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Résumé. Nous passons en revue quelques questions théoriques non résolues dans les gaz tridimensionnels
de fermions à deux composantes, en nous inspirant des expériences réalisées récemment sur les atomes
froids dans des pièges immatériels près d’une résonance de Feshbach magnétique. Nous distinguons succes-
sivement (i) les questions ouvertes apparaissant dans le problème à petit nombre de corps avec interactions
de contact dites de Wigner–Bethe–Peierls — essentiellement la stabilité du gaz vis-à-vis de l’effet Efimov et le
calcul des coefficients d’amas (ou du viriel), (ii) celles relevant de la théorie effective de basse énergie dite hy-
drodynamique quantique de Landau et Khalatnikov — essentiellement l’amortissement des modes de pho-
nons et le temps de cohérence du condensat de paires liées, et enfin (iii) les questions nécessitant une réso-
lution complète, microscopique, du problème à N corps, comme les propriétés précises de la branche d’exci-
tation sonore (de Goldstone) du condensat de paires, ou de sa branche d’excitation collective (de Higgs) dans
le continuum de paire brisée.

Abstract. We review some unresolved theoretical issues in three-dimensional two-component Fermi gases,
drawing on recent experiments on cold atoms in immaterial traps close to a magnetic Feshbach resonance.
We distinguish successively (i) the open questions arising in the few-body problem with Wigner–Bethe–
Peierls contact interactions—essentially the stability of the gas with respect to the Efimov effect and the
calculation of the cluster (or virial) coefficients, (ii) those arising in the effective low-energy theory of Landau
and Khalatnikov quantum hydrodynamics—essentially the damping of phonon modes and the coherence
time of the condensate of pairs, and finally (iii) questions requiring a complete, microscopic solution of
the many-body problem, such as the specific properties of the acoustic excitation branch (Goldstone) of the
condensate of pairs, or its collective excitation branch (Higgs) in the broken-pair continuum.
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Version française (English version starts on p 426)

1. Introduction et présentation générale

Ce texte est essentiellement la retranscription de notre exposé de 90 minutes au colloque de
prospective « Questions ouvertes dans le problème quantique à N corps » qui s’est tenu à l’Institut
Henri Poincaré à Paris, du 8 au 12 juillet 2024, d’où son style et son niveau de précision différents
de ceux d’un article de recherche habituel. Il est plus complet que l’exposé sur la section 4 (traitée
rapidement à l’oral) et sur la section 5 (omise à l’oral par manque de temps). Les notes en bas de
page peuvent être ignorées en première lecture. L’exposé a été enregistré et est disponible en ligne
sur la chaîne Carmin de l’IHP (cliquer ici).

https://www.carmin.tv/fr/collections/symposium-open-questions-in-the-quantum-many-body-problem
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Le système considéré est inspiré des expériences sur les atomes froids : il s’agit d’un gaz tri-
dimensionnel de fermions à deux composantes (comprendre deux états internes ↑ et ↓) dans un
piège immatériel — fait de lumière, à des températures très basses de l’ordre du microkelvin.
C’est le digne descendant des gaz d’atomes refroidis par laser (dans les fameuses « mélasses op-
tiques », voir le prix Nobel de physique 1997 décerné à Steven Chu, William Phillips et Claude
Cohen-Tannoudji) puis des condensats de Bose–Einstein atomiques gazeux refroidis par évapo-
ration (voir le prix Nobel de physique 2001 décerné à Eric Cornell, Carl Wieman et Wolfgang Ket-
terle).

Par rapport à leurs illustres prédécesseurs, les gaz d’atomes froids fermioniques ont l’avantage
(i) d’être composés de fermions, ce qui permet de couvrir les deux statistiques possibles (on peut
toujours « bosoniser » le gaz en formant des paires fortement liées ↑↓) et de faire un lien direct
avec les systèmes d’électrons (des fermions !) de la physique du solide, (ii) de rester collisionnel-
lement stables (peu de pertes à trois corps par recombinaison vers des états moléculaires pro-
fonds) même dans le régime d’interaction forte comme dans la fameuse « limite unitaire » dé-
crite plus bas (au contraire pour l’instant des gaz d’atomes froids bosoniques), et (iii) de consti-
tuer dans ledit régime des systèmes modèles, beaux, simples et universels, grâce à la portée né-
gligeable des interactions de van der Waals entre ↑ et ↓ (plus précisément, la longueur de van der
Waals associée est négligeable) ; comme nous le verrons, ceci autorise à remplacer l’interaction
par des conditions de contact sur la fonction d’onde à N corps dépendant de la seule longueur de
diffusion a dans l’onde s, longueur que les expérimentateurs ajustent à volonté au moyen d’une
résonance de Feshbach, par simple application d’un champ magnétique uniforme bien choisi.

Notre système n’est pas sans rapport avec ceux d’autres exposés du colloque. Le lien est
évident avec la contribution de Tilman Enss sur la viscosité des gaz de fermions en interaction
forte [1], complémentaire de la nôtre. Mais si l’on place nos fermions dans un réseau optique, à
raison d’environ une particule par site (près du demi-remplissage), on retombe sur les problèmes
de fermions fortement corrélés et de supraconductivité à haute température critique discutés
par Antoine Georges. Dans un régime qui plus est d’interaction sur site U↑↓ forte devant le
couplage tunnel t entre sites voisins, U↑↓ ≫ t , le système est décrit par un hamiltonien modèle
de spins de type Heisenberg, avec un couplage magnétique J ∝ t 2/U↑↓, ce qui fait le lien
avec l’exposé de Sylvain Capponi [2]. En revenant à un système uniforme (sans réseau) mais
en appliquant un champ de jauge artificiel (un champ magnétique fictif) à nos atomes froids
fermioniques pourtant neutres, ce que les expérimentateurs savent faire, voir l’exposé de Sylvain
Nascimbène [3], on tombe sur des problématiques proches des exposés de Thierry Jolicœur [4]
(sur l’effet Hall quantique fractionnaire à 2D) et de Carlos Sá de Melo [5] (couplage spin–orbite
à une dimension d’espace). Tous ces ponts vers la physique du solide ne sont cependant pas
si faciles que cela à emprunter, à cause d’effets parasites non conservatifs, de la taille finie des
échantillons et d’une difficulté à descendre à suffisamment basse température (en unités de la
température de Fermi TF ou de couplage magnétique J/kB), voir les exposés de Wolfgang Ketterle,
de Sylvain Nascimbène et d’Antoine Georges.

Terminons par le plan de notre contribution. Dans la section 2, nous partons du réel en
esquissant le cheminement des expériences sur les atomes froids depuis les années 1980 et la
situation atteinte dans le cas des fermions. Dans la section 3, nous adoptons un point de vue
microscopique, d’interactions remplacées par des conditions de contact, et passons en revue
quelques questions ouvertes dans le problème à petit nombre de fermions. Dans la section 4,
nous adoptons au contraire un point de vue macroscopique, celui d’une théorie effective de basse
énergie (l’hydrodynamique quantique), et passons en revue quelques questions ouvertes liées à
l’interaction entre les phonons (les quanta des ondes sonores) dans la phase superfluide. Enfin,
dans la courte section 5, nous croisons les points de vue, en listant quelques questions ouvertes
requérant un traitement théorique microscopique du problème à N corps complet.
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2. Un système physique assez récent

Commençons par une mise en contexte de nos gaz de fermions, au moyen d’un bref historique
des atomes froids.

L’aventure commence au début des années 1980 par le refroidissement laser des alcalins. Les
basses températures atteintes sont spectaculaires lorsqu’on les exprime en kelvins, T ≈ 1 µK,
mais les densités spatiales sont malheureusement très faibles, ρ ≲ 1010 at/cm3, si bien que
les gaz ont une très faible dégénérescence quantique, c’est-à-dire une très faible densité dans
l’espace des phases, ρλ3 ≪ 1, où λ est la longueur d’onde thermique de de Broglie des atomes de
masse m :

λ=
(

2πħ2

mkBT

)1/2

(1)

Les effets de statistique quantique (bosoniques ou fermioniques) sont imperceptibles.
Tout change en 1995, lorsqu’Eric Cornell et Carl Wieman au JILA [6], suivis de peu par Wolf-

gang Ketterle au MIT [7], atteignent la condensation de Bose–Einstein (CBE), évidemment sur des
isotopes bosoniques, grâce au refroidissement par évaporation dans des potentiels de piégeage
non dissipatifs à fond harmonique1. Les températures de transition restent dans la gamme du
refroidissement laser, T CBE

c ≃ 0,1 à 1 µK, mais les densités spatiales sont considérablement plus
élevées, ρ = 1012 à 1015 at/cm3, ce qui permet l’atteinte de la dégénérescence quantique ρλ3 ≳ 1.

Enfin, en 2004, le refroidissement par évaporation est étendu avec succès aux isotopes fermio-
niques jusqu’à la température de transition [11,12] ; les gaz à deux états internes ↑ et ↓ ne forment
plus des condensats de Bose–Einstein mais condensent par paires ↑↓ par le mécanisme BCS [13] :
les interactions de van der Waals attractives entre ↑ et ↓ conduisent, en présence d’une mer de
Fermi dans chaque état interne, à la formation de paires liées, les fameuses paires de Cooper,
des « bosons composites », qui peuvent former un condensat à suffisamment basse tempéra-
ture, T < T BCS

c . Les températures les plus basses accessibles expérimentalement sont de l’ordre
de 0,1TF, où la température de Fermi TF reste de l’ordre du microkelvin; ceci suffit néanmoins à
franchir T BCS

c car les interactions entre ↑ et ↓ sont rendues très fortes au moyen d’une résonance
de diffusion à deux corps (résonance de Feshbach magnétique) : la température de transition
T BCS

c est alors une fraction de TF et l’on évite la situation extrême des supraconducteurs BCS,
pour lesquels T BCS

c ≪ TF par plusieurs ordres de grandeur.
Décrivons maintenant notre système d’atomes froids fermioniques dans ses grandes lignes,

dans un début d’idéalisation de la réalité expérimentale. (i) Les fermions sont à deux états
internes ↑ et ↓ ; comme nous n’envisageons pas ici de couplage de Rabi interconvertissant
↑ et ↓, nos considérations s’appliquent aussi au cas d’un mélange de deux espèces chimiques
de fermions formellement sans spin; pour cette raison, nous ne supposons pas que les masses
mσ des particules sont égales dans les deux états internes2 et nous considérons le rapport m↑/m↓
comme un paramètre libre. (ii) Les fermions sont piégés, soit dans des potentiels harmoniques
isotropes de même pulsation de piégeage ω pour les deux composantes σ,

Uσ(r) = 1
2 mσω

2r 2 (2)

1La référence [8] a réussi plus tard, au moyen d’astuces bien trouvées, à obtenir un condensat de Bose–Einstein
sans évaporation, par le seul refroidissement laser (voir aussi la référence [9]) ; pour cela, il a fallu en particulier (i)
utiliser une raie atomique étroite à faible saturation pour rendre aussi basse que possible la température limite du
refroidissement laser [10] et (ii) réussir à éviter que les photons d’émission spontanée, qui emportent une partie de
l’énergie du mouvement des atomes, ne la redéposent par réabsorption dans le gaz.

2Dans le cas où ↑ et ↓ sont deux états de spin d’une même espèce chimique, on a naturellement m↑ = m↓ dans
l’expérience. On pourrait cependant, par application d’un réseau optique se couplant différemment aux deux états
internes (dans une limite de faible taux de remplissage), produire des masses effectives mσ différentes. Ceci reste à faire.
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où r est le vecteur position à 3D, soit dans la boîte de quantification cubique [0,L]3 commune aux
deux composantes, avec les habituelles conditions aux limites périodiques3. (iii) L’interaction de
van der Waals entre les deux états internes ↑ et ↓, représentée schématiquement sur la figure 1a,
est rendue de manière effective très forte (résonnante) dans l’onde s (moment cinétique orbital
relatif l = 0) par application d’un champ magnétique idoine4 si bien que la longueur de diffusion
a entre deux atomes ↑ et ↓ (définie mathématiquement dans la section 3.1) est suffisamment
grande en valeur absolue (elle peut être positive ou négative) pour que

ρ1/3|a|≳ 1 (3)

On rappelle que la théorie des gaz de bosons en interaction faible fait usage du petit paramètre
(ρa3)1/2 ≪ 1, voir la contribution de Jan Solovej [17] aux actes du colloque; la condition (3)
est donc au contraire la marque d’un gaz en interaction forte. La longueur du diffusion a est
également beaucoup plus grande en valeur absolue que la portée b de l’interaction, définie sur la
figure 1a,

|a|≫ b (4)

ce qui est bien la marque d’une résonance de diffusion à deux corps. Comme b est de l’ordre de
quelques nanomètres dans les expériences, on a aussi

b ≪ ρ−1/3,λ (5)

ce qui donne l’idée de construction d’un système modèle, par passage à la limite b → 0 à a fixé
d’une interaction de portée nulle, caractérisée seulement par la longueur algébrique a. Cette idée
sera mise en œuvre dans la section 3.1. (iv) En revanche, l’interaction n’est pas résonnante dans
l’onde p (moment cinétique orbital relatif l = 1) donc les interactions ↑↑ et ↓↓, qui se produisent
de façon prédominante dans cette onde à basse énergie (antisymétrie fermionique oblige), sont
négligeables.

Comme nous le verrons dans la section 3, l’existence d’un modèle bien défini (d’énergie
bornée inférieurement lorsque b → 0) constitue un problème mathématiquement non trivial.
On peut déjà en proposer une condition nécessaire, inspirée de la réalité expérimentale. On l’aura
en effet bien compris sur la figure 1a : puisque l’interaction de van der Waals admet (au moins)
un état lié à deux corps de taille ≈ b, la phase gazeuse considérée jusqu’à présent et vue dans
les expériences n’est qu’une phase métastable, échappant temporairement à la solidification
prédite par les lois de la physique à l’équilibre, solidification dont les pertes à trois corps sont
les précurseurs (voir la figure 1b). Ces pertes se produisent avec un taux estimé comme suit dans
la référence [18] pour des masses égales :

Γ
3 corps
pertes ∝ ħ

mb2 Proba(3 fermions ↑↑↓ ou ↓↓↑ dans une même boule de rayon b) (6)

3Expérimentalement, on sait réaliser des boîtes de potentiel à fond plat au moyen de faisceaux de Laguerre–Gauss ou
de Bessel–Gauss et de nappes de lumière laser, après compensation de la pesanteur (mise en lévitation des atomes) par
un gradient de champ magnétique [14-16].

4Sans entrer dans les détails, signalons que, pour comprendre cette résonance, il faut tenir compte de la structure
interne des atomes et décrire leur interaction binaire a minima par un modèle à deux voies, une voie ouverte de potentiel
d’interaction Vo(r12) et une voie fermée de potentiel d’interaction Vf(r12) — on pourra penser aux potentiels d’interaction
singulet et triplet de deux fermions de spin 1/2. Lors d’une collision, les atomes ↑ et ↓ entrent par la voie ouverte et, par
conservation de l’énergie, sortent aussi par la voie ouverte car leur énergie cinétique relative incidente est inférieure à
la différence des limites de dissociation Vf(+∞) −Vo(+∞) > 0. Comme il existe un couplage entre les deux voies, les
atomes peuplent cependant virtuellement la voie fermée pendant la collision. Le champ magnétique B appliqué induit
un déplacement Zeeman différent dans les deux voies. Il suffit alors de choisir B astucieusement pour que l’énergie d’un
état lié dans Vf(r12) — pas l’énergie nue mais l’énergie déplacée par le couplage — coïncide presque avec la limite de
dissociation Vo(+∞), ce qui induit une résonance de diffusion (ou de collision) à deux corps dans la voie ouverte et fait
diverger la longueur de diffusion a.
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Figure 1. (a) Représentation schématique de l’interaction de van der Waals (plus préci-
sément de Lennard-Jones) résonnante (|a| ≫ b) entre les fermions ↑ et ↓ en fonction de
leur distance relative. Le potentiel admet au moins un état fortement lié d’extension de
l’ordre de la longueur de van der Waals b ≃ (mC6/ħ2)1/4 donc d’énergie de liaison ≈ħ2/mb2

et, dans le cas d’une longueur de diffusion a > 0 comme sur la figure, un dernier niveau
d’énergie d’extension a (d’énergie de liaison ħ2/ma2) sur « le point de disparaître » (ici
m↑ = m↓ = m comme dans les expériences) ; si a était grande mais négative (|a|≫ b, a < 0),
cet état faiblement lié serait sur « le point d’apparaître ». (b) L’état dimère fortement lié peut
être peuplé par des collisions à trois corps, ce qui est à l’origine de pertes de particules dans
le gaz de fermions, dites pertes à trois corps (les produits de la collision emportent l’énergie
de liaison ≈ ħ2/mb2 considérable sous forme d’énergie cinétique et quittent le piège). Les
flèches représentent les quantités de mouvement avant et après la collision.

Le premier facteur représente l’échelle d’énergie pertinente de ce processus de recombinaison :
c’est l’énergie de liaison du dimère fortement lié formé, et l’échelle de longueur |a| ≫ b ne peut
intervenir. Le second facteur tient compte du fait que le processus à trois fermions ne peut pas se
produire si l’un des fermions est séparé des deux autres par une distance ≫ b, par quasi-localité
dans l’espace des positions : en effet, la portée des interactions et la taille du dimère fortement
lié sont toutes deux de l’ordre de b. Le coefficient de proportionnalité dans l’équation (6) dépend
des détails de la physique microscopique. Nous aboutissons ainsi à une condition de stabilité
expérimentale du gaz de fermions dans la limite b → 0 d’une interaction de contact :

Γ
3 corps
pertes →

b→0
0 (7)

L’étude de ce système, pourtant gazeux, est rendue non triviale par la force des interactions. Par
exemple, puisque kF|a| ≈ 1, où kF = (3π2ρ)1/3 est le nombre d’onde de Fermi, la température de
transition superfluide est a priori de l’ordre de la température de Fermi TF = EF/kB (il n’y a pas
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d’autre échelle disponible que l’énergie de Fermi EF = ħ2k2
F/2m) et sera difficile à calculer avec

précision : la théorie BCS sera au mieux qualitative, et les méthodes de Monte-Carlo quantique
sont difficiles à appliquer aux fermions ; le défi a cependant été relevé par la référence [19],
il est vrai dans le cas symétrique de masses et de potentiels chimiques égaux dans les deux
composantes, où existent des méthodes de Monte-Carlo exemptes du fameux « problème de
signe ».

3. Questions ouvertes dans un point de vue microscopique

Dans cette section, les interactions entre fermions sont remplacées dans une limite de portée
nulle par des conditions de contact sur la fonction d’onde à N corps, l’opérateur hamiltonien se
réduisant alors à celui du gaz parfait (modèle de Wigner–Bethe–Peierls [20,21]).

3.1. Définition du modèle de Wigner–Bethe–Peierls

Pour construire le modèle, partons de la perception simple que nous en donnerait une photogra-
phie du gaz, c’est-à-dire une mesure des positions des N fermions comme les microscopes à gaz
quantique permettent de le faire depuis peu dans le cas homogène [22]. Dans la limite où la por-
tée b de l’interaction tend vers zéro, la photo typique ressemble à la figure 2a : les fermions sont
séparés deux à deux par une distance ≫ b et le potentiel d’interaction V (ri − r j ) est négligeable.
La fonction d’onde à N corps obéit dans ce cas à l’équation de Schrödinger stationnaire

Eψ= Hgaz parfaitψ (8)

avec l’opérateur hamiltonien du gaz parfait, somme des termes d’énergie cinétique p2/2mσ et de
piégeage Uσ(r) dans chaque état interne σ :

Hgaz parfait =
N↑∑

i=1

(
p2

i

2m↑
+U↑(ri )

)
+

N∑
j=N↑+1

(
p2

j

2m↓
+U↓(r j )

)
(9)

On convient ici de numéroter les particules de façon que les N↑ premières soient dans l’état
interne ↑ et les N↓ dernières soient dans l’état interne ↓ ; la fonction d’onde ψ(r1, . . . ,rN ) est alors
une fonction antisymétrique des N↑ premières positions et une fonction antisymétrique des N↓
dernières positions.

Certaines photos ressembleront cependant à la figure 2b : deux fermions i et j , d’états internes
différents, respectivement ↑ et ↓, sont séparés des autres par une distance ≫ b mais sont séparés
entre eux d’une distance ≈ b donc subissent l’effet du potentiel d’interaction V (ri −r j ). La bonne
façon de voir est de dire que i et j sont en train de subir dans le gaz une diffusion à deux corps
isolée, ce qui a deux conséquences, l’une qualitative, l’autre quantitative.

Qualitativement, on comprend qu’il vaut mieux, dans notre gaz très peu dense (au sens où
ρb3 ≪ 1), caractériser l’interaction entre ↑ et ↓ par son amplitude de diffusion à deux corps,
plus généralement par un opérateur de transmission dit matrice T , que par la fonction V (r) elle-
même; comme l’interaction se produit dans l’onde s, l’amplitude de diffusion f est isotrope et
ne dépend que du nombre d’onde relatif krel des deux particules ; dans la limite b → 0 à longueur
de diffusion a fixée, on dispose alors du développement de basse énergie5

fkrel =
−1

a−1 + ikrel − (1/2)k2
relre +O(k3

relb
2)

(10)

5Si V (r) décroît plus vite que 1/r 7 à l’infini, on peut mettre un O(k4
relb

3) au dénominateur.
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Figure 2. Photographie du gaz montrant les positions (étoiles) des N fermions, comme
le ferait un microscope à gaz quantique, dans la limite d’une interaction de portée b → 0
(à titre indicatif, nous avons entouré chaque étoile d’un cercle de diamètre b). (a) Cas
typique : les particules sont séparées deux à deux par une distance ≫ b et n’interagissent
pas. Ceci fixe l’opérateur hamiltonien (9) du modèle de Wigner–Bethe–Peierls. (b) Cas où
deux particules ↑ et ↓, bien séparées des autres, subissent une collision binaire. Ceci fixe les
conditions de contact (17) du modèle. (c) Cas d’une collision ternaire isolée. Ceci interroge
sur la nécessité de conditions de contact à trois corps.

Nous supposons dans la suite que la portée effective de l’interaction re est un O(b) donc devient
négligeable lorsque b → 0 6. Aussi l’amplitude de diffusion se réduit-elle à la forme universelle
pour une interaction de contact

f contact
krel

= −1

a−1 + ikrel
(11)

Quantitativement, on s’attend à ce que les deux fermions ↑ et ↓ proches se découplent des
N −2 autres dans la fonction d’onde à N corps, au sens où

ψ(r1, . . . ,rN ) ≃
ri j =O(b)

φ(ri − r j )Ai j (Ri j ; (rk )k ̸=i , j ) (12)

où Ri j = (m↑ri +m↓r j )/(m↑+m↓) est la position du centre de masse des particules i et j , ri j =
ri −r j est leur position relative, (rk )k ̸=i , j est le (N −2)-uplet des positions des autres particules, la
fonction Ai j n’est en général pas connue mais φ(r) est un état de diffusion à deux corps, solution
de l’équation de Schrödinger

εφ(r) =− ħ2

2mrel
∆φ(r)+V (r)φ(r) (13)

pour le mouvement relatif de masse mrel = m↑m↓/(m↑ +m↓) à une énergie ε dont l’expression
formelle est donnée dans la référence [24] (voir son équation (85)) mais dont nous retiendrons
seulement qu’elle est ≈ħ2k2

typ/2mrel, où le nombre d’onde typique ktyp dans le gaz est de l’ordre
de kF pour T = O(TF). Dans la limite b → 0, il suffit en fait d’analyser l’équation (13) dans
l’intervalle

b ≪ r ≪ k−1
typ (14)

le cas r ≤ b n’apportant que des détails non universels sur l’interaction et le cas r > k−1
typ invalidant

la factorisation (12) (la paire i j n’est plus bien isolée comme sur la photo de la figure 2b).
La première inégalité dans l’équation (14) permet de mettre V (r) à zéro au second membre,

6Expérimentalement, il existe cependant des résonances de Feshbach magnétiques dites étroites, pour lesquelles
re, négatif, est gigantesque à l’échelle atomique et peut être de l’ordre de 1/kF, à cause d’un couplage anormalement
faible entre les voies ouverte et fermée de notre note 4, voir la référence [23]. Ces résonances sont difficiles à utiliser
car elles nécessitent un très bon contrôle du champ magnétique. L’existence d’une portée effective de limite non nulle
lorsque b → 0 a cependant l’avantage de stabiliser le gaz dans le régime instable de la section 3.2 (le spectre reste borné
inférieurement et le taux de pertes à trois corps (6) tend vers zéro), et devrait permettre la préparation et l’observation
d’états liés efimoviens de longue durée de vie, pour peu que le rapport de masse m↑/m↓ soit assez grand. L’expérience

reste à faire.
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la seconde permet d’assimiler l’énergie ε à zéro au premier membre de l’équation (13), d’où
l’équation de Schrödinger simplifiée

0 =− ħ2

2mrel
∆φ(r) (15)

Sa solution générale dans l’onde s (invariante par rotation) est combinaison linéaire de la
solution constante 1 (l’onde incidente d’énergie nulle) et de la solution de Coulomb (l’onde
diffusée) avec une amplitude relative fixée par V (r) aux courtes distances :

φ(r) =N
(
1− a

r

)
= 1

a
− 1

r
(16)

Par définition, voir la contribution de Jan Solovej [17], la quantité a est la longueur de diffusion du
potentiel. Au troisième membre, nous avons choisi la normalisation commode (facteur N pris
égal à 1/a au second membre) pour avoir un résultat fini à la résonance de diffusion a−1 = 0.

Nous arrivons ainsi naturellement à la définition du modèle de Wigner–Bethe–Peierls pour
notre système tridimensionnel de (N↑, N↓) fermions à deux composantes en interaction de portée
nulle et de longueur de diffusion a ̸= 0 dans l’onde s :

(1) l’opérateur hamiltonien est le même que celui du gaz parfait, comme dans les équations
(8), (9)

(2) il y a antisymétrie fermionique du vecteur d’état ψ pour les N↑ premières et pour les N↓
dernières positions

(3) l’interaction est décrite non pas par un potentiel V mais par les conditions de contact
suivantes surψ : pour tout indice i ∈ {1, . . . , N↑} et tout indice j ∈ {N↑+1, . . . , N = N↑+N↓},
il existe une fonction Ai j telle que7

ψ(r1, . . . ,rN ) =
ri j →0

Ai j (Ri j , (rk )k ̸=i , j )

(
1

ri j
− 1

a

)
+O(ri j ) (17)

où l’on fait tendre vers zéro la distance ri j entre les particules i et j à positions fixées de
leur centre de masse Ri j et des autres particules rk , en imposant Ri j ̸= rk∀k ̸= i , j et les
rk deux à deux distincts (comme sur la figure 2b).

Mathématiquement, le point 3 signifie que le domaine de l’opérateur hamiltonien n’est pas le
même que celui du gaz parfait : en l’absence d’interaction (a = 0), on élimine à juste titre les
solutions qui divergent en 1/ri j , comme il est dit dans tout bon ouvrage de mécanique quantique.
C’est la seule différence mais elle est de taille8 !

La figure 2c, qui montre un trio d’atomes proches, bien séparés des autres et en train de subir
une diffusion à trois corps, fait naître une interrogation légitime : faut-il compléter le modèle par
des conditions de contact à trois corps? à quatre corps? etc. Réponse dans la section suivante.

3.2. Questions d’existence

Il n’est pas évident que le modèle de Wigner–Bethe–Peierls, tel que nous l’avons défini en page
401, conduise à un hamiltonien auto-adjoint (sans conditions de contact supplémentaires) et,

7Les fonctions Ai j ne sont pas indépendantes. L’antisymétrie fermionique impose que Ai j (Ri j , (rk )k ̸=i , j ) =
(−1)i−1(−1) j−(N↑+1) A1,N↑+1(Ri j , (rk )k ̸=i , j ) (pour les amener en première position dans leur état interne respectif et faire

ainsi apparaître la fonction A1,N↑+1, on a dû faire passer ri à travers i −1 vecteurs positions de fermions ↑ et r j à travers

j − (N↑+1) vecteurs positions de fermions ↓, d’où les signes).
8Un point clé est que l’état de diffusion φ(r) = 1/r − 1/a est bien de carré sommable sur un voisinage de l’origine,∫

r<rmax
d3r |φ(r)|2 < ∞ : il n’y a donc pas de coupure à mettre à courte distance et a est la seule longueur associée à

l’interaction. C’est différent dans les ondes de moment cinétique l > 0 :φ(r) = Y
ml

l
(θ,ϕ)(r l +a2l+1

gen /r l+1) (où le paramètre

agen ̸= 0 généralisant a est une longueur et Y
ml

l
est une harmonique sphérique) n’est alors plus de carré sommable, et il

faut introduire une coupure donc une seconde longueur pour caractériser l’interaction [25].
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surtout, à un spectre d’énergie borné inférieurement. En effet, nous avons quand même fait
tendre une échelle d’énergie vers −∞, celle −ħ2/mrelb

2 associée à la portée de l’interaction,
en prenant la limite b → 0 à longueur de diffusion a fixée donc sans faire tendre la force des
interactions vers zéro, ce qui pourrait provoquer un effondrement du système sur lui-même,
comme dans l’effet Thomas bien connu en physique nucléaire [26] !

La discussion s’éclaire dans le cas particulier a−1 = 0, dit de la limite unitaire (l’amplitude
de diffusion (11) du modèle atteint en module la valeur maximale k−1

rel autorisée dans l’onde
s par l’unitarité de la matrice de collision S), car les conditions de contact (17) deviennent
invariantes d’échelle (c’est aussi le régime le plus intéressant et le plus ouvert car d’interaction
maximale en phase gazeuse). Pour simplifier encore, limitons-nous aux états propres d’énergie
E = 0 dans l’espace libre, avec un centre de masse des N fermions au repos. Comme il n’y a alors ni
énergie ni potentiel extérieur pour introduire une échelle de longueur, on s’attend à ce que l’état
propreψ lui-même soit invariant d’échelle, c’est-à-dire une fonction homogène des coordonnées
(invariante à un facteur près par l’homothétie ri → λri de rapport λ sur les N positions), de la
forme [27,28]

ψ(r1, . . . ,rN ) = R s− 3N−5
2 Φ(Ω) (18)

où (i) R est l’hyperrayon interne, écart quadratique moyen des positions des N particules à leur
centre de masse C pondérées par les masses,

MR2 =
N∑

i=1
mi (ri −C)2 (19)

avec M = ∑N
i=1 mi la masse totale et MC = ∑N

i=1 mi ri ; (ii) l’exposant d’échelle (le degré d’homo-
généité) est commodément repéré par la quantité s après translation de (3N −5)/2 — pour révé-
ler une symétrie s ↔−s ; (iii) Φ est une fonction inconnue des 3N −4 hyperangles complétant R
dans le paramétrage des ri −C en coordonnées hypersphériques. Le report de l’ansatz (18) dans
l’équation de Schrödinger (8) (avec E = 0 et Uσ ≡ 0 comme il a été dit) donne une équation aux
valeurs propres surΦ : [

−∆Ω+
(

3N −5

2

)2]
Φ(Ω) = s2Φ(Ω) (20)

dont les valeurs propres ne sont autres que s2 ! Comme le laplacien ∆Ω est pris sur un compact,
l’hypersphère unité S3N−4, les valeurs possibles de s2 forment un ensemble discret, dans R à
supposer que l’hamiltonien soit hermitien; on ne sait en général pas les calculer, à cause des
difficiles conditions de contact (17) surΦ(Ω) 9.

