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1 Introduction

Supersymmetric localization [1–7] is a powerful method for exact computation of supersym-
metric observables like the partition function. While it has been successfully applied for
many supersymmetric field theories on various compact manifolds (see [8] and references
therein), its application to the theories on non-compact manifold, such as anti-de Sitter
space, has received relatively recent attention, in particular, see [9, 10] for AdS2×S2, [11–15]
for AdS2×S1, [16] for AdS3 and even more generally, [17] for AdSp×Sq. The main motivation
for such application would be to provide an exact test of the AdS/CFT correspondence
through the exact computation not only for the conformal field theory but also for the
supergravity theory on anti-de Sitter space. There has been a considerable collective effort
to pursue this direction [18–29].

The most concrete and successful example of the application of localization to super-
gravities so far consists of computing the entropy of 1/8 BPS black hole with asymptotically
flat spacetime in type II supergravity and showing that the degeneracy of states of such
black holes is given by integer numbers [20, 27]. Although this precise result proves to be
a stringent test for AdS/CFT correspondence, localization computation on anti-de Sitter
space remains both computationally challenging and conceptually less understood [30] and
we need to gain a better understanding of it. This will allow us to consider more generic
systems such as less supersymmetric theories or gauged supergravities and eventually collect
evidence in favor of the AdS/CFT correspondence and exploit it to explore quantum aspects
of gravity.

Our aim here is to deepen our understanding of the localization method applied to
theories defined on non-compact spaces with boundary, specifically the case of anti-de Sitter
space. For this purpose, we focus on a simplified setup which is two-dimensional Euclidean
anti-de Sitter space in global frame. This is also motivated by the fact that AdS2 is the
common geometric factor that any asymptotically flat extremal black hole contains in its
near horizon. On this background, we take an explicit toy example, which is R-symmetric
N = (2, 2) Abelian theory and study its partition function using localization method. For
a comparative study we also revisit the evaluation of the partition function of the same
theory defined on S2 which was already well studied in the literature [31–34]. By comparing
the two parallel computations, we gain better understanding on the localization on AdS2.
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For the exact 1-loop computation within the localization technique, we utilize an
equivariant index [35, 36], which we compute through Atiyah-Bott fixed point formula [37–
39] (see [7, 40] for application of the index method in supersymmetric localization). Although
we lack a mathematically rigorous proof for the Atiyah-Bott fixed point formula in non-
compact spaces we will assume that it can be applied to AdS2 and we support this
assumption with a direct calculation of de-Rham cohomology that we present in appendix C.
Our motivation to use the index method is that, in general, it beautifully simplifies the
computation, eventually circumventing potentially prohibitive technical difficulties when
analyzing non-compact spaces. For example, in our case the computation of the determinant
of kinetic operators turns into computation of an equivariant index with respect to a U(1)
isometry generated by equivariant supersymmetry Q2

eq, and it further reduces down to
evaluations only at the fixed points of the U(1) isometry. Some of the complications we can
avoid with this method are the following: if we want to deal with any non-trivial background
rather than a pure anti-de Sitter space, such as black hole geometry, finding the spectrum
itself would be demanding. In addition, since the anti-de Sitter space has continuous
spectrum, cancellation between determinant over bosonic and fermionic spectrum may be
subtle. Bearing those generic situations and potential complications in mind, we want to
use the index method and systematize its implementation in non-compact spaces.

One direction that we pay special attention to in the localization computation is to
obtain the dependence of the partition function on the size of background manifold. In
particular, the overall scale dependence itself is a good observable as it is protected under
renormalization and thus is useful as a test of the AdS/CFT correspondence. Further, we
take this quantity to test the validity of our localization method, for which we compare the
result with the perturbative 1-loop computation using heat kernel method. From general
analysis of the heat kernel method, it is known that the overall scaling dependence is
captured by two contributions [41]: one is local contribution obtained through the heat
kernel expansion, which is local quantity as the heat kernel is evaluated over the complete
spectrum in functional space or equivalently, it is obtained through local scalar quantities
describing the geometry such as curvature. Here the coefficient of zeroth order in the
expansion, called the Seeley-DeWitt coefficient, leads to the conformal anomaly of the
theory. The other is a global contribution obtained through the zero mode effect. As the
evaluation of 1-loop does not involve its zero modes, one adds the zero modes effect into the
heat kernel to make it local, and to compensate this fictitious addition, we subtract the zero
modes and treat their effect to the partition function separately. The integration measure
of the zero mode may add extra effect. Explicit example for those two contributions can be
found in the study of logarithmic correction to black hole entropy [42, 43] or free energy [44]
and many further works since then.

From the localization computation, we show a similar structure of the overall size
dependence obtained as the sum of local and global contributions. The local contribution is
captured by the computation of the index that is evaluated over the complete spectrum in
the functional space. This reproduces the known anomaly result for theory on S2 [45–47] and
also obtains the anomaly for the theory on AdS2. We confirm both of them by computing
the Seeley-DeWitt coefficient of heat kernel. As for the zero modes on the localization saddle,
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there are boundary zero modes from 1-form field (also from their fermionic superpartner)
for the AdS2 case, and one bulk zero mode from a scalar field as a mode along usual
localization saddle both for S2 and AdS2 cases. For S2 case, one also needs to take into
account the fact that zero modes of ghost and anti-ghost are eliminated in 1-loop. Thus for
the index computation we fictitiously add them and compensate this addition by separately
treating those zero mode contributions. All those effects are compared with the heat kernel
computation, where we show that the contribution of the zero modes agrees with the one
in the localization computation.

The treatment of the zero modes in the context of localization is subtle and it was
prescribed in the context of localization on AdS2×S2 [26], where the fermionic superpartner
of the boundary zero modes, which were also zero modes of the canonical Qeq-exact
deformation, are promoted to be non-zero modes by adding corresponding Qeq-exact action.
We apply the same prescription in this paper. For this application, we first give an
improved interpretation for the equivariant supercharge whose algebra includes large gauge
transformation with all the non-normalizable parameters. Next, we prove that the fermionic
superpartner of the boundary 1-form zero modes exist in the normalizable spectrum of
fermion, which was assumed in [26]. A specific feature of AdS2 that is different from
AdS2×S2 case is that the fermionic superpartner of the boundary 1-form zero modes are
also zero modes of the kinetic term of physical action, which would make the partition
function vanish like the gravitino zero modes would do in the quantum entropy function [48].
We regard this addition of the Qeq-action for those fermionic zero mode as a regulator to
obtain finite contributions to the partition function. For the bulk zero mode along the
localization saddle, it turns out that this mode does not contribute to the scaling dependence
of partition function both for S2 and AdS2 case as it is completely factored out from the
index computation. For the case of S2, we do not need any prescription to capture the zero
modes of ghost, but we only need to keep track of where and how those zero modes affect
the scaling dependence. As a result, we find their contribution to the scaling dependence in
addition to the known conformal anomaly contribution [45–47].

Since the classical action of the theories we consider does not depend on the scaling
of the size of background, all of the size dependence comes through its dependence in
the functional integration measure. To determine the functional integration measure, we
use Fujikawa’s method together with supersymmetry. Fujikawa’s ultra-local argument
ensures the invariance of the measure under BRST transformation associated to the
diffeomorphism [49], and this method was applied to obtain the S2 partition function [47].
As diffeomorphism does not fully determine the measure for the complex field and its
conjugate field, we fix this ambiguity by using supersymmetry such that all the bosonic
measure and fermionic measure are related by the same supersymmetry. In fact, the
supercharge that maps the bosonsic and fermionic measure is the rescaled one by the length
scale of the background, and this rescaled supercharge enters in the computation of the
equivariant index. This is how index computation shows the size dependence of partition
function as was prescribed in [9]. We realise this idea in our example by explicitly listing
the functional integration measure of all the fields including ghost field (and also ghost of
ghost multiplet for S2 case).
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The main difference between AdS2 and S2 is that AdS2 is a non-compact space endowed
with its asymptotic boundary while S2 has no boundary. Therefore, for the case of AdS2,
we have to set an asymptotic boundary condition on each field in order to define a theory.
We use two criteria to set boundary conditions, which are based on the variational principle
and supersymmetry. The variational principle relies on what boundary terms we have in
the theory. Furthermore, these boundary terms should be chosen such that the total action
is supersymmetric for our purpose of studying a supersymmetric theory. In this paper,
however, we do not explore all possible choices of supersymmetric boundary terms. Instead,
given the supersymmetric boundary terms that we find, we show that imposing normalizable
boundary condition for all bosonic fields and letting supersymmetry transformation to
determine the boundary condition of fermionic fields is compatible with the variational
principle.1 Under these conditions, we will have to turn off the Fayet-Iliopoulos (FI)
parameter and parameter for topological term for AdS2 which are generically allowed for S2.

To read the 1-loop determinant from the index, we need to expand the index with
respect to the equivariant parameter. Here, the way of expansion presents an ambiguity
depending on whether to expand in terms of the parameter or its inverse. In our specific
case for the chiral multiplet, we will have four possibilities. This would yield to four different
possible results for the 1-loop contribution of the chiral multiplet, which is an issue that has
been already encountered in the context of localization in non-compact spaces, in particular
for AdS3 in [16]. In fact, this ambiguity is a generic feature of transversally elliptic operators,
and it is also present in the case of compact spaces. In that context it has been given a
resolution [52–54] that relays on the compactness of the space. We classify the possible
expansions according to whether they admit the presence of zero modes in the result. Our
boundary conditions will single out one of these options unambiguously.

We eventually arrive at our final results that we summarize as follows:

• In (4.61) we display the exact result of partition function of the theory on S2. Our
new contribution here is that we obtain the scale dependence of the partition function
using the method of index for localization. This in particular includes the zero mode
contribution in addition to the known conformal anomaly contribution. This result
calibrates our method to move on towards evaluating the partition function on AdS2.

• After the choice of boundary conditions that is compatible with supersymmetry and
variational principle, we carry out the localization computation on AdS2. This yields
the result of full partition function of the theory as we present in (4.76). The result
also captures the conformal anomaly as well as the zero mode contribution to overall
scaling dependence of the partition function. To determine the scale independent
part of the partition function, we shed light on the role of boundary conditions in
eliminating the ambiguities associated to expanding the index of certain differential

1The resulting boundary condition of fermion says that its asymptotic behavior will be different from
the behavior of normalizable modes given in [50]. Therefore, the boundary condition for supersymmetric
localization in section 4 and for heat kernel computation in section 5 are different. This issue will be
addressed in the paper [51] that is currently in preparation.
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operator. Our result is comparable to the hemisphere partition function with certain
boundary condition [47, 55, 56].

• The overall scale dependence in the result consisting of local and global contribution
is confirmed further by perturbative 1-loop computation using heat kernel method
both for AdS2 and S2.

The rest of this paper is organized as follows. In section 2, we set up the N = (2, 2)
theories on the background S2 as well as AdS2 and collect important facts that will be
needed for computing the partition function. We devote section 3 to motivate and present
our choice of boundary conditions (viz., normalizable boundary conditions for bosonic fields
and we let the asymptotic behavior of fermions to be dictated by supersymmetry). In
section 4, we compute the partition function using supersymmetric localization and the
index method. In section 5, we support our localization result by computing perturbative
1-loop around the on-shell saddle using heat kernel method. We finalize in section 6 with
the conclusions. Several technical aspects have been collected in a series of appendices.
During our calculations we use 2-component Dirac spinor notation for fermions. Details
about the specific representation of the gamma matrices and our conventions for fermion
multiplication are shown in appendix A. Appendix B presents the Killing spinors for both
S2 and AdS2. In appendix C we discuss the Atiyah-Bott fixed point formula and we apply
it on the de-Rham cohomology on S2 and AdS2. Appendix D sketches a proof of the Zeta
function regularization that we use to evaluate the 1-loop determinant. In appendix E
we collect the basis functions for scalar, vector and fermions on both backgrounds. Some
derivations in the heat kernel method are presented in appendix F.

2 N = (2 , 2) theory on S2 and AdS2

In this section, we discuss the R-symmetric N = (2, 2) theory on S2 and AdS2 presenting
details as would be required for us in future sections. For our purposes it will be sufficient
to focus on a theory containing an Abelian vector multiplet and a chiral multiplet. We
shall follow the prescription developed in [57, 58] for the construction of such theories in
general 2-dimensional manifolds. In subsection 2.1, we introduce the gravity multiplet and
the Killing spinor equations, and then present the main properties of the supersymmetric
backgrounds that are relevant to our work. We then move on to subsection 2.2, where we
discuss in detail the theories on those backgrounds. Given our field content, we present
how equivariant supersymmetry acts. In particular its action on the ghost field is refined
for the case of AdS2. We also present the action including appropriate boundary terms
for the case of AdS2. Subsection 2.3 is devoted to define the integration measure and
the reality properties we impose on the fields. In subsection 2.4 we present the classical
saddles. These saddles will be used in section 5 to do computations using the method
of heat kernels. Finally, we end in subsection 2.5 by introducing cohomological variables,
which are a reorganization of the physical variables into a representations of the equivariant
supersymmetry Qeq.
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2.1 Supersymmetric background

To look at the supersymmetric backgrounds we start by considering the gravity multiplet,

{hµν , ARµ , Cµ, Cµ, ψµ, ψµ} ,

where hµν is the graviton, ARµ is the R-symmetry field, the complex gauge fields Cµ and Cµ
are the graviphotons and ψµ and ψµ are the gravitini coupled to supersymmetric current.
The graviphotons have dual field strengths given in terms of H and G defined in the
following way:

H + iG = −iεµν∂µCν , H − iG = −iεµν∂µCν , (2.1)

where εµν is the Levi-Civita tensor.
The Killing spinor equations governing the N = (2, 2) supersymmetry on a curved

2-dimensional manifold can be obtained by setting to zero the supersymmetric variation of
the gravitini, which yields:

Dµε = −1
2Hγµε− i12Gγµγ3ε , (2.2)

Dµε = −1
2Hγµε+ i12Gγµγ3ε , (2.3)

where Dµε = (∂µ + ωµ + iARµ )ε, Dµε = (∂µ + ωµ − iARµ )ε, with ωµ the spin connection and
ARµ the R-symmetry background field. The Killing spinors, (ε , ε), have R-charge (−1 ,+1)
and mass dimension (−1

2 ,−
1
2) respectively.

For later purposes, it will be convenient to note that the auxiliary fields H and G are
related to the Ricci curvature as

R = −2(H2 +G2) , (2.4)

which can be obtained from the integrability condition

[Dµ , Dν ] ε = 1
4Rµν

abγabε , (2.5)

and the Killing spinor equation (2.2) assuming that the R-charge background connection
is flat.

The S2 and AdS2 background. All the previous data considerably simplifies for the
cases of S2 and AdS2 that we will ultimately study. In the following, we collect some
relevant information about S2 and AdS2 that will serve to fix terminology and the notation
that we employ along the paper. The metrics have the form

S2: ds2 = L2(dψ2 + sin2 ψ dθ2) , 0 ≤ ψ < π , 0 ≤ θ < 2π , (2.6a)
AdS2: ds2= L2(dη2 + sinh2 η dθ2) , 0 ≤ η <∞ , 0 ≤ θ < 2π , (2.6b)

where L is a length scale associated to the size of each manifold. Given these back-
ground metrics, obtaining the supersymmetric backgrounds by solving the Killing spinor

– 6 –
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equations (2.2) and (2.3) requires us to set the background fields ARµ , H and G to be:
H = ∓iL−1 , ARµ = G = 0 , or G = ∓iL−1 , ARµ = H = 0 on S2 and H = ∓L−1 , ARµ =
G = 0 , or G = ∓L−1 , ARµ = H = 0 on AdS2. For later convenience, we would like the
two Killing spinors ε and ε to be a symplectic Majorana pair, which is guaranteed by the
following choice

S2: H= − i
L
, ARµ = G = 0 , (2.7a)

AdS2: G= − 1
L
, ARµ = H = 0 , (2.7b)

Killing spinors on S2. For S2 we have that the Killing spinor equations acquire the form

Dµε = i
2Lγµε , Dµε = i

2Lγµε . (2.8)

Here, the covariant derivative is Dµ = ∂µ + ωµ and the non-trivial component of the spin
connection is ωθ = −1

2 cosψ γ12. The general solutions to (2.8) are presented in appendix B.1.
However we single out the solution

ε =
√
Leiθ/2

 cos ψ2
i sin ψ

2

 , ε =
√
Le−iθ/2

−i sin ψ
2

− cos ψ2

 , (2.9)

for the purpose of the localization. They form a symplectic Majorana pair as

ε† = iεTC , ε† = −iεTC , (2.10)

and thus have the following orthogonality property

ε†ε = 0 , ε†ε = 0 . (2.11)

More detailed properties of this choice of Killing spinors are used in section B.1. In terms
of ε and ε it is possible to define the following bispinors

εγAε = L (0 ,−i sinψ ,−i cosψ ,−i) , (2.12)
εγAε = Leiθ (−i , cosψ ,− sinψ , 0) ,
εγAε = Le−iθ (i , cosψ ,− sinψ , 0) ,

where we have denoted γA ≡ (γ1 , γ2 , γ3 , 1). In particular, the corresponding Killing vector
is associated to the following U(1) rotation of S2,

ξ ≡ iεγµε∂µ = ∂θ . (2.13)

Killing spinors on AdS2. In this case we have the following Killing spinor equations

Dµε = i
2Lγµγ3ε , Dµε = − i

2Lγµγ3ε . (2.14)

– 7 –
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Here, the covariant derivative is Dµ = ∂µ + ωµ and the non-trivial component of the spin
connection is ωθ = −1

2 cosh η γ12. Among the general solutions presented in appendix B.2,
we select

ε =
√
Leiθ/2

(
cosh η

2

i sinh η
2

)
, ε =

√
Le−iθ/2

(
−i sinh η

2

− cosh η
2

)
, (2.15)

for the purpose of the localization. They from a symplectic Majorana pair as

ε† = iεTC , ε† = −iεTC , (2.16)

and thus have the following orthogonality property

ε†ε = 0 , ε†ε = 0 . (2.17)

More detailed properties of this choice of Killing spinors are used in section B.2. The
bispinors between ε and ε are given by

εγAε = L (0 ,−i sinh η ,−i ,−i cosh η) , (2.18)
εγAε = Leiθ (−i cosh η , 1 ,− sinh η , 0) ,
εγAε = Le−iθ (i cosh η , 1 ,− sinh η , 0) .

In particular, the corresponding Killing vector is associated to U(1) rotation of AdS2,

ξ ≡ iεγµε∂µ = ∂θ . (2.19)

2.2 Equivariant supersymmetry, multiplets and action

On the S2 or AdS2 backgrounds described above, we consider N = (2, 2) Abelian vector
multiplet including ghost multiplet (and ghost of ghost multiplet for S2), and chiral multiplet
with gauge charge.

The vector multiplet consists of a vector, two real scalars, two Dirac spinors and an
auxiliary scalar,

Vector : {Aµ , σ , ρ , λ , λ , D̂} , (2.20)

whose R-charge assignment is (0, 0, 0,−1, 1, 0) and the mass dimensions are (0 ,1 ,1 , 3
2 ,

3
2 ,2).

For systematic treatment of gauge fixing using BRST quantization, we include the ghost
multiplet to the vector multiplet, consisting of ghost, anti-ghost and auxiliary field,

Ghost : {c , c , b} . (2.21)

Here, the Grassmann odd scalars c and c are ghost and anti-ghost fields and Grassmann
even scalar b is auxiliary field, whose R-charges are all zero and the mass dimensions are
(0 , 2 , 2). By adding this ghost multiplet the vector multiplet now has 6 + 6 bosonic and
fermionic degrees of freedom respectively. In the case of our theory on S2, there are zero
modes of the ghost fields which we need to freeze out. To this end we further include the
ghost of ghost multiplet,

Ghost of ghost : {Λ0 , b0 , c0 ,Λ0 , c0} . (2.22)

– 8 –
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Here Λ0 ,Λ0 , b0 are Grassmann even and c0 , c0 are Grassmann odd variables, where we in
particular call Λ0 as the ‘ghost of ghost’. Their mass dimensions are given as (0 , 2 , 2 , 4 , 4).
These variables are not defined as local fields but just defined as certain modes: in fact they
are constant modes as the zero modes of ghosts for S2 case are constants. The role of each
variable will be clear later in this subsection.

The chiral multiplet consists of two complex scalars, two Dirac spinors and two auxil-
iary fields,

Chiral : {φ , φ , ψ , ψ , F , F} , (2.23)

whose R-charge assignment is (r ,−r , r − 1 ,−r + 1 , r − 2 ,−r + 2), the gauge charges are
(1 ,−1 , 1 ,−1 , 1 ,−1), and the mass dimensions are (0 ,0 ,12 ,

1
2 ,1 ,1).2

Note that in Euclidean space, in contrast to the Lorentzian space, the barred field and
unbarred field are not related by complex conjugation. For bosonic fields, we will impose
appropriate reality conditions to ensure the kinetic term to be positive. For the barred and
unbarred Dirac fermions, we will treat them to be independent, so the fermion degrees of
freedom are formally doubled [58]. As the formal doubling doesn’t mean the number of
path integral measures have doubled, we still have 4 + 4 bosonic and fermionic physical
degree of freedom both for vector and chiral multiplet. More details on the reality condition
will be discussed subsection 2.3.

Equivariant supersymmetry. Let us denote the supercharge Q as

Q ≡ Qε +Qε , (2.24)

where Qε and Qε are supersymmetry variation with the Grassmann even Killing spinors ε
and ε , i.e. Qε ≡ δ(ε) and Qε ≡ δ(ε) . Let us further define equivariant supercharge Qeq
by combining the supercharge with BRST charge for the U(1) gauge symmetry as

Qeq ≡ Q+Qbrst . (2.25)

Here, Qeq stems from the BRST charge of supergravities [25, 26], where all the spacetime
symmetries including supersymmetries are local gauge symmetries. In fact the Killing
spinors generating the rigid supersymmetry Q are the background values of the ghost fields
associated to the local supersymmetries. As a consistent supergravity theory should be
invariant under BRST symmetry, our gauge theory should also be invariant under the
Qeq symmetry.

For the vector multiplet fields, the transformation rule of the equivariant supercharge
is given by

QeqAµ = −i12(εγµλ+ εγµλ) + ∂µc

Qeqσ = −1
2(ελ− ελ)

Qeqρ = −i12(εγ3λ+ εγ3λ)

2As a N = (2, 2) multiplet, its Weyl scaling dimension is ( r2 , r2 , r+1
2 , r+1

2 , r+2
2 , r+2

2 ).
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Qeqλ = iγ3εF12 − D̂ε− iγµε ∂µσ − γ3γ
µε ∂µρ+ (iH −Gγ3)ε σ + (Hγ3 + iG)ε ρ

= iγ3εF12 − D̂ε− iγµDµ(εσ)− γ3γ
µDµ(ερ)

Qeqλ = iγ3εF12 + D̂ε+ iγµε ∂µσ − γ3γ
µε ∂µρ− (iH +Gγ3)ε σ + (Hγ3 − iG)ε ρ

= iγ3εF12 + D̂ε+ iγµDµ(εσ)− γ3γ
µDµ(ερ)

QeqD̂ = −i12εγ
µDµλ+ i12εγ

µDµλ− i12ε(H + iGγ3)λ+ i12ε(H − iGγ3)λ

= −i12Dµ(εγµλ) + i12Dµ(εγµλ) , (2.26)

where F12 = 1
2ε
µνFµν .3

To complete the vector multiplet under Qeq, we include the ghost multiplet fields which
transform as

Qeqc = −Λ + Λ0 , Qeqc = b , Qeqb = ξµ∂µc . (2.27)

Here, we have used Λ defined as

Λ ≡ −ξµAµ − εεσ − iεγ3ε ρ , (2.28)

and one can check using the Fierz identity that it is invariant under Q and thus

QeqΛ = −ξµ∂µc . (2.29)

In the first equation of (2.27), the Λ0 is introduced in order to make the equality valid by
eliminating the modes of Λ in (2.28) that would not match with any modes in Qeqc on the
left-hand side of the equality. For the case of AdS2, the ghost field c is a normalizable scalar
in order not to gauge away the large gauge symmetry of U(1), and thus its superpartner Qeqc
should also be normalizable. However, the quantity Λ (2.28) can include non-normalizable
modes due to the asymptotically diverging behavior of bi-spinor, εε = −i cosh η as in (2.18),
as well as existence of non-normalizable modes in ξµAµ. Therefore, we remove such non-
normalizable modes of Λ by introducing Λ0 in (2.27). For the case of S2, the ghost field c
does not include a constant mode as it is zero mode, otherwise it would spuriously eliminate

3To compare with the notation in [31], we redefine σ = −σ and ρ = η. To compare with [57], we
choose the charge conjugation matrix C = −iτ2 instead of C = τ2, set the gamma matrix representation
γa = (−τ1 ,−τ2), and do the following redefinition of the supersymmetry parameters (on the left hand side
we write our parameters and on the right hand side those of [57]):

ε± → −
√

2ζ̃∓ , ε± →
√

2ζ∓ ,

the vector multiplet fields
σ → 1

2 (σ + σ̃) , ρ→ 1
2i (σ − σ̃) ,

λ± →
√

2λ̃∓ , λ± → −
√

2λ∓ ,

D̂ → −iD ,

the chiral multiplet fields
φ→ φ , φ→ φ̃ , F → F , F → −F̃ ,

ψ± → ψ∓ , ψ± → ψ̃∓ .
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unphysical degrees of freedom that were not part of the spectrum to begin with, since
constant modes produce a trivial pure gauge transformation. Therefore, we remove the
constant mode of Λ by introducing Λ0 in (2.27). In summary the variable Λ0 is identified as4

for S2: Λ0 = constant mode of Λ , (2.30)
for AdS2: Λ0 = non-normalizable modes of Λ . (2.31)

We note that the Λ0 is singlet under Qeq transformation, i.e., QeqΛ0 = 0. This is be-
cause QeqΛ0 would give constant or non-normalizable part of ξµ∂µc according to (2.29)
However, the ghost field c doesn’t include the constant or non-normalizable modes in it.

