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Abstract: The equation of state of asymmetric nuclear matter as well as the neutron and proton

effective masses and their partial-wave and spin–isospin decomposition are analyzed within the

Brueckner–Hartree–Fock approach. Theoretical uncertainties for all these quantities are estimated by

using several phase-shift-equivalent nucleon–nucleon forces together with two types of three-nucleon

forces, phenomenological and microscopic. It is shown that the choice of the three-nucleon force

plays an important role above saturation density, leading to different density dependencies of the

energy per particle. These results are compared to the standard form of the Skyrme energy density

functional, and we find that it is not possible to reproduce the BHF predictions in the (S, T) channels

in symmetric and neutron matter above saturation density, already at the level of the two-body

interaction, and even more including the three-body interaction.

Keywords: nuclear matter; equation of state; effective mass

1. Introduction

A new era of multi-messenger astronomy began with the first detection of gravitational
wave signals, also known as GW170817 or AT2017gfo for the electromagnetic emission
originating from the kilonova formed by the binary neutron star merger [1,2]. This new
astronomy emphasizes the crucial role of neutron stars (NSs), which are prototypes for
the most extreme phases of matter where the strong, the weak, the gravitational and the
electromagnetic interactions can be studied in regimes that cannot be explored on Earth.
In this paper, we are analyzing the properties of the dense matter equation of state (EOS)
from microscopic calculations with a focus on the strong three-body interaction, and we
discuss the link with empirical energy density functionals (EDFs).

In recent years, the determination of nuclear EDFs has incorporated more and more
information deduced from microscopic calculations of nuclear matter. Usually, one specific
or a very limited number of microscopic calculations are considered in the fitting proto-
cols. However, the impact of the choices of the bare nuclear interaction, the regularization
scheme, the experimental error in the phase shift data, and of the many-body framework is im-
portant, and has been cautiously addressed in the chiral effective field theory (χ−EFT) [3–7] in
order to theoretically predict the nuclear EOS, including error estimates. There is, however, an
upper limit on density (presently estimated to be (1–2)nsat with nsat ≈ 0.155± 0.005 fm−3 [8]),
where the χ−EFT breaks down and also the error estimates become meaningless [9–11].

At increasing density—and already around nsat—the role of nuclear three-body forces
(3BF) in nuclear matter cannot be ignored. For traditional meson-exchange potential mod-
els, the compatible 3BF correction at saturation density is of limited magnitude, a few
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MeV, which represents (15–20)% of the total energy, in order to reproduce the saturation
of nuclear matter. With the advent of regularized soft-core nuclear interactions, such as
Vlow-k [12,13] as well as chiral effective field theory (χ−EFT) [3–7], a new paradigm has
emerged. In short, any modification of the two-body interaction, by applying a unitary
transformation, generates many-body interactions. The 3BF cannot be viewed as indepen-
dent of the two-body force (2BF), but instead, it contains a part of the repulsive hard-core
interaction. Regularized soft-core interactions need stronger many-body interactions to
saturate, compared to the hard-core ones.

Building bridges between EDFs for the in-medium nuclear interaction and micro-
scopic approaches of the nuclear many-body problem is, therefore, fundamental for a
consistent understanding of nuclei, neutron stars, core-collapse supernovae, and kilonovae.
Microscopic approaches, on one hand, have the advantage of being based on realistic 2BFs
that reproduce with high precision the scattering phase shifts and the deuteron properties,
and include the isospin asymmetry dependence in a natural way. However, the direct
implementation of microscopic approaches in finite nuclei is not an easy task. A realistic
2BF cannot be used directly in nuclei. Its hard-core repulsion requires a resummation, as
uniform matter and 3BFs are required to describe both the energy and charge radii of finite
nuclei. EDF models, on the other hand, are usually based on effective density-dependent
interactions with parameters frequently fitted to reproduce the global properties of nuclei
and properties of symmetric and neutron matter [14–18]. These effective interactions
capture the essence of the in-medium nuclear interaction as well as the effect of the com-
plex correlations. Their predictions at high densities and isospin asymmetries, however,
should be taken with care and discussed in view of the considered constraints. Combining
phenomenological models with microscopic approaches would, therefore, help in setting
up a nuclear model based on realistic 2BFs and 3BFs that can simultaneously describe the
properties of nuclei and those of infinite nuclear matter in a large range of densities and
isospin asymmetries.

Two major sources of uncertainty arise, however, when trying to build links between
EDFs and microscopic approaches. The first is that there is a fairly large number of real-
istic 2BFs that reproduce the scattering data and the deuteron properties with equivalent
high accuracy. Predictions employing these interactions are then compared to estimate
the uncertainty due to the nuclear interaction (leading to an estimate of systematic uncer-
tainties). The second source of uncertainties is due to the different methods employed to
solve the nuclear many-body problem (which also contributes to systematical uncertain-
ties). A critical comparison of various microscopic approaches using the same 2BF was
performed in Ref. [19]. The aim of this work was to find the sources of discrepancies, and ul-
timately to determine a “systematic uncertainty” associated with the different microscopic
approaches of the nuclear matter EOS. The approaches considered are the Brueckner–
Hartree–Fock (BHF) [20,21], the Brueckner–Bethe–Goldstone (BBG) expansion up to the
third order [22–28], the self-consistent Green’s function (SCGF) [29–33], the auxiliary field
diffusion Monte Carlo (AFDMC) [34,35], the Green’s function Monte Carlo (GFMC) [36],
and the Fermi hypernetted chain (FHNC) [37–40]. The properties of pure neutron matter
(NM) and symmetric nuclear matter (SM) were computed with simplified versions [41]
of the widely used Argonne Av18 potential [42], and a careful comparison of the results
obtained with the different approaches was performed. The results of this work confirm
that the tensor and spin–orbit components of the 2BF and their in-medium treatment are
responsible for most of the observed discrepancies among these approaches [19]. A very
similar study was performed recently in Refs. [43,44].

