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ABSTRACT Quantum computing promises a paradigm shift in computational power. However, a major
challenge is mitigating the inherent noise and errors in quantum circuits. As quantum computers operate,
their fragile qubits are highly susceptible to environmental disturbances, leading to errors that affect the
outcomes of repeated circuit executions. Understanding and predicting these errors is crucial for improving
the accuracy and reliability of quantum computing systems. In this work, we analyze and predict the output
patterns of a single qubit quantum circuit by treating the results of repeated executions as a time series.
Specifically, we collect measurement data from multiple runs of a quantum circuit and construct a time
series from these observations. By training a predictive model, we aim to forecast future outcomes, providing
insights into the error behavior of the quantum circuit. Additionally, we analyze time series data from two
different circuits executed on the same qubit to investigate potential relationships and assess whether one
dataset can be used to predict the other. Our findings reveal key characteristics of quantum circuit outputs,
including stationarity, autocorrelation, seasonality, trends, linearity, and causality. The analysis highlights
intriguing behaviors within the dataset. Furthermore, we evaluate multiple time series prediction methods
and determine that XGBoost (Extreme Gradient Boosting) outperforms other approaches, demonstrating its
effectiveness in accurately predicting quantum computing outputs in subsequent runs.

INDEX TERMS Quantum computing, quantum error mitigation, time series analysis, predictive modeling,
XGBoost.

I. INTRODUCTION
The study of error patterns and noise in quantum computing
has been a major focus as researchers seek to build more
reliable quantum systems. Early studies such as Shor’s
introduction of Quantum Error Correction (QEC) laid the
foundation for dealing with errors in quantum systems [1].
QEC methods aim to detect and correct quantum errors,
but there is little research on understanding the temporal
structure of these errors. More recent work [2], [3], [4] has
explored various quantum noise models such as decoherence
and dephasing, which describe how qubits interact with their
environments and the resulting loss of quantum information.
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In parallel, the use of time series analysis has grown in
classical computing for tasks like predictive maintenance
and error pattern prediction [2], [5]. Models such as the
AutoRegressive (AR) model, the Moving Average (MA)
model, and the AutoRegressive Integrated Moving Average
(ARIMA)model have been used successfully to analyze error
dynamics in classical systems [6]. These models provide a
statistical framework to capture the temporal dependencies in
the data, making them highly suitable for analyzing the output
of quantum circuits.

Although the literature covers quantum error correction
and noise modeling extensively [7], [8], the application
of time series models to predict quantum circuit outputs
remains largely unexplored. Previous works have primarily
focused on noise mitigation at the algorithmic or hardware
level, without examining the predictability of quantum
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circuit outputs over time [9], [10], [11]. Some recent
studies, such as [12] have started to analyze quantum error
dynamics using statistical and machine learning methods.
These approaches, however, typically focus on improving
quantum noise mitigation techniques rather than predicting
the future outcomes of quantum circuits directly. This
creates a unique opportunity to bridge the gap between
classical time series forecasting methods and quantum error
analysis. Furthermore, the ability to forecast future outcomes
based on past quantum circuit results could provide a
valuable tool for real-time error mitigation strategies. Among
others, Baheri et al. [13] investigate the temporal behavior of
quantum errors and propose methods to analyze the behavior
of qubit errors, including T1 and T2 relaxation times,
frequency of operation, entanglement errors and readout
errors. Also, quantum computer users do not always have
access to all relevant parameters. A sudden shutdown of
a quantum computer could render years of data collection
unusable. Even if the quantum computer remains operational,
its structure may change over time, affecting the relevance of
the data. Collecting data over several years is not an efficient
solution for a device designed to accelerate simulations.

To address these issues, we develop a hardware-level
quantum error temporal analysis to predict noise. Unlike the
approaches in [13] and [14], which rely on historical data
from quantum computers, our method leverages data directly
from the quantum circuit used.

This research aims to address the gap by applying classical
time series forecasting techniques to quantum circuit data.
Specifically, by treating the number of ‘‘0’’ outcomes from
repeated quantum circuit executions as a time series, we seek
to predict future outcomes using statistical and machine
learning models. The results of this study could pave the
way for more reliable quantum error mitigation techniques by
predicting the error behavior in quantum circuits and enabling
proactive correction strategies.

This work proposes a novel approach to quantum circuit
analysis by (1) applying time series analysis to quantum
circuit outputs while focusing on predicting the measure-
ment outcomes; (2) using machine learning techniques or
traditional statistical models like ARIMA to predict future
time series values in a quantum context; (3) investigating the
predictive power of these models and their implications for
real-time error correction in quantum computing.

The remainder of this paper is organized as follows.
Section II provides a critical review of state-of-the-art
advances and relevant literature in the field. Section III
outlines the methodological framework, including circuit
architecture specifications, experimental protocols, and quan-
titative evaluation metrics. Section IV presents a comprehen-
sive analysis of the experimental results, featuring data set
characterizations, methodological implementations, compar-
ative performance benchmarks, and statistical evaluations.
Section V provides a critical interpretation of the findings
through technical and comparative lenses, addressing both
theoretical implications and practical considerations. Finally,

Section VI synthesizes key contributions, discusses broader
impacts, and proposes strategic directions for future research.

II. RELATED WORKS
Quantum computing has the potential to revolutionize fields
such as cryptography and artificial intelligence by leveraging
principles of quantum mechanics to perform computations
far beyond the reach of classical computers. However, the
practical realization of quantum computing is significantly
hindered by error-prone quantum systems. Understanding
and analyzing error behavior in quantum computers is a
critical research area to address this challenge. Errors in
quantum computers arise primarily due to the fragile nature of
quantum states, which are easily perturbed by environmental
interactions. Common sources include decoherence, the
loss of quantum coherence due to interactions with the
environment leading to state degradation over time [15];
gate imperfections, inaccuracies during the implementation
of quantum gates due to hardware constraints [16]; and
measurement errors, occurring during the readout process
and often influenced by noise in detection mechanisms [17].
These errors collectively contribute to the accumulation of
computational inaccuracies, which requires reliable error
analysis techniques.

Several approaches have been developed to model and
characterize errors in quantum systems. Noise models, such
as depolarizing, amplitude-damping, and phase-damping
channels, are widely used to represent error processes [18].
Error characterization protocols, including Randomized
Benchmarking [19] and Quantum Process Tomography [20],
allow for the experimental quantification of error rates
and coherence properties. Error mitigation strategies aim to
reduce the impact of errors without the overhead of full
quantum error correction. Key approaches include ZeroNoise
Extrapolation (ZNE), which estimates the error-free outcome
by extrapolating results from intentionally increased noise
levels [21], and Probabilistic Error Cancellation, which uses
classical post-processing to revert noisy outcomes to their
ideal counterparts by applying inverse noise models [22].
QuantumError Correction (QEC) provides amore rigorous

approach by encoding logical qubits into multiple physical
qubits to detect and correct errors. Significant advances
include the Shor Code, the first QEC code to demonstrate
correction of both bit-flip and phase-flip errors [1], and
Surface Codes, high-threshold codes particularly suited for
2D architectures [23]. Despite their promise, QEC techniques
require substantial qubit overhead and operational precision,
posing implementation challenges.

