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Zusammenfassung

Auf sehr kleinen Léngenskalen erlaubt die Weltflichenbeschreibung iiber
zweidimensionale konforme Feldtheorien eine stérungstheoretische Definition
der String-Theorie. Viele strukturelle Eigenschaften und phdnomenologische
Implikationen der letzteren kénnen mit Hilfe von D(irichlet)-Branen unter-
sucht werden, die in der zugrunde liegenden Weltflichentheorie durch kon-
forme Randbedingungen beschrieben werden.

Etliche interessante Hintergriinde fiir die String-Theorie erhélt man iiber
Gruppenmannigfaltigkeiten und Coset-Modelle. Neben wichtigen Beispielen
wie SL(2,R), SU(2) und Gepner-Modellen, die fiir AdS- und Calabi-Yau-
Kompaktifizierungen eine Rolle spielen, beinhalten sie auflerdem weitere Bei-
spiele wie den Nappi-Witten-Hintergrund oder den Raum 7!, die iiber eine
asymmetrische Wirkung der Eichgruppe definiert sind und eine kosmologi-
sche Raumzeit mit Urknall- und Weltsturz-Singularitéten bzw. die Basis des
Conifolds beschreiben.

Die vorliegende Arbeit bietet eine umfassende, auf den exakten Methoden
der konformen Feldtheorie beruhende Analyse von asymmetrischen Coset-
Modellen. Wegen der heterotischen Natur der zugrundeliegenden Symme-
triealgebra erlauben diese Modelle nur Randbedingungen, die einen Teil der
Symmetrie brechen. Nach einer allgemeinen Erlauterung der Grundidee fiir
die Konstruktion von symmetriebrechenden Randbedingungen richtet sich
das Hauptaugenmerk auf WZNW- und asymmetrische Coset-Modelle, die
das Fundament nahezu aller bekannten konformen Feldtheorien bilden.

Mit Hilfe der erzielten Ergebnisse werden die Struktur sowie die
Geometrie von D-Branen in den Gruppen SL(2,R) und SU(2), im Hin-
tergrund AdSs; x S3, in der kosmologischen Nappi-Witten-Raumzeit und
in TP4-Raumen untersucht. Die Techniken, die in dieser Arbeit entwickelt
werden, erlauben jedoch ebenso die Behandlung von Réndern und Kon-
taktstellen in (141)- oder 2-dimensionalen kritischen Systemen, die in der
Festkorpertheorie oder der statistischen Physik auftreten. Insbesondere
konnen Defektlinien beschrieben werden, die weder totale Reflexion noch
vollige Transmission aufweisen.

Schlagworter:
String-Theorie, D-Branen, Konforme Feldtheorie, Rdnder und Defekte



Abstract

At very small length scales, the world sheet approach in terms of two-
dimensional conformal field theories provides a perturbative definition of
string theory. Many structural properties and phenomenological implica-
tions of the latter can be explored using D(irichlet)-branes which may be
identified with conformal boundary conditions in the underlying world sheet
theory.

Several interesting backgrounds in string theory arise from group mani-
folds and coset theories. Apart from prominent examples such as SL(2,R),
SU(2) and Gepner models which play a role in AdS and Calabi-Yau com-
pactifications, they also include further instances like the Nappi-Witten back-
ground or the space T*! which are constructed using an asymmetric action of
the gauge group and which describe a cosmological space-time with big-bang
and big-crunch singularities and the base of the conifold, respectively.

The present thesis provides a comprehensive analysis of asymmetric cosets
based on the exact methods of boundary conformal field theory. Due to the
heterotic nature of the underlying symmetry algebra, the models only allow
for conformal boundary conditions which break parts of the bulk symmetry.
The universal ideas for the construction of symmetry breaking boundary
conditions are indicated and applied in detail to WZNW and asymmetric
coset theories which provide the basic building blocks of almost all known
conformal field theories.

The general results are used to investigate the structure and shape of D-
branes in the group manifolds SL(2, R) and SU(2), the background AdSz x 53,
the cosmological Nappi-Witten space-time and TP?-spaces. The techniques
developed in this thesis also allow for a treatment of boundaries and junc-
tions in (141)- or 2-dimensional critical systems in condensed matter theory
and statistical physics. In particular, they enable us to describe defect lines
which go beyond full reflection or transmission.

Keywords:
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Chapter 1

Introduction

The two fundamental theories of space-time and matter, Einstein’s General
Theory of Relativity and the Standard Model of elementary particles, give a
very accurate description of almost all accessible physical phenomena. Nev-
ertheless there still exist severe conceptual and physical issues in this context
which are far from being solved. While the dynamics of matter can be formu-
lated in terms of a full quantum (field) theory, the gravity part for instance
resisted all attempts of finding a similar quantum description up to now.

Many solutions of classical gravity predict regions of space-time in which
the curvature becomes singular. In these strongly curved regions, however,
quantum fluctuations of the metric are certainly not negligible. In particular,
one cannot expect to obtain an accurate description of the universe close to
the big-bang or in the vicinity of black hole singularities without an appro-
priate quantum theory of gravity. One may even doubt whether the usual
notion of space-time is a valid concept there.

String theory possesses several appealing features which make it a natural
candidate for a quantum unified theory of all interactions, including gravity.
First of all, a consistent formulation of string theory automatically requires
a background whose metric satisfies Einstein’s equations of general relativity
in the limit of high string tension. Quantum fluctuations of the metric can
then be described in terms of scattering of gravitons which naturally arise as
massless excitations of the string.

Beside the graviton a string possesses an infinite number of additional
excitations which can be interpreted as different kinds of particles. A finite
number of them corresponds to massless degrees of freedom which are asso-
ciated to gauge symmetries. According to a widely accepted assumption, the
more massive excitations do not contribute to an effective low energy descrip-
tion of the string because the gap between two energy levels is of order of the



Planck scale. One may thus hope to recover the spectrum of the standard
model and to arrive at the familiar description of matter in a limiting regime
where the strings become small compared to all observable length scales. As
a pleasant side-effect the extended geometry of strings smoothens out certain
singularities which arise in Feynman diagrams of point-particles.

Despite all the promising features of string theory there are also a number
of drawbacks one has to be aware of. First of all, one usually considers a
supersymmetric version of the string because no stable vacuum of the purely
bosonic string has been found until today. Yet up to now, the existence of
supersymmetry in nature could not be established in collider experiments.
Secondly, a consistent quantization of the superstring requires it to be em-
bedded in a ten-dimensional target space. Since we are obviously living in
four-dimensional space-time, one has to explain how to get rid of the remain-
ing dimensions.

This problem can be solved in principle by compactifying the additional
dimensions on some “internal” manifold which is too small to be resolvable
at standard energies. Up to now, however, there seems to exist no universal
guiding principle (except preservation of supersymmetry) which constrains
the potential shape of the compactification manifold. One thus encounters a
problem similar to the fine tuning problem in the standard model.

Until today, no one has been able to recover exactly the spectrum of
the standard model within string theory. The most promising candidates
for realistic string compactifications arise from brane worlds [1, 2|. In these
scenarios the visible particle spectrum and their non-abelian gauge symme-
tries are associated to massless excitations of open strings whose end points
are bound to move on so-called D(irichlet)-branes. These D-branes are non-
perturbative dynamical objects which are embedded in the target space and
which may carry charges with respect to the background fields. In the low-
energy approximation of string theory they correspond to solitonic solutions
of (super)gravity [3].

Apart from the natural appearance of non-abelian gauge theories, D-
branes also play a fundamental role in the conceptual understanding of string
theory. They constitute one of the most important tools to explore the web of
dualities which exists between different types of string theories [4, 5]. Other
applications include a microscopic derivation of the entropy of extremal black
holes [6] and different kinds of dualities between string theory and ordinary
gauge theory [7]. Recently, the open/closed string duality has found renewed
interest in this context [8, 9].

The internal structure of space-time may lead to many new interesting
phenomena since D-branes and strings — in contrast to point-particles — may



wrap non-trivial cycles for example. Also, due to their extended structure
strings know about the local curvature, i.e. about holonomy. Hence, it is not
particularly surprising that the excitations and symmetries of string theory
contain a lot of information about geometry.

String theory in a weakly curved geometrical background can be formu-
lated in terms of non-linear o-model perturbation theory. In this kind of
models one deals with coordinate fields which describe the embedding of
the two-dimensional string world-sheet into the target space. Consistency
requires conformal invariance of the two-dimensional world-sheet theory.