The EDF models adjusted to microscopic approaches shall incorporate these sources of
uncertainties in the microscopic predictions for dense matter. Several authors have already
determined EDF models from microscopic approaches (see, for example, Refs. [16,17,45–55]).
The authors of Ref. [45], for instance, constructed a Skyrme-type EDF based on BHF results
for infinite matter and applied it to a set of isospin-symmetric and -asymmetric nuclei
through the mass table. A similar strategy to link the microscopic EOS in nuclear matter
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with finite nuclei properties was also considered in Refs. [46,47]. Their results provided
a microscopic basis for a link between nuclear surface behavior and the NM EOS, as
previously observed with phenomenological effective forces. The same authors also devel-
oped the so-called Barcelona–Catania–Paris–Madrid (BCPM) EDF [48–51] obtained from
BHF calculations of nuclear matter within an approximation inspired by the Kohn–Sham
formulation of density functional theory [56]. The BCPM EDF is built with a bulk part
obtained directly from BHF results for NM and SM via a local-density approximation,
and is supplemented by a phenomenological surface part together with the Coulomb,
spin–orbit, and pairing contributions. The functional, with four adjustable parameters, is
able to describe the ground-state properties of finite nuclei with an accuracy comparable to
that of Skyrme and Gogny forces.

Later on, the so-called LNS Skyrme force was built in Ref. [52] based also on BHF
calculations of infinite nuclear matter with consistent 2BFs and 3BFs. It was further refined
in Ref. [54] to reproduce experimental binding energies and charge radii of some selected
nuclei. A similar fitting procedure was also used in Refs. [16,17], where various Skyrme
forces were adjusted to the (S, T) decomposition of the results of two different BHF cal-
culations [57,58] 1. The comparison of the two microscopic calculations provides a kind
of theoretical uncertainty based on the 2BFs and 3BFs employed, and suggests that the
associated differences should be carefully analyzed. In Ref. [55], the tensor contribution
to the (S, T) channels and different partial waves was analyzed. However, similarly to
previous works, the uncertainty of the microscopic calculations was not included in the de-
termination of the EDF. Finally, let us mention the analysis of Quantum Monte Carlo (QMC)
calculations of spin-polarized neutron matter, which have been compared to predictions of
several Skyrme EDFs [59]. Such analysis allowed to probe the time-odd part of the Skyrme
EDFs independently of the time-even one and was found to be very constraining. Also,
here an estimate of the uncertainty of the microscopic calculation would be very valuable,
particularly as the density of the medium increases.

In the present paper, we aim to provide an estimation of the uncertainty of the nuclear
EOS predicted by the BHF approach up to about 0.4 fm−3 ≳ 2nsat based on several nuclear
two- and three-body interactions. Special attention is paid to the impact of the latter ones
for which we consider two different types: phenomenological and microscopical 3BF. We
then determine the corresponding parameter ranges of Skyrme-type nuclear energy density
functionals, and more importantly, we show that the BHF calculations in the different (S, T)
channels in SM and NM cannot be reproduced by the Skyrme EDF above nsat, already from
the 2BF results.

The paper is organized as follows. In Section 2, a brief review of the BHF approach
is presented. The (S, T) and partial-wave decomposition of the BHF correlation energy
per particle for SM and NM is analyzed in Section 3. In Section 4, this decomposition is
employed to constrain the parameters of Skyrme-type forces. A summary and the main
conclusions are given in Section 5.

2. BHF Approach of Nuclear Matter

The BHF approach is the lowest-order realization of the BBG many-body theory of
nuclear matter [60,61]. In this theory, the ground-state energy of nuclear matter is evaluated
in terms of the so-called hole-line expansion, where the perturbative diagrams are grouped
according to the number of independent hole-lines. The expansion is derived by means
of the in-medium two-body scattering matrix G, which describes the effective interaction
between two nucleons in the presence of a surrounding medium. The G matrix is obtained
by solving the well-known Bethe–Goldstone equation

⟨i′ j′|G|ij⟩ = ⟨i′ j′|V|ij⟩+
1

Ω
∑
ml

⟨i′ j′|V|ml⟩
Qml

εi + ε j − εm − ε l + iη
⟨ml|G|ij⟩ , (1)

where the multi-indices i, j, m, l, i′, j′ indicate all the quantum numbers (momentum k, spin
σ, and isospin τ projections) characterizing the two nucleons in the initial, intermediate,
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and final states; V denotes the bare NN interaction; Ω is the (large) volume enclosing the

system; Qml = (1 − fm)(1 − fl) with fi = θ(k
(τi)
F − |ki|) is the Pauli operator, taking into

account the effect of the exclusion principle on the scattered holes; and k
(τi)
F = (3π2nτi

