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Abstract: We investigate the interaction of fermion fields with oscillating domain walls, inspired by

breather-type solutions of the sine-Gordon equation, a nonlinear system of fundamental importance.

Our study focuses on the fermionic bound states and particle production induced by a time-dependent

scalar background field. The fermions couple to two domain walls undergoing harmonic motion,

and we explore the resulting dynamics of the fermionic wave functions. We demonstrate that while

fermions initially form bound states around the domain walls, the energy provided by the oscillatory

motion of the scalar field induces an outward flux of fermions and antifermions, leading to particle

production and eventual flux propagation toward spatial infinity. Through numerical simulations,

we observe that the fermion density exhibits quasiperiodic behavior, with partial recurrences of

the bound state configurations after each oscillation period. However, the fermion wave functions

do not remain localized, and over time, the density decreases as more particles escape the vicinity

of the domain walls. Our results highlight that the sine-Gordon-like breather background, when

coupled non-supersymmetrically to fermions, does not preserve integrability or stability, with the

oscillations driving a continuous energy transfer into the fermionic modes. This study sheds light

on the challenges of maintaining steady-state fermion solutions in time-dependent topological

backgrounds and offers insights into particle production mechanisms in nonlinear dynamical systems

with oscillating solitons.

Keywords: sine-Gordon equation; breather solitons; Jackiw-Rebbi fermions; non-integrable systems;

fermion-antifermion flux

1. Introduction

Particle production by extended classical structures is a topic that has been studied
since the earliest days of quantum mechanics. In nontrivial spacetime backgrounds, this
has been an incredibly fruitful line of inquiry, with the theoretical discoveries of the
Unruh effect (for an accelerating observer) [1] and Hawking radiation (in a black hole
spacetime) [2] having fundamentally changed our understanding of spacetime physics.
The creation of particles can be seen as a process of transitions between different Fock states
of a quantum theory embedded in an interesting classical background, and the relevant
background can involve fields other than the spacetime metric. In particular, the coupling of
quantum-mechanical particles to classical scalar and vector fields can have many intriguing
consequences [3–9]. The nonlinear interactions responsible for both the shapes of solitary
waves and the effective couplings between multiple solitary waves [10–15] are significant
topics of research by themselves. For instance, during a sufficiently energetic collision of
a solitary wave pair in 1 + 1 dimensions, there may be a strongly inelastic bounce—in
which one or both of the solitary waves rebound from the impact with internal modes or
continuum scalar field modes excited. Over long times, the behavior of repeatedly colliding
and rebounding solitary waves may display an intricate “fractal” dependence on the initial
conditions [16–21].
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However, when the background involves an extended structure built out of a bosonic
field, the coupling of one or more additional fermion fields can be considered particularly
interesting. Even without particle creation, the coupling of fermions to a topologically
nontrivial bosonic field configuration can lead to the fascinating phenomenon of fermion
fractionalization [3]. The nontrivial topology of the background may produce a potential
for the fermion field whose spectrum is guaranteed to include a nondegenerate zero mode.
When the fermion field is quantized, with the Dirac sea of negative-energy states filled, the
zero mode is assigned partially to the Dirac sea and partially to the positive-energy part of
the spectrum. The level in the energy spectrum at which the fermion number nF vanishes
actually lies in the middle of the zero mode [22]. Since the zero mode cannot ever actually
be only partially filled, the real Fock states (with the mode filled or unfilled) consequently
have non-integer values of nF [23,24].

The situation may be even more complicated when there are multiple solitary wave
structures present in the background. In the presence of multiple stationary solitons, there
are typically multiple zero-energy (or almost-zero-energy) modes as part of the fermionic
spectrum. When the solitary wave features are in motion relative to one another, this is
further augmented by the possibility of fermion or antifermion particle creation [25], and it
is a type of scenario like this that will be the focus of this paper. This is part of an ongoing
research program [26], which has so far examined the fermion spectrum in backgrounds
with two or three solitary waves. However, one of the challenges to doing calculations
in a theory like this—in which the energy differences between fermion states bound to
bosonic solitary wave may be exponentially small—is that the background may not be
known precisely. Solitary waves are a feature of nonlinearly coupled classical fields, and in
most cases analytic solutions involving multiple topological excitations are either unknown
or extraordinarily complicated and impossible to express concisely. Small discrepancies
between the precise energies of the background field configurations and the approximate
forms used for calculational expediency may become a problem when trying to study the
very small energy differences between neighboring fermion states.