Nous nous contenterons dans la suite d’écrire formellement que s est la racine d’une fonction
transcendante paire, dite fonction d’Efimov,

ΛN↑,N↓ (s) = 0 (21)

sans spécifier cette fonction (le plus direct pour l’obtenir est d’imposer les conditions de contact
(17) sur un ansatz de Faddeev écrit dans l’espace réciproque10, ce qui mène à une équation
intégrale dite de Skorniakov–Ter-Martirosian — ici à la limite unitaire et à énergie nulle, dans

9Les conditions de contact (17) ne contraignent en revanche pas la dépendance de ψ en l’hyperrayon. C’est que, si
ψ obéit aux conditions de contact, f (R)ψ y obéit aussi, pourvu que le facteur f (R) soit une fonction régulière de R. En
effet, dans la limite ri j → 0 à Ri j et (rk )k ̸=i , j fixés, on a MR2 = mi (ri −C)2 +m j (r j −C)2 + cte = mi r2

i +m j r2
j + cte =

(mi +m j )R2
i j +mrelr

2
i j +cte =O(r 2

i j )+cte. Or, (1/ri j −1/a)O(r 2
i j ) est un O(ri j ) négligeable.

10Rappelons brièvement la construction de l’ansatz. On écrit d’abord l’équation de Schrödinger à énergie nulle au

sens des distributions, Hgaz parfaitψ = ∑N↑
i=1

∑N
j=N↑+1(2πħ2/mrel)δ(ri j )Ai j (Ri j , (rk )k ̸=i , j ) où les distributions de Dirac

proviennent de l’action des opérateurs d’énergie cinétique sur les singularités en 1/ri j , en vertu de l’équation de Poisson
∆r(1/r ) = −4πδ(r), et mrel est la masse réduite de deux fermions de spins opposés comme nous l’avons dit. On en
prend ensuite la transformée de Fourier (ψ→ ψ̃, ∆r →−k2). En tirant parti de l’antisymétrie fermionique comme dans
la note 7 et de l’invariance par translation spatiale (le centre de masse est au repos), on se réduit à ψ̃(k1, . . . ,kN ) =
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laquelle on reporte l’équivalent de Fourier de l’ansatz (18) ; l’équation transcendante (21) qui
en résulte admet une écriture explicite pour N = 3 [29], et s’écrit comme le déterminant d’un
opérateur pour N > 3, cet opérateur étant donné explicitement pour N = 4 dans le secteur (3,1)
par la référence [30] et dans le secteur (2,2) par la référence [31]). Il faut maintenant distinguer
deux cas.

Premier cas : s2 > 0. Il y a alors deux valeurs possibles correspondantes de l’exposant d’échelle,
une valeur > 0 que nous convenons d’appeler s, et la valeur opposée −s < 0. Par un phénomène
similaire à celui de l’équation (16), ψ est en général une combinaison linéaire de deux solutions,
l’une contenant un facteur R s , l’autre contenant un facteur R−s , les amplitudes relatives étant
fixées de manière univoque par une longueur ℓ (l’équivalent de a dans l’équation (16)) détermi-
née par les détails microscopiques de l’interaction à courte distance O(b) 11,12 :

ψ= [
(R/ℓ)s − (R/ℓ)−s]R− 3N−5

2 Ψ(Ω) (22)

Cependant, en l’absence de résonance de diffusion à N corps, on s’attend à ce que ℓ = O(b), si
bien que ℓ→ 0 lorsque b → 0 : la solution en R−s devient négligeable, la longueur ℓ disparaît du
problème et l’on garde la condition de contact à N corps invariante d’échelle suivante dans la
voie d’exposant d’échelle s [32] :

ψ ≈
R→0

R s− 3N−5
2 (23)

La fonction d’onde ψ, considérée comme une fonction de R, est sans nœud donc l’énergie E = 0
correspond à l’état fondamental : il n’y a pas d’état lié, d’énergie E < 0 pouvant tendre vers −∞
lorsque b → 0 13,14.

(δ(k1 +·· ·+kN )/
∑N

n=1 ħ2k2
n /2mn )

∑N↑
i=1

∑N
j=N↑+1(−1)i+ j D((kn )n ̸=i , j ) où D est la seule fonction inconnue (chaque Ai j

est une fonction des (rk −Ri j )k ̸=i , j dont D((kn )n ̸=i , j ) est la transformée de Fourier à un facteur près).
11L’état de diffusion (16) correspond au cas N = 2 ; alors s = 1/2 et (3N − 5)/2 = 1/2, et ψ dans l’équation (22)

est bien combinaison linéaire de R0 et R−1 ; dans ce cas, R ∝ r12 et Φ(Ω) = cte dans l’onde s. Le calcul explicite de
l’expression (22) pour N = 2 donne en effetψ∝ (r12/ℓ̄)s−1/2 − (r12/ℓ̄)−s−1/2 avec ℓ̄= (m1 +m2)ℓ/(m1m2)1/2, ce qui doit
être proportionnel à (16), d’où la valeur annoncée de l’exposant s = 1/2 ; le paramètre à deux corps ℓ̄ n’est autre que la
longueur de diffusion a.

12On a mis un signe moins entre les deux termes entre crochets dans l’équation (22) ; un signe plus serait aussi
possible, suivant le modèle microscopique.

13Le cas spécial d’une résonance de diffusion à (N↑, N↓) corps, où ℓ reste non infinitésimal dans la limite b → 0,
est traité en détail dans la référence [33], qui explique quelle condition de contact à N corps utiliser pour décrire
correctement l’état faiblement lié qui en résulte. En effet, la condition (22) déjà proposée dans [27] n’est satisfaisante
que pour s assez petit (pour s > 1, on voit bien que l’état (22) n’est plus de carré intégrable en R = 0 et qu’une deuxième
longueur — une coupure — doit être introduite).

14Sur une résonance de Feshbach étroite, voir la note 6, la portée effective re est — pour 1/a = 0 — la seule échelle
de longueur pertinente lorsque la portée vraie b tend vers zéro, si bien que la longueur ℓ est de l’ordre de |re| ≫ b. La
fonction d’onde ψ dans l’équation (22) admet alors un nœud très « en dehors » du potentiel d’interaction : la solution à
E = 0 ne serait pas d’énergie minimale, et le système admettrait un état lié à (N↑, N↓) fermions (avec N > 2) ! Cependant,
une étude spécifique du cas (N↑ = 2, N↓ = 1) montre qu’il n’en est rien (tant que le rapport de masse m↑/m↓ reste assez

faible pour que s2 ≥ 0 bien entendu) [29,34]. Fallait-il s’en étonner? Raisonnons par l’absurde. S’il y avait vraiment
un état lié, il conduirait à un nombre d’onde relatif krel ≈ 1/|re| entre les fermions, le terme de portée effective ne
serait pas négligeable au dénominateur de l’amplitude de diffusion (10) et l’on perdrait l’invariance d’échelle donc la
séparabilité en coordonnées hypersphériques. L’équation (22) serait inapplicable et la prédiction d’un état lié caduque.
Plus généralement, pour pouvoir croire à (22) — c’est une condition nécessaire, il faut que l’hyperrayon R soit beaucoup
plus grand que toute échelle de longueur apparaissant dans tout sous-système (n↑,n↓) [avec n↑ ≤ N↑, n↓ ≤ N↓ et
n↑+n↓ < N↑+N↓ = N ], en particulier R ≫ b et R ≫ |re| pour (n↑ = 1,n↓ = 1). Faut-il le préciser, la résonance à (N↑, N↓)
corps de la note 13 ne remet pas (22) et l’existence d’un nœud à l’hyperdistance ℓ en question puisque la longueur ℓ≫ b
anormalement grande qui apparaît ne préexiste dans aucun sous-système.
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Deuxième cas : s2 < 0. Il y a là aussi deux valeurs possibles de l’exposant d’échelle, l’une s = i|s|
dans iR+ que nous convenons d’appeler s, et l’autre, son complexe conjugué −i|s|, ou encore son
opposé−s, dans iR−. Comme dans le premier cas, on conclut qu’il existe une longueur ℓ, fonction
des détails microscopiques de l’interaction, réglant l’amplitude relative des deux solutions :

ψ= [(R/ℓ)i|s|− (R/ℓ)−i|s|]R− 3N−5
2 Ψ(Ω) = 2isin[|s| ln(R/ℓ)]R− 3N−5

2 Ψ(Ω) (24)

Cette fois, les deux solutions sont de même module donc il faut les garder toutes les deux (aucune
ne l’emporte sur l’autre dans la limite b → 0) ! La longueur ℓ ne disparaît pas du problème mais
définit dans la limite b → 0 une condition de contact à N corps (24) qui brise explicitement
l’invariance d’échelle continue de la limite unitaire. Comme ψ comporte un nombre infini de
nœuds à une hyperdistance R arbitrairement grande — arbitrairement plus grande que la portée
b de l’interaction — (voir l’écriture du troisième membre de l’équation (24)), il existe un nombre
infini d’états liés à N corps sous la solution d’énergie E = 0 ; comme la condition aux limites (24)
est invariante par changement de ℓ en exp(±π/|s|)ℓ, on passe d’un état N -mère à l’autre par une
homothétie de rapport exp(π/|s|), le spectre correspondant formant une suite géométrique de
limite nulle mais non bornée inférieurement dans la limite de portée nulle15 :

En =−Eglobe−2πn/|s|, n ∈N∗, avec Eglob ≈ħ2/Mb2 (25)

Ces états liés à N corps, historiquement prédits par Efimov dans le cas N = 3, sont dits efimo-
viens. Il serait très intéressant de les stabiliser dans une expérience d’atomes froids (on vérifie
malheureusement que, si s ∈ iR+∗ dans le problème à (2,1) fermions, ce qui se produit pour
m↑/m↓ > 13,6069. . . comme nous le verrons, le taux de pertes à trois corps de l’équation (6) ne
tend pas vers zéro lorsque b → 0, mais plutôt vers une quantité proportionnelle à ħk2

F/m dans le
gaz homogène à T = 0, ce qui est considérable), par exemple en utilisant la note 6.

Mais revenons à notre problème mathématique : nous concluons que le gaz de (N↑, N↓)
fermions est stable pour une interaction ↑↓ de portée nulle, et que l’hamiltonien du modèle de
Wigner–Bethe–Peierls est auto-adjoint et borné inférieurement, si et seulement si les exposants
d’échelle sont tous réels :

s ∈R∗ ∀s solution deΛN↑,N↓ (s) = 0 (26)

Bien entendu, aucun sous-système (n↑,n↓) du gaz ne doit non plus présenter d’effet Efimov, sinon
(i) il faudrait introduire un paramètre à n↑+n↓ < N↑+N↓ corps sur le modèle de l’équation (24)
et l’invariance d’échelle à l’origine de la séparabilité (18), donc du résultat (26), serait brisée —
on perdrait la séparabilité à toutes les distances, et (ii) le sous-système pourrait s’effondrer sur
lui-même dans la limite b → 0 d’une interaction de portée nulle et l’énergie ne serait pas bornée
inférieurement. Sans le dire, nous avons effectué un raisonnement par récurrence et l’équivalent
de la condition de stabilité (26) doit être satisfait pour tout nombre n↑ ≤ N↑ et tout nombre
n↓ ≤ N↓.

Remarque 1. On pourrait ajouter s = 0 en troisième cas : c’est en fait précisément le seuil d’un
effet Efimov. En développant l’équation (24) au premier ordre en |s|, on trouve que

ψ∝ ln(R/ℓ)R− 3N−5
2 Φ(Ω) (27)

c’est-à-dire que la longueur ℓ règle l’amplitude relative des solutions R−(3N−5)/2 et
(lnR)R−(3N−5)/2. Ceci ressemble furieusement à la définition de la longueur de diffusion de

15L’expression précise de Eglob en fonction de s et ℓ, et de l’ordre de ħ2/Mb2 pour ℓ ≈ b, figure par exemple dans la
référence [35]. Dans l’équation (25) nous prenons n ≥ 1 (étant admis que exp(−2π/|s|) ≪ 1 — sinon le spectre ne serait
pas entièrement géométrique [29]) car le modèle de Wigner–Bethe–Peierls ne peut s’appliquer qu’à un état lié de taille
≫ b. On peut toutefois avoir ℓ≈ |re|≫ b et Eglob ≈ħ2/Mr 2

e ≪ħ2/Mb2 sur une résonance de Feshbach étroite, voir notre
note 6 ; même si ce n’est pas évident, l’exclusion de n = 0 dans (25) reste correcte dans ce cas [29,34]. Cette exclusion de
n = 0 est cohérente avec l’absence d’état lié lorsque s2 ≥ 0, voir notre note 14 : du côté efimovien, l’ensemble du spectre
discret doit tendre vers zéro lorsque |s|→ 0 sachant que Eglob a une limite finie et non nulle.
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deux particules en dimension deux, voir par exemple la référence [36] et la contribution de Jan
Solovej [17]. Cependant, dans le cas ℓ = O(b) où nous sommes, la longueur ℓ tend vers zéro
lorsque b → 0, la première solution — de coefficient ln(1/ℓ) →+∞ — l’emporte sur la deuxième
et l’on garde la condition de contact à N corps dans la continuité de (23) :

ψ ≈
R→0

R−(3N−5)/2 (28)

Dans le modèle de portée nulle, il n’y a donc pas de brisure d’invariance d’échelle ni d’état lié au
seuil efimovien16,17.

Remarque 2. Nous avons pris ici a = ∞ pour simplifier mais si le système est instable pour
a =∞, il le restera pour a fini (toutes choses égales par ailleurs), car les N -mères efimoviens du
gaz unitaire de taille ≪|a| (il y en a autant qu’on veut pour b → 0) ne font pas de différence entre
une longueur de diffusion infinie et une longueur de diffusion finie a.

Complément. À la limite unitaire, la présente analyse se généralise à énergie E non nulle (tou-
jours avec le centre de masse du système au repos). L’équation (18) devient

ψ= F (R)R− 3N−5
2 Φ(Ω) (29)

(elle satisfait aux conditions de contact de Wigner–Bethe–Peierls en vertu de la note 9) avec

EF (R) =− ħ2

2M
∆2DF (R)+ ħ2s2

2MR2 F (R) (30)

et ∆2D, le laplacien à 2D pour la variable R, se réduit ici (en l’absence de dépendance angulaire)
à d2/dR2 +R−1d/dR. Le cas efimovien s2 < 0 correspond donc simplement au problème connu
de « chute sur le centre » dans un potentiel attractif en 1/R2 [38]. La séparabilité en coordonnées
hypersphériques (29) s’étend même au cas piégé [27,28], il suffit d’ajouter le terme de piégeage
(1/2)Mω2R2F (R) au second membre de l’équation (30), et de faire la substitution E → E−Ecdm, la
valeur propre de l’équation sur F (R) étant l’énergie interne par opposition à celle Ecdm du centre
de masse. Pour s2 > 0, ceci conduit au spectre

E −Ecdm = (s +1+2q)ħω, q ∈N (31)

3.3. Ce qui est connu sur le domaine de stabilité

Le problème de savoir si la condition de stabilité (26) est satisfaite peut être attaqué par deux
extrémités opposées.

Par la première, on résout le problème à (N↑, N↓) fermions à E = 0 dans le modèle de Wigner–
Bethe–Peierls et on calcule les exposants d’échelle s (on procède analytiquement le plus loin
possible mais il y a une dernière étape numérique, en tout cas pour N > 3). À notre connaissance,
ce programme a été rempli dans le problème fermionique (N↑ > 1, N↓ = 1) jusqu’à N↑ = 4, voir la
figure 3 : on trouve à chaque fois qu’un effet Efimov apparaît au-delà d’un rapport de masse
critique m↑/m↓ (l’impureté ↓ doit être suffisamment légère), lui-même évidemment fonction

16Les considérations de la note 14 s’appliquent au seuil. En particulier, il ne faut pas croire à l’état lié d’énergie
∝ −ħ2/Mℓ2 que l’équation (27) nous inciterait à prédire : il serait d’extension spatiale ℓ et ne pourrait être décrit par
notre modèle de portée nulle lorsque ℓ ≈ b ; il n’existerait pas non plus pour (N↑ = 2, N↓ = 1) dans le cas — pourtant

apparemment favorable — d’une résonance de Feshbach étroite où ℓ≈ |re|≫ b, voir la note 14 et les références [29,34].
17Le fait que ln(1/ℓ) tende lentement vers l’infini lorsque b → 0 n’est pas sans conséquence pratique : si l’on veut

comparer aux expériences, il vaut mieux garder la contribution en lnR dans (27) [et le terme (R/ℓ)−s dans (22) pour s > 0
assez proche de zéro] pour former la condition de contact à N corps. Ainsi, on trouve que le troisième coefficient d’amas
b2,1 défini dans la section 3.4 est en réalité une fonction régulière du rapport de masse m↑/m↓ donc de s2, alors qu’il est

de dérivée infinie en s2 = 0 dans le modèle de portée nulle [35,37] donc dans l’équation (33).
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Figure 3. Résultats connus sur la stabilité du système (N↑,1) de N↑ fermions de spin ↑
et un fermion de spin ↓, pour une interaction de portée nulle, en fonction du rapport de
masse m↑/m↓ entre une particule ↑ et la particule ↓. Flèches verticales : valeurs critiques
de m↑/m↓ (seuils) pour l’effet Efimov à (N↑,1) corps obtenues par résolution du problème
correspondant, voir les références [39] pour N↑ = 2, [30] pour N↑ = 3, [40] pour N↑ = 4 ;
quand m↑/m↓ excède ces valeurs, l’énergie du système n’est plus bornée inférieurement.
Barre verticale avec flèche horizontale : rapport de masse critique αc, dont l’existence
est établie par le théorème de Moser–Seiringer [41], en dessous duquel le système (N↑,1)
est stable ∀N↑ ; le théorème ne donne pas la valeur exacte de αc mais une minoration,
αc > 2,77, plus contraignante que celle, m↑/m↓ = 1, des expériences sur les atomes froids
(une supériorité cependant de ces dernières est que le gaz unitaire de fermions semble y
être stable, sans effondrement ni pertes à trois corps significatives, pour toutes les valeurs
de N↑ et N↓).

décroissante de N↑ 18. On remarque que les rapports de masse critiques successifs sont de plus
en plus rapprochés; mathématiquement, on ne sait pas cependant si cette séquence continue
(existe-t-il un effet Efimov à (5,1) corps ? à (6,1) corps? etc.). Le cas (N↑ > 1, N↓ = 2) a été étudié
pour N↑ = 2 par la référence [31] qui conclut à la stabilité, tant que les sous-systèmes (2,1) et (1,2)
le sont.

Par la seconde extrémité, on cherche à contraindre (plutôt qu’à calculer) les rapports de masse
critiques, par une minoration du spectre de l’hamiltonien. C’est ce qu’a fait la référence [41] pour
le problème à (N↑, N↓ = 1) fermions : elle démontre le magnifique

Théorème. Il existe un rapport de masse critique m↑/m↓ = αc en dessous duquel le système
fermionique (N↑, N↓ = 1) est stable ∀N↑ pour une interaction de contact, et αc > 1/0,36 = 2,77.

3.4. Développement en amas ou du viriel

Certains diront que c’est le problème macroscopique à N corps qui doit être en définitive l’objet
de notre attention, plus que le problème à petit nombre de corps. Ce à quoi nous répondrons
que le second peut dire quelque chose sur le premier au moyen du développement en amas,
un développement de la pression P du gaz homogène à l’équilibre thermique grand-canonique
en puissances des fugacités des composantes σ (la température T = 1/kBβ est fixée mais les
potentiels chimiques µσ tendent vers −∞, ce qui correspond à une limite quantiquement non
dégénérée) :

P λ̄3

kBT
= ∑

(n↑,n↓)∈N2∗
bn↑,n↓eβµ↑n↑eβµ↓n↓ (32)

18Une fois qu’on a un effet Efimov dans le problème à (N↑, N↓) fermions, comme nous l’avons dit après l’équation (26),
on perd l’invariance d’échelle et on ne peut plus mettre en œuvre le raisonnement sous-tendu par les équations (18),
(20) pour passer au problème à (N↑ + 1, N↓) ou (N↑, N↓ + 1) fermions ; dans ce dernier, il n’y a plus de séparabilité en
coordonnées (R,Ω) comme dans l’équation (24), plus de spectre géométrique (25) donc au sens strict, plus de possibilité
d’effet Efimov!
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où la longueur d’onde thermique de de Broglie est prise à la masse de référence arbitraire m̄,
λ̄= (2πħ2/m̄kBT )1/2 19. Le développement (32), dans la littérature récente, est souvent confondu
avec celui du viriel, qui développe en fait en puissances des densités ρσλ3

σ dans l’espace des
phases (λσ = (2πħ2/mσkBT )1/2).

Comment calculer les coefficients d’amas bn↑,n↓ ? À la limite unitaire a−1 = 0, le plus simple
est d’utiliser la méthode du régulateur harmonique de la référence [43], qui place d’abord
le système dans les pièges harmoniques Uσ(r) de l’équation (2) puis, tous calculs faits, les
ouvre pour retrouver le cas homogène par approximation d’homogénéité locale (exacte dans
la limite considérée ω → 0+). En effet, le problème piégé est alors séparable en coordonnées
hypersphériques comme dans la section 3.2 et, si l’on connaît les exposants d’échelle s dans
l’espace libre à énergie nulle pour tous les n↑ ≤ ncible

↑ ,n↓ ≤ ncible
↓ , on connaît aussi les niveaux

d’énergie du système piégé comme dans l’équation (31), donc toutes les fonctions de partition
canoniques Zn↑,n↓ et en définitive le coefficient bncible

↑ ,ncible
↓

. Du coup, les coefficients d’amas

doivent être des fonctionnelles desΛn↑,n↓ de l’équation (21). C’est bien ce que prédit la conjecture
de la référence [44], selon laquelle, à la limite unitaire,

bn↑,n↓ =
(n↑m↑+n↓m↓)3/2

m̄3/2

[∫ +∞

−∞
dS

4π
S

d

dS
(lnΛn↑,n↓ (iS))+CorrStatn↑,n↓

]
(33)

pour tout (n↑,n↓) ∈N∗2 \ {1,1} 20. Ici, le préfacteur résulte du passage du cas piégé au cas homo-
gène et la première contribution entre crochets est calquée sur le résultat de la référence [45]
obtenu pour N = 3 ; la seconde contribution entre crochets est une éventuelle correction de sta-
tistique quantique de type gaz parfait provenant des sous-amas non monoatomiques indiscer-
nables en lesquels se découplent les états propres internes du système piégé (n↑,n↓) à haute éner-
gie (le centre de masse du système reste dans son état fondamental).

Expliquons mieux cette histoire de découplage en sous-amas sur des exemples. Si (n↑,n↓) =
(1,1), les états propres prennent asymptotiquement — pour des valeurs arbitrairement grandes
de l’énergie — la forme de deux fermions ↑ et ↓ non corrélés dans des niveaux oscillatoires de
grandes amplitudes21 ; les sous-amas étant monoatomiques, on a CorrStat = 0. Si (n↑,n↓) = (2,1),
un nouveau découplage est possible, à côté de celui en trois fermions décorrélés : les particules
peuvent se séparer en un atome ↑ et un pairon ↑↓ de fermions fortement corrélés (le mouvement
relatif au sein du pairon restant de faible amplitude), avec des niveaux oscillatoires très excités
pour l’atome ↑ et pour le centre de masse du pairon ↑↓ ; le pairon étant seul dans sa catégorie, on
a là encore CorrStat = 0. La conclusion reste la même pour (n↑,n↓) = (3,1), si ce n’est qu’apparaît
le triplon ↑↑↓ comme nouveau sous-amas découplé. En revanche, pour (n↑,n↓) = (2,2), il y
a découplage possible en deux pairons ↑↓ de très grande énergie relative, voir la figure 4 ; ils
n’interagissent plus mais ils sont indiscernables et conduisent, comme les bosons identiques
d’un gaz parfait, à une correction de statistique quantique ignorée par l’intégrale sur S dans
l’équation (33) ; le calcul donne CorrStat = 1/32 [44].

La conjecture (33) est bien établie pour N = 3, par application inverse du théorème des ré-
sidus, qui convertit la somme sur les spectres (31) donc sur les racines s de Λn↑,n↓ en une in-
tégrale [45]. Pour N = 4, les propriétés analytiques de la fonction Λn↑,n↓ dans le plan complexe

19La référence [42] utilise le choix m̄3/2 = (m3/2
↑ +m3/2

↓ )/2, naturel au sens où il conduit à un premier coefficient

d’amas total b1 = (b1,0 +b0,1)/2 égal à un.
20Le cas (n↑ = 1,n↓ = 1) est différent et doit être exclu ; il correspond, au contraire de ce que nous avons supposé, à une

résonance de diffusion à N corps avec N = 2 dans l’onde s : à la limite unitaire, il faut garder uniquement la solution en
R−s , s = 1/2, dans l’équation (22), comme si la bonne racine deΛ à garder était −s ; en effet, la solution en Rs correspond
à la partie régulière ∝ 1/a de l’état de diffusion à énergie nulle (voir la note 11 pour plus de précisions).

21Si le nombre d’onde relatif krel →+∞, l’amplitude de diffusion fkrel
→ 0 dans l’équation (11) donc même à la limite

unitaire, les interactions deviennent négligeables.
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Figure 4. Un comportement asymptotique possible du problème unitaire à quatre fer-
mions (N↑ = 2, N↓ = 2) dans les potentiels harmoniques Uσ(r) : deux pairons oscillent fu-
rieusement (avec des mouvements de grande amplitude) ; les fermions ↑ et ↓ dans chaque
pairon ont une énergie relative O(1) (en unités de ħω si l’on veut respecter la dimension)
et restent fortement corrélés ; les deux pairons ont une énergie relative →+∞ et sont dé-
couplés, ce qui autorise à les voir comme deux bosons identiques, dotés d’une structure
interne (celle du mouvement relatif ↑↓ au sein d’un pairon) mais n’interagissant pas entre
eux. La correction de statistique quantique CorrStat2,2 est alors non nulle dans l’équa-
tion (33).

ne sont pas suffisamment connues pour qu’on puisse appliquer le théorème de Cauchy22 ; dans
le cas particulier m↑/m↓ = 1, la conjecture a cependant été confirmée par un calcul très précis
de Monte-Carlo quantique à petit nombre de corps [46] (en revanche, les valeurs expérimen-
tales [47,48] ne sont pas confirmées, le problème semblant venir de l’impossibilité d’obtenir le
bon polynôme de degré 4 en z = exp(βµ) par ajustement de la pression P ou de la densité ρ me-
surées sur l’intervalle de fugacité accessible expérimentalement [49])23.

La démonstration de l’expression (33) dans le cas général reste donc ouverte. Une autre
question intéressante porte sur le comportement des coefficients d’amas bn↑,n↓ aux grands ordres
nσ →+∞, dont la connaissance est requise si l’on veut effectuer une sommation efficace de la
série (32) après calcul de ses premiers termes, pour étendre son applicabilité au régime dégénéré
T ≲ TF (par exemple, si le rayon de convergence est nul, on pourrait mettre en œuvre une
resommation de type Borel conforme comme dans les références [50,51]).

4. Questions ouvertes dans un point de vue macroscopique

Dans cette section, le gaz de fermions en interaction, considéré dans la limite thermodynamique
et à température non nulle mais arbitrairement basse, est décrit par une théorie hamiltonienne
effective de basse énergie, l’hydrodynamique quantique de Landau et Khalatnikov [52]24.

22Il faut pouvoir rabattre sur l’axe imaginaire pur le chemin d’intégration entourant les racines et les pôles de Λn↑ ,n↓
sur l’axe réel sans croiser de singularité — pôle ou ligne de coupure — dans les demi-plans supérieur et inférieur.

23Les références [47,48] ont accès seulement au quatrième coefficient d’amas total b4 = (b4,0 + b3,1 + b2,2 + b1,3 +
b0,4)/2, ce qui interdit une comparaison avec la conjecture (33) secteur par secteur.

24L’appellation « hydrodynamique quantique », en physique non linéaire, est comprise par opposition à l’hydrodyna-
mique des fluides classiques et fait référence à une équation d’Euler portant sur un champ de vitesse v(r) à valeurs réelles
plutôt qu’opératorielles, mais contenant un terme de pression quantique ∝ħ2, ce qui lui permet de décrire le mouve-
ment de tourbillons quantiques — à circulation quantifiée — dans le superfluide (comme l’équation de Gross–Pitayevski
sur la fonction d’onde d’un condensat de bosons réécrite en termes de la densité et du gradient de la phase). Ici, l’appel-
lation est à prendre au sens de la seconde quantification, le champ de vitesse étant désormais à valeur opérateur v̂(r).
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4.1. Vue d’ensemble du régime superfluide considéré

Le système tridimensionnel de fermions est ici spatialement homogène (dans un volume de
quantification [0,L]3 proche de la limite thermodynamique, cette limite étant prise à la fin des
calculs), avec des particules de masses égales m↑ = m↓ = m dans les deux états internes, non
polarisé en spin (il y a le même nombre de particules dans les deux composantes, N↑ = N↓, afin
de permettre un appariement complet) et à l’équilibre thermique canonique dans une limite de
basse température (T ̸= 0 mais T → 0).

