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Chromatic errors are normally corrected using sextupoles in regions of large dispersion. In low emittance
linear accelerators, use of sextupoles can be challenging. Apochromatic focusing is a lesser-known
alternative approach, whereby chromatic errors of Twiss parameters are corrected without the use of
sextupoles, and has consequently been subject to renewed interest in advanced linear accelerator research.
Proof of principle designs were first established by Montague and Ruggiero and developed more recently
by Balandin et al. We describe a general method for designing drift-quadrupole beam lines of arbitrary
order in apochromatic correction, including analytic expressions for emittance growth and other merit
functions. Worked examples are shown for plasma wakefield accelerator staging optics and for a simple
final focus system.
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I. INTRODUCTION

Chromatic errors are inherent to charged particle beam
optics, due to the energy dependent kick exerted by a
magnetic quadrupole, as seen explicitly in the normalized
quadrupole strength

k ¼ eg
p0ð1þ δÞ ; ð1Þ

where g is the quadrupole field gradient, e is the particle
charge, p0 is the nominal particle momentum, and δ is the
relative momentum offset. Coupled with an energy spread,
this results in mostly unwanted nonlinear distortions of
the beam.
Correcting chromatic errors is conventionally done using

sextupoles in regions of large dispersion [1]. This method
introduces nonlinear force terms, of which some may be
canceled by careful lattice design, and adds additional
dispersion and synchrotron radiation in the case of linear
accelerators. In particular, this results in unfavorable energy
vs length scaling laws for future high-energy, low emittance
advanced accelerator concepts [2].
Fortunately, another method known as apochromatic

focusing can be used to correct chromatic effects in linear
accelerators without sextupoles or dipoles. Inspired by light
ray optics, the aim is to simultaneously focus a range of
colors (energies) to the same focal point using lenses
(quadrupoles) only. Figure 1 illustrates this mechanism
for both light beams and charged particle beams. In (a) three
distinct colors are focused, while in (b) the energy
dependence of the focusing is canceled to first order.

This method was introduced in 1987 by Montague and
Ruggiero [3] in an attempt to meet the requirements of the
Compact Linear Collider (CLIC) [4] final focus system.
Presenting an analytical solution for a thin-lens first-order

FIG. 1. Plot (a) shows width w of three light beams vs the
optical axis s for a 3-color apochromat. Plot (b) shows transverse
beam size

ffiffiffi
β

p
in x and y vs s for a first-order apochromat. Both

apochromats use the same principle: beams of different color/
energy are focused differently through the system, but end up
focused to the same point. However, the two examples are
different in a subtle way: In plot (a) three distinct colors are
focused to the same point, leaving intermediate colors slightly
unfocused. This is how achromatic lenses for light optics are
often designed. In contrast, in plot (b) the nominal energy is
perfectly focused, and the focusing error is canceled to first order
in δ, leaving small-offset energies well focused. In this paper, we
study arbitrary order apochromats for charged particle beams.
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apochromatic telescope of arbitrary magnification, they
concluded that while not providing sufficient energy accep-
tance for CLIC, the method was of considerable interest in
less extreme cases. However, their contribution has until
recently remained largely ignored.
Now, a surge in advanced accelerator research has lead to

a renaissance of interest in apochromatic focusing.
Advances on the topic were made by Balandin et al. in
work motivated by requirements at the European XFEL [5],
showing e.g. that any drift-quadrupole beam line has a set of
unique first-order apochromatic Twiss parameters [6], as
well as finding a proof-of-principle 20-quad first-order
apochromatic FODO-lattice [7]. Looking ahead, challeng-
ing demands for tightly focused beams, high emittance
preservation and short beam lines in emerging accelerator
technologies such as laser- and plasma wakefield acceler-
ators highlight the need for apochromatic beam line design.
Although earlier work has successfully demonstrated the

plausibility of apochromatic focusing, mostly by analytical
means and by employing various symmetries, it has not
been sufficiently illustrated how to systematically construct
such lattices in general. In this paper, we take a more
general approach and present a methodical framework for
computing apochromatic beam lines corrected to arbitrary
order, both with and without the use of symmetric lattices.

