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We deal with the presence of magnetic monopoles in a non-Abelian model that generalizes the standard
’t Hooft—Polyakov model in three spatial dimensions. We investigate the energy density of the static and
spherically symmetric solutions to find first order differential equations that solve the equations of motion.
The system is further studied and two distinct classes of solutions are obtained, one that can also be
described by analytical solutions and is called a small monopole, since it is significantly smaller than the
standard ’t Hooft—Polyakov monopole. The other type of structure is the hollow monopole, since the energy
density is endowed with a hole at its core. The hollow monopole can be smaller or larger than the standard
monopole, depending on the value of the parameter that controls the magnetic permeability of the model.
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I. INTRODUCTION

In classical field theory, topological structures usually
emerge as static solutions of the equations of motion that
describe the system. Among the most known topological
structures that appear in field theory are the kinks, vortices,
and magnetic monopoles. They are one-, two-, and three-
dimensional objects, respectively, and find several appli-
cations in high energy physics, to describe phase transitions
and other features, and in condensed matter, where they
may be used to describe specific properties of super-
conductors and magnetic materials; see, e.g., Refs. [1-5].

Because of their topological nature, these structures are
usually stable under small fluctuations. In general, kinks
only require a single real scalar field and the global Z,
symmetry to be generated. To study vortices, one has to
consider scalar field and an Abelian gauge field that are
minimally coupled and evolve controlled by the local U(1)
symmetry. Magnetic monopoles are much more intricate,
and to deal with them, one may consider a triplet of scalar
fields coupled to a non-Abelian gauge field through a local
SU(2) symmetry; see, e.g., Refs. [6,7].

The inclusion of extra degrees of freedom and the
corresponding enlargement of symmetries have allowed
for the presence of new features for vortices and monop-
oles. In the recent years, in Ref. [8], for instance, the author
showed that conventional vortices can acquire non-Abelian
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moduli localized on their world sheets, and in Ref. [9] the
system may be engineered to appear with a cholesteric
vacuum in order to admit topologically stable vortices with
additional features. More recently yet, in Ref. [10] we have
studied vortices in a model where the U(1) symmetry is
enlarged to become U(1) x Z,, with the magnetic per-
meability modified and controlled by an additional neutral
scalar field that acts as a source field. This modification
gave rise to interesting solutions of vortices with internal
structure. A similar feature has recently appeared with
monopoles in a SU(2) x Z, model [11], where the addi-
tional neutral scalar field drives not only the magnetic
permeability but also the covariant derivative contribution
due to the triplet of scalar fields, giving rise to monopoles
with nontrivial internal structure.

In this work we focus on magnetic monopoles, extend-
ing the standard model originally studied in Refs. [6,7] to
the novel context that we explain in the next section,
watching with special attention for the fact that monopoles
are also important in condensed matter, in particular in
magnetic materials generically known as spin ice [12-14],
capable of supporting exotic magnetic structures that may
fractionalize into monopoles. Another motivation comes
from the possibility that magnetic monopoles in specific
materials [15] can support an electric dipole and, in this
sense, may be endowed with an internal structure. We also
think that the current investigation is of interest to describe
other possibilities, such as the enlarged system that
couples a superconductor to a superfluid recently inves-
tigated in [16] and also the presence of color-magnetic
defects [17] recently found in dense quark matter that are
energetically preferred in the parameter regime relevant
for compact stars.
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The presence of a magnetic monopole with an internal
structure has motivated us to search for simpler models,
capable of supporting localized objects with internal
structure similar to monopoles. We concentrate on the
issue without modifying the symmetry of the standard
model, so we study generalized models similar to the ones
proposed in Refs. [18,19], with the standard SU(2)
symmetry, as in the pioneer works [6,7]. The investigation
follows the lines of Ref. [11], and it is also motivated by
[20], where several generalized models that support kinks,
vortices, and magnetic monopoles were studied. An inter-
esting feature of the study is the presence of first order
differential equations that solve the equations of motion, as
in the Bogomol’nyi-Prasad-Sommerfield (BPS) procedure
first presented in [21,22].