Dans ces conditions, (i) les fermions s’assemblent en paires liées ↑↓ dans l’onde s ; en présence
des mers de Fermi dans les deux états internes, c’est ce à quoi conduit l’interaction attractive
entre ↑ et ↓ de la section 3, au travers du célèbre mécanisme de Cooper ; ceci vaut donc même
pour une longueur de diffusion a négative, où il n’y a pas d’état lié ↑↓ dans l’espace libre, la taille
d’une paire tendant toutefois vers +∞ lorsque a → 0− (dans le cas a > 0, il existe bien un état
dimère et, sans surprise, c’est à lui que se réduit l’état de paire liée dans la limite de basse densité
ρ→ 0)25 ; (ii) ces paires liées, étant des sortes de bosons composites, forment un condensat dans
le mode de vecteur d’onde Kpaire = 0 de leur centre de masse (de longueur de cohérence limitée
par la taille de la boîte, infinie à la limite thermodynamique) et un superfluide.

Du coup, on s’attend à ce que le système admette, dans son état fondamental, une branche
d’excitation acoustique (par ondes sonores) de départ linéaire en le nombre d’onde q avec une
correction cubique,

ωq =
q→0

cq

[
1+ γ

8

( ħq

mc

)2

+O(q4 ln q)

]
(34)

et que cette branche soit limitée supérieurement en énergie par le continuum de paire brisée, de
bord inférieur l’énergie de liaison d’une paire Epaire, comme sur la figure 5a. Iciωq est la pulsation
propre au vecteur d’onde q, c est la vitesse du son à température nulle et le paramètre de
courbure γ est adimensionné de façon qu’il vaille un dans la limite kFa → 0+ d’un gaz condensé
de dimères en interaction faible (en accord avec la théorie de Bogolioubov)26. La branche en
question est souvent dite de Goldstone [55], parce qu’on l’associe à la brisure de symétrie U (1)
dans la condensation de paires ; son pendant de Higgs est discuté dans la section 5.

Notre régime de basse température satisfait dans la suite aux deux conditions

0 < kBT ≪ mc2 et 0 < kBT ≪ Epaire (35)

la première assurant que soit peuplée thermiquement seulement la partie linéaire de la branche
acoustique, la seconde qu’il y ait une densité négligeable de paires brisées (d’après la loi de
Boltzmann, cette densité comporte un facteur d’activation exp(−Epaire/2kBT ), les fragments
issus de la dissociation d’une paire liée — les quasi-particules fermioniques χ de la figure 5b
— ayant individuellement une énergie minimale Epaire/2). Notre système se réduit alors à un
gaz thermique de phonons, si l’on convient d’appeler comme tels les quanta de la branche
acoustique (eu égard à son départ linéaire)27.

25Il n’est pas complètement évident de voir que l’interaction de contact de Wigner–Bethe–Peierls est attractive. Une
façon de faire est de l’obtenir comme la limite continue b → 0 d’un modèle sur un réseau cubique bZ3 avec un couplage
∝ ħ2/mb2 entre sites voisins (pour représenter l’énergie cinétique) et une interaction sur site g0/b3 ; à longueur de
diffusion a ̸= 0 fixée, on trouve alors que g0 ≈ −ħ2b/m < 0 lorsque b → 0 (la constante de couplage nue g0 est donc,
dans le régime b ≪|a| de la diffusion résonnante, fort différente de la constante de couplage effective g = 4πħ2a/m) [53].

26Notre convention de signe sur γ diffère de celle utilisée dans l’hélium 4 liquide, voir la référence [54].
27L’équation (34) ne vaut que pour une interaction V (ri j ) à courte portée, décroissant assez vite lorsque ri j →

+∞. Dans le cas d’une interaction dipolaire, comme dans les gaz d’atomes froids magnétiques, la vitesse du son est
anisotrope [58], voir aussi la contribution de Wilhelm Zwerger à ce dossier thématique [59] et le cours 2023-2024 de
Jean Dalibard au Collège de France [60]. Dans le cas d’une interaction coulombienne, comme dans les gaz d’électrons
supraconducteurs, la branche acoustique fait place à une branche de plasmons à bande interdite (la pulsation propreωq

a une limite > 0 en q = 0) [61]. Ici, nos atomes sont neutres et de moment dipolaire négligeable.
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Figure 5. Énergie de différents types d’excitations d’un gaz homogène non polarisé de
fermions à deux composantes à température nulle, en fonction de leur nombre d’onde q ou
k. (a) Branche d’excitation acoustique ħωq de départ linéaire ħcq (c est la vitesse du son),
limitée supérieurement par le continuum de paire brisée (zone hachurée) dont elle vient
ici tangenter le bord inférieur en le point terminal de nombre d’onde qmax. (b) Relation de
dispersion εk d’une quasi-particule fermionique χ (voir texte). Sous l’effet d’une excitation
percussionnelle de vecteur d’onde q, une paire liée ↑↓ du condensat de paires, initialement
au repos, se dissocie en deux quasi-particules fermionique χ de spins opposés, de vecteurs
d’onde k et k′ = q−k et d’énergies εk et εk′ ; comme le vecteur k n’est pas contraint (pas de
conservation de l’énergie pour une excitation percussionnelle), il apparaît un continuum
d’énergies finales {εk + εq−k,k ∈ R3}. Pour la force des interactions choisie sur la figure
(|∆|/µ = 0,84 soit 1/kFa ≃ −0,16 d’après la théorie BCS, avec µ le potentiel chimique du
gaz et ∆ le paramètre d’ordre complexe du condensat de paires), la branche acoustique est
de départ concave (γ < 0 dans l’équation (34)) et la relation de dispersion εk présente un
minimum Epaire/2 en k = k0 > 0 ; le bord inférieur du continuum vaut donc exactement
Epaire, du moins tant qu’on peut avoir k = k ′ = k0 donc tant que q = |k + k′| ≤ 2k0. Les
relations de dispersion représentées, approchées, sont celles de la théorie BCS pour εk et
de la RPA d’Anderson pour ħωq. Selon la force des interactions, le domaine d’existence
en q de la branche acoustique peut également être non compact, connexe q ∈ ]0,+∞[ ou
pas q ∈ ]0, qmax[

⋃
]qmin,+∞[ (qmin > qmax) [56] ; la concavité de la branche est elle aussi

variable [57] ; enfin, k0 = 0 et Epaire = 2(µ2 +|∆|2)1/2 si µ< 0, k0 = (2mµ)1/2/ħ et Epaire = 2|∆|
sinon.

On peut alors se poser trois types de questions, partiellement ouvertes :

(1) nous allons le voir, les phonons (abrégés en φ) interagissent entre eux, le superfluide
de fermions sous-jacent constituant un milieu non linéaire pour le son. Quels sont les
effets de ces interactions sur les phonons de vecteur d’onde q ? On s’attend en particulier
à ce qu’ils s’amortissent avec un taux Γq(T ) et qu’ils subissent un déplacement de
pulsation thermique ∆q(T ) (on ne compte pas le déplacement à température nulle, qui
donne naissance par définition au spectre (34) — le terme négligé en q5 ln q provient
précisément de l’effet croisé des interactions et des fluctuations quantiques du champ
de phonons [62,63])28.

28Dans le cas convexe γ > 0, il s’accompagne — toujours à T = 0 — d’une partie imaginaire non nulle ≈ q5,
correspondant au mécanisme d’amortissement de Belyaev q → k,k′, voir plus loin.
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(2) quelles sont les conséquences de la dynamique collisionnelle des phonons sur l’évo-
lution d’une variable macroscopique du gaz particulièrement intéressante, l’opérateur
phase φ̂0(t ) du condensat de paires?

(3) on enrichit le problème en considérant le cas partiellement polarisé N↑ ̸= N↓. Dans le
cas faiblement polarisé, par exemple N↑−N↓ =O(1), les fermions non appariés (car sur-
numéraires) de la composante de spin majoritaire forment, dans le gaz en interaction,
des quasi-particules fermioniques (abrégées en χ) d’une relation de dispersion εk dif-
férente de celles des fermions libres : elle présente notamment un minimum non nul,
donc une bande d’énergie interdite, donné par la demi-énergie de liaison d’une paire ↑↓,
au voisinage duquel elle varie quadratiquement en nombre d’onde k (voir la figure 5b).
Se pose alors la question de leurs interactions φ− χ avec les phonons et χ− χ entre
elles ; en particulier, un désaccord persiste sur l’expression de l’amplitude de diffusion
φ−χ à basse énergie (les références [64] et [65] diffèrent)29. Dans le cas fortement pola-
risé, où N↑−N↓ est extensif comme N , on s’attend à ce que la condensation des paires
liées à T = 0 puisse se faire dans une superposition d’ondes planes de leur centre de
masse (plutôt que dans Kpaire = 0 comme supposé ici), voir les références [66,67], ce qui
donne naissance à un superfluide modulé spatialement (un supersolide suivant la ter-
minologie à la mode), sans que son domaine d’existence dans l’espace des paramètres
((N↑ − N↓)/N ,1/kFa,T /TF) soit parfaitement bien connu théoriquement, le problème
étant complexifié par sa grande sensibilité aux fluctuations thermiques [68] (il n’y a pas
encore de résultats expérimentaux dans les gaz d’atomes froids tridimensionnels [69]).

Le cas le plus intéressant pour les points 1 et 2 est celui d’une branche acoustique de départ
concave, γ < 0 dans l’équation (34), très différent du gaz de bosons en interaction faible assez
bien connu (où γ≃ 1 > 0 comme nous l’avons dit)30. En particulier, l’amortissement des phonons
pour γ < 0 peut se produire seulement à T ̸= 0, puisque la désintégration d’un phonon en un
nombre quelconque n > 1 de phonons est interdite par la conservation de l’énergie-impulsion
pour une branche acoustique concave ; à l’ordre dominant en température, il résulte pour la
même raison, non pas comme pour γ> 0 de processus à trois phonons de type Belyaev φ→ φφ

ou Landau φφ → φ [70,71], mais des processus à quatre phonons φφ → φφ de Landau et
Khalatnikov [52]. À notre connaissance, cet amortissement à quatre phonons n’a encore été
observé expérimentalement dans aucun système. Il pourrait l’être dans un gaz d’atomes froids
fermioniques dans une boîte de potentiel [72]. Il pourrait l’être aussi dans l’hélium 4 superfluide
(un liquide de bosons) si l’on augmente suffisamment la pression pour rendre γ< 0 (le minimum
de roton s’abaisse ce qui finit par rendre concave le départ de la branche acoustique) et si l’on
abaisse suffisamment la température pour réduire la densité de rotons (au travers du facteur

29Ce problème intéresse également l’hélium 4 superfluide, dont la branche d’excitation admet elle aussi un minimum
quadratique, le minimum de roton; notre problème de diffusion φ−χ est donc formellement équivalent à la diffusion
roton–phonon étudiée déjà dans la référence [52], à la différence près que les rotons sont des bosons. Les prédictions
de [52] sont cependant incomplètes et en désaccord avec [64,65].

30Qualitativement, ce cas γ < 0 s’obtient lorsque l’énergie de liaison Epaire est assez faible : si l’on réduit Epaire, le
continuum de paire brisée sur la figure 5a s’abaisse, pousse sur la branche acoustique et finit par la faire se courber vers
le bas. C’est certainement le cas dans la limite BCS kFa → 0− où Epaire/mc2 = O(exp(−π/2kF|a|)) tend rapidement vers

zéro ; ce n’est plus le cas dans la limite CBE kFa → 0+ où Epaire ∼ Edim = ħ2/ma2 ≫ mc2. On ne sait pas avec certitude
de quel côté de la limite unitaire 1/kFa = 0 (c’est-à-dire pour quel signe de la longueur de diffusion a) se produit le
changement de signe du paramètre de courbure γ, voir la section 5. Vu la forme du bord inférieur du continuum sur la
figure 5a — et ceci indépendamment du signe de γ, l’effet de répulsion sur la branche acoustique est le plus fort à grand
q mais le plus faible à petit q (là où la différence d’énergie entre le bord et la branche est le plus grand). On s’attend donc
à avoir un intervalle de valeurs de 1/kFa sur lequel la branche, convexe à faible q , est concave à grand q [57].
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Figure 6. Découpage du gaz en portions cubiques mésoscopiques de côté ℓ, dans l’hydro-
dynamique quantique de Landau et Khalatnikov (cette théorie effective ne décrit pas les
échelles de longueur < ℓ). Voir texte pour le choix de ℓ.

d’activation exp(−Eroton/kBT )) et rendre négligeable l’amortissement parasite des phonons par
les rotons [73]31.

4.2. Quelle théorie macroscopique utiliser ?

Une théorie effective de basse énergie renonce à décrire le système en dessous d’une certaine
échelle de longueur ℓ ; on s’attend en revanche à ce que la théorie soit exacte aux grandes
longueurs d’onde, ici à l’ordre dominant en température.

Dans ces conditions, il est légitime de découper le gaz en portions de taille ℓ, par exemple en
boîtes cubiques de côté ℓ centrées sur le réseau cubique ℓZ3, voir la figure 6. Énonçons quelques
contraintes sur le choix de ℓ :

(1) on doit avoir ℓ≫ ξ (ici ξ = ħ/mc est la longueur dite de relaxation ou de corrélation du
superfluide) et ρℓ3 ≫ 1 (il y a un grand nombre de fermions par site) de façon que (i)
chaque portion cubique puisse être considérée comme mésoscopique et relever de la
notion d’équation d’état liant de manière univoque la pression ou le potentiel chimique
à la densité (comme c’est le cas à la limite thermodynamique), et (ii) le pas ℓ du réseau
fournisse une coupure en nombre d’onde π/ℓ≪ mc/ħ aux excitations phononiques du
gaz, les restreignant ainsi à la partie quasi linéaire de la branche (34), partie universelle
car décrite par deux paramètres, c et γ.

(2) on doit avoir kBT ≪ ħcπ/ℓ (c’est l’énergie du mode de phonons fondamental dans
une portion) de façon qu’on puisse considérer que (i) chaque portion est à température
nulle, et (ii) chaque portion est spatialement homogène à l’échelle de la longueur d’onde
typique q−1

th =ħc/kBT des ondes sonores thermiques.
(3) il faut aussi que ℓ≪ ℓcoh où ℓcoh est la longueur de cohérence des paires de fermions,

de façon que la notion de phase globale φ̂ ait un sens dans chaque portion (comme pour
un condensat). Cette contrainte est inopérante ici puisque ℓcoh ≈ L (les paires liées sont
condensées à 3D).

On admet alors qu’on peut représenter le système par deux opérateurs de champ, le champ
de densité ρ̂(r) et le champ de phase φ̂(r′), avec r,r′ ∈ ℓZ3 ; ces variables sont canoniquement
conjuguées au sens où

[ρ̂(r)ℓ3, φ̂(r′)] = iδr,r′ (36)

31Dans l’hélium 4 liquide, les processus de diffusion à quatre phonons entre des faisceaux de phonons produits
intentionnellement (non thermiques) ont déjà fait l’objet d’études théoriques et expérimentales [74].
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comme si φ̂ était un opérateur impulsion et ρ̂ℓ3 un opérateur position en mécanique quantique
ordinaire [52,75]32. Le champ de phase donne accès au champ de vitesse par simple différentia-
tion (il s’agit ici d’un gradient discret)33 :

v̂(r) = ħ
m

grad φ̂(r) (37)

L’ hamiltonien s’obtient en sommant l’énergie interne et l’énergie cinétique associée à la vitesse
locale d’écoulement du fluide dans chaque portion :

H =∑
r

1

2
mv̂(r) · ρ̂(r)ℓ3v̂(r)+ℓ3e0(ρ̂(r)) (38)

En effet, e0(ρ) est ici l’énergie volumique à température nulle du gaz homogène de fermions
de densité ρ, et mρ̂(r)ℓ3 est la quantité de matière (la masse) dans la portion centrée en r. Les
équations du mouvement sur ρ̂ et v̂ en point de vue de Heisenberg dérivant de l’hamiltonien
H prennent la forme d’une équation de continuité et d’une équation d’Euler (sans terme de
viscosité) à valeur opérateur34, d’où le nom d’hydrodynamique quantique donné à la théorie
(avec le risque de confusion signalé dans la note 24).

On l’aura compris, la grande force de cette théorie effective est qu’elle ne dépend pas de
la nature des particules bosoniques ou fermioniques constituant le superfluide sous-jacent, ni
de leurs interactions (fortes ou faibles, en phase liquide ou gazeuse) pourvu qu’elles restent à
courte portée, si ce n’est au travers de l’équation d’état e0(ρ) et du paramètre de courbure γ à
température nulle. Elle s’applique donc également bien aux gaz de bosons en interaction faible,
aux gaz de fermions en interaction forte et à l’hélium 4 liquide (système pourtant extrêmement
dense, défiant toute théorie microscopique).

Il ne faut cependant croire au formalisme que dans une limite de basse température, T → 0,
où les fluctuations spatiales de densité sont faibles et les gradients de phase aussi ; on doit donc
développer l’équation (38) jusqu’à l’ordre pertinent (ici l’ordre quatre) en puissances de

δρ̂(r) ≡ ρ̂(r)− ρ̂0 et δφ̂(r) ≡ φ̂(r)− φ̂0 (39)

où ρ̂0 et φ̂0 sont les composantes de Fourier des champs ρ̂(r) et φ̂(r) de vecteur d’onde nul
(physiquement, ρ̂0 = N̂ /L3 où N̂ est l’opérateur nombre total de fermions, L3 est le volume de
la boîte de quantification [0,L]3 et φ̂0 est l’opérateur phase du condensat de paires liées [76]).
L’hamiltonien développé s’écrit formellement

H = H0 +H2 +H3 +H4 +·· · (40)

où Hn est la contribution de degré total n en δρ̂ et δφ̂.

32Ces références historiques se placent pour simplifier dans un espace continu. La nécessité de discrétiser l’espace
pour éviter les infinis et rendre la théorie renormalisable est souligné dans la publication [76]. Ici, nous mettons ces
difficultés sous le tapis ; par exemple, nous ne distinguons pas dans (38) entre la notion d’équation d’état nue e0,0(ρ)
— celle qui entre dans l’hamiltonien — et l’équation d’état vraie ou effective e0(ρ) — celle qu’on observe dans une
expérience.

33Le fait que l’opérateur champ de vitesse soit un vecteur gradient ne signifie nullement que l’écoulement soit en-
tièrement superfluide (ceci serait d’ailleurs physiquement faux même à l’équilibre thermique, à température non nulle).
Expliquons-le en deux remarques. (i) On ne confondra pas l’opérateur v̂(r) de l’hydrodynamique quantique (qui contient
toutes les fluctuations quantiques et thermiques possibles) avec le champ de vitesse moyen v(r) de l’hydrodynamique
ordinaire ; en particulier, le caractère superfluide ou pas de l’écoulement dépend du caractère irrotationnel ou pas de v(r)
(sans chapeau). (ii) En général, on a v(r) ̸= 〈v̂(r)〉 où la moyenne est prise dans l’état quantique du système, car v(r) est
défini en termes de la densité moyenne de courant de matière, v(r) = 〈ĵ(r)〉/〈ρ̂(r)〉 avec ici ĵ(r) = [ρ̂(r)v̂(r)+ v̂(r)ρ̂(r)]/2 (par
définition, l’équation d’évolution de ρ̂ en point de vue de Heisenberg s’écrit ∂t ρ̂+div ĵ = 0 et celle de la densité moyenne
ρ(r) = 〈ρ̂(r)〉 s’écrit ∂tρ+div(ρv) = 0) ; il serait donc faux de croire que v(r) = (ħ/m)grad〈[φ̂(r)− φ̂(r0)]〉 (où r0 est une
position de référence arbitraire) et d’en déduire que v(r) est forcément un vecteur gradient.

34Voir la note 33 pour l’équation sur ρ̂(r). L’équation sur v̂(r) s’obtient en prenant le gradient de celle sur φ̂(r),
ħ∂t φ̂=−µ0(ρ̂)−mv̂2/2 où µ0(ρ) est la fonction potentiel chimique à température nulle comme dans l’équation (43).
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La contribution d’ordre 0 H0 est une constante sans grand intérêt ; celle d’ordre 1 est exacte-
ment nulle (car

∑
rℓ

3δρ̂(r) = 0 par construction) et a été directement omise dans l’équation (40).
La contribution quadratique H2 se diagonalise par transformation de Bogolioubov35 :

H2 = cte+ ∑
k̸=0

ħωkb̂†
kb̂k (41)

où les opérateurs de création b̂†
k et d’annihilation b̂k d’une excitation élémentaire (un phonon)

de vecteur d’onde k obéissent aux habituelles relations de commutation bosoniques

[b̂k, b̂k′ ] = 0 et [b̂k, b̂†
k′ ] = δk,k′ (42)

Le spectre obtenu est ici exactement linéaire, ωk = ck, avec la vitesse du son donnée par

mc2 = ρ d2

dρ2 e0(ρ) = ρ d

dρ
µ0(ρ) (43)

où µ0(ρ) est le potentiel chimique à température nulle du gaz de fermions de densité ρ. La
relation (43) est exacte (c’est celle bien connue de l’hydrodynamique des superfluides [75])
mais l’absence systématique de courbure dans le spectre n’est pas réaliste physiquement : cette
pathologie vient du fait que nous avons omis dans l’hamiltonien H des corrections dites de
gradient [77] ; pour simplifier, comme l’ont fait d’illustres prédécesseurs [52], nous remplaçons
ici ωk dans H2 à la main par son approximation cubique (34), ce que justifie d’ailleurs la
référence [78].

L’approximation H2 correspond à un gaz parfait de phonons, et ne peut décrire l’atténuation
du son. L’interaction entre phonons à l’origine de leur amortissement provient des contributions
cubique H3 et quartique H4. Pour alléger, nous donnons ici seulement l’expression de la partie la
plus utile de H3, et encore en la simplifiant, pour bien faire comprendre la physique :

H3|simpl =
A

2L3/2

∑
k,k′,q

(kk ′q)1/2b̂†
kb̂†

k′ b̂qδk+k′,q + (k ′kq)1/2b̂†
k′ b̂kb̂qδk′,k+q +·· · (44)

avec l’amplitude constante (indépendante des nombres d’onde) mise en facteur,

A = (ξ/2)3/2ρ−1/2
[

3mc2 +ρ2 d3

dρ3 e0(ρ)

]
(45)

et ξ = ħ/mc comme précédemment36. L’ellipse dans l’équation (44) contient des termes en
b̂†b̂†b̂† et b̂b̂b̂ sans grande importance car ils ne conservent pas l’énergie H2. Les contributions
en b̂†b̂†b̂ et en b̂†b̂b̂ sont en revanche centrales dans l’amortissement : elles correspondent
respectivement aux processus de Belyaev (le phonon q se désintègre en deux phonons k et k′) et
de Landau (le phonon q fusionne avec un phonon k en un seul phonon k′), dont on peut donner
la représentation diagrammatique suivante en faisant jouer un rôle privilégié au phonon dont on
étudie l’amortissement :

(46)

35Ladite transformation correspond aux développements modaux δρ̂(r) = L−3/2 ∑
k̸=0ρk(b̂k + b̂†

−k)exp(ik · r) et

δφ̂(r) = L−3/2 ∑
k̸=0φk(b̂k − b̂†

−k)exp(ik · r) où ρk = (ħρk/2mc)1/2 et φk = (−i)(mc/2ħρk)1/2 sont les amplitudes des
fluctuations quantiques de densité et de phase dans le mode de phonons de vecteur d’onde k. On notera la relation
−iωkδρk −ρ(ħ/m)k2φk = 0 imposée par l’équation de continuité linéarisée.

36La véritable amplitude de couplage dépend des angles entre les trois vecteurs d’onde ki mis en jeu ; comme
l’amortissement est en réalité dominé à basse température par des processus aux petits angles entre les vecteurs d’onde,
à cause de l’effet petit dénominateur décrit plus bas, nous l’avons écrite directement à angles nuls ki ·k j /ki k j = 1.
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Comme H3 est cubique, chaque sommet du diagramme représentant son action est le point
de rencontre de trois lignes de phonons. On pourrait procéder de même avec H4 (les sommets
seraient alors à quatre lignes) mais nous ne le ferons pas car les processus quartiques jouent
en général un rôle sous-dominant dans l’amortissement par rapport aux processus cubiques
(par exemple, dans l’amortissement à quatre phonons φφ → φφ pour γ < 0, l’amplitude du
processus direct k,q → k′,k′′ induit par H4 au premier ordre de la théorie des perturbations
est en pratique négligeable devant celle du processus indirect de même état initial et final
k,q → k + q → k′,k′′ induit par H3 traité au second ordre, à cause de l’apparition dans cette
dernière d’un dénominateur d’énergie très petit aux petits angles entre k et q)37.

4.3. Comment calculer l’amortissement des phonons?

Imaginons qu’on applique sur le gaz, initialement à l’équilibre thermique, une brève excitation
de type Bragg induisant un petit déplacement cohérent de Glauber d’amplitude α ∈ C∗ dans le
mode de phonons de vecteur d’onde q sans toucher aux autres modes, ce qui correspond donc
à l’opérateur d’évolution unitaire Uexc = exp(αb̂†

q −α∗b̂q) 38. On a alors, juste après l’excitation,
une moyenne non nulle pour l’opérateur d’annihilation correspondant :

〈b̂q(0+)〉 =α ̸= 0 (47)

Ceci conduit à une modulation observable de la densité moyenne du gaz aux vecteurs d’onde ±q
puisque 〈δρ̂(r,0+)〉, combinaison linéaire des 〈b̂k(0+)〉 et des 〈b̂†

k(0+)〉 comme dans la note 35, est
alors ̸= 0.

Dans la limite α→ 0, c’est-à-dire dans le régime de réponse linéaire, le formalisme des fonc-
tions de Green à N corps appliqué à la théorie effective de basse énergie, donc à l’hamiltonien
de phonons (40) [plutôt qu’à une description microscopique du gaz de fermions avec potentiel
d’interaction V (ri j ) comme le font les références [75,80] par exemple], conduit à l’expression
exacte

〈b̂q(t )〉 t>0= αe−iωqt
∫

C+

dζ

2iπ

e−iζt/ħ

ζ−Σq(ζ)
(48)

Dans cette expression, C+ est le chemin d’intégration parallèle à l’axe réel dans le demi-plan
complexe supérieur, décrit de droite à gauche (de Reζ = +∞ à Reζ = −∞), voir la figure 7, et
Σq(ζ) est la fonction énergie propre au vecteur d’onde q et à l’énergie complexe ζ 39, dont on ne
connaît pas l’expression explicite mais qu’on définit par son développement perturbatif à tous

37Le dénominateur d’énergie en question ħωq+ħωk−ħωk+q serait même exactement nul à angle nul sans les termes
de courbure dans la relation de dispersion (34), ce qui montre d’ailleurs toute la singularité d’une théorie à γ= 0 (ce sur
quoi nous reviendrons dans la section 4.3).

38Dans une expérience d’atomes froids, l’excitation de Bragg est induite par la superposition de deux faisceaux laser
loin de résonance de vecteurs d’onde k1 et k2 avec k1−k2 = q ; même si les modes acoustiques ±q sont initialement vides
(ħωq ≫ kBT ) et peuvent seulement recevoir des phonons, les processus Raman (à deux photons) absorption d’un photon
dans un faisceau laser-émission stimulée dans l’autre induisent les changements d’impulsion ±ħ(k1 −k2) =±ħq dans le
gaz de fermions et excitent en général les deux modes en question; on peut cependant jouer sur la durée de l’excitation
de Bragg pour que le mode −q sorte intact de la procédure d’excitation [79].

39Par rapport à la variable énergie z habituelle (de la référence [80] par exemple), la variable énergie utilisée ici est
translatée de l’énergie non perturbée du mode q, ζ = z −ħωq. Ceci explique pourquoi on a pu sortir le facteur de phase
de l’évolution non perturbée dans (48) et pourquoi Σq(ζ) est prise en ζ = i0+ dans l’approximation (50) à venir (cela

correspond effectivement à z =ħωq + i0+).
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Figure 7. Chemin d’intégration dans le plan complexe suivi par l’équation (48).

les ordres en l’interaction phonon–phonon. Ici, nous nous limitons à l’interaction cubique H3

(voir la section 4.2) et le développement prend la forme diagrammatique suivante

(49)

où l’entier n donne l’ordre en H3 [63]. Nous n’indiquons que la topologie, il reste à sommer sur
toutes les orientations possibles mais non redondantes des lignes internes, voir l’exemple de la
portion de diagramme (46)40 ; une valeur précise peut alors être attribuée à chaque diagramme,
mettant en jeu une somme sur les vecteurs d’onde et les fréquences de Matsubara des lignes
internes [80].

Afin d’obtenir des résultats explicites sur l’amortissement, on effectue traditionnellement les
deux approximations suivantes41 :

(1) l’approximation de Markov (le gaz de phonons vu par le mode q constitue un réservoir
sans mémoire c’est-à-dire avec un temps de corrélation négligeable) : on ignore la
dépendance en énergie de la fonction énergie propre comme suit (voir la note 39),

Σq(ζ) ≃Σq(i0+) (50)

L’intégrale dans l’équation (48) se calcule alors par le théorème des résidus (en refermant
le contour par un demi-cercle infini dans le demi-plan complexe inférieur),

〈b̂q(t )〉|Markov
t≥0= αe−iωqt e−iΣq(i0+)t/ħ (51)

La décroissance du signal est dans ce cas exponentielle, avec un taux correspondant à la
partie imaginaire de Σq(i0+) (la partie réelle donne le changement de pulsation propre
du mode).

40Dans le premier diagramme de (49) (à une boucle), (i) orienter la ligne du haut vers la droite et la ligne du bas
vers la gauche et (ii) orienter la ligne du haut vers la gauche et la ligne du bas vers la droite correspondent à la même
contribution, par invariance du diagramme par rotation d’angle π autour de son axe horizontal. Il en va de même pour la
boucle interne du deuxième diagramme de (49), par invariance par rotation locale de cette dernière. Pour la même raison
d’invariance par rotation (cette fois globale) des diagrammes d’ordre n = 4, on décide, pour éviter un double comptage,
de mettre la boucle interne dans la branche du haut et, dans le troisième diagramme de (49), d’orienter le pont vers le
bas.