II. CHROMATICITY DEFINITIONS

Before delving into how chromatic errors are canceled, it
is necessary to distinguish between two closely related, but
different quantities. The chromaticity

ξ ¼ 1

2π

∂μ
∂δ ; ð2Þ

where μ is the betatron phase advance [8], quantifies the
chromatic error of a single particle, whereas the chromatic
amplitude [9] or W-function

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�∂α
∂δ −

α

β

∂β
∂δ

�
2

þ
�
1

β

∂β
∂δ

�
2

s
ð3Þ

quantifies the chromatic error of the beam as a distribution.
In Eq. (3) we have used the definitions

β ¼ hx2i
ϵ

ð4Þ

α ¼ −
hxx0i
ϵ

¼ −
1

2

∂β
∂s ; ð5Þ

where x, x0, ϵ and s are transverse position, angle, geo-
metric emittance and longitudinal position. β and α are
better known as the Courant-Snyder or Twiss parameters
[8] used to describe beam focusing in an accelerator lattice,
and all conclusions in this paper are subject to the
approximations of this framework. Note that throughout
this paper, we will use ∂

∂δ as shorthand for ∂
∂δ jδ¼0, i.e. the

chromatic derivative evaluated at δ ¼ 0.
Circular accelerators demand strict control of tune to

avoid resonances, hence the chromaticity ξ must be

FIG. 2. Plots of
ffiffiffi
β

p
(proportional to rms beam size) vs beam line axis s, and chromatic dependence of βðδÞ and αðδÞ vs δ, shown for

different orders of apochromatic focusing. All solutions satisfy initial and final Twiss parameters β ¼ 1 m and α ¼ 0 in both planes,
with a 1 m drift before and after the first and last quadrupoles respectively. The chromatic dependence of the lattice flattens progressively
with higher orders of apochromatic focusing; No chromatic correction (a) results in chromatic amplitude W ≠ 0 (a slope) at nominal
energy δ ¼ 0, whereas first order correction (b) removes this chromatic amplitude W ¼ 0 (no slope), and second order correction
(c) flattens it further by removing second order chromatic errors (curvature) around δ ¼ 0. Overall, the chromatic dependence can be
decreased at the cost of longer lattices with more quadrupoles, where the appropriate order of the correction is determined by the energy
spread of the beam.
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canceled. This can only be done using nonlinear optics such
as sextupoles [10]. However in single-pass linear acceler-
ators, with no concept of tune and resonance, the chroma-
ticity ξ usually does not need to be canceled. On the other
hand, to ensure the correct focusing, it is important to cancel
the W-function, which indeed can be corrected using
sextupole-free apochromatic focusing. In colliding-beam
storage rings, a combination of both methods can be used,
where the chromaticity is canceled using sextupoles in the
arcs and the W-function is canceled using apochromatic
focusing in the intersection regions.
Figure 2 illustrates in more detail how apochromatic

lattices are used to reduce the chromatic dependence of beam
focusing, while Fig. 3 elaborates on how the W-function
(focusing energy dependence) can be canceled when chro-
maticity ξ (phase advance energy dependence) is not.

III. CHROMATIC EXPANSIONS

In light ray optics, the standard approach to minimizing
chromatic aberration for a given spectrum is to simulta-
neously focus a number of different colors [11]. This can
also be done in beam optics. The underlying assumption is
that by matching two narrowly offset energies, the energies
between them are also approximately matched. To decrease
the degree of mismatch in this region, more matched
energies are added, requiring additional d.o.f.
In this paper, we employ a more systematic approach,

namely to explicitly cancel terms in the chromatic expan-
sion, defined as the Taylor series of a quantity with respect
to relative energy offset δ, e.g.,

βðδÞ ¼
X∞
n¼0

δn

n!
∂nβ

∂δn ð6Þ

¼ β0 þ
∂β
∂δ δþ

1

2

∂2β

∂δ2 δ
2 þOðδ3Þ: ð7Þ

A beam typically has a Gaussian or similarly distributed
energy spread, where energies further from the nominal are

progressively less populated. Minimizing the weighted
average mismatch is accomplished most effectively by first
canceling first order chromatic terms, then second order
terms etc., adding only a constant number of additional d.o.f.
per order. By directly taking control over the expansion
Eq. (6), the lattice designer has more precise control of the
chromatic performance of the beam line, as exemplified in
the next section.