For the case of S2, we can deal with the ghost field c within a complete Hilbert space
by including its constant zero mode in it. It is done by promoting Λ0 to a Λ independent
constant called ‘ghost of ghost’:

Λ0 → ghost of ghost . (2.32)

Then, the first equality (2.27) is valid because on the left hand side we include zero mode
of ghost and on the right hand side we introduce new constant Λ0. The new constant field
Λ0 is accompanied by the constant multiplet (2.22) which have transformation rule as

QeqΛ0 = 0 , QeqΛ0 = c0 , Qeqb0 = c0 ,

Qeqc0 = 0 , Qeqc0 = 0 .
(2.33)

We will see in (2.51) that integration over Λ0 identifies the Λ0 with the constant mode of
Λ as was originally introduced as in (2.30). Also, the constant zero mode of ghost field is
removed via the on-shell condition of ghost of ghost multiplet.

For the chiral multiplet fields, the transformation rule for the equivariant supercharge
is given by

Qeqφ = εψ + icφ

Qeqφ = εψ − icφ

Qeqψ = iγµεDµφ− iε(σ + r
2H)φ+ γ3ε(ρ+ r

2G)φ+ εF + icψ

Qeqψ = iγµεDµφ− iε(σ + r
2H)φ− γ3ε(ρ+ r

2G)φ+ εF − icψ

QeqF = iεγµDµψ + iεψ(σ + r
2H) + εγ3ψ(ρ+ r

2G)− iελφ+ icF

QeqF = iεγµDµψ + iεψ(σ + r
2H)− εγ3ψ(ρ+ r

2G) + iελ φ− icF .

(2.34)

Here, the covariant derivative on each field is summarized as

Dµ = ∂µ + ωµ − iGU(1)Aµ , (2.35)

where ωµ is spin connection and GU(1) is gauge charge.
4In [25, 26], the Λ0 was interpreted as background value of Λ and it makes the algebra closed in equivariant

way. However, we would like to point out that Λ0 is not restricted only to the background value of Λ
but should include all the modes of Λ that would not match with Qeqc, otherwise the equality in (2.27)
would not be valid. Moreover, since Λ0 is a singlet under Qeq, as explained after (2.31), the algebra is still
equivariantly closed as can later be seen in (2.40).
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The algebra. If we consider only supercharge Q without BRST charge, then its algebra
closes off-shell with field dependent symmetry parameter as follows,

Q2 = Lξ + δgauge(Λ) + δR(ΛR) , (2.36)

where Lξ is Lie derivative along the Killing vector ξµ ≡ iεγµε, Λ is the field dependent
parameter defined in (2.28) and the ΛR is R-symmetry parameter given by

ΛR = −1
4((Dµε)γµε− εγµDµε) = −1

2 (Hεε+ iGεγ3ε) . (2.37)

For the particular choice of the Killing spinors, viz., (2.9) for S2 or (2.15) for AdS2, the
symmetry parameters in the supersymmetry algebra in (2.36) are given by

S2 : ξµ∂µ= ∂θ , Λ = −Aθ + iLσ − cosψ Lρ , ΛR = 1
2 , (2.38)

AdS2 : ξµ∂µ= ∂θ , Λ= −Aθ + i cosh η Lσ − Lρ , ΛR= 1
2 . (2.39)

We note that the Killing vector generates compact U(1) isometry of S2 or AdS2, where
in particular it preserves the boundary of AdS2. We also note that the gauge symmetry
generated with the parameter Λ includes not only the ‘canonical’ gauge symmetry but also
large gauge transformation.

If we consider the equivariant supercharge Qeq as defined in (2.25), which is indeed
what we use for the supersymmetric localization in section 4, then its algebra closes only
with “large gauge” transformation parameter as follows,

Q2
eq = Lξ + δgauge(Λ0) + δR(ΛR) . (2.40)

We note that, due to the transformation rule of the ghost (2.27), the gauge symmetry
parameter Λ in (2.36) is replaced by the Λ0 that is identified in (2.30) or (2.31) for S2 or
AdS2 respectively. This transformation indeed generates only the large gauge transformation
since it is not gauged away by the ghost field.

Supersymmetric action. The total action of the theory that we consider is of the form:

Stot = Sv.m. + Sghost + SFI + Stop. + Sc.m. . (2.41)

For the vector multiplet, the supersymmetric action consists of bulk Lagrangian and
total derivative terms which gives boundary terms as

Sv.m. = 1
g2

YM

∫
d2x
√
g
[
Lbulk

v.m. +DµV
µ

v.m.

]
, (2.42)

where gYM is the super-renormalizable gauge coupling. In the action (2.42), the bulk
Lagrangian is given by

Lbulk
v.m. = 1

2
(
F12 + i(Gσ −Hρ)

)2
+ 1

2∂µσ∂
µσ + 1

2∂µρ∂
µρ

+ 1
2
(
D̂ − i (Hσ +Gρ)

)2
+ i

2λγ
µDµλ

= 1
2
(
F12 + i(Gσ −Hρ)

)2
+ 1

2∂µσ∂
µσ + 1

2∂µρ∂
µρ+ 1

2D
2 + i

2λγ
µDµλ ,

(2.43)

– 12 –



J
H
E
P
0
7
(
2
0
2
3
)
0
5
6

where for the second line, we have used field redefinition of the auxiliary field for convenience

D ≡ D̂ − i (Hσ +Gρ) . (2.44)

For AdS2 case (H = 0 , G = − 1
L), it is essentially shifting the path integration contour of D̂

by i
Lρ in the complex plane. Then imposing reality condition such that D real makes the

D2 term in the action manifestly positive.5
The total derivative term in the action (2.42) is to make the action supersymmetric

without ignoring the boundary term when taking the supersymmetry variation. It is
determined by the fact that the vector multiplet action is Qeq-exact as

S2 : 1
4iεεQeq

(
(Qλ) λ+

(
Qλ
)
λ

)
= Lv.m. +DµV

µ , (2.45)

AdS2: − 1
4iεγ3ε

Qeq

(
(Qλ) λ+

(
Qλ
)
λ

)
= Lbulk

v.m. +DµV
µ , (2.46)

with

S2 : V µ = 1
4iεε

[ i
2
(
εγµε λλ+ εγµε λλ

)
+ iλγµλ

]
, (2.47)

AdS2: V µ = 1
4iεγ3ε

[
−1

2ε
µν
(
εγνε λλ+ εγνε λλ

)
+ iλγµλ

]
. (2.48)

Here, we denote the bar operation on the bracket, (Qλ) and (Qλ), as the following exchange

S2 :(Qλ) ≡ Qλ
∣∣∣
ε→iε

,
(
Qλ
)
≡ Qλ

∣∣∣
ε→−iε

, (2.49)

AdS2:(Qλ) ≡ Qλ
∣∣∣
ε→iγ3ε

,
(
Qλ
)
≡ Qλ

∣∣∣
ε→iγ3ε

. (2.50)

Note that for S2 case, taking bar operation is equivalent to taking dagger operation.
The supersymmetric action for the ghost multiplet is given by Qeq-exact form [7] as

Sghost = 1
g2

YM
Qeq

∫
d2x
√
g i
(
c∇µAµ + cb0 + cΛ0

)
. (2.51)

The last two terms are absent for AdS2 case. For S2 case, using the transformation
rules (2.26), (2.27) and (2.33), we can expand the action (2.51) as

Sghost = 1
g2

YM

∫
d2x
√
g i
(
b∇µAµ−c∇2c−c∇µλµ+bb0−cc0−cc0−(Λ−Λ0)Λ0

)
. (2.52)

The first two terms are standard ghost multiplet action, giving gauge fixing condition as
well as the Faddeev Popov determinant. The third term is irrelevant because c can be
connected only to c but there are no vertices in those extra terms containing c. From the

5Similarly, one can think of redefining the F12 to absorb the − i
L
σ and make the term, (F12− i

L
σ)2 in the

action on AdS2, manifestly positive. However, this field redefinition may not be possible because σ is not
dual of a 2-form and thus finding the corresponding redefinition of 1-form field Aµ is not possible. Therefore,
treating the term (F12 − i

L
σ)2 causes some modes having wrong sign of the action (see subsection 5.2.2). To

treat this wrong sign, we implicitly use analytic continuation of the path integral in the same spirit of [42].
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fourth to sixth term, the zero modes of {c , c , b} are eliminated by the integration over
{b0 , c0 , c0}. From the last term, integration over Λ0 provides the identification of Λ0 and
the constant modes of Λ.6

Since we are dealing with an Abelian vector multiplet, then a corresponding FI term
and topological term can be added. They need to be treated separately for S2 and AdS2
case since AdS2 has boundary and requires additional boundary terms. For S2, we have
supersymmetric FI term and topological term given by

SS2
FI + SS2

top. = −iξ
∫

d2x
√
gD̂ + i ϑ2π

∫
d2x
√
g F12 , (2.53)

and each terms is supersymmetric as it is. For AdS2, let us set the boundary at a large
value of fixed η. Then, we have supersymmetric FI term consisting of bulk, boundary and
counter term as

SAdS2
FI = Sbulk

FI + Sbdry
FI + Sc.t.

FI , (2.54)

where

Sbulk
FI = −iξ

∫
d2x
√
gD̂ ≡ −iξ

∫
d2x
√
g
(
D − i

L
ρ
)
,

Sbdry
FI = −ξ

∫
dθ√γ 1

L

(
iεεA2 + εγ2ε σ

)
, (2.55)

Sc.t.
FI = −ξ

∫
dθ√γ 1

L
Λ ≡ ξ

∫
dθ√γ 1

L
(ξµAµ + εεσ + iεγ3ε ρ) ,

where the γ in the boundary action in (2.55) is induced metric on the boundary of AdS2.
The supersymmetry variation of the bulk action generates boundary term and it is exactly
canceled by the variation of the boundary action in (2.55), which can be easily checked using
the projection property of the Killing spinors in (B.21). The counter term action (2.55)
is added in order to cancel the divergence of the bulk and boundary action associated
to the infinite volume of AdS2, in the spirit of holographic renormalization [59]. Due to
the transformation property of Λ as in (2.29), each term of the counter term action is
supersymmetric as it is.

We may also make supersymmetric topological term for AdS2 by including boundary
term as follows,

SAdS2
top. = i ϑ2π

∫
d2x
√
g F12 + i ϑ2π

∫
dθ(εεσ + iεγ3ερ) (2.56)

= i ϑ2π

∫
dθ (Aθ + εεσ + iεγ3ερ) .

Then, this action (2.56) is invariant under equivariant supersymmetry since the last expres-
sion is nothing but integration of the symmetry parameter Λ (2.28). Also, this action is
finite at on-shell saddle. However, we will see in section 3 that this term is not in favor of
variational principle. Therefore we will turn off the topological term, ϑ = 0.

6This identification happens because the integration over Λ0 gives a Delta function. Note, that since
Λ− Λ0 is generically complex valued, we need to use a generalized notion of Delta function with complex
argument. We can think of such Delta function as the following limit δ(z) = lims→∞

∫∞
−∞ dp e−i p z− 1

2 s
p2

with z ∈ C.
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For the chiral multiplet with R-charge r, the supersymmetric action consists of bulk
Lagrangian and total derivative terms which gives boundary terms as

Sc.m. = 1
g2

YM

∫
d2x
√
g
(
Lbulk

c.m. +DµV
µ

c.m.

)
. (2.57)

The bulk Lagrangian in (2.57) is given by

Lbulk
c.m. = DµφD

µφ+M2
φφφ+ FF − iψγµDµψ + ψMψψ − iψλφ− iφλψ , (2.58)

where the mass square of the scalar field and mass of the fermion are

M2
φ =

(
σ + r

2H
)2

+
(
ρ+ r

2G
)2

+ r

4R+ iD̂

=
(
σ + r

2H
)(

σ + r − 2
2 H

)
+
(
ρ+ r

2G
)(

ρ+ r − 2
2 G

)
+ iD , (2.59)

Mψ = −i
(
σ + r

2H
)
−
(
ρ+ r

2G
)
γ3 , (2.60)

where for (2.59) we have used the relation between curvature and G and H (2.4), and the
redefinition of auxiliary field, D̂ ≡ i(Hσ + Gρ) + D in (2.44). Note that the scalar and
fermion masses have holomorphic dependence on σ + r

2H and ρ+ r
2G. For S2, since the

mass square of the scalar is given by

M2
φ,S2 = r

4L2 (2− r) + σ2 + ρ2 + i
L
σ(1− r) + iD , (2.61)

the requirement that real part of the mass square be positive imposes restriction on the
range of r, viz., 0 ≤ r ≤ 2. On the other hand, the mass square of scalar for AdS2 is
given by

M2
φ,AdS2 =

(
ρ− r

2L + 1
2L
)2
− 1

4L2 + σ2 + iD , (2.62)

and the real part of the mass square is always greater than its BF bound, M2
AdS2

≥
− 1

4L2 [60, 61]. Therefore, there is no restriction on the range of R-charge r.
The total derivative term in (2.57) is determined by the fact that the chiral multiplet

action is Qeq-exact as we discuss in the following:
For S2,

1
2iεεQeq

[
(Qε −Qε)

(
iψψ −

(
2σ + (r − 1)H

)
φφ
)]

= Lbulk
c.m. +DµV

µ
c.m. , (2.63)

where

V µ
c.m.|boson = 1

iεε
[ i
2ε

µν(iεγ3ε)
(
φDνφ− φDνφ

)
− εγ3γ

µε ρφφ
]
, (2.64)

V µ
c.m.|fermion = −1

2
1

iεε
[
(εγµψ) εψ + (εψ)εγµψ

]
, (2.65)

and for AdS2,

1
2iεγ3ε

Qeq
[
(Qε −Qε)

(
iψγ3ψ − i

(
2ρ+ (r − 1)G

)
φφ
)]

= Lbulk
c.m. +DµV

µ
c.m. , (2.66)
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where

V µ
c.m.

∣∣∣
boson

= 1
iεγ3ε

[ i
2ε

µν(iεε)
(
φDνφ− φDνφ

)
− εγ3γ

µε σφφ

]
, (2.67)

V µ
c.m.

∣∣∣
fermion

= 1
2

1
iεγ3ε

[
(εγµψ) εγ3ψ − (εψ)εγ3γ

µψ
]
. (2.68)

2.3 Functional integration measure

For the functional integration of Euclidean theory to be well defined, the real part of
the bosonic action needs to be positive, which requires us to impose appropriate reality
conditions on each fields.

Reality condition. For the fluctuations of bosonic fields in the vector multiplet, the
natural reality condition we choose is

A∗µ = Aµ , σ∗ = σ , ρ∗ = ρ , D∗ = D . (2.69)

As was discussed in (2.44), we shift the contour of D̂ such that the redefined auxiliary field
is D real. If we keep this reality condition and take the supersymmetry variation given
in (2.26), then we never end up with any consistent reality condition on two gaugini λ and
λ. Therefore, we are forced to give up compatibility between supersymmetry transformation
and reality condition. i.e., the supersymmetry variation Qeq and complex conjugation do
not commute. For example, even if we start with the real vector field Aµ, its variation can
not be real. Furthermore, we are also forced to treat the two gaugini λ and λ independent,
which ‘formally’ doubles the fermionic degree of freedoms, as a standard treatment of
fermions in Euclidean theory [58]. It is ‘formal’ doubling as we do not double the number
of path integration measure as discussed before.

We could have tried to impose the reality condition on the gaugini in the same way
as (2.10) on the Killing spinors, i.e., λ† = iλTC and λ

† = −iλTC . Then we could
impose the following reality condition on bosonic fields while guaranteeing the compatibility
between supersymmetry and the reality condition: A∗µ = Aµ , σ

∗ = −σ , ρ∗ = ρ ,D∗ = −D .

However, the imaginary nature of σ and D makes the kinetic term of σ and the D-term
in (2.43) to have the wrong sign and the path integral ill-defined. Therefore we give up the
supersymmetry compatible reality condition and follow the condition (2.69).

In the same way for the chiral multiplet, in order to make the path integral well-defined,
we choose the reality condition for bosonic variables as

φ∗ = φ , F ∗ = F , (2.70)

and let the fermions ψ and ψ be two independent Dirac spinors. Again, we could have
considered the reality condition compatible with supersymmetry transformation rule given
in (2.34), which is φ∗ = φ , F ∗ = −F ,ψ† = iψTC , ψ† = −iψTC . This condition the FF
term to have wrong sign and therefore the path integral ill-defined. Therefore, we give up
the supersymmetry compatible reality condition also for the chiral multiplet and follow
the condition (2.70).
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The measure. From supergravity point of view, the functional integration measure
should be determined by invariance under BRST transformation associated to all the local
symmetry of supergravity. In our case, the BRST invariance practically turns into two
guides: one is Fujikawa’s prescription for diffeomorphism invariance [49], and the other
is invariance under the equivariant supersymmetry defined in (2.25). Consequently, the
integration measure for a generic field ϕ(x) is dictated in terms of integration over actual
integration variable ϕ̃(x) as

Dϕ =
∏
x

dϕ̃(x) , (2.71)

and we determine the actual integration variable ϕ̃.
In [49], the integration measure for theory with gravitational coupling was obtained

by imposing BRST invariance associated to diffeomorphism. For example, the invariant
measure of scalar field φ is determined by the actual integration variable φ̃ as

φ̃(x) ∼ g1/4φ(x) (2.72)

up to overall constant, where determinant of metric g is involved and it makes the measure
invariant under BRST transformation of diffeomorphism. This was understood as imposing
the following condition,

constant =
∫
Dϕ e−||ϕ||2 , (2.73)

and accordingly we determine the measures. Here the square of norm is dictated by the
kinetic term in the action (2.43), (2.52) and (2.58). For example, the square of norm for
scalar σ in vector multiplet and scalar φ in chiral multiplet are respectively given by

||σ||2 = 1
g2

YM

∫
d2x
√
g σ2 , ||φ||2 =

∫
d2x
√
g φφ . (2.74)

Since the square of norm is diffeomorphism invariant and so is the condition (2.73), the
resulting measure becomes diffeomorphism invariant.

The above condition (2.73) does not fully determine the measure. For complex scalars,
φ and φ, the definition of norm given in (2.74) does not fix the individual measure Dφ
and Dφ, but just fix DφDφ together. Same ambiguity happens also for Dirac spinors and
ghost anti-ghost field. We fix this ambiguity by the relation between bosonic and fermionic
measures under the equivariant supersymmetry.

We summarize actual integration variables that dictate the integration measures as
in (2.71) for all fields as follows. From the determinant of metric appearing in the measure
such as in (2.71), we will only keep size factor for convenience, i.e., g1/4 ∼ L. Also, in order
to make the measure dimensionless, we have also inserted the reference length scale L0
appropriately: for vector multiplet,{

Ãa , σ̃ , ρ̃ , λ̃ , λ̃ , D̃
}
≡
{
AaL

gYML0
,
σL

gYML0
,

ρL

gYML0
,

λL

gYM
√
L0

,
λL

gYM
√
L0

,
DL

gYM

}
, (2.75)

for ghost multiplet, {
c̃ , c̃ , b̃

}
≡
{

c
√
L

gYML
3/2
0

,
cL3/2

gYM
√
L0

,
bL

gYM

}
, (2.76)
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for the ghost of ghost multiplet,{
Λ̃0 , b̃0 , c̃0 , Λ̃0 , c̃0

}
≡
{

Λ0
gYML0

,
b0L

gYM
,
c0
√
LL0

gYM
,

Λ0L
2L0

gYM
,
c0(LL0)3/2

gYM

}
, (2.77)

and for chiral multiplet,

{
φ̃ , φ̃ , ψ̃ , ψ̃ , F̃ , F̃

}
≡
{
φL

L0
,
φL

L0
,
ψL√
L0

,
ψL√
L0

, FL , FL

}
. (2.78)

We find that the bosonic and fermionic integration variables given above are mapped
by the rescaled equivariant supercharge,

Q̃eq ≡

√
L0
L
Qeq , (2.79)

and the equivariant algebra from Q̃eq is closed in terms of the above variables as

Q̃2
eq = L0

L
(Lξ + δgauge(Λ0) + δR(ΛR)) . (2.80)

The mapping of the boson and fermion by the (2.79) will be more manifest when we organize
new variables called “cohomological variable” in section 2.5. Since the bosonic and fermionic
integration variables are mapped by (2.79), the invariance of the full integration measure
under the supercharge Qeq in guaranteed.

Note that the total dependence on the size of the background L in the integration
variables in from (2.75) to (2.78) seem to completely cancel each other in between bosonic
and fermionic ones. However, since the functional integration measure consist of infinite
product of modes, it is not guaranteed that such cancellation occurs. In fact, we will see in
section 4 that partition functions have non-trivial L dependence, which accounts for the
anomaly associated to the scaling symmetry on theory on S2 [62] as well as on AdS2 . In
section 4, we will compute equivariant index with respect to rescaled operator Q̃2

eq. Since
this operator acquires the L dependence as in (2.80), this rescaling of the supercharge is
the source for L dependence of the 1-loop in the index computation as pointed out in [9].

2.4 Classical saddles

Classical equations of motion for bosonic fields of vector and chiral multiplet are given by

0 = D − ig2
YM

(
ξ − φφ

)
,

0 = iH
(
F12 + i(Gσ −Hρ)

)
+DµD

µρ− g2
YM

(
2ρ+ (r − 1)G

)
φφ ,

0 = iG
(
F12 + i(Gσ −Hρ)

)
−DµD

µσ + g2
YM

(
2σ + (r − 1)H

)
φφ ,

0 = −1
2ε
µν∂ν

(
F12 + i(Gσ −Hρ)

)
+ ig2

YM

(
φDµφ− φDµφ

)
,

0 = (−DµDµ +M2
φ )φ ,

0 = (−DµDµ +M2
φ )φ ,

(2.81)
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and these are solved by two branches of solutions depending on the value of FI parameter ξ.
When ξ = 0, the above equations of motion are solved by

σ = σ0 , ρ0 = ρ0 , F12 = −i(Gσ0 −Hρ0) ,

φ = φ = D = 0 ,
(2.82)

where σ0 and ρ0 are real constants.
For the case of S2 (G = 0 , H = −i/L), two constants σ0 and ρ0. While σ0 is being

integrated, the constant ρ0 is quantized to integer m with appropriate unit7 as the magnetic
flux on S2,

∫
S2 F12 = 2πm. Therefore, the non-vanishing configurations of solution on S2 are

σ = σ0 , ρ = m
2L , F12 = m

2L2 ⇒ A = −m
2 (cosψ ∓ 1) dθ , (2.83)

where we present the solution of gauge field Aθ in two patches up to gauge transformation.
In one patch, the solution is regular at the north pole, where ψ = 0, and in the other patch,
the solution is regular at the south pole, where ψ = π.

For the case of AdS2 (G = −1/L ,H = 0) neither σ0 nor ρ0 parameterize a moduli
space as they are not normalizable modes and remain fixed as constant numbers. Therefore,
we write the non-vanishing configurations of solution on AdS2 up to gauge transformation as

ρ = ρ0 , σ = σ0 , (2.84)

F12 = iσ0
L

⇒ A = iLσ0 (cosh η − 1)dθ +
∑

` 6=0, `∈Z
α

(`)
bdryA

(`)
bdry .