As soon as the geometry varies perceptible over distances of a string
length, stringy effects become important and classical geometry starts to
loose its meaning. In such backgrounds it is convenient to change the point of
view and to rather define (perturbative) string theory in terms of an abstract
conformal field theory (CFT). In this picture, geometrical notions are not
fundamental anymore but become derived concepts which are based on the
underlying world-sheet theory.

This picture has been rather successful in the past. It is well known for
instance that many geometric features such as holonomy and cohomology
may be encoded in the structure of a conformal field theory [10, 11, 12].
Recent results also indicate a deep connection between the dynamics of space-
time on the one hand and renormalization group (RG) flows between CFT’s
on the other. This relation seems to be well-established for the open string
sector. One was indeed able to relate the tension of a D-brane to a boundary
entropy in the associated CFT description [13]. While the first quantity
decreases in physical decays, the second was conjectured to decrease under
RG flows [14]. These ideas led to a successful study of Ramond-Ramond (RR)
charges of D-branes using boundary renormalization group flows [15, 16].
Although a similar picture for the background geometry, i.e. a bulk CFT, is
far from being settled there has also been some progress in this context [17].
Last but not least, the abstract approach is very suitable for a background
independent formulation of (open) string theory [18, 19, 20, 21].

The number of known exactly solvable curved string backgrounds is very
limited. String backgrounds which are very well understood from both the
geometric and the abstract point of view are group manifolds [22]. The asso-
ciated CFT’s are given by Wess-Zumino-Novikov-Witten (WZNW) theories
[23, 24] which possess an affine Kac-Moody algebra symmetry (see, e.g., [25]).
The closed string sector can be reconstructed from the harmonic analysis on
the group after a natural truncation of the resulting spectrum, showing again
the close relation between CFT and (quantum) geometry.

The investigation of D-branes in group manifolds was initiated in [26, 27,



28, 29]. These authors constructed a whole class of branes — nowadays called
maximally symmetric — which wrap quantized twisted conjugacy classes. The
quantization which naturally arises from the algebraic approach was later
shown to correspond to a mechanism of flux stabilization [30, 31]. Since
then, there has been remarkable progress in the understanding of maximally
symmetric branes on group manifolds. First, it was realized that these D-
branes possess a fuzzy world-volume which may be described in terms of
some non-commutative algebra [32]. This observation could be used in turn
to model the dynamics of the branes in the large volume limit using a non-
commutative gauge theory [33, 34]. Finally, the conserved charges associated
with these dynamics could be compared successfully to the twisted K-theory
of the group manifold [15, 16, 35, 36].

Unfortunately, the number of group manifolds which can directly enter a
consistent superstring background is very limited. The dimension of group
manifolds rapidly exceeds the crucial threshold of ten total or six compact
space-time dimensions in string theory. One is essentially left with the groups
SL(2,R), SU(2) and powers of U(1) which describe AdS;-spaces, the sphere
S3 and tori T™, respectively. These examples arise in the context of the AdSs-
type solutions of supergravity (see, e.g., [37, 38, 39]), in the near-horizon limit
of NS5-branes [40] and in the simplest Calabi-Yau compactifications.

The dimension of the target space may be reduced by gauging a continu-
ous symmetry of a WZNW model [41, 42, 43, 44, 45, 46]. The resulting theory
describes strings on coset spaces, at least in the geometric regime. With the
GKO construction [47] one also possesses a completely algebraic tool to in-
troduce coset models deep in the stringy regime. A detailed understanding of
coset models seems to be of fundamental importance since almost all known
conformal field theories can be formulated in terms of gauged WZNW models
or products and/or orbifolds of them.

Coset models appear indeed almost everywhere in string theory. The
N = 2 superconformal minimal models are particularly interesting examples.
They have been used by Gepner to model string theory at a special point in
the moduli space of Calabi-Yau compactifications [10, 48]. A more general
construction which also leads to the N = 2 superconformal algebra was
proposed by Kazama and Suzuki [49]. Similar considerations resulted in
models which describe string theory on manifolds with Go or Spin(7) special
holonomy [50].

The common definition of a coset theory employs the adjoint action to
gauge the subgroup. Geometrically, these cosets are plagued with all kinds of
unpleasant features like singularities, boundaries and corners. These patholo-
gies may be circumvented in principle by using an asymmetric, i.e. non-



adjoint, action of the subgroup when performing the gauging.

The Lagrangian description of asymmetrically gauged coset theories has
been around in the literature for quite a long time [51, 52]. Also, one knows
about a number of interesting geometrical examples and applications of these
models. The Nappi-Witten geometry for example describes a time-dependent
cosmological background with big-bang and big-crunch singularities [53]. An-
other prominent example is provided by the T?? spaces. For special values
of the parameters p, ¢ these non-Einstein spaces constitute a relative of the
base of the conifold where RR-fluxes are replaced by NSNS-fluxes [54]. The
conifold geometry plays an important role in recent investigations of open /
closed string and matrix model / gauge theory dualities [8, 9].

The aim of the present thesis is to develop a systematic and comprehen-
sive description of asymmetric cosets. The main focus is put on the algebraic
formulation in terms of abstract conformal field theory. A detailed under-
standing of the latter is required in order to be able to explore the theory
deep in the stringy regime. The closed string sector turns out to be described
by heterotic CF'T’s which possess different left and right moving symmetries.
This observation enforces a non-trivial and wide-reaching generalization of
the concepts which are used to describe ordinary adjoint cosets [55].

The heterotic nature of asymmetric cosets drastically complicates the
construction of D-branes in these backgrounds. The description in terms of
boundary conformal field theory demands to impose certain boundary con-
ditions relating the left and right moving degrees of freedom. In asymmetric
cosets, left and right moving sectors possess different symmetries and, as a
consequence, there exists no natural way to glue the currents. In fact, the
unique way out is to consider symmetry breaking D-branes in which only
a subset of the currents participate in the determination of the boundary
condition [55].

From the geometric perspective the construction of D-branes in asym-
metric cosets is not very hard, at least superficially. One simply has to find
D-branes on the underlying group manifold which may be consistently pro-
jected down to the coset. It is, however, not difficult to find examples where
this simple procedure turns out to be impossible for all the mazimally sym-
metric branes on the group. In other cases one only obtains a small subset
of the expected branes in this way.

The observations of the last two paragraphs reveal the necessity of a
general theory of symmetry breaking boundary conditions in conformal field
theory. After introducing the basic ideas, the whole program is worked out
in detail for WZNW theories [56]. If the target space is given by the group
manifold G, it is natural to preserve the action of a subgroup H on the



boundary. By iterating this idea one arrives at embedding chains H —

- — H; — G from which a whole hierarchy of branes can be obtained. The
resulting D-branes are analyzed both from the algebraic and the Lagrangian
point of view. They are shown to wrap products of twisted conjugacy classes,
one for each of the groups which constitute the embedding chain [57]. Under
weak assumptions this description even allows the construction of space-
filling branes. Finally, the non-commutative world-volume algebra of the
branes in the large volume limit is obtained from their spectrum of open
strings.

Most of the insights which have been obtained for WZNW models carry
over to asymmetric coset theories in a natural way [55]. To formulate the
gluing conditions for these models one has to reduce the different symmetries
of left and right moving degrees of freedom to a common subsymmetry. If
one breaks the symmetry down to the Virasoro algebra, the boundary theory
will be non-rational and thus almost impossible to solve.

Yet, in many examples one is able to find an intermediate symmetry with
respect to which the theory remains rational. A whole class of such theories
is provided by cosets of so-called generalized automorphism type. These
cosets are based on embedding chains as they appeared in the construction
of symmetry breaking D-branes on group manifolds. They are distinguished
by the property that left and right action of the subgroup just differ by
automorphisms in the intermediate groups. It is thus not surprising that the
geometry of the associated D-branes is also inherited from the group case.

The general scheme is applied to the most important examples of asym-
metric coset theories which arise in the context of string theory. As a warming
up, non-factorizing and symmetry breaking D-branes are constructed in the
group SL(2,R) x SU(2) which underlies the background AdS; x S* [38, 39].
Some of these branes may be projected down to the cosmological Nappi-
Witten space-time where one recovers D-branes which are capable of passing
a big-bang big-crunch singularity and connecting two of the universes in this
way. Using similar arguments, one is also able to identify branes which wrap
a sphere S? inside the base of the conifold.