To comply with this, we organize the work as follows: In
Sec. IT we introduce the generalized model and investigate
the presence of first order differential equations that solve
the equations of motion that describe the system. Based on
this important simplification, in Sec. III we present some
distinct models for magnetic monopoles, one that admits
new analytical solutions that engender a nonstandard
profile, which we call the small monopole, and others that
present solutions with energy density with a hole in its core,
which we call hollow monopoles. Finally, in Sec. IV we
present our conclusions and perspectives.

II. PROCEDURE

We work in (3,1) flat spacetime dimensions with the
Lagrangian density

o (\¢I) (|¢|)

— FL = D, D' =V (|g]). (1)
In the above equation, ¢“ is a triplet of real scalar fields
coupled to the vector field Aj under a SU(2) symmetry.
We also have the covariant derivative with respect to the
scalar fields denoted as D,¢* = 0,¢ + ge"”"AZgb" and the
electromagnetic field strength tensor as Fy, = J,A] —
0,A% + ge**AbAS. Also, g stands for the coupling con-
stant, the indices a, b, ¢ = 1, 2, 3 are related to the SU(2)
symmetry of the fields, and the greek letters y,v = 0, 1,2, 3
denote the spacetime indices. We use the metric tensor
N = diag(—, +, +, +) and natural units 7 = ¢ = 1.

In this model, P(|¢|) is a function that generalizes the
magnetic permeability and M (|¢|) modifies the dynamics
of the scalar field. In this work we consider P(|¢|) and

M(|¢|) non-negative functions that depend only on the
scalar fields, with |¢|> = ¢?¢®. The main motivation is to
allow the triplet of real scalar fields to modify the medium
where the vector and scalar fields stand. This is the
generalized model we want to study, keeping an eye open
for the possibility to provide a continuum field theory
description for the exotic magnetic materials collectively

called spin ice, which are known to support localized
structures similar to magnetic monopoles [12—15].

One may vary the action associated with the Lagrangian
density in Eq. (1) with respect to the scalar and vector fields
to get

P 4 M 4a
D, (MD ) == Fl, P - D, g DA + Vg,
(2a)
D, (PF) = gMe™ D", (2b)
where D, F% =0, F 4 ge* ALF and V jo = OV | 0.

In order to seek monopoles, we take static configurations

with Ag = 0 and suppose that
P =PHO) and AT = ey (- K(), ()
with the boundary conditions
H(0) =0, K(0)=1,
rlggH(r) = 4, rlggl((r) =0. (4)

In this case, the equations of motion (2) become

Lo, 2MHK® | Py (2K” | (1-K?)
— (PMH') = N
r2(r ) r 2 <92"2+ gr
M 2H2K2
+ 2H (H’2 + ) + Vu, (5a)
P(PK') = K(Mg*rPH? = P(1 - K)).  (b)

where the prime denotes the derivative with respect to r.
The above equations are of second order and present
couplings between the functions H(r) and K(r).

In general, the equations of motion are very hard to
solve, so we seek for first order equations that are com-
patible with them. To do this, we use the BPS procedure to
minimize the energy [21,22] of the solutions. The energy
density can be calculated standardly; we use (3) to get

P(|H|) [2K? (1 —K?)?
=7 P P

2 2
+M(|2H|> (H/2+2Hr2—K ) +V(H).  (6)

Although it is hard to implement the BPS procedure for
arbitrary P and M, we have been able to achieve this
goal under the choice M(|H|) =1/P(|H|). This is a
limitation, but we still have room to choose the generalized
permeability adequately. In this case, the energy density
becomes
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_P(H|) ( H 1 - K*\?
=72 (P<|H|>jF gﬂ)
1 2
P (5 s ) 4 vH)
_ K2 /
i%(i(l §>H>. (7)

Now, we can discard the potential to write

_P(|H|) H’ 1 —K?\?2
P=73 <P<|H|>jF g7 )

+ P(H)|) (K iHK>2 L1 (“‘KQ>H> (8)

gr  rP(|H|) r g

It is straightforward to see that the two first terms are non-
negative. Therefore, the energy is bounded, i.e., E > Ep,
where
4rn
Ep=— ©)
g

is known as the Bogomol’nyi bound. If the solutions satisfy
the first order equations

H/::tp(lH')(lz_Kz)’ (IOa)
ar
=% T (10b)

the energy is minimized and the Bogomol’nyi bound is
attained; £ = Ejp, as given by Eq. (9). One can show that
the first order equations (10) are compatible with the
equations of motion (5) for V(|¢|) =0. The pair of
equations with the upper signs are related to those with
the lower signs through the change H(r) - —H(r).