We note here that unlike the case of S2, there are additional modes called “boundary zero
modes”, A(`)

bdry, given in terms of pure gauge mode, yet with non-normalizable parame-
ters Λ(`)

bdry [50]. Explicitly,

A
(`)
bdry = dΛ(`)

bdry , Λ(`)
bdry = 1√

2π|`|

(
sinh η

1 + cosh η

)|`|
ei`θ , ` = ±1 ,±2 , · · · . (2.85)

As the name suggest, they survive at the boundary of AdS2 and they have trivial field
strength being the zero modes of the theory. However, those modes cannot be gauged away
and should be taken into account for physical contribution [42]. The regularized number of
boundary zero modes is known as nbdry

zm = −1. (See appendix E.2 for the counting.) We
again note that the solution of gauge field A in (2.84) is regular at the center of AdS2,
where η = 0. Later, we will set σ0 = 0 for our action to have well-defined variational
principle which we will see in section 3.

When ξ 6= 0, the equations of motion (2.81) are solved by another branch of solutions,

φ =
√
ξei(α0+α(x)) , φ =

√
ξe−i(α0+α(x)) , (2.86)

Aµ = ∂µα(x) , ρ = 1
2(1− r)G , σ = 1

2(1− r)H , D = 0 . (2.87)

7We may set the units of magnetic flux in “tilde” variables in terms of gYML0, i.e. m̃ = 1
2π

∫
F̃12 = m

gYML0
with m ∈ Z.
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For S2, the constant phase α0 parameterize the moduli, and α(x) can be gauged away. For
AdS2, if we use normalizable condition for the scalar φ and φ, α0 cannot be a moduli but
is instead a fixed value. Moreover, only normalizable α(x) is allowed as a solution, and it
can be gauged away. If we allow non-normalizable boundary condition for φ and φ, then
constant α0 is a moduli and non-normalizable α(x) is allowed as a classical solution. In
this case α(x) cannot be gauged away and is identified with the boundary zero modes as
α(x) = ∑

` α
(`)
bdryΛ(`)

bdry(x) up to gauge transformation.
In this paper, we will focus on the case ξ = 0, and normalizable boundary condition for

the scalars φ and φ.

2.5 Cohomological variables

For applying supersymmetric localization, it is convenient to reorganize the degrees of
freedom of our theory into a certain representation of Qeq which we call “cohomological vari-
ables”. The cohomological variables consist of Qeq-cohomology complex (Φ , QeqΦ ,Ψ , QeqΨ)
and possibly a singlet of Qeq. Here, we call Φ the elementary boson, Ψ the elementary
fermion, and QeqΦ and QeqΨ are their superpartners. They naturally form a cohomology
complex with respect to the equivariant supercharge Qeq. There are two main benefits of
using this representation. One is that the structure of supersymmetry among the variables
is manifest. Therefore, imposing boundary conditions respecting supersymmetry becomes
straightforward. The other benefit is that we can evaluate the 1-loop partition function
systematically using index theory, which we will do in section 4. We devote this section to
find cohomological variables for our theory and appropriately define the integration measure
in terms of them.

The organization of variables into cohomological form is implemented via a change
of variables which must be non-singular in order to take all degrees of freedom correctly
into account. The algorithm that we will follow to implement such change of variables is
as follows

1) We choose a twisting of all the fermions of the theory by combining the Killing spinor
and fermions to make them have the same spin structure as bosonic variables of the
theory. Then we check the invertibility of this change of variables.

2) We start with a given bosonic component φR in some representation R of the gauge
group, and consider its variation QeqφR which is certainly in the same representation.
This QeqφR may be a combination of the twisted fermionic variables and other bosonic
fields with coefficient consisting of bilinears of the Killing spinors.

3) To decide if φR is elementary (i.e., it is part of Φ) and QeqφR ∈ QeqΦ, we need to
verify if there is a twisted fermion ψR within the expression of QeqφR such that it
does not contain derivatives on it and that it has coefficient that is regular everywhere
to guarantee the invertibility of the change of variables. If this happens, then we
classify φR ∈ Φ and ψR 6∈ Ψ.

3) Proceed similarly with a fermionic variables in Ψ.
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4) Continue the process until all variables in the Qeq-complex are classified. In case of
failure to classify, then we restart from step 1 and repeat the process with another
choice of variables.

5) The Qeq-singlet is identified with the constant (or non-normalizable) part of the field
dependent parameter for the local symmetries in the supersymmetry algebra. It is
singlet since Qeq acting on this mode would give constant (or non-normalizable) part
of ghost field for the corresponding symmetry and this is absent, as already explained
in (2.30) and (2.31).

Let us now use the above algorithm to find the elementary fields in the case of Abelian
vector multiplet and chiral multiplet.

The vector multiplet. Let us consider the full vector multiplet including ghost multiplet
which contains the ghost of ghost multiplet for the case of S2

V v.m. =
(
Aa, σ, ρ, λ, λ,D

)
⊕
(
c, c, b ; Λ0 , b0 , c0 ,Λ0 , c0

)
, (2.88)

where we remind that for AdS2 case Λ0 is not an independent variable and b0 , c0 ,Λ0 and
c0 are absent.

For the gaugini, we first propose the following twisted variables:

λA = − i
2
(
εγAλ+ εγAλ

)
, A = 1, 2, 3, 4 , (2.89)

where by γ4 we mean γ4 = −iγ1γ2γ3 = 1. This change of variables has invertible as the
inverse relation is

λ = − 1
iεε
(
γAελA

)
, λ = 1

iεε
(
γAελA

)
. (2.90)

The Jacobian of the transformation is non singular since it is given by8

|J | =
∣∣∣∣ det

(
∂(λ, λ)
∂λA

) ∣∣∣∣ = 1
2

1
(iεε)2 6= 0 . (2.91)

After choosing the twisted variable (2.89), we further reorganize variables following the
algorithm we presented at the beginning of this subsection. We obtain the following set of
cohomological variables

Φ = {Aa , ρ } , QeqΦ = {QeqAa , Qeqρ } ,

Ψ = {λ4 , c , c} , QeqΨ = {Qeqλ4 , Qeqc ,Qeqc} ,

Φ0 = {b0 ,Λ0} , QeqΦ0 = {Qeqb0 , QeqΛ0} , {Λ0} ,

(2.92)

8In fact, for AdS2 case, this Jacobian is singular at spatial infinity since the bispinor in the Jacobian is
εε = −i cosh η and it diverges as η →∞. However, if we consider the entire change of variable from original
variables (2.88) to the cohomological variables (2.92), the Jacobian is non-singular as shown in (2.94). The
singularity of the Jacobian at the boundary of AdS2 in the (2.91) may represent the fact that the asymptotic
boundary condition for cohomological variables and the original variables are different as we will discuss in
section 4.1.
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where the explicit expression of the variables in QeqΦ, QeqΨ and Λ0 are given as

QeqAa = λa + ea
µ∂µc ,

Qeqρ = λ3 ,

Qeqλ4 = iεε (D − iHσ − iGρ) + iεγ3ε (−iF12 +Gσ −Hρ) + iεγ3γ
µε∂µρ ,

Qeqc = −Λ + Λ0 , where Λ ≡ −ξνAν − εεσ − iεγ3ε ρ ,

Qeqc = b , Qeqb0 = c0 , QeqΛ0 = c0 ,

(2.93)

and the variable Λ0 that was introduced in (2.31) and (2.32) for AdS2 and S2 respectively.
Note that the Λ0 is singlet in Qeq as explained in (2.33), and therefore it is outside of the
cohomology complex given by the set Φ and Ψ and their descendant Qeq variation.

The expression (2.93) shows the change of variables essentially from {λa , λ3 , D , σ , b} to
{QeqAa , Qeqρ , Qeqλ4 , Qeqc ,Λ0 , Qeqc }. Now, we find the total Jacobian associated to the
change of variables from the original variables (2.88) to the cohomological variables (2.92).
The non-trivial part of the Jacobian is given as follows:

|J | =
∣∣∣∣ det

(
∂(λ , λ ,D , σ , b)

∂(λ4 , QeqAa , Qeqρ ,Qeqλ4 , Qeqc ,Λ0 , Qeqc)

) ∣∣∣∣ = 1
2 6= 0 . (2.94)

Thus it guarantees the invertibility of the change of variables. We note that the algebra
is closed only with the symmetry generated by the Killing vector, as the cohomological
variables are neutral under R-symmetry.

From (2.75) and (2.78), we can see the actual integration variables in terms of cohomo-
logical variables are

Φ̃ =
{
Ãa , ρ̃

}
=
{
AaL

gYML0
,

ρL

gYML0

}
,

Φ̃0 =
{
b̃0 , Λ̃0

}
=
{
b0L

gYM
,

Λ0L
2L0

gYM

}
,

Q̃eqΦ̃ =
{
Q̃eqÃa , Qeqρ̃

}
=
{
QeqAa

√
L

gYM
√
L0

,
Qeqρ

√
L

gYM
√
L0

}
,

Q̃eqΦ̃0 =
{
Q̃eq b̃0 , Q̃eqΛ̃0

}
=
{
Qeqb0

√
LL0

gYM
,
QeqΛ0(LL0)3/2

gYM

}
,

Ψ̃ =
{
λ̃4 , c̃ , c̃

}
=
{

λ4
√
L

gYM
√
L0

,
c
√
L

gYML
3/2
0

,
cL3/2

gYM
√
L0

}
, (2.95)

Q̃eqΨ̃ =
{
Q̃eqλ̃4 , Q̃eq c̃ , Q̃eq c̃

}
=
{
Qeqλ4
gYM

,
Qeqc

gYML0
,
QeqcL

gYM

}
,

Λ̃0 = Λ0
gYML0

.

where Q̃eq is the rescaled equivariant supercharge that was defined in (2.79) as

Q̃eq ≡

√
L0
L
Qeq . (2.96)
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We note that the cohomological arrangement of fields makes the mapping between bosonic
and fermionic integration variables through the supercharge (2.96) manifest. With the
definition of rescaled equivariant supercharge (2.96), the algebra is closed as

(Q̃eq)2 = L0
L
∂θ . (2.97)

The chiral multiplet. Let us consider the following N = (2, 2) chiral multiplets of
the form

Φc.m. = {φ , φ , ψ , ψ , F , F} . (2.98)

The candidate set of twisted variables in this case is given by the collection of bispinors

εψ , εψ , εψ , εψ . (2.99)

The invertibility of changing to this set of variables can be checked by directly looking at
the inverse relation,

ψ = 1
εε

(ε(εψ)− ε(εψ)) , ψ = 1
εε

(
ε(εψ)− ε(εψ)

)
, (2.100)

with the Jacobian given by

|J | =
∣∣∣∣ det

(
∂(ψ , ψ)

∂(εψ , εψ , εψ , εψ

) ∣∣∣∣ = 1
(εε)2 6= 0 . (2.101)

Following the algorithm we presented at the beginning of this subsection, we obtain the
following set of cohomological variables

Φ = {φ , φ} , QeqΦ = {Qeqφ ,Qeqφ} ,

Ψ = {εψ , εψ} , QeqΨ = {Qeq (εψ) , Qeq
(
εψ
)
} .

(2.102)

The explicit expression of the variables in QeqΦ and QeqΨ are

Qeqφ = εψ ,

Qeqφ = εψ,

Qeq(εψ) = εεF + iεγµεDµφ+ εγ3ε
(
ρ+ r

2G
)
φ,

Qeq(εψ) = εεF + iεγµεDµφ− εγ3ε
(
ρ+ r

2G
)
φ.

(2.103)

The Jacobian of the transformation is clearly non singular since we have:

|J | =
∣∣∣∣ det

(
∂(ψ, ψ, F, F )

∂(Qeqφ,Qeqφ, εψ, εψ,Qeqεψ,Qeqεψ)

) ∣∣∣∣ = 1 6= 0. (2.104)

This ensures the invertibility of the change of variables. We note that differently from vector
multiplet case, the cohomological variables of chiral multiplets have non-trivial R-charge.
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- Φ QeqΦ Ψ QeqΨ

- φ φ Qeqφ Qeqφ εψ εψ Qeq(εψ) Qeq(εψ)

G +1 −1 +1 −1 +1 −1 +1 −1

R +r −r +r −r r − 2 −(r − 2) r − 2 −(r − 2)

Table 1. Gauge (G) and R-charge assignment for cohomological fields associated to a chiral multiplet.

In table 1, we display the R-charge assignment of elementary cohomological variables in
chiral multiplet.

The functional integration measure for the cohomological variables is then given as

Φ̃ =
{
φ̃ , φ̃

}
=
{
φL

L0
,
φL

L0

}
,

Q̃eqΦ̃ =
{
Q̃eqφ̃ , Q̃eqφ̃

}
=
{
Qeqφ

√
L√

L0
,
Qeqφ

√
L√

L0

}
, (2.105)

Ψ̃ =
{
ε̃ψ , ε̃ψ

}
=
{
εψ
√
L√

L0
,
εψ
√
L√

L0

}
,

Q̃eqΨ̃ =
{
Q̃eq(ε̃ψ) , Q̃eq(ε̃ψ)

}
=
{
Qeq(εψ) , Qeq(εψ)

}
.

Again, the map between boson and fermion by the Q̃eq (2.96) is manifest. Even though we
should bear in mind that the path integral is being carried over these variables, throughout
the rest of this paper, unless otherwise stated, we shall omit the tildes in order to avoid
clutter during explicit manipulations. This implies that we will effectively omit gYML0 as
well as L

L0
dependence that we will restore in the final results.

3 Asymptotic boundary condition on AdS2

Since the AdS2 space has the boundary at η →∞, to define the theory in this background
we need to specify the asymptotic boundary condition on each field. We devote this
section to discuss the boundary conditions that we impose. To fix boundary conditions
we first ensure compatibility with the variational principle given the supersymmetric
boundary terms (2.48), (2.67) and (2.68). There could be other set of supersymmetric
boundary terms, but we do not explore them in this paper. Furthermore, we will need to
guarantee a well-defined action of supersymmetry on the field space. What we mean by
this is that the supersymmetric transformation of a given field (say a bosonic field) with
specified boundary condition should dictate the boundary condition of the superpartner
field. That is, boundary conditions on bosons and fermions have to be consistently related
by supersymmetry. Supersymmetric boundary condition have been studied in [12, 13] for
AdS2×S1 and [63, 64] for Lorentzian AdS2.

Even after following our criteria, there may be more than one consistent choice of
boundary conditions. However, we select one of them and leave a more systematic study of
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more general boundary conditions for the future. In this paper, we will choose normalizable
boundary conditions for bosonic fields and let the behavior of fermionic fields be dictated
by supersymmetry, and then we will show that it is compatible with the variational
principle. This may require non-normalizable modes for some fermions due to the fact that
the supersymmetry transformation changes the asymptotics of the states through the e

η
2

behavior of the Killing spinor. We reserve a more thorough analysis of how to guarantee
normalizability of superpartners of normalizable modes for our followup paper [51].

3.1 Asymptotic boundary condition and supersymmetry

To specify the asymptotic boundary condition, we need to consider an asymptotic expansion
of fields at the boundary η →∞. The expansion is determined by solving the asymptotic
equations of motion. However, since we know the classical solution in (2.84), we can assume
the asymptotic expansion for the bosonic fields in the vector multiplet fields as follows,9

Aη = aη(0) + aη(1)e−η + · · · , Aθ = eη(aθ(0) + aθ(1)e−η + · · · ) ,
σ = σ(0) + σ(1)e−η + · · · , ρ = ρ(0) + ρ(1)e−η + · · · ,

D = e−η
(
d(0) + d(1)e−η + · · ·

)
,

(3.1)

where each expansion coefficient can in general be function of the angular variable. By the
asymptotic equation of motion, we set

aη(0) = aη,0 , aθ(0) = iLσ(0) = iLσ0 , ρ(0) = ρ0 , (3.2)

where all the leading coefficients are angle independent constants and further aθ(0) and σ(0)
are identified. This setting can be confirmed by looking at the classical solution (2.84).
Later, in the subsection 3.2, we will see that we have to further require σ0 = 0 for consistency
with the variational principle. Now, as the normalizable boundary condition for bosons, we
demand that the leading modes do not fluctuate, i.e.

δaη,0 = δaθ,0 = δσ0 = δρ0 = 0 . (3.3)

Any mode that does not appear in (3.2) and (3.3) is allowed to fluctuate freely.
The asymptotic expansion of fermion is also in principle determined by the asymptotic

equation of motion. However, a more direct way of obtaining the fall off behavior of each
component for fermion fields will be in terms of the cohomological variables defined in
subsection 2.5. Then, it is easy to see that the expansion for fermions are dictated by the
supersymmetry transformation rules (2.26). In fact, from (2.90) we can see that, if we

9This expansion can also be written in terms of cohomological variables. In particular, we note that Λ
appearing in (2.93) as a superpartner of ghost field c has the following asymptotic expansion

Λ = Λ(1) + Λ(2)e−η ,

because the leading term Λ(0)eη vanishes due to the asymptotic equation of motion. Thus the Λ(1) is
identified with Λ0 defined in (2.31).
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express the superpartners of bosonic fields through the twisted variables λA, we have that

QeqAa = Qeq
(
aa,(0) + aa,(1)e−η + · · ·

)
= λa,(0) + λa,(1)e−η + · · · ,

Qeqρ = Qeq
(
ρ(0) + ρ(1)e−η + · · ·

)
= λ3,(0) + λ3,(1)e−η + · · · ,

εεD = d(0) + d(1)e−η + · · · = Qeq
(
λ4,(0) + λ4,(1)e−η + · · ·

)
.

(3.4)

Imposing normalizable boundary conditions for the superpartners of the bosonic modes
requires us to set to zero the fluctuations of the leading (non-normalizable) modes of λ1,2,3,
that is

δλ1,(0) = δλ2,(0) = δλ3,(0) = 0 , λ1,(0) = 0 , λ2,(0) = λ2,0 , λ3,(0) = 0 , (3.5)

where λ2,0 can be any constant value and λ4,(0) is free to fluctuate. This is consistent with
the fact that λ4,(0) is the superpartner of d(0) which we have also allowed to fluctuate. We
will see later that consistency with the variational principle can be also attained by setting
δλ4,(0) = 0 instead of λ1,(0) = λ3,(0) = 0 in (3.5). However, if we pick this condition, we have
to set d(0) fixed according to supersymmetry in (3.4). Moreover, λ1,(0) is the superpartner
of a1,(0), which we have set to a fixed constant value that does not fluctuate (see (3.2)
and (3.3)), and similarly for λ3,(0) is superpartner of a fixed constant value ρ0. Therefore,
we select (3.5). As we will see in subsection 3.2, this is consistent with the variational
principle and it means that a non-normalizable mode for λ4 can be allowed. Finally, since
the gauge field is normalizable, the ghost field must be also normalizable. Therefore their
expansion reads

c = c(1)e−η + · · · , c = c(1)e−η + · · · , b = b(1)e−η + · · · . (3.6)

Let us now focus on the chiral multiplet. For the bosonic fields, let us begin with
generic ansatz for the asymptotic expansion as

φ = e−∆η
(
φ(0) + φ(1)e−η + · · ·

)
, φ = e−∆η

(
φ(0) + φ(1)e−η + · · ·

)
, (3.7)

F = e−∆̃η
(
f(0) + f(1)e−η + · · ·

)
, F = e−∆̃η

(
f (0) + f (1)e−η + · · ·

)
. (3.8)

Here, the Weyl weight ∆ for the φ and φ is determined by the asymptotic equations of
motion. The ∆̃ for the auxiliary fields remains undetermined for now. Without loss of
generality, we allow f(0), f (0) to parameterize non-normalizable modes whereas f(1), f (1)
parameterize normalizable modes. This can be ensured if we restrict ∆̃ to be 1

2 > ∆̃ > 0.
We will see that this window can be stretched after analyzing the variational principle.
In practice we demand that both f(0) and f (0) have to vanish in accordance with our
normalizable boundary conditions. Inserting (3.7) in the asymptotic equation, we have

(−∇2+2iAµ∂µ+AµAµ+M2
φ)φ∼

[
−
(
∂2
η+∂η

)
+
(
Lρ0−

r−1
2

)2
− 1

4

]
φ= 0 , (3.9)

where the “∼” sign indicates that we are only keeping the leading terms in the asymptotic
expansion of the kinetic operator. Holding ρ0 fixed and solving (3.9) yields

φ = e−∆−η(φ−(0) + · · · ) + e−∆+η(φ+
(0) + · · · )

φ = e−∆−η(φ−(0) + · · · ) + e−∆+η(φ+
(0) + · · · ) ,

(3.10)

– 26 –



J
H
E
P
0
7
(
2
0
2
3
)
0
5
6

with
∆± = 1

2 ±
∣∣∣∣Lρ0 −

r − 1
2

∣∣∣∣ . (3.11)

Note that ∆− terms in (3.10) provide the leading asymptotic behavior and are associated
to the non-normalizable modes. Now, based on the classical solutions (2.82),

φ−(0) = φ
−
(0) = f(0) = f (0) = 0 . (3.12)

As for the normalizable boundary conditions for the bosonic fields, we set

δφ−(0) = δφ
−
(0) = δf(0) = δf (0) = 0 ,

φ+
(0) 6= 0 , δφ+

(0) 6= 0 , φ
+
(0) 6= 0 , δφ

+
(0) 6= 0 .

(3.13)

The fall off condition for fermions will be dictated by the supersymmetry transformation
rules (2.34). Similar to the case of the vector multiplet, a more direct way of obtaining
the fall off behavior of each components for fermion fields is in terms of the cohomological
variables defined in subsection 2.5. We can see this explicitly if we express the fermionic
fields ψ and ψ in terms of the twisted variables εψ, εψ, εψ, εψ as given in (2.100). Then,
expanding the twisted variables according to (3.10), we have the asymptotic expansion

εψ = e−∆−η
(
(εψ)−0 + · · ·

)
+ e−∆+η

(
(εψ)+

0 + · · ·
)

εψ = e−∆−η
((
εψ
)−

0
+ · · ·

)
+ e−∆+η

((
εψ
)+

0
+ · · ·

) (3.14)

with the same scaling dimensions ∆± as φ and φ. This is a crucial step in our prescription,
since it will be the key to respect supersymmetry while ensuring the validity of the
variational principle.

To set the boundary conditions, we demand that the superpartners of scalar fields φ
and φ follow the same type of normalizable boundary conditions. Therefore we have

(εψ)−0 = 0 , δ (εψ)−0 = 0 ,
(
εψ
)−

0
= 0 , δ

(
εψ
)−

0
= 0 ,

(εψ)+
0 6= 0 , δ (εψ)+

0 6= 0 ,
(
εψ
)+

0
6= 0 , δ

(
εψ
)+

0
6= 0 .

(3.15)

For the elementary variables εψ and εψ, since they are independent variables, we use
different asymptotic expansion as

εψ = e−∆̃−η
(
(εψ)−0 + · · ·

)
+ e−∆̃+η

(
(εψ)+

0 + · · ·
)
,

εψ = e−∆̃−η
((
εψ
)−

0
+ · · ·

)
+ e−∆̃+η

((
εψ
)+

0
+ · · ·

)
,

(3.16)

where since they are scalars we have ∆̃− + ∆̃+ = 1. Without loss of generality, we assume
that ∆̃− is the smaller one, i.e., ∆̃− < 1

2 such that the terms associated to the ∆̃− are non-
normalizable modes. The elementary fermionic variables εψ and εψ admit non-normalizable
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modes. Therefore, the leading modes are allowed to fluctuate and we set to zero the
fluctuations of the sub-leading one, viz.,

(εψ)+
0 = 0 , δ (εψ)+

0 = 0 ,
(
εψ
)+

0
= 0 , δ

(
εψ
)+

0
= 0 ,

(εψ)−0 6= 0 , δ (εψ)−0 6= 0 ,
(
εψ
)−

0
6= 0 , δ

(
εψ
)−

0
6= 0 .

(3.17)

We choose these boundary conditions since they are compatible with the ones selected for
F and F through the supersymmetric transformations

εεF + · · · = e−(∆̃−1)η
(
f(1)e−η + · · ·

)
= Qeq

(
e−∆̃−η

(
(εψ)−0 + · · ·

))
,

εεF + · · · = e−(∆̃−1)η
(
f (1)e−η + · · ·

)
= Qeq

(
e−∆̃−η

((
εψ
)−

0
+ · · ·

))
,

(3.18)

upon identifying ∆̃ = ∆̃−. In the next subsection we will verify that this choice is compatible
with the variational principle provided ∆̃− satisfies 1

2 > ∆̃− > −1
2 .

3.2 Variational principle

The variational principle requires that the variation of the total action including boundary
action around the on-shell saddle vanishes. More specifically, the variation of the action
upon application of equations of motion generates boundary terms, which should vanish
when imposing boundary conditions. In this subsection, given the action with boundary
terms (2.48), (2.67) and (2.68), we check the boundary conditions that we impose in
subsection 3.1 are consistent with the variational principle.