In this paper, we shall look at fermion solutions in a particular type of background, in-
spired by the sine-Gordon equation in 1+ 1 dimensions, since the sine-Gordon equation has
time-dependent, multiple-soliton solutions that are known analytically. The focus will con-
tinue to be on the manifold of almost-zero-energy states that generalize the Jackiw–Rebbi
zero modes; our work represents new fundamental advances in this area of investigation. In
Section 2, we shall review the sine-Gordon equation and its breather-type soliton solutions.
The consideration of a breather background was motivated by the hope that the breathers,
which are bound soliton–antisoliton states with periodic time dependence, might support
fermion bound states that were similarly periodic and for which analytic solutions might
even be found. However, solving the Dirac equation in this kind of time-dependent back-
ground still turns out to be too difficult to achieve analytically, so in Section 3, we introduce
another kind of bosonic background, inspired by the sine-Gordon breather but involving
step functions that make the fermionic theory amenable to additional analytic solutions
methods. In Section 4, we show, using a Fourier decomposition of the fermionic modes, that
neither the step function background nor the true sine-Gordon breather background can
actually have steady-state fermion solutions. There is an unavoidable outward flux in the
fermion and antifermion nodes, driven energetically by the oscillations of the background
scalar field. This is an entirely new result. In Section 5, we discuss the computational
challenges this poses and present numerical results for how fermionic states that start off
closely bound to the solitary waves in the background produce a wave of flux escaping to
spatial infinity. Section 6 gives our final conclusions.

2. Breather Solitons

The sine-Gordon theory for a scalar field in 1 + 1 dimensions has the Lagrange density

Lφ =
1

2
(∂µφ)(∂µφ)− 1

π
[1 − cos(πφ)]. (1)
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The theory this describes is extremely special, having degenerate vacua at all φ = n and
solitary wave solutions that interpolate between them. These solitary waves are quite
unusual, since they can pass through one another with no net deformations or radiation
once they are well separated again. The solitary waves are thus actually “solitons” in the
oldest and strongest sense of that term. The theory is integrable, a particularly unusual
property in a relativistic theory and one that is closely connected to the solitary wave
structure. The schematic (but nonrigorous) argument that the presence of true solitons
means that there must be an infinite number of conservation laws is fairly straightforward.
Suppose that N solitons are moving along the x-axis; any N ≥ 0 is possible. They can
all have different speeds, so that as t → ∞, the separations between the solitary waves
will become arbitrarily large, and thus the fraction of the total energy that remains tied
up in the interactions between the solitons shrinks to an arbitrarily small amount. Each
soliton is essentially an isolated system with conserved internal and kinetic energies of its
own; and since N may be arbitrarily large, there must likewise be an unlimited number
of these conservation laws. Such localized single-soliton energies are quite different from
the usual way in which the infinite family of sine-Gordon conservation laws are normally
expressed. However, the motivation for this argument was simply to show the deep
connection between the existence of many-soliton solutions for φ and the existence of
an infinite number of conservation laws. (Related analyses of integrable equations in
2 + 1 dimensions are also currently an active area of study [27–30].)

A very natural question to ask is how many of the special properties of the sine-Gordon
theory persist when the bosonic theory is coupled to a Dirac fermion field. Solutions with
single solitary waves coupled to the fermions are well understood, with the unusual
observation being the presence of zero-energy bound state modes and the surprising
consequence that the fermion number actually has fractional eigenvalues [3]—among
other anomalous features [31–34]. Studying fermions in scalar backgrounds composed of
multiple solitary waves is a complicated subject, however. Normally, it is only amenable to
approximate analyses—whether analytical or numerical [26,35–38]. However, one might
hope that the simplicity of the sine-Gordon system would make it more straightforward to
locate complete analytic solutions of the coupled boson–fermion system. Unfortunately,
this does not seem to be the case, and, in fact, the first step in our analysis will be to
replace the sine-Gordon breather background with a seemingly artificial approximation.
Nonetheless, we shall find that our results can reveal quite a bit about the general structure
of the Dirac theory in a time-dependent oscillatory topological background.