Recent studies highlight the importance of understanding
the temporal and contextual aspects of errors [13], [14],
[24], [25]. Temporal analysis focuses on how error rates
change over time as a result of hardware degradation or
environmental fluctuations. A significant contribution in this
domain is the paper of Baheri et al. [13], which emphasizes
the role of temporal variations in error behavior, accounting
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for factors such as T1 and T2 relaxation times and gate
operation variances. This paper highlights the need for
temporal monitoring to predict error trends and improve
calibration strategies.

Contextual analysis examines how external factors and
operational configurations influence error characteristics.
In [24], Hirasaki et al. explored fluctuations in supercon-
ducting qubit performance and demonstrated methods for
identifying and mitigating these variations in real-time. This
work underscores the interplay between environmental influ-
ences, such as temperature and electromagnetic interference,
and error behavior.

Moreover, Seif et al. [25] demonstrate how spatial and
temporal error correlations can be mitigated by tailoring
compilation strategies to the specific operational context
of quantum processors. Such context-aware approaches
optimize gate scheduling and qubit placement, reducing the
impact of correlated noise.

Machine learning has emerged as a powerful tool for
temporal and contextual error analysis. Algorithms trained
on historical error data, as detailed in [26], [27], [28],
and [29] provide predictive insights that guide error mit-
igation strategies. These models integrate temporal trends
and contextual dependencies to adaptively optimize quantum
circuit execution.

Emerging research in error behavior analysis is focused on
hybrid quantum-classical techniques and machine learning
applications. One promising development is the hybrid
quantum error correction method that integrates discrete
variable (DV) and continuous variable (CV) qubits. This
approach, as proposed by Lee et al. [30], enhances error
correction capabilities by leveraging the strengths of both
qubit types.

Machine learning is another transformative tool.
Researchers demonstrated an ab initio learning process
for error mitigation, offering efficient strategies to min-
imize errors without the need for complex hardware
adjustments [31]. Furthermore, the practical machine
learning-based approach Q-LEAR, introduced in [32], offers
novel feature sets tomitigate noise errors in quantum software
output.

Reference [10] provides a system that uses LSTM neural
networks to predict the fidelity of quantum circuits. Q-fid
learns from the circuit structure itself, without needing extra
calibration data. It uses a text-based representation of the
circuit and a metric called to predict the circuit’s fidelity. This
helps identify higher fidelity circuit layouts to reduce errors
and improve quantum computing efficiency [10].

Reference [11] introduces a method using a time-series
neural network to predict quantum circuit outputs and
reduce errors caused by noise. The method cleans data
using one-hot encoding and a Quantum Auto-encoder
(QAE), and then models the quantum circuit process
over time using a temporal neural network. An ensemble
model is then used to predict the circuit output and is

optimized using a loss function and a dual approach.
A dual perspective further optimizes the model. This method
was tested and performed better than the IBM Quan-
tum Experience framework, aiming to reduce errors from
sources like qubit errors and decoherence through machine
learning.

In the context of time series analysis, a large amount
of high-quality research has been conducted. For instance,
Hans et al. Reference [33] provided the current state-of-
the-art of deep learning models for time series prediction,
categorizing them into discriminative, generative, and hybrid
models. Discriminative models, such as Long Short-term
memory (LSTM), learn from observed data using conditional
probability. As for generative models, they considered the
joint probability of observations and targets, enabling the
generation of random instances. On the other hand, hybrid
models combine different approaches, such as clustering
and combinations of deep learning methods. The experi-
ments mentioned by Han et al. [33] used benchmark and
real-world data to assess model performance, finding that
the LSTM and hybrid models showed greater stability.
In [34], Deb et al. reviewed nine machine learning techniques
to predict building energy consumption using time series
data. They suggested that hybrid models are generally
superior for forecasting building energy because the lat-
ter combine the strengths of different methods, such as
ARIMA, which have specific advantages and limitations.
For example, ARIMA captures linear patterns, but they also
have issues such as parameter sensitivity, model complexity,
and lack of interpretability. Oukhouya et al. [35] evaluated
the performance of SVR and XGBoost for the prediction
of stock prices, along with the LSTM models. To this
end, they applied hyperparameter tuning and demonstrated
that XGBoost achieved better accuracy, outperforming SVR
slightly in accuracy. They highlighted the adaptability of
XGBoost. On the other hand, Zivot et al. [36] emphasized
the utility of Vector Autoregression (VAR) in modeling
dynamic interactions among economic and financial time
series. They demonstrated VAR’s superiority over univariate
models for forecasting and capturing interdependencies, with
applications in macroeconomic policy analysis and wind
farm power forecasting. They also discussed extensions
such as sparsified VAR models to improve computa-
tional efficiency in high-dimensional settings. Williams
and Rasmussen’s foundational paper [37] underpins Gaus-
sian process (GP) use in time series prediction, where
covariance kernels (e.g., periodic, autoregressive) model
temporal patterns and Bayesian inference quantifies forecast
uncertainty. While not time series specific, its framework
treats time as an input variable, enabling flexible modeling
of trends, seasonality, and noise without rigid assumptions
(e.g., linearity in ARIMA). By optimizing hyperparame-
ters via marginal likelihood, GPs adapt to non-stationary
or irregularly sampled data, later inspiring specialized
autoregressive and spatiotemporal GP models. The work
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remains pivotal for probabilistic, interpretable time series
forecasting.

These advancements underscore the synergy between
classical and quantum techniques, paving the way for robust
quantum computing systems. The integration of machine
learning with quantum platforms enables adaptive error
management strategies that are more efficient and scalable
than traditional methods.

While existing research in the field of quantum computing
has produced numerous valuable and innovative contri-
butions, a significant gap remains in understanding and
leveraging the temporal nature of quantum circuits to mitigate
errors. Most prior studies focus on static or one-time error
characterization, overlooking the possibility that errors in
quantum circuits exhibit temporal correlations or patterns
that can be analyzed and exploited for improved error
suppression.

This raises several fundamental questions: Can we identify
meaningful patterns in the errors generated by a quan-
tum circuit over time? Is there a systematic way to use
past circuit outputs to refine predictions or corrections
for future executions of the same or similar circuits? If
so, how can such an approach enhance quantum error
mitigation strategies and improve the reliability of quantum
computations?

In this paper, we aim to explore these questions by
conducting a thorough analysis of error behavior in
quantum circuits. We will investigate whether the tem-
poral evolution of errors follows discernible trends and
whether these trends can be harnessed to develop pre-
dictive models for error mitigation. Our findings could
pave the way for novel techniques that enhance the sta-
bility and accuracy of quantum computations, ultimately
contributing to the advancement of fault-tolerant quantum
computing.