The explicit form of variation of the total action is

δS = 1
g2

YM

∫
dθ√γ

{
δA2

[(
F12 −

i
L
σ
)

+ g2
YM(iεε)φφ

]
+ δσ

(
∂1σ − g2

YMεγ3γ1ε φφ
)

+ δρ ∂1ρ−
1
4λδλεγ

2ε− 1
4λδλεγ

2ε+ i
4δλγ

1λ− 3
4iδλγ1λ

}
+
∫

dθ√γ
{
δφ
[
D1φ+ i(iεε)D2φ− εγ3γ1εφσ

]
+ δφ

[
D1φ− i(iεε)D2φ− εγ3γ1εφσ

]
+ 1

2δψ
[
γ2ψ(iεε) + ψ(iεγ2ε) + γ1ψ(εγ3ε)

]
+ 1

2
[
iεεψγ2 + (iεγ2ε)ψ + 3

2εγ3εψγ1
]
δψ

}
+ e.o.m. .

(3.19)

In what follows we separately study the contributions form different multiplets using the
asymptotic expansions and boundary conditions presented in subsection 3.1.

The vector multiplet. We consider the contribution from the vector multiplet. The
bosonic part of the vector multiplet contribution to (3.19) is

δSv.m.
∣∣∣
boson

= 1
g2

YM

∫
dθ Leη

(
δAθ

(
F12 − iσ

L

)
e−η + δσ∂ησ + δρ∂ηρ

)
. (3.20)
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Here, we have ignored coupling to the chiral multiplet. The effect of this interaction will be
considered later when studying the chiral multiplet. If we impose the asymptotic expansion
given in (3.1) with the boundary condition given in (3.2) and (3.3), we find that

δSv.m.
∣∣∣
boson

−→ −iσ0δaθ,(1) , as η →∞ . (3.21)

Therefore, we set σ0 = 0 to satisfy the variational principle.
To analyze the fermionic part of the vector multiplet contribution to (3.19) given by

δSv.m.
∣∣∣
fermion

= 1
g2

YM

∫
dθ Leη

(
−1

4λδλεγ
2ε− 1

4λδλεγ
2ε+ i

4δλγ
1λ− 3

4iδλγ1λ

)
, (3.22)

we consider the asymptotic expansion of the gaugini according to the definition of twisted
fermions (2.90) and their asymptotic expansion given in (3.4). Thus, we have

λ = − 1
iεε
[
γAε

(
λA,(0) + λA,(1)e−η + · · ·

)]
,

δλ = − 1
iεε
[
γAε

(
δλA,(0) + δλA,(1)e−η + · · ·

)]
,

λ = 1
iεε
[
γAε

(
λA,(0) + λA,(1)e−η + · · ·

)]
,

δλ = 1
iεε
[
γAε

(
δλA,(0) + δλA,(1)e−η + · · ·

)]
.

(3.23)

After imposing the boundary condition (3.5), we insert the expansion (3.23) into the
boundary contribution in (3.22), we can check that Sv.m.

∣∣∣
fermion

→ 0 as η →∞, thus the
variational principle is satisfied.

The chiral multiplet. We now move on to study the chiral multiplet with coupling with
the vector multiplet. The bosonic part of the chiral multiplet contribution to (3.19) is

δSc.m.
∣∣∣
boson

=
∫

dθeη
(
φφ (δAθ − δσeη) + δφ

(
Dηφ− iDθφ− eησφ

)

+ δφ (Dηφ+ iDθφ− eησφ)
)
.

(3.24)

According to boundary condition give in (3.12) and (3.13), the fluctuation of scalar fields φ
and φ take the following form

δφ = e−∆+η(δφ+
(0) + · · · )− δ∆+e−∆+η(φ+

(0) + · · · )

δφ = e−∆+η(δφ+
(0) + · · · )− δ∆+e−∆+η(φ+

(0) + · · · )
(3.25)

where δ∆+ takes into account the fact that the ∆+ depends on the ρ0 as shown in (3.11)
which can in principle fluctuate. From (3.11) we have that δ∆± ∼ δρ0. Therefore, recalling
that the boundary condition δρ0 = 0 given in (3.3), we have δ∆+ = 0. We then insert the
expansion (3.25) into the boundary contribution (3.24) and obtain that δSc.m.

∣∣∣
boson

→ 0 as
η →∞, which is consistent with variational principle.
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The chiral multiplet fermions are better analyzed in terms of the cohomological variables
defined in (2.100). We can write the fermionic contribution of the chiral multiplet to the
variation of the action (3.19) as

δSc.m.
∣∣∣
fermion

=
∫

dθ sinh η
2

(
cosh η

(
δψγ2ψ − δψγ2ψ

)
+ sinh η

(
δψψ − δψψ

)
+ i
( 3

2δψψ − δψψ
))

.

(3.26)

Writing the physical fermions in terms of twisted fermions defined in (2.100) and using the
asymptotic expansion (3.14) and (3.16), we insert the result into the boundary contribu-
tion (3.26). Then, we find that imposing the boundary conditions given in (3.15) and (3.17)
implies that δSc.m.

∣∣∣
fermion

→ 0 as η →∞, thus variational principle is satisfied.

4 Supersymmetric localization

In this section, we use the method of supersymmetric localization to compute the partition
function of N = (2, 2) theories with an Abelian vector multiplet and a chiral multiplet
placed on S2 and AdS2.

The general principle of the localization method is as follows: we first deform the action
by adding a Qeq-exact term with real parameter t:

S[ϕ]→ S[ϕ] + tQeqV . (4.1)

Here Qeq is a supercharge defined in (2.25) whose algebra is equivariantly closed to a
compact bosonic symmetry H in the following way: Q2

eq ≡ H, where H has the form given
in (2.40). The fermionic quantity V is chosen such that QeqV|boson ≥ 0 and HV = 0.

Since the action S[ϕ] and the functional integration measure are Qeq-invariant as a
supersymmetric theory, the partition function turns out to be independent of t, thus we
can take t→∞. In this limit, new saddle points are obtained from locus of the QeqV,

Mloc =
{
ϕloc

∣∣∣ QeqV(ϕloc)
∣∣∣
boson

= 0, χ = 0
}
. (4.2)

This solution of the locus (4.2) is called localization saddle since evaluation of the partition
function is localized to the integration along this locus, yielding an exact result, i.e.,

Z = lim
t→∞

Zt =
∫
Mloc

Dϕloce−S(ϕloc)Z
′QeqV
1-loop , (4.3)

where Z ′QeqV1-loop is 1-loop determinant of the quadratic kinetic operator in QeqV action. Note
here that the “prime” denotes exclusion of the zero modes in evaluation of the 1-loop.

Throughout this section, we explicitly evaluate (4.3) for our theory. In subsection 4.1,
we choose the supersymmetric deformation action QeqV and present the solution of the
localization equation (4.2) on S2 and AdS2, which is classified in terms of cohomological
variables. This solution yields the induced measure Dϕloc and the action on the saddle
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S(ϕloc) of the partition function (4.3). In subsection 4.2, we discuss how the computation
of the 1-loop determinant, Z ′QeqV1-loop , turns into the computation of an index. Here, we pay
special attention to the effect of excluding zero modes in the 1-loop. For S2 case, we
keep track of the effect of zero modes in ghost and anti-ghost field. For AdS2, we treat
the boundary 1-form zero modes, where we show that the fermionic superpartner of the
boundary zero modes exist in normalizable fermionic space, and further they are also zero
modes. The effect of both zero modes are analyzed. After showing that the operator for the
index is transversally elliptic, we evaluate, in subsection 4.3, the 1-loop partition function
through the explicit computation of the index. During this process we classify possible ways
of expansion of the index, and single out one according to our boundary condition. An
appropriate regularization of infinite products will give the exact 1-loop determinant, which
contains the overall dependence on the size of manifold L as the local anomaly contribution
as well as global zero mode contribution. Towards the end of subsection 4.3 we show the
results of the full partition function for both S2 and AdS2.

4.1 Localization saddle

We first choose a Qeq-exact deformation of the action that satisfies the conditions of
being Qeq invariant and has a positive definite bosonic part, as we have discussed in (4.1).
Since the vector multiplet action in (2.42) and the chiral multiplet action in (2.57) are
Qeq-exact, they themselves are good candidates to be used as the Qeq-exact deformation for
the localization. Indeed, they were used for the case of S2 in [31, 32]. However, when dealing
with AdS2, we need to be cautious about the positive definiteness of the action. In fact, for
the background value of H and G satisfying (2.7b), the bulk Lagrangian given by (2.43) is
no longer positive definite. Hence we rule out the action Sv.m. as a permitted deformation
to apply localization on AdS2. As far as the Qeq-exact action is positive definite, we have
freedom to choose. In this paper, we use the ‘canonical’ choice of the Qeq-exact deformation
action whose bosonic part is manifestly positive definite both for vector and chiral multiplet
on S2 and AdS2, that is

QeqV = QeqVv.m. +QeqVc.m. +QeqVghost (4.4)

=
∫

d2x
√
g

[1
2Qeq

(
(Qeqλ)†λ+ λ(Qeqλ)†

)
+ i
g2

YM
Qeq

(
c∇µAµ + cb0 + cΛ0

)
+ 1

2Qeq
(
(Qeqψ)†ψ + ψ(Qeqψ)†

)]
.

Notice that, for the case of S2, this canonical prescription produces Sv.m. itself as the
deformation action. In (4.4) we have included the Qeq-exact form of the ghost action
presented in (2.51) for the localization, where we again remind that b0 and Λ0 are zero
on AdS2.

Demanding that the bosonic part of (4.4) vanishes yields the localization equations.
To facilitate the process of finding the solution of the localization equations, we can write
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QeqV as a sum of squares. For the vector multiplet, we have10

QeqVv.m.
∣∣∣∣
bos.

= 2
∫

d2x
√
gε†ε

[(
F12 − iHρ

)2
+
(
D +Gσ

ε†γ3ε

ε†ε

)2

+
(
Dµσ + iGσε

†γ3γµε

ε†ε

)2

+ (Dµρ)2
]
, (4.5)

and for the chiral multiplet we have

QeqVc.m.
∣∣∣∣
bos.

=
∫

d2x
√
g
(
(Qeqψ)†Qeqψ + (Qeqψ)†Qeqψ

)
(4.6)

=
∫

d2x
√
g

{∣∣∣∣(iγµDµφ− i(σ + r

2H)φ+ γ3(ρ+ r

2G)φ
)
ε

∣∣∣∣2
+
∣∣∣∣(iγµDµφ− i(σ + r

2H)φ− γ3(ρ+ r

2G)φ
)
ε

∣∣∣∣2 + FF

}
.

Here, when we take conjugation, †, we have made use of background value of H and G given
in (2.7a) for S2 or in (2.7b) for AdS2. Moreover, we also have used the reality conditions
on the fluctuations of fields given in (2.69) and (2.70). We point out that, although it is
not manifestly expressed, the (4.5) and (4.6) are in terms of the fluctuations of the fields in
the theory.

From the sum of squares in (4.5), we find the localization saddle for the vector multiplet:
on S2, the solution is parameterized by a real constant σ0 and an integer m as

σ = σ0 , D = 0 , (4.7)

ρ = m
2L , F12 = m

2L2 ⇒ A = −m
2 (cosψ ∓ 1) dθ .

Note that this saddle coincide with the classical solution in (2.83) of the case of ξ = 0.
On AdS2, we have off-shell solution on top of the classical configuration (2.84). The

off-shell solution is parameterized by a set of real constants, α(`)
bdry with ` = ±1 ,±2 , · · · ,

and a real constant σ1 as11

σ = σ0 + σ1
cosh η , D = σ1

L cosh2 η
, ρ = ρ0 , (4.8)

F12 = iσ0
L

⇒ A = iσ0L (cosh η − 1)dθ +
∑
`6=0

α
(`)
bdryA

(`)
bdry ,

10We could divide by ε†ε in (4.4) as a choice to obtain standard kinetic term in (4.5). However, dividing
by this factor would cause trouble for transversal ellipticity of D10 in 4.2.2 (specifically in equation (4.43))
as η →∞.

11If we impose D̂ ≡ D − i
L
ρ to be real instead of D real as in (2.69), then we find additional solution

ρ = ρ1

cosh η , F12 = ρ1

L cosh2 η
.

However, this reality condition and the new solution may spoil for the positivity of the action as explained
in (2.44). Thus we exclude this new solution by setting D real instead of D̂ real. In the context of AdS2×
S2, there are analogous solutions. The solution found in [19, 21] is analogous to the σ1 and the additional
one found in [9] is analogous to the ρ1. This existence of the additional solution has been puzzling, but we
expect that this can also be excluded demanding positivity of the action by imposing appropriate reality
condition of some auxiliary field in N = 2 supergravity.
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where A(`)
bdry are the boundary zero modes as already defined in (2.85). We note that the

off-shell configuration parameterized by σ1 and α(`)
bdry are regular everywhere and square

integrable. From our choice of normalizable boundary conditions for bosons on AdS2, it
follows that the constants σ0 and ρ0 are fixed values. We also note that the gauge field Aθ
vanishes at the origin of AdS2, i.e. at η = 0 , and thus regular everywhere.

For the chiral multiplet, the sum of squares form in (4.6) with generic vector multiplet
saddle given in (4.7) and (4.8) implies that there is no non-trivial saddle solution. This
result can be sketched as follows. For S2, the non-trivial locus of (4.6) is given by

φ = C

(
tan ψ2

)m
2

(sinψ)−
r
2−iLσ0 eLθ(σ0∓i m

2L )− irθ
2 +im cosψ . (4.9)

The ∓ in the exponent of (4.9) corresponds to solutions for the patch containing the north
and south pole of S2 respectively. The φ solution blows up at the north and south poles
unless σ0 = 0 and m ≥ r, which is violated for some values of m. Therefore we conclude
that C = 0. For AdS2, the non-trivial locus of (4.6) is given by

φ = C

(
tanh η2

)−iσ0L

(sinh 2η)
ρ0L

2 −
r
4 (tanh η)

ρ0L
2 −

r
4−iσ1L eiθ((ρ0L−iσ1L−iσ0L)− r2) . (4.10)

Note that for all ρ0L 6= r
2 the φ solution in (4.10) blows up either in the limit η →∞ or

η → 0. If ρ0 = r
2 , then the function (4.10) becomes ill-defined at the origin because of the

term tanh(η)−iLσ1 . Therefore, we conclude that the only valid solution for φ corresponds
to C = 0.

In terms of cohomological variables. It will be instructive to see how the localization
saddles can be also reproduced if we write the QeqV-action in terms of the twisted variables.
In what follows we present these results for the vector multiplet and the chiral multiplet.

For vector multiplet, we can write the QeqVv.m. + QeqVghost in terms of the twisted
variables by simply replacing (2.90) in the vector multiplet contribution of (4.4) to obtain

QeqVv.m.+QeqVghost =
∫

d2x
√
g

[
1

2(iεε)Qeq
(
(QeqλA)†λA

)
+ i
g2

YM
Qeq

(
c∇µAµ+cb0+cΛ0

)]
,

(4.11)
where on AdS2, b0 and Λ0 are zero. Setting to zero the bosonic part of (4.11) leads to
the localization saddle. In particular, the vanishing of the ghost multiplet contribution
automatically fixes the gauge whereas the vector multiplet contribution yields

QeqλA = 0 , A = 1 , · · · , 4 . (4.12)

Let us now analyze them explicitly

Qeqλa = eµaLξAµ − ∂a(Qeqc) = ξbFba − ∂a(εεσ)− i [∂a(εγ3ερ)] = 0 ,
Qeqλ3 = Lξρ = 0 ,
Qeqλ4 = iεεD + iεγ3ε (−iF12 +Gσ −Hρ) + iεγ3γ

bε ∂bρ = 0 .
(4.13)
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To solve these equations, we separate them into their real and imaginary parts where we
use the reality condition on fields (2.69) and the values of the bispinors (2.12) and (2.18).
Then it is straightforward to see that the localization saddles coincide with those found
directly in terms of the physical fields (4.7) for S2 and (4.8) for AdS2.

For chiral multiplet, we now rewrite QeqVc.m. in terms of the twisted variables. Us-
ing (2.100) we can write:

QeqVc.m. =
∫

d2x
√
g

1
2Qeq

[
(Qeq(εψ))† εψ + (Qeq(εψ))†εψ + (Qeqεψ)†εψ

+(Qeqεψ)†εψ
]
. (4.14)

Setting to zero the bosonic part of (4.14) implies the vanishing of (2.103). With the reality
F = F † and φ = φ†, we deduce trivial solution, F = F = 0 and φ = φ = 0, which agrees
with the result obtained in (4.9) and (4.10).

Cohomological classification. The localization solution (4.7) and (4.8) can now be
organized according to the cohomological classification (2.92) and (2.102).

As is shown in (4.7), the localization solution on S2 is parameterized by magnetic fluxes
m and one real constant parameter σ0. In terms of the cohomological classification, the
mode σ0 is encoded in the Qeq-singlet Λ0. i.e.

σ0 ∈ Λ0 , (4.15)

as its explicit form is given by

Λ0 = iσ0L∓
m
2 for S2 , (4.16)

where we remind that the ∓ in (4.16) are for the north and the south poles on S2 respectively.
Also, as was shown in (4.8), the localization solutions on AdS2 are parameterized

by infinite constants α(`)
bdry and one constant, σ1. They are respectively classified in the

elementary boson Φ and the Qeq-singlet Λ0, i.e.

α
(`)
bdry ∈ Φ , σ1 ∈ Λ0 . (4.17)

This is because the α(`)
bdry are the modes in the 1-form gauge field which is in elementary

boson Φ. As for the σ1 mode, although it appears in two fields σ and D as shown in (4.8),
in the expression of the Qeqλ4 in (4.13), the mode σ1 is canceled within it. The only place
where the mode σ1 appears in the cohomological classification is the Qeq-singlet Λ0 as its
explicit form is given by

Λ|loc. = Λ0|loc. = −Abdry
θ + i (σ0 + σ1)L− ρ0L for AdS2 , (4.18)

where we remind that we set σ0 = 0 to ensure well defined variation principle in section 3.
It is important to note that while the variable Λ0 does not have its superpartner since

it is singlet of Qeq as was mentioned in (2.33) and after (2.93), the variable Φ has its
superpartner QeqΦ by construction of the cohomological variables. Therefore, while the
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mode σ0 or σ1 does not have its superpartner, the modes α(`)
bdry have their superpartners in

the QeqΦ of the cohomological classification. These two classes of the localization solution,
one in Φ and the other in Λ0, will differently play their role later in section 4.2.1, when we
analyze the effect of zero modes in the method of index for 1-loop computation.

Integration measure and action. By the argument of supersymmetric localization,
the functional integration measures defined in terms of the variables (2.75) and (2.78) are
now reduced along the localization saddle (4.7) for S2 and (4.8) for AdS2. Thus we have
the following finite dimensional measure

∑
m∈Z

∫ d(σ0L)
(gYML0)2 for S2 ,

∫ d(σ1L)
gYML0

for AdS2 . (4.19)

In the case of AdS2, the contribution to the measure from the boundary zero modes is
trivial as can be seen as follows∫

DϕAdS2
zm =

∫
DAbdry =

∫ ∏
`

d
(
eµaA

(`)
µ L

)
∼ 1 , (4.20)

where the L factor in the measure is canceled by the 1/L dependence of eµa .
At the localization saddle given in (4.7) or (4.8), the value of the vector multiplet

action Sv.m. in (2.43) and chiral multiplet action Sc.m. (2.58) all vanish and only non-trivial
contribution in the total action comes from the FI-term and the topological term. For S2,

SS2
tot

∣∣∣
loc.

= SS2
FI + SS2

top.

∣∣∣
loc.

= −i4πξ(σ0L) + iϑm . (4.21)

For AdS2, the total action on localization saddle vanishes since we set ξ = ϑ = 0 due to the
variational principle.

4.2 Index method

In order to evaluate the 1-loop determinant Z ′QeqV1-loop , we use the index method.12 According
to this method, evaluation of the 1-loop determinant is reduced to calculating the index of
an operator denoted by D10, where the D10 is a map from the elementary boson Φ into the
elementary fermion Ψ of the cohomological variables as can be seen in the schematic form
of the QeqV action in (4.22). However, since the computation of the 1-loop determinant
excludes the zero modes of the quadratic part of QeqV action,13 we have to take this effect

12There is a central issue to the applicability of the index theorem to non-compact spaces like the AdS2.
The theorem in its original formulation was shown to hold in compact spaces. In [36], the applicability of
the theorem was further enhanced by considering non-compact spaces where a part was excised to make
it effectively compact. However, our case is dissimilar in the sense that the fields actually do continue up
to the conformal boundary at η →∞. Therefore, as discussed, there are boundary conditions on the field.
However, we use the compact version of the theorem assuming that the boundary conditions do not alter
the final results. This is a priori not obvious at all, but the agreement with heat kernel results gives us
a consistency check that this might be a plausible assumption. We leave further work in this regard for
the future.

13In our case, the QeqV action itself is quadratic: it is clear for vector multiplet, and the QeqVc.m. for
chiral multiplet is also quadratic in the Coulomb branch localization.
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into account in this reduction process. This effect of zero modes provides extra contribution
in addition to the index contribution.

In the following subsection 4.2.1, we analyze the index method and consider the effect
of the exclusion of zero modes in the 1-loop determinant. For both the S2 and AdS2 case,
the zero mode in the Qeq-singlet Λ0, which is the mode of scalar along localization saddle,
does not affect the 1-loop as it is factored out from the index computation. For S2, we keep
track of how the absence of zero modes and the anti-ghost affects the index analysis. For
AdS2, we treat the boundary zero modes of gauge field and in particular their fermionic
superpartner following the prescription devised in [26]. We fill a gap in the literature by
proving that those superpartners exist in normalizable fermionic field space, which was
instead assumed in [26]. It turns out that, in AdS2, they are also zero modes of kinetic term
of physical action. However, the prescription which we will apply provides an appropriate
way of regularization. For the actual evaluation of the index of D10 that will be done in
section 4.3, we use Atiyah-Bott fixed point formula. Since this formula requires the D10
operator to be transversally elliptic, we devote subsection 4.2.2 to prove that this is indeed
the case here.

4.2.1 The effect of zero modes

To analyze the index method with effect of zero modes of the QeqV action, we begin by
noting that the zero modes are also accommodated either into the Qeq-complex (Φ , QeqΦ ,
Ψ , QeqΨ) or the Qeq-singlet Λ0. Let us briefly review the classification of zero modes.

For S2 case, we have a constant zero mode σ0 from the scalar σ which is along localization
saddle obtained in (4.7) and it is classified in the Qeq-singlet Λ0 as explained in (4.15). Note
that there are additional zero modes which are constant modes from ghost and anti-ghost
field and they are classified in elementary fermion Ψ.

For the case of AdS2, we have a zero mode parameterized by σ1 from the scalar σ and
the boundary 1-form zero modes Abdry which are localization solution obtained in (4.8) and
they are respectively encoded in the Qeq-singlet Λ0 and the elementary boson Φ as explained
in (4.17). We also note that the superpartner of the boundary zero mode QeqAbdry, whose
existence will be proven shortly, are also zero modes. Among them, the zero mode Λ0 is not
involved in the index analysis as its integration is completely factored out from the 1-loop
computation. The effect of the other zero modes in Φ or Ψ with their superpartners in the
index analysis will be discussed in what follows.

Analysis of the Z′QeqV
1-loop. In order to convert the 1-loop computation into the computation

of the index together with effect of zero modes, we look at the formal expression of the total
QeqV action. They are the Qeq-exact terms in (4.4) plus the extra Qeq-exact term (4.35),
given in terms of the cohomological variables (Φ⊕ Φ0 , Qeq(Φ⊕ Φ0) , Ψ , QeqΨ). Here, Φ0
and QeqΦ0 are constant multiplet in (2.92) and they are absent for AdS2. Let us for now
denote B ≡ Φ ⊕ Φ0. Then the formal expression for the fermionic functional V can be
written as

V =
∫
d2x
√
g

[(
QeqB Ψ

)(D00 D01

D10 D11

)(
B

QeqΨ

)]
, (4.22)
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which implies

QeqV =
∫

d2x
√
g

[(
B QeqΨ

)
Kb

(
B

QeqΨ

)
+
(
QeqB Ψ

)
Kf

(
QeqB

Ψ

)]
, (4.23)

where, by using HT = −H the bosonic and fermionic kinetic operators can be written as

Kb = 1
2

(
−H 0

0 1

)(
D00 D01

D10 D11

)
+ 1

2

(
DT

00 D
T
10

DT
01 D

T
11

)(
H 0

0 1

)
, (4.24)

Kf = 1
2

(
1 0

0 −H

)(
DT

00 D
T
10

DT
01 D

T
11

)
− 1

2

(
D00 D01

D10 D11

)(
1 0

0 H

)
.

