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Chapter 1

Introduction

Modern physics understands the presence of four fundamental interactions govern-
ing phenomena we observe in the universe: gravity, electro-magnetic force, weak
and strong nuclear forces. The Standard Model (SM) is the theory developed
through the last century to describe all of these forces except for gravity. Gravity
however is not expected to play a role at current collider energies, where the dom-
inant interactions are governed by the strong and electro-weak forces.
The SM has been successfully confirmed in many of its aspects through an impres-
sive amount of experimental tests conducted at particle colliders. Nevertheless,
there are many open questions and issues in particle physics, to which the SM may
or may not give an answer. The hope of the particle physics community to find
such answers lies nowadays in the Large Hadron Collider (LHC) at CERN, which
allows us to investigate the fundamental nature of matter at smaller distances than
ever before. With its astonishing luminosity records and unprecedented energies,
the LHC has already led to the discovery of a scalar particle which shows all the
properties of a SM-like Higgs boson. However, along with the importance of such
big achievement, the lesson we have learned so far is that new physics, namely
beyond the SM (BSM), does not show up in a spectacular way, rather it hides
beyond a huge amount of ‘ordinary’ SM background processes. A reliable under-
standing of the SM processes which constitute a background to new physics is thus
mandatory in order to perform any serious search at the LHC.

Since the LHC is a hadron collider, the main background is provided by processes
whose dynamics is governed by the strong force, which is described at quantum
level by the theory of Quantum Chromodynamics (QCD). In order for new physics
to be discovered, it is therefore necessary to have full control over QCD driven ef-
fects. At high energies, QCD becomes asymptotically free, thus allowing the use of
perturbation theory. However, higher order effects in perturbative QCD are gen-
erally large and must be included to a sufficient degree for comparisons between
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theory and experiment to be meaningful.
On the theory side, the bottleneck in including these QCD higher-order effects is
represented by the complexity and difficulty of computations which need to be car-
ried out in order to assess such effects. Prompted by the LHC program, the theory
community has made impressive breakthroughs in the last twenty years, and now
computations which were considered almost impossible can be done with relative
ease. As a result, the panorama of physical observables relevant for the LHC which
have been computed at higher order in perturbative QCD has grown larger and
larger. The Next-to-Leading-Order (NLO) sector is now fully automated and many
2 → 2 processes are now available also at Next-to-Next-to-Leading-Order (NNLO).

One important type of process at the LHC is the production of single top (or
anti-top) quarks. Top quarks were discovered for the first time at Tevatron in 1995
by both the CDF and D0 experiments by studying top pair production. In this
reaction, pairs of top and anti-top quarks are produced via the strong interaction.
This is the dominant mode to produce top quarks at hadron colliders, but it is
not the only one. Another possibility is represented by the so-called ‘Single Top’
reaction, which takes place via the weak interaction and yields in the final state
just one top or anti-top quark. Compared with the tt̄-production, Single Top pro-
duction has a smaller cross-section both at Tevatron and at LHC. This, together
with a difficult background, made the search for Single Top at Tevatron extremely
difficult. This is not the case at the LHC, where, thanks to higher energies of the
proton beams and luminosity, Single Top production has a sizeable cross-section.
Single Top production is the main subject of this dissertation. The investigation of
this production mechanism is crucial for precision study of the SM and could very
well be a gateway to BSM physics. Here we report some of the main motivations
for studying Single Top process.

The coupling between the Higgs boson and the top quark is described by a Yukawa
coupling, yt. The corresponding mass term in the Lagrangian density for the top
quark can be expressed in terms of yt and the electroweak symmetry breaking
scale v, namely

mt =
ytv√
2
. (1.1)

A very recent (2014) combined measure from ATLAS, CMS, D0, and CDF yields
mt = 173GeV [1]. Given this value of the top mass and given v = 246GeV, we see
that the top-Yukawa coupling is of order unity. This means that the top quark
couples strongly to the Higgs field. This makes the top quark very important in
studies of the Higgs sector.
According to the SM, the coupling of the top quark to the W -field is of the form

gw√
2
Vtq(t̄γ

µqL)W
+
µ , (1.2)
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where Vtq is the CKM matrix element describing the mixing between a top quark
and another d-type quark, and gw is the electroweak coupling constant. We observe
that the predicted coupling is flavour changing and purely left-handed. This means
that the top quark in a single-top process should be polarized when produced. A
further advantage is represented by the top quark mass, which is so large that, in
contrasts to other quarks in the SM, it decays before it has the chance to hadronize.
This means that by studying the decay products of the top quark, the suggested
polarization can be measured directly. Single Top process measurements would
then allow for verification of top polarization as predicted by the SM.
The top quark couples to the Z-field through a flavour preserving coupling of the
form

gw
4 cos θw

t̄

[(

1− 8

3
sin2 θw

)

γµ − γµγ5
]

tZµ. (1.3)

In a potential scenario of flavour changing neutral currents, the top quark could
couple to a, hitherto unknown, flavour changing field W ′ with a coupling of the
form

GFC t̄
(
k1γ

µ + k2γ
µγ5
)
uW ′. (1.4)

Since the W ′ boson would be much heavier than the W and Z, this coupling may
only occur at sufficiently high energies. Again, a direct measurements of the Single
Top cross-section would allow for verification of the existence of such a channel.
Last but not least, Single Top production allows for a direct extraction of the CKM
matrix element Vtb.

At tree-level, three clearly distinct channels contribute to Single Top production.
Among these channels, we focus our attention on Single Top in t-channel, where
an off-shell W -boson is exchanged in t-channel between two hadronic currents
q → W ∗ + q′ and b +W ∗ → t, thus producing the reaction b + q → t + q′. This
channel has the largest cross-section among the three production modes and is
best measured by the experiments.
The work developed in this thesis is part of a more general project whose aim is that
of improving the precision of the theoretical prediction for Single Top production
in t-channel by taking into consideration QCD quantum effects at higher orders.
At present, analytical calculations of quantum corrections to t-channel Single Top
inclusive cross-section are available both at NLO-QCD (O(αs)) and NLO-EW
(O(αew)). A fully numerical computation of NNLO-QCD (O(α2

s)) contribution
has recently become available too. Analytical computation of these corrections is
still lacking. Analytic results for NNLO-QCD corrections are of interests since they
would provide a robust cross-check to the numerical computation mentioned above
and would constitute the core for a fast numerical evaluation of the cross-section.
In this dissertation we present results for the set of Master Integrals describing
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the O(α2
s) corrections to the partonic process b +W ∗ → t +X and more in gen-

eral to Form Factors for Charged-Current-DIS with a massive particle in the final
state. In the following we explain briefly how this set of Master Integrals happens
to constitute a partial result towards the achievement of analytical NNLO-QCD
corrections to inclusive Single Top in t-channel.

We consider QCD corrections to Single Top in t-channel within a Structure
Function approach. This means that we take into account only those corrections
which do not connect the two hadronic currents. We call this type of quantum
corrections factorizable, since they affect only one single hadronic current at a time.
We neglect all those corrections which involve cross-talk between the two currents.
In this approximation, all the information about QCD higher-order contributions
to the single hadronic current is encoded in the Structure Functions (or Form
Factors) describing the current. Analytic expressions for Form Factors describing
the massless current q →W ∗+q′ are already available up to NNLO-QCD, whereas
the ones for the massive (mt 6= 0!) current b +W ∗ → t are available only up
to NLO-QCD. Our effort is thus concentrate on the analytic calculation of the
inclusive cross-section for the partonic subprocess b + W ∗ → t + X at O(α2

s),
where X accounts for possible extra radiation in the final state. This cross-section
then, convoluted with Parton Distribution Functions (PDFs), will yield the massive
Form Factors describing the hadronic reaction p+W ∗ → t, which sees a proton and
on off-shellW producing a top in the final state. The technique we use to compute
the cross-section analytically for [b +W ∗ → t+X ]O(α2

s)
is that of Master Integrals,

which has been developed in the last twenty years and proved to be successful in
many difficult computations.
The original work contained in this thesis thus consists of the determination and
computation of the entire set of Master Integrals needed to describe at NNLO in
QCD the Single Top massive current b +W ∗ → t+X .

The structure of the thesis is thus the following. Chapter 2 is dedicated to the
physics of top quark, seen from both a theoretical and experimental point of view.
Particular attention is given to top quark production mechanisms and especially to
Single Top. Theoretical and experimental benchmarks are provided for production
cross-sections and for some other relevant observables in top physics.
Chapter 3 illustrates the basics of perturbative QCD, specially the structure of an
observable computed at fixed-order in QCD. In this chapter we also introduce the
DIS-like picture applied to Single Top in t-channel and we explain in detail which
partonic channels contribute at NNLO and thus which partonic subprocesses we
need to compute analytically in order to extract the necessary Form Factors.
In chapter 4, we focus on the technique of Master Integrals. First we generically
review Feynman integrals and their properties. Then we introduce the defining
properties and concepts of Master Integrals, explain the basic principles on which
this technique relies. Finally, chapter 5 contains our original work. We report the
final set of Master Integrals obtained for the Charged Current(CC)-DIS Massive
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Form Factors and go in detail through the explicit calculation of such set of inte-
grals.
In order not to make the presentation of our work too heavy, the complete list of
intermediate and final results for the Masters is reported in the Appendix.
Finally, we close our dissertation with an outlook on the to-do-list which consti-
tutes work in progress and which we will accomplish hopefully in the near future
in order to achieve our final result, namely t-channel Single Top cross-section at
NNLO-QCD.
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Chapter 2

Top Physics

As we will show in detail throughout this chapter, although Single Top is not
the dominant top quark production mechanism, it yields a sizeable fraction of
top quark events, especially at the LHC. Moreover, Single Top is an interesting
framework for SM parameters precision test and for the discovery of possible new
BSM physics. While the theoretical status of top pair production is advanced,
competitive theoretical predictions for Single top are still in a very early stage.
These considerations, together with an experimental precision expected to increase
in the coming years, makes Single top an interesting field from the point of view
of both QCD fixed-order perturbative computations and resumed calculations.
Particularly appealing is the t-channel mode. It has the largest cross-section among
single top channels, it is the best measured channel from experiments, and its
quantum corrections happen to be pretty small, so that, by combining the different
available corrections (QCD and EW), it could easily become one of the most
precisely predicted processes in the SM.
In this first chapter we aim to provide the pieces of information, both from a
theoretical and experimental point of view, which support these statements. The
reader is introduced to the fundamentals of Top Physics which constitute the
necessary background in order to understand the physics underlying the project
developed in this thesis and the reasons why we focus our attention on Single Top
in t-channel.

2.1 Top Quark Physics Overview - Theory

The framework in which nowadays Physics describes nature in its most funda-
mental aspects is the Standard Model (SM). In this theory, three out of the four
fundamental forces present in nature are unified, namely electric, weak and strong
forces. The formal framework in which the SM is formulated is that of Quantum

15
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Field Theory. In particular, the SM belongs to the category of gauge theories,
with the gauge group SU(3)× SU(2)× U(1), where SU(3) is the gauge group of
strong interactions and SU(2)×U(1) that of the electro-weak interactions. In the
following a basic knowledge of the SM will be taken for granted, and attention
will be focused directly on Top Quark Physics, which is the general area of inter-
est of this thesis1. First we review general top quark properties and interactions
in the SM. Then, we focus our attention on top quark production and provide a
list of the most recent theoretical predictions and benchmarks for top production
cross-sections. Finally, we spend the last two subsections to briefly explain the
privileged role that top quark has in probing the SM Higgs sector and many BSM
physics scenarios.

2.1.1 Top quark properties and interactions in the Standard

Model

The top quark is the up-type quark of the third family in the SM. Each family
of quarks consists of an up- and down-type quark, which have electric charge
Qup = 2/3 and Qdown = −1/3 respectively. On top of that, each family represents
a weak-isospin doublet, so that its up- down-type members have weak quantum
numbers Tup = +1/2 and Tdown = −1/2 respectively. Quarks are charged under
the strong interactions, being triplets in the SU(3) group.
The most striking feature of the top quark is that, although this particle appears
to be point-like, its mass is huge, roughly of the order of a gold nucleus. Top
quark phenomenology is mainly driven by its large mass. Being heavier than a
W boson, it is the only quark that decays semi-weakly into a W boson and a b
quark before hadronization can occur. On top of that, it is the only quark whose
Yukawa coupling to the Higgs boson is of order one, meaning that the top quark
plays a dominant role in the running of the Higgs mass. Because of this tight
link to the electroweak symmetry breaking sector, a deep understanding of all top
quark properties, from its quantum numbers to its interactions with the strong,
weak and Higgs sectors, is a cornerstone for our understanding of nature at the
smallest distance scales. In general we can recall the following points, which are
nowadays driving searches in Top Physics.

• Accurate knowledge of top-quark mass is a fundamental input to precision
electroweak analyses.

• The Yukawa coupling of the top is proportional to the ratio mt/v, where v is
the vacuum expectation value of the Higgs boson. Since this ratio approaches
unity from below, the coupling happens in turn to be very close to unity.
Furthermore, the proportionality of the Yukawa to the top mass is in itself an

1For the reader who might need or want to dig more in detail in the basis of the SM, we
suggest references [99], [102].
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interesting feature, since the top mass is the quark mass known with the best
accuracy. These two properties together makes the study of such coupling
a priority in top physics, since its precise measurement would provide a
stringent test of the electro-weak symmetry breaking (EWSB) sector of the
SM.

• Unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) constrains the CKM-
matrix element |Vtb| to be close to one, so that an accurate measurement of
this CKM-matrix element is also very important. The extraction of |Vtb| can
be achieved by studying top production and decays in the SM.

• Top physics is a possible window on Beyond-the-Standard-Model (BSM)
physics. Indeed, events containing top quarks are backgrounds to certain
new physics processes, so that a precise assessment of such background be-
comes fundamental in indirect searches for BSM particles.

In this section an overview of interactions and processes in which top quark is
involved in the SM is given, with particular attention to the use that can be made
of such processes in order to gain better knowledge of certain Standard Model
parameters and top properties. At the end of the section theoretical benchmarks
for production cross-section are reported.

Top Strong Interactions

The main production mechanisms for (anti)top quarks at hadron colliders are
through quark-antiquark annihilation and gluon-gluon fusion (see diagrams in
Fig.2.1), which both take place via the strong interaction. At Tevatron, the quark-
antiquark annihilation subprocess dominates, whereas at the LHC gluon fusion
dominates. The reason for this resides mainly in the shape of Parton Distribution
Functions (PDF). Given a collision between two protons carrying momentum P1

and P2, the square of the total energy of the partonic subprocess (in the partonic
center-of-mass frame) s is related to the energy of the hadronic collision S through

s = (x1P1 + x2P2)
2 ≃ 2x1x2P1 · P2 = x1x2S. (2.1)

with x1 and x2 being the fractions of momentum carried by the two initial partons.
The threshold for tt̄ production is of course s ≥ 4m2

t . It follows from Eq.(2.1) that

x1x2 =
s

S
≥ 4m2

t

S
. (2.2)

If we now take x1 = x2 = x in Eq.(2.2), we get the condition x ≥ 2mt/
√
S. This

translates into the numerical values x ≥ 0.05(0.025) for a
√
S = 7(14)TeV LHC,

and x ≥ 0.2 at Tevatron. Fig.2.2 shows PDFs, which contain information about
the probability of finding a given parton species with momentum fraction between
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Figure 2.1: Tree-level diagrams for strong production of tt̄ pair.

x and x+ dx. By looking at this plot, it is clear that at the LHC the gg contribu-
tion will be the dominant one, whereas at Tevatron the situation is reversed and
the qq̄ will give largest contribution to the cross-section.

Top quark pair production can be experimentally classified according to the de-
cays of the W bosons coming from the decay of the two top quarks (see below
for more information about top decay). In the dilepton channel, namely when
both W ’s decay leptonically, the experimental signature consists of two high-pT
leptons, large missing transverse energy �ET and at least two b-jets. The branch-
ing fraction is comparatively small, but the backgrounds, mostly Z+jets, are also
fairly small. This makes the dilepton channel an ideal place to obtain a very clean
sample of tt̄ events. On the other hand, the hadronic channel, where both W ’s
decay hadronically and thus the experimental signature is at least six jets, two of
them b-jets, suffers from a huge background of QCD multi-jet events. This makes
measurements of tt̄ production in this channel difficult, despite the large branching
fraction. Finally the lepton+jets channel, where one W decays hadronically and
the other leptonically, has both large branching ratio and moderate background
(mostly W+jets). For this reason it is often referred to as the golden channel. Its
signature is one high pT lepton,�ET and at least four jets. In both the lepton+jets
and dilepton channel, one typically considers only decays into electrons or muons
(including those from leptonic tau decays), whereas final states with hadronically
decaying taus are experimentally much more challenging and are often studied
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Figure 2.2: HERAPDF1.5NNLO PDF evaluated at µ2 = 10000 GeV. The be-
haviour for µ2 = m2

t ∼ 30000 GeV is similar.

separately.

Top Weak Interactions

Top quarks also interact weakly. The charged-current weak interaction connects a
top with a down, strange or bottom quark, with an amplitude proportional to the
corresponding CKMmatrix element, respectively Vtd, Vts or Vtb (Fig.2.3). Through
charged-current weak interaction both production and decay of top quarks can take
place, as described in the following.

t

q̄

W

= −i g

2
√
2
Vtqγ

µ(1− γ5)

Figure 2.3: Top weak current.

The weak production mechanism goes under the name of Single Top production,
since it allows for production of one single top or antitop in association with a
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light quark, a b quark or a W , as it is illustrated in the tree-level diagrams in
Fig.2.4. Starting from the left, the first diagram shows the W boson exchanged in
t-channel, the second one in s-channel whereas in the third one a W is produced
in association with the top.

q q′

b t

(a)

q

q̄ b̄

t

(b)

g t

b W

(c)

Figure 2.4: Tree-level Feynman diagrams for Single Top production.

Even though t- and s-channel modes are enhanced by the Phase Space, thanks
to the presence of just one heavy particle in the final state, in general single top
topologies involve fewer jets compared to tt̄ production, and the signal to back-
ground ratio is generally significantly smaller, so that tt̄ production remains the
dominant mechanism to produce top quarks both at Tevatron and LHC.
Turning to analyse single channels, both at Tevatron and LHC, t-channel is the
dominant contribution, at nearly one third of the tt̄ cross-section. The next largest
cross-section at Tevatron is from the s-channel subprocess whereas at the LHC it
comes from associated tW production. This might seem surprising because, hav-
ing two heavy particles in the final state, this subprocess is clearly suppressed with
respect to the t- and s-channel. But, at the LHC, the gluon PDF gives a strong
enhancement to this subprocess, such as to compensate the Phase Space suppres-
sion.
We observe that in the t-channel subprocess there is a b in the initial state. The
b-PDF is mostly driven by gluon radiation, meaning that the b-quarks are most
likely to originate from a splitting g → bb̄. For this reason, the b distribution
function cannot be extracted directly from global fits of experimental data as it
happens for light quarks, but is calculated from the initial condition b(x) = 0
at µ = mb and evolved to higher values of the factorization scale µR via the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations (for an
introduction to DGLAP equations, see Chapter 3). A more detailed discussion of
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Single Top production involving a bottom in the initial/final state will be given
in Chapter 3, in the context of a comparison between the 4-flavour and 5-flavour
scheme.

Cross-section measurements for t-channel production have been provided both by
LHC and Tevatron, by searching for a signature given by one or more jets origi-
nating from the light quark recoiling against the top, and a b-jet plus�ET from the
W decay. The main background is given by W+jets.
The tW channel has not been observed at Tevatron, due to its very small cross-
section at Tevatron energies. This mode is indeed challenging also at the LHC,
since it interferes at Next-to-Leading-Order (NLO) in QCD with top quark pair
production. Some methods have been implemented in current MC generators to
allow an unambiguous signal definition. According to the decays of the two W -
bosons, this channel can be studied via different final state signatures: dilepton
channel, where both W decay into a charged lepton and a neutrino, or in the
lepton-jets channel, where one of W decays into lepton and neutrino, while the
other one decays hadronically into jets.
Finally, the s-channel has never been observed individually at Tevatron, since only
a combined t- plus s-channel cross-section has been measured. At the LHC, despite
the small cross-section, this channel is interesting for indirect searches of various
new physics models and an initial search has already been carried out by the AT-
LAS collaboration. The final state signature is given by a b-jet plus either a lepton
and�ET if the W decays weakly or by additional jets if the W decays hadronically.
Backgrounds include mainlyW+jets, QCDmulti-jet production and tt̄ production.

Top decay is illustrated in Fig.2.5.

t

q

W

Figure 2.5: Top quark decay into quark and W boson.

The top quark decays almost exclusively as t→ bW . Since |Vtb| ≫ |Vtd|, |Vts|, the
decays t→W (d, s) are strongly suppressed. At NLO QCD, the total width of the
top quark Γt depends on four parameters, namely GF ,mt,mW , |Vtb|. A top mass
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of 172.5 GeV gives Γt = 1.33GeV, whose inverse gives a lifetime τt ∼ 5 · 10−25s.
As it will be discussed further in this Section, such short lifetime implies that
top quark decays before it can hadronize, so that toponium tt̄ bound state cannot
form.
The branching ratios for the decay of the top quark into light quarks s, d are
strongly suppressed in the SM (BR(t → Ws) ∼ 0.2%, BR(t → Wd) ∼ 0.005% ).
Given the unitarity of the CKM matrix, the denominator of the ratio R defined as

R =
|Vtb|2

|Vtb|2 + |Vts|2 + |Vtd|2
(2.3)

is equal to 1. Thus, if unitarity of the CKM matrix holds, a measurement of
R provides constraints on |Vtb|. Measurements of R at the LHC will be briefly
discussed in the next subsection, dedicated to measurements of properties of top
quark.

2.1.2 Role of QCD in theoretical predictions and bench-

marks

The increasing precision of experimental measurements in top physics introduces
now a new challenge also on the theory side. Let us take the clearest example,
namely inclusive cross-section for tt̄ production. The most precise measurements,
listed in Fig.2.13a, have reached an unprecedented precision of ∼ 4.5% which,
as underlined in [33], challenges the current theory benchmark precision (to be
discussed in a while). For top quark weak production, the scenario is slightly
different. Experimental precision is still quite larger then theoretical one even in
t-channel, which is the best measured among the three weak production modes
(see Fig.2.15a). The situation is expected to change in the future though. With
the LHC Run III, thanks to the higher energies and increased luminosities, exper-
imental error bars will decrease, even for difficult topologies like single top ones.
Given this picture, if a meaningful comparison between theory and experiments
is to be done, theoretical predictions for both signal and background processes
need in turn to be updated with increasing precision. Within the framework of a
perturbative approach to the SM, this means taking into account quantum correc-
tions at higher orders in the expansion around the coupling constants. Being the
LHC a proton-proton collider, and being, at the LHC energies, the strong coupling
constant αs larger than the electromagnetic and weak ones, the most significant
enhancement in precision is given by QCD corrections.
While the details of how a cross-section for an hadron-initiated process is computed
will be given in the next chapter, we provide here a list of theoretical benchmarks
for top production mechanisms.

With top pair production being the dominant production mode at the LHC, efforts
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of the theory community have concentrated mainly on this process, so that it is
now one of the most precisely predicted LHC standard processes. The NLO-QCD
(O(α3

s)) corrections are known since more than 20 years [97], [98], [17], the mixed
QCD-weak corrections of O(α2

sα) were computed in [16], [23], [25], [24], [85], [86],
and the mixed QCD-QED in [79]. There are also calculations of tt̄ production at
NLO-QCD which include the top quark decays and the correlations between pro-
duction and decay, such as the information on the top quark spin. These results
have been obtained in the narrow-width approximation for top quarks produced on
shell ([21], [22], [91], [26], [39] ). The NLO-QCD differential cross sections for the
production of tt̄ in association with 1 and 2 extra jets are available [57], [58], [92],
[90], [27], [28]. Probably the most notable progress is, in 2013, the first complete
calculation of the inclusive and fully differential top-pair cross-section at NNLO-
QCD, reported in [54], where it was also directly supplemented with the previously
computed Next-to-Next-to-Leading-Log (NNLL) resumed result (see references in
the original paper [54]). The results for the LHC cross-section at NNLO-NNLL as
a function of the center of mass energy are plotted in Fig.2.6, together with ex-
perimental measurements at 7 and 8 TeV. More recently, results have also become

Figure 2.6

available for the approximate N3LO (NNNLO) top pair cross-section. For instance
the NNNLO soft-gluon corrections have been released in [84] during 2014, and in
2015 a N3LO approximated cross-section has been obtained in [96] by matching
two contributions computed respectively in the high- and low-energy limit.

Computations for Single Top cross-section are instead in a less advanced stage,
even though theoretical results for single top quark production are available at
an ever increasing level of sophistication. These include NLO-QCD and EW pre-
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dictions in four- or five-flavour scheme for both stable ([31], [117], [74], [15]) and
decaying ([40], [], [43], [41], [101], [103], [61], [60]) top quarks, resummations ([83],
[82], [126]) and fixed order computations matched to parton shower ([64], [65],
[62]). Focusing on NLO-QCD corrections, it is interesting to note that they are
small, of the order of a few percent, for the t-channel production. On the other
hand, they are large for the s-channel, of the order of fifty percent, both at Teva-
tron and LHC. Finally, corrections to tW associated production are known to be
moderate at both colliders [43]. In this panorama, the most striking and up-to-date
result is the numerical computation, achieved in 2014, of the bulk of NNLO-QCD
corrections to t-channel single top production ([36]). The numerical approach has
made it possible to address both the NNLO inclusive and fully differential cross-
section. Setting the renormalization and factorization scales µ = mt, it is found
for inclusive single top t-channel production that

• σLO
t = 53.8pb,

• σNLO
t = 55.1pb,

• σNNLO
t = 54.2pb.

It is interesting to observe that NLO and NNLO corrections are of the same order
of magnitude, namely a few percent. This confirms that in the case of Single Top
production too it is worth the effort to go beyond NLO. For a more detailed dis-
cussion and interpretation of these numbers, and for the complete list of numerical
results, including t-channel anti-top production and transverse momentum distri-
butions, we refer the reader to the original paper (above-mentioned).

2.1.3 Top quark and Higgs boson

As already mentioned briefly, the top quark is closely related to the detection and
study of the Higgs boson, mainly because of its large mass. The paragraph that
follows is dedicated to describe the topic more in detail.

As a loop-particle, the top quark plays an important role in electroweak preci-
sion analyses, as we briefly illustrate in the following. There are five independent
SM parameters (including gauge, matter and Higgs sectors) : the three gauge
couplings gs,g,g

′, respectively related to strong, and electro-weak interactions, the
Higgs vacuum-expectation value v and the Higgs self-interaction coupling λ. At
tree-level the independent quantities reduce to just three, g, g′, v, which are related
to three very well measured quantities by

αem =
1

4π

g2g′2

g2 + g′2
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GF =
1√
2v2

MZ =
1

2

√

g2 + g′2. (2.4)

From these three quantities all other electroweak quantities can be predicted at
tree-level, including the well known relation between the W mass and the Z mass,
α and GF , Eq.(2.5).

M2
W =

1

4
g2v2 =

1

2
M2

Z

(

1 +

√

1− 4πα√
2GFM2

Z

)

(2.5)

Eq.(2.5) can then be reformulated as

M2
W =

πα/(
√
2GF )

sin2 θw
with sin2 θW = 1− M2

W

M2
Z

, (2.6)

Eq.(2.6) holds at tree-level, but when one wants to go at one loop , the presence of
an extra term ∆r, which takes into account one loop corrections, modifies Eq.(2.6)
into

M2
W =

πα/(
√
2GF )

sin2 θw(1−∆r)
. (2.7)

The contribution of top quark to ∆r is given through the tb̄-loop in the W self-
energy and the tt̄-loop in the Z self energy (see diagrams in Fig.(2.7)).

W W

b̄

t

(a)

Z Z

t̄

t

(b)

Figure 2.7

By computing 1-loop diagrams in Fig.(2.7), one obtains the expression Eq.(2.8).

(∆r)top ≃ −3GFm
2
t

8
√
2π2

1

tan2 θW
. (2.8)

In the same way, also the Higgs boson gives its contribution Eq.(2.9) to the 1-loop
correction ∆r through the diagrams in Fig.(2.8).
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h
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h
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Figure 2.8

The resulting contribution (∆r)higgs is given by

(∆r)higgs ≃ 11GFM
2
Z cos2 θW

24
√
2π2

ln
m2

h

M2
Z

. (2.9)

By inspection of Eq.(2.8), (2.9), we see that the main contribution is given by
the top loop, whose expression depends quadratically on mt, whereas the Higgs
loops only contribute a logarithmic dependence on mhiggs. Nonetheless, both
these heavy particles contributions to ∆r have to be taken into account in order
to predict MZ at 1-loop, implying that, at this perturbative order, there are five
independent SM parameters , namely αem, GF ,MZ ,mt,mh. These relations can
also be used the other way around, namely to predict mh starting from precise
measurements of αem, GF ,MZ,mt,MW . This explains how electroweak analyses
can produce an estimate for the mass of the Higgs boson. Needless to say that, the
more accurate the input parameters are, the narrower will be the range the Higgs
boson mass will be constrained to. This is one of the main reason why an accurate
measurement of the top quark mass is important in the context of precision tests
of the Standard Model.

Top and Higgs are also strongly related from the point of view of Higgs boson
production through processes mediated by the strong interactions. Such processes
are Higgs production in association with a tt̄ pair and gluon fusion. The former
is obtained by remembering the Yukawa couplings of the Higgs boson to fermions
Fig.(2.9), which allows for radiation of an extra Higgs from a top or antitop in
diagrams contributing to tt̄ production (Fig.2.1). The latter is instead a process
initiated by two gluons which, through a quark loop, produce a Higgs in the final
state, as illustrated at tree-level in Fig.2.10.

While associated production with a tt̄ pair is suppressed by the presence of three
heavy particles in the final state, gluon fusion happens to be the dominant Higgs
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Figure 2.9: Yukawa coupling of the Higgs boson to fermions.
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Figure 2.10: Higgs production via gluon fusion.

production mechanism at the LHC, as can be seen in the theoretical predictions
shown in Fig.2.11. In the gluon fusion process, the role of top quark is dominant.
In principle, any type of quark can circulate in the fermion loop, but since the
Higgs coupling to fermions is proportional to the squared mass m2

q of the fermion,
contributions from lighter quarks propagating in the loops are suppressed propor-
tionally to m2

q. The main role is then acted by the top quark circulating in the
loop. The leading top quark contribution can be evaluated, with a good approx-
imation, in the limit mt → ∞, by matching the Standard Model to an effective
field theory where the amplitude is evaluated from an effective Lagrangian which
describes the point-like effective coupling of the Higgs to the gluons. The role ofmt

remains of great importance in this scenario, since, in order to assess the validity of
such effective approach, the effective result is to be compared with approximated
calculations of the mt dependence based on asymptotic expansions. Gluon fusion
is the theoretically best known channel among those contributing to Higgs pro-
duction. Fixed order analytical QCD corrections are available up to NNLO and
since 2015 up to NNNLO (computed by summing the first 37 orders of the thresh-
old expansion of the cross-section, see [6]). Electroweak radiative corrections are
computed at NLO, whereas virtual corrections are available up to 2-loops. Also
mixed QCD-electroweak corrections at order O(ααs) have been calculated. QCD
corrections at NLO and NNLO have been improved through the matching to the
results which takes into account the resummation of soft-gluon contributions at full
next-to-next-to-leading logarithmic (NNLL) accuracy. References can be found in
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Figure 2.11: The SM Higgs boson production cross sections as a function of the
hadronic center of mass energy,

√
S, for pp collisions. Bands indicate theoretical

uncertainties.

[99].

Given its sensibly smaller cross-section at the LHC, the state of the art for Higgs
associated production with a tt̄ pair is much less advanced. Currently, NLO QCD
corrections and interfaces between NLO QCD and parton-shower Monte Carlo are
available for this process (references are given in [99]). These programs provide,
up to now, the most flexible tools for the computation of differential distribution,
of pp→ tt̄H , including experimental cuts.
Both gluon fusion and production in association with a tt̄ pair, can provide im-
portant information on the top-Higgs Yukawa coupling. As already mentioned,
one striking feature of the SM Higgs boson is its strong coupling to the top quark
relative to the other SM fermions. Based on its large mass, the top-quark Yukawa
coupling is expected to be of order one. Since the top quark is heavier than the
Higgs boson, its coupling cannot be assessed by measuring Higgs boson decays
to top quarks. However, this coupling can be experimentally constrained through
measurements involving the gluon fusion production mechanisms, assuming there
is no physics beyond the SM contributing to the loop. On top of that, the top quark
Yukawa coupling can be probed directly through a process that involves both a
Higgs and top quarks explicitly reconstructed via their final-state decay products.
Htt̄ associated production satisfies these requirements, so that a measurement of
the rate of Htt̄ production provides a direct test of the coupling between the top
quark and the Higgs boson.
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2.1.4 Top physics as a window on Beyond-the-SM physics

We recap very briefly the BSM scenarios that have been explored up to now with
processes involving (anti)top quarks. Since it goes beyond the purpose of this
thesis and given the proliferation of BSM models and searches, we do not report
directly bounds found by experiments at Tevatron and mainly at LHC in single
searches, but refer the reader to [111], where all bounds are listed and explained
in detail.

• tt̄ invariant mass distribution - Many extensions of the SM predict new in-
teractions, leading to new particles that would decay predominantly into tt̄
pairs and may then show up, in the simplest scenario, as resonances in the
top quark pair invariant mass distribution. New particles coupling predom-
inantly to top quarks could be realized in many different ways. They could
be spin-0 scalars or pseudo-scalars in supersymmetric (SUSY) or Two-Higgs-
Doublet (2HDM) models, as well as spin-1 vector or axial-vector particles,
for instance a leptophobic topcolor Z ′ boson. The shape of the tt̄ invariant
mass distribution is studied separately in the low-energy (below 1TeV) and
high-energy (above 1TeV) regime, since for large masses, the top quarks de-
cay products tend to be collimated and a dedicated reconstruction algorithm
is necessary. In Fig.(2.12), the shape at Tevatron (left) and at LHC 7 TeV
(right) are shown.

Figure 2.12: Left plot: Tevatron results for the invariant mass distribution Mtt for
top quark pair production at NNLO accuracy. Right plot: NNLO cross-section for
the production of single top quarks at the LHC 7 TeV, as a function of the cut of
the pT of the top quark.
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• Flavour changing neutral currents (FCNC) - In the SM at tree-level FCNC
are forbidden, and also at loop level are suppressed with respect to the dom-
inant decay mode. Interestingly, many SM extensions allows for tree-level
FCNC, which is translated into increased predicted branching fractions for
FCNC decays of top quarks. Such extensions can be for instance 2HDM,
MSSM (minimal supersymmetric Standard Model), topcolor assisted tech-
nicolor, super-symmetry with R-parity violation. The privileged process for
searches of upper bounds on the branching fractions BR(t → qγ),BR(t →
qZ),BR(t → qg) is Single Top production. Since, in particular, the decay
mode t → qg is very difficult to disentangle from the QCD multi-jet back-
ground, a first dedicated search was also presented by ATLAS for anomalous
Single Top production qg → t → bW , where better sensitivity should be
achieved for the anomalous coupling qg → t.

• Anomalous�ET in tt̄ production - In some models like SUSY models with R-
parity conservation and little Higgs models, partners of the top quark with
masses below around 1TeV appear. In such scenarios, pair-produced exotic
top partners T T̄ can decay each into an ordinary top and a neutral weakly
interacting particle A0, thus giving rise to the final state T T̄ → tt̄AoAo.
From the point of view of experimental detection, this final state has the
same signature as a normal tt̄ production, but with increased missing �ET .
A first search for such a final state has already been performed by ATLAS.

• Same sign top quark pair production - Some models predict FCNC in the
top quark sector mediated by the t-channel exchange of a new boson Z ′.
This type of interaction would also give rise to same-sign top quark pair
production.

• Charged Higgs production - In 2HDM or SUSY models the existence of light
charged Higgs boson H± is predicted. Such particles can be produced for
instance in the decay of a quark top, through the t → H+b or t̄ → H−b̄,
with subsequent decay of the charged Higgs bosons H± → τντ . Searches
have been performed using both top pair production and Single Top events.
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2.2 LHC as a top factory, experimental ‘state of

the art‘

This section is dedicated to give an overview on precision top physics at the LHC
from an experimental perspective. In the entire section, particular emphasis is
put on top production mechanisms, especially on the weak production of single
(anti-)top, which represents the subject of this thesis.
The section is divided into two parts. In the first subsection we review the ex-
perimental successes in measuring top quark production cross-sections achieved
thanks to the high energies available at the LHC. In the second part of the sec-
tion, we report up-to-date measurements of some SM observables related to Top
physics which can be indirectly extracted in experimental searches. In particular
we address measurements of top quark quantum numbers and of the CKM matrix
element |Vtb|.

2.2.1 LHC experimental benchmarks: top quark production

Measurements for tt̄ cross-section.
As it was already mentioned in the previous section, the strong interaction mediates
the leading production mechanism for top quarks, which reads pp(pp̄) → tt̄ at
LHC(Tevatron). The final states for pair-production at leading-order in QCD,
can be the following (where the quarks in the final states evolve then into jets of
hadrons):

1. all-jets channel : tt̄→W+b W−b̄→ qq̄′b q′′q̄′′′b̄,

2. lepton+jets channel : tt̄→W+b W−b̄→ qq̄′b l−ν̄lb̄+ l+νlb q
′′q̄′′′b̄,

3. dilepton channel : tt̄→W+b W−b̄→ l̄ νl b l
′ν̄l′ b̄.

Although the symbol l(l̄) refers in general to a lepton(anti-lepton), so that it could
be e, µ or τ , most of the analyses distinguish the e and µ from the τ channel, which
is more difficult to reconstruct. Otherwise, in the following, the symbol l and the
generic word ‘lepton’ will refer to the leptonic flavours e, µ, unless specified. The
reason why τ leptons are more challenging is that they have a very short lifetime
(approximately 2.9 · 10−13s), so that most of them decay before leaving the beam
pipe. They decay either leptonically into a lighter lepton (e or µ) and the corre-
sponding flavour neutrino (BR ∼ 35%) or into hadrons (BR ∼ 65%). Since the
cross-section for the production of hadronic jets is much larger than the one for
the production of jets coming from τ leptons, the challenge lies in rejecting the jets
faking τ candidates. When the τ leptons decay leptonically, this is usually counted
as signal in the dilepton or lepton+jets final states. Dedicated analyses are instead
carried out for hadronically decaying taus. In this case, two kinds of analyses are
usually distinguished. On one side, there is the dilepton channel with one τ , where
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both W bosons decay leptonically, one into a light lepton e or µ and the other one
into a τ , the last one giving then rise to hadrons (hadronic τ). On the other side,
also the τ+jets case is considered, where oneW boson decays directly hadronically,
and the other one leptonically into a hadronic τ . Analyses involving hadronic τ
leptons, as well as the all-jets channel are so difficult obviously because of the huge
QCD multi-jets background. Finally, it must be stressed that the number of jets
in the final state could be actually greater than the number of quarks listed in the
final states above, due to QCD extra radiation that can possibly lead to extra-jets.
The most precise results are thus provided by the dilepton and in particular the
lepton+jets channels, because of the best ratio between signal and background.
The production of top pair has been observed since the discovery of top quark,
both at Tevatron and LHC. The first measurements were made during Run I
at Tevatron at

√
S = 1.8TeV and then made more precise during Run II at√

S = 1.96TeV. Finally, since beginning of 2010, measurements have been taken
at LHC at

√
S = 7TeV and

√
S = 8TeV. It is interesting to measure the to-

tal production cross-sections in all possible final states, since the impact of new
physics could affect different channels in different ways. Indeed, all possible final
states involving leptons, jets and missing transverse energy have been measured by
the two colliders, except for final states involving two hadronically decaying taus
[33]. The results are in agreement with benchmark theoretical predictions, which
will be in turn discussed in the following. We report the most up-to-date and
precise measurements, which come from the LHC experiments ATLAS and CMS,
stressing that the measurement of top pair production, because of its final state
involving essentially all physics objects and thus being so complex, represented a
major milestone achieved in the LHC Run I and Run II program. Experimental
results are shown in Fig.(2.13a), (2.13b), (2.14a), (2.14b). The first important fea-
ture, visible in all plots, is the striking accord between measurements and theory
predictions, regardless of the final state channel in which the analyses are per-
formed. The worst experimental performance is, as already anticipated, in all-jets
and τ+jets channels, but also in this case measurements and theory are compatible
(see Fig.(2.13b)). Such accord between theory and experiments provide a stringent
test of the SM and in particular of our theory of strong interactions.
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(a) Summary of LHC and Tevatron measurements of the top-pair produc-
tion cross-section as a function of the centre-of-mass energy compared to the
NNLO QCD calculation complemented with NNLL resummation, quoted at
mt = 172.5GeV. The theory band represents uncertainties due to renormaliza-
tion and factorisation scale, parton density functions and the strong coupling.

(b) Top-pair cross-section measurements at 7 TeV by the ATLAS and CMS
collaborations. The band shows the NNLO-QCD+NNLL resummation. The
theory band represents uncertainties due to renormalisation and factorisation
scale, parton density functions and the strong coupling.The upper part of the
figure shows early LHC measurements and their combination. The lower part
summarizes measurements performed after the LHC cross-section combination
(mt = 172.5GeV).

Figure 2.13
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Figure 2.14: Summary of measurements of the top-pair production cross-section at
8 TeV compared to the exact NNLO QCD calculation complemented with NNLL
resummation. The theory band represents uncertainties due to renormalisation
and factorisation scale, parton density functions and the strong coupling.
In Fig.(a) results quoted at mt = 172.5GeV, whereas in Fig.(b) at the current
world average mt = 173.5GeV.
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Measurements for Single Top cross-section.

At the LHC, single top in t-channel and Wt production have been observed,
whereas only an upper bound has been put on s-channel cross-section. Though
for single top topologies the signal to background ratio is generally less favourable
than for top pair production, at the LHC such ratio is enhanced with respect to
Tevatron.
The cleanest signature belongs to t-channel, where a light quark jet recoils against
the top quark, which decays in turn into a W and a b, thus originating a b-jet.
The W can decay either leptonically, thus originating an isolated lepton and miss-
ing energy or hadronically, thus giving rise to additional jets. The signature of
t-channel requires then at least two jets, among which one has two be b-tagged,
and missing energy plus an isolated lepton in case of a leptonically decaying W .
The tW associated production is particularly challenging, since at NLO-QCD it
happens to share with tt̄ the same final state, so that the two processes can in-
terfere and also on a theoretical level it is not clear how to define the signal. To
overcome this problem, two schemes have been proposed to define the tW signal in
[120], [65]. The final states classification is indeed the same as for top pair produc-
tion, namely dilepton, lepton+jets, all-jets. Finally, concerning the s-channel, its
signature is characterized by one charged lepton, missing energy and two b-tagged
jets. At present, it has never been measured directly at Tevatron, and the LHC
experiments only managed to put an upper bound, as can be seen from Fig.2.15b.
Due to the huge background to single top topologies composed mainly by QCD
multijets, W+jets, tt̄, Z+jets, Drell-Yan, ATLAS and CMS used, on top of usual
cut and count analyses, also Neural-Network (NN) and Boosted Decision Tree
(BDT) analyses, in order to increase the efficiency in extracting the signal from
background (see [109]).

To conclude the discussion about experimental benchmarks, we would like to men-
tion, without entering into details, two recent major achievements.

• The recently claimed observation at the LHC ([112]) of tt̄W and tt̄Z asso-
ciated production, which are of fundamental importance to test top quark
electroweak couplings.

• The possibility to measure, thanks to the great abundance of top quarks
produced at the LHC, not only inclusive cross-sections, but also differential
distributions dσtt̄/dX and dσt/dX , where X is some relevant quantity de-
scribing the kinematics of the top(anti-top) or the tt̄ system. Differential
distributions provide even more stringent tests of QCD, can be used to val-
idate the Monte Carlo models and finally provide an interesting framework
for the detection of new physics, which could manifest itself in deviations
from the expected SM shape of the distributions. Further information can
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be retrieved in [55], [111].
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(a)

(b)

Figure 2.15: (a): Summary of the ATLAS and CMS Collaboration measurements
of the single top production cross-sections in the t-channel at 8 TeV. The mea-
surements are compared to a theoretical calculation based on NLO QCD comple-
mented with NNLL resummation computed assuming a top mass of 172.5 GeV.
In the lower part, best measurements are reported.
(b) : Summary of ATLAS and CMS measurements of the single top production
cross-sections in various channels as a function of the center of mass energy. For
the s-channel only an upper limit is shown. The measurements are compared
to theoretical calculations based on: NLO QCD, NLO QCD complemented with
NNLL resummation and NNLO QCD (t-channel only).
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2.2.2 Measures of top properties and SM observable from

Top physics

Top quark mass, spin and charge.
The top mass is the best measured property of top quark, since, as it will become
clear in the rest of this section, it has a fundamental role in precision tests of
the Standard Model. Since the dominant and most precise measured cross-section
both at LHC and Tevatron, is tt̄ pair production, usually measurements of mt are
extracted from this process. Nonetheless, it is worth mentioning that thanks to
LHC high energies and thus increased number of events, a first attempt to extract
mt also from a combined signal of tt̄ and t-channel Single Top data has recently
been done in [59]. Restricting attention to the tt̄ production, the lepton+jets chan-
nel yields the most precise measurements because of its good signal to background
ratio and the presence of a single neutrino in the final state.
The combination of both LHC and Tevatron analyses ([1]) gave the most up-to-
date value of mt = 173.34± 0.76, where mt is the parameter which identifies the
top mass in the Monte Carlo simulator used to extract the measurement. One
open theoretical issue regards the interpretation of such result , since the MC
mass, namely the parameter used in the Monte Carlo to identify the top mass, is
not a renormalized field theory mass and it is not even clear how it is related to the
top mass as defined for instance in the MS or in the on-shell scheme. Discussion
of such topic goes beyond the scope of this text, but the interested reader might
find out more in [78].
To conclude the discussion about top mass, it should be mentioned that another
possibility, which allows to by pass this interpretation issue, is that of extracting
mt from the measured cross-section using the theoretical relation between the mass
and the production cross-section. Such possibility has been widely explored and
some references can be found in [99].

Thanks to its huge mass, and consequently its very short life time (Γ−1
t ≃

(1.5GeV)−1), the top quark is the only quark which decays before its spin can be
flipped by the strong interactions. Indeed, the evolution of a heavy quark produced
with definite spin in a high-energy hadronic collision, can be roughly explained as
follows. After a time-scale of O(Λ−1

QCD) (with ΛQCD ≃ 200MeV) after it has
been produced, the heavy quark is likely to pick up a light quark of opposite
spin from the vacuum and hadronize into a meson. The interaction between the
two opposite spin brings the meson into a spin-zero state after a typical time of
O((Λ2

QCD/mQ)
−1), being mQ the mass of the heavy quark. This implies that

after this typical time, the heavy quark is depolarized. Given the value of mt,
one can see that top quark actually decays before the depolarization mechanism
comes into play, so that its spin is observable in the angular distribution of its
decay products.
In tt̄ production, and in general in unpolarized QCD reactions, top quarks are
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produced unpolarized. The argument is very simple and makes use of parity
being a symmetry of QCD to show that, if the initial partons are unpolarized
(namely the pp̄ collision is unpolarized), then the probability to produce positive-
helicity or negative-helicity top quark must be the same, namely top quarks cannot
be produced polarized. Despite all this, the spin of the tt̄ pair are correlated,
which can be translated by saying that the rate for opposite-helicity tt̄ production
is greater than that of same-helicity tt̄ production. Spin correlations have now
been conclusively measured at LHC by both ATLAS and CMS. In gluon fusion
production mode, the angular distribution between the two leptons in tt̄ decays
to dileptons is sensitive to the degree of spin correlations (see references given in
[99]).
On the other hand, when the top quark is produced via the weak interaction, it is
100% polarized and its spin orientation stays encoded in the angular distribution of
its decay products. Therefore, observables which are sensitive to such information
can be designed and directly measured. Focusing attention on t-channel Single top
production, one possibility is given by the forward-backward asymmetry A in the
top quark rest frame, which is defined by

A =
N
(

cos θ
(top)
l,q > 0

)

−N
(

cos θ
(top)
l,q < 0

)

N
(

cos θ
(top)
l,q > 0

)

+N
(

cos θ
(top)
l,q < 0

) =
1

2
Ptαl. (2.10)

The angle θ
(top)
l,q is the angle between the lepton coming from top decay and the

light quark produced together with the top quark. The polarization Pt denotes
the alignment of the top quark spin with the light quark momentum, whereas the
spin analysing power αl quantifies the alignment of the lepton with the top-quark
spin. Theoretical expected values for these quantities are Pt = 0.98 and αl = 1.
The most up-to-date measurement from CMS is based on data recorded during pp
collisions at

√
S = 8TeV at the LHC and yields Pt = 0.82± 0.34 and αl = 1.

The top quark charge is +2/3e in the SM or −4/3e in some exotic models, such
as Mirror Quark Doublet Models ([52], [50], [51]). Top quark is the the only quark
whose electric charge has not been measured through production at threshold in
e+e− production. Luckily, its charge can be inferred from its decay products.
However, this is not straightforward, due to the fact that the original top charge
gets ‘diluted’ in the case where the quarks coming from its decay hadronize into
jets and also the charge observed in the decay products has to be matched to either
at top or an antitop. Measurements at the Tevatron have excluded the hypothesis
that the top has an exotic charge of −4/3e at the 95% CL. In the same way, ATLAS
and CMS presented measurements of the top charge in the lepton+jets channel
(tt̄ production mode) and the exotic −4/3e charge could be excluded with high
significance by both of them. Another possibility to access the top quark charge is
the measurement of the cross-section of the production of top pairs in association
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with a photon, which is clearly sensitive to the electromagnetic coupling of the
top. The cross-section for tt̄γ production, thanks to the enhancement due to the
presence of a γ in the final state, is already accessible during Run I at the LHC,
namely for energies of

√
S = 7TeV (ATLAS already presented a first measurement

of such cross-section at the LHC). However, more detailed tests of the couplings
at the tt̄γ vertex are only possible with larger integrated luminosities.
For further information and references about the top quark properties discussed
above and other properties that can be measured in the context of a Standard
Model top quark, we redirect the interested reader to [111].

CKM matrix element |Vtb|.
In the SM, the CKM matrix is predicted to be unitary. Once the unitarity of
the CKM matrix is assumed, a measurement of the ratio R defined in Eq.(2.3)
provides a direct measure of the CKM matrix element |Vtb|. The quantity R can
be measured by measuring the probability of a top quark to decay into a W and
a first, second, or third generation quark. In other words,

R =
BR(t →Wb)

BR(t →Wq)
, with BR(t →Wq) = BR(t→Wd) + BR(t→Ws) + BR(t→Wb),

(2.11)

so that a measurement of R boils down to measuring the branching ratios BR for
the possible decay channels. This can be achieved by studying the decays of top
quarks produced in pair via the strong interactions, or singly produced via the
weak interaction modes. We report in the following values obtained by the LHC,
with data collected at

√
S = 8TeV.

In tt̄ production, CMS measures R = 1.023+0.036
−0.034 and R > 0.945 at 95% C.L., by

comparing the number of events with 0,1,2 tagged b-jets in the lepton+jets channel
and also in the dilepton channel.
In single top production, at the LHC only the t-channel and the Wt associated
production are accessible, and a measure of |Vtb| is extracted for each of these
channels separately. In the t-channel, whose cross-section at the LHC is more than
three times as large as s-channel and Wt combined, ATLAS find |Vtb| = 1.04+0.1

−0.11

with |Vtb| > 0.80 at 95% C.L. We stress that a significant discrepancy of R (or
equally |Vtb|) from unity would imply space for BSM physics, but all measurements
performed at LHC up to now are in very good agreement with the SM predictions.



Chapter 3

pQCD and CC-DIS

3.1 Basics of perturbative QCD

In this section the basic notions of the theory of strong interactions (QCD) are
presented. First the QCD Lagrangian and corresponding Feynman rules are in-
troduced. Then, within the framework of perturbative QCD, we introduce the
formula that allows to compute the cross-sections for hadron-initiated processes.
Finally, we review the current panorama of QCD fixed-order predictions.

3.1.1 QCD Lagrangian, quantum numbers and Feynman rules

Strong interactions are described by a SU(3) Yang-Mills theory with nf quark
fields transforming in the fundamental representation of the gauge group. The
degree of freedom associated to the SU(3) group is called color, so that, in a more
general non-abelian theory with gauge group SU(Nc), the quarks will carry color
index a with a = 1, ..., Nc. The QCD Lagrangian can be written as the sum of two
pieces

L = Lq + Lg. (3.1)

Lq and Lg include respectively the quark and gluon kinetic term. In addition to
that, Lq describes the interaction of quarks with gauge fields whereas Lg the gauge
fields self-interactions. These two sectors take the following form

Lq = ψ̄a(i( /D)ab −m)ψb (3.2)

Lg = −1

2
Tr(Fµν

A FA
µν), (3.3)

41
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where the trace is in color space and ψ is the fermion field in the fundamental
representation of SU(Nc). The covariant derivative /D and the gauge field strength
F are defined as

( /D)ab = γµ∂µδab − igsγ
µGA

µ t
A
ab (3.4)

FA
µν =

i

g
[Dµ, Dν ] =

(
∂µG

A
ν − ∂νG

A
ν + gsf

ABCGB
µG

C
ν

)
tA. (3.5)

The fABC are the structure constants of SU(3). They are defined through the
commutators of the generators tA of the group (first definition in Eq.(3.6))

[
tA, tB

]
= ifABCtC , Tr

[
tatb

]
= TRδ

ab. (3.6)

The second definition in Eq.(3.6) gives instead the normalization of the trace of a
product of generators, which is commonly chosen to be TR = 1/2. The main dif-
ference with the theory of electromagnetic interaction (QED) and more in general
with abelian gauge theories is given by the presence of the term gsf

ABCGB
µG

C
ν ,

which has to be inserted in order to preserve the gauge invariance of the theory
under local SU(3) transformations

ψa → eiθC(x)tCabψb (3.7)

GCtC → eiθ
D(x)tD

(

GCtC − 1

gs
∂µθ

C(x)tC
)

e−iθE(x)tE

where θC(x) are eight arbitrary real functions of the space-time position x. Such
non-abelian term in the Lagrangian is responsible for the self-interactions of gluon
fields.

Perturbation theory applied to QCD relies on the idea of an order-by-order expan-

sion in a small coupling αs =
g2
s

4π ≪ 1. In this framework, some given observable
f , can then be predicted as

f = f0 + f1αs + f2α
2
s + f3α

3
s + ... (3.8)

where one might calculate just the first one or two terms of the series, with the
understanding that remaining ones should be small.
The principal technique to calculate the coefficients fi of the above series is through
the use of Feynman diagrammatic (or other related) techniques. The interaction
vertices arising from the QCD Lagrangian, are reported in Fig.3.1. It is well known
that in order to perform perturbation theory with the Yang-Mills Lagrangian
Eq.(3.1), (3.3) one needs to choose a gauge. As a consequence, a gauge fixing
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−igstAbaγµ

a b

A, µ

−gsfABC [(p− q)ρgµν

+(q − r)µgνρ + (r − p)νgρµ]

A, µ

C, ρ B, ν

~p

~q~r

A, µD, σ

B, νC, ρ

−ig2sfXACFXBD[gµνgρσ − gµσgνγ ]

+(C, γ) ↔ (D, ρ) + (B, ν) ↔ (C, γ)

Figure 3.1: Feynman rules of QCD.

term and a ghost Lagrangian enter Eq.(3.1), (3.3). The final QCD Lagrangian
thus reads

LQCD = L+ Lgauge−fixing + Lghost. (3.9)

There are different possible choices for the gauge fixing and ghost Lagrangian, but
we limit ourselves to quote the two most popular classes of gauge fixing. The most
commonly used gauges are the so-called covariant gauges, defined by

Lgauge−fixing = − 1

2λ
(∂µGa

µ)
2, Lghost = ∂µ(η

a)†
(
Dµ

abη
b
)
, (3.10)

where λ is an arbitrary gauge parameter and η is a complex scalar field in the
adjoint representation which obeys Fermi statistics. In a covariant gauge the gluon
propagator is given by

∆ab
µν(p) = δab

i

p2

(

−gµν + (1 − λ)
pµpν
p2

)

, (3.11)

which becomes particularly simple for the Feynman gauge choice λ = 1. Another
convenient choice are the so-called axial gauges, defined by

Lgauge−fixing = − 1

2λ

(
nµGa

µ

)2
, (3.12)

where again λ is an arbitrary parameter and n an arbitrary vector. The nice
property of axial gauges is that ghost fields are not required. On the other hand,
the gluon propagator has a more complicated form

∆ab
µν(p) = δab

i

p2

(

−gµν +
nµpν
n · p − (n2 + λp2)pµpν

(n · p)2
)

. (3.13)
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Again a simplification occurs if one chooses a light-cone gauge, defined by the con-
ditions n2 = 0, λ = 0. In this gauge, the gluon propagator happens to contain
only a sum over polarization of physical states, or, in other words, only transverse
gluon polarizations (namely physical ones) propagates.
Axial gauges are usually quite useful when studying general properties and be-
haviour of QCD amplitudes, whereas covariant gauges are very convenient for real
computations. Indeed, the gauge choice we do for our NNLO computation is Feyn-
man gauge, so that we can deal with a very simple gluon propagator, but we have
to include also ghost diagrams.

3.1.2 pQCD@Hadron Colliders

Colliders like Tevatron and LHC are designed to investigate phenomena involving
high-momentum transfers (more precisely large transverse momenta), say in the
range 50 GeV to 5 TeV. It is well known that in this energy regime the QCD
coupling is small, and we would then hope to apply perturbation theory. Yet, the
initial state involves protons, at whose mass scale, mp ≃ 1GeV, the coupling is not
weak. And the final states of collider events involve the presence of lots of hadrons,
which are not perturbative either. We are then faced with the problem that ex-
act perturbative methods can’t deal with low momentum scales that inevitably
enter the description of a collision, nor with the high multiplicities that events
have. Despite all this, it turns out that we are reasonably successful in making
predictions for collider events. In the following paragraphs, we briefly illustrate
the formalism that allows us to reach this goal, by explaining the structure that
QCD cross-sections1 assume in such formalism and in particular how we deal with
the presence of hadrons in the initial state2.

The simplest observables in QCD are those that do not involve initial-state hadrons
and that are fully inclusive with respect to details of the final state. One exam-
ple is the total cross-section for e+e− → hadrons, for which one can avoid caring
about the difficulties coming from the presence of hadrons in the initial state. This
cross-section, which we will address in the following simply as σ is formulated as a
perturbative series in αs. If one aims at computing the terms of this series beyond
LO, the first conceptual issue that must be taken into account is the running of
αs. Indeed, most higher-order computations are carried out within Dimensional
Regularization (see [119] for a complete treatment of DR), in order to handle the
ultraviolet divergences appearing in loop diagrams and possibly also the infra-red
divergences arising from phase-space integrations. In the process of going from 4
to d = 4 − 2ǫ dimensions, one introduces an arbitrary scale µ, having dimensions

1In the context of this thesis, we take into consideration only fully inclusive cross-sections,
but material on the structure of differential distribution can be found in [99].

2The ideas and formalism regarding the treatment of hadrons in the final state go beyond the
purpose of this thesis but more material can be found in [110].
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[E]1 in energy units, in order to keep consistent dimensions for all quantities. If
one wants to compare his theoretical prediction for σ with experimental data, the
dependence on such unphysical scale µ has to be eliminated. This is achieved by
introducing an energy renormalization scale µR, large enough such that the cou-
pling is small, and by fixing the value of αs at this new chosen scale. This can be
done by meaning of the well-known renormalization procedure, which we do not
discuss in this context since it goes beyond the purpose of this thesis3. Let us con-
sider the renormalized e+e− → hadrons cross-section σ at all orders(we maintain
the same notation for simplicity). This total cross-section cannot depend on the
conventions chosen to fix the renormalization point. This consideration allows to
conclude that σ must obey a Callan-Symanzik equation Eq.(3.14).

[

µR
∂

∂µR
+ β(g)

∂

∂g

]

σ (s, µR, αs) = 0. (3.14)

By dimensional analysis, one can write

σ =
c

s
f

(
s

µ2
R

, αs

)

(3.15)

with c a dimensionless constant. Then, Eq.(3.14) implies that f depends on its
argument only through a running coupling constant αs(Q

2) = ḡ2/4π, evaluated at
Q2 = s. The coupling constant ḡ is defined to satisfy the renormalization group
equation

d

d log(Q/µR)
ḡ = β(ḡ), (3.16)

supplied by the initial condition αs(µR) = αs. The β function is in turn a pertur-
bative quantity and admits thus an αs-expansion

β(αs) = −α2
s(b0 + b1αs + b2α

2
s + ...). (3.17)

At this point we take the chance to make a little digression to analyse the quan-
tities the govern the running of αs and how they are related to the well-known
phenomena of confinement and asymptotic freedom. Now, for abelian theories, b0
happens to be negative, so that the coupling constant increases its strength with
the energy. In the case instead of non-abelian theories, the sign of b0 depends on
the chosen SU(Nc) group, i.e. on the field content of the theory. For the particular
case of QCD, the first two coefficients of the β-function read

b0 =
11CA − 2nf

12π
, b1 =

17C2
A − 5CAnf − 3CFnF

24π2
, (3.18)

3Renormalization is discussed in any standard QFT text-book, such as for instance [102]
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where CA = Nc and nf is the number of ‘light’ flavours, namely those whose
mass is lower than µR. Such terms arise from respectively the gluon and massless
fermions contributions to the gluon self-energy at 1-loop. Given Nc = 3, we get
b0 =

33−2nf

12π , which implies b0 > 0 (and thus β(αs)1−loop < 0) if nf < 33/2. Given
that in the SM, we have three generations of quarks, namely no more than six
flavours, the QCD β-function can’t happen to be positive. On the other side, for
abelian gauge theories the situation is reversed. Since the term CA is zero (there
are no self-interactions of gauge boson fields, so gauge bosons do not contribute
loops to their own self-energy!), the first term of the β-function reads b0 = −nf/3
and it is thus always negative.
Now, the QCD β-function being negative, implies that the strong coupling αs be-
comes weaker at higher energies, i.e. the theory almost becomes a free theory,
in which quarks and gluons do not interact. This behaviour is commonly known
as asymptotic freedom. Conversely, at low momentum scales the coupling grows
strong, giving rise to the so-called confinement, namely quarks and gluons be-
ing tightly bound into hadrons. Such behaviour of the running of αs also tells
very clearly that a perturbative approach to QCD has a limited range of valid-
ity, namely at energies higher than a certain scale. This scale is determined by
solving the Renormalization Group Equation (RGE) EQ.(3.16) and is found to be
ΛQCD ∼ 200MeV. This is the energy regime at which the strong coupling diverges.
In conclusion, we can say that the Callan-Symanzik or RGE equation instructs us
to replace the fixed renormalized coupling αs with the running coupling constant
αs(Q), with Q of the order of the hard scale governing the process in order for the
all-order cross-section to be independent on the choice of renormalization scheme.

Now, what happens in everyday life, is that we never deal with a cross-section
containing an infinite number of terms in the αs-expansion. A realistic theoretical
prediction for QCD cross-section will contain indeed only the very first terms in the
expansion. Given this, it is interesting to see what happens when we replace the
fixed renormalized coupling with the running coupling in a theoretical prediction
for the cross-section σ truncated at a certain order in αs. The renormalized cross-
section at NLO can be written

σNLO = σLO(1 + c1αs(µR)), (3.19)

where c1 contains both real and virtual 1-loop corrections. Given an expansion of
the running coupling

αs(µR) = αs(Q)− 2b0α
2
s(Q) ln

(
µR

Q

)

+O(α3
s), (3.20)
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we can rewrite Eq.(3.19) as

σNLO(µR) = σLO

(

1 + c1αs(Q)− 2c1b0α
2
s(Q) ln

(
µR

Q

)

+O(α3
s)

)

. (3.21)

This tells us that as we vary the renormalization scale for a prediction up to
O(αs) (NLO), we effectively introduce O(α2

s) (NNLO) pieces into the calculation:
by generating some fake set of NNLO terms, we are probing the uncertainty of the
cross-section associated with the missing full NNLO correction.
If we calculate the actual NNLO cross-section for general µR it will have a form

σNNLO(µR) = σLO

(
1 + c1αs(µR) + c2(µR)α

2
s(µR)

)
. (3.22)

We observe then that the c2 coefficient now depends on µR. This is necessary
because the second-order coefficient must cancel the O(α2

s) ambiguity due to the
scale choice in Eq.(3.21). This constraints how c2 depends on µR

c2(µR) = c2(Q) + 2c1b0α
2
s(Q) ln

(
µR

Q

)

. (3.23)

If we now expressed σNNLO in terms of αs(Q), we would find that the residual
dependence on µR appears entirely at O(α3

s(Q)), namely one order further than in
Eq. (3.21). In other words, when we truncate the expansion at a given order αn

s

and substitute the fixed renormalized coupling with the running coupling, we are
always left with a residual dependence on µR of order αn+1

s . Given this fact, a first
consideration to one can do is that the µR dependence that affects a cross-section
at a given perturbative order αn

s is a probe of the impact of the missing αn+1
s term.

On top of that, one should consider that the choice of the value for µR is totally
arbitrary. In principle, in order to obtain a realistic value for the cross-section, it
seems a sensible choice to set µR = Q, where Q is the typical hard scale of the
process. But again, this is just an arbitrary choice and other choices might be
equally good. If we stick to our example and consider NLO real corrections to
e+e− → qq̄, namely the process e+e− → qq̄g, the most energetic gluon that could
be produced would have energy E = Q/2, so maybe we should choose µR = Q/2.
On the other hand, if we consider NLO virtual corrections, in loop diagrams we
would integrate over gluon energies that go beyond Q, so maybe µR = 2Q would
be as reasonable. It is clear then that the µR residual dependence translates into
an uncertainty, which inevitably affects fixed-order theoretical predictions. If we
had an arbitrarily large number of terms in the αs expansion, the scale dependence
would disappear exactly. In practice this never happens and we always deal with
a finite number of terms. As a consequence, a residual µR dependence, and thus
an uncertainty related to the choice of µR, will always affect our prediction. But,
if the perturbative series is converging, we can expect then such uncertainty to
shrink as we compute more and more terms in the expansion.
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We are now ready to move on to a more complicated case, namely cross-sections
for hadron-initiated processes.
Let us start with a very naive picture of a hadronic collision. At very high energy,
most of the collisions between hadrons will involve only soft interactions of the
constituents quarks and gluons. Such interactions cannot be treated using pertur-
bative QCD, because αs is large when the momentum transfer is small. In some
collisions, however, two quarks or gluons will exchange a large momentum pT per-
pendicular to the collision axis. Then, the elementary interaction takes place very
rapidly compared to the internal time scale of the hadron wave-functions, so that
we can think of describing this ‘hard’ collision between two of the constituents of
the colliding protons in perturbation theory.
The general underlying idea is thus that whenever we have a partonic process
governed by a typical scale Q2 which satisfies the condition m2

h/Q
2 ≪ 1, with

mh being the mass of the initial-state hadrons, we can think of factorizing the
description of our process into two parts. On one side we have the partonic hard
scattering, which takes place at a scale Q2 where αs is small and can then be
described in perturbative QCD. On the other hand, we have instead the inter-
nal structure of the initial hadron, say proton at the LHC, which is governed by
a typical scale of the order of the mass of the hadron. The coupling constant at
O(m2

p), with mp being the mass of a proton, blows up, and we enter in confinement
regime, where we cannot use anymore the tools of perturbative QCD to describe
the internal dynamics of the proton.
Given this, the first ingredient we need is indeed the perturbative computation
of partonic cross-sections, which can be carried out at the desired order in the
αs-expansion. On top of that, in order to get predictions for hadron-initiated
cross-sections, we need some other ingredient which connect the hadron- to the
parton-level description and describe the non-perturbative internal structure of
the hadron. This second ingredient is represented by Parton Distribution Func-
tions (PDFs), which cannot be computed in perturbation theory and contain the
information about the (non-perturbative) structure of the proton. The inclusive
cross-section for the production of a final state V in the collision of two hadrons
h1, h2 will then look like

σ(h1h2 → S +X) =

∞∑

n=0

αn
s (µ

2
R)
∑

i,j

∫

dx1dx2fi/h1

(
x1, µ

2
F

)
fj/h2

(
x2, µ

2
F

)
×

σ̂ij→S+X

(
x1x2S, µ

2
R, µ

2
F ,SV

)
×
(

1 +O
(
Λ2

Q2

))

. (3.24)

In this expression S is the center-of-mass energy of the hadronic collision, fi/h
is the probability distribution for parton i in hadron h, x1, x2 are the parton
momentum fractions, and SV is the set of kinematic variables describing the final
state V . The parton-level cross-section σ̂ij→S+X is technically called coefficient
function and it contains all the information about the hard scattering. Last but
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not least, µR is the already mentioned renormalization scale, whereas µF is the
so-called factorization scale, whose presence we quickly motivate in the following
lines.
The majority of the emissions that modify a parton momentum are collinear to that
parton and do not depend on the fact that the parton will interact with another
parton via a hard scattering. It is thus natural to view these emissions as modifying
the proton structure rather than being part of the coefficient function for the parton
hard interaction. Technically, one uses a procedure called collinear factorization to
give a well-defined meaning to this distinction. This factorization between PDFs
and coefficient function happens through the introduction of a new unphysical scale
µF whose meaning can be understood roughly as follows: emissions with transverse
momenta above µF are ‘hard emissions’ and, as such, they are included in the
coefficient function, whereas ‘soft emissions’ (with transverse momenta below µF )
are considered part of the proton structure description and thus they are accounted
for within the PDFs.

(a) (b)

(c) (d)

Figure 3.2: Single real and virtual QCD radiation from the initial and final state
of a generic process h.

Let us discuss a bit more in detail how this happens.
We consider a generic hard process h with cross-section σh and examine in par-
ticular the cross-section for h with an extra gluon in the final state, σh+g. If we
parametrize momenta as in Fig.(3.2a), we can write

σh+g ≃ σh
αsCF

π

dz

1− z

dk2T
k2T

, (3.25)
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with kT = E sin θ ≃ Eθ. If we avoid distinguishing a collinear q + g pair from a
plain quark (namely we measure an IR-safe observable), it is well known that the
IR divergent part of the gluon emission contribution always cancels with a related
virtual correction sketched in Fig.(3.2b) and given by

σh+V ≃ −σh
αsCF

π

dz

1− z

dk2T
k2T

. (3.26)

Now let us examine what happens for the initial-state splitting, where the hard
process occurs after the splitting. In this case the momentum entering the hard
process is modified as p→ zp (Fig.(3.2c) and we can write

σg+h(p) ≃ σh(zp)
αsCF

π

dz

1− z

dk2T
k2T

, (3.27)

where it is assumed that σh is governed by a hard scale Q ≫ kT , so that we can
ignore the extra transverse momentum entering σh and retain only the dependence
of σh on the longitudinal component zp. For virtual terms, the momentum entering
the process is unchanged (Fig.(3.2d)), so that the virtual cross-section reads

σg+h(p) ≃ −σh(p)
αsCF

π

dz

1− z

dk2T
k2T

. (3.28)

The total cross-section thus gets contributions two kinds of contributions, propor-
tional to either σh(p) or σh(zp).

σg+h + σV +h ≃ αsCF

π

∫ Q2

0

dk2T
k2T

∫ 1

0

dz

1− z
[σh(zp)− σh(p)] . (3.29)

It is important to stress that the integration over k2T has an upper bound which is
fixed by the hard scale of the hard scattering process: the approximations on which
all this argument relies are valid as long as the transverse momentum emitted in
the initial state is much smaller than the momentum transfers Q present in the
hard process. The integration over z is finite because in the region of the soft
divergence z → 1, the difference of the hard cross sections σh(zp)− σh(p) tends to
zero (in presence of radiation going soft, a Born-like kinematic is recovered).
In contrast to that, the kT integral diverges in the collinear limit: the cross-section
with an incoming parton (and virtual corrections) appears not to be collinear
safe. This is a general feature of processes with incoming partons. In order to
bypass this issue, it makes sense to introduce a new scale, µF , which acts as a
cut-off in separating the perturbative region, where the hard process takes place
from the non-perturbative region to which the description of the proton internal
structure belongs. In other words, as mentioned at the beginning of the discussion
on divergences, µF separates the ‘soft’ emissions which occur at kT ≤ µF and are
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thus factorized into the proton structure from the ‘hard’ emissions, which occur
instead at kT ≥ µF and belong then to the hard scattering process.
The presence of a non-integrable divergence that somehow needs to be regulated
and absorbed with a scale choice into some ‘constant’ of the theory (here the
PDFs), reminds of the renormalization for the coupling constant. The difference
are that here we are faced with a infra-red (collinear) divergence rather than with
an ultraviolet one, and that, unlike the coupling, the PDFs are not fundamental
parameters of the theory. Nevertheless, as for the coupling, the freedom in choosing
the scale entering the regularization, here µF , implies that the dependence on µF

of both PDFs and coefficient functions is fixed by a group of differential equations
which go under the name of Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equations. They read at LO

µ2
F

∂fi/p(x, µ
2
F )

∂µ2
F

=
∑

j

αs(µ
2
F )

2π

∫ 1

x

dz

z
P

(1)
i→j(z)fj/p

(x

z
, µ2

F

)

. (3.30)

The function P
(1)
i→j(z) to be convoluted with the PDFs is the first-order (LO) term

of the perturbative expansion in αs of the so-called splitting function Pi→j(z) and
can be interpreted as the probability for a propagating parton i to emit another
parton and continue propagating after the emission as parton j. After LO, the
coefficient functions are also µF dependent.
The choice of factorization scale is arbitrary, but if one has infinite number of
terms in the perturbative series, the µF -dependences of the coefficient functions
and PDFs will fully compensate each other. Given only N terms of the series,
a residual O(αN+1

s ) uncertainty is associated with the ambiguity in the choice of
µF .
The picture that emerges from these arguments is that the generic hadronic cross-
section computed at order αN

s will always be affected by an uncertainty of order
αN+1
s connected to the residual dependence on µF and µR .

This is why scale variation has become a standard procedure to assess this type
of uncertainties: by convention one fixes µR = µF = Q, and vary then sepa-
rately µF and µR in the range Q/2 < µi < 2Q. The envelope containing the
curves obtained through these variations provides the final uncertainty band due
to scale-dependence which accompanies the fixed-order prediction.

It is then clear that LO predictions for QCD observables are in general not very ac-
curate, since they are plagued by large uncertainties, coming from missing higher-
order corrections. This often results in a strong dependence of the predictions on
the renormalization and factorisation scales, and moreover in many cases , Higgs
production in gluon fusion ([73], [8], [104]) being the most famous , perturbative
higher-order corrections can be large and may completely invalidate the LO ap-
proximation. That’s why we definitely need to go beyond LO in perturbation
theory in order for our theoretical fixed-order predictions to be reliable.
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The structure and features of QCD observables discussed in the previous para-
graphs holds at all-order in perturbation theory and provide the general framework
and consistency checks for any fixed-order computation in QCD.
In the next subsection, we will dedicate some space to review the status of the
art for QCD fixed-order predictions, quoting in particular some of the most recent
and striking results.

3.1.3 Panorama of fixed-order computations results

NLO computations have been carried out over a period of about 30 years. Over the
last few years, a lot of progress has been made towards automation of such kind
of computation, and by now NLO sector has been almost completely automated.
The main difficulty, as it is well known, is represented by the fact that one has
to consider both virtual and real corrections, which are affected by different kinds
of singularities. Ultra-violet (UV) singularities affect only virtual corrections and
are removed through renormalization of the coupling, masses and wave-functions.
Infra-red (IR) singularities are instead present in both virtual and real corrections.
For inclusive cross-sections soft IR singularities cancel between real and virtual
diagrams, and the same happens to final-state collinear singularities. Initial-state
collinear singularities instead have to be factorized into the PDFs. The final phys-
ical observable must be a finite quantity, and the general requirement (for both
inclusive and exclusive observables) is that it has to be infra-red and collinear safe.
General methods exist to handle and cancel IR singularities at NLO [63],[48]. For
many years the bottleneck has been the computation of the relevant one-loop am-
plitudes, but in the last years this issue has undergone an enormous progress.
The traditional approach based on Feynman diagrams is now complemented with
new powerful methods based on recursion relations and unitarity. The general one-
loop amplitude is expressed as a sum of known 1-loop scalar 4-,3-,2-point functions
(namely boxed, triangles, bubbles), plus a finite remainder term. The coefficients
of these integrals can be computed by taking suitable multiple cuts (see [32]).
These progress led to the ‘NLO revolution’, namely the complete automation of
NLO computations, through the release of a number of general packages and codes
meant to compute automatically NLO amplitudes and/or cross-sections. Among
these tools, we cite GoSam ([122]), OpenLoops ([47]), Helac-NLO ([81]), NJet ([10]),
BlackHat ([20]), MadGraph5 aMC@NLO ([3]). Among the most recent and striking
NLO-QCD results, we quote the computation of inclusive cross-sections and some
differential distributions for Higgs production in association with up to three jets
(pp → H + 3j, [53]), five jets production (pp → 5j, [11]), W production in as-
sociation with up to five jets (pp → W + 5j, [19]), unified tt̄ and associated Wt
production in 4F-scheme ([46]).
Even in this panorama, where NLO computations are in such an advanced stage,
NNLO calculations are still needed and become particularly useful in some specific
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cases:

• processes whose NLO corrections are comparable to LO contributions, for
instance Higgs production at hadron colliders,

• benchmark processes measured with high experimental accuracy (e.g. αs

measurements from e+e− event shape variables,W and Z production, heavy
quark hadroproduction),

• processes relevant to determine PDFs or that can hide new physics signal
(e.g. high�ET jet hadroproduction),

• important background processes (e.g. vector boson pair production).

The difficulties affecting a NNLO computation are of the same nature of those
already described for a NLO computation, namely the renormalization of UV
singularities and cancellation of the IR ones, but the patterns of renormalization
and specially of IR poles cancellation is much more involved than at NLO. Over
the last twenty years, analytical computations, with explicit cancellation of IR
singularities, have become available for inclusive cross-sections of some standard
processes: DIS structure functions ([131], [133], [132]), single hadron production
([106], [108], [107], [93]), DY lepton pair production ([72]), Higgs boson production
([73], [8], [104]). On top of this, an analytical computation for the dilepton rapidity
distribution in Drell-Yan process has been carried out in [5], by modelling the phase
space constraint with an ‘effective’ propagator. Recently, more results have been
achieved also in the computation at NNLO of cross-sections for processes which
are described by more than one dimensionless scale. We cite here some of them:

• top pair production: as already mentioned in chapter 2 ([54], 2013), both
the inclusive and fully differential cross-section at NNLO were computed
numerically and matched to the NNLL resumed result;

• diphoton production: the fully differential cross-section for pp → γ + γ +X
has been computed numerically in [49] (2011);

• photon and vector boson associated production: the next logical step after
diphoton production was the computation of pp → V + γ +X cross-section
where V is either a W or a Z; parton-level amplitudes for double-virtual
and real-virtual contributions were computed over more than twenty years
in ([67], [4], [56], [42]) and the computation was finally completed with dou-
ble real parton amplitudes and numeric integration over the phase space or
double-real and real-virtual contributions in 2012 ([71]), thus yielding the
final inclusive and differential cross-sections;

• vector bosons production: the inclusive cross-section for pp → V V ′ +X has
been obtained very recently through a completely analytical computation in
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[68], [69], [77], [70] and there is at the moment work in progress towards the
fully differential cross-section.

We would like to stress that the computation of differential distributions at NNLO
is in general a formidable task and that a lot of effort has been done in understand-
ing how the singularities of double-real, real-virtual and double virtual contribu-
tions are structured and how the calculation can be organized into finite pieces
that can be integrated numerically.
We would like to conclude this brief review of the status of the art for fixed-order
computations by quoting one of the most recent and probably most impressive re-
sults, namely the computation, already mentioned in chapter 2, of inclusive Higgs
production in gluon fusion at NNNLO-QCD. This is the first calculation which
goes beyond the NNLO barrier. It is based on a method to perform a series ex-
pansion of the partonic cross-section around the threshold limit to an arbitrary
order. The expansion is performed to sufficiently high order as to obtain the value
of the hadronic cross-section at NNNLO in the large top mass limit. For a more
detailed description of technical details and results we send the reader to the orig-
inal reference [6].

In such rich and dynamical panorama of higher-order QCD predictions, is inte-
grated our computation for Single Top inclusive cross-section in t-channel, which
we finally address in the next section.
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3.2 t-channel Single Top in a DIS-like approach

We introduce in this section the project which constitutes the main subject of
this thesis, namely the computation of NNLO-QCD corrections to Single Top
production in t-channel. First, we explain how this process can be described in
a Charged-Current Deep-Inelastic-Scattering (CC-DIS) framework, and we intro-
duce CC-DIS Form Factors, which are the objects of our computation. We discuss
which kind of diagrams is neglected at NNLO in this picture and the numerical
importance of such contributions. Then, we give the detailed structure of massless
and massive Form Factors which build up the t-channel Single Top cross-section
up to NNLO-QCD and we discuss how the computation of the NNLO corrections
to these Form Factors is naturally organized.
Finally, we dedicate some space to specific issues that may arise in general in the
computation of higher-orders corrections, and that affect also our particular case.

3.2.1 CC-DIS picture of t-channel Single Top

4 Let us consider the tree-level partonic cross-section for Single Top production
(Fig.(3.3)). This can be easily interpreted as the interaction of two weak currents,

q

q′

W ∗

t

b

Figure 3.3: Tree-level diagram for Single Top production in t-channel (in a 5-flavour
scheme).

taking place via the exchange of a W boson in t-channel. At LO-QCD, these two
weak currents describe the subprocesses

q(p1) → q′(p2) +W ∗(q), b(pb) +W ∗(q) → t(pt). (3.31)

The first subprocess in Eq.(3.31) only contains massless quarks, whereas the second
one contains a massive top. Thus we will refer to these subprocesses respectively
as light and massive current.

4For the reader who is already familiar with DIS-like approach to higher-order computation,
we suggest to go directly at the end of this subsection, where the expression for the hadronic
cross-section in terms of structure functions is given.
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The momentum conservation relation for the initial 2 → 2 process p1+pb → p2+pt
gets ‘split’ into two momentum conservation relations for the 2 → 1 subprocesses

p1 = p2 + q, pb + q = pt. (3.32)

Given these relations, it is clear that each of these subprocesses is described by only
two independent momenta. Since we are considering an inclusive cross-section,
namely we are integrating over momenta of particles in the final state, the ‘fixed’
momenta on which the two subprocesses will finally depend will be respectively
{p1, q} and {pb, q}. This holds also at higher orders, because again, momenta ki
of extra emitted quarks or gluons will be integrated out. The set Vl = {p1, q}
is sufficient to describe the light current, because no other dimensional scale is
involved in the subprocess q → q′+W ∗. In the case of the massive current, on top
of the independent momenta pb, q, there is also m

2
t playing the role of independent

dimensional scale. Thus, the massive current depends upon the quantities Vm =
{pb, q,m2

t}. Since, as it will become clear in a few lines, form factors, namely the
objects we use to encode information about higher orders corrections, are scalar
quantities (they have no free Lorentz indexes), it convenient to switch to set of
scalar variables. The equivalent ‘scalar’ sets we use are respectively Vl = {2p1 ·q, q}
and Vm = {(pb + q)2, Q2,m2

t} ( for simplicity we kept the same names for these
sets). Since (pb + q)2 is the squared energy in the center of mass of the collision
between the virtualW and the b quark, we will set s = (pb+q)

2. The mathematical
description of this tree-level partonic process fully reflects this idea of factorization
into two weak subprocesses. The cross-section Eq.(3.33), differential with respect
to the W virtuality Q2 = −q2 > 0, is given by the contraction of two rank-2
tensors C(Vl) and C(Vm) in Eq.(3.34), containing the results of traces respectively
over the light and massive fermionic lines.

dσ

dQ2
=

G2
f

64πŝ2
Cαβ(Vl)

(

−gαµ +
qαqµ
m2

W

)
1

Q2 +m2
W

(

−gβν +
qβqν
m2

W

)
1

Q2 +m2
W

Cµν(Vm),

(3.33)

with

Cαβ(Vl) = 4(2p1 · q)gαβ + 16pα1 p
β
1 − 8iǫαβµνp1µp1ν − 8(pα1 q

β + pβ1q
α)

Cµν(Vm) = −4(2pb · q)gµν + 16pµb p
ν
b + 8iǫµνργp

ρ
bq

γ + 8(qµpνb + pµb q
ν) (3.34)

and ŝ = (p1 + pb)
2.

What happens if we consider now higher-order QCD corrections to the tree-level
process Fig.(3.3)? In general, given a t-channel process happening via the weak
interaction of two fermionic currents, we can think of dividing QCD corrections
into two categories



3.2. T -CHANNEL SINGLE TOP IN A DIS-LIKE APPROACH 57

• factorizable corrections : they involve QCD real and virtual radiation affect-
ing just one quark line,

• non-factorizable corrections : on the opposite, these corrections link the two
quark lines through both virtual and real gluon emissions.

For the sake of clarity of the argument we are presenting, we postpone the dis-
cussion of the structure and importance of non-factorizable contributions at the
end of this subsection. For the moment we limit ourselves to underline that these
kind of corrections are pretty small if compared to the factorizable ones. Given
this, we can think of making a good approximation by retaining only factorizable
corrections at higher orders.
In this perspective, the factorized description of the process that naturally happens
at LO (Eq.(3.33), (3.34)), is conserved also at higher orders, the only difference
being that the rank-2 tensors C(Vl) and C(Vm) describing the two currents need
to be generalized in order to take into account information about the now included
QCD corrections. We stress that such factorization is possible because, since we
are neglecting cross-talks between the two weak currents, both matrix elements
and phase space are completely factorized 5.

One of the possible forms in which we can write the most general rank-2 tensor
describing one of our fermionic currents is

Cµν(Vi) =− 4(2p · q)C1(Vi)g
µν + C2(Vi)16p

µpν + C3(Vi)8iǫµνργp
ρqγ

+ 8C4(Vi)q
µqν + C5(Vi)8(q

µpν + pµqν), (3.35)

with

• Vi being the set of variables Vl or Vm on which the subprocess depends,

• p being the incoming fermion momentum, i.e. p1 or pb.

The scalar coefficient Ci(Vi) (called Coefficient Functions (CF)) are extracted by
contracting the squared matrix element multiplied by the phase space measure
with the projectors Pi given by

Pµν
1 =

−(2p · q)2gµν − 4q2pµpν + 2(2p · q)(pµqnu + qµpnu)

8(1− ǫ)M6
(3.36)

Pµν
2 =

1

8(1− ǫ)M8
×
[
q2((2p · q)2gµν + 4(3− 2ǫ)q2pµpν)− 2(3− 2ǫ)q2(2p · q)(pµqν + qµpν)

+2(1− ǫ)(2p · q)2qµqν
]

(3.37)

Pµν
3 =

iǫµνρσp
ρqσ

(−4M4)
(3.38)

5Factorization of phase space holds at partonic level as long as we are considering the differ-
ential cross-section with respect to Q2.
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Pµν
4 =

pµpν

2M4
(3.39)

Pµν
5 =

−(2p · q)2gµν − 4(3− 2ǫ)q2pµpν + 2(2− ǫ)(2p · q)(pµqν + qµpν)

8(1− ǫ)M6
(3.40)

(3.41)

with M = 2p · q. We stress that, since the computation of higher-order contri-
butions is carried out in Dimensional Regularization, the projectors are given in
d = 4− 2ǫ dimensions.
Starting from the general form Eq.(3.35), we recover the tree-level tensors in
Eq.(3.34) by setting

• C1(Vm) = C2(Vm) = C3(Vm) = C5(Vm) = 1 and C4(Vm) = 0 (massive
current),

• C1(Vl) = C3(Vl) = C5(Vl) = −1, C2(Vl) = 1 and C4(Vl) = 0 (massless
current).

The Ci(Vi) are related to the standard Structure Functions (SF) Fi(Vi) through
the convolution with PDFs. Since at higher orders new channels are opened, the
organization of the CFs (and consequently of SFs) can be quite involved. We
postpone the presentation of this organization to the next subsection, which will
be dedicated entirely to this issue.
For the moment we go directly one step further and present the structure of the
hadronic cross-section for Single Top in t-channel, after making a brief recap of
ideas presented up to now.

All the argument presented up to now can be resumed as follows. The leading
order process q + b→ q′ + t is analogous to a charged-current deep-inelastic scat-
tering (CC-DIS). In fact, it is a double deep-inelastic scattering: the virtual W
boson is probing both the hadron containing the b quark and the hadron con-
taining the light quark q. In general, at higher orders this factorization does not
hold exactly anymore, due to cross-talk between currents, but we can still think
of neglecting such cross-talks and continuing ‘cutting’ our process in correspon-
dence of the t-channel W boson (Fig.(3.4)). This allows us to continue exploiting
the analogy with CC-DIS, thus computing the QCD corrections in terms of struc-
ture functions. Given two colliding protons with momenta P1, P2, the differential
hadronic cross-section is given by

dσ =
1

2S
4

(
g2

8

)2
1

(Q2 +m2
W )2

Wµν(x1, Q
2)Wµν(x2, Q

2,m2
t )(2π)

2 1

4S
dQ2dW 2

1 dW
2
2 ,

(3.42)

where
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P1

P2

q

q′

t

b

W ∗

Figure 3.4: Single Top in t-channel in a CC-DIS approach. Grey circular blobs
represent corrections to weak currents (factorizable contributions).

• W 2
1 = (P1 − q)2 and W 2

2 = (P2 + q)2 are the squared invariants masses of
the hadron remnants (including the top quark),

• S = 2P1 · P2 is the square of the hadronic center-of-momentum energy,

• x1, x2 are the ‘natural’ DIS variables encoding information about the ratio
between the hard scale and the energy in the c.o.m of the (sub)process; they
are thus defined as

x1 =
Q2

2P1 · (−q)
, x2 =

Q2 +m2
t

2P2 · q
; (3.43)

by inverting the definition of W 2
1 and W 2

2 as follows

2P1 · (−q) =W 2
1 +Q2, 2P2 · q =W 2

2 +Q2 (3.44)

and by substituting these relations into the definitions of the xi’s we get

x1 =
Q2

W 2
1 +Q2

, x2 =
Q2 +m2

t

W 2
2 +Q2

. (3.45)

In this way all quantities appearing in the hadronic cross-section Eq.(3.42)
are expressed in terms of Q2,W 2

1 ,W
2
2 and the differential cross-section can
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be easily integrated in order to get the inclusive result.
The integration domain is identified as the physical region, defined by the
following inequalities

W1 ≥ 0,

W2 ≥ mt,

W1 +W2 ≤
√
S,

Q2max

min =
1

2

[

S −W 2
1 −W 2

2 ± λ1/2(S,W 2
1 ,W

2
2 )
]

,

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc. (3.46)

• Wµν(x1, Q
2),Wµν(x2, Q

2,m2
t ) are the so-called hadronic tensors.

The hadronic tensorsWµν are strictly related to the tensors Cµν defined at parton-
level (Eq.(3.35)). Indeed, the Wµν have exactly the same structure of the Cµν but
with the following replacements.

• The coefficient functions Ci’s, are replaced by the structure functions Fi’s.
These are directly obtained as convolutions between the Ci’s and the PDFs
(see the next subsection for more details).

• Inside the tensor structures upon which the partonic/hadronic tensors are
decomposed, the momenta of the incoming partons p1, pb are substituted by
the momenta of the incoming protons P1, P2.

So, the light and massive hadronic tensors are decomposed as

Wµν(x1, Q
2) =− 4(2P1 · q)F1(x1, Q

2)gµν + F2(x,Q
2)16Pµ

1 P
ν
1

+ F3(x1, Q
2)8iǫµνργP

ρ
1 q

γ + 8F4(x1, Q
2)qµqν

+ F5(x1, Q
2)8(qµP ν

1 + Pµ
1 q

ν) (3.47)

Wµν(x2, Q
2,m2

t ) =− 4(2P2 · q)F1(x2, Q
2,m2

t )g
µν + F2(x2, Q

2,m2
t )16P

µ
2 P

ν
2

+ F3(x2, Q
2,m2

t )8iǫµνργP
ρ
2 q

γ + 8F4(x2, Q
2,m2

t )q
µqν

+ F5(x2, Q
2,m2

t )8(q
µP ν

2 + Pµ
2 q

ν) (3.48)

One last comment is to be done about the structure functions (or alternatively
coefficient functions, to which the same considerations apply) that actually enter
our computation. If the quark struck by the W boson and the quark into which it
is converted are both massless, then the current with which the W boson interacts
is conserved, and one has qµWµν(x,Q

2) = qνWµν (x,Q
2) = 0. This condition can

be realized only if F4(x,Q
2) = F5(x,Q

2) = 0. If the quark into which the struck
quark is converted is massive, such as the top quark, then the current is no longer
conserved, and F4(x,Q

2,m2
t ), F5(x,Q

2,m2
t ) are non-vanishing, so in principle we
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have to take them into consideration. But, in our particular case, since we are
looking at a massive current interacting with a massless one, F4 and F5 never
enter the expression for the final cross-section. What happens, is the following.
The hadronic cross-section Eq.(3.42) is obtained by contracting the hadronic ten-
sors at each vertex with the square of the W propagator connecting them (as in
Eq.(3.33)). Due to current conservation of the light-quark tensor, the qµqν/m2

W

term in the numerator of the W propagator does not contribute, so one simply
contracts the two tensors together. Now, F4 and F5 are the coefficients of tensors
which contain qµ, qν or both and these tensors give vanishing contribution when
contracted with the light-quark tensor. Thus we can conclude that, due to current
conservation of the light-quark tensor, the structure functions F4 and F5, either in
their massless or massive version, do not enter our computation and this remains
true at all orders.

Non-factorizable contributions.
Before proceeding, we discuss the nature and importance of non-factorizable cor-
rections.

• NLO:
At NLO, diagrams where a gluon is exchanged between the two currents
are exactly zero because of the color degree of freedom, since they are all
proportional to the trace of a single Gell-Mann matrices.

Ta

Ta

∝ Tr[Ta]Tr[Ta] = 0

Figure 3.5: Example of (virtual) non-factorizable gluon exchange at NLO.

That’s why at NLO the structure function approach gives exactly the correct
result, without approximations.

• NNLO:
At NNLO this is not true anymore, because this kind of cross-talks diagrams
gives non-zero contribution. But luckily, this class 6 of diagrams is suppressed
by a factor O(1/N2

c ) with respect to the leading factorizable corrections (see
examples in Fig.(3.6), (3.7)).

6In this context, by ‘class’ of diagrams, we refer to a gauge invariant, finite subset of diagrams.
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Ta

Ta

Tb

Tb

∝ Tr[TaTb]Tr[TaTb] =
CaCf

2 = 2

Figure 3.6: Example of (double virtual) non-factorizable gluon exchange at NNLO.

Ta Tb Tb Ta

∝ Tr[TaTbTbTa]Nc = C2
fCaNc = 16

Figure 3.7: Example of (double virtual) factorizable gluon exchange at NNLO.