)1/3

is the Fermi momentum for particle i with density nτi
defined in the ground state. The

constant η defines the width of the states (inverse of the lifetime). Since we consider the
mean-field approximation, the lifetime of the states is infinite and η → 0. The single-particle
(s.p.) energy of a nucleon with momentum ki and isospin τi is

εi ≡ ετi
(ki) =

k2
i

2mτi

+ Re Uτi
(ki) , (2)

Uτi
(ki) being the mean field felt by the nucleon i due to its interaction with the other

nucleons of the medium. In the BHF approximation, it is calculated through the “on-
shell” G-matrix,

Uτi
(ki) =

1

Ω
∑

j

f j ⟨ij|G|ij⟩a , (3)

where the matrix elements are meant to be properly antisymmetrized. Note that
Equations (1)–(3) should be solved self-consistently. The momentum dependence of the
s.p. energy ετi

can be characterized in terms of the effective mass [62],

m∗
τi
(ki)

m
=

ki

m

(dετi

dki

)−1
. (4)

We consider in the following the isospin-asymmetric nuclear matter, and for clarity,
we shall specify the isospin index τ. However, since we will discuss only spin-symmetric
matter, the spin-up and -down potentials are equal and we do not specify the spin index in
the following. For simplicity, we consider the same bare mass for neutrons and protons
mτ = (mn + mp)/2 ≡ m.

In the BHF approach, the total energy per particle of nuclear matter is given by the
sum of only two-hole-line diagrams that include the effect of two-body correlations through
the G matrix,

Etot =
1

n ∑
i

fi
k2

i

2m
+

1

2nΩ
∑
i,j

fi f j Re ⟨ij|G|ij⟩a =
1

n ∑
i

fi
k2

i

2m
+ Ecor , (5)

where the first term on the right-hand side is the energy of a free Fermi gas and the second
one is the so-called BHF correlation energy, Ecor. We note here that the latter is usually
referred to as BHF potential energy.

It has been shown in Refs. [22–28] for the V18, and recently confirmed in Ref. [63]
for several modern 2BFs, that the contribution to the total energy from three-hole-line
diagrams (which account for the effect of three-body correlations) is minimized when the
so-called continuous prescription [62] is adopted for the BHF s.p. energy (2). This is a
strong indication of the convergence of the hole-line expansion around saturation density
and above. We adopt this prescription in our calculations and limit the exploration to
densities less than 0.4 fm−3, where the hole-line expansion parameter κ = (c/d)3 (with c
the interaction range and d the average distance between two nucleons) is still sufficiently
small [63,64].

The present BHF calculations are carried out using a set of several phase-shift-equivalent
NN potentials, namely, Av18 [39], NSC97a-f [65,66], a non-relativistic version of the Bonn B
potential (Bonn) [67,68], and the charge-dependent Bonn potential (CD-Bonn) [69]. The pre-
dictions for the nuclear EOS based on these 2BFs are grouped together under the name 2BF.
The group 2+3BFph combines the predictions of the same 2BF interactions supplemented
with a 3BF of the Urbana type [70] consisting of the sum of the attractive two-pion-exchange
Fujita–Miyazawa force with the excitation of an intermediate ∆-resonance [71] plus a phe-
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nomenological repulsive term. The group 2+3BFmic is a set of microscopic potentials [57]
based on the Av18, Bonn B, or Nijmegen93 [72] potentials, which are also used to calculate
consistently a three-body potential, including the virtual excitation of ∆(1232) and N∗(1440)
resonances and anti-nucleons. In both cases, for the use in the BHF approach, these 3BF are
reduced to an effective two-nucleon density-dependent force by averaging over the coordi-
nates of the third nucleon [73–75]. The interested reader is referred to Refs. [57,58,76,77] for
an extensive analysis of the use and effects of 3BF in nuclear matter.

3. Results of Brueckner–Hartree–Fock Microscopic Calculations

We discuss in this section the results of the BHF calculations of nuclear matter.

3.1. Correlation Energy Per Particle

In the BHF approach, the correlation energy per particle Ecor, last term of Equation (5),
can be easily linked to the spin–isospin and the partial-wave decomposition of the G-matrix,
providing an interesting insight into the impact of the different (S, T) channels and partial
waves contributing to the nuclear EOS. With the aim of providing more stringent constraints
for phenomenological EDFs, we analyze in this section these decompositions for both SM
and NM. A particular application of these constraints to a Skyrme force is discussed in the
next section.