III. METHODOLOGY
This study employs a systematic approach to time series anal-
ysis for predicting quantum circuit outcomes, emphasizing
its application in understanding and mitigating error behavior
in quantum systems. The methodology is divided into three
primary sections: the necessity of time series analysis in
quantum error mitigation, the key properties of time series
data for effective analysis, and the detailed explanation of the
forecasting algorithm implemented in this work.

A. NECESSITY OF TIME SERIES ANALYSIS IN QUANTUM
ERROR MITIGATION
Quantum computing systems are inherently prone to errors
due to decoherence, gate imperfections, and environmental
noise. These errors manifest themselves in the outcomes of
quantum circuits, leading to deviations from the expected
results. Although quantum error correction schemes such
as surface codes provide robust solutions, they require
significant hardware overhead, making them infeasible for
near-term quantum devices.

In this context, time series analysis offers a complementary
approach by examining the sequential nature of quantum
circuit outputs. Measurement outcomes from quantum cir-
cuits often exhibit temporal patterns as a result of the
underlying quantum computer noise and error dynamics.
By analyzing these patterns, time series forecasting enables
the prediction of future outcomes based on historical data.

This predictive capability is essential for two reasons:
• Error Diagnostics: Time series forecasting can identify
recurring error patterns, enabling targeted mitigation
strategies.

• Proactive Error Mitigation: Predicting outcomes
ahead of time allows adjustments to the system or
circuit parameters to minimize the impact of errors, thus
improving computational accuracy.

The necessity of time series analysis lies in its ability
to provide insight into error behavior without the need for
hardware-intensive error correction, making it a valuable tool
for near-term quantum devices.

B. KEY PROPERTIES OF TIME SERIES DATA FOR
EFFECTIVE ANALYSIS
To achieve reliable forecasting and extract meaningful
insights, it is crucial to analyze the intrinsic properties
of the time series data generated from quantum circuits.
The following properties are considered in this study in
section IV:
1) Stationarity: A stationary time series maintains con-

sistent statistical properties (mean, variance, autocor-
relation) throughout time, making it easier to model.
Quantum circuit outcomes often exhibit non-stationary
behavior due to drifts in system parameters or envi-
ronmental conditions. Techniques like differencing or
detrending are applied to achieve stationarity, ensuring
accurate modeling.

2) Linearity and Nonlinearity: Linearity refers to the
proportional relationship between inputs and outputs.
While linear models like ARIMA can effectively capture
simple relationships, quantum systems often exhibit
nonlinear dynamics. Advanced models like LSTM
(Long Short-Term Memory) networks are employed to
handle these complexities.

3) Seasonality and Trends: Quantum circuit outcomes
may exhibit periodic patterns (seasonality) or long-term
shifts (trends) due to systematic errors or evolving
noise characteristics. Identifying and modeling these
components is essential for accurate forecasting.

4) Autocorrelation: It measures the dependency of current
values on past values. High autocorrelation indicates
that past outcomes strongly influence future results,
justifying the use of lag features in forecasting
models.

C. FORECASTING ALGORITHM FOR TIME SERIES
ANALYSIS
The implemented algorithm combines classical machine
learning techniques with domain-specific adaptations to
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forecast quantum circuit outcomes. The forecasting process
involves iterative steps designed to extract patterns from
historical data and predict future values.

1) OVERVIEW
The algorithm is structured to address the challenges of
time series forecasting, including data sparsity and non-
stationarity. Using lag features, previous time series values,
it captures dependencies and trends that influence future
outcomes.

2) STEP-BY-STEP ALGORITHM DESCRIPTION
1) Data Partitioning: For each iteration i (ranging from

0.8N to N where N is the length of the datasets) the
dataset is split into two subsets: training set which
contains all data points up to i, and test set that contains
the single data point at i, which serves as the prediction
target.

2) Feature Engineering: Lag features are constructed
from the training set to serve as input for the forecasting
model. To predict the value at time step i, the algorithm
considers the previous 10 time steps (i−1, i−2, . . . , i−
10). These features allow the model to capture patterns
such as autocorrelation, trends, and seasonality.

3) Model Training: A forecasting model (e.g., ARIMA,
LSTM) is trained using the lag features and correspond-
ing target values from the training set. The model learns
to map input features (past values) to output predictions
(future values).

4) Prediction: Using the trained model, the algorithm
predicts the value at i based on the last 10 values from the
training set. This approach ensures that the prediction is
informed by the most recent data.

5) Error Calculation: The predicted value is compared
with the actual value at i, and the Root Mean Square
Error (RMSE) is computed. The latter serves as an
evaluation metric that quantifies the prediction accuracy
of the model.

6) Iteration: The process is repeated for each i within the
specified range (0.8N to N ). At each step, the model is
retrained using the expanded training set, ensuring that
it adapts to new data.

3) FLOWCHART EXPLANATION
The forecasting process is visually summarized in Figure 7,
which illustrates the iterative steps for training, testing, and
evaluating the model. The flowchart highlights the following
key components:

• Data partitioning into training and test sets;
• Generation of lag features from the training set;
• Model training and prediction;
• Error computation and loop iteration.

D. ADVANTAGES AND LIMITATIONS
Advantages:

TABLE 1. System specifications and library versions.

FIGURE 1. Single qubit quantum circuits used for the experiment. These
datasets will be analyzed in section IV-C.

• The iterative algorithm ensures robust model evaluation
by testing on unseen data at each time step.

• Lag features effectively capture temporal dependencies,
enabling accurate predictions.

• RMSE provides a metric to compare model
performance.

Limitations:
• The study focuses on single-qubit quantum circuits due
to hardware constraints, limiting its generalizability to
multi-qubit systems.

• Nonlinear models such as LSTM require extensive
computational resources.

IV. RESULTS
In this section, we present the model for each method and
then provide the corresponding results. For reproducibility,
Table 1 summarizes the computational environment, includ-
ing hardware, software, and library versions. Experiments
were conducted on a CPU-only system due to hardware
constraints.

A. QUANTUM CIRCUIT SETUP AND DATA COLLECTION
The circuits used are very simple circuits shown in Figure 1.
A ground state is affected by a Hadamard and rotation
gates and then measured. Each measurement is done using
4000 shots on IBM Runtime Provider using IBM Brisbane.
Then we run the circuit many times and record the number
of ‘0’s.

B. EVALUATION METRICS
In this section, we discuss important metrics to evaluate the
performance of the model being used.
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FIGURE 2. Hierarchical tree of methods.

1) RMSE
RMSE is calculated using the following formula [38]:

RMSE =

√√√√1
n

n∑
i=1

(yi − ŷi)2, (1)

where yi is the actual value, ŷi is the predicted value, and
n is the number of data points. Because it is based on the
sample mean, RMSE is sensitive to larger errors that deviate
from the Gaussian probability distribution. If there are no
gross errors in the data points, RMSE helps evaluate how
well the predictive models are at forecasting future outcomes
of the time series. By penalizing larger errors, RMSE
ensures that models making large mistakes are penalized
more heavily, helping to identify the best model for accurate
predictions [38].