41Notre théorie effective étant exacte à l’ordre dominant en température, il vaut mieux ne l’utiliser que dans la limite
T → 0, qui plus est en fixant le rapport q̄ = ħcq/kBT afin que le mode q soit lui aussi décrit exactement. On a alors
ωq/Γth → +∞ où Γth = Γq=kBT /ħc est le taux de thermalisation du gaz de phonons et Γq est la fonction (52), puisque
l’exposant ν introduit dans la figure 8 page 419 est toujours > 1, voir le tableau 1 page 420 : le taux de thermalisation Γth
tend vers zéro plus vite que la pulsation propre ωq et le mode entre par définition dans le régime faiblement collisionnel.
Dans le régime opposé ωq ≪ Γth dit hydrodynamique, le gaz de phonons a le temps d’atteindre un équilibre thermique
local en chaque point d’oscillation de l’onde sonore q et l’amortissement se décrit au moyen de coefficients de type
viscosité dans les équations hydrodynamiques classiques d’un modèle à deux fluides [81].
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(2) l’approximation de Born : on calcule ImΣq(i0+) perturbativement au premier ordre non
nul n en H3. Le taux d’amortissement des phonons q vaut alors42,43

Γq|Born–Markov =− 2

ħ ImΣ(n)
q (i0+) (52)

où l’exposant donne l’ordre en H3. Dans le cas d’une branche acoustique convexe (γ> 0)
à 3D, il suffit d’aller à l’ordre n = 2 : c’est l’amortissement à trois phonons de Belyaev–
Landau, très étudié théoriquement et observé dans l’hélium 4 liquide [83,84] et, dans
une moindre mesure, dans les gaz d’atomes froids bosoniques, seul l’amortissement
de Belyaev y ayant été vu [85]. Dans le cas concave (γ < 0), il faut aller à l’ordre n = 4
(la première contribution dans l’équation (49) est purement réelle pour ζ = i0+ car ses
dénominateurs d’énergie, de la forme ħωq +ħωk −ħωk+q et ħωq − (ħωk +ħωq−k), ne
peuvent s’annuler, mais les deux suivantes ne le sont pas dans les processus φφ→ φφ) ;
ce cas a été peu étudié théoriquement (la référence [78] a d’ailleurs relevé et corrigé une
erreur dans le calcul originel [52], et la référence [86] a obtenu une expression beaucoup
plus explicite du résultat, le généralisant même à un potentiel chimique de phonons µφ
non nul44) et n’a, à notre connaissance, jamais été observé expérimentalement (aucune
mesure précise de Γγ<0

q n’a été faite dans aucun système).

Déterminons la validité de l’approximation de Born au moyen de l’estimation de l’ordre
n ∈ 2N∗ donnée dans la référence [63] :

Σ(n)
q (i0+) ≈

∫ (
n/2∏
i=1

dd ki

)
〈|Ld/2H3|〉n

(∆E)n−1 ≈ |γ|T 3

(
ϵdD = T 2d−4

|γ|(5−d)/2

)n/2

(53)

où d ≥ 2 est la dimension de l’espace. L’écriture au second membre représente symboliquement
le produit de n éléments de matrice de l’interaction cubique entre phonons au numérateur et
le produit de n − 1 dénominateurs d’énergie (associés à n − 1 états intermédiaires) au dénomi-
nateur, et l’intégrale est prise sur les vecteurs d’onde de phonons indépendants ki . L’ordre de
grandeur au troisième membre est obtenu comme dans la référence [63] en se limitant aux petits
angles entre ki et q, en O(|γ|1/2T ), ce qui est légitime lorsque T → 0 [52] ; nous omettons ici la
dépendance en la densité ρ, en ξ=ħ/mc et en la constante de couplage A de l’équation (45), au
contraire de la référence [63], mais nous gardons celle en le paramètre de courbure γ, car nous

42Pour donner un autre éclairage à l’approximation (52), signalons pour n = 2 qu’on la retrouve exactement par
la méthode de l’équation pilote bien connue en optique quantique (on obtient une équation d’évolution fermée sur
l’opérateur densité ρ̂S (t ) d’un petit système S — ici le mode de phonons q — couplé à un gros réservoir R — ici les autres
modes de phonons k ̸= q, en recourant justement à l’approximation de Born–Markov) [36,82] ou, plus simplement, au

moyen de la règle d’or de Fermi (on calcule d〈n̂q〉/dt où 〈n̂q〉 = 〈b̂†
qb̂q〉 est le nombre moyen de phonons dans le mode q

hors d’équilibre, en sommant les flux entrants — processus de population k,k′ → q et k′ → k,q — et sortants — processus
inverses de dépopulation q → k,k′ et q,k → k′ — puis en linéarisant en l’écart à l’équilibre thermique δnq(t ) ≡ 〈nq〉(t )−n̄q
juste après l’excitation de Bragg, sous la forme (d/dt )δnq(t = 0+) = −Γqδnq(t = 0+)). Pour n = 4, on retrouve le même

résultat (52) en étendant la règle d’or de Fermi aux ordres supérieurs [38].
43Il y a ici une petite subtilité mathématique : si le premier ordre non nul n est ≥ 4, l’approximation de Markov

ne doit plus se contenter de remplacer Σq(ζ) par Σq(i0+) mais doit l’approximer par un développement limité autour
de ζ = i0+. Par exemple, pour n = 4, on prend Σq(ζ) ≃ Σq(i0+) + ζ(d/dζ)Σq(i0+) si bien qu’à l’ordre 4 en H3, ζ−
Σq(ζ) ≃ [1 − (d/dζ)Σq(i0+)][ζ − Σ(2)

q (i0+) − Σ(4)eff
q (i0+)] avec Σ(4)eff

q (i0+) = Σ(4)
q (i0+) + Σ(2)

q (i0+)(d/dζ)Σ(2)
q (i0+). Il faut

alors remplacer Σ(4)
q (i0+) par Σ(4)eff

q (i0+) dans l’expression (52) du taux d’amortissement. Dans le cas tridimensionnel

concave, ceci ne change rien à Γq|Born–Markov car (d/dζ)Σ(2)
q (i0+) est une quantité réelle, tout comme Σ(2)

q (i0+) ; dans
le cas bidimensionnel concave, la conclusion est moins évidente mais reste la même, voir la note 48. En revanche, ce
remplacement doit être effectué dans le calcul du déplacement de pulsation thermique ∆q du mode, ħ∆q|Born–Markov =
Re[Σ(2)

q (i0+)+Σ(4)eff
q (i0+)]− idem à T = 0.

44Si l’on se limite à l’ordre dominant en température aux processus collisionnels φφ→ φφ, le nombre de phonons
devient une quantité conservée, ce qui autorise à prendre µφ < 0.
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lierons bientôt γ et T . En résumé, le développement de Born est légitime en dimension d = 3 si
son petit paramètre tend vers zéro à basse température :

ϵ3D = T 2

|γ| →
T→0

0 (54)

Pour discuter la validité de l’approximation de Markov, admettons que le comportement de la
fonction énergie propre au voisinage de ζ = i0+ soit caractérisé par deux exposants, ν et σ,
celui donnant les valeurs typiques ∝ T ν de sa partie imaginaire et celui donnant son échelle
de variation typique ∝ Tσ, comme sur la figure 8 45,46. D’après l’équation (52), on a donc

Γq ≈
T→0

T ν (55)

La fonction Σq(ζ) admet alors une variation en énergie lente (négligeable) à l’échelle du taux
d’amortissement (qui est bien l’inverse du temps caractéristique dans l’équation (48)) si elle est
plus large que haute, ce qui impose

ν>σ (56)

L’exposant ν s’obtient par un calcul explicite du second membre de l’équation (52) dans la
limite T → 0, comme il a été fait dans la référence [78] pour le cas tridimensionnel47 et dans
la référence [63] pour le cas convexe bidimensionnel ; on peut aussi, plus simplement, utiliser
l’estimation (53) avec n = 2 si γ > 0 et d ∈ {2,3}, n = 4 si γ < 0 et d = 3 48. L’exposant σ s’obtient

45Les exposants introduits ici diffèrent d’une unité de ceux de la référence [63] par un choix de convention différent.
46Pour la clarté de l’exposition, nous avons supposé sur la figure 8 que la fonction représentée admet un maximum

en l’origine. Ceci n’est pas nécessairement vrai (le cas bidimensionnel convexe de la référence [63] en fournit un contre-
exemple, voir son équation (114)). La véritable définition des exposants ν et σ est que la fonction mise à l’échelle
ImΣq(ζ = ζ̄mc2(kBT /mc2)σ)/[mc2(kBT /mc2)ν] admet une limite finie et non nulle lorsque T → 0 à énergie complexe

réduite ζ̄ fixée (Im ζ̄> 0).
47La référence historique [52] pour γ< 0 fixé trouve elle aussi ν= 7 mais la dépendance en q de Γq est différente, par

exemple Γq ≈ qT 6 dans [52] au lieu de q3T 4 dans [78] lorsque q → 0.
48Pour γ < 0 fixé et d = 2, Alice Sinatra a obtenu en 2021, dans la formulation des références [72,78], le résultat non

publié que ImΣ(n=4)
q (i0+) = 0 à l’ordre T 3 (l’ordre dominant attendu en température). Pour le voir, il est en fait plus

simple d’utiliser les expressions (84) et (85) de la référence [63] : (i) dans (84), on peut ignorer les processus φ↔ φφφ

et se limiter au processus φφ→ φφ (deuxième contribution), seul capable de conserver l’énergie-impulsion; (ii) dans
l’intégrande de (85), on a le droit de remplacer ζ par 0 au numérateur de la grande fraction pour la raison similaire que
les processus φ ↔ φφ ne conservent pas l’énergie-impulsion - ceci rend le numérateur réel ; (iii) on vérifie alors que,
si l’écart d’énergie mis à l’échelle ∆E/[kBT (kBT /mc2)2] à côté de i0+ s’annule au dénominateur de la grande fraction,
comme l’impose le Dirac δ(∆E) de la règle d’or de Fermi généralisée [38], le numérateur s’annule aussi (on le montre en
remplaçant formellement γ au numérateur par son expression annulant∆E , une fonction rationnelle des modules et des
angles des vecteurs d’onde de phonons). En d’autres termes, la limite en ζ = 0 (mais aussi en ζ = −∆E) de l’amplitude
de transition au numérateur de la grande fraction, considérée comme une fraction rationnelle des angles, peut s’écrire
∆E ×P/Q, où les polynômes ∆E , P et Q sont deux à deux premiers entre eux.
Ce raisonnement néglige cependant de possibles effets de bord dans l’intégrale sur les nombres d’onde de phonons, au

sens de la référence [87], où l’un des nombres d’onde tend vers zéro, ce qui fait tendre vers zéro l’un des dénominateurs
d’énergie des processus φ↔ φφ. En incluant ces effets de bords, nous trouvons que les processus φ→ φφφ, φφ→ φφ

et φφφ → φ, abrégés en 1 → 3, 2 → 2 et 3 → 1 dans la référence [63], apportent chacun une contribution non nulle

à ImΣ(n=4)
q (i0+) à l’ordre T 3, mais que la somme de ces contributions donne exactement zéro (la contribution du bord

q ′
1+q ′

2 = q dans 2 → 2, à savoir C
∫ q̄

0 dk̄ (n̄lin
k +n̄lin

q−k +1)k̄(q̄−k̄)/q̄ , est compensée exactement par 1 → 3, et celle des bords

q ′
1 = 0 et q ′

2 = 0 dans leur ensemble, à savoir 2C
∫ +∞

q̄ dk̄ (n̄lin
k−q − n̄lin

k )k̄(k̄ − q̄)/q̄ , est compensée exactement par 3 → 1 ;

ici, k̄ =ħck/kBT , n̄lin
k = 1/(exp k̄ −1),Λ= ρ2((d3/dρ3)e0(ρ))/(3mc2) et C = kBT (kBT /mc2)2[9(1+Λ)2/8ρξ2]2/[π(3γ)2]).

La conclusion n’est pas changée par la correction Σ(2)
q (i0+)(d/dζ)Σ(2)

q (i0+) de notre note 43 car on trouve que les facteurs

Σ(2)
q (i0+) et (d/dζ)Σ(2)

q (i0+) sont tous les deux réels. C’était évident pour le premier facteur (les effets de bord qu’il
présente à 1D [87] sont supprimés à 2D par abaissement de la densité d’états des phonons à faible nombre d’onde).
Ça ne l’était pas pour le second facteur : à cause des effets de bord dans l’intégration sur k (voir l’équation (39) de la

référence [63]), les processus de Belyaev et de Landau donnent chacun une contribution non nulle à Im(d/dζ)Σ(2)
q (i0+)

(elle vaut 2[9(1+Λ)2/8ρξ2]/[q̄(3|γ|)3/2] pour Landau à l’ordre dominant en température) mais ces contributions sont
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Figure 8. Dans la limite T → 0, on admet que l’ordre de grandeur et la largeur typique de
la fonction ImΣq(ζ) près de ζ= i0+ sont caractérisés par deux lois de puissance en tempé-
rature, d’exposants ν et σ (en tenant compte d’une possible dépendance en température
du paramètre de courbure γ).

en généralisant ladite estimation au cas ζ ̸= 0, c’est-à-dire en ajoutant ζ à ∆E dans (53) ; or, dans
un développement aux petits angles entre ki et q, la partie de ∆E linéaire en les nombres d’onde
s’annule et il ne reste que les contributions cubiques ≈ γT 3 si bien que, indépendamment de la
dimensionnalité d ,

1

ζ+∆E
≈ 1

ζ+γT 3 et donc Tσ ≈ |γ|T 3 (57)

en tenant compte de la dépendance en le paramètre γ, ce dernier — nous l’avons dit — pouvant
varier en température. La condition de validité T ν = o(γT 3) qui en résulte dans (56) admet une
interprétation simple : dans la limite T → 0 prise avec la loi d’échelle q ≈ T , il faut que le taux
d’amortissement Γq tende vers zéro plus vite que le terme cubique en q dans ωq,

Γq
ħcq/kBT fixé=

T→0
o(ω(3)

q ) avec ω(3)
q = γmc2(qξ)3/8ħ (58)

ce qui est donc la vraie marque de la nature markovienne de l’amortissement (plutôt que la
condition perturbative irréfléchie Γq = o(ωq)).

exactement opposées, en particulier parce que les dénominateurs d’énergie εq−(εk+εq−k) et εq+εk−εq+k sont opposés
∼ ∓ħck[1− (vq /c)cosθ] à l’ordre dominant en k (vq = dεq/ħdq est la vitesse de groupe et θ est l’angle entre k et q) et
entrent dans la dérivée de la distribution de Dirac δ′(ε), qui est une fonction impaire de son argument.

Le cas bidimensionnel concave est donc spécial : la quantité ImΣ(4)eff
q (i0+) de la note 43 — considérée à tous les ordres

en température — ne donne pas la bonne loi d’échelle en température ∝ T 3 de la fonction énergie propre d’ordre 4 en
H3 sur un voisinage en O(T 3) de ζ = i0+ ; elle ne donne pas non plus, d’ailleurs, le taux d’amortissement Γq puisqu’il
y a échec des approximations de Born et de Markov comme dans le cas bidimensionnel convexe, voir la dernière ligne
de notre tableau 1. Notons cependant, toujours pour γ < 0, que le cas limite ρξ2 → +∞ d’une interaction très faible
dans le superfluide sous-jacent doit être mis à part car on y dispose du petit paramètre supplémentaire 1/ρξ2 aidant à
la validité de Markov (comme dans la section 3.2 de la référence [63]) et de Born (comme dans l’équation (17) de cette
même référence) ; ce cas limite est inaccessible dans un gaz de fermions de spin 1/2 en interaction de contact — on y a
ρξ2 =O(1) lorsque γ< 0 [88] — mais il l’est dans un gaz de bosons avec une interaction de portée ≳ ξ comme l’envisage
la référence [78].
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Tableau 1. Dans l’étude de l’amortissement des phonons d’un superfluide, validité de
l’approximation de Born–Markov dans la limite de basse température T → 0 selon la
dimension de l’espace d et le paramètre de courbure γ de la branche acoustique (plus
précisément son signe et sa variation en température, la troisième ligne valant quel que
soit le signe de γ).

ν σ Markov ϵdD Born
d = 3,γ> 0 fixé 5 3 oui ≈ T 2 → 0 oui
d = 3,γ< 0 fixé 7 3 oui ≈ T 2 → 0 oui
d = 3,γ=O(T 2) 5 5 non ≈ T 0 ̸→ 0 non
d = 2,γ> 0 fixé 3 3 non ≈ T 0 ̸→ 0 non

Les exposants ν et σ entrant dans la définition (56) du régime markovien sont ceux
de la figure 8, et le petit paramètre du développement de Born ϵdD est donné dans
l’équation (53).

La situation est résumée sur le tableau 1 ci-dessus49. L’approximation de Born–Markov est
donc utilisable en dimension 3, sauf sur un étroit intervalle de valeurs de γ, de largeur ≈
(kBT /mc2)2 autour de γ = 0 ; en γ = 0, la relation de dispersion des phonons (34) a d’ailleurs
un premier écart quintique à la loi linéaire cq , ce qui, on le sent bien, est un cas spécial.

Le calcul précis du taux d’amortissement Γq (ou ce qui en tient lieu pour une décroissance
non exponentielle, comme l’inverse de la largeur de |〈b̂q(t )〉|2 à la hauteur relative 1/e) pour
ces faibles valeurs de la courbure constitue, à notre connaissance, une question ouverte ; elle
est d’une grande pertinence expérimentale, la force des interactions annulant γ étant semble-t-
il proche de la limite unitaire (voir la référence [57] et notre section 5.1), point de prédilection
des expériences sur les atomes froids car dans un régime de valeurs assez élevées de Tc/TF et de
propriétés collisionnelles propices au refroidissement par évaporation [18].

Pour faire bonne mesure, nous avons aussi considéré le cas bidimensionnel convexe dans le
tableau 1 : l’approximation de Born–Markov y échoue, et la référence [63] a dû faire appel à une
approximation heuristique non perturbative sur la fonction énergie propre Σq(ζ) pour arriver à
un bon accord avec des simulations de champ classique (opérateurs b̂q, b̂†

q de l’hydrodynamique
quantique remplacés par des nombres complexes bq,b∗

q ), ceci dans le régime d’interaction faible
ρξ2 ≫ 1 du superfluide bosonique sous-jacent, où l’on pensait pourtant disposer d’un petit
paramètre assurant le succès de la règle d’or de Fermi même dans la limite kBT /mc2 → 0 (cette
attente raisonnable, confirmée dans la section 3.2 de la référence [63] à l’ordre deux en H3, est
infirmée dans la section 4.3 de cette même référence par un calcul à l’ordre quatre)50.

49Dans la troisième ligne du tableau, on omet de possibles facteurs logarithmiques ln(1/T ) pour simplifier. Ces
facteurs proviennent du fait que, pour les lois d’échelle γ∝ T 2 et q ∝ T , les termes en q3 et en q5 ln q sont du même
ordre de grandeur dans la relation de dispersion (34) : dans ce régime de faible courbure, la contribution logarithmico-
quintique à ωq n’est donc plus une petite correction et doit être gardée.

50Nous n’avons pas parlé ici du cas très particulier de la dimension d = 1, où deux vecteurs d’onde font un angle
très petit (nul !) dès qu’ils sont de même sens. Disons simplement que le petit paramètre de Born reste donné par
l’équation (53), obtenue pourtant sous l’hypothèse d ≥ 2. En rétablissant la dépendance en densité comme dans [63],
nous trouvons plus précisément ϵ1D = 1/[γ2ρξ(kBT /mc2)2], le préfacteur dans (53) s’écrivant γ(kBT )3/(mc2)2. Dans
la limite de basse température kBT /mc2 → 0 à ρξ fixé considérée ici, ϵ1D → +∞ et il faut immédiatement faire appel
à des approximations non perturbatives sur Σq(ζ) et Γq, comme le calcul autocohérent des références [89,90]. Dans

la limite opposée d’interaction faible ρξ → +∞ à kBT /mc2 fixé, ϵ1D → 0 et l’on peut utiliser la règle d’or de Fermi
comme dans la référence [87] ; plus précisément, on s’attend à ce que la condition de validité de la règle d’or s’écrive
ρξ(kBT /mc2)2 ≫ φ1D(q̄) où φ1D est une certaine fonction de q̄ = ħcq/kBT , en oubliant la dépendance en γ pour
simplifier (à q̄ fixé, l’approximation de Born impose cette condition, mais l’approximation de Markov est alors satisfaite

aussi car on a ħΓq|règle
d’or ≈ γ[(kBT )3/(mc2)2]ϵ1D ≈ kBT /(γρξ) ≪∆E ≈ γ(kBT )3/(mc2)2 où∆E , dénominateur d’énergie de

Belyaev–Landau typique, donne la largeur en ζ de la fonction énergie propre comme dans l’équation (57)). À 2D, comme
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4.4. Diffusion de phase du condensat de paires

Une question d’ordre à la fois pratique et fondamental porte sur le temps de cohérence du
condensat de paires à l’équilibre thermique dans un gaz de fermions parfaitement isolé de son
environnement.

Pour un système de fermions ↑ et ↓ infini non polarisé, le temps de cohérence est infini, comme
l’affirme le phénomène de brisure de symétrie U (1) : dans l’ensemble grand canonique (terme
−µN̂ ajouté à l’hamiltonien du gaz de fermions où µ est le potentiel chimique et N̂ l’opérateur
nombre total de particules), le paramètre d’ordre complexe ∆(r, t ) est uniforme et constant ;
dans l’ensemble canonique, il évolue donc avec le facteur de phase non amorti exp(−2iµt/ħ) 51,
avançant à la pulsation immuable 2µ/ħ ; en tout cas, le temps de cohérence est infini.

Qu’en est-il dans un système de taille finie (boîte de quantification [0,L]3, nombre total fixé
N de fermions)? Pour le savoir, suivons la référence [76] et écrivons l’équation d’évolution de
l’opérateur phase du condensat, que nous notons φ̂0 comme dans l’équation (39), dans le régime
de l’hydrodynamique quantique52 :

−ħ d

dt
φ̂0 =µ0(ρ)+ ∑

q̸=0
b̂†

qb̂q
d

dN
(ħωq) ≡ µ̂ (59)

Au second membre, µ0(ρ) = dE0/dN est le potentiel chimique des N fermions dans l’état
fondamental d’énergie E0 à la densité ρ et la somme sur q peut être interprétée comme la dérivée
adiabatique (comprendre aux opérateurs nombres d’occupation b̂†

qb̂q des modes de phonons
fixés) par rapport à N de la somme correspondante dans l’hamiltonien de phonons H2 (41). Le
second membre dans son ensemble est donc la dérivée isentropique de l’hamiltonien par rapport
au nombre total de particules. En ce sens, il constitue un opérateur potentiel chimique des
fermions, d’où la notation µ̂ au troisième membre, et l’équation (59) n’est autre qu’une version
quantique de la fameuse seconde relation de Josephson, reliant la dérivée temporelle de la phase
(classique) du paramètre d’ordre au potentiel chimique à l’équilibre µ.

Dans une réalisation donnée de l’expérience, que nous supposons correspondre à un état
propre à N corps |ψλ〉 d’énergie Eλ échantillonnant l’ensemble canonique, les nombres d’oc-
cupation b̂†

qb̂q fluctuent et se décorrèlent sous l’effet des collisions incessantes entre phonons
dues en particulier à H3, voir l’équation (44). Aux temps assez longs pour qu’un grand nombre de
collisions aient eu lieu, on s’attend donc à un étalement diffusif de la phase du condensat, avec
un déphasage aléatoire de variance croissant linéairement en temps :

Varλ[φ̂0(t )− φ̂0(0)] ∼
Γ
φ

collt≫1
2Dλt (60)

et un coefficient de diffusion Dλ sous-intensif, c’est-à-dire ≈ 1/N à la limite thermodynamique.
Ici Γφcoll = Γq=kBT /ħc est le taux de collision typique entre phonons thermiques (la fonction
Γq étant celle de l’équation (52)). L’étalement (60) induit une perte de cohérence temporelle

le montre la référence [63], le développement perturbatif en H3 de la fonction énergie propre est soumis à une condition
de validité similaire, ρξ2(kBT /mc2)2 ≫ φ2D(q̄), voir son équation (96), mais qui, contrairement au cas 1D, ne s’obtient
pas par simple comptage de puissances.

51Il y a un facteur 2 sous l’exponentielle car∆ est un paramètre d’ordre de paires alors que µ est le potentiel chimique
des fermions. Il n’y a pas de facteur 2 dans l’équation (59) car l’opérateur phase φ̂0 est conjugué à la densité de fermions.

52Pour obtenir cette équation, il a fallu éliminer par lissage temporel des termes en b̂qb̂−q et b̂†
qb̂†−q ; c’est sans

conséquence car ils oscillent avec une période ≈ ħ/kBT bien plus courte que les échelles de temps collisionnelles qui
nous intéressent ici (voir plus loin) et se moyennent donc automatiquement à zéro.
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exponentielle de taux Dλ, en vertu de la relation de Wick (on s’attend à ce que la statistique du
déphasage dans |ψλ〉 soit approximativement gaussienne [91]),〈

exp{−i[φ̂0(t )− φ̂0(0)]}
〉
λ ≃ exp[−i〈φ̂0(t )− φ̂0(0)〉λ]exp{− 1

2 Varλ[φ̂0(t )− φ̂0(0)]}

≃
Γ
φ

collt≫1
exp[−i〈µ̂〉λt/ħ]exp(−Dλt ) (61)

ce que confirme d’ailleurs l’analyse par résolvante de la référence [76]53.
Dans le cas γ > 0 d’une branche acoustique convexe, la situation ressemble à celle des

condensats de bosons en interaction faible bien étudiée dans la référence [95] : les collisions
dominantes sont celles à trois phonons φ↔φφ de Belyaev et de Landau, et Dλ a été calculé pour
le condensat de paires de fermions à basse température dans la référence [86] ; nous en donnons
ici l’expression simplifiée suivante, ne gardant que les lois d’échelle en N , T et γ (sous l’hypothèse
γ=O(1)) :

Dγ>0
λ

≈ N−1T 4γ0 (62)

Il n’y a eu encore aucune vérification expérimentale dans les gaz d’atomes froids (seuls fluides
quantiques suffisamment bien isolés pour que la perte de cohérence du condensat soit intrin-
sèque), même pour les bosons.

En revanche, dans le cas concave γ < 0, la question reste largement ouverte. La tenta-
tive de calcul de Dλ de la référence [86], tenant compte seulement des processus de collision
Landau–Khalatnikov à quatre phonons φφ → φφ aux petits angles, de taux typique Γφcoll ∝
(kBT /mc2)7mc2/ħ|γ| ≈ T 7, a conduit à un coefficient de diffusion infini,

Dγ<0
λ

=+∞ (63)

plus précisément à une loi d’étalement superdiffusive (simplifiée comme dans (62))54

Varγ<0
λ

[φ̂0(t )− φ̂0(0)] ≈ N−1T 20/3|γ|1/3t 5/3 (64)

en particulier parce que les collisions φφ→ φφ conservent le nombre total de phonons Nφ (au
contraire de φ ↔ φφ)55,56. Aller au-delà et obtenir la vraie valeur (a priori finie) de Dλ reste
une question ouverte : il faudrait tenir compte des processus sous-dominants à cinq phonons
φφ↔ φφφ qui changent Nφ et se produisent à un taux ≈ T 9 [96], de même ordre de grandeur
que celui des processus φφ→φφ aux grands angles [52,78], ce qui n’est pas aisé57.

53Si l’on admet que le gaz de phonons en interaction est un système quantique ergodique [92,93], la moyenne 〈µ̂〉λ
dans l’état stationnaire |ψλ〉 ne dépend que des deux quantités conservées, l’énergie E et le nombre de particules N , et
coïncide pour un grand système avec le potentiel chimique microcanonique µmc(E = Eλ, N ). Si l’énergie E fluctue d’une
réalisation à l’autre de l’expérience autour de la moyenne Ē , comme dans l’ensemble canonique, le facteur de phase au
troisième membre de l’équation (61) fluctue et conduit à un brouillage gaussien en temps : la linéarisation de µmc(E , N )
autour de Ē donne Var[φ̂0(t ) − φ̂0(0)] ∼ [∂Eµmc(Ē , N )]2(VarE)t 2/ħ2, effet parasite ≈ t 2/N masquant rapidement la
diffusion de phase (60) ≈ t/N [94].

54Dans tous les cas, voir les équations (62) et (64), on trouve bien qu’il n’y a pas d’étalement de phase à la limite
thermodynamique N →+∞ : dans un gaz isolé, le temps de cohérence limité du condensat est un effet de taille finie.

55Nφ doit alors être ajouté à la liste des constantes du mouvement, à côté de E et N , dans la note 53.
56Le fait que, pour γ< 0, le taux d’amortissement des phonons Γq tende vers zéro comme q3 (au lieu de q pour γ> 0)

joue aussi un rôle ; cependant, sans la conservation de Nφ, il conduirait à une loi d’étalement en t ln t marginalement

superdiffusive (voir l’équation (C.20) de la référence [86] et la moralité énoncée après son équation (72)).
57La publication [86], comprenant mal la référence [96], y avait vu un taux d’amortissement à cinq phonons en T 11.

Erreur corrigée ici. En effet, la référence [96], considérant un quasi-équilibre thermique avec un petit potentiel chimique
de phonons non nul µφ → 0−, obtient l’équation d’évolution L−3dNφ/dt = −Γφµφ sur le nombre moyen de phonons,

où Γφ ≈ T 11 n’est pas le taux cherché malgré les apparences ; comme L−3dNφ/dt ≈ T 2dµφ/dt pour la loi de Bose

n̄q = 1/{exp[(ħcq −µφ)/kBT ]−1}, on a en fait −dµφ/dt ∝ (Γφ/T 2)µφ, de taux ≈ T 9.
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5. Questions ouvertes requérant une théorie microscopique du problème à N corps

L’hydrodynamique quantique de la section 4 n’est qu’une théorie effective de basse énergie. Elle
présente donc des limitations de deux types, que nous passons ici brièvement en revue, et qui
empêchent de faire l’économie d’un calcul microscopique à N corps.

5.1. Déterminer les ingrédients de l’hydrodynamique quantique

L’hydrodynamique quantique fait intervenir deux quantités qui lui sont extérieures, l’équation
d’état du gaz de fermions non polarisé à température nulle (au travers de l’énergie volumique
e0(ρ) ou du potentiel chimique µ0(ρ) — sa dérivée — à la densité ρ) et le paramètre de courbure
γ de la branche acoustique (34).

Dans le présent cas de masses égales m↑ = m↓ = m, l’équation d’état a été mesurée expéri-
mentalement [48,97] et différentes méthodes de calcul approchées donnent des résultats satisfai-
sants, comme le Monte-Carlo quantique diffusif à surface nodale fixée [98,99] ou l’approximation
des fluctuations gaussiennes dans une formulation de champ par intégrale de chemin [100,101].

