂2

(
ϵjl13
∂l∂kδ̃

(1)

∂2

))
,

and

kNL
2Oij

πhv

ρ̄h(aHf)2
= D2ϵij10 +D3

(
∂kϵ

ij
10

∂kδ̃
(1)

∂2
+ ϵijkl12

∂k∂lδ̃
(1)

∂2

)
. (6.152)

In addition to the terms explicitly written above, we also need to include the terms
in Eq. (6.139) that are inherited from the Galilean transformation properties. The
ones that contribute to the order that we work are viOρh , viOj

πh
+ vjOi

πh
, (viOjk

πhv
+

2 perms.). The correlations of the stochastic fields ϵij...n are computed analogously
to those in Sec. 6.4.2, but expanded to the appropriate order in k to match the
terms that we are renormalizing. Again, we point out the presence of the new
non-locally-contributing counterterm containing ϵjl13 which has the form discussed in
Sec. 6.6.3 and is indeed needed to match the UV of Br,h,(I)

321 . Note also that above
we have included the flow terms so that we have the correct IR limit Eq. (6.91)
for Galilean scalars. These were obtained in the same way as in Sec. 6.4.2, which
is a generalization of [129] (with the clarification in App. B.1.5 for the stochastic
terms) to different tensor structures. The above list of counterterms is the full set of
independent terms with given tensor structures (at the order in fields and derivatives
that we consider) that are Galilean scalars so that the theory satisfies the equivalence
principle, and therefore it is the minimal complete set one can consider.

Explicitly, the above leads to the following forms of the kernels and contractions.
Quantities and contributions to observables are defined in App. B.4.1. Starting with
the response terms, we have

Kr,h,ct
1 (k⃗; ẑ) =

k2

kNL
2

(
−ch1 +

(
cπ1 −

1

2
cπv3 f

)
f(k̂ · ẑ)2 − 1

2
cπv1 f

2(k̂ · ẑ)4
)
. (6.153)
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We expand Kr,h,ct
2 in the following way

Kr,h,ct
2 (k⃗1, k⃗2; ẑ) =

14∑
i=1

αi e
K2
i (k⃗1, k⃗2; ẑ) , (6.154)

with
αi = {ch1 , ch2 , ch3 , ch4 , ch5 , cπ1 , cπ5 , cπv1 , cπv2 , cπv3 , cπv4 , cπv5 , cπv6 , cπv7 } , (6.155)

and the basis elements eK2
i and UV matching are given in App. B.4.2, where one can

see that the new non-locally-contributing counterterm enters through the term cπ5e
K2
7

in Kr,h,ct
2 . We have found that the EFT parameters {cπ2 , cπ3 , cπ4 , cπv0 } are degenerate

with other EFT parameters included above for the expressions for Kr,h,ct
1 and Kr,h,ct

2 ;
this of course may not be true when including higher order kernels.

For the stochastic terms, we have (where n̄ is the tracer number density)

P r,h,ϵ
22 (k, k̂ · ẑ) = 1

n̄

(
cSt1 + cSt2

k2

kNL
2 + cSt3

k2

kNL
2f(k̂ · ẑ)2

)
, (6.156)

and

B
r,h,(I),ϵ
321 = B̄

r,h,(I),ϵ
321 (k⃗1, k⃗2, k⃗3; ẑ) + B̄

r,h,(I),ϵ
321 (k⃗3, k⃗1, k⃗2; ẑ) + B̄

r,h,(I),ϵ
321 (k⃗2, k⃗3, k⃗1; ẑ) ,

(6.157)
where we have defined

B̄
r,h,(I),ϵ
321 (k⃗1, k⃗2, k⃗3; ẑ) = (6.158)

= ⟨δ̃(1)r,h(k⃗1, ẑ)δ̃
(1)
r,h,ϵ(k⃗2, ẑ)δ̃

(2)
r,h,ϵ(k⃗3, ẑ)⟩′ + ⟨δ̃(1)r,h(k⃗1, ẑ)δ̃

(1)
r,h,ϵ(k⃗3, ẑ)δ̃

(2)
r,h,ϵ(k⃗2, ẑ)⟩′ .

Then, we have

B̄
r,h,(I),ϵ
321 (k⃗1, k⃗2, k⃗3; ẑ) =

b1 + f(k̂1 · ẑ)2
n̄

P11(k1)
13∑
i=1

cSti e
St
i (k⃗1, k⃗2, k⃗3; ẑ) , (6.159)

with eSt3 = 0; the basis elements eSti and UV matching is given in App. B.4.3. In
particular, the new non-locally-contributing counterterm enters through eSt13. 15 Re-

15Note that Eq. (6.146) also in principle implies a relationship between the non-locally-
contributing stochastic terms of dark matter (in Eq. (6.52)) and tracers (ϵij13 in Eq. (6.151)).
However, since the dark-matter non-linear term is contracted with other dark-matter stochastic
terms and the tracer non-linear term is contracted with other tracer stochastic terms, the resulting
EFT coefficients after contractions will in general be different. Non-trivial relationships may res-
ult at higher orders in perturbation theory, for example when the non-locally-contributing terms
contract with themselves.
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call that the renormalization of Br,h
222 involves three-point functions of the stochastic

fields, which can in general be independent from the two-point functions (but they
can be related after assuming a Poisson distribution, which is a reasonable assump-
tion). We find

Br,h,ϵ
222 =

1

n̄2

(
c
(222)
1 +

1

kNL
2

(
c
(222)
2 (k21 + k22 + k23) + c

(222)
5 ẑiẑj

(
ki1k

j
2 + ki1k

j
3 + ki2k

j
3

)))
,

(6.160)
which indeed is the most general function up to O(k2), symmetric in {k⃗1, k⃗2, k⃗3},
that can be made out of contractions of these vectors, when momentum conservation
k⃗1 + k⃗2 + k⃗3 = 0 is considered.

For convenience, we quote here the dependencies of the counterterm quantities
on biases and EFT parameters

P r,h,ct
13 [b1, c

h
1 , c

π
1 , c

πv
1 , c

πv
3 ] , P r,h,ϵ
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St
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St
3 ] ,

B
r,h,(II),ct
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h
1 , c

π
1 , c

πv
1 , c

πv
3 ] , B

r,h,(I),ϵ
321 [b1, c

St
1 , c

St
2 , {cSti }i=4,...,13] ,

Br,h,ct
411 [b1, {chi }i=1,...,5, c

π
1 , c

π
5 , {cπvj }j=1,...,7] , Br,h,ϵ

222 [c
(222)
1 , c

(222)
2 , c

(222)
5 ] .

(6.161)

Thus, overall, to the order that we work in this chapter, we have 11 independent bias
parameters, 14 independent response counterterms, and 16 independent stochastic
counterterms. For a conversion from the parameters used here to those used in
PyBird, see App. B.4.4.
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7
Constraints: The BOSS Bispectrum
Analysis at One Loop from the
EFTofLSS

7.1 Summary

We analyze the BOSS power spectrum monopole and quadrupole, and the bis-
pectrum monopole and quadrupole data, using the predictions from the Effective
Field Theory of Large-Scale Structure (EFTofLSS). Specifically, we use the one
loop prediction for the power spectrum and the bispectrum monopole, and the tree
level for the bispectrum quadrupole. After validating our pipeline against numer-
ical simulations as well as checking for several internal consistencies, we apply it
to the observational data. We find that analyzing the bispectrum monopole to
higher wavenumbers thanks to the one-loop prediction, as well as the addition of
the tree-level quadrupole, significantly reduces the error bars with respect to our
original analysis of the power spectrum at one loop and bispectrum monopole at
tree level. After fixing the spectral tilt to Planck preferred value and using a Big
Bang Nucleosynthesis prior, we measure σ8 = 0.794± 0.037, h = 0.692± 0.011, and
Ωm = 0.311± 0.010 to about 4.7%, 1.6%, and 3.2%, at 68% CL, respectively. This
represents an error bar reduction with respect to the power spectrum-only analysis
of about 30%, 18%, and 13% respectively. Remarkably, the results are compatible
with the ones obtained with a power-spectrum-only analysis, showing the power of
the EFTofLSS in simultaneously predicting several observables. We find no tension
with Planck.
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7.2 Introduction, Main Results and Conclusion

The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) has mapped the
clustering of galaxies in the nearby Universe in an unprecedented amount and with
great accuracy [9]. Although BOSS’ survey volume is modest with respect to upcom-
ing experiments such as DESI [160] or Euclid [161], the BOSS data are remarkable as
they have been revealing a wealth of cosmological information from the large-scale
structure of the Universe.

In the last couple of years, the Effective Field Theory of Large-Scale Struc-
ture (EFTofLSS) prediction at one-loop order has been used to analyze the BOSS
Full Shape (FS) of the galaxy Power Spectrum (PS) [7, 142, 143], and Correlation
Function (CF) [162, 163]. The BOSS galaxy-clustering bispectrum monopole us-
ing the tree-level prediction was first analyzed in [7] (see [164] for a recent slight
generalization). See also [165, 166, 167] for other techniques and analysis using lin-
ear theory with higher multipoles. All ΛCDM cosmological parameters have been
measured from these data by only imposing a prior from Big Bang Nucleosynthesis
(BBN), reaching a remarkable, and perhaps surprising, precision on some of these.
For example, the present amount of matter, Ωm, and the Hubble constant (see
also [168, 169] for subsequent refinements) have error bars that are not far from
the ones obtained from the Cosmic Microwave Background (CMB) [24]. As we will
see in Ch. 10, for clustering and smooth quintessence models, limits on the dark
energy equation of state w parameter of ≲ 5% have been set using only late-time
measurements (see also [169]). This is again quite close to the ones obtained with
the CMB [24]. These measurements provide a new, CMB-independent, method for
determining the Hubble constant [7], resulting in a measurement that is comparable,
if not better, to the one based on the cosmic ladder [170, 171] and CMB. Therefore,
this tool has been used to shed light on how some models that were proposed to
alleviate the tension in the Hubble measurements (see e.g. [20]) between the CMB
and cosmic ladder [172, 173] (see also [174, 175]) actually perform.

Very recently, in [176], the one-loop EFTofLSS prediction for the bispectrum was
used to set the first and strong limits on primordial inflationary non-Gaussianities
from Large-Scale Structure (LSS) (see also [177, 178] for a contemporary and a
subsequent paper, where, once put together, the same shapes are constrained but
stopping at the tree-level EFTofLSS prediction, and so obtaining much weaker con-
straints for the same data). We obtained limits on three of the so-called fNL para-
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meters, f equil.
NL = 217 ± 297 , f orth.

NL = −64 ± 74 , f loc.
NL = 49 ± 36, at 68% confidence

level, which are predicted to be produced by some single-clock [179, 54] or multiple
fields [180, 181, 182, 183, 56] inflationary models. Perhaps quite surprisingly, those
constraints were already quite on par with the ones of the powerful CMB exper-
iment WMAP [184], though largely inferior to the more recent CMB experiment
Planck [60]. Significant limits from LSS on just f loc.

NL were obtained using the power
spectrum only, first in [185], using the so-called non-local bias [186, 187, 188], but
the analysis of [176] uses for the first time the bispectrum, obtaining much stronger
constraints using the data from the same experiments.

In this chapter we upgrade our original analysis of the one-loop power spectrum
monopole and quadrupole and tree-level bispectrum monopole [7], to include the full
one-loop bispectrum monopole and the tree-level bispectrum quadrupole. We scan
over all the ΛCDM parameters with BBN prior on the baryon abundance, Ωbh

2,
with the exception of the tilt, ns, that we fix to the Planck preferred value.

Our main results are summarized in Fig. 7.1, where we plot the posteriors on
the cosmological parameters that are effectively scanned. This analysis improves
the error bars on the ΛCDM parameters σ8, h, and Ωm with respect to the power
spectrum-only analysis by about 30%, 18%, and 13% respectively, achieving a pre-
cision of about 4.7%, 1.6%, and 3.2% at 68% CL, respectively. 1 Notice also that
the results improve significantly upon the ones obtained using instead the tree-level
prediction for the bispectrum monopole: in particular, σ8 is better determined by
about 30%. Naively, a 30% improvement corresponds to doubling the data volume of
the survey. As it can be seen in the same figure, the results are compatible with the
ones obtained with a power-spectrum-only analysis. We find no tension with Planck:
we measure σ8, h, and Ωm to values consistent at 0.3σ, 1.4σ, 0.5σ, respectively, with
the ones of Planck νΛCDM [24].

The chapter is organized as follows. In Sec. 7.3 we describe the data products
and the measurements we use. In Sec. 7.4 we describe the theory model including
the observational aspects. In Sec. 7.5, we present the likelihood we use to describe
the data. In Sec. 7.6, we provide some tests for our pipeline. Finally, in Sec. 7.7,
we provide some additional details about the main results. Technical aspects and
additional materials are relegated to the appendices.

1Here and in the rest of this work, we quote parameter constraints as the Bayesian 68% credible
interval from the one-dimensional marginalized posterior.
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Figure 7.1: Triangle plots, best-fit values, and relative 68%-credible intervals of base
cosmological parameters measured from the analysis of BOSS power spectrum multipoles
Pℓ, ℓ = 0, 2, at one-loop, bispectrum monopole B0 at tree or one-loop level, and bispectrum
quadrupole B2 at tree-level. Planck νΛCDM results are shown for comparison.

7.3 Data

BOSS DR12 LRG Sample. The main data sample analyzed in this work is the
SDSS-III BOSS DR12 luminous red galaxies (LRG) sample [9]. We use the BOSS
catalogs DR12 (v5) combined CMASS-LOWZ [189]. 2 To each galaxy we assign the
standard FKP weights for optimality together with the correction weights described
in [189] for BOSS data and in [190] for the patchy mocks. The inverse covariances

2Publicly available at https://data.sdss.org/sas/dr12/boss/lss/
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Figure 7.2: Measurements and best fits of bispectrum monopole B0 (top), power spectrum
multipoles Pℓ (bottom left), and bispectrum quadrupole B2 (bottom right) from BOSS
(points and error bars) and 2048 Patchy (grey regions) CMASS NGC sky. The bispectrum
is shown in bins ordered by their central values forming either an equilateral, isoceles, or
scalene triangle, shown in blue, orange, or green, respectively. The bin triangle sides (top
panel) are shown either by the bin central values (colored lines) or by their effective values
(grey points). The best fit (black points) is shown only for the scales analyzed. The relative
error bars (turquoise regions) are shown with the best fit residuals for comparison. While
only CMASS NGC is shown for clarity, the best fit depicted here is obtained fitting the
full combination Pℓ +B0 +B2 on all BOSS 4 skies.
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are corrected by the Hartlap factor to account for the finite number of mocks used in
their estimation [191]. In order to test our analysis pipeline, we will analyze the mean
over the 2048 Patchy mocks of CMASS NGC (hereafter referred as ‘Patchy’). We
will also make use of the Nseries mocks, which are full N -body simulations populated
with a Halo Occupation Distribution (HOD) model and selection function similar
to the one of BOSS CMASS NGC [9]. 3 We will analyze the mean of the 84 Nseries
realizations (hereafter referred as ‘Nseries’). All celestial coordinates are converted
to comoving distance assuming Ωfid

m = 0.310.

BOSS P+B Full-Shape Measurements. In this work, we analyze the full shape
of the power spectrum multipoles ℓ = 0, 2, and of the bispectrum monopole and
quadrupole (respectively abbreviated ‘Pℓ’, ‘B0’ and ‘B2’). Those measurements are
shown in Fig. 7.2 (together with the best fit from our theory model that we discuss
later). The estimator for the power spectrum is the standard ‘FKP’ estimator [192],
generalised to redshift space in [193, 194, 195]. The bispectrum is estimated using
the estimator outlined in [196] (see also [197, 198, 152, 199]). The measurements are
obtained using the code Rustico [196]. 4 For the power spectrum, we find excellent
agreement between the measurements from Rustico and Nbodykit [200]. 5 We use
Nbodykit to measure the window functions as described in [201], with consistent
normalization in the power spectrum as discussed in [202, 203, 204].

The configurations of the measurements are the following. We use a box of
side length Lbox = 3500 (2300)Mpch−1 for CMASS (LOWZ), with Piecewise Cubic
Spline (PCS) particle assignment scheme and grid interlacing as described in [205].
The grid is consisting of 5123 cells. The power spectrum is binned in ∆k ≃
0.01hMpc−1. Instead, we bin the bispectrum in ∆n = 12 (9) units of the fun-
damental frequency of the box kf for CMASS (LOWZ), starting from the bin
centered at nmin = 6 + ∆n/2, up to the one centered on nmax = 126 (69) − ∆n/2,
which correspond in frequencies to bins of size ∆k = 0.02154 (0.02459)hMpc−1,
with first and last bins centered on kmin = 0.0215 (0.029)hMpc−1 and kmax =

0.215 (0.176)hMpc−1, respectively. This choice of bin size is motivated to keep
the Hartlap factor at a value safely close to 1 to limit the effect from the bias of
the inverse covariance estimator. Given that we have 2048 patchy mocks at our dis-
posal to estimate the covariance, and, in our analysis, we will analyze 42 (36) k-bins

3Made available at https://www.ub.edu/bispectrum/page11.html
4https://github.com/hectorgil/Rustico
5https://github.com/bccp/nbodykit
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in Pℓ and 150 (62) triangle bins in B0, this makes for the Hartlap factor of about
0.91 (0.95) for CMASS (LOWZ). B2, as analyzed at tree-level, only adds 9 bins per
quadrupole (for both CMASS and LOWZ), which lead to the Hartlap factor of the
same order of about 0.9. Importantly, we keep all bins whose centers form a closed
triangle. Explicitly, we choose the following bins according to their centers ordered
as:

(n1, n2, n3) , n1, n2, n3 = nmin, nmin + dn, . . . , nmax ,

if n1 ≤ n2 ≤ n3 and n3 ≤ n1 + n2 .
(7.1)

It follows that there are several bins that contain fundamental triangles that are not
closed. How to properly account for them is discussed in Sec. 7.4.5.

7.4 Theory Model

Our model for the power spectrum multipoles Pℓ, ℓ = 0, 2, the bispectrum mono-
pole, B0, and the bispectrum quadrupole, B2, consists in the prediction of EFTofLSS
at one loop for Pℓ and B0, and at tree-level for B2. We also incorporate a number of
observational effects in our modeling to make contact with the measurements. The
loop integrals are evaluated using the techniques described in [206].

7.4.1 EFTofLSS at One Loop

Details for the one-loop power spectrum and bispectrum for halos in redshift
space P r,h and Br,h can be found in Ch. 6, but we summarize the dependence on
bias parameters and EFT parameters here for convenience. For the perturbation
theory contributions, we have

P r,h
11 [b1] , P r,h

13 [b1, b3, b8] , P r,h
22 [b1, b2, b5] ,

Br,h
211[b1, b2, b5] , B

r,h,(II)
321 [b1, b2, b3, b5, b8] , Br,h

411[b1, . . . , b11] ,

Br,h
222[b1, b2, b5] , B

r,h,(I)
321 [b1, b2, b3, b5, b6, b8, b10] ,

(7.2)

while for the counterterms, we have

P r,h,ct
13 [b1, ch,1, cπ,1, cπv,1, cπv,3] , P r,h,ϵ

22 [cSt1 , c
St
2 , c

St
3 ] ,

B
r,h,(II),ct
321 [b1, b2, b5, ch,1, cπ,1, cπv,1, cπv,3] , B

r,h,(I),ϵ
321 [b1, c

St
1 , c

St
2 , {cSti }i=4,...,13] ,

Br,h,ct
411 [b1, {ch,i}i=1,...,5, cπ,1, cπ,5, {cπv,j}j=1,...,7] , Br,h,ϵ

222 [c
(222)
1 , c

(222)
2 , c

(222)
5 ] .

(7.3)
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Notice that the diagrams P r,h
13 , Br,h,(II)

321 , and Br,h
411 depend on less biases than the

kernels in Eq. (6.134) would suggest. This is because, when considering the partic-
ular momentum-configuration of the kernels that enter the loop in Eqs. (6.120) and
(6.123), they are degenerate with EFT parameters.

To make contact with our measurements described in Sec. 7.3, what we analyze
in the data are various multipoles with respect to the line-of-sight ẑ. In particular,
we analyze the power-spectrum and bispectrum monopole and quadrupoles. The
power-spectrum multipoles are given by

P r,h
ℓ (k) =

2ℓ+ 1

2

∫ 1

−1

dµPℓ(µ)P r,h(k, µ) , (7.4)

where Pℓ are the Legendre polynomials, and µ = k̂ · ẑ. The bispectrum monopole is
the average over the line-of-sight angles [207, 199, 208] 6

Br,h
0 (k1, k2, k3) =

1

4π

∫ 1

−1

dµ1

∫ 2π

0

dϕBr,h(k1, k2, k3, µ1, µ2(µ1, ϕ)) , (7.5)

where µi = k̂i · ẑ, and explicitly, from the triangle conditions:

µ2(µ1, ϕ) = µ1k̂1 · k̂2 +
√

1− µ2
1

√
1− (k̂1 · k̂2)2 sinϕ , (7.6)

µ3(µ1, ϕ) = −k−1
3 (k1µ1 + k2µ2(µ1, ϕ)) . (7.7)

The expectation values of the estimator used by Rustico for the quadrupoles
are:

Br,h
(2,1)(k1, k2, k3) ≡

5

4π

∫ 1

−1

dµ1

∫ 2π

0

dϕP2(µ1)B
r,h(k1, k2, k3, µ1, µ2(µ1, ϕ)) , (7.8)

Br,h
(2,2)(k1, k2, k3) ≡

5

4π

∫ 1

−1

dµ1

∫ 2π

0

dϕP2(µ2(µ1, ϕ))B
r,h(k1, k2, k3, µ1, µ2(µ1, ϕ)) ,

Br,h
(2,3)(k1, k2, k3) ≡

5

4π

∫ 1

−1

dµ1

∫ 2π

0

dϕP2(µ3(µ1, ϕ))B
r,h(k1, k2, k3, µ1, µ2(µ1, ϕ)) .

We work directly in this basis of quadrupoles, that are linear combinations of the
B2m coefficients of the spherical-harmonics expansion defined in [207]. We note that
if only considering the bispectrum monopole, c(222)2 and c(222)5 become degenerate, so
we redefine c(222)2 → c

(222)
2 − c

(222)
5 /6 ( 7).

6We have corrected a factor of 1/(4π) in Eq. (14) of [208].
7When considering in addition the bispectrum quadrupole at one loop, this degeneracy breaks.
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7.4.2 IR-Resummation

The IR-resummation is a crucial effect to include in our theory model, in order to
correctly reproduce the BAO. For the power spectrum, we use the full resummation
of [209] as implemented in Pybird [169]. For the bispectrum instead we rely on
a wiggle-no wiggle approximation, following [210]. For the linear bispectrum, the
formula we implement is:

Br,h
211 = 2Kr,h

1 (k⃗1; ẑ)K
r,h
1 (k⃗2; ẑ)K

r,h
2 (k⃗1, k⃗2; ẑ)PLO(k1)PLO(k2) + 2 perms. , (7.9)

where
PLO(k) = Pnw(k) + (1 + k2Σ2

tot)e
−k2Σ2

totPw(k) . (7.10)

Here Pw(k) = P11(k)− Pnw(k), and Pnw(k) is the no-wiggle power spectrum, which
we obtain using the sine-transform algorithm described in [211] and detailed in [212].
Then Σ2

tot is defined by

Σ2
tot = − 2

15
f 2 δΣ2 +

(
1 +

1

3
f(2 + f)

)
Σ2 , (7.11)

Σ2 =
4π

3

∫ Λ

0

dq

(2π)3
Pnw(q) [1− j0(qxosc) + 2j2(qxosc)] , (7.12)

δΣ2 = 4π

∫ Λ

0

dq

(2π)3
Pnw(q)j2(qxosc) , (7.13)

where we choose Λ = 1hMpc−1 and xosc = 110Mpch−1, and jl are the spherical
Bessel functions. 8 For the loop, our choice is to only substitute the non-integrated
P11(k) with

PNLO(k) = Pnw(k) + e−k
2Σ2

totPw(k) , (7.14)

while for linear power spectra whose argument are being integrated, we use P11. We
discuss the goodness of this approximation in Sec. 7.6. Another method of BAO
damping for the tree-level bispectrum was given and tested on Patchy mocks in
[167].

8We have checked that changing Λ to 0.12hMpc−1 leads to insignificant differences in the
posteriors.
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7.4.3 Window Function

The power spectrum and bispectrum need to be convolved with the window
function of the survey. For the power spectrum, this is standard and does not present
numerical challenges. However, for the bispectrum this becomes more challenging.
Therefore, we resort to an approximation used in [213], which amounts to evaluating
the linear bispectrum with the windowed power spectrum. In formula, we have:

Br,h
211 = 2Kr,h

1 (k⃗1; ẑ)K
r,h
1 (k⃗2; ẑ)K

r,h
2 (k⃗1, k⃗2; ẑ)[W ∗ P11](k⃗1)[W ∗ P11](k⃗2) + 2 perms. ,

(7.15)
where [W ∗ P11](k⃗) =

∫
d3k′

(2π)3
W (k⃗ − k⃗′)P11(k⃗

′). Rather than projecting Eq. (7.15)
into multipoles, we project Eq. (7.15) as if there was no window function, and for
[W ∗ P11](k⃗) we use the following: for the monopole, we use W → W00 and, for the
quadrupole we use W → W22, where W00 and W22 are defined in [7]. Because the
window is a small effect, we do not apply it to the loop bispectrum. We discuss the
goodness of this approximation in Sec. 7.6.

7.4.4 Alcock-Paczynski Effect

To estimate the galaxy spectra from data, a reference cosmology is assumed to
transform the measured redshifts and celestial coordinates into three-dimensional
cartesian coordinates. The difference between the reference cosmology and the true
cosmology produces a geometrical distortion known as the Alcock-Paczynski (AP)
effect [214]. We introduce the transverse and parallel distortion parameters:

q⊥ =
DA(z)H0

Dref
A (z)Href

0

, q∥ =
Href(z)/Href

0

H(z)/H0

, (7.16)

where DA is the angular diameter distance, and the factors of H0 are there since
our wavenumbers are in units hMpc−1. In terms of these, the true wavenumber and
angle with the line of sight are related to the ones in the reference cosmology by:

k =
kref

q⊥

[
1 + (µref)2

(
1

F 2
− 1

)]1/2
, (7.17)

µ =
µref

F

[
1 + (µref)2

(
1

F 2
− 1

)]−1/2

,
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where F = q∥/q⊥. To match the measured power spectrum multipoles, we do the
following integral:

Pℓ(k
ref) =

2ℓ+ 1

2q∥q2⊥

∫ 1

−1

dµrefLℓ(µref)P (k(kref , µref), µ(µref)) . (7.18)

The formula for the bispectrum is:

B(ℓ,i)(k
ref
1 , kref2 , kref3 ) =

2ℓ+ 1

2q2∥q
4
⊥

∫ 1

−1

dµref
1

∫ 2π

0

dϕref

2π
B(k1, k2, k3, µ1, µ2, µ3)Pℓ(µi) .

(7.19)
For the bispectrum, we only apply the Alcock-Paczynski effect on the tree-level

part, as it is a small effect: we find that, within BOSS error bars (on Ωm), it is an
effect of at most ∼ 1σ, and accordingly, the change in χ2 is at most 1 if neglecting
it completely. Given the size of the loop terms and counterterms, it is thus safe to
neglect it there. We find that we can achieve sufficient numerical accuracy using
a nested trapezoidal rule with only 13 points in µ and 4 points in ϕ, after using
symmetries to restrict the integration domain to µ1 ∈ [0, 1], and ϕ ∈ [−π/2, π/2].

7.4.5 Binning

For the power spectrum, data are an average over spherical shells in momentum
space. The theoretical prediction needs therefore to be averaged over the funda-
mental modes of the chosen grid. Since our bins have many fundamental modes, in
practice we do an integral of the power spectrum over a bin, which is numerically
very simple. The effect of binning is anyway small for the power spectrum, with
respect to the error bars of our data and simulations.

For the bispectrum, we have an average over fundamental (closed) triangles in a
bin of width ∆k around a central triangle with sides k1, k2, k3. Especially for our
chosen bins with ∆k ≃ 0.02, it is important to take into account the binning effects
when comparing the theory to the data. The average should be done as a sum over
fundamental triangles:

Br,h
(ℓ,i),bin(k1, k2, k3) =

2ℓ+ 1

NT

∑
q⃗1∈k1

∑
q⃗2∈k2

∑
q⃗2∈k2

δK(q⃗1 + q⃗2 + q⃗3)B
r,h(q⃗1, q⃗2, q⃗3)Pℓ(µi) ,

(7.20)
and we note that, here and elsewhere, Br,h(q⃗1, q⃗2, q⃗3) is the full redshift-space bis-
pectrum, i.e. we have suppressed the dependence on ẑ for notational convenience.
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Here NT is the number of fundamental triangles in the bin, δK is the Kronecker
delta function, and the notation q⃗i ∈ ki means a sum over the fundamental modes
q⃗i for which ki − ∆k

2
≤ |q⃗i| < ki +

∆k
2

. Calculating such a sum is numerically very
challenging. However, since in each bin there are many fundamental triangles, we
expect that an integral approximation should work well. The only caveat is that
one needs to integrate only over the closed triangles. In particular, this is very im-
portant for bins such that k3 +∆k/2 > k1 + k2 −∆k (remember that our ordering
is k1 ≤ k2 ≤ k3), for which there are configurations of modes that do not form a
closed triangle in the bin.

Therefore, we implement the following formula:

Br,h
(ℓ,i),bin(k1, k2, k3) = (7.21)

=
2ℓ+ 1

VT

(
3∏
i=1

∫
Vi

d3qi
(2π)3

)
(2π)3δ

(3)
D (q⃗1 + q⃗2 + q⃗3)B

r,h(q⃗1, q⃗2, q⃗3)Pℓ(µi) ,

where

VT ≡
(

3∏
i=1

∫
Vi

d3qi
(2π)3

)
(2π)3δ

(3)
D (q⃗1 + q⃗2 + q⃗3) , (7.22)

and we used the notation∫
Vi

d3qi
(2π)3

=

∫
ki

dqi
2π2

q2i

∫
d2q̂i
4π

, where
∫
ki

≡
∫ ki+

∆k
2

ki−∆k
2

dqi . (7.23)

As shown in App. C.1, we can perform the angular integrals and find

Br,h
(ℓ,i),bin(k1, k2, k3) =

1

VT

∫
k1

dq1

∫
k2

dq2

∫
k3

dq3 q1q2q3
β (∆q)

8π4
Br,h

(ℓ,i)(q1, q2, q3) , (7.24)

VT =

∫
k1

dq1

∫
k2

dq2

∫
k3

dq3 q1q2q3
β (∆q)

8π4
, (7.25)

where β(∆q) = 1/2 if q1, q2, q3 form a folded triangle, β(∆q) = 1 for all other
(closed) triangles, and β(∆q) = 0 otherwise.

We apply only the binning in this way to the tree-level part. For efficient numer-
ical evaluation of the integrals in Eq. (7.24), we implement the bispectrum binning
as follow. For a given bin centered in (k1, k2, k3), we enforce that (q1, q2, q3) forms a
triangle by redefining the integration boundaries: q1 ∈ [k1 − ∆k/2, k1 + ∆k/2],
q2 ∈ [k2 − ∆k/2, k2 + ∆k/2], and q3 ∈ [|k1 − k2|, k1 + k2]. Whenever q3 can
not satisfy this triangle inequality, we drop this configuration. As such, we can
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drop the β(∆q) function inside the integral. We perform a change of variable
q3 → cos(θ12) ≡ (q23 − q21 − q22)/(2q1q2), such that the integral measure becomes
q1q2q3 dq1dq2dq3 → q21q

2
2 dq1dq2d cos(θ12), We then discretize the integration domain

in 6 evenly-spaced points in q1, 6 in q2, and 4 in cos(θ12). On each point of this grid,
we evaluate the 14 pieces of the tree-level part of the bispectrum. The binning integ-
rals are then performed with a nested trapezoidal rule over the grid. Given that the
AP integrals, Eq. (7.19), need to be performed for each of those evaluations, we limit
the number of evaluations by first looking for (and storing) the common triangles
of the discretized domains over all the bins we need to evaluate. For our 150 bins
in CMASS, this reduces the total number of evaluations by about a factor 1.5, from
6 · 6 · 4 · 150 = 21600 to 13782. After compilation of the integrand expressions going
in the AP integrals, we are able to evaluate the binned bispectrum in our Python
code with an overall runtime of ∼ 1 second on 1 CPU. The numerical precision of
such evaluation has been extensively tested, in particular against Monte-Carlo in-
tegrations, and is found to be under control for the data and simulations error bars
we analyze in this work.

The loop pieces and counterterms, that are small with respect to the linear term,
are instead evaluated on effective wavenumbers. 9 They are defined, as described
in [215], by the following averages:

keff,1 =
1

VT

∫
k1

dq1
2π

∫
k2

dq2
2π

∫
k3

dq3
2π

q1q2q3 β (∆q)min(q1, q2, q3) , (7.26)

keff,2 =
1

VT

∫
k1

dq1
2π

∫
k2

dq2
2π

∫
k3

dq3
2π

q1q2q3 β (∆q)med(q1, q2, q3) , (7.27)

keff,3 =
1

VT

∫
k1

dq1
2π

∫
k2

dq2
2π

∫
k3

dq3
2π

q1q2q3 β (∆q)max(q1, q2, q3) . (7.28)

As expected from the size of those terms and the size of the binning effect (∼ 1σ),
we have checked that properly binning the loop instead of evaluating them on these
effective wavenumbers lead to negligible shift in the minχ2 and in the posteriors for
the analyses presented in this work.

9We checked that binning the loop did not lead to appreciable different posteriors.
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7.5 Likelihood

To analyze the data, we start from a Gaussian likelihood, which is multiplied by
the prior to arrive at the Bayesian posterior P over cosmological and bias parameters:

−2 lnP = (Ti −Di)C
−1
ij (Tj −Dj)− 2 lnPpr , (7.29)

where Ti is the full vector of theory predictions in bin i, containing power spectrum
multipoles and bispectra, Di the corresponding data measurement in bin i, Cij is the
full covariance between bins i and j, and Ppr is a generic prior on the parameters.

Our theory model depends on cosmological and EFT parameters. It is the case
that many EFT parameters appear linearly in the theory model. Denoting them by
gα, we can write

Ti = gαT
α
G,i + TNG,i , (7.30)

where TαG,i and TNG,i depend non-linearly (that is, at least quadratically) on the other
cosmological parameters and three biases for each sky cut. Since we are interested
in the marginalized posteriors over cosmological parameters, it is very convenient to
do the analytical Gaussian integration over the gα. We will also choose a Gaussian
prior on them, with covariance σαβ and mean ĝα. 10 Collecting the powers of gα, we
can write the posterior in the following form:

−2 lnP = gαF2,αβgβ − 2gαF1,α + F0 , (7.31)

where the F ’s are defined as:

F2,αβ = TαG,iC
−1
ij T

β
G,j + σ−1

αβ , (7.32)

F1,α = −TαG,iC−1
ij (TNG,j −Dj) + σ−1

αβ ĝβ , (7.33)

F0 = (TNG,i −Di)C
−1
ij (TNG,j −Dj) + ĝασ

−1
αβ ĝβ − 2 lnΠ , (7.34)

where Π is a generic prior on the cosmological and bias parameters non analytically
marginalized. In other words, we assume that Ppr is a sum of a Gaussian prior over
the gα and a remaining prior on the other parameters. After integrating the gα, we
have the marginalized posterior:

−2 lnPmarg = −F1,αF
−1
2,αβF1,β + F0 + ln det

(
F2

2π

)
. (7.35)

10We only use ĝα ̸= 0 in one of the checks in Sec. 7.6.
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Prior. In our analysis, we vary the cosmological parameters ωcdm, h, and ln (1010As)

with a flat uninformative prior, while we use a Gaussian prior on ωb of mean
ωb,BBN = 0.02233 and standard deviation σBBN = 0.00036, motivated from Big-
Bang Nucleosynthesis (BBN) experiments [216]. We instead fix ns to the truth of
the simulations or to the Planck preferred value when analyzing the data [24]. When
analyzing the BOSS data, we also fix the neutrino to minimal mass following Planck
prescription. 11

The EFT parameters should instead be restricted to be O(1) numbers, for con-
sistency of the perturbative expansion. The EFTofLSS is an expansion in the size
of fluctuations and derivatives. Both of these are suppressed by a nonlinear scale
kNL ≃ kM ≃ 0.7hMpc−1, where kNL is the nonlinear scale for the matter field, and
kM is the typical wavenumber associated to galaxy size. However, it was recog-
nized in [144, 217] that terms involving expectation values of velocity fields, coming
from the transformation to redshift space, define a new scale, which we denote by
kNL,R ≃ kNL/

√
8. We therefore write down each operator in the EFT expansion

with either a kM or a kNL,R suppression, depending on its origin. We then use a
Gaussian prior of width 2 centered on 0 on all the EFT parameters that we ana-
lytically marginalize, with the following exception: on ch,1, cπ,1, cπv,1, and cSt2 , that
already appear in the power spectrum (see their definitions in Ch. 6), we put in-
stead a Gaussian prior of width 4 centered on 0, such that the prior is the same
as the ones used in our previous series of analyses with the power spectrum only
(see e.g. [7, 143, 162]). For the quadratic biases, we define the linear combinations
c2 = (b2+b5)/

√
2, c4 = (b2−b5)/

√
2, and we assign on them a Gaussian prior of width

2 centered on 0. Finally, for b1, which is positive definite, we use a lognormal prior
of mean 0.8 (since e0.8 = 2.23), and variance 0.8, such that [0, 3.4] is the 68% bound
for this prior on b1. For definiteness, in our prior, we take kNL = kM = 0.7hMpc−1

and n̄ = 4 · 10−4(Mpc/h)3.
When analyzing more than one sky, we can use the information that the bias and

EFT parameters should be the same at the same redshift, and their time evolution
is expected to be comparable to the growth factor to some small power. This allows
us to estimate the variation of b1 between CMASS or LOWZ effective redshifts,
to be about 20%. Therefore, in our multisky analyses the biases are correlated,
which, as explained in the following section, helps to mitigate prior volume effects.
In practice, let us consider the 4-sky analysis and the b1 parameters, which will be a

11As we describe later in Sec. 7.6, we add a linear prior on Ωm, h and b1 in order to mitigate
phase-space projection effects.
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vector (b(1)1 , b
(2)
1 , b

(3)
1 , b

(4)
1 ), with one b(i)1 for each sky. The prior on it is a multivariate

lognormal with correlation matrix:
1 ρ12 ρ13 ρ12ρ13

ρ12 1 ρ12ρ13 ρ13

ρ13 ρ12ρ13 1 ρ12

ρ12ρ13 ρ13 ρ12 1

 , (7.36)

where ρij = 1− ϵ2ij/2, and we choose ϵ12 = 0.1, ϵ13 = 0.2. This formula is motivated
by the fact that two variables distributed according to a bivariate normal with
correlation ρ, the standard deviation of the difference is ϵ =

√
2(1− ρ). Our choices

of ϵij then reflect that we expect the values of b1 to be different only by about
10% between NGC and SGC, given slightly different selection function, and only by
about 20% between CMASS and LOWZ, given the redshift evolution of b1. We use
the same correlation matrix for the Gaussian priors on all the quadruplets c2, c4 and
the gα parameters.

Posterior Sampling. Our analyses are performed using the Metropolis-Hastings
sampler as implemented in MontePython 3 [218], with the theory model evaluated
using CLASS [27] and PyBird. We declare our MCMC converged when the Gelman-
Rubin criterion [219] is ≤ 0.02. The plots and summary statistics are calculated
with the GetDist [220] package.

7.6 Pipeline Validation

For our analyses, we use the following scale cut: kmin = 0.01hMpc−1 for all
observables, kmax = 0.23hMpc−1 for Pℓ and B0, and kmax = 0.08hMpc−1 for B2, on
CMASS. For LOWZ instead, we use kmax = 0.20hMpc−1 for Pℓ and B0 , following [7].
We keep kmax = 0.08hMpc−1 for B2 on LOWZ. 12 In this section, we perform
multiple checks to validate our method at this scale cut.

12For comparison purpose, we sometimes fit B0 using the tree-level prediction instead. When
doing so, B0 is denoted Btree

0 (to distinguish from B1loop
0 ) and is fitted up to kmax = 0.08hMpc−1

for both CMASS and LOWZ.
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7.6.1 Measuring and Fixing Phase-Space Effects

Our likelihood has several EFT parameters on top of the cosmological paramet-
ers. Some of these appear in the likelihood in a Gaussian way, and we analytically
marginalize over them. Performing such a Gaussian integral corresponds to putting
these parameters to their best fit values, given all the other parameters and obser-
vational data. At this point, we are left with a likelihood which has a non-Gaussian
dependence on the EFT and the cosmological parameters.

Now, there is an interesting phenomenon that we would like to describe. Let
us analyze data that are generated with our theory model: the EFTofLSS plus
observational effects as described in Sec. 7.4. We refer to these as ‘synthetic’ data.
We generate these synthetic data by choosing the best fit EFT parameters that we
find by fitting the average of 2048 Patchy simulations, on the Patchy cosmology, so
that the resulting EFT and cosmological parameters are at realistic values. In this
case, the best fit has χ2 = 0 once we put flat priors on the EFT parameters, and we
should clearly recover the correct cosmological parameters. However, as it can be
seen from Fig. 7.3, in green, the sampled posteriors show biases in all 1D posteriors
of the cosmological parameters, and in particular in σ8 and Ωm. What is going on?

The first hypothesis is that there could be an error in our pipeline. This hypo-
thesis can be discarded by noticing that if we analyze the data with a covariance
that is about 100 times smaller, we recover the truth with exquisite precision (see
the blue curve in Fig. 7.3). So, we exclude this hypothesis.
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1 sky, ∼ 100V1sky -0.1 -0.14 -0.21 -0.2 -0.07 -0.23
1 sky, V1sky, adjust. 0.13 0.06 0.04 0.15 -0.04 0.08

4 skies, V4skies, adjust. 0.1 0. -0.05 0.07 -0.06 -0.01

Figure 7.3: Triangle plots of base cosmological parameters obtained fitting synthetic
data analyzed using a covariance with BOSS volume VBOSS or rescaled to a large volume
∼ 100VBOSS, with prior on the EFT parameters centered on their truth, or with phase-
space projection adjustment. Here the synthetic data are corresponding exactly to our
model Pℓ + B0 + B2 on the best fit of patchy. ‘1 sky’ or ‘4 skies’ correspond to CMASS
NGC or all BOSS skycuts, respectively. The grey lines in the triangle plots represent the
truth. We also show the relative deviations σproj/σstat on the base cosmological parameters
from the truth from those various analyses. In summary, the addition of a phase-space
correction prior to our likelihood allows us to recover unbiased mean in the 1D posteriors
of the cosmological parameters of interest.

σproj/σ
data
stat Ωm h σ8 ωcdm ln

(
1010As

)
S8

N
se

ri
es Pℓ -0.02 0.05 0.08 0.02 0.05 0.07

Pℓ +B0 -0.06 -0.03 -0.04 -0.08 0.03 -0.06
Pℓ +B0 +B2 -0.12 -0. -0.04 -0.11 0.04 -0.08

1
sk

y Pℓ -0.15 0.07 -0.11 -0.06 -0.08 -0.15
Pℓ +B0 0.07 0.06 0.09 0.11 0.02 0.1
Pℓ +B0 +B2 0.13 0.06 0.04 0.15 -0.04 0.08

4
sk

ie
s Pℓ -0.01 0.05 -0.03 0.02 -0.04 -0.03

Pℓ +B0 0.05 -0. 0.01 0.03 0.01 0.03
Pℓ +B0 +B2 0.1 0. -0.05 0.07 -0.06 -0.01

Table 7.1: Residual deviations σproj after phase-space projection adjustment measured
on synthetic data generated and fitted with our model Pℓ + B0 + B2 with truth given by
the best fits of Nseries, Patchy 1 sky, or Patchy 4 skies, relative to BOSS error bars σdata

stat .

Another reason for the offset of the green curve in Fig. 7.3 could be the prior
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on the EFT parameters. In fact, while on the synthetic data the EFT parameters
have some definite values (which are well within the priors), our Gaussian priors are
centered at zero, and so the true value of the EFT parameters are slightly disfavored
by the priors. We check if this can be the reason to the offset seen in the posteriors
of the cosmological parameters by sampling instead with priors centered around the
synthetic truth. We find that the resulting posteriors are close to previous results
(grey vs. green in Fig. 7.3), suggesting that the central value of the prior of the bias
parameters does not play a substantial role. This means that even if the truth is
the maximum likelihood point, the posteriors will not recover it.

Having excluded that the bias in the posteriors on synthetic data is due to an
error in our pipeline or due to our priors, we conclude that it must be due to
phase-space projection effects. In fact, if the posteriors of the EFT parameters are
effectively non-Gaussian (i.e. if the error bars are sufficiently large that the Taylor
expansion at second order around the maximum of the posterior is not accurate
enough to describe the actual posterior), then, upon marginalization, one can get
projection effects on the remaining parameters, which, in this case, are the cosmo-
logical ones, even if the maximum likelihood point is the truth. Given the large
number of EFT parameters, it is not so surprising that this might be the case. We
call this effect ‘phase space effect,’ but it is also known as ‘prior volume effect’ or
‘projection effect.’

We decide to fix this issue with the following procedure. As a measurement of
the phase-space effect, for all analyses in this work, we take the shift in the 1D
posteriors from the truth obtained fitting synthetic data with the same modeling
and covariance. We add a prior of the following form to the log-likelihood of
Pℓ +B0(+B2):

lnPph. sp. 1sky
pr = −18

(
b1
2

)
+ 8

(
Ωm

0.31

)
+ 14

(
h

0.68

)
, (7.37)

lnPph. sp. 4sky
pr = −48

(
b1
2

)
+ 32

(
Ωm

0.31

)
+ 48

(
h

0.68

)
,

respectively for 1 sky and 4 skies. 13 As such, upon marginalization, we recover

13When analyzing the power spectrum multipoles Pℓ alone, we put the following prior instead:

lnPph. sp. 1sky
pr = 2

(
b1
2

)
− 2

(
Ωm

0.31

)
, (7.38)

lnPph. sp. 4sky
pr = −4

(
b1
2

)
+ 10

(
Ωm

0.31

)
+ 14

(
h

0.68

)
.
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∆sys/σstat Ωm h σ8 ωcdm ln
(
1010As

)
S8

Pℓ +B0: base - w/ NNLO -0.03 -0.09 -0.03 -0.1 0.05 -0.04
Pℓ +B0: base - w/o B0 window 0.11 -0.05 0.01 0.05 -0.01 0.05
Pℓ +B0 +B2: base - w/o B0, B2 window 0.51 0.09 0.02 0.51 -0.25 0.19

Table 7.2: Relative shifts ∆sys/σstat on base cosmological parameters measured from
various modeling choices compared to our baseline: inclusion of the NNLO or removal of
the window function in the bispectrum.

unbiased 1D posteriors from the fit to the synthetic data (see the red curve in
Fig. 7.3 and also the associated table). More in detail, in Tab. 7.1, we show the
residual deviation from phase-space projection on the base cosmological parameters
measured from synthetic data. We see that for all data volume (either the one of
CMASS NGC or of all BOSS 4 skies) and cosmologies tested here (either the one
of Nseries or the one of Patchy), we find that the residual deviation are negligibly
small (≲ 0.15 or the error bars obtained with BOSS-volume covariance). Since
the synthetic data are close to the Patchy ones (and so to the data), and since
we expect the phase-space projection effects to be a slowly-varying function of the
cosmological and EFT parameters, we add the same phase-space-correcting prior to
the likelihood of the BOSS data.

7.6.2 Scale Cut from NNLO

A simulation-independent way to evaluate the theoretical error as a function of
kmax is to analyze the data by adding to the theory model a part of the next order
terms: for our one-loop model, this part consists in the next-to-next-to-leading-order
(NNLO) terms. Such a procedure was successfully applied to estimate the scale cut
for the CF [162]. Here we use the same technique. We add the following two-loop
counterterms to the EFTofLSS prediction at one-loop for the power spectrum:

PNNLO(k, µ) =
1

4
cr,4b

2
1µ

4 k4

k4NL,R

P11(k) +
1

4
cr,6b1µ

6 k4

k4NL,R

P11(k) , (7.39)
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and for the bispectrum:

BNNLO(k1, k2, k3, µ, ϕ) = 2cNNLO,1K
r,h
2 (k⃗1, k⃗2; ẑ)K

r,h
1 (k⃗2; ẑ)fµ

2
1

k41
k4NL,R

P11(k1)P11(k2)

+ cNNLO,2K
r,h
1 (k⃗1; ẑ)K

r,h
1 (k⃗2; ẑ)P11(k1)P11(k2)fµ3k3

(k21 + k22)

4k21k
2
2k

4
NL,R

× (7.40)

×
[
− 2k⃗1 · k⃗2(k31µ1 + k32µ2) + 2fµ1µ2µ3k1k2k3(k

2
1 + k22)

]
+ perm. ,

where kNL,R = kNL/
√
8, as discussed in Sec. 7.5. The prefactors cr,4, cr,6, cNNLO,1,

and cNNLO,2 are given a Gaussian prior centered on zero and of width 2. We then
analyze the data as a function of kmax, and determine the maximum wavenumber
by taking the largest kmax where the shift in all 1D posteriors of the cosmological
parameters with respect to the analysis without these terms is equal to 1/3 ·σ. This
would mean that our results would have become sensitive to these terms that we do
not fully compute, and so we need to analyze the data only up to this threshold. For
simplicity, rather than determining the kmax in this way, we check the effect of these
NNLO terms close to the kmax that we find in simulations, and check that the effect
of the NNLO terms is indeed not too large. The results are presented in Tab. 7.2.
We see that the effect is negligibly small, confirming what we find in simulations
next, i.e. that our scale cut is appropriate.

7.6.3 Tests of Additional Modeling Effects

Our implementation of the IR-resummation and of the window function is ap-
proximate, without a control parameter. We therefore check the accuracy of the two
implementations in the following way.

For the window function, the correctness of our approximation has been checked
in [221] for the monopole. In fact, as shown in the second line of Tab. 7.2, the
difference between the bispectrum computed with our approximation, and the one
where we apply no window is within 1/4 of the error bars obtained on all cosmological
parameters from the fit to BOSS data. For the quadrupole, the third line of Tab. 7.2
shows that the difference with applying no window is about 0.5σ on the posterior
of Ωm (while negligible for the other cosmological parameters). While this might
seem too large an effect to tolerate, one should keep in mind the following. Roughly
speaking, the correct window function should consist of applying 3/2 factors of W to
the bispectrum (i.e. one for each field). Applying no window therefore is a radical
negligence of all these factors, much worse than the approximation we do (which
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Figure 7.4: Triangle plots and relative 68%-credible intervals of base cosmological para-
meters measured from the Nseries and Patchy simulations analyzed using a covariance with
CMASS NGC volume. The grey lines in the triangle plots represent the simulation truth.

applies two factors of W ). We therefore believe that a more reliable estimate of the
error associated to our implementation of the window function for the quadrupole is
obtained by dividing the effect in Tab. 7.2 by a factor of 4. Even if our estimate were
to be wrong by a factor 2, this would make the effect safely negligible. It would be
interesting to compare our approach to an analysis using another estimator based
on tri-polar spherical harmonics (described in [165] and tested on Patchy mocks in
[167]) for which the window functions can be estimated on an equal footing, making
its application more straightforward.