So, if we adopt a structure function approach, namely we neglect these class
of diagrams, we can think of making quite a good and safe approximation of
the total NNLO cross-section.
This belief is reinforced by the fact that these diagrams are also suppressed
by the kinematic of the process. Indeed, single-top production in t-channel
is mediated by the exchange of a virtual W , whose propagator is

1

t−m2
W

=
1

−Q2 −m2
W

. (3.49)

Q2 is positive, so that the denominator of this propagator is always negative
and the propagator is then maximum when Q2 → 0. The cross-section is
dominated by the small Q2 region (see [89]), but small Q2 means that the
energy exchanged between the two currents is little and consequently that
the interaction between them happens at ‘large’ distance. In principle it is
perfectly possible that a low Q2 gluon is emitted from a current and such
gluon could then interact with the other current. But the hard scale of the
process is of order m2

t + Q2 ≫ Q2, and this tells us that emissions charac-
terized by k2T ∼ Q2 are to be considered ‘soft’ and as such do not contribute
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to the description of the hard process, but rather to the description of the
initial-proton structure. This kinematic argument provides a further source
of suppression of this category of diagrams.
One last argument, that further supports the reliability of our approxima-
tion, is represented by the estimation that was done in [130] of this class of
cross-talk diagrams in the case of Higgs production in VBF. Indeed, in that
case, they were found to contribute 1% of the total VBF cross-section. Of
course, all the arguments provided up to now are purely qualitative and a
quantitative estimation of the error introduced by neglecting these diagrams
needs to be provided. This will be one of the goal we would like to achieve
in the close future.

With these last considerations, we close this introductory subsection where Single
Top in t-channel was presented as a double CC-DIS process. In the next subsection
we analyse the structure of the objects of our calculation, namely CC-DIS Form
Factors (or, equivalently Structure Functions).

3.2.2 Structure of Form Factors up to NNLO-QCD

We briefly review the basic formulae for the CC-DIS structure functions FV
i with

i = 1, 2, 3 and V ∈ {W±} 7. We choose to report these formulae not only for
completeness in the treatise of CC-DIS, but also for practical purposes. Indeed,
the way we implement Form Factors in our standalone code which computes the
total t-channel cross-section is dictated by the way CC-DIS SF are organized on a
theoretical level.

As already anticipated, QCD factorization allows to express the structure func-
tions as convolutions of the PDFs in the proton and the coefficient functions Ci,
which contain in turn information about the short-distance, hard scattering. The
gluon PDF at the factorization scale µF is denoted by g(x, µF ) and the quark (or
anti-quark) PDF by qi(x, µF ) (or q̄i(x, µF )) for a specific quark flavour i. The
quark PDFs appear in the following combinations,

qs =

nf∑

i=1

(qi + q̄i) , qVns =

nf∑

i=1

(qi − q̄i) ,

q+ns,i = (qi + q̄i)− qs, q−ns,i = (qi − q̄i)− qVns, (3.50)

as the singlet distribution qs, the (non-singlet) valence distribution qVns as well as
flavour asymmetries q±ns,i.

7NB: We present formulae assuming massless structure functions, but all these results holds
for the massive case without introducing any modifications, except obviously for the variables
the SF themselves depend upon
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For the charged current case with W±-boson exchange the DIS structure func-
tions FW±

i are given by,

FW−

i (x,Q2) =
1

2
fi(x)

∫ 1

0

dz

∫ 1

0

dyδ(x− yz)
1

nf

nf∑

i=1

(
v2i + a2i

)
×

×
{
δq−ns(y, µF )C

−
i,ns(z,Q, µR, µF ) + qs(y, µF )Ci,q(z,Q, µR, µF )

+g(y, µF )Ci,g(z,Q, µR, µF )} , (3.51)

FW−

3 (x,Q2) =
1

2

∫ 1

0

dz

∫ 1

0

dyδ(x− yz)
1

nf

nf∑

i=1

(2viai)×

×
{
+δq+ns(y, µF )C

+
3,ns(z,Q, µR, µF ) + qVns(y, µF )C

V
3,ns(z,Q, µR, µF )

}
,

(3.52)

where i = 1, 2 and the pre-factors in Eq.3.51 are f1(x) = 1/2, f2(x) = x. The
asymmetry δq±ns parametrizes the iso-triplet component of the proton, i.e. u 6= d
and so on. It is defined as

δq±ns =
∑

i∈u−type

∑

j∈d−type

{(qi ± q̄i)− (qj ± q̄j)} . (3.53)

The respective results for FW+

i are obtained from Eq.(3.51), (3.52) with the simple
replacement δq±ns → −δq±ns. The vector- and axial- vector coupling constants vi
and ai are given by vi = ai = 1/

√
2.

The perturbative expansion of the coefficient functions Ci in the strong coupling
αs up to two loops reads in the non-singlet sector,

C±
i,ns(x) =δ(1− x) + as

{

c
(1)
i,q + LMP

(0)
qq

}

+ a2s

{

c
(2),±
i,ns + LM

(

P (1),±
ns + c

(1)
i,q (P

(0)
qq − β0)

)

+ L2
M

(
1

2
P (0)
qq (P (0)

qq − β0)

)

+LRβ0c
(1)
i,q + LRLMβ0P

(0)
qq

}

, (3.54)

C±
3,ns(x) =δ(1 − x) + as

{

c
(1)
3,q + LMP

(0)
qq

}

+ a2s

{

c
(2),±
3,ns + LM

(

P (1),±
ns + c

(1)
3,q(P

(0)
qq − β0)

)

+ L2
M

(
1

2
P (0)
qq (P (0)

qq − β0)

)

+LRβ0c
(1)
3,q + LRLMβ0P

(0)
qq

}

, (3.55)

where as = αs(µR)/(4π) and i = 1, 2 in Eq.(3.54). The complete scale dependence,
i.e. the towers of logarithms in LM = ln(Q2/µ2

F ) and LR = ln(µ2
R/µ

2
F ), has been
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derived by renormalization group methods (see e.g. ..) in terms of splitting func-

tions P
(l)
ij and coefficients βl of the QCD beta function. Given the normalization of

the expansion parameter as = αs/(4π), the conventions for the running coupling
are

d

d lnµ2

αs

4π
=

das
d lnµ2

= −β0a2s − ..., β0 =
11

3
Ca −

2

3
nf . (3.56)

Note that the valence coefficient function CV
3,ns in Eq. (3.52) is defined as CV

3,ns =

C−
3,ns + Cs

3,ns. However, we have Cs
3,ns 6= 0 starting at three-loop order only, so

that Eq.(3.52) suffices with CV
3,ns = C−

3,ns up to NNLO.
In the singlet sector we have

Ci,q(x) =δ(1 − x) + as

{

c
(1)
i,q + LMP

(0)
qq

}

+ a2s

{

c
(2),±
i,q + LM

(

P (1),±
qq + c

(1)
i,q (P

(0)
qq − β0) + c

(1)
i,gP

(0)
gq

)

+ L2
M

(
1

2
P (0)
qq (P (0)

qq − β0) +
1

2
P (0)
qg P

(0)
gq

)

+LRβ0c
(1)
i,q + LRLMβ0P

(0)
qq

}

, (3.57)

Ci,g(x) =as

{

c
(1)
i,g + LMP

(0)
qg

}

+ a2s

{

c
(2),±
i,g + LM

(

P (1),±
qg + c

(1)
i,qP

(0)
qg + c

(1)
i,g (P

(0)
gg − β0)

)

+ L2
M

(
1

2
P (0)
qq P

(0)
qg +

1

2
P (0)
qg (P (0)

gg − β0)

)

+LRβ0c
(1)
i,g + LRLMβ0P

(0)
qg

}

, (3.58)

where again i = 1, 2 in Eq.3.57. The quark-singlet contribution contains the

so-called pure-singlet part, Ci,q = C+
i,ns + Ci,ps, i.e. P

(1)
qq = P

(1),+
ns + P

(1)
ps and

c
(2)
i,q = c

(2),+
i,ns + c

(2)
i,ps in Eq.(3.57). Starting at two-loop order we have Ci,ps 6= 0.

The coefficient functions c
(l)
i,k in the massless case are known up to NNLO from

[123], [133], [132], [94]. NNLO evolution of PDFs has been determined in [95],

[124], together with splitting functions P
(l)
i,j . Needless to say that all products in

equations from Eq.(3.54) to (3.58) are to be understood as Mellin convolutions.

3.2.3 Organization of a NNLO computation

We are now ready to explain how the computation of t-channel Single top up to
NNLO is organized in the framework of a Structure Function approach.
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( )
α0
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q′

b

t

α0
s

(a) Structure Functions contributions to Single top in t-channel at O(α2
w).
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(b) Structure Functions contributions to Single top in t-channel at O(α2
wαs).
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• LO: The LO-QCD contribution (Fig.(3.8a)) to the cross-section is simply
given by the product of the hadronic tensors containing SF evaluated at
O(α0

s). We indicate the hadronic tensor containing SF evaluated at the
generic order αi

s as
(
Wα0

s

)µν
(the weak coupling is here tacitly implied).

So, by considering the initial general formula for the hadronic cross-section
Eq.(3.42), we can write

dσα0
s
=

1

2S
4

(
g2

8

)2
1

(Q2 +m2
W )2

×
[(
Wα0

s

)µν
(x1, Q

2)
(
Wα0

s

)

µν
(x2, Q

2,m2
t )
]

×

× (2π)2
1

4S
dQ2dW 2

1 dW
2
2 . (3.59)

• NLO: The NLO-QCD contribution (Fig.(3.8b)) to the cross-section will be
the sum of two terms, containing in turn the product of a hadronic tensor for
one of the two currents at order αs times the hadronic tensor for the other
current at order α0

s, as in Eq.(3.60).

dσα1
s
=

1

2S
4

(
g2

8

)2
1

(Q2 +m2
W )2

××
[(
Wα1

s

)µν
(x1, Q

2)
(
Wα0

s

)

µν
(x2, Q

2,m2
t )

+
(
Wα0

s

)µν
(x1, Q

2)
(
Wα1

s

)

µν
(x2, Q

2,m2
t )
]

×

× (2π)2
1

4S
dQ2dW 2

1 dW
2
2 . (3.60)

• NNLO: Along the same line, the NNLO-QCD corrections contains the sum
of three contributions, namely all the possible ways in which the product of
the two hadronic tensors can yield an O(α2

s) quantity. So, following Fig.(3.8),
the contribution to the cross-section at this order can be written as

dσα2
s
=

1

2S
4

(
g2

8

)2
1

(Q2 +m2
W )2

××
[(
Wα1

s

)µν
(x1, Q

2)
(
Wα1

s

)

µν
(x2, Q

2,m2
t )

+
(
Wα2

s

)µν
(x1, Q

2)
(
Wα0

s

)

µν
(x2, Q

2,m2
t ) +

(
Wα0

s

)µν
(x1, Q

2)
(
Wα2

s

)

µν
(x2, Q

2,m2
t )
]

×

× (2π)2
1

4S
dQ2dW 2

1 dW
2
2 . (3.61)

To compute the analytical cross-section dσ up to order α2
s, we obviously need the

analytical results for all the three contributions above listed (Eq.(3.59), (3.60),
(3.61)) to be available. As anticipated in the introduction to Chapter 2, in or-
der to reach this goal, we miss just one piece, highlighted in green in Fig.(3.61),
namely the massive Form Factors at order O(α2

s). The computation of these
Form Factors, thanks to the p-QCD master formula Eq.5.14 (introduced in Section
2.1), essentially boils down to the computation of massive Coefficient Functions
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for charged-current DIS, which we obtain by computing the specific subprocess
b(pb) +W ∗(q) → t(pt) +X at the required order α2

s. Here, X identifies potential
extra radiation emitted by the initial and/or final fermion.
Furthermore, we have to take into account that by applying crossing-symmetry
to the diagrams for the b-initiated process b(pb) + W ∗(q) → t(pt) + X , we can
obtain diagrams initiated by a gluon g(k1) +W ∗(q) → t(pt) + b̄(pb) +X or by a
light quark q(k1) +W ∗(q) → t(pt) + b̄(pb) +X . According to the particle which
initiates the process together with the virtual W -boson, we will classify diagrams
as belonging to bottom, gluon, or singlet channel. Inside each channel, diagrams
are then organized according to the number of virtual and real emitted gluon or
quarks, as

• Double Real (RR): the category of diagrams includes tree-level diagrams
containing two extra particles (QCD radiation) in the final state;

• Real-Virtual (RV): these diagrams instead contain one loop (virtual emis-
sion) and one extra real particle in the final state;

• Double Virtual (VV): this last category contains two-loop diagrams.

The following table briefly recaps the classification according to channels and type
of radiative corrections.

RR RV VV

bottom [b+W ∗ → t+X ]0lX=gg,qq̄,bb̄ [b +W ∗ → t+X ]1lX=g [b+W ∗ → t]2l

gluon
[
g +W ∗ → t+ b̄ + g

]0l [
g +W ∗ → t+ b̄

]1
/

singlet
[
q +W ∗ → t+ b̄ + q

]0l
/ /

Table 3.1: Organization of the calculation of CC-DIS massive Form Factors at
O(α2

s).

Each one of the subprocesses in Table.(3.1) is computed within the framework of
Dimensional Regularization, which is the tool we choose to deal with IR and UV
divergences. Dimensional Regularization is the standard technique used in the ma-
jority of analytical higher-order computations, so its effectiveness and consistency
have been widely tested over the years and by now safely established. Despite the
‘safety’ of this technical tool, we have to be particularly careful when using it, due
to the presence of γ5 Dirac matrix in the bW ∗ → t vertex.
In general for perturbative calculations at higher-orders the presence of the Dirac
matrix γ5 is a nuisance since it is a purely 4-dimensional object and it can not
be continued to d-dimensions in a straightforward way. While computationally-
efficient ways to deal with γ5 in DR exist (see [88]), they are typically complex



70 CHAPTER 3. PQCD AND CC-DIS

and not only transparent. Fortunately, there is a simple way to deal with γ5 in
our case: γ5 is taken in all diagrams (RR, RV, VV) to be anti-commuting in all d
dimensions.
Indeed, since we never get axial anomalies from diagrams involved in our process,
any prescription for the γ5 is good as long as it is consistently used in all the
different pieces of the computation and this is actually what we carefully do!

Before proceeding to illustrate the technique we use perform virtual and real inte-
grations analytically (see next Chapter, n.3) we spend still a few words to discuss
the choice of flavour-scheme. Actually, when presenting the organization of our di-
agrams above, we tacitly assumed the working scheme to be in a 5-flavour scheme,
but we never motivated this choice. In the following and last subsection, we ad-
dress this topic and introduce some ideas which may further improve our 5-flavour
NNLO results in the future.

3.2.4 mb-correction: 4F- versus 5F- scheme

As anticipated in the previous sections, we choose to carry out our computation in
a 5F-scheme, where all the quark flavours except for the top are massless, included
the b-quark. The reason for choosing this scheme is quite intuitive. The hard scale
of Single Top production is m2

t
8. Since we have m2

b ≪ m2
t , it is a priori a sensible

choice to neglect m2
b , thus considering the b-quark massless. This preliminary and

quite obvious statement requires though some further reflection.
Single Top production in t-channel was originally dubbed W -gluon fusion [128],
because it was thought of as a virtual W striking a gluon to produce a tb̄ pair, as
shown in Fig.(3.9). If the b̄ in the final state is at high transverse momentum (pT ),

t

b̄

g

W ∗

b̄

t

g

W ∗

Figure 3.9: Leading-Order diagrams for Single Top production in t-channel in
4F-scheme.

8Actually, for the sake of precision, we point out that the correct hard scale is Q2 + m2
t (as

widely discussed in [118]). But, since the cross-section is peaked around Q2 ∼ 50GeV, namely
around values of Q2 much smaller than m2

t , we can safely take the hard scale to be m2
t .
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the first on the left of these diagrams is indeed the leading-order diagram for this
process. If we instead integrate over the pT of the b̄, we obtain an enhancement
from the region where the b̄ is at low pT , nearly collinear with the incident gluon.
Indeed, if the b-quark is massless, this diagram is not only enhanced, but singu-
lar when the final b-quark is collinear with the incoming gluon. This kinematic
configuration corresponds to the incoming gluon splitting into a real bb̄ pair. The
propagator of the internal b-quark in the diagram is therefore on-shell and thus
infinite. In reality the b-quark is not massless and its mass regulates the collinear
singularity which exists in the massless case (luckily!).
So, if we adopt a 4f-scheme and indeed set mb 6= 0, we will see the collinear
singularity manifesting itself in the total cross-section as terms proportional to
ln[(Q2 +m2

t )/m
2
b ], which we approximate in the following as ln(m2

t/m
2
b) (see the

argument on the W -boson virtuality Q2 in the discussion over non-factorizable
contribution above). The total cross-section for W -gluon fusion contains these
logarithmically enhanced terms αs ln(m

2
t /m

2
b), as well as terms of order αs (both

terms also carry a factor of α2
w, which we omit in the following).

Furthermore, terms of order αn
s ln

n(m2
t/m

2
b)/n! appear at every order in the per-

turbative expansion in the strong coupling, due to collinear emission of gluons from
the internal b-quark propagator. This collinear enhancement is desirable because
it yields a larger cross-section, but also it makes the perturbative expansion less
convergent.
Fortunately, this can be obviated. The DGLAP evolution equations (introduced
in the previous Section 3.1) are indeed the formalism which allows to sum the
collinear logarithms to all orders in perturbation theory. Practically speaking,
one can sum these collinear logarithms by introducing a b distribution function
b(x, µ2

F ) and calculating its evolution with µF (from some initial condition) via
the DGLAP equations. Thus the b distribution is at all effects a device to sum
collinear logs. Since it is calculated from the splitting of a gluon into a collinear
bb̄ pair, it is intrinsically of order αs ln(µ

2
F /m

2
b).

Once a b PDF is introduced, it changes the way one orders perturbation theory.
The leading order process is now q + b → q′ + t, namely the ‘usual’ leading-order
diagram showed in Fig.3.3.
Thus, driven by the need to resum collinear mb-logs, we have naturally introduced
the idea of a 5-flavour scheme, whose spirit is the following. We set mb = 0, re-
organize perturbative expansion starting from the LO process q + b→ q′ + t, and
take into account collinear logarithms αn

s lnn(m2
t /m

2
b)/n! at all orders by convolv-

ing this partonic process with a b-PDF.
The LO cross-section for p+p→ q′+ t is of order αs ln(m

2
t/m

2
b), due to the b-PDF

(where the factorization scale is set indicatively equal to the hard scale of the pro-
cess, namely µF ∼ mt). The LO cross-section forW -gluon fusion (p+p→ q′+t+b̄)
contains terms of both order αs ln(m

2
t /m

2
b) and αs, but the formers, being mb = 0,

appear now as effective divergences αs1/ǫ (poles in DR!). Such poles must to be



72 CHAPTER 3. PQCD AND CC-DIS

subtracted manually, since the collinear divergences they represent are already
taken into account in the b distribution. After this subtraction has taken place,
the W -gluon fusion cross-section contains only O(αs) terms. Compared with the
leading-order process p + p → q′ + t, the W -gluon fusion p + p → q′b̄ + t is thus
suppressed by a factor 1/ ln(m2

t /m
2
b), and not by a factor αs as one might naively

think!

The natural conclusion of this discussion is that the choice of a 5F-scheme seems
the most sensible one. The condition mb = 0 allows for significant simplification
the computation (one dimensional scale less enters the calculation!), and at the
same time all the collinear logarithmically enhanced terms are automatically ac-
counted for in the b-PDF. These are the motivations why we decided to use a
5F-scheme.
But, given this, we observed that there is the possibility to do even better. Up
to now, we neglected a subtlety: when performing the computation of diagrams
Fig.(3.9) keeping mb 6= 0, the final result do not depend only logarithmically on
mb, but also through polynomial dependence (namely power functions (m2

b)
n. The

mb-logs, as already said, are universal, so that they can be predicted at all orders
and resumed in PDFs. This is not true for mb-power corrections. This kind of
terms is not universal and one has to compute the process by retaining the full
mb-dependence, in order to be keep them into account. Now, in our case, since
the very moment we set mb = 0, these terms are automatically lost.
But, we observed that we still have the possibility to retain mb-power corrections
by performing some manipulations on already existing numerical results. We will
talk from now on of 5F-improved scheme, where with this name we mean a 5F-
scheme, enriched by the additional presence of mb power-corrections. Our aim
is that of obtaining a prediction for NNLO Single Top t-channel in this scheme,
by calculating analytically the NLO and NNLO-QCD corrections in an ordinary
5F-scheme and, on top of that, estimating the numerical contribution ofmb power-
corrections (respectively at NLO and NNLO).
We explain in the following how we can numerically extract such power-like cor-
rections due to the presence of the neglected b-mass.

We observe that MCFM ([38]) already contains the exact numerical result for
p+p→ q′+ t+ b̄ in a 4F-scheme up to O(α2

s) (namely NLO in a 4F- and NNLO in
a 5F-scheme) 9. Starting from this numerical already existent result, we are able
to extract the desired mb power-corrections. We explain in the following how our

9We stress again that the perturbative expansion is organized differently in 4F- and 5F-
scheme. In a 5F-scheme, the diagrams in Fig.(3.9) belong to NLO, where as in a 4F-scheme they
are LO diagrams. When we add the first order of QCD corrections to these diagrams, these will
be classified as NNLO and NLO corrections respectively in a 5F- 4F-scheme. To try avoiding
confusion, in the following we will refer to QCD corrections by citing the explicit order in αs,
which is obviously scheme-invariant.
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idea works by taking structure functions at O(αs) as an example. We also carry
out a numerical analyses in order to assess the impact of mb power-corrections at
O(αs). This is a good way to test if these corrections are indeed small as expected.
We start computing analytically the coefficient functions Cg

iαs
(mt,mb), which are

exact in their dependence on both mt and mb. This is achieved by computing the
cross-section for the partonic sub-processW ∗+g → t+ b̄ keeping both the masses
mt,mb in the final state. In terms of s,Q2,m2

t ,m
2
b , these coefficient functions

reads:

Cg
1αs

(s,Q2,m2
t ,m

2
b) =

1

(2(Q2 + s)2)
(

−4m2
b(m

2
b −m2

t −Q2)s

m2
b −m2

t + s−
√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s)

+
(Q4 + s2)(m2

b −m2
t + s−

√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s))

s

− 4m2
t (−m2

b +m2
t −Q2)s

−m2
b +m2

t + s−
√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s)

+
4m2

b(m
2
b −m2

t −Q2)s

m2
b −m2

t + s+
√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s)

− (Q4 + s2)(m2
b −m2

t + s+
√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s)]

s

+
4m2

t (−m2
b +m2

t −Q2)s

−m2
b +m2

t + s+
√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s)

+(2m4
b + 2m4

t +Q4 + 2m2
t (Q

2 − s)− 2m2
b(2m

2
t +Q2 − s) + s2)

× log[
−((Q2 + s)(m2

b −m2
t + s+

√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s)))

(−((Q2 + s)(m2
b −m2

t + s−
√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s))))

]

+(2m4
b + 2m4

t − 2m2
tQ

2 +Q4 + 2m2
ts+ s2 − 2m2

b(2m
2
t −Q2 + s))

× log[
((Q2 + s)(−m2

b +m2
t + s+

√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s)))

(((Q2 + s)(−m2
b +m2

t + s−
√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s))))

]),

(3.62)

Cg
2αs

(s,Q2,m2
t ,m

2
b) =

− 1

(2(Q2 + s)3)
(

−4m2
b(m

4
b + (m2

t +Q2)2 − 2m2
b(m

2
t + 2Q2))s

m2
b −m2

t + s−
√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s)

−Q
2(Q4 − 4Q2s+ s2)(m2

b −m2
t + s−

√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s))

s

−4m2
t (m

4
b − 2m2

bm
2
t +m4

t + 2m2
bQ

2 − 4m2
tQ

2 +Q4)s

−m2
b +m2

t + s−
√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s)
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+
4m2

b(m
4
b + (m2

t +Q2)2 − 2m2
b(m

2
t + 2Q2))s

m2
b −m2

t + s+
√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s)

+
Q2(Q4 − 4Q2s+ s2)(m2

b −m2
t + s+

√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s))

s

+
4m2

t (m
4
b − 2m2

bm
2
t +m4

t + 2m2
bQ

2 − 4m2
tQ

2 +Q4)s

−m2
b +m2

t + s+
√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s)

+(2m6
b − 2m4

b(m
2
t − 2Q2 + s) + (m2

t +Q2)(2m4
t +Q4 + 2m2

t (Q
2 − s) + s2)

+m2
b(−2m4

t − 9Q4 + 10Q2s+ s2 + 4m2
t (−4Q2 + s)))

× log
−((Q2 + s)(m2

b −m2
t + s−

√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s))

−((Q2 + s)(m2
b −m2

t + s+
√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s)))

−(2m6
b + 2m6

t +m4
t (4Q

2 − 2s) − 2m4
b(m

2
t − 2Q2 + s) +Q2(Q4 + s2)

+m2
t (−9Q4 + 10Q2s+ s2) +m2

b(−2m4
t + 3Q4 − 2Q2s+ s2 + 4m2

t (−4Q2 + s)))

× log
((Q2 + s)(−m2

b +m2
t + s+

√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s)))

(((Q2 + s)(−m2
b +m2

t + s−
√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s))))

),

(3.63)

Cg
3αs

(s,Q2,m2
t ,m

2
b) =

1

2(Q2 + s)2
(

4m2
t (−m2

b +m2
t −Q2)s

−m2
b +m2

t + s−
√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s)

+
4m2

b(m
2
b −m2

t −Q2)s

−m2
b +m2

t − s+
√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s)

+
4m2

b(m
2
b −m2

t −Q2)s

m2
b −m2

t + s+
√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s)

− 4m2
t (−m2

b +m2
t −Q2)s

−m2
b +m2

t + s+
√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s)

+(2m4
b − 2m4

t − 2m2
tQ

2 −Q4 + 2m2
b(Q

2 − s) + 2m2
t s− s2)

× log
−((Q2 + s)(m2

b −m2
t + s−

√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s)))

(−((Q2 + s)(m2
b −m2

t + s+
√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s))))

]

−(2m4
b − 2m4

t − 2m2
tQ

2 +Q4 + 2m2
b(Q

2 − s) + 2m2
t s+ s2)

log
((Q2 + s)(−m2

b +m2
t + s+

√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s)))

(((Q2 + s)(−m2
b +m2

t + s−
√

m4
b + (m2

t − s)2 − 2m2
b(m

2
t + s))))

).

(3.64)

These coefficient functions, combined with a kinematic that keeps into account
the non-zero bottom mass, and convoluted with the gluon pdf, give us the gluon
structure functions F g

iαs
(mt,mb), and thus the O(αs) cross-section for W ∗+p→
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t+ b̄ (LO in a 4F-scheme).

F g
iαs

(mt,mb) =

∫ 1

xb

Cg
iαs

(τb, λb,mt,mb)g(
xb
τb

), (3.65)

where the new variables xb, τb, λb have substituted the old x, τ, λ in order to keep
into consideration the kinematic effects of mb 6= 0. They are defined as:

xb =
Q2 + (mt +mb)

2

S +Q2
, τb =

Q2 + (mt +mb)
2

s+Q2
, λb =

Q2

Q2 + (mt +mb)2
. (3.66)

We note that in the limit mb → 0, these variables become the usual variables
x, τ, λ that we will use to parametrize our 5F-coefficient functions (see Chapter 4).
By expanding in series F g

iαs
(mt,mb) Eq.(3.65) with respect to mb, we recover at

0-th order the gluon structure functions F g
iαs

(mt, 0) plus,as expected, the bottom

collinear logarithm multiplied for the splitting function Pqg(τ) × log
(

µ2
F

m2
b

)

and

convoluted with gluon pdf, reminding us that still we are in a 4F-scheme, plus the
desired mb power-corrections.

F g
iαs

(mt,mb)
mb→0→

∫ 1

x

fg
iαs

(τ,mt, 0)g(
x

τ
) + log

(

µ2
F

m2
b

)
∫ 1

x

Pqg(τ )g(
x

τ
) +O((m2

b)
n).

(3.67)

Thus, if we denominate the mb power-like contributions as ∆mb,αs
, we can extract

them by inverting Eq.(3.67) as follows

∆mb,αs = F g
iαs

(mt,mb)−
(

F g
i (mt, 0) + log

(

µ2
F

m2
b

)
∫ 1

x

Pqg(τ )g(
x

τ
)

)

. (3.68)

Numerical results for ∆mb,αs
are listed in Table (3.2). These numerical results are

obtained as follows. The process
[
p+ p→ t+ b̄

]

αs,4f
is run in MCFM and this

gives numerical result for the cross-section obtained by using SF with a full mt,mb

dependence, namely what we called F g
iαs

(mt,mb). Then, following Eq.(3.68), we
subtract to these numbers other two numerical contributions.

• The collinear mb-logs, i.e. log
(

µ2
F

m2
b

) ∫ 1

x
Pqg(τ)g(

x
τ ) in Eq.3.68. This is evalu-

ated thanks to a code kindly provided by the authors of [89].

• Themb-finite piece
[
p+ p→ t+ b̄

]

αs,5f
which is nothing but the usual Single

Top cross-section obtained with 5-flavour SF, i.e. the F g
i (mt, 0) in Eq.(3.68).

This is numerically evaluated with a Fortran stand-alone code.
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Thus, the final formula we use to extract ∆mb,αs
is

∆mb,αs
= σ

(
p+ p→ t+ b̄

)

αs,4f
− σ

(
p+ p→ t+ b̄

)

αs,5f
− Lαs

(mb, µF ) , (3.69)

where we set Lαs
(mb, µF ) = log

(
µ2
F

m2
b

) ∫ 1

x
Pqg(τ)g(

x
τ ). As expected, the mb power-

corrections are really small, of the order of 1%.

mt F 1,g
5f (mt, 0) + Lαs

(mb, µF ) F 1,g
4f (mt,mb) ∆1

mb

5. 0.580837E+02 0.594740E+02 1.3903
10. 0.450045E+02 0.440248E+02 0.9797
20. 0.307583E+02 0.302614E+02 0.4969
50. 0.136691E+02 0.135635E+02 0.1056
100. 0.504509E+01 0.502624E+01 0.01885
172. 0.170256E+01 0.169942E+01 0.00314
200. 0.119239E+01 0.119040E+01 0.00199
250. 0.671987E+00 0.671188E+00 0.000799
300. 0.402754E+00 0.402380E+00 0.000374

mt F 2,g
5f (mt, 0) + Lαs

(mb, µF ) F 2,g
4f (mt,mb) ∆2

mb

5. 0.327305E+03 0.333435E+03 6.13
10. 0.257184E+03 0.262072E+03 4.888
20. 0.190570E+03 0.193535E+03 2.965
50. 0.107625E+03 0.108575E+03 0.95
100. 0.552100E+02 0.554425E+02 0.2325
172. 0.264455E+02 0.265048E+02 0.0593
200. 0.206773E+02 0.207108E+02 0.0335
250. 0.138272E+02 0.138464E+02 0.0192
300. 0.958540E+01 0.960012E+01 0.01472

mt F 3,g
5f (mt, 0) + Lαs

(mb, µF ) F 3,g
4f (mt,mb) ∆3

mb

5. 0.696493E+00 -0.735704E+00 -1.432197
10. 0.850068E+01 0.706911E+01 -1.43157
20. 0.120115E+02 0.113304E+02 -0.6811
50. 0.905847E+01 0.889955E+01 -0.15892
100. 0.434350E+01 0.431251E+01 -0.03099
172. 0.172013E+01 0.171415E+01 -0.00598
200. 0.125248E+01 0.124897E+01 -0.00351
250. 0.744482E+00 0.742965E+00 -0.001517
300. 0.464222E+00 0.463485E+00 -0.000737

Table 3.2: mb power-corrections at O(αs) for Single Top in t-channel.

At O(α2
s), the argument proceeds exactly the same way, but in this case the mb

logarithmic correction has a more involved structure. So, by generalizing Eq.(3.67),
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we can write

F g
iα2

s

(mt,mb)
mb→0→ F g

iα2
s

(mt, 0) + Lα2
s

(
m2

b , µ
2
F , µ

2
R

)
+∆mb,α2

s
, (3.70)

where F g
iα2

s

(mt,mb) and F g
iα2

s

(mt, 0) are respectively the 4F- and 5F- structure

functions, Lα2
s

(
m2

b , µ
2
F , µ

2
R

)
are the corrections depending logarithmically on mb

at order α2
s and ∆mb,α2

s
is the desired mb power-correction.

The practical formula we will use to extract numerically ∆mb,α2
s

∆mb,α2
s
=σ(p+ p→ q′ + t+ b̄+X)α2

s,4f
− σ(p+ p→ q′ + t+ b̄)αs,4f

− σ(p → q′ +W ∗)αs,5f × σ(W ∗ + p→ t+ b̄)αs,4f

− Lα2
s

(
m2

b , µ
2
F , µ

2
R

)
− σ

(
p+ p→ q′ + t+ b̄+X

)

α2
s,5f

. (3.71)

Eq.(3.71) is a bit more complex than the equivalent at order αs (Eq.(3.69)), due
to the more involved structure of the cross-section at order α2

s. Indeed, in order
to isolate the mb power-corrections ∆mb,α2

s
affecting the massive current, we need

to subtract two extra pieces,

• the cross-section in 4-flavour at order αs, namely σ(p+ p→ q′ + t+ b̄)αs,4f ,
which is included by default in MCFM result up to the next perturbative
order σ(p+ p→ q′ + t+ b̄+X)α2

s,4f
;

• the contribution given by the product σ(p → q′ +W ∗)αs,5f × σ(W ∗ + p →
t+ b̄)αs,4f of the two O(αs) currents, which is indeed affected by mb power-
corrections, but of order αs, namely ∆mb,αs

.

Once we will have obtained the exact 5-flavour SF with our analytical compu-
tation, we will be able to use them in Eq.(3.71), thus achieving the isolation of
∆mb,α2

s
.

This concludes the chapter and the presentation of the general framework our
computation takes place within. Starting from the next Chapter, we will illustrate
in detail the analytical techniques we used to carry it out.
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Chapter 4

Master Integrals techniques

4.1 Fundamentals of Feynman integrals and Mas-

ter integrals

Feynman integrals appear quite naturally in elementary particle physics when
quantities such as scattering amplitudes or cross-sections are computed within
the framework of perturbation theory beyond the lowest order. The problem of
being able to compute Feynman integrals is fundamental to make a bridge between
theory and experiments, nowadays even more than in the past. Indeed, the high
energies reached by the LHC have opened the era of precision physics, both on
the experimental and theoretical side. To achieve this precision goal from the
theoretical point of view, computation of physical observables to higher order in
perturbation theory is required, thus leading to the crucial problem of evaluating
Feynman integrals arising from complicated multi-loop and multi-leg processes.
In this section the definition and fundamental properties of Feynman integrals will
be presented ([115]).

4.1.1 Feynman integral definition and properties

Any perturbative physical observable can be written at any given order in per-
turbation theory as a sum over Feynman graphs, often called also ‘diagrams’. To
each diagram Γ we can associate, through Feynman rules, a Feynman amplitude

GΓ (q1, ..., qn+1) = (2π)4iδ

(
n+1∑

i=1

qi

)

FΓ (qi, ..., qn) (4.1)

where q1, ..., qn are the independent external momenta. From a mathematical point
of view, external momenta are those flowing into the external legs of the diagram,
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which correspond in a physical picture to the momenta associated to physical parti-
cles involved into the process (both ingoing and outgoing). Through this definition
we distinguish external momenta from internal momenta, which are in turns the
ones that, mathematically speaking, flow into internal lines of the Feynman graph,
thus corresponding to virtual particles produced and annihilated in the ‘black box’
of the process. We will call from now on loop momenta a set of all independent
internal momenta.
A Feynman amplitude FΓ (q1, ..., qn), which is a function of the independent exter-
nal momenta, can be written as a sum of integrals over loop momenta, each one
of which is a ‘Feynman integral’. In principle integrals at this stage can be ten-
sor integrals, meaning they have free Lorentz indices, but when taking the square
modulus of Feynman amplitudes, or more in general when contracting them with
appropriate projectors to extract physical predictions, they are turned into scalar
integrals. For practical purposes, from now on we will always assume we are deal-
ing with scalar integrals.
In momentum-space language, Feynman integrals are defined as integrals over 4-
dimensional space d4k (or d-dimensional space ddk, after we will have introduced
Dimensional Regularization) over integrands which are rational functions of ex-
ternal and internal momenta given by products of Feynman propagators raised to
some powers (either positive or negative). The generic (4-dimensional) Feynman
integral thus admits the following representation

F (a1, ..., an) =

∫

...

∫
d4k1...d

4kh
Ea1

1 ...EaN

N

(4.2)

where ki, i = 1, ..., h are loop momenta, ai are integer indices, and the denominators
are given by

Er =
∑

i≥j≥1

Aij
r pi · pj −m2

r, (4.3)

with r = 1, ..., N . Momenta pi are either independent internal (loop) momenta
(pi = ki, i = 1, ..., h), or independent external momenta qi.
The matrix A in Eq.(4.3) normally leads to quadratic propagators, but in some
cases also linear propagators can appear. This is for instance the case of propa-
gators left after the expansion of a given Feynman integral in a specific kinematic
limit, as will become clear in section 4.3.
We postpone the discussion of how a given amplitude can be written as a sum of
such Feynman integrals to the next section, where it will be presented within the
frame of the reduction of such amplitude to master integrals.
From now on the definition of Feynman integrals Eq.(4.2) will be our starting point
to discuss about Feynman integral properties.
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Divergences

Many 4-dimensional Feynman integrals are ill-defined because divergences can arise
from one or more regions of the integration domain. Divergences can be of different
types. The ultraviolet (UV) divergences are those coming from the region of large
loop momenta. The degree of UV divergence of an integral can be easily determined
via power-counting. Let’s take for instance the generic bubble in four dimensions

B(q) =

∫
d4k

[k2 −m2
1]

a1 [(q − k)2 −m2
2]

a2
(4.4)

with unit exponents a1 = a2 = 1. If we send k to infinity, so that k is much larger
than any other parameter, namely k2 ≫ m2

1, k
2 ≫ m2

2, k
2 ≫ k · q ≫ q2 , we get

the asymptotic behaviour

B(q)
k→∞→

∫
d4k

k4
(4.5)

which leads to a logarithmic divergence. Similar power-counting arguments lead
to the formula which gives the UV degree of divergence ω of a generic integral

ω = 4h− 2L+
∑

l

nl (4.6)

with L being the number of internal momenta, h the number of independent in-
ternal (loop) momenta and nl the degree of the polynomial appearing at numer-
ator. The integral is UV convergent if ω < 0, while it will be logarithmic, linear,
quadratic,... UV divergent when ω = 0, 1, 2, ... respectively.

The other category of divergences that can occur in Feynman integrals are the
so-called infra-red (IR) divergences. They are generated by regions of the inte-
gration domain where loop momenta become small or parallel to certain external
momenta. We can distinguish different types of IR divergences: soft (off-shell,
on-shell or threshold) divergences and collinear divergences.
Soft off-shell IR divergences arise when external momenta can assume general value
(without being on the mass-shell or at threshold) and the integration momenta be-
come very small. If we take for instance again the generic 1-loop bubble Eq.(4.4)
with a1 = 2, a2 = 1, m1 = 0, m2 6= 0 and q2 6= m2

2, we get for small k

B(q)
k→0→ 1

q2 −m2
2

∫
d4k

(k2)2
(4.7)

which gives again a logarithmic divergent result. There are similarities between
the properties of UV and off-shell IR divergences. Also in the latter case, one can
define a formula which gives the degree of divergence of the integral. This kind
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of divergences is absent in theories which actually describes physical phenomena,
though they can appear in expansions of Feynman integrals in particular kinematic
limits.
Soft on-shell IR divergences appear when external momenta are on mass-shell or
at threshold and the Feynman diagram happens to be singular in these particular
configurations. We can use again Eq.(4.4) with a1 = 1, a2 = 2, m1 = 0, m2 6= 0
and we take q on the mass-shell as q2 = m2

2

B(q) =

∫
d4k

(k2)(k2 − 2k · q)2
k→0→ 1

4

∫
d4k

(k2)(k · q)2 . (4.8)

Once more this integral has clearly a logarithmic divergent behaviour which would
be not be present if q2 6= m2

2.
The 1-loop bubble can also give rise to a soft threshold divergence if we choose
a1 = a2 = 2, m1 = m2 = m and we take the external momentum q at threshold
2m, namely q2 = 4m2. We start from

B(q) =

∫
d4k

[k2 −m2]2[(q − k)2 −m2]2
(4.9)

and if we make shift of the loop momentum k → k + q
2 (the integration measure

is invariant under translations), we get

B(q) =

∫
d4k

[(k + q/2)2 −m2]2[(q/2− k)2 −m2]2
(4.10)

=

∫
d4k

[k2 + q · k]2[k2 − q · k]2
k→0→

∫
d4k

(q · k)4 (4.11)

which is logarithmic divergent.
Last but not least, collinear divergences may arise when a loop momentum becomes
collinear or anti-collinear to an external one. We can make an example by taking
the 1-loop triangle with massless internal propagators and massless independent
external momenta p1 and p2.

T (p1, p2) =

∫
d4k

(k2 − 2p1 · k)(k2 − 2p2 · k)k2
. (4.12)

This integral has an on-shell soft divergence for k → 0 , with all components
scaling to 0 in the same way. But, at the same time, it also has a divergence for
k 6= 0 but k2 ∼ 0 and k is parallel to either p1 or p2, provided that p1 and p2 be
light-like. Indeed, if k2 → 0, the integrand goes like 1/((p1 · k)(p2 · k)k2). If we
take then k collinear to say p1, we will get p1 · k = |p||k|(1 − cos θ) with θ → 1.
Now, if we add the integration measure rewritten in spherical coordinates we get
a behaviour d cos θ/(1− cos θ) ∼ dθ/θ which gives a divergent logarithm.
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This concludes this brief presentation of the most important and common kinds
of divergences that Feynman integrals can exhibit. In the next section we present
parametric representations for Feynman integrals, which constitute a powerful tool
not only for integration itself but also for the analyses of these divergences.

Parametric representations, Regularization and Properties of Feynman
Integrals

Feynman integrals admit parametric representations which allow to transform
them into multi-dimensional integrals over a certain number of one-dimensional
positive-valued integration variables. The bulk of these representations is given by
the so-called α-representation (or Schwinger representation), which sees a scalar1

Feynman propagator in momentum space D̃l(p) rewritten as an integral over a
parameter as follows

D̃l(p) =
i

(p2 −m2 + i0)al
(4.13)

= i
(−i)al

Γ(al)

∫ ∞

0

dαlα
al−1
l ei(p

2−m2)al (4.14)

which becomes for a al = 1

D̃(p) =

∫ ∞

0

dαei(p
2−m2)α. (4.15)

Now, to obtain the representation for a generic (scalar) integral, one starts by
replacing propagators with their representation

FΓ(q1, ..., qn) =

∫

...

∫
d4k1...d

4kL
Ea1

1 ...EaN

N

(4.16)

=

∫

d4k1...

∫

d4kL
i−(a1+...aN)

Γ(a1)...Γ(aN )
×

×
∫ +∞

0

dα1...

∫ ∞

0

dαNα
a1−1
1 ...αaN−1

N ei(α1E1+...+αNEN ). (4.17)

Then, one considers the argument of the exponential, which is a function of external
momenta qi and loop momenta ki and rewrites it as

C = (α1E1 + ...+ αNEN ) = kiMijkj − 2Qjkj + J (4.18)

where M is an L × L matrix, Q(αi, qj) is an L-dimensional vector and J =
J(αiαj ,m

2
i , qi, qj) is a scalar function.

1We discuss here parametric representation of the only scalar Feynman integrals, since this is
what we will actually need in the following for our computation (see Chapter 4).
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By performing some manipulations, one manages to rewrite the integrals over the
loop momenta ki in Eq.4.17 as Gaussian integrals, which can be then easily carried
out. The final result for the α-parametrization thus reads

FΓ(q1, ..., qn) =
iL−(a1+...aN ) det(M)−2πL/2

Γ(a1)...Γ(aN )

∫ N∏

j=1

dαjα
aj−1
j e−iF(α)

U(α) , (4.19)

with U and F being strictly related to the function C as follows

U = det(M), F = − det(M)J +QMTQ. (4.20)

Practically speaking U and F are polynomials in the α-parameters of homogeneous
degree respectively equal to L and L+ 1 2.

The representation through α-parameters is interchangeable with another one,
which can be obtained with a simple change of variables and goes under the name
of Feynman representation.

FΓ(q1, ..., qn) =
(−1)a1+...+aNπL/2Γ(a1 + ...+ aN − L/2)

∏N
i=1 Γ(ai)

×
∫ N∏

j=1

dxjx
aj−1
j δ

(

1−
N∑

i=1

xi

)

U(x)a1+...+aN−2(L+1)

F(x)a1+...+aN−2L
(4.21)

As we already pointed out, Feynman integrals can be ill-defined, since some
region of the integration domain can lead to a divergent result. To deal with this,
usually such integrals are regularized through the introduction of a regularization
parameter at the integrand level, such that the final result of the integration is
a well-defined function of this parameter and the initial divergence is recovered
by taking a specific limit of the parameter. Thus the purpose of regularization is
that of making the divergence manifest itself as a singularity of the regularization
parameter, so that it can be isolated and easily handled.
A number of different types of regularization are available on the market, but we
will take into consideration in this context only the one that we used extensively in
our computation, which is dimensional regularization (DR). This technique con-
sists of promoting the number of dimensions from 4 to d = 4 − 2ǫ. Roughly
speaking, what happens is that the final result of the integration will be a well-
defined function of the regularization parameter ǫ, which, if expanded around the
physical limit ǫ → 0, will contain poles 1/ǫ, 1/ǫ2,etc..... representing the diver-
gences of the original integral.

2For computation purposes, we point the reader who might want to make use of this useful
representation to the Mathematica package UF.m by A.Smirnov which compute the U and F
polynomial automatically and which has been successfully used in our project.
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In particular, if d is taken to be a complex-valued variable the main feature of
dimensional regularization turns out to be the proof that Feynman integrals are
analytic functions of ǫ in the complex plane! This gives the possibility to always
perform an expansion of the result as a Laurent series around ǫ ∼ 0, thus recover-
ing the poles in ǫ mentioned above. When we promote the dimension from 4 to d,
the derivation of the α and Feynman representations does not change much: the
only difference is that one should now perform d-dimensional Gaussian integrals
over the loop momenta, which indeed can be done with no effort. The final results
for such representations in d-dimensions read

FΓ(q1, ..., qn) =
iL−(a1+...aN) det(M)−d/2πLd/2

Γ(a1)...Γ(aN )

∫ N∏

j=1

dαjα
aj−1
j e−iF(α)

U(α) , (4.22)

FΓ(q1, ..., qn) =
(−1)a1+...+aNπLd/2Γ(a1 + ...+ aN − Ld/2)

∏N
i=1 Γ(ai)

×
∫ N∏

j=1

dxjx
aj−1
j δ

(

1−
N∑

i=1

xi

)

U(x)a1+...+aN−d(L+1)/2

F(x)a1+...+aN−dL/2
. (4.23)

The parametric representations Eq.(4.22) and Eq.(4.23) are a useful tool not only
for integration itself of Feynman integrals, but also for the analyses of their con-
vergence and for their expansion in given kinematic limits. We will made extensive
use in particular of Eq.(4.23) in our computation, as it will be shown in the next
chapter.

In the following we briefly state some important properties of Feynman inte-
grals, without providing any proof since this would go beyond the purpose of the
present thesis. The first three properties are general to all Feynman integrals,
regardless of the adopted regularization scheme, whereas the last two of them are
specific to Feynman integrals regularised in DR.

1. Scalar integrals are invariant under the Poincaré group. This implies that
the integral is a function of only those Lorentz-invariants that can be built
starting from external momenta.

2. Integrals transform in a covariant way under dilatations. This means that one
can always extract the dimension in powers of energy of the integral and thus
deal with a dimensionless integral which will be a function of dimensionless
ratios of those independent kinematic quantities that can be built stating
from independent external momenta.

3. Lorentz invariance identities (LI): given a scalar integral F (q1, ..., qE) de-
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pending on E external momenta, the following identities hold

E∑

i=1

(

qνi
∂

∂qiµ
− qµi

∂

∂qiν

)

F (q1, ..., qE) = 0. (4.24)

They follow from the invariance of the integral under Lorentz transformation
of the external momenta qµi → qµi + ǫµνq

ν
i .

4. Integration by parts Identities (IBPs), namely the possibility of integrating
by parts and always neglecting surface terms.

∫

ddk1...

∫

ddkL

[
∂

∂kj
· ki

1

(k21 −m2
1)

a1 ...(k2L −m2
L)

aL

]

= 0

The formal argument for which this identities hold relies on the fact that
this is the integral in d-dimensions of the total divergence of the vector in
curly brackets. It can then be transformed into the flux of this vector over a
spherical surface with radius r → ∞ and which goes to zero. A less formal
but more intuitive argument is the following: the integral is invariant under
translations along the directions of the vector ki

∫

ddkif(ki) =

∫

dd(ki + ǫ)f(ki + ǫ) (4.25)

but the partial derivative with respect to vector ki is the generator of trans-
lations along the direction of this vector

f(ki + ǫ) = f(ki) + ǫ
∂

∂ki
f(ki) + ... (4.26)

so the generator of shift must integrate to zero!
In any case, for the complete proof of IBPs we send the reader to the paper
[121] where they were originally discussed.

5. Any scaleless integral in DR is zero.
This property can be proved by use of an auxiliary analytic regularization,
using pieces of the integral in α representation considered in different domains
of the regularization parameters.
We can consider as an example the massless tadpole diagram, which can be
reduced by means of α parameters to a scaleless one-dimensional integral

∫
ddk

k2
= −iǫπd/2

∫ ∞

0

dααǫ−2. (4.27)

This integral is divided into two parts, from 0 to 1 and from 1 to ∞ and these
two parts are integrated. Results are found to be equal except for opposite
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signs, which lead to zero value. An important subtlety in this procedure
should be pointed out. These two pieces converge in different regions of the
DR regulator ǫ but DR guarantees that each one of them can be extended
through analytic continuation to the entire ǫ axis, so that the result effectively
sums up to zero.

For a complete treatment of Dimensional Regularization and its properties we send
the reader to the original paper [119] where DR was first introduced by Veltman
and ’t Hooft and to the paper from Wilson [129], which followed immediately
afterwards.

4.1.2 Master Integrals: definition and overview

When computing higher order perturbative corrections to physical quantities, a
large number of apparently different integrals appears. In particular, increasing
the number of loops and/or external legs, more and more different dimensional
scales enter the description of the final result, thus introducing more and more
difficulties in the evaluation of the integrals.
In the framework of dimensional regularization, many powerful techniques have
been developed in order to make the computation of such corrections feasible.
The main goal of such techniques is that of sensibly reducing the number of Feyn-
man integrals that need to be computed explicitly, by relating the original huge
amount of integrals needed to describe the process to a much smaller set. Indeed,
IBPs identities (plus some other types of identities that will be presented later on
in this thesis) can be used to establish a number of relations between the integrals.
These relations turn out to be simple linear equations which involve the integrals
and only rational functions of the invariants and of the dimensional regularization
parameter ǫ. Solving this system of equations finally allows one, as anticipated
above, to express most of the integrals in terms of a relatively small subset of ir-
reducible integrals, the so-called Master Integrals, which are then to be computed
explicitly.
So, given the problem of computing contribution at a given order in perturbation
theory to an observable, we can give the following definition of Master Integrals.

Master Integrals form a set of integrals such that any other Feynman integral
appearing in the problem can be expressed as a linear combination of the elements
of this set. This set thus satisfies the requirements of being closed with respect to
IBPs and minimal.

In other words, a set of Master Integrals is a solution of the IBPs system of
equations such that

• its elements cannot be further reduced by applying IBPs (i.e. the set is closed
under IBPs operation),
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• the number of elements is the minimal one necessary in order for the previous
property to hold.

Consequently, master integrals (MIs) have all the properties of standard Feynman
integrals, plus those that derive from the above definition. We would like to stress
that, given a system of IBPs identities, one can usually determine an ensemble of
equivalent solutions for it. This implies that one always has the freedom to change
the set of MIs and this amounts to simply a change of basis in the space of the
IBPs system solutions.
Roughly speaking, the computation of a given observable at a given order in per-
turbation theory, is thus naturally split into two parts

• the reduction of the original set of integrals coming from the matrix elements
to a set of MIs as small as possible,

• the explicit computation of the MIs.

A lot of effort has been made in the past twenty years to improve all this machin-
ery.
In non-trivial applications, such as two-loop corrections, the system of equations
one has to solve to carry out the reduction can easily grow to include hundreds or
thousands of equations, so that one must resort to the use of computer algebra.
In the last years many public and private implementations for the automatic re-
duction to master integrals have become available, many of them relying on the
Laporta algorithm [87].
After the problem of reduction is completed, one is left with that of solving the
masters. Traditional techniques, such as α- , Feynman or Mellin-Barnes paramet-
ric representation are of course available to solve each of the master integrals. But,
as the number of loops and external legs increases, also the number of propaga-
tors does and these traditional methods are not feasible anymore. Beside these
traditional techniques at the beginning of the nineties the method of differential
equations has been proposed and over the years has proven to be very powerful
in a large number of computations. In this method, differential equations for the
integrals under consideration are derived, by differentiating at the integrand level
with respect to external scales upon which the integrals depend. The master in-
tegrals are then determined by solving such differential equations and matching
them to appropriate boundary conditions.
The rest of this chapter will be dedicated to go more into detail in the master
integral technique, with particular emphasis on those techniques that we used ex-
tensively in our computation and that cannot yet be carried out automatically,
namely the solution of masters through differential equations. Among the next
three sections, the first will be dedicated to reduction, the second to methods for
solving the masters and the third will focus in particular on some recent ideas de-
veloped in the field of solution via differential equation, which has been exploited
in the present project.
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4.2 Reduction of Scalar Matrix Elements to Mas-

ter Integrals

Let us imagine we want to compute the contribution to a certain order in per-
turbation theory to the inclusive cross-section for a particular physical process
via master integral techniques. Which steps should one take to obtain the set of
masters describing such quantity from scratch? This section will be entirely ded-
icated to describe how a set of master integrals is obtained within the framework
of computation of perturbative quantum corrections to an observable.

4.2.1 Topologies and classification of scalar Feynman Inte-

grals

We assume that the reader is already familiar with matrix elements generation for
a given process, so we just sketch how it works without entering into details. First
Feynman graphs are generated. For processes with a large number of loops/legs,
and thus described by a large number of graphs, this happens normally through
the help of an automatic generator. Then, a mathematical expression is associated
to each graph through Feynman rules, thus giving what is usually called a Feyn-
man diagram. At this stage our process is then described by a sum of Feynman
diagrams, usually referred to as Feynman amplitude. For processes involving par-
ticles with spin different from zero, (amputated) amplitudes are tensor quantities,
namely they have free Lorentz indices. These free Lorentz indices are then satu-
rated when one takes the square modulus of the amplitude and contracts it either
with the polarisation tensor or with suitable projectors in order to either compute
a cross-section or extract form factors. When such contraction is performed a
scalar quantity is obtained, which we will always refer to in the following as scalar
amplitude.
Also we stress that in the following we will always work in Dimensional Regular-
ization. Given a process q1 + q2 → q3 + ... + qN which depends on N external
momenta q1, ..., qN and L loop momenta l1, ..., lL, the scalar amplitude A at this
point looks like

A (q1, ..., qN ; l1, ..., lL) =

∫

ddl1...

∫

ddlL
N (qi · qj , qi · lj , li · lj)

E
aE1
1 ...E

aEM

M

, (4.28)

where the numerator in the integrand is a polynomial in all the possible scalar
products that can be built out of the independent internal and external momenta
whereas the denominator is a product of M inverse propagators Eq.(4.3).
In order to obtain quantities with a physical meaning, namely inclusive cross-
sections or form factors, one has then to integrate Eq.(4.28) over the Phase Space
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for the N − 2 particles q3, ..., qN in the final state.

σ =

∫

ddq3...

∫

ddqNδ+(q
2
3 −m2

3)...δ+(q
2
N −m2

N )δ(d)(q1 + q2 − (q3 + ...+ qN ))×

× A (q1, ..., qN ; l1, ..., lL) . (4.29)

Even if it is not necessary for the following discussion, we would like to consider
starting from now the most general case in which the technique of master inte-
grals can be used. Indeed, this technique was developed at the beginning with the
purpose of dealing with integrations over the only loop momenta, meaning that
it was meant to be applied to perform integrations at level of scalar amplitudes
Eq.(4.28), thus leaving phase-space integrations to traditional techniques.
Later on, the possibility to treat phase space integrals as loop integrals was in-
troduced, consequently leading to the idea of applying master integrals to both
loop and phase-space integrations [?]. This idea relies on what is commonly called
reverse unitarity, which essentially consists in using the Cutkosky rule to replace
delta-functions by differences of propagators

2iπδ(p2 −m2) → 1

p2 −m2 + i0
− 1

p2 −m2 − i0
≡
(

1

p2 −m2

)

c

. (4.30)

Leaving details for the following subsection, for the moment we can say that this
allows us to substitute δ-functions with cut propagators in the phase space mea-
sure, and, consequently, to treat phase space integrals as loop integrals. Once in
Eq.(4.29) we have performed one phase space integral with the momentum conser-
vation δ-function and we have rewritten the remaining on-shell δ-functions using
reverse unitarity,

σ =

∫

ddq3...

∫

ddqN−1×

×
(

1

q23 −m2
3

)

c

...

(
1

(q1 + q2 − (q3 + ...qN−1))2 −m2
N

)

c

A (q1, ..., qN ; l1, ..., lL) .

(4.31)

If we now substitute the explicit expression for the scalar amplitude Eq.(4.28), we
get

σ =

∫ i=N−1∏

i=3

ddqi

∫ L∏

j=1

ddlj×

×
(

1

q23 −m2
3

)

c

...

(
1

(q1 + q2 − (q3 + ...qN−1))2 −m2
N

)

c

N (qi · qj , qi · lj , li · lj)
E

aE1
1 ...E

aEM

M

.

(4.32)
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In Eq.(4.32) it is eventually clear that from this stage on loop and phase space
integrations can be treated in the same way, so that we can think of applying
master integrals technique not only at level of scalar amplitude (Eq.4.28) but also
at level of cross-section (Eq.4.32).
Keeping this in mind, from now on we will address the general mathematical issue
of reducing to master integrals a quantity which has the following features:

• it is a function of a number E of ‘external’ momenta q1, ..., qE

• it can be generically written as the integral over a number I of ‘loop’ momenta
k1, ..., kI of a certain integrand

• the integrand has the generic form of a polynomial in all the possible scalar
products that can be built using momenta q1, ..., qE , k1, ..., kI over a denom-
inator given by products of inverse propagators.

A(q1, ..., qE) =

∫ I∏

p=1

ddkp
N (qi · qj , qi · kj , ki · kj)

E
aE1
1 ...E

aEM

M

(4.33)

This generic quantity A will have the physical meaning of either a scalar amplitude
or a cross-section depending on the precise physical observable one might want to
compute.

We start now manipulating Eq.(4.33) as follows. First, we expand A in order
to write it as the sum of integrals each one over a ratio having at the numer-
ator a monomial in the scalar products and at the denominator the product of
propagators, which are actually scalar Feynman integrals.

A(q1, ..., qE) =
∑

i

ci (q1, ..., qE)

∫ I∏

p=1

ddkp
S
ai
S1

1 S
ai
S2

2 ...S
ai
SM

M

E
aE1
1 ...E

aEM

M

, (4.34)

where

• we pulled the scalar products between external momenta outside the integrals
and encoded them in the coefficients ci (q1, ..., qE) which have then the form

ci (q1, ..., qE) =

E∏

l,m=1

(ql · qm)a
i
l,m (4.35)

• we have indicated with S1, ..., SM all the possible independent scalar products
that one can construct of the type qi · kj , ki · kj using all the independent
external and loop momenta.
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The number of all possible scalar product of the type qi · kj , ki · kj is fixed by the
formula

nS =
I(I + 1)

2
+ I E. (4.36)

The key observation now is that the amplitude has been written as a linear com-
bination of scalar integrals (Eq.4.34) but the ensemble of these integrals is usually
not linearly independent, meaning that we still have room to manipulate this ex-
pression and reduce the number of integrals appearing in this linear combination.
The linear dependence is induced by the fact that factors appearing at denomina-
tor are built up themselves from scalar products. This implies two things. First,
the number of linearly independent propagators {E1, ..., EM} that we can build
given I loop momenta and E external momenta is fixed by the expression fix-
ing the number for scalar products, namely Eq.(4.36). Second, we can think of
expressing each scalar product at numerator as a linear combination of inverse
propagators {E1, ..., EM}. More in general, we can think of the sets {S1, ..., SM}
and {E1, ..., EM} as two bases in the space of all possible linear combinations of
scalar products. In this perspective expressing scalar products as linear combina-
tions of a set of selected independent inverse propagators is nothing but a change
of basis in this space. So, assuming that our scalar amplitude naturally provides
a set of M linearly independent inverse propagators {E1, ..., EM}, we can perform
this change of basis

Si =

M∑

j=1

Bij(Ej − bj) (j = 1, ..., 7) (4.37)

where B and b are respectively an invertibleM×M matrix and anM -dimensional
vector whose elements just depend on the scalar products between external mo-
menta qi · qj and internal masses m2

i . We can now use this change of basis to
simplify Eq.(4.34): in each term appearing in the sum we substitute scalar prod-
ucts at numerators with their decomposition Eq.(4.37), we expand again, perform
all simplifications between numerator and denominator that may occur and finally
obtain a scalar amplitude which is a linear combination of Feynman integrals writ-
ten in terms of only inverse propagator belonging to the set {E1, ..., EM}

A(q1, ..., qE) =
∑

i

c′i (q1, ..., qE)

∫ I∏

p=1

ddkp

M∏

j=1

E
ai
Ej

j . (4.38)

We can now introduce the concept of ‘topology’ which will be extensively used in
the rest of this thesis and which states in a formal way the idea of sets of indepen-
dent propagators as basis in a space. We define topology T a set {E1, ..., EM} of
inverse propagators Ei which is minimal and complete in the sense that any scalar
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product of a loop momentum ki with either a loop momentum kj or an external
momentum pj can be uniquely expressed as a linear combination of the Ei and of
the kinematic invariants 3.
Given our topology T = {E1, ..., EM}, we can classify all the scalar integrals ap-
pearing in the sum in Eq.(4.38) according to it. Indeed, once an order for the
propagators in the set T is conveniently fixed, we can associate to each integral a
M -dimensional vector whose entries correspond to indices (i.e. powers) of propa-
gators Ei belonging to the topology. We establish this correspondence by adopting
the following notation

∫ I∏

p=1

ddkp

M∏

j=1

E
ai
Ej

j → I[T, {aiE1
, aiE2

, ..., aiEM
}]. (4.39)

We also define subtopology any subset T ′ of inverse propagator which can be con-
structed starting from a given original topology T . It is appropriate at this point to
discuss an issue which concerns the identification of topologies. In our discussion
so far, we took for granted that propagators appearing in the scalar amplitude
naturally make up a topology, in a sense that we assumed them to be linearly
independent and in a number equal to M with M given by Eq.(4.36). In real
computations, this perfect scenario rarely happens. Usually one has to deal with
two possible variations of this scenario, which might happen one at a time or also
at the same time. First, the propagators might not be a linearly independent set.
This problem can be solved with the help of partial fractioning. Let us consider
the simplest situation, we have a set of M propagators from the scalar amplitude
and three of them satisfy the following relation of linear dependence

Ei = Ej + Ek. (4.40)

This means that this particular set of M propagators is not a topology. But we
can create an identity in order to get rid of one of them in favour of the other two.
Indeed, we have

1 =
Ej + Ek

Ei
. (4.41)

Now, if we take the simplest ‘problematic’ integrand, namely

1

EiEjEk
(4.42)

and apply to it the identity we get

1

EiEjEk
=
Ej + Ek

Ei

1

EiEjEk
=

1

E2
i Ek

+
1

E2
i Ej

. (4.43)

3It must be stressed that a topology is defined only up to shifts of the loop momenta.
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We have split our original integral containing the three dependent propagators in
the sum of two new integrals which contain each just two of these propagators,
namely no more propagators which are linearly dependent. At this point we are
left with the task of assigning these integrals to suitable topologies. These are
easily obtained by taking the original set M and replacing in turn propagators Ej

and Ek with other auxiliary propagators constructed ad hoc to complete the set in
such a way that linear dependence is satisfied. In this way we get from the initial
set two new sets of M propagators, linear independent and such that they contain
respectively the first and the second integrand that result from partial fractioning.
Actually, partial fractioning can be more involved than this, but this example is
meant just to convey the general philosophy of partial fractioning:

• exploit the linear dependence between propagators to construct identities
that allow to build integrands containing just product of independent prop-
agators

• manipulate the initial set of propagators by eliminating old propagators and
adding new auxiliary ones such that in the end they give rise to topologies
and such that these topologies actually contain the newly built integrands.

The other problem that might arise concerns the number m of propagators that
are naturally contained in a scalar amplitude. It can be a priori either smaller or
bigger than the number M given by Eq.(4.36) required to build a topology. In
the first case m < M , it is sufficient to add one or more auxiliary propagators in
order to complete the set in such a way to get a topology out of it. In the second
case, m > M , the set of m propagators is not linearly dependent, so again we can
exploit partial fractioning to reduce it to a smaller set of independent propagators.
To conclude we might say that it is often necessary to play with both partial
fractioning and auxiliary propagators to get to a form for the scalar amplitude as
that described in Eq.(4.38). From now on, keeping in mind the framework of a
general computation, we will assume that all the necessary in this sense has been
done, so that we have arrived to a form of the amplitude as in Eq.(4.38) and in
the next section we can start explaining how such expression is reduced to master
integrals.

4.2.2 Identities between Feynman Integrals

In this subsection we will address the problem of further reducing a scalar ampli-
tude in the form Eq.(4.38) by means of Integration By Parts (IBPs) identities 4.
Roughly speaking, the idea is to write down, using IBPs, a system of linear equa-
tions for scalar Feynman integrals belonging to a certain topology and solve this

4IBPs have been introduced in the previous section in the context of properties of dimension-
ally regularized Feynman integrals.
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system with respect to a small set of integrals in terms of which all the others
will be expressed through linear relations. Integrals belonging to this set found
by solving IBPs systems of equations are what we will call from now on Master
Integrals (MIs). MIs are thus characterized by the property of being irreducible, in
a sense that they cannot be expressed as linear combinations of simpler integrals.
To give an idea of how this works, we shall start from the simplest example one
can think of, namely the massive tadpole for generic index of its only propagator
(in the following we omit the dependence on invariants and dimension for brevity)

F (a) =

∫
ddk

(k2 −m2)a
. (4.44)

We apply the IBP identity to this integral
∫

ddk
∂

∂k
· k 1

(k2 −m2)2
= 0 (4.45)

with ∂
∂k · k = ∂

∂kµ
· kµ. If we carry out derivatives we get

(d− 2a)F (a)− 2am2F (a+ 1) = 0 (4.46)

which can be solved to give the following recurrence relation

F (a) =
d− 2a+ 2

2(a− 1)m2
F (a− 1), (4.47)

telling us that any Feynman integral with integer a > 1 can be expressed re-
cursively in terms of one integral F (1) which we therefore consider as a master
integral, namely an integral that cannot be further reduced, as follows 5

F (a) =
(−1)a(1 − d/2)a−1

(a− 1)!(m2)a−1
I1. (4.48)

Let us pick up now a slightly more difficult example, namely the massless 1-loop
bubble with generic indices a1, a2.

F (a1, a2) =

∫
ddk

(k2)a1 [(q − k)2]a2
. (4.49)

We apply IBP with respect to the integration momentum
∫

ddk
∂

∂k
· k 1

(k2)a1 [(q − k)2]a2
= 0

(4.50)

5In the mathematical notation (m)n is the Pochammer symbol.
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and obtain the following relation

(d− 2a1 − a2)F (a1, a2)− a2F (a1 − 1, a2 + 1) + a2q
2F (a1, a2 + 1) = 0, (4.51)

which can be rewritten as

a2q
2F (a1, a2 + 1) = a2F (a1 − 1, a2 + 1) + (2a1 + a2 − d)F (a1, a2). (4.52)

If we now shift the index a2 we can write

F (a1, a2) = − 1

(a2 − 1)q2
[(d− 2a1 − a2 + 1)F (a1, a2 − 1)− (a2 − 1)F (a1 − 1, a2)] .

(4.53)

This relation relates an integral whose indices sum up to a1 + a2 on the l.h.s. to
integrals whose indices sum up to a1 + a2 − 1 on the r.h.s., thus enabling us to
reduce the sum of the indices a1 + a2. From the denominators we see that this
relation holds only for a2 > 1. What if for instance a2 = 1? Then we can use
the symmetry property of this specific integral F (a1, a2) = F (a2, a1) (which comes
from the invariance of the integral under the shift k → q− k ) to exchange a1 and
a2 in this relation and then set a2 = 1. This gives us

F (a1, 1) = −d− a1 − 1

(a1 − 1)q2
F (a1 − 1, 1). (4.54)

This last relation enables us to reduce the index a1 to 1. So, Eq.(4.53) and
Eq.(4.54) together enable us to express any integral of the given family in terms
of the only master integral F (1, 1), so that

F (a1, a2) = c(a1, a2, d)F (1, 1) (4.55)

where C is a rational function of the regulator d = 4− 2ǫ and of the only scale of
the integrals q2.

We can extrapolate from this example what happens in a more general situation.
By explicitly performing on the integrands derivatives appearing in the IBPs and
expressing then scalar products appearing at numerators in terms of the chosen
basis of inverse propagators {E1, ..., EM}, one obtains identities of the form (we
use the notation of Eq.(4.39))

0 =c I[T, {aE1, aE2 , ..., aEM
}] +

M∑

i=1

aEi
diI[T, {aE1, aE2 , ..., aEi

+ k, ..., aEM
}]

+

1,M
∑

i6=j

aEi
eijI[T, {aE1, aE2 , ..., aEi

+ k, ..., aEj
− p, ..., aEM

}] (4.56)

involving three kinds of amplitudes
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• the original scalar integral itself I[T, {aE1, aE2 , ..., aEM
}];

• scalar integrals I[T, {aE1, aE2 , ..., aEi
+ k, ..., aEM

}] with one of the indices
increased by some integer number k,aEi

→ aEi
+ k ( i = 1, ...M). These

terms originate from the derivation of the factor E
aEi

i . Obviously these terms
are absent for indices being equal to zero, meaning that it is impossible to
generate an absent denominator by differentiation. This implies that IBPs
applied to a scalar integral belonging to a certain subtopology T ′ can never
produce scalar integrals belonging to a topology bigger than T ′;

• scalar integrals I[T, {aE1, aE2 , ..., aEi
+k, ..., aEj

−p, ..., aEM
}] with one index

increased by some integer k, aEi
→ aEi

+ k and another decreased by some
other integer p, aEj

→ aEj
− p. These terms originate from the derivation

of the factor E
aEj

i together with the cancellation of a power of E
aEj

j with
inverse propagators generated at numerators.

The coefficients c,di,eij are functions of ǫ and of the invariants on which the original
integral depends.
The IBPs identities constitute a system of linear equations in which the unknowns
are the scalar integral themselves. The oldest approach, developed in the original
article on the IBPs ([?],[?]), involves a symbolic solution of the identities, treated
as recurrence equations in the indices. In the two examples we gave above one can
actually see this kind of method at work, though just in the two easiest situations
one can imagine. In the general case, one introduces operators raising or lowering
one of the indices

i±I[T, {aE1, ..., aEi
, ..., aEM

}] = I[T, {aE1, ..., aEi
± 1, ..., aEM

}] (4.57)

and tries to combine equations in such a way that a scalar integral is written in
terms of amplitudes all containing lowering operators, so that reduction to sim-
pler subtopologies can thus be achieved. The main disadvantage is that a careful,
case-by-case, inspection of the equations is required. Also, when the system of
equations starts becoming huge, solving for generic values of the indices might
become cumbersome and in some cases impossible.
More recently, a new approach radically different from the previous one was pro-
posed in [87]. This method, commonly known as the Laporta algorithm, does
not attempt to solve systems of IBPs containing an infinite number of equations
(i.e. for generic values of the indices of propagators) but systems made of a finite
number of equations generated by specifying some carefully chosen values for the
indices. Indeed, it is observed that in practice large values of the indexes ai do not
matter, so that one is able to truncate the initially infinite system of equations at
certain, usually small, values of the ai and thus deal with a finite system of linear
equations. The system is solved using the well-known Gauss elimination method.
The solution gives the expressions of the integrals as linear combinations of the
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master integrals with rational coefficients in the DR parameter ǫ. This approach
has the big advantage of being suitable for completely automatic calculations, since
it does not require inspections of single identities one-by-one. On the other side,
it may require a large CPU time and very long intermediate expressions may be
generated, but with some tricks also the entity of these problems can be reduced.
For a detailed description of the algorithm and example, we send the reader to the
original paper where this was first published ([87]).
In our project we made extensive use of the Mathematica implemented version of
this algorithm, which is delivered in the FIRE package [113]. In particular we used
the latest version of the package [114], which allows for performing reduction both
with Mathematica and with c++. However, this is not the only automatic code
available for reduction to master integrals. Various implementations exist and the
interested reader may find citation of a complete list of them in [76].

One last remark we would like to make is about the compatibility of reverse unitar-
ity, mentioned in the previous subsection, with IBPs reduction [8]. Given that we
are addressing the computation of a cross-section, once the phase space δ-functions
are replaced by the difference of two cut propagators as in Eq.(4.30), we can apply
IBPs two cut scalar integrals in the same way we would apply them to standard
loop integrals. Indeed, the prescription for the imaginary part of the two propa-
gators in the r.h.s. of Eq.(4.30) is irrelevant for the differentiation. Therefore the
IBP relations for the two descendants of these two terms have the same form as the
IBP relations for the original integral without the cut. It is then allowed to apply
reverse unitarity, thus getting cut scalar integrals, and then apply to them IBP
reduction. Reduction will work exactly the same way it works for loop integrals,
with the exception that whenever a cut inverse propagator appear at numerator in
an integral, that integral is zero (Indeed one has to remember that cut propagators
are δ-functions representing on-shell constraints!).

At this stage, we can consider the problem of reduction of a given scalar am-
plitude to master integrals solved. In the next two sections, we will address the
issue of computing the masters themselves.
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4.3 Master Integrals Computation - Part 1

Once the reduction to master integrals is performed, one is left with the issue
of computing explicitly the masters. In this section we shall address this topic.
One has usually at disposal several methods to compute the masters. Among the
traditional ones, there are α and Feynman parameters and Mellin-Barnes para-
metric representation. These methods have been used extensively over the years
for one-loop and two-loop computations, but they have some disadvantages. When
the number of external and/or internal lines start to grow, the number of possi-
ble inverse propagator appearing at denominator in the integrals increase. Since
all these methods rely on some way of representing each Feynman propagator as
an integral over a certain parameter, integrands involving many propagators give
rise to multi-fold parametric integrals with a high number of dimensions (i.e. in-
tegration variables), which can easily become pretty cumbersome to be solved.
Furthermore, these methods address the computation of each integral separately
from the others, so that when the number of master integrals increases, typically in
multi-loop/leg computation, the number of integrations to be carried out becomes
really challenging.
In this kind of scenario, one might typically want to exploit properties of master
integrals, namely the fact of being a closed irreducible set of integrals belonging
to one or more topologies, to try to find a more efficient strategy to solve them.
An alternative method, which goes under the name of Differential Equations(DE),
indeed uses such properties and has proved successful and very powerful since its
development in the nineties. Since we heavily relied on this particular strategy for
the computation of all master integrals in our project, the rest of chapter 4 will
focus specifically on this strategy. In particular, we will review all the ingredients
and basics of the method in the present section 6, whereas in the following one we
will enter in the details of some quite recent further developments which make the
DE method even more efficient and maybe pave the way towards automation of
MIs computation.
Since we used very little of the ‘traditional’ methods in our computation, we de-
cided not to give a full treatment of them.

4.3.1 Generation of Differential Equations for Master Inte-

grals

Once the MIs have been identified, we can derive differential equations for them
with respect to the external invariants of which they are functions by using again
IBPs relations together with the fact that the MIs are a basis in the vector space
of a certain category of Feynman integrals belonging to a given topology. Three
steps must essentially be taken.

6[2], [125]
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• One chooses which set of independent external invariants he/she wants to
use to express results for the MIs (which will be then functions of these
invariants).

• Then one derives differential operators in the external invariants by observing
that derivatives with respect to them can be expressed as derivatives with
respect to external momenta through the chain rule.

• The set of differential operators is applied to each master. This allows to
express the derivative of a MI as a linear combination of other Feynman
integrals belonging to the same topology or to its subtopologies. In order to
understand this step, we recall from section 3.2, that derivatives of Feynman
integrals, in this case with respect to external momenta, do not produce new
propagators in the integrand denominator. In other words, derivatives of
Feynman integrals with respect to external momenta will always produce as
a result integrals which belong to the same topology or to subtopologies of
the original integral.

• After applying derivatives, not all the integrals appearing at r.h.s are masters!
IBP reduction is then applied to these integrals, thus reducing those that are
not master integrals to linear combinations of these masters.

• As a result we end up with a system of first order, usually coupled, differential
equations for the masters.

We shall illustrate how this works in practice with a very basic example, which will
then be useful as part of the Single Top NLO computation reported in Chapter 4.

Let us take the 1-loop bubble with an internal mass m2 and depending on one
external momenta q. We take both indices of propagators to be equal to 1.

F (q2,m2, 1, 1, d) =

∫
ddk

(k2 −m2)(q − k)2
. (4.58)

This integral depends on two scales q2 and m2. However, we know from Section
3.1 that it is always possible to pull out from a Feynman integral its dimension
in powers of energy and deal with dimensionless integrals. Since it is simpler to
deal with dimensionless integrals, this is exactly what we want to do! So we make
this integral dimensionless by multiplying it for the inverse power of its dimension
in powers of m2, which corresponds in this case to m2ǫ. The integral we obtain
in this way is then a function of the only dimensionless ratios that we can build

starting from the external invariants, in this case just x = q2

m2 .

F ad(x, 1, 1, ǫ) = m2ǫ

∫
d4−2ǫk

(k2 −m2)(q − k)2
. (4.59)
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We now turn to derive the differential operator which gives the derivative with
respect to x as a function of the derivative with respect to m2 by using the chain
rule.

d

dx
=

(
dx

dm2

)−1
d

m2
=

(

(−1)
q2

(m2)2

)−1
d

dm2
=
(

− x

m2

)−1 d

dm2
= −m

2

x

d

dm2

(4.60)

So, we obtain

d

dx
F ad(x, 1, 1, ǫ) =− m2

x

d

dm2

[

(m2)ǫ
∫

d4−2ǫk

(k2 −m2)(q − k)2

]

=− m2

x

[

ǫ(m2)ǫ−1

∫

d4−2ǫk

(k2 −m2)(q − k)2
+ (m2)ǫ

∫

d4−2ǫk

(k2 −m2)2(q − k)2

]

=− 1

x

[

ǫ(m2)ǫ
∫

d4−2ǫk

(k2 −m2)(q − k)2
+ (m2)1+ǫ

∫

d4−2ǫk

(k2 −m2)2(q − k)2

]

=− 1

x

[

ǫF ad(x, 1, 1, ǫ) + F ad(x, 2, 1, ǫ)
]

. (4.61)

At this stage we inspect integrals appearing on the r.h.s. and we apply IBPs to
the new integral F ad(x, 2, 1, ǫ) to see if it can be further reduced. This is actually
the case since the reduction gives us

F (q2,m2, 2, 1, ǫ) =
1

m2 − q2
[
(1− 2ǫ)F (q2,m2, 1, 1, ǫ)− F (q2,m2, 2, 0, ǫ)

]
(4.62)

and if we multiply both sides by (m2)1+ǫ, we obtain the dimensionless relation

F ad(x, 2, 1, ǫ) =
1

1− x

[
(1− 2ǫ)F ad(x, 1, 1, ǫ)− F ad(x, 2, 0, ǫ)

]
. (4.63)

At this point we can decide either to keep F ad(x, 2, 0, ǫ) as a master integral or to
further reduce it to F ad(x, 1, 0, ǫ) through

F ad(x, 2, 0, ǫ) = (1− ǫ)F ad(x, 1, 0, ǫ). (4.64)

In this case we get

F ad(x, 2, 1, ǫ) =
1

1− x

[
(1− 2ǫ)F ad(x, 1, 1, ǫ)− (1− ǫ)F ad(x, 1, 0, ǫ)

]
(4.65)

which substituted in Eq.4.61, gives

d

dx
F ad(x, 1, 1, ǫ) =− 1

x

[

F ad(x, 1, 1, ǫ)

(

ǫ+
1− 2ǫ

1− x

)

− (1− ǫ)

1− x
F ad(x, 1, 0, ǫ)

]

.

(4.66)
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We have a obtained a differential equation for F ad(x, 1, 1, ǫ) which we can solve if
we know the inhomogeneous term F ad(x, 1, 0, ǫ). The latter has a smaller number
of propagators, namely it belongs to a subtopology of the initial one. So, in a
bottom-up approach, where we start solving from the smallest subtopologies up
to the bigger ones, this term can taken to be known and the differential equation
can thus be integrated.

We generalize now the knowledge we have acquired from this example by syn-
thesizing in general formulas for the generation of DE for MIs.
Let us begin by taking a generic scalar integral which depends on a set of N
invariants s = {s1, ..., sN} built out of E external momenta

F (s1, ..., sN ) =

∫

ddk1d
dkLE

a1
1 ...EaM

M . (4.67)

Let us consider the quantities

Ojk(s) = qj,µ
∂F (s)

∂qk,µ
. (j, k = 1, 2, ..., E) (4.68)

By the differentiation rules we have

Ojk(s) = qj,µ

N∑

α=1

∂sα
∂qk,µ

∂F (s)

∂sα
=

N∑

α=1

(

qj,µ · ∂sα
∂qk,µ

)
∂F (s)

∂sα
. (4.69)

According to the available number of the kinematic invariants, the r.h.s. of
Eq.(4.68) and the r.h.s. of Eq.(4.69) can be equated to form the following sys-
tem

N∑

α=1

(

qj,µ · ∂sα
∂qk,µ

)
F (s)

∂sα
= qj,µ

∂F (s)

∂qk,µ
(4.70)

which can be solved in order to express ∂F (s)
∂sα

in terms of qj,µ
∂F (s)
∂qk,µ

.

Eq.(4.70) holds for any function F (s). Let us now assume that F = Fi(s) is
a master integral belonging to a set {F1, F2, ..., Fp} of MIs describing a certain
topology. We apply to it the operator performing derivative with respect to a
certain external invariant. This corresponds, through the action of this operator, to
a linear combination of derivatives of the master with respect to external momenta
and masses. These derivatives are integrals themselves, belonging to the same
topology as the MIs {F1, ..., Fp}, to which we can apply IBPs reduction. By
doing so, we reduce the r.h.s. to a linear combination of MIs, thus expressing
the derivative of the master Fi with respect to a certain invariant as a linear
combination of the ensemble of MIs themselves. If we apply this procedure to
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each master, we get a system of first-order differential equations in the ensemble
of variables s for the MIs {F1, ..., Fp}

∂

∂sα
Fj(s, ǫ) = Aj(s, ǫ)Fj(s, ǫ) +

∑

k 6=j

Ak(s, ǫ)Fk(s, ǫ) j = 1, ..., p. (4.71)

For the sake of precision, we point out that in the set of MIs {F1, ..., Fp} we include
master integrals for the topology into consideration plus those for all its possible
subtopologies, since the latter appear in the inhomogeneous terms in almost all
cases.

Once the system of differential equations Eq.(4.71) is written down for a given
set of MIs, the problem of solving the MIs amounts to being able to integrate such
equations and matching them with proper boundary conditions. Now it is essential
to point out that while the problem of IBP reduction is always solved in closed
form in ǫ (and this is usually possible), the same does not happen for the problem
concerning the solution of the MIs. There exists a very tiny category of Feynman
integrals, mainly 2-point functions, which are solvable in closed form in ǫ. In most
cases, given the complexity of the integrals, it is not possible to determine these
integrals as exact functions of the regulator ǫ. Also, it happens very often that the
results for these integrals will have to be expanded anyway around d → 4, which
corresponds to ǫ → 0. Given these facts, one usually addresses the computation
of MIs expanded as Laurent series in ǫ. To do so, one substitutes the ansatz

Fj(s, ǫ) =

n∑

k=n0

ǫkF
(k)
j (s) +O

(
ǫn+1

)
(4.72)

where n0 corresponds to the first power in ǫ that contributes to the series, whereas
n is the maximum order we require in the solution and after which the series is
truncated. If n0 is negative, it corresponds to the highest pole of the integral.
When expanding systematically in ǫ all the MIs and all the ǫ-dependent coefficient
appearing in Eq.(4.71), one obtains a system of chained differential equations for

the coefficients F
(k)
j of the Laurent expansions of the masters. The first equation,

corresponding to the highest pole, involves only the coefficient F
(n0)
J as unknowns.

The next equation, corresponding to the next pole in ǫ, involves the F
(n0+1)
j as

unknowns and usually F
(n0)
j in the inhomogeneous terms, but, since the equation

for the highest pole is considered solved, such a term is considered known. The
same approach is adopted for the subsequent equations: if we are solving the
equation for the k-th order of the expansion, all coefficients at previous orders will
appear in its inhomogeneous term, but in a bottom-up approach these are knowns.
Experience shows that typical functions occurring in Feynman integrals are certain
classes of iterated integrals, elliptic functions and possibly generalizations thereof.
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It is still an open problem that of predicting in general, for a given Feynman graph,
what class of functions it is described by. In the next subsection we will introduce
the main class of functions in terms of which most results for Feynman integrals
are expressed. These functions go under the name of Goncharov polylogarithms or
Multiple polylogarithms or Generalized Harmonic Polylogarithms.

4.3.2 Multiple PolyLogarithms: an overview

Many Feynman integrals can be expressed in terms of classical polylogarithms and
Nielsen polylogarithms. Starting from the ordinary logarithm

ln z =

∫ z

1

dt

t
, (4.73)

we can generalize it as follows

Lin(z) =

∫ z

0

dt

t
Lin−1(t), Li1(z) = − ln(1− z). (4.74)

Eq.(4.74) defines recursively that class of functions which goes under the name
of classical polylogarithms. This class of functions can be further generalized to a
wider class, called Nielsen polylogarithms, defined as

Sn,p(z) =
(−1)n+p−1

(n− 1)!p!

∫ 1

0

(ln t)n−1[ln(1− zt)]p

t
dt. (4.75)

These functions are sufficient to describe large classes of Feynman integrals, but
not all of them. Specially some multi-loop and multi-legs integrals can give rise to
new classes of functions. Among these new classes, the most common are the so-
called multiple polylogarithms (MPLs). Since this is indeed the class of functions
that we needed in our computation to express results for our master integrals,we
will give some more details about it in the following. MPLs are a multi-variable
extension of Eq.(4.74) defined recursively via the iterated integral

G(a1, ..., an; z) =

∫ z

0

dt

t− a1
G(a2, ..., an; t) (4.76)

with G(z) = 1 and ai, z ∈ C. The number n of the indices ai is called weight of
the MPL, and they can be other constants or variables. In the special case where
all the ai’s are zero, we define

G(

n
︷ ︸︸ ︷

0, ..., 0; z) =
1

n!
lnn z. (4.77)
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Iterated integrals form a shuffle algebra, which allows one to express the product
of two MPLs of weight n1 and n2 as a linear combination with integer coefficients
of MPLs of weight n1 + n2

G(a1, ..., an1 ; z)G(an1+1, ..., an1+n2 ; z) =
∑

σ∈Σ(n1,n2)

G(aσ(1), ..., aσ(n1+n2); z),

(4.78)

where Σ(n1, n2) is the set of all shuffles of n1 + n2 elements, namely the set of
all permutations of n1 + n2 elements with σ(1) < ...σ(n1) and σ(n1 + 1) < ... <
σ(n1 + n2). In other words, we consider all possible ways of shuffling the indices
a1, .., an1 of the first element of the product with the indices an1+1, ..., an1+n2 of
the second element in such a way that each of these shuffles conserves the initial
ordering of the indices of both factors in the product.
It is possible to find closed expressions for special classes of MPLs in terms of
classical polylogarithms. For instance, for a 6= 0, we have

G(~0n; z) =
1

n!
lnn z, G(~an; z) =

1

n!
lnn
(

1− z

a

)

,

G(~0n−1, a; z) = −Lin
(z

a

)

, G(~0n,~ap; z) = (−1)pSn,p(
z

a
), (4.79)

where we used the usual vector notation ~an =

n
︷ ︸︸ ︷

(a, ..., a). Given the definition of
MPL Eq.(4.76), which we can rewrite conveniently for our purposes as

G(a1,~a; z) =

∫ z

0

dt1
t1 − a1

G(~a; t1), (4.80)

the derivative with respect to z is trivial

∂

∂z
G(a1,~a; z) =

1

z − a1
G(~a; z). (4.81)

For the derivative with respect to the first argument, we get

∂

∂a1
G(a1, a2,~a; z) =

1

a1 − a2
G(a1,~a; z)−

z − a2
(z − a1)(a1 − a2)

G(a2,~a; z), (4.82)

and for the derivative with respect to the second argument

∂

∂a2
G(a1, a2, a3,~a; z) =

1

a1 − a2
G(a2, a3,~a; z) +

1

a2 − a3
G(a1, a2,~a; z)+

− a1 − a3
(a1 − a2)(a2 − a3)

G(a1, a3,~a; z). (4.83)
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These identities can be checked by taking double derivatives and verifying that
the result does not depend on the order of derivation. In this process, one should
use different partial fractioning identities to get to the desired result. Also, these
identities hold when the arguments in the weight vector ~a are all different. In case
some of them are equal, then some of the denominators in the equations above
vanish.
Let’s consider now the case of the derivative with respect to the k-th argument,
for k ≥ 2:

∂

∂ak
G(~a; z) =

∫ z

0

dt1
t1 − a1

...

∫ tk−2

0

dtk−1

tk−1 − ak−1

∂

∂ak
G(ak, ak+1, ...; tk−1)

=

∫ z

0

dt1
t1 − a1

...

∫ tk−2

0

dtk−1

tk−1 − ak−1
(

1

ak − ak+1
G(ak, ak+2, ...; tk−1)

− tk−1 − ak+1

(tk−1 − ak)(ak − ak+1)
G(ak+1, ak+2, ...; tk−1)

)

. (4.84)

By replacing

− tk−1 − ak+1

(tk−1 − ak)(ak − ak + 1)(tk−1 − ak−1)
=

=
1

ak−1 − ak

1

tk−1 − ak
− ak−1 − ak+1

(ak−1 − ak)(ak − ak+1)

1

tk−1 − ak−1
(4.85)

and integrating the resulting expression we get

∂

∂ak
G(~a; z) =

1

ak−1 − ak
G(..., âk−1, ...; z) +

1

ak − ak+1
G(..., âk+1, ...; z)

− ak−1 − ak+1

(ak−1 − ak)(ak − ak+1)
G(..., âk, ...; z), (4.86)

where the hat marks the missing arguments. Again, if two consecutive aj and aj+1

are equal, the arguments above should be modified.
There is a last special case for taking derivatives with respect to the last argument

∂

∂an
G(~a, an−1, an; z) =

1

an−1an
G(~a, an; z)−

an−1

(an−1 − an)an
G(~a, an−1; z). (4.87)

Using the expressions above for the derivatives of MPLs, we get for the total
differential

dG(a1, a2,~a, an−1, an; z) =G(a2,~a, an−1, an; z)d ln

(
z − a1
a1 − a2

)
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+G(a1,~a, an−1, an; z)d ln

(
a1 − a2
a2 − a3

)

+ ...

+G(a1, a2,~a, an−1; z)d ln

(
an−1 − an

an

)

. (4.88)

Eq.(4.88) is the basic result on which we relied in the majority of cases to compute
our master integrals. It has been implemented into Mathematica routines and
widely used to integrate the differential equations for the masters.
In particular, we found out that the category of functions that we need to describe
our results is a subset of those defined in Eq.(4.76). Indeed, in physics MPLs
usually show up with the entries of the index vector chosen from a limited set,
often called the alphabet of the problem under consideration. In the simplest case
that ai ∈ {−1, 0, 1}, these functions are called Harmonic Polylogarithms (HPLs)
[105]. In multi-scale integrals the ai often depend on another variable, in which
case one speaks of two-dimensional Harmonic Polylogarithms (2dHPLs), which
were first introduced in [66]. The latter are actually the restricted category of
MPLs in terms of which our results are expressed.

4.3.3 Boundary Conditions: Expansion by regions of Feyn-

man Integrals

Eq.(4.88) constitutes the milestone for the integration of Differential Equations
(Eq.(4.71)) written for the masters. Then, the only piece we are missing to com-
plete the picture of the computation of MIs via DE are the boundary conditions.
Computing a boundary condition (b.c.) for a Feynman integral means being able
to obtain the value of the integral in a given kinematic limit, obviously before
knowing the general functional form of the integral itself (which is the result we
want to achieve at the end of all this procedure!). This kinematic limit can be
freely chosen on the basis of computational simplicity and it corresponds to a par-
ticular value of a given ratio of external invariants (dimensional scales) on which
the integral depends. In the case of an integral depending on just two dimensional
scales, this limit corresponds to a precise kinematic point, so that the resulting
b.c. for such an integral will simply be a number. For multi-dimensional integrals,
one has at disposal a certain number of ratios that can be built out of the external
invariants. When computing boundary conditions, one has the freedom to choose
the number of ratios which are going to be constrained to specific values. If the
b.c. is computed by fixing only a subset of these ratios, the integral to be evaluated
will have a smaller number of scales and the resulting b.c. will be a function of
those ratios that have been left free. Otherwise one can also choose to compute
a multiple limit and fixing all the possible ratios on which the multi-dimensional
integral depends, and in this case the resulting b.c. will be again a pure number.

Given these premises, it is clear that the computation of boundary conditions



108 CHAPTER 4. MASTER INTEGRALS TECHNIQUES

reduces to the mathematical problem of compute the value of an integral in a
particular limit of the parameters on which it depends, without carrying out the
analytic integration in the case of general value of these parameters. We present
the problems one encounters when trying to achieve this goal by means of an ex-
ample.
Let us consider the massless triangle in 4 dimensions

F (q2, p2, q · p) =
∫

d4k

k2(q − k)2(p+ k)2
. (4.89)

The integration is over the four components of the loop momenta k = (k0,k) and
the integral is a scalar quantity, so the result of integration will be a function of
the two external momenta p, q through the possible scalar invariants that one can
build out of them (q2, p2, q · p). Let us imagine we are interested in obtaining
the value of this integral in a particular kinematic configuration, identified by
the condition q2 ≫ p2. Then we address the question: is it possible to compute
limq2≫p2 F (q2, p2, q · p) without computing F for general values of its arguments?
For simplicity we switch to euclidean metric, so that k, p, q ∈ R4 and the square
modulus of the generic vector l is given by l2 = l20 + l2. In euclidean metric we
have q2, p2 > 0 and the condition q2 ≫ p2 is equivalent to |q| ≫ |p|, which in turn
is realized only if there exists a component qi such that qi ≫ pj, ∀j. Given this,
we can classify ratios of invariants as follows

q2

p2
≫ p · q

p2
≫ 1. (4.90)

At this point the simplest idea one can come up with to solve this problem is
that of exchanging the order of operations by applying first the limit and then
the integration operators. This amounts to expanding the integrand around the
chosen kinematic limit, namely in our case to send naively p to zero in the integrand
denominator, and then trying to integrate the result of the expansion.
Before showing explicitly what happens when we exchange these operations with
our example, let us point out the two requirements that we would like our result
to have.