2) MEAN ABSOLUTE PERCENTAGE ERROR (MAPE)
MAPE is a statistical metric used to measure the accuracy of
a forecasting or prediction model. It is defined as

MAPE =
1
n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ × 100 (2)

In this formula, n represents the number of observations, yi
is the actual value at instance i, and ŷi is the predicted value at
the same instance. MAPE quantifies the error as a percentage
of the actual values, making it a scale-independent measure
of accuracy [33].

However, MAPE has limitations. It can be misleading
when actual values are zero (division by zero) or close to
zero (producing disproportionately large percentage errors).
In such cases, other metrics like Mean Absolute Error (MAE)
or RMSE may be more appropriate [39].

3) AKAIKE INFORMATION CRITERION (AIC) AND BAYESIAN
INFORMATION CRITERION (BIC)
AIC calculates the relative quality of a statistical model for
a given set of data. In order to prevent overfitting, it imposes

penalties on models with an excessive number of parameters
by striking a balance between the model’s complexity and fit
to the data [40].

AIC = 2k − 2 ln(L̂), (3)

On the other hand, BIC places a stronger penalty onmodels
with more parameters. It is based on the likelihood function
and includes a penalty term that grows with the number of
parameters and the sample size [41].

BIC = k ln(n) − 2 ln(L̂), (4)

where L̂ is the model’s maximum likelihood estimate and
k is the number of estimated parameters. The total number
of observations is n as well. Both AIC and BIC are used to
compare models rather than in isolation. The model with the
lowest value of AIC or BIC is considered the best [40], [41].

C. DATASETS ANALYSIS
In this section, we analyze datasets from the two circuits we
introduced earlier in Figure 1.

1) DATASET OF 479 ENTRIES FROM FIRST QUANTUM
CIRCUIT IN FIGURE 1. a
Understanding the properties of a time series, such as
its stationarity, autocorrelation structure, and nonlinearity,
is essential for selecting appropriate forecasting models.
In this study, we analyze a given dataset using statistical tests
and visualizations to determine its characteristics.

Specifically, we employ the Augmented Dickey-Fuller
(ADF) test to assess stationarity, analyze the Autocorrelation
Function (ACF) and Partial Autocorrelation Function (PACF)
to understand dependencies within the data, perform seasonal
decomposition to extract underlying patterns, and apply the
Brock-Dechert-Scheinkman (BDS) test to evaluate nonlinear-
ity. The results provide insights into the structure of the data
and inform model selection for future forecasting tasks.

Stationarity is a fundamental assumption in many time
series models, including autoregressive and moving average
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TABLE 2. ADF test results for the first dataset illustrating weak
stationarity.

models. A stationary time series exhibits constant mean,
variance, and autocorrelation over time. If a time series
is non-stationary, differencing or transformation techniques
may be required before applying predictive models.

To evaluate the stationarity of the dataset, we conducted
the Augmented Dickey-Fuller (ADF) test, which assesses
the presence of a unit root. The test returned an ADF
statistic of -3.0263 with a p-value of 0.0325. Given that the
p-value is below the 0.05 significance level, we reject the
null hypothesis, indicating that the time series is stationary.
This suggests that differencing may not be necessary for
modeling. The critical values for different confidence levels
are summarized in Table 2.

The Autocorrelation Function (ACF) and Partial Auto-
correlation Function (PACF) plots were generated to
analyze dependencies within the time series. The ACF
plot exhibited a slow decay, suggesting the presence of
long-term dependencies, while the PACF plot displayed
a significant spike at lag 1, followed by a sharp
decline. This pattern is indicative of an autoregressive
(AR) process of order 5. Based on these observations,
an ARIMA(5,1,0) model is initially recommended for further
analysis.

The analysis of the Autocorrelation Function (ACF) and
Partial Autocorrelation Function (PACF) provides valuable
insights into the structure and dynamics of the time series.
The ACF describes the linear relationship between a time
series and its lagged values, while the PACF isolates the direct
effect of each lag after removing the influence of intermediate
lags.

In the current analysis, the ACF demonstrates significant
spikes up to Lag 19, with a gradual decay over time. The
persistence of these significant spikes indicates the presence
of long-term dependencies or a possible non-stationary
behavior in the series. This slow decay suggests that the time
series may exhibit a trend or is influenced by an AR process.

The PACF plot, on the other hand, reveals significant
values for Lags 1, 2, and 3, with a sharp decline in
magnitude after Lag 3. The prominence of Lag 1 (0.4854)
in the PACF suggests a strong direct relationship at this lag,
consistent with an AR(1) process. The subsequent significant
lags (2 and 3) may indicate the influence of higher-order
autoregressive components. Beyond Lag 3, the PACF values
approach the confidence interval, indicating diminishing
direct relationships.

FIGURE 3. (a) ACF and (b) PACF Plots for first dataset.

Overall, the patterns observed in the ACF and PACF
suggest that the time series is likely dominated by an
autoregressive process. The gradual decay in the ACF
coupled with the sharp cut-off in the PACF is indicative
of an AR(p) model, with p likely in the range of 1 to 3.
However, the prolonged significance of ACF spikes up to
Lag 19 also implies potential non-stationarity in the series.
This necessitates further investigation, such as differencing,
to ensure stationarity before model fitting.

In conclusion, the combination of ACF and PACF charac-
teristics points to the presence of autoregressive dynamics in
the time series, and preliminarymodeling efforts should focus
on ARIMA frameworks. Specifically, the ARIMA(p,d,q)
model can be explored, with ‘p’ estimated from the PACF,
‘q’ potentially informed by future residual analyses, and ‘d’
determined based on stationarity checks. These findings lay
the groundwork for a robust analysis of the time series and its
underlying patterns.

To examine whether the dataset exhibits nonlinear dynam-
ics, the BDS (Brock-Dechert-Scheinkman) test was applied.
The test resulted in a BDS statistic of 9.1365 with a highly
significant p-value of 6.45e − 20, leading to the rejection of
the null hypothesis. This indicates that the time series exhibits
significant nonlinearity. Given this result, nonlinear models
such as LSTMs, SVR, or Gaussian Process Regression might
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TABLE 3. BDS test results for first dataset showing non-linearity.

be more appropriate for capturing complex patterns in the
data.

The seasonal decomposition of the time series dataset
reveals important insights into its underlying structure,
highlighting the observed, trend, seasonal, and residual
components. This decomposition is an effective way to
dissect the complex interactions within the data and better
understand its temporal dynamics.