3.1.1. Spin–Isospin Decomposition of the Correlation Energy

The spin–isospin decomposition of the correlation energy per particle reads

Ecor = ∑
S,T

E
(S,T)
cor , (6)

where the contribution of each (S, T) channel,

E
(S,T)
cor =

1

2nΩ
∑
i,j

fi f j Re ⟨ij|GPSPT |ij⟩a , (7)

can be obtained by using the projectors on spin and isospin singlet and triplet states,
PS = 1

2 [1 + (S − 1
2 )(1 + σ1 · σ2)] and PT = 1

2 [1 + (T − 1
2 )(1 + τ1 · τ2)]. The partial waves

contributing to the different channels are listed in Table 1.
The density dependence of the spin–isospin (S, T) decomposition of Ecor in SM and

NM is shown in Figure 1, where the bands correspond to the uncertainty associated with
the different models used in our BHF calculation as previously discussed. In SM, the (0, 0)
channel is repulsive, while the (1, 0) and (0, 1) channels are attractive. The (1, 1) channel is
much weaker than the others and could be attractive or repulsive depending on the 3BF
interactions (it is slightly repulsive with 2BF and 2+3BFph). The 2+3BFmic approach has
a density dependence strong enough to change the attractive (0, 1) channel for 2BF into
a repulsive one at high density, or to turn the repulsive (1, 1) channel into an attractive
one around nsat. The (0, 1) and (1, 1) channels of NM are qualitatively similar to those
of SM. The impact of the 3BF prescription can thus be opposite to the 2BF in the various
channels. These features can be traced back to the general characteristics of the 3BF: the
two-pion-exchange 3BF component is attractive in the (1, 0) channel and repulsive in the
(0, 1) channel, and scalar repulsive 3BF components become dominant at high-density in
all channels.
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Table 1. Partial-wave contributions to the different (S, T) channels using the spectroscopic nota-

tion 2S+1LJ .

Name (S, T) L Partial Waves Legend in Figures 2 and 3

Singlet Odd (0,0) 1 1P1 P

SO 3 1F3 F

5 1H5 H

7 1 J7 J

Singlet Even (0,1) 0 1S0 S

SE 2 1D2 D

4 1G4 G

6 1 I6 I

Triplet Even (1,0) 0 3S1 S
TE 2 3D1,2,3 D

4 3G3,4,5 G
6 3 I5,6,7 I

Triplet Odd (1,1) 1 3P0,1,2 P
TO 3 3F2,3,4 F

5 3H4,5,6 H
7 3 J6,7,8 J

 0

 5
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 20
SO channel in SM

(S
=
0
,T
=
0
)

-50

-40

-30

-20

-10

 0
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=
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=
0
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=
1
)
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2+3BFph

2+3BFmic -12
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TO channel in SM

(S
=
1
,T
=
1
)
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0 0.1 0.2 0.3 0.4

SE channel in NM

(S
=
0
,T
=
1
)

total density (fm-3)

 0
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0 0.1 0.2 0.3 0.4

TO channel in NM
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=
1
,T
=
1
)

total density (fm-3)

Figure 1. Spin−isospin (S, T) channel decomposition of the correlation energy per particle in MeV

for SM and NM as a function of the density and for the various interactions considered. The bands

quantify the internal accuracy of the BHF calculation associated with the different 2BFs and 3BFs used.
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3.1.2. Partial-Wave Decomposition of the Correlation Energy

Let us now further continue this analysis by looking in more detail at the partial-wave
decomposition of Ecor for both SM and NM. The different partial waves contribute to the
correlation energy as

Ecor = ∑
LSJ

E
(LSJ)
cor , (8)

where

E
(LSJ)
cor =

(2J + 1)

4n(2π)6 ∑
ττ′

∫

d3
kτ fτ(kτ)

∫

d3
kτ′ fτ′(kτ′) fττ′⟨KqLSJ|Gττ′→ττ′ |KqLSJ⟩ (9)

with K = |kτ + kτ′ |, q = |(kτ − kτ′)|/2 and fττ′ = 1 + (−1)L+Sδττ′ .

We first show in Figure 2 (for SM) and Figure 3 (for NM) the decomposition into partial

waves with fixed angular momentum L, E
(L)
cor ≡ ∑SJ E

(LSJ)
cor , i.e., all partial waves with the

same value of L are summed together. Contributions up to a total angular momentum
J = 8 are considered in the calculation, although only results for the S, P, D, and F partial
waves are shown since the contributions of higher partial waves are small. It is indeed clear

from the figures that the contributions of the different E
(L)
cor decrease as L increases for the

range of densities considered here. Note that the P and D channels are found to be of the
same order of magnitude in absolute value. Since the standard Skyrme EDF contributes
only to the S and P channels, the relatively large importance of the D channel advocates
for the extension of the standard Skyrme EDF as suggested in Ref. [55]. The F channel is
found to be repulsive and less important than the others for 2BF and 2+3BFph but strongly
attractive and comparable to the D channel for 2+3BFmic. This corresponds to the (0, 0)
and (1, 1) channels in Figure 1.
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Figure 2. Decomposition in fixed−L partial waves of the correlation energy per particle in SM as a

function of the density for the various interactions.
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Figure 3. Same as Figure 2 in NM.

The most significant difference between SM and NM is in the S channel, which is less
attractive in NM compared to SM, due to the fact that the dominant attractive 3S1 channel
contributes only to SM. The other channels are qualitatively similar in SM and NM. At low
density n < nsat, one can clearly observe a dominance of the L = 0 contribution compared
to the L > 0 terms, but as the density increases, those terms become increasingly important.
As for the (S, T) decomposition, it is observed that the dispersion between the different
predictions of the partial waves is generally larger in SM compared to NM.