The presence of the above first order equations allows us
to write the energy density in Eq. (6) as

__2P(|H|)K*  H?

g P(H]
2PK2 P(H|)(1 - K2)?
“ramE e

As it was shown by the Bogomol’nyi procedure, we see
from Eq. (9) that the energy is fixed, independently of the
function P(|H|) one chooses to define the model.

In order to illustrate the above results, from now on we
work with dimensionless fields, keeping in mind that the
rescaling

L= ¢yl
(12)

Pt = ngt, AL — AL T (gn)7'r,

0.5

0 6 12
.,
FIG. 1. The solutions in Eq. (14). Here, K(r) is represented by
the descending line and H(r) by the ascending one.

can be done straightforwardly. We then set g, # = 1 and
consider only the upper signs in the first order equa-
tions (10), which lead to H(r) > 0, for simplicity.

Before going on, let us first review the standard model,
which was proposed in Refs. [6,7]. It is recovered with
P(|¢|) = 1. In this case, the first order equations (10)
become

(1-K?)

[

H = (13a)

K = —HK. (13b)

Their solutions are well known [21]; they are given by

H(r) = coth(r) —l

. and K(r) = resch(r), (14)

and are displayed in Fig. 1.
To calculate the energy density, we consider P(|¢|) =1
in Eq. (11), which becomes

2 K/Z

p= g +H12

;

2H?K? (1 -K?)?
=gt (15)

By substituting the solutions (14) in the above equation, we
get

_ (r’csch?(r) —1)>  2csch?(r)(rcoth(r) — 1)2.

p(r) o + .

(16)

In Fig. 2 we depict the above energy density. We also
display, in the same figure, the planar section of the energy
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0.3

FIG. 2. In the top panel, we display the energy density (16). In
the bottom panel, a planar section of the energy density passing
through the center of the structure is shown, with the darkness
being related to the intensity of the energy density.

density passing through the center of the structure for
r € [0, 8]. This is the standard monopole, which is here
revisited for later comparison with the novel structures to
be investigated below.

III. NEW MODELS

Let us now search for other models in the context of the
Lagrangian density (1), with the motivation to find sol-
utions that engender new features. We guide ourselves by
the standard model and consider P(|¢|) = |¢|*, with a
being a real parameter that leads us back to the standard
case for @ = 0. The first order equations (10) become

H(1 - K?)

r_
H = 5 ,

r (17a)

K = -HU-9K. (17b)
We study the behavior of H and K near the origin. They
admit the expansion H(r) « r* and 1 — K(r) o rllHs=59),
and compatibility with the first order equations leads to the
values s =2 when a = 1, and

2 -1 0 1

FIG. 3. The behavior of § as a function of a.
1+ V9 -38a (18)
- 2(1-a)

for a # 1. To keep s real we have to impose that o < 9/8. In
both cases, the energy density (11) near the origin behaves
as p(r) o« r, where

2-a)v9—-8a+S5a—-6
2(1 —a) '

We display # = f(a) in Fig. 3, to show that for @ = 0 (the
standard case) and for @ = 1, the energy density has a
regular behavior at the origin, being distinct positive
constants. In the region « € (0,1), it has a singular
behavior at the origin, and for @ < 0 and a € (1,9/8] it
vanishes as r goes to zero.