The observed component, shown as the red line in the
decomposition plot, represents the raw time series data. This
line captures the complete movement of the dataset, including
the combination of trends, seasonality, and randomness. From
the plot, we see pronounced fluctuations, indicating periods
of both significant increases and decreases. Such variability
could suggest the influence of external or periodic factors
impacting the system being studied.

The trend component, represented by the green line,
isolates the long-term direction of the data by smoothing
out short-term fluctuations. This line provides a clear
view of whether the data follows an upward, downward,
or stable trajectory over time. Observing the trend, one
can identify intervals of sustained growth or decline, which
might correspond to major events or structural shifts in
the dataset context (e.g., economic cycles, policy changes,
or technological advancements).

The orange line depicting the seasonal component uncov-
ers regular cyclical behavior in the dataset, repeating
over a period of 12 units. These predictable fluctuations
suggest that the dataset is influenced by recurring factors,
such as seasonal demand, weather patterns, or cyclical
consumer behavior. For instance, peaks and troughs in this
component can be linked to specific calendar events or
periods of increased or decreased activity. Understanding this
behavior allows for better planning and prediction of cyclical
events.

The residual component, represented by the purple line,
captures what remains after removing both the trend and
seasonal components. Ideally, the residuals should display
random, noise-like behavior, signifying that the decomposi-
tion has successfully accounted for the systematic patterns in
the data. In the plot, any discernible patterns or clustering in
the residuals would suggest that additional factors might be
influencing the data or that the decomposition period requires
adjustment.

The decomposition analysis provides actionable insights.
Identifying long-term trends and seasonal patterns can guide
strategic planning and forecasting. For instance, businesses
could use the trend component to adapt to sustained market
changes and leverage the seasonal component to anticipate

FIGURE 4. Seasonality analysis of the first dataset.

TABLE 4. ADF test results.

periodic fluctuations in demand or supply. Analyzing residu-
als can uncover anomalies or external influences, prompting
further investigation.

In conclusion, the seasonal decomposition output effec-
tively disentangles the complex dynamics of the dataset
into its fundamental components. This approach allows for
a deeper understanding of the underlying processes that
drive the data, facilitating more informed decision-making
and predictive modeling. By focusing on each compo-
nent, one can derive meaningful interpretations, optimize
strategies, and address the specific needs revealed by the
analysis.

2) DATASET OF 193 ENTRIES FROM FIRST QUANTUM
CIRCUIT IN FIGURE 1. b
In this section, we evaluate a given dataset using various
statistical and visualization tools to uncover its stationarity,
autocorrelation patterns, seasonal components, and potential
nonlinearity.

The first step in our analysis is to determine whether the
data are stationary. This was conducted using the Augmented
Dickey-Fuller (ADF) test, which evaluates the presence of a
unit root in the data. The results indicate an ADF statistic of
−1.5148 and a p-value of 0.5262. Comparing this p-value to a
significance level of 0.05, we fail to reject the null hypothesis
that the data is non-stationary.

Furthermore, the critical values for the test—at the 1%,
5%, and 10% significance levels are −3.4658, −2.8771,
and −2.5751, respectively. Since the test statistic does not
fall below these thresholds, it reinforces the conclusion
that the data exhibit underlying trends or seasonal patterns.

40122 VOLUME 13, 2025



M. Saghafi, L. Mili: Predictive Time-Series Analysis of Single-Qubit Quantum Circuit Outcomes

FIGURE 5. (a) ACF and (b) PACF Plots for second dataset.

Addressing non-stationarity will be a crucial step in preparing
these data for effective time series modeling.

The ACF and PACF plots were employed to investigate the
relationships between data points at different time lags. The
ACF plot reveals significant correlations across multiple
lags, which is a hallmark of persistence in the data. This
indicates that past values influence future observations,
a common feature in time series datasets. On the other
hand, the PACF plot helps isolate the direct effect of each
lag after accounting for prior lags. Both plots suggest the
potential utility of the AR component in modeling the
data, particularly for short-term prediction. These patterns
also point to the need for differencing or seasonal adjust-
ments to eliminate the dependencies observed in the raw
data.

To delve deeper into the structure of the data, a seasonal
decomposition analysis was performed. This technique
separates the dataset into four distinct components: observed,
trend, seasonal, and residual. The observed component
displays the raw data, while the trend reveals smooth,
long-term changes over time. The seasonal component
highlights recurring patterns with a period of 12, sug-
gesting regular cyclical behavior in the data. Finally, the
residual component captures random noise or unexplained
variability.

TABLE 5. BDS test results for second dataset showing non- linearity.

FIGURE 6. Seasonality analysis of the second dataset.

The decomposition not only confirms the presence of
a trend and seasonality, as suggested by the ADF test,
but also quantifies these patterns. The seasonal component,
in particular, exhibits a consistent and periodic structure,
emphasizing the importance of including seasonality in
predictive models.

A significant aspect of this analysis is the assessment of
whether the data behave in a linear or nonlinear manner.
The Brock-Dechert-Scheinkman (BDS) test was applied,
producing a statistic of 10.1639 and a p-value of 2.87×10−24.
The exceptionally low p-value indicates strong evidence
against the null hypothesis that the data is independently and
identically distributed (i.i.d.).

This result suggests that the dataset exhibits nonlinearity,
implying that linear models alone may not fully capture the
complexity of the system. Advanced nonlinear techniques,
such as Long Short-Term Memory (LSTM) networks or
other machine learning models, may be more effective in
harnessing these patterns for prediction.

The findings from this analysis provide several key insights
and directions for further work. The non-stationarity of
the data calls for transformations such as differencing or
detrending to stabilize the mean and remove seasonality. The
strong evidence of autocorrelation and partial autocorrelation
supports the inclusion of autoregressive and moving average
components in model design. Furthermore, the presence of
nonlinearity highlights the potential for employing sophisti-
cated models that account for complex relationships within
the data.

The Granger causality test is a statistical hypothesis test
used to determine if one time series can predict another
[43]. It assesses whether past values of one variable contain
information that helps predict future values of another
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TABLE 6. Granger causality test results.

variable. In this context, we tested whether dataset one can
predict dataset two and vice versa, using different lag values.
The Granger causality test results indicate a statistically
significant predictive relationship between the two datasets.
At shorter lags, particularly lag 1 and lag 2, the F-test and chi-
square test values are highest, with p-values well below 0.01,
demonstrating strong evidence that past values of the first
dataset help predict the second dataset. As the lag increases,
the test statistics gradually decline, and the p-values rise,
suggesting a weakening influence over time. Despite this
decline, the results remain statistically significant up to lag 5,
meaning that the first dataset continues to provide useful pre-
dictive information for the second dataset, albeit with reduced
strength [44].

Overall, the findings confirm that the first dataset
Granger-causes the second dataset, meaning past observa-
tions of the first dataset improve the ability to forecast
the second dataset. However, the strength of this causality
diminishes with longer lags, indicating that more recent
values have a stronger impact on prediction. These results
suggest that short-term dependencies play a crucial role in
the relationship between the two datasets, and incorporating
only a few recent lags may be sufficient for predictive
modeling.