IV. EMITTANCE GROWTH IN
DRIFT-QUADRUPOLE BEAM LINES

Using drift-quadrupole beam lines allows us to make
relatively simple, yet exact expressions for measuring
performance; orders of magnitude faster to compute com-
pared to particle tracking. This is because focusing fields
are linear, which ensures that every energy slice of the beam
preserves its rms emittance, or equivalently [8]

βðδÞγðδÞ − αðδÞ2 ¼ 1; ð8Þ

where the Twiss parameter γ ¼ hx02i=ϵ represents the
divergence of the beam. As we are interested only in effects
due to focusing and not dispersion (which a drift-quadrupole
beam line does not introduce), we can ignore correlations
between energy and phase space (hxδi ¼ hx0δi ¼ 0), giving
a squared projected emittance

ϵ̄2 ¼ hx2ihx02i − hxx0i2 ð9Þ

¼ ðϵ0β̄Þðϵ0γ̄Þ − ðϵ0ᾱÞ2 ð10Þ

¼ ϵ0
2ðβ̄ γ̄ −ᾱ2Þ; ð11Þ

where ϵ0 is the geometric emittance of each energy slice, and
a bar denotes energy average (projection). In a transport
beam line, a natural merit function is the relative projected
squared emittance growth

FIG. 3. Phase space plots with beam ellipses and a single tracked particle for several energy offsets δ, after transport through the first
order apochromatic lattice shown in Fig. 2(b). As the energy increases [ðaÞ → ðeÞ], the particle experiences less phase advance (Δμ),
indicating a nonzero chromaticity ξ < 0 as defined by Eq. (2). However, since the distribution of particles retains the same shape around
nominal energy [(b) and (d)], β and α are unchanged to first order and therefore chromatic amplitudeW ¼ 0. At larger energy offsets [(a)
and (e)], the ellipse is distorted due to higher order errors.
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Δϵ2

ϵ0
2
≡ ϵ̄2 − ϵ0

2

ϵ0
2

¼ β̄ γ̄ −ᾱ2 − 1: ð12Þ

Other applications, such as final focus systems or spec-

trometers, might use rms spot sizes (∼
ffiffiffī
β

p
) as their merit

function. We observe that in any drift-quadrupole lattice,
chromatic correction of βðδÞ and αðδÞ is sufficient, since
γðδÞ is determined completely by Eq. (8).
Assuming a Gaussian energy distribution of rms energy

spread σE and substituting for chromatic expansions,
we find

β̄ ¼
Z

∞

−∞
βðδÞ e

− δ2

2σE
2ffiffiffiffiffiffi

2π
p

σE
dδ ð13Þ

¼
Z

∞

−∞

X∞
n¼0

δn

n!
∂nβ

∂δn
e
− δ2

2σE
2ffiffiffiffiffiffi

2π
p

σE
dδ ð14Þ

¼
X∞
n¼0

1

n!
∂nβ

∂δn
σE

nffiffiffiffiffiffi
2π

p
Z

∞

−∞
λne−

1
2
λ2dλ; ð15Þ

where the substitution λ ¼ δ=σE is used. For odd offset
orders the emittance growth at þδ and −δ are equal and
opposite, canceling each other, such that only even orders
(n ¼ 2m) contribute a nontrivial Gaussian integral

Z
∞

−∞
λ2me−

1
2
λ2dλ ¼

ffiffiffiffiffiffi
2π

p
ð2m − 1Þ!!; ð16Þ

where !! is the double factorial: n!! ¼ nðn − 2Þðn − 4Þ….
Substituting Eq. (16) into (14) and simplifying factorials
using ð2mÞ!!ð2m − 1Þ!! ¼ ð2mÞ! and ð2mÞ!! ¼ 2mm!, we
are left with

β̄ ¼
X∞
m¼0

σE
2m

2mm!