Beyond scattering states, in which two sine-Gordon solitons collide—either passing
through each other or rebounding—there are also bound states of the solitons. In particular,
the sine-Gordon equation has breather solutions (normalized so that they interpolate
between vacuum states at φ = −1, 0, and 1 and oscillate with period 2π

√
1 + b2/b),

φb(x, t) =
4

π
tan−1





sin
(

bt/
√

1 + b2
)

b cosh
(

x/
√

1 + b2
)



; (2)

and the fermion Lagrange density in the presence of the sine-Gordon background field φ is

Lψ = ψ̄
[

i/∂ + g cos
(π

2
φ
)]

ψ. (3)

This is the “natural” form for the coupling of the Dirac field to the scalar, because with a
properly chosen value of g, the action becomes supersymmetric. In that case, the interac-
tions in the boson and fermion Lagrange densities each descend from a “superpotential”
W(φ) = sin(πφ/2), since (1− cos πφ) ∝ W2 and cos(πφ/2) ∝ dW/dφ. (However, ref. [37]
used an ordinary Yukawa coupling even when the bosons obeyed a sine-Gordon equation.)
Perhaps ironically, however, we do not actually expect our general conclusions to apply
in the precisely supersymmetric sine-Gordon model, which remains integrable—like the
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purely bosonic model [39,40]. The existence of an infinite number of degrees of freedom
can qualitatively change the behavior of the system.

3. Dirac Equation in the Kink–Antikink Background

Unfortunately, no analytic solutions to the Dirac equation in the breather background
have been forthcoming. So instead of the anharmonically oscillating sine-Gordon breather
solution, we shall take two-step function domain walls undergoing simple harmonic motion
back and forth through one another, with amplitude v ≥ 0 and frequency ω,

φ(x, t) = sgn(x − v cos ωt)− sgn(x + v cos ωt). (4)

[We shall refer to the first term on the right-hand side of (4) as the “kink”, which is located
at positive x at the initial time t = 0, and the second term as the “antikink”.] In this case,
the scalar potential appearing in the Dirac equation [i/∂ + V(x, t)]ψ = 0 is

V(x, t) = g sgn
(

x2 − v2 cos2 ωt
)

, (5)

so with the Dirac matrix representation γ0 = σ1 and γ1 = iσ3, the 2 × 2 matrix form of the
Dirac equation becomes

[

∂x + g sgn
(

x2 − v2 cos2 ωt
)

i∂t

i∂t −∂x + g sgn
(

x2 − v2 cos2 ωt
)

][

ψ1

ψ2

]

=

[

0
0

]

. (6)

With a Yukawa coupling −gφψ̄ψ (as would be natural in a φ4 theory) instead of the
cosine coupling term in (3), a kink would produce an attractive potential for the upper
component ψ1 of the Dirac wave function, and repulsive potential for the lower component
ψ2. The zero-mode wave function for a bound fermion attached to a single stationary
signum function located at xK would be (assuming a coupling strength g > 0)

[

ψ1

ψ2

]

=

[

g4gΓ(g + 1
2 )√

π Γ(g + 1)

]1/2
[

e−g|x−xK |

0

]

. (7)

Similarly, the zero mode attached to an isolated antikink has only its lower component
nonzero. The specific exponential wave functions are particular to the infinitely narrow
domain walls, but the general property that one component of the zero-mode wave function
vanishes is generic, applying in any stationary background for which V(−∞) and V(+∞)
have opposite signs.

In contrast, with interaction (3), what determines which component of a zero-mode
wave function attached to a solitary wave is nonzero is not whether φ is increasing (kink) or
decreasing (antikink). Instead, it depends on whether the cosine function in Lψ is increasing
or decreasing across the solitary wave. That is determined by whether a particular solitary
wave interpolates from an even to an odd vacuum value—meaning from V(−∞) = 2n to
V(+∞) = 2n ± 1—or from an odd vacuum to an even one. A kink interpolating between
the degenerate vacua at φ = 0 and φ = 1 acts the same way on the Dirac wave function as
an antikink interpolating between φ = 0 and −1.