From these results, we can deduce that there is a significant
predictive relationship between the two datasets. This means
that knowing the past values of one dataset can help in
forecasting the future values of the other dataset, which could
be useful in various applications such as financial modeling,
weather forecasting, or any field where time series data is
analyzed.

D. PREDICTIVE MODEL ANALYSIS AND PARAMETERS
As can be seen in figure 4 and 6, we have a dataset of N .
The goal is to correctly predict the N +1-th data. To test how
good the model is, we take the first N − 1 data and predict
the N -th data. Next, we explain how to tune the parameters
of each algorithm we used.

The prediction process is done using the algorithm shown
in figure 7 and algorithm 1.
The implemented algorithm relies on multiple methods for

time series forecasting. In essence, time series forecasting
entails estimating future values by leveraging historical data.
One of the critical challenges in this area is understanding
how previous values affect future outcomes. To address
this, the algorithm uses lag features, which consists of
previous time series values to forecast the upcoming
value.

FIGURE 7. Prediction flowchart: For each i ranging from 0.8N to N , the
data points 1, . . . , i − 1 are used as the training set, while the point i is
used as the test set. N is the length of the dataset.

Lag features are constructed by examining past values
within the time series. For instance, to forecast the value at
time step i, the algorithm takes into account the values from
i−1, i−2, and so on up to i−10. These historical values serve
as the model’s input features, allowing it to identify patterns
such as trends or seasonality that may recur over time.

The algorithm’s loop iterates through a specified range of
values, namely from 382 to 478 for the first dataset and from
153 to 192 for second dataset, which correspond to various
time steps in the dataset. The loop separates the dataset into
test and training sets at each iteration i. All data points up
to the time step i are included in the training set, which the
model uses to identify patterns. The test set, in contrast, only
contains the data point at time step i, which the model aims
to predict. Within the loop, lag features are derived from the
training set, and the model is trained using these features. For
testing, the last 10 values from the training set are utilized as
input to predict the value at i. The predicted and actual values
at i are then compared to calculate the root mean square error
(RMSE), with the whole process repeated for each time step
in the loop.

1) ARIMA
In ARIMA, it is important to determine the order of
differencing (d), of the autoregressive term (p), and of the
moving average term (q). We used the AUTO ARIMA
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Algorithm 1 Data Processing and Model Training With
XGBoost
1: Import Libraries:
2: Import numpy, pandas, matplotlib.pyplot,
xgboost.XGBRegressor, and
sklearn.metrics.mean_squared_error

3: Load Data:
4: Preprocessing:
5: Normalize or preprocess the data array as required.
6: Prepare Training and Testing Data:
7: Divide the data into training and testing datasets.
8: Define input features (X) and target values (y) for both

training and testing.
9: Initialize Model:

10: Create an instance of XGBRegressor with appropriate
parameters.

11: Train Model:
12: Train the model using the training dataset (X_train,

y_train).
13: Make Predictions:
14: Use the trained model to predict the target values for the

testing dataset (X_test).
15: Evaluate Model:
16: Compute the mean squared error (MSE) between pre-

dicted values and actual values (y_test).
17: Calculate the root mean squared error (RMSE) as the

square root of MSE.
18: Visualize Results

function in the pmdarima package. Based on AIC and BIC,
the best order is (p = 5, d = 1, q = 0) with AIC of
4941.052 and BIC of 4949.391.

The code snippet used to build the model is as follows:

# Fit ARIMA model
model = ARIMA(train, order=(5, 1, 0))
# Adjust (p,d,q) based on your data;
model_fit = model.fit()

2) LSTM
In the given LSTM model, the network architecture includes
two layers: an LSTM layer with 50 units and a dense layer for
a single output. There are 10, 400 parameters all together for
the LSTM layer, which is derived from the internal weights
that control the input, forget, and output gates, along with
the cell state parameters. The dense layer adds an additional
51 parameters.

The code snippet used to build the model is as follows:

# Build the LSTM model
model = Sequential()
model.add(LSTM(50, activation=’relu’,

input_shape=(lag_size, 1)))
model.add(Dense(1)) # Single output
model.compile(optimizer=’adam’,

loss=’mse’)
# Train the model
model.fit(X_train, y_train,

TABLE 7. LSTM model summary.

TABLE 8. Important parameters and metrics in exponential smoothing
model.

epochs=200, verbose=0)

3) EXPONENTIAL SMOOTHING
The most critical parameters in an exponential smooth-
ing model are the smoothing coefficients, particularly the
smoothing level (α) and the smoothing trend (β). The
smoothing level dictates how quickly the model responds
to changes in the level of the time series. A lower value,
as in our case (0.1793), means that the model reacts more
conservatively to recent changes, favoring long-term patterns.
The smoothing trend (β), with a very small value of 0.0084,
indicates that the model only slightly adjusts to the changes
in the trend, suggesting that the trend variations in our data
are minimal.

Additionally, initial values for the level (l0) and the trend
(b0) set the starting points for the forecast. These are impor-
tant for initializing the model, but their influence diminishes
over time unless the series is short. The performance metrics,
including SSE (Sum of Squared Errors) and AIC/BIC,
help assess the overall fit of the model and compare it to
other potential models. A lower SSE indicates fewer errors,
while AIC/BIC helps ensure the model is not unnecessarily
complex.

The code snippet used here is as follows:

’’’
Build the Exponential Smoothing model
(Holt-Winters)
’’’
model = ExponentialSmoothing(train,

trend=’add’,
seasonal=None,
damped_trend=False)

model_fit = model.fit()

4) GAUSSIAN PROCESS (GP) REGRESSION
The Gaussian Process (GP) regression model utilized in this
study is characterized by a matern kernel with a learned
variance of 3.162 and a length scale of 1400. This kernel, with
a smoothness parameter ν = 1.5, is well suited for capturing
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medium- to long-range dependencies in the data while
allowing moderate smoothness in the modeled function. The
choice of kernel reflects the need for flexibility in handling
complex relationships, with a log marginal likelihood of
−276459, suggesting that the model is applied to a large
dataset with intricate patterns. This likelihood may indicate
a good fit to a large amount of data or the presence of some
challenging patterns that require further refinement.