We have studied several distinct possibilities and noted
that for a < 0, the monopole starts gaining an internal
structure, a hole that enlarges as a decreases toward lower
and lower (negative) values. A similar situation occurs for
a € (1,9/8]. It is a small monopole at @ = 1, and it starts
gaining a very small hole at its core, which enlarges very
slowly as a increases toward the value 9/8. These results
suggest that we investigate the case a = 1 explicitly, which
is similar to the standard case, and another one, which we
choose to be a= -2, to illustrate the possibility of
obtaining a monopole with the energy density vanishing
at its core. We also consider the case « = 9/8, in order to
further illustrate our findings.

p= (19)

A. Small monopole

As our first example, we consider @ = 1, that is,

P(|pl) = l¢l. (20)

In this case, the first order equations (10) take the form

H(1-K?)
H/ = T,

(21a)
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1

0.51

0 5 10
FIG. 4. The solutions of the first order equations (21). Here,

K(r) is represented by the descending line and H(r) by the
ascending one.

K' = -K. (21b)

We have been able to find analytical solutions for the
above equations. They are given by

27| .
H(r)=e @ B0 k() =er,  (22)

where Ei(a,z) denotes the exponential integral function.
We highlight here that it is not a simple task to find
analytical solutions in generalized models. Even though
some papers have dealt with this issue before (see, e.g.,
Refs. [18,19,23]), they have provided the magnetic per-
meability in terms of the coordinate r; the starting model,
which should depend on the field is unknown. Here,
however, we presented the starting model, which is simply
driven by the magnetic permeability in Eq. (20), and we
have obtained the explicit solutions, which are depicted
in Fig. 4.

In order to calculate the energy density, we combine
Egs. (20) and (11) to get

2HK12 H/2
e TH
_ 2HK? LH(- K?)?

r2 r4

(23)

By combining this with the analytical solutions in Eq. (22),
we get

p=api(r)e), (24)
where
pi(r) = (" = 1)* + 2r%e* (25)
and
po(r) =1 —e* + 2rEi(1,2r) + 472 (26)

In Fig. 5 we display the above energy density; it presents
a cusp around the origin and vanishes rapidly. This

FIG. 5. In the top panel, we display the energy density (24). In
the bottom panel, a planar section of the energy density passing
through the center of the structure is shown, with the darkness
being qualitatively related to the intensity of the energy density.

motivated us to display a planar section of the energy
density passing through the center of the structure for
r € [0, 8]; that is, we keep the same scale used to depict the
bottom panel in Fig. 2 to ease comparison with the size of
the standard monopole. We can see from the two energy
densities, illustrated in Figs. 2 and 5, that the new structure
is smaller and denser. Because of this fact, we call the novel
structure the small monopole. One can integrate the energy
density to show that the energy is E = 4z, in accordance
with Eq. (9) for n, g = 1.

B. Hollow monopole

The second example arises with a = —2, with the
magnetic permeability controlled by the function

1
P(|¢l) = - (27)
|#I?
In this case, the first order equations are given by
(1-K?)
H = W, (283)
K' = -HK. (28b)
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0 10 20

r

FIG. 6. The solutions of the first order equations (28). Here,
K(r) is represented by the descending line and H(r) by the
ascending one.

Different from the previous model, here we could not
find analytical solutions. However, we can estimate their
behavior near the origin by taking H(r) = H,(r) and
K(r)=1—-K,(r) up to the lowest order, described by

0.021

0.014

FIG. 7. In the top panel, we display the energy density (29) for
the solutions of the first order equations (28). In the bottom panel,
a planar section of the energy density passing through the center
of the structure is shown, with the darkness being qualitatively
related to the intensity of the energy density.

H, and K,,. This leads to Hy(r) o r*/3 and Ky(r) o 3. A
similar approach can be used to evaluate their asymptotic
behavior, considering H(r) = 1 — Hyyy and K(r) = Ky,
By doing so, we get H,,, « 1/r and K, o e™". Making
use of numerical methods, we solve the first order equa-
tions (28) and depict the profile of the functions H(r) and
K(r) in Fig. 6. We see that, different from the previous
model, the function K(r) is approximately constant near
the origin and goes to its asymptotic value faster than H(r).
In order to calculate the energy density, we make use of
Eq. (11) to write