In the presence of a well-separated kink–antikink pair, there are two almost-zero-
energy fermion modes, with even and odd behaviors under parity. When the domain
walls are far apart, the corresponding fermion wave functions are well approximated by
symmetric and antisymmetric linear combinations of a purely-ψ1 bound state wave function
tightly localized around one domain wall’s location and a purely-ψ2 function localized
around the other solitary wave. In this regime, the two fermion states are approximately
equally displaced above and below zero energy. In contrast, when the kink and antikink
draw close together, so that v| cos ωt| ≲ g−1, the wave functions become much more
complicated. Both ψ1 and ψ2 are appreciable in the neighborhood of x = 0, and their
energy shifts are no longer equal and opposite. Moreover, even though the kink and
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antikink pass through one another, the almost-zero-energy modes do not follow along.
After their episodes of complicated mixing during each interval in which v| cos ωt| ≲ g−1,
the ψ1-dominated and ψ2-dominated portions of the full wave function do not pass through
each other but instead rebound, switching their locations of attachments from kink to
antikink and vice versa. The wave function ψ is periodic with period π/ω, like V, rather
than the 2π/ω periodicity of φ itself. Moreover, the evolution of the system during the
collision period cannot be adiabatic; although the adiabatic approximation may be excellent
when the kink and antikink are widely separated, the field backgrounds (2) or (4) both
pass through the state φ = 0—which is a background in which the discrete modes of the
instantaneous Hamiltonian merge into a massless continuum that extends through E = 0
with no gap.

Using a prime to denote a derivative with respect to x and a dot one with respect to t,
the coupled partial differential Equation (6) for the upper and lower components are

ψ′
1 + Vψ1 + iψ̇2 = 0; (8)

−ψ′
2 + Vψ2 + iψ̇1 = 0. (9)

Unlike the system of time-independent energy eigenvalues, these cannot be fully separated,
because of the time dependence of the potential V. From the general forms (8) and (9), we
may differentiate (8) spatially and use the time derivative of (9) to eliminate ψ̇′

2. However,
since (9) involves both ψ′

2 and ψ2, this substitution introduces terms with a Vψ̇2 and V̇ψ2;
the first of these may be eliminated in turn by one more substitution of the (undifferentiated)
(8), but the second one, which appears because of the time dependence of V, cannot. This
leaves the two equations still unavoidably coupled. The final resulting equations for both
components of ψ are

ψ̈1 − ψ′′
1 + (V2 − V′)ψ1 − iV̇ψ2 = 0; (10)

ψ̈2 − ψ′′
2 + (V2 + V′)ψ2 − iV̇ψ1 = 0. (11)

For the particular V(x, t) = g sgn
(

x2 − v2 cos2 ωt
)

, this simplifies even further, since
V2 = g2, so that except at the locations of the kink and antikink, each equation simply
has the form of a free massive Klein–Gordon equation, (□+ g2)ψj = 0. Moreover, since

V̇ = −vω sin(ωt)V′, we have

(□+ g2)ψj + (−1)j2g[δ(x − v| cos ωt|)− δ(x + v| cos ωt|)]
[

ψj + (−1)jivω sin(ωt)ψ3−j

]

= 0. (12)

The fact that the solitary wave located at positive x = v| cos ωt| is always the one that is
attractive to the ψ1 component and repulsive to ψ2, regardless of whether the solitary wave
is a kink or antikink is again evident in this equation. Using a Klein–Gordon Green’s func-
tion, these two coupled partial differential equations could be converted into two coupled
double-integral equations; then, the δ-functions would eliminate one of the two integrations,
although it is not clear whether this could be useful in practice.

4. Fourier Modes of the Dirac Equation

Since the potential V is periodic with period π/ω, any steady-state solution ought to
be as well, so we can try representing ψ as a Fourier series,

ψ(x, t) =
∞

∑
n=−∞

[

ψ1n(x)e−2inωt

ψ2n(x)e−2inωt

]

. (13)

However, this does not, on its own, split up the Dirac equation into a set of linear ordinary
differential equations for the ψjn Fourier components, because the left-hand side of (6) is
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still time-dependent. However, we may also Fourier transform the step function V. For
each x,

V(x, t) = g

[

1

2
c0(x) +

∞

∑
m=1

cm(x) cos(2mωt)

]