The residual analysis reveals that the model exhibits
variability in error terms, as evidenced by a range of residuals
ranging from small deviations to larger discrepancies, with
some residuals reaching up to 71. This suggests that while the
model captures the overall structure of the data effectively,
certain data points show significant deviations, potentially
due to noise or nonstationary behavior in the dataset. The
combination of the learned kernel parameters and the noise
level (α) demonstrates the model’s capacity to represent a
broad spectrum of behaviors, making it suitable for complex,
noisy data, though further tuning may be required to handle
outliers or nonstationary trends more precisely. The code
snippet used to build the model is as follows:

’’’
Define a Matern kernel for more
flexibility (with smaller length scale)
’’’
kernel = C(1.0, (1e-4, 1e1)) * \
Matern(length_scale=0.1, nu=1.5)

’’’
Fit GPR model with adjusted alpha
for noise handling
’’’
model = GaussianProcessRegressor(

kernel=kernel,
n_restarts_optimizer=10,
alpha=1e-3)

model.fit(X_train_scaled,
y_train_scaled)

5) SUPPORT VECTOR REGRESSION (SVR)
The output of the SVR model parameters includes several
key attributes that determine how the model behaves and
performs. As a parameter for regularization, the C parameter,
which is set to 1.0, regulates the trade-off between preserving
a smooth decision boundary and minimizing training error.
A smaller C value allows for a larger margin, promoting a
simpler model that may generalize better, while a larger C
value emphasizes minimizing training error, which can lead
to overfitting. Additionally, the ϵ value of 0.1 represents the
width of the epsilon-insensitive zone around the regression
line, where no penalty is incurred for errors. This means
that the model can tolerate a certain amount of error in the
predictions without incurring a cost, enhancing its robustness
against small fluctuations in the data.

We set the kernel parameter of the Radial Basis Function
(RBF), which successfully captures complicated relation-
ships in the data by transferring input features into a

higher-dimensional space, allowing the model to learn non-
linear patterns. Additionally, the γ parameter, set to scale,
determines the impact of individual training samples on
the decision boundary. A larger gamma value increases the
model’s sensitivity to training data, possibly contributing
to overfitting, whereas a lower value produces a smoother
decision boundary. Finally, the degree parameter, set to 3,
is only relevant for polynomial kernels; it indicates the degree
of the polynomial used to build the decision boundary, but it
has no effect on the model when using the RBF kernel [45].

The code snippet

# Build the SVR model
svr_model = SVR(kernel=’rbf’)
’’’
Using Radial Basis Function
(RBF) kernel
’’’
svr_model.fit(X_train, y_train)

6) XGBOOST
The XGBoost model has been configured with specific
parameters adjusted for regression tasks. The objective is
set to reg:squarederror, indicating that the model
aims to minimize the squared differences between predicted
and actual values. The n_estimators parameter is set
to 100, which requires the model to create 100 individual
decision trees during training. While some parameters are
explicitly defined, many others, such as learning_rate
and max_depth and subsample, are set to their default
values, allowing XGBoost to utilize its internal heuristics for
optimal performance.

The parameters currently set to none signify that the model
will default to the standard values provided by XGBoost.
For instance, a default learning_rate of 0.3 will apply
unless otherwise specified. Additionally, parameters like
max_depth and regularization terms such as reg_alpha
and reg_lambda remain undefined, suggesting room for
further refinement through hyperparameter tuning. By opti-
mizing these parameters, users can potentially enhance the
model’s predictive accuracy and generalization capabilities,
making it more suited to the specific characteristics of the
dataset at hand.

The code snippet used to build the model is as follows:

# Initialize and fit the XGBoost model
model = XGBRegressor(

objective=’reg:squarederror’,
n_estimators=100)

model.fit(X_train, y_train)

7) VECTOR AUTO-REGRESSIVE
The Vector Autoregressive (VAR) model has been configured
with specific parameters to analyze multivariate time series
data. The maximum lag order is set to 10, indicating that
the model considers the past 10 time steps for each variable
to predict the current state. This choice allows for capturing
relationships and dependencies across multiple variables over
a defined historical window.
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TABLE 9. Overview of vector auto-regressive parameters.

TABLE 10. Comparison of models with their performance metrics and
active parameters for first dataset.

While some parameters, such as ’maxlags’, are explic-
itly defined, others rely on the defaults provided by the VAR
model’s implementation. For instance, the model assumes
no prior constraints or regularization unless specified.
By adjusting these parameters through experimentation, users
can further enhance the model’s performance, ensuring it
aligns with the temporal and cross-variable characteristics
of the dataset. The results of the fitted model show detailed
parameter estimates for each lag and variable combination,
demonstrating how past values influence current outcomes.
Below is a summary of the coefficients for the first few
variables and their lags:

The code snippet used to build and fit the model is as
follows:

# Fit VAR model
model = VAR(train_df)
model_fit = model.fit(maxlags=10)

By iteratively refining maxlags and analyzing the
parameter estimates, users can optimize the model to better
understand the temporal dynamics and interrelationships in
the data.

E. PREDICTIVE MODEL PERFORMANCE
The result of the prediction can be seen in Figures 8, 9, 10,
11, 12, and 13.

The results shown in the figures 8, 9, 10, 11, 12, and 13
along with the tables 10 and 11 clearly indicate that XGBoost
outperforms the other algorithms for the given task. This
is evident from the consistently lower RMSE values for
XGBoost (represented by the thick blue line), which stay
well below the values of the other models across the range
of training set sizes.

TABLE 11. Comparison of models with their performance metrics and
active parameters for second dataset.

The RMSE of the difference between actual value and
predicted value by XGBoost hovers around a stable value
is close to zero throughout the training sets, indicating
that it maintains a significantly lower prediction error. Its
consistency in outperforming the others suggests that it
handles the data effectively, which makes it highly effective
at minimizing errors.

ARIMA and Exponential Smoothing show significantly
higher RMSEs with fluctuating patterns, indicating that these
methods struggle more with the dataset.

Gaussian Process Regression and Support Vector Regres-
sion also show more volatility, especially in the middle and
towards the end, with sharp spikes in RMSE that further
emphasize their lack of stability.

LSTM performs comparably to some models, but still
shows higher RMSE values than XGBoost.

Overall, the fact that XGBoost maintains such a low and
stable RMSE, while other models show significantly more
error and fluctuation, makes it clear that XGBoost is the best
performer in this scenario. This difference could be due to
the ability of the XGBoost to capture more complex patterns
in the data, its use of boosting techniques to minimize loss
iteratively, and its capacity for handling various forms of data
noise and nonlinearity effectively.

F. STABILITY: ROBUSTNESS TO SAMPLING VARIATION
Stability quantifies a model’s consistency across different
data subsets, measuring how sensitive predictions are to
training data variations. For a model f and datasetD, stability
is defined as:

Stability = 1 −
σpred

σD
, (5)

where σpred is the standard deviation of predictions
across k-fold temporal splits, and σD is the dataset’s
inherent variance. The theoretical foundation stems from
Breiman’s bias-variance decomposition [46], where sta-
ble models minimize variance components. Interpretation
follows:

• > 0.9: Excellent stability (predictions vary <10% of
data variance)
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FIGURE 8. Performance of each algorithm in prediction in comparison with actual
data for first dataset.

FIGURE 9. Performance of each algorithm in prediction in comparison with actual
data for second dataset.

FIGURE 10. RMSE of each algorithm for first dataset.