From this, we want to compute the ratio of determinant of bosonic and fermionic kinetic
operators. Note that for this computation, we should work in terms of the rescaled variables
defined in (2.95) and (2.105). Thus the result will be in terms of rescaled operator, in
particular rescaled H, i.e. H̃, according to the (2.80). As was explained after (2.80), this
is how the scale dependence appears in the 1-loop result. From now on, we will omit the
tildes for ease of notation. One should note however that whenever determinant or index
is written, it will mean that the operators and their eigenvalues are all in terms of the
rescaled one.

First, we consider the H = 0 sectors. Then we can see that the determinants are, up to
overall sign and some numerical pre-factor,

detKb
∣∣
H=0 = (detD10)2 , detKf

∣∣
H=0 = (detD10)2 . (4.25)

Note here that D10 is non-degenerate as we are separating out all the zero modes and
considering 1-loop determinant for non-zero modes of QeqV action. Any mode in Ker (D10)
will make QeqV-action vanish and it should have been treated as the mode along localization
saddle. Once we separate out all the zero modes correctly, then the D10 should be non-
degenerate on orthogonal space to the zero modes.14 Therefore, the bosonic and fermionic
contribution to the 1-loop determinant of H = 0 modes cancel each other [9].

Now, we look at H 6= 0 sectors. From the expression in (4.24), we can see that the
kinetic operators satisfy ( 1 0

0 −H

)
Kb = Kf

(H 0

0 1

)
. (4.26)

Taking the determinant of both sides of (4.26), the ratio of determinants of Kf and Kb
would reduce to a ratio of determinant over H . In what follows let us consider S2 and AdS2
case separately.

14Conversely, we can utilize the D10 operator to find all the localization saddle solution by solving the
kernel of D10 [30].
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The case of S2. Here, we first note that, in the H = 0 sector, the effect of the zero
modes of ghost c and anti-ghost c in Ψ and their superpartners in QeqΨ are canceled by the
constant multiplet Φ0 and QeqΦ0 through the argument in (4.25). This is in fact expected
as the role of ghost of ghost multiplet is to eliminate the zero modes of ghosts. Let us then
denote by Ψ′ and QeqΨ′ the space without the zero mode of ghosts and their superpartners
respectively. Since the cohomology complex (Φ , QeqΦ ,Ψ′ , QeqΨ′), by its structure, has
one-to-one correspondence between bosonic and fermionic variables, we note that the size of
functional space with H 6= 0 onto which the left and right hand side of (4.26) is the same.
Therefore, we can utilize the (4.26) and reduce the 1-loop determinant as

Z
′QeqV
1-loop =

√
detQeqΦ ,Ψ′ Kf
detΦ,QeqΨ′ Kb

=
√

detQeqΨ′H
detQeqΦH

=
√

detΨ′H
detΦH

. (4.27)

To arrive at the last equality, we have used the fact that H and Qeq commute. The reduced
determinant (4.27) can be obtained by calculating the following quantity,

TrΨ′etH − TrΦetH = −TrΨzmI + TrΨetH − TrΦetH (4.28)
= −nΨ

zm − ind(D10)(t) ,

where we have added and subtracted the trace over zero modes in Ψ, which are in our
case constant modes of ghost and anti-ghost and thus the number of zero modes is nΨ

zm =
−nc,czm = 2 . Now, we can regard the traces over Ψ and Φ in (4.28) are over complete basis.
This is because we can freely add the contribution of trace over all the H = 0 modes without
changing the value since those modes in Ψ and Φ are uniquely paired by the map D10
which is non-degenerate as was argued in (4.25). In the second line of (4.28), the difference
between two traces is identified with the equivariant index of D10 with respect to the U(1)
generated by H, which is defined as

ind(D10)(t) := TrKer(D10)etH − TrCoker(D10)etH . (4.29)

This can be seen from the fact that only the kernel of D10 in Φ and cokernel of D10 in Ψ
are not paired and therefore their contribution remains.

The index given in (4.29) admits an expansion in terms of the eigenvalues of H, λn,
and their degeneracies, a(n), in the following way

ind(D10)(t) =
∑
n

a(n)eλnt. (4.30)

From this, we can read off the contribution from index to the 1-loop determinant. We
note that coefficient of the zero eigenvalue in this expansion accounts for the number of
zero modes because this zero mode is added in (4.28) to define index. (In general, the
coefficient is the difference between number of bosonic and fermionic zero modes). So,
from the t-independent constant in (4.30) we should obtain −nΨ

zm = −2 . To read off the
contribution to the 1-loop from the zero mode effect, i.e. −nΨ

zm = −2 , from the first term
in (4.28), we can use the regularization in the following way

−1
2

∫ ∞
ε

dt

t
(−nΨ

zm)
∣∣∣
reg

contributes as
(
L

L0

) 1
2n

Ψ
zm
, (4.31)
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where ε ≡ ε
(
L0
L

)
is the UV cutoff. Therefore, collecting (4.31) and by looking at the

eigenvalue and corresponding degeneracy from the form in (4.30) of the index, we can
calculate the 1-loop determinant which is given by

Z
′QeqV
1-loop =

(
L

L0

) 1
2n

Ψ
zm ∏

n

λ
− 1

2a(n)
n . (4.32)

The case of AdS2. Here, we begin by listing properties concerning the boundary zero
modes. First, Qeq is nilpotent over the 1-form boundary zero modes. By applying the
equivariant algebra (2.40), we find that

Q2
eqA

bdry
µ = LξAbdry

µ + ∂µΛbdry
0 = LξAbdry

µ + ∂µ
(
−ξνAbdry

ν

)
= ξνF bdry

νµ = 0 . (4.33)

This nilpotency was also reported in [26], however the interpretation is now clarified. The
reason for the nilpotency is that the boundary zero modes obey the equivariant algebra
given in (2.40) with new interpretation of the parameter Λ0 explained in (2.31), whereas [26]
interpreted the nilpotency as the boundary modes not obeying the algebra.

Second, for each 1-form boundary zero mode, there exists a fermionic superpartner in
the normalizable fermionic basis. Although it is already suggested by its cohomological
structure, one still needs to confirm its existence and, in particular, whether it belongs
to a normalizable basis. Before proving it, let us first provide a plausibility argument
for the existence of a QeqAbdry with non zero norm. To this end we first note that the
operator Qeq is not hermitian since the supersymmetry variation does not preserve the reality
condition as was explained after (2.69) (See also [31]). Therefore, even though Abdry satisfies
Q2
eqA

bdry = 0, this does not imply that QeqAbdry = 0 . To explicitly prove it, it is enough
to consider inner product between the basis of the boundary zero modes (2.85) and twisted
variables (2.89) constructed out of the delta function normalizable fermionic basis (E.20)
which are the corresponding fermionic bi-linear from the supersymmetry variation of 1-form
field as in (2.26). One can show that the inner product gives∫

d2x
√
g
(
∂aΛ(`)

bdry
)∗ (

εγaψk,λ + εγaψk,λ

)
∼ δk,|`|−sδ(λ) , s = 0 or 1 , (4.34)

where the ψk,λ is collective notation of the fermionic eigenfunctions of the Dirac operator
on AdS2 (E.20). In the result, the Dirac delta function selects the fermionic eigenfunction
with λ = 0 eigenvalue. Since the spectral density for this fermionic basis with λ = 0 is
non-zero as can be seen appendix (E.23), the superpartners of 1-form boundary zero modes
are in the physical normalizable spectrum.

Lastly, the superpartner QeqAbdry is also a zero mode of QeqV action as well as the
kinetic term of the physical action. Since a zero mode Abdry makes the fermionic quantity
V vanishing, not only the bosonic part of QeqV action is zero on the Abdry, but also the
fermionic part of QeqV action is zero on the superpartner QeqAbdry. Since those modes
correspond to λ = 0, their eigenvalue for the Dirac operator is zero. This is a specific
feature that we encounter for the case of pure AdS2. When we study, for example, AdS2×S2,
the QeqAbdry are not zero modes because the Dirac operator along S2 does not have zero
eigenvalue. If they are zero modes of physical action, the path integral over these zero
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modes will yield a vanishing result. However, this will yield regularized result in the spirit
that the gravitino zero modes would do in the quantum entropy function [48].

As worked out in [26], we treat those fermion zero modes by promoting the zero modes
to a non-zero modes by adding an extra Qeq-exact term to the deformation action QeqV.
We choose this term to be

QeqVQeqA
bdry =

∫
d2x
√
g Qeq

(
Abdry Lξ(QeqAbdry)

)
(4.35)

=
∫

d2x
√
g (QeqAbdry) Lξ(QeqAbdry) .

Since Q2
eqA

bdry = 0, there is no bosonic contribution in (4.35), which means that only the
fermionic mode QeqAbdry is promoted to be non-zero mode of the total QeqV action. This
term localizes the superpartner of the boundary zero modes. In our pure AdS2 case, this is
regarded as a supersymmetric regulator to obtain the finite result out of the zero modes of
fermions. With all this data in hand, we go back and analyze the determinant in (4.3).

In the 1-loop determinant, the integration over localization saddles, Λ0 and Abdry, are
already factored out as they are zero modes. Now, since the superpartners of the boundary
zero modes QeqAbdry are no longer zero modes due to the lifted action (4.35), we can
separately compute their 1-loop effect from this action. Let us then denote Φ′ and QeqΦ′ as
the space without the boundary zero mode and their superpartners respectively. Among
the cohomological complex (Φ′ , QeqΦ′ ,Ψ , QeqΨ), the 1-loop effect of the H = 0 sectors is
canceled as is argued in (4.25), and the effect of H 6= 0 sectors can be reduced by utilizing
the (4.26) as was done in (4.27). In this way, we implement the reduction process of the
1-loop determinant as follows:

Z
′QeqV
1-loop =

√
detQeqAbdryLξ

√
detQeqΦ′ ,ΨKf
detΦ′,QeqΨKb

=
√
detQeqAbdryLξ

√
detΨH
detΦ′H

. (4.36)

Now, the reduced determinant in (4.36) can be obtained by calculating the following quantity

TrQeqAbdryetLξ + TrΨetH − TrΦ′etH = TrQeqAbdryetLξ + TrAbdryI + TrΨetH − TrΦetH

= TrQeqAbdryetLξ + nΦ
zm − ind(D10)(t) . (4.37)

Here, we have added and subtracted the trace over zero modes in Φ, which are the 1-form
boundary zero modes whose number is given as nΦ

zm = nbdry
zm = −1 (see (E.17)). Thus the

traces over Ψ and Φ can now be regarded as over complete basis and the difference of two is
identified with the equivariant index. Expansion of the index in the form of (4.30) reproduces
the local contribution of 1-loop determinant, we note again that the t-independent constant
term of the expansion should obtain nΦ

zm = −1. The first two terms in (4.37) provide the
global zero mode contribution to the 1-loop determinant. From the constant term nΦ

zm,
we read off the contribution (L/L0)− 1

2n
Φ
zm in the same way as in (4.31). In the first term,

TrQeqAbdryetLξ , which comes from the superpartner of the boundary zero modes, we know
the eigenvalue of the operator Lξ (actually rescaled operator L̃ξ ≡ (L0/L)Lξ through the
rescaling of variables (2.95)) for each mode QeqA(`)

bdry that is `L0/L. Thus, we obtain their
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contribution as

∏
6̀=0 ,`∈Z

(
L0
L
`

) 1
2
∣∣∣∣∣
reg

=
(
L

L0

)− 1
2n

Φ
zm
, (4.38)

where we have used Zeta function regularization (D.9) to define the regularized number of
the boundary zero modes nΦ

zm = −1. This definition of number of the zero modes is also
justified using heat kernel method in [26]. Therefore, we can put all the results together,
including the index contribution and the global contribution, to finally yield the following
1-loop determinant

Z
′QeqV
1-loop =

(
L

L0

)−nΦ
zm ∏

n

λ
− 1

2a(n)
n . (4.39)

In summary, the 1-loop determinant is reduced to the global zero mode contribution
and local index contribution as in (4.32) for S2 and in (4.39) for AdS2. The zero mode is
identified as constant modes of ghost and anti-ghost for S2 whose number is nΨ

zm = 2, and
as the boundary 1-form zero modes for AdS2 whose number is nΦ

zm = −1. Now, we are
left with evaluating the index of the operator D10 and finding its expansion in the form
of (4.30), which we will do in section 4.3. As a preparation, we verify that the operator
D10 is transversally elliptic in what follows.

4.2.2 Transversally elliptic D10

In order to evaluate the index using fixed point formula, we need to show that D10 is
transversally elliptic. For this purpose, we need to define the Symbol of D10, which is
obtained by replacing ∂a → ipa in the highest derivative terms in ΨD10Φ. From (4.11)
and (4.14) we see that we need to rewrite the conjugated variations of elementary fields in
terms of elementary fields and then identify higher derivatives terms.

The vector multiplet. Let us consider the conjugation of the variations of elementary
twisted fields.

(Qeqc)† = −Qeqc+ 2ξaAa + 2iεγ3ερ + 2 Re(Λ0), (Qeqc)† = b,

(Qeqλa)† = LξAa + ∂a(Qeqc− 2ξbAb − 2iεγ3ερ+ 2 i Im(Λ0)), (4.40)
(Qeqλ3)† = Lξρ,

(Qeqλ4)† = Qeqλ4 + 2
[
iεε(iGρ) + iεγ3ε(iF12 +Hρ)− iεγ3γ

aεDaρ
]
,

where we used (2.93). Replacing ∂a → ipa, the highest derivative terms in ΨD10Φ are of
the form:

1
2(iεε)


λ4

c

c


T

2(iεγ3ε)p2 −2(iεγ3ε)p1 2(εγ3γ
aε)pa

2papaξ1−p1ξ
apa 2papaξ2−p2ξ

apa 2(iεγ3ε)papa

2(iεε)ip1 2(iεε)ip2 0




A1

A2

ρ

 . (4.41)
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The matrix appearing in (4.41), including the 1
2iεε factor, is what we call the symbol of D10

which we denote as σ(D10) and has the following determinant on S2

det [σ(D10)]
∣∣∣∣
S2

= − i
2
(
p2

1 + p2
2

) (
p2

1 + cos2 ψ p2
2

)
, (4.42)

whereas on AdS2, it is

det [σ(D10)]
∣∣∣∣
AdS2

= − i
2
(
p2

1 + p2
2

)(
p2

1 + 1
cosh2 η

p2
2

)
. (4.43)

We note that at ψ = π
2 on S2 or η =∞ on AdS2, det [σ(D10)] = 0 for the non-zero value

of p2 as long as p1 = 0, i.e. the symbol σ(D10) is not invertible for non-zero pa. Therefore,
the operator D10 is not elliptic. However, if we restrict the momentum to be orthogonal to
the Killing vector ξµ, viz., p2 ≡ 0, then the non-invertibility of the symbol implies p1 = 0
and vice versa. Therefore, D10 for the case of the vector multiplet is transversally elliptic
with respect to the symmetry Lξ.

The chiral multiplet. Let us now analyze the case of the chiral multiplet. Then,
from (2.102), we write the complex conjugation of the variation of elementary fields as

(Qeq (εψ))† = Qeq
(
εψ
)

+ 2
[(

ρ+ r

2G
)
εγ3εφ− iεγaε

(
−ipaφ

) ]
, (4.44)

(
Qeq

(
εψ
))†

= Qeq (εψ)− 2
[(

ρ+ r

2G
)
εγ3εφ− iεγaε (ipaφ)

]
, (4.45)

where, we have used
∂aφ = ipaφ , ∂aφ = −ipaφ . (4.46)

The highest derivative terms in ΨD10Φ are

1
iεε
(
εψ εψ

)( 0 −2iεγaεpa

2iεγaεpa 0

)( φ
φ

)
, (4.47)

hence:
det [σ (D10)] = 4

(iεε)2 (iεγaε)
(
iεγbε

)
papb. (4.48)

We then have:
det [σ (D10)]

∣∣∣
S2

= −4
(
p2

1 + cos2 ψ p2
2

)
, (4.49)

on S2, whereas on AdS2 we have:

det [σ (D10)]
∣∣∣
AdS2

= −4
(
p2

1 + 1
cosh2 η

p2
2

)
. (4.50)

From (4.49) and (4.50) we see that, following a reasoning completely parallel to the one
presented for the vector multiplet, the operator D10 associated to the chiral multiplet is
transversally elliptic.
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- Φ H-charge Ψ H-charge

Az i λ4 0

Vector Az −i c 0

ρ 0 c 0

φ iΛ0 + i
2r εψ iΛ0 + i

2(r − 2)

Chiral

φ −iΛ0 − i
2r εψ −iΛ0 − i

2(r − 2)

Table 2. The table shows the fixed point values of the H-charge of the elementary fields associated
with the vector and chiral multiplet. Here Λ0 is respectively given by (4.16) on S2 and (4.18)
evaluated at the center of AdS2.

4.3 Evaluation of 1-loop determinant

Recall that the 1-loop determinant is given in the form (4.32) for S2 and (4.39) for AdS2,
where the global zero mode contributions were identified. We are now in conditions to
complete the 1-loop by evaluating the local contribution through the index (4.29). After
obtaining the 1-loop for each multiplet for S2 and AdS2, we will present the full result of
the partition function by combining the global and local contributions.

To evaluate the index, we apply the Atiyah-Bott fixed point formula [37–39] given by

ind (D10) (t) =
∑

{x|f(x)=x}

TrΦetH − TrΨetH

det
(
1− ∂f(x)

∂x

) . (4.51)

This formula reduces the trace of the operator etH to a sum over the trace evaluated only
at the fixed points of the operator H : x 7→ f(x) = x. On S2 there are two fixed points, viz.,
the north and south pole, whereas on AdS2 there is only one fixed point viz., the center.
Although we do not provide a rigorous proof of the validity of (4.51) on non-compact spaces,
we have tested it in appendix C using a simple example of de-Rham cohomology. With this
in mind, we apply (4.51) on both AdS2 and S2. After expanding the result of the index we
read off the 1-loop contribution, where we use Zeta function regularization that allows us
to keep the dependence on the size of the manifold.

For the case of chiral multiplet, the fact that D10 is transversally elliptic implies an
ambiguity in expanding the index with respect to the equivariant parameter. We will devise
a systematic way of eliminating such an ambiguity.

4.3.1 S2

Contribution from the vector multiplet. In order to evaluate the index using the
fixed point formula (4.51), we first define the equivariant parameter q ≡ e

L0
L t. Then the

action of H on the complex coordinate is given by z 7→ f(z) = qiz, z 7→ f(z) = q−iz, from
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which we can write down the denominator of (4.51) as
(
1− qi) (1− q−i). To obtain the

numerator we read off the H-charges of Φ and Ψ at the fixed points, the north pole and the
south pole of S2, which we summarize in table 2. Adding the two fixed point contributions
we have

ind (D10) (t) = 21 + qi + q−i − (1 + 1 + 1)
(1− qi)(1− q−i) = −2 . (4.52)

Note that the t-independent term in the expansion of the index (4.30) is a(0) = −2 which
is indeed expected as explained after (4.30). It is because, to define the index in (4.28),
we have added the contribution of the zero modes, −nΨ

zm. The contribution from a(0) to
the 1-loop determinant can be obtained using the same regularization as in (4.31). Now,
combining with the contribution from zero modes (4.32), we obtain

Z ′ v.m.
1-loop =

(
L

L0

) 1
2n

Ψ
zm+ 1

2a(0)
=
(
L

L0

)1−1
=
(
L

L0

)0
. (4.53)

Contribution from the chiral multiplet. For the chiral multiplet on S2 there are no
zero modes to deal with. Therefore we only have to evaluate the index applying the fixed
point formula (4.51). Using the charge assignment given in table 2 we have

ind (D10) (t) =

qi( r2 +Λ0)
1− qi + q−i( r2 +Λ0)

1− q−i

∣∣∣∣∣
NP

+

qi( r2 +Λ0)
1− qi + q−i( r2 +Λ0)

1− q−i

∣∣∣∣∣
SP

. (4.54)

To extract the eigenvalues of H and their degeneracies, we have to expand the above in
terms of the equivariant parameter q and express it in the form of (4.30). However, for each
fixed point, there is the ambiguity of whether to expand ind (D10) (t) in terms qi or q−i for
each term of (4.54). The ambiguity has been resolved in [52–54] and the prescription is
that we should expand in qi on the north pole and in q−i in the south pole (equivalently,
q−i in the north and qi in the south pole). We then expand as followsqi( r2 +Λ0)

1− qi + q−i( r2 +Λ0)
1− q−i

∣∣∣∣∣
NP

= qi( r2 +ΛNP
0 )

∞∑
n=0

qin − q− i( r2 +ΛNP
0 )

∞∑
n=1

qin . (4.55)

Analogously for the south pole where we replace ΛNP
0 → ΛSP

0 and expand in terms of
q−1, i.e.,qi( r2 +Λ0)

1− qi + q−i( r2 +Λ0)
1− q−i

∣∣∣∣∣
SP

= −qi( r2 +ΛSP
0 )

∞∑
n=1

q−in + q−i( r2 +ΛSP
0 )

∞∑
n=0

q−in . (4.56)

We note that in the vanishing R-charge and gauge coupling limit, the constant parts of (4.55)
and (4.56) give the contribution of zero modes a(0) = 1 + 1 that accounts for the constant
mode of the scalar field appearing in this limit. This is true only for the correct expansion
of the index. Hence we will use this as a criteria to resolve the ambiguity in the context
of AdS2.
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From (4.55) and (4.56) we can read off the 1-loop determinant contribution of the chiral
multiplet

Zc.m.
1-loop =

∏∞
n=1

√
L0(n−

(
r
2 + ΛNP

0
)
)/(−iL)∏∞

n=0

√
L0(n+

(
r
2 + ΛNP

0
)
)/(−iL)

∏∞
n=1

√
L0(n−

(
r
2 + ΛSP

0
)
)/(iL)∏∞

n=0

√
L0(n+

(
r
2 + ΛSP

0
)
)/(iL)

. (4.57)

At this point we only need to specify the value of the gauge parameter Λ0 at the north
and south pole respectively. This is given in (4.16). The infinite products in (4.57) require
to be regularized. To keep track of the scale dependence, we use a regularization scheme
that has been previously prescribed in [65] and whose main idea we sketch in appendix D.
Using (D.9), we have

Zc.m.
1−loop = (−1)

m
2
(
L

L0

)1−r−(ΛNP
0 +ΛSP

0 )
(

Γ( r2 + ΛNP
0 )Γ( r2 + ΛSP

0 )
Γ(1− r

2 − ΛNP
0 )Γ(1− r

2 − ΛSP
0 )

)1
2
. (4.58)

As expected, the above expression shows a manifest symmetry between the interchange
of ΛNP

0 ⇐⇒ ΛSP
0 . We can simplify the above further using Euler’s reflection formula15

and obtain

Zc.m.
1−loop =

(
L

L0

)1−r−2iσ0 Γ
(
r
2 + iσ0L− m

2
)

Γ
(
1− r

2 − iσ0L− m
2
) . (4.59)

The ratio of the Gamma functions of the above result matches the result stated in [31],
as expected.

Result of full partition function on S2. We are now in conditions to put together all
the ingredients we have collected so far and state that

ZS2 =
∞∑

m=−∞

∫ d(σ0L)
(gYML0)2 exp

(
−SS2

tot

∣∣∣
loc.

)
Z ′ v.m.

1−loopZ
c.m.
1−loop, (4.60)

where we have used the measure for S2 given in (4.19). The one loop contributions Z ′ v.m.
1−loop

and Zc.m.
1−loop are given in (4.53) and (4.59) respectively. Using the saddle value of the action

given in (4.21), then explicit evaluation of (4.60) yields

ZS2 =
(
L

L0

)1−r ∞∑
m=−∞

e−iϑm
∫ d(σ0L)

(gYML0)2

(
L

L0

)−2iσ0L

e4πiξσ0L
Γ
(
r
2 +iσ0L−m

2
)

Γ
(
1− r

2−iσ0L−m
2
) , (4.61)

where we can absorb the σ0L into the renormalized FI parameter as ξren = ξ − 1
2π log

(
L
L0

)
.

The super-renormalizability of gYM implies that it is not a running coupling. Hence the
(gYML0)−2 contribution in (4.61) is a purely numerical factor that will be irrelevant and we
only preserve it to be able to emphasize our use of Fujikawa’s prescription to deal with the
measure. We see that (4.61) reproduces the expected result obtained in [31, 32] and includes
the scale dependent pre-factor that consists of −1+(1−r) from the scaling anomaly [66, 67]
and 1 from the zero modes of ghost fields.