Let us now discuss the goodness of our approximate implementation of the IR-
resummation of the bispectrum. It should be emphasized that the wiggle/no-wiggle
procedure is affected by several uncontrolled approximations (i.e. not controlled by
a small parameter, but numerically accidentally small) [140]. On top of those, our
formulas neglect the angle dependence of the IR-resummation, and, perhaps even
more quantitatively importantly, do not damp the oscillations in the power spectra
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σsim
sys /σ

data
stat Ωm h σ8 ωcdm ln

(
1010As

)
S8

Nseries Pℓ +B0 0.02 0.17 0.15 -0.03 0.17 0.17
Nseries Pℓ +B0 +B2 0.16 0.25 0.08 -0.09 0.08 0.16
Patchy Pℓ +B0 0.27 0.21 0.23 0.05 0.14 0.33
Patchy Pℓ +B0 +B2 0.31 0.2 0.07 0.09 0 0.2

Table 7.3: Report of systematic errors on base cosmological parameters measured from the
Nseries and Patchy simulations. The systematic error, reported relative to the BOSS error
bars σdata

stat , is defined as σsim
sys ≡ max(|mean − truth| − σsim

stat/
√
Nsim, 0). Here σsim

stat/
√
Nsim

represents the uncertainty from the simulation cosmic variance, which corresponds to about
0.15 or 0.03 in σdata

stat for Nsim = 84 Nseries or Nsim = 2048 Patchy realizations, respectively.

whose momenta are integrated in the loop integrals, as for example proposed in [210].
We checked that applying the damping for those power spectra leads to a negligible
(≲ 0.25) change in the χ2 when keeping all the parameters of the model fixed. We
therefore conclude that neglecting the IR-resummation on the ‘wiggly’ parts from
inside the loop integrals is accurate enough for BOSS data. We leave to future work
more careful inspection of the remaining approximations in our IR-resummation
scheme.

7.6.4 Tests against Simulations

We now test the accuracy of the model by comparing against N -body simulations
described in Sec. 7.3. This does not only test the effect of the theoretical error due
to the next order terms not included in our baseline model or to the approximate IR-
resummation, but also of the other observational effects that we model imperfectly,
such as the window function. In Fig. 7.4, we show the posteriors from the analysis of
the average of 84 Nseries boxes, analyzed with the covariance of one box, such that we
also account for the phase space effect. Since the actual cosmic variance associated
to this average of 84 boxes is about 1/9 of the posteriors in Fig. 7.4, we measure for
each cosmological parameter the theoretical error as the distance of the mean of the
posterior to the truth of the simulation minus 1/9 of the standard deviation (we take
zero if this number is negative). This allows us to detect theoretical errors larger
than 1/9 of a standard deviation of the posterior in Fig. 7.4, which corresponds to
about 0.15 of the of the error bars obtained on the BOSS data. Our results show
that the theoretical error that we can detect is safely below 1/3 of the error bars
obtained on BOSS, as summarized in Tab. 7.3.

In Fig. 7.4, we also present the analogous analysis on the average of 2048 Patchy
mocks. In this case, the detectable theoretical error is almost unaffected by cosmic
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Nbin // dof minχ2 minχ2/dof p-value
CMASS NGC 42 + 150 + 9 = 201 159.5 0.79 0.99
CMASS SGC 42 + 150 + 9 = 201 188.7 0.94 0.72
LOWZ NGC 36 + 62 + 9 = 107 98.3 0.92 0.71
LOWZ SGC 36 + 62 + 9 = 107 106.4 0.99 0.50
Parameter Prior 3 + 41(1 + 0.1 + 0.2 + 0.1 · 0.2) ≃ 57 8.9 - -
Total 616− 57 = 559 561.9 1.01 0.46

Table 7.4: Goodness of fit given by the maximal log-likelihood value logL ≡ −minχ2/2

obtained fitting BOSS 4 skies Pℓ + B0 + B2, and associated p-value. For each skycut, we
detail the number of bins Nbin = NPℓ

bin + NB0
bin + NB2

bin, while in ‘Parameter Prior’ we give
instead the degrees of freedom (dof). The dof are taken as the sum of 3 varied cosmological
parameters (that are not prior dominated) plus an effective number of correlated EFT
parameters. The p-value are calculated assuming there is no correlation within the data.

variance. Thus, assuming no systematic error in the Patchy simulations, the minimal
detectable theoretical error is practically zero. Also in this case, the theoretical error
is safely below 1/3 the error bars obtained on BOSS, as summarized in Tab. 7.3.

We conclude that our analysis pipeline is free from significant systematics for
BOSS volume at the scale cuts chosen at the beginning of this section, and we now
move on to the analysis of the observational data.

7.7 Results

When analyzing the BOSS data, we find that there is no additional gain by
adding all the three independent quadrupoles after one has been included. We
therefore present results including only Br,h

(2,3).
In Fig. 7.2, we show the best fit residuals and in Tab. 7.4 the best-fit χ2 and

associated p-value. The p-value is very good and we do not find any concerning
systematic behavior in the residuals. In Fig. 7.1, we provide the best-fit parameters,
which safely lie within our 68%-credible intervals.

The posteriors associated to the analysis of the BOSS data are presented in
Figs. 7.1 and 7.5. They are discussed in the Introduction. In App. C.2 we provide
the posteriors for the other non-marginalized parameters as well their confidence
interval. One can see that the bispectrum improves their measurement by order
100%.

192



7.7. Results

0.28 0.30 0.32 0.34

m

0.7

0.8

0.9

1.0

8

0.66

0.68

0.70

0.72

h

0.67 0.70 0.73

h
0.7 0.8 0.9 1.0

8

P
P + Btree

0  
P + B1loop

0

Figure 7.5: Triangle plots of base cosmological parameters measured from the analysis
of BOSS power spectrum multipoles Pℓ, ℓ = 0, 2, at one-loop, and bispectrum monopole
B0 at tree or one-loop level.
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8
Forecasts: Peeking into the Next
Decade in LSS Cosmology with its
EFT

8.1 Summary

After the successful full-shape analyses of BOSS data using the Effective Field
Theory of Large-Scale Structure, we investigate what upcoming galaxy surveys
might achieve. We introduce a “perturbativity prior" that ensures that loop terms
are as large as theoretically expected, which is effective in the case of a large number
of EFT parameters. After validating our technique by comparison with already-
performed analyses of BOSS data, we provide Fisher forecasts using the one-loop
prediction for power spectrum and bispectrum for two benchmark surveys: DESI
and MegaMapper. We find overall great improvements on the cosmological para-
meters. In particular, we find that MegaMapper (DESI) should obtain at least a
12σ (2σ) evidence for non-vanishing neutrino masses, bound the curvature Ωk to
0.0012 (0.012), and primordial inflationary non-Gaussianities as follows: f loc.

NL to
±0.26 (3.3), f eq.

NL to ±16 (92), f orth.
NL to ±4.2 (27). Such measurements would provide

much insight on the theory of Inflation. We investigate the limiting factor of shot
noise and ignorance of the EFT parameters.
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8.2 Introduction

In the last few years, Large-Scale Structure (LSS) survey data have started to
be analyzed using the so-called Effective Field Theory of Large-Scale Structure
(EFTofLSS) [30, 28]. The approach in which the data are analyzed in the con-
text of this theory is rather simple: all data below a certain maximum wavenumber
are used in the Bayesian inference. This technique goes under the name of “full
shape analysis". Such an application to data has allowed a measurement of all
cosmological parameters of the ΛCDM model using just a prior from Big Bang
Nucleosynthesis [7, 142, 143]. The precision and accuracy achieved through this
measurement were unexpectedly high, offering a new independent method for de-
termining the Hubble constant with a percent-level precision [7], and for measuring
Ωm with a precision comparable to Planck [24], among other remarkable achieve-
ments. It should be stressed that the development of the EFTofLSS was a rather
long journey in which the theory was developed in the various stages that are neces-
sary to compare it to observations (dark matter, galaxies, redshift space distortions,
IR-resummation, fast-evaluation techniques, MonteCarlo sampling, etc.), and along
the way comparison with numerical simulations was essential to check that the the-
ory was on the right track. Because of this, we find it fair, and also useful for the
interested reader, to provide a footnote with a list of the references that were essen-
tial for the development of the EFTofLSS prior to its application to data, when it
finally became clear that the approach was useful.

So far, the data analysis has mainly focused on the data from BOSS DR12 [9].
While there are certainly more ways in which these data can be analyzed, with
many much-improved LSS surveys coming online and being designed, it is natural
to ask what kind of measurement the application of the so-far developed EFTofLSS
to these data will allow. In this chapter, we do this by Fisher forecasting the inform-
ation content of two upcoming surveys, that we take as benchmarks, DESI [222],
and MegaMapper [223], including some forecasts for further analyses on BOSS.
Our intention is that the results for these two upcoming and planned surveys will
give an idea of the capabilities of other further surveys, either already planned
or to be planned. We primarily focus on the cosmological parameters of the flat
ΛCDM model, while also considering neutrino masses, curvature, and primordial
non-Gaussianities (for a forecast about CDM-isocurvature modes for Euclid and
MegaMapper, using just the one-loop power spectrum and tree level bispectrum,
see [224]). These are in fact parameters whose detection would allow us to extend
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or ameliorate the standard model of cosmology and of particle physics.
For neutrinos, we know from neutrino oscillations that they are massive (see

for example [225]), but we do not know the absolute value of their masses. For
inflation, curvature should naturally be very small, to the order of the primordial
perturbations ∼ 3 · 10−5, though evidence of negative curvature could be extremely
interesting, pointing towards the fact that our universe might come out of a bubble
nucleation event (see for example [226] and references therein). A large positive
curvature would essentially rule out eternal inflation, while a large negative curvature
would rule out slow-roll eternal inflation [227]. Finally, non-Gaussianities could
reveal the interaction structure of Inflation, which is actually the most insightful
aspect to understand the particle physics origin of this theory. Concerning the
shape of the non-Gaussianities we will explore, we will analyze the so-called f loc.

NL

(see e.g. [183]), f eq.
NL [179] and f orth.

NL [54] shapes, which parametrise a large class of
non-Gaussianities that can be produced in single field inflation [47, 54], and, for f loc.

NL ,
also in multifield inflation (see e.g. [180, 181, 182, 56]) (see also recently [228] for a
forecast on MegaMapper on these parameters using just the tree-level bispectrum).
It should be stressed that there exist other shapes of non-Gaussianities that are well
motivated (see e.g. [229]), and we leave their exploration to future work.

Let us summarize some important technical aspects of our analysis:

• We use the prediction of the EFTofLSS at one loop order for the power spec-
trum and the bispectrum. We provide the Fisher forecasts by utilizing all the
multipoles of the line-of-sight angle.

• The model that we implement is the same as in the analyses of the BOSS data
as in [3]. In particular, this includes the integration of the one-loop bispectrum
integrals as developed in [206]. The modeling of primordial non-Gaussianities
is done as in [176].

• We check the accuracy of our predictions against comparison with the pos-
terior obtained by analyzing the BOSS data with the full-likelihood of [3].
We conclude that, approximately, our predictions for the error bars should be
roughly accurate to about 30% or 40%, once the maximum wavenumber of the
analysis has been fixed. This error is primarily influenced by our assumption
of a diagonal covariance.

On top of the overall volume of the survey, we identify two limiting factors that
affect the precision of the upcoming measurements. One is the discreteness of the
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galaxy field, which induces a shot noise term in the data, and the second is the fact
that dozens of EFT parameters, including biases, need to be fitted to the observa-
tions (these EFT parameters encode the effect at long distances from uncontrolled
short distance physics, which includes the relation between galaxy overdensities and
matter fields). We explore these issues in the following way:

1. Shot noise: In addition to our main analysis, we provide Fisher forecasts with
shot noise set to zero, effectively assuming an infinitely dense distribution of
galaxies.

2. EFT parameters: We investigate the impact of limited knowledge regarding
the EFT parameters by conducting Fisher forecasts in the following three ways:

(a) We set the width of the prior on the EFT parameters to zero, which is
equivalent to fixing them. This represents the ultimate reach in terms of
constraining power.

(b) Galaxy Formation Prior: We set the width of the prior on the EFT
parameters to 0.3 (rather than about 2 or 4 as in the normal analyses).
This is meant to represent a perhaps realistic prior on the EFT parameters
as informed by astrophysical galaxy formation studies.

(c) Perturbativity Prior: Finally, we introduce a new, theoretically-justified
prior on the EFT parameters that we call “perturbativity prior", which
is based on the following reasoning. In the EFTofLSS, it is possible to
estimate the correct size of a loop term given the lower order terms by
simple scaling formulas. It is self-consistent to impose that the loop terms
in the analysis obey this estimate. If the number of parameters to fit to
observations is small, this criterium is automatically satisfied once the
EFT parameters have been assigned a prior of O(1), which is the stand-
ard way in which priors are set (see for e.g. [3]). However, when the
number of parameters becomes large, say n ≫ 1, if each parameter is
O(1), the size of the loop can be a factor of O (

√
n) too large, due to

some random accumulation effect. It is easy to convince oneself that the
data, which are most effective at the highest wavenumbers where the loop
is sizable, might not provide sufficient constraining power to prevent such
random accumulation effects from happening. In fact, due to cancella-
tions among the various components of a loop term, it is possible that
the loop is small at those high wavenumbers where both data and loop
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are strong, while the loop could still be too large at intermediate and
low wavenumbers. Indeed, at these intermediate and low wavenumbers,
the data, being weaker, do not constrain the loop term, having this one
become quite smaller in the meantime. We therefore set a Gaussian prior
on the overall loop term, by favoring the configurations that satisfy the
overall size and scaling as a function of wavenumber of the loop term.
While this prior has not yet been tested on simulations or data, it is
solidly theoretically justified, and we report results incorporating it.

We find the following results for DESI and MegaMapper for the various cosmo-
logical parameters:

• Ωk: Planck 2018 constrains this parameter to 0.0065 [24]. For DESI, we fore-
cast a constraint of about 0.051. MegaMapper instead will reduce this bound
to 0.0012, representing an improvement of over 5 times compared to Planck,
and just about 1.5 orders of magnitude away from the ultimate limit where it
makes sense to measure this parameter, which is the amplitude of the primor-
dial curvature fluctuation. We notice however that this bound depends quite
strongly on the maximum wavenumber of the analysis.

•
∑

imνi : Planck 2018 constrains this parameter to be <0.27 eV [24]. However,
the most interesting side of the error for this parameter is the lower one, as it
is associated to a detection of non vanishing masses. We find that DESI will
constraint this parameter to about −0.07 eV from above the reference value
(which is what is relevant for detection) with only the power spectrum (P)
and −0.05 eV with the addition of the bispectrum, a significant improvement
with respect to Planck. Since our bound depends on the central value of
neutrino masses, a more invariant way to cast this bound is that we expect
on DESI there will be a guaranteed 2σ-evidence for non vanishing neutrino
masses. MegaMapper instead will reduce this bound to 0.008 eV, which should
guarantee a ≳ 12σ detection. After the measurement of the cosmological
constant Λ, this would be the second parameter of the standard model of
particle physics that is measured from cosmological observations.

• fNL: Planck 2018 constraints f loc.
NL to ±5, f eq.

NL to ±47, f orth.
NL to ±24 [60]. We

find that DESI will constraint f loc.
NL to ±3.3, f eq.

NL to ±92 (or ±114 without
the perturbativity prior), f orth.

NL to ±27, which are quite comparable to the
limits obtained by Planck. MagaMapper will further reduce these bounds as
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f loc.
NL to ±0.26, f eq.

NL to ±16 (or ±18 without the perturbativity prior), f orth.
NL

to ±4. These are very significant improvements with respect to Planck, that
range from factors of almost three for f eq.

NL, six for f orth.
NL , to about a factor

of 20 for f loc.
NL . Such a level of improvement brings with it a clear chance of a

discovery of primordial non-Gaussianities, opening the door to a deeper under-
standing at the particle physics level of the inflationary theory. Additionally,
the allowed values for non-Gaussianities would begin to be close to that O(1)

which represents the vague but significant threshold beyond which inflation is
of the slow-roll kind.

We also study the limiting effect of shot noise and biases. We find that setting the
shot noise to zero for DESI would reduce the error bars of practically all parameters
by roughly a factor of two. For MegaMapper, the reduction would be of a factor of
about three for the fNL’s, and about an order of magnitude for the other cosmological
parameters.

Regarding the EFT parameters, assuming perfect prior knowledge of the biases
in DESI would lead to varied reductions in the error bars, typically by a factor of
two. For f eq.

NL, the reduction would be around a factor of five. When considering
our galaxy-formation benchmark prior of 0.3 instead of fixed parameters, the im-
provement is significantly diminished to approximately 30% for f eq.

NL and f orth.
NL , with

marginal impact on the other parameters. We find a similar behavior for MegaMap-
per. It appears that the perturbativity prior only captures a fraction of the potential
improvement achievable through exact knowledge of the biases. It would be inter-
esting to see if higher n-point functions or higher-order computations can improve
on this.

Overall, this Fisher analysis tells us that even by just using the EFTofLSS at
the current level of development, the next decade in LSS surveys could lead to
great improvements in our knowledge of cosmological parameters. This includes
parameters that have not yet been measured, such as neutrino masses, as well as
those connected to inflation, such as primordial non-Gaussianities and the curvature
of the universe. Improvements in the design of surveys to reduce shot noise, or
advancements in the measurement of EFT parameters have the potential to further
strengthen these already promising results.
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Public Codes: The code to compute the Fisher forecasts is publicly available on
GitHub 1.

8.3 Technical Aspects of the Fisher Matrix

Fisher analyses have become a key tool for forecasting in cosmology. Pioneered
in [231], there have been numerous applications over the past years (for example
[232, 233, 234]). We here briefly lay out which methods we will use for our forecasts
and what contributes to our estimates.

At the heart of Fisher forecasts lies the Cramér-Rao lower bound. It states that
the covariance of unbiased estimators for a set of parameters θ is bounded below by
the inverse of the Fisher information matrix Fij, defined as the expected value of
the Hessian of the log-likelihood

Fij = −
〈
∂2 logL

∂θi∂θj

〉
. (8.1)

Under the assumption that the likelihood is Gaussian with mean X and covariance
C, we can approximately write the Fisher matrix as [231]

Fij =
∂XT

∂θi
C−1∂X

∂θj
. (8.2)

In order to calculate the Fisher matrix, we need to assume reference parameters
θref, on which we evaluate the derivatives. In particular, the reliability of the Fisher
forecast depends on this reference cosmology being fairly accurate. An intuitive
way to see the reference cosmology dependence and also an alternative derivation
for Eq. (8.2) is to start directly with a Gaussian likelihood for an observable X

depending on parameters θ, that has a true mean X̃, such that the log-likelihood is
given by

−2 logL = (X(θ)− X̃)TC−1(X(θ)− X̃) + p1, (8.3)

where p1 is a θ-independent constant. We can then assume a reference value θref, and
Taylor expand around the reference value to first order, X(θ) ≃ X(θref)+

∑
i
∂X
∂θi

(θi−
θref
i ). If X(θref) is accurate we can identify that the X̃ term in Eq. (8.3) cancels with

1https://github.com/YDonath/EFTofLSSFisher
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X(θref) ( 2). What remains is the first order term, which we can substitute back
into Eq. (8.3), to get

−2 logL = (θ − θref)TF (θ − θref) + p1, (8.4)

where we get the same formula for the Fisher matrix, F , as in Eq. (8.2). In Eq. (8.4)
we can now clearly see that the Fisher matrix is the inverse covariance for the like-
lihood of the parameter vector θ. As can be seen from the derivation above, the
Fisher formalism is sensitive to an accurate reference cosmology in order for X̃ to
cancel with X(θref) and also for the Taylor expansion to be an accurate approxim-
ation. Given that we now have precise measurements of all cosmological and EFT
parameters from Ch. 7, we have good reason to believe we are making realistic pre-
dictions around a realistic reference cosmology. In fact, we will show in Sec. 8.4 that
we can reproduce results from previous surveys to great precision. We also checked
that slight deviations from this reference cosmology do not greatly alter our results.

Note that Eq. (8.2) is in principle simply an inverse-covariance weighted sum over
all available information. Both the mean and the covariance can be modelled using
perturbation theory. We will discuss this in Secs. 8.3.1 and 8.3.2. Then in Sec. 8.3.3
we will discuss further ingredients that go into calculating the Fisher matrix, such
as fixing the reference bias parameters at different redshifts. We here always refer to
the correlators of galaxies in redshift space. Therefore, unless explicitly mentioned,
we drop the h,r index with respect to the notation in Ch. 6, and by P,B, δ, ... we
always indicate the quantities for biased tracers in redshift space.

8.3.1 Power Spectrum and Bispectrum

For both the power spectrum and bispectrum there are well-established thin-
shell averaged estimators that predict the mean and covariance for Eq. (8.2). We
use the estimators that bin in the momenta, but not in the line of sight 3, since we
have enough analytical control to integrate over the full line of sight information.

Furthermore, for both correlators, we use leading-order contributions in the co-
variance, in particular neglecting power spectrum-bispectrum cross-covariance. We
will discuss the impact of this approximation in Sec. 8.4.2. This assumption in
particular implies that we can write the combined power spectrum and bispectrum

2Note that the Taylor expansion to first order is sufficient exactly because of this cancelation.
3Binning in line of sight angles is also possible, see for example [233].
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Fisher matrix, F P+B, as the sum of the individual Fisher matrices

F P+B = F P + FB, (8.5)

where F P and FB are the power spectrum and bispectrum Fisher matrices respect-
ively. Next, we will discuss these individual contributions.

Power Spectrum For the power spectrum, the estimator is given by [231, 192]

P̂ (k; ẑ) =
1

VSVP (k)

∫
∆Bk

d3qδ(q; ẑ)δ(−q; ẑ), (8.6)

where we used the notation ∆Bk = B(0, k + ∆k
2
)\B(0, k − ∆k

2
) and B(a, r) is the

ball of radius r around the point a. VS is the survey volume and VP (k) = 4πk2∆k is
a normalization factor given by just the integral on the right-hand side of Eq. (8.6)
without the prefactors and with the galaxy density contrast δ → 1, i.e. VP (k) =∫
∆Bk

d3q.
The expected value of the estimator is simply the power spectrum itself and we

will evaluate it up to the one-loop order. That is

P = PTree + P1L. (8.7)

Here the tree and loop contributions include their respective stochastic and response
terms. We use the exact same model as in Chs. 6 and 7. Then, for the covariance,
we get 4

CPP (k, k
′) = ⟨P̂ (k)P̂ (k′)⟩ − ⟨P̂ (k)⟩⟨P̂ (k′)⟩ (8.8)

=
1

V 2
S V

2
P (k)

∫
∆Bk×∆B′

k

d3q1d
3q2

[
⟨δ(q1; ẑ)δ(−q1; ẑ)δ(q2; ẑ)δ(−q2; ẑ)⟩

−⟨δ(q1; ẑ)δ(−q1; ẑ)⟩⟨δ(q2; ẑ)δ(−q2; ẑ)⟩
]

=
2

V 2
S V

2
P (k)

∫
∆Bk×∆B′

k

d3q1d
3q2⟨δ(q1; ẑ)δ(q2; ẑ)⟩⟨δ(−q1; ẑ)δ(−q2; ẑ)⟩

= δk,k′
4π2

VSk2∆k
PTree(k; ẑ)

2.

4As mentioned in Sec. 3.4, any estimator is ultimately limited by the finite number of stat-
istically independent realisations we have in the survey. For the power spectrum, this is exactly
what we calculate here, i.e. we are estimating the power spectrum given Nk observations, where
Nk = VSk

2∆k/(2π)2.
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Note that, schematically, we used ⟨δδδδ⟩ = ⟨δδδδ⟩c + 3⟨δδ⟩⟨δδ⟩, where, by the su-
bindex c, we mean the connected correlator. The connected four-point function is
the trispectrum, which we neglect here. Of the three disconnected parts one cancels
with the ⟨P̂ (k)⟩⟨P̂ (k′)⟩ term in the first line and the other two terms are the same,
giving the factor of two in the third line. As mentioned, off-diagonal contributions
to the above covariance are of the order of the trispectrum, and therefore similar in
size to the one-loop power spectrum multiplied by a linear power spectrum. To be
consistent in the perturbative order, given that we neglect the off-diagonal contri-
butions, we also neglect loop contributions to the diagonal of the covariance. We
will see in Sec. 8.4 that this leads to a roughly 10% effect. Finally, by substituting
the mean and covariance into Eq. (8.2) we get the power spectrum Fisher matrix

F P
ij =

∑
k

k2VS
4π2∆k

∫ 1

−1

dµ

2

∂P (k; ẑ)

∂θi

∂P (k; ẑ)

∂θj

1

(PTree(k; ẑ))
2 , (8.9)

with µ = k̂ · ẑ the line of sight angle.

Bispectrum For the bispectrum, we use the estimator [197, 235]

B̂(k1, k2, k3; ẑ) = (8.10)

=
1

VSVB(k1, k2, k3)

∫
∆Bk123

d3q1d
3q2d

3q3δD(q1 + q2 + q3)δ(q1; ẑ)δ(q2; ẑ)δ(q3; ẑ),

where we defined ∆Bk123 = ∆Bk1 ×∆Bk2 ×∆Bk3 . Similarly to the power spectrum
discussion, the volume VB is defined by just the above integral with δ → 1 , without
prefactors and is given by

VB(k1, k2, k3) =

∫
∆Bk123

d3q1d
3q2d

3q3δD(q1 + q2 + q3) (8.11)

= 8π2k1k2k3∆k1∆k2∆k3β(k1, k2, k3),

where, without loss of generality, we assume k3 ≥ k2 ≥ k1 and β(k1, k2, k3) = 1

unless k3 = k1+k2, in which case it is 1
2
. Again the mean of this estimator is simply

the bispectrum itself, which we calculate up to the one-loop order in Ch. 6:

B = BTree +B1L. (8.12)
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Again the tree and loop contributions include their respective stochastic and re-
sponse terms. To leading order, the bispectrum-bispectrum covariance is given by 5

CBB(k1, k2, k3, k
′
1, k

′
2, k

′
3) =

(2π)6

VSVB(k1, k2, k3)
sB

3∏
i=1

(
δki,k′iP (ki; ẑ)

)
, (8.13)

where sB is a symmetry factor that is equal to 6 for equilateral triangles, 2 for
isosceles triangles and 1 otherwise. Again, we do not consider off-diagonal con-
tributions, which would be the connected six-point function, as well as bispectra
squared and products of trispectra and power spectra. While these contributions
are suppressed relative to the diagonal, they may be sizable in some cases and we
therefore check this approximation with respect to covariances measured in mocks
in Sec. 8.4. Finally, we bin equally in all ki, so that if we plug Eqs. (8.12) and (8.13)
in to Eq. (8.2), we get the bispectrum Fisher matrix at fixed redshift (see Sec. 4.2
of [232] or Sec. 4.1.3 of [157] for more details):

FB
ij =

VS
(2π)5

∑
(k1,k2,k3)

1

sB

∫ 1

−1

∫ 2π

0

dµ1dϕ
∂B

∂θi
∂B

∂θj

3∏
i=1

(
ki∆k

PTree(ki; ẑ)

)1
2
, if k3 = k1 + k2

1, else,

(8.14)

where µi(µ1, ϕ) = k̂i · ẑ are the projected momenta, and we omitted writing the
arguments of B to avoid clutter. We use the same parametrization of the µi as in
Eqs. (7.6) - (7.7).

8.3.2 Combining Redshifts

In the previous section, we derived formulas for Fisher matrices for the power
spectrum and bispectrum at a single redshift. However, for surveys that cover a
range of redshifts, we need to combine the information from different redshift bins
to compute the overall Fisher matrix. We will now lay out how we combine these
redshifts.

Assuming that all EFT-parameters at different redshifts are uncorrelated 6, the
5The derivation of the bispectrum covariance follows analogously to Eq. (8.8): we expand the

six-point function into a sum of products of connected correlators, and neglect terms that are
higher order. For more details, see for example [236].

6Note that in Ch. 7 the fact that the EFT-parameters at different redshifts are in principle
correlated has been used. But given the large range of redshifts and the mild correction from
correlations, we neglect this here. For BOSS, where the redshift binning is finer than for DESI and
MegaMapper, and thus the correlation is stronger, this is a 15-20% effect. Therefore we assume
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full Fisher matrix for a survey with a set of redshift bins can be expressed as the
sum of the power spectrum Fisher matrix and the bispectrum Fisher matrix over
the redshift bins

Fsurvey =
∑
z

(
F P (z) + FB(z)

)
. (8.15)

In all forecasts we consider, we split the survey into two sets of redshift bins, let
us call them bin1 and bin2. Let us write Fsurvey = Fsurvey,1 +Fsurvey,2 and the sum in
Eq. (8.15) for each of these two Fisher matrices simply runs over the redshifts in that
particular set of bins (for BOSS this is, for example, LOWZ and CMASS, i.e. bin1 =

{z ∈ Tab. D.2 |z ≤ 0.45} and bin2 = {z ∈ Tab. D.2 |z > 0.45}). A common approach
is then to define effective redshifts zeff, background number density nb,eff, etc., and
simply compute the Fsurvey,i with these values. This is a good approximation for the
derivatives of the observables, given that the time dependence is largely dominated
by the growth factors that have comparably weak time dependence. However, we
find that this is not a very accurate estimate for the covariance 7. To emphasize the
different redshift-dependent contributions that enter the covariance, let us write the
covariance from the previous sections in their full form:

CPP (k, k
′; z) = δk,k′

4π2

VS(z)k2∆k

(
(b1(z) + f(z)µ2)2P11(k) +

cSt1
nb(z)

)2

(8.16)

CBB(ki, k
′
i; z) =

32π4sB
∏3

i=1

(
δki,k′i

)
VS(z)k1k2k3∆k3β(k1, k2, k3)

3∏
i=1

(
(b1(z)+f(z)µ

2
i )

2P11(ki)+
cSt1
nb(z)

)
,

where P11 is the linear dark matter power spectrum, cSt1 is the tree-level stochastic
term and we abbreviated the triangle dependence on the left-hand side ki = {k1,
k2, k3}. Defining effective numbers as an approximation is not appropriate for the
covariance since it is very sensitive to accurate estimates of the survey volume VS,
number density nb, and linear bias b1. Their numerical values are typically given by
survey specifications, and vary greatly with redshift. Specifically, nb greatly varies
with redshift as it depends on the survey target selection and measurements. In
contrast, the growth rate f and the linear power spectrum P11 have a comparably

for future surveys the impact will be negligible.
7Apart from the fact that nb,eff simply gives a very bad estimate for a realistic covariance

(i.e. reproducing the measured covariance), notice also that the power spectrum and bispectrum
covariances scale with different powers of nb, and their measured effective numbers would not be
the same.
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mild redshift dependence. However, in our analysis, we will nevertheless consider
their redshift dependence for completeness.

To summarize, we have weak time dependence in the derivatives and strong
redshift dependence in the covariance. Therefore, for X ∈ {P,B} and i ∈ {1, 2} we
use the following approximation for the Fisher matrix of the two redshift bins: 8

(FX
survey,r)ij =

∑
z∈binr

∂XT (z)

∂θi
C−1
XX(z)

∂X(z)

∂θj
(8.17)

≃ ∂XT (zeff,r)

∂θi

( ∑
z∈binr

C−1
XX(z)

)
∂X(zeff,r)

∂θj
,

where zeff,r is the effective redshift for binr. The vector contractions in Eq. (8.17),
represent the covariance weighted sum over the available information in the correl-
ator X. For the modes, this leads to the sums over k in Eqs. (8.9) and (8.14). We
also sum over all redshift space information, which in the continuum limit turns
into an integral over the redshift space angles in Eqs. (8.9) and (8.14). The final full
Fisher matrix that we use is Fsurvey = F P

survey,1 + FB
survey,1 + F P

survey,2 + FB
survey,2.

8.3.3 Survey Specifications at Different Redshifts

Now that we established how to combine the information from different redshifts,
let us discuss what reference parameters we choose for each of these redshifts. Pre-
dictions from the EFTofLSS rely on a number of redshift and survey-dependent
parameters. While these factors have been measured to great precision at low red-
shifts for the BOSS survey, we need to discuss how we extrapolate these results to
different redshifts and surveys.

EFT Parameters Let us first look at the approximate evolution of all EFT para-
meters entering the galaxy power spectrum and bispectrum. In particular, we ana-
lyze the time dependence of the physical (as opposed to the bare) parameters. There
are at least two distinct origins of nuisance parameters in the EFTofLSS. On the one
hand, we expand some functions (such as the stress tensor or the galaxy overdensity)
in terms of all fields they can depend on, multiplied by parameters. Schematically

8Note that we can test the validity of
∑

z∈binr
C−1

XX(z) as an approximation for the covariance
on its own, given that we have measurements for the covariances of BOSS. We in part do this in
Sec. 8.4.2 and Fig. 8.2, where we find very good agreement.
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at linear order, with redshift space distortions implied, this is (see Ch. 6)

δ(x, t) = b1(t)δdm(x, t) + ...− ch1(t)
k2

k2NL
δdm(x, t) + ... , (8.18)

where δdm is the dark matter overdensity (note that δ without indices denotes the
overdensity of galaxies in redshift space). We will refer to these parameters as biases
(this includes response terms, but not stochastic fields). The BOSS best-fit for the
biases, b⃗BOSS, has been determined in Ch. 7. The explicit numerical values are
in App. D.1. When fixing the reference cosmology for surveys at higher redshifts,
we rescale the biases according to the estimated linear bias given in the survey
specifications [222, 237]. Specifically for any new survey we set the reference value
for the vector of biases b⃗ = {b1, b2, ..., ch1 , ch2 , ...} according to

b⃗ref =
bref1

b1,BOSS
b⃗BOSS. (8.19)

Note that the bref1 in the tables of Sec. 8.5, App. D.1 and [222, 237], account for
different redshifts and different galaxy species. For the surveys we consider in this
chapter, we give the numerical values for bref1 in Tabs. 8.1, 8.2 and 8.3.

Contrary to biases, there are parameters coming from correlators of stochastic
fields. For example, we have

⟨δ(k, t)δ(k′, t)⟩′ ⊃ ⟨ϵA(k, t)ϵB(k′, t)⟩′ =
1

nb

(
cSt1 + cSt2

k2

k2NL
+ ...

)
. (8.20)

We will call these terms stochastic. Importantly, since they are Poisson distributed,
they are constant in time. Therefore, given that we have a vector of measured values
for the stochastic terms from BOSS, we could in principle use these reference values
for all redshifts. However, we here make a slight correction relative to the analysis
done in Ch. 7. There, leading order stochastic terms, for example cSt1 , were varied
freely, whereas they should be fixed to one, by definition of nb ( 9). Therefore, for
surveys other than BOSS, we fix the leading order stochastic parameters for the
power spectrum and bispectrum, i.e. cSt,ref1 = c

(222),ref
1 = 1, and we also do not take

derivatives with respect to these parameters 10. For all other terms in the vector of

9It is possible to have slight deviations from this condition [238], which we will study in future
work.

10For BOSS, we will let the leading order stochastic terms vary freely to validate our pipeline
against previous data analyses in Sec. 8.4, i.e. there we take derivatives with respect to these
parameters. Instead, when predicting further results in Sec. 8.5, we will keep them fixed for BOSS
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stochastic terms ϵ⃗ = {cSt2 , cSt3 , ...} we use

ϵ⃗ ref =
1

cSt1,BOSS
ϵ⃗BOSS, (8.21)

where ϵ⃗BOSS is the vector of stochastic parameters measured for BOSS 11. Explicit
numerical values are given in App. D.1 and for details on the specific parameters
see Ch. 6.

As a final remark, we note that we have tested the sensitivity of our results in
Sec. 8.5 to small shifts in the reference values of EFT parameters and found that
they do not significantly affect our findings. The parameters that have the greatest
impact on our results are those used in the modeling of the covariance, namely b1

and cSt1 . To ensure accurate predictions for future surveys, where the best-fit is yet
unknown, we take bref1 directly from survey specifications and we set the reference
value of cSt1 to one (with the exception of BOSS, as mentioned earlier).

Perturbative Reach The perturbative reach of the EFTofLSS, parametrised by
kmax, can be determined in simulations by setting a threshold for the theory system-
atic error. This was the approach used for example, in [7] and Ch. 7. For the BOSS
CMASS sample this is kmax = 0.22hMpc−1 at one-loop order and kmax = 0.1hMpc−1

at tree level. In the following, we will lay out how we estimate the kmax for a different
survey at a different redshift, motivated by the method used in [7]. There, roughly,
it was imposed that the signal-to-noise of the leading theoretical error should not
be sizable in the k-bin containing the kmax (see footnote 23 in [7]). This is a good
approximation, assuming that the signal-to-noise of the theoretical error only has
a sizeable contribution in the highest k-bin. Here, however, we want to limit the
full signal-to-noise of the theoretical error over all k-bins. The motivation for this
is two-fold. First, this approach is binning independent, which is important to be
consistent between surveys that have different bin sizes. Second even though the
signal-to-noise of the leading theoretical error is well approximated by only consid-
ering contributions at large k since it grows very steeply with k, it leads to a slight
overestimate of the kmax ( 12) since one does not consider the theoretical error at
k < kmax − ∆k

2
. We, therefore, consider the theoretical error contribution at all

scales. Furthermore, as in Ch. 7, we will use the same kmax for the power spectrum

forecasts as well.
11In all forecasts for BOSS, we use ϵ⃗BOSS as reference values.
12We note that on small redshift differences for example between CMASS and LOWZ, the two

approaches produce the same results. Therefore, the estimates in [7] are accurate.
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and the bispectrum, since we expect the k-reach to be the same. To summarize,
this means we impose that the signal-to-noise of the theoretical error is the same in
all surveys, which then defines the kmax through

kmax,1∑
k=kmin

(
σtheory,1(k, z1, ...)

σdata,1(k, z1, ...)

)2

=

kmax,2∑
k=kmin

(
σtheory,2(k, z2, ...)

σdata,2(k, z2, ...)

)2

, (8.22)

where the sum runs over the k-bins of the respective survey, the dots represent
further dependences, such as the EFT-parameter best-fit, and σdata/theory,i are the
respective theoretical and data errors that we will discuss next. The leading theor-
etical error is the next higher loop contribution, and we estimate the data error by
perturbatively modeling the covariance. Let us focus on the theoretical error first.
To good approximation [145] the L-th order loop scaling is given by

σL−Loop(k, z) = P11(k, z)

(
k

kNL(z)

)(3+n(k,z))L

, (8.23)

where n(k, z) is the slope of the linear power spectrum around k. For the one-
loop analysis, the theoretical error is, therefore, σtheory,i(k, zi, ...) = σ2−Loop(k, zi).
Note that in Eq. (8.22), any constant factor will drop out, so we only care about
the scaling. Furthermore given that from the BOSS analysis we have kBOSS

NL =

0.7hMpc−1, we can get kNL at different redshifts by solving∫ kNL(z)

0

dq q2P11(q, z) =

∫ 0.7hMpc−1

0

dq q2P11(q, z = 0.57). (8.24)

To estimate the data error we use the square root of the covariance estimate from
Eq. (8.16), including the summation over redshifts, mentioned in Eq. (8.17). We
average over the redshiftspace dependence, and do not consider shot noise 13, that

13Setting shot noise contributions in the covariance to zero gives more conservative values for
kmax. However, in surveys with large shot noise (i.e. we underestimate kmax more), contributions
from higher k are negligible exactly because of this large shot noise.
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is

σdata,i(k) =

(∑
z∈bini

∫ 1

−1

dµ

2
C−1
PP,nb→∞(z, µ)

)−1/2

(8.25)

=
2π√
k2∆k

(∑
z∈bini

VS(z)

P11(k, z)2

∫ 1

−1

dµ

2

1

(b1(z) + f(z)µ2)4

)−1/2

=:
σ̃data,i(k)√

∆k
.

In practice, the sum over z ∈ bini runs over the bins mentioned in Eq. (8.17).
Furthermore, we defined σ̃data,bini

(k), since we will take the limit ∆k → dk, such
that Eq. (8.22) turns into an integral with integration measure equal to dk. Then,
for each survey bin with effective redshift zeff, to estimate the L-th loop order kLmax

, we solve∫ kLmax

dk
P11(k, zeff)

2

σ̃2
data,i(k)

(
k

kNL(zeff)

)(3+n(k,zeff))2(L+1)

(8.26)

=

∫ kLmax, CMASS

dk
P11(k, z = 0.57)2

σ̃2
data, CMASS(k)

(
k

0.7hMpc−1

)(3+n(k,z=0.57))2(L+1)

.

8.3.4 Further Ingredients from Data Analyses

In principle, we now have all the ingredients to compute Fisher forecasts for
a given survey. However, there are a number of aspects related to the data and
the data-analysis that we want to consider here, in order to best predict future
results. For one, there are priors that we put on cosmological parameters and EFT
parameters. For completeness we also briefly discuss the Alcock-Paczynski(AP)
effect.

Priors We impose priors on the EFT parameters that are very similar to those
used in Ch. 7. Given that we are assuming a Gaussian likelihood in the Fisher
analysis, imposing a Gaussian prior amounts to adding the inverse variance of the
prior to the diagonal of the Fisher matrix. The key difference between the priors
we have in the Fisher analysis and those in the MCMC is that all of our priors
are centered around the best-fit value rather than around zero. However, we have
verified that this difference has a negligible impact on the error bars. For the special
case of the linear bias b1, we use a log-normal prior of variance 0.8 to ensure its
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positivity 14 For all other EFT parameters, we put a Gaussian prior of width 2,
except for response and stochastic terms that are joint between the power spectrum
and bispectrum, for which we use a Gaussian prior of width 4. These variance
choices are analogous to the ones in Ch. 7.

We anticipate or hope that, in the coming years, our understanding of galaxy
formation will advance to a level that will allow for stronger priors on the EFT
parameters. In parts of Secs. 8.5 and 8.6.2 we, therefore, separately use a “galaxy-
formation prior", where we put a Gaussian prior of width 0.3 on all EFT parameters,
except for b1 where we put again a log-normal prior, also with width 0.3. This
value of the prior is a benchmark value we deemed reasonably close to what can be
potentially achieved.

For the cosmological parameters, we use a Gaussian Big-Bang Nucleosynthesis
(BBN) prior on the baryon abundance ωb centered around the best-fit value and,
with a width of σBBN = 0.00036. Also, we analyze logmtot.

ν := log(
∑

imνi/eV) rather
than

∑
imνi which implicitly ensures unbounded positivity, with support (0,∞), on

the neutrino masses, since the logarithm ensures positivity 15. In the results Sec. 8.5
we transform the predicted error on logmtot.

ν back to a 68% interval on
∑

imνi ( 16).
We do not assume any previous knowledge about the other cosmological parameters.
Overall, our choice of priors is almost equivalent to those used in the data analyses
[143] and Ch. 7.

14Even though the Fisher formalism only allows for Gaussians, we can put log-normal priors,
by analyzing log(b1) rather than b1, since the derivative with respect to log(b1) can easily be
computed. Then imposing a log-normal prior is just a Gaussian on the “log of the parameter".

15In [143], a flat prior with, for example, width [0.06eV, 0.9eV] was used, which would slightly
ameliorate the results presented here.

16Note that the Fisher forecast predicts
∑

i mνi
∼ Lognormal

(
(logmtot.

ν )
ref

, σ (logmtot.
ν )

2
)
,

thus the upper and lower bounds of the 68% confidence interval can be easily computed from
the lognormal distribution. However, while the confidence interval bounds for the Gaussian
posterior of logmtot.

ν are independent of the reference neutrino mass (to the extent that the
Fisher forecast is), the confidence interval for

∑
i mνi

derived from the Gaussian of logmtot.
ν ,

is in fact reference value dependent. To see this, note that the p-quantile for a Gaussian
is of the form (logmtot.

ν )
ref

+ σ (logmtot.
ν )

√
2 erf−1(2p − 1) whereas for the lognormal it

is of the form
∑

i m
ref
νi

× exp
[
σ (logmtot.

ν )
√
2 erf−1(2p− 1)

]
. Therefore, if we write confid-

ence interval bounds in the Gaussian case, of the form
(
(logmtot.

ν )
ref
)σ+

σ−
, the error would be

σ± = σ (logmtot.
ν )

√
2 erf−1(2p± − 1), so the σ± are reference value independent (as long as

σ (logmtot.
ν ) is). In the lognormal case, i.e. errors of the form

(∑
i m

ref
νi

)σ+

σ−
, we instead have

σ± =
∑

i m
ref
νi

×
(
exp

[
σ (logmtot.

ν )
√
2 erf−1(2p± − 1)

]
− 1
)
. We emphasize, therefore, that the

upper and lower bounds of the confidence interval for the lognormal distribution scale linearly
with the reference value. Therefore, when in Sec. 8.5, we present confidence intervals [a, b] for∑

i m
ref
νi

= 0.1 eV, the confidence interval for
∑

i m
ref
νi

= 0.2 eV would be [2a, 2b].

212



8.3. Technical Aspects of the Fisher Matrix

Alcock-Paczynski Effect Galaxy spectra are measured on celestial coordinates.
In order to transform to cartesian coordinates, a reference cosmology needs to be as-
sumed, that might not correspond to the true cosmology. This discrepancy between
the reference cosmology and the true cosmology introduces a geometric distortion
known as the Alcock-Paczynski (AP) effect [214]. In order to account for this effect
one has to evaluate the theory model on transformed wave numbers, given by

k =
kref

q⊥

[
1 + (µref)2

(
1

F 2
− 1

)]1/2
, µ =

µref

F

[
1 + (µref)2

(
1

F 2
− 1

)]−1/2

, (8.27)

where

q⊥ =
DA(z)h

Dref
A (z)href

, q∥ =
Href(z)/href

H(z)/h
, F = q∥/q⊥, (8.28)

and DA being the angular diameter distance.
Importantly, this transformation is invertible, and therefore, information pre-

serving. Therefore, the AP effect does not lead to any addition or loss of informa-
tion, when analyzing all (i.e. the full set of multipoles) information available from
a given galaxy statistic at a given order. With the exception of a small part of
Sec. 8.5.1, in Sec. 8.5 we will always analyze the full set of multipoles, where the AP
effect is, therefore, irrelevant, and therefore we do not include it. The only forecasts
where we do not analyze the full set of multipoles are in the beginning of Sec. 8.5.1,
and in Sec. 8.4. The relevance of the AP effect on the Fisher forecasts is thus limited
to these specific analyses and we, therefore, implement only approximate formulae.
The general structure of the correlators we analyze are sums of products of rational
functions in k and µ, multiplying linear power spectra and loop integrals. For both
cases, we use that

(
1
F 2 − 1

)
is very close to zero and we can Taylor expand it. For

the rational functions, we use

kn ≃
(
kref

q⊥

)n(
1 +

n

2
(µref)2

(
1

F 2
− 1

))
, (8.29)

µn ≃
(
µref

F

)n(
1− n

2
(µref)2

(
1

F 2
− 1

))
.

Instead, when evaluating loop integrals or linear powers spectra, we average the k
above over redshift space angles, and we, therefore, evaluate on

kavg =
kref

q⊥

(
1 +

1

6

(
1

F 2
− 1

))
. (8.30)
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As we will see in Sec. 8.4, this approximation is enough to recover large parts of the
AP effect.

8.4 Pipeline Validation against BOSS Data Ana-

lysis

Ultimately, the constraints derived from the Fisher formalism are an approxim-
ation to a more complicated MCMC analysis. For one, an MCMC will in general
produce non-Gaussian posteriors (see Fig. 3 in [176] for an example). In addition,
there are several modeling effects that are considered in the data analyses that we
do not account for in our Fisher analysis. In this section, we quantify how much
these unaccounted-for effects contribute to the constraints, and thereby estimate the
level of precision we can have confidence in when performing Fisher forecasts.

We split this section into two parts. In Sec. 8.4.1, we focus on observational
effects. To isolate the impact of observational effects on the posterior, we fix the
covariance entering the Fisher matrix to the one obtained from the data analysis
(i.e. the measured covariance extracted from mocks as in Ch. 7). The remaining
difference is what we call observational effects, which we do not account for 17. Then
in Sec. 8.4.2 we validate the modeling of the covariance described in Sec. 8.3. In
particular, we study the extent to which the off-diagonal entries in the covariance
impact the Fisher forecast. Throughout this section, we consider the power spectrum
multipoles Pℓ for ℓ = 0, 2 and the bispectrum monopole B0 at 1-loop. We also focus
mainly on constraints of base cosmological parameters (h, ln(1010As) and Ωm). We
expect this to be sufficient to quantify the accuracy of the Fisher forecasts presented
in Sec. 8.5. As mentioned in Sec. 8.3.3, we here vary the leading order stochastic
parameters freely, since we compare to an MCMC that does not fix them either.
This is in contrast to what we will do in Sec. 8.5.

However, let us discuss here also the validation of our results for primordial
non-Gaussianity. While what we discuss in the next sections is also applicable to
non-Gaussianity, we highlight here additional validations specific to non-Gaussianity.
For example, while we use the best-fit of the data analysis from Ch. 7 as our ref-
erence cosmology (see App. D.1 for details), for fNL we use f ref

NL = 0 ( 18). The

17We call them observational effects because the error comes from neglecting window functions
and only using an approximate version of the AP effect.

18We validated that non-zero background values for fNL, such as the ones allowed by the BOSS
data analysis [176] or Planck [60], yield very similar constraints.
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observational effects that we discuss in Sec. 8.4.1 affect non-Gaussianity constraints
minimally. Furthermore, since almost all of the information about non-Gaussianity
(with the exception of f loc.

NL ) lies in the bispectrum, the exclusion of the power spec-
trum bispectrum cross-correlation in the covariance is not as sizeable as for other
parameters. In conclusion, we are able to estimate that our forecast for fNL is
accurate to roughly 10− 25%, as we study in more detail in Sec. 8.4.2.