• First, we would like the integrals we get on the r.h.s. after the expansion
to be Feynman integrals and not other types of functions. This appears
rather natural because Feynman integrals are the fundamental objects we
are dealing with and it is better to have them in the expansion rather than,
say, some artificially introduced parametric integrals.

• The second ‘natural’ requirement is that we would like our final result to
be an expansion in powers and logs of the small parameter around which
we are expanding (namely the small ratio(s) of invariants which identify the
kinematic limit in which we want to compute our integral).
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Going back to our example, when we send p to zero at the integrand level in our
toy-integral F (p2, q2, q · p) we obtain

∫
d4k

(k2)2(q − k)2
. (4.91)

This integral is clearly ill-defined, since it is logarithmically divergent when k gets
small. Thus we expect the result to behave like log(p2). Through the introduction
for example of a dimensional scale Λ, which allows us to compute divergent inte-
grals obtained from expanding, we can explicitly get the above-mentioned log-type
behaviour. Indeed, once we know that this divergent behaviour comes from the
small k integration region, what Λ does is cutting the integration domain into two
parts, thus separating the small from the large k region

fsmall ≃ f
(0)
small = F (p2, q2, q · p)||p|,|k|≪|q| =

1

q2

∫

|k|≤Λ

d4k

(k2)(p+ k)2
. (4.92)

We call the contribution from the small k region fsmall and we denote with f
(0)
small

the first term of the expansion around the limit k ≪ q. We would like to stress that
in such limit k can be as small as p so that we have to keep both the dependence
on k and p in the integrand. This integral can be carried out for example by
introducing spherical coordinates, and the result is

fsmall =
4π

q2

∫ π

0

sin2 θdθ

∫ Λ

0

rdr

r2 + 2|p|r cos θ + p2
≃ −π

2

q2
ln

(
p2

Λ2

)

. (4.93)

Eq.(4.93) exhibits the log(p2) behaviour we expected, but we observe that the
price we pay for this is that of introducing a spurious dependence of the integral
on a non-physical parameter Λ which acts at all effects as a regulator.
It comes natural to wonder if Eq.(4.93) is the only contribution to F in the limit
|q| ≫ |p|... obviously nothing prevents |p| from being much smaller than |q| also
when k is not close to zero! What happens in this case? Again we introduce an
intermediate scale Λ such that |p| ≪ Λ ≪ |q| to divide the integration domain in
two regions, and pick up the large k region this time

flarge ≃ f
(0)
large = F (p2, q2, q · p)||p|≪|k|,|q| =

∫

|k|>Λ

d4k

(k2)2(q − k)2
. (4.94)

We stress that this time we can safely send p to 0 in the integrand since k is large
and thus regulates the divergence 1/(p+ k)2. On the other hand we cannot touch
the terms 1/(q − k)2 because now |k| and |q| may happen to be comparable. The
result of the integration is

flarge = −2π2 log(Λ
2/q2)

q2
. (4.95)
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We observe that we get a result which is constant in p2 and exhibits the leading
power behaviour in q2, namely 1/q2.
Now we recall that the original integral F in the limit |p| ≪ |q| is given by the sum
of the two pieces we just computed respectively in the small and large k regions

lim
|p|≪|q|

F (q2, p2, q · p) = fsmall + flarge ≃ f
(0)
small + f

(0)
large = π2 ln(p

2/q2)− 2

q2
.

(4.96)

We observe that, having taken into account all possible integration regions that
contribute in the limit |q| ≫ |p|, when we sum over these contributions the depen-
dence on the regulator cancels between the different pieces and we are left with a
result which depends only on physical quantities.
We are pretty happy with this result, but this was quite a simple case where it was
still possible to introduce a dimensional scale Λ and carry out integrations of the
different pieces with spherical coordinates. In real life, this will almost never be
the case because of the complexity of integrals. Thus we address now the issue if it
is possible or not to arrive to the same result without splitting the integration do-
main into regions through an explicit dimensional scale Λ. An even worse problem
is represented by the fact that if we are performing computations in the framework
of a gauge theory, the introduction of an explicit ‘cut-off’ breaks gauge-invariance,
which we want to avoid, if possible.
A solution to these issues is provided by the use of a different type of regulator,
i.e. DR. Let us pick up the same 1-loop triangle but this time we work in DR,
so we promote the dimension in which the integration variable k live from 4 to
d = 4− 2ǫ.
We can rewrite F as the sum of flarge and fsmall, then extend the integration do-
main to the entire space in both these contributions and subtracting at the same
time the overlap as follows

lim
|p|≪|q|

F (q2, p2, q · p) = 1

q2

∫

|k|≤Λ

d4k

(k2)(p+ k)2
+

∫

|k|>Λ

d4k

(k2)2(q − k)2

=
1

q2

∫
d4k

(k2)(p+ k)2
+

∫
d4k

(k2)2(q − k)2

−
[

1

q2

∫

|k|≥Λ

d4k

(k2)(p+ k)2
+

∫

|k|≤Λ

d4k

(k2)2(q − k)2

]

.

(4.97)

We can now manipulate the counter-term we are subtracting by expanding at first
order the integrands according to the region of integration

−
[

1

q2

∫

|k|≥Λ

d4k

(k2)(p+ k)2
+

∫

|k|≤Λ

d4k

(k2)2(q − k)2

]

→
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→ −
[

1

q2

∫

|k|≥Λ

d4k

(k2)2
+

∫

|k|≤Λ

d4k

(k2)2(q)2

]

=

= − 1

q2

[∫
d4k

(k2)2

]

= 0. (4.98)

The counter-term amounts to a scaleless integral and thus, since we work in DR,
to zero.
So we are left with the following expression for our integral

lim
|p|≪|q|

F (q2, p2, q · p) ≃ 1

q2

∫
d4k

(k2)(p+ k)2
+

∫
d4k

(k2)2(q − k)2
. (4.99)

The two integrals in Eq.(4.99) can be easily solved in DR, giving

lim
|p|≪|q|

F (q2, p2, q · p) ≃ πd/2

(
Γ(1− ǫ)2Γ(ǫ)

Γ(2− 2ǫ)

1

q2(p2)ǫ
− Γ(1− ǫ)2Γ(ǫ)

Γ(1− 2ǫ)

1

(q2)1+ǫ

)

ǫ→0→ π2 ln(p
2/q2)− 2

q2
. (4.100)

We report result Eq.(4.100) for the sake of completeness, but the interesting notion
we learn from this example is contained one step before, namely in Eq.(4.99),
which tells us that the initial problem of computing the integral F in a particular
kinematic limit without computing it for general values of its parameters is solved!
Eq.(4.99) has the following properties:

• the initial integral F (q2, p2, q · p), depending on 3 invariants, is replaced by
the sum of two integrals depending each on just one scale (p2 or q2),

• each of these two integrals is also homogeneous with respect to the expansion
parameter p2,

• they are (simpler) Feynman integrals and not other classes of functions,

• DR is essential, since it allows us to write the r.h.s. integrals contributing in
different regions of the integration domain as integrals over the entire domain
avoiding at the same time overlapping between these regions,

• the operation of limit and integration in general do not commute and when
exchanging their order, namely when taking the operation of limit under
integration sign, we have to pay attention to take into account all the possible
regions of the integration domain that can contribute non-zero terms in the
kinematic limit under study,

• the final result Eq.(4.100) is an expansion in powers and logs of the ratio
p2/q2 which constitutes the small parameter in which we expand the integral.
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If we look back at the requirements we listed above, we clearly see that our result
meet them!

From this very basic example, we can thus extrapolate the general guidelines
to compute the asymptotic value of a Feynman integral in a given limit of its
parameters (internal masses and external invariants).

1. Divide the space of the loop momenta into various regions according to the
kinematic limit into consideration and expand the integrand in a Taylor series
with respect to parameters that are considered small there (NB: both loop
and external momenta must be taken into consideration when looking for
regions and expanding the integrand according to the region!).

2. In every region integrate the expanded integrand over the whole integration
domain using DR.

3. Sum the resulting contributions from all regions, setting scaleless integrals to
zero.

This procedures goes under the name of Expansion by Regions of Feynman inte-
grals.

Despite the lack of a rigorous mathematical proof stating the correctness of Ex-
pansion by Regions (at least for those limits that are typical of Minkowsky space,
namely when momenta are located on some singular surface, either on a mass shell
or at threshold), there are some ‘experimental’ general features that still have not
been observed to break down in any particular situation. Experience tells us that
in all limits the resulting expansion of an integral is always a series in powers and
logs of the small parameter of the expansion. If we have an integral that, for sim-
plicity, depends on just two dimensional scales, for instance an internal mass m2

and an external off-shellness Q2 > 0, its expansion around x = m2/Q2 ≪ 1 will
have the general form

F (Q2,m2) ∼ (Q2)ω
∞∑

n=n0

2h∑

j=0

Cnjx
n lnj x, (4.101)

where we pulled out the overall dimensional factor (Q2)ω and ω is the degree of
divergence of the graph associated to F .
The sum over n runs from some minimal value. The index n can generally take,
in some limits, not only integer but also half-integer values. The second index j is
bounded, for any n, by twice the number of loops.
According to a standard definition of an asymptotic expansion, when we truncate
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the series at an arbitrary order N , the remainder is defined as

RN (Q2,m2) = F (Q2,m2)− (Q2)ω
N∑

n=N0

2h∑

j=0

Cnjx
n lnj x (4.102)

and it is O(xN ), namely for Q such that A < Q < B, there exist C > 0 and ǫ > 0
such that

x−NRN (Q2, Q2x)| ≤ C (4.103)

for 0 < x < ǫ. When we compute multi-dimensional integrals in multiple kine-
matic limits these formulae get slightly more complicated, but the essence remains
the same. Each small parameter is multiplied by a dimensionless ‘scaling’ variable
x and we deal with the resulting function of x in the limit x→ 0.
Another ‘experimental’ fact is the existence of a non-zero radius of convergence
of the asymptotic expansion of any Feynman integral in any given limit, which
becomes a fundamental property in the moment we want to substitute the value
of an integral in a kinematic point with the series obtained through Expansion by
Region truncated at a certain order.

At this point we would like to add a couple of remarks before ending our dis-
cussion on Expansion by Region.
First, we would like to stress the importance of Dimensional Regularization in this
kind of procedure. Indeed, it allows to provide simple prescriptions for the inte-
grals we get on the r.h.s. after the expansion, in a sense that we can keep them as
dimensionally regularized integrals over the whole integration domain and these
are much easier quantities to deal with and to compute than integrals regular-
ized with a dimensional cut-off. However a remark is in order at this point. The
initial integral that we need to expand can be divergent itself. In this case, we
need DR to regularize the ‘original divergences’ intrinsic to the integral itself. On
top of that, as we saw, when we expand we can get additional divergences from
the regions contributing to the expansion. It can happen then that the singular
regions have divergences which are not regulated by the DR parameter, and an
additional analytic regulator needs to be introduced in order to take care of these
extra divergences.
Finally we want to emphasize that, even once this procedure of Expansion by Re-
gions has been understood and established, the problem of computing Feynman
integrals in a precise limit is not trivial. Indeed, when looking at the three main
steps listed above to perform the expansion, one will immediately understand that
the main issue has been in some sense forced into the first point. Despite the
computational complexity that may still be required to compute r.h.s. integrals
arising from the expansion, the most difficult part remains that of finding all pos-
sible regions contributing to the value of the integral in a particular kinematic
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configuration. In the case of multi-loop integrals identification of relevant regions
becomes highly non trivial due to the interplay between parameters (i.e. external
invariants) and integrations variables (loop momenta or their components). We
will not go further into the discussion of these open problems since this goes be-
yond the purpose of this thesis, but we refer the interested reader to references
[116] and [100], the former being a general review of Expansion by Region and the
latter a recent approach to automation of this procedure.
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4.4 Master Integrals Computation - Part 2: Canon-

ical Basis

We want to conclude this chapter about Master Integrals techniques with a section
entirely dedicated to some recently developed ideas which have repeatedly proven
successful in improving the method of Differential Equations for Feynman integrals
and which have been extensively used in our computation.

In the previous sections we saw that, given a certain topology, we have the freedom
to choose the preferred set of Master Integrals, since each set has equivalently the
role of a basis for the space of Feynman integrals belonging to that topology. We
can exploit this feature of MIs, which is part of the definition of master integral
itself, to simplify the system of Differential Equations which is meant to give us
the solution for a given set of masters. Indeed, experience shows that DE system
can look very different according to the particular choice of MIs basis we make,
meaning that a proper choice of basis can considerably simplify the system of dif-
ferential equations. A clever change of basis is one that is able to diagonalize or
at least triangularize the DE system order by order in the DR parameter ǫ, thus
guaranteeing the integrability of the system.
The ideas we are going to present in the rest of the section try to approach in
a systematic way this issue of finding an optimal basis of master integrals. The
material presented is mainly based on the recent papers of J. Henn [75], [76], to
which we refer the reader who might want to find out more about this topic.

4.4.1 Feynman integrals singularities and Canonical form of

Differential Equations

In order to understand what an optimal choice is for the basis of masters, one
should start asking himself what the optimal choice is for the differential equa-
tions, which makes their integration as easy as possible. To give an answer to
this question, one first has to analyse the singularity structure of Feynman inte-
grals. Actually the kind of singular behaviour that Feynman integrals can exhibit
is restricted by the fact that they admit parametric representations such as α and
Feynman representations (Eq.4.22, 4.23). Divergent regions can be found by in-
specting the divergences in the space of α or Feynman parameters and from such
an analysis it follows that in divergent regions an integral has a power-like be-
haviour F ∼ (x− xk)

p, where xk is the singular point and p is a certain exponent.
This means that Feynman integrals 7 can have only regular singularities 8. Fur-

7We remind the reader that in the following we will always consider Feynman integrals as
complex functions of one or more complex variables, so that the common language will be that
of complex analysis.

8A regular singularity of a function f is an isolated singularity whose growth is bounded by
an algebraic function.
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thermore parametric representation Eq.4.22, 4.23 exhibit only a linear dependence
from the DR parameter ǫ in the exponents. We can summarize in the following
two properties 9

• Feynman integrals only have regular singularities in the kinematic variables

• the scaling exponents near a singularity are linear in ǫ.

These properties are essential to understand not only which is the optimal form
of the differential equations for Feynman integrals, namely what we will define in
the following as ‘canonical form’, but also how to reach such form.

We define canonical form of the differential equation for a given function f that
particular form which makes the singularity structure of f manifest. If we special-
ize in particular to our subject of interest, i.e. Feynman integrals, given the two
above-mentioned properties of Feynman integrals this means that the differential
equations can contain only regular singularities 10 in the kinematic variables and
that the dependence on ǫ of the coefficients can be only of linear type.

Before discussing in detail how the canonical form for a set of Differential Equa-
tions for Feynman integrals can be reached, let us illustrate with a simple example

To be more precise, suppose U is an open subset of C, the point a is an element of U and f is
a complex differentiable function defined on some neighbourhood around a, excluding a, U\{a}.
Complex functions can exhibit four classes of singularities.

• Isolated singularities: f is not defined at a, although it does have values defined on U\{a}.

– a is a removable singularity if there exists a holomorphic function g defined on the
whole subset U such that f(z) = g(z) for all z in U\{a}. The function g is then a
continuous replacement for f .

– a is a pole or equivalently a regular (or non-essential) singularity if there exists a
holomorphic function g defined on U with g(a) 6= 0 and n ∈ N such that f(z) =
g(z)/(z − a)n for all z in U\{a}.

– a is an essential singularity of f if it is neither a removable singularity nor a pole or
alternatively, if and only if the Laurent series of f in a has infinitely many powers
of negative degree.

• Branch cuts: is a line or a curve excluded from the domain to introduce a technical
separation between discontinuous values of the function. The function f will then have
distinctly different values on each side of the branch cut.

9We stress that a steady mathematical proof of such properties is still lacking. But common
knowledge continues confirming their validity.

10In the theory of differential equations in the complex plane C, the points of C are classified
into ordinary points, at which the equation’s coefficient are analytic functions, and singular

points, at which some coefficient has a singularity. Then, among singular points, a distinction
is made between a regular singular points, where the growth of solutions is bounded by an
algebraic function, and an irregular singular points, where the full solution set requires functions
with higher growth rates.
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how it works in practice.
Let us consider the following 2-loop (dimensionless) cut integrals describing the
phase space of two massless and one massive particle in the final state.

m1 =

∫

ddk1d
dk2

s3−d

k21k
2
2 [(p+ q − k1 − k2)2 −m2]

(4.104)

m2 =

∫

ddk1d
dk2

s2−d(k1 + k2)
2

k21k
2
2 [(p+ q − k1 − k2)2 −m2]

, (4.105)

with p, q being the initial state momenta, s = (p+ q)2, k1, k2 being the outgoing
massless particles momenta and km = p+ q− k1 − k2 being the momentum of the
outgoing massive particle with mass m2 = k2m.
The dimensional version of these integrals depend on two dimensional scales: the
external invariant s and the internal mass m2. The evolution with respect to s is
trivial since it just contains the information about the dimension of the integral
in powers of energy. The only non trivial evolution is thus with respect to m2.
When we consider the integrals in their dimensionless version Eq.(4.105), they will
depend on the only ratio of invariants we can build out of s and m2, namely

z =
m2

s
(4.106)

and the differential operator ∂z will read

∂z = s∂m2 . (4.107)

If we let this operator acting on the integrals Eq.(4.105), we get

{

∂zm1 = m2

(
3(−1+ǫ)
2(−1+z) −

3(−1+ǫ)
2z

)

+m1

(
3−4ǫ
−1+z + −1+ǫ

2z

)

∂zm2 = m1

(
1−ǫ
2 + −1+ǫ

2z

)
+m2

3(1−ǫ)
2z

which we can rewrite in matrix notation as

∂z ~m =

(
3−4ǫ
−1+z + −1+ǫ

2z
3(−1+ǫ)
2(−1+z) −

3(−1+ǫ)
2z

1−ǫ
2 + −1+ǫ

2z
3(1−ǫ)

2z

)

· ~m (4.108)

with ~m = (m1,m2). The system is coupled and it does not make the singularity
structure of the integrals manifest. Indeed it is true that the DE has regular
singular points at z = 0, z = 1 as expected, but their dependence on ǫ does not
tell us anything about the behaviour of functions m1,m2 in these singular limits.
But we can now choose the following different basis to describe the same topology

M1 =

(∫

ddk1d
dk2

s5−d

(k21)
2(k22)

2[(p+ q − k1 − k2)2 −m2]
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+2

∫

ddk1d
dk2

s5−d

(k21)
2k22 [(p+ q − k1 − k2)2 −m2]2

)

(1− z)

M2 =

∫

ddk1d
dk2

s5−d

(k21)
2k22 [(p+ q − k1 − k2)2 −m2]2

(4.109)

which is connected to the original basis by the transformation (in matrix form)

~M =
(

a
z + b

−1+z + c
(−1+z)2 + d

(−1+z)3

)

· ~m (4.110)

with ~M = (M1,M2) and

a =

(
1− 3ǫ+ 2ǫ2 −3(1− 3ǫ+ 2ǫ2)

1
2 (1− 3ǫ+ 2ǫ2) − 3

2 (1− 3ǫ+ 2ǫ2)

)

b =

(
−2 + 6ǫ− 4ǫ2 −3(1− 3ǫ+ 2ǫ2)
− 1

2 + 3ǫ
2 − ǫ2 − 3

2 (1− 3ǫ+ 2ǫ2)

)

c =

(
−88 + 12

ǫ + 192ǫ− 128ǫ2 −3(1− 3ǫ+ 2ǫ2)
−19 + 3

ǫ + 38ǫ− 24ǫ2 − 3
2 (1− 3ǫ+ 2ǫ2)

)

d =

(
−176 + 24

ǫ + 384ǫ− 256ǫ2 −3(1− 3ǫ+ 2ǫ2)
−44 + 6

ǫ + 96ǫ− 64ǫ2 − 3
2 (1− 3ǫ+ 2ǫ2)

)

. (4.111)

The differential equations for the new basis in matrix notation read

∂z ~M =

( 4ǫ
1−z + 2ǫ

z − 6ǫ
z

ǫ
1−z + ǫ

z − 3ǫ
z

)

· ~M. (4.112)

Despite the complexity of Eq.(4.110) and Eq.(4.111), this change of basis leads to
the new system of differential equations Eq.(4.112), which is not only at a first
glance simpler than Eq.(4.108), but also it has the fundamental property of de-
pending linearly on ǫ and having no constant term in ǫ. This property, together
with the fact that equations only have regular singular points, guarantees that the
singularity structure of the integrals is made manifest at the level of the equations
themselves.
Such form of the differential equations, which is indeed what we define as ‘canon-
ical’, is desirable not only for its beauty and elegance, but specially for two main
features which makes integration and matching to boundary conditions as simple
as possible.

• Once the solution is written as an expansion in ǫ

~M =
∑

k≥n

ǫk ~M (k)(z) (4.113)

and plugged into the system, the system decouples order by order in ǫ and
at each order in ǫ the r.h.s. of the equations is known and can thus be
integrated.
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• The behaviour of the solutions in singular limits can be read directly from the
differential equations. Let us consider for instance the limit z → 0. Keeping
only the leading term on the r.h.s.

∂z ~M = ǫ
Z0

z
· ~M. (4.114)

we find the solution

lim
z→0

~M(z, ǫ) = zǫZ0 ~M0(ǫ) (4.115)

where ~M0(ǫ) is the vector of boundary conditions (which are in this case
constants) and Z0 is the matrix of coefficients which are singular in the
z → 0 limit, namely those that are proportional to 1/z

Z0 =

(
2 −6
1 −3

)

. (4.116)

The matrix exponential evaluates to

zǫZ0 =

(
3− 2z−ǫ −6 + 6z−ǫ

1− z−ǫ −2 + 3z−ǫ

)

(4.117)

so that solutions are different linear combinations of different terms zα where
the exponents α are of the type α = mǫ, namely linear in ǫ with m being
an (semi-)integer number 11. In particular, the exponents α happen to be
the eigenvalues of the matrices of coefficients surviving in the singular limit
considered. For instance, in this case the eigenvalues of Z0 are {0,−1} and
indeed all terms appearing in Eq. (4.117) are linear combinations of the scal-
ings {z0, z−ǫ}! This is exactly the type of behaviour for the solution that we
expect given the analysis of Feynman integrals divergences that we carried
out at the beginning of the section.

We would like to emphasize that the singularity structure of the equations does not
always reflect so neatly the singularity structure of the solution as it happened in
the example above. Indeed the ‘matrix’ nature of the equations allows for ‘spurious’
singularities to occur. Let’s take the following purely mathematical example

∂x ~f(x, ǫ) =

(
ǫ
x 0

− 1
x2

ǫ
1+x

)

· ~f(x, ǫ) (4.118)

The singularity − 1
x2 is not a regular one. Given the simple differential equation

∂xf(x) =
a

x2
f(x) (4.119)

11Constant terms in Eq.(4.117) are to be read as zmǫ with m = 0.
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its solution is of the type f(x) = exp−a/x f0. When x approaches 0 this function
exhibit a singular behaviour which is not bounded by any algebraic function, so
that this singularity in x = 0 is classified as an essential one.
Now, we know that if the vector of unknowns f is a vector of Feynman integrals,
essential singularities cannot appear. This means that a term like −1/x2 is a
spurious singularity which can be removed with an appropriate manipulation. And
indeed we can get rid of it by performing a ‘change of basis’, namely by defining

~f = T~g, T =

(
1 0
1

(1−ǫ)x
1

1−ǫ

)

(4.120)

which leads to

∂x~g = ǫ

[
1

x

(
1 0
1 0

)

+
1

1 + x

(
0 0
−1 1

)]

~g. (4.121)

We will discuss in the following how algebraic simplifications can be performed on a
basis of integrals in order to reach a canonical form for their differential equations.

4.4.2 Looking for canonical form of DE: an algebraic ap-

proach

In order to describe how the expected singularity structure of the integrals can be
made manifest, or in other words how the canonical form of the equations can be
achieved, we will focus on the case where the integrals depend on just one kinematic
variable x, for simplicity. In the case of multi-dimensional integrals depending on
more than one dimensionless scales, all the presented algebraic manipulations will
hold, but in this case one should apply them to each partial differential equation
(PDE) in order to simplify the entire set of PDE describing the evolution of the
integral.
We start from equations for some chosen basis of master integrals ~f obtained at
the end of an IBP reduction procedure

∂x ~f(x, ǫ) = A(x, ǫ)~f (x, ǫ), (4.122)

where A is an N ×N matrix where information about the kinematics is encoded.
From the structure of the IBP relations it follows that A depends on x and ǫ in a
rational way.

Dependence on x
The form of the differential equations we are seeking is such that the singularities
of the DE correspond to those of the original Feynman integrals. The latter, we
recall, are regular singularities, namely of the type ∼ (x−xk)

α, for some values of
α and being xk the singular points. This means that if we inspect the behaviour
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of the DE Eq.(4.122) near a singular point, say x = 0 without loss of generality,
we can expand A as

A(x, ǫ) =
1

xp

∑

k≥0

xkAk(ǫ), (4.123)

for some value of p with p ≥ 1. Because the system of DE is regular singular in
x = 0 there exists some basis change

~f = T~g, ∂x~g(x, ǫ) = B(x, ǫ)~g(x, ǫ) (4.124)

described by an invertible matrix T ,

B = T−1AT − T−1∂xT (4.125)

for which the matrix B describing the DE system in the new basis has p ≤ 1

B(x, ǫ) =
1

x
B0(ǫ) +O(x0). (4.126)

Consequently, near each singular point the solution has the desired behaviour
xB0(ǫ). Without entering the details, we just point the interested reader to the
mathematical literature [12] , [14] where the problem of the degree of singularity
of a DE system was studied and it was shown that under certain conditions the
order of the singular term can be reduced by means of a transformation which is
rational in x. It follows that removing spurious singularities at one singular point
does not influence the behaviour at other points (except at infinity), so that the
following form for the DE system can be algorithmically reached (for simplicity we
maintain the name f for the basis, even though a basis change has been performed)

∂x ~f(x, ǫ) =

[
∑

k

ak(ǫ)

x− xk
+ p(x, ǫ)

]

~f(x, ǫ) (4.127)

where p(x, ǫ) is polynomial in x and contains, if non zero, a spurious singular-
ity at infinity. A possible way to remove an eventual such singularity consists in
introducing another singular point which has the property to balance the trans-
formation at infinity.
In the end the form

∂x ~f(x, ǫ) =

[
∑

k

ak(ǫ)

x− xk

]

~f(x, ǫ) (4.128)

is reached, where only regular singularities are manifest.

Dependence on ǫ
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Given the DE system in the form Eq.(4.128), the solution around a singular point,
say again x = 0 without loss of generality, takes the form

~f = P (x, ǫ)xa0(ǫ) ~f0(ǫ), (4.129)

where ~f0(ǫ) is a boundary vector, independent of x, at x→ 0, and

P (x, ǫ) = I+
∑

m≥1

xmPm(ǫ) (4.130)

is a matrix polynomial whose expansion can be determined recursively from the
information in Eq.(4.128). This shows clearly how Eq.(4.128) already contains all
the information about the scaling of the integrals in the singular points. To be
more specific, the solution around the singular point xk is a linear combination of
terms whose scaling powers are the eigenvalues of the matrix ak(ǫ).
From this consideration arises spontaneously the question if the dependence on
ǫ can be further simplified. By construction (from IBPs) the dependence on ǫ is
rational. Poles in ǫ are spurious and can be removed with a procedure which is
similar to the removal of spurious divergences in x [127], [13].
For a polynomial dependence on ǫ, the main cases can be identified. If the r.h.s.
of the DE is O(ǫ), then the solution at each order in ǫ can be obtained in terms of
iterated integrals. If the r.h.s. starts at O(ǫ0), the solution may be more compli-
cated. So the issue boils down to the question if we can construct a transformation
that removes the ǫ0 part of the matrix on the r.h.s. of Eq.(4.128) and what the
nature of such transformation is. The answer to this question depends on the
nature of the DE. One of three following situations can happen.

1. Removing the ǫ0 term amounts to choosing a rational normalization factor,
so that the needed transformation matrix T is rational.
Let us give a simple example. Given the 2 → 2 process p + q → k + km,
we consider the dimension-less cut integral representing the phase space for
the emission of a massless particle with momentum k and a massive particle
with momentum km = p+ q − k

f(z) =

∫
s2−d/2ddk

k2(p+ q − k)2 −m2
(4.131)

with s = (p+ q)2 and z = m2/s. The differential equation for such integral
reads

∂zf(z) = f(z)

[
1− 2ǫ

−1 + z
+

1− ǫ

z

]

. (4.132)

We can get rid of terms which are homogeneous in ǫ through the simple
rational transformation T = (1− 2ǫ)(−1+ ǫ)/((1− z)z), so that if we define

g(z) =
(1− 2ǫ)(−1 + ǫ)

(1 − z)z
f(z) (4.133)
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we get for g

∂zg(z) = g(z)

[

− 2ǫ

−1 + z
− ǫ

z

]

(4.134)

which is exactly the desired canonical form of the equation.

2. Removing the ǫ0 term can be done using algebraic functions 12 : the trans-
formation matrix T contains not only rational functions but also algebraic
ones, but sometimes a change of variables restores a purely rational depen-
dence in the DE system.
Let us give the following simple example. We start from the system

∂x ~f(x, ǫ) =

(
0 0
ǫ

4−x
2+ǫx

(4−x)x

)

~f(x, ǫ) (4.135)

and apply the transformation ~f → T ~f with T = diag(1, 1/
√

1− 4/x). We
obtain

∂x ~f(x, ǫ) = ǫ

(

0 0
− 1√

x(x−4)

1
x−4

)

~f(x, ǫ) (4.136)

which makes the r.h.s. O(ǫ). Furthermore in this case a rational form of the
system can be recovered by applying the variable change x = −(1− y)2/y.

3. Removing the ǫ0 part is possible through a transformation but this leads
to solutions containing elliptic or even more complicated functions. As it is
pointed out in [45], a necessary but not sufficient condition to get elliptic
functions is that the DE system remains coupled even at ǫ = 0. This comes
from the fact that elliptic functions satisfy higher order differential equations
and this is equivalent to a system of coupled first order equations.
Concerning Feynman integrals, the simplest case where this can occur is the
two-loop sunrise with equal masses (see [76] for references), which indeed
requires elliptic functions to be expressed.

4.4.3 Properties of canonical form and Iterated Integrals

We suppose now that, given a certain system of differential equations, we have man-
aged to simplify both the x and the ǫ dependence, thus arriving at the canonical

12An algebraic function is a function that can be defined as the root of a polynomial equation.
Quite often algebraic functions can be expressed using a finite number of terms, involving only
algebraic operations addition, subtraction, multiplication, division, and raising to a fractional
power.
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form in which the system only contains regular singularities and the ǫ dependence
is totally factorized from the kinematic 13

∂x ~f(x, ǫ) = ǫA(x)~f (x, ǫ) (4.137)

with ~f being the vector of unknown functions and A being a N ×N matrix. Such
DE system can be solved with Picard’s method of successive approximation ([34])
which we briefly recall in the following.

Picard integration. Let’s consider the ordinary DE system

d

dt
X(t) = A(t)X(t), X(t0) = X0. (4.138)

This is equivalent to the system of integral equations

X(t)−X0 =

∫ t

t0

A(s)X(s)ds. (4.139)

The method consists in solving the system recursively. We define

Xn+1(t) = X0 +

∫ t

t0

A(s)Xn(s)ds for n ≥ 0. (4.140)

The first couple of terms of the solution will give

X1(t) = X0 +

∫ t

t0

A(s)dsX0

X2(t) = X0 +

∫ t

t0

A(s)dsX0 +

∫ t

t0

A(s)ds

∫ s

t0

ds′A(s′)X0

... (4.141)

Assuming t0 ≤ t, the second term in the expansion can be written as
∫

t0≤s1≤s2≤t

A(s2)A(s1)ds1ds2X0. (4.142)

Continuing in the same way, we can formally write the limit X(t) = limn→∞Xn(t)
as X(t) = T (t, t0)X0, where T (t, t0) is given explicitly by

T (t, t0) = 1n +
∑

n≥1

∫

t0≤s1≤...≤sn≤t

A(sn)A(sn−1)...A(s1)ds1...dsn. (4.143)

13Again we suppose to have equations depending on just one dimensionless variable, but all
the following argument hold identical also in the case of systems of partial differential equations.
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The r.h.s. is an infinite sum of iterated integrals, which we will formally define in
the following, and we recognize in T (t, t0) the expanded form of a path-ordered
exponential, so that we can write the solution in the compact form

X(t) = P e
∫

t

t0
A(s)ds

X0, (4.144)

being P the path-ordering operator. We recognize in Eq.(4.144) the well known
Dyson series, written in the general case in which matrices A(si) evaluated in dif-
ferent points si on the path do not commute.

If we now go back to our DE system for a set of Feynman integrals, and rewrite it
for convenience in differential form

d~f(x, ǫ) = ǫ dÃ(x)~f(x, ǫ), (4.145)

we see that indeed the solution can be written in compact form as a path-ordered
exponential

~f(x, ǫ) = P eǫ
∫

C
dÃ ~f0(ǫ) (4.146)

where C is a path connecting the boundary conditions, for instance x = 0, to x
and ~f0(ǫ) is the vector of boundary conditions. If we now expand the exponential
around ǫ = 0, we find a perturbative solution in terms of iterated integrals, where
the entries of dÃ determine the integration kernel. The power of the canonical
form Eq.(4.137), and in particular of the factorization of ǫ from the kinematics, is
that when the system is solved in such a perturbative approach around ǫ = 0, we
are guaranteed that order by order in ǫ the system, which is originally coupled,
decouples, thus allowing us to carry out integration.

At this point it is necessary to define more precisely what an iterated integral
is, together with its basic properties.

Iterated integrals. Let k be a real or complex number andM a smooth manifold
over k. Let γ : [0, 1] →M be a piecewise smooth path on M , and let ω1, ..., ωn be
smooth k-valued 1-forms on M . The ordinary line integral is given by

∫

γ1

ω1 =

∫ 1

0

f1(t1)dt1 (4.147)

and does not depend on the choice of the parametrization f(t) of γ.
The iterated integral of ω1, ..., ωn along γ is defined by

∫

γ

ω1...ωn =

∫

0≤t1≤...≤tn≤1

f1(t1)dt1...fn(tn)dtn. (4.148)

More generally, we call iterated integral a k-linear combination of such integrals.
Iterated integrals satisfy the following basic properties:
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1. The iterated integral
∫

γ ω1...ωn does not depend on the choice of parametriza-
tion of the path γ.

2. If γ−1(t) = γ(1− t) denotes the reversal of the path γ, then

∫

γ−1

ω1...ωn = (−1)n
∫

γ

ωn...ω1 (4.149)

3. The shuffle algebra product formula holds
∫

γ

ω1...ωr

∫

γ

ωr+1...ωr+s =
∑

σ∈Σ(r,s)

∫

γ

ωσ(1)...ωσ(r+s) (4.150)

where Σ(r, s) is the set of possible shuffles

Σ(r, s) = {σ ∈ Σ(r + s) : σ−1(1) < ... < σ−1(r) and σ−1(r + 1) < ... < σ−1(r + s)}
(4.151)

and Σ(n) is the set of permutations on {1, ..., n}.

Given the definition above of iterated integrals, we recognize immediately that
Multiple Polylogarithms constitute a subset of them obtained by requiring the 1-
form ω1, ..., ωn to be logarithmic 1-form. Experience shows that in the majority of
cases, MPLs are sufficient to express the solution for an unknown set of Feynman
integrals. Whenever this is the case, the canonical form of the DE system for the
set of integrals can be further constrained to assume a precise shape. In the next
subsection we will analyse this particular case of canonical form, which finds in
multi-loop/legs computations broad application and which has been extensively
used in this project.

4.4.4 d-log canonical form: Properties and recursive inte-

gration

Let us consider the case where the differential equations can be put into the form

d~f(x, ǫ) = ǫ(dÃ)~f(x, ǫ) (4.152)

with

Ã =

[
∑

k

Ak logαk(x)

]

(4.153)

and

αk = x− xk (4.154)
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with xk being the locations of the singularities. In other words we assume we have
managed to put the DE system in a canonical form where the total differential of
the matrix coefficient is a logarithmic 1-form whose arguments are rational linear
functions of the dimensionless variable x (this can be generalized to the multi-
variable case straightforwardly by replacing x with ~x in Eq.(4.152) and (4.153)).
We stress that Eq.(4.154) holds whenever this representation can be reached via
rational transformations only. In the general case, where the d-log representation
is reached through algebraic transformations, the entries αk will exhibit an alge-
braic dependence on x. We will assume in the following that a proper remapping
can always be found such that, starting from the general case of algebraic depen-
dence of the αk, a linear dependence can always be restored 14. Given this, we take
Eq.(4.152), (4.153) and (4.154) as starting point and we discuss in the following
their properties.

• Multiple Polylogarithms. First, we discuss the category of functions
appearing in the solution. As it was pointed out, the solution of a DE system
in canonical form is given by iterated integrals. But in this particular case,
since we are integrating logarithmic 1-forms, it is immediate to see that the
iterated integrals we get are by definition Multiple Polylogarithms! Indeed,
as usual we can solve Eq.(4.152) pertubatively in ǫ and the contribution of
O(ǫn) to the solution will be an iterated integral of the form

~fn(t) = f
(n)
0 +

∫

0≤t1≤...≤tn≤1

f1(t1)dt1...fn(tn)dtn (4.155)

where f
(n)
0 is the initial condition at order O(ǫn) and the weight functions

f1(t1), ..., fn(tn) are the of the type fi(ti) = 1/(x− xi) where xi belongs to
the set {xk} of singular points of the equations. So the first striking feature
of a d-log representation is that the solution can be written entirely in terms
of MPLs.
It is important to stress that starting from a general d-log representation (not
necessarily of ‘rational type’) the solution can always be written in terms of
MPLs, almost by definition. If the dependence on the dimensionless variables
of the d-log form is rational, then MPLs are straightforwardly obtained, as
it has just been showed. On the other hand, if we start from a d-log form
containing algebraic dependence on x, the solution we get might look very
ugly and far from being just a linear combination of MPLs, but in principle
it can be rewritten entirely in terms of MPLs via suitable transformations
acting on the iterated integrals in terms of which the solution is originally
written.

14While we can always assume that such a remapping exists, we stress that no algorithm is
available to find it in the general case.
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• Uniform transcendentality. The second property follows directly from
the first one, namely from the possibility of writing a solution entirely in
terms of MPLs.
It is possible to introduce for MPLs, the concept of degree of transcendental-
ity T (f) of a function f , which is defined as the number of iterated integrals
needed to define the function f , e.g. T (log) = 1, T (Lin) = n, etc.... It also
holds T (f1f2) = T (f1) + T (f2). Constants obtained at special values are
also assigned transcendentality, for instance zeta values it is set T (ζn) = n15

. Algebraic factors have degree zero. If a function f is a sum of terms,
we say that f has uniform (degree of) transcendentality when all its terms
have the same degree. In the following we will address the concept of degree
of transcendentality also with the word ‘weight’ since for a MPL these two
quantities happen to be the same. On top of that, we define such functions
pure if their degree of transcendentality is lowered by taking a derivative, i.e.
T (d f) = T (f) − 1. This implies that transcendental functions in f cannot
be multiplied by algebraic coefficients, which would otherwise be ‘seen’ by
the differential operators. A remarkable property of the solution of a d-log
canonical system of equations is that each term in the ǫ-expansion is a Q-
linear combination of pure MPLs of the same weight. For a generic integral
basis, this is not true and the results looks more complicated, with terms of
different weights being mixed and prefactors of MPLs being algebraic func-
tions of the kinematic variables. Finally, if weight -1 is assigned to ǫ, then
the solution of a d-log form has uniform weight zero.

These properties make the solution to a canonical basis particularly compact and
elegant. But on top of that they have importance on a practical level for two
reasons. First they are a good way to check if the solution we have found for the
system is correct or not, since this solution must be uniform and pure. Second,
they can become a guiding principle for finding an appropriate integral basis. This

15We recall that zeta values are values taken by the Riemann zeta function

ζ(x) =
1

Γ(x)

∫ ∞

0

ux − 1

eu − 1
du (4.156)

for integer arguments x = n, n ∈ N. The equivalent definitions which can be derived from the
previous ones are zeta values as the sum of a series (known as p-series)

ζ(n) =
∞∑

k=1

1

kn
(4.157)

and zeta values as the result of multiple integration

ζ(n) =

n
︷ ︸︸ ︷
∫ 1

0
...

∫ 1

0

∏n
i=1 dxi

1−
∏n

i=1 xi
. (4.158)
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approach is not based on purely mathematical simplification of the DE system
as we showed above, but it deals instead with the original integral representation.
Since we did not use this second type of approach in our project, we do not develop
it in the present thesis, but we refer the interested reader to [76], where a basic
explanation can be found.

Integration of d-log Differential Equations.
To conclude the section, we report on an algorithm to integrate a d-log system of
equations recursively in ǫ ([77]). This is actually the method we applied in our
project to integrate the master integrals. Since we dealt in our specific case with
master integrals depending on two dimension-less variables, i.e. we actually had
to integrate system of PDEs, we are going to illustrate how the algorithm works in
this specific multi-variable case with an example taken from our own computation,
but obviously the generalization to a higher number of variables is straightforward.

The method consists in integrating separately in each variable and order by
order in ǫ. We take one of our bases of master integrals

~Mt1(z, y, ǫ) =











M1(z, y, ǫ)
M2(z, y, ǫ)
M3(z, y, ǫ)
M4(z, y, ǫ)
M5(z, y, ǫ)
M6(z, y, ǫ)











(4.159)

related to a certain topology t1 for which we wrote down differential equations in
d-log form as

d ~Mt1(z, y, ǫ) = At1(z, y, ǫ) · ~Mt1(z, y, ǫ). (4.160)

At1 is the matrix of coefficients of the differential equations (in the following ma-
trices and masters are intended to depend on z, y, ǫ)

At1 = Z1t1 + Z0t1 + ZYt1 + Y 1t1 + Y 0t1 (4.161)

Z1t1 = ǫ





















−4 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 −1 0
−1 0 0 0 0 −2 0
0 0 0 0 0 −4 0
−1 0 0 0 0 −4 0





















d log(1− z) (4.162)
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Z0t1 = ǫ





















2 −6 0 0 0 0 0
1 −3 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 −4 0 0 2
0 0 0 2 0 0 0
0 0 0 0 0 0 −1





















d log(z) (4.163)

ZYt1 = ǫ





















0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 0 −3 0 0 0 0
0 0 3 −4 0 −2 2
1 0 0 4 0 2 −2
0 0 3 −4 0 −2 2
1 0 6 −4 0 −2 2





















d log(y + z) (4.164)

Y 1t1 = ǫ





















0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 −2 0 0
0 0 −3 4 0 2 −2
0 0 0 4 0 0 0





















d log(1 + y) (4.165)

Y 0t1 = ǫ





















0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 2 2 0 0 0 0
0 0 −3 4 0 2 −3
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −3 −6 4 0 2 −3





















d log(y). (4.166)

The vector of solutions will be given by a Laurent series around ǫ = 0

~Mt1 =

i=3∑

i=−1

~M
(i)
t1 ǫ

i +O(ǫ5) (4.167)

We establish to integrate first in z and then in y. The partial DE in z and in y at
a given order in ǫ reads

∂z ~M
(n)
t1 (z, y) = (At1)z (z, y)

~M
(n−1)
t1 (z, y) (4.168)

∂y ~M
(n)
t1 (z, y) = (At1)y (z, y)

~M
(n−1)
t1 (z, y) (4.169)
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with

(At1)z = Z1t1 + Z0t1 + ZYt1

(At1)y = Y 1t1 + Y 0t1 + ZYt1 (4.170)

We integrate Eq.(4.168) and find a solution up to an arbitrary function of y to be
fixed

~M
(n)
t1 (z, y) = ~h

(n)
t1 (y) +

∫

dz′ (At1)z (z
′, y) ~M (n−1)

t1 (z′, y). (4.171)

To fix ~h
(n)
t1 (y), we insert the solution we just found Eq.(4.171) into Eq.(4.169), thus

finding a differential equation for ~h
(n)
t1 (y)

∂y~h
(n)
t1 (y) = (Bt1)y (y)

~h
(n−1)
t1 (y) (4.172)

where the matrix (Bt1)y (y) is related in a non trivial way to (At1)y (z, y). Inte-
grating this equation we get

~h
(n)
t1 (y) = ~C(n) +

∫

dy′ (Bt1)y (y
′)~h(n−1)

t1 (y′) (4.173)

where ~C(n) is a vector of constants which must be determined by imposing the
value of the function in a specific point (z̃, ỹ).

We apply all this to our vector of integrals. We start from order i = −1, where
our ansatz is just a vector of constants

~M
(−1)
t1 (z, y) =















c
(0)
1 /ǫ

c
(0)
2 /ǫ

c
(0)
3 /ǫ

c
(0)
4 /ǫ

c
(0)
5 /ǫ

c
(0)
6 /ǫ

c
(0)
7 /ǫ















. (4.174)

We insert this into Eq.(4.168) and by integrating in terms of Goncharov Polylog-
arithms, we determine the dependence on z of the ansatz at order i = 0

~M
(0)
t1

(z, y) =
{

2(c
(0)
1 − 3c

(0)
2 )G[{0}, z]− 4c

(0)
1 G({1}, z) + h1(y),

(c
(0)
1 − 3c

(0)
2 )G({0}, z)− c

(0)
1 G({1}, z) + h2(y),

c
(0)
1 G({1}, z) + (−c(0)1 − 3c

(0)
3 )G({−y}, z) + h3(y),
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− c
(0)
4 G({0}, z)− c

(0)
6 G({1}, z)

+ (3c
(0)
3 − 4c

(0)
4 − 2c

(0)
6 + 2c

(0)
7 )G({−y}, z) + h4(y),

(−4c
(0)
4 + 2c

(0)
7 )G({0}, z)− (c

(0)
1 + 2c

(0)
6 )G({1}, z)

+ (c
(0)
1 + 4c

(0)
4 + 2c

(0)
6 − 2c

(0)
7 )G({−y}, z) + h5(y),

2c
(0)
4 G({0}, z)− 4c

(0)
6 G({1}, z)

+ (3c
(0)
3 − 4c

(0)
4 − 2c

(0)
6 + 2c

(0)
7 )G({−y}, z) + h6(y),

− c
(0)
7 G({0}, z)− (c

(0)
1 + 4c

(0)
6 )G({1}, z)

+(c
(0)
1 + 6c

(0)
3 − 4c

(0)
4 − 2c

(0)
6 + 2c

(0)
7 )G({−y}, z) + h7(y)

}

(4.175)

In order to determine the vector of functions hi(y), we insert Eq.(4.175) into the
y-partial d.e. and find











































h′
1(y) = 0
h′
2(y) = 0

d log(y)(c
(0)
1 − 2c

(0)
2 + c

(0)
3 ) + c

(0)
3 d log(y + 1) + h′

3(y) = 0

c
(0)
7 d log(y) + h′

4(y) = c
(0)
7 d log(y + 1)

d log(y)(c
(0)
1 + 4c

(0)
4 + 2c

(0)
6 − 2c

(0)
7 ) = 2c

(0)
5 d log(y + 1) + h′

5(y)

(d log(y)− d log(y + 1))(3c
(0)
3 − 4c

(0)
4 − 2c

(0)
6 + 2c

(0)
7 ) = h′

6(y)

d log(y)(c
(0)
1 − 3c

(0)
2 − c

(0)
7 ) + 4c

(0)
4 d log(y + 1) = h′

7(y)

(4.176)

The solution to this system of differential equations is

























































h1(y) = 0 + c
(1)
1

h2(y) = 0 + c
(1)
2

h3(y) = −c(0)3 G({−1}, y) + (−c(0)1 + 2c
(0)
2 − c

(0)
3 )G({0}, y) + c

(1)
3

h4(y) = c
(0)
7 G({−1}, y)− c

(0)
7 G({0}, y) + c

(1)
4

h5(y) = −2c
(0)
5 G({−1}, y) + (c

(0)
1 + 4c

(0)
4 + 2c

(0)
6 − 2c

(0)
7 )G({0}, y)

+c
(1)
5

h6(y) = (−3c
(0)
3 + 4c

(0)
4 + 2c

(0)
6 − 2c

(0)
7 )G({−1}, y)

+(3c
(0)
3 − 4c

(0)
4 − 2c

(0)
6 + 2c

(0)
7 )G({0}, y) + c

(1)
6

h7(y) = 4c
(0)
4 G({−1}, y) + (c

(0)
1 − 3c

(0)
2 − c

(0)
7 )G({0}, y) + c

(1)
7

























































(4.177)
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We have thus determined our solution at order i = 0 up to a vector of b.c.

~c(1) =















c
(1)
1

c
(1)
2

c
(1)
3

c
(1)
4

c
(1)
5

c
(1)
6

c
(1)
7















. (4.178)

We proceed by iterating the same procedure in order to construct higher orders in
ǫ.
Boundary conditions are then determined typically through expansion by region
at every order in ǫ and matched to the solution.
This concludes this section dedicated to the canonical form of differential equations
together with the chapter on Master Integrals computation. In the next chapter,
the content of this chapter will be applied to our computation, so that more and
perhaps clearer examples of the explained tools will be provided.
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Chapter 5

Master Integrals for CC-DIS

Form Factors

5.1 NLO Form Factors

In this section we present a simple example of computation via Master Integrals.
The quantities we choose to calculate are unrenormalized massive coefficient func-
tions for CC-DIS at NLO, namely the Single Top subprocess b+W ∗ → t +X at
O(αs).

5.1.1 From diagrams to scalar amplitudes

Charged-Current Single Top production starts at order O(α0
s) (Leading-Order)

with the process b(pb) +W ∗(q) → t(pt).

W ∗

t

b

iMBorn =

Figure 5.1

We start by drawing diagrams which contribute then at O(αs), which we will refer
to as NLO in the following. At NLO we have to distinguish between

135
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• real emission contributions.
b(pb) +W∗(q) → t(pt) + g(k) : An extra gluon is radiated and is thus
present in the final state as a real particle.

W ∗

t

b

g

iMb,R
1 =

(a)

W ∗

t

b
g

iMb,R
2 =

(b)

Figure 5.2

g(pb) +W∗(q) → t(pt) + b̄(k) : By applying crossing symmetry to the two
previous diagrams, we obtain two diagrams for a gluon-initiated process with
a top and an anti-bottom in the final state.

t

b̄

g

W ∗

iMg,R
1 =

(a)

b̄

t

g

W ∗

iMg,R
2 =

(b)

Figure 5.3

• virtual emission contributions.
b(pb) +W∗(q) → t(pt) : Virtual gluons are emitted and reabsorbed giving
rise to vertex and self-energy 1-loop corrections for the bottom and top
quarks. Since only connected and amputated Feynman diagrams contribute



5.1. NLO FORM FACTORS 137

to the S-matrix, actually the only contributing diagram is 1-loop correction
to the vertex. 1

W ∗

t

b

iMb,V
1 =

(a)

W ∗

t

b

iMb,V
2 =

(b)

Figure 5.4

With our own Mathematica code we translate Feynman diagrams into mathemat-
ical expressions, namely amplitudes, and we take the square modulus of the sum
of these amplitudes. At this stage, the objects we obtain have all Lorentz indexes
saturated except for the ones of the off-shell boson, which will be contracted with
the ad hoc projectors in order to extract form factors. Since we have to include
only contributions of O(αs), the square modulus of the amplitudes will contain the
square modulus of the sum of real emission diagrams and the contraction of the
virtual diagrams with the Born amplitude. The nature of the contributing sub-
processes, namely bottom- and gluon-initiated naturally divides the computation
into two parts, because, having different particles in the initial and final states,
these two sub-processes cannot talk to each other when we take the square mod-
ulus of the amplitude. We can thus compute separately the contribution coming
from the bottom channel

(
|iMb|2(αs)

)µν
=
(

|iMb,R
1 + iMb,R

2 |2
)µν

+ 2ℜ
[(

(iMb,V
2 ) ∗ iMBorn

)µν]

(5.1)

and the one coming from the gluon-channel

(
|iMg|2(αs)

)µν
=
(

|iMg,R
1 + iMg,R

2 |2
)µν

. (5.2)

1Concerning the self-energy diagrams, the one containing the bottom self-energy evaluates to
zero in our 5F scheme (m2

b = 0) because the 1-loop self-energy of a massless particle is a scaleless
1-loop bubble and thus equal to zero in DR! The diagram containing the top self-energy instead
is not zero in our computation because m2

t > 0. Indeed this diagram, computed off-shell namely
by keeping p2t 6= m2

t , provide the renormalization counter-term for the vertex diagram in the
on-shell scheme.
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In the following, we take C1 as an example to illustrate how the generic coefficient
function Ci is computed.

Example: C1

The natural thing to do is to divide the computation by channels (bottom and
gluon) and, inside each channel to analyse separately real and virtual contribu-
tions. In this case, we concentrate on the bottom channel because it involves both
real and virtual contributions and can be considered then slightly more complex
than the gluon channel, which at NLO involves only real diagrams. On the other
hand, it must be said that the gluon real diagrams require the computation of
one more master integral with respect to the bottom ones. This additional master
has been computed by us with the method of differential equations. We decide
nonetheless not to report this MI calculation here, since in the next section the
method of differential equations will be widely used and described in all its power
and splendour by applying it to 2-loops master integrals.
We proceed to compute the bottom contribution to NLO form factors.

Projectors onto coefficient functions are linear combinations of five fundamental
tensor structures

{gµν , pbµpbν , pbµqν + pbν qµ, qµqν , ǫpbqµν}. (5.3)

In the particular case of C1, the first three structures contribute. We thus start
by contracting all our squared amplitudes with these tensors, to obtain the pieces
we will need in the following to construct the desired form factor. In the bottom
channel, by using momentum conservation pt = pb+q−k to get rid of pt we obtain
for the reals

Ab,R
g =

(

|iMb,R
1 + iMb,R

2 |2
)µν

gµν =

= −8(−2 + d)2(k · pb(m2
t − q · q) + pb · q(m2

t + 2k · q − 2pb · q − q · q))
(k · k − 2k · pb)2

2× 8(d − 2)(4(k · pb)2 + pb · q(2(d− 6)(k · q − pb · q) + (d− 4)(m2
t − q · q))

(k · k − 2k · pb)(m2
t − 2pb · q − q · q)

+
k · pb((d− 2)m2

t + 4k · q − 8pb · q + q · q(4− d)))

(k · k − 2k · pb)(m2
t − 2pb · q − q · q)

+
8(d− 2)((d− 2)pb · (q − k)(m2

t − q2)− 2pb · q(dm2
t − (d− 2)(−k · q + pb · q + q2)))

(m2
t − 2pb · q − q2)2

(5.4)

Ab,R
pbpb

=
(

|iMb,R
1 + iMb,R

2 |2
)µν

(

pbµpbν
)

=
32(d − 2)(k · pb)2(k · pb − pb · q)

(k · k − 2k · pb)2
(5.5)

Ab,R
pbq

=
(

|iMb,R
1 + iMb,R

2 |2
)µν

(

pbµqν + pbν qµ
)

=
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= − (32(d− 2)k · pb(m2
tpb · q + (k · pb − pb · q)(−2k · q + 2pb · q + q · q))

(k · k − 2k · pb)2)

+
2× 16(d − 2)k · pb(−2(pb · q)2 + pb · q(m2

t + 2k · pb − q · q) + k · pbq · q)
(k · k − 2k · pb)(m2

t − 2pb · q − q · q) (5.6)

and for the virtuals

Ab,V
g =

(

ℜ
[(

(iMb,V
2 ) ∗ iMBorn

)µν]

gµν
)

=
∫

ddl1
1

(l1 · l1(l1 · l1 − 2l1 · pb)(m2
t − l1 · l1 − 2l1 · q − q · q))×

×
[

8(d− 2)(4(l1 · pb)2 + ((d− 4)l1 · l1 + 4l1 · q)pb · q
+l1 · pb((2− d)m2

t + 4l1 · q + 4pb · q + (d− 4)q · q))
]

(5.7)

Ab,V
pbpb

=
(

ℜ
[(

(iMb,V
2 ) ∗ iMBorn

)µν]
(

pbµpbν
)

)

= 0 (5.8)

Ab,V
pbq

=
(

ℜ
[(

(iMb,V
2 ) ∗ iMBorn

)µν]
(

pbµqν
)

)

=

=

∫

ddl1
16(d − 2)l1 · pb(2(pb · q)2 + l1 · pb q · q + pb · q(−m2

t + 2l1 · pb + q · q))
(l1 · l1(l1 · l1 − 2l1 · pb)(m2

t − l1 · l1 − 2l1 · q − q · q)) . (5.9)

We have thus obtained with scalar objects written in terms of scalar products
that constitute the building block for F1 and also some of the other coefficient
functions. Since we need them in more than one coefficient functions, we decide
to perform reduction to master integrals directly at the level of these contractions,
namely before constructing coefficient functions.

5.1.2 Reduction and MIs computation

We now explain briefly how reduction to MIs is achieved, by taking the gµν con-
tractions Ab,R

g , Ab,V
g as examples.

First, we remind that we are going to use master integral techniques to compute
both real and virtual integrations. This implies that the extra-gluon Phase Space
measure is converted to cut propagators via reverse unitarity

∫

ddkddptδ+(k
2)δ+(p

2
t −m2

t )δ
(4)(pb + q − k − pt) →

→
∫

ddk

(

1

k2

)

cut

(

1

(pb + q − k)2 −m2
t

)

cut

(5.10)

and cut propagators are then added to the real contributions, so that the object
we need to compute is

Cb,R
g =

∫

ddk

(

1

k2

)

cut

(

1

(pb + q − k)2 −m2
t

)

cut

Ab,R
g . (5.11)

For the virtuals instead, we need to integrate just over the top momentum, so
that thanks to momentum conservation we will have
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∫

ddl1d
dptδ+(p

2
t −m2

t )δ
(4)(pb + q − pt) =

∫

ddl1δ((pb + q)2 −m2
t ), (5.12)

thus obtaining

Cb,V
g = δ(s−m2

t )

∫

ddl1Ab,V
g . (5.13)

Now, the first step towards reduction is expanding out products and powers
appearing at numerator in integrands of Eq.(5.11), (5.13), so that such integrands
are written as linear combinations of a certain number of scalar Feynman integrals
having at numerator only monomials in the scalar products. The coefficients in
front of the integrals will be functions containing scalar products of the only ex-
ternal momenta pb, q.
Then, the second step is the identification of topologies suitable to express all our
scalar integrals. We remind that we call ‘topology’ a family of propagators which
is minimal and complete in a sense that it contains the minimum number of prop-
agators required to express all independent scalar products in terms of them. This
implies that the set of propagators in a topology is linearly independent 2.
For more complicated processes than the one under examination there might be
a proliferation of topologies coming from different diagrams. One observes that
usually some of these topologies happen to be actually the same, up to a shift of
integration momenta. In these situations it is usually worth to spend some time
to identify among all the possible topologies given by diagrams those that are ac-
tually independent. Indeed, this allows to perform reduction to MIs on a smaller
number of topologies, thus decreasing since the beginning the number of MIs to
be taken into consideration and also the computational time it takes to perform
the reductions.
Now, in our NLO example, diagrams contributing are very few and simple, so the
situation is simplified with respect to the above-mentioned picture.

• Real contribution Cb,R
g .

We have 3 independent scalar products {pb · k, q · k, k2}, so that topologies
for these diagrams will contain 3 propagators 3. From phase space diagrams
in this specific case only one topology arise

T b,R = {k2, (pb − k)2, (pb + q − k)2 −m2
t}. (5.14)

It is important to mark that the first and third elements of T b,R are the
inverse of cut propagators. In other words they have to be understood as

2see chapter 4 for more details.
3This can be verified by using the formula given in section 4.2 which allows to compute the

dimension of a topology given the number of internal and external independent momenta
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follows. These quantities are zero when they appear at numerator, whereas
they actively contribute to form the integrand of the Phase Space integrals
when they appear at denominator.

• Virtual contribution Cb,V
g .

Obviously also in this case we have 3 independent scalar products {pb · l1, q ·
l1, l

2
1}, so that again topologies for these diagrams will contain 3 propagators.

We have one single topology describing the virtuals

T b,V = {l21, (l1 − pb)
2, (l1 + q)2 −m2

t}. (5.15)

Now that we have found which topologies describe real and virtual diagrams in
the bottom channel 4 , we associate to each scalar integral appearing in the inte-
grands in Eq.(5.11), (5.13) an ordered set of indices where index ai corresponds
to the inverse power with which propagator number i of the topology appears in
the integral. This set of indices, together with the topology to which it refers,
completely identifies the integral. For instance for the Phase Space we will have

∫

ddk

(
1

k2

)

cut

(
1

(pb + q − k)2 −m2
t

)

= I[T b,R, {1, 0, 1}]. (5.16)

We thus rewrite the gµν contribution to bottom coefficient functions as

Cb,R
g =− 4(d − 2)2(m2

t − s)I[T b,R, {1, 1, 1}]

− 2× 8(d− 2)(I[T b,R, {1, 0, 1}]((d − 4)(m2
t − s)− 2Q2)

m2
t − s

+
2(m2

t +Q2)(Q2 + s)I[T b,R, {1, 1, 1}])
m2

t − s

− 4(d− 2)
(

(d− 2)(m2
t − s)I[T b,R, {1,−1, 1}] + 4m2

t (Q
2 + s)I[T b,R, {1, 0, 1}]

)

(m2
t − s)2

(5.17)

Cb,V
g =δ(s−m2

t )
{

4(d− 2)
(

2I[T b,V , {0, 0, 1}]− 2I[T b,V , {0, 1, 0}]− 2Q2I[T b,V , {0, 1, 1}]

−2I[T b,V , {1,−1, 1}] + 2I[T b,V , {1, 0, 0}]− ((d− 6)m2
t + (d− 8)Q2)I[T b,V , {1, 0, 1}]

4We stress that in general topologies are independent of the specific contraction we are con-
sidering. This means that for instance in the case under inspection topologies Eq.(5.14), (5.15)

have been found by analysing the contractions Cb,R
g , Cb,V

g with the gµν tensor, but the same
topologies apply to contractions with all the other tensor structures Eq.(5.3). In other words,
this just confirms the quite obvious statement that once we decompose the squared amplitude
times the Phase Space measure on a basis of tensors, the original singularity structure is con-
served untouched in each coefficient of the decomposition. It might happen though that some
diagrams gives zero contributions when contracted with some of these structures and in this case
the set of topologies coming from that specific contraction is only a subset of the one which is
needed to describe all contractions.
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−2(m2
t +Q2)I[T b,V , {1, 1, 0}]− 2(m2

t +Q2)2I[T b,V , {1, 1, 1}]
)}

. (5.18)

We collect all scalar integrals appearing in Eq.(5.17), (5.17) and belonging to the
given topologies T b,R, T b,V and we reduce them to masters. After running the
reduction with Mathematica package FIRE, we see that expressions in Eq.(5.17),
(5.18) can actually be expressed in terms of only 3 master integrals

• one MI for the real contribution, namely the Phase Space itself

Master1 = I[T b,R, {1, 0, 1}] =
∫

ddk

(
1

k2

)

cut

(
1

(pb + q − k)2 −m2
t

)

cut

(5.19)

• two for the virtual contribution, namely the massive tadpole

Master2 = I[T b,V , {0, 0, 1}] l1→l1−q→
∫

ddl1
1

l21 −m2
t

(5.20)

and the bubble with one massive propagator and external momentum q

Master3 = I[T b,V , {1, 0, 1}] =
∫

ddl1
1

l21((l1 + q)2 −m2
t )
. (5.21)

By substituting the reduction into Eq.(5.17), (5.18) we obtain the compact expres-
sions

Cb,R
g =Master1

{

−16(1− 2ǫ)(1− ǫ)2s

ǫ(Q2 + s)

−
16(−1 + ǫ)(Q2 + ǫ(m2

t − s)− (1−2ǫ)(m2
t+Q2)s

ǫ(m2
t−s)

)

m2
t − s

+
8(1− ǫ)(−4m2

t +
(1−ǫ)(m2

t−s)2

s )(Q2 + s)

(mt2 − s)2

}

(5.22)

Cb,V
g =+

δ(s−m2
t )

(1− 2ǫ)ǫm2
tQ

2
4(−1 + ǫ)×

×
(
Master2((12− 7(4− 2ǫ) + (4 − 2ǫ)2)m4

t − 2(1− 2ǫ)m2
tQ

2 + (2− 2ǫ)Q4)

−(1− 2ǫ)Master3m
2
t (−2ǫm4

t + 4ǫ2m2
tQ

2 + (4 + 6ǫ− 2(4− 2ǫ)ǫ)Q4)
)
.
(5.23)

At this point, we can repeat the same procedure for all contractions with tensor
structures in Eq.(5.3) and we can start constructing coefficient functions by using
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the projectors defined in Eq.(3.41). For instance, we get for C1 in terms of master
integrals

Cb,R
1 =Master1

{
2(s+ 2ǫ2s− ǫ(m2

t + 2s)

ǫ(Q2 + s)2

− 2(2ǫ2(m2
t − s)2 − 2(m2

t +Q2)s+ ǫ(m2
t + s)(m2

t + 2Q2 + s))

ǫ(m2
t − s)2(Q2 + s)

+
((−1 + ǫ)m4

t − 2(−3 + ǫ)m2
t s+ (−1 + ǫ)s2)

(m2
t − s)2s

}

(5.24)

Cb,V
1 =+

δ(s−m2
t )

ǫ(−1 + 2ǫ)m2
t (m

2
t +Q2)

×
(
(−1 + ǫ)Master2((−1 + 2ǫ)m2

t +Q2)

−(−1 + 2ǫ)Master3m
2
t (2Q

2 + ǫ(m2
t −Q2) + 2ǫ2(m2

t +Q2))
)
. (5.25)

At this stage we just need the expressions for the masters. In this very simple
case, we do not need computing none of them, since they are only simple 1-loop
integrals that can be found in literature without any effort. In particular the
tadpole and the phase space are very basic integrals, so we just report in the
following results for them. We want to express final results for NLO coefficient
functions in terms of the set of variables {s, z, y}, with z = m2

t/s and y = Q2/s.
Within this perspective, results for the masters are already expressed in terms of
these variables, with s appearing always in front as a prefactor carrying information
about the dimension of the integral and multiplying a certain function of z, y which
carry instead information about the non trivial dependence of the integral on m2

t

and Q2. We also introduce the dependence on the ’t Hooft mass of dimensional
regularization µ2, namely a dimensional scale that we need to introduce when
working in DR, in order to ensure the coupling gs to remain dimensionless when
switching from 4 to d dimensions.

Master1 =

(
s

µ2

)−ǫ

(1 − z)1−2ǫ Γ(1− ǫ)

Γ(2− 2ǫ)
(5.26)

Master3 = −s
(
s

µ2

)−ǫ

z1−ǫΓ(−1 + ǫ)eǫγE (5.27)

The 1-loop bubble, namely Master2, is also really simple, but we carry out the one-
line computation that allows to obtain it to sketch how integration with Feynman
parameters works in a very basic case 5.
The integral depends on two dimensional scales, i.e. the internal mass m2

t (or

5More involved examples can be found in [115].
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alternatively s, since in Born kinematic it holds s = m2
t ) and the external invariant

Q2. By applying Feynman parametric representation to Eq.(5.21), integrating over
one of the two parameters using the δ-function and expressing the result in terms
of our set of variables, namely s, y, we get

Master2 =

(
s

µ2

)−ǫ

Γ(ǫ)

∫ 1

0

dx1
(x1)

−ǫ

(1 + y(1− x1))ǫ
. (5.28)

The integral can be carried out in closed form in ǫ in terms of Hypergeometric
functions, thus giving

Master2 =

(
s

µ2

)−ǫ π(1 + y)−ǫ csc(ǫπ)Hypergeometric2F1

(

1− ǫ, ǫ, 2− ǫ, y
(1+y)

)

Γ(2− ǫ)
.

(5.29)

We underline that all masters are here expressed in closed form in ǫ because of
their simplicity. In more involved computations, this is normally not possible and
master integrals can then be computed only as series in ǫ truncated at a certain
order. In the next section, where we will compute form factors at the next pertur-
bative order, i.e. O(α2

s), this will be actually the case.

Once we have the coefficient function written in terms of masters and also re-
sults for the masters , we actually have all the necessary ingredients so that the
computation can be considered almost finished, up to a renormalization procedure.
By inserting the results for the MIs Eq.(5.26), (5.27), (5.29) into Eq.(5.24), (5.25)
and expanding in ǫ, we get

Cb,R
1 =

(
s

µ2

)−ǫ((

− 1

ǫ2
− 1

ǫ
+

1

4
(−8 + π2)

)

(1 + y)δ(1− z)

+
1

2ǫ

(

4

[
1

1− z

]

+

(1 + y)− 2(1 + 2y + z)

1 + y

)

+ 2

[
1

1− z

]

+

(1 + y)−
[
log(1− z)

1− z

]

+

(1 + y)

(2 + 4y + 2z) log(1 − z)

1 + y
+

z2

1 + y
+
z(1 + 4y + y2)

2(1 + y)
− y + 7

2

)

(5.30)

Now, concerning the virtual diagrams, we get from the vertex diagram

Cb,V,vertex
1 =

(
s

µ2

)−ǫ

δ(1 − z)(1 + y)

(

− 1

ǫ2
− 1− 2 ln (1 + y)

ǫ
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−
48y+ π2y − (12 + 36y) ln (1 + y) + 12y ln (1 + y)

2 − 24yLi2

(
y

1+y

)

12y



 .

(5.31)

Real and virtual contributions are then to be combined in order to get the
unrenormalized coefficient function C1. When we sum them up all soft poles must
cancel and the remaning poles can only represent either UV divergences or IR
collinear divergences coming from the initial state. Both these kinds of remaining
divergences are then to be removed by means of, respectively, a renormalization
and a mass factorization program. We also remind that in our expressions we do
not get final state collinear poles because we have a massive top radiating in the
final state, but in case we had them they should cancel as well when combining
real and virtual contribution. This recaps the strategy that one would adopt in
a higher order computation, namely first assembling all the contributing pieces
and then performing renormalization and mass factorization. In our case simple
NLO computation, since the UV poles just appear in the virtuals, we may also
renormalize first the UV divergences in the virtual vertex diagram (thus performing
a renormalization at level of single diagrams) and then assembling it with the reals
and performing mass factorization (namely renormalization of the initial state
collinear poles).
Performing UV renormalization means in general to renormalize running coupling,
wave-function and mass. We follow the usual choice, namely to renormalize the
running coupling in MS and wave-function and mass in the on-shell scheme. At
NLO level though, the scenario happens to be quite simplified and it turns out that
the only wave-functions need to be renormalized. This can be achieved by means
of appropriate counterterms. Following [29], the bare and renormalized coefficient
functions satisfy the relation

C = Z
1/2
2,b Z

1/2
2,t Cbare(α

bare
s ) (5.32)

where we dropped for the moment the various indices which identify coefficient

functions for simplicity. Indeed we can neglect Z
1/2
2,b because, being the bottom

mass equal to zero in our computation, in an on-shell scheme the expansion of

this quantity will read Z
1/2
2,b = 1 + δZ

1/2
2,b , with δZ

1/2
2,b = 0. By performing the

perturbative expansion of the various left quantities (see again [29], Eq.(3.2)), we
get at 1-loop level

C(1l) = C
(1l)
bare +

1

2
δZ

(1l)
2,t C

(0l) (5.33)

with C
(1l)
bare being the sum of real and virtual parts, i.e. in our case

C
(1l)
1bare

= Cb,R
1 + Cb,V,vertex

1 , (5.34)
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C(0l) being the LO contribution to the coefficient function which in our case is

simply C
(0l)
1 = 1, and finally δZ

(1l)
2,t being the proper counterterm which performs

1-loop wave-function renormalization. The ǫ expansion for this counterterm, trun-
cated at O(ǫ0) reads

δZ
(1l)
2,t

ǫ→0→
(
s

µ2

)−ǫ(

− 3

2ǫ
− 2

)

+O(ǫ). (5.35)

By adding Eq.(5.35), (5.30) and (5.31) as prescribed by Eq.(5.33), (5.34), and
adding the proper color factor CF we obtain the renormalized coefficient function

C
(1l)
1 =

(

s

µ2

)−ǫ

CF

{

1

ǫ

(

(1 + y)

(

3

2
− 2 ln(1 + y)

)

δ(1− z) + 2(1 + y)

[

1

1− z

]

+

+
(−1− 2y − z)

1 + y

)

+ δ(1− z)(1 + y)

(

4 +
π2

3
− 3 ln(1 + y)− ln(1 + y)

y
+ ln(1 + y)2 − 2Li2

(

y

1 + y

))

− 2(1 + y)

(

2

[

ln(1− z)

1− z

]

+

−
[

1

1− z

]

+

)

−7

2
− y

2
+
z + 4yz + y2z + z2

2(1 + y)
+

2(1 + 2y + z) ln(1− z)

1 + y

}

. (5.36)

We observe that the double pole, which is a product of a collinear times a soft
singularity, gets cancelled between real and virtual contribution, as expected. The
UV pole is renormalized, and we are left precisely with just one single collinear
pole, due to emission of a real gluon from the massless bottom in the initial state.
Mass factorization is then the last step we need to take in order to get a finite
result.
At NLO, mass factorization is very simple, since we know that the collinear pole
must multiply a coefficient which is exactly the appropriate splitting function, and
in this precise case Pq/q(z, y).
Now, in order to recognize the splitting function, one should pay particular atten-
tion because, due to our variable choice, the splitting will not be manifest. Indeed,
the natural DIS-like variables for Single Top would be

τ =
m2

t +Q2

s+Q2
=
z + y

1 + y
, λ =

Q2

m2
t +Q2

=
y

1 + y
(5.37)

in terms of which the product 1
ǫPq/q(τ) would reads

1

ǫ
Pq,q(τ ) =

1

ǫ
CF

(

m2
t +Q2

µ2

)−ǫ [
3

2
δ(1− τ ) +

2

(1− τ )+
− (1 + τ )

]

. (5.38)
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By performing the necessary change of variables, one can easily convince himself
that the coefficient of the 1/ǫ pole appearing in Eq.(5.36) is the correct splitting
function Pq/q reported in Eq.(5.38). After cancelling this last collinear divergence,
which is reabsorbed into the b-pdf, we can finally write our final result Eq.(5.39).

C
(1l)
1,ren =

(

s

µ2

)−ǫ

CF {

δ(1− z)(1 + y)

(

4 +
π2

3
− 3 ln(1 + y)− ln(1 + y)

y
+ ln(1 + y)2 − 2Li2

(

y

1 + y

))

− 2(1 + y)

(

2

[

ln(1− z)

1− z

]

+

−
[

1

1− z

]

+

)

−7

2
− y

2
+
z + 4yz + y2z + z2

2(1 + y)
+

2(1 + 2y + z) ln(1− z)

1 + y

}

. (5.39)

In this section we aimed at giving a simple example of how a fixed-order compu-
tation works in QCD, via Master Integrals technique. We achieved this goal by
showing how one determines and computes Master Integrals for massive CC-DIS
at O(αs) in QCD, thus getting the renormalized coefficient functions, as for in-
stance the one reported in Eq.(5.39) for the bottom channel.
We stress that renormalized coefficient functions at NLO are fundamental also for
the computation of form factors at the next perturbative order, since they consti-
tute the building blocks for the construction of collinear counterterms necessary
to renormalize the NNLO coefficient functions.
In the next two sections of chapter 5 we will proceed to illustrate how the tech-
niques of Master Integrals works in the case of O(α2

s) corrections, which is more
involved because of the larger number of Masters and their increased complexity.
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5.2 Master Integrals for CC-DIS at O(α2
s)

In this section we present the computation of the set of master integrals describing
the O(α2

s) (NNLO) contribution to form factors.
At this perturbative order, three independent channels are open, namely bottom,
gluon, singlet channel. It is thus natural to address the computation of NNLO
form factors and its explanation channel by channel.
Then, inside each channel the contributing subprocesses will be identified and, for
each of them, sets of independent topologies and master integrals will be deter-
mined. Results for all master integrals are obtained via the method of Differential
Equations (DE). All double real (RR) and real-virtual (RV) MIs are our original
results. They have been all computed by using DE in canonical form, which we
report in detail in the Appendix for all topologies involved. Since one of the most
complicated step into the computation of these masters is the determination of
boundary conditions, this part will be addressed in detail throughout the section.
The double virtual (VV) masters instead, where already available in [29], [30],
[9], [18], [37]. For these MIs, we do not report systematically system of DE, but
we take the chance to use them as example to show how non-canonical DE can
be integrated. Boundary conditions instead were directly extracted by the above-
mentioned references, to which we redirect the reader who might want to know
more about this specific topic.

5.2.1 Bottom channel: b-initiated subprocesses at NNLO.

Double Reals [b+W ∗ → t+X1 +X2]0−loop

Topologies and Master Integrals for b(pb) +W ∗(q) → t(pt) + g(k1) + g(k2).

Diagrams contributing to b+W ∗ → t+ g+ g are drawn in Fig.5.5. We stress that
the actual number of diagrams contributing is ten, since for each of the diagrams
in Fig.5.5 we have to consider that we have two identical particles (gluons) in
the final state, so that the diagram is symmetrical under exchange of the two
gluon momenta k1, k2. Given this symmetry, in the following we consider matrix
elements arising from only one particular assignment of the gluon momenta, since
to remaining ones can be obtained be simply exchanging k1 with k2 in the matrix
elements expressions. By taking the square modulus of diagrams in Fig.5.5 we
obtain twenty-one different phase space diagrams. The 3-particle (two massless
and one massive) phase space we need for the Double-Reals is given by

PS3 =

∫

ddk1

∫

ddk2

∫

ddpt

[
1

k21

]

c

[
1

k22

]

c

[
1

p2t −m2
t

]

c

δ(4) (pb + q − k1 − k2 − pt)
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(a) (b) (c)

(d) (e)

Figure 5.5: Tree-level diagrams for b+W ∗ → t+ g + g

=

∫

ddk1

∫

ddk2

[
1

k21

]

c

[
1

k22

]

c

[
1

(pb + q − k1 − k2)2 −m2
t

]

c

. (5.40)

If we now multiply the phase-space diagrams by the phase space integration mea-
sure 6

dPS3 =
1

k21

1

k22

1

(pb + q − k1 − k2)2 −m2
t

, (5.41)

we obtain that our twenty-one phase space diagrams can be all described by just
3 independent topologies

t1 ={k21 , (−k1 + pb)
2, k22 , (k1 + k2 − pb)

2, (−k2 + pb)
2,

−m2
t + (−k2 + pb + q)2,−m2

t + (k1 + k2 − pb − q)2}
t2 ={k21 , (−k1 + pb)

2, k22 , (−k2 + pb)
2,−m2

t + (−k1 + pb + q)2,

−m2
t + (−k2 + pb + q)2,−m2

t + (k1 + k2 − pb − q)2}
t3 ={k21 , (k1 + k2)

2, (−k1 + pb)
2, k22 , (k1 + k2 − pb)

2,

−m2
t + (−k1 + pb + q)2,−m2

t + (k1 + k2 − pb − q)2}, (5.42)

corresponding to the three diagrams in Fig.5.6.

6We omit from now on the symbol []c of cut propagator for simplicity of notation.
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(a) (b) (c)

Figure 5.6: Phase-space diagrams for b+W ∗ → t+g+g corresponding respectively
to the independent topologies t1, t2, t3.

(a) t1 (b) t2 (c) t3

Figure 5.7: Independent topologies to b+W ∗ → t+ g + g.

From now on, we will not think anymore in terms of diagrams, but in terms
of topologies and subtopologies, meaning that, for the moment being, we will
disregard the physical meaning of diagrams and integrals and concentrate only on
their mathematical features. We will then adopt a different convention also for
drawings, since we will not draw anymore Feynman diagrams, but topologies and
integrals. Each (sub-)topology or integral will be represented by a graph. Each
internal line correspond to a propagator, whereas external lines represent fixed
(external) momenta. Massless lines are represented by normal lines. Massive lines
corresponding to m2

t , Q
2, s are represented respectively by thick lines, double lines

and thick dashes lines. Topologies Eq.(5.42) will be represented then by graphs in
Fig.5.7. The determination of independent topologies for this subprocess is trivial
because set of propagators describing all diagrams other than Fig.5.6 happen to
be apparent subtopologies of those in Eq.(5.42), without need to perform any shift
on loop momenta. By collecting all scalar integrals given by matrix elements and
reducing them to master integrals, we get the following set of master integrals (MIs
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from Master1 to Master7 belong to t1, from Master8 to Master11 to t2, from
Master12 to Master17 to t3).

Master1 = G(t1, {1,−1, 1, 0, 0, 0, 1})

Master2 = G(t1, {1, 0, 1, 0, 0, 0, 1})

Master3 = G(t1, {1, 0, 1, 1, 0, 0, 1})

Master4 = G(t1, {1, 0, 1, 1, 0, 1, 1})

Master5 = G(t1, {1, 1, 1, 1, 0, 1, 1})

Master6 = G(t1, {1,−1, 1, 1, 0, 1, 1})

Master7 = G(t1, {1, 0, 1, 1,−1, 1, 1})

(5.43)

Master8 = G(t2, {1, 0, 1, 0, 0, 0, 1})

Master9 = G(t2, {1,−1, 1, 0, 0, 0, 1})

Master10 = G(t2, {1, 0, 1, 0, 1, 1, 1})

Master11 = G(t2, {1, 1, 1, 1, 1, 1, 1})

(5.44)

Master12 = G(t3, {1, 0, 0, 1, 0, 0, 1})

Master13 = G(t3, {1,−1, 0, 1, 0, 0, 1})

Master14 = G(t3, {1, 0, 0, 1, 1, 0, 1})

Master15 = G(t3, {1, 0, 0, 1, 1, 1, 1})

Master16 = G(t3, {1,−1, 0, 1, 1, 1, 1})

Master17 = G(t3, {1, 0,−1, 1, 1, 1, 1})

(5.45)

The only independent integrals are contained in the basis for the first two topologies
t1, t2 (Fig.5.8). Masters for the third topology t3 are not independent since they
can be obtained from masters Masteri with i = 1, ..., 11 by appropriate shifts of
integration momenta, so that from now we will discard this basis, since it does
not provide any new independent integral. Inside the basis for t1, t2, all master
integrals are independent except for Master8 and Master9 which coincide with
Master1 andMaster2. In order to determine these MIs, according to the approach
presented in Chapter 4, we transform each one of these basis into a canonical basis
of integrals, listed in Eq.(5.47).
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∗ [(pb − k1)
2
]

(a) Master1 (b) Master2 (c) Master3

(d) Master4

∗ [(pb − k1)
2
]

(e) Master5

∗ [(pb − k2)
2
]

(f) Master6

(g) Master7 (h) Master10 (i) Master11

Figure 5.8: Set of independent MIs for b+W ∗ → t+ g + g.
Simple thin lines are massless, simple thick lines, double lines and thick dashed
lines are massive and correspond respectively to m2

t (either internal or external) ,
Q2 and s (only external).

M1 = (1 − z)(2G(t1, {2, 0, 1, 0, 0, 0, 2}) +G(t1, {2, 0, 2, 0, 0, 0, 1}))

M2 = G(t1, {2, 0, 1, 0, 0, 0, 2})

M3 = 2ǫ(1 + y)G(t1, {1, 0, 2, 1, 0, 0, 1})

M4 = ǫ(1 + y)zG(t1, {1, 0, 1, 1, 0, 1, 2})

M5 = 2ǫ2(1 + y)2G(t1, {1, 1, 1, 1, 0, 1, 1})

M6 = ǫ(1 + y)(1 − z)G(t1, {1, 0, 2, 1, 0, 1, 1})

M7 = 2ǫ(1 + y)zG(t1, {1, 0, 1, 1, 0, 2, 1}) (5.46)

M8 = (1 − z)(2G(t2, {2, 0, 1, 0, 0, 0, 2}) +G(t2, {2, 0, 2, 0, 0, 0, 1}))

M9 = G(t2, {2, 0, 1, 0, 0, 0, 2})

M10 = 2(1− 2ǫ)G(t2, {1, 0, 1, 0, 1, 1, 1})

M11 = ǫ2(1 + y)2(1− z)G(t2, {1, 1, 1, 1, 1, 1, 1}) (5.47)

For these integrals we are thus able to write a system of equations in canonical
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form, which can then be integrated using the procedure introduced in Section 4.4.
We report here the canonical system for topology t1 to provide an example of
how such a system can look like. Results for canonical basis and canonical DE
systems are reported systematically for all topologies in the Appendix. Starting
from here and throughout the rest of equations appearing in this Chapter and in
the Appendix, we will use the short notation dL to indicate the differential of a
logarithm which we would otherwise write as d log.

dM1 =ǫ(−6M2dL(z) +M1(−4dL(1− z) + 2dL(z)))

dM2 =ǫ(−3M2dL(z) +M1(−dL(1 − z) + dL(z)))

dM3 =ǫ(2M2dL(y) +M3(2dL(y) − dL(1 + y)− 3dL(y + z)) +M1(dL(1 − z)− dL(y + z)))

dM4 =ǫ(M4(4dL(y) − dL(z)− 4dL(y + z)) +M6(2dL(y) − dL(1− z)− 2dL(y + z))

+M7(−3dL(y) + dL(1 + y) + 2dL(y + z)) +M3(−3dL(y) + 3dL(y + z)))

dM5 =ǫ(−2M5dL(1 + y) +M7(2dL(z)− 2dL(y + z)) +M1(−dL(1− z) + dL(y + z))

+M6(−2dL(1 − z) + 2dL(y + z)) +M4(−4dL(z) + 4dL(y + z)))

dM6 =ǫ(M4(4dL(1 + y) + 2dL(z)− 4dL(y + z)) +M6(2dL(1 + y)− 4dL(1− z)− 2dL(y + z))

+M7(−2dL(1 + y) + 2dL(y + z)) +M3(−3dL(1 + y) + 3dL(y + z)))

dM7 =ǫ(−3M2dL(y) +M4(4dL(y) + 4dL(1 + y) − 4dL(y + z))

+M6(2dL(y) − 4dL(1 − z)− 2dL(y + z)) +M1(−dL(1− z) + dL(y + z))

+M7(−3dL(y) − dL(z) + 2dL(y + z)) +M3(−6dL(y) + 6dL(y + z))) (5.48)

By integrating such systems of differential equations, we obtain the solution for
our canonical integrals (and consequently for our original integral too) up to a
boundary condition to be determined in a chosen kinematic point. The following
paragraph is dedicated to explain how this can be achieved.

Determination of boundary conditions for RR masters.

We use the threshold region z → 1 to fix the value of our integrals. This implies
we need to determine in some way the behaviour of our integrals in this region,
without obviously knowing the general solution to the integrals themselves.
Given the kinematic plane described by coordinates z, y, we decide indeed to de-
termine the threshold behaviour in a fixed point , identified by the coordinates
{z = 1, y = 0}. In other words we want to determine the asymptotic behaviour
of our integrals in the double limit {z → 1, y → 0}, which corresponds actually to
s ≃ m2

t and Q2 ≪ s. In order to do this, we follow the procedure described in [7]
and briefly reported in the following.
We rescale the momenta k1, k2 of the extra particles emitted by the rescaling factor
z̄ = 1− z, which encodes information about the behaviour of such momenta in the
threshold region.
Then, we expand the integrand and the integration measure around z̄ = 0, so that
we are able to extract the leading (singular) behaviour of the integral in this kine-
matic point. When we perform such expansion some propagators become linear
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in the integration momenta and some others simply do not depend anymore on
them, thus not belonging anymore to the topology. In this last case, we have to
add to the topology some auxiliary propagators which will not appear in the soft
integrals but just serve the purpose of completing the topology and enabling us to
pass this topology to the reduction program FIRE.
We observe that in the soft limit all RR masters can be written as linear combina-
tions of just two soft masters, which are the Phase Space Master2 and Master4
in Eq.(5.43). These two soft masters can then be computed explicitly with tradi-
tional techniques, such as Feynman parameters or Mellin-Barnes.
Again we use the integrals of topology t1 to show explicitly how this procedure
works. In particular, let us pick up Master6 as defined in Eq.(5.43), and perform
on it the above-mentioned soft expansion. We start by rescaling gluon momenta
as k1 → z̄k1, k2 → z̄k2

Master6
ki→z̄ki→ →

∫

dd(z̄k1)d
d(z̄k2)×

×
(−z̄k1 + pb)

2

(z̄k1)2(z̄k2)2(z̄k1 + z̄k2 − pb)2(−m2
t + (z̄k1 + z̄k2 − pb − q)2)(−m2

t + (−z̄k2 + pb + q)2)

z̄→0
→

∫

z̄2dddk1d
dk2×

×
z̄(−2k1 · pb)

(z̄)4(k1)2(k2)2(−2z̄(k1 + k2) · pb)[z̄(s− 2k2 · (pb + q))][z̄(s− 2(k1 + k2) · (pb + q))]

= z̄2−4ǫ

∫

ddk1d
dk2

(−2k1 · pb)

((k1)2(k2)2(−2(k1 + k2) · pb)(s− 2k2 · (pb + q))(s− 2(k1 + k2) · (pb + q))

= z̄2−4ǫMasters6, (5.49)

where we defined with Masters6, the integral over the soft propagators obtained
after the expansion in z̄. If we apply the same procedure to the rest of the basis
for topology t1, we obtain

Master1 → z̄(4−4ǫ)Masters1

Master2 → z̄(3−4ǫ)Masters2

Master3 → z̄(2−4ǫ)Masters3

Master4 → z̄(1−4ǫ)Masters4

Master5 → z̄(−4ǫ)Masters5

Master6 → z̄(4−4ǫ)Masters6

Master7 → z̄(2−4ǫ)Masters7, (5.50)

where the soft integrals Mastersi are defined as

Masters1 =

∫

ddk1d
dk2

(−2k1 · pb)
(
k21
) (

k22
)
(−2k1 · pb − 2k1 · q − 2k2·b −2k2 · q + s)

Masters2 =

∫

ddk1d
dk2

1
(
k21
) (

k22
)
(−2k1 · pb − 2k1 · q − 2k2 · pb − 2k2 · q + s)
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Masters3 =

∫

ddk1d
dk2

1
(
k21
) (

k22
)
(−2(k1 + k2) · pb)(−2k1 · pb − 2k1 · q − 2k2 · pb − 2k2 · q + s)

Masters4 =

∫

ddk1d
dk2

1
(
k21
) (

k22
)
(−2k1 · pb − 2k2 · pb)(−2k2 · pb − 2k2 · q + s)

×

×
1

(−2k1 · pb − 2k1 · q − 2k2 · pb − 2k2 · q + s)

Masters5 =

∫

ddk1d
dk2

1
(
k21
) (

k22
)
(−2k1 · pb)(−2k1 · pb − 2k2 · pb)(−2k2 · pb − 2k2 · q + s)

×

×
1

(−2k1 · pb − 2k1 · q − 2k2 · pb − 2k2 · q + s)

Masters6 =

∫

ddk1d
dk2

(−2k1 · pb)
(
k21
) (

k22
)
(−2k1 · pb − 2k2 · pb)(−2k2 · pb − 2k2 · q + s)

×

×
1

(−2k1 · pb − 2k1 · q − 2k2 · pb − 2k2 · q + s)

Masters7 =

∫

ddk1d
dk2

(−2k2 · pb)
(
k21
) (

k22
)
(−2k1 · pb − 2k2 · pb)(−2k2 · pb − 2k2 · q + s)

×

×
1

(−2k1 · pb − 2k1 · q − 2k2 · pb − 2k2 · q + s)
. (5.51)

We have now to run the reduction program (FIRE in our case) on theMastersi
to check if they can be further reduced. The soft topology to which these integrals
belong would be in principle

ts1 ={z̄2k21 , z̄(−2k1 · pb), z̄2k22 , z̄(−2k1 · pb − 2k2 · pb),
z̄(−2k2 · pb), z̄(−2k2 · pb − 2k2 · q + s), z̄(−2k1 · pb − 2k2 · pb − 2k1 · q − 2k2 · q + s)}.

(5.52)

We have no soft propagator which does not depend on the integration momenta
k1, k2, but we encounter another scenario where again the soft topology must be
manipulated in order to obtain an ensemble of 7 independent propagators. Indeed,
in this case one of the 7 propagators in ts1 can be written as linear combination of
the others, i.e. z̄(−2k2 · pb) = z̄(−2(k1 + k2) · pb)− z̄(−2k1 · pb). So we drop this
propagator (z̄(−2k2 · pb)) and replace it with another one −2k1 · k2 in order to get
a complete topology (namely a minimal closed ensemble of linearly independent
propagators) which can be accepted by FIRE. We observe though, that in this
case the propagator z̄(−2k2 ·pb) that we are dropping out of the topology actually
appears in one of the integrals, namely Masters7, but this problem can be easily
solved by decomposing the integral as

Masters7 =

∫

ddk1d
dk2

(−2(k1 + k2) · pb)− (−2k1 · pb)
(
k21
) (

k22
)
(−2k1 · pb − 2k2 · pb)(−2k2 · pb − 2k2 · q + s)

×

×
1

(−2k1 · pb − 2k1 · q − 2k2 · pb − 2k2 · q + s)
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=

∫

ddk1d
dk2

1
(
k21
) (

k22
)
(−2k2 · (pb + q) + s)(−2(k1 + k2) · (pb + q) + s)

−

∫

ddk1d
dk2

(−2k1 · pb)
(
k21
) (

k22
)
(−2k1 · pb − 2k2 · pb)(−2k2 · pb − 2k2 · q + s)

×

×
1

(−2k1 · pb − 2k1 · q − 2k2 · pb − 2k2 · q + s)
. (5.53)

The original integral has been written as a sum of two other integrals of which
the first one is new and the second one is instead nothing but Masters6. But,
regardless of whether these integrals are new or not, the crucial point is that they
do not contain anymore the linearly dependent propagator that we dropped. In
this particular case, they do not even contain the new propagator−2k1 ·k2, but this
fact is rather irrelevant for the reduction (and indeed in some other topologies we
encountered the situation where the new propagator, added to obtain a complete
topology, was indeed present in some soft integrals after decomposition or partial
fractioning). By performing reduction on all the soft integrals Mastersi with i =
1, ..., 6 and on the new integral obtained on the r.h.s. of Eq.(5.53), we see that all
these integrals shrink to linear combinations of Masters2,Masters4 as defined in
Eq.(5.43).

Masters1 = −(1/4)(Q2 + s)Masters2

Masters2 = Masters2,

Masters3 = −(((−3 + 4ǫ)Masters2)/((−1 + 2ǫ)(Q2 + s)))

Masters4 = Masters4

Masters5 = ((−1 + 4ǫ)(2(3 − 10ǫ + 8ǫ2)Masters2 + ǫ2s(Q2 + s)Masters4))/(3ǫ
3s(Q2 + s)2)

Masters6 = (4(−3 + 4ǫ)Masters2 + (−1 + 3ǫ)s(Q2 + s)Masters4)/(2(−1 + 2ǫ)s)

Masters7 =
(−3 + 4ǫ)Masters2

(−1 + 2ǫ)s

−
4(−3 + 4ǫ)Masters2 + (−1 + 3ǫ)s(Q2 + s)Masters4

2(−1 + 2ǫ)s
. (5.54)

Computation of the two independent soft masters, performed by C. Duhr by
means of Mellin-Barnes technique, gives

Masters2 =
Γ(1 − ǫ)2

Γ(4− 4ǫ)

Masters4 =
Γ(1 − ǫ)2

Γ(4− 4ǫ)

4(3 − 4ǫ)

ǫ(1 + y)

(Γ(1 − 3ǫ)Γ(2 − 2ǫ)Γ(1 + ǫ)Γ(1 + 2ǫ)

ǫΓ(1− ǫ)2

− 2HypergeometricPFQ ({1, 1− 2ǫ, 1− ǫ}, {2 − 2ǫ, 1 + ǫ}, 1])). (5.55)

Thus, by plugging these results into Eq.(5.54) and then back into Eq.(5.50), we
are able to determine the values of our integrals in the asymptotic limit {s →
m2

t , Q
2 ≪ s}.