, (14)

so that, for m ̸= 0,

∫ π/ω

0
dt g sgn

(

x2 − v2 cos2 ωt
)

cos(2mωt) = g
∞

∑
m′=1

cm′(x)
∫ π/ω

0
dt cos(2m′ωt) cos(2mωt), (15)

in which the right-hand side is simply (πg/2ω)cm(x). The signum function splits the
left-hand side into two integrals,

g
∫ t0

0
dt [− cos(2mωt)] + g

∫ π/ω

t0

dt cos(2mωt) = − 2g

2mω
sin(2mωt0), (16)

where t0 is the time at which the kink is located at position x,

t0 =

{

0, |x| > v
1
ω cos−1 |x|

v , |x| < v
. (17)

This makes the Fourier coefficients

cm>0(x) =

{

0, |x| > v

− 2
mπ sin

(

2m cos−1 |x|
v

)

, |x| < v
. (18)

For the m = 0 case, the left-hand side of (16) is simply g[(π/ω)− 2t0], and so c0(x), which
is just twice the time average of V at the location x, is

c0(x) =

{

2, |x| > v

2
(

1 − 4
π cos−1 |x|

v

)

, |x| < v
. (19)

The fact that V is time-dependent means that all the spatial differential equations for
the ψjn are coupled together, so solving the system is still a challenge. In fact, inserting the
Fourier expansion of V into (8) and (9) produces an infinite number of coupled first-order
linear differential equations. However, when |x| is larger than the domain walls’ oscillation
amplitude v, then the signum function is 1 at all times (all cm>0 = 0), and the equations for
the ψjn decouple,

ψ′
1n + gψ1n + 2nωψ2n = 0; (20)

−ψ′
2n + gψ2n + 2nωψ1n = 0, (21)

and have straightforward solutions,

ψ1n = Anei
√

4n2ω2−g2 x + Bne−i
√

4n2ω2−g2 x (22)

ψ2n = −An
g + i

√

4n2ω2 − g2

nω
ei
√

4n2ω2−g2 x − Bn
g − i

√

4n2ω2 − g2

nω
e−i

√
4n2ω2−g2 x (23)

as complex exponentials. For large |g| > 2|n|ω, these solutions look quite reasonable as
Fourier components of a wave function; either An or Bn will vanish so that there is no

exponential growth at infinity, and the asymptotic spatial behavior is ψjn ∼ e−
√

g2−4n2ω2 |x|.
However, it may initially appear that things go awry for large |n|. It seems extremely

unlikely that all the Fourier components will be identically zero for |x| > v beyond some
maximum |n|. Yet, if arbitrarily high-frequency terms are present in the Fourier expansion,
then it is clear that beyond |n| > |g|/2ω, the ψjn terms will not be exponentially decaying
as |x| → ∞, but will instead exhibit spatial oscillations.
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The resolution to this puzzle comes from the fact that the Dirac wave function does
not have a true single-particle probabilistic interpretation and need not be normalizable.
There is the well-known Klein paradox [41,42], in which a repulsive external potential of
height greater than 2m can have oscillatory solutions where the potential is highest. In that
situation, the potential can supply enough energy to create real fermion–antifermion pairs,
and the presence of oscillatory solutions in the classical forbidden region is a manifestation
of this effect. In the situation we are examining here, there is likewise an external source of
energy that may be transferred to the fermion field via particle creation. Regardless of how
small g and v are, the back-and-forth oscillations of the domain wall pair can eventually
contribute enough energy to create real outgoing particles, because the oscillations have
been taken to continue eternally. Over time, it is possible for the Dirac field to absorb |n|
quanta from the coherent domain wall oscillations, regardless of how large |n| is.

So the solutions of the Dirac equation in the time-dependent background cannot be
expected to show only exponential damping at large |x|; there is also the possibility of an
outflow of particles. For a mode to have enough energy to represent escaping continuum
particles, it needs to represent the transfer of enough quanta of energy ω to create the
massive particles that escape to infinity; but these are precisely the modes for which
√

4n2ω2 − g2 is real! Setting boundary conditions so that there are only outgoing quanta
(no incoming modes excited) and including the time dependences of the components, the
long-range behavior is

ψjne−2inωt ∼ e
2inω

(√
1−g2/4n2ω2 |x|−t

)

. (24)