15For z ∈ C the Euler’s reflection formula is Γ(z)Γ(1− z) = π
sin(πz) .
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4.3.2 AdS2

Contribution from the vector multiplet. To obtain the numerator of (4.51), we read
off the H-charge of Φ and Ψ in the chiral multiplet given in table 2 and apply the fixed
point formula. Thus we obtain

ind (D10) (t) = 1 + qi + q−i − (1 + 1 + 1)
(1− qi)(1− q−i) = −1. (4.62)

This constant is expected as explained after (4.37), where to define the index the number
of boundary 1-form zero modes nΦ

zm = −1 was added. Now, combining with the constant
contribution a(0) from zero modes in (4.39), we obtain

Z ′ v.m.
1-loop =

(
L

L0

)−nΦ
zm+ 1

2a(0)
=
(
L

L0

)1− 1
2

=
(
L

L0

) 1
2
. (4.63)

Contribution from the chiral multiplet. For the chiral multiplet on AdS2 there are
no zero modes to deal with. Therefore we only have to evaluate the index using the fixed
point formula (4.51). Recalling that there is only one fixed point at the center of AdS2, and
reading off the H-charges of Φ and Ψ of the chiral multiplet from table 2, we have

ind (D10) (t) =
q−i( r2 +Λ0) + qi( r2 +Λ0) −

(
q−i(( r2 +Λ0−1)) + qi(( r2 +Λ0)−1))

(1− qi)(1− q−i)

=

qi( r2 +Λ0)
1− qi + q−i( r2 +Λ0)

1− q−i

 .

(4.64)

Similar to the S2 case, to extract the eigenvalues of H and their degeneracies, we have
to expand the above in terms of the equivariant parameter q and express it in the form
of (4.30). Since D10 is transversally elliptic, we are faced with an ambiguity in how to
express ind (D10) (t) as a power series. In practice, we have two terms in (4.64) each of
which can be expanded in powers of qi or q−i and we need a valid criteria to pick the
appropriate combination.16 In what follows, let us explore all possible ways of expanding
the index:

a) Expanding the first term in powers of q−i and the second in powers of qi.

b) Expanding the first term in powers of qi and the second in powers of q−i.

c) Expanding both terms in powers of qi.

d) Expanding both terms in powers of q−i.
16In the context of localization on AdS3 in [16] the resolution of the ambiguity was tackled with a

different approach related to another method used to evaluate the index itself, which is called the “unpaired
eigenmodes” method.
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a) This option gives us

ind (D10) (t) = −qi( r2 +Λ0)
∞∑
n=1

q−in − q−i( r2 +Λ0)
∞∑
n=1

qin , (4.65)

where the first and second terms can be associated to the contribution of the chiral and
anti-chiral multiplets respectively. We note that, in the limit of zero R-charge and gauge
coupling, expansion (4.65) does not have constant term. This implies the absence of zero
modes for both the chiral and the anti-chiral multiplets. This is compatible with the
normalizable boundary condition of φ and φ because they do not admit the constant
zero modes in their spectrum in the free massless limit. From (4.65) we can read off the
eigenvalues of H and write

Zc.m.
1-loop =

√√√√ ∞∏
n=1

L0
(
n−

(
r
2 + Λ0

))
iL

∞∏
n=1

L0
(
n−

(
r
2 + Λ0

))
−iL . (4.66)

We can now regularize the infinite products and use the value of Λ0 given in (4.18) at the
fixed point to obtain

Zc.m.
1-loop =

(
L

L0

) 1
2 (1−r−2iσ1L+2ρ0L) 1

Γ
(
1− r

2 − iσ1L+ ρ0L
) , (4.67)

where we set σ0 = 0 in (4.18) according to our choice of boundary conditions. This result
resembles the one obtained in [55] for the partition function on the hemisphere with Dirichlet
boundary conditions.

b) This option yields

ind (D10) (t) = qi( r2 +Λ0)
∞∑
n=0

qin + q−i( r2 +Λ0)
∞∑
n=0

q−in , (4.68)

which implies the presence of zero modes for both φ and φ in the vanishing R-charge and
gauge coupling limit. This is compatible with non-normalizable boundary conditions as both
scalars admit constant zero modes in their spectrum in the massless free limit. Although
we do not choose these boundary conditions, this may also be a possible choice upon an
analysis along the lines of section 3. We then have

Zc.m.
1-loop =

√√√√ ∞∏
n=0

−iL(
n+

(
r
2 + Λ0

)) ∞∏
n=0

iL(
n+

(
r
2 + Λ0

)) . (4.69)

Regularizing (4.69) and using (4.18) we can write:

Zc.m.
1-loop =

(
L

L0

) 1
2 (1−r−2iσ1L+2ρ0L)

Γ
(
r

2 − iσ1L+ ρ0L

)
. (4.70)

This result is similar to the result of the theory on hemisphere with Neumann boundary
conditions on the chiral multiplet studied in [55].
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c) This option leads to the following expansion

ind (D10) (t) = qi( r2 +Λ0)
∞∑
n=0

qin + q−i( r2 +Λ0)
∞∑
n=1

qin , (4.71)

which implies the presence of zero mode for φ and absence of zero mode for φ in the
vanishing R-charge and gauge coupling limit. This means that φ follows non-normalizable
boundary conditions and φ follows normalizable ones which is in conflict with these two field
configurations being conjugate to each other. Therefore, this choice is not allowed. In fact,
if we perform the evaluation, we will be lead to inconsistent results as follows: from (4.71)
we obtain

Zc.m.
1-loop =

√∏∞
n=1(n−

(
r
2 + Λ0

)
)/(−iL)∏∞

n=0(n+
(
r
2 + Λ0

)
)/(−iL) .

(4.72)

Using regularization and the value of Λ0 given in (4.18) evaluated at the fixed point,
we obtain

Zc.m.
1-loop =

(
−i L
L0

) 1
2 (1−r−2iσ1L+2ρ0L)

√
Γ
(
r
2 + iσ1L

)
Γ
(
1− r

2 − iσ1L+ ρ0L
) . (4.73)

This result is not well-defined because of an ambiguous choice of phase for i = eimπ
2 ,m ∈

2Z + 1. i.e. the overall factor of the 1-loop includes

Zc.m.
1-loop ∼ eimπ

2 (iσ1+ρ0) . (4.74)

Even if a non-zero value of m could be fixed, the integration over σ1 would make the
partition function divergent.

d) This option gives the same result as option c) with −iL→ iL in the pre-factor in (4.73),
and hence it is not allowed.

As a final observation, we point out that all four options yield the same scale dependence.

Result of full partition function on AdS2. Let us now put together all the results
for AdS2. The contribution form the vector multiplet (4.63) combined with the regularized
contribution from the chiral multiplet (4.67), yields

ZAdS2 =
∫ d(σ1L)

gYML0
exp

(
−SAdS2

tot

∣∣∣
loc.

)
Z ′ v.m.

1-loopZ
c.m.
1-loop , (4.75)

where the 1-loop contributions Z ′ v.m.
1-loop and Zc.m.

1-loop are given (4.63) and (4.67) respectively.
Explicit evaluation in (4.75) yields

ZAdS2 =
(
L

L0

)1− r2 +ρ0L ∫ d(σ1L)
gYML0

(
L

L0

)−iσ1L 1
Γ
(
1− r

2 − iσ1L+ ρ0L
) . (4.76)

The scale dependent pre-factor in (4.76) contains a contribution −1
2 + 1

2(1− r) from the
conformal anomaly as well as a 1 coming from boundary zero modes. Note that the
dependence on the ρ0L can be absorbed into the definition of R-charge. We also note
that (4.76) is equivalent to the hemisphere partition function [47, 55, 56] up to the overall
scaling factor and Chan-Paton factors.
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5 Heat kernel

In this section, we use the heat kernel method [41, 68] for perturbative evaluation of partition
function around the classical saddle. We compare this result with the scaling dependence of
the partition function obtained using supersymmetric localization in the previous section. For
this purpose, we consider the classical Coulomb branch saddle obtained in (2.83) and (2.84),
where it is enough to focus on flat connection. This means we set m = 0 on S2 and σ0 = 0 on
AdS2 in the classical saddle. For this computation, we use standard normalizable boundary
conditions both for bosons and fermions. Although this boundary condition is different from
the supersymmetric boundary condition selected in the localization computation of section 3,
we expect this computation to still agree with the localization one. This expectation is
justified on grounds of similar such agreement obtained, for example, in the calculations of
logarithmic corrections to black hole entropy [42–44, 48, 69] because the results obtained
using heat kernel method with normalizable boundary conditions successfully match with
the ones from the corresponding supersymmetric theory in UV. Rigorous justification will
be discussed in our upcoming paper [51].

In the following subsection 5.1, we present the analysis of the method of heat kernel
and directly state the results in (5.9) and (5.12). The next subsection 5.2 is dedicated to
detailed computations to arrive at these results, first by placing the theory on S2 and then
on AdS2.

5.1 Heat kernel method: analysis and result

The standard saddle point approximation of the partition function instructs us to expand
the action around the classical saddle, and from the quadratic action we compute the 1-loop
determinant by integration over the fluctuation of fields. Since the quadratic action can
have zero modes, we divide the fluctuations into two orthogonal directions, viz., the zero
modes ϕzm and non-zero modes ϕ⊥. Then the partition function is approximated by

Z ∼ e−Scl

∫
DϕzmDϕ⊥ e−S

′′
∣∣
cl
ϕ2
⊥ = e−Scl

∫
Dϕzm Z

′
1-loop . (5.1)

In what follows, we shall analyze first Z ′1-loop which is the result of integration over the
non-zero modes. Then we will discuss the integration measure over the zero modes and
finally directly present the result.

Let us now turn to Z ′1-loop. We begin by treating the bosonic and fermionic cases
separately. Let us call the kinetic operator of a boson Ob. Then the logarithm of the 1-loop
determinant for the boson gives

logZ ′(boson)
1-loop = −1

2 log det′Ob = 1
2

∫ ∞
ε

ds
s

Tr′e−sOb

= 1
2

∫ ∞
ε/L2

ds
s

(
Tr e−sOb − nbzm

)
≡ 1

2

∫ ∞
ε/L2

ds
s

(
Kb (s)− nbzm

)
. (5.2)
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Here, in the first line we use the integral representation of the log function by introducing
the UV cutoff ε which we will take to be zero, and we change the order of trace and the
integration. In the second line we introduce the dimensionless parameter s by absorbing
1/L2. This rescaling makes the eigenvalue of the operator Ob a dimensionless number.
Finally we add the zero mode contribution nbzm to make the trace to be over complete
functional basis and then separately subtract it. In the last step we have defined Kb(s) as
the trace of the heat kernel.

Likewise, we call the kinetic operator of Dirac fermions in the Gaussian path integra-
tion Of . Then logarithm of the 1-loop for the fermions gives

logZ ′(fermion)
1-loop = log detOf = 1

2 log detO2
f = −1

2

∫ ∞
ε

ds
s

Tr′e−sO
2
f

= 1
2

∫ ∞
ε/L2

ds
s

(
−Tr e−sO

2
f + nfzm

)
≡ 1

2

∫ ∞
ε/L2

ds
s

(
Kf (s) + nfzm

)
. (5.3)

Here, we use square of the fermionic kinetic operator O2
f to define the heat kernel and in

the last step we defined the Kf (s) as trace over the heat kernel including a minus sign.
Now the analysis runs parallel to the bosonic case giving the same normalization factor 1

2
in front of the Kf (s). If we use Majorana fermions instead of Dirac fermions, we would
have an additional 1

2 in the normalization.
For both the boson and fermion, the trace of the heat kernel can be expanded as

K (s) =
∞∑

n=−d2

an
sn
, (5.4)

where d is the spacetime dimension which is d = 2 for our case. Next, we need to find out
the contribution to the log of the partition function coming from the path integral measure.
The expansion coefficient an is the spacetime integration of the Seeley-DeWitt coefficients,
which is well-known for the case of massless fields [70, 71]. With this expansion, we collect
the ε-independent terms in the integrations in (5.2) and (5.3) and we obtain the overall
scaling behavior as

logZ ′1-loop =
(
−nbzm + nfzm + a0

)
logL+O (1/L) . (5.5)

The full partition function in (5.1) has integrations over the zero modes. Therefore,
generically, the L dependence of the partition function is given by

Z ∼
∫
Dϕzm L−n

b
zm+nfzm+a0 O(1/L) . (5.6)

The measure contributes additional L factors to the final result which are not captured
in (5.5). In the following, we obtain the overall L dependence by identifying the contribution
of the zero modes as well as calculating the Seeley-DeWitt coefficients on S2 and then
on AdS2.
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S2. We have the constant mode of scalar σ as a bosonic zero mode and the constant
modes of the ghost anti-ghost pair as two fermionic zero modes. Therefore, in (5.6), we have
nbzm = nσzm = 1 and nfzm = nc,czm = 2. Their measure contribution is the following: for zero
modes of the ghost fields, there are no integration measures as they are not in the physical
spectrum. The measure for the zero mode of the scalar is given in (4.19). Therefore, the
total measure is given by ∫

Dϕzm ∼
∫
d (σ0L) . (5.7)

The total contribution of the Seeley-DeWitt coefficient a0 is a sum of contribution from the
vector and chiral multiplet, i.e. a0 = av.m.

0 + ac.m. . They are obtained in (5.35) and (5.37)
respectively in the next section and are

av.m.
0 = −1 , ac.m.

0 = 1− r − 2iσ0L . (5.8)

With the measure (5.7) and these values, we obtain

ZS2 ∼
∫
d (σ0L) L−n

σ
zm+nc,czm+av.m.

0 +ac.m.
0 exp

(
O(1/L)

)
,

= L1−r
∫
d (σ0L) L−2iσ0L exp

(
O(1/L)

)
. (5.9)

We see that the scaling behavior of the partition function is (1− r) in powers of L. Here,
the global contribution is −nσzm + nc,czm = 1 and the local contribution is given by the
constant part of the Seeley-DeWitt coefficients in (5.8), which is −1 + (1− r). These values
match with the corresponding ones found using localization, as discussed in the paragraph
following (4.61).

AdS2. We now do a similar analysis for the theory on AdS2. Here we have 1-form
boundary zero modes and their superpartners as the bosonic and fermionic zero modes,
where the existence of the latter was explicitly shown in (4.34). The number of boundary
zero modes is given in (E.17). Since the 1-form boundary zero modes and their superpartners
are in one-to-one correspondence, the number of these fermionic zero modes are the same.
Therefore, we have nbzm = nA

bdry
zm = −1 and nfzm = n

QeqAbdry
zm = −1 in (5.5). As for the

measure contribution of the 1-form boundary zero modes to the L dependence, we see
in (4.20) that it is trivial, i.e., it does not contribute any L factor to the overall scaling of
the full partition function. The evaluation of the measure contribution for the fermionic zero
modes requires more care. We note in (2.75) that a L1 factor is present in the integration
measure of gaugino. Due to its Grassmann odd nature, for each fermionic zero mode the
measure has L−1 contribution. Therefore, scaling of the total measure is given by∫

Dϕzm ∼ L−n
QeqA

bdry
zm . (5.10)

The total contribution of the Seeley-DeWitt coefficient a0 is a sum of contribution from the
vector and the chiral multiplet. They are obtained in (5.56) and (5.58) respectively in the
next section and are

av.m.
0 = −1

2 , ac.m.
0 = 1

2 (1− r) + ρ0L . (5.11)
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With the measure (5.10) and these values, we obtain

ZAdS2 ∼ L−n
Abdry
zm +av.m.

0 +ac.m.
0 exp

(
O(1/L)

)
= L1− r2 +ρ0L exp

(
O(1/L)

)
. (5.12)

We see that the scaling behavior of the partition function is
(
1− r

2 + ρ0L
)
in powers of L.

Here, the global contribution is −nAbdry
zm = 1 and the local contribution is given by the Seeley-

DeWitt coefficients in (5.11), which is −1
2 + 1

2(1− r) + ρ0L. These values match with the
corresponding ones found using localization, as discussed in the paragraph following (4.76).

In conclusion, the results for S2 in (5.9) and AdS2 in (5.12) agree with the corresponding
ones obtained using localization computation by reproducing both the global and local
contribution to the scaling dependence.

5.2 Calculation of Seeley-DeWitt coefficients

In this section, we compute the Seeley-DeWitt coefficients for the theories on S2 and AdS2
which were presented as results in equations (5.8) and (5.11) in the previous section.

5.2.1 Theory on S2

The vector multiplet. We obtain the Lagrangian for the vector multiplet on S2 by
setting the value of the gravity background as shown in (2.7a). To fix the gauge, we work
in a setting where the gauge field is in the Lorentz gauge. Therefore, to the Yang-Mills
Lagrangian in (2.43), we add the gauge fixing term LGF = 1

2 (∇µAµ)2. This introduces
ghost and anti-ghost fields in our theory and we add anti-commuting ghost and anti-ghost
field (c , c) kinetic term given by, Lghost = ic∇2c. Thus we have the total Lagrangian as

Ltot.
vec = LYM + LGF + Lghost

= 1
2

(
F12 + 1

L
ρ

)2
+ 1

2∂µρ ∂
µρ+ 1

2 (∇µAµ)2

+ 1
2∂µσ ∂

µσ + 1
2D

2 + i
2λγ

µDµλ+ ic∇2c . (5.13)

The contribution to heat kernel from the last line is easily obtained. We first note that the
auxiliary scalar field D has no kinetic term and can be immediately integrated performing the
Gaussian integral. The resulting constant from the integral gives an irrelevant contribution
to the partition function as the functional integration measure is chosen as such in (2.73).
Next, the heat kernel of the free massless scalar σ, massless Dirac fermion λ, λ, and ghost
fields c, c fields are given by the well-known result of heat kernel of scalar and fermion which
are summarized in appendix F. Taking massless limits of (F.3) and (F.9), we obtain

K(s)σS2 = Ksc
S2(s) = 1

s
+ 1

3 + s

15 + · · · ,

K(s)λ,λS2 = Kf

S2 (s) = −2
s

+ 1
3 + s

30 + · · · , (5.14)

K(s)c,cS2 = −2Ksc
S2(s) = −2

s
− 2

3 −
2s
15 + · · · .

Here, the ghost contribution given in the last equation is understood as they contribute as
complex valued Grassmann scalars. Note that these trace evaluations are done over the
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complete functional space as the zero modes of the scalar σ0 and the ghost fields c and c
were added to the heat kernel and subtracted separately as discussed in (5.2) and (5.3).

To obtain the trace of the heat kernel of the remaining fields we need more analysis.
To proceed, let us first club the gauge fixing term with the standard kinetic term for the
vector field to obtain

1
4FµνF

µν + 1
2 (∇µAµ)2 = 1

2Aµ4A
µ , 4Aµ ≡ −∇2Aµ +RµνAν , (5.15)

where Rµν is the Ricci tensor of S2. Then the first line of the Lagrangian in (5.13) is
written as

L(Aµ,ρ) ≡ 1
2

(
ρ Aµ

)−∇2 + 1
L2

1
L
εµν∂µ

1
L
εµν∂ν gµν4+∇µ∇ν


 ρ

Aν

− 1
2Aµ∇

µ∇νAν . (5.16)

Using the standard decomposition of a vector in two dimensions as

Aµ = ∂µa1 + εµν∂
νa2 , (5.17)

where a1 and a2 are normalizable scalars, we obtain

L(Aµ,ρ) = 1
2

(
ρ εµσ∂

σa2

)−∇2 + 1
L2

1
L
εµν∂µ

1
L
εµν∂ν gµν4+∇µ∇ν


 ρ

ενλ∂
λa2

 (5.18)

− 1
2∂µa1∇µ∇ν∂νa1 .

Now, we expand all the scalars in the basis of the eigenfunctions of the scalar Laplacian as17

ρ =
∞∑
l=0

l∑
m=−l

ρlmYlm , a1 =
∞∑
l=1

l∑
m=−l

a1,lm
Ylm
L
√
κl
, a2 =

∞∑
l=1

l∑
m=−l

a2,lm
Ylm
L
√
κl

,

(5.19)

where Ylm are the spherical harmonics and κl is the eigenvalue of Laplacian operator on
S2 given by κl = l(l+1)

L2 . We note that while in the scalar ρlm, the modes are labelled by
l ∈ {0, 1, 2, · · · }, the modes of the scalars a1,2 in the decomposition of the vector in (5.17)
are labelled by l ∈ {1, 2, 3, · · · }, i.e., the l = 0 mode is excluded. This is because Yl=0,m=0 (x)
is a constant and therefore (5.17) shows that this mode will not give us any gauge field
component. Then, using the orthonormality property of the spherical harmonics, we obtain

L(Aµ,ρ) = 1
2

[ ∞∑
l=1

l∑
m=−l

(
ρlm

a2,lm
L

)κl + 1
L2

1
L

√
κl

1
L

√
κl κl


 ρlm
a2,lm
L


+
(
κ0 + 1

L2

)
ρ2

00 +
∞∑
l=1

l∑
m=−l

κl

(
a1,lm
L

)2
]
. (5.20)

17The basis is real, or can be chosen to be real.
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We note that the modes of scalar ρlm with l 6= 0 couple to the half of the modes in
vector, a2,lm, which is expressed by a matrix. Another half of vector modes a1,lm and
constant mode of scalar ρ00 are isolated.

The contribution of the modes a1,lm to the heat kernel is simply given by the heat
kernel of a scalar obtained as the massless limit of (F.3). Here, since the index l of the
modes starts from 1 instead of 0, as discussed, the heat kernel is

Ka1
S2 (s) = Ksc

S2(s)− 1 = 1
s
− 2

3 + s

15 + 4s2

315 + · · · . (5.21)

To obtain the heat kernel contribution from ρlm and a2,lm modes, we diagonalize the
square matrix in (5.20) and define the heat kernel with the eigenvalues of the diagonal

matrix. The eigenvalues λ1 ,2 of the matrix are λ1 = l2

L2 and λ2 = (l + 1)2

L2 . Together with
the eigenvalue for the ρ00 mode, which is 1/L2, the contribution to the trace of the heat
kernel from the ρlm and a2lm modes is given by

Kρ+a2 (s) = e−s +
∞∑
l=1

[
(2l + 1) e−sl2 + (2l + 1) e−s(l+1)2

]

=
∞∑
l=0

(2l + 1)e−sl2 +
∞∑
l=0

(2l + 1)e−s(l+1)2 − 1 , (5.22)

where the first term in the right hand side of the first line is obtained from ρ00 mode and
the second term is from the modes in the matrix. In the second line of (5.22), we have
rearranged such that summation start from l = 0. To evaluate the above series, we use the
fact that the function λ tan (πλ) has poles at λ = (2l + 1)

2 with residue equal to −(2l + 1)
2π

for l = 0, 1, 2, 3, · · · . Therefore, by residue theorem, we rewrite the series as
∞∑
l=0

(2l + 1) e−sl2 = e−
s
4

[1
i

(∮
C
dλλ tan πλe−sλ(λ−1)

)]
, (5.23)

∞∑
l=0

(2l + 1) e−s(l+1)2 = e−
s
4

[1
i

(∮
C
dλλ tan πλe−sλ(λ+1)

)]
, (5.24)

where the contour C is the sum of contours C+, C− and C∞ as depicted in figure 1. Selecting
a small angle θ, we have∮

C
dλλ tan πλe−sλ(λ±1) = 2i Im

(∫
C−

dλλ tan πλe−sλ(λ±1)
)
. (5.25)

Let us now expand the trigonometric function tan πλ with e2πiλ as an expansion parameter,

tan πλ = 1
i

[
1− 2 exp (−2πiλ)

1 + exp (−2πiλ)

]
= −i

[
1 + 2

∞∑
k=1

(−1)k exp (−2πikλ)
]
. (5.26)

Here, the choice of expansion parameter is dictated by the contour C−. Namely, on C− this
expansion parameter satisfies Re [exp (−2πiλ)] < 1 and the above series converges. Let us
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Re(λ)

Im(λ)

× × × ×

C+

C−

θ C∞

Figure 1. The figure sketches the contour in the complex λ plane with the poles indicated by red
crosses distributed along the horizontal axis.

take the limit θ → 0, then

Im
(∫

C−
dλ λ tan πλ e−sλ(λ±1)

)

= − lim
θ→0

∫ 0

∞e−iθ
dλ λ

[
1 + 2

∞∑
k=1

(−1)k exp (−2πikλ)
]
e−sλ(λ±1)

=
∫ ∞

0
dλ λ

[
1 + 2

∞∑
k=1

(−1)k exp (−2πikλ)
]
e−sλ(λ±1) . (5.27)

Using the above and (5.25), we have

∞∑
l=0

(2l+1
2π

)
e−sl2 = 2e−

s
4

∫ ∞
0

dλ λ

[
1+2

∞∑
k=1

(−1)k exp(−2πikλ)
]
e−sλ(λ−1) , (5.28)

∞∑
l=0

(2l+1
2π

)
e−s(l+1)2

= 2e−
s
4

∫ ∞
0

dλ λ

[
1+2

∞∑
k=1

(−1)k exp(−2πikλ)
]
e−sλ(λ+1) . (5.29)

The above integrations can directly be performed and gives the following result as a series
expansion in s. Then (5.22) gives us

Kρ+a2
S2 (s) =

(
2
s
− 1

3 −
s

30 −
s2

126 +O
(
s3
))

. (5.30)

Therefore, collecting (5.14), (5.21) and (5.30), we get the trace of heat kernel for vector
multiplet on S2 as

Kv.m.
S2 = Kρ+a2

S2 (s) +Ka1
S2 (s) +Kσ

S2 (s) +Kc,c

S2 (s) +Kλ,λ

S2 (s) = −1 +O
(
s3
)
. (5.31)

Note here that the O(1/s) divergences coming from trace of heat kernel of each field
cancel. In fact there is no s dependent corrections, which we will show below using an
alternative derivation.
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Alternative derivation. We will now show that in fact the right hand side of (5.31)
receives no s dependent corrections. Let us recall that the contribution to the trace of the
heat kernel due to the ghosts cancels the s dependent contributions coming from the scalars
a1 and σ. Explicitly,

Ka1
S2 (s) +Kσ

S2 (s) +Kc,c

S2 (s) =
(
Ksc

S2(s)− 1
)

+Ksc
S2 (s)− 2Ksc

S2 (s) = −1 . (5.32)

We are then left with Kρ+a2
S2 (s) and Kλ,λ

S2 (s). From (5.22) we have,

Kρ+a2
S2 (s) +Kλ,λ

S2 (s) =
( ∞∑
l=0

(2l + 1)e−sl2 +
∞∑
l=0

(2l + 1)e−s(l+1)2 − 1
)
− 4

∞∑
l=1

le−sl2

=
( ∞∑
l=0

(2l + 1)e−sl2 +
∞∑
l=1

(2l − 1)e−sl2 − 1
)
− 4

∞∑
l=1

le−sl2

=
( ∞∑
l=1

(2l + 1)e−sl2 +
∞∑
l=1

(2l − 1)e−sl2
)
− 4

∞∑
l=1

le−sl2

= 0 . (5.33)

Altogether, we get

Kv.m.
S2 (s) = Kρ+a2

S2 (s) +Ka1
S2 (s) +Kσ

S2 (s) +Kc,c

S2 (s) +Kλ,λ

S2 (s) = −1 . (5.34)

This is an exact result because the right hand side receives no corrections in higher order of
s. Therefore, we have obtained the s independent Seeley-DeWitt coefficient, av.m.