∂2mβ

∂δ2m ð17Þ

and similar expressions for ᾱ and γ̄ by simply substituting α
or γ in place of β. Expanding Eq. (12) in terms of energy
spread σE gives

Δϵ2

ϵ0
2
¼

X∞
m¼1

χmσE
2m ð18Þ

with coefficients

χm ¼
Xm
k¼0

�∂2lβ
∂δ2l

∂2kγ
∂δ2k −

∂2lα
∂δ2l

∂2kα
∂δ2k

�
2ml!k!

; ð19Þ

where l ¼ ðm − kÞ. The expansion in Eq. (18) starts at
m ¼ 1 because by Eq. (8) there is no constant term.

Somewhat misleadingly, Eq. (19) gives the impression
that only even order chromatic derivatives contribute to
emittance growth. However, different order chromatic
derivatives of β, α, and γ are related by Eq. (8) and its
derivatives

∂n

∂δn ðβγ − α2Þ ¼ 0; ð20Þ

wheren > 0. To illustrate, we expand Eq. (20) for n ¼ 1 and
n ¼ 2, giving

β
∂γ
∂δ ¼ 2α

∂α
∂δ −

∂β
∂δ γ ð21Þ

∂2β

∂δ2 γ þ β
∂2γ

∂δ2 − 2α
∂2α

∂δ2 ¼ 2

�∂α
∂δ

�
2

− 2
∂β
∂δ

∂γ
∂δ ð22Þ

and simplify the lowest order emittance growth coefficient
χ1 by first using Eq. (21), then Eq. (22), rearranging and
finally using Eq. (3):

χ1 ¼
1

2

�∂2β

∂δ2 γ þ β
∂2γ

∂δ2 − 2α
∂2α

∂δ2
�

ð23Þ

¼
�∂α
∂δ

�
2

−
∂β
∂δ

∂γ
∂δ ð24Þ

¼
�∂α
∂δ

�
2

þ ∂β
∂δ

1

β

�∂β
∂δ

1þ α2

β
− 2α

∂α
∂δ

�
ð25Þ

¼
�∂α
∂δ −

α

β

∂β
∂δ

�
2

þ
�
1

β

∂β
∂δ

�
2

ð26Þ

¼ W2: ð27Þ

Substituting this into Eq. (18) gives an expression for the
lowest order relative squared projected emittance growth

Δϵ2

ϵ0
2
¼ W2σE

2 þOðσE4Þ ð28Þ

or equivalently [using Eq. (12)] the relative rms projected
emittance growth

Δϵ
ϵ0

¼ ϵ̄ − ϵ0
ϵ0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δϵ2

ϵ0
2

s
− 1 ð29Þ

¼ 1

2
W2σE

2 þOðσE4Þ: ð30Þ

This result shows that, to lowest order, relative projected
emittance growth can be written simply in terms of energy
spread and theW-function, implying that in order to cancel
emittance growth to third order in energy spread, it is
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sufficient to cancel first order chromatic derivatives.
Balandin et al. defines such a lattice as a third-order
apochromat [7], referring to emittance growth, whereas
we will consistently call it a first-order apochromat, refer-
ring to the canceled chromatic derivatives.
For first-order correction, two d.o.f. are required per

plane, one for each of the first order chromatic Twiss (α and
β) derivatives, in addition to those needed for standard
zeroth order matching. More generally, at order 2n in
emittance growth, Eq. (20) can substituted into Eq. (19) to
eliminate γ and all 2nth chromatic Twiss derivatives,
leaving derivatives of order (2n − 1) or lower. However,
if also the lowest (n − 1) chromatic Twiss derivatives are
canceled, only terms with zeroth and nth derivatives
remain. We conclude that to cancel emittance growth to
order OðσE2nþ1Þ in energy spread, we must cancel the first
n chromatic Twiss derivatives in both planes; in total 4n
d.o.f. Note the linear complexity OðnÞ of d.o.f. for
apochromatic correction of order n.