The observation that a steady-state, (π/ω)-periodic solution of the Dirac equation
necessarily involves an outgoing flux of quanta from the kink–antikink region suggests
that the one of the original reasons for focusing especially on the sine-Gordon breather
system was misguided. The purely bosonic sine-Gordon theory is integrable, with an
infinite number of conserved quantities. Recall that the solitary waves are true “solitons”
in the strong sense, in that while they exert net forces on one another, when they collide,
they pass through one another and, as they separate to great distances, return to their
original shapes. In particular, while there are the breather solutions, in which a kink and
an antikink form a bound state, never will a kink and an antikink annihilate into non-
topological low-amplitude radiation excitations. It was hoped that including appropriately
coupled fermions in the theory (perhaps in the version of the boson–fermion theory which
differs from the supersymmetric theory only in the magnitude of the coupling constant)
might preserve the integrability of the theory and the absolute stability of individual
solitary waves. However, the argument for the structure (24) for the large-n Fourier modes’
behavior in the far field does not depend in any fundamental way on the specific step
function approximation for the φ background; the reasoning would apply equally well
with (2) as with (4). Any one of the large-n modes should generally be excited, unless there
is a conservation law that prohibits such an excitation. This is why the choice of coupling
that makes the fermion-coupled sine-Gordon model truly supersymmetric differs from all
other values. The supersymmetric version has an infinite number of conservation laws and
is thus capable of preventing the excitation of the infinite number of outward-propagating
modes and preserving perpetual breathers. However, the fact that the solutions of the Dirac
equation in a breather-like background otherwise involve outward net flux suggests that
any hope that the most general sine-Gordon theory coupled to fermions might remain fully
integrable appears to be untenable.

5. Computational Complications and Results

The fact that fermionic modes can propagate outside the kink–antikink region (com-
pletely freely in the square wave model, nearly freely in the more realistic sine-Gordon
theory) poses numerical as well as analytical challenges. Because of the greater complexity
of the sine-Gordon breather system, we shall continue to focus, as we move to numerical cal-
culations, on the model with step function solitons. We shall also neglect the back-reaction
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of the fermions on the boson field, treating φ as an unmodified oscillating background.
This is a natural approximation when the coupling g is small, and is in any case necessary
when working with the signum function domain walls, whose dynamical equations would
involve singular quantities.

An algorithm for integrating the Dirac equation is going to encounter difficulties
at the boundaries of the integration domain, because the solutions of the unmodified
Dirac equation may be dominated by convective behavior—which will typically involve
energies modes propagating inward from infinity as well as outward toward infinity. This
is obviously contrary to the radiation boundary conditions we would like to impose.

If the initial Dirac wave function is well localized around the soliton-containing region,
then at small times, the numerical solution in the radiation zone will be dominated, as
desired, by the outgoing fermion and antifermion modes. However, if the Dirac field
is not subject to unphysical conditions (such as the strong spatial damping described
below) at or near the ends of the integration domain, then when the outgoing excitations
start to impinge on the exterior boundaries, the algorithm will suffer from an unstable
explosion of unphysical incoming mode excitations. A small numerical error will introduce
an admixture of incoming waves into the solution, with the error due to these spurious
modes increasing with time. The field itself will begin to blow up at the boundary, and the
inward propagation will rapidly wreck the calculated solution.

There might seem to be an obvious solution to the instabilities at the left and right
boundaries—applying strong damping to the equation in the vicinities of the boundaries.
Indeed, some of the built-in integration algorithms in Mathematica software are “clever”
enough to make this suggestion. Applying such an unphysical modification to the standard
Dirac equation does indeed improve the reliability of integration algorithms for a certain
amount of time. However, over longer periods, this method is not satisfactory either. The
problem arises from the fact that the method is similar to pegging the value of the Dirac
field to zero at the ends of the integration region. As a result, over longer times, the solution
eventually degrades into what is essentially a driven (by the oscillating domain walls)
standing wave, rebounding back and forth between the two ends of the integration interval.

To deal with these complications, we integrated the evolution over an extended spatial
domain, so that the leading edge of the outgoing pulse, moving at the signal speed cs = 1,
never reached the vicinity of the boundary. The resulting wave functions were then simply
cropped down to the region of physical interest. Figures 1–3 show the results (plotted as
the absolute values of ψ1 and ψ2) for coupling values g = 0.10, 0.25, and 0.50. The initial
states used in the calculations were negative-energy bound states of the potential at time
t = 0—the almost-zero-energy modes of V(x, 0) that are symmetric combinations of the
localized modes around v = 10 and −v = −10 [43].