Before concluding this explanation, we would like to do some important remarks.
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• The procedure we just reported is actually nothing new. Indeed what we did
is Expansion by Region (see Section 4.3) on Double-Real integrals, in order
to extract their leading behaviour in the double limit {s→ m2

t , Q
2 ≪ s}.

• At the beginning of the explanation we pointed out that z̄ = 1 − z is the
variable which encode the asymptotic behaviour of the extra-radiation mo-
menta in the soft limit, because this limit is identified by all the momentum
components of k1, k2 scaling as z̄. That’s why, in order to extract the leading
soft behaviour of our integrals, we scale k1, k2 by z̄, and we replace m2

t with
s(1− z̄).
This would be correct without any further remark if we were looking for the
only s→ m2

t limit of our integrals. But we are actually looking for the double
limit s → m2

t , Q
2 ≪ s! So, given that z̄ is the small parameter of our ex-

pansion, this means that we should in principle rescale also Q2 by z̄, namely
make the substitution Q2 → z̄Q2 in the propagators, and then expand.
But we observe that in our specific case, this is not needed, because, once
we expand the scalar products contained in our propagators, and substitute
p2b = 0, pb ·q = (s+Q2)/2, no propagator depend anymore on Q2. This obser-
vation holds for all RR masters describing the bottom channel. Obviously,
this implies that our integrals will not exhibit singularities in y = 0. Thus
we can safely conclude that the leading behaviour of MIs expansions in the
limit {z → 1, y → 0} is the same as the leading behaviour in the only limit
z → 1 up to y-dependent corrections given by functions which are smooth
for y → 0.

• We observe finally that performing Expansion by Region to obtain soft be-
haviour of integrals which contain only phase space integrations (no real
loops!) is indeed trivial, as it can be seen by the above formulas, in a
sense that we always get only the hard region contributing to the expan-
sion. This is quite obvious if we think of the nature of these integrals. The
soft limit requires all components of extra-radiation momenta k1, k2 to be
small compared to s. But this same components are in this case the integra-
tion variables! The usual scenario of Expansion by Region for loop integrals
would see some constraints imposed on some ratio of external invariants to
be small and loop momenta totally free to be ‘small’ or ‘big’ with respect
to this ratio. From the analysis of this interplay between external and in-
tegration momenta, one is then able to determine all regions contributing.
In this particular case, we do not have such an interplay because integration
variables (i.e. components of k1, k2) are directly required to be small with
the same scaling with respect to s (and this implied the condition on the
external invariants s ≃ m2

t to be satisfied), meaning that only one ‘region’
contributes to the desired limit!
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Topologies and Master Integrals for b(pb) +W ∗(q) → t(pt) + b(k1) + b̄(k2).

(a) (b)

Figure 5.9: Tree-level diagrams for b+W ∗ → t+ b+ b̄

Diagrams contributing to b +W ∗ → t + b + b̄ are drawn in Fig.5.9. By taking
the square modulus of these diagrams and adding the Phase Space integration
measure Eq.(5.41), we obtain ten different phase space diagrams which happened
to be described by just one independent topology.

t4 ={k21 , (k1 + k2)
2, k22 , (k1 + k2 − pb)

2, (−k2 + pb)
2,

−m2
t + (k1 − q)2,−m2

t + (k1 + k2 − pb − q)2}, (5.56)

which is represented according to our convention in Fig.5.10.

Figure 5.10: Independent topologies to b+W ∗ → t+ b+ b̄.

When reducing all scalar integrals to masters, we get the following set of MIs, which
are all new with respect to the sets of masters obtained for b +W ∗ → t + g + g,
except for the first three, namely from Master1 to Master3.

Master1 = G(t4, {1,−1, 1, 0, 0, 0, 1})

Master2 = G(t4, {1, 0, 1, 0, 0, 0, 1})

Master3 = G(t4, {1, 0, 1, 1, 0, 0, 1})
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Master4 = G(t4, {1,−1, 1, 0, 0, 1, 1})

Master5 = G(t4, {1, 0, 1,−1, 0, 1, 1})

Master6 = G(t4, {1, 0, 1, 0, 0, 1, 1})

Master7 = G(t4, {1,−1, 1, 1, 0, 1, 1})

Master8 = G(t4, {1, 0, 1, 1, 0, 1, 1})

Master9 = G(t4, {1, 1, 1, 0, 0, 1, 1})

Master10 = G(t4, {1, 1, 1, 0, 1, 1, 1})

(5.57)

Along the same path followed to solve integrals b +W ∗ → t + g + g, we per-
form a change of basis towards a canonical one. This canonical basis and the
correspondent system of canonical DEs are reported in the Appendix for the sake
of brevity (see Eq.(7.8) and (7.9)). We underline that the alphabet describing
b+W ∗ → t+ g+ g happens to be a subset of the alphabet for b+W ∗ → t+ b+ b̄,
which contains in addition the two new letters 1 + y + z, 1 + 2y + z.

ARR
bb = {z, z − 1, y, 1 + y, z + y, 1 + y + z, 1 + 2y + z}. (5.58)

The double limit y → 0, z → 1 for Masteri as defined in Eq.(5.57) reads

Master1 → z̄(3−4ǫ)Masters2

Master2 → z̄(5−4ǫ)((−1 + ǫ)sMasters2)/(−10 + 8ǫ)

Master3 → z̄(2−4ǫ)(−(((−3 + 4ǫ)Masters2)/((−1 + 2ǫ)(Q2 + s))))

Master4 → z̄(3−4ǫ)Masters2

Master5 → z̄(5−4ǫ)((−1 + ǫ)sMasters2)/(−10 + 8ǫ)

Master6 → z̄(4−4ǫ)(−(1/2)(Q2 + s)Masters2)

Master7 → z̄(2−4ǫ)(−(((−3 + 4ǫ)Masters2)/((−1 + 2ǫ)(Q2 + s))))

Master8 → z̄(4−4ǫ)(−((sMasters2)/(4(Q
2 + s))))

Master9 → z̄(1−4ǫ)(2(−3 + 4ǫ)Masters2)/(ǫs)

Master10 → z̄(−4ǫ)(−(((−1 + 2ǫ)(−3 + 4ǫ)(−1 + 4ǫ)Masters2)/(ǫ
3s(Q2 + s)))). (5.59)

Being that Master2 in Eq.(5.57) is the same integral as Master2 in Eq.(5.43), all
the information needed to compute masters for b +W ∗ → t+ b+ b̄ are provided.
This concludes our discussion of the Double-Real master integrals and we address
in the next subsection the Real-Virtual contribution.
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(a) Master4

∗ [(k1 + k2)
2
]

(b) Master5

∗ [(pb − k1 − k2)
2
]

(c) Master6

(d) Master7

∗ [(k1 + k2)
2
]

(e) Master8 (f) Master9

(g) Master10

Figure 5.11: Set of independent MIs for b+W ∗ → t+ b+ b̄.
Simple thin lines are massless, simple thick lines, double lines and thick dashed
lines are massive and correspond respectively to m2

t (either internal or external) ,
Q2 and s (only external).
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Real-Virtuals [b+W ∗ → t+X1]1−loop

Diagrams contributing to [b+W ∗ → t+ g]1−loop are drawn in Fig.5.12. Phase
space for the Real-Virtual corrections is a simple 2-particle (one massive and one
massless) one, given by

PS2 =

∫

ddk

∫

ddpt

[
1

k2

]

c

[
1

p2t −m2
t

]

c

δ(4) (pb + q − k − pt)

=

∫

ddk

[
1

k2

]

c

[
1

(pb + q − k)2 −m2
t

]

c

. (5.60)

The corresponding measure is thus7

dPS2 =
1

k2
1

(pb + q − k)2 −m2
t

. (5.61)

By contracting amplitudes for diagrams in Fig.5.12 with the one for the tree-level
process b + W ∗ → t + g, adding the 2-particle (one massive and one massless)
phase space measure Eq.(5.61) and searching for independent topologies, we find
that three independent topologies in Eq.(5.62) (drawn in Fig.5.13) are sufficient
to describe all the Phase Space diagrams.

t1 ={k2, (k + pb)
2, l21 −m2

t , (l1 − q)2, (k + l1 − q)2, (k + l1 − pb − q)2,−m2
t + (−k + pb + q)2}

t2 ={k2, (k + pb)
2, l21, (l1 + pb)

2,−m2
t + (l1 − q)2,−m2

t + (k + l1 − q)2,−m2
t + (−k + pb + q)2}

t3 ={k2, (k + pb)
2, l21, (l1 + pb)

2, (−k + l1 + pb)
2,−m2

t + (l1 − q)2,−m2
t + (−k + pb + q)2}.

(5.62)

Reduction to master integrals result in the set of MIs Eq.(5.63), where we decided
this time to gather all master integrals coming from the three topologies Eq.(5.62)
into just one set of masters for which we will write and integrate just one system
of DE.

Master1 = G(t1, {1, 1, 0, 1, 0, 2, 0})

Master2 = G(t1, {1, 1, 0, 2, 0, 1, 0})

Master3 = G(t1, {1, 1, 0, 1, 0, 1, 0})

Master4 = G(t1, {1, 1, 0, 1, 0, 0, 0})

Master5 = G(t1, {1, 1, 0, 1, 1, 1, 0})

Master6 = G(t1, {1, 1, 0, 1, 1, 0, 0})

Master7 = G(t1, {1, 1, 0, 0, 1, 0, 1})

7We omit from now on the symbol []c of cut propagator for simplicity of notation.
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Master8 = G(t1, {1, 1, 0, 1, 1, 0, 2})

Master9 = G(t1, {1, 1, 0, 2, 1, 0, 1})

Master10 = G(t1, {1, 1, 0, 1, 1, 0, 1})

Master11 = G(t1, {1, 1, 0, 1, 1, 1, 1})

Master12 = G(t2, {1, 1, 0, 0, 1, 1, 0})

Master13 = G(t2, {1, 1, 0, 1, 0, 0, 1})

Master14 = G(t2, {2, 1, 0, 1, 0, 0, 1})

Master15 = G(t2, {1, 2, 0, 1, 0, 0, 1})

Master16 = G(t2, {1, 1, 0, 1, 0, 1, 1})

Master17 = G(t2, {1, 1, 0, 2, 0, 1, 1})

Master18 = G(t2, {1, 2, 0, 1, 0, 1, 1})

Master19 = G(t2, {1, 1, 0, 0, 1, 1, 1})

Master20 = G(t3, {1, 1, 0, 1, 0, 1, 0}})

Master21 = G(t3, {1, 1, 0, 1, 0, 1, 1})

Master22 = G(t3, {2, 1, 0, 1, 0, 1, 1})

Master23 = G(t3, {1, 1, 0, 2, 0, 1, 1})

Master24 = G(t2, {1, 1, 1, 1, 1, 1, 1}) (5.63)

Once again, we transform the original masters Eq.(5.63) into the canonical set
identified by Eq.(7.10), which satisfies in turn the system of DEs in canonical form
Eq.(7.11), reported in the Appendix. 8. The alphabet which describes the system
is found to be

ARV = {z, 1− z, y, 1 + y, z + y, 1 + y + z}. (5.64)

Canonical DE are integrated with the same method explained in Chapter 4, as for
the Double-Reals masters.
The computation of the boundary condition is instead quite different and definitely
more tricky than that of the RR case, so we will focus on it for the rest of the RV
subsection.

8We thank Dr. B. Mistlberger for kindly providing cross-check to Eq.(7.10) and (7.11)
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(a) Box n.1 (b) Box n.2 (c) Box n.3

(d) Triangle n.1 (e) Triangle n.2 (f) Triangle n.3

(g) Triangle n.4 (h) Triangle n.5 (i) Triangle n.6

(j) Bubble n.1 (k) Bubble n.2 (l) Bubble n.3 (m) Bubble n.4

Figure 5.12: 1-loop corrections to b+W ∗ → t+ g
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(a) t1 (b) t2 (c) t3

Figure 5.13: Independent topologies to [b+W ∗ → t+ g]1−loop.



5.2. MASTER INTEGRALS FOR CC-DIS AT O(α2
S) 165

∗

(a) Master1 (b) Master2

∗

(c) Master3

(d) Master4 (e) Master5 (f) Master6

(g) Master7 (h) Master8 (i) Master9

Figure 5.14: Set of independent MIs for b +W ∗ → t + g at 1-loop (Master from
1 to 9).
Simple thin lines are massless, simple thick lines, double lines and thick dashed
lines are massive and correspond respectively to m2

t (either internal or external) ,
Q2 and s (only external).
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(a) Master10 (b) Master11 (c) Master16 (d) Master24

(e) Master17 (f) Master18 (g) Master19

Figure 5.15: Set of independent MIs for b +W ∗ → t + g at 1-loop (Master from
10 to 24).
Simple thin lines are massless, simple thick lines, double lines and thick dashed
lines are massive and correspond respectively to m2

t (either internal or external) ,
Q2 and s (only external).
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Determination of boundary conditions for the b-channel RV masters.

We remind that our RV integrals depend on 3 dimensional scales {s,m2
t , Q

2},
which we recast into the set {s, z = m2

t/s, y = Q2/s}.
Being the only dimensional scale, s parametrizes the dimension of the integral in
powers of energy. The evolution of our integrals with respect to s is then trivial.
On the other hand, we do not have a priori any information about the evolution
with respect to z and y. This information is extracted by integrating the system
of DEs for the MIs.
For the rest of this subsection, we assume that DEs systems (Eq.(7.11)) for the
masters have already been integrated.
We are left only with the determination of initial conditions. We choose to com-
pute them in the same double limit z → 1∧ y → 0, which we used also for the RR
(we remind that it corresponds to the limit in which the real emitted gluon is soft
(s ≃ m2

t ) and the virtuality of the W ∗ is much smaller than s (Q2 ≪ s).

The way we compute these initial conditions is the following.
We are dealing with integrals where one integration variable l1 is a ‘real’ loop mo-
mentum (belonging to a virtual particle) and the other one k is the momentum
of a real emitted particle whose delta of on-shellness has been replaced by a cut
propagator.
In order to get the asymptotic behaviour of our integrals in the chosen limit
{z → 1, y → 0}, we would like to use Expansion by Region (see 4). But this
method is designed for pure loop momenta, whose components and off-shellness
can assume any value.
We cannot apply this method to the integration over k, because k describes a real
particle (k2 = 0) and also it must be softer than any other external momentum in
order to realize the threshold limit s ≃ m2

t .
The procedure we decide to adopt can be then resumed in the following steps.

• We ‘cut’ again our integrals, namely transforming them back into real 1-loop
integrals integrated over a 2-particles Phase Space.

• We apply Expansion by Region only to the pure 1-loop integral.

• We finally integrate the result over the soft Phase Space (the integration
being thus over only the angular variable).

2-particle Phase Space and invariants parametrization
We imagine now that we have cut our diagrams Phase Space diagrams as we said
above, so that for the moment we forget about the phase space integration over
the real momentum k and we are thus left with 1-loop corrections to the process

b(pb) +W ∗(q) → t(pb + q − k) + g(k). (5.65)
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We remind that for this process at any number of loops, the kinematic is parametrized
by two masses

Q2 = −q2, m2
t = (pb + q − k)2 (5.66)

and two Mandelstam invariants among 9

s = (pb + q)2, t = (pb − k)2, u = (q − k)2. (5.67)

Since in our process the off-shell W -boson acts only as external particle, its off-
shellness Q2 will never appear as an internal mass in the pure 1-loop integrals.
Obviously the same holds for the Mandelstam invariants s, t, u. Consequently,
the pure 1-loop integrals will be functions of the kinematic invariants classified as
follows

• internal mass: m2
t

• external scales: m2
t , Q2, s, t, u.

We choose to use as independent variables to describe our process S1 = {s,Q2,m2
t , λ},

where λ = 1/2(1+ cos θ), being θ the angle between pb and k. In terms of this set
S1 , the remaining variables are expressed as

t = −s+Q2

s
(s−m2

t )(1− λ)

u = m2
t −Q2 − s− t = −m

2
tQ

2

s
+
λ(m2

t − s)(Q2 + s)

s
, (5.68)

dφ2 =
1

8π

s−m2
t

s

1

Γ(1 − ǫ)

[
(s−m2

t )
2

4πs

]ǫ

[λ(1 − λ)]
ǫ
dλ. (5.69)

The physical region is given by the volume in the parameter space given by

s > 0 ∧Q2 > 0 ∧ s > m2
t > 0 ∧ 0 < λ < 1. (5.70)

which defines also the sign of the remaining invariants t < 0, u < 0.
We perform a last change of variables going from set S1 to set S2 = {z, y, s, λ},
where we introduce the usual dimensionless variables z, y. As for the Double-Real
masters, also in this case we define the variable z̄ = 1 − z, which captures the
scaling of the extra radiation momenta in the threshold limit (z̄ → 0). Our 1-loop
integrals will be then computed as expansions around the ‘small’ parameter z̄.

9The on-shellness and momentum conservation constraints yields the relation s + t + u =
m2

t −Q2.
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To be able to expand at integrand level around z̄ → 0, y → 0, we need to know
the scaling of the all invariants in this limit:

m2
t → (1− z̄)s

Q2 → ys

t→ −z̄ (1 + y) (1− λ)s

u→ (−sy)− z̄ (λ+ (λ− 1)y) s. (5.71)

Finally, in order to integrate the result of Expansion by Region at 1-loop over the
Phase Space, we need the expression this latter in terms of z̄ (Eq.(5.72)).

dφ2 =
2(−3+2ǫ)π(−1+ǫ)

(
(1 − λ)−ǫλ−ǫz̄1−2ǫ)

)

Γ[1− ǫ]
. (5.72)

1-loop topologies in the double limit y → 0, z → 1

When we cut our RV integrals, we get a certain number of pure 1-loop integrals,
to be perform in the desired kinematic limit. Among these integrals, we have 2-
,3-,4-point functions.
We describe in the following the computation via Expansion by Region of each
one of these categories of functions. The method is explained in 4. We briefly
recall here what the method consists of. Suppose we want to compute a Feynman
integral which depend on a1, a2,.. dimensional scales in a particular kinematic
limit which is identified by the ratio between two of these scales being small, for
instance a = a1/a2 → 0. Obviously we want to do this without needing to the
integral in full kinematic. Then, ‘expansion by regions’ consists in

• revealing ‘regions’ where the parameters of the Feynman representation of
the integral scale as the expansion parameter a elevated to such integer power
that the U and F polynomial result to scale homogeneously under a global
rescaling of all the parameters (these are the regions which are supposed to
contribute to the integral non-zero contributions in DR),

• computing via traditional techniques (Feynman Parameters or Mellin-Barnes)
these regions,

• summing up the contributions from these regions. This is the result for our
integral in the limit a→ 0.

The most difficult part is revealing all the regions contributing in a given limit. In
our case fortunately this is quite, because we are at 1-loop and we can quite safely
rely on the results of Asy2.m ([80]) which reveals these regions automatically for
us. Then computation of regions is carried out via Feynman parameters. In the
following we analyse in detail topology by topology how this procedure works.
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• BUBBLES

1. Massless bubble

pb − k

b1(pb · k) =
∫

ddl1
1

(l1 − q)2(k + l1 − pb − q)2

= Γ(ǫ)

∫

dx1dx2δ(1− x1 − x2)(−t x1 x2)−ǫ(x1 + x2)
−2+2ǫ

(5.73)

This integral depends on just one dimensional scale t = −2pb ·k and the
F polynomial is positive-definite for t < 0, namely for physical values
of t. So, the dependence on t of the result can be just one: t elevated
to the dimension (in powers of energy) of the integral, which means in
this case, since t < 0, (−t)(4−2ǫ−4)/2 = (−t)−ǫ. If we recall Eq.(5.71),
then we see immediately that this integral present a double branch-cut
for z ≤ 1, λ ≤ 1. The result is simply (without needing to compute any
region)

b1(z, y, λ, s) =
(1− λ)−ǫs−ǫ(y + 1)−ǫ(z̄)−ǫΓ(1− ǫ)2Γ(ǫ)

Γ(2− 2ǫ)
. (5.74)

If we expand in ǫ we get logs of z̄, which represent nothing but the
above-mentioned branch-cut.

2. Massive bubble with internal mass m2

t
and external mass Q2

q
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b2(Q
2,m2

t ) =

∫

ddl1
1

(l12 −m2
t )(l1 − q)2

=Γ(ǫ)

∫

dx1dx2δ(1 − x1 − x2)(x1 + x2)
−2+2ǫ

× (x1(Q
2x2 +m2

t (x1 + x2)))
−ǫ (5.75)

This integral depend on 2 dimensional scales: the internal mass m2
t and

the external mass Q2, which we can re-parametrize by saying that it
depends on one dimensional scale,say m2

t which gives its dimension in
power of energy and then on the dimensionless ratio Q2/m2

t . It can
be seen by analysing the behaviour of either the F polynomial or the
denominators that no singularities occur when the double condition
{s → m2

t , Q
2 ≪ s} is realized. Indeed, Asy2.m gives just the hard

region {0, 0} in this limit. We also mark that the F polynomial is
positive-definite in the physical region. By evaluating the hard region,
we get

b2(Q
2 ≪ s,m2

t ≃ s) = −s−ǫΓ(−1 + ǫ). (5.76)

3. Massive bubble with internal mass m2

t
and external mass u

q − k

b3(−u,m2
t ) =b6(−u,m2

t ) =

∫

ddl1
1

(l21 −m2
t )(k + l1 − q)2

=Γ(ǫ)

∫

dx1dx2δ(1− x1 − x2)(x1 + x2)
−2+2ǫ

× (x1(−ux2 +m2
t (x1 + x2)))

−ǫ (5.77)

Exactly the same consideration holds for this integral as for the previous
massive bubble. The F polynomial is positive-definite in the physical
region {u < 0,m2

t > 0} and, since the integral depend on −u/m2
t , the

limit s → m2
t is clearly smooth. Moreover, if we also ask for Q2 ≪ s,

again the external scale goes to zero (it would remain q · k but k is
soft!), but the integral, as in the previous case, does not develop any
new singularity thanks to the presence of the internal scale m2

t . We
conclude that the double limit {s → m2

t , Q
2 ≪ s} does not produce
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singularities and thus we just need to compute the hard region, which
reads again

b3(Q
2 ≪ s,m2

t ≃ s) = −s−ǫΓ(−1 + ǫ). (5.78)

For this particular topology and external mass, we also have to evaluate
the two integrals with dotted propagators in Fig.5.16a,5.16b.

q − k

(a)

q − k

(b)

For both these integrals the double limit is smooth, so that we only
have to compute the hard region, as confirmed by Asy2.m. (NB: The
only pathological case may be that of integral with a massless dotted
propagator, but also in this case the integral is convergent in the IR
region, as it can be seen from power counting). For these integrals we
get

b4(−u,m2
t ) =

∫

ddl1
1

[(l12 −m2
t )]

2(k + l1 − q)2

=s−1−ǫΓ[1 + ǫ]x−ǫ
1 (x1 + x2)

−1+2ǫ

× (λ(1 + y)x2 + (1 − z̄)(x1 − (−1 + λ)(1 + y)x2))
−1−ǫ

(5.79)

b4(Q
2 ≪ s,m2

t ≃ s) =(s−1−ǫΓ[1 + ǫ])/(1− ǫ). (5.80)

b5(−u,m2
t ) =

∫

ddl1
1

(l12 −m2
t )[(k + l1 − q)2]2

=s−1−ǫΓ[1 + ǫ]x−1−ǫ
1 x2(x1 + x2)

−1+2ǫ

× (λ(1 + y)x2 + (1 − z̄)(x1 − (−1 + λ)(1 + y)x2))
−1−ǫ

(5.81)

b5(Q
2 ≪ s,m2

t ≃ s) =(s−1−ǫΓ[1 + ǫ])/((−1 + ǫ)ǫ). (5.82)

4. Massive bubble with internal mass m2

t and external mass s
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pb + q

b7(s,m
2
t ) =

∫

ddl1
1

(l1 + pb)2(−m2
t + (l1 − q)2)

=Γ(ǫ)

∫

dx1dx2δ(1 − x1 − x2)(x1 + x2)
−2+2ǫ

× (x2(−sx1 +m2
t (x1 + x2)))

−ǫ (5.83)

This integral depends only on 2 dimensional scales, s (external) and
m2

t (internal). This implies that the F polynomial is positive-definite in
the region s < 0,m2

t > 0. Because of the condition s < 0, this region
is non-physical and we will refer to it in the following as ‘euclidean’ or
‘non-physical’ region. This tells us that the result for our integral will
be a function which takes complex values for physical values of s (s > 0)
and this consideration holds in general, regardless of the various limits
we can take for this function.
Now, let us consider also the fact that we are interested in computing
not for general values of s, but for s → m2

t , namely when the exter-
nal scale approaches the internal one. This kind of limit, typical of
Minkowsky space, is usually known as on-shell limit of a Feynman in-
tegral, and experience warns us that this limit might not be smooth.
And this is indeed the case! If we ask Asy2.m to give us the expansions
in the double limit {Q2 ≪ s, s → m2

t } (which in this case reduces to
only s→ m2

t ), it gives us two regions {0, 0}, {0, 1} and from the second
region we actually get a branch cut singularity.
We dedicate the following paragraph to explaining the procedure we
use in order to determine exactly the imaginary part acquired by the
integral in the physical region.

Analytical continuation: Whenever we have to deal with integrals whose
result is a complex-valued function, it is always good to compute them
in a region where they are real (which is identified by the condition that
the F polynomial be positive-definite) and then analytically continue
them back to a region of physical interest, where they develop then a
non-zero imaginary part. Analytical continuation is performed starting
from the Feynman prescription on the invariants, which gives positive
imaginary part to external invariants (e.g. s → s + i0) and negative
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imaginary part to the external invariants (e.g. m2
t → m2

t − i0). This
procedure guarantees, if correctly carried out, the imaginary part of the
result to have the correct sign.
Now, if we were to compute the integral Eq.(5.83) for general value of
s,m2

t , we would simply compute for negative s and then continue back
with the just-mentioned prescription s → s + i0. But since we are in-
terested in the value of the integral around the point s ≃ m2

t , things
are slightly more subtle. In order to combine expansion around z̄ ≃ 0
with analytical continuation, the following strategy revealed itself more
efficient, specially for the computation of more complicated integrals
(e.g. see the Boxes computation below) which depend on other scales
on top of s and m2

t
10.

In order to expand around z̄ → 0, we need to parametrizem2
t as s(1−z̄).

Once we insert this parametrization in the F polynomial and we sim-
plify it, we assist to a cancellation of the terms having −s as a prefactor,
and we are left with a polynomial whose sign is not definite because of
the only presence of terms having −sz̄ as prefactors. Integral b7 is the
easiest example where we can see this.

Fb7 = x2(−sx1 +m2
t (x1 + x2))

= x2(−sx1 + s(1− z̄)(x1 + x2))

= x2(sx2 − sz̄(x1 + x2)) (5.84)

It is clear then that the easiest thing to do is to compute for z̄ < 0,
which means we are in the unphysical region ‘above threshold’ m2

t > s,
and then continue back to physical values 0 < z̄ < 1. In order to do so,
we define for simplicity

x̄ = −z̄, −1 < x̄ < 0 for 0 < m2
t < s, 0 < x̄ for m2

t > s. (5.85)

The last ingredient we need to work out is the prescription to analyti-
cally continue x̄, which we derive from the prescription on s as follows.

1− z̄ = z =
m2

t

s
→ m2

t

s+ i0
=
m2

t

s
− i0 = 1− z̄ − i0

(5.86)

This implies the following prescription

z̄ → z̄ + i0, (5.87)

10the consideration we are going to explain in the following hold not only for this specific
integral, but also for all other integrals (triangles and boxes) whose F polynomials depend on
both s and m2

t are characterized by the same kind of problems concerning threshold expansion
and analytical continuation.
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thus implying

x̄ = −z̄ → −z̄ − i0 = z̄(−1− i0) = z̄e−iπ. (5.88)

We can now start computing our integral.

HARD REGION {0, 0}

For the hard region we do not even need analytical continuation because
in this region we simply set z̄ = 0 in the F polynomial, thus eliminating
since the beginning any ambiguity in its sign.

b7(z̄, s){0,0} =

∫

dx2s
−ǫΓ(ǫ)x−2ǫ

2 (1 + x2)
−2+2ǫ

=
s−ǫΓ(ǫ)

1− 2ǫ
(5.89)

REGION {0, 1}

b7(z̄, s){0,1} = a1−2ǫs−ǫΓ(ǫ)

∫

dx2(x̄ + x2)
−ǫx−ǫ

2

= s−ǫa1−2ǫx̄1−2ǫΓ(1− ǫ)Γ(−1 + 2ǫ)

= −e2iπǫs−ǫa1−2ǫz̄1−2ǫΓ(1− ǫ)Γ(−1 + 2ǫ) (5.90)

We see that the branch cut start actually at O(z̄), so we need to com-
pute the complete contribution to this order, which includes actually
the second term (Next-to-Leading-Order) in the expansion of the hard
region.
HARD REGION {0, 0} at NLO-z̄

b7(z̄, s)
NLO
{0,0} = −1

2
s−ǫz̄Γ(ǫ). (5.91)

Thus our final result is

b7(z → 1, s) =
s−ǫΓ(ǫ)

1− 2ǫ
+−1

2
s−ǫz̄Γ(ǫ)− e2iπǫs−ǫz̄1−2ǫΓ(1− ǫ)Γ(−1 + 2ǫ).

(5.92)

• TRIANGLES
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pb − k

q

pb + q − k

Figure 5.16: Triangle n.1: t1

1. Triangle with 1 internal mass m2
t and external masses {Q2, t,m2

t}

t1(Q
2,−t,m2

t ) =

∫

ddl1
1

(l21 −m2
t )(l1 − q)2(k + l1 − pb − q)2

=Γ(ǫ)

∫ ∞

0

dx2dx3Γ(1 + ǫ)(1 + x2 + x3)
−1+2ǫ

(m2
t (1 + x2) + x2(Q

2 − t x3))
−1−ǫ (5.93)

This integral depends on 3 dimensional scales and, among these scales,
m2

t is both internal and external. So we are not guaranteed a priori
that the F polynomial respects the rules of being positive-definite for
negative external masses and positive internal masses. But, in the case
under study, this is true if m2

t is considered as internal mass. F is
positive-definite for the physical values of parameters {Q2 > 0,m2

t >
0, t < 0}. The regions given by Asy2.m for this integral are 3: {{0, 0, 0},
{0,−1,−1}, {0, 0,−1}}. Since the computation of regions does not
present any problems in this case and we do not need any analytical
continuation, we just report results, without any intermediate passage.

t1(z̄, y, s){0,0,0} =
s−1−ǫΓ(ǫ)

2ǫ

t1(z̄, y, s){0,−1,−1} = −4ǫπ3/2s−1−ǫ( (1− λ) z̄)−ǫ csc(ǫπ)

ǫΓ(1/2− ǫ)

t1(z̄, y, s){0,0,−1} =
πs−1−ǫ((1− λ) z̄)−2ǫ csc(2ǫπ)Γ(1 + ǫ)

ǫ
(5.94)

We mark that different regions may require the regulator ǫ to be posi-
tive or negative, depending on which kind of divergence (IR or UV) it is
supposed to regulate in that region. But, since we are working in DR,
we are guaranteed that we can always make an analytic continuation
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in ǫ of our results. This means that we can perform, for instance, an
analytic continuation in all regions which are initially defined for neg-
ative ǫ. In general, the analytic continuation we have to do are trivial
(actually simple substitutions) because we never get ǫ elevated to an
non-integer exponent (which would acquire a complex phase). Indeed,
ǫ only appears in Γ functions, inverse integer powers (namely explicit
poles 1/ǫ, 1/ǫ2, ...) and in csc, sec. These functions are defined in the
whole complex plane (except for well-known isolated poles in ǫ), so as
a matter of fact, we do not need to do concretely anything. Once we
integrate in terms of these functions, analytic continuation is automat-
ically done for us.
That’s why we list our results without worrying about the values of ǫ
for which these integrals are obtained. So for t1 we get by summing up
regions

t1(z → 1, y → 0, s) =
s−1−ǫΓ(ǫ)

2ǫ

− 4ǫπ3/2s−1−ǫ ( (1− λ) z̄)−ǫ csc(ǫπ)

ǫΓ(1/2 − ǫ)

πs−1−ǫ((1− λ) z̄)−2ǫ csc(2ǫπ)Γ(1 + ǫ)

ǫ

In the same topology we also find other three integrals (t2, t3, t9, drawn
in Fig.5.17) with dotted propagators for which we just report final re-
sults.

t2(z → 1, y → 0, s) = t2(z̄, y, s){0,0,0} + t2(z̄, y, s){0,−1,−1} + t2(z̄, y, s){0,0,−1}

t2(z̄, y, s){0,0,0} = −s
−2−ǫΓ(2 + ǫ)

ǫ(1 + 2ǫ)

t2(z̄, y, s){0,−1,−1} = +
πs−2−ǫ((1− λ)z̄)−ǫ csc(ǫπ)Γ(−1− ǫ)

ǫ(1 + ǫ)Γ(−2ǫ)

t2(z̄, y, s){0,0,−1} = −πs−2−ǫ((1− λ)z̄)−1−2ǫ csc(2ǫπ)Γ(1 + ǫ), (5.95)

t3(z → 1, y → 0, s) = t3(z̄, y, s){0,0,0} + t3(z̄, y, s){0,−1,−1} + t3(z̄, y, s){0,0,−1}

t3(z̄, y, s){0,0,0} = − s−2−ǫΓ(1− ǫ)

(1− ǫ)(2− 4ǫ)

t3(z̄, y, s){0,−1,−1} = +
πs−2−ǫ(1− λ)−1−ǫz̄−1−ǫ csc(ǫπ)Γ(1− ǫ)

(1 + ǫ)Γ(−2ǫ)

t3(z̄, y, s){0,0,−1} = +πs−2−ǫ((1− λ)z̄)−2(1+ǫ) csc(2ǫπ)Γ(1 + ǫ), (5.96)
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t9(z → 1, y → 0, s) = t9(z̄, y, s){0,0,0} + t9(z̄, y, s){0,−1,0} + t9(z̄, y, s){0,0,1}

t9(z̄, y, s){0,0,0} = − s−2−ǫΓ(2 + ǫ)

(1 + 2ǫ)ǫ(1 + ǫ)
,

t9(z̄, y, s){0,−1,0} =
4−ǫs−2−ǫ((1− λ)z̄)−1−2ǫΓ(1/2 − ǫ)Γ(1− ǫ)Γ(ǫ)Γ(1 + 2ǫ)√

π
,

t9(z̄, y, s){0,0,1} =
s−2−ǫ(1− λ)−1−ǫz̄−1−ǫΓ(−ǫ)2Γ(2 + ǫ)

(1 + ǫ)Γ(−2ǫ)
. (5.97)

2. Triangle with 1 internal mass m2

t
and external masses {Q2,u}

t4(Q
2,−u,m2

t ) =

∫

ddl1
1

(l21 −m2
t )(l1 − q)2(k + l1 − q)2

=Γ(1 + ǫ)

∫ ∞

0

(1 + x2 + x3)
−1+2ǫ

× (Qx2x2 − ux3 +m2
t (1 + x2 + x3))

−1−ǫ (5.98)

Since we do not have overlapping between internal and external in-
variants (m2

t just appears as internal mass), the F polynomial follows
very simply the rule which assigns it positive sign for negative exter-
nal and positive internal invariants. Furthermore, since F does not
depend on s, it results to be positive-definite in the physical region
{Q2 > 0, t < 0,m2

t > 0} and we thus do not need any analytical con-
tinuation. Last but not least, when we send F for Q2 → 0 and m2

t ≃ s,
the F polynomial does not goes to zero, meaning that the integral will
exhibit a smooth behaviour in this double limit. And indeed Asy2.m

gives us just the hard region for this topology, which reads

t4(z → 1, y → 0, s) = t4(z̄, y, s){0,0,0} =
s−1−ǫΓ(1 + ǫ)

(−1 + ǫ)ǫ
. (5.99)

3. Triangle with 2 internal masses m2

t
and external masses {m2

t
, s}

t5(m
2
t , s) =

∫

ddl1
1

(l1 + pb)2((l1 − q)2 −m2
t )((k + l1 − q)2 −m2

t )

= Γ(1 + ǫ)

∫ ∞

0

(1 + x2 + x3)
−1+2ǫ(−sx2 +mt2(x2 + (x2 + x3)

2))−1−ǫ.

(5.100)

The same considerations we did for bubble b7 (Eq.(5.83)) hold also for
triangle t5. The topology depends on just 2 dimensional scales s,m2

t ,
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and m2
t is both internal and external mass. This means that, given

positive internal negative and external invariants, the F polynomial is
not guaranteed to have positive sign. But once again F happens to be
positive-definite for negative s and positive m2

t (namely if we consider
m2

t as internal mass). The integral will be thus real for s < 0 but com-
plex for s > 0, so that we will need to perform analytical continuation in
order to get the correct result. Finally, since we want to compute an on
shell limit of this integral, we know that it might develop singularities
in this limit, and this is indeed the case, as confirmed by Asy2.m, which
gives us two regions {{0, 0, 0}, {0, 1, 1}}, of which the second one devel-
ops a branch cut. We report explicitly the computation of the second
region, since it requires some manipulations.
HARD REGION {0, 0, 0}

t5(z̄, y, s){0,0,0} = −s
−1−ǫΓ(1 + ǫ)

2ǫ
(5.101)

REGION {0, 1, 1}
We perform the same kind of analytical continuation that we performed
for bubble b7. Namely we compute ‘above threshold’, i.e. for x̄ = −z̄ >
0, and then we continue back to the physical region ‘below threshold’,
i.e. z̄ > 0, by using the prescription Eq.(5.88). We start then by making
the substitution z̄ → −x̄ and computing for x̄ > 0.

t5(z̄, y, s){0,1,1} = a−2ǫs−1−ǫ

∫ ∞

0

Γ(1 + ǫ)(x̄x2 + (x2 + x3)
2)−1−ǫ. (5.102)

This integral is tricky because of the presence of both linear and
quadratic dependence of the integrand on the integration variables. We
can bypass this obstacle by performing the following change of variables

x2 = ξη/x̄, x3 = (1− ξ)η/x̄. (5.103)

The Jacobian of the transformation is

J =

(
η
x̄

ξ
x̄

− η
x̄

1−ξ
x̄

)

(5.104)

with determinant

det(J) =
η

x̄2
. (5.105)

The inverse transformation

ξ =
x2

(x2 + x3)
, η = z̄(x2 + x3) (5.106)
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provides the integration domain expressed in terms of boundaries on
the ξ, η variables

0 < ξ < 1, 0 < η <∞. (5.107)

So, our integral now reads

t5(z̄, y, s){0,1,1} = Γ(1 + ǫ)a−2ǫs−1−ǫ(x̄)2ǫ
∫ 1

0

dξ

∫ ∞

0

dη(η + ξx̄2)−1−ǫη−ǫ

= a−2ǫs−1−ǫx̄−2ǫΓ(1− ǫ)Γ(2ǫ)

∫ 1

0

dξξ−2ǫ

= s−1−ǫz̄−2ǫe2iπǫΓ(1− ǫ)Γ(−1 + 2ǫ). (5.108)

Analytical continuation is performed in the last line of Eq.(5.108). Our
final result reads

t5(z → 1, y → 0, s) =− s−1−ǫΓ(1 + ǫ)

2ǫ

+ s−1−ǫz̄−2ǫe2iπǫΓ(1− ǫ)Γ(−1 + 2ǫ). (5.109)

4. Triangle with 2 internal masses m2

t
and external masses {Q2,u}

In this topology we have two integrals.

t6(Q
2,−u,m2

t ) =

∫

ddl1
1

l12(−m2
t + (l1− q)2)(−m2

t + (k + l1− q)2)

= Γ(1 + ǫ)

∫ ∞

0

(1 + x2 + x3)
−1+2ǫ

× (m2
t (x2 + x3)(1 + x2 + x3) + (Q2x2 − ux3))

−1−ǫ, (5.110)

t7(Q
2,−u,m2

t ) =

∫

ddl1
1

[l12]2(−m2
t + (l1− q)2)(−m2

t + (k + l1− q)2)

= Γ(2 + ǫ)

∫ ∞

0

(1 + x2 + x3)
2ǫ

× (m2
t (x2 + x3)(1 + x2 + x3) + (Q2x2 − ux3))

−2−ǫ. (5.111)

The same considerations we have done for topology t4 also hold for
this topology, so that results for this integral in the double limit {z →
1, y → 0} correspond to the only hard region and read

t6(z → 1, y → 0, s) = t6(z̄, y, s){0,0,0} =
s−1−ǫΓ(1 + ǫ)

1− ǫ
, (5.112)

t7(z → 1, y → 0, s) = t7(z̄, y, s){0,0,0} =
s−2−ǫΓ(2 + ǫ)

(−1 + ǫ)ǫ
. (5.113)
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• BOX

1. Box with 1 internal mass m2
t (1 massive propagator) and ex-

ternal masses {u, t,Q2}

box1(Q
2, u, t, p2t ,m

2
t ) =

∫

ddl1
1

(l21 −m2
t )(l1 − q)2(k + l1 − q)2(k + l1 − pb − q)2

=Γ(2 + ǫ)

∫ ∞

0

(1 + x2 + x3 + x4)
2ǫ

× (−ux1x3 − p2tx1x4 − tx2x4 +Q2x1x2

+m2
tx1(x1 + x2 + x3 + x4))

−2−ǫ. (5.114)

The genuine F , before any manipulations, depends on the external
invariants {u, t, p2t , Q2 = −q2}. Being its sign positive in the region
identified by negative external and positive internal invariants, F is
positive-definite in the physical region {u < 0, t < 0, p2t < 0, Q2,m2

t}.
We observe that, thanks to a cancellation occurring in the polynomial,
we can safely set p2t = m2

t without spoiling the sign of the polynomial.

box1(Q
2, u, t,m2

t ) =

∫

ddl1
1

(l21 −m2
t )(l1 − q)2(k + l1 − q)2(k + l1 − pb − q)2

=Γ(2 + ǫ)

∫ ∞

0

(1 + x2 + x3 + x4)
2ǫ

× (−ux1x3 − tx2x4 +Q2x1x2

+m2
tx1(x1 + x2 + x3))

−2−ǫ. (5.115)

We obtain thus an integral which is real in the region of physical in-
terest and thus do not need analytical continuation. Asy2.m gives three
regions: {{0, 0, 0, 0}, {0,−1,−1,−1}, {0, 0, 0,−1}}. Since integrations
are quite simple and hand real-valued output, we report directly results
for the various regions.

box1(z → 1, y → 0, s) =box1(z̄, y, s){0,0,0,0} + box1(z̄, y, s){0,−1,−1,−1}

+ box1(z̄, y, s){0,0,0,−1} (5.116)

HARD REGION {0, 0, 0, 0}

box1(z̄, y, s){0,0,0,0} = − s−2−ǫΓ(2 + ǫ)

(1 + 2ǫ)ǫ(1 + ǫ)
. (5.117)

REGION {0,−1,−1,−1}

box1(z̄, y, s){0,−1,−1,−1} = a−1−ǫs−2−ǫ(1− λ)−1−ǫz̄−1−ǫ 2
1+ǫΓ(−ǫ)3Γ(1 + ǫ)

Γ(1− ǫ)Γ(−2ǫ)
.

(5.118)
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REGION {0, 0, 0,−1}

box1(z̄, y, s){0,0,0,−1} = −a−1−2ǫπs−2−ǫ(1− λ)−1−2ǫz−1−2ǫ
b csc(2ǫπ)Γ(ǫ).

(5.119)

2. Box with 1 internal mass m2
t (2 massive propagators) and ex-

ternal masses {s,Q2,u}

box2(Q
2, s, u, p2t ,m

2
t ) =

∫

ddl1
1

(l21)(l1 + pb)2((k + l1 − q)2 −m2
t )((l1 − q)2 −m2

t )

= Γ(2 + ǫ)

∫ ∞

0

(1 + x2 + x3 + x4)
2ǫ

(−sx2x3 − ux1x4 − p2tx2x4 +Q2x1x3

+m2
t (x3 + x4)(x1 + x2 + x3 + x4))

(−2−ǫ). (5.120)

Following the usual rule, F is positive-definite for negative external
invariants {s < 0, p2t < 0, u < 0, Q2 < 0} and positive internal invariant
m2

t . First we observe that we can safely set p2t = m2
t thanks to a cancel-

lation in the F polynomial which guarantees the sign of the polynomial
to remain definite (as it happened for box1). So we can rewrite

box2(Q
2, s, u,m2

t ) =

∫

ddl1
1

(l21)(l1 + pb)2((k + l1 − q)2 −m2
t )((l1 − q)2 −m2

t )

= Γ(2 + ǫ)

∫ ∞

0

(1 + x2 + x3 + x4)
2ǫ

(−sx2x3 − ux1x4 +Q2x1x3

+m2
t ((x3 + x4)

2x1x4 + x3(x1 + x2)))
(−2−ǫ). (5.121)

We also clearly see that for this box, we have to deal with analytical
continuation, since the result is expected to be complex for s > 0.
Asy2.m gives us 2 regions: {{0, 0, 0, 0}, {0,−1, 0, 0}} and indeed the
result for the second region happens to develop a complex phase. Since
integrations are quite trivial to perform and analytical continuation is
done using the usual prescriptions Eq.(5.88), we just report the final
results for regions.

box2(z̄ → 0, y → 1, s) = box2(z̄, y, s){0,0,0,0} + box2(z̄, y, s){0,−1,0,0}

box2(z̄, y, s){0,0,0,0} = −s
−2−ǫΓ(2 + ǫ)

(1 + 2ǫ)ǫ

box2(z̄, y, s){0,−1,0,0} = a−1−2ǫe2iπǫs−2−ǫz̄−1−2ǫΓ(−ǫ)Γ(2ǫ). (5.122)
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Now that all 1-loop integrals are computed, we can integrate them over the
Phase Space Eq.(5.72), namely over the angular variable λ. There is just one last
subtlety that separates us from obtaining the initial condition and we would like to
spend a few words about it. Up to here we computed 1-loop topologies with only
denominators and with dotted propagators. This is because these 1-loop integrals
where obtained by taking the basis in Eq.(5.63) and cutting away the Phase Space.
Now, the point is that when we want to get the initial condition for instance for
this specific choice of basis (no numerators but dotted propagators) we will have to
integrate our 1-loop results not only over the standard Phase Space, but also over
‘dotted Phase Spaces’, namely combinations of one or more dotted cut propagators.
Whenever we get a dotted cut propagator, this is not physical and a ‘dotted Phase
Space’ cannot be parametrized like an ordinary Phase Space (Eq.(5.72). So, we
adopt the following strategy. We express the ‘dotted basis’ Eq.(5.63) in terms of
a basis with no dotted propagators but with numerators (which is actually the
original bases given by the Mathematica version of the reduction program FIRE,
[113]). When we cut away the Phase Space in the new basis, those masters which
have a numerator can be distinguished into two categories

• the numerator does not contain the loop momentum l1, ex.

∫

ddkddl1
(k + pb)

2

k2l21(−k + l1 + pb)2(−mt2 + (l1 − q)2)(−mt2 + (−k + pb + q)2)

→
∫

ddk
(k + pb)

2

k2(−mt2 + (−k + pb + q)2)
T (k)

with T (k) =

∫

ddl1
1

l21(−k + l1 + pb)2(−mt2 + (l1 − q)2)
(5.123)

In this case the 1-loop integral is one of the results obtained above and and
then we parametrize the numerator depending on k in terms of the Phase
Space variables z, λ and integrate over it together with the Phase Space.

• the numerator contains the loop momentum l1, ex.

∫

ddkddl1
(l1 + pb)

2

k2l21(−k + l1 + pb)2(−mt2 + (l1 − q)2)(−mt2 + (−k + pb + q)2)

→
∫

ddk
1

k2(−mt2 + (−k + pb + q)2)
T ′(k)

with T ′(k) =

∫

ddl1
(l1 + pb)

2

l21(−k + l1 + pb)2(−mt2 + (l1 − q)2)
(5.124)

In this latter case the 1-loop integral has a numerator. In principle we would
need to compute a new 1-loop integral, but practically speaking this is not
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necessary because this new integral T ′(k) can be expressed as a linear combi-
nation of the above computed 1-loop ‘master’ integrals. Once this reduction
is done we just need to carry out the integration over k of a standard Phase
Space Eq.(5.72) times the 1-loop T ′(k).

With this last paragraph, we have explained in detail all the elements needed to
compute the MIs describing [b +W ∗ → t + g]1−loop. We can then conclude here
the RV section for the bottom channel. Complete results for the MIs are provided
in the Appendix.
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Figure 5.17
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Figure 5.19: Triangle n.5: t5

q

q − k k

(a) Triangle n.6: t6

q

q − k k

(b) Triangle n.7: t7

Figure 5.20



5.2. MASTER INTEGRALS FOR CC-DIS AT O(α2
S) 187

k

pb

q

pb + q − k

Figure 5.21: Box n.1: box1
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Figure 5.22: Box n.2: box2
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Double-Virtuals [b+W ∗ → t]2−loop

Diagrams contributing to the 2-loop corrections to the vertex b + W ∗ → t are
drawn in Fig.(5.23). They give birth to four independent topologies (Eq.(5.125)
and Fig.(5.24)).

tV V
1 = {l21, l

2
2, (l1 − pb)

2, (l2 + pb)
2, (−l1 + l2 + pb)

2,−m2
t + (l2 − q)2,−m2

t + (−l1 + pb + q)2}

tV V
2 = {l21, l

2
2, (l1 + l2)

2, (l1 + l2 − pb)
2, (l2 − pb)

2,−m2
t + (l1 + l2 − pb − q)2,−m2

t + (l1 − q)2}

tV V
3 = {l21, l

2
2, (l1 + pb)

2, (l2 − pb)
2,−m2

t + (l1 − q)2,−m2
t + (−l1 + l2 + q)2,−m2

t + (l2 + pb + q)2}

tV V
4 = {l21, l

2
2 −m2

t , (l1 + pb)
2,−m2

t + (l1 − q)2, (−l1 + l2 + q)2, (l2 + q)2, (l2 + pb + q)2}.
(5.125)

The master integrals obtained from the reduction of these diagrams are listed in
Eq.(5.126). In Fig.(5.25) we draw the subtopologies to which master integrals
with denominator equal to 1 correspond (the remaining masters are obtained by
multiplying these subtopologies by the appropriate numerators).

MasterV V
t1,1

=

∫

ddl1d
dl2

1

l21l
2
2(−l1 + l2 + pb)2[−mt2 + (l2 − q)2]

MasterV V
t1,2

=

∫

ddl1d
dl2

(l1 − pb)
2

l21l
2
2(−l1 + l2 + pb)2[−mt2 + (l2 − q)2][−mt2 + (−l1 + pb + q)2]

MasterV V
t2,1

=

∫

ddl1d
dl2

l21
l22(l1 + l2)2[−mt2 + (l1 − q)2]

MasterV V
t2,2

=

∫

ddl1d
dl2

1

l21l
2
2[−mt2 + (l1 − q)2][−mt2 + (l1 + l2 − pb − q)2]

MasterV V
t2,3

=

∫

ddl1d
dl2

l21
l22(l1 + l2)2[−mt2 + (l1 − q)2][−mt2 + (l1 + l2 − pb − q)2]

MasterV V
t2,4

=

∫

ddl1d
dl2

(l1 + l2)2

l21l
2
2[−mt2 + (l1 − q)2][−mt2 + (l1 + l2 − pb − q)2]

MasterV V
t2,5

=

∫

ddl1d
dl2

(l1 + l2 − pb)
2

l21l
2
2[−mt2 + (l1 − q)2][−mt2 + (l1 + l2 − pb − q)2]

MasterV V
t2,6

=

∫

ddl1d
dl2

1

l21(l1 + l2)2(l2 − pb)2[−mt2 + (l1 − q)2][−mt2 + (l1 + l2 − pb − q)2]

MasterV V
t2,7

=

∫

ddl1d
dl2

l22
l21(l1 + l2)2(l2 − pb)2[−mt2 + (l1 − q)2][−mt2 + (l1 + l2 − pb − q)2]

MasterV V
t2,8

=

∫

ddl1d
dl2

1

l21l
2
2(l1 + l2)2(l2 − pb)2[−mt2 + (l1 − q)2][−mt2 + (l1 + l2 − pb − q)2]

MasterV V
t3,1

=

∫

ddl1d
dl2

1

[−mt2 + (l1 − q)2][−mt2 + (−l1 + l2 + q)2][−mt2 + (l2 + pb + q)2]

MasterV V
t3,2

=

∫

ddl1d
dl2

1

l21[−mt2 + (l1 − q)2][−mt2 + (−l1 + l2 + q)2][−mt2 + (l2 + pb + q)2]
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MasterV V
t3,3

=

∫

ddl1d
dl2

l22
l21[−mt2 + (l1 − q)2][−mt2 + (−l1 + l2 + q)2][−mt2 + (l2 + pb + q)2]

MasterV V
t3,4

=

∫

ddl1d
dl2

1

l21l
2
2[−mt2 + (−l1 + l2 + q)2][−mt2 + (l2 + pb + q)2]

MasterV V
t3,5

=

∫

ddl1d
dl2

(l1 + pb)
2

l21l
2
2[−mt2 + (−l1 + l2 + q)2][−mt2 + (l2 + pb + q)2]

MasterV V
t4,1

=

∫

ddl1d
dl2

1

l21[l
2
2 −mt2][(−l1 + l2 + q)2]

MasterV V
t4,2

=

∫

ddl1d
dl2

1

[l22 −mt2][(l1 + pb)2][(−l1 + l2 + q)2]

MasterV V
t4,3

=

∫

ddl1d
dl2

(l1 + pb)
2

l21[l
2
2 −mt2][(−l1 + l2 + q)2]

MasterV V
t4,4

=

∫

ddl1d
dl2

(l1 + pb)
2

l21[l
2
2 −mt2][−mt2 + (l1 − q)2][(−l1 + l2 + q)2][(l2 + pb + q)2]

.

(5.126)

Results for all master integrals in Eq.(5.126) have been provided in [29], [30], [9],
[18], [37] and were cross-checked by us. For a complete list of them, we send the
interested reader to the above-mentioned references. We limit ourselves to provide
for pedagogical purposes an example of how one of these integrals is computed
through standard Differential Equations, where by ‘standard’ we mean not in
canonical form. Let us pick up for instanceMasterV V

t1,1 and define its dimensionless
equivalent

MasterV V,ad
t1,1

(y) = (m2
t )

d−4MasterV V,ad
t1,1

(y)

= (m2
t )

−2ǫMasterV V,ad
t1,1

(y). (5.127)

The D.E. for MasterV V,ad
t1,1

(y) reads

d

dy
MasterV V,ad

t1,1
(y) =

4(3− (4− 2ǫ)(1− y)− 4y)MasterV V,ad
t1,1

(y)

4y(1 + y)

−
(8− 3(4− 2ǫ))MasterV V,ad

t4,2
(y)

4y(1 + y)
. (5.128)

A first comment that needs to be made is that all VV masters satisfy ordinary
DEs. This represents quite a big simplification with respect to the RR and RV
masters, for which we had to integrate partial DEs. The reason for this lies in the
kinematic of the double-virtual amplitudes, which, given the absence of real emis-
sions, coincides with the Born kinematic. At tree-level the process is governed by
only two dimensional scales, i.e. Q2,m2

t , because the energy in the center of mass
frame of the b,W ∗ pair s is exactly the needed amount to produce a top in the
final state, so that s = m2

t holds. This implies that at two loops the dimensionless
ratio z = m2

t/s is constant and equal to 1 , so that the only variable on which the
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masters can depend is actually y = Q2/m2
t .

Now, the r.h.s of Eq.(5.128) has a usual structure: it is the sum of a homogeneous
term, proportional to the integral we want to solve, namely MasterV V

t1,1, and an
inhomogeneous term given by the linear combinations of other integrals of the
basis Eq.(5.126) with an equal or smaller number of propagators with respect to
MasterV V

t1,1. In this specific case, the structure is particularly simple, since the

inhomogeneous term contains the only integral MasterV V
t4,2, which constitutes in-

deed a subtopology of the original integralMasterV V
t1,1. Now, the standard method

to solve differential equations in one variable, such as Eq.(5.128), is the so-called
variation of constants method, which can be found in any standard text-book of
elementary calculus. A prerequisite for applying such method is the knowledge of
the inhomogeneous term, which implies we have to know the result for MasterV V

t4,2

in order to be able to compute MasterV V
t1,1.

In other words, we have to adopt a bottom-up approach to solve the system of (cou-
pled) differential equations that we obtain for the entire basis. We start by solving
DEs for the masters of the basis with the lowest number number of propagators,
and proceed then solving the masters with an increasing number of propagators,
till we get to solve the biggest integrals appearing in the basis. At each order m
in the number of propagators, masters which have been previously solved (namely
with a number of propagators m′ < m) enter the DEs as part of the inhomoge-
neous terms, which is then totally known. So, assuming we know the result for
MasterV V

t4,2, we show how Eq.(5.128) is solved order by order in ǫ, taking as an
example the first three non-trivial orders. We start from the observation that,
being at two loops, the most singular behaviour both integrals MasterV V

t1,1 and

MasterV V
t4,2 can exhibit is of the type 1/ǫ4. From the result for MasterV V

t4,2 we
know that this integral starts at order 1/ǫ2, so that it admits the expansion

MasterV V
t4,2

(y) =
m

(−2)
t4,2

(y)

ǫ2
+

m
(1)
t4,2

(y)

ǫ
+m0

t4,2
(y) +m

(1)
t4,2

ǫ(y) +m
(2)
t4,2

ǫ2(y) +O(ǫ3), (5.129)

where the coefficients m
(i)
t4,2

(y) are known. Along the same line, we can write an

ansatz forMasterV V
t1,1, in which we have to include a priori also terms of order 1/ǫ3

and 1/ǫ4.

MasterV V
t1,1

(y) =
m

(−4)
t1,1

(y)

ǫ4
+

m
(−3)
t1,1

(y)

ǫ3
+

m
(−2)
t1,1

(y)

ǫ2
+

m
(1)
t1,1

(y)

ǫ

+m0
t1,1

(y) +m
(1)
t1,1

ǫ(y) +m
(2)
t1,1

ǫ2(y) +O(ǫ3). (5.130)

Let us substitute in Eq.(5.128) both the ǫ-expansions for the inhomogeneous and
homogeneous terms (Eq.(5.129) and Eq.(5.130)) and expand again in ǫ both sides
of Eq.(5.128). We get for the first five coefficient in the expansion ofMasterV V

t1,1(y)
the following differential equations.
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d

dy
m

(−4)
t1,1

(y) = 0

d

dy
m

(−3)
t1,1

(y) = 0

d

dy
m

(−2)
t1,1

(y) =
m

(−2)
t4,2

(y)−m
(−2)
t1,1

(y)

ǫ2y(1 + y)

d

dy
m

(−1)
t1,1

(y) =
−6m

(−2)
t4,2

(y) + 4m
(−1)
t4,2

(y) + 8(1− y)m
(−2)
t1,1

(y)− 4m
(−1)
t1,1

(y)

4ǫy(1 + y)

d

dy
m

(0)
t1,1

(y) =
−6m

(−1)
t4,2

(y) + 4m
(0)
t4,2

(y) + 8(1− y)m
(−1)
t4,2

(y)− 4m
(0)
t4,2

(y)

4y(1 + y)
, (5.131)

For brevity, we omit the next orders (O(ǫ), O(ǫ2), and so on) in Eq.(5.131) 11.
Let us start integrating the first two orders, which are trivial and give simply

constants as a result of the integration

m
(−4)
t1,1

(y) = c(−4), m
(−3)
t1,1

(y) = c(−3). (5.132)

Such constants, which appear as a result of the fact that we are performing in-
definite integrations on both sides of the DE, have to be fixed by computing the
integral in a fixed kinematic point y = ỹ. The vector of boundary conditions
~c = (c(−4), ..., c(0)) can be obtained from the explicit computation of the integral
in the chosen kinematic limit, by applying for instance the strategy of Expansion
by Regions (previously illustrated in the case of the RR and RV integrals). Al-
ternatively one can study the singular behaviour of the differential equation and
check whether there are or not spurious singularities, namely singularities which
do not have any precise physical meaning (we remind the reader that the singular
behaviour of the differential equation reflect that of its solution!). In case a spu-
rious singularity is present say for y = y′, one can use it to extract the boundary
conditions by imposing the integral to be finite in y′. This is indeed the case for the
case study we have chosen. In order to study the behaviour, we let the regulator
ǫ going to zero in the differential equations, thus getting

d

dy
MasterV V

t1,1(y) =

(

−1

y
+

1

1 + y

)

MasterV V
t1,1(y) +

(

1

y
− 1

1 + y

)

MasterV V
t4,2(y).

(5.133)

Given the physical boundary y ≥ 0 and given that no physical divergence is
expected at y = 0, this equation exhibits a clear spurious singularity in y = 0.

11They have a structure similar to the one of the first five orders, reported in Eq.(5.131) and
the strategy to integrate them is the same as the one that we illustrate in the following for the
lowest order.
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Starting from the first non trivial order in ǫ (here ǫ−2) and by requiring order by
order in Eq.(5.131) the r.h.s to be finite in y = 0, namely the coefficient of the 1/y
pole to be zero, the boundary conditions ~c can be extracted12. Without entering
further in the discussion of boundary conditions, which were not indeed computed
directly by us, let us assume the vector of boundary condition ~c to be known and
show then how integration order by order works.
The vector ~c reads up to O(ǫ0)

~c =

(

0, 0,
1

32
,− 5

32
,
1

96
(−57− 2π2)

)

, (5.134)

so that the two first order in Eq.(5.131) simply amount to zero contribution. For
the first non trivial order, namely O(ǫ−2) we need to substitute in Eq.(5.131) the

inhomogeneous term m
(−2)
t4,2

(y) = 1/32 and we immediately observe that given the
structure of the r.h.s, we do not even need to integrate. It is sufficient to impose
the r.h.s. to be finite in the limit y → 0 in order to extract the desired coefficient,

namely m
(−2)
t1,1

(y) = 1/32. Moving on to O(ǫ−1), and substituting m
(−1)
t4,2

(y) = 5/64
plus the results from the previous orders, we get the DE

d

dy
m

(−1)
t1,1

(y) =
3

32y
− 5

32(1 + y)
+

(

−1

y
+

1

1 + y

)

m
(−1)
t1,1

(y). (5.135)

The homogeneous solution reads then

m
(−1),hom
t1,1

(y) =
(1 + y)C[−1]

y
(5.136)

with C[−1] being an integration constant. By applying the variation of constant
method, we get as a solution to the full equation

m
(−1)
t1,1

(y) =
(1 + y)C[−1]

y

∫

dy

[
3

32y
− 5

32(1 + y)

] [
(1 + y)C[−1]

y

]−1

+ c(−1)

= − 5

32y
+

(1 + y) ln(1/(1 + y))

16y
+ c(−1)

=
1

32
(5 − 2 ln(1 + y))− ln(1 + y)

16y
. (5.137)

At this point we are ready this result for m
(−1)
t1,1

(y) together with the known in-

homogeneous coefficient m
(0)
t4,2

(y) in the DE for the next order, namely O(ǫ0) and

solve it in the same way we did at O(ǫ−1). By repeating this procedure order by
order we can obtain the desired integral up to the needed precision in ǫ.

12This method cannot be applied to the first two orders, for which the boundary conditions
have to explicitly computed.
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Our discussion of Double-Virtual contribution to CC-DIS Form Factors ends here.
Further details and complete results for master integrals and 2-loop Form Factors
can be found in the above-cited references.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.23: 2-loop corrections to b+W ∗ → t
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(a) (b) (c)

(d)

Figure 5.24: Independent topologies for [b+W ∗ → t]2l.
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(a) MasterV V
t1,1

(b) MasterV V
t1,2

(c) MasterV V
t2,2

(d) MasterV V
t2,8

(e) MasterV V
t3,1 (f) MasterV V

t3,2

(g) MasterV V
t4,1 (h) MasterV V

t4,2

Figure 5.25: Set of independent subtopologies for b+W ∗ → t at 2-loop.
Simple thin lines are massless, simple thick lines, double lines and thick dashed
lines are massive and correspond respectively to m2

t (either internal or external) ,
Q2 and s (only external).
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5.2.2 Gluon channel: g-initiated subprocesses at NNLO.

Double Reals
[
g +W ∗ → t+ b̄+ g

]

0−loop

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.26: Tree-level diagrams for g +W ∗ → t+ b̄+ g

The Feynman diagrams for the Double Real (RR) contribution (Fig.5.26) to
the gluon channel can be generated from scratch or obtained by applying crossing
symmetry to the Double Real diagrams for the bottom-initiated subprocess b +
W ∗ → t + g + g. We remind the reader that crossing symmetry is a property
of amplitudes which states that the S-matrix for any process involving a particle
with momentum p in the initial state is equal to the S-matrix for an otherwise
identical process but with an antiparticle of momentum k = −p in the final state.
In other words, given an amplitude M, it holds

M (φ(p) + ...→ ...) = M
(
...→ ...+ φ̄(k)

)
(5.138)

where φ̄ is the antiparticle of φ and k = −p (see [102]). In our case, given the
starting amplitudes for b(pb) + W ∗(q) → t(pt) + g(k1) + g(k2), we can obtain
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amplitudes for g(k1)+W
∗(q) → t(pt)+g(k2)+b̄(pb) by applying crossing symmetry

defined as CS(pb → −pb, k1 → −k1). Once crossing symmetry is applied, it is
convenient to rename particle momenta as

g(k1) +W ∗(q) → t(pt) + g(k2) + b̄(pb)
(−k1→pb,−pb→k1)→ g(pb) +W ∗(q) → t(pt) + g(k2) + b̄(k1),

(5.139)

in order to maintain definitions of Mandelstam invariants unchanged. By inspec-
tion of Fig.(5.26), we see that because of the appearance of tree-level diagrams
with a new structure, already at this primary stage we can intuitively expect to
get new topologies and master integrals with respect to those already found in the
bottom channel.
By taking the square modulus of diagrams Fig.5.26 and adding the 3-particle
Phase Space Eq.(5.40), we get at a first inspection 9 independent set of propaga-
tors Eq.(5.140).

tin = {{k21 , (k1 + k2)
2, (pb − k1)

2, k22, (k1 + k2 − pb)
2, (k1 + k2 − q)2 −m2

t ,

(k1 + k2 − pb − q)2 −m2
t },

{k21 , (pb − k1)
2, k22, (k1 + k2 − pb)

2, (k1 − q)2 −m2
t , (k1 + k2 − q)2 −m2

t ,

(k1 + k2 − pb − q)2 −m2
t },

{k21 , (pb − k1)
2, k22, (k1 + k2 − pb)

2, (k1 − q)2 −m2
t , (−k1 + pb + q)2 −m2

t ,

(k1 + k2 − pb − q)2 −m2
t },

{k21 , (k1 + k2)
2, (pb − k1)

2, k22, (k1 + k2 − q)2 −m2
t , (−k1 + pb + q)2 −m2

t ,

(k1 + k2 − pb − q)2 −m2
t },

{k21 , (pb − k1)
2, k22, (k1 − q)2 −m2

t , (k1 + k2 − q)2 −m2
t , (−k1 + pb + q)2 −m2

t ,

(k1 + k2 − pb − q)2 −m2
t },

{k21 , (pb − k1)
2, k22, (k1 + k2 − pb)

2, (pb − k2)
2, (−k1 + pb + q)2 −m2

t ,

(k1 + k2 − pb − q)2 −m2
t },

{k21 , k
2
2, (k1 + k2 − pb)

2, (pb − k2)
2, (k1 − q)2 −m2

t , (−k1 + pb + q)2 −m2
t ,

(k1 + k2 − pb − q)2 −m2
t },

{k21 , (pb − k1)
2, k22, (k1 + k2 − pb)

2, (pb − k2)
2, (k1 − q)2 −m2

t ,

(k1 + k2 − pb − q)2 −m2
t },

{k21 , (pb − k1)
2, k22, (pb − k2)

2, (k1 − q)2 −m2
t , (−k1 + pb + q)2 −m2

t ,

(k1 + k2 − pb − q)2 −m2
t }}

(5.140)

Only five among the sets of propagators in Eq.(5.140) are topologies. The remain-
ing four sets, listed in Eq.(5.141), contain linearly dependent propagators.

tdep = {{k21, (k1 + k2)
2, (pb − k1)

2, k22, (k1 + k2 − pb)
2, (k1 + k2 − q)2 −m2

t ,
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(k1 + k2 − pb − q)2 −m2
t },

{k21, (pb − k1)
2, k22, (k1 + k2 − pb)

2, (k1 − q)2 −m2
t , (−k1 + pb + q)2 −m2

t ,

(k1 + k2 − pb − q)2 −m2
t },

{k21, (pb − k1)
2, k22, (k1 − q)2 −m2

t , (k1 + k2 − q)2 −m2
t , (−k1 + pb + q)2 −m2

t ,

(k1 + k2 − pb − q)2 −m2
t },

{k21, (pb − k1)
2, k22, (pb − k2)

2, (k1 − q)2 −m2
t , (−k1 + pb + q)2 −m2

t ,

(k1 + k2 − pb − q)2 −m2
t }} (5.141)

This implies that we have to perform partial fractioning on those scalar integrals
containing products of such linearly dependent propagators. Let us explain with
an example. For instance, we consider the first set in Eq.(5.141), which contains
the set of linearly dependent propagators Eq.(5.142).

[(k1 + k2)
2]− [(k1 + k2 − pb)

2]− [(k1 + k2 − q)2 −m2
t ] + [(k1 + k2 − pb − q)2 −m2

t ] = 0.
(5.142)

Among the scalar integrals described by this set of propagators we also encounter
integrals containing at denominator products of these four dependent propagators.
In order to perform the reduction to masters integrals on this kind of integrals,
we need to correct for this linear dependence and this is achieved by designing
a proper partial fractioning rule. For instance, given the relation Eq.(5.142), we
design the partial fractioning rule Eq.(5.143).

1

[(k1 + k2 − pb)2][(k1 + k2 − q)2 −m2
t ]

→ 1

s+Q2

[

1

[(k1 + k2 − q)2 −m2
t ]

− 1

[(k1 + k2 − pb)2]

− [(k1 + k2)
2]

[(k1 + k2 − pb)2][(k1 + k2 − q)2 −m2
t ]

+
[(pb + q − k1 − k2)

2 −m2
t ]

[(k1 + k2 − pb)2][(k1 + k2 − q)2 −m2
t ]

]

(5.143)

If we apply Eq.(5.143) to the simplest integral we can imagine, namely the one
containing the phase space and a product of the only dependent propagators, we
can rewrite it as the sum of integrals each one containing only a subset of these
propagators, so that the problem of linear dependence is solved.

∫

ddk1d
dk2

1

[k2
1 ][k

2
2][(k1 + k2)2][(k1 + k2 − pb)2][(k1 + k2 − q)2 − m2

t ][(k1 + k2 − pb − q)2 − m2
t ]

=
1

s + Q2

[∫

ddk1k2
1

[k2
1 ][k

2
2 ][(k1 + k2)2][(k1 + k2 − q)2 − m2

t ][(k1 + k2 − pb − q)2 − m2
t ]

−
∫

ddk1k2
1

[k2
1 ][k

2
2 ][(k1 + k2)2][(k1 + k2 − pb)2][(k1 + k2 − pb − q)2 − m2

t ]

−
∫

ddk1d
dk2

1

[k2
1][k

2
2 ][(k1 + k2 − pb)2][(k1 + k2 − q)2 − m2

t ][(k1 + k2 − pb − q)2 − m2
t ]
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+

∫

ddk1d
dk2

1

[k2
1 ][k

2
2 ][(k1 + k2)2][(k1 + k2 − pb)2][(k1 + k2 − q)2 − m2

t ]

]

(5.144)

We see that none of the integrals appearing on the right hand side of Eq.(5.144)
contains now a set of linearly dependent propagators, so that we achieved our
goal. In addition, we observe that the term on the r.h.s. coloured in red is zero,
since it happens not to contain anymore the full phase space measure. The last
step we need to take to definitely get rid of the problems of linearly dependent
propagators is to make sure that every scalar integral we get after performing
partial fractioning is actually contained in a topology, or, in other words, that the
propagators contained in each of these scalar integrals actually represent a subset
of a proper topology. We explain using again the same example. Let us write
down the set of topology of which we dispose up to now, given by Eq.(5.145).

tindep ={{k21, (pb − k1)
2, k22, (k1 + k2 − pb)

2, (k1 − q)2 −m2
t , (k1 + k2 − q)2 −m2

t ,

(k1 + k2 − pb − q)2 −m2
t },

{k21, (k1 + k2)
2, (pb − k1)

2, k22 , (k1 + k2 − q)2 −m2
t , (−k1 + pb + q)2 −m2

t ,

(k1 + k2 − pb − q)2 −m2
t },

{k21, (pb − k1)
2, k22, (k1 + k2 − pb)

2, (pb − k2)
2, (−k1 + pb + q)2 −m2

t ,

(k1 + k2 − pb − q)2 −m2
t },

{k21, k
2
2, (k1 + k2 − pb)

2, (pb − k2)
2, (k1 − q)2 −m2

t , (−k1 + pb + q)2 −m2
t ,

(k1 + k2 − pb − q)2 −m2
t },

{k21, (pb − k1)
2, k22, (k1 + k2 − pb)

2, (pb − k2)
2, (k1 − q)2 −m2

t ,

(k1 + k2 − pb − q)2 −m2
t }} (5.145)

Now, if we look at the scalar integrals on the r.h.s. of Eq.(5.144), we see that
the first and third integrals are indeed subtopologies respectively of the second
and the first topologies listed in Eq.(5.145). But the second integral happens to
be a subtopology of none of the topologies in Eq.(5.145). To solve this problem we
simply need to create an ad hoc topology that contains such integral. This can be
done by adjusting the original set of dependent propagators {k21 , (k1 + k2)

2, (pb −
k1)

2, k22 , (k1 + k2 − pb)
2, (k1 + k2 − q)2 −m2

t , (k1 + k2 − pb − q)2 −m2
t} (the first

in Eq.(5.141)) in order to get out of it a proper topologies that contain the three
propagators [(k1 + k2)

2], [(k1 + k2 − pb)
2], [(k1 + k2 − pb − q)2 −m2

t ]. This is easily
achieved by properly replacing one of the linearly dependent propagators in the
set with a new propagator chosen such that the two above-mentioned requirements
are satisfied. For instance, the first set in Eq.(5.141) can be modified by replacing
[(k1+k2− q)2−m2

t ] with [(k1− q)2−m2
t ]. In this way we obtain the new topology

{k21 , (k1 + k2)
2, (pb − k1)

2, k22, (k1 + k2 − pb)
2, (k1 − q)2 −m2

t , (k1 + k2 − pb − q)2 −m2
t},

(5.146)
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which actually contains all propagators of the second integrand in Eq.(5.144) as
a subtopology.

For completeness we report in the following all partial fractioning rules we created
and used for the other three topologies containing linearly dependent propagators,
namely the last three sets of propagators in Eq.(5.141). The relation of linear de-
pendence is the same for all these three sets, so that we can design just one partial
fractioning rule (Eq.(5.147)) valid for the three of them.

1

[(k1 − pb)2][(q − k1)2 −m2
t ]

→ 1

s+Q2

[

[(pb + q − k1)
2 −m2

t ]

[(k1 − pb)2][(q − k1)2 −m2
t ]

− 1

[(k1 − pb)2]
− 1

[(q − k1)2 −m2
t ]

]

(5.147)

By proceeding in this way, namely performing partial fractioning and manipu-
lating topologies where needed, we end up with a certain number of independent
topologies describing our process, but, after running reduction to MIs, it turns out
that the entire set of independent master integrals is actually contained in only
three of such topologies, reported in Eq.(5.148) and drawn in Fig.5.27.

tG1 ={k21, (−k1 + pb)
2, k22, (k1 + k2 − pb)

2, (k1 − q)2 −m2
t , (k1 + k2 − q)2 −m2

t ,

(k1 + k2 − pb − q)2 −m2
t }

tG2 ={k21, k
2
2, (k1 + k2 − pb)

2, (−k2 + pb)
2, (k1 − q)2 −m2

t , (−k1 + pb + q)2 −m2
t ,

(k1 + k2 − pb − q)2 −m2
t }

tG3 ={k21, (k1 + k2)
2, (−k1 + pb)

2, k22, (k1 + k2 − q)2 −m2
t , (−k1 + pb + q)2 −m2

t ,

(k1 + k2 − pb − q)2 −m2
t }. (5.148)

The sets of Master Integrals found in each of these topologies are listed in

(a) (b) (c)

Figure 5.27: Independent topologies to g +W ∗ → t+ b̄+ g.

Eq.(5.149), 5.150, 5.151. We underline that not all of these masters are inde-
pendent. Indeed we can find some of these integrals repeated in more than one
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topology, but for a matter of order in the computation we decide to keep the mas-
ters separated according to the topology to which they belong instead of merging
them into one big set. The set of independent MIs describing double real contri-
bution to the gluon channel contains twenty-one integrals.

MasterG1 = G[tg1 , {1, 0, 1, 0, 0, 0, 1}]

MasterG2 = G[tg1 , {1, 0, 1, 0, 0, 0, 2}]

MasterG3 = G[tg1 , {1, 0, 1, 1, 0, 0, 1}]

MasterG4 = G[tg1 , {1, 0, 1, 0, 1, 0, 1}]

MasterG5 = G[tg1 , {1, 0, 1, 0, 1, 0, 2}]

MasterG6 = G[tg1 , {1, 0, 1, 0, 2, 0, 1}]

MasterG7 = G[tg1 , {1, 0, 1, 1, 1, 0, 1}]

MasterG8 = G[tg1 , {1, 0, 1, 1, 1, 0, 2}]

MasterG9 = G[tg1 , {1, 0, 1, 1, 0, 1, 1}]

MasterG10 = G[tg1 , {1, 0, 1, 0, 1, 1, 1}]

MasterG11 = G[tg1 , {1, 0, 1, 0, 1, 1, 2}]

MasterG12 = G[tg1 , {1, 0, 1, 1, 1, 1, 1}]

MasterG13 = G[tg1 , {1, 1, 1, 1, 1, 1, 1}] (5.149)

MasterG14 = G[tG2 , {1, 1, 0, 0, 0, 0, 1}]

MasterG15 = G[tG2 , {1, 1, 0, 0, 0, 0, 2}]

MasterG16 = G[tG2 , {1, 1, 1, 0, 0, 0, 1}]

MasterG17 = G[tG2 , {1, 1, 0, 0, 1, 0, 1}]

MasterG18 = G[tG2 , {1, 1, 0, 0, 1, 0, 2}]

MasterG19 = G[tG2 , {1, 1, 0, 0, 2, 0, 1}]

MasterG20 = G[tG2 , {1, 1, 1, 0, 1, 0, 1}]

MasterG21 = G[tG2 , {1, 1, 1, 0, 1, 0, 2}]

MasterG22 = G[tG2 , {1, 1, 1, 0, 0, 1, 1}]

MasterG23 = G[tG2 , {1, 1, 1, 0, 0, 1, 2}]

MasterG24 = G[tG2 , {1, 1, 1, 0, 0, 2, 1}]

MasterG25 = G[tG2 , {1, 1, 1, 0, 1, 1, 1}]

MasterG26 = G[tG2 , {1, 1, 1, 1, 0, 1, 1}] (5.150)

MasterG27 = G[tG3 , {1, 0, 0, 1, 0, 0, 1}]

MasterG28 = G[tG3 , {1, 0, 0, 1, 0, 0, 2}]

MasterG29 = G[tG3 , {1, 0, 0, 1, 1, 1, 1}]
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MasterG30 = G[tG3 , {1, 0, 0, 1, 1, 1, 2}]

MasterG31 = G[tG3 , {1, 1, 1, 1, 1, 1, 1}] (5.151)

We also would like to stress that the majority of integrals in Eq.(5.149), (5.150),
(5.151) was already encountered in the reduction of the bottom channel double
real diagrams. But indeed, as expected, nine new master integrals, distributed in
the three topologies Eq.(5.148), are found, corresponding to MasterG9 , MasterG10,
MasterG11,MasterG12,MasterG13,MasterG25,MasterG29,MasterG30,MasterG31. These
new masters are drawn in Fig.(5.28).
Once again we turn these basis of masters into canonical ones, given in Eq.(7.12),
(7.13), (7.14) of the Appendix.

From here on the computation, at least in principles, develops as usual, namely
we generate systems of canonical D.E. we integrate them in terms of GPLs and
we match them with appropriate boundary conditions generated in the same way
we already did for the RR masters integrals in the bottom channel (D.E.and b.c.
are systematically reported in Eqs. from (7.15) to (7.20) of the Appendix). The
procedure to compute such boundary conditions is the same used for the bottom
channel RR masters, thus for a detailed description we send the reader back to
the part of this section dedicated to the computation of b-initiated subprocesses.
Nonetheless, we would like to stress that all gluon masters in the soft limit z → 1
shrink to linear combination of only two soft masters. These two soft masters
happen to be the same which also describes the soft limit of the Double-Real MIs
for the b-channel (see Eq.(5.55)). It is quite remarkable that we only need two
soft integrals to describe the soft behaviour of double real radiation in both the
bottom and gluon channel!

Unfortunately, we find in topologies tg1 and tG2 an additional difficulty that
needs to be discussed and sorted out before being able to actually compute inte-
grals belonging to this topologies. We address the discussion of this topic in the
next paragraph.

Master Integrals generating Quadratic Letters.

Let us start by having a look at the type of transformation which give rise to
canonical basis for topologies tG1 , t

G
2 . By inspecting the correspondent Eq.(7.12),

(7.13) (see Appendix), it can be observed that in general canonical masters are
written as linear combination of the original masters with coefficients which de-
pends rationally on the dimensionless variable z, y. In other words, the majority
of canonical masters is obtained via a rational transformation. But this is not true
in a couple of cases. Indeed,MG

12 andMG
25 are obtained by multiplying the original

integrals by algebraic functions of z, y (in this case square roots having as argu-
ment quadratic polynomials in z, y). For this two masters we need to introduce an
algebraic transformation and the source of such transformation simply lies in the
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structure of the D.E. for the original masters.
Given the general structure for such D.E (Eq.(5.152))

∂zMasterj(z, y, ǫ) = Aj,j
z (z, y, ǫ)Masterj(z, y, ǫ) +

∑

i6=j

Aj,i
z (z, y, ǫ)Masteri(z, y, ǫ)

∂yMasterj(z, y, ǫ) = Aj,j
y (z, y, ǫ)Masterj(z, y, ǫ) +

∑

i6=j

Aj,i
y (z, y, ǫ)Masteri(z, y, ǫ),

(5.152)

the homogeneous terms forMaster12,Master25 equations read (Eq.(5.153), (5.154))

A12,12
z (z, y, ǫ) =

2zǫ− z − 2ǫ+ 1

4y2 + 4y + z2 − 2z + 1
− 2ǫ

z

A12,12
y (z, y, ǫ) =

2(2y + 1)(2ǫ− 1)

4y2 + 4y + z2 − 2 z + 1
+
ǫ− 2

y + 1

− 2ǫ

y + 1
− y ǫ

(y + 1)2
− ǫ

(y + 1)2
+

1

y + 1
, (5.153)

A25,25
z (z, y, ǫ) =

4yǫ− 2y + 2zǫ− z + 2ǫ − 1

4y z + z2 + 2z + 1
− 2ǫ

z

A25,25
y (z, y, ǫ) =

2z(2ǫ − 1)

4yz + z2 + 2z + 1
− 2ǫ + 1

y + 1
. (5.154)

By inspection of such homogeneous terms, we see that the only kind of transfor-
mation which can make terms containing quadratic polynomials 4y2 + 4y + z2 −
2z + 1, 4yz + z2 + 2z + 1 at denominators linear in ǫ is algebraic. In other words,
the presence of quadratic denominators in the original equations imply the use of
algebraic transformation such as the ones in Eq.(7.12), (7.13) in order to obtain
equations which are linear in ǫ and thus in canonical form.
Indeed, the differential equations for M12,M25 can directly be written as a total
differential of a logarithmic 1-form as

dM12 =ǫ
(
M12(−2dL[1 + y] + dL[4y + 4y2 + (−1 + z)2]− 2dL[z])

+ 1/2M1(4(dL[y] + dL[1 + y])− 7dL[1−
√

4y + 4y2 + (−1 + z)2 − z]

− dL[1 + 4y2 + 4y + (2y + 1)
√

4y + 4y2 + (−1 + z)2 − z] + dL[z])

+ 1/2M10(2(dL[y] + dL[1 + y])− 3dL[1−
√

4y + 4y2 + (−1 + z)2]− z

− dL[1 + 4y2 + 4y + (2y + 1)
√

4y + 4y2 + (−1 + z)2 − z + dL[z])

+ 1/2M11(2(dL[y] + dL[1 + y])− 3dL[1−
√

4y + 4y2 + (−1 + z)2 − z]

− dL[1 + 4y2 + 4y + (2y + 1)
√

4y + 4y2 + (−1 + z)2 − z] + dL[z])
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+ 2M3(2(dL[y] + dL[1 + y])− 3dL[1−
√

4y + 4y2 + (−1 + z)2 − z]

− dL[1 + 4y2 + 4y + (2y + 1)
√

4y + 4y2 + (−1 + z)2 − z] + dL[z])

− 2M8(dL[y] + dL[1 + y]− dL[1−
√

4y + 4y2 + (−1 + z)2 − z]

− dL[1 + 4y2 + 4y + (2y + 1)
√

4y + 4y2 + (−1 + z)2 − z] + dL[z])

−M9(dL[y] + dL[1 + y]− dL[1−
√

4y + 4y2 + (−1 + z)2 − z]

− dL[1 + 4y2 + 4y + (2y + 1)
√

4y + 4y2 + (−1 + z)2 − z] + dL[z])

+M4(dL[1−
√

4y + 4y2 + (−1 + z)2 − z]

− dL[1 + 4y2 + 4y + (2y + 1)
√

4y + 4y2 + (−1 + z)2 − z] + dL[z])

− 2M5(dL[1−
√

4y + 4y2 + (−1 + z)2 − z]

− dL[1 + 4y2 + 4y + (2y + 1)
√

4y + 4y2 + (−1 + z)2 − z] + dL[z])

− 3M6(textdL[1−
√

4y + 4y2 + (−1 + z)2 − z]

− dL[1 + 4y2 + 4y(2y + 1)
√

4y + 4y2 + (−1 + z)2]− z] + dL[z])

− 4M2(dL[y] + dL[1 + y]− 2dL[−1 +
√

4y + 4y2 + (−1 + z)2 + z])

−2M7(dL[y] + dL[1 + y]− 2dL[−1 +
√

4y + 4y2 + (−1 + z)2 + z])

)

(5.155)

dM25 =ǫ
(
M25(−2dL[1 + y]− 2dL[z] + dL[1 + 2z + 4yz + z2])

+ 4M24(dL[y] + dL[1 + y]− 2dL[1 + 2y + z +
√

1 + 2z + 4yz + z2])

− 8M16(dL[y] + dL[1 + y]− 2dL[1 + 2y + z +
√

1 + 2z + 4yz + z2])

+ 4M21(dL[y] + dL[1 + y]− 2dL[1 + 2y + z +
√

1 + 2z + 4yz + z2])

− 2M23(dL[y] + dL[1 + y] + 3dL[z] + dL[1 + 2y + z +
√

1 + 2z + 4yz + z2]

− 3dL[1 + z + 2yz +
√

1 + 2z + 4yz + z2])

− 6M15(dL[y] + dL[1 + y] + dL[z]− dL[1 + 2y + z +
√

1 + 2z + 4yz + z2]

− dL[1 + z + 2yz +
√

1 + 2z + 4yz + z2])

− 2M17(dL[y] + dL[1 + y] + dL[z]− dL[1 + 2y + z +
√

1 + 2z + 4yz + z2]

− dL[1 + z + 2yz +
√

1 + 2z + 4yz + z2])

+ 2M14(dL[z] + dL[1 + 2y + z +
√

1 + 2z + 4yz + z2]− dL[1 + z + 2yz +
√

1 + 2z + 4yz + z2])

+ 2M18(dL[z] + dL[1 + 2y + z +
√

1 + 2z + 4yz + z2]− dL[1 + z + 2yz +
√

1 + 2z + 4yz + z2])

− 4M20(dL[z] + dL[1 + 2y + z +
√

1 + 2z + 4yz + z2]− dL[1 + z + 2yz +
√

1 + 2z + 4yz + z2])

+ 4M22(dL[y] + dL[1 + y]− dL[z]− 3dL[1 + 2y + z +
√

1 + 2z + 4yz + z2]

+dL[1 + z + 2yz +
√

1 + 2z + 4yz + z2])
)

. (5.156)



206 CHAPTER 5. MASTER INTEGRALS FOR CC-DIS FORM FACTORS

It was observed in Section 4.4 that, given the definition of Multiple Polylog-
arithm (MPL) Eq.(4.76) and the definition of Iterated Integrals Eq.(4.148), if a
canonical system of D.E. can be written as the total differential of a logarithmic
1-form with all the arguments of the d-Logs being linear function of the dimension-
less variables describing the problem, then the system can be integrated in terms
of MPLs.
It was also observed that this automatically happens when a canonical basis is
reached via rational transformations.
On the other hand, if a canonical basis is reached via an algebraic transformation,
normally an algebraic dependence on the dimensionless variables is introduced in
the arguments of the d-Logs. This is exactly what happens in our case, as it can
be clearly seen from Eq.(5.155), (5.156).
Given the presence of such algebraic dependence in the d-Logs arguments, we can-
not integrate the system as it is in terms of MPLs. We need first to find a suitable
remapping to eliminate the presence of square roots in the arguments and eventu-
ally to confine the quadratic dependence to only one variable at choice between z
and y.
As explained in [44], it is indeed possible to integrate in terms of MPLs whenever
the system exhibits quadratic dependence of the letters on just one variable, pro-
vided that integration over the quadratic variable is postponed until the very end
of the calculation. We will explain more in detail how this works in the following.
For the moment we start providing the necessary remappings for tG1 , t

G
2 and de-

scribing what their exact purpose is.

1. We start from the original alphabets for tG1 , t
G
2 which contain square roots

and quadratic dependence on both z and y.

AtG1
=
{

1− z, z, y + z, y, y + 1, y + z + 1, 2y + z + 1,−
√

4y2 + 4 y + (z − 1)2 − z + 1,

(2y + 1)
(

√

4y2 + 4 y + (z − 1)2 + 2
)

+ 4y2 − z + 1,

√

4 y2 + 4y + (z − 1)2 + z − 1, 4y2 + 4y + (z − 1)2
}

(5.157)

AtG2
=
{

1− z, z, y + z, y, y + 1, y + z + 1, 2y + z + 1,
√

4yz + z2 + 2z + 1 + 2 y + z + 1,

√

4yz + z2 + 2z + 1 + 2yz + z + 1, 4yz + z2 + 2z + 1
}

(5.158)

2. We observe in general that pure loop-integrals, namely integrals for which
we can write down a Feynman parameters representation, transforms in a
not only well-defined but indeed even way under sign-change of the square
roots possibly appearing in the alphabet describing the related canonical ba-
sis. Indeed, every loop-integral is a purely rational object, since integrations



5.2. MASTER INTEGRALS FOR CC-DIS AT O(α2
S) 207

over Feynman parameters do not contain any square root and, as such, it is
always even under a change in the choice of any square root branch. On the
other hand, integrals belonging to the canonical basis can be obtained by
multiplying the original loop-integrals either by rational functions, either by
algebraic functions which are nothing but the square roots that we recover
then in the alphabet. Consequently, we understand that canonical masters
Mi do conserve the property of transforming in a well-defined way under
sign-change of this square root function, but they have the freedom to trans-
form either evenly or oddly. In order to make manifest this property of the
integrals, it is then desirable to write down the solutions to the canonical
basis in terms of functions which are even or odd under sign change of the
square root functions. This corresponds to having coefficients of the canon-
ical D.E., namely entries of the d-Log matrices, with the same property,
namely that of transforming in a manifestly either even or odd way under
sign-change of the square root. In case coefficients do not automatically sat-
isfy this property, the goal can be achieved by manipulating these coefficients
in order to (anti-)symmetrize them with respect to the above-mentioned sign
transformation.

Now, in the present situation, the scenario is a bit different, since the orig-
inal basis are not made up of pure loop-integrals but of cut integrals. We
cannot write down a Feynman parameters representation for cut integrals
and, as a consequence these kind of integrals and the related canonical ones
do not satisfy a priori any property of well-defined transformation under sign
change of possible square root functions.
Still, it is useful to write the solution to these integrals as linear combinations
of functions being either even or odd under such transformation, so that if
one of the integrals is even or odd, this becomes immediately manifest.
So, before proceeding with remappings, we anti-symmetrize those d-Logs en-
tries that do not transform in a well-defined way when we change the sign
of square root functions appearing in alphabets for canonical basis of tG1 , t

G
2

(Eq.(5.159), (5.161)). The (anti-)symmetrized alphabets are then reported
in Eq.(5.160), (5.162).

tG1 :

{

dL
(

1−
√

4y + 4y2 + (−1 + z)2 − z
)

→ 1

2
(dL (4y(1 + y))

+ dL

(

1−
√

4y + 4y2 + (−1 + z)2 − z

1 +
√

4y + 4y2 + (−1 + z)2 − z

))

,

dL
(

1 + 4y2 + 4y + (2y + 1)
√

4y + 4y2 + (−1 + z)2 − z
)

→ 1

2
(dL (4y(1 + y))
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. +dL

(

1 + 4y2 + 4y + (2y + 1)
√

4y + 4y2 + (−1 + z)2 − z

1 + 4y2 + 4y − (2y + 1)
√

4y + 4y2 + (−1 + z)2 − z

)

+ 2dL(z)

)

,

dL
(

−1 +
√

4y + 4y2 + (−1 + z)2 + z
)

→ 1

2
(dL(4y(1 + y))

+dL

(

−1 +
√

4y + 4y2 + (−1 + z)2 + z

−1−
√

4y + 4y2 + (−1 + z)2 + z

))}

, (5.159)

ASYMM
tG1

= {1− z, z, y + z, y, y + 1, y + z + 1, 2y + z + 1,

1−
√

4y + 4y2 + (−1 + z)2 − z

1 +
√

4y + 4y2 + (−1 + z)2 − z
,

1 + 4y2 + 4y + (2y + 1)
√

4y + 4y2 + (−1 + z)2 − z

1 + 4y2 + 4y − (2y + 1)
√

4y + 4y2 + (−1 + z)2 − z
,

−1 +
√

4y + 4y2 + (−1 + z)2 + z

−1−
√

4y + 4y2 + (−1 + z)2 + z

}

. (5.160)

tG2 :

{

dL
(

1 + 2y + z +
√

1 + 2z + 4yz + z2
)

→ 1

2
(dL(4y(1 + y))

+dL

(

1 + 2y + z +
√

1 + 2z + 4yz + z2

1 + 2y + z −
√

1 + 2z + 4yz + z2

))

,

dL
(

1 + z + 2yz +
√

1 + 2z + 4yz + z2
)

→ 1

2
(dL(4y(1 + y)) + 2dL(z)

+dL

(

1 + z + 2yz +
√

1 + 2z + 4yz + z2

1 + z + 2yz −
√

1 + 2z + 4yz + z2

))}

, (5.161)

ASY MM
tG2

= {1− z, z, y + z, y, y + 1, y + z + 1, 2y + z + 1,

1 + 2y + z +
√

1 + 2z + 4yz + z2

1 + 2y + z −
√

1 + 2z + 4yz + z2
,

1 + z + 2yz +
√

1 + 2z + 4yz + z2

1 + z + 2yz −
√

1 + 2z + 4yz + z2

}

. (5.162)

3. On both topologies we perform a first remapping which has the unique pur-
pose of eliminate square roots.

tG1 :
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{

z → x+ w(2 + x)

−1 + w
, y → w

x

(1 + x)2

(1− w)2

}

(5.163)

tG2 :

{

z → z, y → x

z

(1 + z)2

(1− x)2

}

(5.164)

4. By applying remappings Eq.(5.163), (5.164) to the alphabets Eq.(5.160),
(5.162), we see that square roots are indeed eliminated, but still the letters
conserve quadratic dependence on both the newly introduced dimensionless
variables. In order to reduce such quadratic dependence to just one of the
two variables, we introduce other remappings. These consist actually of just
one transformation for tG2 and two transformations in a row for tG1 , as listed
in the following.

tG1 :

{

w → −1

a
, x→ − b

1 + b

}

,

{

a→ 1 + c− 2d, b→ −1 + d

2 + c− 2d

}

(5.165)

tG2 :

{

x→ a

1 + a
, z → − a

a− b

}

(5.166)

5. By applying in a row Eq.(5.163), (5.164) and Eq.(5.165), (5.166) to the initial
alphabets, we obtain in output the new alphabets Eq.(5.167), (5.168).