0,S2 , of the
Kv.m.

S2 (s) as
av.m.

0,S2 = −1 . (5.35)

The chiral multiplet. As can be seen from the Lagrangian for the chiral multiplet
in (2.58), it has a massive complex scalar and a massive fermion. Therefore, the chiral
multiplet has the following contribution to the trace of the heat kernel, given by

Kc.m.
S2 (s) = 2Ksc

S2 (s,mb) +Kf
S2 (s,mD) , (5.36)

where the auxiliary fields F and F have been integrated out and they do not contribute to the
heat kernel. The masses for the scalars and the fermions are summarised in equations (2.59)
and (2.60) respectively. Following (F.3) and (F.9), we obtain the s independent Seeley-
DeWitt coefficient ac.m.

0,S2 of Kc.m.
S2 (s) as

ac.m.
0,S2 = 1− r − 2iσ0L . (5.37)

Equations (5.35) and (5.37) conclude our evaluation of Seeley-DeWitt coefficients of the
vector and chiral multiplet for the theory on S2. They were collectively presented in (5.8).
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5.2.2 Theory on AdS2

The vector multiplet. From the review of the theory given in section 2, we begin by
setting the value of the gravity background as in (2.7b). As in the S2 case, we work in the
Lorentz gauge. So we add the gauge fixing term LGF = 1

2 (∇µAµ)2 to the Lagrangian. This
introduces ghosts in our theory and we add the term for the anti-commuting ghost and
anti-ghost field (c , c), Lghost = ic∇2c. Thus we have the total Lagrangian as

Ltot.
vec = LYM + LGF + Lghost

= 1
2

(
F12 −

iσ
L

)2
+ 1

2∂µσ∂
µσ + 1

2 (∇µAµ)2

+ 1
2∂µρ∂

µρ+ 1
2D

2 + i
2λγ

µDµλ+ ic∇2c . (5.38)

The subsequent analysis mirrors the S2 case. The contribution to the trace of the heat
kernel from the second line is easily obtained. Again, the auxiliary scalar field D can be
immediately integrated out and gives an irrelevant contribution to the partition function.
Next, the heat kernel of the free massless scalar ρ, massless Dirac fermion λ, λ, and ghost
fields c, c fields are given by the well-known result of heat kernel of scalar and fermion which
are summarized in appendix F. Taking massless limits of (F.5) and (F.13), we obtain

K(s)ρAdS = Ksc
AdS(s) = − 1

2s + 1
6 −

s

30 + · · · ,

K(s)λ,λAdS = Kf
AdS (s) = 1

s
+ 1

6 −
s

60 + · · · , (5.39)

K(s)c,cAdS = −2Ksc
AdS(s) = 1

s
− 1

3 + s

15 + · · · .

Note that these trace evaluations too are done over the complete functional space as the
zero modes of λ and λ which are the superpartners of the 1-form boundary zero modes,
were added and subtracted separately.

As in the case of S2, obtaining the heat kernel contribution of the rest of the fields
in (5.38) requires more analysis. We first club the gauge fixing term with the standard
kinetic term for the vector field to obtain

1
4FµνF

µν + 1
2 (∇µAµ)2 = 1

2Aµ4A
µ , 4Aµ ≡ −∇2Aµ +RµνAν , (5.40)

where, now Rµν is the Ricci tensor of AdS2. Then the first line of the total Lagrangian is
written as

L(Aµ,σ) ≡ 1
2

(
σ Aµ

)−∇2 − 1
L2 − i

L
εµν∂µ

− i
L
εµν∂ν gµν4+∇µ∇ν


 σ

Aν

− 1
2Aµ∇

µ∇νAν . (5.41)

We use the standard decomposition of a vector on AdS2 as

Aµ = ∂µa1 + εµν∂
νa2 + ∂µΛ , (5.42)
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where a1 and a2 are normalizable scalars and Λ is non-normalizable scalar which give rise
to boundary zero modes. (See (E.18) for more explicit form.) The zero mode part from the
Λ disappears from the Lagrangian. From the non-zero modes, we obtain

L(Aµ,σ) = 1
2

(
σ εµσ′∂

σ′a2

)−∇2 − 1
L2 − i

L
εµν∂µ

− i
L
εµν∂ν gµν4+∇µ∇ν


 σ

ενλ∂
λa2

 (5.43)

− 1
2∂µa1∇µ∇ν∂νa1 .

Let us expand the scalars in the basis of the eigenfunctions of the Laplacian (E.10) as

σ =
∞∑
k=0

∫ ∞
0

dλ σλ,kfλ,k(x) ,

a1 =
∞∑
k=0

∫ ∞
0

dλ
1

L
√
κλ
a1λ,kfλ,k(x) , a2 =

∞∑
k=0

∫ ∞
0

dλ
1

L
√
κλ
a2λ,kfλ,k(x) , (5.44)

where the expansion of a1 and a2 stem from the basis of the vector (E.15) and we have
denoted κλ as the eigenvalue of the scalar Laplacian, i.e., κλ = 1

L2

(
λ2 + 1

4

)
. Using the

orthonormality of the eigenfunctions, (5.43) reduces to

L(Aµ,σ) = 1
2

(
σλ,k

a2λ,k
L

)κλ− 1
L2 − i

L

√
κλ

− i
L

√
κλ κλ


 σλ,k
a2λ,k
L

+ 1
2κλ

(
a1λ,k
L

)2
. (5.45)

Let us deal with the a1 mode first. The contribution of the mode a1 to the trace of the
heat kernel is given by the massless limit of (F.5). So,

Ka1
AdS (s) = Ksc

AdS(s) = − 1
2s + 1

6 −
s

30 + · · · . (5.46)

Next, we treat the σ and the a2 modes which are coupled. To proceed, we diagonalize
the square matrix given in (5.45). The eigenvalues of the square matrix are given by
L−2

(
λ+ i

2

)2
and L−2

(
λ− i

2

)2
. So, the trace of the heat kernel for these modes is

given by

Kσ+a2
AdS (s) = 1

L2

∫
AdS

d2x
√
g
∞∑
k=0

∫
dλ f∗λ,k (η,θ)fλ,k (η,θ)exp

[
−s
(
λ+ i

2

)2 ]
+ 1
L2

∫
AdS

d2x
√
g
∞∑
k=0

∫
dλ f∗λ,k (η,θ)fλ,k (η,θ)exp

[
−s
(
λ− i

2

)2 ]
. (5.47)

Using the homogeneity of AdS2, we evaluate the above at the origin η = 0. Since the
eigenfunction at the origin is given by (E.14), the heat kernel simplifies to

Kσ+a2
AdS (s) = −

∫ ∞
0

dλ λ tanh πλ
[

exp
[
− s

(
λ+ i

2

)2 ]
+ exp

[
− s

(
λ− i

2

)2 ]]
, (5.48)
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where we have used the fact that the regularized volume integral over AdS2 in (5.47) gives
a factor of −2πL2 .

To evaluate this integral, we expand hyperbolic function in the integrand as follows:

tanh πλ = 1− 2 exp (−2πλ)
1 + exp (−2πλ) = 1 + 2

∞∑
k=1

(−1)k exp (−2kπλ) . (5.49)

We compute the constant part and the k dependent part of (5.49) separately in the
integral (5.48). Plugging the constant part the integration gives18

I1 = −
∫ ∞

0
dλ λ

[
exp

[
−s

(
λ+ i

2

)2 ]
+ exp

[
−s

(
λ− i

2

)2 ]]
= −1

s
+ 1

4 + s

96 + · · · . (5.50)

We plug the k dependent terms in (5.49) into the integrand of (5.48) and we have
the following:

I2 = −2
∞∑
k=1

(−1)k
∫ ∞

0
dλ λ exp (−2kπλ)

[
exp

[
−s
(
λ+ i

2

)2
]

+ exp
[
−s
(
λ− i

2

)2
] ]

= 1
12 + s

160 + · · · . (5.51)

Note that to evaluate the above, we first expand the exponential functions in the crotches
in a series in s, perform the integration for each term in the series and then take the sum
order by order.19 Then we obtain that

Kσ+a2
AdS (s) = I1 + I2 = −1

s
+ 1

3 + s

60 + · · · . (5.52)

The above is the contribution only from the normalizable modes. In order to define the
heat kernel as the trace over complete functional space, we add the contribution of the
1-form boundary zero modes, which is given by

KΛ
AdS(s) = nA

bdry
zm = −1 . (5.53)

Therefore, at long last, from (5.46), (5.52) and (5.53) and we have

K
(Aµ,σ)
AdS (s) = Ka1

AdS (s) +Kσ+a2
AdS (s) +KΛ

AdS(s) . (5.54)

So, using (5.39) and (5.54), taken altogether, we have

Kv.m.
AdS (s) = K

(Aµ,σ)
AdS (s) +Kρ

AdS (s) +Kc,c
AdS (s) +Kλ,λ

AdS (s) = −1
2 +O (s) (5.55)

18The full integral can actually be done in closed form and is expressed in terms of (imaginary) Error
Function Erfi(s), but for our purposes, the given series expansion is sufficient.

19Tacitly, we have interchanged the order of integration and the summation and it is not a priori clear that
the result should be the same. This is understood as follows. We note that in λ→ 0 limit, the integrand
diverges as exp

(
s
4

)
. Therefore, the path integral will not be well defined. However, we can truncate the

contribution from the large s regime by expanding the exponentials in a series in s and keep terms up to
some finite order in s. In fact, for our purposes, we would be interested in only the s independent term
in the final result. This process is also standard in string theory where the integration over the modular
parameter is done last. At the level of the path integral, this seems to correspond to contour deformations
where the path integral is well defined. For example, see [42, 72].
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and thus the s independent Seeley-DeWitt coefficient, av.m.
0,AdS of Kv.m.

AdS (s) is given by

av.m.
0,AdS = −1

2 . (5.56)

Note here, like the S2 case, the O(1/s) divergences coming from trace of heat kernel of each
field cancel. However, O (s) terms survive, which was not the case in S2.

The chiral multiplet. The contribution of the chiral multiplet to the heat kernel on
AdS2 is calculated as we did for the case on S2. The contribution is obtained as

ac.m.
0,AdS = 2Ks

AdS (s,mb) +Kf
AdS (s,mf ) . (5.57)

The masses for the scalars and the fermions are summarised in equations (2.59) and (2.60)
respectively and we have calculated the contribution to the heat kernel of massive scalars
and massive fermions in (F.5) and (F.13) respectively and have been summarised in (F.5)
and (F.13) and. Using them, we get

ac.m.
0,AdS = 1

2 (1− r) + ρ0L . (5.58)

Equations (5.56) and (5.58) conclude our evaluation of Seeley-DeWitt coefficients and
the contribution to the trace of the heat kernel of the vector and chiral multiplet for the
theory on AdS2. They are presented in (5.11).

6 Conclusions

During our study of supersymmetric localization on AdS2, we have shed light on several
aspects that we hope will aid a systematic application of this powerful tool in other non-
compact spaces. Let us now highlight those issues we have clarified as well as several
possible open problems that we leave for the future.

• We have refined the construction of the equivariant superalgebra for supersymmetric
field theory on AdS2. This is done by defining the quantity Λ0 as we did in (2.31)
such that it removes the non-normalizable contributions to the superpartners of ghost.
Our new understanding of the equivariant algebra is that Q2

eq closes to the isometry
plus large gauge transformation. It is natural to expect that this structure will go
through for generic gauge theories including supergravity. The equivariant algebra
will close to all the gauge transformations with large gauge parameters that include
diffeomorphism, Lorentz transformation and local supersymmetry.

• We have noticed that the supersymmetric boundary condition for localization com-
putation requires us to use seemingly non-normalizable mode for some fields. An
important observation is that the heat kernel calculation is carried out using a different
set of boundary conditions. Nevertheless, we see that the heat kernel computation
matches with the result of localization. The reason for this agreement is yet to be
understood. A rigorous explanation will be provided in our upcoming paper [51].
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• We have chosen a Dirichlet type (normalizable) boundary condition for bosonic fields
compatible with supersymmetry and the variational principle. A direction that can
immediately be explored is to find a more systematic treatment of the most general
boundary conditions that are allowed by the variational principle and supersymmetry.
It would be interesting to explore further in this direction by including more general
boundary terms.

• Based on this supersymmetric boundary condition, we have identified which zero modes
are part of the spectrum and how they are organized according to supersymmetry.
Specifically, among those zero modes we find the superpartners of 1-form boundary
zero modes whose existence we have proved. This was crucial to capture the full scale
dependence of the partition function. Based on the fact that the superpartner of
boundary 1-form zero modes exist in the spectrum of normalizable modes of fermions,
it is natural to expect that this situation generalizes such that, in supergravity,
boundary zero modes of graviton and gravitino have their superpartners exist in the
spectrum of normalizable basis of fermion and boson respectively [30].

• As we have explained in the body of the paper, the outcome of applying the index
method is intrinsically ambiguous. We understand that the expansion of the index
should be such that its constant part encodes the number of zero modes admitted
by the boundary condition. Based on this, we single out the correct way to expand
the index in terms of the equivariant parameter thus yielding the correct 1-loop
determinant. We expect this prescription to be applicable to more generic situations
including supergravity in non-compact backgrounds.

• Our result of AdS2 partition function coincides with the hemisphere partition function
with Dirichlet boundary condition for chiral multiplet up to overall scaling factor and
Chan-Paton factors. It may be natural that the local part of partition function is
insensitive to the local Weyl scaling that maps the hemisphere to AdS2. Making this
relation more precise may require extension of our result to non-Abelian gauge theories.

• Any extremal supersymmetric asymptotically flat black hole has an AdS2 factor in
the near horizon geometry. By dimensionally reducing along the internal manifold, we
would obtain a theory on AdS2 containing an infinite tower of Kaluza-Klein modes.
Therefore, inclusion and treatment of Kaluza-Klein modes in our theory would give
us non-trivial insight into the physics of these supersymmetric black holes.

• Since we have successfully applied the localization method in the example of AdS2,
we would also like to investigate a larger class of supersymmetric observables in
general dimensional anti-de Sitter space. This may even include supergravity theories,
and will provide an exact test for the AdSd+1/CFTd correspondence including both
perturbative and non perturbative effects.
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A Gamma matrix in Euclidean 2d

In the Euclidean two dimensions, there are two choices of gamma matrix representation

γ†a = γa , (A.1)
γ∗a = γTa = ±C±γaC−1

± , C†± = C−1
± , CT± = ±C± ⇔ C∗±C± = ±1 . (A.2)

Chirality operator is defined as
γ(3) ≡ −iγ12 . (A.3)

Majorana spinor are defined only using C+, and the spinor is not compatible with
Weyl condition.

ψ∗± = C+ψ∓ . (A.4)

We can use Pauli matrix for the gamma matrix γa = (τ1 , τ2 , τ3), and the charge conjugation
matrix C± can be chosen as20

C+ = γ1 , C− = γ2 . (A.5)

Symmetric property is

(C±)T = ±C± , (C±γa)T = C±γa , (C±γab)T = ∓C±γab , (A.6)

which is followed by, dealing with anti-commuting spinors,

ε̃αλ
α ≡ εTαC±αβλβ = ∓λ̃αεα . (A.7)

ε̃(γa)λ = −λ̃γaε , ε̃γabλ = ±λ̃γabε , (A.8)

where we define the conjugate spinor as ε̃ ≡ εTC± .
Throughout the main body of this paper, we have used the gamma matrix representation

with the charge conjugation matrix C− and simply call it C, i.e.

C ≡ C− = γ2 . (A.9)
20The authors of [31] use the C−.
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Summary. Gamma matrix representation

γ∗a = γTa = −CγaC−1 , C† = C−1 , CT = −C ⇔ C∗C = −1 . (A.10)

is followed by the properties

(Cγa)T = Cγa , (Cγab)T = Cγab . (A.11)

We define multiplication of two spinors ψ and χ as

ψχ ≡ ψTCχ . (A.12)

Then, for Grassmann even ψ and χ, the bi-spinors follows the symmetry properties

ψχ = −χψ , ψγaχ = χγaψ , ψγabχ = χγabψ . (A.13)

Fierz identity: for Grassmann even spinors,

(ψλ)(ρε) = 1
2(ρλ)(ψε) + 1

2(ργaλ)(ψγaε) + 1
2(ργ3λ)(ψγ3ε) . (A.14)

If λ and ρ are Grassmann odd, the overall sign changes.

B Killing spinors

B.1 S2 Killing spinor

On the S2 background with the size L described by the following metric

ds2 = L2(dψ2 + sin2 ψ dθ2) , (B.1)

we have Killing spinors satisfying two conformal Killing spinor equations for the possible
two sign choice s = ±1 ,

Dµε = s
i

2Lγµε . (B.2)

Here the covariant derivatives on ε are Dψ = ∂ψ and Dθ = ∂θ − 1
2 cosψ γ12.

These equations are solved by the general solution

εs =
√
L exp

(
s

i
2γ1ψ

)
exp

(
θ

2γ12

)
ε0 , (B.3)

where the ε0 is a complex constant spinor.
Let us choose the gamma matrix representation by the Pauli sigma matrix γa = τa,

and let β± are the chiral and anti-chiral component of the constant spinor ε0 with respect
to the τ3.

ε = β+ε
s
+ + β−ε

s
− , (B.4)

where

εs+ =
√
Leiθ/2

 cos ψ2
is sin ψ

2

 , εs− =
√
Le−iθ/2

is sin ψ
2

cos ψ2

 . (B.5)
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They satisfy
(εs±)† = ∓i(εs∓)T τ2 , (εs±)† = (ε−s∓ )T τ1 . (B.6)

Let us define bispinors (Kss′
αα′)A = ε̃sατAε

s′
α′ , where we denoted {τ1 , τ2 , τ3 , τ4} ≡ {τ1 , τ2 , τ3 , 1}

and ε̃ ≡ εT τ2. Then,

(K++
++ )A =Leiθ{−i ,cosψ ,−sinψ ,0} , (K++

+− )A =L{0 , i sinψ , i cosψ ,−i} ,
(K++
−− )A =Le−iθ{i ,cosψ ,−sinψ ,0} , (K++

−+ )A =L{0 , i sinψ , i cosψ , i} ,
(K+−

++ )A =Leiθ{−i cosψ ,1 ,0 ,−sinψ} , (K+−
+− )A =L{−sinψ ,0 , i ,−i cosψ} ,

(K+−
−− )A =Le−iθ{i cosψ ,1 ,0 ,sinψ} , (K+−

−+ )A =L{sinψ ,0 , i , i cosψ} ,
(K−+

++ )A =Leiθ{−i cosψ ,1 ,0 ,sinψ} , (K−+
+− )A =L{sinψ ,0 , i ,−i cosψ} ,

(K−+
−− )A =Le−iθ{i cosψ ,1 ,0 ,−sinψ} , (K−+

−+ )A =L{−sinψ ,0 , i , i cosψ} ,
(K−−++ )A =Leiθ{−i ,cosψ ,sinψ ,0} , (K−−+− )A =L{0 ,−i sinψ , i cosψ ,−i} ,
(K−−−− )A =Le−iθ{i ,cosψ ,sinψ ,0} , (K−−−+ )A =L{0 ,−i sinψ , i cosψ , i} .

(B.7)

In this paper, for the purpose of localization we identify ε ≡ ε+
+ and ε ≡ −ε+

−. Then,

ετµε =
(
0 ,−i

)
, ετ3ε = −iL cosψ , εε = −iL . (B.8)

These Killing spinors satisfy the following projection condition:

ε = P+ε , ε = P−ε , (B.9)

where we define the projectors

P± = 1
2
(
1± eiγ1ψγ3

)
= 1

2 (1± cosψγ3 ± sinψγ2) , (B.10)

satisfying the projection property, P 2
± = P± . The projectors are conjugate to each other as

(P±)† = C−1(P∓)TC . (B.11)

Using the expression of the bispinors in (2.12), we may re-express the projectors as

P± = 1
2

(
1± i

L
(εγ3ε)γ3 ±

i
L

(εγ2ε)γ2

)
. (B.12)

B.2 AdS2 Killing spinor

On the AdS2 background with the size L described by the following metric

ds2 = L2(dη2 + sinh2 η dθ2) , (B.13)

we have Killing spinors satisfying two conformal Killing spinor equations for the possible
two sign choice s = ±1,21 ,

Dµε = s
i

2Lγµγ3ε . (B.14)

Here the covariant derivatives on ε are Dη = ∂η and Dθ = ∂θ − 1
2 cosh η γ12.

21This Killing spinor equation with representation γa = τa is equivalent to choose Killing spinor equation
Dµε = s 1

2Lγµε with representation γa = −iτaτ3.
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These equations are solved by the general solution

εs = esτ1
η
2 ε(θ) ≡

√
L exp

(
s

i
2γ1γ3η

)
exp

(
θ

2γ12

)
ε0 , (B.15)

where the ε0 is a complex constant spinor.
Let us choose the gamma matrix representation by the Pauli sigma matrix γa = τa,

and let α± are the chiral and anti-chiral component of the constant spinor ε0 with respect
to the τ3.