Finally, we present individual partial wave contributions to Ecor in Figure 4, for the
1S0, 1P1, 3P0, 3P1, 3SD1 and 3PF2 waves. It is only in the 1S0 channel that the 3BF are similar,
while in the other channels, they act in an opposite way compared to the 2BF results. The
coupled 3SD1 and 3PF2 waves are predicted to be attractive in all cases, caused by the
tensor force. Note that the standard Skyrme EDFs contribute only to the S and P channels,
while in Ref. [55], the partial waves 3P0 and 3P1 are used to calibrate the spin–orbit coupling

W0 and the tensor parameter t
(n)
o of extended EDFs.
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Figure 4. Contributions to the correlation energy per particle from various partial waves, as a function

of the density for the different interactions.

3.2. BHF Single-Particle Energy

In the BHF approach, the s.p. energy ετ(k) is defined by Equation (2). In some
phenomenological models, however, like the Skyrme one, the momentum dependence
of ετ is simply quadratic and can be entirely incorporated in a modification of the mass
appearing in the kinetic term,

ετ(k) =
k2

2m∗
τ
+ uτ , (10)

where the effective mass m∗
τ is a momentum-independent quantity and the s.p. potential uτ

is the value of the s.p. potential at k = 0: uτ = Re[Uτ(k = 0)]. Since we want to establish a
link between microscopical and phenomenological approaches, using the BHF mean field
potential Uτ(k), one can define a global effective mass:

m∗
τ

m
=

[

1 +
2m

k2
Fτ

Re [Uτ(kFτ )− Uτ(0)]
]−1

. (11)

Note that a local momentum-independent effective mass can also be determined
from Equation (4) as m∗

τ = m∗
τ(k = kFτ ). This latter definition provides effective masses,

which are typically 5–10% higher than using Equation (11) at saturation density, due to
the presence of a wiggle in the BHF s.p. potential close to kF [78]. For the comparison
with phenomenological models, we use Equation (11) for the global effective mass in
the following.



Universe 2024, 10, 226 10 of 20

The dependence of the effective mass on the isospin asymmetry is also an interesting
result to extract from the BHF approach. One usually defines the effective-mass isospin
splitting as

∆β(n) ≡
m∗

n(n, β)− m∗
p(n, β)

m
, (12)

where n = nn + np is the total density and β = (nn − np)/n is the isospin asymmetry
parameter. ∆β(n) is often defined for maximal asymmetry β = 1 (NM) and at saturation
density n = nsat. Since this choice requires some technicalities for the definition of the
proton effective mass in a pure neutron environment, we prefer in this work to employ
∆1/2(nsat), using the approximation ∆1 ≈ 2∆1/2 [79]. Note that this relation is exact for
Skyrme-type interactions; see Section 4.

The density dependence of the effective mass in symmetric matter m∗(n)/m and of
the isospin splitting ∆1/2(n) is shown in Figure 5(left,right), respectively. At normal density,
the impact of 3BFs is small for both the effective mass and the isospin splitting. The effective
mass is already well determined by 2BF only, which predicts a continuous decrease in
the effective mass and a positive sign for ∆1/2(n) ≈ 0.03 ± 0.03 above nsat. While the
differences between 2+3BFph and 2+3BFmic predictions are small below the saturation
density, at larger density, the 2+3BFmic results remain close to the 2BF ones, while 2+3BFph
predict a rise in the effective mass and a change in the sign of ∆1/2 above 2nsat.
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Figure 5. (left) Effective mass in SM and (right) isospin splitting of the effective mass for β = 0.5 as a

function of density for the various forces.

We therefore conclude that the momentum dependence of the 3BFph results is more
marked than the one for 3BFmic. In the next subsection, we show that this is due to
compensation between two (S, T) contributions for 3BFmic, which is absent in the case of
3BFph. As a consequence, as the density increases, 3BFph tends to reduce the correction due
to the effective mass and the difference between the momentum-dependent contributions
from neutrons and protons in asymmetric matter.

Spin–Isospin Decomposition of the Effective Mass

In Figure 6, we show the spin–isospin decomposition of the inverse of the effec-
tive mass

m

m∗
τ
= 1 + ∑

S,T

(

m

m∗
τ

)(S,T)

, (13)

where
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(

m

m∗
τ

)(S,T)

≡
2m

k2
Fτ

Re
[

U
(S,T)
τ (kFτ )− U

(S,T)
τ (0)

]

. (14)

U
(S,T)
τ (k) being the contribution of the spin–isospin channel (S, T) to the s.p. mean field.
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Figure 6. Spin−isospin decomposition of the effective mass (m/m∗)(S,T), Equation (14), in SM and

NM as a function of the density for various interactions.

In the considered density range, the inverse of the effective mass is dominated by
the S-wave contributions in the (0, 1) and (1, 0) channels, where there is a reasonable
agreement between the two 3BF prescriptions. Note that in the SM (0, 1) channel, the two
3BF predict an increase in the inverse of the effective mass compared to the 2BF above
nsat: this originates from an attractive term in the 3BF, which moderates the repulsive
contribution of the 2BF.