ASYMM,remapped

tG1
= {c− 2d, 1 + c− d, 1 + d,−1 + d, c+ (−2 + d)d, 1 + c− 2d,

c− d, d,−1 + cd, c− 2d+ cd,−c+ d, c+ cd− 2d2
}

(5.167)

ASY MM,remapped

tG2
=
{

−2a+ b,−a+ b, a, a+ (1 + a)b2, 1 + a, b, 1 + b,

a(−1 + b) + b, 1 + b+ ab, 1 + 2(1 + a)b, a− b, 1 + 2a}
(5.168)
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We clearly see that our goal is achieved! We have got rid of all square
roots and we have managed to confine the quadratic dependence to only one
dimensionless variable! We can finally write down the following list of rules
for the d-Log entries

tG1 :

{dL (1− z) → dL (c− 2d)− dL (1 + c− d) ,

dL (z) → −dL (1 + c− d) + dL (1 + d) ,

dL (y + z) → −dL (1 + c− d) − dL (−1 + d) + dL (c+ (−2 + d)d) ,

dL (y) → dL (1 + c− 2d) − dL (1 + c− d) − dL (−1 + d) ,

dL (1 + y) → dL (c− d) − dL (1 + c− d) − dL (−1 + d) + dL (d) ,

dL (1 + y + z) → −dL (1 + c− d)− dL (−1 + d) + dL (−1 + cd) ,

dL (1 + 2y + z) → −dL (1 + c− d)− dL (−1 + d) + dL (c− 2d+ cd) ,

dL (4y(1 + y)) → dL (1 + c− 2d) + dL (c− d)− 2dL (1 + c− d)− 2dL (−1 + d) + dL (d) ,

dL

(

1−
√

4y + 4y2 + (−1 + z)2 − z

1 +
√

4y + 4y2 + (−1 + z)2 − z

)

→ −dL (1 + c− 2d) − dL (d) + dL (−c+ d) ,

dL

(

1 + 4y2 + 4y + (2y + 1)
√

4y + 4y2 + (−1 + z)2 − z

1 + 4y2 + 4y − (2y + 1)
√

4y + 4y2 + (−1 + z)2 − z

)

→ dL (1 + c− 2d) + dL (c− d)

− 2dL (−1 + d)− dL (d) + 2dL (1 + d) ,

dL

(

−1 +
√

4y + 4y2 + (−1 + z)2 + z

−1−
√

4y + 4y2 + (−1 + z)2 + z

)

→ −dL (1 + c− 2d) − dL (d) + dL (−c+ d) ,

dL
(
4y + 4y2 + (−1 + z)2

)
→ −2dL (1 + c− d)− 2dL (−1 + d) + 2dL

(
c+ cd− 2d2

)}

(5.169)

tG2 :

{dL (1− z) → dL (−2a+ b)− dL (−a+ b) ,

dL (z) → dL (a) − dL (−a+ b) ,

dL (y + z) → −dL (−a+ b) + dL
(
a + (1 + a)b2

)
,

dL (y) → dL (1 + a) + 2dL (b) − dL (−a+ b) ,

dL (1 + y) → dL (1 + b)− dL (−a+ b) + dL (a(−1 + b) + b) ,

dL (1 + y + z) → dL (b)− dL (−a+ b) + dL (1 + b+ ab) ,

dL (1 + 2y + z) → dL (b) − dL (−a+ b) + dL (1 + 2(1 + a)b) ,

dL (4y(1 + y)) → dL (1 + a) + 2dL (b) + dL (1 + b)− 2dL (−a+ b) + dL (a(−1 + b) + b) ,

dL

(

1 + 2y + z +
√

1 + 2z + 4yz + z2

1 + 2y + z −
√

1 + 2z + 4yz + z2

)

→ dL (1 + a) + dL (1 + b)− dL (a(−1 + b) + b) ,

dL

(

1 + z + 2yz +
√

1 + 2z + 4yz + z2

1 + z + 2yz −
√

1 + 2z + 4yz + z2

)

→ −2dL (a) + dL (1 + a) − dL (1 + b)
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+ dL (a(−1 + b) + b) ,

dL
(
1 + 2z + 4yz + z2

)
→ 2dL (1 + 2a) + 2dL (b) − 2 dL (−a+ b)

}
(5.170)

Eventually, we use these list of rules to remap our systems of canonical D.E.
into new ones ( reported in Eq.(7.15), (7.16) of the Appendix).

6. We finally explain with an example why it is possible to integrate a canoni-
cal system of D.E. whose alphabet exhibits quadratic dependence on just
one of the variables, following reference [35], [44]. We consider for in-
stance the alphabet for tG1 in equation 5.167, whose only quadratic letter
reads c(1 + d) − 2d2 and we imagine to integrate first in c. When we per-
form integration in c, we get from this quadratic letter MPLs of the form
G
(
{2d2/(1 + d), ...}, c

)
. Following the integration procedure explained in

Section 3.4, this solution is then used to derive the differential equations for
the functions of the left-over variable d and we know that at this stage all
functions depending on c should disappear (this is actually one of the main
consistency check one has to do when integrating such systems of differential
equations!).
Since there are no letters in the alphabet which are quadratic in d and are
independent of c, we conclude that only letters that are linear in d will ap-
pear in this final step of the integration.

This concludes our discussion about how to deal with Master Integrals gen-
erating quadratic letters.

The discussion about the Double-Real master integrals for the gluon channel
ends here. All intermediate and final results for the independent masters can be
found in the Appendix.
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(a) Master9 (b) Master10 (c) Master11

(d) Master12 (e) Master13 (f) Master25

(g) Master29 (h) Master30 (i) Master31

Figure 5.28: Set of new MIs appearing in g +W ∗ → t+ b̄+ g.
Simple thin lines are massless, simple thick lines, double lines and thick dashed
lines are massive and correspond respectively to m2

t (either internal or external) ,
Q2 and s (only external).
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Real-Virtuals
[
g +W ∗ → t+ b̄

]

1−loop

The Feynman diagrams for the Real-Virtual (RV) contribution to the gluon channel
are obtained by applying crossing symmetry to the Real-Virtual diagrams for the
bottom-initiated subprocess [b+W ∗ → t+ g]1−loop. Given the identification of
particles momenta b(pb) +W ∗(q) → t(pt) + g(k), the crossing transformation is
identified by the rules (pb → −pb, k → −k). The resulting diagrams are reported
in Fig.(5.29). As we did for RR diagrams, in order to maintain the same definition
of Mandelstam invariants in terms of particle momenta we used up to now, after
performing crossing symmetry we rename particles momenta as (−k → pb,−pb →
k).

By contracting amplitudes for diagrams in Fig.(5.29) with the one for the corre-
sponding tree-level process g + W ∗ → t + b̄, adding the 2-particle phase space
measure Eq.(5.61), we find ten sets of propagators, among which four are not
topologies, since they contain linearly dependent propagators. This means we
need again to perform partial fractioning as we did for the Double Real matrix
elements.
By doing so and by modifying such dependent sets of propagators in order to
build topologies out of them as previously described in the case of the RR matrix
elements reduction, we find that gluon RV matrix elements can be described by
an ensemble of 7 independent topologies. Reduction to master integrals then tells
us that independent master integrals are distributed in just 5 of these topologies
(listed in Eq.(5.171) and drawn in Fig.(5.30)), which are then the ones that we
really need to describe our process.

tG1 ={k2, l21 −m2
t , (k + pb)

2, (l1 − q)2, (k + l1 − pb − q)2, (−l1 + pb + q)2,−m2
t + (−k + pb + q)2}

tG2 ={k2, l21 −m2
t , (k + pb)

2, (l1 − q)2, (k + l1 − pb − q)2, (−l1 + pb + q)2,−m2
t + (−k + pb + q)2}

tG3 ={k2, (k − l1)
2, l21, (k + pb)

2, (−k + l1 + pb)
2,−m2

t + (l1 − q)2,−m2
t + (−k + pb + q)2}

tG4 ={k2, l21 −m2
t ,−m2

t + (k − q)2, (l1 − q)2, (k + l1 − pb − q)2, (−l1 + pb + q)2,

−m2
t + (−k + pb + q)2}

tG5 ={k2, (k − l1)
2, l21,−m2

t + (k − q)2,−m2
t + (l1 − q)2,−m2

t + (−k + pb + q)2,

−m2
t + (−l1 + pb+ q)2} (5.171)

We report in Eq.(5.172), (5.173), (5.174), (5.175), (5.176) the basis of masters
we find for each topology. We stress that, as for the Double Real set of MIs, some
integrals appear in more than one topology, but for practical reasons, we prefer
to keep the masters separated according to the topology they belong to. The
independent MIs are in total 25, out of which 12 are actually new with respect
to the ones already encountered in the bottom channel. These new masters are
drawn in Fig.(5.31), (5.32).
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MasterG1 → G[tG1 , {1, 1, 0, 0, 0, 0, 1}]

MasterG2 → G[tG1 , {1, 1, 0, 1, 0, 0, 1}]

MasterG3 → G[tG1 , {1, 1, 0, 0, 0, 1, 1}]

MasterG4 → G[tG1 , {1, 0, 0, 1, 1, 0, 1}]

MasterG5 → G[tG1 , {1, 1, 0, 1, 1, 0, 1}]

MasterG6 → G[tG1 , {1, 1, 0, 1, 1, 0, 2}]

MasterG7 → G[tG1 , {1, 1, 0, 1, 2, 0, 1}] (5.172)

MasterG8 → G[tG2 , {1, 0, 0, 0, 1, 1, 0}]

MasterG9 → G[tG2 , {1, 0, 0, 0, 0, 1, 1}]

MasterG10 → G[tG2 , {1, 0, 1, 0, 1, 1, 0}]

MasterG11 → G[tG2 , {1, 1, 0, 0, 1, 2, 0}]

MasterG12 → G[tG2 , {1, 1, 0, 0, 2, 1, 0}]

MasterG13 → G[tG2 , {1, 1, 0, 0, 1, 1, 0}]

MasterG14 → G[tG2 , {1, 0, 1, 0, 0, 1, 1}]

MasterG15 → G[tG2 , {1, 1, 1, 0, 1, 1, 0}]

MasterG16 → G[tG2 , {1, 0, 1, 0, 1, 1, 1}]

MasterG17 → G[tG2 , {1, 1, 0, 0, 1, 1, 1}]

MasterG18 → G[tG2 , {1, 1, 0, 0, 1, 1, 2}]

MasterG19 → G[tG2 , {1, 1, 1, 1, 1, 1, 1}] (5.173)

MasterG20 → G[tG3 , {1, 0, 0, 0, 0, 1, 1}]

MasterG21 → G[tG3 , {1, 0, 1, 0, 1, 0, 1}]

MasterG22 → G[tG3 , {1, 0, 1, 0, 0, 1, 1}]

MasterG23 → G[tG3 , {1, 1, 0, 0, 0, 1, 2}]

MasterG24 → G[tG3 , {1, 1, 0, 0, 0, 2, 1}]

MasterG25 → G[tG3 , {1, 1, 0, 0, 0, 1, 1}]

MasterG26 → G[tG3 , {1, 0, 1, 0, 1, 1, 2}]

MasterG27 → G[tG3 , {1, 0, 1, 0, 1, 2, 1}]

MasterG28 → G[tG3 , {1, 0, 1, 0, 1, 1, 1}]

MasterG29 → G[tG3 , {1, 1, 1, 0, 0, 1, 1}]

MasterG30 → G[tG3 , {1, 1, 1, 0, 1, 1, 1}] (5.174)

MasterG31 → G[tG4 , {1, 1, 0, 0, 0, 0, 1}]

MasterG32 → G[tG4 , {1, 1, 1, 0, 0, 0, 1}]

MasterG33 → G[tG4 , {1, 0, 0, 1, 1, 0, 1}]
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MasterG34 → G[tG4 , {1, 1, 0, 0, 0, 1, 1}]

MasterG35 → G[tG4 , {1, 1, 0, 1, 0, 0, 1}]

MasterG36 → G[tG4 , {1, 1, 1, 1, 0, 0, 1}]

MasterG37 → G[tG4 , {1, 1, 1, 0, 0, 1, 1}]

MasterG38 → G[tG4 , {1, 0, 1, 1, 1, 0, 1}]

MasterG39 → G[tG4 , {1, 1, 0, 1, 1, 0, 1}]

MasterG40 → G[tG4 , {1, 1, 0, 1, 1, 0, 2}]

MasterG41 → G[tG4 , {1, 1, 0, 1, 2, 0, 1}]

MasterG42 → G[tG4 , {1, 1, 1, 1, 1, 0, 1}]

MasterG43 → G[tG4 , {1, 1, 1, 1, 1, 1, 1}] (5.175)

MasterG44 → G[tG5 , {1, 0, 0, 0, 1, 1, 0}]

MasterG45 → G[tG5 , {1, 0, 0, 0, 0, 1, 1}]

MasterG46 → G[tG5 , {1, 0, 0, 1, 1, 1, 0}]

MasterG47 → G[tG5 , {1, 1, 0, 0, 1, 2, 0}]

MasterG48 → G[tG5 , {1, 1, 0, 0, 2, 1, 0}]

MasterG49 → G[tG5 , {1, 1, 0, 0, 1, 1, 0}]

MasterG50 → G[tG5 , {1, 0, 1, 0, 1, 1, 0}]

MasterG51 → G[tG5 , {1, 0, 0, 1, 0, 1, 1}]

MasterG52 → G[tG5 , {1, 0, 1, 0, 0, 1, 1}]

MasterG53 → G[tG5 , {1, 0, 1, 1, 1, 1, 0}]

MasterG54 → G[tG5 , {1, 1, 1, 0, 1, 1, 0}]

MasterG55 → G[tG5 , {1, 0, 1, 1, 0, 1, 1}]

MasterG56 → G[tG5 , {1, 1, 0, 0, 1, 1, 1}]

MasterG57 → G[tG5 , {1, 1, 0, 0, 1, 1, 2}]

MasterG58 → G[tG5 , {1, 0, 1, 0, 1, 1, 1}]

MasterG59 → G[tG5 , {1, 0, 1, 1, 1, 1, 1}] (5.176)

As usual, we transform then each of these original integral basis into canonical
ones (reported in Eq.(7.21), (7.22), (7.23), (7.24), (7.25) of the Appendix). We
report the corresponding system of canonical D.E. in Eq.(7.26), (7.27), (7.28),
(7.29), (7.30) of the Appendix.
We point out that in topology tG4 , we encountered the same quadratic denominator
found in the RR topology tG2 . The alphabets for these topologies present then the
same quadratic letters, which implies we need to perform remapping Eq.(5.164),
(5.166) on the canonical D.E. for the RV topology tG4 . The system of canonical
D.E., rewritten in terms of the new dimensionless variables (a, b), is free of letters
containing square roots and has quadratic dependence on just one variable, mean-
ing that this system is now integrable in terms of MPLs.
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Boundary conditions for the g-channel RV masters.

For a complete explanation of how boundary conditions are computed in gen-
eral for Real-Virtual master integrals, we send the reader back to the subsection
dedicated to the bottom channel, since the same technique applies also to gluon
channel RV masters.
Following this technique, we observe that the ensemble of pure 1-loop integrals that
we obtain when we cut the gluon RV original basis of masters (Eq.(5.172), (5.173),
(5.174), (5.175), (5.176)) in correspondence of the Phase Space, contains mostly
1-loop integrals that we already encountered in the bottom channel. We obtain
only five new 1-loop integrals to compute in the double limit {z → 1, y → 0},
which we draw in Fig.. In the rest of this subsection we address the computation
of these 1-loop integrals.

• TRIANGLES

1. Triangle with 1 internal mass m2

t
and external masses {Q2, s}

tG1
(

Q2, s,m2
t

)

=

∫

ddl1
1

l21(−m2
t + (l1 − q)2)(−m2

t + (−l1 + pb + q)2)

=

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

0

dx3Γ(1 + ǫ)×

× δ(1− x1 − x2 − x3)(x1 + x2 + x3)
−1+2ǫ

×
(

m2
t (x2 + x3)(x11 + x2 + x3) + x1(Q

2x2 − sx3)
)−1−ǫ

(5.177)

Triangle tG1 corresponds to Fig.5.33a. In this integral, m2
t appears only

as internal invariant, and Q2, s as external ones. We can then expect
the F polynomial to be, with no ambiguity, positive-definite in the re-
gion {m2

t > 0, Q2 > 0, s < 0}, and, by inspection of the F polynomial
in Eq.(5.177), we can easily conclude that this is indeed the case.
Consequently, the integration over Feynman parameters in Eq.(5.177),
will be carried out in the ‘over-threshold’ region identified by the con-
dition z̄ = 1−m2

t/s < 0, where the integral is real, and then the result
will be continued back to physical values 0 < z̄ < 1 as explained in the
paragraph ‘Analytical continuation’ (see from Eq.(5.86) to Eq.(5.88)).
Two regions are revealed by Asy2.m in the limit {z → 1, y → 0}, iden-
tified by the scalings of Feynman parameters respectively by {0, 0, 0}
and {0, 2, 1}.
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HARD REGION {0, 0, 0}

tG1 (z̄, y, s)0,0,0 =Γ(1 + ǫ)

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

0

dx3×

× δ(1− x1 − x2 − x3)(x1 + x2 + x3)
−1+2ǫ

(s(x2 + x3)(x1 + x2 + x3) + (−sx1x3))
−1−ǫ

=Γ(1 + ǫ)

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

0

dx3δ(1− x1 − x2 − x3)

(x1 + x2 + x3)
−1+2ǫ(s)−1−ǫ

(

x1x2 + (x2 + x3)
2
)−1−ǫ

=Γ(1 + ǫ)(s)−1−ǫ

∫ ∞

0

dx1

∫ 1

0

dx2(x1 + 1)−1+2ǫ(x1x2 + 1)−1−ǫ

=− s−1−ǫΓ(ǫ)(ψ(−2ǫ+ 1)− ψ(−ǫ+ 1)) (5.178)

REGION {0, 2, 1}
By making the necessary rescalings of parameters Eq.(5.179)

{m2
t → (1 + ax̄)s,Q2 → ays, x2 → a2x2, x3 → a1x3}, x̄ = −z̄ > 0

(5.179)

inside Eq.(5.177), setting x1 = 1 and keeping the first term in the
expansion around a→ 0, we get the integral in Eq.(5.180) to compute.

tG1 (z̄, y, s){0,2,1} = a1−2ǫs−1−ǫ

∫ ∞

0

x2

∫ ∞

0

x3Γ(1 + ǫ)
(

x2 + x̄x3 + x2
3

)−1−ǫ

(5.180)

We carry out the integration first over x2 and then over x3. Then, by
applying the prescription for analytic continuation on x̄, x̄ → z̄e−iπ,
and setting a = 1, we get as final result

tG1 (z̄, y, s){0,2,1} = e2iǫπs−1−ǫz̄1−2ǫΓ(1− ǫ)Γ(−1 + 2ǫ). (5.181)

The two regions just computed can be finally summed up to give

tG1 (z → 1, y → 0, s) =− s−1−ǫΓ(ǫ)(ψ(−2ǫ+ 1) − ψ(−ǫ+ 1))

+ e2iǫπs−1−ǫz̄1−2ǫΓ(1− ǫ)Γ(−1 + 2ǫ) (5.182)
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2. Triangle with 1 internal mass m2
t and external masses {p2

t ,u}

tG2 (m
2
t , u, p

2
t ) =Γ(1 + ǫ)

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

0

dx3

δ(x1 + x2 + x3)(x1 + x2 + x3)
−1+2ǫ

(

m2
t (x2 + x3)(x1 + x2 + x3) + (−u)x1x2 + (−pt)2x1x3

)−1−ǫ
.

(5.183)

Triangle tG2 corresponds to Fig.5.33b. By inspection of Eq.(5.183), we
see that, as expected, the F polynomial is positive-definite for negative
values of the external invariants Q2 > 0, p2t < 0 (we remind that Q2 =
−q2!) and positive values of the internal ones m2

t > 0. We observe that
we can safely set p2t = m2

t without spoiling the sign of the F polynomial,
thus obtaining

tG2 (m
2
t , u) =Γ(1 + ǫ)

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

0

dx3

δ(x1 + x2 + x3)(x1 + x2 + x3)
−1+2ǫ

(

m2
t (x1x2 + (x2 + x3)

2) + (−u)x1x2

)−1−ǫ
. (5.184)

By looking at Eq.(5.184), it is quite clear that the F polynomial does
not develop problematic behaviour, namely does not goes to zero, when
we take s → m2

t and Q2 ≃ 0. In this limit, u is also O(0), so that the
F polynomial simply reduces to

(
s(x1x2 + (x2 + x3)

2)
)
. The smooth

behaviour of the integral in this limit is confirmed by the presence of the
only hard region, according to the output of Asy2.m. Since the compu-
tation of such region is straightforward for both integrals belonging to
this subtopology (Fig.??, 5.33c), we directly quote results.

tG2 (z → 1, y → 0, s) = −s−1−ǫΓ(ǫ)(ψ(−2ǫ+ 1)− ψ(−ǫ+ 1)) (5.185)

tG3 (z → 1, y → 0, s) = −s−1−ǫΓ(ǫ) (1 + ǫ+ ǫ(ψ0(1− ǫ)− ψ0(−2ǫ))) (5.186)

• BOX
Box with 1 internal mass m2

t
and external masses {Q2,p2

t
, t, s}.

BoxG
1 (m

2
t , Q

2, p2t , t, s) =

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

0

dx3

∫ 1

0

dx4δ(1− x1 − x2 − x3 − x4)×

× Γ(2 + ǫ)(x1 + x2 + x3 + x4)
2ǫ× (5.187)

× (Q2x1x2 − p2tx1x3 − tx2x3 − sx1x4+
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+m2
tx1(x1 + x2 + x3 + x4))

−2−ǫ (5.188)

Boxg1 corresponds to Fig.5.33d. The F polynomial follows the general rule
and is positive-definite for positive internal invariants and negative external
ones. Once again, we can safely set p2t = m2

t without altering the sign of
the polynomial. On the other side, it is clear that the integrals requires
analytical continuation, since it is real for s < 0. Analytical continuation is
performed once again on the variable z̄, as already mentioned above for the
triangle tG1 (Eq.(5.177)).
Asy2.m individuates the presence of 3 regions, identified respectively by
{0, 0, 0, 0}, {0,−1,−1,−1}, {0, 0,−1,−1}.

REGION {0, 0, 0, 0}

BoxG
1 (z̄, y, s){0,0,0,0} = − ǫs−2−ǫΓ(ǫ)

2(1 + ǫ)(1 + 2ǫ)
(5.189)

REGION {0,−1,−1,−1}
After having expanded at integrand level with the Feynman parameters
scaling dictated by this region, we end up with the integrand contained in
Eq.(5.190)

boxG
1 (Q

2, s, t,m2
t ){0−1−1−1} =

∫ ∞

0

dx2dx3dx4s
−2−ǫΓ(2 + ǫ)(x1x2 + θz̄x2x3)

−2−ǫ

(x2 + x3 + x4)
2ǫ, (5.190)

where we already used the Cheng-Wu theorem to set x1 = 1 and extending
the integration over the other parameters to ∞. For simplicity of notation,
we have introduced the variable θ = 1− λ, so that the t invariant results to
be parametrized by t = −s(1 + y)z̄θ. The integrand in Eq.(5.190) depends
on the two dimensionless variables z̄, θ. The final result for this region will
be then a function of these two parameters.
We observe that the F -polynomial is positive-definite in the physical region
{0 < θ < 1, 0 < z̄ < 1}, so that we do not need to perform any kind of
analytical continuation in this region. The integrations over x2, x3, x4 are
carried without any difficulty, thus giving as a result

boxG
1 (Q

2, s, t,m2
t ){0−1−1−1} = −πs

−2−ǫ(θz̄)−1−ǫ csc(ǫπ)Γ(−1− ǫ)

Γ(−2ǫ)
. (5.191)

REGION {0, 0,−1,−1}
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We are now left with the last region to compute, identified by the scalings
{0, 0,−1,−1} of the Feynman parameters. After expanding at integrand
level, we end up with

boxG
1 (Q

2, s, t,m2
t ){00−1−1} =

∫ ∞

0

dx2dx3dx4s
−2−ǫΓ(2 + ǫ)(x3 + x4)

2ǫ

(1 + x2 + θz̄x2x3 − zbx4)
−2−ǫ. (5.192)

As for the previous region, we see that also in this case the integrand depends
on z̄, θ, implying that the result for this region will be again a function
of these variables. But, with respect to the previous region, we have to
deal in this case with analytical continuation. In fact, the F polynomial
1 + x2 + θz̄x2x3 − zbx4 is clearly positive-definite for {−1 < z̄ < 0,−1 <
θ < 0}. So, the procedure we adopt is the usual one which allows to get the
correct complex phases in this cases, namely

– we define two new variables

x̄ = −z̄, θ̄ = −θ, (5.193)

– we perform integrations in Eq.(5.192) in the unphysical region 0 < x̄ <
1, 0 < θ̄ < 1,

– we work out the analytical continuation prescriptions for the dimen-
sionless variables x̄, θ̄ starting from the ones from the invariants,

– we apply such prescriptions to get our final result in the physical region.

Let us go through this procedure step by step. We start substituting Eq.(5.193)
into Eq.(5.192), thus getting

boxG
1 (Q

2, s, t,m2
t ){0,0,−1,−1} =

∫ ∞

0

dx2dx3dx4s
−2−ǫΓ(2 + ǫ)(x3 + x4)

2ǫ

(1 + x2 + θ̄x̄x2x3 + xbx4)
−2−ǫ. (5.194)

We carry out integration in x2, which hands

boxG
1 (Q

2, s, t,m2
t ){0,0,−1,−1} =

∫ ∞

0

dx3dx4
ǫs−2−ǫΓ(ǫ)(x3 + x4)

2ǫ(1 + x̄x4)
−1−ǫ

1 + θ̄xbx3
.

(5.195)

In order to be able to integrate in x3, x4, we first rescale both these param-
eters by x̄, namely by doing the replacements xi → xi/x̄, i = 3, 4. After this
manipulation, we get
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boxG
1 (Q

2, s, t,m2
t ){0,0,−1,−1} =

∫ ∞

0

dx3dx4
s−2−ǫx̄−2−2ǫΓ(1 + ǫ)(1 + x4)

−1−ǫ(x3 + x4)
2ǫ

1 + θ̄x3

.

(5.196)

At this point we can integrate Eq.(5.196) over x3, x4. The result obtained
in closed form in ǫ is Eq.(5.197).

boxG
1 (Q

2, s, t,m2
t ){00−1−1} =− πs−2−ǫx̄−2−2ǫ csc(ǫπ)Γ(1 + 2ǫ)

θ̄

(

(−θ̄)−ǫ(1 + θ̄)ǫΓ(−ǫ)

+θ̄Hypergeometric2F1Regularized(1, 1, 2 + ǫ,−θ̄)
)

− πs−2−ǫθ̄−1−2ǫx̄−2−2ǫ csc(2ǫπ)Γ(1 + ǫ)

×
(

−21+2ǫπ3/2(−θ̄)2ǫθ̄−ǫ(1 + θ̄)ǫ csc(2ǫπ)

Γ(1/2− ǫ)Γ(1 + ǫ)

+
Hypergeometric2F1

(

1, 1 + ǫ, 2(1 + ǫ),− 1
θ̄

)

θ̄ + 2ǫθ̄

)

.

(5.197)

Result in Eq.(5.197) is valid in the region {0 < x̄ < 1, 0 < θ̄ < 1}. We
need then to perform analytical continuation on such result in order to go
back to the physical region {−1 < x̄ < 0,−1 < θ̄ < 0}, which corresponds to
{0 < z̄ < 1, 0 < θ < 1}. We already have the prescription for x̄ (Eq.(5.88)).
We then need to work out the rule for θ̄. We start from the representation
for the t invariant t = −s(1 + y)z̄θ. For physical values of s, y, z̄, θ (s >
0, y > 0, 1 > z̄ > 0, 1 > θ > 0), t is negative, and indeed, as already pointed
out at the beginning of our calculation, the physical region is identified by
t < 0. Now, what happens is that we have re-parametrized z̄ with x̄, so
that for t we get now t = s(1 + y)xbθ and if we compute for xb > 0, then
it means that we are computing for t > 0. But the original F polynomial
Q2x1x2 − tx2x3 − sx1x4 +m2

tx1(x1 + x2 + x4) (Eq.(??))is positive-definite
for negative t and the same happens after we expand it in the region we are
considering, as it can be seen from Eq.(5.192) (the term coming from t is θz̄).
From this consideration we draw the conclusion that if we compute above
threshold (−1 < z̄ < 0), and we want to keep t < 0, we need to flip the sign
of the only independent variable on which t depends, which is the angular
variable θ. This explains why we introduced θ̄ = −θ and also why in this
framework a change in the sign of θ directly corresponds to a change in the
sign of t.
We are now ready to work out the rule. We start from the rule for t, which
is nothing but the usual Feynman prescription external invariants t→ t+ i0.
This give then

−t = −t− i0 = t(−1− i0) = te−iπ. (5.198)
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We can work out the rule for θ as follows.

θ̄ = −θ = t

s+Q2

s

s−m2
t

=
−t

s+Q2

s

s−m2
t

eiπ = θeiπ (5.199)

We can finally substitute the prescription Eq.(5.88),(5.199) into Eq.(5.197),
thus obtaining our final result 13

boxG
1 (Q

2, s, t,m2
t ){00−1−1} =

πs−2−ǫz̄−2−2ǫe2iπǫ csc(ǫπ)Γ(1 + 2ǫ)

θ

(

(θ)−ǫ(1− θ)ǫΓ(−ǫ)

−θHypergeometric2F1Regularized (1, 1, 2 + ǫ, θ))

πs−2−ǫθ−1−2ǫ z̄−2−2ǫ csc(2ǫπ)Γ(1 + ǫ)

×
(

−21+2ǫe−iπǫπ3/2(θ)ǫ(1− θ)ǫ csc(2ǫπ)

Γ(1/2− ǫ)Γ(1 + ǫ)

+

ei(1+ǫ)π (1−θ)ǫθ1+ǫΓ(−ǫ)Γ(2(1+ǫ))
Γ(−1−ǫ+2(1+ǫ))

−θ − 2ǫθ

−
θΓ(ǫ)Γ(2(1+ǫ))Hypergeometric2F1(1,2−2(1+ǫ),1−ǫ,θ)

Γ(1+ǫ)Γ(−1+2(1+ǫ))

−θ − 2ǫθ

)

.

(5.201)

The final result for boxG1 is the sum of the three regions

13We remark that before performing the analytical continuation on θ̄, x̄, which gives as a result
Eq.(5.201), we perform a manipulation on the function

Hypergeometric2F1
(

1, 1 + ǫ, 2(1 + ǫ),− 1
θ̄

)

appearing in the previous equation (Eq.(5.197)), by

means of the formula

Hypergeometric2F1(a, b, c, z) =
Γ(c)Γ(b − a)

Γ(b)Γ(c − a)
(−z)−aHypergeometric2F1

(

a, 1− c+ a, 1− b+ a,
1

z

)

+
Γ(c)Γ(a − b)

Γ(a)Γ(c − b)
(−z)−bHypergeometric2F1

(

b, 1− c+ b, 1− a+ b,
1

z

)

.

(5.200)

Eq.(5.200) applied to Hypergeometric2F1
(

1, 1 + ǫ,2(1 + ǫ),− 1
θ̄

)

allows us to rewrite it in terms

of Hypergeometric2F1 of argument θ̄, instead of 1
θ̄
. In other words, first we analytically continue

Hypergeometric2F1
(

1, 1 + ǫ, 2(1 + ǫ),− 1
θ̄

)

from the region where the argument is 1
−θ̄

< −1 to

the region where it is (−1 < −θ̄ < 0). And only after that we analytically continue to the
region where the argument is 0 < θ < 1 (and in this case we do not even really need analytical
continuation, since the Hypergeometric2F1 is already convergent in the circle where its argument
z is |z| < 1).
It is necessary to adopt such order in the analytical continuation, otherwise if we

use rule Eq.(5.199) directly on Hypergeometric2F1
(

1, 1 + ǫ,2(1 + ǫ),− 1
θ̄

)

, we would get

Hypergeometric2F1
(
1, 1 + ǫ, 2(1 + ǫ), 1

θ

)
, which expanded in ǫ would give logarithms of the type

ln(1 − 1/θ). These logs are clearly well defined for θ > 1, but not for 0 < θ < 1. In this latter
case, such logs develop an imaginary part, whose sign would not be properly defined.
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boxG
1 (zb → 0, y → 0, s, θ) =− ǫs−2−ǫΓ(ǫ)

2(1 + ǫ)(1 + 2ǫ)

− πs−2−ǫ(θz̄)−1−ǫ csc(ǫπ)Γ(−1− ǫ)

Γ(−2ǫ)

πs−2−ǫz̄−2−2ǫe2iπǫ csc(ǫπ)Γ(1 + 2ǫ)

θ

(

(θ)−ǫ(1− θ)ǫΓ(−ǫ)

−θHypergeometric2F1Regularized (1, 1, 2 + ǫ, θ))

πs−2−ǫθ−1−2ǫz̄−2−2ǫ csc(2ǫπ)Γ(1 + ǫ)

×
(

−21+2ǫe−iπǫπ3/2(θ)ǫ(1− θ)ǫ csc(2ǫπ)

Γ(1/2− ǫ)Γ(1 + ǫ)

+

ei(1+ǫ)π (1−θ)ǫθ1+ǫΓ(−ǫ)Γ(2(1+ǫ))
Γ(−1−ǫ+2(1+ǫ))

−θ − 2ǫθ

−
θΓ(ǫ)Γ(2(1+ǫ))Hypergeometric2F1(1,2−2(1+ǫ),1−ǫ,θ)

Γ(1+ǫ)Γ(−1+2(1+ǫ))

−θ − 2ǫθ

)

.

(5.202)

Box with 1 internal mass m2
t and external masses {Q2,p2

t ,u, s}.

BoxG
2 (m

2
t , Q

2, s, u) =

∫

ddl
1

(k − l)2l2[(l − q)2 −m2
t ][(l − pb − q)2 −m2

t ]

=

∫ 1

0

dx1dx2dx3dx4δ(x1 + x2 + x3 + x4 − 1)Γ(2 + ǫ)(x1 + x2 + x3 + x4)
2ǫ

(−ux1x3 + x2(Q
2x3 − sx4) +mt2(x1x3 + (x3 + x4)(x2 + x3 + x4)))

−2−ǫ.
(5.203)

BoxG2 corresponds to Fig.5.33e. The initial F -polynomial is positive-definite for
positive internal invariants and negative external ones. As for all previous cases in
which the F -polynomial depends on p2t , also for BoxG2 we can safely set p2t = m2

t

without spoiling the sign of the polynomial. By doing so, we end up with the
representation Eq.(5.203). The integral is real in the euclidean region s < 0. In
order to obtain its value in the region s > 0, we thus need to perform analytical
continuation. By running Asy2.m on the Feynman representation of this integral,
we get two regions identified by the Feynman parameters scalings respectively as
{0, 0, 0, 0}, {0, 0, 2, 1}.

HARD REGION {0, 0, 0, 0}

The hard region {0, 0, 0, 0} requires to perform the integral in Eq.(5.204), where
we already used the Cheng-Wu theorem to get rid of the integration over x1 by
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restricting the δ(x1 + x2 + x3 + x4 − 1) to δ(x1 + x2 − 1) and extending then the
integration over x3, x4 to [0,∞].

boxG
2 (Q

2, s, u,m2
t )HR =

∫ 1

0

dx2

∫ ∞

0

dx3

∫ ∞

0

dx4s
−2−ǫΓ(2 + ǫ)(1 + x3 + x4)

2ǫ

((1− x2)x3 + x2x3 + (x3 + x4)
2)−2−ǫ (5.204)

Integral in Eq.(5.204) is easily solved via the change of variable

x3 = (η − ξ)ξ, x4 = ξ − (η − ξ)ξ, {0 < ξ <∞, 1 < η <∞}, (5.205)

and the obtained expression for this region is then

boxG
2 (Q

2, s, u,m2
t )HR =

πs−2−ǫ csc(ǫπ)Γ(−ǫ)
Γ(−2ǫ)

. (5.206)

REGION {0, 0, 2, 1}

We now turn to region {0, 0, 2, 1}, which amounts to compute, after having ex-
panded at integrand level, the integral reported in Eq.(5.207),

boxG
2 (Q

2, s, u,m2
t ){0,0,2,1} =s−2−ǫΓ(2 + ǫ)

∫ 1

0

dx1dx2dx3dx4δ(x1 + x2 + x3 + x4 − 1)(x1 + x2)
2ǫ

(x1x3 + x2x3 − z̄x2x4 + x2
4)

−2−ǫ. (5.207)

with z̄ being as usual the threshold variable defined as z̄ =
s−m2

t

s ∈ [0, 1]. We
observe that the only term spoiling the sign of the U-polynomial is −z̄x2x4. Once
more it the convenient to perform analytical continuation on z̄. Following the usual
procedure, we introduce then the variable x̄ = −z̄ and compute the integral ‘above
threshold’, namely for 0 < x̄ < 1. By performing the integrations in Eq.(5.207),
we get

boxG
2 (Q

2, s, u,m2
t ){0,0,2,1} =s−2−ǫx̄−1−2ǫΓ(−ǫ)Γ(2ǫ). (5.208)

The analytical continuation prescription Eq.(5.88) applied to the previous result
yields

boxG
2 (Q

2, s, u,m2
t ){0,0,2,1} =s−2−ǫ exp(2iπǫ)z̄−1−2ǫΓ(−ǫ)Γ(2ǫ), (5.209)

so that our final result for this box in the desired limit reads

boxG
2 (Q

2 → 0, s, u,m2
t → s) =

πs−2−ǫ csc(ǫπ)Γ(−ǫ)
Γ(−2ǫ)

+ s−2−ǫ exp(2iπǫ)z̄−1−2ǫΓ(−ǫ)Γ(2ǫ). (5.210)
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(a)
(b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l) (m)

Figure 5.29: 1-loop corrections to g +W ∗ → t+ b̄
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(a) (b) (c)

(d) (e)

Figure 5.30: Independent topologies to [g +W ∗ → t+ b̄]1−loop.



5.2. MASTER INTEGRALS FOR CC-DIS AT O(α2
S) 227

(a) Master15

∗

(b) Master16 (c) Master17

(d) Master18 (e) Master19

∗

(f) Master32

∗

(g) Master36

∗

(h) Master37

Figure 5.31: Set of new MIs appearing in g+W ∗ → t+ b̄ at 1-loop (Master from
15 to 37).
Simple thin lines are massless, simple thick lines, double lines and thick dashed
lines are massive and correspond respectively to m2

t (either internal or external) ,
Q2 and s (only external).
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(a) Master38 (b) Master42

(c) Master43 (d) Master59

Figure 5.32: Set of new MIs appearing in g+W ∗ → t+ b̄ at 1-loop (Master from
38 to 59).
Simple thin lines are massless, simple thick lines, double lines and thick dashed
lines are massive and correspond respectively to m2

t (either internal or external) ,
Q2 and s (only external).
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pb

qpb + q
(a) tg1

pb

q − kpb + q − k

(b) tG2

pb

q − kpb + q − k

(c) tG3

q pb

kpb + q − k

(d) BoxG
1

q

pb + q − k pb

k

(e) BoxG
2

Figure 5.33: Independent 1-loop boundary conditions for the gluon RV Master
Integrals (new with respect to the ones encountered in the bottom channel).
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Chapter 6

Conclusion and Outlook

In this thesis, we presented partial results achieved in the analytical computation
of the QCD corrections at O(α2

s) (NNLO) to the inclusive cross-section for Single
Top in t-channel. In particular we presented the determination and computation
of the complete set of Master Integrals which describes the NNLO QCD correc-
tions to massive Form Factors for CC-DIS. This set of Master Integrals is a crucial
ingredient in the computation of NNLO QCD corrections to inclusive Single Top
in t-channel.

We started by reviewing (chapter 2) the importance of the Single Top produc-
tion mechanism and the need for accurate predictions of its cross-section for SM
and BSM searches, in the more general context of Top physics at the LHC.
After a brief recap of the basics of QCD, we described the computation of QCD
corrections to Single Top in t-channel in the framework of a DIS-like approach
(chapter 3). The original hadron-initiated process p + p → t + q′ + X is ‘cut’
into the two weak currents p → W ∗ + q′ + X1 and p + W ∗ → t + X2 which
constitute the building blocks of Single Top in t-channel. In other words, we
neglect all the non-factorizable corrections, namely all gluon-exchanges between
these currents. As a result, all the information about higher-order QCD correc-
tions is encoded in the two Form Factors, namely the cross-sections for the two
subprocesses p→W ∗+ q′+X1 and p+W ∗ → t+X2. This DIS-like picture holds
exactly for this process at LO and NLO in QCD. At NNLO instead it becomes an
approximation because at this perturbative order the non-factorizable corrections
begin to give non-zero contribution. Some qualitative arguments for the reliability
of such approximation are provided at the end of the chapter.
In order to construct the cross-section for [p+ p→ t+ q′ +X ]O(α2

s)
, the knowl-

edge of Form Factors up O(α2
s) is required. Form Factors can be obtained through

the ‘master formula’ of perturbative QCD as convolutions between the appropriate

231
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Parton Distribution Functions and the cross-sections for the underlying partonic
processes. In the process under consideration, what we need are thus the cross-
sections for the partonic weak currents q →W ∗+ q′+X1 and b+W ∗ → t+X2 up
to O(α2

s). These can be computed fully analytically order by order in perturba-
tion theory. The first of these subprocesses only involves massless quarks and its
cross-section is already available in literature in analytical form up to NNLO QCD.
Instead, the partonic current containing the top quark is yet unknown. It depends
on one additional scale because it contains a heavy quark in the final state, whose
mass mt cannot be neglected. The computation of σ(b+W ∗ → t+X2) therefore
ends up depending on three dimensional scales (energy in the c.o.m. frame s, top
mass mt, and virtuality of the W -boson Q2) and its computation beyond leading
order turns out to be quite involved. In the literature results already exist for
this cross-section up to NLO in QCD, but no analytical result is available up to
NNLO. Thus, the only piece we need to complete our picture is the analytical
result for σ(b+W ∗ → t+X)O(α2

s)
. The rest of this thesis, namely Chapter 3 and

4, are thus dedicated to the analytical computation of QCD corrections at O(α2
s)

to σ(b +W ∗ → t+X), which constitutes then the bulk of our original work.
Chapter 4 is dedicated to explaining in detail the technique of Master Integrals,
which we adopt in order to carry out analytically all the needed integrations over
momenta of both real and virtual particles.
Finally, in chapter 5, we explain in detail all the steps which lead to our original re-
sult, which consists in the determination and explicit computation of the complete
set of Master Integrals for b+W ∗ → t, or more generally for Charged-Current DIS
Form Factors.
Results for all the independent Master Integrals are then reported systematically
in the Appendix, together with some other useful intermediate results.

We would like to conclude this dissertation with an outlook on the possible fu-
ture developments of the results obtained up to now.

The first, natural development will be the completion of the computation of
massive CC-DIS Form Factors, describing the b + W ∗ → t + X current up to
NNLO-QCD. At this stage, all partonic matrix elements written in terms of Master
Integrals are ready and all Master Integrals have been explicitly computed. Thus,
what needs to be done is the following (in order).

• Plug the results for the masters into the partonic matrix elements. The
expressions we get are at this stage full of every possible type of divergences
and needs to be further manipulated.

• Check that all final state IR divergences and all soft-IR initial state diver-
gences cancel when we sum up the expressions corresponding to the different
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pieces that build up our final result, namely Double-Real, Real-Virtual and
Double-Virtual diagrams.

• Perform UV renormalization, which amounts in this case to renormalize the
coupling constant, the bottom and top wave-functions and the top mass.

• Accomplish mass factorization, in order to reabsorb into the PDFs the initial-
state collinear divergences which are still left in our expressions.

At this point we will end up with a finite expression for the NNLO partonic cross-
section σ(b +W ∗ → t+X), and by convolving it with the appropriate PDFs, we
will finally get the desired CC-DIS massive Form Factors.
Since this result is obtained in the above-mentioned DIS-like approximation, a
quantitative estimate of the error introduced by this approximation must be pro-
vided. This may be accomplished by means of an analysis like the one carried out
in [?].

Now, our formal result for CC-DIS massive Form Factors can be used for some
major phenomenological applications.
In the first place, we would obviously like to use it to construct the desired predic-
tion for Single Top in t-channel at NNLO-QCD. This can be achieved by imple-
menting our analytical results for partonic Form Factors into an already available
Fortran code, which will then perform numerically the convolution with PDFs
and the integration over the remaining variables which describes the global 2 → 2
process, as explained in Chapter 2. This will provide a cross-check to the fully
numerical NNLO computation carried out in [?] and also a fast and efficient way
to evaluate the inclusive cross-section for the process of interest. In fact, an ana-
lytical result has two main advantages. On one hand it is more stable and faster
under numerical evaluation. On the other hand it is ‘safer’ for what concerns the
cancellation of singularities, which happens exactly, thus providing a stringent test
of the correctness of the computation.
A more ambitious program would involve the construction of a theoretical precision
benchmark for Single Top in t-channel. This could be achieved by combining all
kinds of available corrections to this process. On top of the previously discussed
QCD corrections up to NNLO, which would constitute the bulk of the precision
benchmark, the following corrections, available in the literature, may be taken into
consideration.

• EW corrections : The other type of quantum corrections that one can con-
sider are electro-weak corrections (SM). Such corrections have been com-
puted for the Single Top in t-channel inclusive cross-section at NLO-EW
(α3) both in SM and MSSM scenarios (see [?]). The overall SM one-loop
effect is however pretty small, again of the size of a few percent with respect
to the tree-level cross-section, due to a compensation of weak and QED con-
tributions, which are of opposite sign.
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• Soft resummation : The effect of resummation of soft-gluon contributions
to all orders are computed at NNLL in [?]. These results need to be care-
fully matched with the NNLO-QCD computation, in order to avoid double-
counting of those logarithms which are already included in the fixed-order
computation.

• mb corrections : As discussed at the end of Chapter 2, our computation of the
analytical NNLO-QCD contribution to t-channel Single top is carried out in
a five-flavour (5F) scheme, where the b-quark is considered massless and the
only massive quark happens to be the top quark. Given the physical value
of 4.5GeV of the bottom mass, this can be considered a realistic description
only up to a certain extent. It is thus natural to wonder what happens if
we perform our computation in a four-flavour (4F) scheme, namely if we
let the bottom be massive. In this case the level of complexity of the com-
putation, already at NLO, significantly increases, since the final result will
depend upon a new additional dimensional scale mb. Since the full NNLO
computation in 4F is then beyond our possibilities, the exact contribution
due to mb cannot be achieved in exact form. Nonetheless, we can think of
estimating such contribution in an approximated manner, by means of the
procedure explained at the end of Chapter 3. Once our NNLO analytical
result in 5F will be available, such procedure could be used to evaluate the
impact of mb corrections at O(α2

s). The estimate thus obtained could be
then added, together with the other corrections above-mentioned, to the 5F
NNLO inclusive cross-section, and it will represent a corrective factor which
takes into account, though only in an approximate way, the presence of mb.

Beside this theoretical precision benchmark for Single Top, massive CC-DIS
Form Factors can find other phenomenological application in the extraction of
PDFs from global parton fits and in the computation of other processes where this
kind of Form Factors enter as building blocks.
On a more formal level instead, the performed computation itself exhibits some in-
teresting features. In the first place the newly computed Master Integrals increase
the general knowledge we have of such basis of integrals at 2-loop. Secondly, our
masters were computed by following the idea ([?]) of finding a canonical form for
the differential equations which describe them, thus confirming once more the suc-
cess of this recent approach. Last but not least, suitable remappings were found
in order to linearise systems of differential equations whose coefficients contained
non-rational functions of the kinematic invariants. The existence of such remap-
pings is not guaranteed a priori, but once more they have been successfully found,
as it happened for some other even more complicated processes in the very recent
literature.

To conclude, we have achieved our objective, namely the computation of the set of
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Masters describing the partonic process [b+W ∗ → t+X ]O(α2
s)
. Starting from this

achieved milestone, analytical results for massive CC-DIS Form Factors and inclu-
sive Single Top in t-channel will become available, hopefully in the next future,
as tools to further increase our knowledge of this tricky, puzzling and fascinating
world which is Particle Physics.
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Chapter 7

Appendix A: Canonical

Basis and PDEs

Canonical Differential Equations and Boundary Conditions for b+W∗ → t+ g + g.

We now report systematically for the 3 topologies the system of differen-
tial equations in canonical form, and the expansion in terms of soft masters
Master22,Masters4, which determines the boundary conditions. The alphabet in-
volved in the DE for the subprocess b+W ∗ → t+ g + g is

ARR
gg = {z, 1− z, y, 1− y, y + z}. (7.1)

Systems of differential equations in canonical form:

• t1

dM1 =ǫ(−6M2dL(z) + M1(−4dL(1 − z) + 2dL(z)))

dM2 =ǫ(−3M2dL(z) + M1(−dL(1 − z) + dL(z)))

dM3 =ǫ(2M2dL(y) + M3(2dL(y) − dL(1 + y) − 3dL(y + z)) + M1(dL(1 − z) − dL(y + z)))

dM4 =ǫ(M4(4dL(y) − dL(z) − 4dL(y + z)) + M6(2dL(y) − dL(1 − z) − 2dL(y + z))

+ M7(−3dL(y) + dL(1 + y) + 2dL(y + z)) + M3(−3dL(y) + 3dL(y + z)))

dM5 =ǫ(−2M5dL(1 + y) + M7(2dL(z) − 2dL(y + z)) + M1(−dL(1 − z) + dL(y + z))

+ M6(−2dL(1 − z) + 2dL(y + z)) + M4(−4dL(z) + 4dL(y + z)))

dM6 =ǫ(M4(4dL(1 + y) + 2dL(z) − 4dL(y + z)) + M6(2dL(1 + y)− 4dL(1 − z) − 2dL(y + z))

+ M7(−2dL(1 + y) + 2dL(y + z)) + M3(−3dL(1 + y) + 3dL(y + z)))

dM7 =ǫ(−3M2dL(y) + M4(4dL(y) + 4dL(1 + y) − 4dL(y + z))

+ M6(2dL(y)− 4dL(1 − z) − 2dL(y + z)) + M1(−dL(1 − z) + dL(y + z))

+ M7(−3dL(y) − dL(z) + 2dL(y + z)) + M3(−6dL(y) + 6dL(y + z))) (7.2)

• t2

dM8 =ǫ(−6M9dL(z) + M8(−4dL(1 − z) + 2dL(z)))

237
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dM9 =ǫ(−3M9dL(z) + M8(−dL(1 − z) + dL(z)))

dM10 =ǫ(M9(4dL(1 − z) − 4dL(z)) + M10(−2dL(1 − z) − dL(z)) + M8(−dL(1 − z) + dL(z)))

dM11 =ǫ(−2M11dL(1 − z) + M9(2dL(1 − z) − 2dL(z))

+ M8(−dL(1 − z) + dL(z)) + M10(−dL(1 − z) + dL(z))) (7.3)

• t3

dM12 =ǫ(−6M13dL(z) + M12(−4dL(1 − z) + 2dL(z)))

dM13 =ǫ(−3M13dL(z) + M12(−dL(1 − z) + dL(z)))

dM14 =ǫ(2M13dL(y) + M14(2dL(y) − dL(1 + y) − 3dL(y + z))

+ M12(dL(1 − z) − dL(y + z)))

dM15 =ǫ(2M13dL(y) + M16(2dL(y) − dL(z)) + M15(2dL(1 + y) − dL(z))

+ M14(2dL(y) + dL(z)) + M17(2dL(y) + 2dL(z)))

dM16 =ǫ(M15(−2dL(1 + y) + 2dL(1 − z))

+ M17(2dL(y) − 4dL(1 + y) + 4dL(1 − z) − 2dL(z))

+ M16(2dL(y) − 4dL(y + z))

+ M14(−dL(1 + y) + 4dL(1 − z) − 3dL(y + z)) + M12(dL(1 − z) − dL(y + z)))

dM17 =ǫ(−3M13dL(y) + M15(−dL(1 + y) − 2dL(1 − z))

+ M17(−dL(y) − 4dL(1 − z) − dL(z))

+ M16(−dL(y) − dL(1 + y) + dL(y + z)) + M12(−dL(1 − z) + dL(y + z))

+ M14(−3dL(y) + dL(1 + y) − 4dL(1 − z) + 3dL(y + z))) (7.4)

Soft limit :

• t1

Master1 → z̄
(4−4ǫ)

(−(1/4)(Q
2
+ s)Master

s
2)

Master2 → z̄(3−4ǫ)Masters2 ,

Master3 → z̄
(2−4ǫ)

(−(((−3 + 4ǫ)Master
s
2)/((−1 + 2ǫ)(Q

2
+ s))))

Master4 → z̄(1−4ǫ)Masters4

Master5 → z̄(−4ǫ)((−1 + 4ǫ)(2(3 − 10ǫ + 8ǫ2)Masters2 + ǫ2s(Q2 + s)Masters4))/(3ǫ
3s(Q2 + s)2)

Master6 → z̄(4−4ǫ)(4(−3 + 4ǫ)Masters2 + (−1 + 3ǫ)s(Q2 + s)Masters4)/(2(−1 + 2ǫ)s)

Master7 → z̄(2−4ǫ)(−(Masters2/(Q
2 + s)) + ((1 − 3ǫ)sMasters4)/(−6 + 8ǫ)). (7.5)

• t2

Master8 → z̄(3−4ǫ)Masters2

Master9 → z̄(4−4ǫ)(−(1/4)(Q2 + s)Masters2)

Master10 → z̄(1−4ǫ)((−3 + 4ǫ)Masters2)/((−1 + 2ǫ)s)

Master11 → z̄(−1−4ǫ)((−1 + 2ǫ)(−3 + 4ǫ)(−1 + 4ǫ)Masters2)/(ǫ
3s(Q2 + s)2) (7.6)

• t3

Master12 → z̄(3−4ǫ)Masters2

Master13 → z̄
(5−4ǫ)

((−1 + ǫ)sMaster
s
2)/(−10 + 8ǫ)
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Master14 → z̄
(2−4ǫ)

(−(((−3 + 4ǫ)Master
s
2)/((−1 + 2ǫ)(Q

2
+ s))))

Master15 → z̄(1−4ǫ)Masters4

Master16 → z̄
(3−4ǫ)

(Master
s
2/(Q

2
+ s) + ((−1 + 3ǫ)sMaster

s
4)/(−6 + 8ǫ))

Master17 → z̄(2−4ǫ)((6 − 8ǫ)Masters2 − (−1 + 3ǫ)s(Q2 + s)Masters4)/(2(−1 + 2ǫ)s) (7.7)

Canonical Differential Equations and Boundary Conditions for b+W∗ → t+ b+ b̄.

The canonical basis is defined as

M1 = (1 − z) ∗ (2 ∗ G(t4, {2, 0, 1, 0, 0, 0, 2}) + G(t4, {2, 0, 2, 0, 0, 0, 1}))
M2 = G(t4, {2, 0, 1, 0, 0, 0, 2})
M3 = 2 ∗ ǫ ∗ (1 + y) ∗ G(t4, {1, 0, 2, 1, 0, 0, 1})
M4 = 2 ∗ (z ∗ (1 + y + z) ∗ G(t4, {1, 0, 1, 0, 0, 2, 2})

+ 2 ∗ ǫ ∗ (1 + y + z) ∗ (G(t4, {1, 0, 1, 0, 0, 1, 2}) − G(t4, {1, 0, 2, 0, 0, 1, 1}))
+ 3 ∗ ǫ ∗ (1 + y + z) ∗ G(t4, {1, 0, 2, 0, 0, 1, 1}))

M5 = 2 ∗ ǫ ∗ (1 + y) ∗ G(t4, {1, 0, 2, 0, 0, 1, 1})
M6 = ǫ ∗ (1 + y) ∗ (G(t4, {1, 0, 1, 0, 0, 1, 2}) − G(t4, {1, 0, 2, 0, 0, 1, 1}))
M7 = 2 ∗ ǫ ∗ y ∗ (1 + y) ∗ G(t4, {1, 0, 1, 1, 0, 1, 2})
M8 = 2 ∗ (ǫ ∗ y ∗ (1 + y) ∗ G(t4, {1, 0, 1, 1, 0, 2, 1})

+ (ǫ ∗ (1 + y) ∗ (G(t4, {1, 0, 1, 0, 0, 1, 2}) − G(t4, {1, 0, 2, 0, 0, 1, 1})))/2
+ ǫ ∗ (1 + y) ∗ G(t4, {1, 0, 2, 0, 0, 1, 1}) + 2 ∗ ǫ ∗ (1 + y) ∗ G(t4, {1, 0, 2, 1, 0, 0, 1})
+ ((1 − z) ∗ (G(t4, {2, 0, 1, 0, 0, 0, 2}) + G(t4, {2, 0, 2, 0, 0, 0, 1})))/4)

M9 = 2 ∗ ǫ
2 ∗ (1 + y) ∗ G(t4, {1, 1, 1, 0, 0, 1, 1})

M10 = 2 ∗ ǫ
2 ∗ (1 + y)

2 ∗ G(t4, {1, 1, 1, 0, 1, 1, 1}). (7.8)

Differential equations read in this basis (in the form of total differential)

dM1 =ǫ(−6M2dL(z) + M1(−4dL(1 − z) + 2dL(z)))

dM2 =ǫ(−3M2dL(z) + M1(−dL(1 − z) + dL(z)))

dM3 =ǫ(2M2dL(y) + M3(2dL(y) − dL(1 + y)− 3dL(y + z)) + M1(dL(1 − z) − dL(y + z)))

dM4 =ǫ(M2(−6dL(1 + y) + 6dL(z) − 6dL(y + z)) + M4(−2dL(1 + y) + dL(z) − 2dL(y + z))

+ M1(2dL(1 + y) − 2dL(z) + dL(y + z)) + M5(3dL(1 + y)− 3dL(z) + 3dL(y + z))

+ M6(6dL(1 + y) − 6dL(z) + 4dL(y + z)))

dM5 =ǫ(M5(2dL(y) − 4dL(1 + y) − 3dL(z)) + M1(dL(y) − 2dL(z))

+ M6(2dL(y) − 4dL(1 + y) − 2dL(z))

+ M2(−4dL(y) + 6dL(z)) + M4(−dL(y) + dL(z) + dL(1 + y + z)))

dM6 =ǫ(3M5dL(1 + y) + M1dL(z) − 3M2dL(z)

+ M6(4dL(1 + y) − 2dL(z)) − M4dL(1 + y + z))

dM7 =ǫ(M6(−2dL(1 + y) + 4dL(1 − z) + 2dL(z) − 4dL(y + z)) + M8(2dL(1 + y) − 2dL(y + z))

+ M7(2dL(y) − 2dL(1 − z) − 2dL(y + z)) + M5(−2dL(1 + y) + 4dL(1 − z) − 2dL(y + z))

+ M1(−dL(1 + y) + 2dL(1 − z) − dL(y + z)) + M4(−2dL(1 − z) + 2dL(y + z))

+ M3(−4dL(1 + y) + 2dL(1 − z) + 2dL(y + z)) + M2(−6dL(1 − z) + 6dL(y + z)))

dM8 =ǫ(M7(2dL(1 + y) − 2dL(y + z)) + M5(−dL(1 + y) + dL(y + z))

+ M3(−2dL(1 + y) + 2dL(y + z)) + M4(−dL(y) + dL(1 + y + z))

+ M8(2dL(y) − 2dL(y + z) − 2dL(1 + 2y + z)))

dM9 =ǫ(−M1dL(y) + 4M2dL(y) + M4dL(y) + M6(−2dL(y) − 2dL(1 − z))

+ M9(2dL(1 + y) − 2dL(1 − z) − 2dL(y + z)) + M5(−2dL(y)− 2dL(1 − z) + dL(y + z)))
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dM10 =ǫ(−2M10dL(1 + y) + M5(−2dL(1 − z) + 6dL(z) − 4dL(y + z))

+ M6(−2dL(1 − z) + 6dL(z) − 4dL(y + z)) + M1(−dL(1 − z) + 2dL(z) − dL(y + z))

+ M9(−2dL(1 − z) + 2dL(y + z)) + M4(−2dL(z) + 2dL(y + z)) + M2(−6dL(z) + 6dL(y + z)))
(7.9)

Canonical Differential Equations and Boundary Conditions for b+W∗ → t+ g
at 1-loop.

The canonical basis is defined as

M1 = Master1(1 + y)ǫ

M2 = Master2(1 + y)ǫ

M3 =
1

(−1 + z)z

[

Master4(−1 + 3ǫ − 2ǫ2) + z(Master1(1 + y)zǫ

+Master3(1 − 5ǫ + 6ǫ2) + Master2(−(1 + y)ǫ + z(−1 + (5 + y)ǫ)))
]

M4 = −Master4(1 − z)(1 − 3ǫ + 2ǫ2)

(−1 + z)2z

M5 = Master5(1 + y)ǫ2

M6 =
y(−1 + 2ǫ)(Master4 − Master4ǫ + Master6z(−1 + 2ǫ))

(−1 + z)z(y + z)

M7 =
Master7(1 − 5ǫ + 6ǫ2)

2(−1 + z)

M8 = − 1

2(−1 + z)2z(y + z)2(1 + yz)(1 + 2ǫ)
(1 − z)

×
[

2Master4(1 + y)(1 − 3ǫ + 2ǫ2)(−y(−1 + z)z + z2(−1 + (−3 + z)ǫ) + y2(z − ǫ + 3zǫ))

+ z(1 + 2ǫ)(Master7(3y
3z + yz2(8 + z) + z2(1 + 2z) + y2(−1 + 6z + 4z2))(1 − 5ǫ+ 6ǫ2)

+ 2(1 + y)(−2Master6y(1 + y)z(1 − 2ǫ)2

+ (−1 + z)2(y + z)(Master8(1 + y)z(y + z)(1 + 3ǫ)

−2ǫ(Master9z(−y2 + z) + Master10(y + 2z + yz)ǫ))))
]

M9 =
1

(−1 + z)z(y + z)

[

Master4(y − z)(1 − 3ǫ + 2ǫ2) + z(−2Master6y(1 − 2ǫ)2

+(y + z)(2(1 + y)(−1 + z)ǫ(Master9z + Master10ǫ) + Master7(1 − 5ǫ + 6ǫ2)))
]

M10 = 2Master10(1 + y)ǫ2

M11 = Master11(1 + y)2ǫ2

M12 =
(1 − z)(−((Master12(1 + z)(1 − 2ǫ)2)/(−1 + z)3) + (Master4(1 + z)(1 − 3ǫ + 2ǫ2)

(−1 + z)3z(1 + z)

M13 = (1 + y)

[

Master14(−1 − 2y + z)

y − z
+

Master15(y − yz)

yz − z2
+

Master13(1 − 3ǫ)

z

]

ǫ

M14 = (1 + y)(1 + y − z)ǫ

[

Master13(1 − 3ǫ)

z + yz
− Master15y(−1 + z)(z + ǫ+ yǫ − 2zǫ)

(1 + y)2(y − z)zǫ

−Master14(z + ǫ + 2yǫ − 3zǫ)

yǫ + y2ǫ − zǫ − yzǫ
+

Master4(−1 + 3ǫ − 2ǫ2)

(1 + y)2(−1 + z)zǫ

]

M15 = (1 + y)ǫ

[

Master13(1 + z)(−1 + 3ǫ)

(1 + y)z
+

Master4(1 − 3ǫ + 2ǫ2)

(1 + y)2zǫ

+
Master15y(−1 + z)(z2(1 − 2ǫ) + (1 + y)ǫ+ z(−2 + 5ǫ + y(−1 + 3ǫ)))

(1 + y)2(y − z)zǫ
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+
Master14(y(1 + z)(−1 + 4ǫ) − (−1 + z)(ǫ + z(−1 + 3ǫ)))

(1 + y)(y − z)ǫ

]

M16 = 2Master16(1 + y)ǫ2

M17 = Master17(1 + y)(y + z)ǫ

M18 = 2(1 + y)(1 − z)ǫ2
[

Master19(−1 + 2ǫ)

(1 + y)(−1 + z)ǫ

+
2Master18y

2(−1 + z)z

(1 + y)ǫ2(y3(1 + ǫ)− z2(1 + ǫ) − y2(−1 + ǫ + 2z(1 + ǫ)) + yz(2(−1 + ǫ) + z(3 + ǫ)))

+
Master17(y

3 − yz + y2z − z2)(y2(1 + ǫ) + z(1 + ǫ) − y(−2 + ǫ+ z(2 + ǫ)))

(1 + y)(−1 + z)ǫ(y3(1 + ǫ) − z2(1 + ǫ) − y2(−1 + ǫ + 2z(1 + ǫ)) + yz(2(−1 + ǫ) + z(3 + ǫ)))

− Master6y(1− 2ǫ)2(y2(1 + ǫ) + z(1 + ǫ) − y(−1 + ǫ + z(3 + ǫ))

(1 + y)(−1 + z)2ǫ2(y3(1 + ǫ) − z2(1 + ǫ)− y2(−1 + ǫ+ 2z(1 + ǫ)) + yz(2(−1 + ǫ) + z(3 + ǫ)))

+ Master4(1 − 3ǫ + 2ǫ
2
) × (

(−3z2(1 + ǫ) + y4(3 + ǫ) + 2yz(−4 + 3ǫ + z(3 + ǫ)) + y2(1 + 4z(−2 + ǫ) − 3ǫ + z2(3 + ǫ))

2(1 + y)3(−1 + z)zǫ2(y3(1 + ǫ) − z2(1 + ǫ)− y2(−1 + ǫ+ 2z(1 + ǫ)) + yz(2(−1 + ǫ) + z(3 + ǫ)))

+
−2y3(3(−1 + ǫ) + z(4 + ǫ)))

2(1 + y)3(−1 + z)zǫ2(y3(1 + ǫ) − z2(1 + ǫ) − y2(−1 + ǫ + 2z(1 + ǫ)) + yz(2(−1 + ǫ) + z(3 + ǫ)))

)

+ Master16 (

y4ǫ(1 + ǫ) + z2ǫ(1 + ǫ) − 2y3ǫ(−1 + z + ǫ + zǫ)

(1 + y)(−1 + z)ǫ(y3(1 + ǫ) − z2(1 + ǫ)− y2(−1 + ǫ+ 2z(1 + ǫ)) + yz(2(−1 + ǫ) + z(3 + ǫ)))

+
−2yzǫ(−1 + z + ǫ + zǫ) + y2(−1 + ǫ)(ǫ+ 4zǫ + z2(4 + ǫ)))

(1 + y)(−1 + z)ǫ(y3(1 + ǫ) − z2(1 + ǫ) − y2(−1 + ǫ + 2z(1 + ǫ)) + yz(2(−1 + ǫ) + z(3 + ǫ)))

)

− Master13(−1 + 3ǫ)

2(1 + y)2(−1 + z)zǫ2(y3(1 + ǫ) − z2(1 + ǫ)− y2(−1 + ǫ + 2z(1 + ǫ)) + yz(2(−1 + ǫ) + z(3 + ǫ)))

×
[

y
5
ǫ(1 + ǫ) + z

2
(2 + 3z)ǫ(1 + ǫ) − yzǫ(z + 4(−1 + ǫ) + 5zǫ + 2z

2
(3 + ǫ))

+ y2(2(−1 + ǫ)ǫ+ 4z2(1 + ǫ) + zǫ(3 + ǫ)− z3ǫ(3 + ǫ))

−y4ǫ(4ǫ + z(7 + 3ǫ)) + y3((−5 + ǫ)ǫ + 2zǫ(−1 + 3ǫ) + z2(4 + 9ǫ+ 3ǫ2))
]

− Master15y

2(1 + y)3(y − z)zǫ2(y3(1 + ǫ) − z2(1 + ǫ) − y2(−1 + ǫ + 2z(1 + ǫ)) + yz(2(−1 + ǫ) + z(3 + ǫ)))

×
[

y6ǫ(1 + ǫ) − z2(1 + ǫ)(z(8 − 19ǫ) − 2ǫ + z2(−3 + 6ǫ)) + y5(ǫ − 3ǫ2 + z(5 − 12ǫ − 13ǫ2))

+ y2(2(−1 + ǫ)ǫ+ z2(−17 + 54ǫ − 23ǫ2) + z3(22 − 47ǫ − 15ǫ2) + z4(−3 + 5ǫ + 2ǫ2) + z(4 − 5ǫ + 5ǫ2))

+ yz(−4(−1 + ǫ)ǫ + z(−12 + 37ǫ − 27ǫ2) + 2z3(−3 + 5ǫ + 2ǫ2) + z2(15 − 38ǫ + 11ǫ2))

+ y3(ǫ(−7 + 3ǫ) + z3(13 − 22ǫ − 15ǫ2) + z(19 − 44ǫ + 21ǫ2) + z2(−26 + 71ǫ + 23ǫ2))

+y4(−ǫ(5 + 3ǫ) − 3z(−6 + 13ǫ + 3ǫ2) + z2(−11 + 28ǫ + 25ǫ2))
]

+
Master14

2(1 + y)2(y − z)(−1 + z)ǫ2(y3(1 + ǫ) − z2(1 + ǫ)− y2(−1 + ǫ+ 2z(1 + ǫ)) + yz(2(−1 + ǫ) + z(3 + ǫ)))

×
[

−2y
6
ǫ(1 + ǫ) + (−1 + z)z

2
(1 + ǫ)(2ǫ + z(−3 + 9ǫ)) + y

5
(−3 + 2ǫ + 13ǫ

2
+ z(−5 + 20ǫ + 17ǫ

2
))

+ y
3
(−1 + 12ǫ − 7ǫ

2
+ z(−9 + 14ǫ − 17ǫ

2
) + z

2
(11 − 64ǫ + ǫ

2
) + z

3
(−9 + 34ǫ + 19ǫ

2
))

− yz(−4(−1 + ǫ)ǫ+ z(−11 + 22ǫ + ǫ
2
) + 2z

3
(−3 + 8ǫ + 3ǫ

2
) + z

2
(9 − 24ǫ + 23ǫ

2
))

− y4(2(3 − 12ǫ + ǫ2) + z(9 − 32ǫ + 19ǫ2) + z2(−7 + 44ǫ + 31ǫ2)) + y2(−2(−1 + ǫ)ǫ

+z4(3 − 8ǫ − 3ǫ2) + z3(−13 + 50ǫ + 11ǫ2) + z(3 − 22ǫ + 15ǫ2) + z2(7 − 32ǫ + 33ǫ2))
]]

+ M17
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M19 = Master19(1 − 2ǫ)ǫ

M20 =
Master20(1 − 5ǫ + 6ǫ2)

2(−1 + z)

M21 = 2Master21(1 + y)ǫ
2

M22 = Master23(1 + y)(y + z)ǫ

M23 = 2(1 + y)(1 − z)ǫ2
[

Master21

1 − z
− Master12(1 − 2ǫ)2

(1 + y)(−1 + z)3ǫ2
− Master6y(1 − 2ǫ)2

(1 + y)(−1 + z)2(y + z)ǫ2
+

Master22z

ǫ − zǫ

+
Master4(1 − 3ǫ + 2ǫ2)

(−1 + z)3(y + z)ǫ2
+

Master20(1 − 5ǫ + 6ǫ2)

(1 + y)(−1 + z)2ǫ2

]

M24 = Master24(1 + y)2(1 − z)ǫ2 (7.10)

The canonical DE system reads then

dM1 =(ǫdL(y)− 2ǫdL(1 + y) − 2ǫdL(z))M1 + (2ǫdL(y) − 2ǫdL(1 + y) − ǫdL(z))M2

+ (−ǫdL(y) + ǫdL(1 + y − z) + ǫdL(z))M3 + ǫdL(z)M4

dM2 = − ǫtextdL(y)M1 + (−2ǫdL(y) + 2ǫdL(1 + y) − 3ǫdL(z))M2 + (ǫdL(y)− ǫdL(1 + y − z) + ǫdL(z))M3

dM3 =(−ǫdL(y) + ǫdL(1 − z))M1 + (−2ǫdL(y) + 3ǫdL(1 + y) + 2ǫdL(1 − z) − 3ǫdL(z))M2

+ (ǫdL(y) − 2ǫdL(1 + y) − 2ǫdL(1 − z) + ǫdL(z))M3 + (−ǫdL(1 + y) + ǫdL(z))M4

dM4 =(−2ǫdL(1 − z) − ǫdL(z))M4

dM5 =(ǫdL(y) + ǫdL(1 − z) − ǫdL(y + z))M1 + (2ǫdL(y) − ǫdL(y + z))M2 − ǫdL(y)M3

+ (2ǫdL(1 + y) − 2ǫdL(1 − z) − 2ǫdL(y + z))M5 + ǫdL(y)M6

dM6 =(ǫdL(z) − ǫdL(y + z))M4 + (ǫdL(y) − 2ǫdL(1 − z) − 2ǫdL(y + z))M6

dM7 =(−ǫdL(1 + y) − 3ǫdL(1 − z))M7

dM8 =(2ǫdL(1 + y) − 2ǫdL(1 − z) + ǫdL(z))M4 + (−2ǫdL(y) + 4ǫdL(1 + y) − 4ǫdL(1 − z) + 2ǫdL(z))M6

+ (−3ǫdL(1 + y) + 3ǫdL(1 − z) − 2ǫdL(z))M7 − 4ǫdL(1 − z)M8

+ (2ǫdL(1 + y) + ǫdL(z) − 2ǫdL(y + z))M9 − ǫdL(z)M10

dM9 =(ǫdL(y)− ǫdL(z))M4 + (−ǫdL(y) + ǫdL(z))M7 + (−ǫdL(y) + 2ǫdL(1 + y) − 2ǫdL(1 − z) + ǫdL(z))M8

+ (2ǫdL(y) − 4ǫdL(y + z))M9 + (ǫdL(y) − ǫdL(z))M10

dM10 =(−ǫdL(y) + ǫdL(z))M4 + (−2ǫdL(y) + 2ǫdL(z))M6 + (ǫdL(y)− ǫdL(z))M7 + (ǫdL(y) + ǫdL(z))M8

+ (−2ǫdL(y) + ǫdL(z))M9 + (−ǫdL(y) + 2ǫdL(1 + y) − 2ǫdL(z))M10

dM11 =(2ǫdL(1 − z) − 3ǫdL(z) + ǫdL(y + z))M1 + (2ǫdL(1 − z) − 3ǫdL(z) + ǫdL(y + z))M2

+ (−2ǫdL(1 − z) + 2ǫdL(z))M3 + (−ǫdL(1 − z) + ǫdL(y + z))M4 + (−2ǫdL(1 − z) + 2ǫdL(y + z))M5

+ (−2ǫdL(z) + 2ǫdL(y + z))M6 + (−3ǫdL(1 − z) + 3ǫdL(z))M7 + (−ǫdL(1 − z) + ǫdL(z))M8

+ (−ǫdL(z) + ǫdL(y + z))M9 − 2ǫdL(1 + y)M11

dM12 =(ǫdL(1 − z) − ǫdL(z))M4 − 4ǫdL(1 − z)M12

dM13 =(−2ǫdL(y) + 2ǫdL(1 + y) − 3ǫdL(z))M13 + (ǫdL(y) − ǫdL(1 + y − z) + ǫdL(z))M14 − ǫdL(y)M15

dM14 =(−ǫdL(1 + y) + ǫdL(z))M4 + (−2ǫdL(y) + 3ǫdL(1 + y) + 2ǫdL(1 − z) − 3ǫdL(z))M13

+ (ǫdL(y) − 2ǫdL(1 + y) − 2ǫdL(1 − z) + ǫdL(z))M14 + (−ǫdL(y) + ǫtextdL(1 − z))M15

dM15 =ǫdL(z)M4 + (2ǫdL(y) − 2ǫdL(1 + y)− ǫdL(z))M13 + (−ǫdL(y) + ǫdL(1 + y − z) + ǫdL(z))M14

+ (ǫdL(y) − 2ǫdL(1 + y) − 2ǫdL(z))M15

dM16 =(ǫdL(y) + 2ǫdL(1 − z) − ǫdL(z))M13 + (3ǫdL(y) − ǫdL(z))M15

+ (−ǫdL(y) + 2ǫdL(1 + y) − 2ǫdL(1 − z) − ǫdL(z))M16 + (ǫdL(y)

− ǫdL(z))M17 + ǫdL(y)M18 − 2ǫdL(y)M19

dM17 = − ǫdL(z)M4 − 2ǫdL(y)M6 + (−4ǫdL(y) + 2ǫdL(1 + y)− 2ǫdL(1 − z) + 4ǫdL(z))M13

+ (2ǫdL(y) − 2ǫdL(z))M14 + (−2ǫdL(y) + 4ǫdL(1 + y) − 4ǫdL(1 − z) + 2ǫdL(z))M15
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+ (2ǫdL(1 + y) − 2ǫdL(1 − z) − 2ǫdL(y + z))M17

dM18 = − 2ǫdL(z)M4 + (−2ǫdL(y) + 2ǫdL(z))M6 + 2ǫdL(z)M12

+ (−4ǫdL(y) + 2ǫdL(1 + y) − 2ǫdL(1 − z) + 4ǫdL(z))M13

+ (2ǫdL(y) − 4ǫdL(z))M14 + (−2ǫdL(y) + 4ǫdL(1 + y)

− 4ǫdL(1 − z) + 2ǫdL(z))M15 + (−2ǫdL(1 − z) − ǫdL(z))M18

dM19 =ǫdL(z)M12 + (−2ǫdL(1 − z) − ǫdL(z))M19

dM24 =(ǫdL(1 + y) + ǫdL(1 − z) − ǫdL(z) − ǫdL(y + z))M4 + (2ǫdL(z) − 2ǫdL(y + z))M6

+ (−2ǫdL(1 − z) + 2ǫdL(z))M12 + (−ǫdL(1 + y) + ǫdL(z))M13 + (2ǫdL(1 + y) − 2ǫdL(z))M14

+ (ǫdL(1 + y) − ǫdL(z))M15 + (−ǫdL(1 − z) + ǫdL(y + z))M17 + (ǫdL(1 − z)

− ǫdL(z))M18 − 2ǫdL(1 − z)M24

dM20 =(−ǫdL(1 + y) − 3ǫdL(1 − z))M20

dM21 =ǫdL(y)M4 − 2ǫdL(z)M6 + (−2ǫdL(y) − 2ǫdL(z))M12 + (4ǫdL(y) + 2ǫdL(z))M20

+ (−ǫdL(y) + 2ǫdL(1 + y) − 2ǫdL(z))M21 + (2ǫdL(y) − ǫdL(z))M22 + (ǫdL(y) + ǫdL(z))M23

dM22 =(ǫdL(y) + 2ǫdL(1 − z) − 2ǫdL(y + z))M4 + (4ǫdL(1 + y) + 2ǫdL(z) − 4ǫdL(y + z))M6

+ (−2ǫdL(y) + 4ǫdL(1 + y) − 4ǫdL(1 − z) + 2ǫdL(z))M12

+ (4ǫdL(y) − 6ǫdL(1 + y) + 6ǫdL(1 − z) − 4ǫdL(z))M20

+ (−ǫdL(y) + ǫdL(z))M21 + (2ǫdL(y)− 4ǫdL(y + z))M22

+ (ǫdL(y) − 2ǫdL(1 + y) + 2ǫdL(1 − z) − ǫdL(z))M23

dM23 = − 2ǫdL(z)M20 − ǫdL(z)M21 + (−2ǫdL(1 + y) − ǫdL(z) + 2ǫdL(y + z))M22 − 4ǫdL(1 − z)M23.
(7.11)

Canonical Differential Equations and Boundary Conditions for g+W ∗ →
t+ b̄ + g.

We report in the following, for the all three topologies tG1 , t
G
2 , t

G
3 , the systems

of differential equations in canonical form after remappings, and the expansions in
terms of soft masters, which determines the boundary conditions.

MG
1 =(1 − z)(2 G(tG1 , {2, 0, 1, 0, 0, 0, 2}) + G(tG1 , {2, 0, 2, 0, 0, 0, 1}))

MG
2 =G(tG1 , {2, 0, 1, 0, 0, 0, 2})

M
G
3 =2 (y + 1)ǫG(t

G
1 , {1, 0, 2, 1, 0, 0, 1})

MG
4 =2(2ǫ(y + z + 1) (G(tG1 , {1, 0, 1, 0, 1, 0, 2}) − G(tG1 , {1, 0, 2, 0, 1, 0, 1}))

+ 3ǫ(y + z + 1) G(tG1 , {1, 0, 2, 0, 1, 0, 1}) + z(y + z + 1)G(tG1 , {1, 0, 1, 0, 2, 0, 2}))

MG
5 =2(y + 1)ǫ G(tG1 , {1, 0, 2, 0, 1, 0, 1})

M
G
6 =(y + 1)ǫ (G(t

G
1 , {1, 0, 1, 0, 1, 0, 2}) − G(t

G
1 , {1, 0, 2, 0, 1, 0, 1}))

MG
7 =2y(y + 1)ǫ G(tG1 , {1, 0, 1, 1, 1, 0, 2})

M
G
8 =2

(

y(y + 1)ǫ G(t
G
1 , {1, 0, 1, 1, 2, 0, 1}) + 1

2
(y + 1)ǫ

(G(t
G
1 , {1, 0, 1, 0, 1, 0, 2}) − G(t

G
1 , {1, 0, 2, 0, 1, 0, 1})) + (y + 1)ǫ

G(tG1 , {1, 0, 2, 0, 1, 0, 1}) + 2(y + 1)ǫ G(tG1 , {1, 0, 2, 1, 0, 0, 1}) + 1

4
(1 − z)

(G(t
G
1 , {2, 0, 1, 0, 0, 0, 2}) + G(t

G
1 , {2, 0, 2, 0, 0, 0, 1}))

)
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M
G
9 =2(y + 1)(1 − 2 ǫ)ǫG(t

G
1 , {1, 0, 1, 1, 0, 1, 1})

MG
10 =4(y + 1)ǫ2 G(tG1 , {1, 0, 1, 0, 1, 1, 1})

MG
11 =4(y + 1)zǫG(tG1 , {1, 0, 1, 0, 2, 1, 1})

MG
12 = − 2 (y + 1)ǫ2

√

4y2 + 4y + z2 − 2z + 1 G(tG1 , , {1, 0, 1, 1, 1, 1, 1})

M
G
13 =(y + 1)

2
ǫ
2
(2y + z + 1) G(t

G
1 , , {1, 1, 1, 1, 1, 1, 1}) (7.12)

MG
14 =(1 − z)(2 G(tG2 , {2, 1, 0, 0, 0, 0, 2}) + G(tG2 , {2, 2, 0, 0, 0, 0, 1}))

MG
15 =G(tG2 , {2, 1, 0, 0, 0, 0, 2})

M
G
16 =2 (y + 1)ǫG(t

G
2 , {1, 2, 1, 0, 0, 0, 1})

MG
17 =2(2ǫ(y + z + 1) (G(tG2 , {1, 1, 0, 0, 1, 0, 2}) − G(tG2 , {1, 2, 0, 0, 1, 0, 1}))

+ 3ǫ(y + z + 1) G(tG2 , {1, 2, 0, 0, 1, 0, 1}) + z(y + z + 1)G(tG2 , {1, 1, 0, 0, 2, 0, 2}))

MG
18 =2(y + 1)ǫ G(tG2 , {1, 2, 0, 0, 1, 0, 1})

MG
19 =(y + 1)ǫ (G(tG2 , {1, 1, 0, 0, 1, 0, 2}) − G(tG2 , {1, 2, 0, 0, 1, 0, 1}))

MG
20 =2y(y + 1)ǫ G(tG2 , {1, 1, 1, 0, 1, 0, 2})

M
G
21 =2

(

y(y + 1)ǫ G(t
G
2 , {1, 1, 1, 0, 2, 0, 1}) + 1

2
(y + 1)ǫ (G(t

G
2 , {1, 1, 0, 0, 1, 0, 2})

− G(t
G
2 , {1, 2, 0, 0, 1, 0, 1})) + (y + 1)ǫ G(t

G
2 , {1, 2, 0, 0, 1, 0, 1}) + 2(y + 1)ǫ

G(tG2 , {1, 2, 1, 0, 0, 0, 1}) + 1

4
(1 − z)(2 G(tG2 , {2, 1, 0, 0, 0, 0, 2}) + G(tG2 , {2, 2, 0, 0, 0, 0, 1}))

)

MG
22 =2(y + 1)ǫ2 G(tG2 , {1, 1, 1, 0, 0, 1, 1})

M
G
23 =2(y + 1)zǫG(t

G
2 , {1, 1, 1, 0, 0, 2, 1})

MG
24 =2(y + 1) zǫG(tG2 , {1, 1, 1, 0, 0, 1, 2})

MG
25 =

4(y + 1)ǫ2
√

4y z + z2 + 2z + 1G(tG2 , {1, 1, 1, 0, 1, 1, 1})
1 − z

MG
26 =2(y + 1)2ǫ2 G(tG2 , {1, 1, 1, 1, 0, 1, 1}) (7.13)

MG
27 =(1 − z)(2 G(tG3 , {2, 0, 0, 1, 0, 0, 2}) + G(tG3 , {2, 0, 0, 2, 0, 0, 1}))

MG
28 =G(tG3 , {2, 0, 0, 1, 0, 0, 2})

MG
29 =4 (y + 1)ǫ2G(tG3 , {1, 0, 0, 1, 1, 1, 1})

MG
30 =2(y + 1)zǫ G(tG3 , {1, 0, 0, 1, 1, 2, 1})

MG
31 =2(y + 1)2(1 − z)ǫ2G(tG3 , {1, 1, 1, 1, 1, 1, 1}) (7.14)

Systems of differential equations in canonical form:

• tG1

dM1 =ǫ (2M1(−2dL(c − 2d) + dL(c− d + 1) + dL(d + 1)) + 6M2(dL(c − d + 1) − dL(d+ 1)))
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dM2 =ǫ (M1(dL(d + 1) − dL(c − 2d)) + 3M2(dL(c − d+ 1) − dL(d + 1)))

dM3 =ǫ (M1(dL(c − 2d) − dL(c + (d − 2)d) + dL(d − 1))

+ 2M2(dL(c− 2d + 1) − dL(c − d + 1) − dL(d − 1))

−M3(−2dL(c − 2d + 1) + dL(c − d)− 2dL(c − d + 1) + 3dL(c + (d− 2)d) − 2dL(d− 1) + dL(d)))

dM4 =ǫ (M1(2dL(c − d) − dL(c − d + 1) + dL(c + (d− 2)d) − 3dL(d− 1) + 2dL(d)− 2dL(d + 1))

− 6M2(dL(c− d) − dL(c− d + 1) + dL(c + (d − 2)d)− 2dL(d − 1) + dL(d)− dL(d + 1))

+ M4(−2dL(c− d) + 3dL(c− d+ 1) − 2dL(c + (d − 2)d) + 4dL(d − 1) − 2dL(d) + dL(d + 1))

+ 3M5(dL(c− d) − dL(c− d + 1) + dL(c + (d − 2)d)− 2dL(d − 1) + dL(d)− dL(d + 1))

+2M6(3dL(c − d)− 2dL(c − d+ 1) + 2dL(c+ (d − 2)d) − 5dL(d − 1) + 3dL(d) − 3dL(d+ 1)))

dM5 =ǫ (M1(dL(c − 2d + 1) + dL(c − d+ 1) − dL(d − 1) − 2dL(d+ 1))

− 2M2(2dL(c− 2d + 1) + dL(c − d + 1) − 2dL(d− 1) − 3dL(d + 1))

+ M4(−dL(c − 2d + 1) − dL(c − d+ 1) + dL(cd − 1) + dL(d+ 1))

+ M5(2dL(c− 2d + 1) − 4dL(c − d) + 5dL(c − d + 1) + 2dL(d − 1) − 4dL(d)− 3dL(d + 1))

+2M6(dL(c− 2d + 1) − 2dL(c − d) + 2dL(c− d + 1) + dL(d − 1) − 2dL(d)− dL(d+ 1)))

dM6 =ǫ (M1(dL(d + 1) − dL(c − d+ 1)) + 3M2(dL(c − d+ 1) − dL(d + 1))

+ M4(dL(c− d + 1) − dL(cd− 1) + dL(d − 1))

+ 3M5(dL(c− d) − dL(c− d + 1) − dL(d − 1) + dL(d))

+2M6(2dL(c − d)− dL(c − d+ 1) − 2dL(d − 1) + 2dL(d) − dL(d + 1)))

dM7 =ǫ (−M1(−2dL(c − 2d) + dL(c − d) + dL(c+ (d − 2)d) − 2dL(d − 1) + dL(d))

− 6M2(dL(c− 2d) − dL(c+ (d− 2)d) + dL(d− 1))

+ 2M3(dL(c− 2d) − 2dL(c − d) + dL(c + (d− 2)d) + dL(d − 1) − 2dL(d))

− 2M4(dL(c− 2d) − dL(c+ (d− 2)d) + dL(d− 1))

− 2M5(−2dL(c− 2d) + dL(c − d) + dL(c + (d− 2)d) − 2dL(d− 1) + dL(d))

− 2M6(−2dL(c− 2d) + dL(c − d) + 2dL(c + (d− 2)d) − 3dL(d − 1) + dL(d)− dL(d+ 1))

+ 2M7(−dL(c− 2d) + dL(c− 2d+ 1) + dL(c − d + 1) − dL(c+ (d− 2)d))

+2M8(dL(c− d) − dL(c + (d− 2)d) + dL(d)))

dM8 =ǫ (−2M3(dL(c − d) − dL(c + (d − 2)d) + dL(d))

+ M4(dL(cd− 1) − dL(c− 2d + 1)) − M5(dL(c − d)− dL(c + (d− 2)d) + dL(d))

+ 2M7(dL(c− d) − dL(c+ (d− 2)d) + dL(d))

+2M8(dL(c− 2d + 1) + dL(c − d + 1) − dL(cd+ c − 2d) − dL(c + (d − 2)d) + dL(d − 1)))

dM9 =ǫ (M1(−dL(c − d) + dL(d − 1) − dL(d) + dL(d + 1))

− 2M2(dL(c− 2d + 1) − 2dL(c − d) + dL(d − 1) − 2dL(d) + dL(d + 1))

+ 2M3(−dL(c− 2d + 1) + dL(d − 1) + dL(d+ 1))

−M9(dL(c− d) − 2dL(c− d + 1) − dL(d − 1) + dL(d) + dL(d + 1)))

dM10 =ǫ (M1(−dL(c − 2d + 1) + dL(d− 1) + dL(d + 1))

− M10(dL(c− 2d + 1) − 2dL(c − d + 1) − dL(d− 1) + dL(d + 1))

+ M11(−dL(c− 2d + 1) + dL(d − 1) + dL(d+ 1))

+ 4M2(dL(c− 2d + 1) − dL(d − 1) − dL(d+ 1))

+ 2M5(dL(c− d) − dL(d− 1) + dL(d) − dL(d+ 1))

−2M6(dL(c− 2d + 1) − 2dL(c − d) + dL(d − 1) − 2dL(d) + dL(d + 1)))

dM11 =ǫ (4M1(dL(c − 2d + 1) − dL(c + (d− 2)d))

+ 2M10(dL(c − 2d+ 1) − dL(c + (d − 2)d))

+ 2M11(dL(c − 2d+ 1) + dL(c − d + 1) − dL(c + (d− 2)d) − dL(d+ 1))

+ 16M2(dL(c+ (d− 2)d) − dL(c− 2d + 1)) + 2M4(dL(cd− 1) − dL(c − 2d+ 1))

+ 2M5(2dL(c− 2d + 1) − 3dL(c − d) + dL(c + (d − 2)d) − 3dL(d))

+8M6(dL(c− 2d + 1) − dL(c − d) − dL(d)))
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dM12 =ǫ
(

−2M12

(

−dL
(

cd+ c − 2d
2
)

+ dL(c − d) − dL(c− d + 1) + dL(d) + dL(d + 1)
)

+
1

4
M1(6dL(c− 2d + 1) − dL(c − d)− 7dL(d − c) + 2dL(d− 1) + 8dL(d) − 2dL(d+ 1))

+
1

4
M10(2dL(c − 2d+ 1) − dL(c − d) − 3dL(d− c) + 2dL(d− 1) + 4dL(d) − 2dL(d + 1))

+
1

4
M11(2dL(c − 2d+ 1) − dL(c − d) − 3dL(d− c) + 2dL(d− 1) + 4dL(d) − 2dL(d + 1))

− 4M2(dL(c− 2d + 1) − dL(d − c) + dL(d))

+ M3(2dL(c− 2d + 1) − dL(c − d)− 3dL(d − c) + 2dL(d− 1) + 4dL(d) − 2dL(d+ 1))

− 1

2
M4(2dL(c− 2d + 1) + dL(c − d)− dL(d − c) − 2dL(d − 1) + 2dL(d + 1))

+ M5(2dL(c− 2d + 1) + dL(c − d) − dL(d − c) − 2dL(d − 1) + 2dL(d + 1))

+
3

2
M6(2dL(c− 2d + 1) + dL(c − d) − dL(d − c) − 2dL(d − 1) + 2dL(d + 1))

− 2M7(dL(c− 2d + 1) − dL(d − c) + dL(d))

+ M8(dL(c− d) + dL(d− c) − 2dL(d− 1) − 2dL(d) + 2dL(d + 1))

+
1

2
M9(dL(c− d) + dL(d− c) − 2dL(d − 1) − 2dL(d) + 2dL(d + 1))

)

dM13 =ǫ (2M1(dL(c − d) − dL(c + (d − 2)d) + dL(d))

+ M10(dL(c − d)− dL(c + (d− 2)d) + dL(d))

+ M11(dL(c − d)− dL(c + (d− 2)d) + dL(d))

+ M12(dL(c − d) + dL(d − c)− 2dL(d − 1) − 2dL(d) + 2dL(d + 1))

+ 2M13(dL(c − d+ 1) − dL(cd + c− 2d) + dL(d − 1))

− 8M2(dL(c− d) − dL(c+ (d − 2)d) + dL(d))

+ 2M3(dL(c− d) − dL(c+ (d− 2)d) + dL(d))

− 2M7(dL(c− d) − dL(c+ (d − 2)d) + dL(d))

−2M8(−dL(c + (d − 2)d) + dL(d − 1) + dL(d + 1))) (7.15)

• tG2

dM14 =ǫ (2M14(−2dL(b − 2a) + dL(b − a) + dL(a)) − 6M15(dL(a) − dL(b − a)))

dM15 =ǫ (M14(dL(a) − dL(b − 2a)) − 3M15(dL(a) − dL(b − a)))

dM16 =ǫ
(

M14

(

dL(b − 2a) − dL
(

(a + 1)b
2
+ a
))

− M16

(

3dL
(

(a + 1)b2 + a
)

− 2dL(b − a) + dL(a(b − 1) + b) − 2dL(a + 1) − 4dL(b) + dL(b + 1)
)

+2M15(−dL(b − a) + dL(a + 1) + 2dL(b)))

dM17 =ǫ
(

−M14

(

−dL
(

(a + 1)b2 + a
)

+ dL(b − a) − 2dL(a(b − 1) + b) + 2dL(a) − 2dL(b + 1)
)

− 6M15

(

dL
(

(a + 1)b
2
+ a
)

− dL(b − a) + dL(a(b − 1) + b) − dL(a) + dL(b + 1)
)

+ M17

(

−2dL
(

(a + 1)b2 + a
)

+ 3dL(b − a) − 2dL(a(b − 1) + b) + dL(a) − 2dL(b + 1)
)

+ 3M18

(

dL
(

(a + 1)b2 + a
)

− dL(b − a) + dL(a(b − 1) + b) − dL(a) + dL(b + 1)
)

−2M19

(

−2dL
(

(a + 1)b2 + a
)

+ 2dL(b − a) − 3dL(a(b − 1) + b) + 3dL(a) − 3dL(b + 1)
))

dM18 =ǫ (M14(dL(b − a) − 2dL(a) + dL(a + 1) + 2dL(b))
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+ 2M15(−dL(b − a) + 3dL(a) − 2dL(a + 1) − 4dL(b))

+ M17(−dL(b − a) + dL(ab + b + 1) + dL(a) − dL(a + 1) − dL(b))

− M18(−5dL(b − a) + 4dL(a(b − 1) + b) + 3dL(a) − 2dL(a + 1) − 4dL(b) + 4dL(b + 1))

+2M19(2(dL(b − a) − dL(a(b − 1) + b) + dL(b) − dL(b + 1)) − dL(a) + dL(a + 1)))

dM19 =ǫ (M14(dL(a) − dL(b − a)) − 3M15(dL(a) − dL(b − a))

− M17(−dL(b − a) + dL(ab + b + 1) + dL(b))

+ 3M18(−dL(b − a) + dL(a(b − 1) + b) + dL(b + 1))

−2M19(dL(b − a) − 2dL(a(b − 1) + b) + dL(a) − 2dL(b + 1)))

dM20 =ǫ
(

−M14

(

dL
(

(a + 1)b2 + a
)

− 2dL(b − 2a) + dL(a(b − 1) + b) + dL(b + 1)
)

− 6M15

(

dL(b − 2a) − dL
(

(a + 1)b
2
+ a
))

+ 2M16

(

dL
(

(a + 1)b
2
+ a
)

+ dL(b − 2a) − 2dL(a(b − 1) + b) − 2dL(b + 1)
)

− 2M17

(

dL(b − 2a) − dL
(

(a + 1)b2 + a
))

− 2M18

(

dL
(

(a + 1)b2 + a
)

− 2dL(b − 2a) + dL(a(b − 1) + b) + dL(b + 1)
)

+ 2M19

(

−2dL
(

(a + 1)b2 + a
)

+ 2dL(b − 2a) − dL(a(b − 1) + b) + dL(a) − dL(b + 1)
)

+ 2M20

(

−dL
(

(a + 1)b2 + a
)

− dL(b − 2a) + dL(b − a) + dL(a + 1) + 2dL(b)
)

+2M21

(

−dL
(

(a + 1)b
2
+ a
)

+ dL(a(b − 1) + b) + dL(b + 1)
))

dM21 =ǫ
(

−2M16

(

−dL
(

(a + 1)b2 + a
)

+ dL(a(b − 1) + b) + dL(b + 1)
)

− M18

(

−dL
(

(a + 1)b2 + a
)

+ dL(a(b − 1) + b) + dL(b + 1)
)

+ 2M20

(

−dL
(

(a + 1)b2 + a
)

+ dL(a(b − 1) + b) + dL(b + 1)
)

+ 2M21

(

−dL
(

(a + 1)b2 + a
)

+ dL(b − a) − dL(2(a + 1)b + 1) + dL(a + 1) + dL(b)
)

−M17(−dL(ab + b + 1) + dL(a + 1) + dL(b)))

dM22 =ǫ (M15(−dL(b − a) + dL(a + 1) + 2dL(b))

+ 2M16(−dL(b − a) + dL(a + 1) + 2dL(b))

− 2M22(−dL(a(b − 1) + b) + dL(a + 1) + 2dL(b) − dL(b + 1))

+ M23(−2dL(b − a) + dL(a) + dL(a + 1) + 2dL(b))

+M24(dL(b − a) + dL(a) − 2dL(a + 1) − 4dL(b)))

dM23 =ǫ
(

M14

(

dL
(

(a + 1)b2 + a
)

− dL(b − 2a)
)

− 4M16

(

−dL
(

(a + 1)b2 + a
)

+ dL(b − 2a) − dL(b − a) + dL(a + 1) + 2dL(b)
)

+ 2M22

(

−dL
(

(a + 1)b
2
+ a
)

− 2dL(b − 2a) + 2dL(b − a) + dL(a + 1) + 2dL(b)
)

+ 2M24

(

−dL
(

(a + 1)b2 + a
)

− dL(b − a) + dL(a(b − 1) + b) + dL(a + 1) + 2dL(b) + dL(b + 1)
)

− 3M15(−dL(b − a) + dL(a + 1) + 2dL(b))

−M23(4dL(b − 2a) − 6dL(b − a) + dL(a) + dL(a + 1) + 2dL(b)))

dM24 =ǫ
(

−2M16

(

−dL
(

(a + 1)b2 + a
)

+ dL(b − 2a) − dL(b − a) + dL(a + 1) + 2dL(b)
)

+ 2M22

(

−2dL
(

(a + 1)b2 + a
)

− dL(b − 2a) + dL(b − a) + 2dL(a + 1) + 4dL(b)
)

− M24

(

4dL
(

(a + 1)b2 + a
)

− dL(b − a) + dL(a) − 4dL(a + 1) − 8dL(b)
)

−2M23(dL(b − 2a) − dL(b − a) − dL(a(b − 1) + b) + dL(a + 1) + 2dL(b) − dL(b + 1)))
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dM25 =ǫ (2M14(−dL(a(b − 1) + b) + dL(a) + dL(b + 1))

+ 8M16(−dL(a(b − 1) + b) + dL(a + 1) + dL(b + 1))

+ 2M18(−dL(a(b − 1) + b) + dL(a) + dL(b + 1))

− 4M20(−dL(a(b − 1) + b) + dL(a) + dL(b + 1))

− 4M21(−dL(a(b − 1) + b) + dL(a + 1) + dL(b + 1))

− 4M22(−2dL(a(b − 1) + b) + dL(a) + dL(a + 1) + 2dL(b + 1))

+ 2M23(2dL(a(b − 1) + b) − 3dL(a) + dL(a + 1) − 2dL(b + 1))

− 4M24(−dL(a(b − 1) + b) + dL(a + 1) + dL(b + 1))

+ 2M25(dL(b − a) − dL(a(b − 1) + b) − dL(a) + dL(2a + 1) + dL(b) − dL(b + 1))

−6M15(dL(a) − dL(a + 1)) − 2M17(dL(a) − dL(a + 1)))

dM26 =ǫ
(

M14

(

dL
(

(a + 1)b
2
+ a
)

− dL(b − 2a)
)

− 2M16

(

dL(b − 2a) − dL
(

(a + 1)b2 + a
))

− 2M22

(

dL(b − 2a) − dL
(

(a + 1)b2 + a
))

− 2M24

(

dL(a) − dL
(

(a + 1)b2 + a
))

+2M23(dL(a) − dL(b − 2a)) − 2M26(−dL(b − a) + dL(a(b − 1) + b) + dL(b + 1)))
(7.16)

• tG3

dM27 =ǫ (M27(2dL(z) − 4dL(1 − z)) − 6M28dL(z))

dM28 =ǫ (M27(dL(z) − dL(1 − z)) − 3M28dL(z))

dM29 =ǫ (M27dL(z) − 4M28dL(z) − M29dL(z) + 2M30dL(z))

dM30 =ǫ (M27(dL(z) − 2dL(1 − z)) + M28(8dL(1 − z) − 3dL(z))

−M29dL(1 − z) + M30(−2dL(1 − z) − 2dL(z)))

dM31 =ǫ (M27(3dL(z) − 3dL(1 − z)) + M28(8dL(1 − z) − 8dL(z))

+M29(dL(z) − dL(1 − z)) + M30(2dL(z) − 2dL(1 − z)) − 2M31dL(1 − z)) (7.17)

Soft limit:

• tG1 :

MasterG1 → z̄3−4ǫMasters1

Master
G
2 → z̄

2−4ǫ Masters1(4ǫ − 3)

s

MasterG3 → z̄2−4ǫ

(

−Masters1(4ǫ − 3)

(2ǫ− 1) (Q2 + s)

)

MasterG4 → z̄3−4ǫMasters1

MasterG5 → z̄2−4ǫ Masters1(4ǫ − 3)

s

MasterG6 → z̄3−4ǫMasters1

MasterG7 → z̄2−4ǫ

(

−Masters1(4ǫ − 3)

(2ǫ− 1) (Q2 + s)

)
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MasterG8 → z̄1−4ǫ

(

− 2Masters1(4ǫ − 3)

s (Q2 + s)

)

MasterG9 → z̄2−4ǫ

(

−Masters1(4ǫ − 3)

(2ǫ− 1) (Q2 + s)

)

MasterG10 → z̄3−4ǫMasters1

Master
G
11 → z̄

2−4ǫ Masters1(4ǫ − 3)

s

MasterG12 → z̄2−4ǫ

(

−Masters1(4ǫ − 3)

(2ǫ − 1) (Q2 + s)

)

MasterG13 → z̄1−4ǫ Masters1(2ǫ − 1)(4ǫ− 3)

ǫ2 (Q2 + s)2
(7.18)

• tG2 :

MasterG14 →Masters1 z̄
3−4ep

Master
G
15 →Masters1(4ǫ − 3)z̄2−4ep

s

MasterG16 → − Masters1(4ǫ− 3)z̄2−4ep

(2ǫ − 1) (Q2 + s)

MasterG17 → − Masters1 z̄
3−4ep

MasterG18 → − Masters1(4ǫ− 3)z̄2−4ep

s

MasterG19 →Masters1 z̄
3−4ep

MasterG20 →Masters1(4ǫ − 3)z̄2−4ep

(2ǫ − 1) (Q2 + s)

MasterG21 →2Masters1(4ǫ− 3)z̄1−4ep

s (Q2 + s)

MasterG22 →Masters4 z̄
1−4ep

Master
G
23 →

(4ǫ − 1)z̄−4ep
(

Masters1
(

−8ǫ2 + 10ǫ − 3
)

+ Masters4sǫ
2
(

Q2 + s
))

3s2ǫ2 (Q2 + s)

MasterG24 →
(4ǫ − 1)z̄−4ep

(

Masters1
(

8ǫ2 − 10ǫ + 3
)

+ 2Masters4sǫ
2
(

Q2 + s
))

3s2ǫ2 (Q2 + s)

MasterG25 → − Masters4 z̄
1−4ep

MasterG26 →
(4ǫ − 1)z̄−4ep

(

2Masters1
(

8ǫ2 − 10ǫ + 3
)

+ Masters4sǫ
2
(

Q2 + s
))

3sǫ3 (Q2 + s)2
(7.19)

• tG3 :

MasterG27 →Masters1 z̄
3−4ep

MasterG28 →Masters1(4ǫ − 3)z̄2−4ep

s

Master
G
29 → − Masters1(4ǫ − 3)z̄2−4ep

s(2ǫ − 1)

MasterG30 → − Masters1(2ǫ − 1)(4ǫ − 3)z̄1−4ep

s2ǫ
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MasterG31 →
Masters1(2ǫ − 1)

(

32ǫ2 − 32ǫ + 6
)

z̄−4ep−1

s2ǫ3 (Q2 + s)
(7.20)

Canonical Differential Equations and Boundary Conditions for g+W ∗ →
t+ b̄ at 1-loop.