La situation est beaucoup plus ouverte pour le paramètre de courbure γ. L’approximation de
la phase aléatoire d’Anderson (RPA) [61], équivalente pour ce problème au calcul des pulsations
propres des équations BCS dépendant du temps linéarisées ou même à l’approximation des fluc-
tuations gaussiennes pourtant plus performante [100,102]58, conduit à une expression analy-
tique assez simple deγ en termes deµ/|∆| et (∂µ/∂|∆|)a , exacteγ→ 1 dans la limite kFa → 0+ d’un
condensat de dimères, raisonnable dans la limite BCS kFa → 0− (γ→−∞ exponentiellement en
1/kF|a| sous l’effet de l’écrasement de la branche acoustique par le continuum de paire brisée) et
présentant une annulation avec changement de signe pour |∆|/µ≃ 0,87, soit 1/kFa ≃−0,14 pour
l’équation d’état assez approximative de la théorie BCS, un changement de signe proche de la
limite unitaire en tout cas [57].

En particulier, γ a même valeur positive à la limite unitaire dans ces trois approches (branche
acoustique de départ convexe) :

γRPA
a−1=0 ≃ 0,084 (65)

L’erreur commise est cependant non contrôlée, et l’on n’est même pas sûr du signe.
Une méthode complètement différente procède par extension du problème à une dimen-

sion spatiale d quelconque puis développement autour de la dimension quatre, en puissances
donc du petit paramètre ϵ = 4 − d . À la limite unitaire, elle conduit elle aussi à un départ
convexe [104]59 :

γdimension
a−1=0 = 1

3

[
1− 1

4
ϵ+O(ϵ2)

]
ϵ=1≃
d=3

1

4
> 0 (66)

58Ces différentes approches conduisent exactement à la même équation implicite liant la pulsation propre ωq, le
potentiel chimique µ et le paramètre d’ordre ∆, et exactement à la même équation liant µ,∆ et la longueur de diffusion a
dans l’onde s [57] ; elles diffèrent seulement par l’équation d’état µ = µ0(ρ) reliant µ à ρ dans l’état fondamental, celle
des fluctuations gaussiennes étant la plus précise. Par exemple, à la limite unitaire a−1 = 0, les approches donnent
toutes mc2/µ = 2/3 (c’est exact par invariance d’échelle, µ0(ρ) ∝ ρ2/3 dans l’équation (43)), |∆|/µ ≃ 1,16 (proche de
la valeur expérimentale 0,44EF/0,376EF ≃ 1,17 sachant que |∆| = Epaire/2 dans ces théories et que Epaire/2EF ≃ 0,44 dans
l’expérience [103]) mais le rapport µ/EF ≃ 0,376 dans l’expérience [48], très mal reproduit ≃ 0,59 par la RPA et BCS, est
bien meilleur ≃ 0,40 dans les fluctuations gaussiennes.

59Nous avons obtenu l’expression (66) en reportant directement l’équation (50) de la référence [104] dans la relation
de dispersion (48) de cette même référence et en utilisant la propriété mc2 = 2µ/3 exacte par invariance d’échelle. En
procédant différemment, c’est-à-dire en passant par son équation (52) et son résultat c2/c1 = O(ϵ2) ≃ 0 avec d = 3 dans
son équation (48), on trouve la valeur assez proche γdimension

a−1=0
= 8/45 ≃ 0,18.
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Expérimentalement, une mesure récente de la branche acoustique par excitation de Bragg
dans un gaz d’atomes froids fermioniques conduit au contraire à un départ concave à la limite
unitaire [105] :

γ
exp
a−1=0

= 8µ

3EF
ζ≃ ζ avec ζ=−0,085(8) < 0 (67)

sachant que le rapport µ/EF vaut ≃ 3/8 pour le gaz unitaire dans l’état fondamental [48] et que
ζ est le paramètre de courbure de la branche acoustique pour l’adimensionnement de q par kF,
ωq = cq(1+ζq2/k2

F+·· · ). Mais le résultat (67) souffre de deux limitations [106] : (i) un ajustement
cubique de la branche sur un intervalle de valeurs de q assez élevées, q/kF ∈ [0,29;1,63], plutôt
que sur un étroit voisinage de q = 0 (pour la relation de dispersion de la RPA, par exemple,
qui présente un point d’inflexion en q ≃ 0,5kF, un tel ajustement, mélangeant aveuglément des
parties convexe et concave, ne donnerait pas le bon signe de γRPA

a−1=0
), et (ii) une température

relativement élevée, T = 0,128(8)TF ≃ 0,8Tc : même si l’on part de la branche de la RPA de
paramètre γ > 0 dans l’état fondamental, l’hydrodynamique quantique prédit un changement
thermique δγth de la courbure (par interaction du mode q avec les phonons thermiques) assez
négatif pour en changer le signe :

δγth ∼− 8π2

9(3µ/EF)1/2

(
T

TF

)2

≃−0,14 <−γRPA
a−1=0 (68)

La question du signe de γ à la limite unitaire, qui détermine crucialement la nature à
trois phonons (γ > 0) ou à quatre phonons (γ < 0) des mécanismes d’amortissement du
son dans le régime faiblement collisionnel à basse température, reste donc largement ou-
verte60.

5.2. Décrire les modes de haute fréquence

L’hydrodynamique quantique, avec sa branche acoustique presque linéaire en le nombre d’onde
q , ne peut décrire de manière fiable les ondes sonores de pulsation ωq > mc2/ħ du superfluide
de fermions. Ignorante de la nature composite des paires liées ↑↓, elle est totalement inapplicable
aux pulsations ω ≈ Epaire/ħ, où Epaire est l’énergie de liaison d’une paire : à ces pulsations, les
paires peuvent se briser en deux excitations fermioniques χ (la conservation de l’énergie ne
l’interdit plus), voir la figure 5a.

Il faut alors avoir recours à une description microscopique du gaz de fermions. À température
nulle, la principale méthode disponible est celle de la théorie variationnelle BCS dépendant du
temps [108]. Sa spécialisation au régime de réponse linéaire donne l’équation aux valeurs propres
suivante sur l’énergie z des modes de vecteur d’onde q :

det M(q, z) = 0 avec M(q, z) =
(

M|∆||∆|(q, z) M|∆|θ(q, z)

Mθ|∆|(q, z) Mθθ(q, z)

)
(69)

où les coefficients de la matrice 2× 2 correspondent à une réponse en le module |∆| ou en la
phase θ du paramètre d’ordre complexe ∆(r, t ). Dans la limite BCS d’interaction faible kFa → 0−,
les éléments non diagonaux sont habituellement négligés (à juste titre) et la dynamique se
découple en mode de module et mode de phase ; dans le cas général, cette distinction ne vaut
plus.

60L’amortissement étudié expérimentalement dans la référence [107] est dans le régime hydrodynamique, au sens de
la note 41. Cette référence ne permet donc pas de trancher.
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L’exploration des solutions de l’équation (69) a commencé. À nombre d’onde q fixé, on
trouve sous le bord εbord

q du continuum de paire brisée au plus une racine, celle ħωq de la
branche acoustique. Sur l’intervalle z ∈ ]εbord

q ,+∞ [, la fonction det M(q, z) admet une ligne de
coupure61, il faut mettre un décalage infinitésimal i0+ dans z pour lui donner un sens; elle
acquiert alors une partie imaginaire, qu’on n’arrive pas à annuler simultanément avec la partie
réelle, et l’équation (69) n’admet pas de solution. En revanche, on peut en trouver une, complexe
zq de partie imaginaire non infinitésimale < 0, en prolongeant analytiquement la fonction z 7→
det M(q, z) du demi-plan complexe supérieur au demi-plan inférieur à travers sa ligne de coupure
(ce qu’indique la flèche ↓ en indice) :

detM↓(q, zq) = 0 avec Im zq < 0 (70)

Il existe donc un mode collectif dans le continuum, qui s’amortit exponentiellement en temps
par émission de paires brisées. Le calcul a été fait d’abord dans la limite BCS kFa → 0−, aussi bien
pour des fermions neutres que pour les électrons d’un supraconducteur, dans la référence [109].
Il a été ensuite généralisé aux gaz d’atomes froids fermioniques pour une valeur quelconque de
kFa, sans qu’on puisse plus négliger les éléments non diagonaux M|∆|θ et Mθ|∆| [110,111]. La
branche d’Andrianov–Popov subsiste jusqu’à 1/kFa = 0,55 (point d’annulation µ= 0 du potentiel
chimique dans la théorie BCS) et présente toujours un départ à 2|∆| quadratique en q avec un
coefficient complexe :

zq
µ>0=
q→0

2|∆|+ζħ
2q2

4m∗
+O(q3) (Im ζ< 0) (71)

où m∗ est la masse effective d’une quasi-particule fermionique χ à l’endroit k = k0 de son
minimum d’énergie62. Nous avons écrit ici 2|∆| plutôt que Epaire, où ∆ est le paramètre d’ordre
à l’équilibre, même si la théorie BCS est incapable de distinguer (on a exactement Epaire = 2|∆|
pour tout µ > 0 dans cette théorie), afin d’évoquer le mécanisme de Higgs [113] dont on pense
que le mode collectif du continuum relève [114]63 ; d’ailleurs, dans la limite opposée kFa → 0+

d’un condensat de dimères bosoniques, où 2|∆| ≪ Epaire ∼ 2|µ| ∼ ħ2/ma2 (on a cette fois µ < 0),
on trouve bien une branche d’excitation collective commençant quadratiquement à 2|∆| et non
pas à Epaire [111]. L’extension de l’équation (69) à température non nulle (au-delà d’une simple

61Les éléments de matrice de M(q, z) comportent une intégrale sur le vecteur d’onde k d’un des fragments de
dissociation d’une paire liée du condensat, avec dans l’intégrande le dénominateur d’énergie correspondant z − (εk +
εq−k) ; par définition, le dénominateur peut donc s’annuler quand z appartient au continuum de paire brisée, voir la

légende de la figure 5.
62On l’aura compris, la masse effective est telle que εk−Epaire/2 ∼ħ2(k−k0)2/2m∗ quand k → k0. La mise à l’échelle

par m∗ dans l’équation (71) assure que ζ a une limite finie et non nulle lorsque kFa → 0− [109]. Dans ce même régime, la
référence pourtant connue [112] prédit un comportement fantaisiste de zq à faible q , avec une partie imaginaire tendant
vers zéro linéairement en q , voir son équation (2.38). La quantité ζ n’a ici rien à voir avec celle de l’équation (67), il y a une
coïncidence malheureuse de notations.

63Comme ce mécanisme résulte de la brisure de symétrie U (1), ici par condensation des paires liées, il doit être
caractérisé par l’échelle d’énergie associée au paramètre d’ordre, c’est-à-dire |∆| à un facteur près ; c’est bien ce que
trouve la référence [113], voir son équation (2b). En revanche, l’échelle d’énergie Epaire est reliée à la brisure de paires,
pas à leur condensation, donc n’a a priori aucun rapport avec la branche de Higgs. Le fait d’avoir Epaire = 2|∆| est source
de confusion et empêche de découpler les deux phénomènes. Il serait par ailleurs intéressant de voir si la propriété
Epaire = 2|∆| reste rigoureusement vraie à température nulle dans une théorie plus élaborée que BCS ou dans les

expériences.
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généralisation de type BCS en champ moyen, peut-être insuffisante64) reste à notre connaissance
une question ouverte.

D’un point de vue expérimental, dans les atomes froids ou les supraconducteurs, l’excitation
à des pulsations ω > Epaire/ħ a été effectuée seulement à nombre d’onde nul, où il n’y a d’après
les théories à température nulle pas de mode collectif du continuum, le poids spectral du mode
tendant vers 0 lorsque q → 0 [110] ; on observe simplement aux temps longs des oscillations du
paramètre d’ordre à la pulsation Epaire/ħ (c’est l’effet du bord non nul du continuum) qui s’amor-
tissent en loi de puissance t−α [117,118] par le même mécanisme que l’étalement du paquet
d’ondes gaussien d’une particule libre en mécanique quantique ordinaire (l’excitation percus-
sionnelle crée un « paquet d’ondes » de paires brisées (k,−k) dans le continuum, dont l’évolu-
tion gouvernée par la relation de dispersion 2εk est de manière effective unidimensionnelle pour
k0 > 0 (µ > 0), auquel cas α = 1/2 [119], et tridimensionnelle pour k0 = 0 (µ < 0), auquel cas
α = 3/2 [120])65. L’observation du mode du continuum (à q > 0) et la mesure précise de sa rela-
tion de dispersion zq restent donc à faire (des pistes sont données dans les références [110,121]).

Déclaration d’intérêts

Les auteurs ne travaillent pas, ne conseillent pas, ne possèdent pas de parts, ne rec̨oivent pas
de fonds d’une organisation qui pourrait tirer profit de cet article, et n’ont déclaré aucune autre
affiliation que leurs organismes de recherche.

English version (la version française commence à la page 394)

To obtain the English version, we translated the French version with ™DeepL Pro and a self-made
glossary of technical terms. The result was improved with ™DeepL Write.

1. Introduction and general presentation

This text is essentially the transcript of our 90-minute talk at the prospective symposium “Open
questions in the quantum many-body problem” held at the Institut Henri Poincaré in Paris, from

64Cette généralisation n’est pas une panacée, comme on le voit sur la partie imaginaire de la branche acoustique.
Pour γ > 0 (mais pas pour γ < 0), ce reproche peut être fait à la RPA déjà à température nulle, puisqu’elle prédit à
tort une pulsation propre ωq purement réelle. Cependant, ça ne semble pas être très grave car la partie imaginaire

(−1/2)Γq(T = 0) ≈ q5 obtenue par l’hydrodynamique quantique (amortissement de Belyaev) vient se perdre dans les
termes sous-sous-dominants négligés dans l’équation (34). Ce problème est plus visible à faible q à température non
nulle, où Γq(T > 0) commence linéairement en q avec un coefficient en T 4 (l’exposant ν vaut 5 dans le tableau 1 pour
la loi d’échelle q ∝ T de la note 41), ce dont la théorie de type BCS en champ moyen ne peut rendre compte (elle
prédit un coefficient en O[−exp(Epaire/2kBT )] [115,116] puisque les seuls nombres d’occupation thermiques qu’elle fait
apparaître sont ceux n̄k = 1/[exp(εk/kBT )+1] des quasi-particules fermioniques χ). En d’autres termes, la linéarisation
des équations BCS dépendant du temps ou, ce qui revient au même, l’approximation des fluctuations gaussiennes prend
en considération le couplage φ−χ mais pas le couplage φ−φ.

65Les observations de la référence [118] dans un gaz unitaire de fermions à T ̸= 0 soulèvent cependant plusieurs
questions : (i) l’exposant α ≃ 1± 0,15 mesuré est fort différent de la valeur prédite théoriquement (α = 1/2 à la limite
unitaire), (ii) il ne peut être exclu que la décroissance de l’amplitude des oscillations soit en réalité exponentielle, (iii) au
contraire de l’amplitude, la pulsation des oscillations ne présente aucune réduction observable lorsque T se rapproche
de la température de transition Tc (où il n’y a plus de brisure de symétrie U (1) et |∆| tend vers zéro) ce qui semble
incompatible avec la qualification d’oscillations de Higgs utilisée dans cette référence (la pulsation mesurée n’est pas
proportionnelle à |∆|/ħ), mais suggère aussi une constance de Epaire en température assez troublante (la pulsation
mesurée devrait être donnée par Epaire/ħ puisque l’excitation est faite à q = 0). Rappelons par ailleurs que la température
n’est jamais très faible dans l’expérience, T ≳ 0,1TF, voir notre section 2, ce qui rend la théorie à T = 0 stricto sensu
inapplicable.
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July 8 to 12, 2024, hence its style and level of precision differ from that of a usual research article. It
is more complete than the presentation on Section 4 (treated briefly at the oral presentation) and
on Section 5 (omitted at the oral presentation due to lack of time). Footnotes can be ignored on
first reading. The presentation was recorded and is available online on the IHP Carmin channel
(click here).

The system considered is inspired by experiments on cold atoms: it is a three-dimensional
two-component Fermi gas (meaning two internal states ↑ and ↓) in an immaterial trap—made
of light, at very low temperatures in the microkelvin range. This is the worthy descendant of
laser-cooled atomic gases (in the famous “optical molasses”, see the 1997 Nobel Prize in Physics
awarded to Steven Chu, William Phillips and Claude Cohen-Tannoudji) and then of evaporation-
cooled gaseous atomic Bose–Einstein condensates (see the 2001 Nobel Prize in Physics awarded
to Eric Cornell, Carl Wieman and Wolfgang Ketterle).

Compared to their illustrious predecessors, cold fermionic atomic gases have the advantage
(i) of being composed of fermions, thus covering both possible statistics (the gas can always
be “bosonized” by forming strongly bound pairs ↑↓) and making a direct link with the electron
systems (fermions!) of solid-state physics, (ii) of remaining collisionally stable (weak three-body
losses by recombination to deep molecular states) even in the strongly interacting regime as in
the famous “unitary limit” described below (unlike, for the moment, bosonic cold-atom gases),
and (iii) of constituting beautiful, simple and universal model systems in this regime, thanks to
the negligible range of van der Waals interactions between ↑ and ↓ (more precisely, the associated
van der Waals length is negligible); as we shall see, this allows the interaction to be replaced
by contact conditions on the N -body wave function, depending solely on the s-wave scattering
length a, which experimentalists can adjust at will by means of a Feshbach resonance, simply by
applying a well-chosen uniform magnetic field.

Our system is not unrelated to those of other presentations at the symposium. The link is
obvious with Tilman Enss’s contribution on the viscosity of strongly interacting Fermi gases [1],
which complements our own. If we place our fermions in an optical lattice, with about one
particle per site (close to half-filling), we recover the problems of strongly correlated fermions
and superconductivity at high critical temperature discussed by Antoine Georges. In a regime of
strong on-site interaction U↑↓ compared to tunnel coupling t between neighboring sites, U↑↓ ≫ t ,
the system is described by a Heisenberg-type spin model Hamiltonian, with magnetic coupling
J ∝ t 2/U↑↓, which links up with Sylvain Capponi’s talk [2]. If we return to a uniform system
(without lattice), but apply an artificial gauge field (a fictitious magnetic field) to our fermionic yet
neutral cold atoms—which is what experimentalists know how to do, see Sylvain Nascimbène’s
talk [3]—we come across problems related to the talks by Thierry Jolicœur [4] (on the 2D fractional
quantum Hall effect) and Carlos Sá de Melo [5] (spin–orbit coupling in one spatial dimension). All
these bridges to solid-state physics are not so easy to build, however, because of non-conservative
parasitic effects, finite sample sizes and difficulty in getting down to sufficiently low temperatures
(in units of the Fermi temperature TF or the magnetic coupling temperature J/kB), see the
presentations by Wolfgang Ketterle, Sylvain Nascimbène and Antoine Georges.

Let’s finish with the outline of our contribution. In Section 2, we start from reality, outlining the
progress of experiments on cold atoms since the 1980s and the situation reached in the case of
fermions. In Section 3, we adopt a microscopic point of view, of interactions replaced by contact
conditions, and review some open questions in the few-fermion problem. In Section 4, on the
other hand, we adopt a macroscopic point of view, that of a low-energy effective theory (quantum
hydrodynamics), and review some open questions related to the interaction between phonons
(the quanta of sound waves) in the superfluid phase. Finally, in the short Section 5, we cross
points of view and list some open questions that require a microscopic theoretical treatment of
the full many-body problem.

https://www.carmin.tv/fr/collections/symposium-open-questions-in-the-quantum-many-body-problem
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2. A fairly recent physical system

Let’s start by putting our Fermi gases into context, with a brief history of cold atoms.
The adventure began in the early 1980s with the laser cooling of alkalis. The low temperatures

reached are spectacular when expressed in kelvins, T ≈ 1 µK, but the spatial densities are
unfortunately very low, ρ ≲ 1010 at/cm3, so that the gases have very low quantum degeneracy,
i.e. very low density in phase space, ρλ3 ≪ 1, where λ is the thermal de Broglie wavelength of
atoms with mass m:

λ=
(

2πħ2

mkBT

)1/2

(1)

The effects of quantum statistics (bosonic or fermionic) are imperceptible.
This all changed in 1995, when Eric Cornell and Carl Wieman at JILA [6], shortly followed by

Wolfgang Ketterle at MIT [7], achieved Bose–Einstein condensation (BEC), obviously on bosonic
isotopes, thanks to evaporative cooling in non-dissipative trapping potentials with harmonic
bottoms1. Transition temperatures remain in the range of laser cooling, T BEC

c ≃ 0.1 to 1 µK, but
spatial densities are considerably higher, ρ = 1012 to 1015 at/cm3, enabling quantum degeneracy
ρλ3 ≳ 1 to be achieved.

Finally, in 2004, evaporative cooling was successfully extended to fermionic isotopes down to
the transition temperature [11,12]; gases with two internal states ↑ and ↓ no longer form Bose–
Einstein condensates, but condense in ↑↓ pairs by the BCS mechanism [13]: the attractive van
der Waals interactions between ↑ and ↓, in the presence of a Fermi sea in each internal state, lead
to the formation of bound pairs, the famous Cooper pairs, “composite bosons”, which can form
a condensate at sufficiently low temperatures, T < T BCS

c . The lowest experimentally accessible
temperatures are of the order of 0.1TF, where the Fermi temperature TF remains of the order of
a microkelvin; this is nevertheless sufficient to go below T BCS

c because the interactions between
↑ and ↓ are made very strong by means of a two-body scattering resonance (magnetic Feshbach
resonance): the transition temperature T BCS

c is then a fraction of TF and we avoid the extreme
situation of BCS superconductors, for which T BCS

c ≪ TF by several orders of magnitude.
Let’s now describe our system of fermionic cold atoms in broad outline, in an attempt to

idealize experimental reality. (i) The fermions have two internal states ↑ and ↓; as we are not
considering here a Rabi coupling between ↑ and ↓, our considerations also apply to the case of a
mixture of two formally spinless fermionic chemical species; for this reason, we do not assume
that the masses mσ of the particles are equal in the two internal states2 and we consider the ratio
m↑/m↓ as a free parameter. (ii) The fermions are trapped either in isotropic harmonic potentials
of the same trapping angular frequency ω for the two components σ,

Uσ(r) = 1
2 mσω

2r 2 (2)

where r is the 3D position vector, or in the cubic quantization box [0,L]3 common to both
components, with the usual periodic boundary conditions3. (iii) The van der Waals interaction
between the two internal states ↑ and ↓, shown schematically in Figure 1a, is effectively made
very strong (resonant) in s wave (relative orbital angular momentum l = 0) by application of

1Reference [8] later succeeded, using clever tricks, in obtaining a Bose–Einstein condensate without evaporation, by
laser cooling alone (see also reference [9]); in particular, this involved (i) using a narrow atomic line with low saturation
to keep the temperature limit of laser cooling [10] as low as possible, and (ii) preventing spontaneously emitted photons,
which carry away part of the energy of atomic motion, from depositing it back into the gas by reabsorption.

2In the case where ↑ and ↓ are two spin states of the same chemical species, we naturally have m↑ = m↓ in the
experiment. However, by applying an optical lattice that couples differently to the two internal states (within a low filling
factor limit), we could produce different effective masses mσ. This remains to be done.

3Experimentally, flat-bottom potentials can be produced using Laguerre–Gauss or Bessel–Gauss beams and laser light
sheets, after gravity compensation (levitation of atoms) by a magnetic field gradient [14–16].
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a suitable magnetic field4 so that the scattering length a between two atoms ↑ and ↓ (defined
mathematically in Section 3.1) is sufficiently large in absolute value (it can be positive or negative)
so that

ρ1/3|a|≳ 1 (3)

We recall that the theory of weakly interacting Bose gases relies on the small parameter (ρa3)1/2 ≪
1, see Jan Solovej’s contribution [17] to the symposium proceedings; condition (3) is therefore, on
the contrary, the mark of a strongly interacting gas. The scattering length a is also much greater
in absolute value than the interaction range b, defined in Figure 1a,

|a|≫ b (4)

which is indeed the hallmark of a two-body scattering resonance. As b is of the order of a few
nanometers in the experiments, we also have

b ≪ ρ−1/3,λ (5)

which gives us the idea of constructing a model system, by taking the limit of a zero-range
interaction b → 0 at fixed a, characterized only by the algebraic length a. This idea will be
implemented in Section 3.1. (iv) On the other hand, the interaction is not resonant in p
wave (relative orbital angular momentum l = 1), so the ↑↑ and ↓↓ interactions, which occur
predominantly in this wave at low energy (due to fermionic antisymmetry), are negligible.

As we shall see in Section 3, the existence of a well-defined model (of energy bounded from
below when b → 0) is a mathematically non-trivial problem. We can already propose a necessary
condition, inspired by experimental reality. Since the van der Waals interaction supports (at
least) a two-body bound state of size ≈ b, as shown in Figure 1a, the gas phase considered so
far and seen in experiments is only a metastable phase, temporarily escaping the solidification
predicted by the laws of equilibrium physics, a solidification of which three-body losses are the
precursors (see Figure 1b). These losses occur at a rate estimated as follows in reference [18] for
equal masses:

Γ
3-body
losses ∝ ħ

mb2 Proba(3 fermions ↑↑↓ or ↓↓↑ in a same ball of radius b) (6)

The first factor represents the relevant energy scale of this recombination process: this is the
binding energy of the strongly bound dimer formed, and the length scale |a| ≫ b cannot come
into play. The second factor takes into account the fact that the three-fermion process cannot
occur if one of the fermions is separated from the other two by a distance ≫ b, by quasi-locality
in position space: the interaction range and the size of the strongly bound dimer are both of the
order of b. The proportionality factor in Equation (6) depends on the details of the microscopic
physics. This leads to an experimental stability condition for the Fermi gas in the b → 0 limit of a
contact interaction:

Γ
3-body
losses →

b→0
0 (7)

4Without going into too much detail, it should be pointed out that, to understand this resonance, it is necessary to take
into account the internal structure of the atoms and describe their binary interaction a minima by a two-channel model,
with an open channel Vo(r12) interaction potential and a closed channel Vf(r12) interaction potential—think of the singlet
and triplet interaction potentials of two spin-1/2 fermions. In a collision, atoms ↑ and ↓ enter through the open channel
and, by conservation of energy, also exit through the open channel, as their relative incoming kinetic energy is less than
the difference of dissociation limits Vf(+∞)−Vo(+∞) > 0. As there is a coupling between the two channels, however,
the atoms virtually populate the closed channel during the collision. The applied magnetic field B induces a different
Zeeman shift in the two channels. A clever choice of B is then all that’s needed to ensure that the energy of a bound
state in Vf(r12)—not the bare energy, but the energy shifted by the coupling—almost coincides with the dissociation limit
Vo(+∞), inducing a two-body scattering (or collision) resonance in the open channel and making the scattering length a
diverge.
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Figure 1. (a) Schematic representation of the resonant van der Waals (more precisely,
Lennard-Jones) interaction (|a|≫ b) between ↑ and ↓ fermions as a function of their relative
distance. The potential supports at least one strongly bound state of extension of the order
of the van der Waals length b ≃ (mC6/ħ2)1/4 and therefore of binding energy ≈ ħ2/mb2

and, in the case of a scattering length a > 0 as in the figure, a last energy level of extension
a (of binding energy ħ2/ma2) on “the verge of disappearing” (here m↑ = m↓ = m as in the
experiments); if a were large but negative (|a| ≫ b, a < 0), this weakly bound state would
be on “the verge of appearing”. (b) The strongly bound dimer state can be populated by
three-body collisions, which causes particle losses in the Fermi gas, known as three-body
losses (the collision products carry away the considerable binding energy ≈ ħ2/mb2 in the
form of kinetic energy and leave the trap). The arrows represent the linear momenta before
and after the collision.

The study of this system, though gaseous, is made non-trivial by the interaction strength. For
example, since kF|a| ≈ 1, where kF = (3π2ρ)1/3 is the Fermi wave number, the superfluid transi-
tion temperature is a priori of the order of the Fermi temperature TF = EF/kB (there is no other
scale available than the Fermi energy EF =ħ2k2

F/2m) and will be difficult to calculate accurately:
BCS theory will be qualitative at best, and quantum Monte Carlo methods are difficult to apply to
fermions; the challenge has, however, been met by reference [19], in the symmetric case of equal
masses and chemical potentials in the two components, where Monte Carlo methods free of the
famous “sign problem” exist.

3. Open questions from a microscopic point of view

In this section, fermion interactions are replaced in a zero-range limit by contact conditions
on the N -body wave function, the Hamiltonian operator then reducing to that of the ideal gas
(Wigner–Bethe–Peierls model [20,21]).
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Figure 2. Photograph of the Fermi gas showing the positions (stars) of the N fermions, as
would be obtained with a quantum gas microscope, in the limit of an interaction range
b → 0 (for illustrative purposes, we have surrounded each star with a circle of diameter b).
(a) Typical case: the particles are separated by a distance ≫ b and do not interact. This
sets the Hamiltonian operator (9) of the Wigner–Bethe–Peierls model. (b) Case where two
particles ↑ and ↓, well separated from the others, undergo a binary collision. This sets the
contact conditions (17) of the model. (c) Case of an isolated ternary collision. This raises
the question of the need for three-body contact conditions.

3.1. Defining the Wigner–Bethe–Peierls model

To build the model, let’s start from the simple perception that a photograph of the gas would
give us, i.e. a measurement of the positions of the N fermions, as quantum gas microscopes have
recently been able to do in the homogeneous case [22]. In the limit where the interaction range b
tends to zero, the typical photograph looks like Figure 2a: the fermions are separated two by two
by a distance ≫ b and the interaction potential V (ri −r j ) is negligible. The N -body wave function
obeys in this case the stationary Schrödinger equation

Eψ= Hideal gasψ (8)

with the Hamiltonian operator of the ideal gas, the sum of the kinetic energy p2/2mσ and
trapping Uσ(r) terms in each internal state σ:

Hideal gas =
N↑∑

i=1

(
p2

i

2m↑
+U↑(ri )

)
+

N∑
j=N↑+1

(
p2

j

2m↓
+U↓(r j )

)
(9)

It is convenient here to number the particles so that the first N↑ are in internal state ↑ and the
last N↓ are in internal state ↓; the wave function ψ(r1, . . . ,rN ) is then an antisymmetric function
of the first N↑ positions and an antisymmetric function of the last N↓ positions. Some pictures,
however, will resemble Figure 2b: two fermions i and j , of different internal states, respectively
↑ and ↓, are separated from the others by a distance ≫ b but are separated from each other by a
distance ≈ b and are therefore affected by the interaction potential V (ri − r j ). The correct way of
looking at this is to say that i and j are undergoing isolated two-body scattering in the gas, which
has two consequences, one qualitative, the other quantitative.