8.4.1 Fisher Prediction against full MCMC

Even when using the same covariance, the same perturbative model, and the
same reference cosmology, there are still several effects that lead to a difference
between data analysis constraints and Fisher constraints. The most important ob-
servational effects are the Alcock-Paczynski(AP) effect and the smoothing effect of
the window function convolution. To evaluate the significance of these effects, we
perform a Fisher forecast, using the same model, best-fit, priors, covariance, bins,
etc. as in Chs. 6 and 7. The sole difference is that in one case we get the posteriors
through the Fisher prediction (and only considering an approximate AP effect, and
not considering window functions), and in the other through an MCMC that takes
these effects into account 19. This in particular means, we avoid most of the discus-
sion from Sec. 8.3, since we are not estimating the covariance here and also do not
change any of the bias parameters nor the kmax. We highlight, that the AP effect
will eventually not affect the results of the forecasts, since we consider all multipoles
and the transformation in Eq. (8.27) is information preserving. We consider it here
only because the analysis we use as reference point have been done on a limited
number of multipoles. The results of the MCMC against the Fisher are shown in
Fig. 8.1.

We observe that the largest discrepancy in the σ, at 27%, is found for Ωm.
However, for the other cosmological parameters, the difference is only around 15%.
We expect a similar level of error, at approximately 15%, for the other parameters
that we analyze in the following sections and attribute the higher discrepancy on Ωm

to not fully modelling the AP effect, which most notably depends on Ωm. However,
as argued above this effect will not be relevant for us in later sections. We note that
if we remove the AP effect and window functions from the BOSS data analysis, the
difference to the forecast is less than 5% 20.

19As a reference point, we take the same chain of the analysis in Ch. 7 (Fig. 7.1, Pℓ +B1loop
0 ).

20Therefore, the non-Gaussian nature of the MCMC-posteriors and the Taylor expansion around
the best-fit that the Fisher relies on have minimal impact on the results.
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Pℓ +B0 - MCMC 0.011 0.11 0.011
Pℓ +B0 - Fisher 0.0093 0.094 0.008

Figure 8.1: Triangle plots and errors comparing a Fisher forecast (blue) against the data
analysis from Ch. 7 (Fig. 7.1, Pℓ + B1loop

0 ) (red) for base ΛCDM parameters. For the
Fisher forecast the full measured covariance is used including all cross-correlations. We
here analyze ℓ = 0, 2 power spectrum multipoles and the bispectrum monopole, both at
one loop order. We implement the approximate AP effect as discussed in Sec. 8.3.4.

8.4.2 Fisher Prediction with Diagonal Covariance

For upcoming surveys, the fully measured covariance from mocks is not readily
available. Although it is possible to compute these covariances with high accuracy
using perturbation theory, the modeling of off-diagonal contributions can be very
complex. Therefore, as described in Sec. 8.3, we do not consider any off-diagonal
contributions here 21. Explicitly this means we neglect cross-correlations between
the power spectrum and bispectrum and also we neglect cross-correlations between

21However, whenever we analyze multipoles, we do consider multipole cross-correlations, which
in multipole space appear as off-diagonal entries. In particular, we consider the P0-P2 cross-
correlation.
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k-bins (for the power spectrum and bispectrum respectively) 22.
By considering the diagonal elements of the measured covariance (actively put-

ting the off-diagonal elements to zero), we can study two effects. First, we can better
understand the contribution of off-diagonal elements to the covariance, without yet
relying on perturbation theory. Secondly, we can investigate the precision of the
analytical diagonal covariance as described in Sec. 8.3 by comparing them to the
diagonals of the measured covariance.

The most significant effect of using a diagonal covariance is an overestimation of
the bispectrum impact relative to the power spectrum. We find that the off-diagonal
elements in the power spectrum covariance have a negligible effect. However, for
the bispectrum, the impact is larger. This is expected, as neglecting the power
spectrum-bispectrum cross-correlation is equivalent to a scenario where the bispec-
trum is providing purely independent, new, information from the power spectrum.
At least on large enough scales, this is inaccurate as discussed in [236]. In that
sense, neglecting the cross-covariance is a double counting of large-scale informa-
tion. Keeping this in mind, we still want to emphasize that the relative impact of
the bispectrum grows rapidly with higher kmax.

In Fig. 8.2, we show the impact of these two isolated effects. First, by reducing
the full covariance to just the diagonals, we obtain about 25% − 30% tighter con-
straints. Second, if we compare the measured diagonal covariance to the modelled
one, the agreement is remarkably good with only a few percent difference 23. In fact,
this could be accounted for by loop order contributions that we did not consider in
our analytic modeling of the diagonal covariance which is roughly of the same order.

By comparing the MCMC data analysis in Fig. 8.1 to the Fisher forecast using
the analytical diagonal covariance shown in Fig. 8.2, we estimate our confidence in
the Fisher results to be about 40%.

Finally, we perform the same comparison for non-Gaussianity constraints. The
MCMC data analysis yields

(
σ(f loc.

NL ), σ(f eq.
NL), σ(f

orth.
NL )

)
= (35, 298, 75), while the

Fisher forecast with analytical diagonal covariance gives
(
σ(f loc.

NL ), σ(f eq.
NL), σ(f

orth.
NL )

)
=

(28, 275, 95). Thus for non-Gaussianity, we have a much closer agreement at around
10− 25%.

22We also neglect any sky correlations since it is a comparably small effect.
23This strong agreement is present only when summing the different redshifts as described in

Eq. (8.17) and footnote 8. In contrast, the agreement is not as good if we summarize the survey
information to an effective redshift bin.
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Figure 8.2: Triangle plots comparing different Fisher forecasts for base ΛCDM parameters
using the ℓ = 0, 2 power spectrum multipoles and the bispectrum monopole, all at one
loop order. The plots differ only in their covariances, where we compare the measured
covariance (grey) including all cross-covariances, the diagonal of the measured covariance
(red), and the analytical prediction for the diagonal covariance (blue). We implement the
approximate AP effect as discussed in Sec. 8.3.4.
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8.5 Results

Having validated the Fisher methodology with BOSS data analysis results in
Sec. 8.4, we now use it to predict the constraining power of DESI and MegaMapper,
as well as to provide some additional results for BOSS. As discussed in the previous
section, due to observational effects and covariance modeling, we expect the accuracy
of cosmological parameter constraints to be roughly 40%, and the non-Gaussianity
parameters to be accurate to 10− 25%.

While BOSS has now been extensively analyzed, there are still some unexplored
questions, which we aim to address here. The full set of cosmological parameters we
study in various combinations is {h, ln(1010As),Ωm, ns,Ωk, logm

tot.
ν , f loc.

NL , f
eq.
NL, f

orth.
NL },

where we defined logmtot.
ν := log(

∑
imνi/eV). We refer to any subset of the first

six parameters in this list (i.e. the list without the non-Gaussianity parameters) as
“base" parameters. Throughout this section, we use the power spectrum and bis-
pectrum of galaxies in redshift space at 1-loop order. For future surveys like DESI
and MegaMapper, we use the full set of multipoles 24, and for BOSS we use either
the full set of multipoles or the monopole and quadrupole for the power spectrum
and the monopole for the bispectrum 25. Furthermore, following the discussion in
Sec. 8.3.3, we fix the leading stochastic terms to one, throughout this section. There-
fore, the results we will find for BOSS in this section are slightly tighter than what
we presented in Sec. 8.4. When quoting results for primordial non-Gaussianity, we
fix the cosmological parameters, as we will discuss more later this has almost always
a negligible effect on our results. Finally, we note that we use fixed relationships
from [176, 239] between the non-Gaussianity bias parameters bfNL

i and galaxy bias
parameters bi, which we checked to be a negligible approximation with respect to
putting an order one prior centered on bfNL,ref

i on bfNL
i and then let it vary freely 26.

24As we will see for the BOSS survey, using the full set of multipoles is roughly equivalent to
just using the monopole and quadrupole for both the power spectrum and bispectrum.

25When analyzing a finite number of multipoles, we implement the approximate AP effect as
discussed in Sec. 8.3.4. However, when we use the complete set of multipoles, in particular for
DESI and MegaMapper, the AP effect is irrelevant

26Note that for f ref
NL = 0, which is what we use here, in the context of the Fisher forecast,

this is not even an approximation, but exact. However, even for non-zero reference values, the
change in the error-bar due to this approximation can be quite well understood. If we were only
to analyse the power spectrum, we would only constrain the joint parameter bfNL

1 fNL rather than
the individual parameters. With the inclusion of the bispectrum this degeneracy is broken due to
the presence of bfNL

2 fNL , b1fNL, and fNL on its own. The only relevant parameter in the context
of this discussion is f loc.

NL , since for f eq.
NL and forth.

NL almost all information lies in the bispectrum,
and we also verified explicitly that the approximation is negligible. In contrast a large part of
the constraint on f loc.

NL comes from the power spectrum, where however, we can easily understand
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8.5.1 BOSS

Base cosmological results with the one-loop power spectrum for BOSS have been
presented in [7, 142, 143], neutrinos have also been analyzed in [143] and dark
energy models in Ch. 10. The combination of the power spectrum and bispectrum
has led to the measurement of h, ln(1010As) and Ωm in Ch. 7, with the non-Gaussian
parameter fNL being reported in [176] and at tree level in [177, 178]. In this section,
we present forecasts for the power spectrum and bispectrum with the inclusion of
the sum of neutrino masses

∑
imνi , spectral tilt ns and spatial curvature Ωk. We

also investigate the impact of shot noise and of the EFT parameters and explore the
information contained in higher multipoles. The exact numerical values of the EFT
parameters, survey specification and reference cosmology that we use here and in
Sec. 8.6 are given in App. D.1. Following the binning scheme used in [9], we divide
the sample into two redshift bins. We use the same values of kNL and b1 for both
bins since the redshift difference of the bins is very small. The effective numbers we
use are summarized in Tab. 8.1.

This section is divided into two parts, based on the type of covariance used.
In the first part, we present results using the full measured covariance obtained in
Ch. 7, which includes all cross-correlations. This implies that we expect our results
to be accurate to about 15% (and 27% for Ωm) as described in Sec. 8.4.1. In the
second part, we investigate the impacts of shot noise and higher multipoles using
a modelled covariance, as described in Sec. 8.4.2. This allows us to have better

the shift in error bar. Simple error propagation tells us that the error we obtain from the power
spectrum with fixed bfNL

1 or with the order one prior on bfNL
1 are related to each other by

σ
(
f loc.,full
NL

)
≃

√√√√√√σ
(
f loc.,approx.
NL

)2
+ σ

(
bfNL
1

)2 (f loc.,ref
NL

)2
(
bfNL,ref
1

)2 , (8.31)

where we note that σ
(
bfNL
1

)
is dominated by the prior width. Therefore these changes in the error

bar are relevant, if f loc.,approx.
NL and bfNL

1 have similar signal to noise
σ(f loc.,approx.

NL )
f loc.,ref
NL

≃ σ(b
fNL
1 )

b
fNL,ref
1

. For

instance with quite large f loc.,ref
NL both sides of this ratio can roughly be equal to one, as was found

in [176]. To be precise, using Planck constraints f loc.
NL = −0.9± 5.1 and a prior σ

(
bfNL
1

)
= 2, we

find the full change in error bar for f loc.
NL with inclusion of both power spectrum and bispectrum at

f loc.,ref
NL = −0.9 to be 0.01%, 5%, 15% for BOSS, DESI and MegaMapper respectively, and even at

the Planck 1-σ level f loc.,ref
NL = −6, we find changes of 0.5%, 47%, 54%. Given in particular that

what is important is a detection of non-vanishing f loc.
NL , and within order one the actual value of

f loc.
NL is much less important, we conclude that our forecasts are robust even when the bfNL

i are free
EFT parameters.
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BOSS: zeff nb,eff[(hMpc−1)3] bref1 (kTree
max , k1Lmax, kNL) [hMpc−1] N1L

bins NTree
∆ N1L

∆

Bin 1 0.32 2.9×10−3 1.9 (0.09, 0.20, 0.7) 18 9 62
Bin 2 0.57 2.5×10−3 1.9 (0.10, 0.22, 0.7) 21 17 150

Table 8.1: BOSS effective survey specifications, calculated according to the formulas in
Sec. 8.3 and Tab. D.2 in App. D.1. nb,eff is the background galaxy number density entering
the derivatives (not the covariance), Nbins is the number of k-bins we consider for the power
spectrum and N∆ is the number of triangles we consider for the bispectrum.

analytical control, for example in order to analyze the shot noise influence on the
results.

Additional Results: ns,
∑

imνi and Ωk We present the BOSS forecasts using
the power spectrum monopole and quadrupole, as well as the bispectrum monopole,
both at one loop order, for parameters that have previously only been analyzed with
only the power spectrum (and in some cases with the tree-level bispectrum [7]). The
results are summarized in Fig. 8.3.

Impact of Shot Noise, Biases and Multipoles For BOSS, we checked that
adding the trispectrum at tree level and the 2-loop power spectrum 27 do not im-
prove on the measurements. This is mostly attributable to the large shot noise of
the survey. However, given the power of the Fisher formalism, we can investigate
the effects of certain limits and configurations on parameter constraints. Of course,
we here look at limiting cases, that are unrealistic in reality, but they show where
information is lost. In particular, we are interested in the impact of EFT para-
meters and of the survey shot noise. Throughout this section, we will be using the
analytical covariance, which gives us the most control but comes with the caveats
mentioned in Sec. 8.4. We investigate several effects on both base cosmological para-
meters including ns, and fNL. Just as in [176], unless mentioned otherwise, we fix
the cosmological parameters when quoting errors on fNL. We checked that while
f loc.

NL has a roughly 35% error bar reduction due to fixed cosmological parameters,
f eq.

NL and f orth.
NL are very independent of the other cosmological parameters and their

results would only change by roughly 5− 10% if we would not fix the cosmological

27While currently, we do not have the 2-loop power spectrum for galaxies in redshift space, we
can simply run a Fisher analysis on the one loop correlators, with the 2-loop kmax reach. This
then gives an upper bound estimate for the extra constraining power of the 2-loop correlators.
The results on BOSS do not improve even with this optimal estimate, and therefore we believe, a
2-loop analysis will not improve the results on BOSS.
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σ(·) h ln
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Pℓ 0.011 0.14 0.011 2.3 (+0.84
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Pℓ+B0 0.0092 0.095 0.008 1.6 (+0.41
−0.080)

σ(·) f loc.
NL feq.

NL forth.
NL

Pℓ+B0 25 266 94

Figure 8.3: Triangle plots and errors from Fisher forecasts for BOSS including the
spectral tilt and spatial curvature (left), massive neutrinos (right), and primordial non-
Gaussianity (bottom). The power spectrum monopole and quadrupole, and the bispec-
trum monopole were used both at one loop order. In the table we also report the upper
and lower bounds of the 68% confidence interval for the sum of massive neutrinos, i.e.
P
[(∑

imνi −
∑

im
ref
νi

)
∈ (σ−, σ+)

]
= 0.68. The covariance used here is the full, measured

covariance with all cross-correlations. We implemented the approximate AP effect as dis-
cussed in Sec. 8.3.4.
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parameters.
First, we check the impact of using higher multipoles at one loop as opposed to

using only the power spectrum monopole and quadrupole and the bispectrum mono-
pole. While there is some improvement with the inclusion of additional multipoles
for the bispectrum, we checked that almost all of this improvement comes from the
bispectrum quadrupoles. Still, this improvement is very small, and so we do not
present the posteriors. The numerical values can be found in the table of Fig. 8.4.
We can conclude that using the monopole and quadrupole for both the power spec-
trum and bispectrum, one can extract almost the full redshift space information. As
was shown in Ch. 7, we can already analyze data with the monopole and quadrupole
for the power spectrum and bispectrum. Therefore, unless indicated otherwise we
analyze using all multipoles.

Next in Fig. 8.4, we show additional constraints in the continuous field limit
nb → ∞, i.e. having no shot noise. We roughly halve the error bars for both the
base cosmological parameters and fNL. This should serve as motivation to include
as many objects into our data sets even if they are faint or somewhat unresolved.
This will also become important in Sec. 8.5.3.

Lastly, the EFTofLSS, like any EFT, will need a larger number of parameters
when going to higher perturbative orders. This is in principle not a problem as
long as they are independent enough from the parameters of interest. It is inter-
esting to investigate how better knowledge of these parameters would impact the
results. We put the “galaxy-formation prior" mentioned in Sec. 8.3.4, where we put
stronger priors on all EFT parameters motivated by hopefully-realistic future know-
ledge on galaxy formation. We also take the limit in which these parameters are
fixed, in other words representing the scenario in which all “nuisance" parameters
are known and measured exactly with no error. This, in a sense, is the theoretical
upper bound for the EFTofLSS at a given order. It is interesting to note from the
results presented in the table in Fig. 8.4 that the biases have varying impacts on
different cosmological parameters. Specifically, the biases overwhelmingly affect the
primordial parameters, As, ns and fNL. As we will see in Sec. 8.6, fNL-constraints
are more sensitive to the EFT parameters than As and ns. This is not so surprising,
considering that the functional form of EFT counterterms resemble the functional
form induced by primordial non-Gaussianities.
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P + g.p. : 0.013 0.13 0.011 0.047 - - -
P : bias fixed 0.012 0.06 0.008 0.026 - - -
P : nb → ∞ 0.009 0.11 0.008 0.045 - - -
Pℓ+B0 0.0067 0.092 0.0060 0.029 25 266 94
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P +B : bias fixed 0.0054 0.019 0.0035 0.007 4.8 45 26
P +B : nb → ∞ 0.0043 0.026 0.0024 0.012 11 147 41

Figure 8.4: Triangle plots and errors from several different Fisher forecasts for BOSS
using the analytical covariance. We compare base results to results obtained without shot
noise (left) and with biases fixed or with a “galaxy-formation prior" (g.p.) (right). In the
table, we also show the impact of including higher multipoles on the power spectrum and
bispectrum and also see the impact on fNL. For the constraints on fNL, we fix the other
cosmological parameters.
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8.5.2 DESI

We now turn to predict the performance of upcoming surveys, starting with the
imminent DESI survey. We base our results on the Emission Line Galaxies (ELGs)
sample, which is the largest of the DESI surveys [222]. We note that while we are
able to derive the value for the linear bias through specifications given in [222], we
do not have values for the other EFT parameters. We therefore shift all biases
according to the method described in Sec. 8.3.3, i.e. we shift them all according to
the change in the linear bias with respect to the BOSS best-fit. The final numerical
values we use for the DESI forecast are given in Tab. 8.2. For all the future surveys
we use kmin = 0.001hMpc−1 for the power spectrum and kmin = 0.02hMpc−1 for
the bispectrum. We bin with ∆k = 0.005hMpc−1 for the power spectrum and
∆k = 0.02hMpc−1 for the bispectrum. For binning consistency, we have checked
that using a smaller binning does not affect our results. To reduce binning effects,
ideally one would always average the observables over a k-bin. However, given
the numerical complexity of doing such a procedure for every bin, especially for
the bispectrum, we instead evaluate on a effective number keff to approximate this
averaging. This is analogous to the method used in Ch. 7, with the difference that
we also evaluate on keff the tree level contribution, rather than averaging it. The
effect is minimal. Throughout this section, we use the analytical covariance from
Eqs. (8.16) and (8.17) with all the ingredients discussed in Sec. 8.3.3. We remind
that the validity of the covariance was discussed in Sec. 8.4.

DESI: zeff nb,eff[(hMpc−1)3] bref1 (kTree
max , k1Lmax, kNL) [hMpc−1] N1L

bins NTree
∆ N1L

∆

Bin 1 0.84 8.0×10−4 1.3 (0.08, 0.18, 0.9) 37 17 115
Bin 2 1.23 3.2×10−4 1.5 (0.09, 0.23, 1.3) 45 17 191

Table 8.2: DESI effective survey specifications, calculated according to the formulas in
Sec. 8.3 and Tab. D.3 in App. D.1. nb,eff is the background galaxy number density entering
the derivatives (not the covariance), Nbins is the number of k-bins we consider for the power
spectrum and N∆ is the number of triangles we consider for the bispectrum.

Results We present results, including the spectral tilt, spatial curvature, neutrino
masses, and non-Gaussianity in Fig. 8.5, using all multipoles. The results for fNL

were obtained with fixed cosmological parameters. Analyzing fNL in combination
with cosmological parameters changes the fNL constraints by less than 8%. For
neutrino masses, with the caveats discussed in footnote 16, it seems likely that DESI
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Figure 8.5: Triangle plots and errors from Fisher forecasts for DESI including the spec-
tral tilt and spatial curvature (left) and massive neutrinos (right) and Non-Gaussianity
(bottom). In the table we also report the upper and lower bounds of the 68% confidence
interval for the sum of massive neutrinos, i.e. P

[(∑
imνi −

∑
im

ref
νi

)
∈ (σ−, σ+)

]
= 0.68.

We use all power spectrum and bispectrum multipoles at one loop order for the above
results and use the analytical covariance without cross-correlations.

is already able to detect massive neutrinos at the 2σ level.

Impact of Shot Noise and Biases Similar to Sec. 8.5.1, it is interesting to
investigate constraints with the “galaxy-formation prior" (g.p.) putting stronger
priors on EFT parameters, and look at the theoretical limits of fixed biases and
zero shot noise for DESI. As shown in Fig. 8.6, the g.p. mostly affects f eq.

NL and
f orth.

NL . However, in both the zero shot noise 28 and fixed bias limits, we observe
improvements of roughly a factor of 2-3 in ln(1010As),Ωm and ns, while h improves
less significantly in either of these limits. These results are consistent with those

28We note that due to still large shot noise, the 2-loop analysis for DESI does not much improve
the results, which we verified with the same method as mentioned in footnote 27.
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Figure 8.6: Triangle plots and errors from several different Fisher forecasts for DESI. We
compare base results to results obtained without shot noise (left) and with biases fixed or
with a “galaxy-formation prior" (g.p.) (right). In the table, we also show the impact of
including higher multipoles on the power spectrum and bispectrum and also see the impact
on fNL. For the constraints on fNL, we fix the other cosmological parameters.

obtained for BOSS in Sec. 8.5.1 since, as we noted, the biases have larger degeneracies
with ln(1010As), ns, and non-Gaussianities. We find that the effect of shot noise
accounts for approximately 50% of the constraints on fNL. Interestingly, fixing the
bias parameters has a striking effect on non-Gaussianities, particularly for f eq.

NL, for
which we would obtain a six-fold reduction in the error bars. In combination with
the results from the g.p., this strongly motivates the need for tighter priors and
therefore better measurements of biases when performing the analysis of DESI in
the near future. In order to further improve on this aspect, we present in Sec. 8.6
the fNL constraints forecasted with the EFT-motivated perturbativity prior.
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8.5.3 MegaMapper

For MegaMapper, we base our Fisher forecasts on the two scenarios mentioned
in [223] (there called “idealized" and “fiducial"), which we call the optimistic (MMo)
and pessimistic (MMp) scenarios. These two scenarios are in turn based on the spe-
cifications presented in Tab. 1 (MMo) and Tab. 2 (MMp) of [237]. It is important
to note that these specifications are preliminary and may differ from the final spe-
cifications. We caution that our results are based on these preliminary specifications
and may need to be revised as more information becomes available. We find that the
constraints predicted by the two scenarios differ by 30− 40%. Given the similarity
of the results in these two situations, we present here the results in the optimistic
scenario, leaving the pessimistic scenario in App. D.2.1. Thus, the numerical values
that we will use in this section were derived from Tab. 1 of [237] and methods from
Sec. 8.3. They are given in Tab. 8.3.

MMo: zeff nb,eff[(hMpc−1)3] bref1 (kTree
max , k1Lmax, kNL) [hMpc−1] N1L

bins NTree
∆ N1L

∆

Bin 1 2.4 1.8×10−3 3.1 (0.14, 0.36, 3.2) 73 62 696
Bin 2 4.3 1.1×10−4 6.3 (0.28, 0.76, 10.1) 153 294 5491

Table 8.3: MegaMapper effective survey specifications, calculated according to the formu-
las in Sec. 8.3 and Tab. D.4 in App. D.1. nb,eff is the background galaxy number density
entering the derivatives (not the covariance), Nbins is the number of k-bins we consider
for the power spectrum at 1-loop and N∆ is the number of triangles we consider for the
bispectrum at 1-loop.

As in the DESI forecast, we shift the rest of the biases parameters according to
the method described in Sec. 8.3.3. Furthermore, we again use kmin = 0.001hMpc−1

for the power spectrum and kmin = 0.02hMpc−1 for the bispectrum, as well as ∆k =

0.005hMpc−1 for the power spectrum and ∆k = 0.02hMpc−1 for the bispectrum.
Again, to reduce binning effects, we evaluate on keff. The results for fNL were again
obtained with fixed cosmological parameters. Analyzing fNL in combination with
cosmological parameters changes the fNL constraints by less than 3%. Finally, just
like for the DESI forecasts, we use the analytical covariance from Eqs. (8.16) and
(8.17), following the discussion in Sec. 8.3.3 and its precision discussed in Sec. 8.4.

Results We present base results for MegaMapper in a similar format to the previ-
ous sections in Fig. 8.7. We see that the bispectrum contains significant constraining
power. As mentioned in Sec. 8.4.2, we expect that the constraints presented here
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Figure 8.7: Triangle plots and errors from Fisher forecasts for MegaMapper including the
spectral tilt and spatial curvature (left) and massive neutrinos (right) and non-Gaussianity
(bottom). In the table we also report the upper and lower bounds of the 68% confidence
interval for the sum of massive neutrinos, i.e. P

[(∑
imνi −

∑
im

ref
νi

)
∈ (σ−, σ+)

]
= 0.68.

We use all power spectrum and bispectrum multipoles for the above results and use the
analytical covariance without cross-correlations.

will be an overestimate as we are neglecting cross-correlations. Nevertheless, the
impact of the bispectrum at higher kmax becomes relatively more important, and
therefore continues to be a very important tool for future data analyses.

In particular, shown in in Fig. 8.7, the inclusion of the bispectrum allows for very
tight constraints on neutrino masses. Even with the caveats discussed in footnote 16,
neutrino mass detection with MegaMapper seems very likely.

Impact of Shot Noise and Biases Given the long timeline until results will
be available for MegaMapper, and target selection is yet to happen, we will discuss
some aspects that might improve results as was discussed for DESI in Sec. 8.5.2.
In particular, while the perturbative reach is far greater at higher redshifts, as can
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Figure 8.8: Triangle plots and errors from several different Fisher forecasts for MegaMap-
per. We compare base results to results obtained without shot noise (left) and with biases
fixed or with a “galaxy-formation prior" (g.p.) (right). In the table, we also show the
impact of including higher multipoles on the power spectrum and bispectrum and also see
the impact on fNL. For the constraints on fNL, we fix the other cosmological parameters.

be seen from Tab. 8.8, the shot noise, especially for the higher redshift bin, is ex-
tremely large 29. We, therefore, present the limiting case of zero shot noise to better
understand the possible gain achievable by reducing the currently estimated shot
noise. Equally motivated by the long timeline of MegaMapper, we present results
with stronger bias priors, anticipating the better understanding of galaxy formation
until the data release. Along with the zero shot noise and “galaxy-formation prior"
results, we also present the impact of fixing biases in Fig. 8.8.

We see that stronger bias priors mostly have an effect on f eq.
NL and f orth.

NL . Going
further and fixing the biases we would again, roughly, reduce the error bar by a
factor 2, with again the exception of f eq.

NL where the dependence is much stronger.

29This also means that the 2-loop analysis for MegaMapper just marginally improves on this
results at < 20% error bar reduction, which we verified with the same method as mentioned in
footnote 27.
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This again motivates the perturbativity prior we discuss in Sec. 8.6. This is very
similar to the case of BOSS and DESI shown in Secs. 8.5.1 and 8.5.2. Thus, the
relative gain of putting the “galaxy-formation prior" or fixing the biases is very
similar among the three surveys we consider.

However, shot noise affects the three surveys very differently. In particular,
for MegaMapper, shot noise is quite significant for some cosmological parameters.
Especially for the base parameters, we can see from the table in Fig. 8.8, that
reduction of shot noise for MegaMapper can lead to a ∼10-fold error bar reduction.
Instead for non-Gaussianity parameters, while shot noise still seems to be in an
important factor, it is comparably less significant. In particular, the effect of setting
shot noise to zero is similar to fixing the biases when analyzing fNL.

8.6 Further Constraining fNL with a Perturbativity

Prior

As we saw in Sec. 8.5, in particular Figs. 8.4, 8.6 and 8.8, fixing the biases
leads to stronger constraints on the primordial parameters ln(1010As) and ns and to
vast improvements on some fNL parameters. We will see in this section that some
non-Gaussianity parameters are greatly affected by EFT parameter constraints. In
particular, small improvements on the constraints on the bias parameters can lead to
significant improvements on f eq.

NL and f orth.
NL . We are thus motivated to place stronger

(and physically justifiable) priors on the nuisance parameters in order to further
constrain single-field inflation.

As mentioned in Sec. 8.3.3, we put independent priors on the EFT parameters,
restricting their individual size. This is motivated by the fact that the EFTofLSS
predicts these parameters to be of order one. However, given that the MCMC
explores the full parameter space in a random walk, the final loop contribution can
be

√
n larger than the truth, where n is the number of EFT parameters. We aim

to address the issue that such parameter configurations are unphysical yet can still
fit the data well. This happens because, at intermediate and low k’s, where each
term is not too small, even a too-large loop is comparably small with respect to the
data error that scales like k−3/2. Therefore, only at large k where the data error is
sufficiently small, would parameter configurations exhibiting

√
n enhancements to

the loop be ruled out. However, there exist parameter configurations exhibiting
√
n

larger contributions at lower k’s that cancel out at large k, making the loop appear
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Figure 8.9: Plot showing various two-loop monopole power spectra, P 0
2L against the

CMASS data error, σdata,CMASS (grey). As an example of a typical MCMC, the BOSS
CMASS P 0

2L was estimated using the relation P2L ∼ P 2
1L

PTree , and is shown in blue. The
expected P 0

2L size is shown in red and an example of a P 0
2L that would be favoured by the

perturbativity prior is shown in green.

to have the correct size at those scales. Therefore, a loop contribution that is too
large at low k can still fit the data well, but would go unnoticed, even though it
would clearly be unphysical. Through scaling relations, this then translates to an
overestimate of the expected higher loop contribution. This argument is shown for
the estimated 2-loop contribution in Fig. 8.9.

We, therefore, propose an additional prior, which we call “perturbativity prior",
on the size of the loop contributions, aimed at being effective in the intermediate and
low k regions where the

√
n enhancements are not sufficiently restricted by the data

analysis. To formulate this “perturbativity prior”, we use the fact that, as we sample
the different bias configurations, the two-loop contribution can have a maximal size,
and therefore a maximal signal-to-noise. This maximal signal-to-noise was what
defined the kmax in Eq. (8.22). In this section, we show that by using appropriate
scaling relations between the two-loop and one-loop contributions, we can translate
this threshold for the two-loop contribution into a prior on the size of the one-loop
contribution.

8.6.1 Contribution to the Fisher Matrix

We impose a perturbativity prior for the power spectrum and bispectrum re-
spectively, and the procedure is the same in both cases. We therefore keep the
derivation generic, for the loop of some observable, X1L, where X ∈ {P,B}. In a
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later step, we will derive an estimate for the correct size of the loop, denoted by XC
1L.

As mentioned in the previous section, this estimate will come from a threshold for
the signal-to-noise of two-loop contributions, through which we can infer properties
about the correct one-loop contributions. The quantity we want to constrain is X1L,
whereas XC

1L we assume to be estimated before the data analysis. We then impose
that on average, X1L is close to XC

1L, therefore, we impose a Gaussian prior

1

NX

∑
ki

∫ 1

−1

∫ 2π

0

dµi
2

dϕ

2π

X1L(ki; ẑ)

XC
1L(ki; ẑ)

∼ N (1, 1), (8.32)

where ki ∈ {k, (k1, k2, k3)}, µi ∈ {µ, µ1} and NX ∈ {Nbins, N∆} for the power
spectrum and bispectrum respectively. We here implement the real space part of
the perturbativity prior 30. For the remainder of this section, we, therefore, always
refer to real space quantities, indicated by dropping the ẑ argument. The real space
prior we then impose is given by

1

NX

∑
ki

X1L(ki)

XC
1L(ki)

∼ N (1, 1). (8.33)

One way to write the prior above is to impose the same, independent, prior for each
bin. That is, we impose

X1L(ki) ∼ N
(
XC

1L(ki), NX

(
XC

1L(ki)
)2)

, (8.34)

which implies Eq. (8.33).
In order to use this prior for the Fisher matrix, we assume once again that our

reference cosmology is accurate and we assume Xref
1L ≃ XC

1L ( 31). Then, for fixed ki,

30We note that the real space perturbativity prior is on its own only restricting the size of the
real space correlators. However, given that the size of the full redshift space observables is highly
dependent on the real space EFT-parameter values, there is little room left for the full redshift
space contribution to be large, if the real space contribution is restricted enough. We therefore
expect that the full redshift space prior is highly correlated with the real space one, and, therefore,
only do the real space version here. Adding the redshift space part is straightforward.

31Given that the best-fit we currently have was not obtained with the use of the perturbativity
prior, this approximation is not guaranteed to be justified. However, as we will see in Fig. 8.10, the
perturbativity prior only mildly affects the errors of EFT parameters. Therefore, we assume that
the best-fit values are also only slightly modified, still making the reference values we use here, a
good approximation. This issue will disappear once a data analysis with this additional prior is
performed.
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similarly to Eq. (8.3), we can Taylor expand to get 32

−2 logPrior =
1

NX (XC
1L)

2

(
X1L(θ)−XC

1L

)2
+ r1 (8.35)

≃ (θ − θref)TFX,pert.(θ − θref) + r1,

where FX,pert.
ij = 1

NX(XC
1L)

2
∂X1L

∂θi

∂X1L

∂θj
and r1 is a parameter-independent constant.

Therefore, summing over all bins, the perturbativity prior that we finally implement
in the Fisher forecast is given by

F pert.
ij =

1

Nbins

∑
k

1

PC
1L(k)

2

∂P1L(k)

∂θi

∂P1L(k)

∂θj
(8.36)

+
1

N∆

∑
k1,k2,k3

1

BC
1L(k1, k2, k3)

2

∂B1L(k1, k2, k3)

∂θi

∂B1L(k1, k2, k3)

∂θj
.

In order to be able to implement this prior, we need to derive the estimates for PC
1L

and BC
1L. We derive the threshold for the size of the 1-loop contributions from limit-

ing the 2-loop signal-to-noise ratio. This is similar to how we determined the kmax in
Sec. 8.3.3. There, we demanded that the signal-to-noise of the 2-loop contribution
for any new survey does not exceed its signal-to-noise of BOSS CMASS, where we
know it is negligible. In particular, the maximal signal-to-noise that has previously
been chosen in the data analysis to determine the kmax was 1

9
, which is also what we

use here. Explicitly, ∫ kmax

0

(
P2L(k)

σ̃P,data(k)

)2

dk ≃ 1

9
, (8.37)∫

νB

(
B2L(k1, k2, k3)

σ̃B,data(k1, k2, k3)

)2

dk1dk2dk3 ≃
1

9
,

where σ̃X,data here is defined as in Eq. (8.25), using that in the continuum limit we get
∆k → dk, and νB is the set of all triangles with maximal wavenumber smaller than
or equal to kmax. We then get the estimates for the correct one-loop contributions,
through the approximate size relations between two-loop and one-loop, P2L ∼ PC

1L
2

PNS
Tree

and B2L ∼ BC
1LP

C
1L

PNS
Tree

( 33). Finally, in order to perform the integrals in Eq. (8.37), we

32 We would not need to do this Taylor expansion in an actual data analysis.
33Note that here the numerators have the usual stochastic contributions, but PNS

Tree in the de-
nominators has no shot noise.
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assume scaling functions SX(ki), defined by SX(ki)
SX(kmax)

=
XC

1L(ki)

XC
1L(kmax)

( 34), that should
approximate the k dependencies ofXC

1L(ki). Plugging in the size relations and scaling
approximation into Eq. (8.37), we can solve for the XC

1L(ki) to get

PC
1L(k) = SP (k)

(
9

∫ kmax

0

(
SP (k′)2

PNS
Tree(k

′)σ̃P,data(k′)

)2

dk′
)−1/4

, (8.38)

BC
1L = SB(k1, k2, k3)

(
9

∫
νB

(
SB(k′1, k

′
2, k

′
3)

σ̃B,data(k′1, k
′
2, k

′
3)

1

3

(
PC
1L(k

′
1)

PNS
Tree(k

′
1)

+ 2p.

))2

dk′1dk
′
2dk

′
3

)−1/2

,

where we dropped the k-dependence for BC
1L to avoid clutter and in the bottom line

we symmetrize the PC
1L

PNS
Tree

. Note that PC
1L and BC

1L do not depend on the overall size
of the scaling estimates SX , as we are normalizing it at kmax.

There are well established estimates for the behaviour of the power spectrum
loop [145] and bispectrum loop [240] in a scaling universe. For biased tracers we
adapt this to

SPint(k) = PTree(k)

(
k

kNL

)3+n(k)

, (8.39)

SBint(k1, k2, k3) = BTree(k1, k2, k3)

((
k1
kNL

)3+n(k1)

+ 2p.

)
,

which is very similar to the one used in Eq. (8.23), but with PTree and BTree being the
(real space) biased tracers tree-level power spectrum and bispectrum. In order to
have both the right IR and UV behaviour of the loop contributions we also include
a loop counter term to the estimate. For the scaling of the counterterms, we use

SPc (k) = −2b1βP11(k)

(
k

kNL

)2

, (8.40)

SBc (k1, k2, k3) = −2b21β

(
P11(k1)P11(k2)

(
k3
kNL

)2

+ 2p.

)
,

where we use the reference value βBOSS = 1 and rescale with Eq. (8.19) for other
surveys 35. Finally, given that SP and SB should be upper bounds on the scaling of
the loops, we want to avoid cancelations and ensure positivity. Therefore, the final

34One could have normalized this scaling factor to make it unitless, i.e. SX(ki) → SX(ki)
SX(kmax)

without changing anything in the final formulas.
35The representative counter terms here correspond to the terms multiplied by ch1 and ch3 in

Ch. 6.
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scalings we implement are

SP (k) = max(|SPint(k)|, |SPc (k)|), (8.41)

SB(k1, k2, k3) = max(|SBint(k1, k2, k3)|, |SBc (k1, k2, k3)|).

8.6.2 Results

While the perturbativity prior further constrains both cosmological parameters
and bias parameters, the largest effect comes from further constraining particular
bias parameters. We present this improvement in Fig. 8.10. Indeed, there we can
see that small improvements on particular EFT parameters 36 lead to vast improve-
ments on f eq.

NL. In the tables of Fig. 8.10 we also show the effect on the other types of
non-Gaussianity we analyze. Each analysis was performed with fixed cosmological
parameters and each type of non-Gaussianity was analyzed separately. For com-
pleteness, and to stress the importance of the bispectrum loop, we also compare it
with bispectrum tree-level constraints. The survey specifications used for the tree-
level analysis are also in Tabs. 8.1, 8.2, and 8.3. In the following, we will present
results for each survey based on the plots in Fig. 8.10.

Finally, as we also discussed in Sec. 8.5, base cosmological parameters are less
affected by constraints on bias parameters. However, we find that the inclusion of
the perturbativity prior can have a relevant effect on them, which we discuss in
App. D.2.2. In particular, we find that DESI will constrain curvature to 0.012 and
MegaMapper to 0.0012.

BOSS As shown in the table of Fig. 8.10, the one-loop bispectrum already signi-
ficantly improves the constraints on non-Gaussianities by ∼ 30− 50% with respect
to the tree-level analysis. Additionally including the perturbativity prior to the one-
loop bispectrum yields a further ∼ 24% reduction in σ for f loc.

NL , and ∼ 10% reduction
in σ for f eq.

NL and f orth.
NL . The “galaxy-formation prior" would further reduce the error

by ∼ 20− 30% for f eq.
NL and f orth.

NL , and 14% for f loc.
NL . The addition of the loop breaks

the degeneracy between c2 and c4 ( 37), greatly improving constraints on both para-
meters, which translates to stronger constraints on f eq.

NL. Furthermore, the inclusion
of the perturbativity prior further breaks this degeneracy and improves upon the

36We remind the reader that c2 and c4 are the linear combinations of the second-order biases that
enter the tree-level bispectrum, alongside the linear bias b1. Explicitly they are c2 = (b2 + b5)/

√
2,

c4 = (b2 − b5)/
√
2. For more details see Eq. (6.132) and Ch. 7.

37The breaking of this degeneracy due to the loop bispectrum is already present in Ch. 7.
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constraints on b1, which leads to additional improvements on the fNL parameters.

DESI As it was seen in BOSS, the inclusion of the loop bispectrum and perturb-
ativity prior breaks the degeneracy between c2 and c4 and tightens the constraints on
EFT parameters for DESI as well. However, the resulting effect on fNL parameters
is different. Unlike BOSS, the inclusion of the one-loop bispectrum and perturb-
ativity prior to DESI does not uniformly tighten all fNL errors. For one, most of the
information to constrain f loc.

NL is contained in the power spectrum and the tree-level
bispectrum. In contrast, the one-loop bispectrum does improve the constraint of
f eq.

NL and f orth.
NL by 19% and 58% respectively. The perturbativity prior reduces these

errors further by 20% and 11% and the future galaxy formation prior by another
16% and 19%.

MegaMapper MegaMapper results are more similar to DESI than BOSS. f loc.
NL is

mostly constrained through the power spectrum and does not improve much with
the addition of the bispectrum loop or the perturbativity prior. Additionally, as
was seen for DESI, the inclusion of the bispectrum loop leads to a more significant
improvement in the constraint on f orth.

NL compared to f eq.
NL, with 47% and 24% im-

provements respectively. To place these results into context, note that the tree level
results we obtain are in agreement with those obtained in [228] 38. Note, however,
the tree-level kmax we estimate here is a bit lower, thus we predict slightly less op-
timistic constraints for the tree-level bispectrum, which makes the addition of the
loop more important. The loop again breaks the degeneracy between c2 and c4,
and the perturbativity prior enhances the constraints on c2 in particular, thereby
improving the constraints on f eq.

NL and f orth.
NL by 9% and the “galaxy-formation prior"

further reduces the errors by 21% and 18% respectively.

38The results we present here would correspond to their MegaMapper - B results, with fixed
cosmological parameters and free bias parameters. The disagreement with our results is < 10%.
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NL log(b1) c2 c4

P+BTree 37 357 142 0.006 0.081 0.88
P+B 23 253 67 0.005 0.021 0.36

P+B+p.p. 17 228 62 0.003 0.020 0.28
P+B+p.p.+g.p. 15 164 49 0.003 0.011 0.15
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NL feq.
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NL log(b1) c2 c4

P+BTree 3.61 142 71.5 0.003 0.04 0.4
P+B 3.46 114 30.2 0.003 0.02 0.2

P+B+p.p. 3.27 91.5 27.0 0.001 0.01 0.1
P+B+p.p.+g.p. 3.19 77.0 21.8 0.001 0.008 0.08

MMo: σ(·) f loc.
NL feq.

NL forth.
NL log(b1) c2 c4

P+BTree 0.29 23.4 8.7 0.0005 0.01 0.14
P+B 0.27 17.7 4.6 0.0003 0.005 0.05

P +B+p.p. 0.26 16.0 4.2 0.0002 0.005 0.04
P+B+p.p.+g.p. 0.26 12.6 3.4 0.0002 0.003 0.03

Figure 8.10: Triangle plots and errors from Fisher forecasts for BOSS (top left), DESI
(top right), and MegaMapper (bottom left), for the equilateral type of non-Gaussianity,
and leading bias parameters. We also show errors on other non-Gaussianity parameters
in the tables. Each analysis was done with cosmological parameters fixed and each non-
Gaussianity parameter was analyzed separately. We always include the power spectrum at
one loop order with the addition of either the tree-level bispectrum the loop bispectrum
or the loop bispectrum with a perturbativity prior (p.p.) also in combination with the
“galaxy-formation prior" (g.p.). We use all power spectrum and bispectrum multipoles in
each case and use the analytical covariance without cross-correlations.
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Part IV

The Late Universe
Dark Energy and the Formation Time of Galaxies





9
Direct Signatures of the Formation
Time of Galaxies

9.1 Summary

We show that it is possible to directly measure the formation time of galaxies
using large-scale structure. In particular, we show that the large-scale distribution
of galaxies is sensitive to whether galaxies form over a narrow period of time before
their observed times, or are formed over a time scale on the order of the age of the
Universe. Along the way, we derive simple recursion relations for the perturbative
terms of the most general bias expansion for the galaxy density, thus fully extending
the famous dark-matter recursion relations to generic tracers.
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9.2 Introduction and Conclusions

The establishment of the standard cosmological model, from the hot big bang at
early times to the cosmological constant and cold dark-matter dominated late-time
accelerated expansion, is one of the great triumphs of modern science. It gives a
depiction of a dynamical Universe that has evolved over billions of years from a
dense cosmic soup to a sparse sprinkling of stars, galaxies, and dark-matter halos.
This familiar picture was not always obvious, however.

For example, there was much debate in the second half of the twentieth century
about the so-called 1948 steady-state model of the Universe [11]. This model pro-
posed that properties of the Universe, including number and types of galaxies, did
not change over time. Empirical evidence, of course, eventually contradicted these
ideas. One such set of evidence was the observation that properties of galaxies,
including color and estimated ages, changed with their measured redshifts (see for
example [12, 13]), suggesting that the galaxies themselves evolved over time. This
confusion, though, is understandable. Indeed, we cannot watch objects in the Uni-
verse evolve for very long; we can only see static snapshots at various times in the
past, making it quite challenging to directly probe cosmic time scales.

A concept that is related to, but distinct from, the time scale of cosmic evolution
is what we call a cosmic response time, i.e. the temporal extent to which the past
influences galaxies at a given time. 1 This in turn is related to the formation time
of galaxies, which is at least as long as the response time.

In this work, we provide, as far as we can tell, the first directly cosmologically ob-
servable signals that are sensitive to the formation time of galaxies (or galaxy clusters
and other gravitationally-bound objects in general). By studying the response time
of galaxies, we show that the static pictures that we take of the Universe (in galaxy
surveys, for example) can contain unique signatures that are only possible if galax-
ies have been forming over time periods on the order of the age of the Universe.
Even if we have an incredibly large amount of evidence that this must be the case,
the possibility of a direct cosmological observation is, to us, quite an extraordinary
prospect. 2

1Mathematically, this is the time scale of support of the Green’s function describing the re-
sponse.

2We stress that in this work, we are not concerned with ages or generic evolution of structures
(for which there is abundant astrophysical evidence, some of which we mentioned above), but with
the response time of structures. Previous studies in this direction include numerical simulations
and the so-called assembly bias [241, 242], although it can be challenging to directly relate the
latter to galaxy formation time [243].
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Furthermore, since our reasoning is based on the Effective Field Theory of large-
scale structure (EFT of LSS, [30, 28]), which is the unique theory of gravity, cold
dark matter, baryons, and tracers on large scales, our conclusions do not depend on
specific modeling choices about stars or galaxies. Given the recent success of using
the EFT of LSS to analyze galaxy clustering data as in [7, 142, 143, 176] and Ch. 7,
we now have the intriguing opportunity to explore the Universe in this exciting new
way.

It has been known for some time (see e.g. [244, 245]) that on large scales, the
galaxy distribution can be expressed as a Taylor expansion in the fluctuations of the
underlying dark-matter distribution, an approach that goes by the general name of
the bias expansion (for a modern review, see [157]). This makes intuitive sense, since
galaxies tend to form in regions of space where the dark-matter density, and hence
the gravitational potential, is highest. In [136] it was argued that this dependence
should be on second spatial derivatives of the gravitational potential and gradients
of the dark-matter velocity, and a straightforward extension allows for a dependence
on spatial derivatives of these quantities. But is galaxy clustering only affected by
the nearby dark-matter distribution at the time that we measure it (local in time),
or does the configuration of the dark matter at earlier times, of order a Hubble time
earlier, have an impact (non-local in time)? Said another way, given two identical
localized dark-matter configurations at a given time, will the same galaxies always
form, or do we need to know the whole history of that configuration?

This question was conceptually answered in [129], which pointed out that the
most general dependence, based on the symmetries relevant to dark-matter and
baryon dynamics and galaxy formation on large scales, which are the equivalence
principle and diffeomorphism invariance (the non-relativistic limit of which is called
Galilean invariance), is on second spatial derivatives of the gravitational potential,
gradients of the matter velocity (and the relative velocity directly), and their spatial
gradients, integrated over all past times. This makes the EFT of LSS generally local
in space, but non-local in time. 3

However, until now, the most advanced perturbative calculations, as done in
Ch. 6, have shown that the non-local-in-time bias expansion up to fourth order is
mathematically equivalent to the local-in-time expansion. As we show in this work,
though, this is no longer true at fifth order, and thus it is possible to see distinctly
non-local-in-time effects in the galaxy-clustering signal. Measuring the size of these
effects would then give us a direct indication of the formation time scale of galaxies.

3See also [147, 246] for discussions of non-local-in-time effects in dark-matter clustering.
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As a side observation, this time scale would also give a direct (versus indirect) lower
bound on the age of the Universe.

Notes We work in the Newtonian approximation where Φ(x⃗, t) is the gravitational
potential, a(t) is the scale factor of the Universe, the Hubble parameter is defined
by H(t) ≡ ȧ(t)/a(t), and the overdot ‘˙’ stands for a derivative with respect to
t. The dark-matter fluid is described by the overdensity δ(x⃗, t) and fluid velocity
v⃗(x⃗, t). The growth factor D(t) is defined as the growing mode solution to the linear
equation of motion for δ, i.e. satisfies D̈ + 2HḊ − 3ΩmH

2D/2 = 0, where Ωm(t) is
the time-dependent matter fraction.

The building blocks of Galilean scalars are the dimensionless tensors

rij ≡
2∂i∂jΦ

3Ωma2H2
, and pij ≡ − D

aḊ
∂iv

j . (9.1)

For brevity, we will always denote the traces δijrij = δ (which is true because of
the Poisson equation) and δijpij ≡ θ (which is our definition of θ). Then, for other
contractions, we write the matrix products as simple multiplication, i.e. r2 = rijrji,
r2p = rijrjkpki, rprp = rijpjkrklpli, and so on (repeated indices are always summed
over). We work in the so-called Einstein-de Sitter approximation, where the time
dependence of perturbations is given by

δ(n)(x⃗, t) =

(
D(t)

D(t′)

)n
δ(n)(x⃗, t′) , θ(n)(x⃗, t) =

(
D(t)

D(t′)

)n
θ(n)(x⃗, t′) . (9.2)

In this work, we focus on the lowest-derivative bias terms that are sufficient to estab-
lish our claims, and leave a discussion of higher-derivative bias (and counterterms)
for future work. Finally, we focus on the real space (as opposed to redshift space)
prediction, which in any case is the leading signal if one restricts observations to
directions near the line of sight. We leave extending our results to redshift space to
future work. A more detailed explanation of the notation used here, is in Ch. 6.