MG
1 =

(1 − 2ǫ)(ǫ− 1)G({1, 1, 0, 0, 0, 0, 1})
(1 − z)z

MG
2 =

y(1 − 2ǫ)G({1, 2, 0, 1, 0, 0, 1})
1 − z

MG
3 =

(1 − 2ǫ)

(

(d−3)G(1,{1,1,0,0,0,1,1})

mt2−s
− (d−2)G(1,{1,1,0,0,0,0,1})

2mt2(mt2−s)

)

1 − z

MG
4 =2(2ǫ(y + z + 1)(G({1, 0, 1, 0, 1, 0, 2}) − G({1, 0, 2, 0, 1, 0, 1})) + 3ǫ(y + z + 1)G({1, 0, 2, 0, 1, 0, 1})

+ z(y + z + 1)G({1, 0, 1, 0, 2, 0, 2}))

M
G
5 =

1

2(z − 1)2z(2ǫ + 1)(y + z)2(yz + 1)
×

×
[

(1 − z)
(

2(y + 1)
(

2ǫ2 − 3ǫ + 1
)(

y2(3zǫ + z − ǫ) − y(z − 1)z + z2((z − 3)ǫ − 1)
)

G(1, {1, 1, 0, 0, 0, 0, 1})

+ z(2ǫ + 1)
(

2(y + 1)
(

(z − 1)2(y + z) ((y + 1)z(3ǫ + 1)(y + z)G(1, {1, 1, 0, 1, 2, 0, 1})

−2ǫ
(

z
(

z − y
2
)

G(1, {1, 2, 0, 1, 1, 0, 1}) + ǫ(yz + y + 2z)G(1, {1, 1, 0, 1, 1, 0, 1})
))

−2y(y + 1)z(1 − 2ǫ)2G(1, {1, 1, 0, 1, 0, 0, 1})
)

+
(

6ǫ2 − 5ǫ + 1
)(

3y3z + y2
(

4z2 + 6z − 1
)

+ yz2(z + 8) + z2(2z + 1)
)

G(1, {1, 0, 0, 1, 1, 0, 1})
))]

MG
6 =

1

(z − 1)z(y + z)
×
[(

2ǫ2 − 3ǫ + 1
)

(y − z)G(1, {1, 1, 0, 0, 0, 0, 1})

+ z ((y + z) (2(y + 1)(z − 1)ǫ(zG(1, {1, 2, 0, 1, 1, 0, 1}) + ǫG(1, {1, 1, 0, 1, 1, 0, 1}))

+
(

6ǫ2 − 5ǫ + 1
)

G(1, {1, 0, 0, 1, 1, 0, 1})
)

−2y(1 − 2ǫ)2G(1, {1, 1, 0, 1, 0, 0, 1})
)]

MG
7 =2(y + 1)ǫ2G(1, {1, 1, 0, 1, 1, 0, 1}) (7.21)

MG
8 =

(1 − 2ǫ)(ǫ − 1)G(2, {1, 0, 0, 0, 1, 1, 0})
(1 − z)z

MG
9 =

(1 − 2ǫ)(ǫ − 1)G(2, {1, 0, 0, 0, 0, 1, 1})
(1 − z)z

MG
10 =

y(1 − 2ǫ)G(2, {1, 0, 1, 0, 2, 1, 0})
1 − z

MG
11 =

1

(z − 1)z
×

× [z ((z((y + 5)ǫ − 1) − (y + 1)ǫ)G(2, {1, 1, 0, 0, 2, 1, 0}) + (y + 1)zǫG(2, {1, 2, 0, 0, 1, 1, 0})

+
(

6ǫ
2 − 5ǫ + 1

)

G(2, {1, 1, 0, 0, 1, 1, 0})
)

+
(

−2ǫ
2
+ 3ǫ − 1

)

G(2, {1, 0, 0, 0, 1, 1, 0})
]
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M
G
12 =(y + 1)ǫG(2, {1, 2, 0, 0, 1, 1, 0})

MG
13 =(y + 1)ǫG(2, {1, 1, 0, 0, 2, 1, 0})

M
G
14 =(1 − 2ǫ)

(

(1 − 2ǫ)G(2, {1, 0, 1, 0, 0, 1, 1})
(1 − z)2

− (1 − ǫ)G(2, {1, 0, 0, 0, 1, 1, 0})
(1 − z)2

)

M
G
15 =2(y + 1)ǫ

2
G(2, {1, 1, 1, 0, 1, 1, 0})

MG
16 =

(y + 1)(1 − 2ǫ)ǫG(2, {1, 0, 1, 0, 1, 1, 1})
1 − z

MG
17 =4(y + 1)zǫG(2, {1, 1, 0, 0, 1, 2, 1})

MG
18 =4(y + 1)ǫ2G(2, {1, 1, 0, 0, 1, 1, 1})

MG
19 =2(y + 1)2(1 − z)ǫ2G(2, {1, 1, 1, 1, 1, 1, 1}) (7.22)

MG
20 =

(1 − 2ǫ)(ǫ− 1)G(3, {1, 0, 0, 0, 0, 1, 1})
(1 − z)z

MG
21 =

(1 − 3ǫ)(1 − 2ǫ)G(3, {1, 0, 1, 0, 1, 0, 1})
z − 1

MG
22 =

y(1 − 2ǫ)G(3, {1, 0, 1, 0, 0, 2, 1})
1 − z

MG
23 =

1

(z − 1)z
×

× [z ((z((y + 5)ǫ − 1) − (y + 1)ǫ)G(3, {1, 1, 0, 0, 0, 2, 1}) + (y + 1)zǫG(3, {1, 2, 0, 0, 0, 1, 1})

+
(

6ǫ
2 − 5ǫ + 1

)

G(3, {1, 1, 0, 0, 0, 1, 1})
)

+
(

−2ǫ2 + 3ǫ − 1
)

G(3, {1, 0, 0, 0, 0, 1, 1})
]

MG
24 =(y + 1)ǫG(3, {1, 1, 0, 0, 0, 2, 1})

MG
25 =(y + 1)ǫG(3, {1, 2, 0, 0, 0, 1, 1})

MG
26 =

1

2(z − 1)2z(2ǫ + 1)(y + z)2(yz + 1)
×

×
[

(1 − z)
(

2(y + 1)
(

2ǫ2 − 3ǫ + 1
)(

y2(3zǫ + z − ǫ) − y(z − 1)z + z2((z − 3)ǫ − 1)
)

G(3, {1, 0, 0, 0, 0, 1, 1})

+ z(2ǫ + 1)
(

2(y + 1)
(

(z − 1)2(y + z) ((y + 1)z(3ǫ + 1)(y + z)G(3, {1, 1, 0, 1, 2, 0, 1})

−2ǫ
(

z
(

z − y2
)

G(3, {1, 2, 0, 1, 1, 0, 1}) + ǫ(yz + y + 2z)G(3, {1, 1, 0, 1, 1, 0, 1})
))

−2y(y + 1)z(1 − 2ǫ)
2
G(3, {1, 0, 1, 0, 0, 1, 1})

)

+
(

6ǫ2 − 5ǫ + 1
)(

3y3z + y2
(

4z2 + 6z − 1
)

+ yz2(z + 8) + z2(2z + 1)
)

G(3, {1, 0, 1, 0, 1, 0, 1})
))]

MG
27 =

1

(z − 1)z(y + z)
×

×
[(

2ǫ
2 − 3ǫ + 1

)

(y − z)G(3, {1, 0, 0, 0, 0, 1, 1})

+ z ((y + z) (2(y + 1)(z − 1)ǫ(zG(3, {1, 2, 0, 1, 1, 0, 1}) + ǫG(3, {1, 1, 0, 1, 1, 0, 1}))

+
(

6ǫ2 − 5ǫ + 1
)

G(3, {1, 0, 1, 0, 1, 0, 1})
)

−2y(1 − 2ǫ)2G(3, {1, 0, 1, 0, 0, 1, 1})
)]

M
G
28 =2(y + 1)ǫ

2
G(3, {1, 1, 0, 1, 1, 0, 1})
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M
G
29 =(y + 1)ǫ

2
G(3, {1, 1, 1, 0, 0, 1, 1})

MG
30 =2(y + 1)2ǫ2G(3, {1, 1, 1, 0, 1, 1, 1}) (7.23)

MG
31 =

(1 − 2ǫ)(ǫ− 1)G(4, {1, 1, 0, 0, 0, 0, 1})
(1 − z)z

MG
32 =

(y + 1)(1 − ǫ)ǫG(4, {1, 1, 1, 0, 0, 0, 1})
z

MG
33 =

(1 − 3ǫ)(1 − 2ǫ)G(4, {1, 0, 0, 1, 1, 0, 1})
z − 1

MG
34 =

(1 − 2ǫ)G(4, {1, 2, 0, 0, 0, 1, 1})
1 − z

MG
35 =

y(1 − 2ǫ)G(4, {1, 2, 0, 1, 0, 0, 1})
1 − z

MG
36 =y(y + 1)ǫG(4, {1, 2, 1, 1, 0, 0, 1})

MG
37 =(y + 1)ǫG(4, {1, 2, 1, 0, 0, 1, 1})

MG
38 =(y + 1)(1 − 2ǫ)ǫG(4, {1, 0, 1, 1, 1, 0, 1})

MG
39 =

1

2(z − 1)2z(2ǫ + 1)(y + z)2(yz + 1)
×

×
[

(1 − z)
(

2(y + 1)
(

2ǫ2 − 3ǫ + 1
)(

y2(3zǫ + z − ǫ) − y(z − 1)z + z2((z − 3)ǫ − 1)
)

G(4, {1, 1, 0, 0, 0, 0, 1})

+ z(2ǫ + 1)
(

2(y + 1)
(

(z − 1)2(y + z) ((y + 1)z(3ǫ + 1)(y + z)G(1, {1, 1, 0, 1, 2, 0, 1})

− 2ǫ
(

z
(

z − y2
)

G(1, {1, 2, 0, 1, 1, 0, 1}) + ǫ(yz + y + 2z)G(1, {1, 1, 0, 1, 1, 0, 1})
))

−2y(y + 1)z(1 − 2ǫ)
2
G(4, {1, 1, 1, 0, 0, 0, 1})

)

+
(

6ǫ
2 − 5ǫ + 1

)(

3y
3
z + y

2
(

4z
2
+ 6z − 1

)

+ yz
2
(z + 8) + z

2
(2z + 1)

)

G(4, {1, 1, 0, 0, 0, 1, 1})
))]

M
G
40 =

1

(z − 1)z(y + z)
×

×
[(

2ǫ2 − 3ǫ + 1
)

(y − z)G(4, {1, 1, 0, 0, 0, 0, 1})

+ z ((y + z) (2(y + 1)(z − 1)ǫ(zG(1, {1, 2, 0, 1, 1, 0, 1}) + ǫG(1, {1, 1, 0, 1, 1, 0, 1}))

+
(

6ǫ2 − 5ǫ + 1
)

G(4, {1, 1, 0, 0, 0, 1, 1})
)

−2y(1 − 2ǫ)2G(4, {1, 1, 1, 0, 0, 0, 1})
)]

M
G
41 =2(y + 1)ǫ

2
G(1, {1, 1, 0, 1, 1, 0, 1})

MG
42 =(y + 1)ǫ2

√

4yz + z2 + 2z + 1G(4, {1, 1, 1, 1, 1, 0, 1})

MG
43 =2(y + 1)2(1 − z)ǫ2G(4, {1, 1, 1, 1, 1, 1, 1}) (7.24)

MG
44 =

(1 − 2ǫ)(ǫ − 1)G(5, {1, 0, 0, 0, 1, 1, 0})
(1 − z)z

MG
45 =

(1 − 2ǫ)(ǫ − 1)G(5, {1, 0, 0, 0, 0, 1, 1})
(1 − z)z

MG
46 =

(y + 1)(1 − ǫ)ǫG(5, {1, 0, 0, 1, 1, 1, 0})
z
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M
G
47 =

1

(z − 1)z
×

× [z ((z((y + 5)ǫ − 1) − (y + 1)ǫ)G(5, {1, 1, 0, 0, 2, 1, 0}) + (y + 1)zǫG(5, {1, 2, 0, 0, 1, 1, 0})

+
(

6ǫ
2 − 5ǫ + 1

)

G(5, {1, 1, 0, 0, 1, 1, 0})
)

+
(

−2ǫ2 + 3ǫ − 1
)

G(5, {1, 0, 0, 0, 1, 1, 0})
]

MG
48 =(y + 1)ǫG(5, {1, 2, 0, 0, 1, 1, 0})

M
G
49 =(y + 1)ǫG(5, {1, 1, 0, 0, 2, 1, 0})

MG
50 =

y(1 − 2ǫ)G(5, {1, 0, 1, 0, 2, 1, 0})
1 − z

MG
51 =

(y + 1)(1 − ǫ)ǫG(5, {1, 0, 0, 1, 0, 1, 1})
z

MG
52 =

(1 − 2ǫ)G(5, {1, 0, 1, 0, 0, 1, 2})
1 − z

MG
53 =y(y + 1)ǫG(5, {1, 0, 1, 1, 1, 1, 0})

MG
54 =2(y + 1)ǫ2G(5, {1, 1, 1, 0, 1, 1, 0})

MG
55 =(y + 1)ǫG(5, {1, 0, 1, 1, 0, 1, 2})

MG
56 =4(y + 1)zǫG(5, {1, 1, 0, 0, 1, 2, 1})

MG
57 =4(y + 1)ǫ2G(5, {1, 1, 0, 0, 1, 1, 1})

MG
58 =

(y + 1)(1 − 2ǫ)ǫG(5, {1, 0, 1, 0, 1, 1, 1})
1 − z

MG
59 =2(y + 1)2ǫ2G(5, {1, 0, 1, 1, 1, 1, 1}) (7.25)

dM1 =M1(−2ǫdL(1 − z) − ǫdL(z))

dM2 =M1(ǫdL(y + z) − ǫdL(z)) + M2(−2ǫdL(y + z) + ǫdL(y) − 2ǫdL(1 − z))

dM3 =M1(ǫdL(z) − ǫdL(1 − z)) − 4M3ǫdL(1 − z)

dM4 =M4(−ǫdL(y + 1) − 3ǫdL(1 − z))

dM5 =M1(−2ǫdL(y + 1) + 2ǫdL(1 − z) − ǫdL(z)) + M2(−2ǫdL(y) + 4ǫdL(y + 1) − 4ǫdL(1 − z) + 2ǫdL(z))

+ M4(3ǫdL(y + 1) − 3ǫdL(1 − z) + 2ǫdL(z)) − 4M5ǫdL(1 − z)

+ M6(2ǫdL(y + z) − 2ǫdL(y + 1) − ǫdL(z)) + M7ǫdL(z)

dM6 =M1(ǫdL(y) − ǫdL(z)) + M4(ǫdL(z) − ǫdL(y))

+ M5(ǫdL(y) − 2ǫdL(y + 1) + 2ǫdL(1 − z) − ǫdL(z))

+ M6(2ǫdL(y) − 4ǫdL(y + z)) + M7(ǫdL(y) − ǫdL(z))

dM7 =M1(ǫdL(z) − ǫdL(y)) + M2(2ǫdL(y)− 2ǫdL(z)) + M4(ǫdL(y) − ǫdL(z))

+ M5(−ǫdL(y) − ǫdL(z)) + M6(ǫdL(z) − 2ǫdL(y)) + M7(−ǫdL(y) + 2ǫdL(y + 1) − 2ǫdL(z))

(7.26)

dM8 =M8(−2ǫdL(1 − z) − ǫdL(z))

dM9 =M9(−2ǫdL(1 − z) − ǫdL(z))

dM10 =M10(−2ǫdL(y + z) + ǫdL(y) − 2ǫdL(1 − z)) + M8(ǫdL(y + z) − ǫdL(z))

dM11 =M11(ǫdL(y)− 2ǫdL(y + 1) − 2ǫdL(1 − z) + ǫdL(z))

+ M12(ǫdL(1 − z) − ǫdL(y)) + M13(−2ǫdL(y) + 3ǫdL(y + 1) + 2ǫdL(1 − z) − 3ǫdL(z))

+ M8(ǫdL(z) − ǫdL(y + 1))



254 CHAPTER 7. APPENDIX A: CANONICAL BASIS AND PDES

dM12 =M11(ǫdL(y − z + 1) − ǫdL(y) + ǫdL(z)) + M12(ǫdL(y) − 2ǫdL(y + 1) − 2ǫdL(z))

+ M13(2ǫdL(y) − 2ǫdL(y + 1) − ǫdL(z)) + M8ǫdL(z)

dM13 =M11(−ǫdL(y − z + 1) + ǫdL(y) + ǫdL(z)) − M12ǫdL(y) + M13(−2ǫdL(y) + 2ǫdL(y + 1) − 3ǫdL(z))

dM14 = − 4M14ǫdL(1 − z) − M8ǫdL(1 − z)

dM15 = − 2M10ǫdL(y) − 2M11ǫdL(y) + M12(−2ǫdL(y + z) + 2ǫdL(y) + 2ǫdL(1 − z))

+ M13(4ǫdL(y) − 2ǫdL(y + z)) + M15(−2ǫdL(y + z) + 2ǫdL(y + 1) − 2ǫdL(1 − z))

dM16 =M10(ǫdL(y)− ǫdL(z)) + M14ǫdL(z) + M16(−2ǫdL(1 − z) − ǫdL(z)) + M8ǫdL(z)

dM17 =4M11ǫdL(y − z + 1) + M12(4ǫdL(1 − z) − 4ǫdL(y + 1)) − 8M13ǫdL(y + 1)

+ M17(−2ǫdL(1 − z) − 2ǫdL(z)) − 2M18ǫdL(1 − z) + 2M8ǫdL(z)

dM18 = − 2M12ǫdL(z) + M13(4ǫdL(y + 1) − 2ǫdL(z)) + M17ǫdL(z) − M18ǫdL(z)

dM19 =M10(4ǫdL(y + z) − 4ǫdL(z)) + M11(4ǫdL(y + 1) − 4ǫdL(z))

+ M12(−2ǫdL(y + z) + 2ǫdL(y + 1) − 4ǫdL(1 − z) + 4ǫdL(z))

+ M13(−2ǫdL(y + z) − 2ǫdL(y + 1) + 4ǫdL(z)) + M14(4ǫdL(z) − 4ǫdL(1 − z))

+ M15(2ǫdL(1 − z) − 2ǫdL(y + z)) + M16(4ǫdL(1 − z) − 4ǫdL(z))

+ M17(ǫdL(1 − z) − ǫdL(z)) + M18(ǫdL(1 − z) − ǫdL(z)) − 2M19ǫdL(1 − z)

+ M8(−2ǫdL(y + z) + 2ǫdL(y + 1) − 2ǫdL(1 − z) + 2ǫdL(z)) (7.27)

dM20 =M20(−2ǫdL(1 − z) − ǫdL(z))

dM21 =M21(−ǫdL(y + 1) − 3ǫdL(1 − z))

dM22 =M20(ǫdL(y + z) − ǫdL(z)) + M22(−2ǫdL(y + z) + ǫdL(y) − 2ǫdL(1 − z))

dM23 =M20(ǫdL(z) − ǫdL(y + 1)) + M23(ǫdL(y)− 2ǫdL(y + 1) − 2ǫdL(1 − z) + ǫdL(z))

+ M24(−2ǫdL(y) + 3ǫdL(y + 1) + 2ǫdL(1 − z) − 3ǫdL(z)) + M25(ǫdL(1 − z) − ǫdL(y))

dM24 =M23(−ǫdL(y − z + 1) + ǫdL(y) + ǫdL(z)) + M24(−2ǫdL(y) + 2ǫdL(y + 1) − 3ǫdL(z)) − M25ǫdL(y)

dM25 =M20ǫdL(z) + M23(ǫdL(y − z + 1) − ǫdL(y) + ǫdL(z)) + M24(2ǫdL(y)− 2ǫdL(y + 1) − ǫdL(z))

+ M25(ǫdL(y) − 2ǫdL(y + 1) − 2ǫdL(z))

dM26 =M20(−4ǫdL(y + 1) + 4ǫdL(1 − z) − 2ǫdL(z)) + M21(3ǫdL(y + 1) − 3ǫdL(1 − z) + 2ǫdL(z))

+ M22(−4ǫdL(y) + 8ǫdL(y + 1) − 8ǫdL(1 − z) + 4ǫdL(z)) − 4M26ǫdL(1 − z)

+ M27(2ǫdL(y + z) − 2ǫdL(y + 1) − ǫdL(z)) + M28ǫdL(z)

dM27 =M20(2ǫdL(y) − 2ǫdL(z)) + M21(ǫdL(z) − ǫdL(y))

+ M26(ǫdL(y) − 2ǫdL(y + 1) + 2ǫdL(1 − z) − ǫdL(z))

+ M27(2ǫdL(y) − 4ǫdL(y + z)) + M28(ǫdL(y)− ǫdL(z))

dM28 =M20(2ǫdL(z) − 2ǫdL(y)) + M21(ǫdL(y) − ǫdL(z))

+ M22(4ǫdL(y) − 4ǫdL(z)) + M26(−ǫdL(y)− ǫdL(z))

+ M27(ǫdL(z) − 2ǫdL(y)) + M28(−ǫdL(y) + 2ǫdL(y + 1) − 2ǫdL(z))

dM29 = − M22ǫdL(y) − M23ǫdL(y) + M24(2ǫdL(y) − ǫdL(y + z)) + M25(−ǫdL(y + z) + ǫdL(y) + ǫdL(1 − z))

+ M29(−2ǫdL(y + z) + 2ǫdL(y + 1) − 2ǫdL(1 − z))

dM30 =M20(2ǫdL(y + z) − 2ǫdL(1 − z)) + M21(3ǫdL(z) − 3ǫdL(1 − z))

+ M22(4ǫdL(z) − 4ǫdL(y + z)) + M23(4ǫdL(z) − 4ǫdL(1 − z))

+ M24(2ǫdL(y + z) + 4ǫdL(1 − z) − 6ǫdL(z)) + M25(2ǫdL(y + z) + 4ǫdL(1 − z) − 6ǫdL(z))

+ M26(ǫdL(1 − z) − ǫdL(z)) + M27(ǫdL(y + z) − ǫdL(z))

+ M29(4ǫdL(y + z) − 4ǫdL(1 − z)) − 2M30ǫdL(y + 1) (7.28)

dM31 = − M31ǫ(−3dL(a − b) + 2dL(2a − b) + dL(a))

dM32 =M31ǫ(dL(a − b) − dL(a)) − 2M32ǫ(dL(a) − dL(a − b))

dM33 =M33ǫ(4dL(a − b) − 3dL(2a − b) − dL(a(b − 1) + b) − dL(b + 1))
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dM34 =M31ǫ(dL(a) − dL(2a − b)) + 4M34ǫ(dL(a − b) − dL(2a − b))

dM35 =M31ǫ
(

dL
(

(a + 1)b
2
+ a
)

− dL(a)
)

+ M35ǫ
(

−2
(

dL
(

(a + 1)b2 + a
)

+ dL(2a − b) − dL(b)
)

+ 3dL(a − b) + dL(a + 1)
)

dM36 =M32ǫ
(

dL(a) − dL
(

(a + 1)b2 + a
))

+ M36ǫ
(

2
(

−dL
(

(a + 1)b2 + a
)

+ dL(a − b) + dL(b)
)

− dL(a) + dL(a + 1)
)

+ M35ǫ(dL(a) − dL(a − b))

dM37 =M32ǫ(dL(2a − b) − dL(a)) + M34ǫ(dL(a) − dL(a − b)) − M37ǫ(−3dL(a − b) + 2dL(2a − b) + dL(a))

dM38 =M33ǫ(dL(a − b) − dL(a)) − M38ǫ(−2dL(a − b) + dL(a(b − 1) + b) + dL(a) + dL(b + 1))

dM39 = − M40ǫ
(

2
(

−dL
(

(a + 1)b2 + a
)

+ dL(a(b − 1) + b) + dL(b + 1)
)

− dL(a − b) + dL(a)
)

− 2M31ǫ(−dL(a − b) + 2(−dL(2a − b) + dL(a(b − 1) + b) + dL(b + 1)) + dL(a))

+ M33ǫ(−2dL(a − b) + 3(−dL(2a − b) + dL(a(b − 1) + b) + dL(b + 1)) + 2dL(a))

+ 4M35ǫ(−2(dL(2a − b) − dL(a(b − 1) + b) + dL(b) − dL(b + 1)) + dL(a) − dL(a + 1))

+ 4M39ǫ(dL(a − b) − dL(2a − b)) + M41ǫ(dL(a) − dL(a − b))

dM40 =2M40ǫ
(

−2dL
(

(a + 1)b
2
+ a
)

+ dL(a − b) + dL(a + 1) + 2dL(b)
)

+ 2M31ǫ(−dL(a) + dL(a + 1) + 2dL(b)) + M33ǫ(dL(a) − dL(a + 1) − 2dL(b))

− M39ǫ(−2(dL(2a − b) − dL(a(b − 1) + b) + dL(b) − dL(b + 1)) + dL(a) − dL(a + 1))

+ M41ǫ(−dL(a) + dL(a + 1) + 2dL(b))

dM41 =2M31ǫ(dL(a) − dL(a + 1) − 2dL(b)) + M33ǫ(−dL(a) + dL(a + 1) + 2dL(b))

+ 4M35ǫ(−dL(a) + dL(a + 1) + 2dL(b)) − M39ǫ(−2dL(a − b) + dL(a) + dL(a + 1)

+ 2dL(b)) + M40ǫ(dL(a − b) + dL(a) − 2dL(a + 1) − 4dL(b))

− M41ǫ(−dL(a − b) − 2dL(a(b − 1) + b) + 2dL(a) + dL(a + 1) + 2dL(b) − 2dL(b + 1))

dM42 = − 1

2
M31ǫ(−2dL(a(b − 1) + b) + dL(a) + dL(a + 1) + 2dL(b + 1) + dL(4))

+ M32ǫ(−dL(a(b − 1) + b) + dL(a) + dL(b + 1))

+
1

4
M33ǫ(−2dL(a(b − 1) + b) + dL(a) + dL(a + 1) + 2dL(b + 1) + dL(4))

+ M35ǫ(−2dL(a(b − 1) + b) + dL(a) + dL(a + 1) + 2dL(b + 1)

+ dL(4)) + M36ǫ(−2dL(a(b − 1) + b) + dL(a) + dL(a + 1) + 2dL(b + 1) + dL(4))

− M38ǫ(−dL(a(b − 1) + b) + dL(a) + dL(b + 1))

− 1

4
M39ǫ(2dL(a(b − 1) + b) − 3dL(a) + dL(a + 1) − 2dL(b + 1) + dL(4))

− 1

2
M40ǫ(−dL(a(b − 1) + b) + dL(a + 1) + dL(b + 1) + dL(4))

+ 2M42ǫ(dL(a − b) − dL(a(b − 1) + b) − dL(a) + dL(2a + 1) + dL(b) − dL(b + 1))

− 1

4
M41ǫ(−dL(a) + dL(a + 1) + dL(4))

dM43 = − 2M31ǫ
(

−dL
(

(a + 1)b2 + a
)

+ dL(a(b − 1) + b) + dL(b + 1)
)

+ 2M32ǫ
(

−dL
(

(a + 1)b2 + a
)

− dL(2a − b) + dL(a(b − 1) + b) + dL(a) + dL(b + 1)
)

+ 4M35ǫ
(

−dL
(

(a + 1)b2 + a
)

− dL(2a − b) + dL(a(b − 1) + b) + dL(a) + dL(b + 1)
)

+ 4M36ǫ
(

−dL
(

(a + 1)b
2
+ a
)

+ dL(a(b − 1) + b) + dL(b + 1)
)

− M40ǫ
(

−dL
(

(a + 1)b2 + a
)

+ dL(a(b − 1) + b) + dL(b + 1)
)

+ 3M33ǫ(dL(a) − dL(2a − b))
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+ 4M34ǫ(dL(a) − dL(2a − b)) + 4M37ǫ(dL(2a − b) − dL(a))

+ M39ǫ(dL(a) − dL(2a − b)) − 4M42ǫ(−dL(a(b − 1) + b) + dL(a) + dL(b + 1))

+ 2M43ǫ(dL(a − b) − dL(2a − b)) (7.29)

dM44 =M44(−2ǫdL(1 − z) − ǫdL(z))

dM45 =M45(−2ǫdL(1 − z) − ǫdL(z))

dM46 = − M44ǫdL(z) − 2M46ǫdL(z)

dM47 =M44(ǫdL(z) − ǫdL(y + 1)) + M47(ǫdL(y)− 2ǫdL(y + 1) − 2ǫdL(1 − z) + ǫdL(z))

+ M48(ǫdL(1 − z) − ǫdL(y))

+ M49(−2ǫdL(y) + 3ǫdL(y + 1) + 2ǫdL(1 − z) − 3ǫdL(z))

dM48 =M44ǫdL(z) + M47(ǫdL(y − z + 1) − ǫdL(y) + ǫdL(z))

+ M48(ǫdL(y) − 2ǫdL(y + 1) − 2ǫdL(z))

+ M49(2ǫdL(y) − 2ǫdL(y + 1) − ǫdL(z))

dM49 =M47(−ǫdL(y − z + 1) + ǫdL(y) + ǫdL(z)) − M48ǫdL(y) + M49(−2ǫdL(y) + 2ǫdL(y + 1) − 3ǫdL(z))

dM50 =M44(ǫdL(y + z) − ǫdL(z)) + M50(−2ǫdL(y + z) + ǫdL(y) − 2ǫdL(1 − z))

dM51 = − M44ǫdL(z) − 2M51ǫdL(z)

dM52 =M44(ǫdL(z) − ǫdL(1 − z)) − 4M52ǫdL(1 − z)

dM53 =M46(ǫdL(z) − ǫdL(y + z)) + M50ǫdL(z) + M53(−2ǫdL(y + z) + ǫdL(y)− ǫdL(z))

dM54 = − 2M47ǫdL(y) + M48(−2ǫdL(y + z) + 2ǫdL(y) + 2ǫdL(1 − z))

+ M49(4ǫdL(y) − 2ǫdL(y + z)) − 2M50ǫdL(y)

+ M54(−2ǫdL(y + z) + 2ǫdL(y + 1) − 2ǫdL(1 − z))

dM55 =M51(ǫdL(1 − z) − ǫdL(z)) + M52ǫdL(z) + M55(−2ǫdL(1 − z) − ǫdL(z))

dM56 =2M44ǫdL(z) + 4M47ǫdL(y − z + 1) + M48(4ǫdL(1 − z)

− 4ǫdL(y + 1)) − 8M49ǫdL(y + 1) + M56(−2ǫdL(1 − z) − 2ǫdL(z))

− 2M57ǫdL(1 − z)

dM57 = − 2M48ǫdL(z) + M49(4ǫdL(y + 1) − 2ǫdL(z)) + M56ǫdL(z) − M57ǫdL(z)

dM58 =M50(ǫdL(y)− ǫdL(z)) − M52ǫdL(z) + M58(−2ǫdL(1 − z) − ǫdL(z))

dM59 = − M46ǫdL(z) + M51ǫdL(z) + M53(2ǫdL(y) − 2ǫdL(z)) − 2M55ǫdL(z) + 2M58ǫdL(z) − 2M59ǫdL(z)
(7.30)
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Appendix B: Master

Integrals at NNLO

We report in the following the expressions for the entire set of Master Integrals
describing CC-DIS massive Form Factors. We indicate with M̃i the dimensionless
master integrals Masteri. In other words Masteri = M̃is

4−2ǫ−Nn−Nd , with Nn

being the number of inverse propagator at numerator and Nd being the number
of inverse propagator at denominator.

8.0.3 Bottom channel

Master Integrals for b+W∗ → t+ g + g.

M̃1 =

(

− 1

2
(y + 1)zG({0}, z) − 1

12
(y + 1)(z((z − 6)z + 3) + 2)

)

+ ǫ

(

− 1

12
(y + 1)z((z − 6)z + 18)G({0}, z) + 1

3
(y + 1)(z((z − 6)z + 3) + 2)G({1}, z)

+
1

2
(y + 1)zG({0, 0}, z) + 2(y + 1)zG({0, 1}, z)

+
1

24
(y + 1)

(

z
(

(74 − 13z)z + 8π2 − 35
)

− 26
)

)

+ ǫ
2

(

1

24
(y + 1)z

(

(70 − 13z)z + 2π
2 − 76

)

G({0}, z)

+
1

6
(y + 1)(z − 1)(z(13z − 61) − 26)G({1}, z) + 1

12
(y + 1)z((z − 6)z + 18)G({0, 0}, z)

+
1

3
(y + 1)z((z − 6)z + 18)G({0, 1}, z) + 1

6
(y + 1)(z((z − 6)z + 3) + 2)G({1, 0}, z)

− 4

3
(y + 1)(z((z − 6)z + 3) + 2)G({1, 1}, z) − 1

2
(y + 1)zG({0, 0, 0}, z)

− 2(y + 1)zG({0, 0, 1}, z) + (y + 1)zG({0, 1, 0}, z) − 8(y + 1)zG({0, 1, 1}, z)

+
1

144
(y + 1)

(

576zζ(3) − 15(z − 1)(z(23z − 103) − 46) + 2π2(3z(3(z − 6)z + 29) + 10)
)

)

257
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+ O
(

ǫ
3
)

(8.1)

M̃2 =

(

zG({0}, z) + 1

2

(

1 − z2
)

)

+ ǫ

(

2
(

z2 − 1
)

G({1}, z) − 1

2
(z − 6)zG({0}, z) − zG({0, 0}, z) − 4zG({0, 1}, z)

+
1

12

(

−39z2 − 8π2z + 39
)

)

+ ǫ2
(

13
(

z2 − 1
)

G({1}, z) +
(

z2 − 1
)

G({1, 0}, z) − 8
(

z2 − 1
)

G({1, 1}, z)

− 1

12

(

39z + 2π2 − 72
)

zG({0}, z) + 1

2
(z − 6)zG({0, 0}, z) + 2(z − 6)zG({0, 1}, z)

+ zG({0, 0, 0}, z) + 4zG({0, 0, 1}, z) − 2zG({0, 1, 0}, z) + 16zG({0, 1, 1}, z)

− 115

8

(

z2 − 1
)

− 8zζ(3) +
1

12
π2(3z(3z − 8) − 5)

)

+ O
(

ǫ3
)

(8.2)

M̃3 =

(

− (y + z)G({−1}, y)
y

+
(y + z)G({0}, y)

y
− zG({0}, z)

y
+

(y + z)G({−y}, z)
y

)

+ ǫ

(

− 5zG({0}, z)
y

+
5(y + z)G({−y}, z)

y
+

(y + z)G({−1}, y)(3G({−y}, z) − 5)

y

− (y + z)G({0}, y)(3G({−y}, z) − 5)

y
+

(y + z)G({−1,−1}, y)
y

− (y + z)G({−1, 0}, y)
y

+
(y + z)G({0,−1}, y)

y
− (y + z)G({0, 0}, y)

y
+

zG({0, 0}, z)
y

+
4zG({0, 1}, z)

y

+
2(y + z)G({−y, 0}, z)

y
− 4(y + z)G({−y, 1}, z)

y
− 3(y + z)G({−y,−y}, z)

y
+

π2(z − y)

3y

)

+ ǫ2
(
(

π2 − 114
)

zG({0}, z)
6y

+
5(y + z)G({−1,−1}, y)

y
− 5(y + z)G({−1, 0}, y)

y

+
5(y + z)G({0,−1}, y)

y
− 5(y + z)G({0, 0}, y)

y

+
(y + z)

6y
G({−y}, z) (−18G({−1,−1}, y) + 18G({−1, 0}, y)

−18G({0,−1}, y) + 18G({0, 0}, y) − 7π2 + 114
)

+
5zG({0, 0}, z)

y
+

20zG({0, 1}, z)
y

+
10(y + z)G({−y, 0}, z)

y
− 20(y + z)G({−y, 1}, z)

y

+
(y + z)G({−1}, y)

(

90G({−y}, z) − 54G({−y,−y}, z) + 7π2 − 114
)

6y

−
(y + z)G({0}, y)

(

30G({−y}, z) − 18G({−y,−y}, z) + π2 − 38
)

2y

− 15(y + z)G({−y,−y}, z)
y

− (y + z)G({−1,−1,−1}, y)
y

+
(y + z)G({−1,−1, 0}, y)

y

− (y + z)G({−1, 0,−1}, y)
y

+
(y + z)G({−1, 0, 0}, y)

y
− (y + z)G({0,−1,−1}, y)

y

+
(y + z)G({0,−1, 0}, y)

y
− (y + z)G({0, 0,−1}, y)

y
+

(y + z)G({0, 0, 0}, y)
y
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− zG({0, 0, 0}, z)
y

− 4zG({0, 0, 1}, z)
y

+
2zG({0, 1, 0}, z)

y
− 16zG({0, 1, 1}, z)

y

− 2(y + z)G({−y, 0, 0}, z)
y

− 8(y + z)G({−y, 0, 1}, z)
y

− 2(y + z)G({−y, 1, 0}, z)
y

+
16(y + z)G({−y, 1, 1}, z)

y
− 6(y + z)G({−y,−y, 0}, z)

y
+

12(y + z)G({−y,−y, 1}, z)
y

+
9(y + z)G({−y,−y,−y}, z)

y
− 6ζ(3)(y − 3z) + 5π2(y − z)

3y

)

+ O
(

ǫ3
)

(8.3)

M̃4 =

(

−
(

2G({0,−1}, y) − 2G({0, 0}, y) + π2
)

G({0}, z)
2(y + 1)

−
G({0}, y)

(

−6G({0,−y}, z) + 6G({0, 1}, z) + π2
)

6(y + 1)

+
G({−1}, y)(G({0, 1}, z) − G({0,−y}, z))

y + 1

− G({0, 1,−y}, z)
y + 1

+
G({0,−y,−y}, z)

y + 1
− G({0,−1,−1}, y)

y + 1
+

G({0,−1, 0}, y)
y + 1

+
2G({0, 0,−1}, y)

y + 1
− 2G({0, 0, 0}, y)

y + 1
+

ζ(3)

y + 1

)

. + O
(

ep
2
)

(8.4)

M̃5 = − 1

3ǫ3(y + 1)2

+
1

ǫ2

(

− 2G({0}, z)
3(y + 1)2

+
4G({1}, z)
3(y + 1)2

− 2G({−y}, z)
3(y + 1)2

+
2G({−1}, y)
3(y + 1)2

− 2G({0}, y)
3(y + 1)2

)

+
1

ǫ

(

− 4G({0}, y)G({0}, z)
3(y + 1)2

− G({0}, y)(G({1}, z) − 5G({−y}, z))
3(y + 1)2

+
G({−1}, y)(−5G({−y}, z) + 4G({0}, z) + G({1}, z))

3(y + 1)2
+

2G({0, 0}, z)
3(y + 1)2

+
8G({0, 1}, z)
3(y + 1)2

− 4G({0,−y}, z)
3(y + 1)2

+
2G({1, 0}, z)
3(y + 1)2

− 16G({1, 1}, z)
3(y + 1)2

− G({1,−y}, z)
3(y + 1)2

− 4G({−y, 0}, z)
3(y + 1)2

+
8G({−y, 1}, z)

3(y + 1)2
+

5G({−y,−y}, z)
3(y + 1)2

− 4G({−1,−1}, y)
3(y + 1)2

+
4G({−1, 0}, y)

3(y + 1)2
− 5G({0,−1}, y)

3(y + 1)2
+

5G({0, 0}, y)
3(y + 1)2

+
π2

(y + 1)2

)

+

(

−
G({1}, z)

(

−G({−1,−1}, y) + G({−1, 0}, y) + G({0,−1}, y) − G({0, 0}, y) + 2π2
)

3(y + 1)2

+
2G({0}, z)(−4G({−1,−1}, y) + 4G({−1, 0}, y) + G({0,−1}, y) − G({0, 0}, y))

3(y + 1)2

+
G({−y}, z)

(

7G({−1,−1}, y)− 7G({−1, 0}, y) − G({0,−1}, y) + G({0, 0}, y) + 2π2
)

3(y + 1)2
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+
G({0}, y)
3(y + 1)2

(4G({0, 0}, z) − 2G({0, 1}, z) + 10G({0,−y}, z) − 2G({1, 0}, z)

+4G({1, 1}, z) + G({1,−y}, z) − 2G({−y, 0}, z) − 2G({−y, 1}, z) − 11G({−y,−y}, z) + 2π2
)

− G({−1}, y)
3(y + 1)2

(4G({0, 0}, z) − 2G({0, 1}, z) + 10G({0,−y}, z) − 2G({1, 0}, z)

+4G({1, 1}, z) + G({1,−y}, z) − 2G({−y, 0}, z) − 2G({−y, 1}, z) − 11G({−y,−y}, z) + 6π2
)

+
8G({−1,−1,−1}, y)

3(y + 1)2
− 8G({−1,−1, 0}, y)

3(y + 1)2
+

10G({−1, 0,−1}, y)
3(y + 1)2

− 10G({−1, 0, 0}, y)
3(y + 1)2

+
7G({0,−1,−1}, y)

3(y + 1)2
− 7G({0,−1, 0}, y)

3(y + 1)2

− G({0, 0,−1}, y)
3(y + 1)2

+
G({0, 0, 0}, y)

3(y + 1)2
− 2G({0, 0, 0}, z)

3(y + 1)2

− 8G({0, 0, 1}, z)
3(y + 1)2

+
4G({0, 0,−y}, z)

3(y + 1)2
+

4G({0, 1, 0}, z)
3(y + 1)2

− 32G({0, 1, 1}, z)
3(y + 1)2

− 2G({0, 1,−y}, z)
3(y + 1)2

− 8G({0,−y, 0}, z)
3(y + 1)2

+
16G({0,−y, 1}, z)

3(y + 1)2
+

10G({0,−y,−y}, z)
3(y + 1)2

− 2G({1, 0, 0}, z)
3(y + 1)2

− 8G({1, 0, 1}, z)
3(y + 1)2

− 2G({1, 0,−y}, z)
3(y + 1)2

− 8G({1, 1, 0}, z)
3(y + 1)2

+
64G({1, 1, 1}, z)

3(y + 1)2
+

4G({1, 1,−y}, z)
3(y + 1)2

− 2G({1,−y, 0}, z)
3(y + 1)2

+
4G({1,−y, 1}, z)

3(y + 1)2
+

G({1,−y,−y}, z)
3(y + 1)2

+
4G({−y, 0, 0}, z)

3(y + 1)2

+
16G({−y, 0, 1}, z)

3(y + 1)2
− 2G({−y, 0,−y}, z)

3(y + 1)2
+

4G({−y, 1, 0}, z)
3(y + 1)2

− 32G({−y, 1, 1}, z)
3(y + 1)2

− 2G({−y, 1,−y}, z)
3(y + 1)2

+
10G({−y,−y, 0}, z)

3(y + 1)2

− 20G({−y,−y, 1}, z)
3(y + 1)2

− 11G({−y,−y,−y}, z)
3(y + 1)2

+
59ζ(3)

9(y + 1)2

)

+ O
(

ep3
)

(8.5)

M̃6 =
1

6y(y + 1)
×

×
(

−6
(

y
2
(z + 5) + 3yz + y − 2z

)

G({0,−1}, y) + 6
(

y
2
(z + 5) + 3yz + y − 2z

)

G({0, 0}, y)

+ 6G({−1}, y) (−(y − 3)y(z − 1)G({1}, z) + y(y − 2z − 1)G({0, 1}, z)
+ y(−y + 2z + 1)G({0,−y}, z) + (y + 1)(y(z + 2) − z)G({0}, z)

−(3y − 1)(y + z)G({−y}, z) + 2y2 + 2yz + 2y + 2z
)

+ 6(y − 3)y(z − 1)G({1,−y}, z) − 6y(y − 2z − 1)G({0,−1,−1}, y)
+ 6y(y − 2z − 1)G({0,−1, 0}, y) + 12y(y − 2z − 1)G({0, 0,−1}, y)
− 12y(y − 2z − 1)G({0, 0, 0}, y) − 6y(y − 2z − 1)G({0, 1,−y}, z)
+ 6y(y − 2z − 1)G({0,−y,−y}, z) − 12(y + 1)(y + z)G({−y}, z)
+ 6(y + 1)(y(z + 2) − z)G({−1,−1}, y) − 6(y + 1)(y(z + 2) − z)G({−1, 0}, y)
+ 3G({0}, z) (2y(y − 2z − 1)(G({0, 0}, y) − G({0,−1}, y))
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+2
((

2 + π
2
)

y + 2
)

z + y
(

−
(

4 + π
2
)

y + π
2 − 4

))

− 6(y + 1)(y(z + 2) − z)G({0,−y}, z)
+ G({0}, y) (−6(y + 1)(y(z + 2) − z)G({0}, z) + 6(y − 3)y(z − 1)G({1}, z)
+ 6((3y − 1)(y + z)G({−y}, z) + y(y − 2z − 1)(G({0,−y}, z) − G({0, 1}, z)))

+y
(

π2(−y + 2z + 1) − 12(y + z + 1)
)

− 12z
)

+ 6(3y − 1)(y + z)G({−y,−y}, z) + 4π
2
y
2
z + 12y

2
z + 6y

2
ζ(3) − π

2
y
2 − 12y

2

−12yzζ(3) − 9π
2
yz + 12yz − 6yζ(3) + 11π

2
y − 12y − π

2
z
)

+ O(ǫ) (8.6)

M̃7 =
1

6y(y + 1)
×

× (−6(y + 1)y(z + 1)G({−1,−1}, y) + 6(y + 1)y(z + 1)G({−1, 0}, y)
+ 6y(y(z + 3) + 3z + 1)G({0,−1}, y) − 6y(y(z + 3) + 3z + 1)G({0, 0}, y)
+ 6(y + 1)y(z + 1)G({0,−y}, z) + 6y(y(−z) + y + z − 1)G({1,−y}, z)
− 12y(y + z)G({−y,−y}, z) + 6y(y − z)G({0,−1,−1}, y) + 6y(z − y)G({0,−1, 0}, y)
+ 12y(z − y)G({0, 0,−1}, y) + 12y(y − z)G({0, 0, 0}, y) + 6y(y − z)G({0, 1,−y}, z)
+ 6y(z − y)G({0,−y,−y}, z) + 6(y + 1)(y + z)G({−y}, z)

+ 3(y − z)
(

2yG({0,−1}, y) − 2yG({0, 0}, y) +
(

2 + π2
)

y + 2
)

G({0}, z)

+ 6G({−1}, y)(−y(y + 1)(z + 1)G({0}, z) + (y − 1)y(z − 1)G({1}, z)
+ y(2(y + z)G({−y}, z) − (y − z)(G({0, 1}, z) − G({0,−y}, z))) − (y + 1)(y + z))

+ G({0}, y) (6y(y + 1)(z + 1)G({0}, z) − 6(y − 1)y(z − 1)G({1}, z)

+ 6y((y − z)(G({0, 1}, z) − G({0,−y}, z)) − 2(y + z)G({−y}, z)) +
(

6 −
(

π2 − 6
)

y
)

z

+y
((

6 + π2
)

y + 6
))

−4π
2
y
2
z − 6y

2
z − 6y

2
ζ(3) + 2π

2
y
2
+ 6y

2
+ 6yzζ(3) + 2π

2
yz − 6yz − 4π

2
y + 6y

)

+ O(ǫ) (8.7)

M̃10 =
1

6

(

6G({0, 0}, z) − 6G({1, 0}, z) + π2
)

1

6
ǫ
(

−5π2G({0}, z) + 2π2G({1}, z) + 12G({0, 0}, z) − 12G({1, 0}, z)

− 12G({0, 0, 0}, z) − 24G({0, 0, 1}, z) + 6G({0, 1, 0}, z) − 6G({1, 0, 0}, z)

+24G({1, 0, 1}, z) + 12G({1, 1, 0}, z) − 6ζ(3) + 2π2
)

+ O(ǫ2) (8.8)

M̃11 =
1

ǫ3(y + 1)2(z − 1)

+
1

ǫ2

(

2G({0}, z) − 4G({1}, z)
(y + 1)2(z − 1)

)

+
1

ǫ

−48G({0, 1}, z) − 24G({1, 0}, z) + 96G({1, 1}, z) − 11π2

6(y + 1)2(z − 1)
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+
1

3(y + 1)2(z − 1)

(

−6π
2
G({0}, z) + 17π

2
G({1}, z) − 6G({0, 0, 0}, z) − 6G({0, 1, 0}, z)

+ 96G({0, 1, 1}, z) + 6G({1, 0, 0}, z) + 48G({1, 0, 1}, z)
+30G({1, 1, 0}, z) − 192G({1, 1, 1}, z) − 74ζ(3)) (8.9)

Master Integrals for b+W∗ → t+ b+ b̄.

M̃4 =
1

3y(y + 1)

(

−π2yz − 3(y + 1)G({0}, z)z + 3yG({−1,−1}, y)z − 3yG({−1, 0}, y)z

+ 3yG({0,−1}, y)z − 3yG({0, 0}, y)z + 3yG({0, 0}, z)z + 3yG({0,−y}, z)z
− 3yG({−y − 1, 0}, z)z − 3yG({−y − 1,−y}, z)z
− 3G({−1}, y)((y + 1)(y + z) + yz(G({0}, z) − G({−y − 1}, z)))
+3G({0}, y)((y + 1)(y + z) + yz(G({0}, z) − G({−y − 1}, z))) + 3(y + 1)(y + z)G({−y}, z))

+
ǫ

3y(y + 1)
×

×
(

−π2y2 + 3(y + z + 1)G({0,−1}, y)y − 3(y + z + 1)G({0, 0}, y)y + 2zG({−y − 1}, z)
(

−3G({−1,−1}, y) + 3G({−1, 0}, y) − 3G({0,−1}, y) + 3G({0, 0}, y) + 2π2
)

y

+ 3(y − z + 1)G({−y − 1, 0}, z)y + 3(y − z + 1)G({−y − 1,−y}, z)y
− 6zG({0,−1,−1}, y)y + 6zG({0,−1, 0}, y)y − 9zG({0, 0, 0}, z)y
− 12zG({0, 0, 1}, z)y − 6zG({0, 0,−y}, z)y + 9zG({0,−y − 1, 0}, z)y
+ 9zG({0,−y − 1,−y}, z)y + 3zG({0,−y, 0}, z)y − 12zG({0,−y, 1}, z)y
− 6zG({0,−y,−y}, z)y + 12zG({−y − 1, 0, 1}, z)y − 3zG({−y − 1, 0,−y}, z)y
− 3zG({−y − 1,−y, 0}, z)y + 12zG({−y − 1,−y, 1}, z)y + 6zG({−y − 1,−y,−y}, z)y

− 6zζ(3)y − π2y + π2z + 15(y + 1)(y + z)G({−y}, z)

+ 3
(

y2 + 3zy + y + 2z
)

G({−1,−1}, y) − 3
(

y2 + 3zy + y + 2z
)

G({−1, 0}, y)

− zG({0}, z) (3(G({−1,−1}, y) − G({−1, 0}, y) + G({0,−1}, y) − G({0, 0}, y))y

+
(

15 + π2
)

y + 15
)

+ 3(3y + 2)zG({0, 0}, z) + 12(y + 1)zG({0, 1}, z) − 3zG({0,−y}, z)

+ G({0}, y)
(

15y(y + 1) +
(

15 −
(

−15 + π2
)

y
)

z

− 3zG({0}, z) + 3y(y − z + 1)G({−y − 1}, z) − 3(2(y + 1)(y + z)G({−y}, z) + yz(2G({0, 0}, z)
−3G({0,−y − 1}, z) + 2G({0,−y}, z) + G({−y − 1, 0}, z) − 2G({−y − 1,−y}, z))))

+ G({−1}, y)
(

−15y
2
+ 2π

2
zy − 15zy − 3(y − z + 1)G({−y − 1}, z)y

+ 6zG({0, 0}, z)y − 9zG({0,−y − 1}, z)y + 6zG({0,−y}, z)y + 3zG({−y − 1, 0}, z)y
−6zG({−y − 1,−y}, z)y − 15y − 15z + 3zG({0}, z) + 6(y + 1)(y + z)G({−y}, z))
+ 3(y + 1)(y + z)G({−y, 0}, z) − 12(y + 1)(y + z)G({−y, 1}, z)
−6(y + 1)(y + z)G({−y,−y}, z))

+ O(ǫ2) (8.10)

M̃5 =
1

12y2(y + 1)(y + z + 1)
×

×
(

3zy
4 − 3y

4 − 2π
2
z
2
y
3
+ 6z

2
y
3 − 4π

2
zy

3 − 6y
3 − 2π

2
z
3
y
2
+ 3z

3
y
2 − 6π

2
z
2
y
2
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+ 6z
2
y
2 − 4π

2
zy

2 − 6zy
2
+ 6z(z + 2)(y + z + 1)G({−1,−1}, y)y2

− 6z(z + 2)(y + z + 1)G({−1, 0}, y)y2 + 6z(z + 2)(y + z + 1)G({0,−1}, y)y2

− 6z(z + 2)(y + z + 1)G({0, 0}, y)y2 + 6z(z + 2)(y + z + 1)G({0, 0}, z)y2

+ 6z(z + 2)(y + z + 1)G({0,−y}, z)y2 − 6z(z + 2)(y + z + 1)G({−y − 1, 0}, z)y2

− 6z(z + 2)(y + z + 1)G({−y − 1,−y}, z)y2 − 3y2 + 3z3y − 3zy

− 3(y + 1)z
(

3zy2 + (3z(z + 2) + 2)y + z2 + z
)

G({0}, z)

+ 3G({0}, y)
(

2y2z(z + 2)(y + z + 1)(G({0}, z) − G({−y − 1}, z))

−(y + 1)(y + z)
(

y
3 − (z(3z + 5) + 1)y − z(z + 1)

))

+ 3G({−1}, y)
(

2z(z + 2)(y + z + 1)(G({−y − 1}, z) − G({0}, z))y2

+(y + 1)(y + z)
(

y3 − (z(3z + 5) + 1)y − z(z + 1)
))

−3(y + 1)(y + z)
(

y3 − (z(3z + 5) + 1)y − z(z + 1)
)

G({−y}, z)
)

+
ǫ

24y2(y + 1)(y + z + 1)
×

×
(

2π2y5 − 2π2zy4 + 39zy4 + 2π2y4 − 39y4 + 78z2y3 − 20π2zy3 − 24z2ζ(3)y3

− 48zζ(3)y3 − 2π2y3 − 78y3 + 4π2z3y2 + 39z3y2 + 12π2z2y2 + 78z2y2 − 14π2zy2 − 78zy2

+ 6
(

z3 + 5(y + 1)z2 + 3(y + 1)(y + 3)z − (y − 1)(y + 1)2
)

G({0,−1}, y)y2

+ 6
(

−z
3 − 5(y + 1)z

2 − 3(y + 1)(y + 3)z + (y − 1)(y + 1)
2
)

G({0, 0}, y)y2

+ 8z(z + 2)(y + z + 1)G({−y − 1}, z) (−3G({−1,−1}, y) + 3G({−1, 0}, y)

−3G({0,−1}, y) + 3G({0, 0}, y) + 2π2
)

y2

− 6(y + z + 1)
(

y2 + z2 − 1
)

G({−y − 1, 0}, z)y2

− 6(y + z + 1)
(

y2 + z2 − 1
)

G({−y − 1,−y}, z)y2

− 24z(z + 2)(y + z + 1)G({0,−1,−1}, y)y2
+ 24z(z + 2)(y + z + 1)G({0,−1, 0}, y)y2

− 36z(z + 2)(y + z + 1)G({0, 0, 0}, z)y2 − 48z(z + 2)(y + z + 1)G({0, 0, 1}, z)y2

− 24z(z + 2)(y + z + 1)G({0, 0,−y}, z)y2 + 36z(z + 2)(y + z + 1)G({0,−y − 1, 0}, z)y2

+ 36z(z + 2)(y + z + 1)G({0,−y − 1,−y}, z)y2 + 12z(z + 2)(y + z + 1)G({0,−y, 0}, z)y2

− 48z(z + 2)(y + z + 1)G({0,−y, 1}, z)y2 − 24z(z + 2)(y + z + 1)G({0,−y,−y}, z)y2

+ 48z(z + 2)(y + z + 1)G({−y − 1, 0, 1}, z)y2 − 12z(z + 2)(y + z + 1)G({−y − 1, 0,−y}, z)y2

− 12z(z + 2)(y + z + 1)G({−y − 1,−y, 0}, z)y2 + 48z(z + 2)(y + z + 1)G({−y − 1,−y, 1}, z)y2

+ 24z(z + 2)(y + z + 1)G({−y − 1,−y,−y}, z)y2 − 24z3ζ(3)y2 − 72z2ζ(3)y2

− 48zζ(3)y2 − 2π2y2 − 39y2 + 8π2z3y + 39z3y + 14π2z2y + 4π2zy − 39zy

− 24(y + 1)(z − 1)(y + z)(y + z + 1)G({1}, z)y + 2π2z3 + 2π2z2

− 3(y + 1)(y + z)
(

−9(3y + 1)z2 − (y(6y + 47) + 9)z + y(y + 1)(9y − 11)
)

G({−y}, z)

+
(

6(y(7y + 8) + 2)z3 + 6(y + 1)(y(7y + 12) + 2)z2 − 6y(y + 1)((y − 9)y − 4)z

−6(y − 1)y2(y + 1)2
)

G({−1,−1}, y)

+
(

−6(y(7y + 8) + 2)z3 − 6(y + 1)(y(7y + 12) + 2)z2 + 6y(y + 1)((y − 9)y − 4)z
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+6(y − 1)y
2
(y + 1)

2
)

G({−1, 0}, y)

+ zG({0}, z) (12(z + 2)(y + z + 1)(−G({−1,−1}, y) + G({−1, 0}, y)

− G({0,−1}, y) + G({0, 0}, y))y2

+ 2(y + 1)
(

y
(

6y − 4π2 − 3
)

− 27
)

y

−
(

y
((

75 + 4π2
)

y + 102
)

+ 27
)

z2

−
(

y
(

y
(

63y + 4π2(y + 3) + 219
)

+ 183
)

+ 27
)

z
)

+ 6z(y + z + 1)(4y(y + 1) + (y(7y + 8) + 2)z)G({0, 0}, z)

+ 24(y + 1)z
(

3zy2 + (3z(z + 2) + 2)y + z2 + z
)

G({0, 1}, z)

− 6z
(

−4y4 − 2(z + 4)y3 + 2(z(z + 2) − 1)y2 + (z(4z + 7) + 2)y + z2 + z
)

G({0,−y}, z)

+ G({0}, y)
((

y
((

81 − 4π2
)

y + 108
)

+ 27
)

z3

+
(

y
(

y
(

99y − 4π2(y + 3) + 267
)

+ 195
)

+ 27
)

z2

− y(y + 1)
(

y
(

9y + 8π
2 − 147

)

− 60
)

z

− 6
(

−4y4 − 2(z + 4)y3 + 2(z(z + 2) − 1)y2 + (z(4z + 7) + 2)y + z2 + z
)

G({0}, z)z

− 3y2(y + 1)2(9y − 11) − 6y2(y + z + 1)
(

y2 + z2 − 1
)

G({−y − 1}, z)

+ 12
(

(y + 1)(y + z)
(

y3 − (z(3z + 5) + 1)y − z(z + 1)
)

G({−y}, z)

− y2z(z + 2)(y + z + 1)(2G({0, 0}, z) − 3G({0,−y − 1}, z) + 2G({0,−y}, z)
+G({−y − 1, 0}, z) − 2G({−y − 1,−y}, z))))

+ G({−1}, y)
((

y
((

−81 + 8π2
)

y − 108
)

− 27
)

z3

+
(

y
(

y
(

8π2(y + 3) − 3(33y + 89)
)

− 195
)

− 27
)

z2

+ y(y + 1)
(

y
(

9y + 16π2 − 147
)

− 60
)

z

+ 6
(

−4y
4 − 2(z + 4)y

3
+ 2(z(z + 2) − 1)y

2
+ (z(4z + 7) + 2)y + z

2
+ z
)

G({0}, z)z

+ 3y2(y + 1)2(9y − 11) + 6y2(y + z + 1)
(

y2 + z2 − 1
)

G({−y − 1}, z)

+ 12
(

y2z(z + 2)(y + z + 1)(2G({0, 0}, z) − 3G({0,−y − 1}, z) + 2G({0,−y}, z)

+ G({−y − 1, 0}, z) − 2G({−y − 1,−y}, z))

−(y + 1)(y + z)
(

y3 − (z(3z + 5) + 1)y − z(z + 1)
)

G({−y}, z)
))

− 6(y + 1)(y + z)
(

y
3 − (z(3z + 5) + 1)y − z(z + 1)

)

G({−y, 0}, z)

+ 24(y + 1)(y + z)
(

y3 − (z(3z + 5) + 1)y − z(z + 1)
)

G({−y, 1}, z)

+12(y + 1)(y + z)
(

y3 − (z(3z + 5) + 1)y − z(z + 1)
)

G({−y,−y}, z)
)

+ O(ǫ2) (8.11)

M̃6 =
1

12y(y + 1)(y + z + 1)
×

×
(

−9z
2
y
3
+ 4π

2
zy

3
+ 12zy

3 − 3y
3 − 9z

3
y
2 − 6z

2
y
2
+ 4π

2
zy

2
+ 21zy

2 − 6y
2

− 4π
2
z
3
y − 9z

3
y − 4π

2
z
2
y + 3z

2
y + 9zy − 12(y − z)z(y + z + 1)G({−1,−1}, y)y
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+ 12(y − z)z(y + z + 1)G({−1, 0}, y)y − 12(y − z)z(y + z + 1)G({0,−1}, y)y
+ 12(y − z)z(y + z + 1)G({0, 0}, y)y
− 12(y − z)z(y + z + 1)G({0, 0}, z)y − 12(y − z)z(y + z + 1)G({0,−y}, z)y
+ 12(y − z)z(y + z + 1)G({−y − 1, 0}, z)y
+ 12(y − z)z(y + z + 1)G({−y − 1,−y}, z)y

− 3y + 6(y + 1)z
(

(y − 1)z2 + y(y + 3)z + 2y(y + 2) + 1
)

G({0}, z)

+ 6G({−1}, y)
(

(y + 1)(y + z)
(

(y − 1)z2 + 2yz + y(2y + 3) + 1
)

+2y(y − z)z(y + z + 1)(G({0}, z) − G({−y − 1}, z)))
+ 6G({0}, y) (2y(y − z)z(y + z + 1)(G({−y − 1}, z) − G({0}, z))

−(y + 1)(y + z)
(

(y − 1)z2 + 2yz + y(2y + 3) + 1
))

−6(y + 1)(y + z)
(

(y − 1)z2 + 2yz + y(2y + 3) + 1
)

G({−y}, z)
)

+
ǫ

24y(y + 1)(y + z + 1)
×

×
(

8π2y4 − 8π2z2y3 − 105z2y3 + 4π2zy3 + 144zy3 + 48zζ(3)y3 + 20π2y3 − 39y3

− 8π2z3y2 − 105z3y2 − 32π2z2y2 − 66z2y2 − 16π2zy2 + 249zy2 + 48zζ(3)y2

+ 16π2y2 − 78y2 − 4π2z3y − 105z3y − 24π2z2y + 39z2y − 24π2zy + 105zy

+ 24(y + 1)(z − 1)(y + z + 1)(3z − 1)G({1}, z)y

− 12(y + 1)
(

2y2 − (z − 3)(z + 1)y − (z + 1)(z(z + 2) − 1)
)

G({0,−1}, y)y

+ 12(y + 1)
(

2y2 − (z − 3)(z + 1)y − (z + 1)(z(z + 2) − 1)
)

G({0, 0}, y)y

− 16(y − z)z(y + z + 1)G({−y − 1}, z) (−3G({−1,−1}, y) + 3G({−1, 0}, y)

−3G({0,−1}, y) + 3G({0, 0}, y) + 2π2
)

y

− 12(y + 1)
(

(z − 1)
2
+ 2y

)

(y + z + 1)G({−y − 1, 0}, z)y

− 12(y + 1)
(

(z − 1)2 + 2y
)

(y + z + 1)G({−y − 1,−y}, z)y

+ 48(y − z)z(y + z + 1)G({0,−1,−1}, y)y − 48(y − z)z(y + z + 1)G({0,−1, 0}, y)y
+ 72(y − z)z(y + z + 1)G({0, 0, 0}, z)y + 96(y − z)z(y + z + 1)G({0, 0, 1}, z)y
+ 48(y − z)z(y + z + 1)G({0, 0,−y}, z)y − 72(y − z)z(y + z + 1)G({0,−y − 1, 0}, z)y
− 72(y − z)z(y + z + 1)G({0,−y − 1,−y}, z)y − 24(y − z)z(y + z + 1)G({0,−y, 0}, z)y
+ 96(y − z)z(y + z + 1)G({0,−y, 1}, z)y + 48(y − z)z(y + z + 1)G({0,−y,−y}, z)y
− 96(y − z)z(y + z + 1)G({−y − 1, 0, 1}, z)y + 24(y − z)z(y + z + 1)G({−y − 1, 0,−y}, z)y
+ 24(y − z)z(y + z + 1)G({−y − 1,−y, 0}, z)y − 96(y − z)z(y + z + 1)G({−y − 1,−y, 1}, z)y

− 48(y − z)z(y + z + 1)G({−y − 1,−y,−y}, z)y − 48z3ζ(3)y − 48z2ζ(3)y + 4π2y − 39y

+ 4π2z3 − 4π2z − 12(y + 1)(y + z)
(

(3y − 5)z2 + 8yz + 5y(2y + 3) + 5
)

G({−y}, z)

− 12(y + 1)
(

(y − 2)z
3
+ y(y + 3)z

2
+ (y(8y + 7) + 2)z + y(y + 1)(2y + 1)

)

G({−1,−1}, y)

+ 12(y + 1)
(

(y − 2)z3 + y(y + 3)z2 + (y(8y + 7) + 2)z + y(y + 1)(2y + 1)
)

G({−1, 0}, y)

+ 2zG({0}, z)
((

y
(

9y − 4π2 − 21
)

− 30
)

z2

+ y
(

3(y + 1)(3y + 19) − 4π2
)

z + 2(y + 1)
(

2y
((

15 + π2
)

y + 27
)

+ 15
)

+12y(y − z)(y + z + 1)(G({−1,−1}, y) − G({−1, 0}, y) + G({0,−1}, y)− G({0, 0}, y)))
− 12(y + 1)z(y + z + 1)(−2z + y(z + 6) + 2)G({0, 0}, z)
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− 48(y + 1)z
(

(y − 1)z
2
+ y(y + 3)z + 2y(y + 2) + 1

)

G({0, 1}, z)

+ 12(y + 1)z
(

(2y − 1)z2 + 2y(y + 2)z + 2y(y + 2) + 1
)

G({0,−y}, z)

+ 4G({−1}, y)
((

y
(

9y + 4π2 − 6
)

− 15
)

z3 + y
(

9(y + 1)2 + 4π2
)

z2

− (y + 1)
(

y
((

−54 + 4π2
)

y − 45
)

− 15
)

z

− 3(y + 1)
(

(2y − 1)z2 + 2y(y + 2)z + 2y(y + 2) + 1
)

G({0}, z)z

+ 15y(y + 1)2(2y + 1) + 3y(y + 1)
(

(z − 1)2 + 2y
)

(y + z + 1)G({−y − 1}, z)

+ 6
(

−(y + 1)(y + z)
(

(y − 1)z
2
+ 2yz + y(2y + 3) + 1

)

G({−y}, z)

− y(y − z)z(y + z + 1)(2G({0, 0}, z) − 3G({0,−y − 1}, z) + 2G({0,−y}, z)
+G({−y − 1, 0}, z) − 2G({−y − 1,−y}, z))))

+ 4G({0}, y)
(((

−9y − 2π2 + 6
)

y + 15
)

z3

− y
(

9(y + 1)2 + 2π2
)

z2 + (y + 1)
(

y
(

2
(

−27 + π2
)

y − 45
)

− 15
)

z

+ 3(y + 1)
(

(2y − 1)z2 + 2y(y + 2)z + 2y(y + 2) + 1
)

G({0}, z)z

− 15y(y + 1)2(2y + 1) − 3y(y + 1)
(

(z − 1)2 + 2y
)

(y + z + 1)G({−y − 1}, z)

+ 6
(

(y + 1)(y + z)
(

(y − 1)z
2
+ 2yz + y(2y + 3) + 1

)

G({−y}, z)

+ y(y − z)z(y + z + 1)(2G({0, 0}, z) − 3G({0,−y − 1}, z)
+2G({0,−y}, z) + G({−y − 1, 0}, z) − 2G({−y − 1,−y}, z))))

− 12(y + 1)(y + z)
(

(y − 1)z2 + 2yz + y(2y + 3) + 1
)

G({−y, 0}, z)

+ 48(y + 1)(y + z)
(

(y − 1)z2 + 2yz + y(2y + 3) + 1
)

G({−y, 1}, z)

+24(y + 1)(y + z)
(

(y − 1)z2 + 2yz + y(2y + 3) + 1
)

G({−y,−y}, z)
)

+ O(ǫ2) (8.12)

M̃7 =
1

3y(y + 1)
×
(

−π2y − 3zG({0}, y)G({0}, z) + G({−1}, y)(3zG({0}, z) + 3(z − 1)G({1}, z)

+ 6(2y + z + 1)G({−2y − 1}, z) − 3(y + z + 1)G({−y − 1}, z) − 9(y + z)G({−y}, z))
+ G({0}, y)(−3(z − 1)G({1}, z) − 6(2y + z + 1)G({−2y − 1}, z)
+ 3(y + z + 1)G({−y − 1}, z) + 9(y + z)G({−y}, z)) − 3(2y + z + 2)G({−1,−1}, y)

+ 3(2y + z + 2)G({−1, 0}, y) + 6(2y + z + 1)G

({

− 1

2
,−1

}

, y

)

− 6(2y + z + 1)G

({

− 1

2
, 0

}

, y

)

+ (−6y − 9z)G({0,−1}, y)

+ (6y + 9z)G({0, 0}, y) − 3zG({0, 0}, z) − 3zG({0,−y}, z) + 3(z − 1)G({1, 0}, z)
+ (3 − 3z)G({1,−y}, z) − 6(2y + z + 1)G({−2y − 1,−y}, z) + 3(y + z + 1)G({−y − 1, 0}, z)
+3(y + z + 1)G({−y − 1,−y}, z) − 3(y + z)G({−y, 0}, z) + 9(y + z)G({−y,−y}, z))

+
ǫ

6y(y + 1)
×

×
(

−60ζ(3)y + 6π
2
log(4)y − 12π

2
y

+ 6π2(2y + z + 1)G

({

− 1

2

}

, y

)

− 36(2y + z + 2)G({−1,−1}, y)
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+ 36(2y + z + 2)G({−1, 0}, y) + 72(2y + z + 1)G

({

−1

2
,−1

}

, y

)

− 72(2y + z + 1)G

({

− 1

2
, 0

}

, y

)

+ 6(2y + z + 1)G({−2y − 1}, z)
(

−4G

({

− 1

2
,−1

}

, y

)

+ 4G

({

− 1

2
, 0

}

, y

)

+ π2

)

− 36(2y + 3z)G({0,−1}, y) + 2(y + z)G({−y}, z) (18G({−1,−1}, y) − 18G({−1, 0}, y)

− 24G

({

− 1

2
,−1

}

, y

)

+ 24G

({

− 1

2
, 0

}

, y

)

+36G({0,−1}, y) − 36G({0, 0}, y) + π2
)

+ 2zG({0}, z)
(

3G({−1,−1}, y) − 3G({−1, 0}, y) + 3G({0,−1}, y) − 3G({0, 0}, y) + π
2
)

+ 36(2y + 3z)G({0, 0}, y)− 4(y + z + 1)G({−y − 1}, z) (−3G({−1,−1}, y) + 3G({−1, 0}, y)

−3G({0,−1}, y) + 3G({0, 0}, y) + 2π2
)

− 2(z − 1)G({1}, z)
(

9G({−1,−1}, y) − 9G({−1, 0}, y)− 9G({0,−1}, y) + 9G({0, 0}, y) + π2
)

− 36zG({0, 0}, z) − 36zG({0,−y}, z) + 36(z − 1)G({1, 0}, z) − 36(z − 1)G({1,−y}, z)
− 72(2y + z + 1)G({−2y − 1,−y}, z) + 36(y + z + 1)G({−y − 1, 0}, z)
+ 36(y + z + 1)G({−y − 1,−y}, z) − 36(y + z)G({−y, 0}, z) + 108(y + z)G({−y,−y}, z)
+ 2G({0}, y) (−18G({0}, z)z + 6G({0, 0}, z)z

− 9G({0,−y − 1}, z)z + 6G({0,−y}, z)z + π2z − 18(z − 1)G({1}, z)
− 36(2y + z + 1)G({−2y − 1}, z) + 18(y + z + 1)G({−y − 1}, z) + 54(y + z)G({−y}, z)
+ 6(z − 1)G({1, 0}, z) + 6(z − 1)G({1, 1}, z) − 3(z − 1)G({1,−y}, z)
+ 12(2y + z + 1)G({−2y − 1,−2y − 1}, z) − 6(2y + z + 1)G({−2y − 1,−y − 1}, z)
+ 6(2y + z + 1)G({−2y − 1,−y}, z) + 3(y + z + 1)G({−y − 1, 0}, z)
− 6(y + z + 1)G({−y − 1,−y}, z) + 3(y + z)G({−y, 0}, z) + 12(y + z)G({−y, 1}, z)
+ 24(y + z)G({−y,−2y − 1}, z) − 3(y + z)G({−y,−y − 1}, z)
−57(y + z)G({−y,−y}, z))

+ 2G({−1}, y)
(

−4π
2
y − 4π

2
z + 18zG({0}, z)

+ 18(z − 1)G({1}, z) + 36(2y + z + 1)G({−2y − 1}, z) − 18(y + z + 1)G({−y − 1}, z)
− 54(y + z)G({−y}, z) − 6zG({0, 0}, z) + 9zG({0,−y − 1}, z)
− 6zG({0,−y}, z) − 6(z − 1)G({1, 0}, z) − 6(z − 1)G({1, 1}, z)
+ 3(z − 1)G({1,−y}, z) − 12(2y + z + 1)G({−2y − 1,−2y − 1}, z)
+ 6(2y + z + 1)G({−2y − 1,−y − 1}, z) − 6(2y + z + 1)G({−2y − 1,−y}, z)
− 3(y + z + 1)G({−y − 1, 0}, z) + 6(y + z + 1)G({−y − 1,−y}, z) − 3(y + z)G({−y, 0}, z)
− 12(y + z)G({−y, 1}, z) − 24(y + z)G({−y,−2y − 1}, z)

+3(y + z)G({−y,−y − 1}, z) + 57(y + z)G({−y,−y}, z) − 2π2
)

+ 36(y + 1)G({−1,−1,−1}, y) − 36(y + 1)G({−1,−1, 0}, y)

+ 24(z − 1)G

({

−1,− 1

2
,−1

}

, y

)

− 24(z − 1)G

({

−1,− 1

2
, 0

}

, y

)

− 12(y + 2z − 1)G({−1, 0,−1}, y) + 12(y + 2z − 1)G({−1, 0, 0}, y)

− 24(2y + z + 1)G

({

− 1

2
,− 1

2
,−1

}

, y

)

+ 24(2y + z + 1)G

({

−1

2
,−1

2
, 0

}

, y

)

− 12(y − 2z + 2)G({0,−1,−1}, y) + 12(y − 2z + 2)G({0,−1, 0}, y)

− 24(z − 1)G

({

0,− 1

2
,−1

}

, y

)

+ 24(z − 1)G

({

0,− 1

2
, 0

}

, y

)
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+ 36(y + z)G({0, 0,−1}, y)− 36(y + z)G({0, 0, 0}, y) + 18zG({0, 0, 0}, z)
+ 24zG({0, 0, 1}, z) + 12zG({0, 0,−y}, z) − 18zG({0,−y − 1, 0}, z)
− 18zG({0,−y − 1,−y}, z) − 6zG({0,−y, 0}, z) + 24zG({0,−y, 1}, z)
+ 12zG({0,−y,−y}, z) + (6 − 6z)G({1, 0, 0}, z) − 24(z − 1)G({1, 0, 1}, z)
+ 12(z − 1)G({1, 0,−y}, z) − 12(z − 1)G({1, 1, 0}, z) + 12(z − 1)G({1, 1,−y}, z)
+ 24(z − 1)G({1,−y, 1}, z) + (6 − 6z)G({1,−y,−y}, z)
+ 24(2y + z + 1)G({−2y − 1,−2y − 1,−y}, z) − 12(2y + z + 1)G({−2y − 1,−y − 1, 0}, z)
− 12(2y + z + 1)G({−2y − 1,−y − 1,−y}, z) − 12(2y + z + 1)G({−2y − 1,−y, 0}, z)
+ 48(2y + z + 1)G({−2y − 1,−y, 1}, z) + 12(2y + z + 1)G({−2y − 1,−y,−y}, z)
− 24(y + z + 1)G({−y − 1, 0, 1}, z) + 6(y + z + 1)G({−y − 1, 0,−y}, z)
+ 6(y + z + 1)G({−y − 1,−y, 0}, z) − 24(y + z + 1)G({−y − 1,−y, 1}, z)
− 12(y + z + 1)G({−y − 1,−y,−y}, z) + 24(y + z)G({−y, 0, 0}, z) + 24(y + z)G({−y, 0, 1}, z)
+ 6(y + z)G({−y, 0,−y}, z) − 24(y + z)G({−y, 1, 0}, z) + 24(y + z)G({−y, 1,−y}, z)
+ 48(y + z)G({−y,−2y − 1,−y}, z) − 6(y + z)G({−y,−y − 1, 0}, z)
− 6(y + z)G({−y,−y − 1,−y}, z) + 48(y + z)G({−y,−y, 0}, z)
− 72(y + z)G({−y,−y, 1}, z) − 114(y + z)G({−y,−y,−y}, z)

−48zζ(3) + 3π2z log(4) + 3π2 log(4)
)

+ O(ǫ2) (8.13)

M̃8 =
1

18y2(y + 1)
×

×
(

−2π
2
y
3 − 3π

2
zy

2 − 6zy
2 − 3π

2
y
2
+ 6y

2 − 6zy + 6y

+ 6(y + 1)zG({0}, z) + 6
(

y2 − 1
)

(y + z)G({−y}, z)

+ G({−1}, y)
(

−6y3 − 6zy2 + 6y + 6z + 3z(6y − (z − 3)z)G({0}, z)

− 3(z − 1)3G({1}, z) + 6(2y + z + 1)
(

2y2 + 2(z + 1)y − (z − 4)z − 1
)

G({−2y − 1}, z)

− 3
(

2y3 + 3(z + 1)y2 + 12zy − (z + 1)((z − 4)z + 1)
)

G({−y − 1}, z)

−9(2y − z + 3)(y + z)
2
G({−y}, z)

)

+ 3G({0}, y)
(

G({1}, z)(z − 1)3 + 2
(

y2 − 1
)

(y + z) + z((z − 3)z − 6y)G({0}, z)

− 2(2y + z + 1)
(

2y2 + 2(z + 1)y − (z − 4)z − 1
)

G({−2y − 1}, z)

+
(

2y3 + 3(z + 1)y2 + 12zy − (z + 1)((z − 4)z + 1)
)

G({−y − 1}, z)

+3(2y − z + 3)(y + z)2G({−y}, z)
)

− 3
(

4y
3
+ 6(z + 1)y

2
+ 18zy + z(6 − (z − 3)z) − 2

)

G({−1,−1}, y)

+ 3
(

4y3 + 6(z + 1)y2 + 18zy + z(6 − (z − 3)z) − 2
)

G({−1, 0}, y)

+ 6(2y + z + 1)
(

2y2 + 2(z + 1)y − (z − 4)z − 1
)

G

({

− 1

2
,−1

}

, y

)

− 6(2y + z + 1)
(

2y2 + 2(z + 1)y − (z − 4)z − 1
)

G

({

− 1

2
, 0

}

, y

)

− 3
(

4y
3
+ 6(z + 1)y

2
+ 18zy − 3(z − 3)z

2
)

G({0,−1}, y)

+ 3
(

4y
3
+ 6(z + 1)y

2
+ 18zy − 3(z − 3)z

2
)

G({0, 0}, y)
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+ 3z((z − 3)z − 6y)G({0, 0}, z) + 3z((z − 3)z − 6y)G({0,−y}, z)

− 3(z − 1)3G({1, 0}, z) + 3(z − 1)3G({1,−y}, z)

− 6(2y + z + 1)
(

2y2 + 2(z + 1)y − (z − 4)z − 1
)

G({−2y − 1,−y}, z)

+
(

6y
3
+ 9(z + 1)y

2
+ 36zy − 3(z + 1)((z − 4)z + 1)

)

G({−y − 1, 0}, z)

+
(

6y3 + 9(z + 1)y2 + 36zy − 3(z + 1)((z − 4)z + 1)
)

G({−y − 1,−y}, z)

−3(2y − z + 3)(y + z)2G({−y, 0}, z) + 9(2y − z + 3)(y + z)2G({−y,−y}, z)
)

+
ǫ

36y2(y + 1)
×

×
(

−120ζ(3)y3 + 12π2 log(4)y3 − 28π2y3 − 24π2zy2 − 84zy2

− 180zζ(3)y2 − 180ζ(3)y2 + 18π2z log(4)y2 + 18π2 log(4)y2 − 28π2y2

+ 84y2 + 6π2z2y − 34π2zy − 84zy − 288zζ(3)y + 36π2z log(4)y + 8π2y

+ 84y − 4π2z + 6π2(2y + z + 1)
(

2y2 + 2(z + 1)y − (z − 4)z − 1
)

G

({

− 1

2

}

, y

)

− 6
(

22y
3
+ (34z + 44)y

2
+ 2(2z(z + 20) + 7)y + z((13 − 4z)z + 37) − 8

)

G({−1,−1}, y)

+ 6
(

22y
3
+ (34z + 44)y

2
+ 2(2z(z + 20) + 7)y + z((13 − 4z)z + 37) − 8

)

G({−1, 0}, y)

+ 48(2y + z + 1)
(

3y2 + 3(z + 1)y − (z − 5)z − 1
)

G

({

− 1

2
,−1

}

, y

)

− 48(2y + z + 1)
(

3y2 + 3(z + 1)y − (z − 5)z − 1
)

G

({

− 1

2
, 0

}

, y

)

+ 6(2y + z + 1)
(

2y
2
+ 2(z + 1)y − (z − 4)z − 1

)

G({−2y − 1}, z)

×
(

−4G

({

− 1

2
,−1

}

, y

)

+4G

({

− 1

2
, 0

}

, y

)

+ π
2

)