• 0.7 − 0.9: Acceptable stability
• < 0.7: High prediction variability

G. SENSITIVITY: RESILIENCE TO DATA PERTURBATIONS
Sensitivity measures robustness against input noise, calcu-
lated through noise-injected predictions. It is defined as
follows:

Sensitivity = corr(f (D), f (D + ε)), (6)

where ε ∼ N (0, 0.05σD). Rooted in robust statistics [47],
this evaluates a model’s Lipschitz continuity. Interpretation
guidelines:

• > 0.95: Noise-invariant predictions
• 0.85 − 0.95: Moderate robustness
• < 0.85: High noise sensitivity

H. OVERFITTING POTENTIAL: GENERALIZATION
CAPABILITY
Overfitting potential quantifies the train-test performance gap
using the ratio given by

Overfitting Ratio =
RMSEtest

RMSEtrain
. (7)

Building on Vapnik-Chervonenkis theory [48], values >1
indicate poorer generalization. Interpretation:
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FIGURE 11. RMSE of each algorithm for second dataset.

FIGURE 12. MAPE of each algorithm for first dataset.

FIGURE 13. MAPE of each algorithm for second dataset.

• 0.9 − 1.1: Ideal generalization
• > 1.2: Severe overfitting
• < 0.8: Underfitting

• Stability scores reveal ARIMA’s exceptional consis-
tency (0.92), while tree/vector methods (XGBoost-
/SVR) show negative stability - their predictions vary
more than the data’s inherent variance.

• All methods demonstrate strong noise resistance (Sen-
sitivity >0.79), with GPR achieving perfect correlation
(1.00) despite poor stability

• GPR shows catastrophic overfitting (Ratio 347.65),
while LSTM/ETS/VAR exhibit underfitting (Ratio
<0.65) suggesting insufficient model capacity

• ARIMA achieves near-ideal balance across all metrics
(Stability 0.92, Sensitivity 0.99, Ratio 1.01)

V. DISCUSSION
The comprehensive evaluation of seven time series fore-
casting methods reveals significant variations in perfor-
mance characteristics, highlighting the importance of model
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TABLE 12. Comparative analysis of forecasting methods.

selection based on specific application requirements. Our
analysis of prediction accuracy, computational efficiency, and
model robustness (Table 10) yields several key insights.

A. PERFORMANCE TRADE-OFFS
The tree-based XGBoost model demonstrated superior pre-
dictive accuracy with the lowest median RMSE (3.029) and
MAPE (0.092%), outperforming both classical statistical
methods and deep learning approaches. However, this
accuracy comes at the cost of significant overfitting (test
errors 118% higher than training) and negative stability
scores (−0.03), suggesting sensitivity to data sampling
variations.

The ARIMA model presented an exceptional balance of
characteristics, achieving near-ideal stability (0.92) and sen-
sitivity (0.99) scores while maintaining competitive accuracy
(RMSE 30.844). The parsimonious parameterization of the
model (6 active parameters) contributes to its computational
efficiency (18.68s), making it suitable for real-time applica-
tions.

B. COMPUTATIONAL CONSIDERATIONS
The deep learning approaches showed divergent character-
istics. While LSTM achieved moderate prediction standard
deviation, its computational cost, 2.80248 × 103 s, was three
orders of magnitude higher than statistical methods like ETS,
which had a computational cost of 3.94 s. This suggests that
may not justify their implementation costs for this class of
time series problems.

C. OVERFITTING OF THE GAUSSIAN PROCESS
REGRESSOR (GPR)
The GPR exhibited characteristics of concern, with extreme
overfitting (test errors 34,665% higher than training) despite
employing a sophisticated kernel formulation expressed as

k(x, x ′) = σ 2 exp
(

−
∥x − x ′

∥
2

2l2

)
. (8)

This equation derived from [49] suggests potential mis-
specification of hyperparameters or kernel functions for the
scale and temporal dependencies of the dataset.

D. PRACTICAL RECOMMENDATIONS
• High-accuracy applications: XGBoost, despite sta-
bility concerns, when coupled with rigorous cross-
validation

• Real-time systems: ETS or VAR, offering sub-second
computation with reasonable accuracy

• Noisy environments: ARIMA, demonstrating
near-perfect noise resistance (sensitivity 0.99)

• Resource-constrained deployments: LSTM, provid-
ing moderate accuracy with minimal active
parameters (4)

The negative stability scores for XGBoost (−0.03) and
SVR (−0.04) deserve particular attention, indicating that
their predictions varied more than the inherent standard
deviation of the dataset. This paradoxical result suggests
potential overfitting to specific temporal patterns in the
training data.

E. LIMITATIONS AND FUTURE DIRECTIONS
While ARIMA showed superior overall performance, its
linear assumptions may limit applicability to more complex
non-stationary series. Future work should investigate hybrid
approaches combining the statistical rigor of ARIMA with
the nonlinear modeling capabilities of XGBoost, potentially
through ensemble methods expressed as:

ŷt = αŷARIMAt + (1 − α)ŷXGBoostt , (9)

where α controls the mixing of the model. Additionally,
the computational burden of LSTM and GPR suggests
opportunities for model distillation techniques to preserve
accuracy while reducing runtime complexity.

VI. CONCLUSION
By treating the outcomes of repeated quantum circuit
executions as a time series, we successfully demonstrated
the potential of predicting future outcomes using a variety of
statistical and machine learning models. The results suggest
that these models can contribute to a better understanding
of the error behavior in quantum circuits, which is crucial
for developing more effective quantum error mitigation
techniques.
In summary, this work introduces a new perspective on

single qubit quantum circuit analysis by: (1) applying time
series analysis to quantum circuit outputs; (2) utilizing
both classical statistical models (e.g., ARIMA) and machine
learning models (e.g., LSTM) to forecast future time series
values in the quantum domain; (3) exploring the predictive
capabilities of these models and highlighting their potential
for real-time error correction in quantum computing. These
findings open up new possibilities for improving quantum
error correction strategies by proactively predicting and
mitigating errors in quantum circuits.
Although this paper successfully demonstrates the effec-

tiveness of time series prediction for quantum error mitiga-
tion, several limitations need to be addressed. Firstly, the
proposed method is most suitable for situations where the
structure of the quantum circuit remains relatively stable.
Additionally, this paper focuses exclusively on single-qubit
cases. However, in practice, quantum circuits often involve
more complex structures with multiple qubits.
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To address these limitations, we plan to extend our
research to encompass multi-qubit systems. Furthermore,
we aim to investigate more complex circuit architectures and
explore the causality between different circuits over time.
Specifically, we intend to examine whether the output dataset
of one quantum circuit can be utilized to train and predict
the behavior of another quantum circuit at a different point in
time.

DECLARATION OF GENERATIVE AI AND AI-ASSISTED
TECHNOLOGIES IN THE WRITING PROCESS
During the preparation of this work the authors usedChatGPT
in order to increase the readability of the paper. After using
this tool/service, the authors reviewed and edited the content
as needed and take full responsibility for the content of the
published article.
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