9.3 Complete Bias Expansion and Recursion

We start by constructing the most general bias expansion for the galaxy over-
density δg(x⃗, t) ≡ (n(x⃗, t) − n̄(t))/n̄(t), where n(x⃗, t) is the galaxy number-density
field and n̄(t) is the average number density of galaxies, that is consistent with the
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equivalence principle, diffeomorphism invariance, and is non-local in time. 4 Up to
N -th order in perturbations, we have

δg(x⃗, t)
∣∣
N
=

N∑
n=1

δ(n)g (x⃗, t) , (9.3)

where the expression at n-th order is given by the non-local-in-time integral over
the sum of all possible local-in-time functions Om up to order n [129]

δ(n)g (x⃗, t) =
∑
Om

∫ t

dt′H(t′)cOm(t, t
′)[Om(x⃗fl(x⃗, t, t

′), t′)](n) , (9.4)

evaluated along the fluid element

x⃗fl(x⃗, t, t
′) = x⃗+

∫ t′

t

dt′′

a(t′′)
v⃗ (x⃗fl(x⃗, t, t

′′), t′′) , (9.5)

and we use the square brackets and superscript notation [·](n) to mean that we
perturbatively expand the expression inside of the brackets and take the n-th order
piece. 5 Neglecting baryons, as they are a small effect [128, 31], in Eq. (9.4), since
δg is a Galilean scalar, the equivalence principle implies that the set of functions
{Om} is given by all possible rotationally invariant contractions of the dark-matter
fields rij and pij, and integrating the Om along the fluid element is the most general
way to write a non-local-in-time expression for δg. All of the complicated details of
galaxy-formation physics is then encoded in the functions cOm , which are a priori
unknown (from the EFT point of view) time-dependent kernels, which physically
can be thought of as the response of the galaxy overdensity to a given field at a
given time. The local-in-time expansion is given by setting cOm(t, t

′) = cOm(t)δD(t−
t′)/H(t). Notice that we do not include any time derivatives of rij or pij in the
set {Om} because these operators are not present in the strictly local-in-time limit
(i.e. they would be suppressed with respect to other terms by H/ωshort ≪ 1 where
1/ωshort is the time-scale of the relevant local-in-time physics) [129]. Thus, our
expansion covers all Hubble-scale non-local-in-time effects. From now on, in the list
of functions {Om}, we identify the subscript m on Om to denote that the function

4From an EFT perspective the galaxy overdensity δg and the halo overdensity δh from Ch. 6
can be viewed as interchangable.

5There was an interesting discussion [247] as to whether intrinsic alignments (see [248] for
an EFT description) of galaxies are most affected by the gravitational field at late or early times
[249, 250, 251]. Our non-local-in-time bias expansion Eq. (9.4) takes both possibilities into account.
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starts at order m, i.e. m = 3 for δ2θ, δ3, r2p, . . . .
In this way, the bias expansion at order n is reduced to an algorithmic procedure.

To create the list of seed functions {Om}, we list all contractions up to n factors of
rij and pij. We then iteratively Taylor expand Om(x⃗fl(x⃗, t, t

′), t′) around x⃗ using the
recursive definition Eq. (9.5), and take the n-th order piece. After performing this
expansion, we end up with an expression that can be cast into similar notation as
Eq. (6.127)

[Om(x⃗fl(x⃗, t, t
′), t′)](n) =

n−m+1∑
α=1

(
D(t′)

D(t)

)α+m−1

C(n)
Om,α

(x⃗, t) . (9.6)

The resulting bias functions C(n)
Om,α

, which we say are in the fluid expansion of the
seed function Om, are defined by the expansion in Eq. (9.6), whose form is guaran-
teed by assuming the scaling time dependence of the dark-matter fields Eq. (9.2),
as well as the implied relation

C(n)
Om,α

(x⃗, t) =

(
D(t)

D(t′)

)n
C(n)

Om,α
(x⃗, t′) . (9.7)

Plugging Eq. (9.6) into Eq. (9.4), and defining the expansion coefficients

cOm,α(t) ≡
∫ t

dt′H(t′)cOm(t, t
′)

(
D(t′)

D(t)

)α+m−1

, (9.8)

we finally have the most general expansion of the overdensity at order n in terms of
fields at the same time

δ(n)g (x⃗, t) =
∑
Om

n−m+1∑
α=1

cOm,α(t)C
(n)
Om,α

(x⃗, t) . (9.9)

There is in fact a much simpler way to obtain the bias functions C(n)
Om,α

, using
recursion relations, which is an additional key technical result of this work. While
the procedure described above is conceptually straightforward, it can be practically
quite cumbersome. The recursion relations come in two parts. The first is the
equal-time completeness relation

O(n)
m (x⃗, t) =

n−m+1∑
α=1

C(n)
Om,α

(x⃗, t) , (9.10)
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C(m)
Om,1

C(m+1)
Om,2

C(m+1)
Om,1

C(m+2)
Om,3

C(m+2)
Om,2

C(m+2)
Om,1

+

++

O(m)
m

O(m+1)
m

O(m+2)
m

=

=

=

Figure 9.1: Diagrammatic representation of one way of using the recursion relations
Eqs. (9.10) and (9.11) to determine the full set of bias functions C(n)

Om,α
in the fluid expansion

of a seed function Om. The red arrows indicate the use of the fluid recursion Eq. (9.11),
while the blue arrows indicate the use of the completeness relation Eq. (9.10). Thus, the
terms in the red shading (α < n−m+1) are determined by the fluid recursion Eq. (9.11)
and the terms in the blue shading (α = n − m + 1) are determined by the completeness
relation Eq. (9.10).

which is trivially obtained by setting t = t′ in Eq. (9.6), and where O(n)
m is the stand-

ard expansion of Om at n-th order in perturbations. The second, which captures
the consequences of expanding x⃗fl in Eq. (9.6), is the fluid recursion

C(n)
Om,α

(x⃗, t) =
1

n− α−m+ 1

n−1∑
ℓ=m+α−1

∂iC(ℓ)
Om,α

(x⃗, t)
∂i
∂2
θ(n−ℓ)(x⃗, t) , (9.11)

which is valid for n − α − m + 1 > 0. We explicitly derive Eq. (9.11) at the end
of this section. This recursion is reminiscent of the famous dark-matter recursion
relations [150], and provides, for the first time, a full generalization to generic biased
tracers. We give a diagrammatic representation of this recursion relation in Fig. 9.1.

It is worth stressing that, unlike other treatments of biased tracers (such as
[252, 253] and subsequent works), we do not assume an instantaneous formation
time of galaxies, nor do we assume a continuity equation for galaxies. Indeed,
Eq. (9.11) is a consequence of Galilean invariance (i.e. expanding x⃗fl), not of the
conservation of galaxies.

Since we have formally done the integral over t′ in Eq. (9.8), one might wonder
where in Eq. (9.9) the non-local-in-time effect has gone. Comparing Eq. (9.9) to the
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local-in-time expression

δ
(n)
g,loc(x⃗, t) =

∑
Om

cOm(t)O(n)
m (x⃗, t) , (9.12)

we see that the difference is in the basis functions of the expansion (which as we
will discuss below control the possible functional forms of the clustering signals),
since Eq. (9.9) is equivalent to Eq. (9.12) under the restriction that, for all α,
cOm,α(t) = cOm(t).

Proof of Fluid Recursion To derive Eq. (9.11), we will want to take d/dt of
Eq. (9.6), which means that we will need to know ∂tx⃗fl(x⃗, t, t

′). To find that, we
notice that by definition the fluid element satisfies the composition rule

x⃗fl (x⃗fl(x⃗, tin, t), t, t
′) = x⃗fl(x⃗, tin, t

′) . (9.13)

Since the right-hand side is independent of t, this implies

d

dt
x⃗fl (x⃗fl(x⃗, tin, t), t, t

′) = 0 . (9.14)

Using the chain rule, and

d

dt
x⃗fl(x⃗, tin, t) =

1

a(t)
v⃗(x⃗fl(x⃗, tin, t), t) , (9.15)

which follows immediately from the definition of x⃗fl Eq. (9.5), this implies

[ ∂
∂t
x⃗fl(y⃗, t, t

′) +
vi(y⃗, t)

a(t)

∂

∂yi
x⃗fl(y⃗, t, t

′)
]∣∣∣
y⃗=x⃗fl(x⃗,tin,t)

= 0 . (9.16)

Since the initial tin is arbitrary, we can take tin = t, which gives(
∂

∂t
+
vi(x⃗, t)

a(t)

∂

∂xi

)
x⃗fl(x⃗, t, t

′) = 0 . (9.17)

This equation simply says that the convective derivative of the fluid element is zero,
which makes intuitive sense since the convective derivative is defined to be along
the fluid flow. Now we take d/dt of both sides of Eq. (9.6). The right-hand side is
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simple, and we have (defining Dα
m(t

′, t) ≡ (D(t′)/D(t))α+m−1 to reduce clutter)

D(t)

Ḋ(t)

d

dt

n−m+1∑
α=1

Dα
m(t

′, t)C(n)
Om,α

(x⃗, t) = (9.18)

n−m+1∑
α=1

Dα
m(t

′, t)(n− α−m+ 1)C(n)
Om,α

(x⃗, t) ,

where we have used Eq. (9.7) for the time dependence of C(n)
Om,α

. On the left-hand
side, we have

d

dt
[Om(x⃗fl(x⃗, t, t

′), t′)](n) =

[
d

dt
Om(x⃗fl(x⃗, t, t

′), t′)

](n)
(9.19)

=

[
∂

∂t
xifl(x⃗, t, t

′)
∂

∂yi
Om(y⃗, t

′)
∣∣∣
y⃗=x⃗fl(x⃗,t,t′)

](n)
=

[
−v

j(x⃗, t)

a(t)

∂

∂xj
xifl(x⃗, t, t

′)
∂

∂yi
Om(y⃗, t

′)
∣∣∣
y⃗=x⃗fl(x⃗,t,t′)

](n)
=

[
−v

j(x⃗, t)

a(t)

∂

∂xi
Om(x⃗fl(x⃗, t, t

′), t′)

](n)
=
Ḋ(t)

D(t)

[
∂i
∂2
θ(x⃗, t)

∂

∂xi
Om(x⃗fl(x⃗, t, t

′), t′)

](n)
=
Ḋ(t)

D(t)

n−1∑
ℓ=m

∂i
∂2
θ(n−ℓ)(x⃗, t)

∂

∂xi
[Om(x⃗fl(x⃗, t, t

′), t′)]
(ℓ)

,

where we have used Eq. (9.17) to go from the second to third line, the chain rule to
go from the third to fourth line, and the definition of θ from Eq. (9.1) in the fifth
line. Now, we use Eq. (9.6) to replace [Om(x⃗fl(x⃗, t, t

′), t′)](ℓ) to get

D(t)

Ḋ(t)

d

dt
[Om(x⃗fl(x⃗, t, t

′), t′)](n) =
n−1∑
ℓ=m

ℓ−m+1∑
α=1

Dα
m(t

′, t)
∂i
∂2
θ(n−ℓ)(x⃗, t)∂iC(ℓ)

Om,α
(x⃗, t) (9.20)

=
n−m∑
α=1

Dα
m(t

′, t)
n−1∑

ℓ=m+α−1

∂i
∂2
θ(n−ℓ)(x⃗, t)∂iC(ℓ)

Om,α
(x⃗, t)

where we have simply changed the order of the sums between the second and third
lines. Equating the coefficients of each power of D(t′) in Eqs. (9.18) and (9.20) then
gives our recursion relation Eq. (9.11).
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9.4 Non-Local-in-Time Bias in LSS

We can now return to the main question posed by this work: is it possible to
directly measure the effects of non-locality in time on galaxy clustering? In our
perturbative description, this is equivalent to the following mathematical question:
does the basis for the non-local-in-time expansion Eq. (9.9) span a larger space than
the basis for the local-in-time expansion Eq. (9.12)? The answer, as we will show
below, is yes.

As shown in Ch. 6, the non-local-in-time and local-in-time expansions are in-
deed equivalent up to fourth order in perturbations. 6 However, from the findings
of this work, this seems to simply be a consequence of expanding to low orders in
perturbation theory where there are too few independent spatially local and Ga-
lilean invariant functional forms available, since non-locality-in-time is generically
expected in the bias expansion [129].

So, to discover a non-local-in-time effect, we look to fifth order. In particular,
we will now find the non-local-in-time basis for the expansion in Eq. (9.9). To find
the fifth-order functions C(n)

Om,α
, we form the set {Om} by finding all rotationally

invariant contractions of rij and pij up to fifth order. Writing the first few terms,
we have {Om} = {δ, θ, δ2, δθ, θ2, r2, rp, p2, . . . }, and overall there are 63 contractions
with up to five factors. 7 We then find the functions C(n)

Om,α
for n ≤ 5 either by ex-

panding x⃗fl as in Eq. (9.6), or, equivalently, using the recursion relations Eqs. (9.10)
and (9.11). After this, there are 151 bias functions for n = 5. However, as described
in App. E.1, not all of these functions are independent. In particular, we find a set
of 122 degeneracy equations for n = 5, which means that there are 29 independent
functions that form the basis of the non-local-in-time expansion Eq. (9.9). 8 We
provide all of the Fourier-space kernels relevant for the fifth-order expansion, and
confirm all degeneracy equations, in an associated auxiliary file.

Next, we consider the basis of bias functions for the local-in-time expression
Eq. (9.12). At fifth order, this expansion starts with 63 terms, however, as before, not
all of them are linearly independent. We find 37 independent degeneracy equations,

6Focusing on up to fourth order, [130, 157] discussed how it is possible to map non-local-in-time
terms into very special non-local-in-space terms. The bases discussed there are degenerate with a
local-in-time and local-in-space one from Ch. 6, though.

7Here and in the rest of this work, since we work up to fifth order, we have already taken into
account degeneracies that come from the fact that r

(1)
ij = p

(1)
ij in terms that start at fifth order. If

we do not do this, there are 130 contractions with up to five factors.
8Using the Lagrangian basis expansion, [254, 255] derived the number of independent fifth-order

biases as 29, which is in agreement with our findings.
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and hence 26 independent functions for the local-in-time bias expansion at fifth
order. Indeed, this is three less than the non-local-in-time expansion, and hence the
galaxy-clustering signal at fifth order is sensitive to whether or not galaxies form on
time scales of order Hubble.

We are now in a position to explicitly give the fifth-order basis derived for this
work. To be more concrete, we can write the fifth-order galaxy expansion in a basis
with 26 elements that are local in time, and three that are non-local in time. In this
starting-from-time-locality (STL) basis, we explicitly write

δ(5)g (x⃗, t) =
29∑
j=1

b̃j(t)L(5)
j (x⃗, t) . (9.21)

We choose the basis such that the elements with j = 1, . . . , 26 are a basis of the
local expansion Eq. (9.12). Explicitly, we take L(5)

j = O(5)
m with the corresponding

Om given by

{δ, θ, δθ, θ2, r2, rp, p2, θ3, r2p, rp2, p3, r2θ, rpθ, p2θ, rp3,
rprp, rp2δ, r3δ2, δ5, r3θ, rp2θ, rpδθ, r2θ2, rpθ2, δθ3, θ4} ,

(9.22)

for j = 1, . . . , 26. Thus, the non-locality in time is contained in the final three basis
elements, which we take to be

L(5)
27 = C(5)

δ,5 , L(5)
28 = C(5)

r2,4 , L(5)
29 = C(5)

p3,3 . (9.23)

Non-zero b̃27, b̃28, and b̃29 can only come from non-local-in-time physics, so we call
them non-local-in-time bias parameters. 9 We connect this basis to the so-called
basis of descendants and show how fourth- and lower-order biases automatically
consistently appear in Eq. (9.21) in App. E.2.

To see more quantitatively how the non-local-in-time bias parameters measure
the time scale of galaxy formation, consider the expression Eq. (9.8) for the bias
parameters. Assuming that the kernel cOm(t, t

′) has support over a time scale of
order 1/ω and expanding around the local-in-time limit, we have

cOm,α(t) ≈ cOm(t)

(
1 + gOm,α(t)

H

ω
+ . . .

)
, (9.24)

9Here we reference the size of the physical bias parameters, which are generally made up of a
combination of bare and counterterm contributions.
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where the . . . represents terms higher order in H/ω, and gOm,α(t) ∼ O(1). Since
the non-local-in-time bias parameters b̃27, b̃28 and b̃29 all vanish in the local-in-time
limit, they are proportional to (at least) H/ω. The size of the deviation from the
first term, which is the local-in-time piece, is controlled by H/ω: if there is a sizable
deviation from the local-in-time limit, then ω ∼ H, and thus the time scale of the
kernel cOm(t, t

′) is of the order 1/H. 10 In our case, this happens if b̃27, b̃28, or b̃29 are
order unity. This in turn would mean that the formation of the observed population
of galaxies has been affected by the state of the Universe up to a Hubble time ago,
and thus that it has formed on a time scale on the order of the age of the Universe.

It can be illuminating to momentarily consider a system that is truly local in
time. In this case, as we have discussed above, the bias parameters are expected to
scale like H/ωshort ≪ 1. However, in the EFT, higher-order loops will generically
contribute to the lower-order bias parameters. Importantly, for a system that is
truly local in time, those loops are expected to shift the bias parameters also by
an amount that scales like H/ωshort. Given, though, that the cold dark-matter fluid
is itself non-local in time [147, 246], we expect that higher-order dark-matter loops
will generically contribute ∼ O(1) to the galaxy bias parameters. We remind the
reader that by galaxies in this work, we mean gravitationally-bound structures that
form around the non-linear scale at a given Hubble time.

9.5 Observable Signatures

Until now, we have focused on the perturbative galaxy overdensity field itself.
In large-scale structure analyses, we typically compare to data using correlation
functions (or n-point functions if they contain n fields) of the overdensity fields of
various tracers. Thus, one way to measure the non-local-in-time effect that we have
discovered in this work is in correlation functions. Since we found that this effect
arises at fifth order in perturbations, the lowest order observables sensitive to it are
the two-loop two-point function through

⟨δ(5)g1
(x⃗1)δ

(1)
g2
(x⃗2)⟩ , (9.25)

10Of course, the measurement of a smaller deviation from the local-in-time limit means that the
formation time scale could be correspondingly smaller. It could also mean that the theory is fine
tuned in the sense that higher-order loop contributions accidentally largely cancel the lower-order
biases. On the other hand, it could also be that for a quasi-local-in-time theory, the coefficients
of some non-local-in-time operators are accidentally large, which we refer to as being anomalous.
These accidents become more and more unlikely as one measures more parameters.
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the two-loop three-point function through

⟨δ(5)g1
(x⃗1)δ

(2)
g2
(x⃗2)δ

(1)
g3
(x⃗3)⟩ , (9.26)

the one-loop four-point function through

⟨δ(5)g1
(x⃗1)δ

(1)
g2
(x⃗2)δ

(1)
g3
(x⃗3)δ

(1)
g4
(x⃗4)⟩ , (9.27)

the one-loop five-point function through

⟨δ(5)g1
(x⃗1)δ

(2)
g2
(x⃗2)δ

(1)
g3
(x⃗3)δ

(1)
g4
(x⃗4)δ

(1)
g5
(x⃗5)⟩ , (9.28)

and the tree-level six-point function through

⟨δ(5)g1
(x⃗1)δ

(1)
g2
(x⃗2)δ

(1)
g3
(x⃗3)δ

(1)
g4
(x⃗4)δ

(1)
g5
(x⃗5)δ

(1)
g6
(x⃗6)⟩ , (9.29)

where we have used the subscript gi to denote possibly different tracer samples (each
of which can have a different set of bias parameters), and we have taken all fields to
be at the same time t and dropped that argument to remove clutter.

As two explicit examples, consider the contributions to the two-loop two-point
function Eq. (9.25) and the tree-level six-point function Eq. (9.28) for gi = g for
i = 1, . . . , 6. Using the STL basis Eq. (9.21), we have the explicit non-local-in-time
contributions

29∑
j=27

b̃j⟨L(5)
j (x⃗1)δ

(1)
g (x⃗2)⟩ , (9.30)

29∑
j=27

b̃j⟨L(5)
j (x⃗1)δ

(1)
g (x⃗2)δ

(1)
g (x⃗3)δ

(1)
g (x⃗4)δ

(1)
g (x⃗5)δ

(1)
g (x⃗6)⟩ ,

to the two-point and six-point functions respectively. As we have seen, these would
not be present in the galaxy correlation functions if galaxies formed in a local-in-
time way. This makes them concrete, direct, observable signatures of the formation
time of galaxies.
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10
Limits on Clustering and Smooth
Quintessence from the EFTofLSS

10.1 Summary

We apply the Effective Field Theory of Large-Scale Structure (EFTofLSS) to
analyze cosmological models with clustering quintessence, which allows us to con-
sistently describe the parameter region in which the quintessence equation of state
w < −1. First, we extend the description of biased tracers in redshift space to the
presence of clustering quintessence, and compute the one-loop power spectrum. We
solve the EFTofLSS equations using the exact time dependence, which is relevant to
obtain unbiased constraints. Then, fitting the full shape of BOSS pre-reconstructed
power spectrum measurements, the BOSS post-reconstruction BAO measurements,
BAO measurements from 6DF/MGS and eBOSS, the Supernovae from Pantheon,
and a prior from BBN, we bound the clustering quintessence equation of state para-
meter w = −1.011+0.053

−0.048 at 68% C.L.. Further combining with Planck, we obtain
w = −1.028+0.037

−0.030 at 68% C.L.. We also obtain constraints on smooth quintessence,
in the physical regime w ≥ −1: combining all datasets, we get −1 ≤ w < −0.979 at
68% C.L.. These results strongly support a cosmological constant.
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10.2 Introduction and Summary

Introduction The analysis of the Full Shape (FS) of the BOSS galaxy power
spectrum with the Effective Field Theory of Large-scale Structure (EFTofLSS) at
one loop has provided us with a measurement of all parameters in ΛCDM with just
a Big Bang Nucleosynthesis (BBN) prior [7, 142, 143] (see also [256] for other prior
choices and [7] for a joint analysis with the BOSS bispectrum using the tree-level
prediction). The combination with BOSS reconstructed measurements and baryon
acoustic oscillations (BAO) from eBOSS, as well as with supernovae redshift-distance
or cosmic microwave background (CMB) measurements, has further allowed us to
bound the total neutrino mass, and put limits on the effective number of relativistic
species, on smooth dark energy, or on curvature [7, 143, 257, 168, 169, 258]. In
particular, the FS analysis can help constrain models invented to address the Hubble
tension as it provides measurements independent on the CMB or local distance
ladders [172, 173, 174, 175].

In this chapter, we analyze the BOSS FS power spectrum using the EFTofLSS
at one loop in the context of clustering quintessence [51, 48, 259] and smooth quint-
essence. In clustering quintessence, dark energy is made of a scalar field (the quint-
essence field) whose fluctuations have effectively zero speed of sound, cs, and there-
fore ‘cluster’, as they can fall into gravitational potentials. It is a particularly
appealing model since the dark energy equation of state parameter w can cross the
so-called phantom divide, w = −1 and consistently describe the regime w < −1.
This is allowed thanks to the presence of higher-derivative operators in the Lag-
rangian that stabilize gradient instabilities, but this can only happen if c2s → 0 such
that they remain not parametrically suppressed. Clustering quintessence has been
considered within the context of structure formation in [260, 261, 262, 263] and in
the EFTofLSS in [264] (see also [265, 266, 267] for embeddings of other dark energy
theories in the EFTofLSS). In this work, we extend the description to biased tracers
in redshift space with exact-time dependence in order to apply it to data from galaxy
surveys. We remark that we find it quantitatively important to solve the EFTofLSS
equations with the exact time dependence, rather than with the approximate, so-
called ‘EdS’, approximation. As for smooth quintessence, which has already been
analyzed in light of the BOSS FS and LSS data in [169], we will perform here the
analysis by imposing a physical flat prior −1 ≤ w on the smooth quintessence equa-
tion of state parameter. By wCDM, we refer to a Universe that includes a smooth
dark energy component, i.e. a scalar quintessence field with c2s → 1, whose perturb-
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ations can be neglected since the sound horizon is of the size of the cosmological
horizon. In this picture, w < −1 is an unphysical region where the vacuum is un-
stable, therefore we should analyze wCDM excluding this region (see discussions in
e.g. [268, 51]).

This chapter is organized as follows. We compute the power spectrum at one loop
in redshift space for biased tracers with exact time dependence for the clustering
quintessence model in Sec. 10.3. Further details concerning this derivation are given
in the appendices. In Sec. 10.4, we apply our framework to LSS data, and in
App. F.4 we show the full posteriors including nuisance parameters. Our results are
summarized at the end of this Introduction.

Data Sets We analyze the FS of BOSS DR12 pre-reconstructed power spec-
trum measurements [196], baryon acoustic oscillations (BAO) of BOSS DR12 post-
reconstructed power spectrum measurements [269], 6DF [270] and SDSS DR7 MGS [271],
as well as high redshift Lyman-α forest auto-correlation and cross-correlation with
quasars from eBOSS DR14 measurements [272, 273]. We also consider combin-
ations with Supernovae (SN) measurements from the Pantheon sample [274] and
with Planck2018 TT,TE,EE+lowE+lensing [275].

Methodology We analyze the BOSS FS using the galaxy power spectrum in
redshift space at one loop in the EFTofLSS [133] following the methodology de-
scribed in [7, 143]. The description of the likelihood, including the covariances and
priors used, can be found in [7]. The theory of biased tracers in redshift space
with exact time dependence in clustering quintessence cosmology at one loop is
derived in Sec. 10.3 (see also [276] which has already derived the same expres-
sions, but just in real space, with a different approach), and the scale cut up to
which the FS is analyzed is discussed in Sec. 10.4.1. The power spectrum is IR-
resummed [137, 139, 140, 169], and includes corrections to observational systematics:
the Alcock-Paczynski effect [214], window functions [201], and fiber collisions [277].

We sample over the following cosmological parameters: the abundance of baryons
ωb, the abundance of cold dark matter ωcdm, the Hubble constant H0, the amplitude
of the primordial fluctuations ln(1010As), the tilt of the primordial power spectrum
ns, and the quintessence equation of state parameter w. We impose no prior on
the cosmological parameters but a BBN prior on ωb: a Gaussian prior centered on
0.02235 with σBBN = 0.0005, obtained by adding up the theory and statistical errors
of [278]. We use the Planck prescription of one single massive neutrino with mass
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Figure 10.1: 1D and 2D posteriors of w, H0 and Ωm in clustering quintessence from
various analyses performed in this work. When not analyzed in combination with Planck,
we use a BBN prior.

0.06 eV as done in [275]. Allowing the EFT parameters to vary only within physical
ranges, we impose priors on them as in [169].

The BAO measurements from the post-reconstructed BOSS power spectrum are
correlated with BOSS pre-reconstructed (FS) measurements. The joint analysis is
described in [169] (see also [168]). When adding BAO from 6DF/MGS or eBOSS,
SN from Pantheon, or Planck data, we simply add the log-likelihoods as these meas-
urements are uncorrelated among each other. We neglect the small cross-correlation
between LSS data with Planck weak lensing and the integrated Sachs-Wolfe (ISW)
effect.

Main Results Our main results are best represented by Fig. 10.1. Fitting BOSS
FS + BOSS reconstructed BAO with a BBN prior on clustering quintessence, we
are able to measure all cosmological parameters. In particular, we determine the
quintessence equation of state parameter w, the present matter fraction Ωm, and
the Hubble constant H0, to 18%, 8.2%, and 4.6% precision, respectively, at 68%

confidence level (C.L.), finding w = −0.867+0.17
−0.15, Ωm = 0.3456+0.03

−0.027, and H0 =

67.58+2.7
−3.5. We also determine ln(1010As) = 2.64+0.16

−0.17 and ns = 0.8884+0.072
−0.059 at 68%

C.L.. Upon addition of the BAO measurements from 6DF/MGS and eBOSS, and
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SN measurements from Pantheon, we get w = −1.011+0.053
−0.048, Ωm = 0.3099+0.012

−0.011,
and H0 = 68.72+1.4

−1.6, which amounts to error bar reductions of 68%, 60%, and 52%,
respectively. We also find ln(1010As) = 2.806+0.15

−0.16 and ns = 0.9335+0.054
−0.05 at 68% C.L..

Adding Planck data (Tab. 10.3), we finally constrain w, Ωm, and H0 to 3.3%, 2.4%,
and 1.2% precision, respectively, obtaining w = −1.028+0.037

−0.030, Ωm = 0.3055+0.0074
−0.0073,

andH0 = 68.38+0.78
−0.84 , and also obtain ln(1010As) = 3.046+0.014

−0.014 and ns = 0.9665+0.0042
−0.0036

at 68% C.L..
All analyses performed here show that our Universe is consistent with ΛCDM.

First, clustering quintessence in the limit w = −1 reduces to ΛCDM, and we find
that w is consistent with −1 at ≲ 68% C.L. Second, the values obtained for the other
cosmological parameters in clustering quintessence are consistent within 68% C.L.
with the ΛCDM ones obtained by fitting BOSS FS with the EFTofLSS [7, 142, 143],
in combination with other probes [257, 168, 169], or fitting Planck alone [275] 1.

A similar observation applies when fitting wCDM with a flat prior on the dark
energy equation of state parameter of w ≥ −1 (Tab. 10.4). Fitting BOSS data
with a BBN prior, we find in this case Ωm = 0.337+0.017

−0.022 and H0 = 68.6 ± 1.8, and
we bound −1 ≤ w < −0.91 at 68% C.L. (−1 ≤ w < −0.81 at 95% C.L.). We
also get ln(1010As) = 2.77 ± 0.19 and ns = 0.885+0.069

−0.058 at 68% C.L.. Adding BAO
measurements, Pantheon SN and Planck data we obtain the very stringent constraint
−1 ≤ w < −0.979 at 68% C.L. (−1 ≤ w < −0.956 at 95% C.L.). Thus, allowing
wCDM only within the physical region gives tight posteriors that are also consistent
with the ones obtained on ΛCDM fitting BOSS or Planck. This is illustrated in
Fig. 10.2.

We end this summary of the main results with a note of warning. It should be
emphasized that in performing this analysis, as well as the preceding ones using the
EFTofLSS by our group [7, 143, 169, 172], we have assumed that the observational
data are not affected by any unknown systematic error, such as, for example, line
of sight selection effects or undetected foregrounds. In other words, we have simply
analyzed the publicly available data for what they were declared to be: the power
spectrum of the galaxy density in redshift space. Given the additional cosmological
information that the theoretical modeling of the EFTofLSS allows us to exploit in
BOSS data, it might be worthwhile to investigate if potential undetected systematic
errors might affect our results. We leave an investigation of these issues to future
work.

1With an exception on ln
(
1010As

)
which is consistent at ∼ 2σ with Planck.
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Figure 10.2: 1D and 2D posteriors of w, H0 and Ωm obtained by fitting clustering
quintessence, wCDM or ΛCDM to BOSS with a BBN prior. For wCDM, i.e. smooth
quintessence, we restrict to the physical region w ≥ −1. For comparison, we show the
contours of Planck obtained in ΛCDM in the presence of massive neutrinos. The neutrinos
introduce additional degeneracies in the Ωm − H0 plane in the CMB analysis. On the
contrary, fixing the neutrinos when analyzing BOSS does not significantly change the
constraints on the shown cosmological parameters, see e.g. Table 2 in [143]. This plot
illustrates the consistency of the datasets as well as the consistency of the present analyses
with a cosmological constant.

Public Code The redshift-space one-loop galaxy power spectra in the EFTofLSS
are evaluated using PyBird: Python code for Biased tracers in ReDshift space [169] 2.
The exact time dependence and the clustering quintessence modifications are pub-
licly available in PyBird. The linear power spectra are evaluated with the CLASS
Boltzmann code [279] 3. The posteriors are sampled using the MontePython cosmo-
logical parameter inference code [218, 280] 4. The triangle plots are obtained using
the GetDist package [220].

2https://github.com/pierrexyz/pybird
3http://class-code.net
4https://github.com/brinckmann/montepython_public
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10.3 Biased Tracers with Exact Time Dependence

in Clustering Quintessence

In this section, we extend the study of biased tracers in redshift space with exact
time dependence, first studied in [135, 276], to clustering quintessence.

10.3.1 Review of the EFTofLSS with Clustering Quintessence

We start by reviewing the underlying equations of motion for dark matter and
the dark energy component. For a more detailed discussion, we refer the reader
to [264]. In the EFT of dark energy, previously studied in [51, 47, 48, 49], the dark
energy degree of freedom is assumed to be the Goldstone boson arising from the
spontaneous breaking of time diffeomorphisms. To write the most general theory,
we work in unitary gauge where the scalar degree of freedom appears in the metric.
The gravitational action will contain operators that break time diffeomorphisms,
while remaining invariant under time-dependent spatial diffeomorphisms. Up to
second order in perturbations, and at leading order in the derivatives, the action
reads

SG =

∫
d4x

√−g
[
M2

Pl

2
R− Λ(t)− c(t)g00u +

M4
2 (t)

2
(δg00u )2 − m̄3

1

2
δg00u δKu (10.1)

−m̂
2
1

2
δK2

u −
m̂2

2

2
δKu,ijδK

ij
u

]
,

where we use the ’u’ subscript, to emphasize that the metric in the action above
is in unitary gauge. Here g00u = −1 + δg00u is the 00 component of the (inverse)
metric, and Λ(t), c(t), M2(t), m̄1(t), m̂1(t), m̂2(t) are coefficients which depend on
the background evolution. Then δKij is the perturbation of the extrinsic curvature
tensor, and δK is its trace. For simplicity, in the following we work with m̄1 = 0, but
it can be checked [51, 48] that this operator describes a clustering quintessence at
cosmological scales. The operators proportional to m̂i are negligible on large scales
as they scale as ∼ k4, but are necessary to guarantee the stability of perturbations,
as discussed below. To SG, we add the action for matter SM , which we take to be
fully diffeomorphism invariant. This guarantees that, once we explicitly reintroduce
the Goldstone mode π, there will be no direct couplings of π to matter.

The background equations we obtain from SG + SM are the familiar Friedmann
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equations:

3H2M2
Pl = ρ̄m + ρ̄D , (10.2)

−2ḢM2
Pl = ρ̄m + ρ̄D + p̄D , (10.3)

where we set the cold dark matter pressure pm = 0, and define the background dark
energy density, ρ̄D, and pressure, pD, by

c(t) =
1

2
(ρ̄D + p̄D) , (10.4)

Λ(t) =
1

2
(ρ̄D − p̄D) . (10.5)

From the Friedmann equations we obtain the background solutions for the dark
matter and dark energy densities:

ρ̄m = ρ̄m,0a
−3, ρ̄D = ρ̄D,0a

−3(1+w) , (10.6)

where the sub index 0 stands for the present day value, and we use the equation of
state parameter for dark energy w = p̄D/ρ̄D. In the following, we will often use the
present day fractional densities Ωx,0 =

ρ̄x,0
ρ̄D,0+ρ̄m,0

, with x ∈ {m,D}.
Starting from the action in unitary gauge, it is useful to explicitly reintroduce the

Goldstone mode doing the Stueckelberg trick. We perform the time diffeomorphism
x0 → x0+ξ0(x⃗, t) and xi → xi, and then substitute ξ0(x) → −π(x). The replacement
rules for the coefficients and the metric are (for details see for example [264])

c(t) → c(t+ π) = c(t) + ċ(t)π +
1

2
c̈(t)π2 + . . . , (10.7)

g00u → g00 + 2g0µ∂µπ + gµν∂µπ∂νπ . (10.8)

Gravitational perturbations will be described by the spatially flat perturbed FLRW
metric in Newtonian gauge:

ds2 = −(1 + 2Φ)dt2 + a(t)2(1− 2Ψ)dx⃗2 , (10.9)

where Φ and Ψ are the gravitational potentials, and we ignore tensor fluctuations.

264



10.3. Biased Tracers with Exact Time Dependence in Clustering Quintessence

We then obtain the action for the Goldstone boson π up to second order:∫
d4x

√−g
[
p̄D + ˙̄pDπ +

1

2
¨̄pDπ

2 − 1

2
(ρ̄D + p̄D)

(
2Φ− 2π̇ + 4Φπ̇ − π̇2 + a−2(∂π)2

)
−( ˙̄ρD + ˙̄pD)(Φ− π̇)π + 2M4

2 (t)(Φ− π̇)2
]
. (10.10)

At short distances, one can focus on the action of the Goldstone boson. We can see
that the kinetic part is given by

Skin. =

∫
d4x

√−g
[
1

2

(
ρ̄D + p̄D + 4M4

2 (t)
)
π̇2 − 1

2
(ρ̄D + p̄D) a

−2∂2π

]
, (10.11)

and thus the speed of sound is

c2s =
ρ̄D + p̄D

ρ̄D + p̄D + 4M4
2 (t)

. (10.12)

The theory must be free of ghosts, which implies that the denominator has to be
positive. Therefore the speed of sound needs to have the same sign as 1 + w. In
particular, w < −1 implies c2s < 0, which would produce gradient instabilities. One
can circumvent this instability by including the higher derivative terms proportional
to m̂1,2, which scale as k4 and give a stable dispersion relation at small scales [51, 48].
In order for the higher derivative terms not to be highly suppressed (which would
make them irrelevant on cosmological scales), we need the speed of sound to be
bound by |c2s| < 10−30, which means it is practically zero. These considerations hold
also when a careful analysis including the mixing with gravity is performed. Similar
considerations are obtained by including the higher derivative operator proportional
to m̄1 [51, 48]. In conclusion, it is possible to have viable theories with w < −1,
but they need to have c2s → 0, which are called clustering dark energy or clustering
quintessence. We notice furthermore that in order to have a stable theory, we need
to have w ≳ −2 if we use the operators in m̂1,2, or ≥ −1.17 if we use the operator
in m̄1 [51, 48] 5.

The name “clustering quintessence” stems from the fact that the dark energy
can cluster with the dark matter, and they jointly contribute to the gravitational
potential. Hence the adiabatic mode (i.e. the perturbations of the total energy
density, which source the gravitational potential) depends on both the dark matter

5These lower limits will play essentially no role in our analysis, as the data constrain w to be
far from this boundary.
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and dark energy perturbations. As a result, dark energy perturbations leave an
imprint on biased tracers such as galaxies, which are the main interest in this work.
Therefore, next we wish to give a quick overview of how we derive the equations of
motion for the adiabatic mode in the presence of clustering quintessence.

Before analyzing the equations for π, it is useful to write down the EFT equations
for dark matter, which couples to dark energy through gravity [264]:

δ̇m +
1

a
∂i((1 + δm)v

i
m) = 0 , (10.13)

∂iv̇
i
m +H∂iv

i
m +

1

a
∂i(v

j
m∂jv

i
m) +

1

a
∂2Φ = −1

a
∂i

(
1

ρ̄m
∂jτ

ij

)
, (10.14)

where δm and vm are the dark matter overdensity and velocity, ˙ = d/dt and τ ij is
the effective stress tensor.

Let us start analyzing the linear equations, and we will study the non-linear
equations subsequently. The linear equation for π [264, 48, 259], which we get from
Eq. (10.10), reads:

1

a3
1

M4
2

d

dt

[
a3M4

2 (π̇ − Φ)
]
=

c2s
1− c2s

∂2π

a2
. (10.15)

This shows that, in the limit cs → 0, the RHS can be neglected. We can, therefore,
write π̇ − Φ ∝ (a3M4

2 )
−1, which is a decaying mode, assuming the speed of sound

to be approximately constant. In particular, we have ∂iπ̇ − ∂iΦ = 0, and, using the
linear-level Euler equation Eq. (10.14), we get that d

dt
[avim + ∂iπ] = 0. This means

that on the growing adiabatic mode we have

∂iπ = −avim , (10.16)

which implies that the two species are comoving. This will eventually allow us
to write a closed set of differential equations for the adiabatic mode, defined by
δA = 2M2

pla
−2∂2Ψ/ρ̄m. The Poisson equation is [48, 259, 49]

a−2∂2Ψ =
ρ̄m
2M2

pl

(
δm +

4M4
2

ρ̄m
(π̇ − Φ)

)
. (10.17)

Using the definition of the adiabatic mode, we find

δA = δm +
4a3M4

2

ρ̄m,0
(π̇ − Φ) = δm +

(1 + w)

c2s

ρ̄D,0
ρ̄m,0

a−3w(π̇ − Φ) . (10.18)
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We can now take the derivative of the above equation and plug in the equation of
motion for π, Eq. (10.15), the solution for ρ̄D, Eq. (10.6), and substitute the dark
matter velocity for the spatial derivatives of π, Eq. (10.16). We then get

δ̇A = δ̇m − 1

a
(1 + w)

ρ̄D,0
ρ̄m,0

a−3wθm . (10.19)

= −1

a
C(a)θm,

where we have introduced the dark matter velocity divergence θm = ∂iv
i
m and we

have defined
C(a) = 1 + (1 + w)

ΩD,0

Ωm,0

a−3w . (10.20)

We now move on to the full non-linear equations of motion for the adiabatic
mode, which is somewhat more technical. We will just mention the main results
and refer to [264] (see also [281]) for more details. First, we can easily see that the
two species remain comoving at the non-linear level. Using the equations of motion,
one can show that δg00u ∝ c2s also at non-linear level. Taking a spatial derivative,
∂iδg

00
u = 0 in the limit c2s → 0, yields

0 = ∂i

(
π̇ − Φ− 1

2
a−2(∂π)2

)
(10.21)

=
d

dt

(
avim + ∂iπ

)
+ vjm∂jv

i
m − a−2∂jπ∂j∂iπ . (10.22)

This is satisfied by simply using Eq. (10.16), thus the two species are comoving also
at non-linear level. The full non-relativistic equation of motion for the dark energy
field π is given by

− 2

a3
∂t
(
a3M4

2 δg
00
u

)
=M4

2

c2s
1− c2s

∂2π

a2
− 2a−2∂2πM4

2 δg
00
u , (10.23)

where we used that ∂iδg00u = 0. The full Poisson equation introduces non-linearities
in the definition of the adiabatic mode, which reads

δA = δm − (1 + w)

2c2s

ρ̄D,0
ρ̄m,0

a−3wδg00u . (10.24)

Now we can take a time derivative and obtain a non-linear continuity equation
for the adiabatic mode. The only difference is that we have to include the non-linear
terms for δ̇m and we have an additional term in the equations of motion for π on
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the right-hand side of Eq. (10.23). We then get

δ̇A = −1

a
C(a)θm − 1

a
∂i(δmv

i
m)− ∂2π

2aM4
2

ρ̄m,0
δg00u (10.25)

= −1

a
C(a)θm − 1

a
∂i(δmv

i
m) +

1

a
θm(δm − δA)

= −1

a
C(a)θm − 1

a
∂i(δAv

i
m),

where in the second line we use Eq. (10.24), and in the last line we use ∂iδm = ∂iδA.
Since the two species are comoving, θA = θm and the Euler equation for the adia-

batic mode is simply obtained by using the definition of the adiabatic mode in terms
of the gravitational potential in Eq. (10.14). We finally get the governing equations
for the clustering quintessence - dark matter system (without counterterms):

δ̇A +
1

a
C(a)θm = −1

a
∂i
(
δAv

i
m

)
(10.26)

θ̇m +Hθm +
3

2

Ωm,0H
2
0

a2
δA = −1

a
∂i
(
vjm∂jv

i
m

)
, (10.27)

where ρ̄m/(2M2
Pl) = 3Ωm,0H2

0a0/(2a
3). As explained in [264], since clustering quint-

essence is comoving with dark matter, there is no isocurvature mode, and the coun-
terterms are the same as for standard dark matter. To solve the equations above
perturbatively we transform into Fourier space, where they read (still neglecting the
counterterms):

aδ′
k⃗
− f+θk⃗ =

(2π)3f+
C(a)

∫
d3q1
(2π)3

d3q2
(2π)3

δD(k⃗ − q⃗1 − q⃗2)α(q⃗1, q⃗2)θq⃗1δq⃗2 , (10.28)

aθ′
k⃗
− f+θk⃗ −

f−
f+

(θk⃗ − δk⃗) = (10.29)

=
(2π)3f+
C(a)

∫
d3q1
(2π)3

d3q2
(2π)3

δD(k⃗ − q⃗1 − q⃗2)β(q⃗1, q⃗2)θq⃗1θq⃗2 ,

and we drop the indices m and A from now on since we will only talk about the adia-
batic mode. We define δ = δA and θ = − C

f+aH
∂iv

i for the rescaled velocity divergence
such that δ(1) = θ(1). Furthermore, we use the scale factor as time variable such that
′ = d/da and defined the growth rates f± = d lnD±

d ln a in terms of the growth factors,
further discussed in App. F.1. 6. We will not use the commonly applied Einstein-

6We here explicitly keep track of the growing and decaying growth factors and growth rates
D± and f± as opposed to Eqs. (6.23) and (6.26) in Ch. 6 as they are key to getting the greens
functions. In Ch. 6 we simply dropped the +-subscript.
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de Sitter (EdS) approximation, where one approximates the time dependence of a
perturbation by powers of the growth factor, for instance δ(n)

k⃗
(a)

EdS∝ Dn(a)δ
(n)

k⃗
(ai),

for some intital time ai. Instead, we will use the exact time dependence solution
discussed below. As we will see later, the EdS approximation significantly biases
the determination of the cosmological parameters in the presence of clustering quint-
essence.

Eqs. (10.28) - (10.30) are slightly different from the dark matter equations in
the presence of smooth dark energy with c2s = 1, i.e. wCDM. In fact, in the limit
(1 +w) → 0, with ΩD,0 =const, we recover, at large distances where we can neglect
the higher derivative terms, the equations of motion for the matter overdensity in
ΛCDM. This difference in the equations of motion between the two models results
in a modified definition of the time functions that appear in the exact time solutions
for δ and θ. Exact solutions for the adiabatic mode δ in the presence of clustering
quintessence have been previously studied in [264, 260, 281]. The time-dependent
integral kernel solutions in Fourier space are given by [264]

K
(1)
λ (q⃗1, a) = 1 , (10.30)

K
(2)
λ (q⃗1, q⃗2, a) = αs(q⃗1, q⃗2)Gλ1 (a) + β(q⃗1, q⃗2)Gλ2 (a) , (10.31)

K
(3)
λ (q⃗1, q⃗2, q⃗3, a) = ασ(q⃗1, q⃗2, q⃗3)Uλ

σ (a) + (10.32)

+βσ(q⃗1, q⃗2, q⃗3)Vλσ2(a) + γσ(q⃗1, q⃗2, q⃗3)Vλσ1(a) ,

where repeated σ ∈ {1, 2} are summed over and λ ∈ {δ, θ}. The explicit time
functions are defined in App. F.1, and the momentum functions in App. F.2. The
kernels in Eqs. (10.30) - (10.32), and in the following sections are defined by

X(n)(k⃗, a) =

∫
d3q1
(2π)3

...
d3qn
(2π)3

(2π)3δD(k⃗ − q⃗1 − ...− q⃗n)× (10.33)

× K
(n)
X (q⃗1, ..., q⃗n, a) δ

(1)
q⃗1
(a)...δ

(1)
q⃗n
(a) ,

where X may for instance stand for δ or θ. In the next section, we will see how the
solution with exact time dependence for clustering quintessence leaves an imprint
in the bias expansion of biased tracers such as galaxies.

10.3.2 Perturbative Expansions of δh and θh

To find the bias expansion for the galaxy overdensity δh following the exact time
dependence solution of the adiabatic mode, we can follow a procedure similar to
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[135]. Recently, in [276], the same result has also been derived using a different
approach. Here equations will change with respect to [135], as a consequence of the
modified equations of motion for δA, relative to the equations for the dark matter
solutions in wCDM. As has been previously studied in [129], the bias expansion for
δh is given by

δh(x⃗, a) ≃
∫ a da′

a′
[cδ(a, a

′) : δ(x⃗fl, a
′) : (10.34)

+cδ2(a, a
′) : δ(x⃗fl, a

′)2 : +cs2(a, a
′) : s2(x⃗fl, a

′) :

+cδ3(a, a
′) : δ(x⃗fl, a

′)3 : +cδs2(a, a
′) : δ(x⃗fl, a

′)s2(x⃗fl, a
′) :

+cψ(a, a
′) : ψ(x⃗fl, a

′) : +cst(a, a
′) : st(x⃗fl, a

′) : +cs3(a, a
′) : s3(x⃗fl, a

′) :

+cϵ(a, a
′) ϵ(x⃗fl, a

′) + c∂2δ(a, a
′)

∂2xfl
kM

2 δ(x⃗fl, a
′) + . . .

]
,

where we include all possible operators 7 allowed by the equivalence principle, in-
cluding stochastic contributions and higher derivative terms 8. Their definitions are
found in App. F.2. As for the dark matter equations, since clustering quintessence is
comoving with dark matter, there is no isocurvature mode, and the bias expansion
depends on the same fields as for the dark-matter-only universe [264]. The time-
kernels, such as cδ(a, a′), that account for the time non-locality, can be formally
integrated over a′ after the perturbative solutions are substituted in. All operators
(which are explicitly given in App. F.2) are evaluated along the fluid line-element:

x⃗fl(x⃗, a, a
′) = x⃗−

∫ a

a′

da′′

a′′2H(a′′)
v⃗(a′′, x⃗fl(x⃗, a, a

′′)). (10.35)

This results in Taylor expansions in the fields around x⃗ given by

δ(x⃗fl(a, a
′), a′) = δ(x⃗, a′)− ∂iδ(x, a

′)

∫ a

a′

da′′

a′′2H(a′′)
vi(x⃗, a′′) (10.36)

+
1

2
∂i∂jδ(x, a

′)

∫ a

a′

da′′

a′′2H(a′′)
vi(x⃗, a′′)

∫ a

a′

da′′′

a′′′2H(a′′′)
vj(x⃗, a′′′)

+∂iδ(x, a
′)

∫ a

a′

da′′

a′′2H(a′′)
∂jv

i(x⃗, a′′)

∫ a

a′′

da′′′

a′′′2H(a′′′)
vj(x⃗, a′′′) + . . . .

7The notation : O : means that the operator O is subtracted of its vacuum expectation value,
i.e. : O := O − ⟨O⟩. We do this explicitly in Ch. 6 as well under Eq. (6.112).

8The notation of the operators here is different to Ch. 6, and the difference is for historical
reasons. However, if one were to use the EdS approximation here, the space spanned by the
operators is the same as in Eq. (B.78), i.e. Ch. 6, to third order. As one can see from the
definitions in Eqs. (B.76) and (F.29), we have for example sij = rij − 1

3δijδ.
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It turns out that even in the presence of clustering quintessence, once we perturb-
atively expand the overdensity and velocity, the time integrals in Eq. (B.79) can
be done analytically and the solutions are given in terms of the time functions and
kernels that appear in Eqs. (10.30) - (10.32). This is explicitly derived in App. F.3.
Then, as mentioned before, after perturbatively expanding the fields, the time in-
tegrals in Eq. (10.34) are formally done, and result in the definition of coefficients
such as

cδ,1(a) =

∫ a da′

a′
cδ(a, a

′)
D+(a

′)

D+(a)
, cδ2,1(a) =

∫ a da′

a′
cδ2(a, a

′)
D+(a

′)2

D+(a)2
, . . . .