− 6
(

22y3 + (58z + 28)y2 +
(

22z2 + 86z − 2
)

y + z((55 − 12z)z − 5)
)

G({0,−1}, y)

+ 2(y + z)G({−y}, z)
(

30
(

y2 − 1
)

+ π
2
(2y − z + 3)(y + z) + 6(2y − z + 3)(y + z) (3G({−1,−1}, y) − 3G({−1, 0}, y)

− 4G

({

− 1

2
,−1

}

, y

)

+ 4G

({

− 1

2
, 0

}

, y

)

+6G({0,−1}, y) − 6G({0, 0}, y)))

+ 2zG({0}, z)
(

−12y2 + 6
(

3 + π2
)

y − π2(z − 3)z

+3(6y − (z − 3)z)(G({−1,−1}, y) − G({−1, 0}, y) + G({0,−1}, y) − G({0, 0}, y)) + 30)

+ 6
(

22y3 + (58z + 28)y2 +
(

22z2 + 86z − 2
)

y + z((55 − 12z)z − 5)
)

G({0, 0}, y)

− 4
(

2y3 + 3(z + 1)y2 + 12zy − (z + 1)((z − 4)z + 1)
)

G({−y − 1}, z) (−3G({−1,−1}, y)

+3G({−1, 0}, y) − 3G({0,−1}, y) + 3G({0, 0}, y) + 2π2
)

+ 2(z − 1)G({1}, z)
(

9G({−1,−1}, y)(z − 1)2 − 9G({−1, 0}, y)(z − 1)2 − 9G({0,−1}, y)(z − 1)2

+π
2
(z − 1)

2
+ 24y(y + 1) + 9(z − 2)zG({0, 0}, y) + 9G({0, 0}, y)

)

− 6z
(

8y2 + 2(4z + 9)y + (17 − 4z)z + 1
)

G({0, 0}, z) − 48(y + 1)zG({0, 1}, z)
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− 6z
(

16y
2
+ 2(5z + 11)y + (19 − 4z)z − 3

)

G({0,−y}, z)

+ 24(z − 1)
(

2y2 + 2(z + 1)y − (z − 4)z − 1
)

G({1, 0}, z)

+ 24(z − 1)
(

−2y2 − 2(z + 1)y + (z − 4)z + 1
)

G({1,−y}, z)

− 48(2y + z + 1)
(

3y2 + 3(z + 1)y − (z − 5)z − 1
)

G({−2y − 1,−y}, z)

+ 6
(

16y3 + (27z + 25)y2 + (z(7z + 52) + 5)y − 4(z + 1)((z − 5)z + 1)
)

G({−y − 1, 0}, z)

+ 6
(

16y3 + (27z + 25)y2 + (z(7z + 52) + 5)y − 4(z + 1)((z − 5)z + 1)
)

G({−y − 1,−y}, z)

− 6(y + z)
(

12y
2
+ (11z + 17)y + (19 − 4z)z + 1

)

G({−y, 0}, z) − 48
(

y
2 − 1

)

(y + z)G({−y, 1}, z)

+ 6(y + z)
(

34y2 + (31z + 45)y + (55 − 12z)z − 1
)

G({−y,−y}, z)

+ 2G({0}, y)
(

30y3 + 30zy2 + 6π2zy − 30y − π2z3 + 3π2z2 − 30z

+ 3z
(

−16y2 − 2(5z + 11)y + z(4z − 19) + 3
)

G({0}, z)

+ 12(z − 1)
(

−2y2 − 2(z + 1)y + (z − 4)z + 1
)

G({1}, z)

− 24(2y + z + 1)
(

3y
2
+ 3(z + 1)y − (z − 5)z − 1

)

G({−2y − 1}, z)

+ 3
(

16y3 + (27z + 25)y2 + (z(7z + 52) + 5)y − 4(z + 1)((z − 5)z + 1)
)

G({−y − 1}, z)

+ 3(y + z)
(

34y2 + (31z + 45)y + (55 − 12z)z − 1
)

G({−y}, z)

+ 6z(6y − (z − 3)z)G({0, 0}, z)
+ 9z((z − 3)z − 6y)G({0,−y − 1}, z) + 6z(6y − (z − 3)z)G({0,−y}, z)

− 6(z − 1)3G({1, 0}, z) − 6(z − 1)3G({1, 1}, z)

+ 3(z − 1)3G({1,−y}, z)

+ 12(2y + z + 1)
(

2y2 + 2(z + 1)y − (z − 4)z − 1
)

G({−2y − 1,−2y − 1}, z)

− 6(2y + z + 1)
(

2y2 + 2(z + 1)y − (z − 4)z − 1
)

G({−2y − 1,−y − 1}, z)

+ 6(2y + z + 1)
(

2y2 + 2(z + 1)y − (z − 4)z − 1
)

G({−2y − 1,−y}, z)

+ 3
(

2y
3
+ 3(z + 1)y

2
+ 12zy − (z + 1)((z − 4)z + 1)

)

G({−y − 1, 0}, z)

− 6
(

2y3 + 3(z + 1)y2 + 12zy − (z + 1)((z − 4)z + 1)
)

G({−y − 1,−y}, z)

+ 3(2y − z + 3)(y + z)2G({−y, 0}, z)

+ 12(2y − z + 3)(y + z)
2
G({−y, 1}, z) + 24(2y − z + 3)(y + z)

2
G({−y,−2y − 1}, z)

− 3(2y − z + 3)(y + z)
2
G({−y,−y − 1}, z)

−57(2y − z + 3)(y + z)
2
G({−y,−y}, z)

)

+ 2G({−1}, y)
(

−8π
2
y
3 − 30y

3 − 12π
2
zy

2 − 30zy
2

− 12π
2
y
2 − 36π

2
zy + 30y + 4π

2
z
3 − 12π

2
z
2 − 6π

2
z + 30z

+ 3z
(

16y2 + 2(5z + 11)y + (19 − 4z)z − 3
)

G({0}, z)

+ 12(z − 1)
(

2y2 + 2(z + 1)y − (z − 4)z − 1
)

G({1}, z)

+ 24(2y + z + 1)
(

3y2 + 3(z + 1)y − (z − 5)z − 1
)

G({−2y − 1}, z)

− 3
(

16y3 + (27z + 25)y2 + (z(7z + 52) + 5)y − 4(z + 1)((z − 5)z + 1)
)

G({−y − 1}, z)

− 3(y + z)
(

34y2 + (31z + 45)y + (55 − 12z)z − 1
)

G({−y}, z)



271

+ 6z((z − 3)z − 6y)G({0, 0}, z)
+ 9z(6y − (z − 3)z)G({0,−y − 1}, z) + 6z((z − 3)z − 6y)G({0,−y}, z)

+ 6(z − 1)3G({1, 0}, z) + 6(z − 1)3G({1, 1}, z)

− 3(z − 1)3G({1,−y}, z) − 12(2y + z + 1)
(

2y2

+2(z + 1)y − (z − 4)z − 1)G({−2y − 1,−2y − 1}, z)

+ 6(2y + z + 1)
(

2y2 + 2(z + 1)y − (z − 4)z − 1
)

G({−2y − 1,−y − 1}, z)

− 6(2y + z + 1)
(

2y2 + 2(z + 1)y − (z − 4)z − 1
)

G({−2y − 1,−y}, z)

− 3
(

2y3 + 3(z + 1)y2 + 12zy − (z + 1)((z − 4)z + 1)
)

G({−y − 1, 0}, z)

+ 6
(

2y3 + 3(z + 1)y2 + 12zy − (z + 1)((z − 4)z + 1)
)

G({−y − 1,−y}, z)

− 3(2y − z + 3)(y + z)2G({−y, 0}, z)

− 12(2y − z + 3)(y + z)2G({−y, 1}, z) − 24(2y − z + 3)(y + z)2G({−y,−2y − 1}, z)

+ 3(2y − z + 3)(y + z)2G({−y,−y − 1}, z)

+57(2y − z + 3)(y + z)2G({−y,−y}, z) + 2π2
)

+ 36(y + 1)2(2y + 3z − 1)G({−1,−1,−1}, y)

− 36(y + 1)2(2y + 3z − 1)G({−1,−1, 0}, y) − 24(z − 1)3G

({

−1,− 1

2
,−1

}

, y

)

+ 24(z − 1)3G

({

−1,− 1

2
, 0

}

, y

)

− 12
(

2y3 + 3(z + 1)y2 + 6zy + z(−2(z − 3)z − 3) + 1
)

G({−1, 0,−1}, y)

+ 12
(

2y3 + 3(z + 1)y2 + 6zy + z(−2(z − 3)z − 3) + 1
)

G({−1, 0, 0}, y)

− 24(2y + z + 1)
(

2y2 + 2(z + 1)y − (z − 4)z − 1
)

G

({

− 1

2
,− 1

2
,−1

}

, y

)

+ 24(2y + z + 1)
(

2y2 + 2(z + 1)y − (z − 4)z − 1
)

G

({

− 1

2
,− 1

2
, 0

}

, y

)

− 12
(

2y3 + 3(z + 1)y2 + 2(z − 1)3
)

G({0,−1,−1}, y)

+ 12
(

2y3 + 3(z + 1)y2 + 2(z − 1)3
)

G({0,−1, 0}, y)

+ 24(z − 1)3G

({

0,− 1

2
,−1

}

, y

)

− 24(z − 1)3G

({

0,− 1

2
, 0

}

, y

)

+ 36(2y − z + 3)(y + z)2G({0, 0,−1}, y)− 36(2y − z + 3)(y + z)2G({0, 0, 0}, y)
+ 18z(6y − (z − 3)z)G({0, 0, 0}, z)
+ 24z(6y − (z − 3)z)G({0, 0, 1}, z) − 12z((z − 3)z − 6y)G({0, 0,−y}, z)
+ 18z((z − 3)z − 6y)G({0,−y − 1, 0}, z)
+ 18z((z − 3)z − 6y)G({0,−y − 1,−y}, z) + 6z((z − 3)z − 6y)G({0,−y, 0}, z)
+ 24z(6y − (z − 3)z)G({0,−y, 1}, z)

− 12z((z − 3)z − 6y)G({0,−y,−y}, z) + 6(z − 1)3G({1, 0, 0}, z)

+ 24(z − 1)
3
G({1, 0, 1}, z)

− 12(z − 1)
3
G({1, 0,−y}, z) + 12(z − 1)

3
G({1, 1, 0}, z) − 12(z − 1)

3
G({1, 1,−y}, z)

− 24(z − 1)3G({1,−y, 1}, z) + 6(z − 1)3G({1,−y,−y}, z)

+ 24(2y + z + 1)
(

2y2 + 2(z + 1)y − (z − 4)z − 1
)

G({−2y − 1,−2y − 1,−y}, z)
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− 12(2y + z + 1)
(

2y
2
+ 2(z + 1)y − (z − 4)z − 1

)

G({−2y − 1,−y − 1, 0}, z)

− 12(2y + z + 1)
(

2y2 + 2(z + 1)y − (z − 4)z − 1
)

G({−2y − 1,−y − 1,−y}, z)

− 12(2y + z + 1)
(

2y2 + 2(z + 1)y − (z − 4)z − 1
)

G({−2y − 1,−y, 0}, z)

+ 48(2y + z + 1)
(

2y2 + 2(z + 1)y − (z − 4)z − 1
)

G({−2y − 1,−y, 1}, z)

+ 12(2y + z + 1)
(

2y2 + 2(z + 1)y − (z − 4)z − 1
)

G({−2y − 1,−y,−y}, z)

− 24
(

2y3 + 3(z + 1)y2 + 12zy − (z + 1)((z − 4)z + 1)
)

G({−y − 1, 0, 1}, z)

+ 6
(

2y
3
+ 3(z + 1)y

2
+ 12zy − (z + 1)((z − 4)z + 1)

)

G({−y − 1, 0,−y}, z)

+ 6
(

2y3 + 3(z + 1)y2 + 12zy − (z + 1)((z − 4)z + 1)
)

G({−y − 1,−y, 0}, z)

− 24
(

2y3 + 3(z + 1)y2 + 12zy − (z + 1)((z − 4)z + 1)
)

G({−y − 1,−y, 1}, z)

− 12
(

2y3 + 3(z + 1)y2 + 12zy − (z + 1)((z − 4)z + 1)
)

G({−y − 1,−y,−y}, z)

+ 24(2y − z + 3)(y + z)2G({−y, 0, 0}, z) + 24(2y − z + 3)(y + z)2G({−y, 0, 1}, z)

+ 6(2y − z + 3)(y + z)2G({−y, 0,−y}, z)

− 24(2y − z + 3)(y + z)2G({−y, 1, 0}, z) + 24(2y − z + 3)(y + z)2G({−y, 1,−y}, z)

+ 48(2y − z + 3)(y + z)2G({−y,−2y − 1,−y}, z)

− 6(2y − z + 3)(y + z)2G({−y,−y − 1, 0}, z) − 6(2y − z + 3)(y + z)2G({−y,−y − 1,−y}, z)

+ 48(2y − z + 3)(y + z)2G({−y,−y, 0}, z)

− 72(2y − z + 3)(y + z)2G({−y,−y, 1}, z) − 114(2y − z + 3)(y + z)2G({−y,−y,−y}, z)

+ 48z
3
ζ(3) − 144z

2
ζ(3) − 3π

2
z
3
log(4)

+9π
2
z
2
log(4) + 9π

2
z log(4) − 3π

2
log(4)

)

+ O(ǫ2) (8.14)

M̃9 =
1

ǫ

3G({−y, 0}, z) − 3G({0,−1}, y) + 3G({0, 0}, y) − 3G({1, 0}, z) + π2

3(y + 1)

+
1

3(y + 1)
×

×
((

−3G({−1,−1}, y) + 3G({−1, 0}, y) + 9G({0,−1}, y) − 9G({0, 0}, y) − 4π2
)

G({−y}, z) + G({−1}, y) (−3G({−y, 0}, z) − 3G({−y,−y − 1}, z)

+6G({1, 0}, z) + 2π2
)

+ 3G({0}, y)
(

G({−y, 0}, z) + G({−y,−y − 1}, z) − 2G({1, 0}, z) − π2
)

− 6G({1, 0,−y}, z) − 6G({1,−y, 0}, z) − 6G({−y, 0, 0}, z)
− 12G({−y, 0, 1}, z) + 3G({−y, 0,−y}, z) + 6G({−y, 1, 0}, z)
+ 3G({−y,−y − 1, 0}, z) + 3G({−y,−y − 1,−y}, z) − 6G({−y,−y, 0}, z)
− 6G({−1, 0,−1}, y) + 6G({−1, 0, 0}, y) + 3G({0,−1,−1}, y)
− 3G({0,−1, 0}, y) + 9G({0, 0,−1}, y)− 9G({0, 0, 0}, y)

+ π2G({1}, z) + 3G({1, 0, 0}, z) + 12G({1, 0, 1}, z)
+6G({1, 1, 0}, z) + 6ζ(3))

+ O(ǫ) (8.15)



273

M̃10 = − 1

2ep3(y + 1)2

1

ǫ2
−G({−y}, z) + G({−1}, y) − G({0}, y) − G({0}, z) + 2G({1}, z)

(y + 1)2

+
1

ǫ

1

12(y + 1)2
(−24G({0}, y)G({0}, z) + 24G({−1}, y)(G({0}, z)

− G({−y}, z)) + 24G({0}, y)G({−y}, z) − 24G({0,−y}, z) − 24G({−y, 0}, z)
+ 48G({−y, 1}, z) + 24G({−y,−y}, z) − 24G({−1,−1}, y)
+ 24G({−1, 0}, y) − 24G({0,−1}, y) + 24G({0, 0}, y)

+24G({0, 0}, z) + 48G({0, 1}, z) − 96G({1, 1}, z) + 23π2
)

+
1

6(y + 1)2
((−24G({−1,−1}, y) + 24G({−1, 0}, y)

+12G({0,−1}, y) − 12G({0, 0}, y) − π2
)

G({0}, z)

+ (24G({−1,−1}, y) − 24G({−1, 0}, y) − 12G({0,−1}, y)

+12G({0, 0}, y) + 13π2
)

G({−y}, z)

+ G({0}, y) (24G({0,−y}, z) − 12G({−y, 0}, z) − 24G({−y,−y}, z)

+24G({0, 0}, z) − 12G({1, 0}, z) + 13π2
)

+ G({−1}, y) (−24G({0,−y}, z) + 12G({−y, 0}, z) + 24G({−y,−y}, z)

−24G({0, 0}, z) + 12G({1, 0}, z) − 23π2
)

+ 24G({0, 0,−y}, z) − 12G({0,−y, 0}, z) + 48G({0,−y, 1}, z)
+ 24G({0,−y,−y}, z) − 12G({1, 0,−y}, z) − 12G({1,−y, 0}, z)
+ 24G({−y, 0, 0}, z) + 48G({−y, 0, 1}, z) − 12G({−y, 0,−y}, z)
− 96G({−y, 1, 1}, z) + 24G({−y,−y, 0}, z) − 48G({−y,−y, 1}, z)
− 24G({−y,−y,−y}, z) + 24G({−1,−1,−1}, y) − 24G({−1,−1, 0}, y)
+ 24G({−1, 0,−1}, y) − 24G({−1, 0, 0}, y) + 24G({0,−1,−1}, y)
− 24G({0,−1, 0}, y) − 12G({0, 0,−1}, y) + 12G({0, 0, 0}, y)

− 12π2G({1}, z) − 24G({0, 0, 0}, z) − 48G({0, 0, 1}, z)
+ 12G({0, 1, 0}, z) − 96G({0, 1, 1}, z) − 12G({1, 1, 0}, z)
+192G({1, 1, 1}, z) + 146ζ(3))

+ O(ǫ) (8.16)

Master Integrals for [b+W∗ → t+ g]
1loop

.

M̃1 = − 1

ǫ

G({0}, z)
8π(y + 1)

+
1

16π(y + 1)
× (2G({−1}, y)(G({y + 1}, z) + G({0}, z)) − 2G({y + 1, 0}, z)

+ 2G({−1,−1}, y) − 2G({0,−1}, y) + 4G({0, 0}, z)

+4G({0, 1}, z) − 2 log(4π)G({0}, z) + π
2
)

+
ǫ

48π(y + 1)
×

×
((

−12G({−1,−1}, y) + 6G({0,−1}, y) + π
2
)

G({y + 1}, z)
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+ 6G({0, y + 1, 0}, z) + 12G({y + 1, 0, 1}, z) + 6G({y + 1, 1, 0}, z)

+ G({0}, z)
(

−3
(

6G({−1,−1}, y) − 4G({0,−1}, y) + π
2
+ log

2
(4)
)

− log(π) log
(

4096π3
))

+ G({−1}, y) (6 log(4π)(G({y + 1}, z) + G({0}, z))
− 3 (2G({0, y + 1}, z) − 2G({y + 1, 0}, z) + 4G({y + 1, 1}, z)

+4G({0, 0}, z) + 4G({0, 1}, z) + π2
))

− 6 log(4π)G({y + 1, 0}, z) − 12G({−1,−1,−1}, y) + 6G({−1, 0,−1}, y)
+ 6G({0,−1,−1}, y) + 6 log(4π)G({−1,−1}, y) − 6 log(4π)G({0,−1}, y)
− 24G({0, 0, 0}, z) − 24G({0, 0, 1}, z) − 6G({0, 1, 0}, z)
− 24G({0, 1, 1}, z) + 12 log(4π)G({0, 0}, z) + 12 log(4π)G({0, 1}, z)

+18ζ(3) + 3π
2
log(4π)

)

+ O(ǫ
2
) (8.17)

M̃2 = +
1

48π(y + 1)
(6G({−1}, y)(G({0}, z) − G({y + 1}, z)) + 6G({y + 1, 0}, z)

−6G({−1,−1}, y) + 6G({0,−1}, y) − 6G({0, 0}, z) − π2
)

ǫ

48π(y + 1)

((

6G({−1,−1}, y) + 4
(

π2 − 3G({0,−1}, y)
))

G({0}, z)

+
(

12G({−1,−1}, y)− 6G({0,−1}, y) − π2
)

G({y + 1}, z) − 18G({0, y + 1, 0}, z)

− 12G({y + 1, 0, 1}, z) − 6G({y + 1, 1, 0}, z)
+ G({−1}, y) (6 log(4π)(G({0}, z) − G({y + 1}, z))
− 3 (−6G({0, y + 1}, z) + 2G({y + 1, 0}, z) − 4G({y + 1, 1}, z)

+4G({0, 0}, z) + 4G({0, 1}, z) + π2
))

+ 6 log(4π)G({y + 1, 0}, z) + 6G({−1, 0,−1}, y) − 6G({0,−1,−1}, y)
− 6 log(4π)G({−1,−1}, y) + 6 log(4π)G({0,−1}, y) + 18G({0, 0, 0}, z)

+12G({0, 0, 1}, z) + 6G({0, 1, 0}, z) − 6 log(4π)G({0, 0}, z) + 18ζ(3) − π2 log(4π)
)

+ O(ǫ2) (8.18)

M̃3 =
1

ǫ

1 − z

8π

+
1

48π(y + 1)
(6(y + 1)zG({0}, z) + 12(y + 1)(z − 1)G({1}, z)

+ 6G({−1}, y)(−zG({y + 1}, z) + zG({0}, z) + (y + 1)(z − 1))

− 6zG({−1,−1}, y) + 6zG({0,−1}, y) + 6zG({y + 1, 0}, z) − 6zG({0, 0}, z)

−30yz − 6yz log(4π) + 30y + 6y log(4π) − π2z − 30z − 6z log(4π) + 30 + 6 log(4π)
)

+
ǫ

48π(y + 1)
×

×
(

−z
(

−12G({−1,−1}, y) + 6G({0,−1}, y) + π2
)

G({y + 1}, z)

− 12(y + 1)zG({0, 1}, z) − 6(y + 1)(z − 1)G({1, 0}, z) − 24(y + 1)(z − 1)G({1, 1}, z)
+ 6zG({−1, 0,−1}, y) − 6zG({0,−1,−1}, y)− 18zG({0, y + 1, 0}, z)
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− 12zG({y + 1, 0, 1}, z) − 6zG({y + 1, 1, 0}, z)
+ 6z(y + 2 + log(π) + log(4))G({0,−1}, y)− 6z(2y + 3 + log(π) + log(4))G({0, 0}, z)
+ 6(−2yz + y − z(3 + log(4) + log(π)) + 1)G({−1,−1}, y)

+ 2zG({0}, z)
(

3G({−1,−1}, y) − 6G({0,−1}, y) + 3(y + 1)(5 + log(4) + log(π)) + 2π2
)

+ 6(y + z + z log(4π) + 1)G({y + 1, 0}, z) + 3G({−1}, y) (−4(y + 1)(z − 1)G({1}, z)
− 2((y + z + 1)G({y + 1}, z) + z(−3G({0, y + 1}, z) + G({y + 1, 0}, z)
− 2G({y + 1, 1}, z) + 2G({0, 0}, z) + 2G({0, 1}, z)))
+ 2z(log(4π) − y)G({0}, z) + 2 log(4π)(−zG({y + 1}, z) + y(z − 1) + z)

+10y(z − 1) −
(

π
2 − 10

)

z − 2(5 + log(4) + log(π))
)

+ 12(y + 1)(z − 1)(5 + log(4) + log(π))G({1}, z) + 18zG({0, 0, 0}, z) + 12zG({0, 0, 1}, z)

+ 6zG({0, 1, 0}, z) − 114yz − 3yz log2(4) − yz log(π) log
(

4096π3
)

− 30yz log(4π) − 3π2y + 114y + 3y log2(4) + y log(π) log
(

4096π3
)

+ 30y log(4π) + 18zζ(3) − π2z − 114z − 3z log2(4)

− z log(π) log
(

4096π3
)

− π2z log(4π)

− 30z log(4π) − 3π2 + 114 + 3 log2(4)

+ log(π) log
(

4096π3
)

+ 30 log(4π)
)

+ O(ǫ
2
) (8.19)

M̃4 = − 1

ǫ

(z − 1)z

8π

+
1

8π

(

(z − 1)zG({0}, z) + 2(z − 1)zG({1}, z) − 3z
2

+z2(− log(4π)) + 3z + z log(4π)
)

+
ǫ

48π
(−6(z − 1)zG({0, 0}, z) − 12(z − 1)zG({0, 1}, z)

− 12(z − 1)zG({1, 0}, z) − 24(z − 1)zG({1, 1}, z) + 6(z − 1)z(3 + log(4) + log(π))G({0}, z)

+ 12(z − 1)z(3 + log(4) + log(π))G({1}, z) + π2z2 − 42z2 − 3z2 log2(4)

+ z2(− log(π)) log
(

4096π3
)

− 18z2 log(4π) − π2z + 42z

+3z log2(4) + z log(π) log
(

4096π3
)

+ 18z log(4π)
)

+
ǫ2

48π
(6(z − 1)zG({0, 0, 0}, z) + 12(z − 1)zG({0, 0, 1}, z)

+ 12(z − 1)zG({0, 1, 0}, z) + 24(z − 1)zG({0, 1, 1}, z) + 12(z − 1)zG({1, 0, 0}, z)
+ 24(z − 1)zG({1, 0, 1}, z) + 24(z − 1)zG({1, 1, 0}, z) + 48(z − 1)zG({1, 1, 1}, z)

− (z − 1)z
(

π2 − 3
(

14 + log2(4) + 6 log(4π)
)

− log(π) log
(

4096π3
))

G({0}, z)

− 2(z − 1)z
(

π2 − 3
(

14 + log2(4) + 6 log(4π)
)

− log(π) log
(

4096π3
))

G({1}, z)

− 6(z − 1)z(3 + log(4) + log(π))G({0, 0}, z)
− 12(z − 1)z(3 + log(4) + log(π))G({0, 1}, z)
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− 12(z − 1)z(3 + log(4) + log(π))G({1, 0}, z)
− 24(z − 1)z(3 + log(4) + log(π))G({1, 1}, z)

+ 16z2ζ(3) + 3π2z2 − 90z2 − z2 log2(π) log(64π)

− 12z2 log2(2) log(π) − z2 log2(2) log(256) − 9z2 log2(4)

− 3z2 log(π) log
(

4096π3
)

+ π2z2 log(4π)

− 42z2 log(4π) − 16zζ(3) − 3π2z + 90z + z log2(π) log(64π)

+ 12z log2(2) log(π) + z log2(2) log(256) + 9z log2(4)

+3z log(π) log
(

4096π3
)

− π2z log(4π) + 42z log(4π)
)

+ O(ǫ3) (8.20)

M̃5 =
1

ǫ

(

3G({−y, 0}, z) − 3G({0,−1}, y) + 3G({0, 0}, y) − 3G({1, 0}, z) + π2

24π(y + 1)

)

+
1

48π(y + 1)

((

6G({−1,−1}, y) + 6G({0,−1}, y) − 12G({0, 0}, y) − π2
)

G({1}, z)

− 6
(

−2G({0,−1}, y) + 2G({0, 0}, y) + π
2
)

G({−y}, z)

+ G({−1}, y)
(

6G({1, y + 1}, z) + 4
(

π2 − 3G({−y, 0}, z)
)

+ 6G({1, 0}, z)
)

− 12G({1,−y, 0}, z) − 6G({1, y + 1, 0}, z) − 6G({−y, 0, 0}, z) − 12G({−y, 0, 1}, z)

+ 12G({−y, 1, 0}, z) − 12G({−y,−y, 0}, z) + 6 log(4π)G({−y, 0}, z) − 5π2G({0}, y)
− 12G({−1, 0,−1}, y) + 12G({−1, 0, 0}, y) + 6G({0,−1,−1}, y) + 12G({0, 0,−1}, y)
− 18G({0, 0, 0}, y) − 6 log(4π)G({0,−1}, y) + 6 log(4π)G({0, 0}, y)
+ 12G({1, 0, 0}, z) + 12G({1, 0, 1}, z) + 12G({1, 1, 0}, z)

−6 log(4π)G({1, 0}, z) − 6ζ(3) + 2π2 log(4π)
)

+ O(ǫ) (8.21)

M̃6 =
1

ǫ

1 − z

8π

+
1

8πy
(−4zy + 2(z − 1)G({1}, z)y − z log(4π)y + log(4π)y

+4y + (z − 1)(y + z)G({0}, y) − (z − 1)zG({0}, z) + (z − 1)(y + z)G({−y}, z))

+
ǫ

48πy

(

π2z2 + 2π2yz − 72yz + 6(z − 1)G({0, 0}, z)z

+ 12(z − 1)G({0, 1}, z)z + 12(z − 1)G({1, 0}, z)z − y log(π) log
(

4096π3
)

z

− 24y log(4π)z − 6(z − 1)G({0}, z)(4 + log(4) + log(π))z − 3y log2(4)z

− π2z − 2π2y + 72y − 6(z − 1)(y + z)G({0, 0}, y) − 24y(z − 1)G({1, 1}, z)
− 12(z − 1)(y + z)G({1,−y}, z) + 6(z − 1)(y + z)G({−y, 0}, z) − 12(z − 1)(y + z)G({−y, 1}, z)
− 12(z − 1)(y + z)G({−y,−y}, z) − 6(z − 1)(y + z)G({0}, y)(2(G({1}, z) + G({−y}, z) − 2)

− log(4π)) + y log(π) log
(

4096π3
)

+ 24y log(4π)

+ 12y(z − 1)G({1}, z)(4 + log(4) + log(π))

+6(z − 1)(y + z)G({−y}, z)(4 + log(4) + log(π)) + 3y log
2
(4)
)
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+
ǫ2

48πy

(

12ζ(3)z2 + π2 log(4π)z2 + 4π2z2

+ 8π2yz − 192yz − 6(z − 1)G({0, 0, 0}, z)z − 12(z − 1)G({0, 0, 1}, z)z
− 12(z − 1)G({0, 1, 0}, z)z − 24(z − 1)G({0, 1, 1}, z)z − 12(z − 1)G({1, 0, 0}, z)z
− 24(z − 1)G({1, 0, 1}, z)z − 24(z − 1)G({1, 1, 0}, z)z + 28yζ(3)z − 12ζ(3)z

− 4y log(π) log
(

4096π3
)

z − y log2(π) log(64π)z

+ 2π2y log(4π)z − 72y log(4π)z − π2 log(4π)z

+ (z − 1)G({0}, z)
(

−72 + π
2 − 12 log(2)(4 + log(2)) − 3 log(π)(8 + log(16) + log(π))

)

z

+ 6(z − 1)G({0, 0}, z)(4 + log(4) + log(π))z + 12(z − 1)G({0, 1}, z)(4 + log(4) + log(π))z

+ 12(z − 1)G({1, 0}, z)(4 + log(4) + log(π))z − 12y log2(2) log(π)z

− y log2(2) log(256)z − 12y log2(4)z − 4π2z − 8π2y + 192y

+ 6(z − 1)(y + z)G({0, 0, 0}, y) + 48y(z − 1)G({1, 1, 1}, z) + 24(z − 1)(y + z)G({1, 1,−y}, z)
− 12(z − 1)(y + z)G({1,−y, 0}, z) + 24(z − 1)(y + z)G({1,−y, 1}, z)
+ 24(z − 1)(y + z)G({1,−y,−y}, z) − 6(z − 1)(y + z)G({−y, 0, 0}, z)
− 12(z − 1)(y + z)G({−y, 0, 1}, z) − 12(z − 1)(y + z)G({−y, 1, 0}, z)
+ 24(z − 1)(y + z)G({−y, 1, 1}, z) + 24(z − 1)(y + z)G({−y, 1,−y}, z)
− 12(z − 1)(y + z)G({−y,−y, 0}, z) + 24(z − 1)(y + z)G({−y,−y, 1}, z)
+ 24(z − 1)(y + z)G({−y,−y,−y}, z)
− 3(z − 1)(y + z)G({−y}, z) (−4G({0, 0}, y) − log(π)(8 + log(16) + log(π))

−4 log(2)(4 + log(2)) + π2 − 24
)

− 2(z − 1)G({1}, z)
((

−72 + 2π2 − 12 log(2)(4 + log(2)) − 3 log(π)(8 + log(16) + log(π))
)

y

+π
2
z − 6(y + z)G({0, 0}, y)

)

− (z − 1)(y + z)G({0}, y) (12(4

+ log(4) + log(π))G({1}, z) − 24G({1, 1}, z) − 24G({1,−y}, z) − 24G({−y, 1}, z)

− 24G({−y,−y}, z) − log(π) log
(

4096π3
)

− 3
(

24 + log2(4) + 8 log(4π)
)

+12G({−y}, z)(4 + log(4) + log(π)) + 2π2
)

− 28yζ(3) + 4y log(π) log
(

4096π
3
)

+ y log
2
(π) log(64π) − 2π

2
y log(4π) + 72y log(4π)

− 6(z − 1)(y + z)G({0, 0}, y)(4 + log(4) + log(π))

− 24y(z − 1)G({1, 1}, z)(4 + log(4) + log(π))

− 12(z − 1)(y + z)G({1,−y}, z)(4 + log(4) + log(π))

+ 6(z − 1)(y + z)G({−y, 0}, z)(4 + log(4) + log(π))

− 12(z − 1)(y + z)G({−y, 1}, z)(4 + log(4) + log(π))

− 12(z − 1)(y + z)G({−y,−y}, z)(4 + log(4) + log(π)) + 12y log2(2) log(π)

+y log2(2) log(256) + 12y log2(4)
)

+ O(ǫ3) (8.22)

M̃7 =
1

ǫ

1 − z

8π

+
1

8π
((z − 1)G({−1}, y) + 3(z − 1)G({1}, z) − 5z + z(− log(4π)) + 5 + log(4π))

+
ǫ

16π
((2 − 2z)G({−1,−1}, y) − 2(z − 1)G({−1}, y)(3G({1}, z) − 5 − log(4π))
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− 18(z − 1)G({1, 1}, z) + 6(z − 1)(5 + log(4) + log(π))G({1}, z) + π
2
z − 38z − 4z log

2
(2)

+ z(− log(π)) log(16π) − 10z log(4π) − π2 + 38 + 4 log2(2)

+ log(π) log(16π) + 10 log(4π))

+
ǫ2

48π

(

6(z − 1)G({−1,−1,−1}, y) − 9(z − 1)G({1}, z)
(

−2G({−1,−1}, y) + π
2

−38 − 4 log2(2) − log(π) log(16π) − 10 log(4π)
)

− 3(z − 1)G({−1}, y)
(

−18G({1, 1}, z) + 6(5 + log(4) + log(π))G({1}, z) + π2 − 38 − 4 log2(2)

− log(π) log(16π) − 10 log(4π))− 6(z − 1)(5 + log(4) + log(π))G({−1,−1}, y)

+ 162(z − 1)G({1, 1, 1}, z) − 54(z − 1)(5 + log(4) + log(π))G({1, 1}, z) + 52zζ(3) + 15π
2
z − 390z

− 4z log
2
(2) log

(

4π
3
)

− z log
2
(π) log(64π)

− 60z log
2
(2) − 15z log(π) log(16π) + 3π

2
z log(4π) − 114z log(4π)

− 52ζ(3) − 15π
2
+ 390 + 4 log

2
(2) log

(

4π
3
)

+ log
2
(π) log(64π)

+60 log2(2) + 15 log(π) log(16π) − 3π2 log(4π) + 114 log(4π)
)

(8.23)

M̃8 =
1

ǫ

zy2 + y2 + 2z2y + 3zy − y + 4z2 − 2z

24π(y + 1)2(z − 1)z(y + z)

+
1

24π(y + 1)2(z − 1)z(y + z)

(

z log(4π)y2 + log(4π)y2 − 6y2 − 3z2y − 9zy

+ 2z2 log(4π)y + 3z log(4π)y − log(4π)y − 9z2 + 3z

+
(

−2(z + 1)y2 − (z(z + 9) − 2)y − 5z2 + z
)

G({−1}, y)

+ 2
(

(z + 1)y2 − ((z − 6)z + 1)y + z2 + z
)

G({0}, y)

+
(

−(z + 1)y2 + ((z − 6)z + 1)y − z(z + 1)
)

G({0}, z)

+
(

−4(z + 1)y
2
+ (4 − 5z(z + 3))y + (5 − 13z)z

)

G({1}, z)

+2
(

(z + 1)y2 − ((z − 6)z + 1)y + z2 + z
)

G({−y}, z) + 4z2 log(4π) − 2z log(4π)
)

+
ǫ

288π(y + 1)2(z − 1)z(y + z)
×

×
(

2π2zy2 − 72zy2 − z log(π) log
(

4096π3
)

y2

− 4 log(π) log
(

4096π3
)

y2 + 9z log(π) log(16π)y2 + 18 log(π) log(16π)y2

− 72 log(4π)y2 − 6z log2(4)y2 − 12 log2(4)y2 + 48z log2(2)y2 + 72 log2(2)y2 + 2π2y2

+ 288y2 + 4π2z2y + 36z2y − 18π2zy + 324zy + z2 log(π) log
(

4096π3
)

y

− 12z log(π) log
(

4096π3
)

y + log(π) log
(

4096π3
)

y

+ 9z2 log(π) log(16π)y + 54z log(π) log(16π)y − 9 log(π) log(16π)y

− 36z2 log(4π)y − 108z log(4π)y − 36z log2(4)y + 48z2 log2(2)y + 216z log2(2)y

− 24 log2(2)y + 22π2y + 72y − 16π2z2 + 252z2 + 20π2z − 36z − 12
(

2(z − 2)y2 + ((z − 9)z + 4)y

+(5 − 7z)z)G({−1,−1}, y) + 48
(

(y − 1)z
2
+ 2

(

y
2
+ 1
)

z − (y − 1)y
)

G({−1, 0}, y)

+ 24
(

(z − 2)y
2 −

(

z
2
+ 1
)

y − 2z
2
+ z
)

G({0,−1}, y)
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+ 24
(

(2 − 4z)y
2
+ ((z − 6)z + 1)y + 2(z − 2)z

)

G({0, 0}, y)

+ 12
(

(z + 1)y2 − ((z − 6)z + 1)y + z2 + z
)

G({0, 0}, z)

− 24(y(z − 2) − z)(y + 2z − 1)G({0, 1}, z)

+ 24
(

(y − 1)z2 + 2
(

y2 + 1
)

z − (y − 1)y
)

G({0,−y}, z)

+ 24(2y + z + 1)(y + (y + 2)z)G({1, 0}, z)

+ 12
(

16(z + 1)y2 + (z(17z + 57) − 10)y + z(43z − 11)
)

G({1, 1}, z)

− 48(2y + z + 1)(y + (y + 2)z)G({1,−y}, z)

+ 24(y − z + 2)(z + y(2z − 1))G({−y, 0}, z) − 24
(

(z + 4)y2

−((z − 12)z + 1)y + 4z
2
+ z
)

G({−y, 1}, z)

− 48(y − z + 2)(z + y(2z − 1))G({−y,−y}, z)

+ 24G({0}, y)
(

−3(z + 1)y2 + 3((z − 6)z + 1)y − 3z(z + 1)

+
(

(y − 1)z2 + 2
(

y2 + 1
)

z − (y − 1)y
)

G({0}, z) − 2(2y + z + 1)(y + (y + 2)z)G({1}, z)

−2(y − z + 2)(z + y(2z − 1))G({−y}, z) +
(

−(y − 1)z
2
+ y(y + 6)z + z + (y − 1)y

)

log(4π)
)

+ G({0}, z)
(

72
(

y
2 − (z − 3)zy + z

)

− 12
(

(z + 1)y
2 − ((z − 6)z + 1)y + z

2
+ z
)

log(4π)
)

+ G({1}, z)
(

36
(

2(z + 3)y2 + (3z(z + 5) − 2)y + z(11z − 3)
)

−12
(

4(z + 1)y2 + (5z(z + 3) − 4)y + z(13z − 5)
)

log(4π)
)

+ 12G({−1}, y)
(

3(y + 5)z2 + 3(y(2y + 9) − 1)z + 6(y − 1)y − 2
(

(y − 1)z2

+2
(

y2 + 1
)

z − (y − 1)y
)

G({0}, z) +
(

8(z + 1)y2 + (z(7z + 27) − 2)y + z(17z − 1)
)

G({1}, z)

+ 2
(

(z − 2)y
2 −

(

z
2
+ 1
)

y − 2z
2
+ z
)

G({−y}, z)

−
(

2(z + 1)y2 + (z(z + 9) − 2)y + z(5z − 1)
)

log(4π)
)

− 4z2 log(π) log
(

4096π3
)

− z log(π) log
(

4096π3
)

+ 36z2 log(π) log(16π) − 9z log(π) log(16π) − 108z2 log(4π)

+ 36z log(4π) + 24
(

(z + 1)y2 − ((z − 6)z + 1)y + z2 + z
)

G({−y}, z)(−3 + log(4) + log(π))

−12z2 log2(4) − 6z log2(4) + 144z2 log2(2) − 24z log2(2)
)

+
ǫ2

288π(y + 1)2(z − 1)z(y + z)
×

(

−12π
2
zy

2
+ 360zy

2 − 152zζ(3)y
2 − 152ζ(3)y

2

+ 9z log(π) log
(

4096π3
)

y2 + 6 log(π) log
(

4096π3
)

y2

+ 12z log2(2) log
(

4π3
)

y2 + 24 log2(2) log
(

4π3
)

y2

+ 2z log2(π) log(64π)y2 + 2 log2(π) log(64π)y2 − 27z log(π) log(16π)y2

− 54 log(π) log(16π)y2 + 2π2z log(4π)y2 − 72z log(4π)y2 + 2π2 log(4π)y2

+ 288 log(4π)y2 − 12z log2(2) log(π)y2 − 48 log2(2) log(π)y2 − 6 log2(2) log(256)y2

+ 36z log2(4)y2 + 18 log2(4)y2 − 8z log3(2)y2 + 16 log3(2)y2 − 144z log2(2)y2 − 216 log2(2)y2

− 1008y
2 − 18π

2
z
2
y + 36z

2
y + 54π

2
zy − 972zy − 376z

2
ζ(3)y − 456zζ(3)y + 224ζ(3)y
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+ 3z
2
log(π) log

(

4096π
3
)

y + 36z log(π) log
(

4096π
3
)

y

− 9 log(π) log
(

4096π3
)

y + 12z2 log2(2) log
(

4π3
)

y

+ 72z log2(2) log
(

4π3
)

y − 12 log2(2) log
(

4π3
)

y

+ 4z2 log2(π) log(64π)y + 6z log2(π) log(64π)y − 2 log2(π) log(64π)y

− 27z2 log(π) log(16π)y − 162z log(π) log(16π)y + 27 log(π) log(16π)y

+ 4π2z2 log(4π)y + 36z2 log(4π)y − 18π2z log(4π)y + 324z log(4π)y

+ 22π2 log(4π)y + 72 log(4π)y + 12z2 log2(2) log(π)y

− 144z log
2
(2) log(π)y + 12 log

2
(2) log(π)y − 12z log

2
(2) log(256)y

+ 18z
2
log

2
(4)y + 108z log

2
(4)y − 18 log

2
(4)y + 8z

2
log

3
(2)y + 8 log

3
(2)y

− 144z2 log2(2)y − 648z log2(2)y + 72 log2(2)y − 60π2y − 360y + 42π2z2 − 612z2

− 54π2z − 36z + 12
(

2(5z − 4)y2 + (z(5z − 9) + 8)y + (13 − 11z)z
)

G({−1,−1,−1}, y)

− 96
(

(y − 1)z
2
+ 2

(

y
2
+ 1
)

z − (y − 1)y
)

G({−1,−1, 0}, y)

− 48
(

(z + 1)y2 + 2
(

z2 + 1
)

y + z2 + z
)

G({−1, 0,−1}, y)

+ 48
(

(z + 1)y2 + 2
(

z2 + 1
)

y + z2 + z
)

G({−1, 0, 0}, y)

− 24
(

(5z − 4)y2 +
(

4z2 − 2
)

y + z(2z − 1)
)

G({0,−1,−1}, y)

+ 48
(

4zy2 − (2y + 1)y + (5y + 4)z2 − 2z
)

G({0,−1, 0}, y)

+ 24
(

2(z + 1)y
2
+ 7z

2
y + y + 4z(2z − 1)

)

G({0, 0,−1}, y)

− 24
(

2(z + 1)y2 + (z(13z − 6) + 1)y + 2z(7z − 5)
)

G({0, 0, 0}, y)

− 12
(

(z + 1)y2 − ((z − 6)z + 1)y + z2 + z
)

G({0, 0, 0}, z)

+ 24(y(z − 2) − z)(y + 2z − 1)G({0, 0, 1}, z)

− 24
(

(y − 1)z2 + 2
(

y2 + 1
)

z − (y − 1)y
)

G({0, 0,−y}, z)

+ 24
(

(z − 2)y
2
+ (z(5z − 6) − 1)y + z(4z − 5)

)

G({0, 1, 0}, z)

+ 24
(

(11y − 2)z2 + 2y(5y − 6)z + 4z + (5 − 8y)y
)

G({0, 1, 1}, z)

− 48
(

4zy2 − (2y + 1)y + (5y + 4)z2 − 2z
)

G({0, 1,−y}, z)

+ 24
(

−(4y + 5)z2 − 2
(

y2 − 2
)

z + y(y + 2)
)

G({0,−y, 0}, z)

− 24
(

(8z − 4)y2 + 7z2y + y + 2z(z + 1)
)

G({0,−y, 1}, z)

+ 48
(

(4y + 5)z
2
+ 2

(

y
2 − 2

)

z − y(y + 2)
)

G({0,−y,−y}, z)

− 24(2y + z + 1)(y + (y + 2)z)G({1, 0, 0}, z)

− 48
(

(z + 1)y2 − ((z − 6)z + 1)y + z2 + z
)

G({1, 0, 1}, z)

− 48
(

(z + 1)y2 + 2
(

z2 + 1
)

y + z2 + z
)

G({1, 0,−y}, z)

− 48
(

4(z + 1)y2 + (z(5z + 6) + 5)y + 4z(z + 1)
)

G({1, 1, 0}, z)

− 12
(

64(z + 1)y
2
+ (z(71z + 195) − 10)y + z(145z − 17)

)

G({1, 1, 1}, z)

+ 96
(

4(z + 1)y2 + (z(5z + 6) + 5)y + 4z(z + 1)
)

G({1, 1,−y}, z)
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− 48
(

(z + 1)y
2 − ((z − 6)z + 1)y + z

2
+ z
)

G({1,−y, 0}, z)

+ 48
(

5(z + 1)y2 + 4(z(z + 3) + 1)y + 5z(z + 1)
)

G({1,−y, 1}, z)

+ 96
(

(z + 1)y2 − ((z − 6)z + 1)y + z2 + z
)

G({1,−y,−y}, z)

− 24(y − z + 2)(z + y(2z − 1))G({−y, 0, 0}, z)

− 48
(

(z + 1)y2 − ((z − 6)z + 1)y + z2 + z
)

G({−y, 0, 1}, z)

− 48
(

(z − 2)y
2 −

(

z
2
+ 1
)

y − 2z
2
+ z
)

G({−y, 0,−y}, z)

− 48
(

(z + 1)y2 − ((z − 6)z + 1)y + z2 + z
)

G({−y, 1, 0}, z)

+ 24
(

(z + 10)y2 − ((z − 24)z + 1)y + 10z2 + z
)

G({−y, 1, 1}, z)

+ 96
(

(z + 1)y2 − ((z − 6)z + 1)y + z2 + z
)

G({−y, 1,−y}, z)

+ 48
(

(4y + 5)z2 − 2(y(2y + 3) + 2)z + y(5y + 4)
)

G({−y,−y, 0}, z)

+ 96
(

(z + 1)y
2 − ((z − 6)z + 1)y + z

2
+ z
)

G({−y,−y, 1}, z)

+ 96
(

(4z − 5)y2 +
(

−4z2 + 6z − 4
)

y + (4 − 5z)z
)

G({−y,−y,−y}, z)

+ G({0, 1}, z)
(

72
(

−3y2 + 2(y − 3)zy + y + (3y − 1)z2
)

− 24(y(z − 2) − z)(y + 2z − 1) log(4π)
)

+ G({1, 0}, z)
(

24(2y + z + 1)(y + (y + 2)z) log(4π) − 72
(

(z + 3)y2 + (6z + 2)y + z(z + 3)
))

+ G({0, 0}, z)
(

12
(

(z + 1)y2 − ((z − 6)z + 1)y + z2 + z
)

log(4π) − 72
(

y2 − (z − 3)zy + z
))

+ 12G({1, 1}, z)
(

−39(y + 3)z2 − 9y(4y + 19)z + 21z + 6(3 − 10y)y

+
(

16(z + 1)y
2
+ (z(17z + 57) − 10)y + z(43z − 11)

)

log(4π)
)

+ 4G({−y}, z)
((

π2(z − 11) + 54(z + 1)
)

y2 −
(

54((z − 6)z + 1) + π2(z(z + 18) + 1)
)

y

+ z
(

π2(1 − 11z) + 54(z + 1)
)

+ 6
(

(z − 2)y2 −
(

z2 + 1
)

y − 2z2 + z
)

G({−1,−1}, y)

− 24
(

(z − 2)y2 −
(

z2 + 1
)

y − 2z2 + z
)

G({−1, 0}, y)

+ 3
((

log2(4) − 6 log(4π)
)(

−(y − 1)z2 + y(y + 6)z + z + (y − 1)y
)

+ 8
(

(y + 2)z
2 −

(

y
2
+ 1
)

z + y(2y + 1)
)

G({0,−1}, y)

+4
(

−(5y + 7)z2 + (y(5y + 6) + 5)z − y(7y + 5)
)

G({0, 0}, y)
)

+
(

−(y − 1)z2 + y(y + 6)z + z + (y − 1)y
)

log(π) log
(

4096π3
))

+ G({0}, z)
(

10π2zy2 + 72zy2 + 36z log(π) log(16π)y2

− 18 log(π) log(16π)y2 + 72 log(4π)y2 − 24z log2(2)y2 − 24 log2(2)y2

− 2π2y2 − 288y2 + 26π2z2y + 288z2y + 12π2zy − 648zy + 27z2 log(π) log(16π)y

+ 9 log(π) log(16π)y − 72z2 log(4π)y + 216z log(4π)y + 24z2 log2(2)y − 144z log2(2)y

+ 24 log2(2)y − 22π2y − 72y + 46π2z2 + 72z2 − 38π2z − 288z

+ 48
(

(y − 1)z2 + 2
(

y2 + 1
)

z − (y − 1)y
)

G({−1,−1}, y)

− 48
(

(y − 1)z2 + 2
(

y2 + 1
)

z − (y − 1)y
)

G({−1, 0}, y)

− 24
(

4zy2 − (2y + 1)y + (5y + 4)z2 − 2z
)

G({0,−1}, y)
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+ 24
(

4zy
2 − (2y + 1)y + (5y + 4)z

2 − 2z
)

G({0, 0}, y)

−
(

−4y2 + y + (7y + 2)z2 + 2(y(7y + 6) + 4)z
)

log(π) log
(

4096π3
)

+18z log(π) log(16π) + 72z log(4π) − 24z2 log2(2) − 24z log2(2)
)

+ G({0}, y)
(

4π2zy2 + 216zy2 − 18z log(π) log(16π)y2

+ 18 log(π) log(16π)y2 − 72z log(4π)y2 − 72 log(4π)y2 + 48z log2(2)y2

+ 48 log2(2)y2 − 44π2y2 + 216y2 − 16π2z2y − 216z2y − 48π2zy + 1296zy

− 9z2 log(π) log(16π)y + 9 log(π) log(16π)y + 72z2 log(4π)y

− 432z log(4π)y + 72 log(4π)y − 48z2 log2(2)y + 288z log2(2)y − 48 log2(2)y

− 16π2y − 216y − 44π2z2 + 216z2 + 4π2z + 216z

− 24
(

(y − 1)z2 + 2
(

y2 + 1
)

z − (y − 1)y
)

G({0, 0}, z)

− 48
(

4zy2 − (2y + 1)y + (5y + 4)z2 − 2z
)

G({0, 1}, z)

+ 48
(

(4y + 5)z2 + 2
(

y2 − 2
)

z − y(y + 2)
)

G({0,−y}, z)

− 48
(

(z + 1)y2 + 2
(

z2 + 1
)

y + z2 + z
)

G({1, 0}, z)

+ 96
(

4(z + 1)y
2
+ (z(5z + 6) + 5)y + 4z(z + 1)

)

G({1, 1}, z)

+ 96
(

(z + 1)y2 − ((z − 6)z + 1)y + z2 + z
)

G({1,−y}, z)

− 48
(

(z − 2)y2 −
(

z2 + 1
)

y − 2z2 + z
)

G({−y, 0}, z)

+ 96
(

(z + 1)y2 − ((z − 6)z + 1)y + z2 + z
)

G({−y, 1}, z)

+ 96
(

(4z − 5)y2 +
(

−4z2 + 6z − 4
)

y + (4 − 5z)z
)

G({−y,−y}, z)

+
(

2(5z − 1)y2 − ((z − 24)z + 7)y + 4z(z + 1)
)

log(π) log
(

4096π3
)

− 72z
2
log(4π) − 72z log(4π) + 24

(

(y − 1)z
2

+2
(

y2 + 1
)

z − (y − 1)y
)

G({0}, z)(−3 + log(4) + log(π))

− 48(2y + z + 1)(y + (y + 2)z)G({1}, z)(−3 + log(4) + log(π))

−48(y − z + 2)(z + y(2z − 1))G({−y}, z)(−3 + log(4) + log(π)) + 48z2 log2(2) + 48z log2(2)
)

+ 2G({−1}, y)
(

−2π
2
zy

2 − 108zy
2
+ 9z log(π) log(16π)y

2

− 9 log(π) log(16π)y
2
+ 36z log(4π)y

2
+ 36 log(4π)y

2 − 24z log
2
(2)y

2 − 24 log
2
(2)y

2

+ 22π
2
y
2 − 108y

2
+ 11π

2
z
2
y − 54z

2
y + 27π

2
zy − 486zy + 9z

2
log(π) log(16π)y

− 27z log(π) log(16π)y + 18 log(π) log(16π)y + 18z2 log(4π)y + 162z log(4π)y

− 36 log(4π)y − 12z2 log2(2)y − 108z log2(2)y + 24 log2(2)y + 2π2y + 108y + 31π2z2 − 270z2

− 11π2z + 54z + 12
(

(y − 1)z2 + 2
(

y2 + 1
)

z − (y − 1)y
)

G({0, 0}, z)

+ 12
(

(8z − 4)y
2
+ 7z

2
y + y + 2z(z + 1)

)

G({0, 1}, z)

− 12
(

4zy2 − (2y + 1)y + (5y + 4)z2 − 2z
)

G({0,−y}, z)

+ 24
(

(z + 1)y2 + 2
(

z2 + 1
)

y + z2 + z
)

G({1, 0}, z)

− 6
(

32(z + 1)y2 + (z(37z + 81) + 10)y + z(59z + 5)
)

G({1, 1}, z)
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+ 24
(

(z + 1)y
2
+ 2

(

z
2
+ 1
)

y + z
2
+ z
)

G({1,−y}, z)

+ 24
(

(z − 2)y2 −
(

z2 + 1
)

y − 2z2 + z
)

G({−y, 0}, z)

− 12
(

(z − 2)y2 −
(

z2 + 1
)

y − 2z2 + z
)

G({−y, 1}, z)

− 48
(

(z − 2)y2 −
(

z2 + 1
)

y − 2z2 + z
)

G({−y,−y}, z)

+
(

(1 − 5z)y2 − 4
(

z2 + 1
)

y + (z − 5)z
)

log(π) log
(

4096π3
)

− 18z2 log(π) log(16π) + 18z log(π) log(16π) + 90z2 log(4π) − 18z log(4π)

− 12
(

(y − 1)z2 + 2
(

y2 + 1
)

z − (y − 1)y
)

G({0}, z)(−3 + log(4) + log(π))

+ 6
(

8(z + 1)y
2
+ (z(7z + 27) − 2)y + z(17z − 1)

)

G({1}, z)(−3 + log(4) + log(π))

+ 12
(

(z − 2)y2 −
(

z2 + 1
)

y − 2z2 + z
)

G({−y}, z)(−3 + log(4) + log(π))

−60z2 log2(2) + 12z log2(2)
)

+ 2G({1}, z)
(

−4π2zy2 − 36zy2 − 27z log(π) log(16π)y2

− 27 log(π) log(16π)y2 + 36z log(4π)y2 + 108 log(4π)y2 − 48z log2(2)y2

− 48 log2(2)y2 − 4π2y2 − 396y2 − 17π2z2y − 90z2y + 45π2zy − 810zy

− 27z2 log(π) log(16π)y − 81z log(π) log(16π)y + 54z2 log(4π)y

+ 270z log(4π)y − 36 log(4π)y − 60z2 log2(2)y − 180z log2(2)y + 48 log2(2)y

− 44π2y + 36y + 23π2z2 − 522z2 − 31π2z + 90z

− 6
(

4(z + 1)y2 − ((z − 27)z + 10)y + z(13z − 5)
)

G({−1,−1}, y)

− 48
(

(z + 1)y2 + 2
(

z2 + 1
)

y + z2 + z
)

G({−1, 0}, y)

+ 24
(

(z + 1)y2 + 2
(

z2 + 1
)

y + z2 + z
)

G({0,−1}, y)

+ 24(2y + z + 1)(y + (y + 2)z)G({0, 0}, y)

+
(

5(z + 1)y2 + 4(z(z + 3) + 1)y + 5z(z + 1)
)

log(π) log
(

4096π3
)

−54z2 log(π) log(16π) + 198z2 log(4π) − 54z log(4π) − 156z2 log2(2) + 60z log2(2)
)

− 752z2ζ(3) + 448zζ(3) + 18z2 log(π) log
(

4096π3
)

− 3z log(π) log
(

4096π3
)

+ 48z2 log2(2) log
(

4π3
)

− 12z log2(2) log
(

4π3
)

+ 8z2 log2(π) log(64π)

− 4z log
2
(π) log(64π) − 108z

2
log(π) log(16π) + 27z log(π) log(16π)

− 16π2z2 log(4π) + 252z2 log(4π) + 20π2z log(4π) − 36z log(4π)

− 12
(

2(z − 2)y2 + ((z − 9)z + 4)y + (5 − 7z)z
)

G({−1,−1}, y)(−3 + log(4) + log(π))

+ 48
(

(y − 1)z
2
+ 2

(

y
2
+ 1
)

z − (y − 1)y
)

G({−1, 0}, y)(−3 + log(4) + log(π))

+ 24
(

(z − 2)y2 −
(

z2 + 1
)

y − 2z2 + z
)

G({0,−1}, y)(−3 + log(4) + log(π))

+ 24
(

(2 − 4z)y2 + ((z − 6)z + 1)y + 2(z − 2)z
)

G({0, 0}, y)(−3 + log(4) + log(π))

+ 24
(

(y − 1)z2 + 2
(

y2 + 1
)

z − (y − 1)y
)

G({0,−y}, z)(−3 + log(4) + log(π))

− 48(2y + z + 1)(y + (y + 2)z)G({1,−y}, z)(−3 + log(4) + log(π))
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+ 24(y − z + 2)(z + y(2z − 1))G({−y, 0}, z)(−3 + log(4) + log(π))

− 24
(

(z + 4)y
2 − ((z − 12)z + 1)y + 4z

2
+ z
)

G({−y, 1}, z)(−3 + log(4) + log(π))

− 48(y − z + 2)(z + y(2z − 1))G({−y,−y}, z)(−3 + log(4) + log(π)) − 48z
2
log

2
(2) log(π)

− 12z log
2
(2) log(π) − 6z

2
log

2
(2) log(256) + 54z

2
log

2
(4) + 16z

2
log

3
(2)

−8z log
3
(2) − 432z

2
log

2
(2) + 72z log

2
(2)
)

(8.24)

M̃9 =
1

ǫ2
1

48π(y + 1)z

+
1

ǫ

−2G({−1}, y) + 2G({0}, y) − G({0}, z) − 4G({1}, z) + 2G({−y}, z) + log(4π)

48π(y + 1)z

+
1

288π(y + 1)z
× (−24 log(4π)G({1}, z) + 24G({−1,−1}, y) − 24G({−1, 0}, y)

− 24G({0,−1}, y) + 24G({0, 0}, y) + 6G({0, 0}, z) + 24G({0, 1}, z) − 12G({0,−y}, z)
+ 24G({1, 0}, z) + 96G({1, 1}, z) − 48G({1,−y}, z) − 12G({−y, 0}, z) − 48G({−y, 1}, z)
+ 24G({−y,−y}, z) + 12G({−1}, y)(G({0}, z) + 4G({1}, z) − 2G({−y}, z) − log(4π))

− 6G({0}, z)(2G({0}, y) + log(4π)) + 12G({0}, y)(−4G({1}, z) + 2G({−y}, z)

+ log(4π)) − 2 log(π) log
(

4096π3
)

+ 9 log(π) log(16π)

+12G({−y}, z) log(4π) − 6 log2(4) + 36 log2(2) + π2
)

+
ǫ

288π(y + 1)z
(24 log(4π)G({−1,−1}, y) − 48G({−1,−1,−1}, y)

+ 48G({−1,−1, 0}, y) − 24G({−1, 0,−1}, y) + 24G({−1, 0, 0}, y) + 48G({0,−1,−1}, y)
− 48G({0,−1, 0}, y) + 24G({0, 0,−1}, y) − 24G({0, 0, 0}, y) − 6G({0, 0, 0}, z)
− 24G({0, 0, 1}, z) + 12G({0, 0,−y}, z) − 24G({0, 1, 0}, z) − 96G({0, 1, 1}, z)
+ 48G({0, 1,−y}, z) + 12G({0,−y, 0}, z) + 48G({0,−y, 1}, z) − 24G({0,−y,−y}, z)
− 24G({1, 0, 0}, z) − 24G({1, 0, 1}, z) − 24G({1, 0,−y}, z) − 96G({1, 1, 0}, z)
− 384G({1, 1, 1}, z) + 192G({1, 1,−y}, z) − 24G({1,−y, 0}, z) + 120G({1,−y, 1}, z)
+ 48G({1,−y,−y}, z) + 12G({−y, 0, 0}, z) − 24G({−y, 0, 1}, z) + 48G({−y, 0,−y}, z)
− 24G({−y, 1, 0}, z) + 120G({−y, 1, 1}, z) + 48G({−y, 1,−y}, z) + 120G({−y,−y, 0}, z)
+ 48G({−y,−y, 1}, z) − 240G({−y,−y,−y}, z) + G({0}, z) (−24G({−1,−1}, y)

+ 24G({−1, 0}, y) + 24G({0,−1}, y) − 24G({0, 0}, y) − log(π) log
(

4096π3
)

−12 log2(2) − π2
)

− 4G({1}, z) (6G({−1,−1}, y) + 12G({−1, 0}, y)

−6G({0,−1}, y) − 12G({0, 0}, y) + log(π) log
(

4096π3
)

+ 12 log2(2) + π2
)

+ G({−y}, z) (−24G({−1,−1}, y) + 96G({−1, 0}, y) + 96G({0,−1}, y) − 168G({0, 0}, y)

+2 log(π) log
(

4096π3
)

+ 6 log2(4) − 22π2
)

+ G({−1}, y) (12 log(4π)(G({0}, z) + 4G({1}, z) − 2G({−y}, z))
− 12G({0, 0}, z) − 48G({0, 1}, z) + 24G({0,−y}, z) + 24G({1, 0}, z) − 192G({1, 1}, z)
+ 24G({1,−y}, z) − 48G({−y, 0}, z) + 24G({−y, 1}, z) + 96G({−y,−y}, z)

− log(π) log
(

16777216π6
)

− 24 log2(2) + 22π2
)

+ G({0}, y) (−12 log(4π)(G({0}, z) + 4G({1}, z) − 2G({−y}, z))
+ 12G({0, 0}, z) + 48G({0, 1}, z) − 24G({0,−y}, z) − 24G({1, 0}, z) + 192G({1, 1}, z)
+ 48G({1,−y}, z) + 48G({−y, 0}, z) + 48G({−y, 1}, z) − 240G({−y,−y}, z)
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+ log(π) log
(

16777216π
6
)

+ 24 log
2
(2) − 22π

2
)

− 76ζ(3) + 12 log2(2) log
(

4π3
)

+ log2(π) log(64π)

− 24G({−1, 0}, y) log(4π) − 24G({0,−1}, y) log(4π) + 24G({0, 0}, y) log(4π)
+ 6G({0, 0}, z) log(4π) + 24G({0, 1}, z) log(4π) − 12G({0,−y}, z) log(4π)
+ 24G({1, 0}, z) log(4π) + 96G({1, 1}, z) log(4π) − 48G({1,−y}, z) log(4π)
− 12G({−y, 0}, z) log(4π) − 48G({−y, 1}, z) log(4π)

+ 24G({−y,−y}, z) log(4π) + π2 log(4π) − 24 log2(2) log(π)

−3 log2(2) log(256) + 8 log3(2)
)

+O(ǫ2) (8.25)

M̃10 =
1

192π(y + 1)
×
(

8
(

−3G({0,−1}, y) + 3G({0, 0}, y) + π2
)

G({0}, z)

− 48G({0}, y)G({0, 1}, z) + 24G({−1}, y)(G({0, 1}, z) − G({0,−y}, z))
+ 48G({0}, y)G({0,−y}, z) − 48G({0, 1,−y}, z) − 24G({0,−y, 0}, z)
− 24G({0,−y, 1}, z) + 48G({0,−y,−y}, z) − 24G({0,−1,−1}, y)
+ 48G({0,−1, 0}, y) + 24G({0, 0,−1}, y) − 48G({0, 0, 0}, y) + 24G({0, 1, 0}, z)
+24G({0, 1, 1}, z) − 48ζ(3)) (8.26)

M̃11 = − 1

ǫ3
5

48π(y + 1)2

+
1

ǫ2
10G({−1}, y) − 4G({0}, y) − 10G({0}, z) + 14G({1}, z) − 4G({−y}, z) − 5 log(4π)

48π(y + 1)2

+
1

ǫ

1

288π(y + 1)2
(84 log(4π)G({1}, z) − 120G({−1,−1}, y)

+ 48G({−1, 0}, y) + 12G({0,−1}, y) + 24G({0, 0}, y) + 96G({0, 0}, z)
+ 168G({0, 1}, z) − 48G({0,−y}, z) − 48G({1, 0}, z) − 228G({1, 1}, z)
+ 24G({1,−y}, z) − 48G({−y, 0}, z) + 60G({−y, 1}, z) + 24G({−y,−y}, z)
+ 24G({0}, y)(G({1}, z) + G({−y}, z) − log(4π)) − 12G({0}, z)(4G({0}, y) + 5 log(4π))

+ 12G({−1}, y)(10G({0}, z) − 11G({1}, z) + G({−y}, z) + 5 log(4π))

−15 log2(4π) − 24G({−y}, z) log(4π) + 61π2
)

+
1

288π(y + 1)2
(−120 log(4π)G({−1,−1}, y) + 240G({−1,−1,−1}, y)

− 96G({−1,−1, 0}, y) − 24G({−1, 0,−1}, y) − 48G({−1, 0, 0}, y) + 12G({0,−1,−1}, y)
− 48G({0,−1, 0}, y)− 120G({0, 0,−1}, y) + 120G({0, 0, 0}, y) − 168G({0, 0, 0}, z)
− 240G({0, 0, 1}, z) + 48G({0, 0,−y}, z) − 24G({0, 1, 0}, z) − 456G({0, 1, 1}, z)
+ 48G({0, 1,−y}, z) − 24G({0,−y, 0}, z) + 120G({0,−y, 1}, z) + 48G({0,−y,−y}, z)
+ 120G({1, 0, 0}, z) + 120G({1, 0, 1}, z) − 24G({1, 0,−y}, z) + 48G({1, 1, 0}, z)
+ 588G({1, 1, 1}, z) + 48G({1, 1,−y}, z) − 24G({1,−y, 0}, z) − 24G({1,−y, 1}, z)
− 96G({1,−y,−y}, z) + 48G({−y, 0, 0}, z) + 120G({−y, 0, 1}, z) − 24G({−y, 0,−y}, z)
− 24G({−y, 1, 0}, z) − 132G({−y, 1, 1}, z) − 96G({−y, 1,−y}, z) + 48G({−y,−y, 0}, z)
− 96G({−y,−y, 1}, z) + 48G({−y,−y,−y}, z) + 2G({0}, z) (−120G({−1,−1}, y)

+48G({−1, 0}, y) + 48G({0,−1}, y) − 12G({0, 0}, y) − 15 log
2
(4π) + π

2
)



286 CHAPTER 8. APPENDIX B: MASTER INTEGRALS AT NNLO

+ 2G({−1}, y) (−96G({0, 0}, z) − 132G({0, 1}, z) + 12G({0,−y}, z)
+ 48G({1, 0}, z) + 138G({1, 1}, z) + 12G({1,−y}, z) + 48G({−y, 0}, z)
− 6G({−y, 1}, z) − 24G({−y,−y}, z) + 3 log(4π)(20G({0}, z) − 22G({1}, z)

+2G({−y}, z) + 5 log(4π))− 61π2
)

+ 4G({−y}, z) (3G({−1,−1}, y) − 12G({−1, 0}, y) − 30G({0,−1}, y)

+30G({0, 0}, y)− log(π) log
(

4096π3
)

− 3 log2(4) + 14π2
)

+ 4G({0}, y) (6 log(4π)(−2G({0}, z) + G({1}, z) + G({−y}, z))
+ 12G({0, 0}, z) + 12G({0, 1}, z) + 12G({0,−y}, z) − 6G({1, 0}, z)
+ 12G({1, 1}, z) − 24G({1,−y}, z) − 6G({−y, 0}, z) − 24G({−y, 1}, z)

+12G({−y,−y}, z) − log(π) log
(

4096π3
)

− 3 log2(4) + 14π2
)

+ G({1}, z) (228G({−1,−1}, y)− 48G({−1, 0}, y) + 24G({0,−1}, y)

−96G({0, 0}, y) + 14 log(π) log
(

4096π3
)

+ 168 log2(2) − 58π2
)

+ 848ζ(3) − 5 log3(4π) + 48G({−1, 0}, y) log(4π) + 12G({0,−1}, y) log(4π)
+ 24G({0, 0}, y) log(4π) + 96G({0, 0}, z) log(4π) + 168G({0, 1}, z) log(4π)
− 48G({0,−y}, z) log(4π) − 48G({1, 0}, z) log(4π) − 228G({1, 1}, z) log(4π)
+ 24G({1,−y}, z) log(4π) − 48G({−y, 0}, z) log(4π) + 60G({−y, 1}, z) log(4π)

+24G({−y,−y}, z) log(4π) + 61π2 log(4π)
)

+ O(ǫ) (8.27)

M̃16 =
1

48π(y + 1)
×
((

−6G({−1,−1}, y) + 6G({0,−1}, y) − π2
)

G({1}, z)

+ 2
(

−3G({0,−1}, y) + 3G({0, 0}, y) + π2
)

G({0}, z)

+ 6G({−1}, y)(G({1, 0}, z) − G({1, y + 1}, z)) + 6G({0,−y, 0}, z) + 6G({1, y + 1, 0}, z)

− 2π
2
G({0}, y) + 6G({0,−1,−1}, y) + 6G({0, 0,−1}, y) − 12G({0, 0, 0}, y)

−6G({0, 1, 0}, z) − 6G({1, 0, 0}, z))
+ O(ǫ) (8.28)

M̃17 =
1

ǫ

G({0}, z)
8π(y + 1)(y + z)

+
1

8π(y + 1)(y + z)
× (−2G({−1}, y)G({0}, z) − 2G({−y, 0}, z)

+ 2G({0,−1}, y) − 2G({0, 0}, y) − G({0, 0}, z) − 2G({0, 1}, z)

+2G({1, 0}, z) + log(4π)G({0}, z) − π2
)

ǫ

48π(y + 1)(y + z)
×

×
(

12
(

−2G({0,−1}, y) + 2G({0, 0}, y) + π2
)

G({−y}, z)

+ 2
(

−6G({−1,−1}, y) − 6G({0,−1}, y) + 12G({0, 0}, y) + π2
)

G({1}, z)

+ 12G({0, y + 1, 0}, z) + 24G({1,−y, 0}, z) + 12G({1, y + 1, 0}, z) + 12G({−y, 0, 0}, z)
+ 24G({−y, 0, 1}, z) − 24G({−y, 1, 0}, z) + 24G({−y,−y, 0}, z) + G({0}, z) (12G({−1,−1}, y)
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−π
2
+ 3 log

2
(4) + log(π) log

(

4096π
3
))

− 2G({−1}, y) (6G({0, y + 1}, z) + 6G({1, y + 1}, z) − 12G({−y, 0}, z) − 12G({0, 0}, z)

−12G({0, 1}, z) + 6G({1, 0}, z) + 6 log(4π)G({0}, z) + π2
)

− 12 log(4π)G({−y, 0}, z) + 10π2G({0}, y) + 12G({−1,−1,−1}, y)
+ 12G({−1, 0,−1}, y) − 24G({−1, 0, 0}, y) − 12G({0,−1,−1}, y) − 24G({0, 0,−1}, y)
+ 36G({0, 0, 0}, y) + 12 log(4π)G({0,−1}, y) − 12 log(4π)G({0, 0}, y)
+ 6G({0, 0, 0}, z) + 12G({0, 0, 1}, z) + 24G({0, 1, 1}, z) − 24G({1, 0, 0}, z)
− 24G({1, 0, 1}, z) − 24G({1, 1, 0}, z) − 6 log(4π)G({0, 0}, z) − 12 log(4π)G({0, 1}, z)

+12 log(4π)G({1, 0}, z) − 24ζ(3) − 6π2 log(4π)
)

+ O(ǫ2) (8.29)

M̃18 =
1

48πy2(y + 1)(z − 1)2z
×
(

−3zy
3
+ 3y

3
+ π

2
z
2
y
2
+ 3z

2
y
2 − 6zy

2

+ 6z2G({−1,−1}, y)y2 − 6z2G({0,−1}, y)y2 + 6z2G({0, 0}, z)y2

− 6z2G({y + 1, 0}, z)y2 + 3y2 + 3z2y − 3zy + 3(y + 1)(y + z)
(

y2 − 3zy + y + z
)

G({0}, y)

+ 3(y + 1)z(y(3z − 2) − z)G({0}, z) + 3(y + 1)(y + z)
(

y2 − 3zy + y + z
)

G({−y}, z)

−3G({−1}, y)
(

2y
2
(G({0}, z) − G({y + 1}, z))z2

+ (y + 1)
(

y
3
+ (1 − 2z)y

2 − z
2
y + z

2
)))

+
ǫ

96πy2(y + 1)(z − 1)2z
×

×
(

π
2
y
4 − 2π

2
zy

3 − 6z log(4π)y
3
+ 6 log(4π)y

3
+ 2π

2
y
3

− 9π2z2y2 + 12π2zy2 + 2z2G({y + 1}, z)
(

−12G({−1,−1}, y) + 6G({0,−1}, y) + π2
)

y2

+ 12(y − 3z + 2)(y + z)G({−y, 0}, z)y2 − 12z2G({−1, 0,−1}, y)y2

+ 36z2G({0,−1,−1}, y)y2 + 24z2G({0, 0,−1}, y)y2 − 48z2G({0, 0, 0}, y)y2

− 36z2G({0, 0, 0}, z)y2 − 24z2G({0, 0, 1}, z)y2 − 36z2G({0, 1, 0}, z)y2

+ 24z
2
G({0,−y, 0}, z)y2

+ 36z
2
G({0, y + 1, 0}, z)y2 − 24z

2
G({1, 0, 0}, z)y2

+ 24z
2
G({1, y + 1, 0}, z)y2

+ 24z
2
G({y + 1, 0, 1}, z)y2

+ 12z
2
G({y + 1, 1, 0}, z)y2

− 36z2ζ(3)y2 + 2π2z2 log(4π)y2 + 6z2 log(4π)y2

− 12z log(4π)y2 + 6 log(4π)y2 − 3π2y2 + 2π2z2y − 2π2zy

− 4G({1}, z)
(

−3z(y + 1)2 + 3y(y + 1) +
((

3 + π2
)

y + 3
)

z2

+6yz
2
(G({−1,−1}, y) − G({0,−1}, y))

)

y

+ 12G({y + 1, 0}, z)
(

(y + 1)(y − z)(y − z + 1) − yz2 log(4π)
)

y + 6z2 log(4π)y

− 6z log(4π)y − π2z2 + 6
(

(y(y + 2) − 1)y2 − 2
(

y2 + 3
)

zy

+3(y(y + 2) − 1)z2
)

G({0, 0}, y) − 12(y + 1)z(y(3z − 2) − z)G({0, 1}, z)

− 6(y + 1)
(

(y + 1)y2 − 2(y + 1)zy + (3y − 1)z2
)

G({0,−y}, z)

− 12
((

z
2
+ z − 1

)

y
2
+ 3(z − 1)zy − z

2
)

G({1, 0}, z)

− 12(y + 1)(y + z)
(

y
2 − 3zy + y + z

)

G({1,−y}, z)
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− 12(y + 1)(y + z)
(

y
2 − 3zy + y + z

)

G({−y, 1}, z)

− 12(y + 1)(y + z)
(

y2 − 3zy + y + z
)

G({−y,−y}, z)

+ 2G({0}, y)
(

3y4 −
((

3 + 4π2
)

z2 + 3
)

y2 + 3z2

− 3(y + 1)
(

(y + 1)y2 − 2(y + 1)zy + (3y − 1)z2
)

G({0}, z)

+3(y + 1)(y + z)
(

y2 − 3zy + y + z
)

(−2(G({1}, z) + G({−y}, z)) + log(π) + log(4))
)

+ 12zG({−1,−1}, y)
(

((−2 + log(4) + log(π))z + 1)y2 − zy + y + z
)

− 6zG({0, 0}, z)
(

(y + 1)(y(3z − 2) − z) − 2y
2
z log(4π)

)

+ 6(y + 1)(y + z)G({−y}, z)
(

(y − 1)(y − z) +
(

y2 − 3zy + y + z
)

log(4π)
)

+ 6G({−1}, y)
(

−y4 + y2 − 2
(

(y + 1)(y − z)(y − z + 1)G({y + 1}, z) − yz2(2G({0, 0}, z)

+ 2G({0, 1}, z) − 3G({0, y + 1}, z) + 2G({1, 0}, z) − 2G({1, y + 1}, z)

+G({y + 1, 0}, z) − 2G({y + 1, 1}, z))) y +
((

1 + π
2
)

y
2 − 1

)

z
2

+ 2(y + 1)
(

y3 + (1 − 2z)y2 − z2y + z2
)

G({1}, z)

+ G({0}, z)
(

(y + 1)2(y − z)2 − 2y2z2 log(4π)
)

−
(

(y + 1)
(

y3 − 2zy2 + y2 − z2y + z2
)

− 2y2z2G({y + 1}, z)
)

log(4π)
)

− 6G({0}, z)
(

2y2G({−1,−1}, y)z2 − 4y2G({0, 0}, y)z2

+(y + 1)
(

(y − z)2 + z(−3zy + 2y + z) log(4π)
))

−6G({0,−1}, y)
(

y
4 − 2(z − 1)y

3
+ (z((−3 + 2 log(4π))z + 4) − 1)y

2
+ 2(z − 1)zy − z

2
))

+ O(ǫ2) (8.30)

M̃19 = +
6iπG({0}, z) + 6G({0, 0}, z) − 6G({0, 1}, z) − π2

48π
ǫ

48π

(

2π2G({1}, z) − 12iπG({1, 0}, z) − 12G({0, 0, 0}, z) − 6G({0, 0, 1}, z)

− 18G({0, 1, 0}, z) + 36G({0, 1, 1}, z) − 12G({1, 0, 0}, z) + 12G({1, 0, 1}, z)
− 3π(π − 2i(2 + log(4) + log(π)))G({0}, z) + 6(−2 − 4iπ − log(4π))G({0, 1}, z)

+6(2 − iπ + log(4) + log(π))G({0, 0}, z) + 6ζ(3) − 2iπ3 − 2π2 − π2 log(4π)
)

+ O(ǫ2) (8.31)

M̃24 =
1

ǫ2
1

12π(y + 1)(y + z)

1

ǫ

−G({−1}, y) − 2G({0}, y) + G({0}, z) − 5G({1}, z) − 2G({−y}, z) + 2 log(π) + log(16)

24π(y + 1)(y + z)

+
1

72π(y + 1)(y + z)
(−15 log(4π)G({1}, z) − 3G({−1,−1}, y) + 12G({−1, 0}, y)

+ 12G({0,−1}, y)− 12G({0, 0}, y)− 3G({0, 0}, z) − 12G({0, 1}, z) + 6G({0,−y}, z)
− 12G({1, 0}, z) + 33G({1, 1}, z) + 24G({1,−y}, z) + 6G({−y, 0}, z) + 24G({−y, 1}, z)
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− 12G({−y,−y}, z) + 6G({0}, y)(4G({1}, z) − 2G({−y}, z) − log(4π))

+ 3G({−1}, y)(−2G({0}, z) + G({1}, z) + 4G({−y}, z) − log(4π))

+3G({0}, z)(2G({0}, y) + log(4π)) + 3 log2(4π) − 6G({−y}, z) log(4π) − 5π2
)

+
ǫ

144π(y + 1)(y + z)
×

× (−6 log(4π)G({−1,−1}, y) + 30G({−1,−1,−1}, y) − 48G({−1,−1, 0}, y)
+ 24G({−1, 0,−1}, y)− 24G({−1, 0, 0}, y) − 12G({0,−1,−1}, y)− 24G({0,−1, 0}, y)
− 60G({0, 0,−1}, y) + 96G({0, 0, 0}, y) + 6G({0, 0, 0}, z) + 24G({0, 0, 1}, z)
− 12G({0, 0,−y}, z) − 12G({0, 1, 0}, z) + 60G({0, 1, 1}, z) + 24G({0, 1,−y}, z)
+ 24G({0,−y, 0}, z) − 12G({0,−y, 1}, z) − 48G({0,−y,−y}, z) + 24G({1, 0, 0}, z)
+ 24G({1, 0, 1}, z) + 24G({1, 0,−y}, z) + 96G({1, 1, 0}, z) − 102G({1, 1, 1}, z)
− 192G({1, 1,−y}, z) + 24G({1,−y, 0}, z) − 120G({1,−y, 1}, z) − 48G({1,−y,−y}, z)
− 12G({−y, 0, 0}, z) + 24G({−y, 0, 1}, z) − 48G({−y, 0,−y}, z) + 24G({−y, 1, 0}, z)
− 120G({−y, 1, 1}, z) − 48G({−y, 1,−y}, z) − 120G({−y,−y, 0}, z) − 48G({−y,−y, 1}, z)
+ 240G({−y,−y,−y}, z) + G({−y}, z) (24G({−1,−1}, y)− 96G({−1, 0}, y)

−96G({0,−1}, y) + 168G({0, 0}, y) − 6 log2(4π) + 22π2
)

+ G({0}, z) (24G({−1,−1}, y)− 24G({−1, 0}, y) + 12G({0,−1}, y) − 12G({0, 0}, y)

+18 log(π) log(16π) − 15 log2(4π) + 72 log2(2) − 11π2
)

+ G({−1}, y) (12G({0, 0}, z) + 12G({0, 1}, z) + 12G({0,−y}, z) − 24G({1, 0}, z)
+ 30G({1, 1}, z) − 24G({1,−y}, z) + 48G({−y, 0}, z) − 24G({−y, 1}, z) − 96G({−y,−y}, z)
+ 27 log(π) log(16π) + 6(−2G({0}, z) + G({1}, z) + 4G({−y}, z) − 5 log(4π)) log(4π)

+108 log2(2) − 13π2
)

+ G({1}, z) (−30G({−1,−1}, y) + 48G({−1, 0}, y)

− 24G({0,−1}, y)− 48G({0, 0}, y)− 15 log(π) log
(

4096π
3
)

+ 30 log
2
(4π)

−180 log
2
(2) + 31π

2
)

+ G({0}, y) (−12G({0, 0}, z) + 24G({0, 1}, z)

− 48G({0,−y}, z) + 24G({1, 0}, z) − 192G({1, 1}, z) − 48G({1,−y}, z) − 48G({−y, 0}, z)
− 48G({−y, 1}, z) + 240G({−y,−y}, z) + 3 log(4π)(4G({0}, z) + 16G({1}, z)

−8G({−y}, z) + log(4π)) − 3 log(π) log
(

4096π3
)

− 36 log2(2) + 22π2
)

− 8ζ(3) + 2 log2(π) log(64π) + 24G({−1, 0}, y) log(4π)
+ 24G({0,−1}, y) log(4π) − 24G({0, 0}, y) log(4π) − 6G({0, 0}, z) log(4π)
− 24G({0, 1}, z) log(4π) + 12G({0,−y}, z) log(4π) − 24G({1, 0}, z) log(4π)
+ 66G({1, 1}, z) log(4π) + 48G({1,−y}, z) log(4π) + 12G({−y, 0}, z) log(4π)

+ 48G({−y, 1}, z) log(4π) − 24G({−y,−y}, z) log(4π) − 10π2 log(4π)

+24 log2(2) log(π) + 16 log3(2)
)

+ O(ǫ2) (8.32)

8.0.4 Gluon channel

Master Integrals for g +W∗ → t+ b̄+ g.
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The variables e, f in terms of which some of the following masters are expressed
are defined as e = 1/c, d = 1/f , being c, d defined in Eq.(5.165).