V. METHOD

Our goal is to find an apochromatic beam line which
satisfies appropriately chosen constraints. Previous work
has found such solutions analytically in simple cases [3] or
using symmetry [7,12]. To find solutions to a general
nonsymmetric set of constraints, it is useful to take a
computational approach. In particular, this requires cal-
culation of chromatic derivatives, which can be accom-
plished in a number of ways. Given the simplistic
equations describing apochromatic focusing, we have
developed an analytic-numerical algorithm to find such
beam lines: (1) Consider a beam line defined by a set of
alternating drift spaces of lengths fdg ∈ Rþ, and quadru-
poles of strengths fkg ∈ R and lengths flg ∈ Rþ, of
which some are left as variables fqg. (2) Insert a relative
energy offset δ in the quadrupole strengths [see Eq. (1)]:
fkg → fk=ð1þ δÞg. (3) Compute analytically the transfer
matrix Rðfqg; δÞ of the overall beam line. This will be a
complicated nonlinear function of δ. (4) Expand R as a
series to the required order in δ about the nominal energy,
δ ¼ 0. (5) Express the output Twiss parameters α and β in
terms of R and input Twiss parameters α0, β0, γ0 using2

64
β

α

γ

3
75 ¼

2
64

C2 −2CS S2

−CC0 CS0 þ SC0 −SS0

C02 −2C0S0 S02

3
75
2
64
β0

α0

γ0

3
75 ð31Þ

where ðC; S; C0; S0Þ ¼ ðR11; R12; R21; R22Þ in x and
ðC; S; C0; S0Þ ¼ ðR33; R34; R43; R44Þ in y [8]. (6) Truncate
the αðδÞ and βðδÞ-series at the required order in δ.
(7) Extract expressions for chromatic derivatives of α
and β as given by Eq. (6) to form a set of constraints and/
or a merit function. (8) Solve the constraints and/or
minimize the merit function using the d.o.f. fqg available.

Apart from particularly simple cases, this must be solved
numerically. (9) (Optional) Simplify the numerical solving
by employing symmetries to reduce the number of
constraints and d.o.f., including periodicity, mirror sym-
metry, and mirror antisymmetry (i.e., quadrupole polarities
are switched).
This method can be applied both to thick and thin

quadrupoles, although thin quadrupoles result in a great
reduction in calculation time.
A simple, yet powerful code was developed based on this

method, using a computer algebra package (Mathematica)
for expressing constraints analytically and a numerical
analysis package (MATLAB) for solving or minimizing
them. This code was used to compute all solutions in
Sec. VI, as well as Figs. 1(b), 2, and 3. Execution times
using a standard laptop computer typically ranged from
seconds to minutes.
It should be noted that first order apochromatic matching

following this method can be achieved in existing accel-
erator design codes, including MAD [13], by matching
chromatic amplitude W and phase Φ.

VI. APPLICATIONS

In order to demonstrate this method, two practical
applications of apochromatic beam lines are considered:
(i) Staging optics for a plasma wakefield accelerator and
(ii) a simple final focus system. Together, these examples
show varying degrees of symmetry (high and low, respec-
tively), demagnifications (none and large, respectively), and
different merit functions (emittance growth and spot size,
respectively). However they both share requirements for
localized small beam sizes with comparatively long adjacent
drift spaces (L�), hence large chromatic errors, and a strong
incentive to minimize the overall beam line length. To
illustrate higher order apochromats, two solutions are
presented for the plasma wakefield accelerator: one first-
order apochromat using conventional quadrupoles, and a
third-order apochromat using axially symmetric plasma
lenses.