(10.37)
For a complete list see App. F.2. After this procedure, the resulting halo overdensity
can then be written as a sum of functions of time multiplied by functions of mo-
mentum. As was shown in [135], some of the momentum functions are degenerate
and can all be expressed in terms of the basis {I, α, β, α1, α2, β1, β2, γ1, γ2}, which
are the kernels that appear in Eqs. (10.30) - (10.32). This is true in wCDM as well
as the clustering quintessence case, because the momentum functions are the same
in both cases, and only the time functions change. We can therefore write

K
(1)
δh

(q⃗1, a) = cδ,1(a) , (10.38)

K
(2)
δh

(q⃗1, q⃗2, a) = cI,(2)(a) + cα,(2)(a)α(q⃗1, q⃗2) + cβ,(2)(a)β(q⃗1, q⃗2) ,

K
(3)
δh

(q⃗1, q⃗2, q⃗3, a) = cασ ,(3)(a)α
σ(q⃗1, q⃗2, q⃗3) + cβσ ,(3)(a)β

σ(q⃗1, q⃗2, q⃗3)

+cγσ ,(3)(a)γ
σ(q⃗1, q⃗2, q⃗3) + cα,(3)(a)α(q⃗1, q⃗2)

+cβ,(3)(a)β(q⃗1, q⃗2) + cI,(3)(a) ,

where in the last expression a sum is implied over σ ∈ {1, 2}. The main reason that
the time coefficients ci change, relative to wCDM, is because the integrals from the
flow terms that stem from the Taylor expansion of Eq. (B.79) now have an additional
dependence on C(a) (for a comparison see App. F.3). The coefficients in Eq. (10.38)
are explicitly defined in App. F.2. For more details on the derivation of the halo
overdensity kernels, see [135].

From here we can proceed in a very similar fashion to [135]. We reduce the
number of coefficients by looking for degeneracies in the time coefficients. Luckily
all the identities from [135] still hold in a slightly more general form. The main
difference here is that we define the calculable function G = Gδ1+Gδ2 , with Gδi defined
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in App. F.1, which for wCDM is G wCDM
= 1. The identities then read

cα,(2) + cβ,(2) = G cδ,1 , (10.39)

cα,(3) + cβ,(3) = 2G cI,(2) ,

cβ2,(3) + G cα,(2) − cα1,(3) =
G2

2
cδ,1 ,

cα1,(3) + cα2,(3) = cγ1,(3) + cγ2,(3) ,

cβ1,(3) + cβ2,(3) + cγ1,(3) + cγ2,(3) =
G2

2
cδ,1 ,

cγ1,(3) + cβ1,(3) =

(
3

14
+ Y (a)

)
cδ,1 ,

where in the limit G wCDM
= 1 we recover the identities from [135]. Y (a) is defined by

Y (a) = − 3

14
+ Vδ11(a) + Vδ12(a). (10.40)

However, it is useful to define

Ỹ (a) = − 3

14
G(a)2 + Vδ11(a) + Vδ12(a), (10.41)

so that, taking limits, we have Ỹ (a)
wCDM
= Y (a)

EdS
= 0. We can then write the final

halo overdensity (see also [276]):

δh(k⃗, a) = cδ,1(a)
(
C(1)
δ (k⃗, a) + G(a)C(2)

δ (k⃗, a) + G(a)2C(3)
δ (k⃗, a) + Ỹ (a)C(3)

Y (k⃗, a)
)

+ cα,(2)(a)
(
C(2)
α (k⃗, a) + G(a)C(3)

α1
(k⃗, a)

)
(10.42)

+ cI,(2)(a)
(
C(2)

I (k⃗, a) + 2G(a)C(3)
β (k⃗, a)

)
+ cβ1,(3)(a) C

(3)
β1
(k⃗, a) + cγ2,(3)(a) C(3)

γ2
(k⃗, a)

+ cα,(3)(a) C(3)
α (k⃗, a) + cI,(3)(a)C(3)

I (k⃗, a) ,

where we can see that no new Ci operators have to be included compared to the
exact wCDM case or EdS approximated case. The Ci are defined in the same way
as in [135] and are explicitly given in App. F.2. Similarly to what happens when
we use the exact time dependence for smooth dark energy and ΛCDM, we see that
there are additional calculable time dependencies in the final bias expansion for
the galaxy overdensity. However, there are no new bias coefficients. We can take
two interesting limits to see how the above expansion generalizes previous models.
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In the G → 1 limit, we obtain the galaxy overdensity in wCDM with exact time
dependence. Furthermore, in the limit where we use the EdS approximation, the
time functions in Eqs. (10.30) - (10.32) become independent of a and with a value so
that G → 1 and Ỹ → 0 9. Eq. (10.42) can then simply be linearly transformed into
the BoD basis from [131], therefore the space spanned by the kernels in Eq. (10.42)
is the same as the one spanned by the BoD basis from [131] (for a transformation
see [135]). For illustration, we plot in Fig. 10.3 the values of Ỹ and G as functions
of the redshift z = 1/(1 + a) and w.10
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Figure 10.3: Ỹ and G as a function of redshift z and quintessence equation of state
parameter w. We show ΛCDM and wCDM cases for comparison. Notice that, as we
argued earlier, for w < −1 we need c2s → 0 and thus for c2s = 1, i.e. wCDM, w < −1 is not
allowed in the EFT of dark energy. We, nevertheless, plot it here for illustration.

In a last step, we write the expansion for θh, which appears in the redshift
space expansion. For the velocity divergence, there is no bias [133], up to higher
derivative terms. We can thus model the velocity divergence as a species of biased

9Note that in the presence of clustering quintessence the EdS approximation does not only
rely on Ωm/f2

+ ≈ 1 but also on C(a) ≈ 1 which is needed to cancel the time dependence in the
continuity Eq. (10.28). Therefore, from Eq. (F.26) one can see that in the EdS approximation one
takes the limit G → 1.

10As discussed in [260], the function 1− G(z), as shown in Fig. 10.3 describes the relative time
evolution of the linear dark energy perturbation in clustering quintessence (in [260] the notation
ϵ = 1−G is used). Specifically, 1−G(a) = δρ

(1)
D (k, a)/δρ

(1)
A (k, a), where δρD = ρ̄D

1+w
c2s

(π̇−Φ) as in
[264]. Since the k dependence of both perturbations is the same [48], 1− G quantifies the relative
size of the linear dark energy perturbations and hence of the dark energy linear power spectrum.
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tracer. Specifically, we obtain the velocity divergence by plugging in the following
choice of functions into Eq. (10.42):

cθδ,1(a) = 1 (10.43)

cθI,(2)(a) = cθI,(3)(a) = cθα,(3)(a) = 0

cθα,(2)(a) = Gθ1(a)
cθβ1,(3)(a) = Vθ12(a)
cθγ2,(3)(a) = Vθ21(a).

The counterterms will take the exact same form as for wCDM [264, 135]. We will
now transform into redshift space and compute the power spectrum.

10.3.3 Galaxy Power Spectrum in Redshift Space

As the next step, we wish to compute the full galaxy power spectrum in redshift
space, which we will later use to fit the data. As shown in [135], the EdS approxim-
ation has no influence on the transformation into redshift space 11. This means we
can proceed in the same way as described in [133]. The galaxy overdensity kernels in
redshift space in terms of the real space quantities δh and θh are given by (without
counterterms)

K
(1)
δh,r

(q⃗1, a) = K
(1)
δh

(q⃗1, a) + f+ µ
2
1K

(1)
θh

(q⃗1, a) = b1 + f+ µ
2
1, (10.44)

K
(2)
δh,r

(q⃗1, q⃗2, µ, a) = K
(2)
δh

(q⃗1, q⃗2, a) + f+ µ
2
12K

(2)
θh

(q⃗1, q⃗2, a)

+
1

2
f+ µ q

[
µ2

q2
K

(1)
θh

(q⃗2, a)K
(1)
δh,r

(q⃗1, a) + perm.
]
,

K
(3)
δh,r

(q⃗1, q⃗2, q⃗3, µ, a) = K
(3)
δh

(q⃗1, q⃗2, q⃗3, a) + f+ µ
2
123K

(3)
θh

(q⃗1, q⃗2, q⃗3, a)

+
1

3
f+ µ q

[
µ3

q3
K

(1)
θh

(q⃗3, a)K
(2)
δh,r

(q⃗1, q⃗2, µ123, a)

+
µ23

q23
K

(2)
θh

(q⃗2, q⃗3, a)K
(1)
δh,r

(q⃗1, a) + cyc.
]
,

where δh,r is the halo overdensity in redshift space. Using ẑ as the line of sight unit
vector, we have defined µ = q⃗·ẑ/q, with q⃗ = q⃗1+· · ·+q⃗n, and µi1...in = q⃗i1...in ·ẑ/qi1...in ,
q⃗i1...im = q⃗i1+· · ·+ q⃗im . As we mentioned previously, the counterterms and stochastic
terms that come from real and redshift space (see [133, 135] for a discussion) do not

11Of course since the halo overdensity in redshift space depends on δh and θh, the exact time
dependence has an impact, just not on the transformation itself.
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change in the presence of clustering quintessence. Therefore, the final expression for
the galaxy power spectrum in redshift space, including the counterterms, reads

Pg(k, µ, a) = K
(1)
δh,r

(µ, a)2P11(k, a) (10.45)

+ 2

∫
d3q

(2π)3
K

(2)
δh,r

(q⃗, k⃗ − q⃗, µ, a)2P11(|⃗k − q⃗|, a)P11(q, a)

+ 6K
(1)
δh,r

(µ, a)P11(k, a)

∫
d3q

(2π)3
K

(3)
δh,r

(q⃗,−q⃗, k⃗, µ, a)P11(q, a)

+ 2K
(1)
δh,r

(µ, a)P11(k, a)

(
cct
k2

k2m
+ cr,1µ

2 k
2

k2m
+ cr,2µ

4 k
2

k2m

)
+

1

n̄

(
cϵ,0 + cϵ,1

k2

k2m
+ cϵ,2f+µ

2 k
2

k2m

)
,

where P11(k, a) is the time-dependent linear power spectrum for the adiabatic mode,
km ≲ kNL is the comoving wavenumber which controls the bias derivative expansion,
and n̄ is the background galaxy number density 12. In the first line, we have the
linear power spectrum in redshift space. In the second and third line, we have the
P13 and P22 contributions of the loop and in the fourth and fifth line we have the
counterterms and stochastic terms, respectively.

Finally, the power spectrum is IR-resummed following [137, 139, 140, 169]. Since
quintessence is comoving with dark matter, the equations for the IR-resummation
only change by a shift P11(k, a) → G(a)2P11(k, a)

13. We then apply corrections to
take into account the Alcock-Pacszynski effect [214], window functions [201], and
fiber collisions [277].

In Fig. 10.4, we show the difference between the one-loop galaxy power spec-
trum multipoles ℓ = 0, 2 evaluated in different cosmologies: ΛCDM, wCDM and
clustering quintessence, for w = −0.95 and w = −1.05. We also show the differ-
ence between the evaluation with and without the EdS approximation for clustering
quintessence. It is apparent that the difference between wCDM and clustering quint-
essence is important with respect to the BOSS error bars. The difference between

12These are the same response and stochastic terms as in Ch. 6 in Eqs. (6.153) and (6.156), just
with a renaming of coefficients for simplicity.

13The additional factors of G come from the integral over the velocity, when expressing the
displacement field in terms of the overdensity

s(1)j(a) =

∫ a da′

a′2H(a′)
v(1)j(a′). (10.46)

This integral, which is explicitly computed for the flow terms in Eq. (F.46), results in s(1)j(a) =

−G(a) ∂j

∂2 δ
(1).
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Figure 10.4: One-loop galaxy power spectrum multipole ratio of wCDM or clustering
quintessence, with w = −0.95 and w = −1.05, to ΛCDM, at z = 0.57. We show for
clustering quintessence the evaluation with and without the EdS approximation. The
evaluation in ΛCDM and wCDM are with exact time dependence. The EFT parameters
are the same for all evaluations, with values as the best fit of BOSS on ΛCDM. The BOSS
CMASS error bars are depicted for comparison. Notice that, as we argued earlier, for
w < −1 we need c2s → 0 and thus for c2s = 1, i.e. wCDM, w < −1 is not allowed in the
EFT of dark energy. We, nevertheless, plot it here for illustration.

the evaluation with and without the EdS approximation for clustering quintessence
is clearly important, especially in the monopole. Given how large the differences in
the power spectrum are, we expect to see differences at the level of the posteriors of
the cosmological and EFT parameters14.

10.4 LSS Data Analysis

In this section, after calibrating the scale cut of the theory against simulations,
we present the results from fitting clustering and smooth quintessence to the BOSS
FS, and its combinations with BAO, SN and CMB measurements.

Likelihood and Priors The theory prediction is given by the galaxy power spec-
trum in redshift space at one-loop order in the EFTofLSS, Eq. (10.45). Its evaluation
is performed using PyBird [169], and we sample from a Gaussian likelihood. The
kernelsK(1)

δh,r
, K(2)

δh,r
, K(3)

δh,r
depend on 4 biases: b1, b2, b3, b4. In our analysis, we use the

monopole and quadrupole of the galaxy power spectrum. We vary the cosmological
parameters ωcdm, h, ln(1010As), ns, w, on which we impose no priors, and ωb with

14We note that the w = −0.95 clustering quintessence curve seems to exactly agree the w = −1
monopole as k → 0. This is, however, an artefact of the particular best fit. Indeed, while for the
real space power spectrum, the ratio would be dictated by the growth factors, for the monopole,
the growth rate f+, and the linear bias b1 from the best fit contribute as well, leading to more
complex relationships more dependent on the best fit.
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a Gaussian prior motivated from Big Bang Nucleosynthesis (BBN) with standard
deviation σωb,BBN = 0.00036 [216]. For the simulations, we will center the prior on
the truth, while on BOSS data, we will use ωb,BBN = 0.02233 [216]. When analyzing
BOSS data [9] (alone and in combination with other datasets) we fix the neutrinos
to minimal mass, 0.06 eV, as done in the Planck analysis [24]. As for the EFT para-
meters, we define the linear combinations c2 = (b2 + b4)/

√
2, c4 = (b2 − b4)/

√
2, and

we set c4 = 0 since b2, b4 are almost completely anticorrelated. Then, we define the
two combinations cϵ,mono = cϵ,1+fcϵ,2/3, cϵ,quad = 2fcϵ,2/3. We put a Gaussian prior
of mean 0 and standard deviation 2, N (0, 2), on b3, cct, cϵ,0, cϵ,mono, cϵ,quad, and a
Gaussian prior of mean 0 and standard deviation 8, N (0, 8), on the redshift-space
counterterm cr,1. We fix cr,2 = 0 since it is exactly degenerate with cr,1 when only
analyzing the monopole and quadrupole. As explained in [7, 169], we analytically
marginalize over b3, cct, cϵ,0, cϵ,mono, cϵ,quad, cr,1 as they appear linearly in the power
spectrum and therefore quadratically in the likelihood. Finally, the linear bias b1
has a flat prior [0, 4], and c2 has a flat prior [−4, 4], which play no role.

10.4.1 Tests against Simulations

To assess the theory-systematic error of the FS analysis, we fit the power spec-
trum multipoles measured from large-volume N-body simulations on clustering quint-
essence with a BBN prior. We consider two independent realizations of the BOSS
‘lettered’ challenge simulations, which are boxes of side length 2.5Gpc/h, described
in e.g. [7]. The first realization is made of four boxes, labelled A, B, F, and G, pop-
ulated by four different Halo Occupation Distribution (HOD) models, of which we
analyze the snapshot at z = 0.56. The second realization, labelled D, is populated
by another HOD model, of which we analyze the snapshot at z = 0.5. Using one
box, we can measure for each cosmological parameter the theory-systematic error
as the distance in the 1D posterior of the 1σ region to the truth of the simulation.
Therefore, the theory-systematic error is zero if the truth lies within the 1σ region.
For A, B, F, and G, which are correlated, we average the posteriors for the cosmolo-
gical parameters, that we label ABFG. Moreover, we can combine ABFG with D, as
they are independent realizations, allowing us to measure the theory error using a
volume about 14 times the one of BOSS data. To do so, we combine for each cosmo-
logical parameter the 1D posterior of the shift of the mean with respect to the truth,
as the product of two Gaussian distributions. The distance of the 1σ region to zero
in each resulting 1D posterior gives a measure of the theory-systematic error for the
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combination ABFG+D. For each cosmological parameter, the error bar obtained on
ABFG+D represents the smallest theory-systematic error which we can measure,
which is between 0.3 · σdata and 0.5 · σdata, where σdata is the error bar obtained by
fitting BOSS data.

ωcdm h ln
(
1010As

)
ns w Ωm

σstat|σsys σstat|σsys σstat|σsys σstat|σsys σstat|σsys σstat|σsys

ABFG 0.007|0.000 0.027|0.000 0.11|0.04 0.044|0.000 0.139|0.000 0.021|0.000
D 0.006|0.000 0.018|0.000 0.11|0.04 0.039|0.000 0.093|0.000 0.014|0.000
ABFG+D 0.005|0.000 0.015|0.000 0.08|0.07 0.029|0.000 0.077|0.000 0.012|0.000

Table 10.1: 68%-confidence intervals σstat and theory-systematic errors σsys obtained
fitting clustering quintessence to the lettered challenge simulations with a BBN prior.
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Figure 10.5: Triangle plots obtained by fitting clustering quintessence to the lettered
challenge simulations with a BBN prior. The dashed lines represent the truth of the
simulations.

In Fig. 10.5 and Tab. 10.1, we show the results obtained by fitting the lettered
challenge simulations at scale cut kmax = 0.23hMpc−1. We find for all cosmological
parameters zero theory-systematic error, with the exception of ln(1010As), where
we find a marginal theory-systematic error of 0.07, which is ∼ 0.4 · σdata 15. These
results show that we can confidently fit the data up to kmax = 0.23hMpc−1 on our

15Given the number of cosmological parameters, we find the likelihood of such a large value of
one cosmological parameter to be sufficiently high, so that we do not include this in the systematic
error budget.
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BOSS BOSS+6DF/MGS+eBOSS BOSS+6DF/MGS+eBOSS+SN
best-fit mean±σ best-fit mean±σ best-fit mean±σ

ωcdm 0.1271 0.1346+0.011
−0.016 0.1188 0.122+0.0083

−0.0099 0.1196 0.1234+0.008
−0.01

H0 66.75 67.58+2.7
−3.5 66.99 67.35+2

−2.3 67.97 68.72+1.4
−1.6

ln
(
1010As

)
2.733 2.64+0.16

−0.17 2.837 2.79+0.14
−0.16 2.848 2.806+0.15

−0.16

ns 0.9103 0.8884+0.072
−0.059 0.9406 0.9416+0.053

−0.051 0.972 0.9335+0.054
−0.05

w −0.878 −0.8666+0.17
−0.15 −0.9212 −0.9358+0.11

−0.092 −0.9928 −1.011+0.053
−0.048

Ωm 0.337 0.3456+0.03
−0.027 0.3166 0.3197+0.017

−0.015 0.3083 0.3099+0.012
−0.011

σ8 0.684 0.6675+0.061
−0.067 0.7043 0.7034+0.047

−0.057 0.7371 0.7285+0.043
−0.049

Table 10.2: Results obtained by fitting clustering quintessence to BOSS in combination
with other late-time probes with a BBN prior.

high redshift (zeff = 0.57) sample CMASS. For LOWZ sample at zeff = 0.32, we
rescale the scale cut as in [7] and fit up to kmax = 0.2hMpc−1.

10.4.2 LSS Constraints

In Fig. 10.6 and Tab. 10.2, we show the results obtained by fitting BOSS FS+BAO,
and in combination with BAO measurements from 6DF/MGS and eBOSS, and with
Pantheon SN, on clustering quintessence with a BBN prior. We see that all cosmo-
logical parameters can be measured (we do not quote ωb since it is dominated by
the BBN prior we impose). For all analyses performed, w is consistent with −1 at
≲ 1σ.

Physical Considerations We now discuss why all cosmological parameters can
be measured by analyzing the FS using the EFTofLSS, and how the addition of
the SN measurements helps to obtain better constraints. Let us start with the
contribution from the BAO information. The two angles corresponding to the BAO
components perpendicular and parallel to the line of sight are given by:

θLSS,⊥ ≃ rd(zCMB)

DA(zLSS)
θLSS,∥ ≃

rd(zCMB)

czLSS/H(zLSS)
. (10.47)

Here rd(zCMB) is the sound horizon at the end of the baryon-drag epoch zCMB, and
DA(zLSS) and H(zLSS) are the angular diameter distance and the Hubble parameter
at the effective redshift of the survey zLSS. As discussed in e.g. [7, 169], these angles
carry information about h,Ωm and w. The dependence on parameters is the same
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Figure 10.6: Triangle plots obtained by fitting clustering quintessence to BOSS in com-
bination with other late-time probes with a BBN prior.

as in wCDM, as the angles only depend on the background geometry [169]:

θLSS, ∥(zLyα) ∼ Ω0.17
m h0.42|w|−0.11, θLSS,⊥(zLyα) ∼ Ω0.01

m h0.48|w|−0.19 ,

θLSS, ∥(zCMASS) ∼ Ω−0.02
m h0.49|w|−0.25, θLSS,⊥(zCMASS) ∼ Ω−0.12

m h0.53|w|−0.17 ,

θLSS, ∥(zLOWZ) ∼ Ω−0.10
m h0.52|w|−0.21, θLSS,⊥(zLOWZ) ∼ Ω−0.16

m h0.54|w|−0.12 ,

θLSS,V(z6dF) ∼ Ω−0.19
m h0.55|w|−0.07, θLSS,V(zMGS) ∼ Ω−0.18

m h0.55|w|−0.09. (10.48)

where zLyα = 2.35, zCMASS = 0.57, zLOWZ = 0.32 and z6dF/MGS = 0.106. θLSS,V is
a combination of θLSS,⊥ and θLSS, ∥ (see e.g. [169]). The dependences on the cos-
mological parameters above and in the rest of this section are obtained expanding
around a fiducial cosmology (Ωm = 0.3, h = 0.7, w = −1). Furthermore, the rel-
ative amplitude of the BAO wiggles with respect to the smooth part instead gives
a measurement of ∼ Ωmh

2 (though the amplitude is not part of the standard BAO
analysis). Clearly, at least in principle, this information allows for a determination of
w,Ωm and h. Notice however that the measurements for w and Ωm are strongly de-
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generate when using solely the BAO information from CMASS and LOWZ, and the
breaking of the degeneracy by measuring both θLSS,⊥ and θLSS,∥ is mild, insufficient
to get strong constraints [169]. Of course, the situation is greatly ameliorated by the
addition of the information from 6dF/MGS and eBOSS, but it is also ameliorated
by the inclusion of the FS analysis.

In fact, the FS contains information not only through the BAO signal, but also
by its shape and amplitude [7]. The shape depends on the equality scale, and
therefore on Ωmh

2. The amplitude and the anisotropy of the FS can be roughly
summarized by the fact that the monopole and quadrupole mainly depend on the
combinations b1(z)2D+(z)

2A
(kmax)
s and b1(z)f+(z)D+(z)

2A
(kmax)
s . Here A(kmax)

s is the
amplitude of the linearly evolved power spectrum at the maximum wavenumber of
our analysis, A(kmax)

s ∼ (k/k0)
ns−1 (keq/kmax)

2As, with keq being the wavenumber
that re-enters the horizon at equality and k0 the pivot scale. D+ and f+ are re-
spectively the growth factor and growth rate of the growing adiabatic mode. kmax

is the maximum wavenumber of our analysis, which is where the signal to noise is
dominated. Given that there are two redshifts in BOSS, this clearly offers a way to
measure both As and ns, together with b1(zCMASS) and b1(zLOWZ). In this way, all
cosmological parameters are, at least in principle, measured. However, we should
keep in mind that the FS offers an independent measurement for each wavenumber,
therefore, by combining the information from several k’s, further information on w

and Ωm is obtained. In fact, just by looking at the dependence at linear level of
the monopole and quadrupole at zCMASS and zLOWZ, one can see that on top of b1
and As, one can measure the combination f(zCMASS)D(zCMASS)

f(zLOWZ)D(zLOWZ)

∣∣∣
clust.

, which, around the
fiducial cosmology, goes as ∼ Ω−0.12

m |w|0.44. This can be seen by using the fitting
functions for D+ and f+ as a function of Ωm and w given in [260], which read:

D+(a)

a
=

5

2
Ωm(a)× (10.49)

×
[
Ωm(a)

4/7 +
3

2
Ωm(a) +

(
1

70
− 1 + w

4

)
ΩD(a)

(
1 +

Ωm(a)

2

)]−1

,

f+(a) = C(a)

[
Ωm(a)

4/7 +

(
1

70
− 1 + w

4

)
ΩD(a)

(
1 +

Ωm(a)

2

)]
,

where C(a) = 1+(1+w)ΩD(a)/Ωm(a). This is to be contrasted with the same ratio
for the case of a smooth dark energy component, namely wCDM, around the same
cosmology: f(zCMASS)D(zCMASS)

f(zLOWZ)D(zLOWZ)

∣∣∣
wCDM

∼ Ω−0.12
m |w|0.006. We can see that the change

in the dependence on w going from LOWZ to CMASS is stronger in the case of
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clustering quintessence compared to wCDM, physically originating from the fact that
clustering quintessence contributes to the clustering. The mild degeneracy present
for wCDM between Ωm and w is thus less pronounced in clustering quintessence
when jointly fitting LOWZ and CMASS. Furthermore, these measurements give
different correlations between Ωm and w with respect to the ones in θLSS, thus further
breaking the degeneracies. This can be seen in Fig. 10.7, where we compare the
posteriors obtained fitting BOSS FS+BAO on clustering quintessence and wCDM.
To summarize, Ωm, h, w, As, ns and b1 can be measured from the BAO angles in
combination with the broadband signal.

By looking at the same Fig. 10.7, one can also see that in wCDM there is a
large degeneracy in lowering w and lowering As. This can be explained by the fact
that, in wCDM with w < −1 (which, we remind, is physically inconsistent at the
quantum level but can still be analyzed as a model), matter domination lasts longer,
so that structures grow more and therefore the power spectrum is left unchanged by
lowering As. In clustering quintessence, this degeneracy is broken by the fact that
the adiabatic mode receives a contribution from clustering quintessence proportional
to 1 + w. This can be see from solving the linear equations, which, at early times,
give (see e.g. [264], Eq. (4.15)):

δA(aearly) =

(
1 +

(1 + w)

1− 3w

ΩD,0

Ωm,0

(
aearly
a0

)−3w
)
δm(aearly) , (10.50)

with a0 the present epoch and aearly a time early on during matter domination.
This effect acts in a direction contrary to the extra growth that one gets from the
extension of the epoch of matter domination for 1 + w < 0, in practice bounding
the degeneracy between w and As.

Note that this discussion gives only rough estimates of the parameter depend-
ence of the FS. In practice, there is no separation between the broadband and the
other sources of information within the FS analysis as all the signal is analyzed up
to the chosen scale cut. In particular, the loop provides additional information.
For example, the growth function enters as D4

+ in the loop, providing yet another
parametric dependence on w. In Fig. 10.7, we also show the posteriors obtained on
clustering quintessence with the EdS approximation 16. The difference with the pos-
teriors obtained with exact time dependence is clearly visible: most notably, about
0.2σ for H0 and Ωm, and 0.3σ for w. At the level of the power spectrum in Fig. 10.4,

16In App. F.4 we show the full posterior including the nuisance parameters
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Figure 10.7: Triangle plots obtained by fitting clustering quintessence to BOSS with a
BBN prior, with or without the EdS approximation. For comparison, we show wCDM fit
to BOSS with a BBN prior, with and without physical prior w ≥ 1.

the difference is somewhat larger in terms of error bars, but we should remember
that in that figure the EFT parameters are fixed. In particular, the large deviation
that can be seen in the monopole of Fig. 10.4 can be partially absorbed below the
error bars with a small offset in the shot noise cϵ,0/n̄ of ∼ 0.1. The difference we
see between the EdS evaluation and the exact-time one can be traced to the time
functions, as for example G2, in some loop terms when evaluated with exact time
dependence: G(zLOWZ)

2 ∼ |w|0.42 and G(zCMASS)
2 ∼ |w|0.27. Because of this, the EdS

approximation leads to noticeable shifts in the posteriors for clustering quintessence.
The shifts are of the same order as the theory-systematic error we find in Sec. 7.6.4,
so it may look like we can neglect them. However, we would then introduce an ad-
ditional systematic error on the parameters. Contrary to the uncertainty from next
orders in perturbation theory, the exact time dependence can be easily computed,
with the same computational cost and without adding new nuisance parameters.
Therefore, we prefer to use the exact time dependence.
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Finally, the distance-redshift relation of SN data from Pantheon brings evidently
more constraints. Approximately, the line degeneracy of the luminosity distance
DL = (1 + z)2DA is DL(z = 0.25) = Ω−0.05

m |w|0.1, which further helps break the
degeneracy between Ωm and w when fitting jointly with the FS and BAO.

10.4.3 CMB+LSS Constraints

In Fig. 10.8 and Tab. 10.3, we show the results obtained fitting clustering quint-
essence with Planck data in combination with BOSS FS+BAO, BAO measurements
from 6DF/MGS and eBOSS and with Pantheon SN.

Planck + BOSS BOSS+6DF/MGS+eBOSS BOSS+6DF/MGS+eBOSS+SN
best-fit mean±σ best-fit mean±σ best-fit mean±σ

100 ωb 2.247 2.236± 0.050 2.275 2.233± 0.050 2.247 2.246± 0.013
ωcdm 0.141 0.135+0.010

−0.015 0.1211 0.1198+0.0071
−0.0080 0.11849 0.11896± 0.00094

H0 70.25 68.6± 1.8 68.45 68.0± 1.2 67.98 67.37+0.57
−0.45

ln
(
1010As

)
2.703 2.77± 0.19 2.84 2.88± 0.16 3.045 3.050+0.013

−0.015

ns 0.8754 0.885+0.069
−0.058 0.95 0.953± 0.047 0.97 0.9681± 0.0037

w -0.9955 < −0.808(2σ) −1.000 < −0.927(2σ) −0.998 < −0.956(2σ)

Ωm 0.3325 0.337+0.017
−0.022 0.3084 0.309± 0.011 0.3065 0.3131+0.0056

−0.0066

σ8 0.7345 0.728± 0.047 0.733 0.740+0.044
−0.050 0.8065 0.8054± 0.0072

Table 10.3: Results obtained by fitting clustering quintessence to Planck and BOSS in
combination with other late-time probes.

As expected and apparent from the posteriors, we can see that Planck gives
precise measurements on ωb, ωcdm, ln(1010As) and ns, while constraints on H0 or Ωm

are obtained by the combination with late-time probes, that break the degeneracy in
the H0 −Ωm plane present in the CMB. As discussed in the previous subsection, w
is mainly measured thanks to low-redshift measurements. However, the constraints
on w are better when adding Planck since the precise measurements of the other
cosmological parameters by Planck helps to further break the degeneracies.

10.4.4 wCDM with w ≥ −1

From an Effective Field Theory point of view, there is no known theory, at least
to us, that can realize w < −1 with c2s → 1. As discussed in previous sections,
such theory has a negative kinetic term. For a theory with no Lorentz-violating UV
cutoff, the scalar perturbations are unstable, and the vacuum decays into gravitons
at an infinite rate [268]. Therefore, w < −1 would either need some other, physical,
motivation or one can posit that w is not allowed to be smaller than −1 in wCDM.
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Figure 10.8: Triangle plots obtained by fitting clustering quintessence to Planck and
BOSS in combination with other late-time probes.

By doing so, we get the results in Fig. 10.7 obtained by fitting BOSS data on wCDM
with a BBN prior and a flat prior w ≥ −1. We see that the results differ substantially
from the ones obtained without a prior on w. In particular, the degeneracy line
w−H0, open when allowing w to vary below −1, can not be exploited to lift H0 to
higher values than the one found in ΛCDM analyzing CMB or LSS data.

In Fig. 10.9 and Tab. 10.4, we show the results obtained fitting BOSS, and in
combination with BAO measurements from 6DF/MGS and eBOSS, with Pantheon
SN, and with Planck data, on wCDM with a BBN prior and a prior w ≥ −1. BOSS
data alone gives a mild constraint −1 ≤ w < −0.91 at 68% C.L. (−1 ≤ w < −0.81

at 95% C.L.). Adding BAO information and Pantheon SN, the constraints on H0

and especially Ωm improve, giving the much stronger constraint −1 ≤ w < −0.96

at 68% C.L. (−1 ≤ w < −0.93 at 95% C.L.). Finally, Planck improves this to
−1 ≤ w < −0.979 at 68% C.L. (−1 ≤ w < −0.956 at 95% C.L.), which means our
Universe is consistent with a cosmological constant at 4% precision.

285



BOSS BOSS+6DF/MGS+eBOSS+SN Planck+BOSS+6DF/MGS+eBOSS+SN
best-fit mean±σ best-fit mean±σ best-fit mean±σ

100 ωb 2.247 2.236± 0.050 2.172 2.233± 0.050 2.243 2.246± 0.013
ωcdm 0.141 0.135+0.010

−0.015 0.106 0.1198+0.0071
−0.0080 0.18965 0.11896± 0.00094

H0 70.25 68.6± 1.8 65.0 68.0± 1.2 67.32 67.37+0.57
−0.45

ln
(
1010As

)
2.703 2.77± 0.19 3.15 2.88± 0.16 3.044 3.050+0.013

−0.015

ns 0.8754 0.885+0.069
−0.058 1.026 0.953± 0.047 0.9728 0.9681± 0.0037

w -0.9955 < −0.808(2σ) −0.936 < −0.927(2σ) −0.976 < −0.956(2σ)

Ωm 0.3325 0.337+0.017
−0.022 0.304 0.309± 0.011 0.3123 0.3131+0.0056

−0.0066

σ8 0.7345 0.728± 0.047 0.799 0.740+0.044
−0.050 0.8004 0.8054± 0.0072

Table 10.4: Results obtained by fitting smooth quintessence to BOSS in combination
with other late-time probes, and to Planck, with a prior w ≥ −1. When not fitting with
Planck, we use a BBN prior. For w, we quote the 95% confidence bound instead of the
68% confidence interval.
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Figure 10.9: Triangle plots obtained by fitting smooth quintessence to BOSS in combin-
ation with other late-time probes, and to Planck, with a prior w ≥ −1. When not fitting
with Planck, we use a BBN prior.
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A
Appendix: The In-Out Formalism for
In-In Correlators

A.1 In-In Equals In-Out: the Exchange Diagram

for General Masses

After having established that for conformally coupled and massless scalars the
in-in and in-out formalisms give the same result for an exchange diagram, we here
establish this result for general masses. The derivation for the rr, rl and lr cases,
hold for general masses, since they only rely on the equivalence for the contact
diagram case, as shown in Sec. 5.3.3. Therefore, the only remaining part is the ll
case, which we discuss in the following. We start with the definitions of the in-
in and in-out correlators for the exchange from Sec. 5.3.3, where we set couplings
λ1λ2 = −1 for simplicity. We have

Bll
in-in =

∫ 0

−∞(1+iϵ)

∫ 0

−∞(1+iϵ)

dη

η4
dη′

η′4
× (A.1)

×F1F2

[
G∗
F (η, η

′; s)
n∏
a=1

Gl(η, ηa; ka)
n+m∏
b=n+1

Gl(η
′, ηb; kb)

]
,

Bll
in-out =

∫ ∞(1−iϵ)

0

∫ ∞(1−iϵ)

0

dη

η4
dη′

η′4
×

×F1F2

[
GF (η, η

′; s)
n∏
a=1

GF (η, ηa; ka)
n+m∏
b=n+1

GF (η
′, ηb; kb)

]
.

Let us first do some simplification on Bll
in-in. Note that from the contact diagram

case, we know
∫ +∞(1−iϵ)
−∞(1+iϵ)

dη′

η′4
F1 [
∏

aGl(η
′, ηa, ka)] → 0. Therefore, for any intermedi-
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ary η we have

∫ η

−∞(1+iϵ)

dη′

η′4
F1

[∏
a

Gl(η
′, ηa, ka)

]
= −

∫ +∞(1−iϵ)

η

dη′

η′4
F1

[∏
a

Gl(η
′, ηa, ka)

]
. (A.2)

Let us expand the Feynman propagator in Bll
in-in, and then apply the identity above.

We then have

Bll
in-in =

∫ 0

−∞(1+iϵ)

dη

η4

∫ η

−∞(1+iϵ)

dη′

η′4
× (A.3)

×F1F2

[
Gl(η

′, η; s)
n∏
a=1

Gl(η, ηa; ka)
n+m∏
b=n+1

Gl(η
′, ηb; kb)

]
,

+

∫ 0

−∞(1+iϵ)

dη′

η′4

∫ η′

−∞(1+iϵ)

dη

η4
×

×F1F2

[
Gl(η, η

′; s)
n∏
a=1

Gl(η, ηa; ka)
n+m∏
b=n+1

Gl(η
′, ηb; kb)

]
,

= −
∫ 0

−∞(1+iϵ)

dη

η4

∫ ∞(1−iϵ)

η

dη′

η′4
×

×F1F2

[
Gl(η

′, η; s)
n∏
a=1

Gl(η, ηa; ka)
n+m∏
b=n+1

Gl(η
′, ηb; kb)

]
,

−
∫ 0

−∞(1+iϵ)

dη′

η′4

∫ ∞(1−iϵ)

η′

dη

η4
×

×F1F2

[
Gl(η, η

′; s)
n∏
a=1

Gl(η, ηa; ka)
n+m∏
b=n+1

Gl(η
′, ηb; kb)

]
.

Now we can also expand Bll
in-out and subtract Bll

in-in from it, to see that they combine
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in a similar way as in the contact diagram case

Bll
in-out −Bll

in-in =

∫ ∞(1−iϵ)

−∞(1+iϵ)

dη

η4

∫ ∞(1−iϵ)

η

dη′

η′4
× (A.4)

×F1F2

[
Gl(η, η

′; s)
n∏
a=1

Gl(η, ηa; ka)
n+m∏
b=n+1

Gl(η
′, ηb; kb)

]
,

+

∫ ∞(1−iϵ)

−∞(1+iϵ)

dη′

η′4

∫ ∞(1−iϵ)

η′

dη

η4
×

×F1F2

[
Gl(η, η

′; s)
n∏
a=1

Gl(η, ηa; ka)
n+m∏
b=n+1

Gl(η
′, ηb; kb)

]
.

In the following, we will show that these terms vanish separately, and the deriv-
ation is the same for both terms. For concreteness, we focus on the second term.
Furthermore, let us for now restrict F1 and F2 only to contain spatial derivatives.
This simply leads to an overall factor, which we can drop. Furthermore, since we
assume the integral is IR-finite, we simply need to show that the class of integrals

∆B :=

∫ ∞(1−iϵ)

−∞(1+iϵ)

dη′
∫ ∞(1−iϵ)

η′
dη ηp1η′p2fs(η)fs(η

′)∗
n∏
a=1

fka(η)
n+m∏
b=n+1

fkb(η
′), (A.5)

with p1, p2 ≥ 0, vanishes, where we dropped the overall factor of the external mode
functions.

Let us first focus on the inner integral over η. We note that η′ always has a
small negative imaginary part, and therefore this integral is always in the lower half
complex plane where fk(η) is analytic, and convergent at infinity. This means we
can draw a contour along the η′ = const axis, up to −i∞, and close the contour at
infinity, to get a different representation of this integral. We show the contour in
Fig. A.1. The contribution at infinity is zero, given the exponential convergence of
H

(1)
ν in the lower half complex plane, and the inner integral can be written as∫ η′

η′−i∞
dηηp1fs(η)

n∏
a=1

fka(η) = i

∫ ∞

0

dη(η′ − iη)p1fs(η
′ − iη)

n∏
a=1

fka(η
′ − iη) ,

where we substituted η → η′ − iη.
Now let us get back to the main integral, where we can now change the order

of integration. Furthermore, expanding out the factor (η′ − iη)p1 , the integral again
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Re(η)

Im(η)

η′

Figure A.1: Choice of contour in the η plane

falls into the classes of integrals

∆B = −i
∫ ∞

0

dη

∫ ∞(1−iϵ)

−∞(1+iϵ)

dη′ηp3η′p4fs(η
′ − iη)fs(η

′)∗
n∏
a=1

fka(η
′ − iη)

n+m∏
b=n+1

fkb(η
′) .

(A.6)

for some p3, p4 ≥ 0. Now note that since η > 0 and since η′ has a small negative
imaginary part, the mode functions are always evaluated in the lower half complex
plane. Therefore, the integrand in η′ is analytical over the whole region of integra-
tion. We, therefore, simply need to show that on the arc at negative infinity in the
lower half complex plane, the integral vanishes.

Let us label
∑n+m

a=1 ka = kT , then in the limit η′ → −i∞ we have

ηp3η′p4fs(η
′ − iη)fs(η

′)∗
n∏
a=1

fka(η
′ − iη)

n+m∏
b=n+1

fkb(η
′) → η′p3+1ηp4+1e−ikT η

′
e−(kT+s)η,

(A.7)

where we see that the integral over η′ goes to zero, and that the integral over η
is finite. Therefore we conclude that the integral Eq. (A.6) vanishes. Finally, we
note a couple of generalisations. The derivation for the term that comes from the
Feynman propagator with η ↔ η′, is the same, simply with the consistent exchange
η ↔ η′. Furthermore, in the presence of temporal derivatives, the derivation fol-
lows analogously, since time derivatives of the Hankel functions is a sum of Hankel
functions with shifted mass. Therefore, since the formulas above only depend on
the asymptotic behaviour and the analyticity of the mode functions, the resulting
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integrals fall under the same class of integrals as in Eq. (A.5), which vanishes.

A.2 Diagrammatic Cutting Rules for Three Ver-

tices

In this appendix, we give details for the derivation of propagator identities for
three-vertex diagrams. We do not show how to use hermitian analyticity to turn
these relations into cutting rules for correlators with flipped energies. While our
rules generalize to any number of external legs and loops, we focus on diagrams at
tree level where all the external lines attached to a single vertex have been combined
into a single one (this can always be done in Minkowksi and for conformally coupled
scalars in de Sitter).

For three vertices we get multiple propagator identities, depending on the choice
of operators. For the cases we study here, we always take two of the three external
vertices to form together one of the operators in the largest time equation. Then
we consider a double exchange tree-level diagram with the following contractions:
where n1+n2+n3 = n. Then we also consider a one-loop diagram with three vertices

O1 = ϕ(t0)
n1 O2 = ϕ(t0)

n2 O3 = ϕ(t0)
n3

↕ ↕ ↕
O4 = H

(1)
int (t) ↔ O5 = H

(2)
int (t

′) ↔ O6 = H
(3)
int (t

′′)

and the same contractions of operators as above with the addition of a contraction
connecting O4 and O6 to make a loop. The presence of a loop will make a difference
in the end result. Let us now proceed to derive the cutting rules simultaneously for
both cases.

As mentioned above, we get several different rules, depending on our choice of
operators. We start by combining the left two vertices and take O1 = ϕ(t0)

n1+n2

and the rest remains as is. To not have to go over the same parity argument as in
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the one and two vertex case again, we directly only write half the terms. We have

0 ∼ ⟨T [ϕ(t0)nH(1)
int (t)H

(2)
int (t

′)H(3)
int (t

′′)]⟩ (A.8)

− ⟨ϕ(t0)n1+n2T [ϕ(t0)
n3H

(1)
int (t)H

(2)
int (t

′)H(3)
int (t

′′)]⟩
+ ⟨T̄ [ϕ(t0)n1+n2H

(1)
int (t)]T [ϕ(t0)

n3H
(2)
int (t

′)H(3)
int (t

′′)]⟩
+ ⟨T̄ [ϕ(t0)n1+n2H

(1)
int (t)H

(2)
int (t

′)H(3)
int (t

′′)]ϕ(t0)
n3⟩

− ⟨T̄ [ϕ(t0)n1+n2H
(1)
int (t)H

(2)
int (t

′)]T [ϕ(t0)
n3H

(3)
int (t

′′)]⟩
+ ⟨T̄ [ϕ(t0)n1+n2H

(2)
int (t

′)]T [ϕ(t0)
n3H

(1)
int (t)H

(3)
int (t

′′)], ⟩

Again the ∼ 0 indicates that the identity is valid only after integrating over the time
insertion of the Hamiltonian interactions. Note that for the double exchange the
last term is zero, because H(1)

int does not have a time ordering relative to t0. Finally
Eq. (A.8) results in the following rules in terms of diagrams

0 = - + + -

(A.9)
and for the box-Loop

0 = - + + - + .

(A.10)
On a diagrammatic level, if we change n1 ↔ n3 we simply get the same cutting

rules, just mirrored along the middle axis. There are separate double-cutting rules if
we consider the change n2 ↔ n3, which can be derived as well, but we omit writing
them here explicitly.

A.3 Relating Cut Diagrams to Diagrams with Flipped

Energies

In this appendix, we derive the relation of a cut diagram to a correlator with
shifted kinematics. These are Eqs. (5.132), (5.133) and (5.134). We largely focus on
conformally coupled and massless fields in de Sitter and in the end we comment on
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general masses in flat space. Notice that the derivations are largely the same. To
streamline our notation we set the coupling constant λ and H to one since they can
be easily reinstated.

Conformally Coupled and Massless Scalars in dS The key ingredient to this
derivation is that the mode functions enjoy the nice property

fk(η) = fk(−η)∗, (A.11)

which in particular also translates to all time derivatives

a(η)n∂nη fk(η) = (a(−η)n∂n−ηfk(−η))∗. (A.12)

Because time derivatives enjoy the same property as the mode function, henceforth
we focus on interactions without time derivatives. As in the main text, we assume
that all interactions are IR-finite. Using Eq. (A.11) we find that the propagators
obey

G+(−η,−η′, k) = G+(η, η′, k)∗, and GF (−η,−η′, k) = GF (η, η
′, k). (A.13)

Finally, we note that our cutting rules are valid to leading order in η0 → 0, where η0
is the time when operators are inserted. The order in η0 in which we are interested
is even for diagrams that are even under spatial parity, and odd for odd diagrams.

Let us start with deriving the result in Eq. (5.132). We consider a general scale
invariant Hamiltonian interaction of the form 1

Hint =

∫
x

1

(n+ 2L)!
F (∂i)η

ndϕn+2L, (A.14)

where nd is the number of spatial derivatives. In the following, we shorten the
notation for F (∂i), simply to F , since in Fourier space it is just a multiplicative
factor. Now let us write out the cut diagram from Eq. (5.132), where we leave the
integrals over the loop momenta implicit:

∫ ∞

−∞

dη

η4
Fηnd

(
m∏
i=1

G+(η0, η, ki)

)(
n∏

i=m+1

GF (η0, η, ki)

)(
L∏
i=1

GF (η, η, yi)

)
. (A.15)

1In order for the interaction Hamiltonian to be IR-finite, we eventually need additional factors
of η2n, coming from time derivatives. Crucially, however, this factor is invariant under η → −η.
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Next, we transform η → −η. For brevity of notation, we will not write out
the loop propagators because, being invariant under time reversal, they are just
spectators in the derivation. We have

∫ ∞

−∞

dη

η4
Fηnd(−1)nd

(
m∏
i=1

G+(η0,−η, ki)
)(

n∏
i=m+1

GF (η0,−η, ki)
)

(A.16)

=

∫ ∞

−∞

dη

η4
Fηnd(−1)nd

(
m∏
i=1

G+(−η0, η, ki)∗
)(

n∏
i=m+1

GF (−η0, η, ki)
)

=

∫ ∞

−∞

dη

η4
Fηnd

(
m∏
i=1

G+(η0, η, ki)
∗
)(

n∏
i=m+1

GF (η0, η, ki)

)
,

where from the first to the second line we used the propagator identities under time
reversal, and from the second to the last line we used that at the order in η0 we are
interested in, the correlator is even (odd) in η0 exactly when we have an even (odd)
number of spatial derivatives. We have therefore shown that to leading order we
can use G+ or (G+)∗ for the cut legs interchangeably. If we now average these two
contributions, we can write the cut diagram as

1

2

∫ ∞

−∞

dη

η4
Fηnd

(
m∏
i=1

G+(η0, η, ki) +
m∏
i=1

G+(η0, η, ki)
∗
)

n∏
i=m+1

GF (η0, η, ki) (A.17)

=
1

2

∫ ∞

−∞

dη

η4
Fηnd

(
m∏
i=1

GF (η0, η, ki) +
m∏
i=1

GF (η0, η, ki)
∗
)

n∏
i=m+1

GF (η0, η, ki)

=
1

2

∫ ∞

−∞

dη

η4
Fηnd

( m∏
i=1

GF (η0, η, ki) +

+(−1)m
m∏
i=1

GF (η0, η,−ki)
) n∏
i=m+1

GF (η0, η, ki)

=
1

2

[
Bc
n({ki}ni=1) + (−1)mBc

n({−ki}mi=1, {ki}ni=m+1))
]
,

where from the first to the second line we used the propagator identity that G+ +

(G+)∗ = GF +G∗
F , which generalises to products, and from the third to the fourth

line we used the Hermitian analyticity property. This concludes the derivation for
the contact diagram case Eq. (5.126). Next, we can do a very similar derivation for
the exchange diagram.

Again, we do not explicitly write out any temporal derivatives, since any time
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derivative will not alter the time-reversal properties of the mode functions. We
therefore consider the two Hamiltonian interactions

Hint =

∫
x

1

(m+ L+ 1)!
F1(∂i)η

nd1ϕm+L+1 +
1

(n−m+ L+ 1)!
F2(∂i)η

nd2ϕn−m+L+1.

(A.18)

The spatial derivatives again only act as an external factor and we can omit writing
them out explicitly. Next, we want to write the cut exchange diagram in Eq. (5.127)
in terms of propagators. Similarly to the contact case, we leave the loop integrals
implicit, the cut diagram reads

∫ ∞

−∞

dη

η4
dη′

η′4
F1F2η

nd1η′nd2

m∏
i=1

G+(η0, η, ki)
n∏

i=m+1

GF (η0, η
′, ki)

L+1∏
i=1

GF (η, η
′, yi).