Studying these plots, a number of significant features may be observed. The parity
symmetry is clearly evident, since ψ1(x, t) and ψ2(x, t) are mirror images of each other
across the line x = 0. (This provides an important “sanity check” of the computational
results.) The diagonal lines indicating the propagation of fronts are also very obvious. The
slopes of the visible lines are, as they should be, the signal velocities ±cs; the signal speed cs

is the phase velocity for the shortest-wavelength modes, which is, according to (24), simply
the propagation speed of massless excitations in vacuum, cs = 1.

Although initially ψ1 is strongly localized around the kink and ψ2 around the antikink,
the time-dependence of the background causes the solution around xK = −v = −10 to
acquire a ψ2 component fairly quickly. The kink and antikink in (4) start from rest, but it
does not take long for their motion to couple the two wave function components together.
As a result, over most of the integration time interval, ψ1 and ψ2 are comparable everywhere
in the spatial domain. From each of the regions around x = ±v where the wave functions
are initially localized, each of ψ1 and ψ2 shows an pattern of expansion at the speed cs. At
short times, this may look like oscillation-stimulated tunneling from the bound state to
continuum states. However, the outflow from the soliton regions continues indefinitely; in
particular, there continues to be outgoing radiation after the oscillation amplitude of |ψ|2 in



Symmetry 2024, 16, 1571 9 of 14

the immediate vicinity of the domain walls has fallen to be no larger than the typical values
elsewhere inside the light cone. After a time v/cs = 10, the expanding cones overlap, and
there is an interference region centered on x = 0. Interestingly, as a consequence of the way
Equations (10) and (11) are coupled (with the coupling terms having explicit factors of i),
the contribution to ψ2 in the initial vicinity of ψ1 (and vice versa) is mostly imaginary, while
ψ1 in that region remains predominantly real—at least until the expanding light cones
based at ±v begin to overlap. This fact is evident from Figure 4, which shows the typical
behavior of the real and imaginary parts of ψ.

Figure 1. The upper (left) and lower (right) components of the time-evolving Dirac wave function,

plotted in terms of position x and time t for the coupling value g = 0.10, domain wall oscillation

amplitude v = 10, and frequency ω = 0.50. The starting ψ is a symmetric bound state of the

instantaneous V(x, t = 0).

Figure 2. The upper (left) and lower (right) components of the wave function, for the coupling

g = 0.25.



Symmetry 2024, 16, 1571 10 of 14

Figure 3. The upper (left) and lower (right) components of the wave function, for the coupling

g = 0.50.

Figure 4. Real and imaginary parts of ψ1 for g = 0.25.

In all the figures, but particularly in Figure 5, which shows the total ψ†ψ = |ψ1|2 + |ψ2|2,
the oscillation period π/ω = 2.0π of the domain wall potential (5) is also visible. There are
quite evidently multiple pairs of nested signal cones. Although the greatest part of the flux
lies on the primary shock fronts, enough particle density remains near the initial positions
at v = ±10 for there to be partial recurrences of the initial peaks after one oscillation period
of the potential. These are indicated by the cusps in the plots that form the lying at t
coordinate π/ω. There is another feature, of the same nature, at t = 2π/ω, although it is
markedly less pronounced, since relatively little particle density remains anywhere near
±v after that much time has passed.

The partial recurrence—and thus the nested cones that are visible to greater or lesser
extents in all the figures—is actually the most visually salient feature that is specific to a
situation in which the initial conditions represent a fermion wave function that is strongly
peaked around one or both of the domain walls. For initial states peaked elsewhere, the
general light cone expansion looks not especially dissimilar to what is shown in Figures 1–3.
Within each cone, there is an additional wave structure, visible as blue and white striations
in those three figures, with a wavelength that decreases with increasing g.
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Figure 5. Total particle density ψ†ψ for the solution with g = 0.25.

6. Conclusions

The paper has delved into the complex dynamics of fermion interactions in a time-
dependent breather-like background, specifically focusing on oscillating domain walls. Our
analysis shows that, despite the initial hopes for integrable behavior akin to the purely
bosonic sine-Gordon theory, the fermion modes exhibit unavoidable outward flux. This
flux is driven energetically by the oscillations of the scalar field, resulting in the eventual
escape of fermion–antifermion pairs to infinity, as illustrated in Figures 1–3.