A. PWFA staging optics

Plasma wakefield acceleration [14,15] is one of several
emerging advanced accelerator concepts, in which energy
is transferred from a laser (LWFA) or particle (PWFA) drive
beam to a trailing witness beam via a wakefield in the
plasma. To achieve much higher energies than that of the
drive beam, this process must be repeated in multiple
stages; the two beams must be separated and the witness
beam reinjected behind a fresh drive beam into the next
plasma cell.
To avoid significant emittance growth in the plasma

channel, the staging optics between cells must match the
witness beam to a specific Twiss β. Assuming parameters
used in a recent beam-driven PWFA linear collider study
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[16], we use βmat ¼ 2.5 cm for a 100 GeV witness beam,
which has an energy spread of approximately 1%. Using a
plasma density ramp [17] of β-magnification 13, the
staging optics must match to and from β0 ¼ 32.5 cm.
Injection and extraction of drive beams introduce further
considerations, discussed in Ref. [2]. Here we simply
reserve 1 m of drift space at the beginning and end of
the lattice for eventual injection and extraction sections.
The combination of large energy spread and tightly

focused β-functions with long adjacent drift spaces results
in significant chromatic errors that require cancellation. A
naive beam line with no chromatic correction produces a
projected emittance growth of around 10%.

1. First order quadrupole solution

We start by solving the problem with lowest (first) order
apochromatic correction using conventional magnetic
quadrupoles. Since the problem is mirror symmetric, we
can work with the first half of the lattice only, reducing the
original 4 constraints (βx ¼ βy ¼ β0 and αx ¼ αy ¼ 0 at the
end) to only 2 constraints. Two solutions exist: mirror
symmetry (αx ¼ αy ¼ 0 halfway) and mirror antisymmetry
(βx ¼ βy and αx ¼ −αy halfway), where quadrupole

polarity is switched. We choose the latter for its similar
emittance growth in both planes.
A first-order apochromat must satisfy both the zeroth

order matching constraints and cancellation of their first-
order chromatic derivatives, resulting in a total of 4
constraints at the halfway point:

βx − βy ¼ 0 ð32Þ

αx þ αy ¼ 0 ð33Þ

∂βx
∂δ −

∂βy
∂δ ¼ 0 ð34Þ

∂αx
∂δ þ ∂αy

∂δ ¼ 0: ð35Þ

Since this requires 4 d.o.f., we define a half-lattice of 4
quadrupoles. To minimize the total length, we use quadru-
poles of alternating maximum field strength, assumed to be
�160 T=m, and vary their lengths. Solving Eqs. (32)–(35))
using the method outlined in Sec. V produces the solution
presented in Fig. 4(a): a 32.5 m long lattice of 8 quadru-
poles transporting a 100 GeV beam of 1% energy spread

FIG. 4. Example A: PWFA staging optics, both using quadrupoles (a) and plasma lenses (b). Plots show
ffiffiffi
β

p
(proportional to rms beam

size) vs beam line axis s, and chromatic dependence of αðδÞ and βðδÞ vs offset δ. Both solutions capture a 100 GeV beam exiting a
plasma (with density ramps) matched to β0 ¼ 32.5 cm and refocuses it back to 32.5 cm, with a 1 m drift space at the start and end for
injection and extraction of drive beams. Solution (a) is a first-order apochromatic lattice using 8 quadrupoles with field gradient
160 T=m are placed antisymmetrically (mirrored with polarity switched), whereas solution (b) is a third-order apochromatic lattice
using 7 discharge capillary plasma lenses [18] with field gradient 3000 T=m placed symmetrically. Transporting a beam with 1% rms
energy spread leads to a projected emittance growth of 0.96% in lattice (a), and 0.000004% in lattice (b). Note the different δ-scales in
the two chromatic dependence plots.
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with a projected emittance growth of 0.96%, which is
around the limit for a linear collider application.
To illustrate the accuracy of the analytic expression for

emittance growth Eq. (18), it is compared to the emittance
growth of particles tracked through this example using
Elegant [19], shown in Fig. 5. It verifies that as the number of
tracked particles increase, the tracked emittance growth
indeed converges to the analytically calculated value,
which is many orders of magnitude faster to compute.