Now let us flip both η and η′ and directly apply the propagator identities,∫ ∞

−∞

dη

η4
dη′

η′4
F1F2(−1)nd1

+nd2ηnd1η′nd2

m∏
i=1

G+(−η0, η, ki)∗ × (A.19)

×
n∏

i=m+1

GF (−η0, η′, ki)
L+1∏
i=1

GF (η, η
′, yi)

=

∫ ∞

−∞

dη

η4
dη′

η′4
F1F2η

nd1η′nd2

m∏
i=1

G+(η0, η, ki)
∗

n∏
i=m+1

GF (η0, η
′, ki)

L+1∏
i=1

GF (η, η
′, yi),

where again we used that the exchange diagram at leading order in η0 is even (odd)
if the total number of derivatives is even (odd). Therefore using the same procedure
of averaging the G+ and (G+)∗ terms, using propagator identities and Hermitian
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analyticity we get

=

∫ ∞

−∞

dη

η4
dη′

η′4
F1F2η

nd1η′nd2

(
m∏
i=1

G+(η0, η, ki) +
m∏
i=1

G+(η0, η, ki)
∗
)

× (A.20)

×
n∏

i=m+1

GF (η0, η
′, ki)

L+1∏
i=1

GF (η, η
′, yi)

=

∫ ∞

−∞

dη

η4
dη′

η′4
F1F2η

nd1η′nd2

(
m∏
i=1

GF (η0, η, ki) +
m∏
i=1

GF (η0, η, ki)
∗
)

×

×
n∏

i=m+1

GF (η0, η
′, ki)

L+1∏
i=1

GF (η, η
′, yi)

=

∫ ∞

−∞

dη

η4
dη′

η′4
F1F2η

nd1η′nd2

(
m∏
i=1

GF (η0, η, ki) + (−1)m
m∏
i=1

GF (η0, η,−ki)
)

×

×
n∏

i=m+1

GF (η0, η
′, ki)

L+1∏
i=1

GF (η, η
′, yi)

=
1

2

[
Bex
n ({ki}ni=1) + (−1)mBex

n ({−ki}mi=1, {ki}ni=m+1))
]
,

where these last steps work in the same way as for the contact diagram.
Finally let us come to the last remaining identity, namely the internal cut,

Eq. (5.134). We again consider the interactions in Eq. (A.18). We note here that
even if we have an interaction that involved different fields, the only propagator
identity we will need is that for the mode functions f i and f j associated with the
fields σi and σj we can write

G+
i,j(η, η

′, y) =
f iy(η)fy(η0)

∗fy(η0)f jy (η
′)∗

fy(η0)∗fy(η0)
=
G+
i (η0, η, y)

∗G+
j (η0, η

′, y)

P (y, η0)
, (A.21)

where P (y, η0) is the power spectrum of ϕ, and

G+
i,j(η, η

′, y) = ⟨σi(η)σj(η′)⟩ , G+
i (η, η

′, y) = ⟨σi(η)ϕ(η′)⟩ . (A.22)

Let us return to the case where σi = ϕ, since the derivation is the same. The diagram
with L cut loops reads

∫ ∞

−∞

dη

η4
dη′

η′4
F1F2η

nd1η′nd2

m∏
i=1

GF (η0, η, ki)
∗
n∏

i=m+1

GF (η0, η
′, ki)

L+1∏
i=1

G+(η, η′, yi).(A.23)
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Now using Eq. (A.21) and putting it back into the cut diagram, we see that the integ-
ral over η and η′ are now independent. Omitting an overall factor of

[∏L+1
i P (yi)

]
we get

∫ ∞

−∞

dη

η4
F1η

nd1

m∏
i=1

GF (η0, η, ki)
∗
L+1∏
i=1

G+(η0, η, y)
∗× (A.24)

×
∫ ∞

−∞

dη′

η′4
F2η

′nd2

n∏
i=m+1

GF (η0, η
′, ki)

L+1∏
i=1

G+(η0, η
′, y)

= (−1)m+L+1

∫ ∞

−∞

dη

η4
F1η

nd1

m∏
i=1

GF (η0, η,−ki)
L+1∏
i=1

G+(η0, η,−yi)×

×
∫ ∞

−∞

dη′

η′4
F2η

′nd2

n∏
i=m+1

GF (η0, η
′, ki)

L+1∏
i=1

G+(η0, η
′, yi)

= −1

2

[
Bc
m+L+1({ki}mi=1, {yi}L+1

i=1 ) + (−1)L+1Bc
m+L+1({ki}mi=1, {−yi}L+1

i=1 )
]
×

× 1

2

[
Bc
n−m+L+1({ki}n+mi=m+1, {yi}L+1

i=1 ) + (−1)L+1Bc
n−m+L+1({ki}ni=m+1, {−yi}L+1

i=1 )
]
,

where we have used Eq. (5.136) to flip signs in the contact diagram. Finally, if we
define

Bc,cut
n,L ({Ei}ni=1, {yi}Li=1) = (A.25)

=
1

2

[
Bc
n+L({Ei}ni=1, {yi}Li=1) + (−1)LBc

n+L({Ei}ni=1, {−yi}Li=1))
]
,

and reintroduce the power spectrum factors, we can write Eq. (5.134) as

−
Bc,cut
m,L+1({Ei}mi=1, {yi}L+1

i=1 )B
c,cut
n−m,L+1({Ei}ni=m+1, {yi}L+1

i=1 )∏L+1
i=1 P (yi)

, (A.26)

Here Bc,cut
m,L+1 refers of to one interaction Hamiltonian and Bc,cut

n−m,L+1 to the other.

Minkowski The proof for the same relations in flat space is roughly the same. We
notice that the mode functions for any mass in flat space enjoy the same identity as
in the dS case, namely

fE(t) =
e−iEt√
2E

⇒ fE(t) = fE(−t)∗ . (A.27)
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This means, that if we do not consider temporal derivatives the proofs from above
follow through immediately after we set t0 = 0 without loss of generality.

Finally, when considering time derivatives in Minkowski, the rules derived above
also hold. While derivatives of the mode functions do not satisfy Eq. (A.27) any
longer, pairs of derivatives do. Since in flat space, diagrams with an odd number of
time derivatives vanish, the results are true for any Hamiltonian.
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B
Appendix: The One-Loop
Bispectrum - Theory

B.1 Details for Dark Matter

B.1.1 EdS Green’s Function

In this section we give some details about the growing-mode EdS Green’s function
for the overdensity. The equation of motion for δ can be written as

a2δ′′(k⃗, a) +

(
2 +

aH′

H

)
aδ′(k⃗, a)− 3

2
Ωm(a)δ(k⃗, a) = Sδ(k⃗, a) , (B.1)

where Sδ(k⃗, a) is the non-linear source term. For the n-th order perturbation, we
take δ(n)(k⃗, a) = D(a)nδ̃(n)(k⃗), where D(a) is the linear growth factor, which solves
Eq. (6.23). Plugging this δ(n)(k⃗, a) into Eq. (B.1) and using Eq. (6.23) to replace
D′′(a), we obtain

1

2
(n− 1)D(a)n

(
3Ωm(a) + 2n

a2D′(a)2

D(a)2

)
δ̃(n)(k⃗) = S

(n)
δ (k⃗, a) . (B.2)

Now we use that in SPT we have two different time dependences for the source
terms, which we write as S̃(n)

δ,1 (k⃗) and S̃(n)
δ,2 (k⃗), giving

S
(n)
δ (k⃗, a) = D(a)n

(
Ωm(a)S̃

(n)
δ,1 (k⃗) +

(
aD′(a)

D(a)

)2

S̃
(n)
δ,2 (k⃗)

)
, (B.3)

which can be seen from Eq. (6.20). We see that all terms in Eqs. (B.2) and (B.3)
have the same time dependence, proportional to DnΩm, if we assume the standard
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EdS condition Eq. (6.28), after which we obtain

δ̃(n)(k⃗) =
2

(n− 1)(3 + 2n)

(
S
(n)
δ,1 (k⃗) + S

(n)
δ,2 (k⃗)

)
. (B.4)

The numerical factor 2/(n − 1)(3 + 2n) comes from the EdS approximation of the
Green’s function.

We can see how this relates to the actual Green’s function of the linear equations
in the EdS universe, where Ωm = 1 and aH′/H = −1/2. In that case, the linear
equation of motion is

a2δ′′ +
3

2
aδ′ − 3

2
δ = 0 , (B.5)

which has two solutions, δ(a) = a and δ(a) = a−3/2. These can be combined to form
the Green’s function G(a, a1) satisfying the boundary conditions G(a1, a1) = 0 and
∂aG(a, a1)|a=a1 = a−2

1

G(a, a1) =
2

5 a1

(
a

a1
− a−3/2

a
−3/2
1

)
θH(a− a1) , (B.6)

where θH is the Heaviside step function. The connection with Eq. (B.4) is that
applying the above to a source term ∝ an, we have∫ a

0

da1G(a, a1) a
n
1 =

2 an

(n− 1)(3 + 2n)
, (B.7)

which gives exactly the same factor that we found.

B.1.2 Counterterm Expressions in Real Space

The response terms are proportional only to powers of the linear field, and spe-
cifically we can write

δ̃
(1)
ct (k⃗) = F ct

1 (k⃗)δ̃
(1)

k⃗
, and δ̃

(2)
ct (k⃗) =

∫ k⃗

q⃗1,q⃗2

F ct
2 (q⃗1, q⃗2)δ̃

(1)
q⃗1
δ̃
(1)
q⃗2

, (B.8)

where definitions of the tilde fields are given in Eq. (6.43). We group all of the terms
that are only proportional to the stochastic fields in δ(1)ϵ (k⃗, a) and terms that contain
one stochastic field and one long-wavelength field (semi-stochastic) in δ(2)ϵ (k⃗, a).
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The response counterterms enter in

P ct
13(k) ≡ 2F ct

1 (k⃗)P11(k) ,

Bct
411(k1, k2, k3) ≡ 2P11(k1)P11(k2)F

ct
2 (−k⃗1,−k⃗2) + 2 perms. ,

B
(II),ct
321 (k1, k2, k3) ≡ 2P11(k1)P11(k2)F

ct
1 (k⃗1)F2(−k⃗1,−k⃗2) + 5 perms. ,

(B.9)

so that the combinations

P13(k) + P ct
13(k) ,

B411(k1, k2, k3) +Bct
411(k1, k2, k3) ,

B
(II)
321 (k1, k2, k3) +B

(II),ct
321 (k1, k2, k3) ,

(B.10)

are renormalized. Furthermore, for the stochastic fields, we define

⟨δ̃(1)ϵ (k⃗)δ̃(1)ϵ (k⃗′)⟩ ≡ (2π)3δD(k⃗ + k⃗′)P ϵ
22(k) ,

⟨δ̃(1)ϵ (k⃗1)δ̃
(1)
ϵ (k⃗2)δ̃

(1)
ϵ (k⃗3)⟩ ≡ (2π)3δD(k⃗1 + k⃗2 + k⃗3)B

ϵ
222(k1, k2, k3) ,

⟨δ̃(1)(k⃗1)δ̃(1)ϵ (k⃗2)δ̃
(2)
ϵ (k⃗3)⟩+ 5 perms. ≡ (2π)3δD(k⃗1 + k⃗2 + k⃗3)B

(I),ϵ
321 (k1, k2, k3) ,

(B.11)

so that the combinations

P22(k) + P ϵ
22(k) ,

B222(k1, k2, k3) +Bϵ
222(k1, k2, k3) ,

B
(I)
321(k1, k2, k3) +B

(I),ϵ
321 (k1, k2, k3) ,

(B.12)

are renormalized.

B.1.3 Response Terms

Here we show some details for the results given in Sec. 6.4.1 for the response
terms. First we write the response stress tensor τ ijct as a sum of first- and second-
order terms

τ ijct (a) = Ωm(a)
(
τ̂ ijct,(1)(a) + τ̂ ijct,(2)(a)

)
, (B.13)

305



Chapter B: Appendix: The One-Loop Bispectrum - Theory

where, in order to cancel the UV terms coming from the SPT loop expansion, the
time dependence must be

τ̂ ijct,(1)(a) =
a2H(a)2ρ̄(a)D(a)3

kNL
2 τ̃ ijct,(1) , and τ̂ ijct,(2)(a) =

a2H(a)2ρ̄(a)D(a)4

kNL
2 τ̃ ijct,(2) ,

(B.14)
where τ̃ ijct,(1) and τ̃ ijct,(2) are time independent (the factor of Ωm(a) can be seen from
App. B.1.1). We suppress spatial dependence of all fields in this section to remove
clutter.

Being careful to keep track of the time dependence D(a)n and the EdS Green’s
functions (which are simply numerical factors coming from the linear equations and
the time dependence D(a)n, see App. B.1.1), we have

δ
(1)
ct (a) =

1

9a2H2ρ̄
∂i∂j τ̂

ij
ct,(1)(a) , π

(1)
S,ct(a) =

−f
3aH

∂i∂j τ̂
ij
ct,(1)(a) , (B.15)

πiV,ct,(1)(a) =
−2f

7aH
ϵijk∂j∂lτ̂

kl
ct,(1)(a) , and πict,(1)(a) = − f

3aH

∂i∂j∂k
∂2

τ̂ jkct,(1)(a)

where, as in Sec. 6.4.1, we assume that ∂i∂j∂kτ̃ jkct,(1) = ∂2∂j τ̃
ij
ct,(1). Note that in the

above, and in all instances, we solve for πS and πiV directly through the equations
of motion Eq. (6.19), and then we form πi using the definition Eq. (6.18). 1

The second-order expressions are

δ
(2)
ct (a) =

2

33a2H2ρ̄
∂i∂j τ̂

ij
ct,(2)(a)+

2

33a2H2ρ̄f
∂i∂j

[
4M2

Pla
−2

(
∂iΦ

(1)(a)∂jΦ
(1)
ct (a)

−1

2
δij

(
∂kΦ

(1)(a)∂kΦ
(1)
ct (a)

))
+

2

ρ̄
πi(1)(a)π

j
ct,(1)(a)

]
,

π
(2)
S,ct(a) = −4aρ̄Hfδ

(2)
ct (a) , (B.17)

πiV,ct,(2)(a) =
−2

9aHf
ϵijk∂j∂l

[
2M2

Pla
−2
(
∂kΦ

(1)(a)∂lΦ
(1)
ct (a) + ∂kΦ

(1)
ct (a)∂lΦ

(1)(a)
)

+
1

ρ̄

(
πk(1)(a)π

l
ct,(1)(a) + πkct,(1)(a)π

l
(1)(a)

)
+ τ klct,(2)(a)

]
,

1A useful manipulation to remember is that for any vector V i satisfying V i = ϵijk∂j∂lAkl, we
have

ϵijk
∂j
∂2

V k =
∂i∂j∂k
∂2

Ajk − ∂jAij . (B.16)
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and some extra terms that we need to plug in to the above are

∂iΦ
(1)(a) =

3

2
Ωma

2H2 ∂i
∂2
δ(1)(a) , πi(1)(a) = −aHρ̄f ∂i

∂2
δ(1)(a), (B.18)

∂iΦ
(1)
ct (a) =

Ωm

6ρ̄

∂i∂j∂k
∂2

τ̂ jkct,(1)(a) .

We then factorize the time dependence by defining π̃(1)
S,ct, π̃

(2)
S,ct, π̃

i
V,ct,(1), and π̃iV,ct,(2)

in the same way as π̃ict,(1) and π̃ict,(2) in Eq. (6.45), which leads to the linear solutions

π̃
(1)
S,ct =

1

3kNL
2∂i∂j τ̃

ij
ct,(1) , and π̃iV,ct,(1) = 0 , (B.19)

along with δ̃
(1)
ct and π̃ict,(1) given in Eq. (6.47). The second order expressions are

π̃
(2)
S,ct = 4δ̃

(2)
ct and

π̃iV,ct,(2) =
1

9kNL
2 ϵ
ijk∂j∂l

[
∂kδ̃

(1)

∂2
∂l∂m∂n
∂2

τ̃mnct,(1) +
∂lδ̃

(1)

∂2
∂k∂m∂n
∂2

τ̃mnct,(1) + 2τ̃ klct,(2)

]
,

(B.20)

with δ̃(2)ct and π̃ict,(2) given in Eqs. (6.48) and (6.49) respectively.

B.1.4 Stochastic Terms

Here we show some details for the results given in Sec. 6.4.1 for the stochastic
terms. First we write the stochastic stress tensor τ ijϵ as a sum of first- and second-
order terms

τ ijϵ (a) = Ωm(a)
(
τ̂ ijϵ,(1)(a) + τ̂ ijϵ,(2)(a)

)
, (B.21)

where, in order to cancel the UV terms coming from the SPT loop expansion the
time dependence must be

τ̂ ijϵ,(1)(a) =
a2H(a)2ρ̄(a)D(a)2

kNL
2 τ̃ ijϵ,(1) , and τ̂ ijϵ,(2)(a) =

a2H(a)2ρ̄(a)D(a)3

kNL
2 τ̃ ijϵ,(2) ,

(B.22)
where τ̃ ijϵ,(1) and τ̃ ijϵ,(2) are time independent. We suppress spatial dependence of all
fields in this section to remove clutter.

Being careful to keep track of the time dependence D(a)n and the EdS Green’s
functions (which are simply numerical factors coming from the linear equations and
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the time dependence D(a)n, see App. B.1.1), we have

δ(1)ϵ (a) =
2

7a2H2ρ̄
∂i∂j τ̂

ij
ϵ,(1)(a) , π

(1)
S,ϵ(a) =

−4f

7aH
∂i∂j τ̂

ij
ϵ,(1)(a) ,

π
i(1)
V,ϵ (a) =

−2f

5aH
ϵijk∂j∂lτ̂

kl
ϵ,(1)(a) ,

πiϵ,(1)(a) = − f

aH

[
4

7

∂i∂j∂k
∂2

τ̂ jkϵ,(1)(a)−
2

5

(
∂i∂j∂k
∂2

τ̂ jkϵ,(1)(a)− ∂j τ̂
ij
ϵ,(1)(a)

)]
.

(B.23)

The second-order expressions are

δ(2)ϵ (a) =
1

9a2H2ρ̄
∂i∂j τ̂

ij
ϵ,(2)(a) +

1

9a2H2ρ̄f
∂i∂j

[
4M2

Pla
−2

(
∂iΦ

(1)(a)∂jΦ
(1)
ϵ (a)

−1

2
δij
(
∂kΦ

(1)(a)∂kΦ
(1)
ϵ (a)

))
+

2

ρ̄
πi(1)(a)π

j
ϵ,(1)(a)

]
,

π
(2)
S,ϵ(a) = −3aρ̄Hfδ(2)ϵ (a) , (B.24)

πiV,ϵ,(2)(a) =
−2

7aHf
ϵijk∂j∂l

[
2M2

Pla
−2
(
∂kΦ

(1)(a)∂lΦ
(1)
ϵ (a) + ∂kΦ

(1)
ϵ (a)∂lΦ

(1)(a)
)

+
1

ρ̄

(
πk(1)(a)π

l
ϵ,(1)(a) + πkϵ,(1)(a)π

l
(1)(a)

)
+ τ klϵ,(2)(a)

]
.

Some extra terms that we need to plug in to the above are given in Eq. (B.18) and

∂iΦ
(1)
ϵ (a) =

3Ωm

7ρ̄

∂i∂j∂k
∂2

τ̂ jkϵ,(1)(a) . (B.25)

We then factorize the time dependence by defining π̃(1)
S,ϵ, π̃

(2)
S,ϵ, π̃

i
V,ϵ,(1), and π̃iV,ϵ,(2) in

the same way as π̃iϵ,(1) and π̃iϵ,(2) in Eq. (6.45), which leads to the linear solutions

π̃
(1)
S,ϵ =

4

7kNL
2∂i∂j τ̃

ij
(1) , and π̃iV,ϵ,(1) =

2

5kNL
2 ϵ
ijk∂j∂lτ̃

kl
ϵ,(1) , (B.26)
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along with δ̃(1)ϵ and π̃iϵ,(1) given in Eq. (6.50). The second order are π̃(2)
S,ϵ = 3δ̃

(2)
ϵ and

π̃iV,ϵ,(2) =
2

7kNL
2 ϵ
ijk∂j∂l

[
∂kδ̃

(1)

∂2
∂l∂m∂n
∂2

τ̃mnϵ,(1) +
∂lδ̃

(1)

∂2
∂k∂m∂n
∂2

τ̃mnϵ,(1) + τ̃ klϵ,(2)

]
(B.27)

− 4

35kNL
2 ϵ
ijk∂j∂l

[
∂kδ̃

(1)

∂2

(
∂l∂m∂n
∂2

τ̃mnϵ,(1) − ∂mτ̃
lm
ϵ,(1)

)
+
∂lδ̃

(1)

∂2

(
∂k∂m∂n
∂2

τ̃mnϵ,(1) − ∂mτ̃
km
ϵ,(1)

)]
,

with δ̃(2)ϵ and π̃iϵ,(2) given in Eqs. (6.51) and (6.52) respectively.

B.1.5 Stochastic Flow Terms

Here we derive the expression given in Eq. (6.55) for the stochastic counterterms.
The only subtlety is in the way that the flow term enters, and here we sharpen and
clarify the expressions in [129, 131]. Let us start with two stochastic fields eij1 (x⃗, a)
and eijkl3 (x⃗, a) and write the general non-local in time expression

τ ijϵ (x⃗, a) =

∫ a da′

a′

(
κ1(a, a

′)eij1 (x⃗fl(x⃗, a, a
′), a′) (B.28)

+κ3(a, a
′)eijkl3 (x⃗fl(x⃗, a, a

′), a′)
∂k∂lδ(x⃗fl(x⃗, a, a

′), a′)

∂2

)
,

for some non-local kernels κ1 and κ3. Next, we expand this expression up to second
order to get

τ ijϵ (x⃗, a) ≈
∫ a da′

a′

(
κ1(a, a

′)

[
eij1,(1)(x⃗, a

′) +
∂kδ

(1)(x⃗, a)

∂2
∂ke

ij
1,(1)(x⃗, a

′)

(
1− D(a′)

D(a)

)]

+ κ1(a, a
′)eij1,(2)(x⃗, a

′) + κ3(a, a
′)eijkl3,(1)(x⃗, a

′)
∂k∂lδ

(1)(x⃗, a′)

∂2

)
.

(B.29)

This expression for τ ijϵ (x⃗, a) is a Galilean scalar as long as both eij1 (x⃗, a) and eijkl3 (x⃗, a)

are Galilean scalars, which at the order that we work, means

eij1,(2)(x⃗, a
′) = ∂ke

ij
1,(1)(x⃗, a

′)
∂kδ

(1)(x⃗, a′)

∂2
+ eijkl2,(1)(x⃗, a

′)
∂k∂lδ

(1)(x⃗, a′)

∂2
, (B.30)
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for some new field eijkl2,(1). The first term above is fixed by the assumption that eij1 is
a Galilean scalar, while the second term is the most general second-order term that
can be included. We assume that eij1,(1) contains all of the purely stochastic terms, so
we do not include any of those in the second-order expression. Plugging Eq. (B.30)
into Eq. (B.29), we get

τ ijϵ (x⃗, a) ≈
∫ a da′

a′

(
κ1(a, a

′)

[
eij1,(1)(x⃗, a

′) +
∂kδ

(1)(x⃗, a)

∂2
∂ke

ij
1,(1)(x⃗, a

′)

]
(B.31)

+
[
κ1(a, a

′)eijkl2,(1)(x⃗, a
′) + κ3(a, a

′)eijkl3,(1)(x⃗, a
′)
] ∂k∂lδ(1)(x⃗, a′)

∂2

)
,

where there is now crucially only one flow term, with ∂kδ
(1)/∂2 evaluated at the

external time a. 2 We finally get the form Eq. (6.55) by setting

ϵij1 (x⃗) =
kNL

2

Ωm(a)H(a)2ρ̄(a)D(a)2

∫ a da′

a′
κ1(a, a

′)eij1,(1)(x⃗, a
′) , (B.32)

ϵijkl3 (x⃗) =
kNL

2

Ωm(a)H(a)2ρ̄(a)D(a)2

∫ a da′

a′
D(a′)

D(a)

[
κ1(a, a

′)eijkl2,(1)(x⃗, a
′) (B.33)

+ κ3(a, a
′)eijkl3,(1)(x⃗, a

′)

]
,

where above, to match Eq. (6.55), we have assumed EdS time dependence. So we
see how the final ϵijkl3 is made up of contributions from the originally included eijkl3

and the second order piece eijkl2,(1), both integrated over past times. Since they are
both unknown non-linear stochastic fields, we combine them into the single field
ϵijkl3 . As always, these integrals can be formally done to define the final coefficients
used in Sec. 6.4.2.

B.1.6 UV Matching in Real Space

The UV limits of the loops that are renormalized by response terms are

P13(k) → − 61

630π2
k2P11(k)

∫
dq P11(q) , (B.34)

2As a piece of intuition, one could take the quadratic bias δ2 and inspect the resulting flow
terms. One sees that there is only one free coefficient for the flow terms. The second flow term
that would naively come from integration over time has a fixed coefficient that cancels the IR limit
of the third order expression of δ2. This matches what we find here because one can think of a
stochastic term as arising from the limit of δ(x⃗)2 where each δ(x⃗) is taken to be as short wavelength
as possible.
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B411(k1, k2, k3) → − P11(k1)P11(k2)

1358280π2k21k
2
2

[
12409k63 + 20085k43(k

2
1 + k22) (B.35)

+k23(−44518k41 + 76684k21k
2
2 − 44518k42)

+12024(k21 − k22)
2(k21 + k22)

]∫
dq P11(q) + 2 perms. ,

and

B
(II)
321 (k1, k2, k3) → P11(k2)F2(k⃗1, k⃗2)

(−61k21P11(k1)

630π2

∫
dq P11(q)

)
+ 5 perms. .

(B.36)

An explicit solution for the EFT coefficients that absorbs the UV contributions
above is

c3 = −61kNL
2

140π2

∫
dqP11(q) , c4 = −12409kNL

2

11760π2

∫
dq P11(q) ,

c5 = −6997kNL
2

6860π2

∫
dq P11(q) , c7 =

63149kNL
2

82320π2

∫
dq P11(q) ,

(B.37)

with all of the other coefficients zero (they are degenerate for these observables).
The UV limits of the loops that are renormalized by stochastic terms are

P22(k) →
9

196π2
k4
∫
dq
P11(q)

2

q2
, (B.38)

B
(I)
321(k1, k2, k3) →

P11(k1)

35280π2k21

[
1060k61 − 2337k41(k

2
2 + k23)− 217(k22 − k23)

2(k22 + k23)

+ 2k21(747k
4
2 + 512k22k

2
3 + 747k43)

]∫
dq
P11(q)

2

q2
+ 2 cyclic perms. .

(B.39)

and

B222(k1, k2, k3) → − 15

2401π2

[
k61 − k41(k

2
2 + k23) + (k22 − k23)

2(k22 + k23) (B.40)

−k21
(
k42 −

k22k
2
3

30
+ k43

)]∫
dq
P11(q)

3

q4
.
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If we write the final forms of the stochastic counterterms as

P ϵ
22(k) =

cStDM,1

n̄DM

k4

kNL
4 , (B.41)

B
(I),ϵ
321 (k1, k2, k3) =

P11(k1)

n̄DM kNL
4

[
(B.42)

cStDM,1

−7k61 − 14(k22 − k23)
2(k22 + k23) + k21(21k

4
2 − 2k22k

2
3 + 21k43)

72k21
+cStDM,2(k1 − k2 − k3)(k1 − k2 + k3)(k1 + k2 − k3)(k1 + k2 + k3) + cStDM,3k

2
2k

2
3

+cStDM,4

−2k21(k
2
2 − k23)

2 + (k41 + (k22 − k23)
2)(k22 + k23)

k21
+ cStDM,5(k

2
1 − k22 − k23)

2

−cStDM,6

(−k21 + k22 + k23)(k
2
1 − k22 + k23)(k

2
1 + k22 − k23)

k21

]
+ 2 cyclic perms. ,

and

Bϵ
222(k1, k2, k3) = (B.43)

=
1

n̄2
DM kNL

6

(
c
(222)
DM,1k

2
1k

2
2k

2
3 + c

(222)
DM,2(k

6
1 + k62 + k63 − (k41k

2
2 + k21k

4
2 + 2 perms.))

)
,

then an explicit solution to the UV matching is

cStDM,1 = −9 n̄DM kNL
4

196π2

∫
dq
P11(q)

2

q2
, cStDM,4 =

683 n̄DM kNL
4

70560π2

∫
dq
P11(q)

2

q2
,

cStDM,5 = −389 n̄DM kNL
4

17640π2

∫
dq
P11(q)

2

q2
, cStDM,6 = −293 n̄DM kNL

4

23520π2

∫
dq
P11(q)

2

q2
,

(B.44)

and

c
(222)
DM,1 =

n̄2
DMkNL

6

4802π2

∫
dq
P11(q)

3

q4
, c

(222)
DM,2 =

15 n̄2
DMkNL

6

2401π2

∫
dq
P11(q)

3

q4
, (B.45)

with other coefficients zero (they are degenerate for these observables).
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B.1.7 Counterterm Expressions in Redshift Space

The response terms are proportional only to powers of the linear field, and spe-
cifically we can write

δ̃
(1)
r,ct(k⃗, ẑ) = F r,ct

1 (k⃗; ẑ)δ̃
(1)

k⃗
, and δ̃

(2)
r,ct(k⃗, ẑ) =

∫ k⃗

q⃗1,q⃗2

F r,ct
2 (q⃗1, q⃗2; ẑ)δ̃

(1)
q⃗1
δ̃
(1)
q⃗2

. (B.46)

where definitions of the tilde fields are given in Eq. (6.88). We group all of the
terms that are only proportional to the stochastic fields in δ

(1)
r,ϵ (k⃗, ẑ, a) and terms

that contain one stochastic field and one long-wavelength field (semi-stochastic) in
δ
(2)
r,ϵ (k⃗, ẑ, a). The response counterterms enter in

P r,ct
13 (k, k̂ · ẑ) ≡ 2F r

1 (k⃗; ẑ)F
r,ct
1 (−k⃗; ẑ)P11(k) , (B.47)

Br,ct
411 ≡ 2P11(k1)P11(k2)F

r
1 (k⃗1; ẑ)F

r
1 (k⃗2; ẑ)F

r,ct
2 (−k⃗1,−k⃗2; ẑ) + 2 perms. ,

B
r,(II),ct
321 ≡ 2P11(k1)P11(k2)F

r,ct
1 (k⃗1; ẑ)F

r
1 (k⃗2; ẑ)F

r
2 (−k⃗1,−k⃗2; ẑ) + 5 perms. ,

(we have suppressed the argument (k1, k2, k3, k̂1 · ẑ, k̂2 · ẑ) of the bispectra terms to
remove clutter) so that the combinations

P r
13(k, k̂ · ẑ) + P r,ct

13 (k, k̂ · ẑ) ,
Br

411(k1, k2, k3, k̂1 · ẑ, k̂2 · ẑ) +Br,ct
411(k1, k2, k3, k̂1 · ẑ, k̂2 · ẑ) ,

B
r,(II)
321 (k1, k2, k3, k̂1 · ẑ, k̂2 · ẑ) +B

r,(II),ct
321 (k1, k2, k3, k̂1 · ẑ, k̂2 · ẑ) ,

(B.48)

are renormalized. Furthermore, for the stochastic fields, we define

⟨δ̃(1)r,ϵ (k⃗, ẑ)δ̃
(1)
r,ϵ (k⃗

′, ẑ)⟩ ≡ (2π)3δD(k⃗ + k⃗′)P r,ϵ
22 (k, k̂ · ẑ) , (B.49)

⟨δ̃(1)r,ϵ (k⃗1, ẑ)δ̃
(1)
r,ϵ (k⃗2, ẑ)δ̃

(1)
r,ϵ (k⃗3, ẑ)⟩ ≡ (2π)3δD(k⃗1 + k⃗2 + k⃗3)B

r,ϵ
222(k1, k2, k3, k̂1 · ẑ, k̂2 · ẑ),

⟨δ̃(1)r (k⃗1, ẑ)δ̃
(1)
r,ϵ (k⃗2, ẑ)δ̃

(2)
r,ϵ (k⃗3, ẑ)⟩+ 5 perms. ≡

≡ (2π)3δD(k⃗1 + k⃗2 + k⃗3)B
r,(I),ϵ
321 (k1, k2, k3, k̂1 · ẑ, k̂2 · ẑ),

so that the combinations

P r
22(k, k̂ · ẑ) + P r,ϵ

22 (k, k̂ · ẑ) ,
Br

222(k1, k2, k3, k̂1 · ẑ, k̂2 · ẑ) +Br,ϵ
222(k1, k2, k3, k̂1 · ẑ, k̂2 · ẑ) ,

B
r,(I)
321 (k1, k2, k3, k̂1 · ẑ, k̂2 · ẑ) +B

r,(I),ϵ
321 (k1, k2, k3, k̂1 · ẑ, k̂2 · ẑ) ,

(B.50)

are renormalized.
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The basis elements eF2
i used to define F r,ct

2 in Eq. (6.101) are related to the
functions that we use for biased tracers in App. B.4.2 by

eF2
1 =

1

9
eK2
1 +

8

99
eK2
2 − 19

693
eK2
3 − 16

693
eK2
4 − 1

33
eK2
5 (B.51)

+
2

99
eK2
7 +

2

3f
eK2
10 +

7

99f
eK2
11 − 2

3
eK2
12 +

8

99f
eK2
14 ,

eF2
2 =

10

231
eK2
3 +

4

231
eK2
4 +

16

33f
eK2
11 ,

eF2
3 =

1

33
eK2
2 +

2

231
eK2
3 − 2

231
eK2
4 +

1

33
eK2
5 +

2

9
eK2
6

− 2

99
eK2
7 +

4

9f
eK2
10 − 7

99f
eK2
11 − 4

9
eK2
12 +

29

99f
eK2
14 ,

eF2
4 =

2

33
eK2
3 +

16

33f
eK2
14 ,

eF2
n = eK2

n+3 for n = 5, . . . , 11 .

As discussed in more detail in Sec. 6.5.4, we note that the new non-locally-contributing
counterterm comes from the function eK2

7 , and so enters the expression for eF2
1 and

eF2
3 above. This means that in the basis that we have chosen, c3 and c5 contribute

the non-locally-contributing counterterm.
Next, we give the UV matching. The values for the dark-matter parameters c3,

c4, c5, and c7 are given in Eq. (B.37), and the rest are

cπvDM,1 = −(46 + 35f)kNL
2

210π2

∫
dqP11(q) , cπvDM,2 = −(11 + 15f)kNL

2

150π2

∫
dq P11(q) ,

cπvDM,3 = −83kNL
2

210π2

∫
dq P11(q) , cπvDM,4 = −172kNL

2

735π2

∫
dq P11(q) ,

cπvDM,5 = −2683kNL
2

5145π2

∫
dq P11(q) , cπvDM,6 = −(4626 + 1715f)kNL

2

25725π2

∫
dq P11(q) ,

cπvDM,7 = −269kNL
2

686π2

∫
dq P11(q) . (B.52)

B.2 Bispectrum Loop Integrals in Redshift Space

In this appendix, we give some information on how to evaluate the one-loop
bispectrum integrals in redshift space in Eq. (6.123). The most straightforward way
to evaluate the one-loop bispectrum integrals is by choosing a coordinate system
and integrating numerically. Because of rotation invariance, a generic bispectrum
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one-loop term B is given by

B(k1, k2, k3, µ1, µ2) =

∫
q⃗

K(k1, k2, k3, µ1, µ2, q, k̂1 · q̂, k̂2 · q̂, q̂ · ẑ) , (B.53)

where we have used momentum conservation k⃗3 = −k⃗1−k⃗2, and as always µi ≡ k̂i · ẑ.
One choice of coordinate system is

k⃗1 = k1 (0, 0, 1) ,

k⃗2 = k2

(
0,
√
1− y2, y

)
,

q⃗ = q
(
cos(β)

√
1− x2, sin(β)

√
1− x2, x

)
,

ẑ =

(
cos(ϕ)

√
1− µ2

1, sin(ϕ)
√
1− µ2

1, µ1

)
,

(B.54)

where y ≡ (k23 − k21 − k22)/(2k1k2), x ∈ [−1, 1], µ1 ∈ [−1, 1], ϕ ∈ [0, 2π), and
β ∈ [0, 2π). In this coordinate system the measure is simply∫

q⃗

=

∫
dq q2

(2π)3

∫ 1

−1

dx

∫ 2π

0

dβ . (B.55)

Next we move to a tensor reduction method that is better suited for analytic
integration. For this, we write a generic bispectrum one-loop term B as

B(k1, k2, k3, µ1, µ2) =
∑
a

fa(k1, k2, k3, µ1, µ2)

∫
q⃗

Ka(q, |⃗k1+ q⃗|, |⃗k2− q⃗|; q̂ · ẑ) , (B.56)

where the functions fa do not depend on the loop momentum q⃗ and the kernels
Ka depend on the scalar combinations q, |⃗k1 + q⃗|, |⃗k2 − q⃗| because of momentum
conservation, and on the projection along ẑ of the integrated momentum, q̂ · ẑ. For
reasons that we will comment on later, we choose to parameterize k̂1 · q̂ and k̂2 · q̂
by |⃗k1 + q⃗| and |⃗k2 − q⃗| respectively. The specific form in Eq. (B.56) is possible
because the dependence on µ1 and µ2 is polynomial, and we choose to include any
ki dependence that does not come through |⃗k1 + q⃗| or |⃗k2 − q⃗| in the functions fa to
reduce the number of terms in the sum. Note that both fa and Ka can depend on
the linear power spectrum P11. If there were no dependence on q̂ · ẑ, the integrals
over Ka could be done using analytic techniques, see for example [282, 206]. Luckily,
the dependence on q̂ · ẑ is very simple: the Ka are polynomials in q̂ · ẑ (which simply
comes from the redshift space expression Eq. (6.113)), of order up to six for B222,
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up to four for BI
321, and up to two for BII

321 and B411. Thus, each Ka can be written
as

Ka(q, |⃗k1 + q⃗|, |⃗k2 − q⃗|; q̂ · ẑ) =
∑
n

Ta,(n)(q, |⃗k1 + q⃗|, |⃗k2 − q⃗|)(q̂ · ẑ)n , (B.57)

where the sum over n is over a finite number of terms as stated above.
We would now like to write Eq. (B.57) in such a way that allows us to express

the integral over q⃗ as a sum over integrals of functions of (q, |⃗k1+ q⃗|, |⃗k2− q⃗|), which
is a form conducive to analytic integration. To do that, we first define

I i1...ina,(n) (k⃗1, k⃗2) =

∫
q⃗

Ta,(n)(q, |⃗k1 + q⃗|, |⃗k2 − q⃗|) q̂i1 · · · q̂in , (B.58)

and from Eq. (B.57), we are interested in computing ẑi1 . . . ẑinI i1...ina,(n) (k⃗1, k⃗2). Now,
because of rotation invariance, the function I i1...ina,(n) (k⃗1, k⃗2) can be generally written
as

I i1...ina,(n) (k⃗1, k⃗2) =
Nn∑
α=1

ca,(n),α(k1, k2, k̂1 · k̂2)T i1...ina,(n),α(k̂1, k̂2, δij) , (B.59)

where the functions ca,(n),α depend on scalar products of k⃗1 and k⃗2, and the functions
T i1...ina,(n),α are all of the Nn symmetric tensors with indices i1 . . . in made up of products
of k̂1, k̂2, and δij. To see how this has helped us, we go back to the expression that
we are interested in, which now becomes

ẑi1 . . . ẑinI i1...ina,(n) (k⃗1, k⃗2) =
∑
α

ca,(n),α(k1, k2, k̂1 · k̂2)ta,(n),α(µ1, µ2) , (B.60)

where we have defined ta,(n),α(µ1, µ2) ≡ ẑi1 . . . ẑinT i1...ina,(n),α(k̂1, k̂2, δij). This is now
exactly the form that we wanted: all of the loop integrals are contained in the
ca,(n),α functions, which is over functions of (q, |⃗k1 + q⃗|, |⃗k2 − q⃗|), and all of the ẑ
dependence has been transferred to the external momenta in the ta,(n),α functions.

Let us now determine the ca,(n),α functions explicitly. To do that, we contract
Eq. (B.59) with the Nn symmetric tensors T i1...ina,(n),β, giving∫

q⃗

Ta,(n)(q, |⃗k1 + q⃗|, |⃗k2 − q⃗|)T i1...ina,(n),β(k̂1, k̂2, δij)q̂
i1 · · · q̂in (B.61)

=
Nn∑
α=1

ca,(n),α(k1, k2, k̂1 · k̂2)T i1...ina,(n),α(k̂1, k̂2, δij)T
i1...in
a,(n),β(k̂1, k̂2, δij) ,
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which is a system of Nn equations that can be used to solve for the Nn functions
ca,(n),α; on the left-hand side, using

q̂·k̂1 =
1

2qk1

(
|⃗k1 + q⃗|2 − k21 − q2

)
, and q̂·k̂2 =

1

2qk2

(
k22 + q2 − |⃗k2 − q⃗|2

)
, (B.62)

we have our desired form of loop integrals over q⃗ of functions of (q, |⃗k1+ q⃗|, |⃗k2− q⃗|),
while on the right-hand side, we have the ca,(n),α functions multiplied by scalar
products between k̂1 and k̂2. In particular, defining the matrix

Mαβ
a,(n)(k̂1 · k̂2) ≡ T i1...ina,(n),α(k̂1, k̂2, δij)T

i1...in
a,(n),β(k̂1, k̂2, δij) , (B.63)

we have

ca,(n),α(k1, k2, k̂1 · k̂2) = (B.64)
Nn∑
β=1

[M−1
a,(n)]

αβ(k̂1 · k̂2)
∫
q⃗

Ta,(n)(q, |⃗k1 + q⃗|, |⃗k2 − q⃗|)T i1...ina,(n),β(k̂1, k̂2, δij)q̂
i1 · · · q̂in .

Thus, this solution for the ca,(n),α functions, plugged into Eq. (B.60), gives our final
result.

The above manipulations can also be presented in a slightly different way. Again,
we are interested in computing the right-hand side of Eq. (B.58) contracted with
ẑi1 · · · ẑin , which, using Eqs. (B.58) and (B.59), is given by∫

q⃗

Ta,(n)(q, |⃗k1+ q⃗|, |⃗k2− q⃗|) (q̂ · ẑ)n =
∑
α

ca,(n),α(k1, k2, k̂1 · k̂2)ta,(n),α(µ1, µ2) . (B.65)

Now, given the solution Eq. (B.64) for the ca,(n),α functions, we can rewrite this as∫
q⃗

Ta,(n)(q, |⃗k1 + q⃗|, |⃗k2 − q⃗|) (q̂ · ẑ)n =

∫
q⃗

Ta,(n)(q, |⃗k1 + q⃗|, |⃗k2 − q⃗|)× (B.66)

×
Nn∑
α=1

Nn∑
β=1

[M−1
a,(n)]

αβ(k̂1 · k̂2)T i1...ina,(n),β(k̂1, k̂2, δij)q̂
i1 · · · q̂inta,(n),α(µ1, µ2) ,

which implies that, under the integrals that we are interested in, we can simply
replace

(q̂ · ẑ)n →
Nn∑
α=1

Nn∑
β=1

[M−1
a,(n)]

αβ(k̂1 · k̂2)T i1...ina,(n),β(k̂1, k̂2, δij)q̂
i1 · · · q̂inta,(n),α(µ1, µ2) , (B.67)
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which again, using Eq. (B.62), is in the form that we want.
At this point, a number of comments are in order. First, the above form of the

loop integrals is well suited for situations where integrals over functions of (q, |⃗k1 +
q⃗|, |⃗k2 − q⃗|) can be done analytically, see for example [282, 206]. If this is not the
case, one can simply use an explicit coordinate system to perform the integrals, as
described above. Second, it turns out that for the bispectrum, it can be quite slow
to invert the matrix Mαβ

a,(n) for values of n greater than four (which is relevant in
particular for the B222 diagram).

Thus, in practice, it is sometimes easier to use the following more straightforward
way to arrive at the above result, again with an eye towards analytic integration.
We start with the form of the loop in Eq. (B.56), and using the above definitions,
we recall that we need to evaluate terms of the form∫

q⃗

Ta,(n)(q, |⃗k1 + q⃗|, |⃗k2 − q⃗|) (q̂ · ẑ)n , (B.68)

so we would like to find a replacement for (q̂ · ẑ)n in terms of q, |⃗k1+ q⃗|, and |⃗k2− q⃗|.
For this, we can simply use the coordinate system Eq. (B.54). Without loss of
generality we can take the first component of ẑ to be positive, and use µ2 = k̂2 · ẑ
to get

ẑ =

√−µ2
1 − µ2

2 − y2 + 2µ1µ2y + 1

1− y2
,
µ2 − µ1y√

1− y2
, µ1

 . (B.69)

To see why the sign of the first component of ẑ does not matter, consider Eq. (B.68)
and send ẑ1 → −ẑ1, where the subscript 1 denotes the first component. This can be
compensated by sending q̂1 → −q̂1, and since none of q, |⃗k1 + q⃗|, or |⃗k2 − q⃗| depend
on q̂1 for the parameterization Eq. (B.54), the integral is invariant. Dotting this
with q̂ from Eq. (B.54), we get

q̂ · ẑ = cos(β)
√
1− x2

√
−µ2

1 − µ2
2 − y2 + 2µ1µ2y + 1

1− y2
(B.70)

+
sin(β)

√
1− x2 (µ2 − µ1y)√

1− y2
+ µ1x .

Now, we raise this to the n-th power, and plug it into Eq. (B.68). The resulting
expression can be simplified by noting the following. First, |⃗k1+ q⃗| does not depend
on β, and |⃗k2 − q⃗| only depends on sin(β). Thus, in terms of β dependence, the
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integral in Eq. (B.68) is equal to a sum over terms of the form∫ 2π

0

dβf(sin(β)) cos(β)m (B.71)

for some functions f and integer powers m. This integral is clearly zero when m is
odd, since in that case cos(β)m is an odd function around β = π/2 and sin(β) is an
even function around β = π/2, and both are periodic with periods 2π. Thus, we
see that when we expand out (q̂ · ẑ)n, we can immediately set to zero any terms with
an odd power of cos(β), and any time that we encounter an even power of cos(β)
we can replace it with cos(β)2 = 1− sin(β)2, so our result only depends on sin(β).

It now remains to express x and sin(β) in terms of the desired (q, |⃗k1+ q⃗|, |⃗k2− q⃗|).
This is straightforward using Eq. (B.54), and we find

x =
−k21 + |⃗k1 + q⃗|2 − q2

2k1q
, (B.72)

and

sin(β) =
−2k2 q x y + k22 − |⃗k2 − q⃗|2 + q2

2k2q
√
1− x2

√
1− y2

. (B.73)

Taking into account that only even powers of cos(β) contribute, and defining

ν ≡
√
1− x2 sin(β) , (B.74)

this means that we can replace (q̂ · ẑ)n in Eq. (B.68) with (using the multinomial
theorem)

(q̂ · ẑ)n →
∑

i+j+2k=n

n! (µ1x)
i

i!j!(2k)!
[ν (µ2 − µ1y)]

j (1− y2
)− 1

2
(j+2k)

×
[(
1− x2 − ν2

) (
−µ2

1 − µ2
2 − y2 + 2µ1µ2y + 1

)]k (B.75)

which, using Eqs. (B.72) and (B.73), again puts the loop integral in Eq. (B.68) in
the desired form (notice that since Eq. (B.75) depends on sin(β) only through ν, the
possible non-analytic dependence

√
1− x2 cancels and does not appear in the final

answer). One can check that the right-hand sides of the expressions in Eqs. (B.67)
and (B.75) are equal.
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B.3 Details for Biased Tracers to Fourth Order

In this appendix, we give the explicit calculation to obtain Eq. (6.130). We do
this in three steps. First, we expand the bias expansion in terms of all operat-
ors allowed by the equivalence principle. This gives the list of operators that we
schematically wrote in Eq. (6.126). Next we do the explicit Taylor expansion of
the operators evaluated at x⃗fl around x⃗, and define the explicit C(n)

O,i that are in
Eq. (6.127). In a last step we put them together, and remove degeneracies, to ob-
tain Eq. (6.130). In this whole appendix, we focus on the fourth order calculation
and refer to [129, 131, 132] for the calculation up to third order. The dark-matter
kernels, in real space and redshift space, can be obtained from the expressions in
this appendix by setting b1 = b2 = b3 = b4 = 1 and b5, . . . , b15 = 0.

B.3.1 Bias Expansion

As mentioned in Sec. 6.6.2, the tracer overdensity can only depend on second
derivatives of the gravitational potential, and first derivatives of the velocity field
(and higher spatial derivatives of these). To look at all possible operators, we define
the building blocks

rij =
2

3ΩmH2
∂i∂jΦ , and pij = − 1

faH
∂iv

j , (B.76)

so that δijrij = δ and δijpij = θ, with θ ≡ −∂ivi/(faH). 3 For notational conveni-
ence, we further define

r2 = rijrij , rp = rijpij , p2 = pijpij , r3 = rijrjlrli , (B.77)

r2p = rijrjlpli , rp2 = rijpjlpil , p3 = pijpjlpil , r4 = rijrjlrlkrki .

We can now write down the full expansion for the tracer overdensity up to fourth
order, which we only schematically gave in Eq. (6.126). To determine the operators,

3Notice that pij is symmetric for a velocity with vanishing vorticity. For the biases that we
discuss in this section, this is true.
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we write down all contractions of rij and pij up to fourth order, and obtain

δh(x⃗, t) =

∫ t

dt′H(t′)
[
cδ(t, t

′)δ(x⃗fl, t
′)+cθ(t, t

′)θ(x⃗fl, t
′) (B.78)

+cδ2(t, t
′)δ2(x⃗fl, t

′)+cδθ(t, t
′)δθ(x⃗fl, t

′)+cθ2(t, t
′)θ2(x⃗fl, t

′)

+cr2(t, t
′)r2(x⃗fl, t

′)+crp(t, t
′)rp(x⃗fl, t

′)+cp2(t, t
′)p2(x⃗fl, t

′)

+cδ3(t, t
′)δ3(x⃗fl, t

′)+cδ2θ(t, t
′)δ2θ(x⃗fl, t

′)+cδθ2(t, t
′)δθ2(x⃗fl, t

′)+cθ3(t, t
′)θ3(x⃗fl, t

′)

+cr3(t, t
′)r3(x⃗fl, t

′)+cr2p(t, t
′)r2p(x⃗fl, t

′)+crp2(t, t
′)rp2(x⃗fl, t

′)+cp3(t, t
′)p3(x⃗fl, t

′)

+cr2δ(t, t
′)r2δ(x⃗fl, t

′)+crpδ(t, t
′)rpδ(x⃗fl, t

′)+cp2δ(t, t
′)p2δ(x⃗fl, t

′)

+cr2θ(t, t
′)r2θ(x⃗fl, t

′)+crpθ(t, t
′)rpθ(x⃗fl, t

′)+cp2θ(t, t
′)p2θ(x⃗fl, t

′)

+cδ4(t, t
′)δ4(x⃗fl, t

′)+cδr3(t, t
′)δr3(x⃗fl, t

′)+cδ2r2(t, t
′)δ2r2(x⃗fl, t

′)

+c(r2)2(t, t
′)
(
r2
)2

(x⃗fl, t
′)+cr4(t, t

′)r4(x⃗fl, t
′)
]∣∣
x⃗fl=x⃗fl(x⃗,t,t′)

.