Qualitatively, we understand that in our very low density gas (in the sense of ρb3 ≪ 1), it is
better to characterize the interaction between ↑ and ↓ by its two-body scattering amplitude, more
generally by a transmission operator known as the T matrix, than by the function V (r) itself; as
the interaction occurs in the s wave, the scattering amplitude f is isotropic and depends only on
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the relative wave number krel of the two particles; in the limit b → 0 at a fixed scattering length a,
we then have the low-energy expansion5

fkrel =
−1

a−1 + ikrel − (1/2)k2
relre +O(k3

relb
2)

(10)

We assume in the following that the effective range re of the interaction is O(b) and therefore
becomes negligible as b → 0 6. So the scattering amplitude reduces to the universal form for a
contact interaction

f contact
krel

= −1

a−1 + ikrel
(11)

Quantitatively, we expect the two nearby ↑ and ↓ fermions to decouple from the N −2 others
in the N -body wave function, in the sense that

ψ(r1, . . . ,rN ) ≃
ri j =O(b)

φ(ri − r j )Ai j (Ri j ; (rk )k ̸=i , j ) (12)

where Ri j = (m↑ri + m↓r j )/(m↑ + m↓) is the center of mass position of the particles i and j ,
ri j = ri − r j is their relative position, (rk )k ̸=i , j is the (N − 2)-uplet of the positions of the other
particles, the function Ai j is generally not known, andφ(r) is a two-body scattering state, solution
of Schrödinger equation

εφ(r) =− ħ2

2mrel
∆φ(r)+V (r)φ(r) (13)

for the relative motion of mass mrel = m↑m↓/(m↑+m↓) at an energy ε given in reference [24] (see
its Equation (85)) but which we will retain only as ≈ħ2k2

typ/2mrel, where the typical wave number
ktyp in the gas is of the order of kF for T =O(TF). In the limit b → 0, it is in fact sufficient to analyze
Equation (13) in the interval

b ≪ r ≪ k−1
typ (14)

with the case r ≤ b providing only non-universal details of the interaction and the case r > k−1
typ

invalidating the factorization (12) (the pair i j is no longer well isolated as in the photo in
Figure 2b). The first inequality in Equation (14) allows V (r) to be set to zero in the right-hand
side, and the second allows energy ε to be set to zero in the left-hand side of Equation (13), hence
the simplified Schrödinger equation

0 =− ħ2

2mrel
∆φ(r) (15)

Its general solution in the s wave (rotationally symmetric) is a linear combination of the constant
solution 1 (the incoming wave of zero energy) and the Coulomb solution (the scattered wave)
with a relative amplitude fixed by V (r) at short distances:

φ(r) =N
(
1− a

r

)
= 1

a
− 1

r
(16)

By definition, see Jan Solovej’s contribution [17], the quantity a is the scattering length of the
potential. In the third expression, we have chosen the convenient normalization (factor N taken
equal to 1/a in the second expression) to have a finite result at the a−1 = 0 scattering resonance.

5If V (r) decays faster than 1/r 7 at infinity, we can put an O(k4
relb

3) in the denominator.
6Experimentally, however, there are so-called narrow magnetic Feshbach resonances, for which negative re is gigantic

on the atomic scale and can be of the order of 1/kF, due to an unusually weak coupling between the open and closed
channels of our note 4, see reference [23]. These resonances are difficult to use, as they require very good control of the
magnetic field. The existence of a non-zero effective range as b → 0, however, has the advantage of stabilizing the gas in
the unstable regime of Section 3.2 (the spectrum remains bounded from below and the three-body loss rate (6) tends to
zero), and should enable the preparation and observation of long-lived Efimovian bound states, provided the mass ratio
m↑/m↓ is large enough. The experiment remains to be done.
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We thus arrive naturally at the definition of the Wigner–Bethe–Peierls model for our three-
dimensional system of (N↑, N↓) two-component fermions with zero-range interaction and s-wave
scattering length a ̸= 0:

(1) the Hamiltonian operator is the same as that of the ideal gas, as in Equations (8), (9)
(2) there is fermionic antisymmetry of the state vector ψ for the first N↑ and for the last N↓

positions
(3) the interaction is described not by a potential V but by the following contact conditions

onψ: for any index i ∈ {1, . . . , N↑} and any index j ∈ {N↑+1, . . . , N = N↑+N↓}, there exists a
function Ai j such that7

ψ(r1, . . . ,rN ) =
ri j →0

Ai j (Ri j , (rk )k ̸=i , j )

(
1

ri j
− 1

a

)
+O(ri j ) (17)

where the distance ri j between particles i and j tends to zero at fixed positions of their
center of mass Ri j and other particles rk , with the constraints Ri j ̸= rk∀k ̸= i , j and the
rk two-by-two distinct (as in Figure 2b).

Mathematically, point 3 means that the domain of the Hamiltonian operator is not the same as
that of the ideal gas: in the absence of interaction (a = 0), we rightly eliminate solutions that
diverge as 1/ri j , as stated in any good book on quantum mechanics. That’s the only difference,
but it’s a big one8!

Figure 2c, which shows a trio of atoms in close proximity, well separated from the others and
undergoing three-body scattering, raises a legitimate question: should we complete the model
with three-body contact conditions? four-body? etc. Answer in the next section.

3.2. Questions of existence

It is not obvious that the Wigner–Bethe–Peierls model, as defined on page 433, leads to a
self-adjoint Hamiltonian (without additional contact conditions) and, above all, to an energy
spectrum bounded from below. In fact, we have boldly stretched an energy scale to −∞, the
−ħ2/mrelb

2 scale associated with the interaction range, by taking the b → 0 limit at a fixed
scattering length a, i.e. without letting the interaction strength tend to zero, which could cause
the system to collapse, as in the well-known Thomas effect in nuclear physics [26]!

The discussion becomes clearer in the special case a−1 = 0, known as the unitary limit (the
scattering amplitude (11) of the model reaches the maximum modulus k−1

rel allowed in the s wave
by the unitarity of the scattering matrix S), as the contact conditions (17) become scale invariant
(this is also the most interesting and open regime, because it corresponds to a maximally
interacting gas phase). For simplicity’s sake, let’s restrict ourselves to E = 0 energy eigenstates
in free space, with the center of mass of the N fermions at rest. As there is no external energy
or potential to introduce a length scale, we expect the eigenstate ψ to be scale invariant, i.e. a

7The functions Ai j are not independent. Fermionic antisymmetry dictates that Ai j (Ri j , (rk )k ̸=i , j ) =
(−1)i−1(−1) j−(N↑+1) A1,N↑+1(Ri j , (rk )k ̸=i , j ) (to bring them to the first position in their respective internal states and thus

reveal the function A1,N↑+1, we had to pass ri through i − 1 position vectors of ↑ fermions and r j through j − (N↑ + 1)

position vectors of ↓ fermions, hence the signs).
8A key point is that the scattering state φ(r) = 1/r − 1/a is square-summable on a neighborhood of the origin,∫

r<rmax
d3r |φ(r)|2 <∞: there is therefore no cutoff to be put at short distance and a is the only length associated with

the interaction. The situation is different in waves of angular momentum l > 0: φ(r) = Y
ml

l
(θ,ϕ)(r l +a2l+1

gen /r l+1) (where

the parameter agen ̸= 0 generalizing a is a length and Y
ml

l
is a spherical harmonic) is then no longer square-summable,

and a cutoff and thus a second length must be introduced to characterize the interaction [25].
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homogeneous function of the coordinates (invariant up to a factor by the homothety ri → λri of
ratio λ applied to the N positions), of the form [27,28]

ψ(r1, . . . ,rN ) = R s− 3N−5
2 Φ(Ω) (18)

where (i) R is the internal hyperradius, the root-mean-square deviation of the mass-weighted
positions of the N particles relative to their center of mass C,

MR2 =
N∑

i=1
mi (ri −C)2 (19)

with M = ∑N
i=1 mi the total mass and MC = ∑N

i=1 mi ri ; (ii) the scaling exponent (the degree of
homogeneity) is conveniently defined by the quantity s after translation of (3N −5)/2—to reveal
an s ↔−s symmetry; (iii) Φ is an unknown function of the 3N −4 hyperangles completing R in
the parameterization of ri −C in hyperspherical coordinates. Carrying over the ansatz (18) into
the Schrödinger equation (8) (with E = 0 and Uσ ≡ 0 as mentioned) gives an eigenvalue equation
forΦ: [

−∆Ω+
(

3N −5

2

)2]
Φ(Ω) = s2Φ(Ω) (20)

whose eigenvalues are precisely s2! Since the Laplacian ∆Ω is taken on a compact, the unit
hypersphere S3N−4, the possible values of s2 form a discrete set, belonging to R if one assumes
that the Hamiltonian is Hermitian; we generally don’t know how to calculate them, because of
the difficult contact conditions (17) onΦ(Ω) 9.

In the following, we’ll simply write formally that s is the root of an even transcendental
function, the so-called Efimov function,

ΛN↑,N↓ (s) = 0 (21)

without specifying this function (the most direct way to obtain it is to impose the contact
conditions (17) on a Faddeev ansatz written in reciprocal space10, which leads to a Skorniakov–
Ter-Martirosian integral equation—here in the unitary limit at zero energy, in which we inject
the Fourier equivalent of ansatz (18); the resulting transcendental equation (21) can be written
explicitly for N = 3 [29], and is written as the determinant of an operator for N > 3, this
operator being given explicitly for N = 4 in sector (3,1) by reference [30] and in sector (2,2) by
reference [31]). We must now distinguish between two cases.

First case: s2 > 0. There are two possible values for the scaling exponent, one value > 0 which we
agree to call s, and the opposite value −s < 0. By a phenomenon similar to that of Equation (16),
ψ is in general a linear combination of two solutions, one containing a factor R s , the other con-
taining a factor R−s , the relative amplitudes being univocally fixed by a length ℓ (the equivalent

9On the other hand, contact conditions (17) do not constrain the dependence ofψon the hyperradius. This is because,
ifψ obeys the contact conditions, f (R)ψ also obeys them, provided that the factor f (R) is a regular function of R. Indeed,
in the limit ri j → 0 with Ri j and (rk )k ̸=i , j fixed, we have MR2 = mi (ri −C)2+m j (r j −C)2+const = mi r2

i +m j r2
j +const =

(mi +m j )R2
i j +mrelr

2
i j +const =O(r 2

i j )+const. Then (1/ri j −1/a)O(r 2
i j ) is O(ri j ) and negligible.

10Let’s briefly recall the construction of the ansatz. First, we write the Schrödinger equation for zero energy in the

sense of distributions, Hidealgasψ = ∑N↑
i=1

∑N
j=N↑+1(2πħ2/mrel)δ(ri j )Ai j (Ri j , (rk )k ̸=i , j ) where Dirac distributions arise

from the action of kinetic energy operators on singularities 1/ri j , by virtue of the Poisson equation ∆r(1/r ) = −4πδ(r),
and mrel is the reduced mass of two opposite-spin fermions as we said. We then take its Fourier transform (ψ → ψ̃,
∆r →−k2). Taking advantage of fermionic antisymmetry as in note 7 and of translational invariance (the center of mass

is at rest), we reduce to ψ̃(k1, . . . ,kN ) = (δ(k1 +·· ·+kN )/
∑N

n=1 ħ2k2
n /2mn )

∑N↑
i=1

∑N
j=N↑+1(−1)i+ j D((kn )n ̸=i , j ) where D is

the only unknown function (each Ai j is a function of the (rk −Ri j )k ̸=i , j of which D((kn )n ̸=i , j ) is the Fourier transform

up to a factor).
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of a in Equation (16)) determined by the microscopic details of the interaction at short distance
O(b) 11,12:

ψ= [
(R/ℓ)s − (R/ℓ)−s]R− 3N−5

2 Ψ(Ω) (22)

However, in the absence of N -body scattering resonance, ℓ=O(b) is expected, so that ℓ→ 0 when
b → 0: the solution R−s becomes negligible, length ℓ disappears from the problem and we keep
the following scale invariant N -body contact condition in the channel of scaling exponent s [32]:

ψ ≈
R→0

R s− 3N−5
2 (23)

The wave functionψ, considered as a function of R, is nodeless so energy E = 0 corresponds to the
ground state: there is no bound state (an eigenenergy E < 0 would tend to −∞ when b → 0)13,14.

Second case: s2 < 0. Here too, there are two possible values for the scaling exponent, one s = i|s|
in iR+, which we’ll call s, and the other, its conjugate complex −i|s|, or its opposite −s, in iR−. As
in the first case, we conclude that there is a length ℓ, a function of the microscopic details of the
interaction, setting the relative amplitude of the two solutions:

ψ= [
(R/ℓ)i|s|− (R/ℓ)−i|s|]R− 3N−5

2 Ψ(Ω) = 2isin[|s| ln(R/ℓ)]R− 3N−5
2 Ψ(Ω) (24)

This time, the two solutions have the same modulus, so we must keep them both (neither
outweighs the other in the limit b → 0)! The length ℓ does not disappear from the problem, but
defines in the limit b → 0 a N -body contact condition (24) which explicitly breaks the continuous
scale invariance of the unitary limit. Since ψ has an infinite number of nodes at an arbitrarily
large hyperdistance R—arbitrarily larger than the interaction range b—(see the third expression
in Equation (24)), there is an infinite number of N -body bound states under the E = 0 energy
solution; since the boundary condition (24) is invariant by changing ℓ into exp(±π/|s|)ℓ, we pass
from one N -body bound state to the other by a homothety of ratio exp(π/|s|): the corresponding

11Scattering state (16) corresponds to the case N = 2; then s = 1/2 and (3N − 5)/2 = 1/2, and ψ in Equation (22)
is indeed a linear combination of R0 and R−1; in this case, R ∝ r12 and Φ(Ω) = const in s wave. Explicit calculation
of expression (22) for N = 2 gives ψ ∝ (r12/ℓ̄)s−1/2 − (r12/ℓ̄)−s−1/2 with ℓ̄ = (m1 + m2)ℓ/(m1m2)1/2, which must be
proportional to the scattering state (16), hence the announced exponent value s = 1/2; the two-body parameter ℓ̄ is none
other than the scattering length a.

12A minus sign has been placed between the two bracketed terms in Equation (22); a plus sign would also be possible,
depending on the microscopic model.

13The special case of a (N↑, N↓)-body scattering resonance, where ℓ remains finite in the b → 0 limit, is treated in detail
in reference [33], which explains which N -body contact condition to use to correctly describe the resulting low-energy
bound state. Indeed, condition (22) already proposed in [27] is only satisfactory for s small enough (for s > 1, we can see
that state (22) is no longer square integrable near R = 0 and that a second length—a cutoff—must be introduced).

14On a narrow Feshbach resonance, see note 6, the effective range re is—for 1/a = 0—the only relevant length
scale when the true range b tends towards zero, so that the length ℓ is of the order of |re| ≫ b. The wave function
ψ in Equation (22) then admits a node far “outside” the interaction potential: the solution at E = 0 would not be of
minimum energy, and the system would admit a bound state of (N↑, N↓) fermions (with N > 2)! However, a specific
study of the case (N↑ = 2, N↓ = 1) shows that this is not true (as long as the mass ratio m↑/m↓ remains low enough for

s2 ≥ 0 of course) [29,34]. Should we be surprised? Let’s argue by contradiction. If there really were a bound state, it
would lead to a relative wave number krel ≈ 1/|re| between the fermions, the effective range term would not be negligible
in the denominator of the scattering amplitude (10) and we would lose scale invariance and therefore separability in
hyperspherical coordinates. Equation (22) would be inapplicable and the prediction of a bound state would be invalid.
More generally, in order to believe in (22)—this is a necessary condition, the hyperradius R must be much larger than any
length scale appearing in any subsystem (n↑,n↓) [with n↑ ≤ N↑, n↓ ≤ N↓ and n↑+n↓ < N↑+N↓ = N ], in particular R ≫ b
and R ≫ |re| for (n↑ = 1,n↓ = 1). Needless to say, the (N↑, N↓)-body resonance of note 13 does not call into question (22)
and the existence of a node at hyperdistance ℓ since the abnormally large ℓ≫ b length that appears does not pre-exist in
any subsystem.
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spectrum forms a geometric sequence of zero limit but it is not bounded below in the zero range
limit15,

En =−Eglobe−2πn/|s|, n ∈N∗, with Eglob ≈ħ2/Mb2 (25)

These N -body bound states, historically predicted by Efimov for N = 3, are said to be Efimovian.
It would be very interesting to stabilize them in a cold atom experiment (we unfortunately verify
that, if s ∈ iR+∗ in the problem with (2,1) fermions, which occurs for m↑/m↓ > 13.6069. . . as we
shall see, the three-body loss rate of Equation (6) does not tend to zero when b → 0, but rather to
a quantity proportional to ħk2

F/m in the homogeneous gas at T = 0, which is considerable), for
example using note 6.

But back to our mathematical problem: we conclude that the gas with (N↑, N↓) fermions is
stable for a zero-range ↑↓ interaction, and that the Hamiltonian of the Wigner–Bethe–Peierls
model is self-adjoint and bounded from below, if and only if the scaling exponents are all real:

s ∈R∗ ∀s solution ofΛN↑,N↓ (s) = 0 (26)

Of course, no gas subsystem (n↑,n↓) must exhibit an Efimov effect either, otherwise (i) a n↑+n↓ <
N↑+N↓-body parameter would have to be introduced as in Equation (24) and the scale invariance
at the origin of separability (18) and of result (26) would be broken—we would lose separability at
all distances, and (ii) the subsystem could collapse in the b → 0 limit of a zero range interaction
and the energy would not be bounded below. Without saying so, we have done a proof by
induction and the equivalent of the stability condition (26) must be satisfied for any number
n↑ ≤ N↑ and any number n↓ ≤ N↓.

Remark 1. We could add s = 0 in the third case: this is in fact precisely the threshold for an
Efimov effect. Expanding Equation (24) to first order in |s|, we find that

ψ∝ ln(R/ℓ)R− 3N−5
2 Φ(Ω) (27)

i.e. the length ℓ sets the relative amplitude of the solutions R−(3N−5)/2 and (lnR)R−(3N−5)/2.
This bears a striking resemblance to the definition of the scattering length of two particles in
dimension two, see for example reference [36] and Jan Solovej’s contribution [17]. However, in the
ℓ=O(b) case where we are, the length ℓ tends towards zero when b → 0, the first solution—with
coefficient ln(1/ℓ) →+∞—wins out over the second and we keep the N -body contact condition
in continuity with (23):

ψ ≈
R→0

R−(3N−5)/2 (28)

In the zero-range model, therefore, there is no breaking of scale invariance and no bound state at
the Efimovian threshold16,17.

15The precise expression of Eglob as a function of s and ℓ, and of the order of ħ2/Mb2 for ℓ≈ b, is given, for example,
in reference [35]. In Equation (25) we take n ≥ 1 (assuming exp(−2π/|s|) ≪ 1—otherwise the spectrum would not be
entirely geometric [29]) because the Wigner–Bethe–Peierls model can only be applied to a bound state of size ≫ b. We
can however have ℓ≈ |re|≫ b and Eglob ≈ħ2/Mr 2

e ≪ħ2/Mb2 on a narrow Feshbach resonance, see our note 6; even if it
is not obvious, the exclusion of n = 0 in (25) remains correct in this case [29,34]. This exclusion of n = 0 is consistent with
the absence of a bound state when s2 ≥ 0, see our note 14: on the Efimovian side, the whole discrete spectrum must tend
to zero when |s|→ 0 knowing that Eglob has a finite, non-zero limit.

16The considerations of note 14 apply at threshold. In particular, we must not believe in the bound state of energy
∝−ħ2/Mℓ2 that Equation (27) would lead us to predict: it would be of spatial extension ℓ and could not be described by
our zero-range model when ℓ≈ b; nor would it exist for (N↑ = 2, N↓ = 1) in the—apparently favourable—case of a narrow

Feshbach resonance where ℓ≈ |re|≫ b, see note 14 and references [29,34].
17The fact that ln(1/ℓ) tends slowly towards infinity when b → 0 is not without practical consequences: if we want to

compare with experiments, it is better to keep the contribution lnR in (27) [and the term (R/ℓ)−s in (22) for s > 0 close
enough to zero] to form the N -body contact condition. Thus, we find that the third cluster coefficient b2,1 defined in
Section 3.4 is actually a regular function of the mass ratio m↑/m↓ and therefore of s2, whereas it has an infinite derivative

at s2 = 0 in the zero-range model [35,37], hence in Equation (33).
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Remark 2. We’ve taken a =∞ here for simplicity, but if the system is unstable for a =∞, it will
remain so for finite a (all else being equal): the Efimovian N -mers of the unitary gas of size ≪|a|
(there are as many as you like for b → 0) make no difference between an infinite and a finite
scattering length a.

Complement. In the unitary limit, the present analysis generalizes to nonzero energy E (still with
the center of mass of the system at rest). Equation (18) becomes

ψ= F (R)R− 3N−5
2 Φ(Ω) (29)

(satisfying the Wigner–Bethe–Peierls contact conditions under note 9) with

EF (R) =− ħ2

2M
∆2DF (R)+ ħ2s2

2MR2 F (R) (30)

and ∆2D, the 2D Laplacian for variable R, reduces here (in the absence of angular dependence)
to d2/dR2 + R−1d/dR. The Efimovian case s2 < 0 therefore simply corresponds to the known
“fall to the center” problem in an attractive 1/R2 potential [38]. Separability in hyperspherical
coordinates (29) even extends to the trapped case [27,28], simply by adding the trapping term
(1/2)Mω2R2F (R) to the right-hand side of Equation (30), and making the substitution E →
E −Ecom, the eigenvalue of the equation for F (R) being the internal energy as opposed to that
Ecom of the center of mass. For s2 > 0, this leads to the spectrum

E −Ecom = (s +1+2q)ħω, q ∈N (31)

3.3. What is known on the stability domain

The problem of whether the stability condition (26) is satisfied can be tackled from two opposite
ends.

The first involves solving the problem with (N↑, N↓) fermions at E = 0 in the Wigner–Bethe–
Peierls model and calculating the scaling exponents s (we proceed analytically as far as possible,
but there is a final numerical step, at least for N > 3). To the best of our knowledge, this program
has been completed in fermionic problem (N↑ > 1, N↓ = 1) up to N↑ = 4, see Figure 3: in each case,
an Efimov effect is found to appear above a critical mass ratio m↑/m↓ (impurity ↓ must be light
enough), obviously a decreasing function of N↑ 18. We note that the successive critical mass ratios
get closer and closer together; mathematically, however, we don’t know whether this sequence
continues (is there an Efimov effect for (5,1) bodies? for (6,1) bodies? etc.). The (N↑ > 1, N↓ = 2)
case has been studied for N↑ = 2 by reference [31], which predicts stability as long as that the
subsystems (2,1) and (1,2) are stable.

At the second extreme, the aim is to constrain (rather than calculate) critical mass ratios,
by lower bounding the Hamiltonian spectrum. This is what reference [41] has done for the
(N↑, N↓ = 1) fermion problem: it demonstrates the magnificent

Theorem. There is a critical mass ratio m↑/m↓ =αc below which the fermionic system (N↑, N↓ = 1)
is stable ∀N↑ for a contact interaction, and αc > 1/0.36 = 2.77.

18Once we have an Efimov effect in the (N↑, N↓) fermionic problem, as we said below Equation (26), we lose scale
invariance and can no longer apply the reasoning behind Equations (18), (20) to the (N↑+1, N↓) or (N↑, N↓+1) fermionic
problem; in the latter case, there is no separability in (R,Ω) coordinates as in Equation (24), no geometric spectrum (25)
and, strictly speaking, no possible Efimov effect!
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Figure 3. Known results on the stability of the (N↑,1) system of N↑ spin ↑ fermions and
one spin ↓ fermion, for a zero-range interaction, as a function of the m↑/m↓ mass ratio
between a ↑particle and the ↓particle. Vertical arrows: critical values of m↑/m↓ (thresholds)
for the (N↑,1)-body Efimov effect obtained by solving the corresponding problem, see
references [39] for N↑ = 2, [30] for N↑ = 3, [40] for N↑ = 4; when m↑/m↓ exceeds these values,
the energy of the system is no longer bounded below. Vertical bar with horizontal arrow:
critical mass ratio αc, whose existence is established by the Moser–Seiringer theorem [41],
below which the system (N↑,1) is stable ∀N↑; the theorem does not give the exact value of
αc but a more restrictive lower bound, αc > 2.77, than that, m↑/m↓ = 1, of the cold-atom
experiments (a superiority of the latter, however, is that the unitary Fermi gas appears to be
stable, without collapse or significant three-body losses, for all values of N↑ and N↓).

3.4. Cluster or virial expansion

Some would argue that it is the macroscopic many-body problem that should ultimately be the
focus of our attention, rather than the few-body system. To which we reply that the latter can say
something about the former by means of cluster expansion, an expansion of the pressure P of
the homogeneous gas at grand-canonical thermal equilibrium in powers of the fugacities of the
components σ (the temperature T = 1/kBβ is fixed and the chemical potentials µσ tend to −∞,
which corresponds to a quantum non-degenerate limit):

P λ̄3

kBT
= ∑

(n↑,n↓)∈N2∗
bn↑,n↓eβµ↑n↑eβµ↓n↓ (32)

where the thermal de Broglie wavelength is taken at the arbitrary reference mass m̄, λ̄ =
(2πħ2/m̄kBT )1/2 19. The expansion (32), in recent literature, is often confused with the virial
expansion, which expands in powers of the phase space densities ρσλ3

σ (λσ = (2πħ2/mσkBT )1/2).
How to calculate the cluster coefficients bn↑,n↓? At the unitary limit a−1 = 0, the simplest way

is to use the harmonic regulator method of reference [43], which first places the system in the
harmonic traps Uσ(r) of Equation (2) and then, all calculations done, opens the traps to obtain the
homogeneous case from the local density approximation (exact in the limitω→ 0+). The trapped
problem is then separable in hyperspherical coordinates as in Section 3.2 and, if we know the
zero-energy free space scaling exponents s for all n↑ ≤ ntarget

↑ ,n↓ ≤ ntarget
↓ , we also know the energy

levels of the trapped system as in Equation (31), hence all the canonical partition functions Zn↑,n↓
and ultimately the coefficient bn

target
↑ ,n

target
↓

. As a result, the cluster coefficients must be functionals

of theΛn↑,n↓ of Equation (21). This is indeed what is predicted by the conjecture in reference [44],
claiming that, at the unitary limit,

bn↑,n↓ =
(n↑m↑+n↓m↓)3/2

m̄3/2

[∫ +∞

−∞
dS

4π
S

d

dS
(lnΛn↑,n↓ (iS))+CorrStatn↑,n↓

]
(33)

19Reference [42] uses the natural choice m̄3/2 = (m3/2
↑ + m3/2

↓ )/2 leading to a first total cluster coefficient b1 =
(b1,0 +b0,1)/2 equal to one.
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Figure 4. A possible asymptotic behavior of the unitary four-fermion problem (N↑ = 2, N↓ =
2) in harmonic potentials Uσ(r): two pairons oscillate furiously (with large-amplitude mo-
tions); fermions ↑ and ↓ in each pairon have relative energy O(1) (in ħω units if dimension
is to be respected) and remain strongly correlated; the two pairons have relative energy
→+∞ and are decoupled, so they can be seen as two identical bosons that have an inter-
nal structure (that of relative motion ↑↓ within a pairon) and do not interact. The quantum
statistical correction CorrStat2,2 is then non-zero in Equation (33).

for any (n↑,n↓) ∈N∗2 \ {1,1} 20. Here, the prefactor relates the homogeneous case to the trapped
case, and the first contribution in square brackets is modelled on the N = 3 result of refer-
ence [45]; the second contribution in square brackets is an ideal-gas quantum statistical cor-
rection originating from the indistinguishable non-monoatomic subclusters into which the in-
ternal eigenstates of the trapped system (n↑,n↓) decouple at high energy (the center of mass of
the system remains in its ground state).

Let’s explain this subcluster decoupling story a little better with some examples. If (n↑,n↓) =
(1,1), the eigenstates asymptotically (for arbitrarily large energy values) take the form of two
uncorrelated fermions ↑ and ↓ in large-amplitude oscillatory levels21; the subclusters being
monoatomic, we have CorrStat = 0. If (n↑,n↓) = (2,1), a new decoupling is possible, alongside that
into three decorrelated fermions: the particles can separate into an atom ↑ and a “pairon” ↑↓ of
strongly correlated fermions (the relative motion within the pairon remaining of low amplitude),
with highly excited oscillatory levels for the atom ↑ and for the center of mass of the pairon ↑↓;
the pairon is alone in its category, and we again have CorrStat = 0. The conclusion remains
the same for (n↑,n↓) = (3,1), except that the triplon ↑↑↓ appears as a new decoupled subcluster.
On the other hand, for (n↑,n↓) = (2,2), there is possible decoupling into two ↑↓ pairons of very
high relative energy, see Figure 4; they no longer interact but are indistinguishable and lead, like
identical bosons in an ideal gas, to a quantum statistical correction ignored by the integral over S
in Equation (33); the calculation gives CorrStat = 1/32 [44].

Conjecture (33) is well established for N = 3, by inverse application of the residue theorem,
which converts the sum over the spectra (31), i.e. over the roots s of Λn↑,n↓ , into an integral [45].
For N = 4, the analytical properties of function Λn↑,n↓ in the complex plane are not sufficiently
known to apply Cauchy’s theorem22; for the special case m↑/m↓ = 1, however, the conjecture

20Case (n↑ = 1,n↓ = 1) is different and must be excluded; it corresponds, contrary to what we have assumed, to a
N -body scattering resonance with N = 2 in s wave: in the unitary limit, we must keep only the solution R−s , s = 1/2, in
Equation (22), as if the right root ofΛ to keep was −s; in fact, the solution Rs corresponds to the regular part ∝ 1/a of the
zero-energy scattering state (see note 11 for further details).

21If the relative wavenumber krel → +∞, the scattering amplitude fkrel
→ 0 in Equation (11) so even at the unitary

limit, interactions become negligible.
22It must be possible to unfold the integration path surrounding the roots and poles of Λn↑ ,n↓ on the real axis onto

the imaginary axis without crossing any singularity—pole or branch cut—in the upper and lower half-planes.
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has been confirmed by a very accurate few-body quantum Monte Carlo calculation [46] (on
the other hand, the experimental values [47,48] are not confirmed, the problem arising from
the impossibility of obtaining the correct polynomial of degree 4 in z = exp(βµ) by fitting the
pressure P or density ρ measured on the experimentally accessible fugacity interval [49])23. The
proof of expression (33) in the general case therefore remains open. Another interesting question
concerns the behavior of the cluster coefficients bn↑,n↓ at large orders nσ→+∞, which is required
to perform an efficient summation of the series (32) after calculation of its first terms, in order to
extend its applicability to the degenerate regime T ≲ TF (for example, if the radius of convergence
is zero, one could implement a conformal Borel-type resummation as in references [50,51]).