M̃9 =
(f − 1)(ef − e+ f)

6(f − e)

(

−6G

({

0,
f2

2f − 1

}

, e

)

+ 6G

({

− f

f − 2
,

f2

2f − 1

}

, e

)

− 6G({0}, e)G({0}, f)− 6G({0}, f)G({f}, e) + 12G({0}, f)G
({

− f

f − 2

}

, e

)

+ 6G({−1}, f)G({f}, e) − 6G({−1}, f)G
({

− f

f − 2

}

, e

)

+ 6G({0, f}, e) + 6G({f, 0}, e)

− 6G

({

f,− f

f − 1

}

, e

)

− 6G

({

− f

f − 2
, 0

}

, e

)

− 6G

({

− f

f − 2
, f

}

, e

)

+ 6G

({

− f

f − 2
,− f

f − 1

}

, e

)

− 6G({−1, 0}, f) − 6G({0,−1}, f)

+18G({0, 0}, f) − 6G({1, 0}, f) + π
2
)

+ ǫ
(f − 1)(fe − e+ f)

6(f − e)

(

12G({f}, e)G({−1}, f)− 12G

({

− f

f − 2

}

, e

)

G({−1}, f)

− 6G({0, f}, e)G({−1}, f) + 18G

({

0,− f

f − 2

}

, e

)

G({−1}, f)

− 12G

({

0,
f2

2f − 1

}

, e

)

G({−1}, f) − 6G({f, 0}, e)G({−1}, f) − 6G({f, f}, e)G({−1}, f)

+ 6G

({

f,− f

f − 2

}

, e

)

G({−1}, f) + 6G

({

f,− f

f − 1

}

, e

)

G({−1}, f)

+ 6G

({

− f

f − 2
, 0

}

, e

)

G({−1}, f) − 12G

({

− f

f − 2
,− f

f − 2

}

, e

)

G({−1}, f)

− 6G

({

− f

f − 2
,− f

f − 1

}

, e

)

G({−1}, f) + 12G

({

− f

f − 2
,

f2

2f − 1

}

, e

)

G({−1}, f)

+ 12G

({

− f

f − 1
, f

}

, e

)

G({−1}, f) − 12G

({

− f

f − 1
,− f

f − 2

}

, e

)

G({−1}, f)

+ π2G({−1}, f) + π2G({0}, e) − 12G({0}, e)G({0}, f) + π2G({0}, f) + 3π2G({1}, f)

− 12G({0}, f)G({f}, e) − 5π2G({f}, e) + 24G({0}, f)G
({

− f

f − 2

}

, e

)

+ 2π2G

({

− f

f − 2

}

, e

)

+ 2π2G

({

− f

f − 1

}

, e

)

− 6G({f}, e)G({−1,−1}, f)

+ 6G

({

− f

f − 2

}

, e

)

G({−1,−1}, f) + 6G({0}, e)G({−1, 0}, f) + 12G({f}, e)G({−1, 0}, f)

− 6G

({

− f

f − 2

}

, e

)

G({−1, 0}, f) − 12G

({

− f

f − 1

}

, e

)

G({−1, 0}, f)

− 12G({−1, 0}, f) + 6G({0}, e)G({0,−1}, f) + 12G({f}, e)G({0,−1}, f)

− 6G

({

− f

f − 2

}

, e

)

G({0,−1}, f)

− 12G

({

− f

f − 1

}

, e

)

G({0,−1}, f) − 12G({0,−1}, f) + 6G({0}, f)G({0, 0}, e)

− 12G({0}, e)G({0, 0}, f) − 24G({f}, e)G({0, 0}, f) + 36G

({

− f

f − 1

}

, e

)

G({0, 0}, f)

+ 36G({0, 0}, f) + 12G({0}, f)G({0, f}, e) + 12G({0, f}, e) − 36G({0}, f)G
({

0,− f

f − 2

}

, e

)
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− 12G({0}, f)G
({

0,− f

f − 1

}

, e

)

+ 30G({0}, f)G
({

0,
f2

2f − 1

}

, e

)

− 12G

({

0,
f2

2f − 1

}

, e

)

− 6G({0}, e)G({1, 0}, f) + 6G({f}, e)G({1, 0}, f)

+ 12G

({

− f

f − 2

}

, e

)

G({1, 0}, f) − 12G

({

− f

f − 1

}

, e

)

G({1, 0}, f)

− 12G({1, 0}, f) + 12G({0}, f)G({f, 0}, e) + 12G({f, 0}, e) + 6G({0}, f)G({f, f}, e)

− 12G({0}, f)G
({

f,− f

f − 2

}

, e

)

− 6G({0}, f)G
({

f,− f

f − 1

}

, e

)

− 12G

({

f,− f

f − 1

}

, e

)

− 6G({0}, f)G
({

− f

f − 2
, 0

}

, e

)

− 12G

({

− f

f − 2
, 0

}

, e

)

− 6G({0}, f)G
({

− f

f − 2
, f

}

, e

)

− 12G

({

− f

f − 2
, f

}

, e

)

+ 24G({0}, f)G
({

− f

f − 2
,− f

f − 2

}

, e

)

+ 18G({0}, f)G
({

− f

f − 2
,− f

f − 1

}

, e

)

+ 12G

({

− f

f − 2
,− f

f − 1

}

, e

)

− 30G({0}, f)G
({

− f

f − 2
,

f2

2f − 1

}

, e

)

+ 12G

({

− f

f − 2
,

f2

2f − 1

}

, e

)

− 12G({0}, f)G
({

− f

f − 1
, 0

}

, e

)

− 12G({0}, f)G
({

− f

f − 1
, f

}

, e

)

+ 24G({0}, f)G
({

− f

f − 1
,− f

f − 2

}

, e

)

+ 6G({−1,−1, 0}, f) + 6G({−1, 0,−1}, f)

− 12G({−1, 0, 0}, f)− 6G({−1, 1, 0}, f) + 6G({0,−1,−1}, f) − 12G({0,−1, 0}, f)
− 12G({0, 0,−1}, f) + 12G({0, 0, 0}, f)

− 6G({0, 0, f}, e) + 6G

({

0, 0,
f2

2f − 1

}

, e

)

+ 18G({0, 1, 0}, f) − 6G({0, f, 0}, e)

− 24G

({

0, f,
f

2

}

, e

)

− 6G({0, f, f}, e) + 30G

({

0, f,− f

f − 1

}

, e

)

+ 6G

({

0, f,
f2

2f − 1

}

, e

)

+ 18G

({

0,− f

f − 2
, 0

}

, e

)

+ 18G

({

0,− f

f − 2
, f

}

, e

)

− 18G

({

0,− f

f − 2
,− f

f − 1

}

, e

)

− 18G

({

0,− f

f − 2
,

f2

2f − 1

}

, e

)

+ 12G

({

0,− f

f − 1
, f

}

, e

)

− 12G

({

0,− f

f − 1
,

f2

2f − 1

}

, e

)

− 12G

({

0,
f2

2f − 1
, 0

}

, e

)

+ 24G

({

0,
f2

2f − 1
,
f

2

}

, e

)

− 18G

({

0,
f2

2f − 1
, f

}

, e

)

− 12G

({

0,
f2

2f − 1
,− f

f − 1

}

, e

)

+ 18G

({

0,
f2

2f − 1
,

f2

2f − 1

}

, e

)

− 6G({1,−1, 0}, f) − 6G({1, 0,−1}, f) + 24G({1, 0, 0}, f) − 18G({1, 1, 0}, f) − 6G({f, 0, 0}, e)

− 24G

({

f, 0,
f

2

}

, e

)

− 6G({f, 0, f}, e) + 30G

({

f, 0,− f

f − 1

}

, e

)
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+ 6G

({

f, 0,
f2

2f − 1

}

, e

)

− 6G({f, f, 0}, e) + 6G

({

f, f,− f

f − 1

}

, e

)

+ 6G

({

f,− f

f − 2
, 0

}

, e

)

+ 6G

({

f,− f

f − 2
, f

}

, e

)

− 6G

({

f,− f

f − 2
,− f

f − 1

}

, e

)

− 6G

({

f,− f

f − 2
,

f2

2f − 1

}

, e

)

+ 6G

({

f,− f

f − 1
, 0

}

, e

)

+ 24G

({

f,− f

f − 1
,
f

2

}

, e

)

− 30G

({

f,− f

f − 1
,− f

f − 1

}

, e

)

+ 6G

({

− f

f − 2
, 0, 0

}

, e

)

+ 24G

({

− f

f − 2
, 0,

f

2

}

, e

)

− 30G

({

− f

f − 2
, 0,− f

f − 1

}

, e

)

+ 24G

({

− f

f − 2
, f,

f

2

}

, e

)

+ 6G

({

− f

f − 2
, f, f

}

, e

)

− 24G

({

− f

f − 2
, f,− f

f − 1

}

, e

)

− 6G

({

− f

f − 2
, f,

f2

2f − 1

}

, e

)

− 12G

({

− f

f − 2
,− f

f − 2
, 0

}

, e

)

− 12G

({

− f

f − 2
,− f

f − 2
, f

}

, e

)

+ 12G

({

− f

f − 2
,− f

f − 2
,− f

f − 1

}

, e

)

+ 12G

({

− f

f − 2
,− f

f − 2
,

f2

2f − 1

}

, e

)

− 6G

({

− f

f − 2
,− f

f − 1
, 0

}

, e

)

− 24G

({

− f

f − 2
,− f

f − 1
,
f

2

}

, e

)

− 12G

({

− f

f − 2
,− f

f − 1
, f

}

, e

)

+ 30G

({

− f

f − 2
,− f

f − 1
,− f

f − 1

}

, e

)

+ 12G

({

− f

f − 2
,− f

f − 1
,

f2

2f − 1

}

, e

)

+ 12G

({

− f

f − 2
,

f2

2f − 1
, 0

}

, e

)

− 24G

({

− f

f − 2
,

f2

2f − 1
,
f

2

}

, e

)

+ 18G

({

− f

f − 2
,

f2

2f − 1
, f

}

, e

)

+ 12G

({

− f

f − 2
,

f2

2f − 1
,− f

f − 1

}

, e

)

− 18G

({

− f

f − 2
,

f2

2f − 1
,

f2

2f − 1

}

, e

)

+ 12G

({

− f

f − 1
, 0, f

}

, e

)

− 12G

({

− f

f − 1
, 0,

f2

2f − 1

}

, e

)

+ 12G

({

− f

f − 1
, f, 0

}

, e

)

− 12G

({

− f

f − 1
, f,− f

f − 1

}

, e

)

− 12G

({

− f

f − 1
,− f

f − 2
, 0

}

, e

)

− 12G

({

− f

f − 1
,− f

f − 2
, f

}

, e

)

+ 12G

({

− f

f − 1
,− f

f − 2
,− f

f − 1

}

, e

)

+12G

({

− f

f − 1
,− f

f − 2
,

f2

2f − 1

}

, e

)

+ 6ζ(3) + 2π2

)

+ O(ǫ2) (8.33)

M̃10 =
1

4
(

1 − f(e(f−2)+f)
(f−1)(e(f−1)+f)

)×
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×
(

4G

({

0,
1

f

}

, e

)

G({−1}, f) − 4G

({

0,
f2

2f − 1

}

, e

)

G({−1}, f)

+ 4G({f, 0}, e)G({−1}, f) − 4G

({

f,
1

f

}

, e

)

G({−1}, f)

+ 4G

({

f,− f

f − 2

}

, e

)

G({−1}, f) − 4G

({

f,− f

f − 1

}

, e

)

G({−1}, f)

− 4G

({

− f

f − 2
, 0

}

, e

)

G({−1}, f) − 4G

({

− f

f − 2
,− f

f − 2

}

, e

)

G({−1}, f)

+ 4G

({

− f

f − 2
,− f

f − 1

}

, e

)

G({−1}, f) + 4G

({

− f

f − 2
,

f2

2f − 1

}

, e

)

G({−1}, f)

+
2

3
π2G({−1}, f) + 2

3
π2G({0}, e) + 2

3
π2G({1}, f)− 4

3
π2G({f}, e)

+
2

3
π2G

({

− f

f − 2

}

, e

)

+ 4G({f}, e)G({−1,−1}, f)

− 4G

({

− f

f − 2

}

, e

)

G({−1,−1}, f) − 4G({0}, e)G({−1, 0}, f)

+ 4G

({

− f

f − 2

}

, e

)

G({−1, 0}, f) − 4G({0}, e)G({0,−1}, f)

+ 4G

({

− f

f − 2

}

, e

)

G({0,−1}, f) − 4G({0}, f)G({0, 0}, e) + 8G({0}, e)G({0, 0}, f)

− 8G({f}, e)G({0, 0}, f) + 4G({0}, f)G
({

0,
f2

2f − 1

}

, e

)

− 4G({0}, e)G({1, 0}, f) + 8G({f}, e)G({1, 0}, f) − 4G

({

− f

f − 2

}

, e

)

G({1, 0}, f)

− 8G({0}, f)G
({

f,− f

f − 2

}

, e

)

+ 8G({0}, f)G
({

f,− f

f − 1

}

, e

)

+ 4G({0}, f)G
({

− f

f − 2
, 0

}

, e

)

+ 8G({0}, f)G
({

− f

f − 2
,− f

f − 2

}

, e

)

− 8G({0}, f)G
({

− f

f − 2
,− f

f − 1

}

, e

)

− 4G({0}, f)G
({

− f

f − 2
,

f2

2f − 1

}

, e

)

− 4G({−1,−1, 0}, f) − 4G({−1, 0,−1}, f)

+ 8G({−1, 0, 0}, f) − 4G({−1, 1, 0}, f) − 4G({0,−1,−1}, f) + 8G({0,−1, 0}, f)

+ 8G({0, 0,−1}, f) − 8G({0, 0, 0}, f) + 4G({0, 0, f}, e) − 4G

({

0, 0,
f2

2f − 1

}

, e

)

+ 4G

({

0,
1

f
, 0

}

, e

)

− 4G

({

0,
1

f
, f

}

, e

)

− 4G

({

0,
1

f
,− f

f − 1

}

, e

)

+ 4G

({

0,
1

f
,

f2

2f − 1

}

, e

)

− 4G

({

0,
f2

2f − 1
, 0

}

, e

)

+ 4G

({

0,
f2

2f − 1
,− f

f − 1

}

, e

)

− 4G({1,−1, 0}, f)− 4G({1, 0,−1}, f) + 8G({1, 0, 0}, f) − 4G({1, 1, 0}, f)

+ 4G({f, 0, 0}, e) − 4G({f, 0, f}, e) − 4G

({

f, 0,− f

f − 1

}

, e

)

+ 4G

({

f, 0,
f2

2f − 1

}

, e

)

− 4G

({

f,
1

f
, 0

}

, e

)
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+ 4G

({

f,
1

f
, f

}

, e

)

+ 4G

({

f,
1

f
,− f

f − 1

}

, e

)

− 4G

({

f,
1

f
,

f2

2f − 1

}

, e

)

+ 4G

({

f,− f

f − 2
, 0

}

, e

)

+ 4G

({

f,− f

f − 2
, f

}

, e

)

− 4G

({

f,− f

f − 2
,− f

f − 1

}

, e

)

− 4G

({

f,− f

f − 2
,

f2

2f − 1

}

, e

)

− 4G

({

f,− f

f − 1
, 0

}

, e

)

− 4G

({

f,− f

f − 1
, f

}

, e

)

+ 4G

({

f,− f

f − 1
,− f

f − 1

}

, e

)

+ 4G

({

f,− f

f − 1
,

f2

2f − 1

}

, e

)

− 4G

({

− f

f − 2
, 0, 0

}

, e

)

+ 4G

({

− f

f − 2
, 0,− f

f − 1

}

, e

)

− 4G

({

− f

f − 2
,− f

f − 2
, 0

}

, e

)

− 4G

({

− f

f − 2
,− f

f − 2
, f

}

, e

)

+ 4G

({

− f

f − 2
,− f

f − 2
,− f

f − 1

}

, e

)

+ 4G

({

− f

f − 2
,− f

f − 2
,

f2

2f − 1

}

, e

)

+ 4G

({

− f

f − 2
,− f

f − 1
, 0

}

, e

)

+ 4G

({

− f

f − 2
,− f

f − 1
, f

}

, e

)

− 4G

({

− f

f − 2
,− f

f − 1
,− f

f − 1

}

, e

)

− 4G

({

− f

f − 2
,− f

f − 1
,

f2

2f − 1

}

, e

)

+ 4G

({

− f

f − 2
,

f2

2f − 1
, 0

}

, e

)

−4G

({

− f

f − 2
,

f2

2f − 1
,− f

f − 1

}

, e

)

+ 12ζ(3)

)

+ O(ǫ) (8.34)

M̃11 =
(f − 1)2(e(f − 1) + f)2

e(f + 1)(e − f)2
×

(

e(−f)G({0}, f) + eG({0}, f) − efG

({

− f

f − 1

}

, e

)

+ eG

({

− f

f − 1

}

, e

)

+ (e(f − 1) + f)G({−1}, f) + (e(f − 1) + f)G({0}, e)

−fG

({

− f

f − 1

}

, e

)

− fG({0}, f) − 2e + f

)

+
ǫ(f − 1)(e(f − 1) + f)2

3e(e − f)2(f + 1)
×

×
(

9eG({0}, f)f2 + 3G({0}, f)f2 − 12G

({

f

2

}

, e

)

f2

+ 12eG({0}, f)G
({

− f

f − 2

}

, e

)

f2 + 12G({0}, f)G
({

− f

f − 2

}

, e

)

f2

+ 9eG

({

− f

f − 1

}

, e

)

f
2 − 15eG({0}, f)G

({

− f

f − 1

}

, e

)

f
2

− 15G({0}, f)G
({

− f

f − 1

}

, e

)

f2 + 15G

({

− f

f − 1

}

, e

)

f2

− 6G({0}, f)G
({

f2

2f − 1

}

, e

)

f2 − 9eG({−1,−1}, f)f2 − 9G({−1,−1}, f)f2
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+ 3eG({−1, 0}, f)f2
+ 9G({−1, 0}, f)f2

+ 3eG({0,−1}, f)f2

+ 9G({0,−1}, f)f2 − 9eG({0, 0}, e)f2

− 9G({0, 0}, e)f2 + 9eG({0, 0}, f)f2 − 3G({0, 0}, f)f2 − 12eG

({

0,
f

2

}

, e

)

f2

− 12G

({

0,
f

2

}

, e

)

f2 + 6eG({0, f}, e)f2 + 21eG

({

0,− f

f − 1

}

, e

)

f2

+ 21G

({

0,− f

f − 1

}

, e

)

f2 − 6eG

({

0,
f2

2f − 1

}

, e

)

f2

− 12eG({1, 0}, f)f2 − 6G({1, 0}, f)f2 + 6eG

({

1

f
, 0

}

, e

)

f2

− 6eG

({

1

f
, f

}

, e

)

f2 − 6eG

({

1

f
,− f

f − 1

}

, e

)

f2

+ 6eG

({

1

f
,

f2

2f − 1

}

, e

)

f2 − 6eG

({

− f

f − 2
, 0

}

, e

)

f2

− 6G

({

− f

f − 2
, 0

}

, e

)

f2 − 6eG

({

− f

f − 2
, f

}

, e

)

f2

− 6G

({

− f

f − 2
, f

}

, e

)

f
2
+ 6eG

({

− f

f − 2
,− f

f − 1

}

, e

)

f
2

+ 6G

({

− f

f − 2
,− f

f − 1

}

, e

)

f2 + 6eG

({

− f

f − 2
,

f2

2f − 1

}

, e

)

f2

+ 6G

({

− f

f − 2
,

f2

2f − 1

}

, e

)

f2 + 9eG

({

− f

f − 1
, 0

}

, e

)

f2

+ 9G

({

− f

f − 1
, 0

}

, e

)

f2 + 12eG

({

− f

f − 1
,
f

2

}

, e

)

f2

+ 12G

({

− f

f − 1
,
f

2

}

, e

)

f2 + 6eG

({

− f

f − 1
, f

}

, e

)

f2

+ 6G

({

− f

f − 1
, f

}

, e

)

f2 − 21eG

({

− f

f − 1
,− f

f − 1

}

, e

)

f2

− 21G

({

− f

f − 1
,− f

f − 1

}

, e

)

f2 − 6eG

({

− f

f − 1
,

f2

2f − 1

}

, e

)

f2

− 6G

({

− f

f − 1
,

f2

2f − 1

}

, e

)

f
2
+ 6G

({

f2

2f − 1
, 0

}

, e

)

f
2

− 6G

({

f2

2f − 1
,− f

f − 1

}

, e

)

f2 − π2f2 + 3f2 − 6ef − 6eG({0}, f)f

− 3G({0}, f)f + 24eG

({

f

2

}

, e

)

f + 12G

({

f

2

}

, e

)

f

− 6G({0}, f)G({f}, e)f − 24eG({0}, f)G
({

− f

f − 2

}

, e

)

f

− 30eG

({

− f

f − 1

}

, e

)

f + 30eG({0}, f)G
({

− f

f − 1

}

, e

)

f

+ 15G({0}, f)G
({

− f

f − 1

}

, e

)

f − 15G

({

− f

f − 1

}

, e

)

f

+ 12eG({0}, f)G
({

f2

2f − 1

}

, e

)

f + 18eG({−1,−1}, f)f + 9G({−1,−1}, f)f

− 18eG({−1, 0}, f)f − 9G({−1, 0}, f)f − 18eG({0,−1}, f)f − 9G({0,−1}, f)f
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+ 18eG({0, 0}, e)f + 9G({0, 0}, e)f + 6eG({0, 0}, f)f + 9G({0, 0}, f)f

+ 24eG

({

0,
f

2

}

, e

)

f + 12G

({

0,
f

2

}

, e

)

f

− 42eG

({

0,− f

f − 1

}

, e

)

f − 21G

({

0,− f

f − 1

}

, e

)

f

+ 12eG({1, 0}, f)f + 6G({1, 0}, f)f − 6G

({

1

f
, 0

}

, e

)

f

+ 6G

({

1

f
, f

}

, e

)

f + 6G

({

1

f
,− f

f − 1

}

, e

)

f

− 6G

({

1

f
,

f2

2f − 1

}

, e

)

f + 6G({f, 0}, e)f − 6G

({

f,− f

f − 1

}

, e

)

f

+ 12eG

({

− f

f − 2
, 0

}

, e

)

f + 12eG

({

− f

f − 2
, f

}

, e

)

f

− 12eG

({

− f

f − 2
,− f

f − 1

}

, e

)

f − 12eG

({

− f

f − 2
,

f2

2f − 1

}

, e

)

f

− 18eG

({

− f

f − 1
, 0

}

, e

)

f − 9G

({

− f

f − 1
, 0

}

, e

)

f

− 24eG

({

− f

f − 1
,
f

2

}

, e

)

f − 12G

({

− f

f − 1
,
f

2

}

, e

)

f

− 12eG

({

− f

f − 1
, f

}

, e

)

f − 6G

({

− f

f − 1
, f

}

, e

)

f

+ 42eG

({

− f

f − 1
,− f

f − 1

}

, e

)

f + 21G

({

− f

f − 1
,− f

f − 1

}

, e

)

f

+ 12eG

({

− f

f − 1
,

f2

2f − 1

}

, e

)

f + 6G

({

− f

f − 1
,

f2

2f − 1

}

, e

)

f

− 12eG

({

f2

2f − 1
, 0

}

, e

)

f + 12eG

({

f2

2f − 1
,− f

f − 1

}

, e

)

f

+ 2eπ2f + π2f − 3f + 6e− 3eG({0}, f)
+ 3(f − 1)G({0}, e)(−f − e(3f + 1) + (e(f − 5) + 3f)G({0}, f))

− 24eG

({

f

2

}

, e

)

+ 6eG({0}, f)G({f}, e) + 21eG

({

− f

f − 1

}

, e

)

− 15eG({0}, f)G
({

− f

f − 1

}

, e

)

− 6eG({0}, f)G
({

f2

2f − 1

}

, e

)

− 3G({−1}, f)
(

3ef2 + 2eG

({

− f

f − 2

}

, e

)

f2 + 2G

({

− f

f − 2

}

, e

)

f2

− 3eG

({

− f

f − 1

}

, e

)

f2 − 3G

({

− f

f − 1

}

, e

)

f2

− 2G

({

f2

2f − 1

}

, e

)

f2 + f2 − 2ef − 2(ef − 1)G
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1

f

}

, e

)

f

− 2G({f}, e)f − 4eG

({

− f

f − 2

}

, e

)

f + 6eG

({

− f

f − 1

}

, e

)

f

+ 3G

({

− f

f − 1

}

, e

)

f + 4eG

({

f2

2f − 1

}

, e

)

f

− f − e + 3(f − 1)(e(f − 1) + f)G({0}, e) + 2eG({f}, e) − 3eG

({

− f

f − 1

}

, e

)
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−2eG

({

f2

2f − 1

}

, e

))

− 9eG({−1,−1}, f) + 15eG({−1, 0}, f)

+ 15eG({0,−1}, f) − 9eG({0, 0}, e) − 21eG({0, 0}, f) − 12eG

({

0,
f

2

}

, e

)

− 6eG({0, f}, e) + 21eG

({

0,− f

f − 1

}

, e

)

+ 6eG

({

0,
f2

2f − 1

}

, e

)

− 6eG({f, 0}, e) + 6eG

({

f,− f

f − 1

}

, e

)

+ 9eG

({

− f

f − 1
, 0

}

, e

)

+ 12eG

({

− f

f − 1
,
f

2

}

, e

)

+ 6eG

({

− f

f − 1
, f

}

, e

)

− 21eG

({

− f

f − 1
,− f

f − 1

}

, e

)

− 6eG
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− f

f − 1
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f2

2f − 1

}

, e

)

+6eG
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f2

2f − 1
, 0

}

, e

)

− 6eG

({

f2

2f − 1
,− f

f − 1

}

, e

)

− 2eπ2

)

+O(ǫ2) (8.35)

M̃12 = − (f − 1)(e(f − 1) + f)

2(f − e)

√

(f2+f−2e)2

(f−1)2(e(f−1)+f)2

×
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− 4

3
π2G({1}, f) + 1

3
G

({

− f

f − 2

}

, e

)

(−12G({−1,−1}, f)

+6G({−1, 0}, f) + 6G({0,−1}, f) + 24G({0, 0}, f) − 18G({1, 0}, f) + π2
)

− 2

3
G({0}, e)

(

6G({−1, 0}, f) − 6G({0,−1}, f) + 9G({0, 0}, f) − 6G({1, 0}, f) + 2π2
)

+ G({f}, e) (4G({−1,−1}, f) + 2G({−1, 0}, f) − 6G({0,−1}, f)

−2G({0, 0}, f) + 2G({1, 0}, f) + π
2
)

+
2

3
G({−1}, f)

(

−6G({0, f}, e) + 6G
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)
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, 0
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)
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f
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}
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)
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− f
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}
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)
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,− f

f − 2

}
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)
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)

+ 6G
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0,
f2

2f − 1

}
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)
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}
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)
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)
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2
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)

− 12G
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f,
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2f − 1

}
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)

+ 2G
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− f

f − 2
, 0

}
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)

− 8G
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− f
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,
f

2

}
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)
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, f
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)
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− f

f − 2
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f − 2
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, e

)
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+6G

({

− f

f − 2
,

f2

2f − 1

}

, e

)

+ π2

)

+ 4G({−1,−1, 0}, f) − 4G({−1, 0,−1}, f) + 6G({−1, 0, 0}, f) − 4G({−1, 1, 0}, f)
+ 4G({0,−1,−1}, f) + 2G({0,−1, 0}, f) − 6G({0, 0,−1}, f) − 2G({0, 0, 0}, f)

− 4G({0, 0, f}, e) + 4G

({

0, 0,
f2

2f − 1

}

, e

)

+ 2G({0, 1, 0}, f)

− 4G({0, f, 0}, e) − 2G({0, f, f}, e) + 4G

({

0, f,− f

f − 1

}

, e

)

+ 2G

({

0, f,
f2

2f − 1

}

, e

)

+ 4G

({

0,− f

f − 2
, 0

}

, e

)

+ 4G

({

0,− f

f − 2
, f

}

, e

)

− 4G

({

0,− f

f − 2
,− f

f − 1

}

, e

)

− 4G

({

0,− f

f − 2
,

f2

2f − 1

}

, e

)

+ 8G

({

0,
f + 1

2
, f

}

, e

)

− 8G

({

0,
f + 1

2
,

f2

2f − 1

}

, e

)

− 6G

({

0,
f2

2f − 1
, f

}

, e

)

+ 6G

({

0,
f2

2f − 1
,

f2

2f − 1

}

, e

)

− 4G({1,−1, 0}, f) + 4G({1, 0,−1}, f)

− 6G({1, 0, 0}, f) + 4G({1, 1, 0}, f) + 4G({f, 0, 0}, e) + 2G({f, 0, f}, e)

− 4G

({

f, 0,− f

f − 1

}

, e

)

− 2G

({

f, 0,
f2

2f − 1

}

, e

)

− 4G

({

f,
f

2
, 0

}

, e

)

− 4G

({

f,
f

2
, f

}

, e

)

+ 4G

({

f,
f

2
,− f

f − 1

}

, e

)

+ 4G

({

f,
f

2
,

f2

2f − 1

}

, e

)

+ 2G({f, f, 0}, e)

− 2G

({

f, f,− f

f − 1

}

, e

)

− 2G

({

f,− f

f − 2
, 0

}

, e

)

− 2G

({

f,− f

f − 2
, f

}

, e

)

+ 2G

({

f,− f

f − 2
,− f

f − 1

}

, e

)

+ 2G

({

f,− f

f − 2
,

f2

2f − 1

}

, e

)

− 8G

({

f,
f + 1

2
, f

}

, e

)

+ 8G

({

f,
f + 1

2
,

f2

2f − 1

}

, e

)

+ 12G

({

f,
f2

2f − 1
, f

}

, e

)

− 12G

({

f,
f2

2f − 1
,

f2

2f − 1

}

, e

)

− 4G

({

− f

f − 2
, 0, 0

}

, e

)

+ 2G

({

− f

f − 2
, 0, f

}

, e

)

+ 4G

({

− f

f − 2
, 0,− f

f − 1

}

, e

)

− 2G

({

− f

f − 2
, 0,

f2

2f − 1

}

, e

)

+ 4G

({

− f

f − 2
,
f

2
, 0

}

, e

)

+ 4G

({

− f

f − 2
,
f

2
, f

}

, e

)

− 4G

({

− f

f − 2
,
f

2
,− f

f − 1

}

, e

)
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− 4G

({

− f

f − 2
,
f

2
,

f2

2f − 1

}

, e

)

+ 2G

({

− f

f − 2
, f, 0

}

, e

)

+ 2G

({

− f

f − 2
, f, f

}

, e

)

− 2G

({

− f

f − 2
, f,− f

f − 1

}

, e

)

− 2G

({

− f

f − 2
, f,

f2

2f − 1

}

, e

)

− 2G

({

− f

f − 2
,− f

f − 2
, 0

}

, e

)

− 2G

({

− f

f − 2
,− f

f − 2
, f

}

, e

)

+ 2G

({

− f

f − 2
,− f

f − 2
,− f

f − 1

}

, e

)

+ 2G

({

− f

f − 2
,− f

f − 2
,

f2

2f − 1

}

, e

)

− 6G

({

− f

f − 2
,

f2

2f − 1
, f

}

, e

)

+6G

({

− f

f − 2
,

f2

2f − 1
,

f2

2f − 1

}

, e

)

− 18ζ(3)

)

+ O(ǫ) (8.36)

M̃13 = − 1

ǫ2

(f − 1)3(e(f − 1) + f)3
(

G
({

f2

2f−1

}

, e
)

− G({f}, e) + G({0}, f)
)

f(e− f)2(2e− f − 1)

1

ǫ

f(2e− f − 1)

(e− f)2

×
(

−(f − 1)3(e(f − 1) + f)3G({0}, f)
(

−3G

({

f2

2f − 1

}

, e

)

+ G({f}, e)

+2G

({

− f

f − 1

}

, e

)

− 2G

({

f + 1

2

}

, e

))

+ 2(f − 1)3(e(f − 1) + f)3G({−1}, f)
(

G({f}, e) − G

({

f2

2f − 1

}

, e

))

− 2(f − 1)3(e(f − 1) + f)3G

({

0,
f2

2f − 1

}

, e

)

+ (f − 1)3(e(f − 1) + f)3G

({

f,
f2

2f − 1

}

, e

)

− 2(f − 1)3(e(f − 1) + f)3G

({

− f

f − 1
,

f2

2f − 1

}

, e

)

+ 2(f − 1)
3
(e(f − 1) + f)

3
G

({

f + 1

2
,

f2

2f − 1

}

, e

)

− 2(f − 1)3(e(f − 1) + f)3G

({

f2

2f − 1
, 0

}

, e

)

+ 4(f − 1)
3
(e(f − 1) + f)

3
G

({

f2

2f − 1
,
f

2

}

, e

)

− (f − 1)3(e(f − 1) + f)3G

({

f2

2f − 1
, f

}

, e

)

− 2(f − 1)3(e(f − 1) + f)3G

({

f2

2f − 1
,− f

f − 1

}

, e

)

+ (f − 1)3(e(f − 1) + f)3G

({

f2

2f − 1
,

f2

2f − 1

}

, e

)
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− 2(f − 1)
3
(e(f − 1) + f)

3
G({0}, e)G({0}, f)

− 2(f − 1)3(e(f − 1) + f)3G({0,−1}, f) + 5(f − 1)3(e(f − 1) + f)3G({0, 0}, f)

+ 2(f − 1)3(e(f − 1) + f)3G({0, f}, e) − 4(f − 1)3(e(f − 1) + f)3G({1, 0}, f)

+ 2(f − 1)3(e(f − 1) + f)3G({f, 0}, e) − 4(f − 1)3(e(f − 1) + f)3G

({

f,
f

2

}

, e

)

− (f − 1)3(e(f − 1) + f)3G({f, f}, e) + 2(f − 1)3(e(f − 1) + f)3G

({

f,− f

f − 1

}

, e

)

+ 2(f − 1)
3
(e(f − 1) + f)

3
G

({

− f

f − 1
, f

}

, e

)

−2(f − 1)3(e(f − 1) + f)3G

({

f + 1

2
, f

}

, e

)

+
5

6
π2(f − 1)3(e(f − 1) + f)3

)

(8.37)

M̃25 =
1

6

√

(2a+1)2b2

(a−b)2
(b + 1)(ba − a + b)

(

−3G({0}, a)
(

−2G({−1,−1}, b) + 2G({0,−1}, b) + 3π
2
)

(a − b)

+ 2G

({

− b

b − 1

}

, a

)(

3G({−1,−1}, b) + 4

(

−3G

({

− 1

2
,−1

}

, b

)

+3G

({

− 1

2
, 0

}

, b

)

+ 6G({0,−1}, b) − 6G({0, 0}, b) + π
2

))

(a − b)

+ G({−1}, a)
(

−12G({−1,−1}, b) + 24G

({

− 1

2
,−1

}

, b

)

−24G

({

−1

2
, 0

}

, b

)

− 42G({0,−1}, b) + 48G({0, 0}, b) + π2

)

(a − b)

+ 2G({0}, b)
(

6G({−1,−1}, a) − 3G({−1, 0}, a) − 12G

({

−1,−1 − 1

2b

}

, a

)

− 6G({−1, b}, a) + 15G

({

−1,
1

b2 + 1
− 1

}

, a

)

− 12G({0,−1}, a) + 3G({0, 0}, a)

− 18G

({

0,
b

2

}

, a

)

+ 12G({0, b}, a) + 15G

({

0,
1

b2 + 1
− 1

}

, a

)

+ 6G

({

− b

b − 1
,−1

}

, a

)

+ 12G

({

− b

b − 1
,−1 − 1

2b

}

, a

)

+ 18G

({

− b

b − 1
,
b

2

}

, a

)

− 6G

({

− b

b − 1
, b

}

, a

)

−30G

({

− b

b − 1
,

1

b2 + 1
− 1

}

, a

)

+ 4π2

)

(a − b)

− 2G({−1}, b)
(

3G({−1,−1}, a) − 6G({−1, 0}, a) − 12G

({

−1,−1 − 1

2b

}

, a

)

− 3G({−1, b}, a) + 6G

({

−1,− b + 1

b

}

, a

)

+ 12G

({

−1,
1

b2 + 1
− 1

}

, a

)

− 6G({0,−1}, a) + 3G({0, 0}, a) − 12G

({

0,
b

2

}

, a

)

+ 6G({0, b}, a)

− 3G

({

0,− b + 1

b

}

, a

)

+ 12G

({

0,
1

b2 + 1
− 1

}

, a

)

+ 3G

({

− b

b − 1
,−1

}

, a

)

+ 3G

({

− b

b − 1
, 0

}

, a

)

+ 12G

({

− b

b − 1
,−1 − 1

2b

}

, a

)

+ 12G

({

− b

b − 1
,
b

2

}

, a

)

− 3G

({

− b

b − 1
, b

}

, a

)

− 3G

({

− b

b − 1
,− b + 1

b

}

, a

)
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−24G

({

− b

b − 1
,

1

b2 + 1
− 1

}

, a

)

+ 4π2

)

(a − b)

− 6G({−1,−1,−1}, b)(a − b) − 6G({−1,−1, 0}, a)(a − b) + 6G({−1,−1, b}, a)(a − b)

− 6G

({

−1,−1,− b

b − 1

}

, a

)

(a − b) + 6G

({

−1,−1,
1

b2 + 1
− 1

}

, a

)

(a − b)

+ 24G

({

−1,−1

2
,−1

}

, b

)

(a − b) − 24G

({

−1,− 1

2
, 0

}

, b

)

(a − b)

− 48G({−1, 0,−1}, b)(a − b) − 6G({−1, 0, 0}, a)(a − b) + 48G({−1, 0, 0}, b)(a − b)

+ 6G({−1, 0, b}, a)(a − b) + 12G

({

−1, 0,− b

b − 1

}

, a

)

(a − b)

− 12G

({

−1, 0,
1

b2 + 1
− 1

}

, a

)

(a − b) + 24G

({

−1,−1 − 1

2b
,− b

b − 1

}

, a

)

(a − b)

− 24G

({

−1,−1 − 1

2b
,

1

b2 + 1
− 1

}

, a

)

(a − b)

+ 6G({−1, b, 0}, a)(a − b) − 6G({−1, b, b}, a)(a − b)

+ 6G

({

−1, b,− b

b − 1

}

, a

)

(a − b) − 6G

({

−1, b,
1

b2 + 1
− 1

}

, a

)

(a − b)

+ 12G

({

−1,− b + 1

b
, 0

}

, a

)

(a − b) − 12G

({

−1,− b + 1

b
, b

}

, a

)

(a − b)

− 12G

({

−1,− b + 1

b
,− b

b − 1

}

, a

)

(a − b) + 12G

({

−1,− b + 1

b
,

1

b2 + 1
− 1

}

, a

)

(a − b)

− 6G

({

−1,
1

b2 + 1
− 1, 0

}

, a

)

(a − b) + 6G

({

−1,
1

b2 + 1
− 1, b

}

, a

)

(a − b)

− 24G

({

−1,
1

b2 + 1
− 1,− b

b − 1

}

, a

)

(a − b)

+ 24G

({

−1,
1

b2 + 1
− 1,

1

b2 + 1
− 1

}

, a

)

(a − b)

+ 6G({0,−1,−1}, b)(a − b) + 12G({0,−1, 0}, a)(a − b) − 12G({0,−1, b}, a)(a − b)

+ 12G

({

0,−1,− b

b − 1

}

, a

)

(a − b) − 12G

({

0,−1,
1

b2 + 1
− 1

}

, a

)

(a − b)

− 24G

({

0,−1

2
,−1

}

, b

)

(a − b) + 24G

({

0,− 1

2
, 0

}

, b

)

(a − b)

+ 48G({0, 0,−1}, b)(a − b) − 48G({0, 0, 0}, b)(a − b) − 6G

({

0, 0,− b

b − 1

}

, a

)

(a − b)

+ 6G

({

0, 0,
1

b2 + 1
− 1

}

, a

)

(a − b) + 12G

({

0,
b

2
, 0

}

, a

)

(a − b)

− 12G

({

0,
b

2
, b

}

, a

)

(a − b) + 24G

({

0,
b

2
,− b

b − 1

}

, a

)

(a − b)

− 24G

({

0,
b

2
,

1

b2 + 1
− 1

}

, a

)

(a − b) − 12G({0, b, 0}, a)(a − b)

+ 12G({0, b, b}, a)(a − b) − 12G

({

0, b,− b

b − 1

}

, a

)

(a − b)

+ 12G

({

0, b,
1

b2 + 1
− 1

}

, a

)

(a − b) − 6G

({

0,− b + 1

b
, 0

}

, a

)

(a − b)

+ 6G

({

0,− b + 1

b
, b

}

, a

)

(a − b) + 6G

({

0,− b + 1

b
,− b

b − 1

}

, a

)

(a − b)

− 6G

({

0,− b + 1

b
,

1

b2 + 1
− 1

}

, a

)

(a − b) − 6G

({

0,
1

b2 + 1
− 1, 0

}

, a

)

(a − b)
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+ 6G

({

0,
1

b2 + 1
− 1, b

}

, a

)

(a − b) − 24G

({

0,
1

b2 + 1
− 1,− b

b − 1

}

, a

)

(a − b)

+ 24G

({

0,
1

b2 + 1
− 1,

1

b2 + 1
− 1

}

, a

)

(a − b) − 6G

({

− b

b − 1
,−1, 0

}

, a

)

(a − b)

+ 6G

({

− b

b − 1
,−1, b

}

, a

)

(a − b) − 6G

({

− b

b − 1
,−1,− b

b − 1

}

, a

)

(a − b)

+ 6G

({

− b

b − 1
,−1,

1

b2 + 1
− 1

}

, a

)

(a − b) + 6G

({

− b

b − 1
, 0, 0

}

, a

)

(a − b)

− 6G

({

− b

b − 1
, 0, b

}

, a

)

(a − b) − 6G

({

− b

b − 1
, 0,− b

b − 1

}

, a

)

(a − b)

+ 6G

({

− b

b − 1
, 0,

1

b2 + 1
− 1

}

, a

)

(a − b) − 24G

({

− b

b − 1
,−1 − 1

2b
,− b

b − 1

}

, a

)

(a − b)

+ 24G

({

− b

b − 1
,−1 − 1

2b
,

1

b2 + 1
− 1

}

, a

)

(a − b) − 12G

({

− b

b − 1
,
b

2
, 0

}

, a

)

(a − b)

+ 12G

({

− b

b − 1
,
b

2
, b

}

, a

)

(a − b) − 24G

({

− b

b − 1
,
b

2
,− b

b − 1

}

, a

)

(a − b)

+ 24G

({

− b

b − 1
,
b

2
,

1

b2 + 1
− 1

}

, a

)

(a − b) + 6G

({

− b

b − 1
, b, 0

}

, a

)

(a − b)

− 6G

({

− b

b − 1
, b, b

}

, a

)

(a − b) + 6G

({

− b

b − 1
, b,− b

b − 1

}

, a

)

(a − b)

− 6G

({

− b

b − 1
, b,

1

b2 + 1
− 1

}

, a

)

(a − b) − 6G

({

− b

b − 1
,− b + 1

b
, 0

}

, a

)

(a − b)

+ 6G

({

− b

b − 1
,− b + 1

b
, b

}

, a

)

(a − b) + 6G

({

− b

b − 1
,− b + 1

b
,− b

b − 1

}

, a

)

(a − b)

− 6G

({

− b

b − 1
,− b + 1

b
,

1

b2 + 1
− 1

}

, a

)

(a − b)

+ 12G

({

− b

b − 1
,

1

b2 + 1
− 1, 0

}

, a

)

(a − b)

− 12G

({

− b

b − 1
,

1

b2 + 1
− 1, b

}

, a

)

(a − b)

+ 48G

({

− b

b − 1
,

1

b2 + 1
− 1,− b

b − 1

}

, a

)

(a − b)

− 48G

({

− b

b − 1
,

1

b2 + 1
− 1,

1

b2 + 1
− 1

}

, a

)

(a − b)

−
(

−4π2 + 18ζ(3)
)

(a − b)
)

+ O(ǫ) (8.38)

M̃29 =
π2G({0}, z) + 6G({0, 0, 0}, z) − 6G({0, 1, 0}, z) + 12ζ(3)

6(y + 1)

+ O(ǫ) (8.39)

M̃30 =
1

ǫ

G({0}, z)
2(y + 1)z

+
−3(y + 1)G({0, 0}, z) − 12(y + 1)G({0, 1}, z) + 6G({0}, z) − 2π2y − 6z − 2π2 + 6

6(y + 1)2z

+
ǫ

12(y + 1)2z

(

−3
(

π
2
(y + 1) + 8z + 4

)

G({0}, z) − 6(y + 1)G({0, 0, 0}, z)

+ 24(y + 1)G({0, 0, 1}, z) + 96(y + 1)G({0, 1, 1}, z) + 48(z − 1)G({1}, z) + (24z − 36)G({0, 0}, z)
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−48G({0, 1}, z) − 24(z − 1)G({1, 0}, z) − 72yζ(3) + 4π
2
z − 12z − 72ζ(3) − 12π

2
+ 12

)

(8.40)

M̃31 = +
1

ǫ3(y + 1)2(z − 1)

2G({0}, z) − 4G({1}, z)
ǫ2(y + 1)2(z − 1)

+
−48G({0, 1}, z) − 24G({1, 0}, z) + 96G({1, 1}, z) − 11π2

6ep(y + 1)2(z − 1)

+
1

3(y + 1)2(z − 1)

(

−6π2G({0}, z) + 17π2G({1}, z) − 6G({0, 0, 0}, z) − 6G({0, 1, 0}, z)

+ 96G({0, 1, 1}, z) + 6G({1, 0, 0}, z) + 48G({1, 0, 1}, z) + 30G({1, 1, 0}, z)
−192G({1, 1, 1}, z) − 74ζ(3)) + O(ǫ) (8.41)

Master Integrals for
[

g+W∗ → t+ b̄
]

1loop
.

M̃15 =
1

ǫ

3G({−y, 0}, z) − 3G({0,−1}, y) + 3G({0, 0}, y) − 3G({1, 0}, z) + π2

24π(y + 1)

+
1

48π(y + 1)
(6G({−1}, y)G({1, 0}, z) + 6G({−1}, y)G({1, y + 1}, z)

− 12G({−1}, y)G({−y, 0}, z) − 6π2G({−y}, z) + 6G({−1,−1}, y)G({1}, z)
+ 6G({0,−1}, y)G({1}, z) + 12G({0,−1}, y)G({−y}, z) − 12G({0, 0}, y)G({1}, z)
− 12G({0, 0}, y)G({−y}, z) − 12G({1,−y, 0}, z) − 6G({1, y + 1, 0}, z) − 6G({−y, 0, 0}, z)
− 12G({−y, 0, 1}, z) + 12G({−y, 1, 0}, z) − 12G({−y,−y, 0}, z) + 6 log(π)G({−y, 0}, z)

+ 6 log(4)G({−y, 0}, z) + 4π
2
G({−1}, y) − 5π

2
G({0}, y) − 12G({−1, 0,−1}, y)

+ 12G({−1, 0, 0}, y) + 6G({0,−1,−1}, y) + 12G({0, 0,−1}, y) − 18G({0, 0, 0}, y)
− 6 log(π)G({0,−1}, y) + 6 log(π)G({0, 0}, y) − 6 log(4)G({0,−1}, y)

+ 6 log(4)G({0, 0}, y) − π2G({1}, z) + 12G({1, 0, 0}, z) + 12G({1, 0, 1}, z)

+12G({1, 1, 0}, z) − 6 log(π)G({1, 0}, z) − 6 log(4)G({1, 0}, z) − 6ζ(3) + 2π2 log(4π)
)

+ O(ǫ) (8.42)

M̃16 =
(z − 1)

(

−6G({0}, y)G({0}, z) − 6G({0,−y}, z) + 6G({0, 0}, y) − 6iπG({0}, z) + 6G({0, 1}, z) + π2
)

48π(y + 1)

+ ǫ
(z − 1)

48π(y + 1)
(−12G({0}, y)G({0}, z) + 6G({0}, y)G({0, 0}, z)

+ 12G({0}, y)G({0, 1}, z) + 12G({0}, y)G({0,−y}, z) + 12G({0}, y)G({1, 0}, z)
− 12G({0, 0}, y)G({1}, z) − 12G({0,−y}, z) + 6G({0, 0,−y}, z) + 12G({0, 1,−y}, z)
− 6G({0,−y, 0}, z) + 12G({0,−y, 1}, z) + 12G({0,−y,−y}, z) + 12G({1, 0,−y}, z)
− 6 log(π)G({0}, y)G({0}, z) − 6 log(4)G({0}, y)G({0}, z) − 6 log(π)G({0,−y}, z)

− 6 log(4)G({0,−y}, z) + π
2
G({0}, y) + 12G({0, 0}, y) − 6G({0, 0, 0}, y)

+ 6 log(π)G({0, 0}, y) + 6 log(4)G({0, 0}, y) + 2π2G({0}, z) − 12iπG({0}, z)

− 2π2G({1}, z) + 6iπG({0, 0}, z) + 24iπG({0, 1}, z) + 12G({0, 1}, z)
+ 12iπG({1, 0}, z) − 6G({0, 0, 1}, z) + 6G({0, 1, 0}, z) − 36G({0, 1, 1}, z)
− 12G({1, 0, 1}, z) − 6iπ log(4π)G({0}, z) + 6 log(π)G({0, 1}, z)
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+6 log(4)G({0, 1}, z) − 36ζ(3) + 2iπ
3
+ 2π

2
+ π

2
log(4π)

)

+ ǫ2
(z − 1)

24π(y + 1)
(−12G({0}, y)G({0}, z) + 6G({0}, y)G({0, 0}, z)

+ 12G({0}, y)G({0, 1}, z) + 12G({0}, y)G({0,−y}, z) + 12G({0}, y)G({1, 0}, z)
− 12G({0, 0}, y)G({1}, z) − 12G({0,−y}, z) + 6G({0, 0,−y}, z) + 12G({0, 1,−y}, z)
− 6G({0,−y, 0}, z) + 12G({0,−y, 1}, z) + 12G({0,−y,−y}, z) + 12G({1, 0,−y}, z)
− 6 log(π)G({0}, y)G({0}, z) − 6 log(4)G({0}, y)G({0}, z) − 6 log(π)G({0,−y}, z)

− 6 log(4)G({0,−y}, z) + π2G({0}, y) + 12G({0, 0}, y) − 6G({0, 0, 0}, y)

+ 6 log(π)G({0, 0}, y) + 6 log(4)G({0, 0}, y) + 2π2G({0}, z) − 12iπG({0}, z)

− 2π2G({1}, z) + 6iπG({0, 0}, z) + 24iπG({0, 1}, z) + 12G({0, 1}, z)
+ 12iπG({1, 0}, z) − 6G({0, 0, 1}, z) + 6G({0, 1, 0}, z) − 36G({0, 1, 1}, z)
− 12G({1, 0, 1}, z) − 6iπ log(4π)G({0}, z) + 6 log(π)G({0, 1}, z)

+6 log(4)G({0, 1}, z) − 36ζ(3) + 2iπ
3
+ 2π

2
+ π

2
log(4π)

)

+ O(ǫ) (8.43)

M̃17 =
1

48π(y + 1)
(6(G({−1,−1}, y)G({0}, z) − G({0, y + 1, 0}, z) − G({−1,−1,−1}, y)

+ G({−1, 0,−1}, y) + G({0, 0, 0}, z) + 2ζ(3))

−G({−1}, y)
(

−6G({0, y + 1}, z) + 6G({0, 0}, z) + π2
))

+ O(ǫ) (8.44)

M̃18 =
G({0}, z)

ǫ(16πyz + 16πz)

− G({0}, z)(6G({−1}, y)− 3(2 + log(4π))) + 3G({0, 0}, z) + 6G({0, 1}, z) + π2

48(π(y + 1)z)

− ǫ

96 (π(y + 1)2z)
×

× (2 (18yG({0, 0}, z) + 12yG({0, 1}, z) − 12yG({y + 1, 0}, z) + 3yG({0, 0, 0}, z)
− 6yG({0, 0, 1}, z) − 12yG({0, 1, 1}, z) − 12yG({0, y + 1, 0}, z) + 12(y − z + 1)G({−1,−1}, y)
+ 12zG({y + 1, 0}, z) − 12G({y + 1, 0}, z) − 12G({0, y + 1, 0}, z) + 3y log(π)G({0, 0}, z)
+ 6y log(π)G({0, 1}, z) + y log(64)G({0, 0}, z) + 6y log(4)G({0, 1}, z)
− 12yG({0,−1}, y) − 12yG({−1,−1,−1}, y) + 12yG({−1, 0,−1}, y) − 12G({−1,−1,−1}, y)
+ 12G({−1, 0,−1}, y) − 12zG({0, 0}, z) + 18G({0, 0}, z) + 12G({0, 1}, z)
+ 3G({0, 0, 0}, z) − 6G({0, 0, 1}, z) − 12G({0, 1, 1}, z) + 3 log(π)G({0, 0}, z)
+ 6 log(π)G({0, 1}, z) + log(64)G({0, 0}, z) + 6 log(4)G({0, 1}, z) + 30yζ(3)

+4π2y + π2y log(4π) + 30ζ(3) + 2π2 + π2 log(4π)
)

+ (y + 1)
(

π2 − 3 log2(4) − 12 log(4) − log(π)(12 + log(4096) + 3 log(π))
)

G({0}, z)

− 4G({−1}, y) (−6(y − z + 1)G({y + 1}, z) + (y + 1) (−6G({0, y + 1}, z)

+9G({0, 0}, z) + 6G({0, 1}, z) + 2π2
)

− 3((y + 1) log(4π) + 2z)G({0}, z)
))

+
ǫ2

48π(y + 1)2z
(2G({−1}, y) (12G({0, 1}, z)z + 6G({1, 0}, z)z

− 6G({1, y + 1}, z)z + 6G({y + 1, 0}, z)z − 12G({y + 1, 1}, z)z − 6G({0}, z) log(π)z
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+ 6G({y + 1}, z) log(π)z − 6G({0}, z) log(4)z + 6G({y + 1}, z) log(4)z + π
2
z

+ 6(2y − z + 2)G({0, y + 1}, z) − 6G({1, 0}, z) + 6G({1, y + 1}, z) − 6yG({y + 1, 0}, z)
− 6G({y + 1, 0}, z) + 12yG({y + 1, 1}, z) + 12G({y + 1, 1}, z) − 6yG({y + 1}, z) log(π)
−6G({y + 1}, z) log(π) − 6yG({y + 1}, z) log(4) − 6G({y + 1}, z) log(4))

+ G({0}, z)
(

−24G({0,−1}, y)y + log(π) log
(

4096π
3
)

y

+ 3 log2(4)y + 7π2y − 4π2z + 12(2y + z + 2)G({−1,−1}, y) + log(π) log
(

4096π3
)

+3 log2(4) + 3π2
)

+ 2 (6G({−1,−1,−1}, y)y − 6G({0,−1,−1}, y)y

+ 21G({0, 0, 0}, z)y + 18G({0, 0, 1}, z)y + 6G({0, 1, 0}, z)y + 12G({0, 1, 1}, z)y
− 12G({0, y + 1, 0}, z)y − 12G({y + 1, 0, 1}, z)y − 6G({y + 1, 1, 0}, z)y

− 2π2 log(4π)y − 6G({−1,−1}, y) log(π)y + 6G({0,−1}, y) log(π)y
− 9G({0, 0}, z) log(π)y − 6G({0, 1}, z) log(π)y + 6G({y + 1, 0}, z) log(π)y
− 6G({−1,−1}, y) log(4)y + 6G({0,−1}, y) log(4)y − 9G({0, 0}, z) log(4)y
− 6G({0, 1}, z) log(4)y + 6G({y + 1, 0}, z) log(4)y

+ (z − 1)G({1}, z)
(

−6G({−1,−1}, y) − 6G({0,−1}, y) + π2
)

− (y − z + 1)G({y + 1}, z)
(

−12G({−1,−1}, y) + 6G({0,−1}, y) + π2
)

− 12zG({−1,−1,−1}, y) + 6G({−1,−1,−1}, y) + 6zG({−1, 0,−1}, y) − 6zG({0, 0, 0}, z)
+ 21G({0, 0, 0}, z) − 12zG({0, 0, 1}, z) + 18G({0, 0, 1}, z) − 6zG({0, 1, 0}, z)
+ 6G({0, 1, 0}, z) + 12G({0, 1, 1}, z) + 6zG({0, y + 1, 0}, z) − 12G({0, y + 1, 0}, z)
− 6zG({1, 0, 0}, z) + 6G({1, 0, 0}, z) + 6zG({1, y + 1, 0}, z) − 6G({1, y + 1, 0}, z)
+ 12zG({y + 1, 0, 1}, z) − 12G({y + 1, 0, 1}, z) + 6zG({y + 1, 1, 0}, z) − 6G({y + 1, 1, 0}, z)

− 24zζ(3) + 30ζ(3) − π2 log(4π) + 6zG({−1,−1}, y) log(π)
− 6G({−1,−1}, y) log(π) + 6zG({0, 0}, z) log(π) − 9G({0, 0}, z) log(π)
− 6G({0, 1}, z) log(π) − 6zG({y + 1, 0}, z) log(π) + 6G({y + 1, 0}, z) log(π)
+ 6zG({−1,−1}, y) log(4) − 6G({−1,−1}, y) log(4) + 6zG({0, 0}, z) log(4)
− 9G({0, 0}, z) log(4) − 6G({0, 1}, z) log(4) − 6zG({y + 1, 0}, z) log(4)
+6G({y + 1, 0}, z) log(4))) (8.45)

M̃19 = − 1

16ǫ3 (π(y + 1)2(z − 1))

− 2G({−y}, z) − 2G({−1}, y) + 2G({0}, y) + 2G({0}, z) − 4G({1}, z) + 2iπ + log(4π)

16ǫ2 (π(y + 1)2(z − 1))

+
1

32πǫ(y + 1)2(z − 1)
(8G({0}, y)G({−y}, z) − 8G({0,−y}, z)

+ 8G({1,−y}, z) − 8G({−y, 0}, z) + 8G({−y, 1}, z) + 8G({−y,−y}, z)
+ G({0}, z)(8G({−1}, y) − 8G({0}, y) − 8iπ − 4 log(π) − 4 log(4))

+ 8G({1}, z)(−G({−1}, y) + G({0}, y) + 2iπ + log(4π)) − 4 log(π)G({−y}, z)
− 4 log(4)G({−y}, z) − 8G({−1,−1}, y) + 8G({0, 0}, y) + 4 log(π)G({−1}, y)
+ 4 log(4)G({−1}, y) − 4 log(π)G({0}, y) − 4 log(4)G({0}, y)

+ 16G({0, 1}, z) + 8G({1, 0}, z) − 32G({1, 1}, z) + 5π2

− log2(4) − log(π) log(16π) − 4iπ log(4π)
)

+
1

96π(y + 1)2(z − 1)
(−24G({−1,−1}, y)G({0}, z) + 24G({0,−1}, y)G({0}, z)

− 2 log(π) log
(

4096π
3
)

G({0}, z) − 24iπ log(4π)G({0}, z)
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− 6 log
2
(4)G({0}, z) + 10π

2
G({0}, z) − 44π

2
G({1}, z) + 18π

2
G({−y}, z)

+ 48G({1}, z)G({−1,−1}, y) − 24G({−y}, z)G({0,−1}, y) − 48G({1}, z)G({0, 0}, y)
+ 24iπG({0, 0}, z) + 96iπG({0, 1}, z) + 24iπG({1, 0}, z)
− 192iπG({1, 1}, z) + 24G({−1,−1,−1}, y) − 24G({0, 0,−1}, y) − 24G({0, 0, 1}, z)
+ 24G({0, 0,−y}, z) + 24G({0, 1, 0}, z) − 192G({0, 1, 1}, z) + 48G({0, 1,−y}, z)
− 24G({0,−y, 0}, z) + 48G({0,−y, 1}, z) + 48G({0,−y,−y}, z) − 24G({0, y + 1, 0}, z)
− 72G({1, 0, 1}, z) + 24G({1, 0,−y}, z) − 72G({1, 1, 0}, z) + 384G({1, 1, 1}, z)
− 48G({1, 1,−y}, z) + 24G({1,−y, 0}, z) − 48G({1,−y, 1}, z) − 48G({1,−y,−y}, z)
+ 24G({−y, 0, 0}, z) + 48G({−y, 0, 1}, z) − 48G({−y, 1, 1}, z) − 48G({−y, 1,−y}, z)
+ 48G({−y,−y, 0}, z) − 48G({−y,−y, 1}, z) − 48G({−y,−y,−y}, z)
+ 2G({0}, y) (−12 log(π)G({0}, z) − 12 log(4)G({0}, z)
+ 12G({0, 0}, z) + 24G({0, 1}, z) + 24G({0,−y}, z) + 12G({1, 0}, z) − 24G({1, 1}, z)
− 24G({1,−y}, z) − 24G({−y, 1}, z) − 24G({−y,−y}, z)

− log(π) log
(

4096π
3
)

+ 12G({1}, z) log(π)

+ 12G({−y}, z) log(π) − 3 log2(4)

+12G({1}, z) log(4) + 12G({−y}, z) log(4) + 9π2
)

+ G({−1}, y) (24 log(π)G({0}, z) + 24 log(4)G({0}, z) − 24G({0, 0}, z)
− 48G({0, 1}, z) + 24G({0, y + 1}, z) − 24G({1, 0}, z) + 48G({1, 1}, z)

+ 24G({−y, 0}, z) + 2 log(π) log
(

4096π3
)

− 24G({1}, z) log(π)

+6 log2(4) − 24G({1}, z) log(4) − 14π2
)

+ 76ζ(3)

+ 2G({1}, z) log(π) log
(

4096π3
)

− 2G({−y}, z) log(π) log
(

4096π
3
)

− log
2
(π) log(64π)

+ 6G({1}, z) log(π) log(16π) − 6iπ log
2
(4π)

+ 48iπG({1}, z) log(4π) + 15π
2
log(4π)

− 24G({−1,−1}, y) log(π) + 24G({0, 0}, y) log(π) + 48G({0, 1}, z) log(π)
− 24G({0,−y}, z) log(π) + 24G({1, 0}, z) log(π) − 96G({1, 1}, z) log(π)
+ 24G({1,−y}, z) log(π) − 24G({−y, 0}, z) log(π) + 24G({−y, 1}, z) log(π)

+ 24G({−y,−y}, z) log(π) − 12 log2(2) log(π) + 12G({1}, z) log2(4)

− 6G({−y}, z) log2(4) − 24G({−1,−1}, y) log(4) + 24G({0, 0}, y) log(4)
+ 48G({0, 1}, z) log(4) − 24G({0,−y}, z) log(4) + 24G({1, 0}, z) log(4)
− 96G({1, 1}, z) log(4) + 24G({1,−y}, z) log(4) − 24G({−y, 0}, z) log(4)
+ 24G({−y, 1}, z) log(4) + 24G({−y,−y}, z) log(4)

−8 log3(2) + 18iπ3
)

+ O (ǫ) (8.46)

M̃32 =
1

ǫ

a(−G({b}, a) + G({0}, a) − G({0}, b))
8π(b + 1)(a(b − 1) + b)

− 1

24(π(b + 1)(a(b − 1) + b))
(a (3G({b}, a)

+ 6G

({

0,
b

2

}

, a

)

− 15G({0, b}, a) − 9G({b, 0}, a)
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− 6G

({

b,
b

2

}

, a

)

+ 15G({b, b}, a) + 3 log(π)G({b}, a)

+ log(64)G({b}, a) − 3G({0}, a)(3G({0}, b) + 1 + log(4π))

+ 3G({0}, b)(3G({b}, a) + 1 + log(4π)) + 9G({0, 0}, a)

+9G({0, 0}, b) + π2
))

− ǫ

48(π(b + 1)(a(b − 1) + b))
(a (42G({0, 0}, b)G({b}, a)

+ 3π2G({b}, a) + 6G({b}, a) + 12G

({

0,
b

2

}

, a

)

− 30G({0, b}, a) − 18G({b, 0}, a) − 12G

({

b,
b

2

}

, a

)

+ 30G({b, b}, a) − 36G

({

0, 0,
b

2

}

, a

)

+ 78G({0, 0, b}, a)

− 12G

({

0,
b

2
, 0

}

, a

)

− 24G

({

0,
b

2
,
b

2

}

, a

)

+ 36G

({

0,
b

2
, b

}

, a

)

+ 54G({0, b, 0}, a)

+ 60G

({

0, b,
b

2

}

, a

)

− 114G({0, b, b}, a) + 42G({b, 0, 0}, a)

+ 36G

({

b, 0,
b

2

}

, a

)

− 78G({b, 0, b}, a)

+ 12G

({

b,
b

2
, 0

}

, a

)

+ 24G

({

b,
b

2
,
b

2

}

, a

)

− 36G

({

b,
b

2
, b

}

, a

)

− 54G({b, b, 0}, a)

− 60G

({

b, b,
b

2

}

, a

)

+ 114G({b, b, b}, a)

+ 3 log2(4)G({b}, a) − G({0}, a) (42G({0, 0}, b)

+ 18(1 + log(4π))G({0}, b) + 3π2 + 6 + 3 log2(4)

+ log(π) log
(

4096π3
)

+ 6 log(π) + 6 log(4)
)

+ G({0}, b)
(

12G

({

0,
b

2

}

, a

)

− 54G({0, b}, a)

− 42G({b, 0}, a) − 12G

({

b,
b

2

}

, a

)

+ 54G({b, b}, a)

+ 18(1 + log(4π))G({b}, a) + 42G({0, 0}, a) + 3π2 + 6 + 3 log2(4)

+ log(π) log
(

4096π3
)

+ 6 log(π) + 6 log(4)
)

+ log(π) log
(

4096π3
)

G({b}, a) + 6 log(π)G({b}, a)

+ 6 log(4)G({b}, a) + 12 log(π)G

({

0,
b

2

}

, a

)

− 30 log(π)G({0, b}, a) − 18 log(π)G({b, 0}, a)

− 12 log(π)G

({

b,
b

2

}

, a

)

+ 30 log(π)G({b, b}, a)

+ 12 log(4)G

({

0,
b

2

}

, a

)

− 30 log(4)G({0, b}, a)

− 18 log(4)G({b, 0}, a) − 12 log(4)G

({

b,
b

2

}

, a

)
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+ 30 log(4)G({b, b}, a) + 18G({0, 0}, a) − 42G({0, 0, 0}, a)
+ 18 log(π)G({0, 0}, a) + 18 log(4)G({0, 0}, a) + 18G({0, 0}, b)
+ 42G({0, 0, 0}, b) + 18 log(π)G({0, 0}, b) + 18 log(4)G({0, 0}, b)

+12ζ(3) + 2π2 + 2π2 log(4π)
))

(8.47)

M̃36 = − 1

ǫ

G({b}, a) − G({0}, a) + G({0}, b)
8π
(

1 − (a+1)b2

a−b

)

(a − b)

24π(b + 1)(a(b − 1) + b)
×

×
(

3
(

ab2 + a + b2
)

(a + 1)b2

(

−G({0}, b)
(

G

({

− b2

b2 + 1

}

, a

)

+2G({b}, a)) + G

({

0,− b2

b2 + 1

}

, a

)

− G

({

b,− b2

b2 + 1

}

, a

)

+ G

({

− b2

b2 + 1
, 0

}

, a

)

− G

({

− b2

b2 + 1
, b

}

, a

)

+3G({0}, a)G({0}, b) + G({0, b}, a) + G({b, 0}, a) − 2G({0, 0}, a) − 4G({0, 0}, b))
− 9G({0}, a)G({0}, b) + 9G({0}, b)G({b}, a) + 6G({b}, a)

+ 6G

({

0,
b

2

}

, a

)

− 15G({0, b}, a) − 9G({b, 0}, a)

− 6G

({

b,
b

2

}

, a

)

+ 15G({b, b}, a) + 3 log(π)G({b}, a)

+ log(64)G({b}, a) − 6G({0}, a) + 9G({0, 0}, a) − 3 log(π)G({0}, a)
− 3 log(4)G({0}, a) + 6G({0}, b) + 9G({0, 0}, b) + 3 log(π)G({0}, b)

+ log(64)G({0}, b) + π2
)

(a − b)ǫ

48(b + 1)(a(b − 1) + b)π
(−36G({0}, b)G({0}, a) − 42G({0, 0}, b)G({0}, a)

− log(π) log
(

4096π3
)

G({0}, a) − 18G({0}, b) log(π)G({0}, a)

− 12 log(π)G({0}, a) − 3 log2(4)G({0}, a) − 18G({0}, b) log(4)G({0}, a)

− 12 log(4)G({0}, a) − 3π2G({0}, a) − 24G({0}, a) + 3π2G({0}, b)

+ 24G({0}, b) + 36G({0}, b)G({b}, a) + 3π2G({b}, a) + 24G({b}, a)
+ 42G({0}, b)G({0, 0}, a) + 36G({0, 0}, a) + 42G({b}, a)G({0, 0}, b) + 36G({0, 0}, b)

+ 12G({0}, b)G
({

0,
b

2

}

, a

)

+ 24G

({

0,
b

2

}

, a

)

− 54G({0}, b)G({0, b}, a) − 60G({0, b}, a) − 42G({0}, b)G({b, 0}, a)

− 36G({b, 0}, a) − 12G({0}, b)G
({

b,
b

2

}

, a

)

− 24G

({

b,
b

2

}

, a

)

+ 54G({0}, b)G({b, b}, a) + 60G({b, b}, a)

− 42G({0, 0, 0}, a) + 42G({0, 0, 0}, b) − 36G

({

0, 0,
b

2

}

, a

)

+ 78G({0, 0, b}, a) − 12G

({

0,
b

2
, 0

}

, a

)

− 24G

({

0,
b

2
,
b

2

}

, a

)

+ 36G

({

0,
b

2
, b

}

, a

)
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+ 54G({0, b, 0}, a) + 60G

({

0, b,
b

2

}

, a

)

− 114G({0, b, b}, a)

+ 42G({b, 0, 0}, a) + 36G

({

b, 0,
b

2

}

, a

)

− 78G({b, 0, b}, a)

+ 12G

({

b,
b

2
, 0

}

, a

)

+ 24G

({

b,
b

2
,
b

2

}

, a

)

− 36G

({

b,
b

2
, b

}

, a

)

− 54G({b, b, 0}, a) − 60G

({

b, b,
b

2

}

, a

)

+ 114G({b, b, b}, a) +
(

ab2 + b2 + a
)

(a + 1)b2
(−48G({0, 0}, b)G({b}, a)

− π2G({b}, a) − 2π2G

({

− b2

b2 + 1

}

, a

)

− 24G({0, 0}, a)

− 24G({−1}, a)G({0, 0}, b) + 30G

({

− b2

b2 + 1

}

, a

)

G({0, 0}, b)

− 48G({0, 0}, b) + 12G({0, b}, a) + 12G

({

0,− b2

b2 + 1

}

, a

)

+ 12G({b, 0}, a)

− 12G

({

b,− b2

b2 + 1

}

, a

)

+ 12G

({

− b2

b2 + 1
, 0

}

, a

)

− 12G

({

− b2

b2 + 1
, b

}

, a

)

− 12G({−1, 0, 0}, a) + 6G({−1, 0, b}, a)

+ 6G

({

−1, 0,− b2

b2 + 1

}

, a

)

+ 6G({−1, b, 0}, a)

− 6G

({

−1, b,− b2

b2 + 1

}

, a

)

+ 6G

({

−1,− b2

b2 + 1
, 0

}

, a

)

− 6G

({

−1,− b2

b2 + 1
, b

}

, a

)

− 6G({0,−1, 0}, a)

+ 6G

({

0,−1,− b2

b2 + 1

}

, a

)

+ 36G({0, 0, 0}, a) − 36G({0, 0, 0}, b)

+ 24G

({

0, 0,
b

2

}

, a

)

− 54G({0, 0, b}, a)

− 6G

({

0, 0,− b2

b2 + 1

}

, a

)

+ 12G

({

0,
b

2
, 0

}

, a

)

− 12G

({

0,
b

2
,− b2

b2 + 1

}

, a

)

− 42G({0, b, 0}, a)

− 12G

({

0, b,
b

2

}

, a

)

+ 30G({0, b, b}, a)

+ 24G

({

0, b,− b2

b2 + 1

}

, a

)

− 12G

({

0,− b2

b2 + 1
,
b

2

}

, a

)

+ 24G

({

0,− b2

b2 + 1
, b

}

, a

)

− 12G

({

0,− b2

b2 + 1
,− b2

b2 + 1

}

, a

)

+ 6G({b,−1, 0}, a) − 6G

({

b,−1,− b2

b2 + 1

}

, a

)

− 30G({b, 0, 0}, a)
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− 12G

({

b, 0,
b

2

}

, a

)

+ 30G({b, 0, b}, a) + 12G

({

b, 0,− b2

b2 + 1

}

, a

)

− 12G

({

b,
b

2
, 0

}

, a

)

+ 12G

({

b,
b

2
,− b2

b2 + 1

}

, a

)

+ 30G({b, b, 0}, a) − 30G

({

b, b,− b2

b2 + 1

}

, a

)

+ 6G

({

b,− b2

b2 + 1
, 0

}

, a

)

+ 12G

({

b,− b2

b2 + 1
,
b

2

}

, a

)

− 30G

({

b,− b2

b2 + 1
, b

}

, a

)

+ 12G

({

b,− b2

b2 + 1
,− b2

b2 + 1

}

, a

)

+ 6G

({

− b2

b2 + 1
, 0, 0

}

, a

)

− 12G

({

− b2

b2 + 1
, 0,

b

2

}

, a

)

+ 18G

({

− b2

b2 + 1
, 0, b

}

, a

)

− 12G

({

− b2

b2 + 1
, 0,− b2

b2 + 1

}

, a

)

+ 6G

({

− b2

b2 + 1
, b, 0

}

, a

)

+ 12G

({

− b2

b2 + 1
, b,

b

2

}

, a

)

− 30G

({

− b2

b2 + 1
, b, b

}

, a

)

+ 12G

({

− b2

b2 + 1
, b,− b2

b2 + 1

}

, a

)

− 12G

({

− b2

b2 + 1
,− b2

b2 + 1
, 0

}

, a

)

+ 12G

({

− b2

b2 + 1
,− b2

b2 + 1
, b

}

, a

)

+ 3G({0}, a) (6(2 + log(4π))G({0}, b)

+14G({0, 0}, b) + π2
)

− G({0}, b) (12(2 + log(4π))G({b}, a)

− 18G({−1, 0}, a) + 12G({−1, b}, a) + 6G

({

−1,− b2

b2 + 1

}

, a

)

− 12G({0,−1}, a) + 42G({0, 0}, a) + 24G

({

0,
b

2

}

, a

)

− 66G({0, b}, a)

+ 12G

({

0,− b2

b2 + 1

}

, a

)

+ 12G({b,−1}, a) − 42G({b, 0}, a)

− 24G

({

b,
b

2

}

, a

)

+ 60G({b, b}, a) − 6G

({

b,− b2

b2 + 1

}

, a

)

+ 18G

({

− b2

b2 + 1
, 0

}

, a

)

− 6G

({

− b2

b2 + 1
, b

}

, a

)

− 12G

({

− b2

b2 + 1
,− b2

b2 + 1

}

, a

)

+6G

({

− b2

b2 + 1

}

, a

)

(2 + log(4π)) + 5π2

)

− 12G({0, 0}, a) log(π) − 24G({0, 0}, b) log(π) + 6G({0, b}, a) log(π)

+ 6G

({

0,− b2

b2 + 1

}

, a

)

log(π) + 6G({b, 0}, a) log(π)

− 6G

({

b,− b2

b2 + 1

}

, a

)

log(π) + 6G

({

− b2

b2 + 1
, 0

}

, a

)

log(π)
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− 6G

({

− b2

b2 + 1
, b

}

, a

)

log(π) − 12G({0, 0}, a) log(4)

− 24G({0, 0}, b) log(4) + 6G({0, b}, a) log(4) + 6G

({

0,− b2

b2 + 1

}

, a

)

log(4)

+ 6G({b, 0}, a) log(4) − 6G

({

b,− b2

b2 + 1

}

, a

)

log(4)

+6G

({

− b2

b2 + 1
, 0

}

, a

)

log(4) − 6G

({

− b2

b2 + 1
, b

}

, a

)

log(4)

)

+ 12ζ(3) + G({0}, b) log(π) log
(

4096π
3
)

+ G({b}, a) log(π) log
(

4096π
3
)

+ 2π
2
log(4π) + 12G({0}, b) log(π) + 18G({0}, b)G({b}, a) log(π)

+ 12G({b}, a) log(π) + 18G({0, 0}, a) log(π) + 18G({0, 0}, b) log(π)

+ 12G

({

0,
b

2

}

, a

)

log(π) − 30G({0, b}, a) log(π)

− 18G({b, 0}, a) log(π) − 12G

({

b,
b

2

}

, a

)

log(π)

+ 30G({b, b}, a) log(π) + 3G({0}, b) log2(4) + 3G({b}, a) log2(4) + 12G({0}, b) log(4)
+ 18G({0}, b)G({b}, a) log(4) + 12G({b}, a) log(4) + 18G({0, 0}, a) log(4)

+ 18G({0, 0}, b) log(4) + 12G

({

0,
b

2

}

, a

)

log(4)

− 30G({0, b}, a) log(4) − 18G({b, 0}, a) log(4) − 12G

({

b,
b

2

}

, a

)

log(4)

+30G({b, b}, a) log(4) + 4π2
)

+ O(ǫ2) (8.48)

M̃37 = − 1

ǫ

G({b}, a) − G({0}, a) + G({0}, b)
8π
(

1 − (a+1)b2

a−b

)

+
(a − b)

24π(b + 1)(a(b − 1) + b)

((

6G({b}, a) + 6G

({

0,
b

2

}

, a

)

− 15G({0, b}, a) − 9G({b, 0}, a) − 6G

({

b,
b

2

}

, a

)

+ 15G({b, b}, a) + 3 log(π)G({b}, a) + log(64)G({b}, a) − 3G({0}, a)(3G({0}, b) + 2 + log(4π))

+3G({0}, b)(3G({b}, a) + 2 + log(4π)) + 9G({0, 0}, a) + 9G({0, 0}, b) + π2
)

+ 3(2a − b)

(

G({0}, a)(2G({0}, b) − iπ) + G({0}, b)
(

−G

({

b

2

}

, a

)

−G({b}, a) + iπ) + iπG({b}, a) + G

({

0,
b

2

}

, a

)

+ G({0, b}, a) + G

({

b

2
, 0

}

, a

)

− G

({

b

2
, b

}

, a

)

+G({b, 0}, a) − G

({

b,
b

2

}

, a

)

− 2G({0, 0}, a) − 2G({0, 0}, b)
))

+
ǫ

48(b + 1)(a(b − 1) + b)π

(

2(2a − b)

(

3G({0, 0}, b)G
({

b

2

}

, a

)

− π2G

({

b

2

}

, a

)

− 2π2G({b}, a) + 6iπG({b}, a)
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+ 3iπG({0, 0}, a) − 12G({0, 0}, a) − 21G({b}, a)G({0, 0}, b) + 3iπG({0, 0}, b)

− 12G({0, 0}, b) + 12iπG

({

0,
b

2

}

, a

)

+ 6G

({

0,
b

2

}

, a

)

− 15iπG({0, b}, a) + 6G({0, b}, a) + 6iπG

({

b

2
, 0

}

, a

)

+ 6G

({

b

2
, 0

}

, a

)

− 6iπG

({

b

2
, b

}

, a

)

− 6G

({

b

2
, b

}

, a

)

− 9iπG({b, 0}, a) + 6G({b, 0}, a)

− 12iπG

({

b,
b

2

}

, a

)

− 6G

({

b,
b

2

}

, a

)

+ 21iπG({b, b}, a) + 18G({0, 0, 0}, a) − 18G({0, 0, 0}, b)

+ 9G

({

0, 0,
b

2

}

, a

)

− 27G({0, 0, b}, a) + 6G

({

0,
b

2
, 0

}

, a

)

− 18G

({

0,
b

2
,
b

2

}

, a

)

+ 12G

({

0,
b

2
, b

}

, a

)

− 24G({0, b, 0}, a) + 9G

({

0, b,
b

2

}

, a

)

+ 15G({0, b, b}, a)

+ 3G

({

b

2
, 0, 0

}

, a

)

− 12G

({

b

2
, 0,

b

2

}

, a

)

+ 9G

({

b

2
, 0, b

}

, a

)

− 6G

({

b

2
,
b

2
, 0

}

, a

)

+ 6G

({

b

2
,
b

2
, b

}

, a

)

+ 3G

({

b

2
, b, 0

}

, a

)

+ 12G

({

b

2
, b,

b

2

}

, a

)

− 15G

({

b

2
, b, b

}

, a

)

− 21G({b, 0, 0}, a) + 3G

({

b, 0,
b

2

}

, a

)

+ 18G({b, 0, b}, a)

+ 18G

({

b,
b

2
,
b

2

}

, a

)

− 18G

({

b,
b

2
, b

}

, a

)

+ 21G({b, b, 0}, a) − 21G

({

b, b,
b

2

}

, a

)

− 3G({0}, b)
(

(2 + 2iπ + log(4π))G

({

b

2

}

, a

)

+ 6G({0, 0}, a)

+ 2G

({

0,
b

2

}

, a

)

− 8G({0, b}, a) + G

({

b

2
, 0

}

, a

)

− 2G

({

b

2
,
b

2

}

, a

)

+ G

({

b

2
, b

}

, a

)

−7G({b, 0}, a) + 7G({b, b}, a) + G({b}, a)(2 − 3iπ + log(4π)) − iπ log(4π) + π
2 − 2iπ

)

+ 3G({0}, a)((4 − iπ + log(16) + 2 log(π))G({0}, b) + 6G({0, 0}, b) + π(π − i(2 + log(4π))))

+ 3iπG({b}, a) log(4π) − 6G({0, 0}, a) log(π) − 6G({0, 0}, b) log(π)

+ 3G

({

0,
b

2

}

, a

)

log(π) + 3G({0, b}, a) log(π)

+ 3G

({

b

2
, 0

}

, a

)

log(π) − 3G

({

b

2
, b

}

, a

)

log(π)

+ 3G({b, 0}, a) log(π) − 3G

({

b,
b

2

}

, a

)

log(π)
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+ G

({

0,
b

2

}

, a

)

log(64) + G({0, b}, a) log(64) + G

({

b

2
, 0

}

, a

)

log(64)

+ G({b, 0}, a) log(64) − 6G({0, 0}, a) log(4) − 6G({0, 0}, b) log(4)

−3G

({

b

2
, b

}

, a

)

log(4) − 3G

({

b,
b

2

}

, a

)

log(4) + iπ3

)

− (a − b)
(

−42G({0, 0}, b)G({b}, a) − log(π) log
(

4096π3
)

G({b}, a)

− 12 log(π)G({b}, a) − 3 log2(4)G({b}, a) − 12 log(4)G({b}, a) − 3π2G({b}, a)

− 24G({b}, a) − 36G({0, 0}, a) − 36G({0, 0}, b) − 24G

({

0,
b

2

}

, a

)

+ 60G({0, b}, a) + 36G({b, 0}, a) + 24G

({

b,
b

2

}

, a

)

− 60G({b, b}, a)

+ 42G({0, 0, 0}, a) − 42G({0, 0, 0}, b) + 36G

({

0, 0,
b

2

}

, a

)

− 78G({0, 0, b}, a) + 12G

({

0,
b

2
, 0

}

, a

)

+ 24G

({

0,
b

2
,
b

2

}

, a

)

− 36G

({

0,
b

2
, b

}

, a

)

− 54G({0, b, 0}, a) − 60G

({

0, b,
b

2

}

, a

)

+ 114G({0, b, b}, a) − 42G({b, 0, 0}, a) − 36G

({

b, 0,
b

2

}

, a

)

+ 78G({b, 0, b}, a)

− 12G

({

b,
b

2
, 0

}

, a

)

− 24G

({

b,
b

2
,
b

2

}

, a

)

+ 36G

({

b,
b

2
, b

}

, a

)

+ 54G({b, b, 0}, a) + 60G

({

b, b,
b

2

}

, a

)

− 114G({b, b, b}, a) + G({0}, a) (18(2 + log(4π))G({0}, b) + 42G({0, 0}, b)

+ log(π) log
(

4096π3
)

+ 12 log(π) + 3 log2(4) + 12 log(4) + 3π2 + 24
)

− G({0}, b)
(

18(2 + log(4π))G({b}, a) + 42G({0, 0}, a) + 12G

({

0,
b

2

}

, a

)

− 54G({0, b}, a) − 42G({b, 0}, a) − 12G

({

b,
b

2

}

, a

)

+ 54G({b, b}, a)

+ log(π) log
(

4096π
3
)

+ 12 log(π) + 3 log
2
(4) + 12 log(4) + 3π

2
+ 24

)

− 12ζ(3) − 2π
2
log(4π) − 18G({0, 0}, a) log(π)− 18G({0, 0}, b) log(π)

− 12G

({

0,
b

2

}

, a

)

log(π) + 30G({0, b}, a) log(π)

+ 18G({b, 0}, a) log(π) + 12G

({

b,
b

2

}

, a

)

log(π)

− 30G({b, b}, a) log(π) − 18G({0, 0}, a) log(4) − 18G({0, 0}, b) log(4)

− 12G

({

0,
b

2

}

, a

)

log(4) + 30G({0, b}, a) log(4) + 18G({b, 0}, a) log(4)

+12G

({

b,
b

2

}

, a

)

log(4) − 30G({b, b}, a) log(4) − 4π2

))

+ O(ǫ2) (8.49)

M̃38 = − 1

ǫ

G({b}, a) − G({0}, a) + G({0}, b)
8π
(

1 − (a+1)b2

a−b

)

(a − b)

16π(b + 1)(a(b − 1) + b)
(−2G({−1}, b)G({b}, a) + 4G({b}, a)
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+ 6G

({

0,
b

2

}

, a

)

− 10G({0, b}, a) + 2G

({

0,− b

b − 1

}

, a

)

− 4G({b, 0}, a) − 6G

({

b,
b

2

}

, a

)

+ 12G({b, b}, a)

− 2G

({

b,− b

b − 1

}

, a

)

+ 2G

({

− b

b − 1
, 0

}

, a

)

− 2G

({

− b

b − 1
, b

}

, a

)

+ 2 log(π)G({b}, a) + log(16)G({b}, a)

+ 2G({0}, a)(G({−1}, b) − G({0}, b) − 2 − log(4π)) + 2G({0}, b) (2G({b}, a)

−G

({

− b

b − 1

}

, a

)

+ 2 + log(4π)

)

+2G({0, 0}, a) − 2G({−1, 0}, b) − 2G({0,−1}, b) + 2G({0, 0}, b) + π
2
)

− (a − b)ǫ

16(b + 1)(a(b − 1) + b)π
(−8G({b}, a)G({0}, b)

+ 4G

({

− b

b − 1

}

, a

)

G({0}, b) − 2G({0, 0}, a)G({0}, b)

+ 4G({0, b}, a)G({0}, b) − 2G

({

0,− b

b − 1

}

, a

)

G({0}, b)

+ 4G({b, 0}, a)G({0}, b) − 8G({b, b}, a)G({0}, b) + 4G

({

b,− b

b − 1

}

, a

)

G({0}, b)

− 2G

({

− b

b − 1
, 0

}

, a

)

G({0}, b) + 4G

({

− b

b − 1
, b

}

, a

)

G({0}, b)

− 2G

({

− b

b − 1
,− b

b − 1

}

, a

)

G({0}, b) − log(π) log(16π)G({0}, b)

− 4G({b}, a) log(π)G({0}, b) + 2G

({

− b

b − 1

}

, a

)

log(π)G({0}, b)

− 4 log(π)G({0}, b) + G

({

− b

b − 1

}

, a

)

log(16)G({0}, b)

− log2(4)G({0}, b) − 4G({b}, a) log(4)G({0}, b) − 4 log(4)G({0}, b) − 8G({0}, b)

− π2G({b}, a) − 8G({b}, a) + π2G

({

− b

b − 1

}

, a

)

− 2G({b}, a)G({−1,−1}, b) + 4G({b}, a)G({−1, 0}, b) − 2G

({

− b

b − 1

}

, a

)

G({−1, 0}, b)

+ 4G({−1, 0}, b) + 4G({b}, a)G({0,−1}, b) − 2G

({

− b

b − 1

}

, a

)

G({0,−1}, b)

+ 4G({0,−1}, b) − 4G({0, 0}, a) − 4G({b}, a)G({0, 0}, b) + 2G

({

− b

b − 1

}

, a

)

G({0, 0}, b)

− 4G({0, 0}, b) − 12G

({

0,
b

2

}

, a

)

+ 20G({0, b}, a)

− 4G

({

0,− b

b − 1

}

, a

)

+ 8G({b, 0}, a) + 12G

({

b,
b

2

}

, a

)

− 24G({b, b}, a) + 4G

({

b,− b

b − 1

}

, a

)

− 4G

({

− b

b − 1
, 0

}

, a

)

+ 4G

({

− b

b − 1
, b

}

, a

)

− 2G({−1,−1, 0}, b) − 2G({−1, 0,−1}, b)

+ 2G({−1, 0, 0}, b) − 2G({0,−1,−1}, b) + 2G({0,−1, 0}, b) + 2G({0, 0,−1}, b)

+ 2G({0, 0, 0}, a) − 2G({0, 0, 0}, b) + 6G

({

0, 0,
b

2

}

, a

)
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− 10G({0, 0, b}, a) + 2G

({

0, 0,− b

b − 1

}

, a

)

+ 18G

({

0,
b

2
,
b

2

}

, a

)

− 24G

({

0,
b

2
, b

}

, a

)

+ 6G

({

0,
b

2
,− b

b − 1

}

, a

)

− 4G({0, b, 0}, a) − 30G

({

0, b,
b

2

}

, a

)

+ 44G({0, b, b}, a)

− 10G

({

0, b,− b

b − 1

}

, a

)

+ 2G

({

0,− b

b − 1
, 0

}

, a

)

+ 6G

({

0,− b

b − 1
,
b

2

}

, a

)

− 10G

({

0,− b

b − 1
, b

}

, a

)

+ 2G

({

0,− b

b − 1
,− b

b − 1

}

, a

)

− 4G({b, 0, 0}, a)

− 12G

({

b, 0,
b

2

}

, a

)

+ 20G({b, 0, b}, a) − 4G

({

b, 0,− b

b − 1

}

, a

)

− 18G

({

b,
b

2
,
b

2

}

, a

)

+ 24G

({

b,
b

2
, b

}

, a

)

− 6G

({

b,
b

2
,− b

b − 1

}

, a

)

+ 8G({b, b, 0}, a) + 36G

({

b, b,
b

2

}

, a

)

− 56G({b, b, b}, a) + 12G

({

b, b,− b

b − 1

}

, a

)

− 4G

({

b,− b

b − 1
, 0

}

, a

)

− 6G

({

b,− b

b − 1
,
b

2

}

, a

)

+ 12G

({

b,− b

b − 1
, b

}

, a

)

− 2G

({

b,− b

b − 1
,− b

b − 1

}

, a

)

+ 2G

({

− b

b − 1
, 0, 0

}

, a

)

+ 6G

({

− b

b − 1
, 0,

b

2

}

, a

)

− 10G

({

− b

b − 1
, 0, b

}

, a

)

+ 2G

({

− b

b − 1
, 0,− b

b − 1

}

, a

)

− 4G

({

− b

b − 1
, b, 0

}

, a

)

− 6G

({

− b

b − 1
, b,

b

2

}

, a

)

+ 12G

({

− b

b − 1
, b, b

}

, a

)

− 2G

({

− b

b − 1
, b,− b

b − 1

}

, a

)

+ 2G

({

− b

b − 1
,− b

b − 1
, 0

}

, a

)

− 2G

({

− b

b − 1
,− b

b − 1
, b

}

, a

)

+ G({−1}, b) (−2(2 + log(4π))G({0}, a)

+ 2G({0, 0}, a) + 6G

({

0,
b

2

}

, a

)

− 10G({0, b}, a)

+ 2G

({

0,− b

b − 1

}

, a

)

− 4G({b, 0}, a) − 6G

({

b,
b

2

}

, a

)

+ 12G({b, b}, a) − 2G

({

b,− b

b − 1

}

, a

)

+ 2G

({

− b

b − 1
, 0

}

, a

)

−2G

({

− b

b − 1
, b

}

, a

)

+ G({b}, a)(4 + log(16) + 2 log(π)) + π
2

)

+ G({0}, a) ((4 + log(16) + 2 log(π))G({0}, b) + 2G({−1,−1}, b) − 2G({−1, 0}, b)

−2G({0,−1}, b) + 2G({0, 0}, b) + log(π) log(16π) + 4 log(π) + log(256) + log
2
(4) + 8

)

− 12ζ(3) − G({b}, a) log(π) log(16π) − π2 log(4π) − 4G({b}, a) log(π)
+ 2G({−1, 0}, b) log(π) + 2G({0,−1}, b) log(π) − 2G({0, 0}, a) log(π) − 2G({0, 0}, b) log(π)

− 6G

({

0,
b

2

}

, a

)

log(π) + 10G({0, b}, a) log(π)
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− 2G

({

0,− b

b − 1

}

, a

)

log(π) + 4G({b, 0}, a) log(π)

+ 6G

({

b,
b

2

}

, a

)

log(π) − 12G({b, b}, a) log(π)

+ 2G

({

b,− b

b − 1

}

, a

)

log(π) − 2G

({

− b

b − 1
, 0

}

, a

)

log(π)

+ 2G

({

− b

b − 1
, b

}

, a

)

log(π) + G({−1, 0}, b) log(16)

+ G({0,−1}, b) log(16) + G

({

b,− b

b − 1

}

, a

)

log(16)

+ G

({

− b

b − 1
, b

}

, a

)

log(16) − G({b}, a) log2(4) − 4G({b}, a) log(4)

− 2G({0, 0}, a) log(4) − 2G({0, 0}, b) log(4) − 6G

({

0,
b

2

}

, a

)

log(4)

+ 10G({0, b}, a) log(4) − 2G

({

0,− b

b − 1

}

, a

)

log(4)

+ 4G({b, 0}, a) log(4) + 6G

({

b,
b

2

}

, a

)

log(4)

−12G({b, b}, a) log(4) − 2G

({

− b

b − 1
, 0

}

, a

)

log(4) − 2π2

)

(8.50)

M̃42 =
(a − b)

16(b + 1)(a(b − 1) + b)

√

(2ab+b)2

(a−b)2
π

×

×
(

4G({−1, 0}, a)G({0}, b) − 2G({−1, b}, a)G({0}, b) − 6G

({

−1,− b

b − 1

}

, a

)

G({0}, b)

+ 4G

({

−1,− b2

b2 + 1

}

, a

)

G({0}, b) − 8G({0,−1}, a)G({0}, b)

+ 4G({0, 0}, a)G({0}, b) − 12G

({

0,
b

2

}

, a

)

G({0}, b) + 4G({0, b}, a)G({0}, b)

+ 8G

({

0,− b

b − 1

}

, a

)

G({0}, b) + 4G

({

0,− b2

b2 + 1

}

, a

)

G({0}, b)

+ 8G

({

− b

b − 1
,−1

}

, a

)

G({0}, b) − 8G

({

− b

b − 1
, 0

}

, a

)

G({0}, b)

+ 12G

({

− b

b − 1
,
b

2

}

, a

)

G({0}, b) − 2G

({

− b

b − 1
, b

}

, a

)

G({0}, b)

− 2G

({

− b

b − 1
,− b

b − 1

}

, a

)

G({0}, b)

− 8G

({

− b

b − 1
,− b2

b2 + 1

}

, a

)

G({0}, b) − π
2
G({0}, b)

− π2G

({

− b

b − 1

}

, a

)

+ 2G({−1}, a)G({−1,−1}, b) − 6G({−1}, a)G({−1, 0}, b)

− 2G

({

− b

b − 1

}

, a

)

G({−1, 0}, b) − 4G({−1}, a)G({0,−1}, b)

+ 2G

({

− b

b − 1

}

, a

)

G({0,−1}, b) + G({0}, a) (−2G({−1,−1}, b)

+8G({−1, 0}, b) + 2G({0,−1}, b) − 8G({0, 0}, b) + π2
)

+ 8G

({

− b

b − 1

}

, a

)

G({0, 0}, b)
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+ G({−1}, b)
(

2G({−1, 0}, a) − 2G({−1, b}, a) + 2G

({

−1,− b

b − 1

}

, a

)

− 2G

({

−1,− b2

b2 + 1

}

, a

)

− 4G({0, 0}, a) + 4G

({

0,
b

2

}

, a

)

+ 4G({0, b}, a) − 2G

({

0,− b

b − 1

}

, a

)

− 2G

({

0,− b2

b2 + 1

}

, a

)

+ 2G

({

− b

b − 1
, 0

}

, a

)

− 4G

({

− b

b − 1
,
b

2

}

, a

)

− 2G

({

− b

b − 1
, b

}

, a

)

+ 4G

({

− b

b − 1
,− b2

b2 + 1

}

, a

)

+π
2
)

+ 2G({−1,−1, 0}, b) − 2G({−1, 0,−1}, b) − 4G({−1, 0, 0}, a)

− 8G({−1, 0, 0}, b) + 2G

({

−1, 0,
b

2

}

, a

)

+ 2G

({

−1, 0,− b

b − 1

}

, a

)

+ 2G({−1, b, 0}, a) − 2G

({

−1, b,
b

2

}

, a

)

+ 2G({−1, b, b}, a)

− 2G

({

−1, b,− b

b − 1

}

, a

)

+ 2G

({

−1,− b

b − 1
, 0

}

, a

)

+ 2G

({

−1,− b

b − 1
,
b

2

}

, a

)

− 2G

({

−1,− b

b − 1
, b

}

, a

)

+ 2G

({

−1,− b

b − 1
,− b

b − 1

}

, a

)

− 4G

({

−1,− b

b − 1
,− b2

b2 + 1

}

, a

)

− 2G

({

−1,− b2

b2 + 1
,
b

2

}

, a

)

− 2G

({

−1,− b2

b2 + 1
,− b

b − 1

}

, a

)

+ 4G

({

−1,− b2

b2 + 1
,− b2

b2 + 1

}

, a

)

+ 4G({0,−1, 0}, a) − 2G({0,−1, 0}, b)

− 4G

({

0,−1,− b2

b2 + 1

}

, a

)

+ 2G({0, 0,−1}, b) + 8G({0, 0, 0}, b)

− 4G

({

0, 0,
b

2

}

, a

)

+ 4G({0, 0, b}, a) − 4G

({

0, 0,− b

b − 1

}

, a

)

+ 4G

({

0, 0,− b2

b2 + 1

}

, a

)

+ 4G

({

0,
b

2
, 0

}

, a

)

+ 4G

({

0,
b

2
,
b

2

}

, a

)

− 4G

({

0,
b

2
, b

}

, a

)

+ 4G

({

0,
b

2
,− b

b − 1

}

, a

)

− 8G

({

0,
b

2
,− b2

b2 + 1

}

, a

)

− 4G({0, b, 0}, a) + 4G

({

0, b,
b

2

}

, a

)

− 4G({0, b, b}, a)

+ 4G

({

0, b,− b

b − 1

}

, a

)

− 4G

({

0,− b

b − 1
, 0

}

, a

)

− 2G

({

0,− b

b − 1
,
b

2

}

, a

)

+ 4G

({

0,− b

b − 1
, b

}

, a

)

− 2G

({

0,− b

b − 1
,− b

b − 1

}

, a

)

+ 4G

({

0,− b

b − 1
,− b2

b2 + 1

}

, a

)

− 2G

({

0,− b2

b2 + 1
,
b

2

}

, a

)

− 2G

({

0,− b2

b2 + 1
,− b

b − 1

}

, a

)
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+ 4G

({

0,− b2

b2 + 1
,− b2

b2 + 1

}

, a

)

− 4G

({

− b

b − 1
,−1, 0

}

, a

)

+ 4G

({

− b

b − 1
,−1,− b2

b2 + 1

}

, a

)

+ 4G

({

− b

b − 1
, 0, 0

}

, a

)

+ 2G

({

− b

b − 1
, 0,

b

2

}

, a

)

− 4G

({

− b

b − 1
, 0, b

}

, a

)

+ 2G

({

− b

b − 1
, 0,− b

b − 1

}

, a

)

− 4G

({

− b

b − 1
, 0,− b2

b2 + 1

}

, a

)

− 4G

({

− b

b − 1
,
b

2
, 0

}

, a

)

− 4G

({

− b

b − 1
,
b

2
,
b

2

}

, a

)

+ 4G

({

− b

b − 1
,
b

2
, b

}

, a

)

− 4G

({

− b

b − 1
,
b

2
,− b

b − 1

}

, a

)

+ 8G

({

− b

b − 1
,
b

2
,− b2

b2 + 1

}

, a

)

+ 2G

({

− b

b − 1
, b, 0

}

, a

)

− 2G

({

− b

b − 1
, b,

b

2

}

, a

)

+ 2G

({

− b

b − 1
, b, b

}

, a

)

− 2G

({

− b

b − 1
, b,− b

b − 1

}

, a

)

+ 2G

({

− b

b − 1
,− b

b − 1
, 0

}

, a

)

− 2G

({

− b

b − 1
,− b

b − 1
, b

}

, a

)

+ 4G

({

− b

b − 1
,− b2

b2 + 1
,
b

2

}

, a

)

+ 4G

({

− b

b − 1
,− b2

b2 + 1
,− b

b − 1

}

, a

)

−8G

({

− b

b − 1
,− b2

b2 + 1
,− b2

b2 + 1

}

, a

)

− 6ζ(3)

)

(8.51)

M̃43 = − 1

ǫ3
5(a − b)3

48π(b + 1)2(2a − b)(a(b − 1) + b)2

1

ǫ2
(a − b)3

48π(b + 1)2(2a − b)(a(b − 1) + b)2

(

−4G

({

− b2

b2 + 1

}

, a

)

+ 20G

({

b

2

}

, a

)

− 10G({b}, a) + 4G

({

− b

b − 1

}

, a

)

−10G({0}, a) + 4G({−1}, b) + 6G({0}, b) − 6iπ − 5 log(π) − log(1024))

+
1

ǫ

(a − b)3

192(2a − b)(b + 1)2(a(b − 1) + b)2π

(

−64G

({

b

2

}

, a

)

G({−1}, b)

+ 32G({b}, a)G({−1}, b) − 8G

({

− b

b − 1

}

, a

)

G({−1}, b)

+ 8G

({

− b2

b2 + 1

}

, a

)

G({−1}, b) + 16 log(π)G({−1}, b) + 16 log(4)G({−1}, b)

+ 96iπG

({

b

2

}

, a

)

− 48iπG({b}, a) − 8G({−1,−1}, b)

− 48G({−1, 0}, b) − 24G({0,−1}, b) + 16G({0, 0}, a) + 96G({0, 0}, b) + 160G

({

0,
b

2

}

, a

)

− 176G({0, b}, a) + 32G

({

0,− b

b − 1

}

, a

)

− 32G

({

0,− b2

b2 + 1

}

, a

)
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+ 64G

({

b

2
, 0

}

, a

)

− 320G

({

b

2
,
b

2

}

, a

)

+ 256G

({

b

2
, b

}

, a

)

− 64G

({

b

2
,− b

b − 1

}

, a

)

+ 64G

({

b

2
,− b2

b2 + 1

}

, a

)

− 80G({b, 0}, a) + 160G

({

b,
b

2

}

, a

)

− 80G({b, b}, a) + 32G

({

b,− b

b − 1

}

, a

)

− 32G

({

b,− b2

b2 + 1

}

, a

)

+ 32G

({

− b

b − 1
, 0

}

, a

)

− 40G

({

− b

b − 1
,
b

2

}

, a

)

+ 32G

({

− b

b − 1
, b

}

, a

)

− 8G

({

− b

b − 1
,− b

b − 1

}

, a

)

− 16G

({

− b

b − 1
,− b2

b2 + 1

}

, a

)

− 32G

({

− b2

b2 + 1
, 0

}

, a

)

+ 40G

({

− b2

b2 + 1
,
b

2

}

, a

)

− 32G

({

− b2

b2 + 1
, b

}

, a

)

+ 8G

({

− b2

b2 + 1
,− b

b − 1

}

, a

)

+ 16G

({

− b2

b2 + 1
,− b2

b2 + 1

}

, a

)

+ 8G({0}, a)(4G({−1}, b) − 6G({0}, b) − 5 log(π) − 5 log(4) − 6iπ)

+ 24G({0}, b)
(

2G({b}, a) − 2G

({

− b

b − 1

}

, a

)

+2G

({

− b2

b2 + 1

}

, a

)

+ log(4π) + 2iπ

)

− 10 log2(4π) − 24iπ log(4π) + 80G

({

b

2

}

, a

)

log(π)

− 40G({b}, a) log(π) + 16G

({

− b

b − 1

}

, a

)

log(π)

− 16G

({

− b2

b2 + 1

}

, a

)

log(π) + 8G

({

b

2

}

, a

)

log(1024)

− 8G({b}, a) log(1024) + 40G

({

b

2

}

, a

)

log(4)

+ 16G

({

− b

b − 1

}

, a

)

log(4) − 16G

({

− b2

b2 + 1

}

, a

)

log(4)

+39π2 + 2γ2 + 8γ
)

(8.52)

M̃59 =
1

48π(y + 1)2

(

−
(

6G({0, 0}, y) + π2
)

G({0}, z)

+ 6(2(G({0}, y) + iπ)G({0, 0}, z) + 2G({0, 0,−y}, z)
+G({0,−y, 0}, z) − 2G({0, 0, 1}, z) − G({0, 1, 0}, z)))
+ O(ǫ) (8.53)
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