2. Third-order plasma lens solution

Emittance preservation can be dramatically improved
with the use of axially symmetric lenses since the number
of constraints is halved, which allows correction to higher
order at low computational cost. An implementation of
axially symmetric plasma lenses, based on strong discharge
capillaries, has recently been presented by BELLA [18].
Constructing a third-order apochromat, using mirror sym-
metry, requires 4 constraints at the halfway point:

αr ¼
∂αr
∂δ ¼ ∂2αr

∂δ2 ¼ ∂3αr
∂δ3 ¼ 0: ð36Þ

We define a half-lattice of 4 focusing-only plasma lenses
of variable lengths, operating at 3000 T=m [18]. Solving
Eqs. (36) using the method in Sec. V, we obtain the solution
shown in Fig. 4(b): a 17.4 m long lattice of 7 plasma lenses
transporting a 100 GeV beam of 1% energy spread with a
projected emittance growth of only 0.000004%, which is
far below the requirements for a linear collider. In fact, the
solution is almost completely achromatic up to an energy
offset of �5%.

A similarly performing solution of approximately half
the length (8.9 m) can be found by using both focusing and
defocusing lenses, as is possible in discharge capillary
plasma lenses. However, the above example is used to show
that apochromatic focusing can be used also in solenoids
and plasma lenses where only focusing fields are available.

B. Final focus system

Apochromatic beam lines can also be used to magnify or
demagnify charged particle beams, as shown analytically in
Ref. [3], in which case the beam line will be asymmetric
unlike in the previous example. A first-order apochromatic
telescope can be constructed by matching R12 ¼ R21 ¼
R34 ¼ R43 ¼ 0 and canceling their chromatic derivatives
T126 ¼ T216 ¼ T346 ¼ T436 ¼ 0, using the method in
Sec. V. However, for this example, we will consider a
simple final focus system, using a similar, but not identical,
criterion of a locally minimized average spot size for a
given energy spread. This is useful in applications like
colliders and fixed target experiments.
With no symmetry to reduce the number of constraints,

we must simultaneously match to

βx ¼ β�x ð37Þ

βy ¼ β�y ð38Þ

αx ¼ αy ¼ 0 ð39Þ

at the interaction point (IP). This requires 4 d.o.f., and any
additional d.o.f. will be used to maximize the appropriate
merit function: relative luminosity,

L
L0

¼
ffiffiffiffiffiffiffiffiffi
β�xβ�y
β̄xβ̄y

s
; ð40Þ

or equivalently minimizing β̄xβ̄y, where a bar denotes
momentum averaging. According to Eq. (17), this is to
lowest order the same as minimizing

∂2βx
∂δ2 þ ∂2βy

∂δ2 : ð41Þ

In practice, however, the numerical search is helped by also
adding first order apochromatic correction:

∂βx
∂δ ¼ ∂βy

∂δ ¼ ∂αx
∂δ ¼ ∂αx

∂δ ¼ 0: ð42Þ

In total this amounts to 8 constraints requiring 8 d.o.f.,
and a merit function to be minimized by any additional
variables.
Since our goal is to greatly demagnify the beam, our

system has a large inherent scale difference: β� ≪ β0. This
complicates the numerical search, as parameters are