Finally, it should be emphasized that symmetry breaking boundary con-
ditions in conformal field theories are also interesting beyond the area of
string theory. There exists indeed a widely accepted conjecture that physical
systems may be approximated by conformal field theories in the vicinity of
second order phase transitions [58]. The origin of this proposal is basically the
scale invariance which follows from the divergence of the correlation length
of fluctuations. The excitations and the critical exponents of physical quan-
tities may then be encoded in the spectrum of some conformal field theory.



The conformal invariance in turn gives strong constraints on the structure of
the correlation functions, especially in two dimensions where the associated
symmetry algebra is infinite dimensional.

Boundary conditions enter when one intends to describe critical systems
with boundaries or impurities. These type of models may also be used to
study diffusion, dissipation and percolation for instance [59, 60, 61, 62].
Among the vast number of models which could be described by methods
of (boundary) CFT are the Ising model [63], the Kondo effect (see [64] and
references therein) and quantum wires [65]. Last but not least, also a system
of two CFT’s which are separated by a defect line may be reformulated in
terms of a boundary theory by folding along the defect.

Defect lines are particularly interesting if they allow the exchange of par-
ticles etc. between the two adjacent systems. This situation can, however,
not be achieved within the framework of maximally symmetric boundary
conditions. The latter correspond either to full reflection or (only if the sys-
tems are identical) to full transmission. Defect lines which are at the same
time partially reflecting and partially transmissive can only be constructed
if one uses symmetry breaking boundary conditions [56]. In the presence of
several defects or boundaries one may hope to use the CFT description to
determine the Casimir forces between them. Note that defect lines also arise
naturally in the AdS/CFT-correspondence [66, 67, 68, 69].

This thesis is organized as follows. The second chapter gives a short
account of string theory and critical phenomena. The focus is put on the
description of D-branes and systems with boundaries or impurities, respec-
tively. It is indicated how their physical properties can be reformulated in
terms of abstract conformal field theory. Afterwards we focus on the univer-
sal nature of CFT whose structures and properties are reviewed in detail. In
the third chapter the general idea of constructing symmetry breaking bound-
ary conditions in CFT’s is introduced and discussed at length for the special
case of WZNW theories. It provides a comprehensive description of both the
algebraic and the geometric point of view. The construction of asymmet-
ric cosets takes place in chapter four. The presentation includes both the
stringy as well as the geometric regime. The boundary theory is solved for
asymmetric cosets of generalized automorphism type and the shape of the
D-branes is derived. Finally, the fifth chapter concludes with the application
of the general results to concrete examples of string backgrounds and defect
systems. Additional material and some rather technical derivations of sev-
eral results which are just cited in the main text have been postponed to the
appendices.

In view of the various distinct applications the presentation of our results



will emphasize the universal character of the constructions. The specific
language of the concrete applications is only employed where appropriate.

The present doctoral thesis is based on the publications [70, 71, 56, 34,
57, 55]. Section 2.4.3 and appendix B also contain material on permutation
branes that has not been published before in this explicit form.



Chapter 2

Conformal field theory

The following chapter provides background material on two-dimensional con-
formal field theory and its appearance in physics. It starts with a short
presentation of the two main applications, the string theory approach to a
quantum unified theory of all interactions and critical phenomena in statisti-
cal systems. Particular focus is laid on the description of D-branes, impurities
and defect lines which necessitate the introduction of boundaries. Afterwards
a more abstract point of view is taken up and the universal structures and
principles of (boundary) conformal field theory are reviewed. We also use the
opportunity to introduce Wess-Zumino-Novikov-Witten models, coset theo-
ries and orbifolds.

2.1 Physical applications

2.1.1 String theory and D-branes

In string theory, the elementary constituents of matter are not point-like par-
ticles but one-dimensionally extended strings. The latter admit all kinds of
vibration modes which may propagate along them. With energies that are
available at present colliders we are not able to resolve the inner structure of
strings. The excitations rather appear to be particles in a good approxima-
tion and the stringy nature of matter only shows up in a modification of the
high energy behavior and in connection with topological degrees of freedom
such as winding modes.

String dynamics

The dynamics of a string can be described by a two-dimensional non-linear
o-model. In this approach, the world-sheet X of the string is embedded into
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Figure 2.1: The non-linear o-model for closed and open strings.

the target space M by coordinate fields X# : ¥ — M. The natural action
functional of a string is the area it sweeps out in space-time. But as this so-
called Nambu-Goto action contains square roots it is very hard to quantize.
For this reason one usually considers an action functional which is equivalent
to the previous one on the classical level but much easier to access. This
so-called Polyakov action reads

S(X,7) = —— /Z d%[\/—_v (GW(X)yab+BM,,(X)eab>aaXﬂabX”}

4l

The constant 1/a’ which normalizes the action is a measure for the string
tension. We only wrote down the dependence on the world-sheet metric
and on the coordinate functions X*. All fermionic degrees of freedom and the
dilaton have been omitted. With these simplifications the action functional
depends on two background fields, the metric G, and a two-form field B, .

The Polyakov action is invariant under a number of symmetries which
shall be preserved during the process of quantization. Apart from target
space symmetries the most important are general diffeomorphism and Weyl
invariance of the world-sheet. The latter corresponds to a local rescaling
7% Q(0) v of the metric. Demanding this kind of conformal invariance in
the quantum theory leads to strong restrictions for the background fields. In
a scale invariant theory the g-functions for all the couplings have to vanish.
Expressing the [-functions perturbatively as functions of the background
fields G, (X) and B, (X) thus leads to certain consistency conditions. To
lowest order in o one arrives at the equation

AR, — Hype H,” = 0 . (2.1)

If the three-form field H = d B vanishes identically, we just recover Einstein’s
equations in the absence of matter. Higher orders then provide stringy cor-
rections to classical general relativity.

Open strings enter the game if one allows for world-sheets ¥ with bound-
aries. In the o-model formulation one has to fix the boundary conditions
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of the coordinate fields X* such that energy-momentum is prevented from
flowing across the end of the string. This condition is equivalent to the
preservation of conformal invariance of the boundary theory. The boundary
conditions restrict the regions which the end points of the open string can
sweep out to certain subsets of the target space M. The latter constitute
the world-volumes of two D(irichlet)-branes.

An illustrative example: Flat Minkowski space

The o-model above may easily be quantized in flat Minkowski space. In
this background it just corresponds to an ensemble of massless free bosons.
In addition one has to include ghosts in order to remove the negative norm
states which appear due to the indefinite signature of the Minkowski metric.
Eventually, one would also like to introduce free fermions (plus ghosts) if
the final theory should obey supersymmetry. As it turns out, conformal
invariance at the quantum level is only preserved in D = 26 or D = 10
space-time dimensions for the bosonic string or its supersymmetric analogue,
respectively. These two conditions are equivalent to the vanishing of the total
central charge c in the associated CFT.

The quantized string possesses an infinite tower of excitations correspond-
ing to different oscillation modes which organize themselves in an equidistant
energy spectrum. The difference between two energy levels scales with the
string tension 1/¢/ and is usually assumed to be of the order of the Planck
mass. If this proposal is correct, we will even in the largest colliders only be
able to observe the “massless” modes.

For the bosonic string, the lowest lying excitation has negative mass
squared. The occurrence of this tachyon is usually interpreted as an instabil-
ity of the whole theory. In contrast to this observation, the supersymmetric
analogue is stable since the tachyon can be consistently projected out by
means of the GSO-projection [72]. In this case the lowest excitations are
found in the massless sector. The excitations with vanishing mass may be
decomposed into a symmetric tensor, an antisymmetric tensor and a scalar
(the trace of the tensor) which transform independently under Lorentz trans-
formations. They may be interpreted as a graviton, a two-form field and a
dilaton, respectively, and describe quantum fluctuations of the classical back-
ground.

The Hilbert space H of closed string excitations may be decomposed
into representations of the underlying world-sheet symmetry algebra. In the
present case we have an extended symmetry which enhances the conformal
Virasoro algebra. Let us forget about fermions and ghosts and only consider
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the free boson part for a moment. The fourier modes a# and @& of the
chiral derivative fields 0X*(z) = Y ok z~™ 1 and 90XV (z) = Y arz !
generate several commuting copies of the Heisenberg (or u(1)) algebra. The
conformal symmetry is built from the energy momentum tensor which is
given by T(z) ~ 0X*0X, and its antiholomorphic counterpart. The fourier
modes L,, are normal ordered bilinears of the modes o/ . The operator L,
determines the mass of the string excitations.