4. Open questions from a macroscopic point of view

In this section, the interacting Fermi gas, considered in the thermodynamic limit and at non-
zero but arbitrarily low temperature, is described by an effective low-energy Hamiltonian theory,
Landau and Khalatnikov quantum hydrodynamics [52]24.

4.1. Overview of the considered superfluid regime

The three-dimensional system of fermions is here spatially homogeneous (in a quantization
volume [0,L]3 close to the thermodynamic limit, which is taken at the end of the calculations),
with particles of equal mass m↑ = m↓ = m in both internal states, spin-unpolarized (there are
the same number of particles in both components, N↑ = N↓, to allow complete pairing) and at
canonical thermal equilibrium in a low-temperature limit (T ̸= 0 but T → 0).

Under these conditions, (i) fermions assemble into bound pairs ↑↓ in the s wave; in the
presence of Fermi seas in both internal states, this is what the attractive interaction between ↑
and ↓ in Section 3 leads to, via the famous Cooper mechanism; this is true even for a negative
scattering length a, where there is no ↑↓ bound state in free space, although the size of a pair
tends to +∞ as a → 0− (in the a > 0 case, a dimer state does exist and, not surprisingly, this is
what the bound pair state reduces to in the low-density limit ρ → 0)25; (ii) these bound pairs,
being composite bosons of sorts, form a condensate in the mode of wave vector Kpair = 0 of their
center of mass (of coherence length limited by the size of the box, infinite at the thermodynamic
limit) and a superfluid.

As a result, we expect the system to have, in its ground state, a branch of acoustic excitation
(by sound waves) that starts out linear in wavenumber q with a cubic correction,

ωq =
q→0

cq

[
1+ γ

8

( ħq

mc

)2

+O(q4 ln q)

]
(34)

23References [47,48] have access only to the fourth total cluster coefficient b4 = (b4,0+b3,1+b2,2+b1,3+b0,4)/2, which
prohibits a comparison with the conjecture (33) sector by sector.

24The term “quantum hydrodynamics”, in non-linear physics, is understood in contrast to classical fluid hydrody-
namics and refers to an Euler equation for a real-valued rather than operator-valued velocity field v(r) with a ∝ħ2 quan-
tum pressure term, which allows to describe the motion of quantum vortices—with quantized circulation—in the super-
fluid (like the Gross–Pitaevskii equation for the wave function of a Bose condensate written in terms of density and phase
gradient). Here, the name is to be taken in the sense of the second quantization, the velocity field now being operator-
valued v̂(r).

25It is not entirely obvious that the Wigner–Bethe–Peierls contact interaction is attractive. To see this, we obtain
it as the continuous limit b → 0 of a model on a cubic lattice bZ3 with a coupling ∝ ħ2/mb2 between neighboring
sites (to represent the kinetic energy) and an on-site interaction g0/b3; at a fixed scattering length a ̸= 0, we find that
g0 ≈ −ħ2b/m < 0 as b → 0 (the bare coupling constant g0 is therefore, in the resonant scattering regime b ≪ |a|, quite
different from the effective coupling constant g = 4πħ2a/m) [53].
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Figure 5. Energy of different types of excitations of an unpolarized homogeneous two-
component Fermi gas at zero temperature, as a function of their wave number q or k.
(a) Acoustic excitation branch ħωq of linear departure ħcq (c is the speed of sound),
bounded at the top by the broken-pair continuum (hatched area). Here, the branch
tangentially reaches the lower edge of the continuum at the terminal point of wave number
qmax. (b) Dispersion relation εk of a fermionic quasiparticle χ (see text). Under the effect of
a percussive excitation of wave vector q, a bound pair ↑↓ of the pair condensate, initially at
rest, dissociates into two fermionic quasiparticles χ of opposite spins, wave vectors k and
k′ = q−k and energies εk and εk′ ; as vector k is not constrained (no conservation of energy
for a percussive excitation), a continuum of final energies {εk + εq−k,k ∈ R3} appears. For
the interaction strength chosen in the figure (|∆|/µ = 0.84 or 1/kFa ≃ −0.16 according to
BCS theory, with µ the chemical potential of the gas and ∆ the complex order parameter
of the pair condensate), the acoustic branch is concave at low q (γ < 0 in Equation (34))
and the dispersion relation εk has a minimum Epair/2 at k = k0 > 0; the lower edge of the
continuum is therefore exactly Epair, at least as long as one can have k = k ′ = k0, i.e. as
long as q = |k+k′| ≤ 2k0. The approximate dispersion relations shown are derived from
BCS theory for εk and Anderson’s RPA for ħωq. Depending on the interaction strength,
the domain of existence in q of the acoustic branch may also be non-compact, connected
q ∈ ]0,+∞ [ or not q ∈ ]0, qmax[

⋃
]qmin,+∞ [ (qmin > qmax) [56]; the concavity of the branch

is also variable [57]; finally, k0 = 0 and Epair = 2(µ2 + |∆|2)1/2 if µ < 0, k0 = (2mµ)1/2/ħ and
Epair = 2|∆| otherwise.

and this branch to be energy-limited at the top by the broken-pair continuum, with a lower
edge of the continuum given by the pair binding energy Epair, as in Figure 5a. Here ωq is the
angular eigenfrequency at wave vector q, c is the speed of sound at zero temperature and the
curvature parameter γ is scaled so that it tends to one in the limit kFa → 0+ of a weakly interacting
condensed gas of dimers (in agreement with Bogolioubov theory)26. The acoustic branch is
often referred to as Goldstone [55], because it is associated with U (1) symmetry breaking in pair
condensation; its Higgs counterpart is discussed in Section 5.

In the following, our low-temperature regime satisfies two conditions:

0 < kBT ≪ mc2 and 0 < kBT ≪ Epair (35)

The first ensures that only the linear part of the acoustic branch is thermally populated, the
second that there is a negligible density of broken pairs (according to Boltzmann’s law, this
density has an activation factor exp(−Epair/2kBT ), the fragments resulting from the dissociation
of a bound pair—the χ fermionic quasiparticles in Figure 5b—individually having a minimum

26Our sign convention on γ differs from that used in liquid helium-4, see reference [54].
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energy Epair/2). Our system then reduces to a thermal gas of phonons, if we agree to call the
quanta of the acoustic branch as such (in view of its linear departure)27.

This raises three types of partially open questions:

(1) as we shall see, phonons (abbreviated to φ) interact, the underlying Fermi superfluid
constituting a nonlinear medium for sound. What are the effects of these interactions
on phonons of wave vector q? In particular, they are expected to damp with a rate Γq(T )
and to undergo a thermal angular frequency shift ∆q(T ) (we don’t count the shift at zero
temperature, which by definition gives rise to the spectrum (34)—the neglected term
q5 ln q arises precisely from the cross-effect of interactions and quantum fluctuations
in the phonon field [62,63])28.

(2) what are the consequences of phonon collisional dynamics on the evolution of a partic-
ularly interesting macroscopic gas variable, the phase operator φ̂0(t ) of the pair conden-
sate?

(3) we enrich the problem by considering the partially polarized case N↑ ̸= N↓. In the weakly
polarized case, e.g. N↑−N↓ =O(1), the unpaired supernumerary fermions of the majority
spin component form, in the interacting gas, fermionic quasiparticles (abbreviated to
χ) with a dispersion relation εk different from those of the free fermions: it has a non-
zero minimum, i.e. a gap, given by half the binding energy of a pair ↑↓, where it varies
quadratically with the wave number k (see Figure 5b). The question then arises of the
φ−χ and of theχ−χ interactions; in particular, disagreement persists over the expression
of the low-energy φ−χ scattering amplitude (references [64] and [65] differ)29. In the
highly polarized case, where N↑ − N↓ is extensive like N , it is expected that T = 0 pair
condensation may take place in a plane-wave superposition of their center of mass
(rather than in Kpair = 0 as assumed here), see references [66,67], giving rise to a spatially
modulated superfluid (a supersolid following the fashionable terminology), with an
imperfectly known domain of existence in parameter space ((N↑−N↓)/N ,1/kFa,T /TF),
the problem being complicated by its high sensitivity to thermal fluctuations [68] (there
are as yet no experimental results in three-dimensional cold atom gases [69]).

The most interesting case for points 1 and 2 is that of a concave acoustic branch, γ < 0 in
Equation (34), very different from the fairly well-known weakly interacting Bose gas (where
γ ≃ 1 > 0 as we said)30. In particular, phonon damping for γ < 0 can only occur at T ̸= 0, since

27Equation (34) holds only for a short-range interaction V (ri j ), decreasing fast enough when ri j →+∞. In the case
of a dipolar interaction, as in gases of cold magnetic atoms, the speed of sound is anisotropic [58], see also Wilhelm
Zwerger’s contribution to this special issue [59] and Jean Dalibard’s 2023-2024 lecture at the Collège de France [60]. In the
case of a Coulomb interaction, as in superconducting electron gases, the acoustic branch gives way to a gapped plasmon
branch (ωq has a positive limit at q = 0) [61]. Here, our atoms are neutral and of negligible dipole moment.

28In the convex case γ> 0, it is accompanied—still at T = 0—by a non-zero imaginary part ≈ q5, corresponding to the
Beliaev damping mechanism q → k,k′, see below.

29This problem is relevant for superfluid helium-4, whose excitation branch also has a quadratic minimum, the roton
minimum; our φ−χ scattering problem is therefore formally equivalent to the roton–phonon scattering already studied
in reference [52], with the difference that rotons are bosons. The predictions of [52] are, however, incomplete and at odds
with [64,65].

30Qualitatively, the case γ< 0 is obtained when the binding energy Epair is low enough: if we reduce Epair, the broken
pair continuum in Figure 5a lowers, pushes on the acoustic branch and eventually bends it downwards. This is what
happens in the BCS limit kFa → 0− where Epair/mc2 = O(exp(−π/2kF|a|)) tends rapidly to zero; it no longer happens in

the BEC limit kFa → 0+ where Epair ∼ Edim =ħ2/ma2 ≫ mc2. It is not clear on which side of the unitary limit 1/kFa = 0
(i.e. for which sign of the scattering length a) the curvature parameter γ changes sign, see Section 5. Given the shape of
the lower continuum edge in Figure 5a—regardless of the sign of γ, the repulsion effect on the acoustic branch is strongest
at large q and weakest at small q (where the energy difference between the continuum edge and the branch is greatest).
We therefore expect to have an interval of values of 1/kFa over which the branch is convex at small q and concave at large
q [57].
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the decay of a phonon into any number n > 1 of phonons is forbidden by energy–momentum
conservation for a concave acoustic branch; at the leading order in temperature, it results for
the same reason from the φφ→ φφ four-phonon processes of Landau and Khalatnikov [52] (for
γ > 0 it results from the Beliaev φ → φφ or Landau φφ → φ three-phonon processes [70,71]).
To our knowledge, this four-phonon damping has not yet been observed experimentally in any
system. It could be observed in a Fermi gas of cold atoms in a box trap [72]. It could also be
observed in superfluid helium-4 (a liquid of bosons) if the pressure is increased sufficiently to
make γ< 0 (the roton minimum is lowered, which ends up making the acoustic branch concave
at low q) and if the temperature is lowered sufficiently to reduce the density of rotons (through
the activation factor exp(−Eroton/kBT )) and make the parasitic damping of phonons by rotons
negligible [73]31.

4.2. Which macroscopic theory to use?

An effective low-energy theory gives up describing the system below a certain length scale ℓ; on
the other hand, the theory is expected to be accurate at long wavelengths, in this case at leading
order in temperature. Under these conditions, it is legitimate to cut the gas into portions of size
ℓ, for example into cubic boxes of side ℓ centered on the cubic lattice ℓZ3, see Figure 6. Let’s set
out some constraints on the choice of ℓ:

(1) we must have ℓ≫ ξ (here ξ = ħ/mc is the so-called healing or correlation length of the
superfluid) and ρℓ3 ≫ 1 (there are a large number of fermions per site) so that (i) each
cubic portion can be considered mesoscopic with a well-defined equation of state linking
pressure or chemical potential to density (as is the case in the thermodynamic limit), and
(ii) the lattice spacing ℓ provides a wave number cutoff π/ℓ ≪ mc/ħ to the phononic
excitations of the gas, restricting them to the quasi-linear part of the branch (34), which
is universal because it is described by two parameters, c and γ.

(2) we must have kBT ≪ħcπ/ℓ (this is the energy of the ground phonon mode in a portion)
so that we can consider that (i) each portion is at zero temperature, and (ii) each portion
is spatially homogeneous on the scale of the typical wavelength q−1

th =ħc/kBT of thermal
sound waves.

(3) it is also necessary that ℓ≪ ℓcoh where ℓcoh is the coherence length of the fermion pairs,
so that the notion of global phase φ̂ makes sense in each portion (as for a condensate).
This constraint is inoperative here since ℓcoh ≈ L (bound pairs are condensed in 3D).

We can then represent the system by two field operators, the density field ρ̂(r) and the phase field
φ̂(r′), with r,r′ ∈ ℓZ3; these are canonically conjugate variables,

[ρ̂(r)ℓ3, φ̂(r′)] = iδr,r′ (36)

as if φ̂ were a momentum operator and ρ̂ℓ3 a position operator in ordinary quantum mechan-
ics [52,75]32. The phase field gives access to the velocity field by simple differentiation (this is a

31In liquid helium-4, four-phonon scattering processes between intentionally produced (non-thermal) phonon
beams have already been the subject of theoretical and experimental studies [74].

32These historical references use a continuous space description for simplicity. The need to discretize the space to
avoid infinities and make the theory renormalizable is emphasized in publication [76]. Here, we sweep these difficulties
under the carpet; for example, we do not distinguish in (38) between the notion of bare equation of state e0,0(ρ)—which
enters the Hamiltonian—and true or effective equation of state e0(ρ)—which is observed in an experiment.
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Figure 6. Cutting the gas into mesoscopic cubic portions of side ℓ, in the quantum hydro-
dynamics of Landau and Khalatnikov (this effective theory does not describe length scales
< ℓ). See text for choice of ℓ.

discrete gradient)33:

v̂(r) = ħ
m

grad φ̂(r) (37)

The Hamiltonian is obtained by summing the internal energy and the kinetic energy associated
with the local fluid velocity in each portion:

H =∑
r

1

2
mv̂(r) · ρ̂(r)ℓ3v̂(r)+ℓ3e0(ρ̂(r)) (38)

Here, e0(ρ) is the zero-temperature energy density of the homogeneous Fermi gas with density
ρ, and mρ̂(r)ℓ3 is the amount of matter (the mass) in the portion centered at r. The equations of
motion for ρ̂ and v̂ in the Heisenberg picture, derived from the Hamiltonian H , take the form of
a continuity equation and an operator-valued Euler equation (without viscosity term)34, hence
the name quantum hydrodynamics given to the theory (with the risk of confusion pointed out in
note 24).

As you will have gathered, the great strength of this effective theory is that it does not depend
on the nature of the bosonic or fermionic particles constituting the underlying superfluid, nor
on their interactions (strong or weak, in liquid or gas phase) as long as they remain short-range,
except through the equation of state e0(ρ) and the curvature parameter γ at zero temperature. It
therefore applies equally well to weakly interacting Bose gases, strongly interacting Fermi gases
and liquid helium-4 (an extremely dense system that defies microscopic theory).

However, the formalism can only be trusted in a low-temperature limit, T → 0, where spatial
density fluctuations and phase gradients are small; Equation (38) must therefore be expanded to
the relevant order (here, fourth order) in powers of

δρ̂(r) ≡ ρ̂(r)− ρ̂0 and δφ̂(r) ≡ φ̂(r)− φ̂0 (39)

33The fact that the velocity field operator is a gradient vector in no way implies that the flow is entirely superfluid (this
would be physically false even at thermal equilibrium, at non-zero temperature). Let’s explain this in two points. (i) Don’t
confuse the v̂(r) operator of quantum hydrodynamics (which contains all possible quantum and thermal fluctuations)
with the v(r) mean velocity field of ordinary hydrodynamics; in particular, whether or not the flow is superfluid depends
on whether or not v(r) (without hat) is irrotational. (ii) In general, we have v(r) ̸= 〈v̂(r)〉 where the expectation value
is taken in the quantum state of the system, since v(r) is defined in terms of the mean matter current density, v(r) =
〈ĵ(r)〉/〈ρ̂(r)〉 with here ĵ(r) = [ρ̂(r)v̂(r)+ v̂(r)ρ̂(r)]/2 (by definition, the evolution equation of ρ̂ in the Heisenberg picture
is written ∂t ρ̂+div ĵ = 0 and that for the mean density ρ(r) = 〈ρ̂(r)〉 is written ∂tρ+div(ρv) = 0); it would therefore be
wrong to believe that v(r) = (ħ/m)grad〈[φ̂(r)− φ̂(r0)]〉 (where r0 is an arbitrary reference position) and deduce that v(r) is
necessarily a gradient vector.

34See note 33 for the equation for ρ̂(r). The equation for v̂(r) is obtained by taking the gradient of that for φ̂(r),
ħ∂t φ̂=−µ0(ρ̂)−mv̂2/2, where µ0(ρ) is the zero-temperature chemical potential function, as in Equation (43).
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where ρ̂0 and φ̂0 are the zero-wave-vector Fourier components of the fields ρ̂(r) and φ̂(r) (physi-
cally, ρ̂0 = N̂ /L3, where N̂ is the total number of fermions operator, L3 is the volume of the quanti-
zation box [0,L]3 and φ̂0 is the phase operator of the pair condensate [76]). The expanded Hamil-
tonian is formally written as

H = H0 +H2 +H3 +H4 +·· · (40)

where Hn is the contribution of total degree n in δρ̂ and δφ̂.
The 0-order contribution H0 is a constant of little interest; the 1-order contribution is exactly

zero (because
∑

rℓ
3δρ̂(r) = 0 by construction) and has been omitted directly from Equation (40).

The quadratic contribution H2 is diagonalized by a Bogolioubov transformation35:

H2 = const+ ∑
k̸=0

ħωkb̂†
kb̂k (41)

where the creation b̂†
k and annihilation b̂k operators of an elementary excitation (a phonon) of

wave vector k obey the usual bosonic commutation relations

[b̂k, b̂k′ ] = 0 and [b̂k, b̂†
k′ ] = δk,k′ (42)

The spectrum obtained here is exactly linear, ωk = ck, with the speed of sound given by

mc2 = ρ d2

dρ2 e0(ρ) = ρ d

dρ
µ0(ρ) (43)

where µ0(ρ) is the zero-temperature chemical potential of the Fermi gas with density ρ. The
relation (43) is exact (it’s well known from superfluid hydrodynamics [75]), but the systematic
absence of curvature in the spectrum is not physically realistic: this pathology stems from the
fact that we have omitted so-called gradient corrections [77] from Hamiltonian H ; to simplify, as
illustrious predecessors [52] have done, we replaceωk in H2 by hand with its cubic approximation
(34), which is justified by reference [78].

The approximation H2 corresponds to an ideal gas of phonons, and cannot describe sound
attenuation. The interaction between phonons that causes their damping comes from the cubic
contribution H3 and the quartic contribution H4. For the sake of simplicity, we give here only the
expression of the most useful part of H3, simplified to make the physics clear:

H3|simpl =
A

2L3/2

∑
k,k′,q

(kk ′q)1/2b̂†
kb̂†

k′ b̂qδk+k′,q + (k ′kq)1/2b̂†
k′ b̂kb̂qδk′,k+q +·· · (44)

with the constant amplitude (independent of the wave numbers) as a factor,

A = (ξ/2)3/2ρ−1/2
[

3mc2 +ρ2 d3

dρ3 e0(ρ)

]
(45)

and ξ=ħ/mc as before36. The ellipse in Equation (44) contains terms b̂†b̂†b̂† and b̂b̂b̂ of no great
importance, as they do not conserve the energy H2. The terms b̂†b̂†b̂ and b̂†b̂b̂, on the other
hand, are central to damping: they correspond respectively to the Beliaev process (phonon q
decays into two phonons k and k′) and to the Landau process (phonon q merges with a phonon

35This transformation corresponds to the modal expansions δρ̂(r) = L−3/2 ∑
k̸=0ρk(b̂k + b̂†

−k)exp(ik · r) and δφ̂(r) =
L−3/2 ∑

k̸=0φk(b̂k − b̂†
−k)exp(ik · r) where ρk = (ħρk/2mc)1/2 and φk = (−i)(mc/2ħρk)1/2 are the amplitudes of the

quantum fluctuations of density and phase in the phonon mode of wave vector k. Note the relation −iωkδρk −
ρ(ħ/m)k2φk = 0 imposed by the linearized continuity equation.

36The true coupling amplitude depends on the angles between the three wave vectors ki involved; as damping is
actually dominated at low temperatures by processes at small angles between wave vectors, due to the small denominator
effect described below, we have written the amplitude directly at zero angles ki ·k j /ki k j = 1.
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k to form a single phonon k′), which can be represented diagrammatically as follows, where the
phonon whose damping we are studying plays a privileged role:

(46)

As H3 is cubic, each vertex of the diagram representing its action is the meeting point of three
phonon lines. We could proceed in the same way with H4 (the vertices would be four lines), but
we won’t do so, as quartic processes generally play a sub-dominant role in damping compared
with cubic processes (for example, in the four-phonon dampingφφ→φφ forγ< 0, the amplitude
of the direct process k,q → k′,k′′ induced by H4 in first-order perturbation theory is in practice
negligible compared to that of the indirect process of the same initial and final state k,q → k+q →
k′,k′′ induced by H3 treated in second-order, due to the appearance in the latter of a very small
energy denominator at small angles between k and q)37.

4.3. How to calculate phonon damping?

Let’s imagine that we apply a short pulse of Bragg excitation to the gas, initially at thermal
equilibrium, inducing a small coherent Glauber displacement of amplitudeα ∈C∗ in the phonon
mode of wave vector q without affecting the other modes, which corresponds to the unitary
evolution operator Uexc = exp(αb̂†

q −α∗b̂q) 38. Immediately after excitation, we have a non-zero
mean for the corresponding annihilation operator:

〈b̂q(0+)〉 =α ̸= 0 (47)

This leads to an observable modulation of the mean gas density at wave vectors ±q since
〈δρ̂(r,0+)〉, a linear combination of 〈b̂k(0+)〉 and 〈b̂†

k(0+)〉 as in note 35, is then ̸= 0.
In the limit α→ 0, i.e. in the linear response regime, the many-body Green’s function formal-

ism applied to the effective low-energy theory, hence to the phonon Hamiltonian (40) (rather
than to a microscopic description of the Fermi gas with interaction potential V (ri j ) as refer-
ences [75,80] for example do), leads to the exact expression

〈b̂q(t )〉 t>0= αe−iωqt
∫

C+

dζ

2iπ

e−iζt/ħ

ζ−Σq(ζ)
(48)

In this expression, C+ is the integration path parallel to the real axis in the upper complex half-
plane, followed from right to left (from Reζ = +∞ to Reζ = −∞), see Figure 7, and Σq(ζ) is the
self-energy at wave vector q and complex energy ζ 39, which is not known explictly but is defined
by its perturbative expansion to all orders in the phonon–phonon interaction. Here, we restrict

37This energy denominator ħωq+ħωk−ħωk+q would be exactly zero at zero angle without the curvature terms in the

dispersion relation (34), which incidentally shows the singularity of a γ= 0 theory (to which we’ll return in Section 4.3).
38In a cold atom experiment, Bragg excitation is induced by the superposition of two far off-resonance laser beams

of wave vectors k1 and k2 with k1 −k2 = q; even if the ±q acoustic modes are initially empty (ħωq ≫ kBT ) and can only
receive phonons, Raman (two-photon) processes—absorption of a photon in one laser beam, stimulated emission in the
other—induce ±ħ(k1 −k2) =±ħq momentum changes in the Fermi gas and generally excite the two modes; however, the
duration of the Bragg excitation can be adjusted so that the −q mode emerges intact from the excitation procedure [79].

39In comparison with the usual energy variable z (of reference [80], for example), the energy variable used here is
shifted by the unperturbed energy of mode q, ζ = z −ħωq. This explains why we were able to take out the unperturbed
phase factor in (48) and why Σq(ζ) is taken at ζ = i0+ in the approximation (50) to come (it actually corresponds to

z =ħωq + i0+).
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Figure 7. Integration path in the complex plane followed by Equation (48).

ourselves to the cubic interaction H3 (see Section 4.2) and the expansion takes the following
diagrammatic form

(49)

where the integer n gives the order in H3 [63]. We only indicate the topology; it remains to sum
over all possible non-redundant orientations of the internal lines, see example of diagram section
(46)40; a precise value can then be assigned to each diagram, involving a sum over the wave
vectors and Matsubara frequencies of the internal lines [80].

In order to obtain explicit results for the damping, we traditionally perform the following two
approximations41:

(1) the Markov approximation (the phonon gas seen by mode q constitutes a reservoir with
no memory, i.e. with negligible correlation time): we ignore the energy dependence of
the self-energy as follows (see note 39),

Σq(ζ) ≃Σq(i0+) (50)

The integral in Equation (48) is then calculated by the residue theorem (one closes the
contour with an infinite semicircle in the lower complex half-plane),

〈b̂q(t )〉|Markov
t≥0= αe−iωqt e−iΣq(i0+)t/ħ (51)

The signal decay in this case is exponential, with a rate corresponding to the imaginary
part of Σq(i0+) (the real part gives the change in the mode angular frequency).

40In the first diagram of (49) (with one loop), (i) orienting the top line to the right and the bottom line to the left and (ii)
orienting the top line to the left and the bottom line to the right correspond to the same contribution, by invariance of the
diagram by angle π rotation around its horizontal axis. The same applies to the inner loop of the second diagram in (49),
which is locally rotationally symmetric. For the same reason of rotational symmetry (this time global) of the diagrams
of order n = 4, we decide, in order to avoid double counting, to put the inner loop in the upper branch and, in the third
diagram of (49), to orient the bridge downwards.

41Our effective theory being exact to the leading order in temperature, we use it only in the T → 0 limit, fixing the
ratio q̄ = ħcq/kBT so that the mode q is also described exactly. We then have ωq/Γth →+∞ where Γth = Γq=kBT /ħc is
the thermalization rate of the phonon gas and Γq is the function (52), since the exponent ν introduced in Figure 8 on
page 450 is always > 1, see Table 1 on page 451: the thermalization rate Γth tends towards zero faster than the angular
eigenfrequency ωq and the mode by definition enters the collisionless regime. In the opposite, hydrodynamic regime
ωq ≪ Γth, the phonon gas has time to reach local thermal equilibrium at each oscillation point of the sound wave q, and

damping is described by viscosity-type coefficients in the classical hydrodynamic equations of a two-fluid model [81].
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(2) Born approximation: ImΣq(i0+) is calculated perturbatively to leading order n in H3. The
damping rate of phonon q is then42,43

Γq|Born–Markov =− 2

ħ ImΣ(n)
q (i0+) (52)

where the exponent gives the order in H3. In the case of a convex acoustic branch
(γ> 0) in 3D, it’s sufficient to go to order n = 2: this is the three-phonon Beliaev–Landau
damping, much studied theoretically and observed in liquid helium-4 [83,84] and, to
a lesser extent, in bosonic cold-atom gases, only Beliaev damping having been seen
there [85]. In the concave case (γ< 0), we need to go to order n = 4 (the first contribution
in Equation (49) is purely real for ζ = i0+ because its energy denominators, of the form
ħωq +ħωk −ħωk+q and ħωq − (ħωk +ħωq−k), cannot vanish, but the next two are not in
φφ→ φφ processes); this case has been little studied theoretically (reference [78] noted
and corrected an error in the original calculation [52], and reference [86] obtained a much
more explicit expression of the result, even generalizing it to a non-zero phonon chemical
potential µφ)44 and it has, to our knowledge, never been observed experimentally (no

precise measurement of Γγ<0
q has been made in any system).

Let’s determine the validity of the Born approximation by means of the estimate of order
n ∈ 2N∗ given in reference [63]:

Σ(n)
q (i0+) ≈

∫ (
n/2∏
i=1

dd ki

)
〈 |Ld/2H3| 〉n

(∆E)n−1 ≈ |γ|T 3

(
ϵdD = T 2d−4

|γ|(5−d)/2

)n/2

(53)

where d ≥ 2 is the dimension of space. The writing in the second expression symbolically
represents the product of n matrix elements of the cubic phonon interaction in the numerator
and the product of n − 1 energy denominators (associated with n − 1 intermediate states) in
the denominator, and the integral is taken over the independent phonon wave vectors ki . The
order of magnitude in the third expression is obtained as in reference [63] by restricting to the
small O(|γ|1/2T ) angles between ki and q, which is legitimate when T → 0 [52]; we omit here
the dependence in the density ρ, in ξ = ħ/mc and in the coupling constant A of Equation (45),
unlike reference [63], but we keep that in the curvature parameter γ, as we will soon link γ and T .