In the SM (1, 1) (and NM (S = 1)) channels, the 2+3BFmic has a stronger density
dependence than 2+3BFph. The larger contribution to m/m∗ indicates that there is an addi-
tional repulsive momentum dependence in 3BFmic that is absent from 3BFph. For 3BFmic,
it happens that this additional repulsive contribution in the (1, 1) channel compensates for
the additional attraction in (0, 1), such that the sum of all contributions to m/m∗ is similar
for 2BF and 2+3BFmic as remarked in the discussion of Figure 5. For 3BFph, the absence
of the repulsive contribution in the (1, 1) channel induces the marked difference between
2BF and 2+3BFph for the inverse of the effective mass shown in Figure 5. In the following,
we show that the more repulsive 3BFmic leads also to more repulsion for the total energy
per particle.
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3.3. Total Energy

We show in Figure 7 the correlation and total energy per particle of SM and NM
as a function of the density for the various 2BFs with and without the contribution of
3BFs. The SM results with only 2BF exhibit a saturation density well above the empirical
value nsat. This is well known and due to the different off-shell behavior of the 2BF: the
phase-shift-equivalent potentials lead to different saturation curves, with the corresponding
saturation points lying in the so-called “Coester band“ [80]. The band defined by these
curves can be used to estimate the contribution of 2BF to the uncertainty in the energy per
particle. As expected, the error bar is small at low densities, where the interaction is mainly
dominated by the S partial waves, but increases rapidly with density, where higher partial
waves become important. Similar behavior is observed for the 3BFph and 3BFmic results,
and also for NM, where the uncertainty bands are narrower due to the weaker interaction.
Above nsat, we observe that 2+3BFmic predict more repulsion than 2+3BFph as discussed
in the previous subsection.
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Figure 7. BHF correlation energy (left panels) and total energy (right panels) in SM (upper panels)

and NM (lower panels) as a function of the density for the various NN potentials only (2BF) and

including 3BF (2+3BFph, 2+3BFmic). Several χ−EFT results [81–83] are also shown for comparison,

see text for more details.

It is also interesting to note that the 2+3BFmic approach has much wider error bars in
the (S, T) decomposition of Ecor shown in Figure 1 than in the total Ecor shown in Figure 7
due to strong compensation between the different channels, which makes the total binding
energy less dispersed than the (S, T) components.

At low density, our predictions are compared to χ-EFT predictions based on 2+3BF
calculated within different orders and approaches:



Universe 2024, 10, 226 13 of 20

(a) N2LO Wlazłowski QMC 2014 [81]: Variational QMC calculation of NM with chiral
nuclear forces at N2LO for 2BF and 3BF.

(b) N2LO Tews QMC 2016 [82]: AFDMC calculation of NM with chiral nuclear forces at
N2LO for 2BF. The 3BF is taken at leading order and local.

(c) N3LO Drischler MBPT 2016 [83]: Many-body perturbation theory approach based on
regularized chiral nuclear forces at N3LO for SM and NM.

Note that while there are no uncertainties estimated in (a), the estimation of the
uncertainty is performed differently in (b) and (c) compared to our BHF results. In those
cases, the uncertainty includes the unknown from the chiral 2BF fitted on phase shifts
as well as the uncertainty in the truncation order, which is expected to decrease as the
order increases. Thus, it is not surprising that the N3LO calculation [83] has slightly
smaller error bars than the N2LO one [82]. There are also differences in the way the band
widths are estimated among these calculations. It is, however, interesting to note that
the band of uncertainty in our case is compatible with the most advanced N3LO MBPT
calculation [83] in both SM and NM. This provides a solid ground for our extrapolation
to higher density, even if one cannot exclude an additional uncertainty related to the
theoretical approach itself.

The conclusion of this part is that there are differences between the 3BF considered in
this paper, 3BFph and 3BFmic, due to their different construction. The 3BFmic predicts a
more repulsive energy per particle than the 3BFph at high density.

4. Constraining the Skyrme Energy Density Functional from BHF Calculations

The commonly called standard Skyrme interaction is a contact interaction with
momentum-dependent terms, which is expressed in the following form:

V(r1, r2) = t0(1 + x0Pσ) δ(r)

+
t1

2
(1 + x1Pσ)

[

k
′2δ(r) + δ(r)k2

]

+ t2(1 + x2Pσ) k
′ · δ(r)k

+
t3

6
(1 + x3Pσ) n(R)γδ(r)

+ iW0(σ1 + σ2) · [k
′ × δ(r)k] , (15)

where r = r1 − r2, R = (r1 + r2)/2, k = (∇1 −∇2)/i is the relative momentum acting on
the right, k′ is its conjugate acting on the left, and Pσ = (1 + σ1 · σ2)/2 is the spin exchange
operator. The last term, proportional to W0, corresponds to the zero-range spin–orbit term.
It does not contribute to the EOS in homogeneous systems and thus will be ignored for
the rest of this article. In its standard form (15), the Skyrme interaction contributes only to
the L = 0 and L = 1 channels, which implies some limitations, which will appear in the
following discussion.

In the Hartree–Fock approximation, the total energy density of SM (β = 0) and NM
(β = 1) is given respectively as

ε(n, β = 0) =
1

2m
τSM + Cτ

0 nτSM + Cn
0 (n)n

2 , (16)

ε(n, β = 1) =
1

2m
τNM + [Cτ

0 + Cτ
1 ]nτNM +

[

Cn
0 (n) + Cn

1 (n)
]

n2 , (17)

where the kinetic densities are τSM = 3
5 (

3π2

2 )2/3n5/3 and τNM = 3
5 (3π2)2/3n5/3, and Cn

t (n) =
Cn

t0 + Cn
t3nγ for t = 0, 1. In this work, we employ the DFT coefficients, e.g., Cτ

t , Cn
t0, and Cn

t3,
which can be defined in terms of the Skyrme parameters ti and xi; see Refs. [84–86], where
they were introduced.