The content of the Hilbert space H and the distribution of mass among
the excitations may conveniently represented in terms of the closed string
partition function

Z(QJQ_) = tI‘H [qL0_1/24q£0—1/24}

It depends on one complex quantity 7, Im7 > 0, which enters through ¢ =
e?™7 and describes the modulus of a torus. The partition function can be
further simplified if one decomposes H into irreducible representations Hy
and introduces the characters x;(q) = try, ¢“0~%/?* which describe the tower
of excitations over a (chiral) highest weight state |k). The final result is then
given by Z(q,q) ~ [d"%k xx(q) Xx(g). It turns out to be modular invariant,

i.e. invariant under the transformations 7 +— 7+ 1 and 7 — —1/7.

The label k = (k") of the lowest weight state |k, k) corresponds to the
(rescaled) eigenvalues of the zero-modes off = a4. It can be interpreted as the
space-time momentum of the excitations generated from the tachyon state
|k, k). The latter is created out of the “vacuum” state |0,0) by means of the
vertex operators

Vk(z,é) = . eikX(z,Z) L= Vk(Z) & %(2)

Since the state is lowest weight, it is annihilated by all modes o , &) with
n > 0. The higher excitations in the representation are generated by the
negative modes and correspond to other types of particles.

In order to obtain physical predictions one has to calculate scattering
amplitudes. All information about the scattering of string excitations is
contained in the operator product expansion

Vi(2,2) Vo (w, @) = |2 — w|** Viyp(w, @) + less singular .

In the limit o/ — 0 the conformal dimensions of the fields Vi (z,Z) vanish
and so does the dependence on the world-sheet coordinate in their OPE. As a
consequence the OPE seems to reduce to the ordinary product of exponential
functions. This observation indicates a close relation to classical geometry



13

[73, 74]. The exponential functions form indeed a complete orthonormal set
of eigenfunctions of the Laplace operator on M.

For the description of D-branes one has to find suitable boundary con-
ditions for the fields X*#. In the flat Minkowski background with vanishing
B-field the latter can either be Neumann or Dirichlet. After appropriate
choice of the coordinate system, the conditions read

o X" =0 foru=20,---,10—1p
X" =0 forr=10—-p+1,...,10 ,

where the symbols 0,, and 0, denote derivatives normal and tangent to the
boundary 9%. Similar relations are obtained for the fermions. The interpre-
tation of these conditions is quite simple. While the string end-points are
free to move in the Neumann directions = 0, ..., 10 — p, they are bound to
a specific point X in the Dirichlet directions v =10 —p+1,---,10. All in
all, the end-points of the string are confined to a p-dimensional submanifold
of Minkowski space, a Dp-brane. In the low-energy approximation of string
theory it corresponds to a solitonic solution of supergravity [3].

The boundary conditions for D-branes in flat Minkowski space in the
presence of a constant non-vanishing B-field are modified. They interpolate
smoothly between Dirichlet and Neumann. The effect of the B-field can
be interpreted as introducing a non-commutative world-volume of the brane
[75, 76]. Under these conditions the dynamics of D-branes in the decoupling
limit may effectively be described by a non-commutative gauge theory [77].
Similar observations are expected for all backgrounds with non-vanishing B-
field. Note, that the latter is automatically forced to be non-zero by the
consistency condition (2.1) if the Ricci curvature of the target space does not
vanish.

Non-trivial exact string backgrounds

In strongly curved backgrounds the o-model perturbation theory in o breaks
down. In this case it is convenient to replace the geometrical model by
an abstract conformal field theory. The latter has to satisfy a number of
consistency conditions, which arise from physical grounds. Even though most
of them have already been encountered in the example of Minkowksi space
we will summarize them again in order to illuminate the general structure of
string theory.

First of all, the central charge of the underlying Virasoro algebra has to

vanish, which is equivalent to removing the conformal anomaly. Since the
theory has to contain a ghost system of central charge cg,, = —15, one is left
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Figure 2.2: World-sheet duality.

with ¢ = 15 for the matter part. If one further assumes the existence of four
flat observable dimensions, the internal compactification space is described
by a ¢ = 9 abstract conformal field theory.

A second constraint arises from demanding target space supersymmetry
in the uncompactified dimensions. This can be achieved by imposing N = 2
or N = 1 superconformal invariance of the world-sheet theory [10, 11]. In the
geometric limit, the existence of supersymmetry is closely related to special
holonomy properties of the target space or, equivalently, to the question of
the existence of covariantly constant spinors.

All internal excitations of a closed string can be considered to be built
out of elementary excitations which are completely chiral, i.e. which run
only in one of the two directions along the string. They organize themselves
with respect to some symmetry algebra which at least contains the Virasoro
algebra generating conformal transformations. From fundamental physical
principles such as locality, however, one obtains strong restrictions on the
possibilities of combining left with right movers. As a special case one is led to
the constraint of modular invariance which ensures the correct behavior under
large world-sheet coordinate transformations. In exact string backgrounds
which admit a geometric limit, the partition function and the content of
vertex operators it describes are closely related to the algebra of functions
on the target space.

Open strings which stretch between two D-branes possess excitations sim-
ilar to the closed string. The end-points, however, constitute a natural defect
where left and right movers are reflected into each other. For obvious rea-
sons the spectrum of excitations of the open string depends crucially on the
compatibility with this reflection. The latter may be formulated in terms of
so-called gluing conditions of the chiral fields in a boundary conformal field
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theory (BCFT). The tension of a D-brane was argued to be given in terms
of the boundary entropy of the associated boundary condition [78, 13].

It is a remarkable fact that any diagram which involves the emission or
absorption of closed strings at a D-brane may be interpreted as an open
string diagram (see figure 2.2). This so-called world-sheet duality facilitates
the determination of the spectrum of open strings which can stretch between
two D-branes because it can essentially be reduced to a calculation in the
closed string sector. Details can be found in section 2.3 below.

2.1.2 Critical phenomena

Apart from string theory, the methods of conformal field theory possess im-
mense applications in different areas such as condensed matter physics and
statistical mechanics. More generally, these methods apply for models which
show critical behavior such as percolation, dissipative quantum mechanics,
diffusion limited aggregation and others.

Usually, physical systems with short range interactions have an intrinsic
length scale such as the average distance between atoms or molecules. Corre-
lations between physical quantities at different locations decay exponentially
and vanish after a multiple of the correlation length. During a second order
phase transition, however, the correlation length of the order parameter di-
verges. Hence, there does not exist a natural length scale anymore. In a very
good approximation, the system can be treated as a scale invariant continu-
ous field theory. Moreover, one even expects the system at the critical point
to be described by a theory which is conformal [58]. It should be empha-
sized that (local) conformal invariance is much more restrictive than (global)
scale invariance. Only in two dimensions it is already implied by the latter
if one assumes the existence of a conserved energy momentum tensor. The
continuum field theory which can be used to describe the critical point does
not depend on the details of the interaction but only on the dimension, the
symmetry and the range of the interactions. This follows from the hypothesis
of universality.

Phase transitions show up in a characteristical singular behavior of physi-
cal quantities such as the specific heat, conductance, magnetization etc. near
the critical point. In general, they follow power laws similar to the expression
for the correlation length, which behaves like £ ~ (T'—T,)™" in the vicinity of
the critical temperature T,. The quantity v is called a critical exponent. The
critical exponents of all the physical quantities can be extracted from the
conformal dimensions of the fields in the CFT. Both the conformal dimen-
sions and the possible form of the correlation functions are highly constrained
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by conformal symmetry [63, 79, 80].

The most important quantity of a statistical system is its partition func-
tion Z =Y e PEr. It contains information about all the excitations of the
system and is the generating function for all thermodynamical quantities, in
particular the free energy. As was argued by Cardy, the partition function — a
natural object in every CF'T — is strongly constrained by modular invariance
[81].

In nature, the ideal of an infinitely extended homogeneous system will
never be realized exactly. One will always have to deal with boundaries,
impurities, defects and related phenomena. We will present some examples
of the latter below and indicate how they may be described in a unified way
within the framework of boundary conformal field theory.

Boundaries

Due to the limited extension of physical systems it is impossible to avoid
finite size effects. While the physics far away from the boundary will not
be affected by the choice of boundary conditions, the latter will for instance
modify the form of correlation functions close to the boundary.