Since we only go up to fourth order in perturbations, terms that explicitly start at
fourth order above are evaluated on the linear fields, and for those terms we have
used θ(1) = δ(1).

B.3.2 Expansion in Fluid Element

The operators in Eq. (B.78) are all evaluated at x⃗fl, where x⃗fl is given implicitly
in Eq. (10.35). In this section, we Taylor expand all the fields evaluated at x⃗fl
around x⃗. Going up to products of four fields, for a generic operator O we have
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(following [129])

O(x⃗fl(x⃗, t, t
′), t′) ≈ O(x⃗, t′) + ∂iO(x⃗, t′)

∫ t′

t

dt1
a(t1)

vi(x⃗, t1) (B.79)

+
1

2
∂i∂jO(x⃗, t′)

∫ t′

t

dt1
a(t1)

vi(x⃗, t1)

∫ t′

t

dt2
a(t2)

vj(x⃗, t2)

+∂iO(x⃗, t′)

∫ t′

t

dt1
a(t1)

∂jv
i(x⃗, t1)

∫ t1

t

dt2
a(t2)

vj(x⃗, t2)

+
1

6
∂i∂j∂kO(x⃗, t′)

∫ t′

t

dt1
a(t1)

vi(x⃗, t1)

∫ t′

t

dt2
a(t2)

vj(x⃗, t2)

∫ t′

t

dt3
a(t3)

vk(x⃗, t3)

+
1

2
∂iO(x⃗, t′)

∫ t′

t

dt1
a(t1)

∂j∂kv
i(x⃗, t1)

∫ t1

t

dt2
a(t2)

vj(x⃗, t2)

∫ t1

t

dt3
a(t3)

vk(x⃗, t3)

+∂iO(x⃗, t′)

∫ t′

t

dt1
a(t1)

∂jv
i(x⃗, t1)

∫ t1

t

dt2
a(t2)

∂kv
j(x⃗, t2)

∫ t2

t

dt3
a(t3)

vk(x⃗, t3)

+∂i∂jO(x⃗, t′)

∫ t′

t

dt1
a(t1)

vi(x⃗, t1)

∫ t′

t

dt2
a(t2)

∂kv
j(x⃗, t2)

∫ t2

t

dt3
a(t3)

vk(x⃗, t3) .

We now perturbatively expand and rewrite the velocity in terms of the divergence
only

vi(n)(x⃗, t
′) = −a(t

′)Ḋ(t′)

D(t′)

D(t′)n

D(t)n
∂i
∂2
θ(n)(x⃗, t) . (B.80)

With the EdS approximation as done above (and potentially also without it [135]),
it is always possible to solve the time integrals in Eq. (B.79) analytically, since all
integrals can be reduced to∫ t′

t

dt1
Ḋ(t1)D(t1)

n−1

D(t)n
=

1

n

[
D(t′)n

D(t)n
− 1

]
. (B.81)
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This then gives the expression for a Taylor expanded operator at fourth order in
perturbations

O(4)(x⃗fl(x⃗, t, t
′), t′) = O(4)D(t′)4

D(t)4
+ ∂iO(1)∂iθ

(3)

∂2

[
1

3

D(t′)

D(t)
− 1

3

D(t′)4

D(t)4

]
(B.82)

+∂iO(2)∂iθ
(2)

∂2

[
1

2

D(t′)2

D(t)2
− 1

2

D(t′)4

D(t)4

]
+ ∂iO(3)∂iθ

(1)

∂2

[
D(t′)3

D(t)3
− D(t′)4

D(t)4

]
+∂i∂jO(1)∂iθ

(1)

∂2
∂jθ

(2)

∂2

[
1

2

D(t′)

D(t)
− 1

2

D(t′)2

D(t)2
− 1

2

D(t′)3

D(t)3
+

1

2

D(t′)4

D(t)4

]
+∂i∂jO(2)∂iθ

(1)

∂2
∂jθ

(1)

∂2

[
1

2

D(t′)2

D(t)2
− D(t′)3

D(t)3
+

1

2

D(t′)4

D(t)4

]
+∂iO(1)∂j∂iθ

(1)

∂2
∂jθ

(2)

∂2

[
1

3

D(t′)

D(t)
− 1

2

D(t′)2

D(t)2
+

1

6

D(t′)4

D(t)4

]
+∂iO(1)∂i∂jθ

(2)

∂2
∂jθ

(1)

∂2

[
1

6

D(t′)

D(t)
− 1

2

D(t′)3

D(t)3
+

1

3

D(t′)4

D(t)4

]
+∂iO(2)∂i∂jθ

(1)

∂2
∂jθ

(1)

∂2

[
1

2

D(t′)2

D(t)2
− D(t′)3

D(t)3
+

1

2

D(t′)4

D(t)4

]
+∂i∂j∂kO(1)∂iθ

(1)

∂2
∂jθ

(1)

∂2
∂kθ

(1)

∂2

[
1

6

D(t′)

D(t)
− 1

2

D(t′)2

D(t)2
+

1

2

D(t′)3

D(t)3
− 1

6

D(t′)4

D(t)4

]
+∂iO(1)∂i∂j∂kθ

(1)

∂2
∂jθ

(1)

∂2
∂kθ

(1)

∂2

[
1

6

D(t′)

D(t)
− 1

2

D(t′)2

D(t)2
+

1

2

D(t′)3

D(t)3
− 1

6

D(t′)4

D(t)4

]
+∂iO(1)∂i∂jθ

(1)

∂2
∂j∂kθ

(1)

∂2
∂kθ

(1)

∂2

[
1

6

D(t′)

D(t)
− 1

2

D(t′)2

D(t)2
+

1

2

D(t′)3

D(t)3
− 1

6

D(t′)4

D(t)4
]

]
+ ∂i∂jO(1)∂iθ

(1)

∂2
∂j∂kθ

(1)

∂2
∂kθ

(1)

∂2

[
1

2

D(t′)

D(t)
− 3

2

D(t′)2

D(t)2
+

3

2

D(t′)3

D(t)3
− 1

2

D(t′)4

D(t)4

]
,

where all fields O(n) and θ(n) are evaluated at (x⃗, t), and we refer the reader to
[131, 132] for expressions up to third order.

From the above expansion, we can now define the CO,i operators that appear in
Eq. (6.127) and later in Eq. (6.130). Note that for an operator Om that starts at
order m, such as a product operator of m fields, O(n)

m = 0 for n < m. Finally, for
an operator Om starting at order m, we collect the terms that multiply the same
power of D(t′)/D(t), which gives the n-th order terms in the expansion

O(n)
m (x⃗fl(x⃗, t, t

′), t′) =
n−m+1∑
α=1

(
D(t′)

D(t)

)α+m−1

C(n)
Om,α

(x⃗, t) , (B.83)

which allows us to read off the CO,i from Eq. (B.82). Summing up all the orders

323



Chapter B: Appendix: The One-Loop Bispectrum - Theory

gives Eq. (6.127).
After also performing the time integrals and defining coefficients following Eq. (6.128),

we obtain the Taylor expanded and time integrated version of Eq. (B.78) at fourth
order,

δ
(4)
h (x⃗, t) = cδ,1C(4)

δ,1+cδ,2C
(4)
δ,2+cδ,3C

(4)
δ,3+cδ,4C

(4)
δ,4+cθ,1C

(4)
θ,1+cθ,2C

(4)
θ,2+cθ,3C

(4)
θ,3

+cθ,4C(4)
θ,4+cδ2,1C

(4)

δ2,1+cδ2,2C
(4)

δ2,2+cδ2,3C
(4)

δ2,3+cδθ,1C
(4)
δθ,1+cδθ,2C

(4)
δθ,2 (B.84)

+cδθ,3C(4)
δθ,3+cθ2,1C

(4)

θ2,1+cθ2,2C
(4)

θ2,2+cθ2,3C
(4)

θ2,3+cr2,1C
(4)

r2,1+cr2,2C
(4)

r2,2

+cr2,3C
(4)

r2,3+crp,1C
(4)
rp,1+crp,2C

(4)
rp,2+crp,3C

(4)
rp,3+cp2,1C

(4)

p2,1+cp2,2C
(4)

p2,2

+cp2,3C
(4)

p2,3+cδ3,1C
(4)

δ3,1+cδ3,2C
(4)

δ3,2+cθ3,1C
(4)

θ3,1+cθ3,2C
(4)

θ3,2+cδ2θ,1C
(4)

δ2θ,1

+cδ2θ,2C
(4)

δ2θ,2+cδθ2,1C
(4)

δθ2,1+cδθ2,2C
(4)

δθ2,2+cr3,1C
(4)

r3,1+cr3,2C
(4)

r3,2+cp3,1C
(4)

p3,1

+cp3,2C
(4)

p3,2+cr2p,1C
(4)

r2p,1+cr2p,2C
(4)

r2p,2+crp2,1C
(4)

rp2,1+crp2,2C
(4)

rp2,2+cr2δ,1C
(4)

r2δ,1

+cr2δ,2C
(4)

r2δ,2+crpδ,1C
(4)
rpδ,1+crpδ,2C

(4)
rpδ,2+cp2δ,1C

(4)

p2δ,1+cp2δ,2C
(4)

p2δ,2+cr2θ,1C
(4)

r2θ,1

+cr2θ,2C
(4)

r2θ,2+crpθ,1C
(4)
rpθ,1+crpθ,2C

(4)
rpθ,2+cp2θ,1C

(4)

p2θ,1+cp2θ,2C
(4)

p2θ,2

+cδ4,1C
(4)

δ4,1+cδr3,1C
(4)

δr3,1+cδ2r2,1C
(4)

δ2r2,1+c(r2)2,1C
(4)

(r2)2,1
+cr4,1C

(4)

r4,1 ,

where all of the cO,i functions are evaluated at t, and all of the C(4)
O,i functions are

evaluated at (x⃗, t). As mentioned in the main text, the expansion above is not yet
irreducible, for instance C(4)

r2,1 =
7
2
C(4)
δ,2 − 5

2
C(4)

δ2,1. Therefore by a redefinition of coef-
ficients, we can reduce the number of coefficients needed. A full list of degeneracies
is given in Eq. (B.86) in the next section.

B.3.3 Degeneracies and Local Basis

We find that at fourth order, the number of independent operators is fifteen, and
we choose the basis

{C(4)
δ,1 ,C

(4)
δ,2 ,C

(4)
δ,3 ,C

(4)
δ,4 ,C

(4)

δ2,1,C
(4)

δ2,2,C
(4)

δ2,3,C
(4)

r2,2,C
(4)

r2,3,C
(4)

δ3,1,C
(4)

δ3,2,C
(4)

r3,2,C
(4)

r2δ,2,C
(4)

δ4,1,C
(4)

δr3,1} .
(B.85)

We give these fifteen functions explicitly in App. B.3.4. The other operators are
given in terms of these by the following relationships

C(4)

r2,1 =
7
2
C(4)
δ,2 − 5

2
C(4)

δ2,1 , C(4)

r3,1 =
45
4
C(4)
δ,3 − 105

16
C(4)

δ2,2 − 3
4
C(4)

r2,2 +
35
8
C(4)

δ3,1 , (B.86)

C(4)

r2δ,1 =
7
4
C(4)

δ2,2 − 5
2
C(4)

δ3,1 , C(4)

r2δ2 =
7
6
C(4)

δ3,2 − 5
2
C(4)

δ4,1 ,

C(4)

(r2)2,1
= 735

32
C(4)

δ2,3 − 105
4
C(4)

δ3,2 − 49
16
C(4)

r2δ,2 +
2315
96

C(4)

δ4,1 − 49
12
C(4)

δr3,1 ,
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C(4)

r4,1 =
735
64
C(4)

δ2,3 − 343
24
C(4)

δ3,2 − 49
32
C(4)

r2δ,2 +
2827
192

C(4)

δ4,1 − 17
24
C(4)

δr3,1 ,

C(4)
θ,1 = C(4)

δ,1 , C(4)
θ,2 = 2C(4)

δ,2 − C(4)

δ2,1 , C(4)
θ,3 = 3C(4)

δ,3 − 3
2
C(4)

δ2,2 + C(4)

δ3,1 ,

C(4)
θ,4 = 4C(4)

δ,4 − 2C(4)

δ2,3 +
4
3
C(4)

δ3,2 − C(4)

δ4,1 , C(4)
δθ,1 = C(4)

δ2,1 ,

C(4)
δθ,2 =

3
2
C(4)

δ2,2 − C(4)

δ3,1 , C(4)
δθ,3 = 2C(4)

δ2,3 − 4
3
C(4)

δ3,2 + C(4)

δ4,1 , C(4)

θ2,1 = C(4)

δ2,1 ,

C(4)

θ2,2 = 2C(4)

δ2,2 − 2C(4)

δ3,1 , C(4)

θ2,3 =
39
8
C(4)

δ2,3 − 5C(4)

δ3,2 − 1
4
C(4)

r2δ,2 +
107
24
C(4)

δ4,1 − 1
3
C(4)

δr3,1 ,

C(4)
rp,1 =

7
2
C(4)
δ,2 − 5

2
C(4)

δ2,1 , C(4)
rp,2 =

9
2
C(4)
δ,3 − 21

8
C(4)

δ2,2 +
1
2
C(4)

r2,2 +
7
4
C(4)

δ3,1 ,

C(4)
rp,3 =

55
2
C(4)
δ,4 − 387

16
C(4)

δ2,3 +
643
30
C(4)

δ3,2 − 2
5
C(4)

r3,2 +
49
40
C(4)

r2δ,2 − 4627
240

C(4)

δ4,1 +
17
30
C(4)

δr3,1 ,

C(4)

p2,1 =
7
2
C(4)
δ,2 − 5

2
C(4)

δ2,1 , C(4)

p2θ,1 =
7
4
C(4)

δ2,2 − 5
2
C(4)

δ3,1 ,

C(4)

p2,2 = 9C(4)
δ,3 − 21

4
C(4)

δ2,2 +
7
2
C(4)

δ3,1, C(4)

p2,3 =
33
2
C(4)
δ,4 − 9C(4)

δ2,3 + 6C(4)

δ3,2 − 9
2
C(4)

δ4,1 ,

C(4)

δ2θ,1 = C(4)

δ3,1 , C(4)

δ2θ,2 =
4
3
C(4)

δ3,2 − C(4)

δ4,1 , C(4)

δθ2,1 = C(4)

δ3,1 ,

C(4)

δθ2,2 =
5
3
C(4)

δ3,2 − 2C(4)

δ4,1 , C(4)

θ3,1 = C(4)

δ3,1 , C(4)

θ3,2 = 2C(4)

δ3,2 − 3C(4)

δ4,1 ,

C(4)

pr2,1 =
45
4
C(4)
δ,3 − 105

16
C(4)

δ2,2 − 3
4
C(4)

r2,2 +
35
8
C(4)

δ3,1 ,

C(4)

pr2,2 =
147
32
C(4)

δ2,3 − 343
60
C(4)

δ3,2 +
13
15
C(4)

r3,2 − 49
80
C(4)

r2δ,2 +
2827
480

C(4)

δ4,1 − 17
60
C(4)

δr3,1 ,

C(4)

rp2,1 =
45
4
C(4)
δ,3 − 105

16
C(4)

δ2,2 − 3
4
C(4)

r2,2 +
35
8
C(4)

δ3,1 ,

C(4)

rp2,2 =
147
16
C(4)

δ2,3 − 343
30
C(4)

δ3,2 +
11
15
C(4)

r3,2 − 49
40
C(4)

r2δ,2 +
2827
240

C(4)

δ4,1 − 17
30
C(4)

δr3,1 ,

C(4)

p3,1 =
45
4
C(4)
δ,3 − 105

16
C(4)

δ2,2 − 3
4
C(4)

r2,2 +
35
8
C(4)

δ3,1 ,

C(4)

p3,2 =
441
32
C(4)

δ2,3 − 343
20
C(4)

δ3,2 +
3
5
C(4)

r3,2 − 147
80
C(4)

r2δ,2 +
2827
160

C(4)

δ4,1 − 17
20
C(4)

δr3,1 ,

C(4)

p2δ,1 =
7
4
C(4)

δ2,2 − 5
2
C(4)

δ3,1 , , C(4)
rpδ,1 =

7
4
C(4)

δ2,2 − 5
2
C(4)

δ3,1 ,

C(4)

r2θ,1 =
7
4
C(4)

δ2,2 − 5
2
C(4)

δ3,1 , C(4)
rpθ,1 =

7
4
C(4)

δ2,2 − 5
2
C(4)

δ3,1 ,

C(4)
rpδ,2 =

21
16
C(4)

δ2,3 − 4
3
C(4)

δ3,2 +
5
8
C(4)

r2δ,2 +
49
48
C(4)

δ4,1 +
1
6
C(4)

δr3,1 ,

C(4)

p2δ,2 =
21
8
C(4)

δ2,3 − 8
3
C(4)

δ3,2 +
1
4
C(4)

r2δ,2 +
49
24
C(4)

δ4,1 +
1
3
C(4)

δr3,1 ,

C(4)

r2θ,2 =
105
16
C(4)

δ2,3 − 47
6
C(4)

δ3,2 +
1
8
C(4)

r2δ,2 +
365
48
C(4)

δ4,1 − 7
6
C(4)

δr3,1 ,

C(4)
rpθ,2 =

63
8
C(4)

δ2,3 − 55
6
C(4)

δ3,2 − 1
4
C(4)

r2δ,2 +
69
8
C(4)

δ4,1 − C(4)

δr3,1 ,

C(4)

p2θ,2 =
147
16
C(4)

δ2,3 − 21
2
C(4)

δ3,2 − 5
8
C(4)

r2δ,2 +
463
48
C(4)

δ4,1 − 5
6
C(4)

δr3,1 .

The local-in-time limit is obtained by setting cOm(t, t
′) = cOm(t)δD(t− t′)/H(t)

in Eq. (6.128). Using that, along with Eq. (6.127) with t = t′, in Eq. (6.129), we
have the local-in-time expansion

δ
(n)
h, loc(x⃗, t) =

∑
Om

cOm(t)O(n)
m (x⃗, t) , (B.87)

where O(n)
m (x⃗, t) is the normal expression for the operator Om at n-th order in
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perturbations. For n = 4, we find that a basis for all of the O(4)
m (x⃗, t) is B⃗loc = {O(4)

m }
where Om is given by

{p2, r2, r2r2, r2p, r3, r4, rp, δ, r2δ, r3δ, rpδ, δ2, r2δ2, δ3, θ} . (B.88)

Then, calling B⃗ the basis given in Eq. (B.85), we find that

B⃗loc =M · B⃗ , (B.89)

where the change of basis matrix M is given by

M =



0 7
2

9 33
2

−5
2

−21
4

−9 0 0 7
2

6 0 0 −9
2

0

0 7
2

0 0 −5
2

0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 735
32

0 0 0 −105
4

0 −49
16

2315
96

−49
12

0 0 45
4

0 0 −105
16

147
32

−3
4
0 35

8
−343

60
13
15

−49
80

2827
480

−17
60

0 0 45
4

0 0 −105
16

0 −3
4
0 35

8
0 1 0 0 0

0 0 0 0 0 0 735
64

0 0 0 −343
24

0 −49
32

2827
192

−17
24

0 7
2

9
2

55
2

−5
2

−21
8

−387
16

1
2

0 7
4

643
30

−2
5

49
40

−4627
240

17
30

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 7
4

0 0 0 −5
2

0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 7
4

21
16

0 0 −5
2

−4
3

0 5
8

49
48

1
6

0 0 0 0 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 7
6

0 0 −5
2

0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

1 2 3 4 −1 −3
2

−2 0 0 1 4
3

0 0 −1 0



. (B.90)

Since detM ̸= 0, this means that M is invertible and thus the local-in-time basis is
equivalent to the non-local-in-time basis.

B.3.4 Explicit Expressions for Fourth Order Kernels

We here give the final CO,i used in Eq. (6.130) that are linearly independent, as
Fourier space kernels. We use the notation

C(n)
O,i(k⃗, t) = D(t)n

∫ k⃗

q⃗1,...,q⃗n

KO,i
n (q⃗1, ..., q⃗n)δ̃

(1)
q⃗1

· · · δ̃(1)q⃗n
. (B.91)
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Dropping the (q⃗1, q⃗2, q⃗3, q⃗4) dependence on the left-hand sides to avoid clutter, we
explicitly have

Kδ,1
4 =

(q⃗1 · (q⃗3 + q⃗4) q⃗2 · (q⃗3 + q⃗4) + q⃗1 · q⃗2 (3q⃗1 + 2q⃗2) · (q⃗3 + q⃗4))G2 (q⃗3, q⃗4)

6q22 (q⃗3 + q⃗4) 2

+
q⃗1 · (q⃗2 + q⃗3 + q⃗4)G3 (q⃗2, q⃗3, q⃗4)

3 (q⃗2 + q⃗3 + q⃗4) 2
(B.92)

+
q⃗1 · q⃗2 (q⃗2 · q⃗3q⃗4 · (q⃗2 + q⃗3) + q⃗1 · q⃗3q⃗4 · (q⃗1 + 3q⃗3))

6q22q
2
3q

2
4

,

Kδ,2
4 =

(q⃗1 + q⃗2) · (q⃗3 + q⃗4) (q
2
2F2 (q⃗1, q⃗2)− q⃗1 · q⃗2)G2 (q⃗3, q⃗4)

2q22 (q⃗3 + q⃗4) 2

+
q⃗3 · (q⃗1 + q⃗2) q⃗4 · (q⃗1 + q⃗2 + q⃗3)F2 (q⃗1, q⃗2)

2q23q
2
4

− q⃗1 · q⃗2 (q⃗2 · q⃗3q⃗4 · (q⃗2 + q⃗3) + q⃗1 · q⃗3q⃗4 · (q⃗1 + 3q⃗3))

2q22q
2
3q

2
4

,

Kδ,3
4 =

q⃗4 · (q⃗1 + q⃗2 + q⃗3)F3 (q⃗1, q⃗2, q⃗3)

q24

+
q⃗1 · q⃗2 (q⃗2 · q⃗3q⃗4 · (q⃗2 + q⃗3) + q⃗1 · q⃗3q⃗4 · (q⃗1 + 3q⃗3))

2q22q
2
3q

2
4

− q⃗4 · (q⃗1 + q⃗2 + q⃗3) q⃗3 · (q⃗1 + q⃗2)

q24

(
F2 (q⃗1, q⃗2)

q23
+

G2 (q⃗1, q⃗2)

2 (q⃗1 + q⃗2) 2

)
,

·Kδ,4
4 =F4 (q⃗1, q⃗2, q⃗3, q⃗4)−

3∑
i=1

Kδ,i
4 (q⃗1, q⃗2, q⃗3, q⃗4) ,

Kδ2,1
4 =

q⃗2 · (q⃗3 + q⃗4)G2 (q⃗3, q⃗4)

(q⃗3 + q⃗4) 2
+
q⃗1 · q⃗3q⃗2 · q⃗4 + q⃗2 · q⃗3q⃗4 · (q⃗2 + q⃗3)

q23q
2
4

,

Kδ2,2
4 =

2q⃗4 · (q⃗1 + q⃗2 + q⃗3)F2 (q⃗1, q⃗2)

q24
− 2 (q⃗1 · q⃗3q⃗2 · q⃗4 + q⃗2 · q⃗3q⃗4 · (q⃗2 + q⃗3))

q23q
2
4

,

Kδ2,3
4 =2F3 (q⃗1, q⃗2, q⃗3) + F2 (q⃗1, q⃗2)F2 (q⃗3, q⃗4)−

2∑
i=1

Kδ2,i
4 (q⃗1, q⃗2, q⃗3, q⃗4) ,

Kr2,2
4 =

2 (q⃗3 · (q⃗1 + q⃗2))
2q⃗4 · (q⃗1 + q⃗2 + q⃗3)F2 (q⃗1, q⃗2)

(q⃗1 + q⃗2) 2q23q
2
4

− 2 (q⃗1 · q⃗2) 2 (q⃗1 · q⃗3q⃗2 · q⃗4 + q⃗2 · q⃗3q⃗4 · (q⃗2 + q⃗3))

q21q
2
2q

2
3q

2
4

,

Kr2,3
4 =

((q⃗1 + q⃗2) · (q⃗3 + q⃗4))
2F2 (q⃗1, q⃗2)F2 (q⃗3, q⃗4)

(q⃗1 + q⃗2) 2 (q⃗3 + q⃗4) 2

− 2F2 (q⃗1, q⃗2) (q⃗3 · (q⃗1 + q⃗2))
2q⃗4 · (q⃗1 + q⃗2 + q⃗3)

(q⃗1 + q⃗2) 2q23q
2
4

+
2 (q⃗4 · (q⃗1 + q⃗2 + q⃗3))

2F3 (q⃗1, q⃗2, q⃗3)

(q⃗1 + q⃗2 + q⃗3) 2q24
− q⃗3 · (q⃗1 + q⃗2) (q⃗3 · q⃗4) 2G2 (q⃗1, q⃗2)

(q⃗1 + q⃗2) 2q23q
2
4
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+
(q⃗1 · q⃗3q⃗2 · q⃗4 + q⃗2 · q⃗3 (q⃗2 · q⃗4 + q⃗3 · q⃗4)) (q⃗1 · q⃗2) 2

q21q
2
2q

2
3q

2
4

,

Kδ3,1
4 =

3q⃗4 · q⃗3
q24

, Kδ3,2
4 = 3F2 (q⃗1, q⃗2)−

3q⃗4 · q⃗3
q24

,

Kr3,2
4 =

3q⃗3 · (q⃗1 + q⃗2) q⃗3 · q⃗4q⃗4 · (q⃗1 + q⃗2)F2 (q⃗1, q⃗2)

(q⃗1 + q⃗2) 2q23q
2
4

− 3q⃗1 · q⃗2q⃗1 · q⃗3q⃗2 · q⃗3q⃗3 · q⃗4
q21q

2
2q

2
3q

2
4

,

Kr2δ,2
4 =

2 (q⃗3 · (q⃗1 + q⃗2))
2F2 (q⃗1, q⃗2)

(q⃗1 + q⃗2) 2q23

+
+q24
−

q⃗3 · q⃗4 (2 (q⃗2 · q⃗3) 2q21 + (q⃗1 · q⃗2) 2q23)

q21q
2
2q

2
3q

2
4

,

Kδ4,1
4 =1 , Kδr3,1

4 =
q⃗1 · q⃗2q⃗2 · q⃗3q⃗3 · q⃗1

q21q
2
2q

2
3

,

The above, combined with Eq. (6.130), defines the final biased tracer kernels Kh
n up

to n = 4. The conversion to redshift space to get Kr,h
4 (q⃗1, q⃗2, q⃗3, q⃗4; ẑ) is then given

by

Kr,h
4 =Kh

4 (q⃗1, q⃗2, q⃗3, q⃗4) + fµ2G4(q⃗1, q⃗2, q⃗3, q⃗4) (B.93)

+ kµf
(q⃗1 + q⃗2 + q⃗3) · ẑ
(q⃗1 + q⃗2 + q⃗3)2

G3(q⃗1, q⃗2, q⃗3)K
h
1 (q⃗4)

+ kµf
(q⃗1 + q⃗2) · ẑ
(q⃗1 + q⃗2)2

G2(q⃗1, q⃗2)K
h
2 (q⃗3, q⃗4) + kµf

q⃗1 · ẑ
q21

Kh
3 (q⃗2, q⃗3, q⃗4)

+ k2µ2f 2 (q⃗1 + q⃗2 + q⃗3) · ẑ
(q⃗1 + q⃗2 + q⃗3)2

q⃗4 · ẑ
q24

G3(q⃗1, q⃗2, q⃗3)

+ k2µ2f 2 (q⃗1 + q⃗2) · ẑ
(q⃗1 + q⃗2)2

q⃗3 · ẑ
q23

G2(q⃗1, q⃗2)K
h
1 (q⃗4) +

1

2
k2µ2f 2 q⃗1 · ẑ

q21

q⃗2 · ẑ
q22

Kh
2 (q⃗3, q⃗4)

+
1

2
k2µ2f 2 (q⃗1 + q⃗2) · ẑ

(q⃗1 + q⃗2)2
(q⃗3 + q⃗4) · ẑ
(q⃗3 + q⃗4)2

G2(q⃗1, q⃗2)G2(q⃗3, q⃗4)

+
1

2
k3µ3f 3 (q⃗1 + q⃗2) · ẑ

(q⃗1 + q⃗2)2
q⃗3 · ẑ
q23

q⃗4 · ẑ
q24

G2(q⃗1, q⃗2) +
1

6
k3µ3f 3 q⃗1 · ẑ

q21

q⃗2 · ẑ
q22

q⃗3 · ẑ
q23

Kh
1 (q⃗4)

+
1

24
k4µ4f 4 q⃗1 · ẑ

q21

q⃗2 · ẑ
q22

q⃗3 · ẑ
q23

q⃗4 · ẑ
q24

,

where µ = k̂ ·ẑ and k⃗ ≡ q⃗1 + q⃗2 + q⃗3 + q⃗4, and see [133] for the analogous redshift
space expression up to third order.
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B.4 Details for Biased Tracers in Redshift Space

Renormalization

B.4.1 Counterterm Expressions for Biased Tracers in Red-

shift Space

For the response counterterms, we define the kernels Kr,h,ct
1 and Kr,h,ct

2 from

δ̃
(1)
r,h,ct(k⃗, ẑ) = Kr,h,ct

1 (k⃗; ẑ)δ̃(1)(k⃗) , δ̃
(2)
r,h,ct(k⃗, ẑ) =

∫ k⃗

q⃗1,q⃗2

Kr,h,ct
2 (q⃗1, q⃗2; ẑ)δ̃

(1)(q⃗1)δ̃
(1)(q⃗2) ,

(B.94)

where the tilde fields are defined analogously to Eq. (6.88), just with r → r, h. The
response counterterms enter in

P r,h,ct
13 (k, k̂ · ẑ) ≡ 2Kr,h

1 (k⃗; ẑ)Kr,h,ct
1 (−k⃗; ẑ)P11(k) , (B.95)

Br,h,ct
411 ≡ 2P11(k1)P11(k2)K

r,h
1 (k⃗1; ẑ)K

r,h
1 (k⃗2; ẑ)K

r,h,ct
2 (−k⃗1,−k⃗2; ẑ) + 2 perms. ,

B
r,h,(II),ct
321 ≡ 2P11(k1)P11(k2)K

r,h,ct
1 (k⃗1; ẑ)K

r,h
1 (k⃗2; ẑ)K

r,h
2 (−k⃗1,−k⃗2; ẑ) + 5 perms. ,

(we have suppressed the argument (k1, k2, k3, k̂1 · ẑ, k̂2 · ẑ) of the bispectra terms to
remove clutter) so that the combinations

P r,h
13 (k, k̂ · ẑ) + P r,h,ct

13 (k, k̂ · ẑ) ,
Br,h

411(k1, k2, k3, k̂1 · ẑ, k̂2 · ẑ) +Br,h,ct
411 (k1, k2, k3, k̂1 · ẑ, k̂2 · ẑ) ,

B
r,h,(II)
321 (k1, k2, k3, k̂1 · ẑ, k̂2 · ẑ) +B

r,h,(II),ct
321 (k1, k2, k3, k̂1 · ẑ, k̂2 · ẑ) ,

(B.96)

are renormalized.
For the stochastic terms, we write the first order solution as δ(1)r,h,ϵ(k⃗, ẑ, a) =

D(a)2δ̃
(1)
r,h,ϵ(k⃗, ẑ) and the second order as

δ̃
(2)
r,h,ϵ(k⃗, ẑ) =

∫ k⃗

q⃗1,q⃗2

δr,h,ϵ2 (q⃗1, q⃗2; ẑ)δ̃
(1)
q⃗2

, (B.97)

The term that renormalizes P r,h
22 is

P r,h,ϵ
22 (k, k̂ · ẑ) ≡ ⟨δ̃(1)r,h,ϵ(k⃗, ẑ)δ̃

(1)
r,h,ϵ(k⃗

′, ẑ)⟩′ , (B.98)
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the term that renormalizes Br,h
222 is

Br,h,ϵ
222 (k1, k2, k3, k̂1 · ẑ, k̂2 · ẑ) = ⟨δ̃(1)r,h,ϵ(k⃗1, ẑ)δ̃

(1)
r,h,ϵ(k⃗2, ẑ)δ̃

(1)
r,h,ϵ(k⃗3, ẑ)⟩′ , (B.99)

and the term that renormalizes Br,h,(I)
321 is defined in Eqs. (6.157) and (6.158). In this

way,

P r,h
22 (k, k̂ · ẑ) + P r,h,ϵ

22 (k, k̂ · ẑ) ,
Br,h

222(k1, k2, k3, k̂1 · ẑ, k̂2 · ẑ) +Br,h,ϵ
222 (k1, k2, k3, k̂1 · ẑ, k̂2 · ẑ) ,

B
r,h,(I)
321 (k1, k2, k3, k̂1 · ẑ, k̂2 · ẑ) +B

r,h,(I),ϵ
321 (k1, k2, k3, k̂1 · ẑ, k̂2 · ẑ) ,

(B.100)

are renormalized.

B.4.2 Response Terms

The functions that enter Kr,h,ct
2 in Eq. (6.154) are given by

eK2
1 = − k⃗1 · k⃗2k

2
2

2kNL
2k21

+
fk⃗3 · ẑk⃗1 · ẑk22

2kNL
2k21

+ (1 ↔ 2) , (B.101)

eK2
2 = − k23

kNL
2F2(k⃗1, k⃗2) +

k⃗1 · k⃗2
2kNL

2

(
k21
k22

+
k22
k21

)
,

eK2
3 = − k23

kNL
2 , eK2

4 = −(k⃗1 · k⃗2)2k23
kNL

2k21k
2
2

, eK2
5 = − k⃗1 · k⃗2

kNL
2 ,

eK2
6 = −fk⃗3 · ẑk⃗1 · ẑk⃗1 · k⃗2

2kNL
2k22

+
f 2(k⃗3 · ẑ)2k⃗2 · ẑk⃗1 · ẑ

2kNL
2k22

+ (1 ↔ 2) ,

eK2
7 =

f(k⃗3 · ẑ)2k⃗1 · k⃗2k⃗2 · k⃗3k⃗3 · k⃗1
kNL

2k21k
2
2k

2
3

,

eK2
8 = −f

2(k⃗3 · ẑ)2k⃗1 · k⃗2(k⃗1 · ẑ)2
4kNL

2k21k
2
2

+
f 3(k⃗3 · ẑ)3k⃗1 · ẑ(k⃗2 · ẑ)2

4kNL
2k21k

2
2

+ (1 ↔ 2) ,

eK2
9 = −f

2(k⃗3 · ẑ)2
2kNL

2

(
(k⃗3 · ẑ)2
k23

F2(k⃗1, k⃗2)−
k⃗1 · k⃗2[(k⃗1 · ẑ)2 + (k⃗2 · ẑ)2]

2k21k
2
2

)
,

eK2
10 = −f

2(k⃗3 · ẑ)2k⃗1 · k⃗2
4kNL

2k22
+
f 3(k⃗3 · ẑ)3k⃗2 · ẑ

4kNL
2k22

+ (1 ↔ 2) ,

eK2
11 = −f

2(k⃗3 · ẑ)2
2kNL

2

(
F2(k⃗1, k⃗2)−

k⃗1 · k⃗2
2

(
1

k21
+

1

k22

))
,

eK2
12 = −f

2(k⃗3 · ẑ)2
4kNL

2

(
(k⃗1 · ẑ)2
k21

+
(k⃗2 · ẑ)2
k22

)
,
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eK2
13 = −f

2(k⃗3 · ẑ)2k⃗1 · ẑk⃗2 · ẑk⃗1 · k⃗2
2kNL

2k21k
2
2

, eK2
14 = −f

2(k⃗3 · ẑ)2
2kNL

2 ,

where we have defined k⃗3 ≡ −k⃗1− k⃗2. The new non-locally-contributing counterterm
enters Kr,h,ct

2 through the term eK2
7 .

The UV matching for the response terms is given by

ch1 =
σ2k2NL (3b1 − 64 (b3 + 15b8))

1260π2
, (B.102)

ch2 =
σ2k2NL

679140π2

(
8
(
− 792b2 − 2926b3 + 1522b4 + 462 (6b7 − 95b8)

− 6215b9 + 6930b11
)
− 27335b1

)
,

ch3 =
σ2k2NL

4753980π2

(
194348b1 + 95205b2 + 160160b3 − 431040b4 − 6529248b9

+ 77 (147b5 − 5248b7 + 31200b8)− 2217600b11

)
,

ch4 =
σ2k2NL

1584660π2

(
20559b1 − 2

(
17677b2 − 13552b3 + 5664b4 + 7392b7

− 203280b8 + 55088b9 + 18480b11
))
,

ch5 = − 2σ2k2NL

169785π2

(
6083b1 + 792b2 + 1078b3 − 6450b4 − 7700b7

+ 16170b8 − 35673b9 − 62370b11
)
,

cπ1 = −σ
2k2NL (4725b1 + 32 (36b2 + 35 (b3 + 15b8)))

30870π2
,

cπ5 =
668σ2k2NL

56595π2
,

cπv1 = −σ
2k2NL(35f + 46)

210π2
, cπv2 = −σ

2k2NL(15f + 11)

150π2
,

cπv3 = −σ
2k2NL (147 (35b1 + 48) f + 9156b1 + 2304b2 + 2240b3 + 33600b8 + 9261)

30870π2f
,

cπv4 =
σ2k2NL (−6b2(245f + 514) + 273b1 + 448b3 + 6720b8 − 594f − 1785)

8820π2f
,

cπv5 =
σ2k2NL (2394b1 + 2304b2 + 2240b3 + 33600b8 − 75)

30870π2
,

cπv6 = −σ
2k2NL(1715f + 4626)

25725π2
,

cπv7 = − σ2k2NL

679140π2f

(
924b1(168f + 97) + 3234b5(35f − 2)− 205920b2

+ 19712b3 + 295680b8 + 111078f + 70809
)
,

with all other coefficients set to zero (i.e. they are degenerate for the observables
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that we consider). Above, σ2 =
∫
dq P11(q). Notice that, as expected, the cπvDM,i

from Eq. (B.52) are related to the cπvi above when the biases are evaluated on the
dark-matter values b1 = b2 = b3 = b4 = 1 and b5, . . . , b15 = 0. Using the expression
for F r,ct

1 in Eq. (6.100), the expression for Kr,h,ct
1 in Eq. (6.153), the expression for

F r,ct
2 in Eq. (6.101), the expression for Kr,h,ct

2 in Eq. (6.154), and the basis relation
Eq. (B.51), we find cπvj

∣∣
DM bias = cπvDM,j for j = 1, 2, 6, and

cπv3
∣∣
DM bias = cπvDM,3 +

2

3f
c3 +

4

9f
c5 ,

cπv4
∣∣
DM bias = cDM,4 +

7

99f
c3 +

16

33f
c4 −

7

99f
c5 ,

cπv5
∣∣
DM bias = cπvDM,5 −

2

3
c3 −

4

9
c5 ,

cπv7
∣∣
DM bias = cπvDM,7 +

8

99f
c3 +

29

99f
c5 +

16

33f
c7 ,

(B.103)

where c|DM bias means to evaluate c on the dark-matter values for the bias paramet-
ers, which one can indeed confirm is true for the UV matching that we found in
Eqs. (B.37), (B.52), and (B.102).

B.4.3 Stochastic Terms

The functions that enter the stochastic counterterm B̄
r,h,(I),ϵ
321 in Eq. (6.159) are

eSt1 = fµ2
1 − 1 , (B.104)

eSt2 = −k
2
1 (k

2
2 (1− 2fµ2

1) + k23) + 2f (k23 − k22) k1µ1k2µ2 + (k22 − k23)
2

2k21k
2
NL

,

eSt3 = 0 ,

eSt4 = −f
2k1µ1

4k21k
2
NL

(
k31µ1

(
2fµ2

1 − 1
)
+ 4fk21µ

2
1k2µ2

+ k1µ1

(
k22
(
4fµ2

2 − 1
)
+ k23

)
+ 2

(
k23 − k22

)
k2µ2

)
,

eSt5 =
f 2k1µ1 (4fk

2
1µ

2
1k2µ2 + k1µ1 (k

2
2 (4fµ

2
2 − 1) + k23) + k31µ1 + 2 (k23 − k22) k2µ2)

4k21k
2
NL

,

eSt6 = 2 , eSt7 = −k
2
2 + k23
k2NL

, eSt8 = −k
4
1 + (k22 − k23)

2

2k21k
2
NL

,

eSt9 = − k21
k2NL

, eSt10 = −f (k1µ1 + 2k2µ2) ((k
2
1 − k22 + k23) k1µ1 + 2k21k2µ2)

4k21k
2
NL

,
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eSt11 =
fk1µ1 ((k

2
1 + k22 − k23) k1µ1 + 2 (k22 − k23) k2µ2)

2k21k
2
NL

,

eSt12 = −2fk2µ2 (k1µ1 + k2µ2)

k2NL
,

eSt13 =
f

4k21k
2
2k

2
3k

2
NL

( (
k21 − k22 + k23

)
2k21µ

2
1k

2
2 + 2

(
k21 − k22 + k23

)
2k1µ1k

3
2µ2

+
((
k22 + k23

)
k41 − 2

(
k22 − k23

)
2k21 +

(
k22 − k23

)
2
(
k22 + k23

))
k22µ

2
2

)
.

All of the above eSti are symmetric when swapping k⃗2 and k⃗3, as expected from
Eq. (6.158). To see it, one must swap k2 ↔ k3 and µ2 ↔ µ3, and then replace
µ3 = −k−1

3 (k1µ1 + k2µ2).
Since, for the stochastic terms, we match terms of order k0 and k2, there are

non-zero contributions coming from expanding factors of P11(|⃗k − q⃗|) for small k/q
inside of the loops in Eq. (6.123). Thus, UV matching includes terms proportional to
P ′
11(q) and P ′′

11(q). We give the full expressions for all terms below, apart from cSt7 and
cSt8 , which are too long to display here; all full values are given in the accompanying
Mathematica notebook of [2]. For the UV matching, we find

cSt1 = −ω
2n̄ (−b1 + b2 + b5)

2

π2
, (B.105)

cSt2 =
n̄k2NL (b1 − b2 − b5) [(14b1 − 16b2) γ

2 − 7(b1 − b2 − b5)(2γ
2
1 + γ22)]

42π2
,

cSt3 = −γ
2n̄k2NL (b1 − b2 − b5) (−7b1 + 7f + 9)

21π2
,

cSt4 =
γ2n̄k2NL (b1(35f + 54)− 35 (b2 + b5) f − 2 (19b2 + 8b3 + 23b5 + 8b6 + 22b8))

105π2f
,

cSt5 = 0 ,

cSt6 = −ω
2n̄ (b1 − b2 − b5) (13b1 + 34b2 − 47b3 + 42b5 − 110b6 − 82b8 − 63b10)

21π2
,

cSt7 = −γ
2n̄k2NL

1470π2

(
301b21 + (656b2 − 7 (183b3 − 124b5 + 282b6 + 638b8 + 105b10)) b1

− 982b22 + 14b5 (47b3 − 35b5 + 44b6 + 236b8)

+ 2b2 (653b3 − 784b5 + 1052b6 + 2228b8 + 420b10)
)
+O(P ′

11(q), P
′′
11(q)) ,

cSt8 =
γ2n̄k2NL

4410π2

(
− 21b21 + (1689b2 − 7 (122b3 − 51b5 + 168b6 + 192b8)) b1 − 1188b22

+ 2 ((187b3 − 546b5 + 348b6 + 12b8) b2 + 7b5 (13b3 + 36b6 − 36b8))
)

+O(P ′
11(q), P

′′
11(q)) ,
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cSt9 = −γ
2n̄k2NL (7b1 − 6b2 − 14b5) (b1 − b2 − b5)

42π2
,

cSt10 =
γ2n̄k2NL

735π2

(
7b21(35f + 22) + b1

(
− 7b2(35f + 79)− 7b5(35f + 103) + 399b3

+ 1134b6 + 546b8 + 735b10 + 224f + 256
)

+ b2(287f + 417)− 7 (73b3 − 57b5 + 178b6 + 122b8 + 105b10) f

− 673b3 + 553b5 − 1618b6 − 1142b8 − 945b10

)
,

cSt11 =
γ2n̄k2NL

1470π2

(
7b21(6− 35f)

+ b1

(
7b2(35f + 123) + 49b5(5f + 13)− 623b3 − 1358b6 − 1162b8

− 735b10 − 469f − 634

)
+ 511b3f − 154b5f − b2 (280b5 + 42f + 151) + 1246b6f

+ 854b8f + 105b10(7f + 9)− 280b22 + 785b3 − 231b5 + 1730b6 + 1450b8

)
,

cSt12 =
γ2n̄k2NL (7b

2
1 + (−109b2 + 32b3 − 93b5 + 32b6 + 88b8) b1 + 70 (b2 + b5)

2)

210π2
,

cSt13 =
γ2n̄k2NL (−97b1 + b2 + 96b3 + 49b5 + 96b6 + 264b8)

1470π2
,

where γ2 =
∫
dq P11(q)

2, γ21 =
∫
dq qP11(q)P

′
11(q),

γ22 =
∫
dq q2P11(q)P

′′
11(q), and ω2 =

∫
dq q2 P11(q)

2. UV matching for Eq. (6.160) is

c
(222)
1 =

4(b1 − b2 − b5)
3n̄2

π2

∫
dq q2P11(q)

3 , (B.106)

c
(222)
2 = −2(b1−b2−b5)

2n̄2kNL
2

63π2

(
3(7b1−8b2)ϑ

3−7(b1−b2−b5)(4ϑ3
1+ϑ

3
2+2ϑ3

3)
)
,

c
(222)
5 =

4(b1 − b2 − b5)
2(−9 + 7b1 − 7f)fn̄2kNL

2ϑ3

21π2
.

where ϑ3 =
∫
dq P11(q)

3, ϑ3
1 =

∫
dq qP11(q)

2P ′
11(q), ϑ3

2 =
∫
dq q2P11(q)P

′
11(q)

2, and
ϑ3
3 =

∫
dq q2P11(q)

2P ′′
11(q).

B.4.4 Parameter Matching with PyBird

For reference, we give the conversion between the parameters used here and those
used in PyBird (which we write in the typewriter font). For the counterterm
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parameters, we have

Bc1 = ch1 , Bc2 = cπ1 , Bc3 = cπv1 , Bc4 = cπv3 , Bc5 = ch2 , Bc6 = ch3 , Bc7 = ch4

Bc8 = ch5 , Bc9 = cπ5 , Bc10 = cπv2 , Bc11 = cπv4 , Bc12 = cπv5 , Bc13 = cπv6 ,

Bc14 = cπv7 , ce2 = (2/3)fcSt3 , Be1 = cSt1 , Be2 = cSt2 , Be3 = cSt4 , Be4 = cSt5 ,

Be5 = 2cSt6 , Be6 = 2cSt9 , Be7 = −cSt7 − cSt9 , Be8 = −cSt8 − 2cSt9 , Be9 = 2cSt12

Be10 = cSt11 , Be11 = cSt10 , Be12 = cSt13 ,

Bd1 = c
(222)
1 , Bd2 = c

(222)
2 − c

(222)
5 /6 , and Bd3 = −c(222)5 . (B.107)

For the bias parameters, we have Bbi = bi for i = 1, . . . , 6, 8, . . . , 11, and Bb7 =

b7+15b13/2. Other parameters in the PyBird code are derived from the ones above,
and were used in the power-spectrum-only analysis. These are given by

b1 = Bb1 , b2 = Bb2 , b3 = Bb3+ 15 Bb8 , b4 = Bb5 , cct = −Bc1 ,

cr1 = fBc2− f 2Bc4/2 , cr2 = −f 2Bc3/2 , ce0 = Be1 , ce1 = Be2+ ce2/2 ,

c2 = (b2+ b4)/
√
2 , and c4 = (b2− b4)/

√
2 . (B.108)
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C
Appendix: The One-Loop
Bispectrum - Constraints

C.1 Binning Formula Details

In this appendix, we want to show that the binning formula for the bispectrum

Br,h
(l,i),bin(k1, k2, k3) = (C.1)

=
2l + 1

VT

(∏
i

∫
Vi

d3qi
(2π)3

)
(2π)3δ

(3)
D (q⃗1 + q⃗2 + q⃗3)Pl(µi)Br,h(q⃗1, q⃗2, q⃗3) ,

is equivalent to

Br,h
(l,i),bin(k1, k2, k3) =

1

VT

(∏
i

∫
ki

dqi qi

)
β (∆q)

8π4
Br,h

(l,i)(q1, q2, q3) , (C.2)

We do the calculation here for general l, which is relevant to us for l = 0, 2.
Given that the bispectrum is a polynomial in µ1 and µ2, and switching to a basis

of Legendre polynomials, we can write

Br,h(q⃗1, q⃗2, q⃗3) =
∑
n1,n2

Br,h
n1,n2

(q1, q2, q3)Pn1(µ1)Pn2(µ2) . (C.3)

We can focus on the case of Pl(µ1), since the other cases just correspond to a
permutation of µi in Eq. (C.3). Let us then start by writing the delta function as
an integral over plane waves:

Br,h
(l,1),bin =

2l + 1

VT

(∏
i

∫
Vi

d3qi
(2π)3

)∫
d3x eix⃗·(q⃗1+q⃗2+q⃗3)Pl(µ1)

×
∑
n1,n2

Br,h
n1,n2

(q1, q2, q3)Pn1(µ1)Pn2(µ2) .