Several authors (see, for example, Refs. [16,17,52–54]) have stressed the interest of
using the spin−isospin decomposition of the BHF correlation energy as an additional con-
straint to better determine the parameters of energy density functionals based on effective
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interactions such as the Skyrme one. It indeed allows a more detailed determination of
the parameters entering into the calculation of the energy per particle by increasing the
number of equations to solve. From Equation (7), one can calculate the decomposition

of the correlation energy density in terms of SE ε
(0,1)
cor , TE ε

(1,0)
cor , SO ε

(0,0)
cor , and TO ε

(1,1)
cor

contributions as [53]

ε
(0,0)
cor =

1

16

[

Cτ
0 − 3CsT

0 − 3Cτ
1 + 9CsT

1

]

nτSM ,

ε
(0,1)
cor =

3

4
[Cn

0 (n) + Cn
1 (n)]n

2 +
3

16

[

Cτ
0 − 3CsT

0 + Cτ
1 − 3CsT

1

]

nτSM ,

ε
(1,0)
cor =

1

4
[Cn

0 (n)− 3Cn
1 (n)]n

2 +
3

16

[

Cτ
0 + CsT

0 − 3Cτ
1 − 3CsT

1

]

nτSM ,

ε
(1,1)
cor =

9

16

[

Cτ
0 + CsT

0 + Cτ
1 + CsT

1

]

nτSM (18)

in SM, and as

ε
(0)
cor = [Cn

0 (n) + Cn
1 (n)]n

2 +
1

4

[

Cτ
0 − 3CsT

0 + Cτ
1 − 3CsT

1

]

nτNM

ε
(1)
cor =

3

4

[

Cτ
0 + CsT

0 + Cτ
1 + CsT

1

]

nτNM (19)

in NM. The correlation energy in the channels (0, 0) and (1, 1) in SM, and (1) in NM scales
only with the kinetic energy, τSM and τNM, because only the angular momentum L = 1 can
contribute in these channels. In the channels (0, 1) and (1, 0) in SM, and (0) in NM, there is
also a term that scales with the density n reflecting the L = 0 contribution of the Skyrme
interaction. Depending on the sign of the combination of the coefficients, the energy per
particle in the (S, T) channels can be positive or negative in the channels (0, 0) and (1, 1) in
SM, and (1) in NM, or can change its sign as a function of the density in the other channels.
This is a clear limitation of the standard Skyrme interaction (15) since BHF calculations
predict a richer density dependence; see Figure 1, for instance.

In nuclear matter, the Skyrme interaction is determined by eight coefficients Cτ
t , CsT

t ,
C

ρ
t0, and C

ρ
t3, as well as the exponent of the density dependence γ. We have six constraints

in terms of the (S, T) decomposition and we decide to fix the value of the parameter γ,
see hereafter. We therefore need two additional constraints to unambiguously determine
all Skyrme parameters. These two other constraints will be given by the effective mass in
SM and the isospin splitting, namely, from the BHF predictions, we fix m∗

sat/m = 0.7 and
∆1,sat = 0.1 for 2BF, 2+3BFph, and 2+3BFmic.

For the Skyrme interaction, the nucleon effective mass is expressed as [53,84–86]

1

2m∗
τ(n, β)

=
1

2m
+ [Cτ

0 + τ3Cτ
1 β]n . (20)

The parameters Cτ
0 and Cτ

1 can therefore be obtained as

Cτ
0 =

1

nsat

1

2m

[

m

m∗
sat

− 1

]

, (21)

Cτ
1 =

1

nsat

1

2m

1

β∆β



1 −

√

1 +

(

∆β

m∗
sat/m

)2


 (22)

≈ −
1

nsat

1

2m

∆β

2β

(

m

m∗
sat

)2

, (23)

where the last approximation is valid for typical small values of
(

∆β

m∗
sat/m

)2
≈ 0.02.

We determine the eight Skyrme coefficients by imposing the global reproduction of
the six (S, T) channels predicted by the BHF calculations in the density range going from
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0.01 up to 0.4 fm−3 in SM and NM (including uncertainties), complemented by the effective
mass m∗

sat/m and its isospin splitting ∆1,sat. The fit is provided by the nonlinear least-
squares Marquardt–Levenberg algorithm encoded in Gnuplot 2. The results are shown in
Figure 8, where the parameter γ is explored from 1 to 1/10. The error bars are estimated
from the covariant matrix properties at the solution. There are four Skyrme coefficients Cτ

t

and CsT
t , with t = 0, 1, which are independent of γ, and four other coefficients C

ρ
t0 and C

ρ
t3,

which depend on the value taken for γ. We also observe a strong impact of the 3BF for the
coefficient CsT

1 , and a noticeable but less strong impact for the coefficients C
ρ
t0 and C

ρ
t3.
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Figure 8. Skyrme coefficients obtained from the fit of ε
(S,T)
cor and the effective mass as function of 1/γ.