FIG. 5. Plot of relative projected emittance growth vs number
of tracked particles, after Elegant-tracking [19] a beam with 1%
rms energy spread through the apochromatic lattice shown in
Fig. 4(a). Approaching large particle numbers, the tracked
emittance growth converges to the analytic estimate given by
Eq. (18), with an expected statistical error (∼1=

ffiffiffiffi
N

p
). Since the

lattice is antisymmetric, the emittance growth is (very nearly)
identical in both planes.
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simultaneously on large and small scales, resulting in a
large fine-grained parameter space to be searched. Two
methods are useful in mitigating this problem: (i) Back-
propagate Twiss parameters for matching, starting with β�x,
β�y and matching to βx0, βy0. This greatly loosens matching
tolerances. (ii) Find a solution for small demagnification
(larger β�x, β�y), then use this solution as an initial guess for a
slightly larger demagnification. Repeat this process until
the desired demagnification is reached.
We start with Twiss parameters βx0¼ 13.1m, βy0¼ 15m,

and αx0 ¼ αy0¼ 0, focusing to β�x ¼ 16.3 cm, β�y ¼ 1.33 cm,
using a lattice of 6 quadrupoles where the last drift space is
L� ¼ 2 m, we have 12 available d.o.f. (6 quadrupole
strengths, 6 drift space lengths). Thin quadrupoles are used
to speed up the numerical search. Applying the method
in Sec. V, we obtain the solution shown in Fig. 6: a 166 m
long lattice, focusing a beam of energy spread 0.5% by
β-demagnifications 80 in x and 1125 in y, with a luminosity
loss of about 30% according to Eq. (40). Conceptually, this
solution consists of four separate modules (see Fig. 6): the
beam diverges to large β’s; large chromatic amplitude W is
introduced; the chromatic amplitude is inverted by a 90°
phase advance; the beam is strongly focused and the first-
order chromatic amplitude is canceled. Note, however, that
this structure was never imposed, but is simply a solution
that results from applying the algorithm.
Ultimately, the performance of the presented solution

compares unfavorably to state-of-the-art linear collider
final focus systems, consistent with the conclusion in

Ref. [3]. For instance, the design proposed by Seryi and
Raimondi [20] offers orders of magnitude larger demagni-
fication at the same energy acceptance by employing local
chromaticity correction, whereby sextupoles compensate
chromatic errors as close to the source as possible, unlike
our example which uses global chromaticity correction, by
transporting artificially induced chromatic errors for some
distance until it is finally canceled. Nevertheless, many
applications require more moderate demagnification, in
which case there can be significant benefits to using linear
quadrupole optics, which does not distort the phase space
as much as nonlinear sextupole optics.
An apochromatic final focus may, however, prove ben-

eficial in future high energy circular electron-positron
colliders, such as CEPC [21] or FCC-ee [22]. A major
problem for these machines is hard X-rays hitting the
particle collision detectors, produced in dipoles close to
the IP as a nonzero dispersion is required for local chro-
maticity correction. By removing dipoles entirely from the
IP area, an apochromat constitutes an interesting alternative
approach to this problem, although only a careful study of all
constraints can determine whether it provides a net
improvement.

VII. CONCLUSION

Apochromatic correction of chromatic focusing errors,
which makes use of linear optics (quadrupoles) only, can be
applied to preserve projected emittance of charged particle
beams of significant energy spreads, in cases where tune

FIG. 6. Example B: Final focus. A 166 m long first-order apochromatic lattice using 6 (thin) quadrupoles, focuses a beam of 0.5% rms
energy spread with about 30% luminosity loss. The beam is focused from βx0 ¼ 13.1 m, βy0 ¼ 15 m down to β�y ¼ 16.3 cm,
β�y ¼ 1.33 cm, in total a β-demagnification of 80 in x and 1125 in y. The W-function is intentionally increased, then transported and
inverted, until it is finally canceled in the final doublet, which focuses the beam to the interaction point.
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resonances do not occur. This is especially relevant in
emerging accelerator technologies like plasma wakefield
acceleration. The method presented has been shown
through examples to produce drift-quadrupole beam lines
of any order in apochromatic correction, using both thick
and thin quadrupoles, as well as varying degrees of
symmetry. In addition, simple analytic expressions for
emittance growth reduce the need for particle tracking to
measure performance. We believe that apochromatic cor-
rection could be part of any advanced accelerator lattice
designer’s toolbox in the future.
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