42To shed further light on the approximation (52), let’s point out for n = 2 that it can be obtained by the quantum
master equation method well known in quantum optics (we obtain a closed evolution equation for the density operator
ρ̂S (t ) of a small system S—here the phonon mode q—coupled to a large reservoir R—here the other phonon modes
k ̸= q, by resorting to the Born–Markov approximation) [36,82] or, more simply, using Fermi’s golden rule (we calculate

d〈n̂q〉/dt , where 〈n̂q〉 = 〈b̂†
qb̂q〉 is the mean number of phonons in the non-equilibrium mode q, by summing the

incoming fluxes—population processes k,k′ → q and k′ → k,q—and outgoing fluxes—inverse depopulation processes
q → k,k′ and q,k → k′—and linearizing just after the Bragg excitation, as (d/dt )δnq(t = 0+) = −Γqδnq(t = 0+), where
δnq(t ) ≡ 〈nq〉(t )− n̄q is the deviation from thermal equilibrium). For n = 4, we find the same result (52) by extending

Fermi’s golden rule to higher orders [38].
43There’s a little mathematical subtlety here: if the leading order n is ≥ 4, the Markov approximation must no longer

simply replace Σq(ζ) with Σq(i0+) but must approximate it by a Taylor expansion around ζ= i0+. For example, for n = 4,

we takeΣq(ζ) ≃Σq(i0+)+ζ(d/dζ)Σq(i0+) so that at order 4 in H3, ζ−Σq(ζ) ≃ [1−(d/dζ)Σq(i0+)][ζ−Σ(2)
q (i0+)−Σ(4)eff

q (i0+)]

with Σ(4)eff
q (i0+) = Σ(4)

q (i0+) + Σ(2)
q (i0+)(d/dζ)Σ(2)

q (i0+). Then replace Σ(4)
q (i0+) with Σ(4)eff

q (i0+) in the damping rate

expression (52). In the three-dimensional concave case, this makes no difference to Γq|Born–Markov, since (d/dζ)Σ(2)
q (i0+)

is a real quantity, as is Σ(2)
q (i0+); in the two-dimensional concave case, the conclusion is less obvious but remains the

same, see note 48. On the other hand, this substitution must be made in the calculation of the thermal angular frequency

shift ∆q of the mode, ħ∆q|Born–Markov = Re[Σ(2)
q (i0+)+Σ(4)eff

q (i0+)]− idem at T = 0.
44If we restrict ourselves at low temperature to the leading collisional processes φφ → φφ, the phonon number

becomes a conserved quantity, allowing us to take µφ < 0.
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In short, the Born expansion is legitimate in dimension d = 3 if its small parameter tends to zero
at low temperature:

ϵ3D = T 2

|γ| →
T→0

0. (54)

To discuss the validity of the Markov approximation, we assume that the behavior of the self-
energy in the vicinity of ζ = i0+ is characterized by two exponents, ν and σ, the one giving the
typical values ∝ T ν of its imaginary part and the one giving its typical scale of variation ∝ Tσ, as
in Figure 8 45,46. From Equation (52), we therefore have

Γq ≈
T→0

T ν (55)

The function Σq(ζ) then has a slow (negligible) energy variation on the scale of the damping rate
(which is indeed the inverse of the characteristic time in Equation (48)) if it is wider than high,
which imposes

ν>σ (56)

The exponent ν is obtained by an explicit calculation of the right-hand side of Equation (52) in the
limit T → 0, as was done in reference [78] for the three-dimensional case47 and in reference [63]
for the two-dimensional convex case; more simply, we can use the estimate (53) with n = 2 if γ> 0
and d ∈ {2,3}, n = 4 if γ< 0 and d = 3 48. The exponent σ is obtained by generalizing the previous

45The exponents introduced here differ by one unit from those in reference [63] due to a different choice of
convention.

46For the sake of clarity, we have assumed in Figure 8 that the function shown has a maximum at the origin.
This is not necessarily true (the two-dimensional convex case of reference [63] provides a counter-example, see its
Equation (114)). The true definition of exponents ν and σ is that the scaled function ImΣq(ζ = ζ̄mc2(kBT /mc2)σ)/

[mc2(kBT /mc2)ν] has a finite, non-zero limit as T → 0 with fixed reduced complex energy ζ̄ (Im ζ̄> 0).
47The historical reference [52] for fixed γ < 0 also finds ν = 7 but the q dependence of Γq is different, e.g. Γq ≈ qT 6

in [52] instead of q3T 4 in [78] as q → 0.
48For fixed γ < 0 and d = 2, Alice Sinatra obtained in 2021, in the formulation of references [72,78], the unpublished

result that ImΣ(n=4)
q (i0+) = 0 at order T 3 (the expected leading order in temperature). To see this, it is actually simpler

to use expressions (84) and (85) in reference [63]: (i) in (84), we can ignore processes φ↔ φφφ and restrict ourselves to
process φφ→ φφ (second contribution), the only one conserving energy–momentum; (ii) in the integrand of (85), we
are entitled to replace ζ by 0 in the numerator of the large fraction for the similar reason that processes φ↔ φφ do not
conserve energy–momentum—this makes the numerator real; (iii) we then check that, if the scaled energy difference
∆E/[kBT (kBT /mc2)2] next to i0+ vanishes in the denominator of the large fraction, as required by the Dirac distribution
δ(∆E) of the generalized Fermi golden rule [38], the numerator also vanishes (we show this by formally replacing γ in the
numerator by its ∆E-cancelling expression, a rational function of the moduli and angles of the phonon wavevectors). In
other words, the limit at ζ = 0 (but also at ζ = −∆E) of the transition amplitude in the numerator of the large fraction,
considered as a rational fraction of the angles, can be written ∆E ×P/Q, where the polynomials ∆E , P and Q are two by
two coprime.
However, this reasoning neglects possible edge effects in the integral on phonon wave numbers, in the sense of refer-

ence [87], where one of the wave numbers tends to zero, which makes one of the energy denominators of the φ↔ φφ

processes tend to zero. Including these edge effects, we find that the processes φ→ φφφ, φφ→ φφ and φφφ→ φ, ab-

breviated as 1 → 3, 2 → 2 and 3 → 1 in reference [63], each make a non-zero contribution to ImΣ(n=4)
q (i0+) at order T 3,

but the sum of these contributions is exactly zero (the contribution of the edge q ′
1 + q ′

2 = q in 2 → 2, i.e. C
∫ q̄

0 dk̄ (n̄lin
k +

n̄lin
q−k +1)k̄(q̄ − k̄)/q̄ , is exactly offset by 1 → 3, and that of the edges q ′

1 = 0 and q ′
2 = 0 as a whole, i.e. 2C

∫ +∞
q̄ dk̄ (n̄lin

k−q −
n̄lin

k )k̄(k̄ − q̄)/q̄ , is exactly offset by 3 → 1; here, k̄ = ħck/kBT , n̄lin
k = 1/(exp k̄ − 1), Λ = ρ2((d3/dρ3)e0(ρ))/

(3mc2) and C = kBT (kBT /mc2)2[9(1+Λ)2/8ρξ2]2/[π(3γ)2]).

The conclusion is not changed by the correction Σ(2)
q (i0+)(d/dζ)Σ(2)

q (i0+) of our note 43, as we find that factors Σ(2)
q (i0+)

and (d/dζ)Σ(2)
q (i0+) are both real. This was obvious for the first factor (the edge effects it presents in 1D [87] are suppressed

in 2D by a lowering of the phonon density of states at low wavenumber). This was not the case for the second factor:
because of edge effects in the integration over k (see Equation (39) in reference [63]), the Beliaev and Landau processes

each give a non-zero contribution to Im(d/dζ)Σ(2)
q (i0+) (it is 2[9(1+Λ)2/8ρξ2]/[q̄(3|γ|)3/2] for Landau at temperature

leading order) but these contributions are exactly opposite, in particular because the energy denominators εq−(εk+εq−k)
and εq +εk −εq+k are opposite ∼ ∓ħck[1− (vq /c)cosθ] at leading order in k (vq = dεq/ħdq is the group velocity and θ
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Figure 8. In the limit T → 0, the order of magnitude and typical width of function ImΣq(ζ)
near ζ = i0+ are assumed to be characterized by two power laws in temperature, with ex-
ponents ν and σ (taking into account a possible temperature dependence of the curvature
parameter γ).

estimate to the case ζ ̸= 0, i.e. by adding ζ to ∆E in (53); however, in an expansion at small angles
between ki and q, the part of ∆E linear in the wave numbers vanishes, leaving only the cubic
contributions ≈ γT 3, so that, independently of the dimension of space d ,

1

ζ+∆E
≈ 1

ζ+γT 3 and therefore Tσ ≈ |γ|T 3 (57)

taking into account the dependence on the parameter γ, which—as we said—may vary with tem-
perature. The resulting validity condition T ν = o(γT 3) in (56) can be given a simple interpreta-
tion: in the limit T → 0 taken with the scaling law q ≈ T , the damping rate Γq must tend to zero
faster than the q3 term in ωq,

Γq
ħcq/kBT fixed=

T→0
o(ω(3)

q ) with ω(3)
q = γmc2(qξ)3/8ħ (58)

which is the true mark of the Markovian nature of damping (rather than the naive perturbative
condition Γq = o(ωq)).

The situation is summarized in Table 1 below49. The Born–Markov approximation is therefore
usable in dimension 3, except over a narrow interval of values of γ, of width ≈ (kBT /mc2)2 around
γ = 0; for γ = 0, the phonon dispersion relation (34) deviates quintically from the linear law cq ,
which is obviously a special case.

is the angle between k and q) and enter the derivative of the Dirac distribution δ′(ε), which is an odd function of its
argument.

The two-dimensional concave case is therefore special: the quantity ImΣ(4)eff
q (i0+) of note 43—considered at all

temperature orders—does not give the correct temperature scaling law ∝ T 3 of the self-energy at fourth order in H3
on a O(T 3) neighborhood of ζ = i0+; nor does it give the damping rate Γq, since the Born and Markov approximations
fail, as in the two-dimensional convex case (see the last line of our Table 1). Note, however, still for γ< 0, that the limiting
case ρξ2 →+∞ of a very weakly interacting underlying superfluid must be set apart as there we have the additional small
parameter 1/ρξ2 helping validity of Markov (as in Section 3.2 of reference [63]) and Born (as in Equation (17) of the same
reference); this limiting case is inaccessible in a gas of spin-1/2 fermions with contact interaction—we have ρξ2 = O(1)
when γ< 0 [88]—but it is in a Bose gas with an interaction range ≳ ξ as considered in reference [78].

49In the third row of the table, possible logarithmic factors ln(1/T ) are omitted for simplicity. These factors arise from
the fact that, for scaling laws γ∝ T 2 and q ∝ T , the terms q3 and q5 ln q are of the same order of magnitude in the
dispersion relation (34): in this low curvature regime, the logarithmico-quintic contribution to ωq is no longer a small

correction and must be kept.
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Table 1. In the study of phonon damping in a superfluid, validity of the Born–Markov
approximation in the low-temperature limit T → 0 depending on the dimension of space
d and the curvature parameter γ of the acoustic branch (more precisely, its sign and its
temperature dependence, the third line holding regardless of the sign of γ).

ν σ Markov ϵdD Born
d = 3,γ> 0 fixed 5 3 yes ≈ T 2 → 0 yes
d = 3,γ< 0 fixed 7 3 yes ≈ T 2 → 0 yes
d = 3,γ=O(T 2) 5 5 no ≈ T 0 ̸→ 0 no
d = 2,γ> 0 fixed 3 3 no ≈ T 0 ̸→ 0 no

The exponents ν and σ used in the definition (56) of the Markovian regime are shown in
Figure 8, and the small parameter of the Born expansion ϵdD is given in Equation (53).

The precise calculation of the damping rate Γq (or what takes its place for non-exponential
decay, such as the inverse of the width of |〈b̂q(t )〉|2 at relative height 1/e) for these small values
of curvature is, to our knowledge, an open question; it is of great experimental relevance, as the
interaction strength leading to γ= 0 seems to be close to the unitary limit (see reference [57] and
our Section 5.1), the preferred point for cold atom experiments in a regime of fairly high values of
Tc/TF and collisional properties conducive to evaporative cooling [18].

For good measure, we have also considered the two-dimensional convex case in Table 1: the
Born–Markov approximation fails here, and reference [63] had to resort to a non-perturbative
heuristic approximation on the self-energy Σq(ζ) to reach good agreement with classical field
simulations (quantum hydrodynamics operators b̂q, b̂†

q replaced by complex numbers bq,b∗
q )

in the weakly interacting regime ρξ2 ≫ 1 of the underlying bosonic superfluid, where a small
parameter was thought to be available and to ensure the success of Fermi’s golden rule even in
the kBT /mc2 → 0 limit (this reasonable expectation, confirmed in Section 3.2 of reference [63]
to order two in H3, is invalidated in Section 4.3 of the same reference by a calculation to order
four)50.

4.4. Phase diffusion of the pair condensate

A fundamental and practical question concerns the coherence time of the pair condensate at
thermal equilibrium in a Fermi gas perfectly isolated from its environment.

For an infinite unpolarized system of ↑ and ↓ fermions, the coherence time is infinite, as
asserted by the U (1) symmetry-breaking phenomenon: in the grand canonical ensemble (term
−µN̂ added to the Hamiltonian of the Fermi gas where µ is the chemical potential and N̂ the total

50We haven’t even mentioned the very special case of dimension d = 1, where two wave vectors make a very small
angle (zero!) as soon as they are in the same direction. Let’s just say that the Born small parameter is still given by
Equation (53), even though this equation was obtained under the assumption d ≥ 2. Restoring the density dependence
as in [63], we find more precisely ϵ1D = 1/[γ2ρξ(kBT /mc2)2], the prefactor in (53) being written γ(kBT )3/(mc2)2. In
the low-temperature limit kBT /mc2 → 0 at ρξ fixed considered here, ϵ1D →+∞ and we must immediately resort to non-
perturbative approximations onΣq(ζ) and Γq, such as the self-consistent calculation of references [89,90]. In the opposite

weakly-interacting limitρξ→+∞ at kBT /mc2 fixed, ϵ1D → 0 and we can use Fermi’s golden rule as in reference [87]; more
precisely, we expect the validity condition of the golden rule to be written as ρξ(kBT /mc2)2 ≫φ1D(q̄) whereφ1D is some
function of q̄ = ħcq/kBT , forgetting the γ dependence for simplicity (at a fixed q̄ , the Born approximation imposes this

condition, but the Markov approximation is then also satisfied because we have ħΓq|golden
rule ≈ γ[(kBT )3/(mc2)2]ϵ1D ≈

kBT /(γρξ) ≪ ∆E ≈ γ(kBT )3/(mc2)2 where ∆E , the typical Beliaev–Landau energy denominator, gives the width in ζ of
the self-energy as in Equation (57)). In 2D, as shown in reference [63], the perturbative H3-expansion of the self-energy is
subject to a similar validity condition, ρξ2(kBT /mc2)2 ≫φ2D(q̄), see its Equation (96), which, unlike the 1D case, is not
obtained by simple power counting.
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number of particles operator), the complex order parameter ∆(r, t ) is uniform and constant; in
the canonical ensemble, it therefore evolves with the undamped phase factor exp(−2iµt/ħ) 51,
advancing at the immutable angular frequency 2µ/ħ; in any case, the coherence time is infinite.

What about a finite size system (quantization box [0,L]3, fixed total number of fermions N )?
To find out, let’s follow reference [76] and write the evolution equation for the condensate phase
operator, which we denote φ̂0 as in Equation (39), in the quantum hydrodynamics regime52:

−ħ d

dt
φ̂0 =µ0(ρ)+ ∑

q̸=0
b̂†

qb̂q
d

dN
(ħωq) ≡ µ̂ (59)

In the second expression, µ0(ρ) = dE0/dN is the chemical potential of the N fermions in the
ground state of energy E0 at density ρ, and the sum over q can be interpreted as the adiabatic
derivative (meaning at fixed number operators b̂†

qb̂q of the phonon modes) with respect to N
of the corresponding sum in the phonon Hamiltonian H2 (41). The second expression as a
whole is therefore the isentropic derivative of the Hamiltonian with respect to the total number
of particles. In this sense, it is a chemical potential operator for the fermions, hence the
notation µ̂ in the third expression, and Equation (59) is a quantum version of the famous second
Josephson relation, linking the time derivative of the (classical) phase of the order parameter to
the equilibrium chemical potential µ.

In a given realization of the experiment, which we assume to correspond to a N -body eigen-
state |ψλ〉 of energy Eλ sampling the canonical ensemble, the occupation numbers b̂†

qb̂q fluctu-
ate and decorrelate under the effect of incessant collisions between phonons due in particular to
H3, see Equation (44). At times long enough for a large number of collisions to have taken place,
we therefore expect a diffusive spreading of the condensate phase, the variance of the random
phase shift increasing linearly with time:

Varλ[φ̂0(t )− φ̂0(0)] ∼
Γ
φ

collt≫1
2Dλt (60)

with a subintensive diffusion coefficient Dλ, i.e. ≈ 1/N in the thermodynamic limit. Here
Γ
φ

coll = Γq=kBT /ħc is the typical collision rate between thermal phonons (the function Γq is that
of Equation (52)). The spreading (60) induces an exponential loss of temporal coherence of rate
Dλ, by virtue of Wick’s relation (the phase shift statistic in |ψλ〉 is expected to be approximately
Gaussian [91]),〈

exp{−i[φ̂0(t )− φ̂0(0)]}
〉
λ ≃ exp[−i〈φ̂0(t )− φ̂0(0)〉λ]exp{− 1

2 Varλ[φ̂0(t )− φ̂0(0)]}

≃
Γ
φ

collt≫1
exp[−i〈µ̂〉λt/ħ]exp(−Dλt ) (61)

which is confirmed by the resolvent analysis of reference [76]53.
In the case γ> 0 of a convex acoustic branch, the situation resembles that of weakly interacting

Bose condensates well studied in reference [95]: the dominant collisions are the three-phonon
Beliaev–Landau ones φ↔ φφ, and Dλ has been calculated for the low-temperature Fermi pair

51There is a factor of 2 under the exponential because∆ is a pair-order parameter whereas µ is the chemical potential
of the fermions. There is no factor of 2 in Equation (59) because the phase operator φ̂0 is conjugate to the fermion density.

52To obtain this equation, we had to eliminate b̂qb̂−q and b̂†
qb̂†−q terms by temporal smoothing; this is of no

consequence, as they oscillate with a period ≈ ħ/kBT much shorter than the collisional timescales of interest here (see
below) and automatically average to zero.

53If we assume that the interacting phonon gas is an ergodic quantum system [92,93], the mean 〈µ̂〉λ in the steady
state |ψλ〉 depends only on the two conserved quantities, the energy E and the number of particles N , and coincides
for a large system with the microcanonical chemical potential µmc(E = Eλ, N ). If the energy E fluctuates from one
realization of the experiment to the next around the mean value Ē , as in the canonical ensemble, the phase factor
in the third expression of Equation (61) fluctuates and leads to a Gaussian-in-time loss of coherence: linearization of
µmc(E , N ) around Ē gives Var[φ̂0(t )− φ̂0(0)] ∼ [∂Eµmc(Ē , N )]2(VarE)t 2/ħ2, a parasitic effect ≈ t 2/N rapidly masking the
phase diffusion (60) ≈ t/N [94].
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condensate in reference [86]; we give here a simplified expression, keeping only the scaling laws
in N , T and γ (under the assumption γ=O(1)):

Dγ>0
λ

≈ N−1T 4γ0. (62)

There has been no experimental verification yet in cold atomic gases (the only quantum fluids
sufficiently well isolated for the condensate loss of coherence to be intrinsic), even for bosons.

In the concave case γ < 0, on the other hand, the question remains largely open. An attempt
to calculate Dλ in reference [86], taking into account only the Landau–Khalatnikov four-phonon
collision processes φφ→ φφ at small angles, of typical rate Γφcoll ∝ (kBT /mc2)7mc2/ħ|γ| ≈ T 7,
led to an infinite diffusion coefficient,

Dγ<0
λ

=+∞ (63)

more precisely to a superdiffusive spreading law (simplified as in (62))54

Varγ<0
λ

[φ̂0(t )− φ̂0(0)] ≈ N−1T 20/3|γ|1/3t 5/3 (64)

in particular because collisions φφ → φφ preserve the total number Nφ of phonons (unlike
φ ↔ φφ)55,56. To go beyond this and obtain the true (a priori finite) value of Dλ remains an
open question: one would have to take into account the subdominant five-phonon processes
φφ↔φφφwhich change Nφ and occur at a rate ≈ T 9 [96], of the same order of magnitude as that
of large-angle φφ→φφ processes [52,78], which is not easy57.

5. Open questions requiring a microscopic theory of the many-body problem

The quantum hydrodynamics of Section 4 is only a low-energy effective theory. It therefore has
limitations of two kinds, which we briefly review here, and which make it impossible to dispense
with a many-body microscopic calculation.

5.1. Determining the ingredients of quantum hydrodynamics

Quantum hydrodynamics involves two quantities that are external to it, the equation of state of
the unpolarized Fermi gas at zero temperature (through the energy density e0(ρ) or the chemical
potential µ0(ρ)—its derivative—at density ρ) and the curvature parameter γ of the acoustic
branch (34).

In the present case of equal mass m↑ = m↓ = m, the equation of state has been measured ex-
perimentally [48,97] and various approximate calculation methods give satisfactory results, such
as fixed-node diffusive quantum Monte Carlo [98,99] or the Gaussian fluctuations approximation
in a path integral formulation [100,101].

The situation is much more open for the curvature parameter γ. The Anderson random
phase approximation (RPA) [61], equivalent for this problem to the eigenfrequency calculation
of linearized time-dependent BCS equations or even to the more powerful Gaussian fluctuations

54In all cases, see Equations (62) and (64), we find that there is no phase spreading at the thermodynamic limit
N →+∞: in an isolated gas, the limited coherence time of the condensate is a finite-size effect.

55Nφ should then be added to the list of constants of motion, alongside E and N , in note 53.
56The fact that, for γ < 0, the phonon damping rate Γq tends towards zero as q3 (instead of q for γ > 0) also plays

a role; however, without the conservation of Nφ, it would lead to a marginally superdiffusive t ln t spreading law (see

Equation (C.20) of reference [86] and the morality stated below its Equation (72)).
57Publication [86], misunderstanding reference [96], had seen there a five-phonon damping rate scaling as T 11. The

error has been corrected here. Indeed, reference [96], considering a quasi-thermal equilibrium with a small non-zero
phonon chemical potential µφ → 0−, obtains the evolution equation L−3dNφ/dt = −Γφµφ for the average phonon

number, where Γφ ≈ T 11 is not the rate sought despite appearances; as L−3dNφ/dt ≈ T 2dµφ/dt for Bose’s law n̄q =
1/{exp[(ħcq −µφ)/kBT ]−1}, we actually have −dµφ/dt ∝ (Γφ/T 2)µφ, of rate ≈ T 9.
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approximation [100,102]58, leads to a fairly simple analytical expression of γ in terms of µ/|∆|
and (∂µ/∂|∆|)a , exact in the limit kFa → 0+ of a condensate of dimers (γ→ 1), reasonable in the
BCS limit kFa → 0− (γ→−∞ exponentially with 1/kF|a| since the acoustic branch is crushed by
the broken-pair continuum) and changing sign for |∆|/µ≃ 0.87, i.e. 1/kFa ≃−0.14 for the rather
approximate BCS equation of state, not far from the unitary limit in any case [57].

In particular, γ has the same positive value at the unitary limit in all three approaches (convex
acoustic branch at low q):

γRPA
a−1=0 ≃ 0.084 (65)

The error, however, is uncontrolled, and we’re not even sure of the sign.
A completely different method proceeds by extending the problem to an arbitrary spatial

dimension d and expanding around dimension four, in powers of the small parameter ϵ= 4−d .
At the unitary limit, it too predicts a convex branch at low q [104]59:

γdimension
a−1=0 = 1

3

[
1− 1

4
ϵ+O(ϵ2)

]
ϵ=1≃
d=3

1

4
> 0 (66)

Experimentally, a recent measurement of the acoustic branch by Bragg excitation in a cold-
atom Fermi gas leads, on the contrary, to a concave branch at the unitary limit [105]:

γ
exp
a−1=0

= 8µ

3EF
ζ≃ ζ with ζ=−0.085(8) < 0 (67)

where the ratio µ/EF is ≃ 3/8 for the ground-state unitary gas [48] and ζ is the acoustic-branch
curvature parameter for a rescaling of q by kF, ωq = cq(1+ ζq2/k2

F + ·· · ). The result (67) suffers
from two limitations [106]: (i) a cubic fit of the branch over an interval of rather high q values,
q/kF ∈ [0.29,1.63], rather than over a narrow neighborhood of q = 0 (for the RPA dispersion
relation, for example, which has an inflection point at q ≃ 0.5kF, such a fit, blindly mixing convex
and concave parts, would not give the right sign of γRPA

a−1=0
), and (ii) a relatively high temperature,

T = 0.128(8)TF ≃ 0.8Tc: even if we start from the RPA branch of parameter γ > 0 in the ground
state, quantum hydrodynamics predicts a thermal change δγth in curvature (by interaction of
the mode q with thermal phonons) negative enough to change its sign:

δγth ∼− 8π2

9(3µ/EF)1/2

(
T

TF

)2

≃−0.14 <−γRPA
a−1=0 (68)

The question of the sign of γ at the unitary limit, which crucially determines the three-phonon
(γ > 0) or four-phonon (γ < 0) nature of sound damping in the low-temperature collisionless
regime, therefore remains largely open60.

58These different approaches lead to exactly the same implicit equation linking angular eigenfrequencyωq, chemical
potential µ and order parameter ∆, and exactly the same equation linking µ,∆ and s-wave scattering length a [57]; they
differ only in the equation of state µ = µ0(ρ) linking µ to ρ in the ground state, the one of Gaussian fluctuations being
the most accurate. For example, at the unitary limit a−1 = 0, the approaches all give mc2/µ = 2/3 (this is exact by scale
invariance, µ0(ρ) ∝ ρ2/3 in Equation (43)), |∆|/µ≃ 1.16 (close to the experimental value 0.44EF/0.376EF ≃ 1.17 knowing
that |∆| = Epair/2 in these theories and that Epair/2EF ≃ 0.44 in the experiment [103]) but the ratio µ/EF ≃ 0.376 in the

experiment [48], very poorly reproduced ≃ 0.59 by RPA and BCS, is much better ≃ 0.40 in Gaussian fluctuations.
59We obtained expression (66) by directly inserting Equation (50) of reference [104] into the dispersion relation

(48) of the same reference and using the exact property mc2 = 2µ/3 due to scale invariance. Proceeding differently,
i.e. via its Equation (52) and its result c2/c1 = O(ϵ2) ≃ 0 with d = 3 in its Equation (48), we find the fairly close value
γdimension

a−1=0
= 8/45 ≃ 0.18.

60The damping studied experimentally in reference [107] is in the hydrodynamic regime, in the sense of note 41. This
reference therefore does not allow us to resolve the problem.
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5.2. Describing high-frequency modes

Quantum hydrodynamics, with its almost linear acoustic branch, cannot reliably describe the
sound waves of angular frequency ωq > mc2/ħ in the Fermi superfluid. Ignoring the composite
nature of bound pairs ↑↓, it is totally inapplicable to angular frequencies ω≈ Epair/ħ, where Epair

is the binding energy of a pair: at these frequencies, pairs can break into two fermionic excitations
χ (conservation of energy no longer prohibits this), see Figure 5a.

A microscopic description of the Fermi gas is then required. At zero temperature, the main
method available is that of the time-dependent BCS variational theory [108]. Its specialization to
the linear response regime yields the following eigenvalue equation for the energy z of the modes
of wave vector q:

det M(q, z) = 0 with M(q, z) =
(

M|∆||∆|(q, z) M|∆|θ(q, z)

Mθ|∆|(q, z) Mθθ(q, z)

)
(69)

where the coefficients of the 2×2 matrix correspond to a response in the modulus |∆| or in the
phase θ of the complex order parameter ∆(r, t ). In the weakly-interacting BCS limit kFa → 0−,
off-diagonal elements are usually (rightly) neglected and the dynamics decouples into modulus
and phase modes; in the general case, this distinction no longer applies.

The exploration of solutions to Equation (69) has begun. At a fixed wavenumber q , we find at
most one root under the edge εbord

q of the broken-pair continuum, the root ħωq of the acoustic
branch. On the interval z ∈ ]εbord

q ,+∞ [, the function det M(q, z) has a branch cut61, it is necessary
to add an infinitesimal shift i0+ to z to make sense of it; the function then acquires an imaginary
part, which cannot vanish simultaneously with the real part, and Equation (69) has no solution.
On the other hand, a complex zq with a non-infinitesimal < 0 imaginary part can be found, by
performing an analytic continuation of function z 7→ det M(q, z) from the upper half-plane to the
lower half-plane through its branch cut (indicated by arrow ↓ in the subscript):

detM↓(q, zq) = 0 with Im zq < 0 (70)

There is therefore a collective mode in the continuum, which decays exponentially in time
through the emission of broken pairs. The calculation was first performed in the BCS limit
kFa → 0−, both for neutral fermions and for electrons in a superconductor, in reference [109].
It was then generalized to fermionic cold-atom gases for arbitrary values of kFa, no longer
neglecting the off-diagonal elements M|∆|θ and Mθ|∆| [110,111]. The Andrianov–Popov branch
persists up to 1/kFa = 0.55 (point of zero chemical potential µ = 0 in BCS theory) and always
starts at 2|∆| quadratically in q with a complex coefficient:

zq
µ>0=
q→0

2|∆|+ζħ
2q2

4m∗
+O(q3) (Imζ< 0) (71)

where m∗ is the effective mass of a fermionic quasiparticle χ at the location k = k0 of its
energy minimum62. We have written 2|∆| here rather than Epair, where ∆ is the equilibrium
order parameter, even though BCS theory is unable to distinguish (we have exactly Epair = 2|∆|
for all µ > 0 in this theory), in order to evoke the Higgs mechanism [113] which we think

61The matrix elements of M(q, z) involve an integral over the wave vector k of one of the dissociation fragments of
a bound pair of the condensate, and the integrand contains the corresponding energy denominator z − (εk + εq−k); by

definition, the denominator vanishes when z belongs to the broken-pair continuum, see the legend to Figure 5.
62The effective mass is such that εk−Epair/2 ∼ħ2(k−k0)2/2m∗ as k → k0. Scaling by m∗ in Equation (71) ensures that

ζ has a finite, non-zero limit when kFa → 0− [109]. In this regime, the well-known reference [112] predicts an incorrect
behavior for zq at low q , with an imaginary part tending linearly to zero ∝ q , see its Equation (2.38). The quantity ζ here

has nothing to do with that in Equation (67), there is an unfortunate coincidence of notations.
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the collective mode of the continuum comes under [114]63; moreover, in the opposite limit
kFa → 0+ of a bosonic dimer condensate, where 2|∆| ≪ Epair ∼ 2|µ| ∼ ħ2/ma2 (this time we
have µ < 0), we do indeed find a collective excitation branch starting quadratically at 2|∆| and
not at Epair [111]. The extension of Equation (69) to non-zero temperature (beyond a simple
BCS-type mean-field generalization, perhaps insufficient64) remains to our knowledge an open
question.

From an experimental point of view, in cold atoms or superconductors, excitation at angular
frequencies ω> Epair/ħ has only been carried out at zero wavenumber, where there is, according
to zero temperature theories, no collective mode in the continuum, the spectral weight of the
mode tending to 0 as q → 0 [110]; at long times, we simply observe oscillations of the order
parameter at angular frequency Epair/ħ (this is the effect of the non-zero edge of the continuum),
which attenuate with a power law t−α [117,118] by the same mechanism as the spreading
of the Gaussian wave packet of a free particle in ordinary quantum mechanics (percussive
excitation creates a “wave packet” of broken pairs (k,−k) in the continuum, whose evolution
governed by the dispersion relation 2εk is effectively one-dimensional for k0 > 0 (µ> 0), in which
case α = 1/2 [119], and three-dimensional for k0 = 0 (µ < 0), in which case α = 3/2 [120])65.
The observation of the continuum mode (at q > 0) and the precise measurement of its dispersion
relation zq therefore remain to be done (hints are given in references [110,121]).
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