These ideas may be illustrated with the Ising model at the critical point.
This model is described by an ensemble of quantum mechanical spins on a
lattice which may either point up or down and which are coupled through
nearest neighbor interactions. The Ising model allows for three boundary
conditions which preserve the conformal invariance. Beside free boundary
conditions one can also choose all spins on the boundary either to show up
or down. If all spins at the boundary are fixed to show in one direction,
their neighbors also will have an enhanced probability to show in the same
direction.! Deep in the bulk, however, the boundary contribution will be
shadowed by the effects of the other bulk spins.

Systems with finite geometry have the great advantage to be accessible
to experiments and simulations on computers. Yet, they contain valuable
information about the infinitely extended bulk theory. Let us for example
consider an infinite strip of finite width L. It was argued that the free energy
per unit length possesses the universal form [82, 83]

[ = foL—6—L+O(L72)

if one imposes periodic boundary conditions along the strip. Relations like
this are known as finite-size scaling. They indicate that the central charge of

'Here, we assumed a ferromagnetic coupling.
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Figure 2.3: The folding trick relates a system on the real line with a defect
to a tensor product theory on the half line.

a conformal field theory is a measure for the number of degrees of freedom
of a system. This observation is also in agreement with Zamolodchikov’s
c-theorem according to which the central charge does not increase along
renormalization group flows [84]. Let us recall that more and more degrees
of freedom are integrated out as we follow a RG flow [85].

For more complicated boundary conditions, the factor in front of ¢ L1
has to be modified slightly and one obtains two additional universal terms
In g; + In go which correspond to boundary entropies [14]. Similar relations
also hold for one-dimensional quantum systems if one replaces the width L
by the appropriate quantities.

Defect lines

Sometimes two different two-dimensional systems are adjacent along some
defect line. It is not difficult to see that this kind of model may be mapped
to a boundary problem by folding the system along the defect and gluing the
world-sheets afterwards [65]. Although the two theories are now living on the
same world-sheet, they do not interact except for the boundary. This implies
that we have to deal with a tensor product of the two theories, whose factors
are coupled exclusively at the boundary. The folding trick is illustrated in
figure 2.3.

If a system possesses several defect lines and/or boundaries, the energy
density in the different regions will differ in general. This means that the
defect lines induce some sort of Casimir force which should in principle be
accessible to measurements. Detailed computations of Casimir forces in the
framework of BCFT can be found in [69].

A whole class of defects can be constructed from the individual boundary
conditions of the two theories. This procedure would describe two systems
which have two separated fully reflecting boundaries. As a consequence there
is no interaction between the two systems at all in this case, neither in the
bulk nor at the boundary. Another class of defects can be obtained if the
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defect separates two identical probes. One may easily construct fully trans-
missive defects in this case using the data of the two individual theories. The
effect of the defect may then be interpreted as the generalization of a simple
phase shift.

The situation becomes more complicated if one aims at describing defect
lines which are neither fully reflecting nor fully transmissive. In this case,
the symmetry which underlies both systems has to be broken to a common
smaller symmetry before the usual scheme can be applied [56]. The con-
struction of such defects will be possible with the methods of chapter 3. The
example of two adjacent WZNW models will be considered in detail in sec-
tion 5.5. For more examples of defect systems and further details we refer
the reader to the literature [86, 87, 88].

Quantum impurities

Some extended systems whose degrees of freedom couple to a localized quan-
tum mechanical impurity can be treated by methods of BCFT, at least
in some regions in parameter space. The prototype of such systems is
the Kondo model where we have an isolated magnetic impurity inside a
three-dimensional conductor, interacting with the electrons in the conduc-
tion bands. Although the original problem is three-dimensional, it can be
mapped to a one-dimensional system with boundary by assuming spherical
invariance of the interactions, i.e. absence of spin-orbit coupling. At low
temperature the quantum mechanical impurity degree of freedom is then
modelled by a conformal boundary condition in a strongly interacting CFT
(see [64] and references therein).

The Kondo model predicts an unexpected behavior of the conductivity.
The electrons tend to screen the impurity and their mutual coupling turns out
to become stronger at low temperature. As a consequence the conductivity
decreases when the temperature is lowered and does not increase as would
be expected from the usual picture that the conductivity is limited by the
scattering of electrons with thermal phonons. In the BCFT description the
process of screening corresponds to a renormalization group flow to a different
boundary condition.

Other models with impurities which have been investigated using methods
of boundary conformal field theory include the two-impurity Kondo model
[89] and the Heisenberg spin chain [90, 91].
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Quantum wires

A special subclass of impurity and defect systems is constituted by quan-
tum wires. These are networks of one-dimensional conductors with junctions
and boundaries. Each conductor is modelled by a one-dimensional gas of
interacting electrons with spin and charge. In addition, the conductors may
possess impurities which modify the interactions locally.

For the applications it is of fundamental importance to know the response
of the system to a given input. In abstract language this corresponds to the
determination of the transmission and reflection amplitudes at each junction
or impurity. If an impurity is not completely localized but slightly extended,
the phenomenon of resonant tunneling may occur. In this case one can even
obtain full reflection or transmission depending on the exact design of the
impurity.

At low temperature and in the limit of long wavelengths the quantum
wires may be described by a conformal field theory [65]. For a single wire
with an extended impurity the existence of four stable phases is known which
correspond to either full or zero conductance of either charge or spin degrees
of freedom. There also exist phases with partial transmission but they just
separate two stable phases and have been shown to be unstable.

Percolation

The classical problem of percolation is concerned with clustering properties
of objects which are randomly distributed over space. Percolation is known
for a long time to be a critical phenomenon. Consider for instance a closed
curve I' which encircles a finite region R. This region can be covered by
square plaquettes of a certain area A. Let us associate a color to each of the
plaquettes, white with probability p and black with probability 1 — p. In the
limit A — 0, the number of plaquettes diverges.

The plaquettes form clusters of equal color and one may ask for their
average size in the limit A — oo. It turns out that below a certain critical
threshold probability p. all white clusters only contain a finite number of
plaquettes. Above p. in contrast there is a finite probability that a given
point in the interior of R belongs to a white cluster of infinite size.

The cases p # p. are not very interesting since the white clusters form
a subset in R of either zero or full measure. Much more interesting is the
critical case p = p. which is exactly solvable in two dimensions. By assuming
conformal invariance and using tools from BCFT in a cunning way, Cardy
derived a formula for the probability that there exists a cluster which con-
nects two given segments of the boundary curve. Similar methods led to a
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formula for the mean number of such crossing clusters (see [92] and references
therein). The proof of conformal invariance and an independent confirmation
of Cardy’s formula was only recently achieved by Smirnov [93, 94].

Critical systems which are closely related to percolation and may be
treated by similar methods are the Brownian motion, self avoiding walks
and the stochastic Loewner evolution [95, 96, 62, 97].

Dissipative quantum mechanics

For studying macroscopic systems, one usually has to incorporate the influ-
ence of friction. The latter is the cumulative effect of degrees of freedom
whose microscopic dynamics is not included in full detail in the description
of the model. The simplest way to consider friction in a quantum mechanical
model is to couple the particle to a bath of harmonic oscillators. Integrat-
ing out these degrees of freedom results in the standard friction term —nz
proportional to the velocity [98].

The friction is an important ingredient for the localization of particles.
Consider for instance a particle in one dimension subject to a periodic poten-
tial. Without the influence of the oscillators the particle tends to delocalize
and smears over the full real axis. Yet, if one switches on the friction, there
exists a critical threshold 7. above which the particle stays in the vicinity of
its original well for all times, i.e. where delocalization turns into localization.
This observation indicates that dissipation is a critical phenomenon. The
critical behavior reveals itself in a logarithmic divergence of the mobility.

The connection between dissipative quantum mechanics at criticality and
the BCFT approach to open string theory was worked out in [59]. The
potential corresponds to a tachyon background and one can also discuss the
effect of a space-time gauge field which couples to the end points of the open
strings. The same scheme has also been applied successfully to the study of
the dissipative Hofstadter model [60, 61].

2.2 Rational bulk conformal field theory

2.2.1 The bulk spectrum and modular invariance

The analysis of physical systems is usually greatly facilitated by the presence
of symmetries. As was motivated in the last section, string theory and critical
systems lead to field theories with conformal invariance. The associated sym-
metry algebra becomes infinite-dimensional in two dimensions and provides
thus a powerful tool for the investigation of these models. It is also peculiar
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to CFT’s that they may be formulated using a chiral decomposition into a
left and a right moving sector which can be treated almost independently.