The models are calibrated to the following quantities; m∗
sat/m = 0.7 and ∆1,sat = 0.1, and to the BHF

correlation energies in the (S, T) channels in SM and (S) channels in NM.

In order to evaluate the quality of the fits, we compare in Figure 9 the quantities
targeted by our fits and the results provided by our fits. The Skyrme spin–isospin (S, T)
channel decomposition of the correlation energy per particle in SM and NM are shown
together with the constraints extracted from BHF calculations. We consider the centroid of
the Skyrme coefficients obtained from Figure 8 and vary the parameter γ. The effect of γ is
very weak since it is absorbed in the values of the coefficients Cn

t0 and Cn
t3; see Figure 8. The

other four coefficients Cτ
t and CsT

t are independent of γ. The quality of the fit is, however,
not very good. This is particularly clear in the following channels: (0, 0), (1, 1) in SM and
(1) in NM. These channels are the ones where only the L = 1 contribution of the Skyrme
interaction plays a role. The poor reproduction of the BHF results is therefore due to the
lack of flexibility of the standard form (15) of the Skyrme interaction, where higher values
of L are necessary.
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Let us remark from Figure 9 that the 2BF is quite well reproduced by the Skyrme
model in SM and for the (0, 0), (0, 1) and (1, 0) channels. The (1, 1) channel has a wrong
sign in the Skyrme model, although the strength of the interaction in this channel is quite
weak. In NM, however, the fit of the 2BF is poor above nsat. We, therefore, conclude that
already at the 2BF level, the Skyrme interaction cannot well reproduce the BHF predictions
in both SM and NM above nsat.
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Figure 9. Spin−isospin (S, T) channel decomposition of the correlation energy per particle in SM

and NM as a function of the density for the various interactions considered. The bands quantify

the internal accuracy of the BHF calculation associated with the different 2BFs and 3BFs used. The

curves are the result of the fit of the Skyrme EDF: the dashed lines represent fits of 2BF; dotted lines,

2+3BFph; and dashed-dotted lines, 2+3BFmic.

One question that, however, remains—and which goes beyond the scope of the present
study—is to what extent does the mismatch between the microscopic BHF predictions
for SM and NM and the Skyrme functional impact the properties of finite nuclei? The
present study cannot answer this question, which implies the study of a large number of
finite nuclei properties. We can, however, refer to the existing studies focusing on a few
properties, e.g., nuclear masses and charge radii.

In Refs. [16,17], a set of Skyrme interactions was obtained by employing the (S, T)
decomposition in SM for two BHF calculations, and the NM channel was controlled globally
by variational calculations. The difference with our approach is (i) that our uncertainty
estimate is based on a larger number of microscopic predictions, and (ii) that we employ
the (S) channel decomposition in NM to adjust the Skyrme EDF. In Ref. [54], only one BHF
calculation is employed to fit the Skyrme EDF, and only the (S, T) decomposition in SM
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is employed. In Refs. [16,17,54], data from finite nuclei, e.g., binding energies and charge
radii, are employed in addition to the BHF constraints. It is, therefore, difficult to perform
detailed comparisons of our results with the ones presented in these papers. We, however,
conclude from our analysis that the standard Skyrme EDF should be enriched, with higher
L terms, for instance, in order to reproduce BHF calculations in the (S, T) channel in SM
and NM up to at least 0.4 fm−3. The results presented in this paper can be employed for
such an aim.

5. Conclusions

In this paper, we analyzed the BHF results of SM and NM by decomposing the total
energy and the effective mass into spin−isospin (S, T) channels and also into contributions
from various partial waves. The two-body and three-body contributions were shown
separately as bands representing the uncertainties after exploring a set of interactions. We
found that 3BFmic induces more repulsion than 3BFph, visible in the energy per particle at
high density. This repulsion originates from a stronger repulsive scalar meson exchange
term of 3BFmic compared to 3BFph. Since the equation of state at high density is dominated
by 3BF, we expect that the qualitative difference between 3BFph and 3BFmic that we discuss
here has a noticeable impact: 3BFmic induces a stronger repulsion than 3BFph. The effective
mass, however, seems to be more impacted by 3BFph than by 3BFmic. We show that this
results from a compensation between two channels in 3BFmic, which is absent for 3BFph.

We then addressed the question of the effectiveness of the standard Skyrme model (15)
to reproduce the (S, T) decompositions predicted by BHF calculations based on different
2BFs and 3BFs. Our results indicate that the standard Skyrme model cannot reproduce the
(S, T) decomposition predicted by BHF calculations above nsat considering only 2BF. This
conclusion is even stronger when 3BFs are added.

The detailed and numerous quantities obtained from BHF calculations and presented
in this paper can, however, serve as guidelines for improvements in the Skyrme interaction
with close links to BHF calculations. Having reliable models to describe the properties of
baryonic matter at extreme densities, on the one hand, and fair estimates of the theoretical
uncertainties, on the other hand, are important for the treatment of the astrophysical signals
that will be collected in the future.
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Notes

1 Note that in Figure 7 of Refs. [16,17], the BHF predictions for the (S, T) channels (0, 1) and (1, 1) in SM from catania2 [57] results

are exchanged.
2 See https://gnuplot.sourceforge.net/docs_4.2/node82.html (accessed on 1 January 2024).
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