(C.4)
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The integral over d2q̂3, is just∫
d2q̂3 e

iq⃗3·x⃗ = 4πj0(q3x) . (C.5)

And the rest of the exponentials we expand the plane wave:

eiq⃗1·x⃗ =
∑
l1

il1(2l1 + 1)jl1(q1x)Pl1(q̂1 · x̂). (C.6)

Putting all of this into Eq. (C.4) we get:

Br,h
(l,1),bin =

2l + 1

VT

∑
n1,n2

∑
l1,l2

(
2∏
i=1

ili(2li + 1)

∫
Vi

d3qi
(2π)3

)∫
k3

dq3
2π2

q23B
r,h
n1,n2

(q1, q2, q3)

×
∫

d3xj0(q3x)

(
2∏
i=1

jli(qix)Pli(q̂i · x̂)Pni
(q̂i · ẑ)

)
Pl(q̂1 · ẑ) . (C.7)

Now we can do all the angular integrals, using the formula,∫
d2x̂Pl1(q̂1 · x̂)Pl2(q̂2 · x̂) = δl1,l2

4π

2l1 + 1
Pl1(q̂1 · q̂2) , (C.8)

to evaluate∫
d2x̂

∫
d2q̂1

∫
d2q̂2Pl1(q̂1 · x̂)Pl2(q̂2 · x̂)Pl(q̂1 · ẑ)Pn1(q̂1 · ẑ)Pn2(q̂2 · ẑ) (C.9)

= δl1,l2
4π

2l1 + 1

∫
d2q̂1

∫
d2q̂2Pl1(q̂1 · q̂2)Pl(q̂1 · ẑ)Pn1(q̂1 · ẑ)Pn2(q̂2 · ẑ)

= δl1,l2 δl1,n2

(4π)2

(2l1 + 1)2

∫
d2q̂1Pl1(q̂1 · ẑ)Pl(q̂1 · ẑ)Pn1(q̂1 · ẑ)

= δl1,l2 δl1,n2

(4π)3

(2l1 + 1)2

(
n2 l n1

0 0 0

)2

,

and additionally we used the integral of three Legendre polynomials in terms of the
Wigner 3-j symbol in the last line. We are now only left with integrals over the
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magnitudes:

Br,h
(l,1),bin = 4π

(2l + 1)

VT

∑
n1,n2

(−1)n2

(
3∏
i=1

∫
ki

dqi
2π2

q2i

)
(C.10)

×
∫ ∞

0

dxx2jn2(q1x)jn2(q2x)j0(q3x)

(
n2 l n1

0 0 0

)2

Br,h
n1,n2

(q1, q2, q3) .

Further using the following integral over three spherical Bessel functions:∫ ∞

0

dxx2jn2(q1x)jn2(q2x)j0(q3x) =
π

4q1q2q3
β(q̂1 · q̂2)Pn2

(
q21 + q22 − q23

2q1q2

)
, (C.11)

where β(∆) = 1 for −1 < ∆ < 1, β(∆) = 1/2 for ∆ = ±1, and β(∆) = 0 otherwise,
and recognizing that the last Legendre is Pn2(−q̂1 · q̂2) = (−1)n2Pn2(q̂1 · q̂2), we can
put everything together and we get that Eq. (C.1) reduces to

Br,h
(l,1),bin =

2l + 1

VT

∑
n1,n2

(
3∏
i=1

∫
ki

dqiqi

)
× (C.12)

×β(q̂1 · q̂2)
8π4

Pn2(q̂1 · q̂2)
(
n2 l n1

0 0 0

)2

Br,h
n1,n2

(q1, q2, q3) .

To get our formula Eq. (C.2), it is now sufficient to show that the unbinned
bispectrum satisfies

Br,h
(l,1)(q1, q2, q3) = (2l + 1)

∑
n1,n2

Pn2(q̂1 · q̂2)
(
n2 l n1

0 0 0

)2

Br,h
n1,n2

(q1, q2, q3) . (C.13)

So next, we write the left hand side of the above explicitly, and expand the redshift
space bispectrum, plugging Eq. (C.3) into a generalization of Eqs. (7.5) and (7.8):

Br,h
(l,1)(q1, q2, q3) = (2l+1)

∑
n1,n2

∫ 1

−1

dµ1

2

∫ 2π

0

dϕ

2π
Pl(µ1)Pn1(µ1)Pn2(µ2)B

r,h
n1,n2

(q1, q2, q3).

(C.14)
This can be calculated in a coordinate system in which we fix q̂1, q̂2 and integrate
over d2ẑ:

Br,h
(l,1)(q1, q2, q3) = (2l + 1)

∑
n1,n2

∫
d2ẑ

4π
Pl(q̂1 · ẑ)Pn1(q̂1 · ẑ)Pn2(q̂2 · ẑ)Br,h

n1,n2
(q1, q2, q3) .

(C.15)
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Next, we use that the product of two Legendre polynomials is

Pl(q̂1 · ẑ)Pn1(q̂1 · ẑ) =
n1+l∑

L=|n1−l|
(2L+ 1)

(
n1 l L

0 0 0

)2

PL(q̂1 · ẑ) , (C.16)

and plug Eq. (C.16) into Eq. (C.15) to get

Br,h
(l,1)(q1, q2, q3) = (2l + 1)

∑
n1,n2

n1+l∑
L=|n1−l|

(2L+ 1)

(
n1 l L

0 0 0

)2

×
∫

d2ẑ

4π
PL(q̂1 · ẑ)Pn2(q̂2 · ẑ)Br,h

n1,n2
(q1, q2, q3)

= (2l + 1)
∑
n1,n2

(
n1 l L

0 0 0

)2

Pn2(q̂1 · q̂2)Br,h
n1,n2

(q1, q2, q3) ,

(C.17)

as desired.
For completeness we also calculate the volume

VT =

(∏
i

∫
Vi

d3qi
(2π)3

)
(2π)3δ

(3)
D (q⃗1 + q⃗2 + q⃗3)

=

(∏
i

∫
Vi

d3qi
(2π)3

)∫
d3x eiq⃗1·x⃗eiq⃗2·x⃗eiq⃗3·x⃗ .

We then integrate over the plane waves using Eq. (C.5) and the three Bessel functions
using Eq. (C.11) to get

VT =

(∏
i

∫
ki

dqi qi

)
β(q̂1 · q̂2)

8π4
. (C.18)

C.2 Additional Parameter Posteriors

In Fig. C.1, we show the full triangle plots obtained fitting BOSS 4 skies Pℓ +
B0 + B2. In Tab. C.1, we show the 68%-credible intervals of b1, c2, and c4 obtained
on this same fit.
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Figure C.1: Full triangle plots from the analysis of BOSS power spectrum multipoles Pℓ

at one loop, bispectrum monopole B0 at tree level or one loop, and bispectrum quadrupole
B2 at tree level.
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mean ±σ b1 c2 c4

CMASS NGC
Pℓ 2.12± 0.18 0.95+0.45

−0.68 0.2± 1.7

Pℓ +B0 2.23± 0.13 1.27± 0.26 −0.29+0.55
−0.61

Pℓ +B0 +B2 2.19± 0.13 1.18+0.22
−0.28 −0.25+0.54

−0.60

CMASS SGC
Pℓ 2.13± 0.18 1.01+0.45

−0.62 0.2± 1.7

Pℓ +B0 2.27± 0.13 1.23± 0.26 −0.32+0.56
−0.63

Pℓ +B0 +B2 2.22± 0.14 1.14+0.23
−0.27 −0.27± 0.60

LOWZ NGC
Pℓ 1.93± 0.16 0.98+0.37

−0.47 0.2± 1.7

Pℓ +B0 2.04± 0.12 1.23+0.21
−0.24 −0.26± 0.64

Pℓ +B0 +B2 2.00± 0.12 1.14+0.20
−0.24 −0.27+0.60

−0.67

LOWZ SGC
Pℓ 1.93± 0.15 1.04+0.34

−0.40 0.2± 1.7

Pℓ +B0 2.05± 0.12 1.21+0.21
−0.24 −0.30± 0.65

Pℓ +B0 +B2 2.02± 0.12 1.12+0.20
−0.24 −0.30+0.61

−0.68

Table C.1: 68%-credible intervals of b1, c2, and c4 from the analysis of BOSS power
spectrum multipoles Pℓ at the one-loop, bispectrum monopole B0 at the one-loop, and
bispectrum quadrupole B2 at tree-level.
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D
Appendix: The One-Loop
Bispectrum - Forecast

D.1 Survey Details and Best-Fits

Shown below are the exact parameter values that we use in the analyzes for each
survey. Regarding cosmological parameters, for all surveys, we use the following
best-fit as the reference cosmology 1 for the cosmological parameters (noted with a
ref).

href = 0.673 , ln
(
1010As

)ref
= 3.044 , Ωref

m = 0.317 , nref
s = 0.965 , (D.1)

Ωref
k = 0 , ωref

b = 0.022 ,
∑
i

mref
νi

= 0.1 eV , f loc.,ref
NL = f eq.,ref

NL = f orth.,ref
NL = 0 .

Furthermore, in Tab. D.1 we give the EFT parameter best-fit that we use, coming
from Ch. 7. Note, this is what we denote as b⃗BOSS (b1 - Bc14) and ϵ⃗BOSS (Bd1 -
Be12) in Sec. 8.3.3. Furthermore, we use the notation as in PyBird [169]. For a
conversion to the notation of Ch. 7, see App. B.4.4. The best-fit values of the 41
EFT parameters are given in Tab. D.1.

Next, we show the survey specifications that were used in each survey. With the
methods from Sec. 8.3, this builds the basis for the numerical values that we use in
the forecasts.

BOSS For the BOSS survey, we use the survey specifications as presented in [9,
189, 283, 284]. We display them in the same way they enter our formulas in Tab. D.2.

1All cosmological parameters with the exception of fNL and
∑

i mνi
are fixed to Planck pre-

ferred values [24].
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Parameter Value Parameter Value Parameter Value Parameter Value

b1 1.94 c2 1.14 b3 −0.37 c4 −0.29
b4 0.13 b6 −0.35 b7 0.22 b8 −0.30
b9 0.015 b10 0.043 b11 0.036 Bc1 5.46
Bc2 −1.54 Bc3 1.31 Bc4 −0.48 Bc5 0.11
Bc6 0.87 Bc7 −0.46 Bc8 0.44 Bc9 −0.42
Bc10 −0.65 Bc11 −0.088 Bc12 −0.37 Bc13 −0.16
Bc14 −0.20 Bd1 5.4 Bd2 −0.72 Bd3 −0.43
ce2 0.55 Be1 1.69 Be2 0.91 Be3 0.074
Be4 −0.14 Be5 6.07 Be6 −0.093 Be7 −0.97
Be8 0.26 Be9 0.26 Be10 −0.15 Be11 0.43
Be12 −0.43

Table D.1: Best-fit EFT parameters.

z Ng V [(Mpch−1)3] nb[(hMpc−1)3] b1
0.05 7370 2.55× 107 2.9× 10−4 1.48
0.15 47560 1.64× 108 2.9× 10−4 1.56
0.25 120600 4.02× 108 3.0× 10−4 1.65
0.35 214016 7.04× 108 3.0× 10−4 1.73
0.45 287040 1.04× 109 2.8× 10−4 1.83
0.55 445740 1.38× 109 3.2× 10−4 1.92
0.65 206400 1.72× 109 1.2× 10−4 2.02
0.75 20400 2.04× 109 1.0× 10−5 2.12

Table D.2: Survey details for each redshift bin for BOSS. We show the number of mapped
galaxies Ng, the volume of the redshift bin V as well as the number density nb and the
linear bias b1.

DESI As mentioned in the main text, for DESI we focus on the largest sample
which is the set of Emission Line Galaxies. The numerical values we use are calcu-
lated from table 2.3 in [222]. We present the specifications in Tab. D.3.

MegaMapper Finally, for MegaMapper, the specifications are still to be finalized
given the early stage of the experiment compared to BOSS or DESI. We take the
numerical values from [237, 223], where as mentioned in the main text there is
an “idealized”, and a “fiducial” scenario. The specifications for the optimistic (or
“idealized") scenario are in Tab. D.4. They are based on Tab. 1 of [237]. For the
“fiducial" or what we call “pessimistic" scenario, we refer to table 2 in [237].
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z Ng V [(Mpch−1)3] nb[(hMpc−1)3] b1
0.65 432600 2.63× 109 1.64× 10−4 1.18
0.75 3.18× 106 3.15× 109 1.01× 10−3 1.23
0.85 2.70× 106 3.65× 109 7.38× 10−4 1.29
0.95 2.93× 106 4.1× 109 7.15× 10−4 1.35
1.05 2.02× 106 4.52× 109 4.46× 10−4 1.41
1.15 1.89× 106 4.89× 109 3.87× 10−4 1.47
1.25 1.87× 106 5.22× 109 3.59× 10−4 1.53
1.35 732200 5.5× 109 1.33× 10−4 1.59
1.45 652400 5.75× 109 1.13× 10−4 1.65
1.55 460600 5.97× 109 7.71× 10−5 1.72
1.65 176400 6.15× 109 2.87× 10−5 1.78

Table D.3: Survey details for each redshift bin for DESI. We show the number of mapped
galaxies Ng, the volume of the redshift bin V as well as the number density nb and the
linear bias b1.

z Ng V [(Mpch−1)3] nb[(hMpc−1)3] b1
2 6.75× 107 2.70× 1010 2.5× 10−3 2.5

2.5 3.32× 107 2.76× 1010 1.2× 10−3 3.3
3 1.63× 107 2.72× 1010 6× 10−4 4.1

3.5 7.88× 106 2.63× 1010 3× 10−4 4.9
4 3.76× 106 2.51× 1010 1.5× 10−4 5.8

4.5 1.90× 106 2.38× 1010 8× 10−5 6.6
5 901730 2.25× 1010 4× 10−5 7.4

Table D.4: Survey details for each redshift bin for MegaMapper (optimistic). We show
the number of mapped galaxies Ng, the volume of the redshift bin V as well as the number
density nb and the linear bias b1.

D.2 Further Analyses

Two further analyses, which to us do not carry the same significance as those
presented in the main sections, are presented here for completeness. In App. D.2.1
we present results for the “pessimistic" scenario for MegaMapper as opposed to the
“optimistic" scenario presented in Sec. 8.5.3. In App. D.2.2 we also present the
impact of the perturbativity prior, as discussed in Sec. 8.6, on base cosmological
parameters.
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D.2.1 MegaMapper “Pessimistic" Results

The survey specifications for the “pessimistic” scenario given in Tab. D.5 are
determined with the methods described in Sec. 8.3.

MMp: zeff nb,eff[(hMpc−1)3] b1 (kTree
max , k1Lmax, kNL) [hMpc−1] N1L

bins NTree
∆ N1L

∆

Bin 1 2.1 8.8×10−4 2.7 (0.12, 0.31, 2.2) 62 43 428
Bin 2 4.3 8.4×10−5 4.0 (0.21, 0.57, 8.2) 114 150 2331

Table D.5: MegaMapper “pessimistic" effective survey specifications, calculated according
to the formulas in Sec. 8.3. nb,eff is the background galaxy number density entering the
derivatives (not the covariance), Nbins is the number of k-bins we consider for the power
spectrum at 1-loop and N∆ is the number of triangles we consider for the bispectrum at
1-loop.

To avoid redundancy with the discussion of the optimistic scenario, we here
simply focus on base results for the pessimistic MegaMapper scenario. The dis-
cussion on fixing biases, shot noise and the inclusion of the perturbativity prior is
comparable to the optimistic case. The only difference are the absolute values, while
the relative gains are similar. We present results in Fig. D.1, where we present the
same base parameters as in the main section. Comparing to the figure and tables in
Fig. 8.7 for almost all parameters we see only a 30−40% difference compared to the
optimistic case. The non-Gaussianity scenarios all differ by roughly 40− 45%, inde-
pendent on whether we use the tree-level bispectrum, the loop, or the perturbativity
prior.

D.2.2 Perturbativity Prior Effect on Base Cosmological Para-

meters

We discuss here the effect of the perturbativity prior, also in combination with
the galaxy formation prior, on base cosmological parameters. Results for all surveys
are shown in Fig. D.2. We see that the most notable effect is on ln(1010As), ns and
Ωk, and a smaller effect on the other parameters. Furthermore, we found almost no
improvement on constraints for neutrino masses.
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Figure D.1: Triangle plots and errors from Fisher forecasts for MegaMapper (pessimistic)
including the spectral tilt and spatial curvature (left) and massive neutrinos (right) and
Non-Gaussianity (bottom). We use all power spectrum and bispectrum multipoles for the
above results, and use the analytical covariance without cross-correlations. In the table
we also report the upper and lower bounds of the 68% confidence interval for the sum of
massive neutrinos, i.e. P

[(∑
imνi −

∑
im

ref
νi

)
∈ (σ−, σ+)

]
= 0.68. For non-Gaussianity,

we also present results with only the inclusion of the tree-level bispectrum and with the
inclusion of a perturbativity prior (p.p) and the “galaxy-formation prior" (g.p.).
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Figure D.2: Triangle plots and errors from Fisher forecasts for BOSS (top left), DESI
(top right), and MegaMapper (bottom left), for base cosmological parameters including
the spectral tilt and spatial curvature. We always include the power spectrum at one
loop order with the addition of either the loop bispectrum or the loop bispectrum with a
perturbativity prior (p.p.) or also in combination with the “galaxy-formation prior" (g.p.).
We use all power spectrum and bispectrum multipoles in each case and use the analytical
covariance without cross-correlations.
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E
Appendix: Formation Time of
Galaxies

E.1 Degeneracy Equations

As mentioned in the main text, not all of the bias functions C(n)
Om,α

at a given n

are linearly independent in the sense that

∑
Om

n−m+1∑
α=1

d
(n)
i,Om,α

C(n)
Om,α

(x⃗, t) = 0 , (E.1)

for some time-independent coefficients d(n)i,Om,α
for i = 1, . . . , N

(n)
d , where N

(n)
d ≡

rank[d(n)] is the number of independent degeneracy equations. In particular, we find
N

(5)
d = 122, and in Ch. 6 we found N

(4)
d = 73. Additionally, letting N

(n)
C be the

number of C(n)
Om,α

functions that result after the procedure described in the main
chapter, we find N

(5)
C = 151 and in Ch. 6 we had N

(4)
C = 88. 1 Finally, using

N
(n)
b ≡ N

(n)
C −N

(n)
d to denote the number of basis elements at order n, this means

that N (5)
b = 29 and N

(4)
b = 15. 2 We confirm all of the fifth-order degeneracy

equations in the associated ancillary file.
Thus, one can solve the degeneracy equations Eq. (E.1) in terms of N (n)

b basis
elements, which we denote generically as E(n)

j (x⃗, t) for j = 1, . . . , N
(n)
b . Since this is

a basis, all of the original functions can be written in terms of it, so we have

C(n)
Om,α

(x⃗, t) =

N
(n)
b∑
j=1

A
(n)
Om,α,j

E(n)
j (x⃗, t) , (E.2)

for some time-independent coefficients A(n)
Om,α,j

. Plugging Eq. (E.2) into Eq. (9.9)

1Details can be found in Apps. B.3.2 and B.3.3.
2For completeness, we also have N

(3)
b = 7, N (2)

b = 3, and N
(1)
b = 1 with this method [131].
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then gives

δ(n)g (x⃗, t) =

N
(n)
b∑
j=1

e
(n)
j (t)E(n)

j (x⃗, t) , (E.3)

where e(n)j (t) =
∑

Om

∑n−m+1
α=1 cOm,α(t)A

(n)
Om,α,j

. The coefficients ej(t) are called bias
parameters, and we have now written the galaxy overdensity in terms of the minimal
number of linearly independent functions.

E.2 Basis of Descendants

Another, perhaps more natural, choice of basis functions is the so-called basis of
descendants [131], where if C(n)

Om,α
is used at order n, then C(n+1)

Om,α+1 is used at order
n+ 1. We write the fifth-order expansion in the basis of descendants as

δ(5)g (x⃗, t) =
29∑
j=1

bj(t)B(5)
j (x⃗, t) . (E.4)

As shown below, the first 15 terms in Eq. (E.4) are determined by the fourth-
order terms. That is, for j = 1, . . . , 15, the bj in Eq. (E.4) are the same as those in
Eq. (6.130), and the basis functions are given by

B(5)
j = B(4)

j

∣∣∣
C(4)
Om,α→C(5)

Om,α

(E.5)

where the B(4)
j are given explicitly in App. B.3.4. For the new elements derived

here, i.e. j = 16, . . . , 29, we have B(5)
j = C(5)

Om,α
, where the indices Om, α take the

following values for the given j

j : 16 17 18 19 20 21 22
Om, α : δ, 5 δ2, 4 r2, 4 δ3, 3 r3, 3 r2δ, 3 δ4, 2

j : 23 24 25 26 27 28 29
Om, α : r3δ, 2 r4, 2 δ5, 1 r5, 1 r4δ, 1 r3δ2, 1 p3, 3

. (E.6)

We also note that fifth order is the first time that ∂ivj has to be used as a seed
function to form a basis, for example through C(5)

p3,3 above. This is contrasted with
the case at fourth order where ∂i∂jΦ is enough.

Converting between the STL basis and the basis of descendants, we find the
following expression for the non-local-in-time bias parameters and the basis-of-
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descendants bias parameters

b̃27 = b1 − 4b2 + 6b3 − 4b4 + 90b8 − 76b9 + b16 ,

b̃28 = b18 − b9 ,

b̃29 = −4b8
3

+
4b9
3

− 10b11
3

+
7b20
3

+ b29 .

(E.7)

E.3 Lower-Order Bias Parameters

Here we show how bias parameters at fourth order appear automatically as biases
at fifth order. For notational convenience, in this Appendix we will use Γ as the
combined index Om, α, as in C(n)

Γ ≡ C(n)
Om,α

, and Γn as the set of the relevant Om

and α at order n, as defined in the sum in Eq. (9.9). We start with the fifth-order
degeneracy equations. It turns out, as we explicitly check in the ancillary file, that
the full set of degeneracy equations satisfied by C(5)

Γ , Eq. (E.1) with n = 5, can be
put in the block form

0 =
∑
Γ∈Γ4

d
(4)
i,ΓC

(5)
Γ (x⃗, t) +

∑
Γ∈Γ5\Γ4

d̃
(5)
i,ΓC

(5)
Γ (x⃗, t) , (E.8)

for i = 1, . . . , N
(5)
d , with d(4)i,Γ = 0 for i ∈ [N

(4)
d +1, N

(5)
d ] and d̃(5)i,Γ = 0 for i ∈ [1, N

(4)
d ].

For i = 1, . . . , N
(4)
d , the second term on the right-hand side of Eq. (E.8) vanishes,

so the C(5)
Γ with Γ ∈ Γ4 satisfy the same equations as the fourth-order functions,

Eq. (E.1) with n = 4. Therefore we can write them in an analogous way to the
n = 4 case of Eq. (E.2), that is

C(5)
Γ (x⃗, t) =

N
(4)
b∑
j=1

A
(4)
Γ,j E

(5)
j (x⃗, t) , (E.9)

for Γ ∈ Γ4, with
E(5)
j ≡ E(4)

j

∣∣∣
C(4)
Γ →C(5)

Γ

, (E.10)

for j = 1, . . . , N
(4)
b . Said another way, since the E(4)

j are just linear combinations of
some C(4)

Γ , we define E(5)
j for j = 1, . . . , N

(4)
b to be the same expressions as E(4)

j , but
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with C(4)
Γ replaced with C(5)

Γ , i.e.

E(4)
j (x⃗, t) =

∑
Γ∈Γ4

β
(4)
j,ΓC

(4)
Γ (x⃗, t) ,

E(5)
j (x⃗, t) =

∑
Γ∈Γ4

β
(4)
j,ΓC

(5)
Γ (x⃗, t) ,

(E.11)

for some coefficients β(4)
j,Γ.

Now, the bias expansion at fifth order is

δ(5)g (x⃗, t) =
∑
Γ∈Γ5

cΓ(t)C(5)
Γ (x⃗, t) . (E.12)

The sum above can be split into a sum over Γ ∈ Γ4 and a sum over Γ ∈ Γ5 \Γ4. For
the sum over Γ4, we have

∑
Γ∈Γ4

cΓ(t)C(5)
Γ (x⃗, t) =

N
(4)
b∑
j=1

e
(4)
j (t)E(5)

j (x⃗, t) , (E.13)

where we have used Eq. (E.9) and the definition of e(4)j (t) below Eq. (E.3). Thus,
the degeneracy equations Eq. (E.8) ensure that it is exactly the fourth-order bias
parameters e(4)j (t) that appear in Eq. (E.13). Then, for the sum over Γ ∈ Γ5 \ Γ4 in
Eq. (E.12), one can solve for the remaining N (5)

b −N (4)
b basis elements using the rest

of the degeneracy equations in Eq. (E.8), and this will introduce the additional bias
parameters that were not present at fourth order. Since this is true for generic bias
parameters e(4)j (t), it is true in particular for the basis of descendants bias parameters
b
(4)
j (t) in Eq. (E.4).
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Appendix: Quintessence

F.1 Green’s Functions

At linear order, the time dependence is completely captured by the growth factor,
defined as the solution of [128, 135]:

d2

d ln a2

(
D

H

)
+

(
2 + 3

d lnH

d ln a
− d lnC

d ln a

)
d

d ln a

(
D

H

)
= 0 , (F.1)

The equation has two solutions, a growing mode

D+(a) =
5

2

∫ a

0

C(ã)Ωm(ã)
H(a)

H(ã)
dã, (F.2)

and a decaying mode

D−(a) =
H(a)

H0Ω
1/2
m,0

. (F.3)

From these, we get the linear growth rates f± ≡ d lnD±
d ln a

, given as

f+(a) =

(
5

2

a

D+(a)
− 3

2

)
Ωm(a)C(a) , (F.4)

and
f−(a) = −3

2
Ωm(a)C(a) , (F.5)

where
Ωm(a) ≡ Ωm,0

H2
0

H(a)2
a−3 , ΩD(a) ≡ ΩD,0

H2
0

H(a)2
a−3(1+w) (F.6)

are the fractional matter and dark energy densities in terms of their present-day
values Ωm,0 and Ωd,0. To construct higher order solutions, it is useful to define
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Green’s functions, coming from Eqs. (10.28) and (10.30):

a
dGδ

σ(a, ã)

da
− f+(a)G

θ
σ(a, ã) = λσδ(a− ã), (F.7)

a
dGθ

σ(a, ã)

da
− f+(a)G

θ
σ(a, ã)−

f−(a)

f+(a)

(
Gθ
σ(a, ã)−Gδ

σ(a, ã)

)
= (1− λσ)δ(a− ã),

(F.8)

where σ ∈ {1, 2}, λ1 = 1 and λ2 = 0. Explicitly they are given by

Gδ
1(a, ã) =

1

ãW (ã)

(
dD−(ã)

dã
D+(a)−

dD+(ã)

dã
D−(a)

)
Θ(a− ã) , (F.9)

Gδ
2(a, ã) =

f+(ã)/ã
2

W (ã)

(
D+(ã)D−(a)−D−(ã)D+(a)

)
Θ(a− ã) , (F.10)

Gθ
1(a, ã) =

a/ã

f+(a)W (ã)

(
dD−(ã)

dã

dD+(a)

da
− dD+(ã)

dã

dD−(a)

da

)
Θ(a− ã) , (F.11)

Gθ
2(a, ã) =

f+(ã)a/ã
2

f+(a)W (ã)

(
D+(ã)

dD−(a)

da
−D−(ã)

dD+(a)

da

)
Θ(a− ã) , (F.12)

where Θ(a − ã) is the Heaviside step function, W (ã) is the Wronskian of D+ and
D−:

W (ã) =
dD−(ã)

dã
D+(ã)−

dD+(ã)

dã
D−(ã) , (F.13)

and we impose the boundary conditions

Gδ
σ(a, ã) = 0 and Gθ

σ(a, ã) = 0 for ã > a , (F.14)

Gδ
σ(ã, ã) =

λσ
ã

and Gθ
σ(ã, ã) =

(1− λσ)

ã
. (F.15)

At second order, the resulting time-dependent functions are given by

Gδσ(a) =
∫ 1

0

Gδ
σ(a, ã)

f+(ã)D
2
+(ã)

C(ã)D2
+(a)

dã , (F.16)

Gθσ(a) =
∫ 1

0

Gθ
σ(a, ã)

f+(ã)D
2
+(ã)

C(ã)D2
+(a)

dã, (F.17)
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F.1. Green’s Functions

for σ = 1, 2. At third order we have

U δ
σ(a) =

∫ 1

0

Gδ
1(a, ã)

f+(ã)D
3
+(ã)

C(ã)D3
+(a)

Gδσ(ã)dã, (F.18)

U θ
σ(a) =

∫ 1

0

Gθ
1(a, ã)

f+(ã)D
3
+(ã)

C(ã)D3
+(a)

Gδσ(ã)dã, (F.19)

Vδσσ̃(a) =
∫ 1

0

Gδ
σ̃(a, ã)

f+(ã)D
3
+(ã)

C(ã)D3
+(a)

Gθσ(ã)dã, (F.20)

Vθσσ̃(a) =
∫ 1

0

Gθ
σ̃(a, ã)

f+(ã)D
3
+(ã)

C(ã)D3
+(a)

Gθσ(ã)dã. (F.21)

The degeneracies pointed out in Eq. (B.86) result from the following identities:

Gδ1 + Gδ2 = Gθ1 + Gθ2 = G (F.22)

Vδ11 + Vδ21 = U δ
1 + U δ

2

Vθ11 + Vθ21 = U θ
1 + U θ

2

Vδσ1 + Vδσ2 = Vθσ1 + Vθσ2
Vδ11 + Vδ21 + Vδ12 + Vδ22 =

G2

2

Vθ11 + Vθ21 + Vθ12 + Vθ22 =
G2

2

U δ
1 − Vδ22 =

G
2

(
Gδ1 − Gδ2

)
U θ
1 − Vθ22 =

G
2

(
Gθ1 − Gθ2

)
where again σ ∈ {1, 2}. One can derive these relations using Eqs. (F.16) - (F.21)
and the fact that

Gδ
1(a, ã) +Gδ

2(a, ã) = Gθ
1(a, ã) +Gθ

2(a, ã) =
D+(a)

ãD+(ã)
Θ(a− ã) (F.23)

Gδ
1(a, ã)−Gθ

1(a, ã) =
W (a)

ãW (ã)

D′
+(ã)

D′
+(a)

Θ(a− ã). (F.24)
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Furthermore, for the derivation of some of the flow terms in App. F.3 it is important
to use the following relations:

Vδσ1(a) + Vδσ2(a) =
∫ a

0

D′
+(ã)D+(ã)

C(ã)D2
+(a)

Gθσ(ã)dã , (F.25)

G =

∫ a

0

D′
+(ã)

C(ã)D+(a)
dã , (F.26)∫ a

0

G(ã)D
′
+(ã)D+(ã)

C(ã)D+(a)2
dã =

G2

2
. (F.27)

F.2 Bias Operators, Halo Kernels and Degeneracy

of Halo Bias Parameters

In this section we quickly wish to outline how we get from equation Eq. (10.34)
to Eq. (10.42). First, we define the operators that appear in Eq. (10.34). In the
exact same way as in [135], we follow the approach used by [136], generalised to
exact time dependence. Using

η(x⃗, t) = θ(x⃗, t)− δ(x⃗, t) , (F.28)

we define
sij(x⃗, a) = Dijδ(x⃗, a) and tij(x⃗, a) = Dijη(x⃗, a), (F.29)

where Dij =
∂i∂j
∂2

− 1
3
δij. Then we get the contractions

s2(x⃗fl, a) = sij(x⃗fl, a)s
ij(x⃗fl, a) , s3(x⃗fl, a) = sij(x⃗fl, a)s

il(x⃗fl, a)sl
j(x⃗fl, a) , (F.30)

st(x⃗fl, a) = sij(x⃗fl, a)t
ij(x⃗fl, a) .

Furthermore, ψ is given by

ψ(x⃗, a) = θ(x⃗, a)− δ(x⃗, a)−
(
Gδ1(a)− Gθ1(a)

)(
s2(x⃗, a)− 2

3
δ2(x⃗, a)

)
, (F.31)

so that it only starts at third order.
The ϵ stochastic operators, are uncorrelated with the density field. Their cor-

relation functions will not depend on the initial power spectrum and contain all
terms allowed by rotational invariance in a derivative expansion as in (6.56), that
is ⟨ϵ(k⃗)ϵ(k⃗′)⟩′ = c0 + c1

k2

k2M
+ . . . . The ⟨. . . ⟩′ notation means that the correlation is

stripped of the momentum-conserving Dirac delta.

356
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One can show that all operators in Eq. (10.34), including the flow terms, up
to cubic order in the fluctuations, can be expressed as linear combinations of the
following nine momentum kernels (see [135], we can call the ‘exact-time’ basis or the
‘Greek’ basis):

I = 1 (F.32)

α(q⃗1, q⃗2) = 1 +
q⃗1 · q⃗2
q21

(F.33)

β(q⃗1, q⃗2) =
(q⃗1 + q⃗2)

2q⃗1 · q⃗2
2q21q

2
2

(F.34)

α1(q⃗1, q⃗2, q⃗3) = α(q⃗3, q⃗1 + q⃗2)αs(q⃗1, q⃗2), (F.35)

α2(q⃗1, q⃗2, q⃗3) = α(q⃗3, q⃗1 + q⃗2)β(q⃗1, q⃗2), (F.36)

β1(q⃗1, q⃗2, q⃗3) = 2β(q⃗3, q⃗1 + q⃗2)αs(q⃗1, q⃗2), (F.37)

β2(q⃗1, q⃗2, q⃗3) = 2β(q⃗3, q⃗1 + q⃗2)β(q⃗1, q⃗2), (F.38)

γ1(q⃗1, q⃗2, q⃗3) = α(q⃗1 + q⃗2, q⃗3)αs(q⃗1, q⃗2), (F.39)

γ2(q⃗1, q⃗2, q⃗3) = α(q⃗1 + q⃗2, q⃗3)β(q⃗1, q⃗2). (F.40)

The resulting redefinitions of parameters that appear in Eqs. (10.38) and (10.42)
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are given by

cα,(2)=G·cδ,1−cδ2,Gδ
2
−cs2,1 (F.41)

cβ,(2)=cδ2,Gδ
2
+cs2,1

cI,(2)=−G·cδ,1+cδ2,Gδ
1
+cδ2,Gδ

2
+cδ2,1+

2
3
cs2,1

cα1,(3)=
1
2
G2·cδ,1−G·cδ2,Gδ

2
− 1

2

(
cδ,Gδ

1
−cδ,Gδ

2

)
+cδ,Uδ

1
−G·cs2,1+cs2,Gδ

2

− 1
2

(
cst,Gθ

1
−cst,Gδ

1

)
+cψ,Uθ

1
−cψ,Uδ

1
+cψ,Gδ

1
+ 1

2
cs3

cα2,(3)=G·cδ2,Gδ
2
−cδ,Gδ

2
+cδ,Uδ

2
+G·cs2,1−cs2,Gδ

1
−2 cs2,Gδ

2
− 1

2

(
cst,Gθ

2
−cst,Gδ

2

)
+cψ,Uθ

2
−cψ,Uδ

2
+cψ,Gδ

2
−cs3

cβ1,(3)=cδ,Vδ
12
+cs2,Gδ

1
+ 1

2

(
cst,Gθ

1
−cst,Gδ

1

)
+cψ,Vθ

12
−cψ,Vδ

12
−cψ,Gδ

1

cβ2,(3)=cδ,Vδ
22
+cs2,Gδ

2
+ 1

2

(
cst,Gθ

2
−cst,Gδ

2

)
+cψ,Vθ

22
−cψ,Vδ

22
−cψ,Gδ

2
+ 1

2
cs3

cγ1,(3)=
(
Vδ11+Vδ12

)
cδ,1−cδ,Vδ

12
−cs2,Gδ

1
− 1

2

(
cst,Gθ

1
−cst,Gδ

1

)
+cψ,Vθ

11
−cψ,Vδ

11
+cψ,Gδ

1

cγ2,(3)=
(
Vδ21+Vδ22

)
cδ,1−cδ,Vδ

22
−cs2,Gδ

2
− 1

2

(
cst,Gθ

2
−cst,Gδ

2

)
+cψ,Vθ

21
−cψ,Vδ

21
+cψ,Gδ

2
− 1

2
cs3

cα,(3)=−3
2
G2·cδ,1−

(
Vδ11+Vδ12

)
cδ,1+cδ,Vδ

11
+cδ,Vδ

12
+G·

(
2 cδ2,Gδ

1
+3 cδ2,Gδ

2

)
− 1

2

(
cδ,Gδ

1
+3 cδ,Gδ

2

)
+2G·cδ2,1−2 cδ2,Gδ

2
+ 7

3
G·cs2,1−cs2,Gδ

1
− 7

3
cs2,Gδ

2
+ 2

3

(
cst,Gθ

1
−cst,Gδ

1

)
−cδs2− 1

2
cs3

cβ,(3)=−
(
Vδ21+Vδ22

)
cδ,1+cδ,Vδ

21
+cδ,Vδ

22
−G·cδ2,Gδ

2
+cδ,Gδ

2

+2 cδ2,Gδ
2
−G·cs2,1+cs2,Gδ

1
+ 7

3
cs2,Gδ

2
+ 2

3

(
cst,Gθ

2
−cst,Gδ

2

)
+cδs2+

1
2
cs3

cI,(3)=G2·cδ,1−2G
(
cδ2,Gδ

1
+cδ2,Gδ

2

)
+cδ,Gδ

1
+cδ,Gδ

2
−2G·cδ2,1+2

(
cδ2,Gδ

1
+cδ2,Gδ

2

)
− 4

3
G·cs2,1+ 4

3

(
cs2,Gδ

1
+cs2,Gδ

2

)
+ 2

9
cs3+

2
3
cδs2+cδ3

where the coefficients that appear here are the symbolic integrals over the time-
dependent functions defined in App. F.1 that come from the expansion Eq. (10.34).
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They read

cδ,1(a) =

∫ a da′

a′
cδ(a, a

′)
D+(a

′)

D+(a)
, (F.42)

cδ2,Gδ
σ
(a) =

∫ a da′

a′
cδ(a, a

′)
D+(a

′)2

D+(a)2
Gδσ(a′),

cs2,1(a) =

∫ a da′

a′
cs2(a, a

′)
D+(a

′)2

D+(a)2
,

cδ2,1(a) =

∫ a da′

a′
cδ2(a, a

′)
D+(a

′)2

D+(a)2
,

cs3(a) =

∫ a da′

a′
cs3(a, a

′)
D+(a

′)3

D+(a)3
,

cδ3(a) =

∫ a da′

a′
cδ3(a, a

′)
D+(a

′)3

D+(a)3
,

cδ,Uδ
σ
(a) =

∫ a da′

a′
cδ(a, a

′)
D+(a

′)3

D+(a)3
U δ
σ(a

′),

cδ,Gδ
σ
(a) =

∫ a da′

a′
cδ(a, a

′)
D+(a

′)3

D+(a)3
G(a′)Gδσ(a′),

cδ,Vδ
σσ̃
(a) =

∫ a da′

a′
cδ(a, a

′)
D+(a

′)3

D+(a)3
Vδσσ̃(a′),

cδs2(a) =

∫ a da′

a′
cδs2(a, a

′)
D+(a

′)3

D+(a)3
,

cδ2,Gδ
σ
(a) =

∫ a da′

a′
cδ2(a, a

′)
D+(a

′)3

D+(a)3
Gδσ(a′),

cs2,Gδ
σ
(a) =

∫ a da′

a′
cs2(a, a

′)
D+(a

′)3

D+(a)3
Gδσ(a′),

cst,Gδ
σ
(a) =

∫ a da′

a′
cst(a, a

′)
D+(a

′)3

D+(a)3
Gδσ(a′),

cst,Gθ
σ
(a) =

∫ a da′

a′
cst(a, a

′)
D+(a

′)3

D+(a)3
Gθσ(a′),

cψ,Uδ
σ
(a) =

∫ a da′

a′
cψ(a, a

′)
D+(a

′)3

D+(a)3
U δ
σ(a

′),

cψ,Vδ
σσ̃
(a) =

∫ a da′

a′
cψ(a, a

′)
D+(a

′)3

D+(a)3
Vδσσ̃(a′),

cψ,Uθ
σ
(a) =

∫ a da′

a′
cψ(a, a

′)
D+(a

′)3

D+(a)3
U θ
σ(a

′),

cψ,Vθ
σσ̃
(a) =

∫ a da′

a′
cψ(a, a

′)
D+(a

′)3

D+(a)3
Vθσσ̃(a′),

cψGδ
σ
(a) =

∫ a da′

a′
cψ(a, a

′)
D+(a

′)3

D+(a)3
Gδσ(a′)

(
Gδ1(a′)− Gθ1(a′)

)
.
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For completeness, we here explicitly write the Ci operators that appear in Eq. (10.42):

∗C(1)
δ (q⃗1) = 1 (F.43)

∗C(2)
δ (q⃗1, q⃗2) = β(q⃗1, q⃗2)

∗C(2)
α (q⃗1, q⃗2) = α(q⃗1, q⃗2)− β(q⃗1, q⃗2)

∗C(2)
I (q⃗1, q⃗2) = 1

∗C(3)
δ (q⃗1, q⃗2, q⃗3) = − 3

14
α1(q⃗1, q⃗2, q⃗3) +

3

7
α2(q⃗1, q⃗2, q⃗3)

+
2

7
β2(q⃗1, q⃗2, q⃗3) +

3

14
γ1(q⃗1, q⃗2, q⃗3)

∗C(3)
α1
(q⃗1, q⃗2, q⃗3) = α1(q⃗1, q⃗2, q⃗3)− α2(q⃗1, q⃗2, q⃗3)

∗C(3)
β1
(q⃗1, q⃗2, q⃗3) = −α2(q⃗1, q⃗2, q⃗3) + β1(q⃗1, q⃗2, q⃗3)− γ1(q⃗1, q⃗2, q⃗3)

∗C(3)
γ2
(q⃗1, q⃗2, q⃗3) = −α1(q⃗1, q⃗2, q⃗3) + 2α2(q⃗1, q⃗2, q⃗3)

−β2(q⃗1, q⃗2, q⃗3) + γ2(q⃗1, q⃗2, q⃗3)

∗C(3)
α (q⃗1, q⃗2, q⃗3) = α(q⃗1, q⃗2)− β(q⃗1, q⃗2)

∗C(3)
β (q⃗1, q⃗2, q⃗3) = β(q⃗1, q⃗2)

∗C(3)
I (q⃗1, q⃗2, q⃗3) = 1

∗C(3)
Y (q⃗1, q⃗2, q⃗3) = −α1(q⃗1, q⃗2, q⃗3) + 2α2(q⃗1, q⃗2, q⃗3)

−β2(q⃗1, q⃗2, q⃗3) + γ1(q⃗1, q⃗2, q⃗3),

where the Ci are related to the ∗Ci by

C(n)
i (k⃗, a) =

∫
d3q1
(2π)3

...
d3qn
(2π)3

(2π)3δD(k⃗ − q⃗1 − ...− q⃗n)
∗C(n)

i (q⃗1, ..., q⃗n)δ
(1)
q⃗1
(a)...δ

(1)
q⃗n
(a).

(F.44)

F.3 Deriving Flow Terms

We here derive the flow terms coming from the Taylor expansion

δ(x⃗fl(a, a
′), a′) = δ(x⃗, a′)− ∂iδ(x, a

′)

∫ a

a′

da′′

a′′2H(a′′)
vi(x⃗, a′′) (F.45)

+
1

2
∂i∂jδ(x, a

′)

∫ a

a′

da′′

a′′2H(a′′)
vi(x⃗, a′′)

∫ a

a′

da′′′

a′′′2H(a′′′)
vj(x⃗, a′′′)

+∂iδ(x, a
′)

∫ a

a′

da′′

a′′2H(a′′)
∂jv

i(x⃗, a′′)

∫ a

a′′

da′′′

a′′′2H(a′′′)
vj(x⃗, a′′′) + ... .
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In the bias expansion from [129, 135] we integrate over time integral kernels such
as cδ(a, a′), which we will be including in the following. We will often us the former
definition vi = −a2H D′

+

D+ C
∂i
∂2
θ, as well as the star notation from Eq. (F.44).

First, we expand the overdensity and velocity divergence perturbatively. Apart
from δ(2), the only second-order term is in the first line, which is given by

−
∫ a da′

a′
cδ(a, a

′) ∂iδ
(1)(a′)

∫ a

a′

da′′

a′′2H(a′′)
v(1)i(a′′) = (F.46)

=

∫ a da′

a′
cδ(a, a

′)
D+(a

′)

D+(a)
∂iδ

(1)(a)

∫ a

a′
da′′

D′
+(a

′′)

C(a′′)D+(a)

∂i

∂2
θ(1)(a)

=

∫ a da′

a′
cδ(a, a

′)
D+(a

′)

D+(a)
∂iδ

(1)(a)
∂i

∂2
θ(1)(a)

[
G(a)− D+(a

′)

D+(a)
G(a′)

]
=
[
cδ,1(a)G(a)− cδ2,Gδ

1
(a)− cδ2,Gδ

2
(a)
]
∂iδ

(1)(a)
∂i

∂2
θ(1)(a)

wCDM
= cδ,12(a)∂iδ

(1)(a)
∂i

∂2
θ(1)(a) .

Next, we take this same term with δ at second order and v at first order. This gives

−
∫ a da′

a′
cδ(a, a

′) ∂iδ
(2)(a′)

∫ a

a′

da′′

a′′2H(a′′)
v(1)i(a′′) = (F.47)

=

∫ a da′

a′
cδ(a, a

′)

[
G(a)− D+(a

′)

D+(a)
G(a′)

]
∂iδ

(2)(a′)
∂i

∂2
θ(1)(a) .

In Fourier space this reads

=
[
G(a)cδ2,Gδ

1
− cδ,Gδ

1

] (
α1(q⃗1, q⃗2, q⃗3)− α(q⃗1, q⃗2)

)
(F.48)

+
[
G(a)cδ2,Gδ

2
− cδ,Gδ

2

] (
α2(q⃗1, q⃗2, q⃗3)− β(q⃗1, q⃗2)

)
EdS
= [cδ,2(a)− cδ,3(a)]

∗[∂iδ
(2) ∂

i

∂2
θ(1)]k⃗(a),

Again, from the same term, we can take δ at linear and v at second order. We have

−
∫ a da′

a′
cδ(a, a

′) ∂iδ
(1)(a′)

∫ a

a′

da′′

a′′2H(a′′)
v(2)i(a′′) = (F.49)

=

∫ a da′

a′
cδ(a, a

′)
D+(a

′)

D+(a)
∂iδ

(1)(a)

∫ a

a′
da′′

D′
+(a

′′)

C(a′′)D+(a′′)

∂i

∂2
θ(2)(a′′) .
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In terms of Fourier space kernels this reads

=

∫ a da′

a′
cδ(a, a

′)
D+(a

′)

D+(a)

∫ a

a′
da′′

D′
+(a

′′)D+(a
′′)

C(a′′)D+(a)2
Gθ1(a′′)

(
γ1(q⃗1, q⃗2, q⃗3)−α(q⃗1, q⃗2)

)
+

∫ a da′

a′
cδ(a, a

′)
D+(a

′)

D+(a)

∫ a

a′
da′′

D′
+(a

′′)D+(a
′′)

C(a′′)D+(a)2
Gθ2(a′′)

(
γ2(q⃗1, q⃗2, q⃗3)−β(q⃗1, q⃗2)

)
=
[(
Vδ11(a) + Vδ12(a)

)
cδ,1 − cδ,Vδ

11
− cδ,Vδ

12

] (
γ1(q⃗1, q⃗2, q⃗3)− α(q⃗1, q⃗2)

)
+
[(
Vδ21(a) + Vδ22(a)

)
cδ,1 − cδ,Vδ

21
− cδ,Vδ

22

] (
γ2(q⃗1, q⃗2, q⃗3)− β(q⃗1, q⃗2)

)
(F.50)

EdS
=

1

2
[cδ,1(a)− cδ,3(a)]

∗[∂iδ
(1)(a)

∂i

∂2
θ(2)(a)]k⃗,

where the expression for clustering quintessence takes the same form as for wCDM,
and we used Eq. (F.25).

In the second and third lines of Eq. (F.45) we can take all fields at linear order.
We have∫ a da′

a′
cδ(a, a

′)
1

2
∂i∂jδ(x, a

′)

∫ a

a′

da′′

a′′2H(a′′)
v(1)i(x⃗, a′′)

∫ a

a′

da′′′

a′′′2H(a′′′)
v(1)j(x⃗, a′′′)

+

∫ a da′

a′
cδ(a, a

′)∂iδ(x, a
′)

∫ a

a′

da′′

a′′2H(a′′)
∂jv

(1)i(x⃗, a′′)

∫ a

a′′

da′′′

a′′′2H(a′′′)
v(1)j(x⃗, a′′′)

=

∫ ada′
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cδ(a, a
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1

2

D+(a
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D+(a)
∂i∂jδ

(1) ∂i

∂2
θ(1) ∂

j

∂2
θ(1)
∫ a

a′
da′′

D′
+(a

′′)

C(a′′)D+(a)

∫ a

a′
da′′′

D′
+(a

′′′)

C(a′′′)D+(a)

+

∫ ada′

a′
cδ(a, a

′)
D+(a

′)

D+(a)
∂iδ

(1) ∂j∂
i

∂2
θ(1) ∂

j

∂2
θ(1)
∫ a

a′
da′′

D′
+(a

′′)

C(a′′)D+(a)

∫ a

a′′
da′′′

D′
+(a

′′′)

C(a′′′)D+(a)

=

∫ a da′
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cδ(a, a
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1

2

D+(a
′)

D+(a)

(
G(a)− D+(a

′)

D+(a)
G(a′)

)2

× (F.51)

×
[
∂i∂jδ

(1) ∂i

∂2
θ(1) ∂

j

∂2
θ(1) + ∂iδ

(1) ∂j∂
i

∂2
θ(1) ∂

j

∂2
θ(1)
]
(a)

=

(G(a)2
2

cδ,1 − G(a)(cδ2,Gδ
1
+ cδ2,Gδ

2
) +

1

2
(cδ,Gδ

1
+ cδ,Gδ

2
)

)
×

×
[
∂i∂jδ

(1) ∂i

∂2
θ(1) ∂

j

∂2
θ(1) + ∂iδ

(1) ∂j∂
i

∂2
θ(1) ∂

j

∂2
θ(1)
]
(a)

wCDM
= cδ,123(a)

[
∂i∂jδ

(1) ∂i

∂2
θ(1) ∂

j

∂2
θ(1) + ∂iδ

(1) ∂j∂
i

∂2
θ(1) ∂

j

∂2
θ(1)
]
(a) .

For completeness, the flow terms from δ2 and s2 read

2
(
G(a)cδ2,1 − cδ2,Gδ

1
− cδ2,Gδ

2

)
[δ(1)∂iδ

(1) ∂
i

∂2
θ(1)]k⃗(a) (F.52)

wCDM
= 2cδ2,12[δ

(1)∂iδ
(1) ∂

i

∂2
θ(1)]k⃗(a) ,
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2
(
G(a)cs2,1 − cs2,Gδ

1
− cs2,Gδ

2

)
[s

(1)
lm∂i(s

lm)(1)
∂i

∂2
θ(1)]k⃗(a) (F.53)

wCDM
= 2cs2,12[s

(1)
lm∂i(s

lm)(1)
∂i

∂2
θ(1)]k⃗(a) .

F.4 Full Posteriors

In Fig. F.1, we show the full posteriors for all cosmological and the non-analytically
marginalized bias parameters for the analysis of BOSS data alone of Fig. 10.7.
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Figure F.1: Full posteriors for the fits of clustering quintessence, wCDM with physical
prior w ≥ 1, and ΛCDM, to BOSS with a BBN prior. We show the non-analytically
marginalized biases bi1 and ci2, where i denotes the skycuts: i = 1 is CMASS NGC, i = 2

is CMASS SGC, i = 3 is LOWZ NGC.
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