In this section we will review how the symmetry and additional consis-
tency conditions like modular invariance constrain the spectrum of excita-
tions in conformal field theories. The spectrum has to organize itself in terms
of representations of the product A® A of the two chiral symmetry algebras.
We first describe the chiral part which is associated to the chiral algebra A
and argue afterwards how left and right moving chiral sectors may be coupled
to yield the full conformal field theory.

Chiral algebras and their representations

Let us consider a two-dimensional conformal field theory living on the com-
plex plane ¥ = C. The most important field is given by the chiral energy
momentum tensor T(z) =Y., _, L, 2 ""? (and its anti-holomorphic counter-
part T(Z)). Its modes L, satisfy the relation

Ly, Ly = (m—=n)Lyyn +cm(m? —1)0pino/12 |
+7

i.e. they generate the Virasoro algebra Vir(c) which is embedded into .4 and
describes the conformal symmetry. The value of the central charge ¢ depends
on the model under consideration and is a measure for the number of degrees
of freedom the system has. The sum of the zero modes Lo+ Ly is proportional
to the Hamiltonian and generates the dynamics of the system.

Occasionally, a CFT may contain additional chiral currents W¥(z) =
Sz "M Wi of (half-)integer conformal weight h;. In this case the chiral
algebra A is larger than the Virasoro algebra and we speak of an extended
symmetry [23, 99]. The conformal dimensions are defined by the commuta-
tion relation

Lo W] = [(h = Lym — n] W

m+n

The most important examples of extended chiral algebras are provided by
affine Kac-Moody and superconformal algebras. We will give a detailed ac-
count of models with the first type of symmetry in section 2.4 below.

The two chiral algebras A and A can be identical but they do not have
to. Most parts of this thesis are actually devoted to the study of asymmetric
coset theories which allow for a different holomorphic and anti-holomorphic
symmetry. As the description of these models, however, requires more elabo-
rate techniques we will postpone their discussion to chapter 4 and assume the
isomorphy A = A in this section. For technical reasons we will also restrict
ourselves to so-called rational algebras A possessing a finite set Rep(A) of
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“physical” irreducible representations. By physical we mean that we deal
with unitary representations in which the “energy” Lg is bounded from be-
low.

An appropriate representation p € Rep(A) is characterized by a lowest
weight vector |u) in a Hilbert space H,, i.e. Ly|u) = Wilp) = 0 for n >
0. At the same time it labels an irreducible representation of the algebra
generated by the zero-modes 1. We will denote the conformal dimension
of u — the eigenvalue with respect to the “energy” operator Ly — by the
symbol h,. For physical reasons we demand the existence of a distinguished
vacuum representation (0) with vanishing conformal dimension, hy = 0. Also,
for every representation one can construct the conjugate (contragredient)
representation x4 which may or may not be isomorphic to pu itself.

For ¢ # 0 all representations ;1 € Rep(A) will necessarily be infinite-
dimensional. It is thus useful to introduce the character

xulq) = try, gro—e/ with ¢ = exp(27i7) and Im(7) >0 |,

which encodes the content of the irreducible representation. The characters
constitute a unitary representation of the modular group. Under the action
of the generators T : 7+— 7+ 1 and S: 7 +— —1/7 they transform according
to

Txu(r) = xu(r+1) = 02y (1)
Sxu(m) = Xu(=1/7) = > Swxulr) |
vERep(A)

where S is a unitary matrix. For later use it is convenient to summarize some
properties of the modular S-matrix,

S;w = Syu 5 S/ffu = g,ul/ ) Z S’/D\ Sl/)\ = 55 : (22)
A€Rep(A)

Explicit expressions for the modular S-matrix are known for many classes of
conformal field theories. Some of them will be dicussed in section 2.4 below.

Bulk spectrum and modular invariance

For a complete specification of the bulk CFT we still need to couple holo-
morphic and anti-holomorphic degrees of freedom and to characterize its field
content. The space of fields decomposes into irreducible representations of
the product A ® A of the two chiral algebras,

H= &P 2"H.eH; (2.3)

,a€Rep(A)
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with some numbers Z#* € Ny. We call the set of all pairs (u, ) that con-
tribute to H (including the multiplicities) the spectrum of the (bulk) theory
and denote it by

Spec = { (w i) [n=1,...,2" } . (2.4)

The spectrum of a conformal field theory, however, cannot be chosen arbi-
trarily but is subject to consistency conditions like modular invariance.

For the application in string theory it is indeed crucial to have an unam-
biguous description of our conformal field theory on arbitrary world-sheets.?
The latter may be constructed by sewing certain elementary world-sheets.
The consistency of this procedure boils down to two relations, crossing sym-
metry of the four-point function and modular invariance of the one-point
function on the torus [100]. For practical purposes, however, one often just
considers the consistency of the vacuum amplitude on the torus which al-
ready determines the allowed spectrum to a large extent [81]. The torus
depends on one modulus 7 with Im(7) > 0. The toroidal partition function
of our theory then reads

Z(q.q) = topgho gt = N 2 x,(q) Xa(@)
w,a€Rep(A)

where the argument ¢ = exp(2mi7) is determined by the modulus of the
torus. There exist, however, an infinite number of different representations
for one and the same torus in terms of the parameter 7. Hence, one has to
identify all values of 7 which are related by a modular transformation, i.e.
by a sequence of S- and T-transformations.

Imposing invariance of the toroidal partition function under modular
transformations gives severe restrictions on the numbers Z*#. But never-
theless, there exist choices ZH* = §H# and ZFM* = §*E" the so-called diagonal
and charge conjugate invariants, which are always allowed. Several tech-
niques may be applied to construct further modular invariant starting from
a diagonal or charge conjugate one. Non-trivial partition functions arise for
example in orbifolds which are reviewed in section 2.4.3.

2.2.2 Fusion rules, simple currents and automorphisms

For the construction of further modular invariant partition functions it is
necessary to understand the symmetries of the chiral algebras. These will
also play a crucial role in the construction of boundary theories and in the

2In this section we only consider world-sheets without boundaries.
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context of coset theories in the sections 2.3 and 2.4.2. We take this as an
opportunity to summarize some well-known facts about fusion rules, simple
currents and automorphisms.

Given two representations p, v € Rep(A) of the chiral algebra A one may
define the notion of a fusion product pxr. This product is commutative and
associative. It can be thought of as some generalization of the usual tensor
product which however keeps fixed the value of the central charge® such that
the product closes inside the set Rep(.A).

According to Verlinde one may express the structure constants of the
fusion product px v = >, N, A in terms of the modular S-matrix [101].
The exact correspondence reads

S)\O'S CTSI/CT
NS = ) # : (2.5)
o€Rep(A) 7

For later convenience let us summarize some important properties of fusion
rules which may easily be proved by means of the Verlinde formula (2.5) and
using the properties (2.2) of the modular S-matrix,

Vacuum = Identity: Nou” =4,
Symmetry: N,°=N,,° = NW+”+ = H+,,+‘T+ (2.6)
Associativity: Na'Nu® = Y N N,,*
o€Rep(A) o€Rep(A)

These fusion coefficients contain useful information about the symmetries of
the algebra A. We will describe two of them in the following, the simple
current symmetries and the automorphisms.

Simple current symmetries

Simple currents J € Rep(.A) are characterized by the property that the fusion
product J % p of J with any other sector u € Rep(A) contains exactly one
representation Ju € Rep(A). Since the vacuum representation is a simple
current and the fusion product is commutative, the set of all simple currents
forms an abelian group Z(.A), the center of the chiral algebra. The inverse
of a simple current J is given by its conjugate, J~! = J*.

Let us now summarize some well-known properties of simple currents. It
turns out that simple current transformations relate different elements of the

3In an ordinary tensor product the central charges would add up.
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modular S-matrix according to
Siuy = @) S - (2.7)

The real number @ ;(v) is defined modulo integers and it is called the mon-
odromy charge of v with respect to the simple current J € Z(A). Tt is
possible to show that monodromy charges are related to conformal weights
by the formula

QJ(I/) = hJ+hV_hJV mod 1

The relation (2.7) has some wide reaching consequences. In particular, by
iterated application we find

QJ1J2<V) = QJ1<V)+QJ2(V>
and  Q;(Jv)+Qr(n) = Qr(Ju) +Qu(v)

It follows especially that @ (v) = nQ;(v). For a simple current J of order
N, i.e. an element J € Z(A) satisfying JV = 0 (the vacuum representation),
the last relation means that the number exp(27iQ,(v)) is an N™ root of
unity.