A key finding is that although fermion wave functions initially appear bound to
the domain walls, over time, they do not remain localized, and indeed, they do not
remain significantly more localized than arbitrary wave functions that are not closely
approximated by bound states of the static forms of the potentials. In either case, the
oscillating backgrounds lead to the propagation of fermionic states outward at speeds
up to the speed of light, as demonstrated by the cone-shaped shock fronts seen in the
graphs (i.e., Figure 1 for g = 0.10, Figure 2 for g = 0.25, and Figure 3 for g = 0.50). These
graphs clearly depict the expansion of the fermionic excitations beyond the domain wall
regions, showing the spread of interacting fermion wave functions across space. This is
rather unlike the behavior often seen in the purely bosonic sectors of higher-order non-
integrable models [44,45], in which the effective potentials between the solitary waves in
1 + 1 dimensions [12,46] tend to remain well localized, even when the individual kinks and
antikinks possess fat tails [13].

Numerical simulations show that even though some particle density remains localized
near the initial positions of the domain walls after one oscillation period (visible as partial
recurrences in Figure 5), the overall trend is a wave of flux moving toward spatial infinity.
This feature underscores the limitations of approximating such systems as fully integrable,
as the outward particle flux becomes a significant factor in the system’s long-term behavior.
Moreover, after a sharp falloff in the fermion field amplitude at small times, the oscillating
fermion fields do not damp to zero at large times. Instead, their amplitudes remain finite
and comparable throughout the light cone interiors, as the motion of the kink–antikink pair
continues to pump energy into the fermion sector.

Further computational challenges arise due to the difficulty in imposing stable bound-
ary conditions, particularly in light of the fermionic modes propagating outward. Attempts
to impose radiation-like boundary conditions encountered confounding issues, as damping
methods applied to the Dirac equation led to standing waves rebounding between the
integration domain boundaries. This behavior is illustrated by the numerical instabilities at
the boundaries that arise over extended integration times, as discussed in Section 5.
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In addition to the outward flux of fermionic modes, our results also reveal interesting
quasiperiodic behavior of the solutions, particularly around the time value of π/ω, which
corresponds to half the oscillation period of the moving domain walls and one full oscil-
lation period of potential V(x, t). This periodicity is clearly reflected in the recurrence of
fermion density peaks at the initial positions of the domain walls, as seen in Figures 1–5.
After each oscillation cycle, the particle densities exhibit partial recurrences, although with
diminishing intensity, as the fermion modes continue to propagate outward.

In Figure 5, which shows the total particle density ψ†ψ for g = 0.25, two distinct sets
of nested cones are clearly visible (and a third one less clearly). These cones reflect the
periodic return of fermion density near x = ±v = ±10, which aligns with the oscillation
period π/ω. The first recurrence is quite pronounced, with the peaks in particle density
forming sharp cusps around t = π/ω, indicating that a significant portion of the fermion
density remains bound near the domain walls after one period. By t = 2π/ω, a second, less
pronounced recurrence is visible, suggesting that most of the particle density has dissipated
away by this time, but a small amount still remains in the vicinity of the original domain
wall positions.

The oscillatory nature of the scalar potential, with period π/ω, governs this periodic
recurrence. As the domain walls oscillate, they periodically couple and decouple the
fermion wave functions, leading to these recurrences of fermion densities after each full
oscillation cycle. However, over time, the amplitude of these recurrences decreases as more
fermion density escapes toward spatial infinity. This feature, seen in the graphs, underscores
the non-adiabatic nature of the system, where the periodic motion of the domain walls
continuously injects energy into the fermionic modes, driving particle production and flux.

Overall, this analysis concludes that the sine-Gordon-like breather background, when
coupled to fermions, does not generally support steady-state bound fermion solutions. In-
stead, the oscillations induce fermion particle production and flux propagation, suggesting
that the fermion–soliton system does not maintain the integrability and stability expected
from the purely bosonic sine-Gordon theory. It may be possible in the future to test these
theoretical results in real systems with topological configurations of boson fields coupled
to fermionic particles.
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