ε = α+ε
s
+ + α−ε

s
− , (B.16)

where

εs+ =
√
Leiθ/2

 cosh η
2

si sinh η
2

 , εs− =
√
Le−iθ/2

−si sinh η
2

cosh η
2

 . (B.17)

Two spinors are related by the complex conjugation as

(εs±)† = (εs∓)T τ1 , (εs±)† = ∓i(ε−s∓ )†τ2 . (B.18)

Let us define bispinors (Kss′
αα′)A = ε̃sατAε

s′
α′ , where we denote {τ1 , τ2 , τ3 , τ4} ≡ {τ1 , τ2 , τ3 , 1}

and ε̃ ≡ εT τ2. Then,

(K++
++ )A =Leiθ{−i coshη ,1 ,−sinhη ,0} , (K++

+−)A =L{−sinhη ,0 , i coshη ,−i} ,
(K++

−−)A =Le−iθ{i coshη ,1 ,sinhη ,0} , (K++
−+)A =L{−sinhη ,0 , i coshη , i} ,

(K+−
++ )A =Leiθ{−i ,coshη ,0 ,−sinhη} , (K+−

+− )A =L{0 , i sinhη , i ,−i coshη} ,
(K+−

−−)A =Le−iθ{i ,coshη ,0 ,−sinhη} , (K+−
−+ )A =L{0 ,−i sinhη , i , i coshη} ,

(K−+
++ )A =Leiθ{−i ,coshη ,0 ,sinhη} , (K−+

+− )A =L{0 ,−i sinhη , i ,−i coshη} ,
(K−+

−−)A =Leiθ{i ,coshη ,0 ,sinhη} , (K−+
−+ )A =L{0 , i sinhη , i , i coshη} ,

(K−−
++ )A =Leiθ{−i coshη ,1 ,sinhη ,0} , (K−−

+− )A =L{sinhη ,0 , i coshη ,−i} ,
(K−−

−− )A =Le−iθ{i coshη ,1 ,−sinhη ,0} , (K−−
−+ )A =L{sinhη ,0 , i coshη , i} .

(B.19)

In this paper, for the purpose of localization we identify ε ≡ ε+
+ and ε ≡ −ε−−. Then,

ετµε =
(
0 ,−i

)
, ετ3ε = −iL , εε = −iL cosh η . (B.20)

These Killing spinors satisfy the following projection condition:

ε = P+ε , ε = P+ε , (B.21)

where we define the projectors

P± = 1
2 (1± eγ2ηγ3) = 1

2 (1± cosh η γ3 ± i sinh η γ1) , (B.22)

P± = 1
2
(
1∓ e−γ2ηγ3

)
= 1

2 (1∓ cosh η γ3 ± i sinh η γ1) ,
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and indeed satisfy the projection property, P 2
± = P± and P 2

± = P± . Two projectors are
conjugate to each other as

(P±)† = C−1(P±)TC . (B.23)

Using the expression of the bispinors in (2.18), we may re-express the projectors as

P± = 1
2

(
1± i

L
(εε)γ3 ∓

1
L

(εγ2ε)γ1

)
, P± = 1

2

(
1∓ i

L
(εε)γ3 ∓

1
L

(εγ2ε)γ1

)
. (B.24)

C Atiyah-Bott fixed point formula

In this section, we present the Atiyah-Bott fixed point formula [37–39]. In order to show
how the formula works, we take simple examples for de-Rham cohomology on S2 and
AdS2. Although the fixed point formula was formulated in compact manifold as far as
we understand, we apply it also to the AdS2 which is non-compact space and test it by
comparing with direct computation.

Consider an elliptic complex of vector bundles E on a smooth manifold X, which is
a sequence of smooth vector bundle Ei over X and differential operators on the smooth
sections of the bundles di : Γ(Ei) → Γ(Ei+1). For a linear map Ti : Γ(Ei) → Γ(Ei), we
define the Lefschetz number of T by

L(T ) :=
n∑
i=0

(−1)iTrHiT , (C.1)

where H i =Kernel(di)/Image(di−1). For a map f : X → X, which sends a point x ∈ X
to f(x), we can define f∗Ei, which is a pullback of Ei by f . Moreover the map f induces a
map γi : Eif(p) → Eip, where p ∈ X. Let the linear map Ti be a geometric endomorphism of
Ei associated to (f , γi), i.e. T := γ ◦ f∗. If the fixed points on X under f are isolated, we
have the following formula,

L(T ) =
∑

{x|f(x)=x}

(−1)iTrEi γ
det(1− ∂f(x)/∂x) . (C.2)

Examples: we take de-Rham cohomology on two dimensions as an example,

0 d−−→ Ω0 d−−→ Ω1 d−−→ Ω2 d−−→ 0 , (C.3)

where the cohomology group is defined as

Hp = Zp

Bp
= closedΩp

exactΩp
. (C.4)

On S2: the metric is given by
ds2 = 4dzdz

(1 + zz)2 . (C.5)

Consider the map T = e−itJ3 that is associated to the rotation of spacetime coordinate
z → f(z) = eitz. The fixed points are given by z = 0 or 1/z = 0 which are the north pole or
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south pole of S2 respectively. At both of the north and south pole, the determinant factor
in the denominator of (C.2) is, with ζ = eit,

det(1− ∂f(x)/∂x) = (1− ∂f(z)/∂z)(1− ∂f(z)/∂z) = (1− ζ)(1− ζ−1) . (C.6)

Furthermore, for each Ωp, we have

TrΩ0 e−itJ3 = 1 , TrΩ1 e−itJ3 = ζ + ζ−1 , TrΩ2 e−itJ3 = 1 . (C.7)

Therefore, the fixed point formula (C.2) gives the Lefschetz number of e−itJ3 as

L(e−iJ3) = 2 1− ζ − ζ−1 + 1
(1− ζ)(1− ζ−1) = 2 . (C.8)

For direct computation, we identify the cohomology group Hp, which are

H0 = constant , H1 = ∅ , H2 = constant . (C.9)

Therefore, the definition (C.1) leads us to obtain

L(e−iJ3) =
2∑
p=0

TrHp(−1)pe−itJ3 = TrH0e−itJ3 + TrH2e−itJ3 = 2 . (C.10)

On AdS2: the metric is given by

ds2 = 4dzdz
(1− zz)2 , (C.11)

which has topology of a disk. We consider the map T = e−itL0 that is associated to the
rotation of spacetime coordinate z → f(z) = eitz. The fixed point is given by z = 0 which
is the center of AdS2. At the center, the determinant factor in the denominator and the
trace of T over the Ωp in the numerator of (C.2) are same as S2, which are (C.6) and (C.7).
Since there is one fixed point, the fixed point formula (C.2) gives the Lefschetz number
of e−itL0 as half of the one for S2,

L(e−itL0) = 1− ζ − ζ−1 + 1
(1− ζ)(1− ζ−1) = 1 . (C.12)

For direct computation, we identify the cohomology group Hp, which are

H0 = ∅ , H1 = {A(`)} , H2 = ∅ , (C.13)

where A(`) , ` = ±1 ,±2 , · · · , is the boundary zero mode as presented in (E.16). Therefore,
the definition (C.1) leads us to obtain

L(e−iL0) =
2∑
p=0

TrHp(−1)pe−itL0 = −TrH1e−itL0 (C.14)

= −
±∞∑
`=±1

ζ` = − ζ

1− ζ −
ζ−1

1− ζ−1 = 1 . (C.15)
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D Regularization formula

In this section, we sketch the Zeta function regularization of the infinite products that have
typically appeared in the calculation of 1-loop determinants. For further details, see [65]
where the case of complex x was proven, here we shall only focus on Re(x) ≥ −1, which we
assume form now on just to illustrate the process of regularization. The generic building
blocks forming the 1-loop contribution are the following infinite products:

Zx,L =
∞∏
n=1

(
n+ x

L

)
. (D.1)

Since there are infinite powers of the length scale L and we want to keep track of the
dependence of the partition function on L, we device a regularization prescription that
appropriately keeps track of such a dependence. Note that since the product diverges, one
cannot factorize it into two product. i.e.

∞∏
n=1

(
n+ x

L

)
6=
∞∏
n=1

(n+ x)×
∞∏
n=1

1
L
. (D.2)

To illustrate, we can consider when x is a positive integer. Then we can rewrite the Zx,L as
∞∏
n=1

(
n+ x

L

)
= Lx

x!

∞∏
n=1

(
n

L

)
, (D.3)

where appearance of the factor Lx proves the (D.2). The rewriting (D.3) seems to suggest
the regularized function of the quantity Zx,L by promoting the r to non-integer number.
To justify this suggestion and find the finite function, we use the regularization process
as follows.

Derivative and integration. To find the regularized function of L and x, we take the
logarithm of the quantity (D.1)

logZx,L =
∞∑
n=1

log n+ x

L
, (D.4)

and take derivative with respect to x twice. Let us assume that the L dependence in
logZx,L appears up to linear order in x.22 This seems to be a valid assumption by looking
at the (D.3), and in fact is justified later in (D.8). Then, we can write the two derivatives
L independently as

∂2
x logZx,L = −

∞∑
n=1

1
(n+ x)2 = −ψ(1)(x) , (D.5)

where ψ(1)(x) is the well known Polygamma function, and we can recover logZx,L by
integration twice

logZx,L = c0(L) + c1(L)x− log Γ(x+ 1) . (D.6)

Here we have two integration constants, c0(L) and c1(L), as functions of L.
22The derivative and the infinite summation does not commute as the summation of the series diverges.

This assumption may imply that ∂x
∑

n
f(n)(x, L) =

∑
n
∂xf(n)(x, L)+g(L), where commuting the derivative

and the summation generates some function of L, g(L).
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Heat kernel regularization. To find the integration constants c0(L) and c1(L), we use
the heat kernel technique. We take the integral representation of log and use heat kernel
regularization

logZx,L =
∞∑
n=1

log n+ x

L
= −

∞∑
n=1

lim
ε→0

∫ ∞
ε

ds
s

e−s(n+x)/L

= − lim
ε→0

∫ ∞
ε/L

ds
s

∞∑
n=1

e−s(n+x) = − lim
ε→0

∫ ∞
ε/L

ds
s

e−sx e−s
1− e−s (D.7)

= lim
ε→0

∫ ∞
ε/L

ds
s

(
−1
s

+
(1

2 + x

)
+O(s)

)
.

Here we have introduced the UV cutoff ε that is taken to be zero later. In the small s
expansion, the integration gives

logZx,L = −L
ε

+
(1

2 + x

)
log L

ε
+ · · · , (D.8)

and we throw the divergence away when ε → 0. Here, the “ · · ·′′ part is from the O(s)
terms in the integrand and is guaranteed to be finite as the series is suppressed by e−s.
Thus, it does not depend on L as ε → 0. The only finite term that has L dependence
is the logarithmic one. This finds the integration constants in (D.6) as c0(L) = 1

2 logL
and c1(L) = logL. Therefore, we obtain

Zx,L
∣∣∣
reg

=
∞∏
n=1

(
n+ x

L

)
= L

1
2 +x

Γ(1 + x) . (D.9)

E The basis functions on S2 and AdS2

This section mostly follows the analysis in the appendix A of [42].

E.1 S2

We have defined the S2 metric in (2.6a). The following is based on that metric.

Scalar modes. The delta function normalized eigenfunctions of −∇2
S2 are given by the

spherical harmonics Ylm(ψ, θ), which are defined as

Ylm(ψ, θ) = (−1)m
√

2l + 1
4π

(l −m)!
(l +m)! eimθPml (cosψ) , 0 ≤ l <∞ , −l ≤ m ≤ l , (E.1)

where the associated Legendre Polynomials are defined as:

Pml (x) = (−1)m

2ll!
(
1− x2

)m
2 dl+m

dxl+m

(
x2 − 1

)l
. (E.2)

The spherical harmonics satisfy the eigenvalue equation given by

−∇2
S2Ylm(ψ, θ) = l (l + 1)

L2 Ylm(ψ, θ) . (E.3)

Note that the complex conjugate of the eigenfunctions is

Y ∗l,m(ψ, θ) = Yl,−m(ψ, θ) . (E.4)

– 69 –



J
H
E
P
0
7
(
2
0
2
3
)
0
5
6

Vector modes. The normalized basis of vector fields on S2 is taken as
1

L
√
κl
∂µYlm ,

1
L
√
κl
εµν∂

νYlm for l ≥ 1 , (E.5)

where κl has been defined by the relation in (E.3). They are eigenmodes of −∇2
S2 with

eigenvalues given by
(
l (l + 1)− 1

L2

)
. Note that the l = 0 mode does not exist for the

vectors as Y0,0 = constant and the derivative vanishes.

Spinor modes. The Dirac operator on S2 is given by

/DS2 = L−1
[
τ1∂ψ + τ2

1
sinψ∂θ + 1

2τ1 cotψ
]
, (E.6)

and it has the following eigenmodes,

χ±l,m = 1√
4πL2

√
(l −m)! (l +m+ 1)!

l! e
−i
(
m+ 1

2

)
θ

 i sinm+1 ψ
2 cosm ψ

2P
(m+1,m)
l−m (cosψ)

± sinm ψ
2 cosm+1 ψ

2P
(m,m+1)
l−m (cosψ)

 ,

η±l,m = 1√
4πL2

√
(l −m)! (l +m+ 1)!

l! e
i
(
m+ 1

2

)
θ

 sinm ψ
2 cosm+1 ψ

2P
(m,m+1)
l−m (cosψ)

±i sinm+1 ψ
2 cosm ψ

2P
(m+1,m)
l−m (cosψ)

 ,

∀ l,m ∈ Z , 0 ≤ l , 0 ≤ m ≤ l , (E.7)

where P (b,c)
a (x) is Jacobi Polynomial. They satisfy the eigenvalue equation

i /DS2 χ±l,m = ∓ l + 1
L

χ±l,m , i /DS2 η±l,m = ∓ l + 1
L

η±l,m . (E.8)

Note that some of eigenmodes (E.7) are related to the Killing spinors (B.5) by

χ±0,0 = ±ε±− , η±0,0 = ε±+ . (E.9)

E.2 AdS2

We have defined the AdS2 metric in (2.6b). The following is based on that metric.

Scalar modes. The delta function normalized eigenfunctions of −∇2
AdS are given by

fλ,k(η,θ) = 1√
2π

1
2|k|(|k|)!

∣∣∣∣∣Γ(iλ+ 1
2 +|k|)

Γ(iλ)

∣∣∣∣∣eikθ sinh|k| η (E.10)

×2F1

(
iλ+ 1

2 +|k|,−iλ+ 1
2 +|k|; |k|+1;−sinh2 η

2

)
, k∈Z , 0≤λ<∞ .

where 2F1(α, β; γ; z) is the Hypergeometric function and

−∇2
AdSfλ,k(η, θ) = 1

L2

(1
4 + λ2

)
fλ,k(η, θ) . (E.11)

Note that the complex conjugate of the eigenfunctions is

f∗λ,k(η, θ) = fλ,−k(η, θ) . (E.12)

Also
fλ,k(η, θ) = 0 at λ = 0 . (E.13)
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At the origin. As η = 0

fλ,k(η = 0, θ) = δk,0
1√
2π

∣∣∣∣∣Γ(iλ+ 1
2)

Γ(iλ)

∣∣∣∣∣ = δk,0

∣∣∣∣∣∣
√
λ

2π tanh πλ

∣∣∣∣∣∣ . (E.14)

Vector modes. The normalized basis of vector fields on AdS2 is taken as
1√

1
4 + λ2

∂µfλ,k ,
1√

1
4 + λ2

εµν∂
νfλ,k . (E.15)

This basis has the eigenvalue L−2(5
4 + λ2) of −∇2

AdS and fλ,k is the scalar modes in (E.10).
There are also additional square integrable modes

A(`) = dΛ(`)
bdry , Λ(`)

bdry = 1√
2π|`|

(
sinh η

1 + cosh η

)|`|
ei`θ , ` = ±1 ,±2 , · · · . (E.16)

To count the number of the boundary zero modes, we see

nA
bdry

bdry ≡
∑
` 6=0

∫
AdS

d2x
√
g ∂µΛ(`)

bdry(x)∗∂µΛ(`)
bdry(x)

=
∑
`=±1

∫
AdS

d2x
√
g ∂µΛ(`)

bdry(0)∗∂µΛ(`)
bdry(0) = −1 , (E.17)

where in the second line, we use the homogeneity of spacetime to set x = 0, and obtain the
regularized volume of the AdS2. Therefore, a vector field Aµ has the mode expansion as

Aµ = 1√
1
4 + λ2

∫ ∞
0

dλ
∑
k∈Z

(a1λ,k∂µfλ,k + a2λ,kεµν∂
µfλ,k) +

±∞∑
`=±1

α(`)∂µΛ(`)
bdry . (E.18)

The Dirac operator on AdS2 is given by

/DAdS = L−1
[
τ1∂η + τ2

1
sinh η∂θ + 1

2τ1 coth η
]
. (E.19)

This basis has the following eigenmodes

Eigenstates of /DAdS:

χ±k,λ = 1√
4π

1
k!

Γ(1 + k + iλ)Γ(1 + k − iλ)
Γ
(

1
2 + iλ

)
Γ
(

1
2 − iλ

)
 1

2

e−i(k+ 1
2 )θ

i λ

k + 1 coshk η2 sinhk+1 η
2 2F1(k + 1 + iλ, k + 1− iλ; k + 2;− sinh2 η

2 )

± coshk+1 η
2 sinhk η2 2F1(k + 1 + iλ, k + 1− iλ; k + 1;− sinh2 η

2 )

 ,

η±k,λ = 1√
4π

1
k!

(
Γ(1 + k + iλ)Γ(1 + k − iλ)

Γ(1
2 + iλ)Γ(1

2 − iλ)

) 1
2

ei(k+ 1
2 )θ

 coshk+1 η
2 sinhk η2 2F1(k + 1 + iλ, k + 1− iλ; k + 1;− sinh2 η

2 )

±i λ

k + 1 coshk η2 sinhk+1 η
2 2F1(k + 1 + iλ, k + 1− iλ; k + 2;− sinh2 η

2 )

 ,

k ∈ Z , 0 ≤ k <∞ , 0 ≤ λ <∞ ,

(E.20)
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satisfying
i /DAdSχ

±
k,λ = ∓λ

L
χ±k,λ , i /DAdSη

±
k,λ = ∓λ

L
η±k,λ . (E.21)

Reality property

(χ±k,λ)† = ±i(η±k,λ)T τ2 , (η±k,λ)† = ∓i(χ±k,λ)T τ2 . (E.22)

At λ = 0,

χ±k,0 = 1
2π e−i(k+ 1

2 )θ

 0

± cosh−k−1 η
2 sinhk η2

 , η±k,0 = 1
2π ei(k+ 1

2 )θ

cosh−k−1 η
2 sinhk η2

0

 ,

(E.23)
which are non-zero differently from the scalar basis function fλ ,k.

At the origin. At η = 0,

χ±
λ,k(η= 0,θ) = η±

λ,k(η= 0,θ) = 0 for k 6= 0 ,

χ±
λ,k(η= 0,θ) = 1

√
4π

(
Γ(1+iλ)Γ(1−iλ)
Γ( 1

2 +iλ)Γ( 1
2−iλ)

)1
2 e−i

1
2 θ
(

0

±1

)
= e−i

1
2 θ
(
λcothπλ

4π

)1
2
(

0

±1

)
for k= 0 ,

η±
λ,k(η= 0,θ) = 1

√
4π

(
Γ(1+iλ)Γ(1−iλ)
Γ( 1

2 +iλ)Γ( 1
2−iλ)

)1
2 ei

1
2 θ
(

1

0

)
= ei

1
2 θ
(
λcothπλ

4π

)1
2
(

1

0

)
for k= 0 .

(E.24)

F Heat kernel calculations

Here, we compute the trace of the heat kernel (5.4) for the massive scalar and Dirac fermions
both on S2 and AdS2.

F.1 Massive scalar

Here, we compute the trace of the heat kernel associated with the bosonic operator

Ob = −∇2 + m2
b

L2 . (F.1)

S2. We know from [42] that the contribution of the massless scalar field to the trace of
the heat kernel is given by

Ksc
S2 (s) = 1

s
+ 1

3 + s

15 + · · · . (F.2)

From this we can obtain the heat kernel expansion for massive scalar. Since the kinetic
operator is shifted as given by (F.1), the eigenvalue is shifted by a constant, viz., κn −→
κnew
n = κn + m2

b
L2 , where κn is the eigenvalue of the −∇2 operator. The scalar eigenfunctions
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of the Laplacian operator {fn (x)} are spherical harmonics E.1. Thus, the trace of the heat
kernel is obtained as

Ksc
S2 (s,mb) =

∑
n

1
L2

∫
S2

d2x
√
g f∗n(x)fn(x)e−sκnew

n = exp
(
−sm2

b

)(1
s

+ 1
3 + s

15 + · · ·
)

= 1
s

+
(1

3 −m
2
b

)
+ 2− 10m2

b + 15m4
b

30 s+ · · · . (F.3)

This naturally reduces to (F.2) when mb = 0.

AdS2 . We know from [42] that the contribution of the massless scalar field to the trace
of the heat kernel is given by

Ksc
AdS (s) = − 1

2s + 1
6 −

s

30 + · · · . (F.4)

Let us now introduce mass terms for the bosonic fields. The analysis for the massive bosonic
fields on AdS2 is similar to the one on described in the S2 case. The scalar eigenfunctions
of the Laplacian operator {fn (x)} are given in (E.10). Thus, the trace of the heat kernel is
obtained as

Ksc
AdS (s,mb) =

∑
n

1
L2

∫
AdS

d2x
√
g f∗n(x)fn(x)e−sκnew

n = e−sm2
b

(
− 1

2s + 1
6 −

s

30 + · · ·
)

= − 1
2s +

(
1
6 + m2

b

2

)
−
(
2 + 10m2

b + 15m4
b

)
s

60 + · · · . (F.5)

This naturally reduces to (F.4) when mb = 0.

F.2 Massive fermion

S2. In this section we derive the trace of the heat kernel of the fermionic kinetic operator

O2
f =

(
i /DS2 + mD

L

)2
. (F.6)

Recall that this Dirac mass term appears from (2.60) by setting G = 0. The eigenvalues
of our basis states {χ±l,m, η

±
l,m} are as given in (E.8). Then, the trace of the heat kernel is

obtained as

Kf

S2(s,mD) = − 1
L2

∫
S2

d2x
√
g
∑
m

∞∑
l=0

[
||χ+

l,m||
2 exp

(
−s κ+

l+1

)
+ ||χ−l,m||

2 exp
(
−s κ−l+1

)
+ ||η+

l,m||
2 exp

(
−s κ+

l+1)
)

+ ||η−l,m||
2 exp

(
−s κ−l+1

)]
, (F.7)

where κ±l = (l ∓mD)2, i.e., they are the eigenvalues shifted by the appropriate masses.
This integral can be performed using the techniques illustrated in [42]. The above integral
reduces to

Kf

S2(s,mD) = 2i
∫ ∞

0
dλ λ cotπλ

[
exp

(
−s(mD + λ)2

)
+ exp

(
−s(mD − λ)2

)]
. (F.8)
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We will use the series expansion of cotangent functions. Splitting the integral into two
parts, we have

I1 = −2
∫ ∞

0
dλ λ

[
exp

(
−s(mD + λ)2

)
+ exp

(
−s(mD − λ)2

)]
.

= −2
s
− 2m2

D + 1
3m

4
D s+ · · ·

I2 = −4
∞∑
k=1

∫ ∞
0

dλ λ
∞∑
p=0

(−1)p sp
p!

[
(mD + λ)2p + (mD − λ)2p

]
e−2πikλ

= 1
3 −

1
30
(
10m2

D − 1
)
s+ · · · .

Adding I1 and I2, we have

Kf

S2 (s,mD) = −2
s

+ 1
3 − 2m2

D +
(

1
30 −

m2
D

3 + m4
D

3

)
s+ · · · . (F.9)

As a consistency check, we see that (F.9) reduces to known results in the massless limit.

AdS2. In this section we derive the trace of the heat kernel of the fermionic kinetic operator

O2
f =

(
i /DAdS + mc

L
γ3

)2
. (F.10)

Recall that the mass term appears from (2.60) by setting H = 0. The eigenvalues of our
basis states {χ±k,λ, η

±
k,λ} as given in (E.20). Furthermore, the chirality matrix acts on them

as follows
γ3χ

±
k,λ = χ∓k,λ , γ3η

±
k,λ = η∓k,λ . (F.11)

Then, the trace of the heat kernel is obtained as

Kf
AdS(s,mc) = − 1

L2

∫
AdS

d2x
√
g
∞∑
k=0

∫ ∞
0

dλ

[
||χ+

k,λ||
2 exp (−sκ) + ||χ−k,λ||

2 exp (−sκ)

+ ||η+
k,λ||

2 exp (−sκ) + ||η−k,λ||
2 exp (−sκ)

]
, (F.12)

where κ = λ2 + m2
c . Now, using the homogeneity of AdS2 spacetime, we conclude that

the above integral receives contribution only from η = 0. At η = 0, ||χ+
k,λ||2 = ||η+

k,λ||2 =
||χ−k,λ||2 = ||η−k,λ||2 = (λ coth πλ/4π) δk,0. The integration then can be performed directly
and we have

Kf
AdS (s,mc) = 1

s
+
(1

6 −m
2
c

)
−
(

1
60 + m2

c

6 −
m4
c

2

)
s+ · · · . (F.13)

As a consistency check, we see that (F.13) reduces to known results in the massless limit.
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