Simple currents provide symmetries of the fusion rules. Indeed, the com-
mutativity and associativity properties of the fusion product imply

Jo o
N/, = Ng, .

We will encounter simple currents almost everywhere in this thesis as they

play a prominent role in the construction of orbifold and coset conformal
field theories.

Automorphisms

The chiral algebra A may possess a number of automorphisms, i.e. maps
A — A which respect the commutation relations and the adjoint operation
and which preserve the Virasoro algebra as well. We will denote this set
by Aut(A). Every automorphism 2 € Aut(A) induces a permutation w :
Rep(A) — Rep(A) on the set of representations. One can easily show that

this map has to satisfy w(0) = 0 (the vacuum representation) and w(u™) =

w(p)*.

The automorphisms manifest themselves as symmetries of the S-matrix
and of the fusion rules. In contrast to the simple currents, one obtains now

— wd) Az
Suwlwew) = S and Nowwwy = N (2.8)
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The last relation — which follows from Verlinde’s formula (2.5) — shows that
w indeed constitutes an automorphism of the fusion algebra.

The action of an automorphism may consistently be restricted to the
center Z(.A). This statement is a simple consequence of the relation w(J) x
w(p) = w(Ju) which holds for all simple currents J € Z(A). From the
equations (2.7) and (2.8) one infers that the monodromy charges satisfy the
relation

Qun (w(p)) = Qu(n) (2.9)

This equation will play a crucial role in our treatment of asymmetric coset
theories.

2.3 Rational boundary conformal field theory

2.3.1 Boundary states and Cardy’s condition

In the presence of world-sheet boundaries, the previous picture has to be
slightly modified. While the two different chiral degrees of freedom remain
to be non-interacting in the bulk, left movers are reflected into right movers
and vice versa on the boundary. The details of this reflection depend on
the boundary condition we impose. To describe D-branes in string theory or
impurities in critical systems we have to preserve at least conformal invari-
ance on the boundary. This condition is equivalent to the absence of energy
momentum flow across the boundary. In this section we will review the stan-
dard construction of boundary conditions which are maximally symmetric,
i.e. preserve the full chiral algebra A (see e.g. [102, 103, 104, 105]). The re-
maining parts of this thesis will then be concerned with boundary conditions
which break part of this symmetry.

Let us review the construction of boundary conditions which preserve the
full chiral algebra A. We may specify boundary theories through associated
boundary states |B) which live in the bulk Hilbert space. The choice of the
boundary condition is then implemented by gluing conditions of the form

(¢(2) — (=1)"3 Q¢(2)) |B) =0 for 2=z . (2.10)

Here, the reflection of left into right movers ¢(z) — Q¢(Z) is described by a
gluing automorphism € € Aut(.A) which must leave the energy momentum
tensor invariant in order to preserve conformal symmetry. As was reviewed
in section 2.2.2, the automorphism  induces a permutation w : Rep(A) —
Rep(.A) on the set of representations which leaves the vacuum representation
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Figure 2.4: Emission and absorption of a closed string versus open string
vacuum amplitude.
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invariant and satisfies w(p)™ = w(u®). It is then easy to see that for each
element

(,m) € Spec” = { (u,n) | (1, 1ln) € Spec and i = w(p®)}  (2.11)

in the w-symmetric part of the spectrum (2.4) one can construct a so-called
Ishibashi (or generalized coherent) state |u,n)) [106]. These states are nor-
malized by

1 Lo—c
(uymlgz For o=/ |y e = 5467 x,.(q)

and they constitute a complete linear independent set of solutions to the
linear equations (2.10). Although the Ishibashi states are often said to live
in the bulk Hilbert space H, one should bear in mind that they are not
normalizable in the standard sense.

Naively, one could think that all linear combinations

@/}b(”’”)
) = Y |1, 1)) (2.12)
(1,m)ESpec?  V Sop

would lead to consistent boundary states. There exists, however, the impor-
tant Cardy constraint which arises from world-sheet duality. The latter may
easily be understood in the string theoretic picture where it corresponds to
an exchange of open and closed string channel.

The string diagram in figure 2.4 may indeed be interpreted in a two-fold
way. The left hand side shows the propagation of a closed string between
two D-branes. The emission and absorption of the string are described by
boundary states |a) and |b), respectively. On the right hand side one rec-
ognizes a vacuum diagram of an open string. Both diagrams are identical
except for the direction of time. Nevertheless, they can be identified after a
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modular S-transformation. The evaluation of the diagram in the open string
channel then gives

~1(L +Lo—c/12) % (h) ?ﬁ ~
Za(q) = {a|g2Eottomp) = 37 S XM(CD
(m,m)€Spec” On
i (wm) ()
Yo Pyt S, a
= Z SZ MXV((]) = Z (nu)b XV(Q)
“w

(p,m)ESpec vERep(A)

vERep(A)

where § is obtained from ¢ by modular transformation, i.e. § = e 2™/7. All
characters x,(¢q) in the second line must have non-negative integer coeffi-

cients,
(ksm)
a wa wb“n 1%
mt = Y B oy ey

(1,m)€Spec®

since we want to interpret the whole expression as an open string partition
function. The latter describes the excitations of open strings stretching be-
tween the two D-branes.

Consistent boundary states which correspond to the gluing automor-
phism 2 may be generated from a set B“ of elementary boundary states.
As a criterion for elementarity we shall use the requirement (no) ba = .
It states that the identity field should only live between identical boundary
conditions and that it should appear with multiplicity one.* Every consis-
tent boundary state may be represented as a superposition of elementary
boundary states with non-negative integer coefficients. In the language of
string theory, non-elementary boundary states correspond to superpositions
of D-branes and lead to Chan-Paton degrees of freedom. Let us emphasize
that the boundary states do not only depend on the gluing automorphism
(), but also on the bulk partition function under consideration.

One can show that the matrices n, form a non-negative integer valued
matrix representation (NIM-rep) of the fusion ring of the CFT [105], i.e

ANy, = Z Ny, nw and ny = ()", (2.14)
vERep(A)

where the fusion rules of A are denoted by Ny, . Let us also remark that the
classification of NIM-reps for a given fusion ring is not sufficient to construct

4This definition of elementarity is a working hypothesis. The exact definition would
require to look at factorization properties of correlation functions.
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consistent BCFT’s. In fact, many NIM-reps are known to possess no physical
interpretation [107].

There is a class of boundary conditions which was constructed by Cardy
more than ten years ago [102]. In the original setup, these boundary condi-
tions require €2 to be the identity and that we are working with the charge
conjugate modular invariant, i.e. Z#* = §**" Hence, Spec'd and Rep(A) can
be identified, so that it is easy to solve the Cardy condition by the boundary

states
vy = > \/—IA»’ (2.15)

A€Rep(A)
where v € B4 2 Rep(A). Indeed, the Verlinde formula for fusion coefficients
(2.5) immediately implies

Zul/(q) = Z +u xa(q)

A€Rep(A)

The consistency of these boundary conditions is ensured by the properties
(2.6) of the fusion coefficients. The first of these equations guarantees that
the identity field propagates only between identical boundary conditions.
In addition, these relations imply that the matrices (Ny),” = Ny, form a
representation (2.14) — the adjoint representation — of the fusion algebra.

2.3.2 Symmetries of boundary data

Since the matrices n, constitute a representation of the fusion algebra, they
share many properties with fusion rule coefficients. It is thus worth to have
a closer look at the symmetry properties of annulus coefficients with respect
to simple currents and automorphisms.

Let us consider annulus coefficients of the form n;, where J € Z(A) is a
simple current. From the properties (2.14) and J* = J~! we conclude that
the matrices n; are orthogonal. Since the entries are all non-negative integers,
this relation further implies that the matrices n; describe a permutation. In
this way we may define an action of the center Z(.A) on the set of boundary

labels B by Jxa =), (nj)ab b. In Cardy’s case this prescription reduces
to the usual simple current action.

The structure constants 1) which have been introduced in the last section
possess a very simple transformation behavior under the action of the center
[108]. From eq. (2.13) we immediately deduce that

wja(u,n) — Zb(nJ)ab wb(nm) _ 2miQu(n) ¢a(#,n) _ (2.16)
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Given this relation one can ask whether there is a similar action of Z(.A) on
the Ishibashi labels (u,n), cf. eq. (2.11). Up to now, such action could not
be established in full generality. Yet, all the examples indicate that there is
indeed a well-defined action which induces a relation of the form [108]

e W = 2 Qu(a) gy () (2.17)

at least after choosing a suitable basis. These last two equations will be
crucial for constructing boundary states in coset theories and orbifolds.