2PK"”
5—+ H*H"
2H

2H*K? 1 - K?)?
= 3 +( 7 2) . (29)
r r"H

Pm =

We substitute the numerical solutions of Egs. (28) in the
above equation and display the energy density in Fig. 7.
This model presents an interesting feature: its energy
density vanishes in the center of the monopole. In this
sense, because of the absence of matter at the origin, we say
that the monopole presents an internal structure. This
characteristic motivated us to plot a planar section passing
through the center of the structure for r € [0, 8], also in
Fig. 7. Note that the scale used to depict the planar section
in Fig. 7 is the same as in Figs. 2 and 5, to ease comparison.
To show that the last structure is larger than the standard
monopole, this figure also allows us to conclude that
the monopole has a hole at its center, so we called it the
hollow monopole, with the hole and the energy density

1 12

0.5 6

FIG. 8. In the top panel, we display the solutions (left) and the
energy density (right) for the model with @ = 9/8. In the bottom
panel, a planar section of the energy density passing through the
center of the structure is shown, with the darkness being
qualitatively related to the intensity of the energy density.
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contributing to make the structure larger than the previous
ones. Notice that the new features were obtained here in a
purely SU(2) model, without the presence of an additional
symmetry as in Ref. [11].

The case of a =9/8 was also considered. The inves-
tigation follows as in the previous cases, and the results are
displayed in Fig. 8. There, in the bottom panel we also use
r € [0, 8], as we did before in Figs. 2, 5, and 7. We see that
the monopole is still small, and it gains an almost invisible
hole at its center.

IV. CONCLUSIONS

In this work, we have investigated the SU(2) model
described by the Lagrangian density (1), with the focus on
the construction of magnetic monopoles. We have pre-
sented the general properties of the model, including the
equations the fields should obey and the energy density.
Despite the presence of spherical symmetry, the equations
of motion are coupled to second order differential equations
and are hard to solve. For this reason, we have used the BPS
procedure to minimize the energy and obtain first order
differential equations that solve the equations of motion.

We illustrated the general features of the model by
properly choosing the magnetic permeability. Some distinct
possibilities were considered, one with a = 1, that gives
rise to analytic solutions, with the corresponding energy
density shrinking around its core and concentrating sig-
nificantly, when compared with the standard structure
obtained in Refs. [6,7] and reviewed here for comparison.
We called the novel solution the small monopole, because it
is really smaller than the standard monopole, as it appears
very clearly when one compares the two Figs. 2 and 5. The
second model was defined with a = —2; it behaves differ-
ently, and we have been unable to find analytical solutions.
However, the corresponding energy density was shown to
present a hole in its core, a feature that motivated us to call
it the hollow monopole. The novel magnetic structure, the
hollow monopole engenders energy density that spreads
out from the hole and makes it at least twice as large as the
standard monopole, as one sees from Figs. 2 and 7. We
have also investigated the case of @ = 9/8, to find the small
monopole with an internal structure, with a hole at its core.
This situation is also of interest, although the effect of the
presence of the hole is very subtle and hard to be identified.

We remark here that both the small and the hollow
monopoles were obtained for the class of models controlled
by the SU(2) model, different from the case studied before
in Ref. [11], where the SU(2) symmetry is enlarged to
SU(2) x Z,, with the additional Z, symmetry used to
accommodate a neutral scalar field that drives the magnetic
permeability to allow for the presence of an internal
structure. As we have seen, the two possibilities are quite
different, but both admit the attainment of first order
differential equations that solve the corresponding equa-
tions of motion and the consequent construction of monop-
ole solutions with internal structure. However, we learn
from the results of the current work that the extension of the
SU(2) symmetry to include the neutral degree of freedom is
not mandatory for the presence of an internal structure.

We are now investigating the inclusion of fermions to
explore their behavior in the background of such novel
structures, a possibility that can be implemented under the
lines of Refs. [24,25]. The inclusion of fermions may also
allow for supersymmetric extensions, to see how the
supersymmetry works to reproduce the first order equations
presented in this work. Another interesting issue concerns
the study of an enlarged model with the SU(2) x SU(2)
symmetry, with the purpose of describing how the monop-
oles interact with one another, advancing toward the
process of dimerization of monopoles [26]. The interest
in the SU(2) x SU(2) symmetry is also connected with the
possibility of describing the system in the context of one
(visible) sector interacting with the other (hidden) sector.
This can be implemented along the lines of the studies
described before in [27-30], and in references therein. We
hope to report on these issues in the near future.
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