2.4 Model building

2.4.1 Wess-Zumino-Novikov-Witten theories

The Wess-Zumino-Novikov-Witten (WZNW) theories play a prominent role
in conformal field theory. Almost all known CFT’s can be obtained from
them by a suitable construction. They are also an important ingredient in
the asymmetrically gauged coset theories we are interested in.

The WZNW theories can be described as two-dimensional non-linear
o-models with a group manifold G as target space. This means that we
have a theory of fields ¢ : ¥ — G which map the two-dimensional world-
sheet into the group. The WZNW action functional Swznxw(g|k) depends
on a non-negative real parameter £ which can be thought of measuring the
size of the group manifold. The model possesses a G(z) x G(Z) loop group
symmetry, i.e. the action functional is invariant under the transformations
g — gr(2) ¢ g5' (%) for arbitrary functions gz,(2), gr(2) € G of the prescribed
chirality. This symmetry is generated by two chiral currents J(z) and J(Z)
which take values in the Lie algebra g of the group G. We will postpone the
discussion of the Lagrangian approach to chapter 3 and restrict ourselves to
a description of the algebraic properties at this place. As before, it suffices
to consider only the holomorphic sector. For simplicity we will assume G to
be a simple simply-connected compact Lie group. Under these circumstances
the level £ is quantized to be a non-negative integer.

Chiral properties

The modes J¢ of the chiral currents J*(z) = > 2 ""1J% generate an affine
Kac-Moody algebra g at level k. This means that they obey the commutation
relations

[T, T = if ™ T + EmE® S

m?Tn
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The symbol k% denotes the Killing form of g. Let us note that the affine
Kac-Moody algebra g, contains the Lie algebra g as a subalgebra which
is generated by the zero modes J§. In fact, many features of g, can be
expressed by quantities of g. For this reason, we provide a summary of the
most frequently used notions in the context of semi-simple Lie algebras in
appendix A.

We still have to specify the energy momentum tensor of the theory. It
turns out that the Virasoro field is defined by means of the Sugawara con-
struction [109]

J*J,
i _ UG
2(k+4g")

where (-) denotes conformal normal ordering. This coincides with the classi-
cal expression except for the shift by two times the dual coxeter number g
of g which is due to renormalization. The central charge can be evaluated
by standard methods and is given by ¢ = kkdf;lvG. In the limit £ — oo this
equals the value for an ensemble of dim G free bosons as would be expected
from a flat target space. The fields J%(z) possess unit conformal weight with

respect to T(z). Their modes satisfy

(Lo, I ] = —ndpp,
which implies that the representations of g, decompose into representations
of g for fixed value of Ly. This statement is in particular valid for the ground
states which possess lowest conformal weight.

The set Rep(G) of physical irreducible representations of the Kac-Moody
algebra at level k£ can be described in a simple way. They are labeled by
integral dominant weights p of the Lie algebra g subject to the cut-off (u, 0) <
k with 6 being the highest root of g. The representation has an integer
grading with respect to Ly starting with the eigenvalue h, = ﬁ which
is determined by the quadratic Casimir C),. The states of lowest energy Ly
form the irreducible representation u of g.

The content of representations of affine Kac-Moody algebras is well un-
derstood and there exist explicit formulas for the characters. As their de-
tailed form is not important for the remaining part of this thesis we will not
bother to write them down. They can be found in [25, 110] for instance.
The precise form of the associated modular S-matrix is given in eq. (A.4) in
the appendix. This formula may be inserted into Verlinde’s formula (2.5) to
obtain an expression for the fusion rules in WZNW theories. There exists in
fact an efficient algorithm for the calculation of fusion rules. A generaliza-
tion thereof to twisted fusion rules can be found in appendix B. In the limit
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k — oo the fusion coefficients reduce to tensor product coefficients of the Lie
algebra g.

The groups of automorphisms and simple currents in a WZNW theory
based on the algebra g are easily described. The simple current group Z(G)
is in one-to-one correspondence with the symmetries of the Dynkin diagram
of g (i.e. the extended Dynkin diagram of g) which have not already been
present in the Dynkin diagram of g. In all cases except Eél) at level two
it also coincides with the center of the associated group G. It is almost
as simple to describe the automorphism group Aut(G). First of all, the
relevant automorphisms of g are inherited from those of g in an obvious way.
An arbitrary automorphism €2 of g on the other hand may be decomposed
into a diagram (or outer) automorphism {2p and an inner automorphism
Ady(X) = gXg ! for some element g € G: Q = Qp o Ad,. The diagram
automorphism corresponds to a symmetry of the Dynkin diagram of g and
acts by permuting the roots. While the inner automorphism Ad, acts trivially
on the Cartan subalgebra, the outer one induces a permutation of the Dynkin
labels which describe the weights. Note that automorphisms do not only have
to respect the commutation relations but also the adjoint operation, i.e. the
scalar product. This gives additional constraints on the allowed diagram
automorphisms for groups that are not simple, in particular for u(1) and
direct sums of simple Lie algebras.

The bulk theory

In the case of a simple simply-connected compact group the spectrum of the
CF'T is described by a charge conjugate modular invariant partition function.
In fact, one could as well use any other partition function Z = o X Xeo(pr)
of automorphism type. This just corresponds to a reinterpretation of the
action of G(Z) in the Lagrangian description using an automorphism {2 of G.

The form of the partition function may be understood from a semi-
classical argument. The algebra of closed string vertex operators for the
ground states should be identical to the algebra of functions on the group G
in the limit & — oo. The latter, however, may be decomposed into repre-
sentations of the left and right regular action of G, F(G) = @V, @ V,+. A
finite value of the level k£ leads to a natural cut-off and suggests the use of
the partition function proposed before.

The situation becomes slightly more complicated when we are dealing
with non-simply-connected simple compact groups. In this case one should
interprete the theory as an orbifold of the simply-connected covering group.
The orbifold construction will be explained in section 2.4.3 below.
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Maximally symmetric boundary conditions

Maximally symmetric boundary states in WZNW theories can be constructed
for each gluing of chiral currents,

J(r) = [Q)](7) for 7€ 0¥ (2.18)

with €2 being an arbitrary automorphism of the Lie algebra g. These bound-
ary conditions admit a very nice geometric interpretation. The bulk sym-
metry G(z) x G(2) : ¢ — g1(2) ¢ g5' (2) of the Lagrangian is broken to the
diagonal subgroup G(7) : ¢ — g¢' Q(g~!) with g = ¢g(7) and 7 € 93. On
the level of Lie algebras this reduces to the gluing conditions (2.18).

In string theory, D-branes which are constructed from gluing conditions
of the form (2.18) wrap twisted conjugacy classes

Ci(Q) = {gfQg")|geG} (2.19)

in the target space [26, 27, 29]. They are parametrized by a group element
f which may be chosen from the part of the invariant Cartan torus 7Zg =
{t € T|Q(t) =t} which is connected to the unit element. The element
f = e>™h/k has to satisfy certain quantization constraints. The reason for
the quantization can be understood both from the Lagrangian and from the
algebraic point of view. At this place, we will focus on the second point of
view and postpone the discussion of the Lagrangian picture to chapter 3.

It was shown in [28] that twisted boundary conditions are labeled by
twisted representations of the affine Kac-Moody algebra g,. The latter are
in one-to-one correspondence with representations of the twisted affine Kac-
Moody algebra ﬁ,(CN) related to 2. The number N is the order of the automor-
phism €2. In the case of a trivial automorphism, the twisted affine Lie algebra
is equal to the untwisted one and the boundary conditions are given by the
set B4 = Rep(G). This is in complete agreement with Cardy’s description.

There exist rather explicit formulas for the annulus coefficients (n,,)q”
which are simply twisted fusion coefficients N2, [28, 71]. The latter describe
the fusion of an untwisted representation p with a twisted representation o
of gx [111]. In the sequel we will hardly need any concrete expressions for the
annulus coefficients. For those who are interested in more details we provide
a comprehensive overview in appendix B. This includes an efficient algorithm
for the determination of twisted fusion rules [71] as well as the evaluation of
the large k limit and its connection to non-commutative geometry [70, 34].
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2.4.2 Coset theories

One of the basic tools to build new conformal field theories is the so-called
coset or GKO construction [112, 47]. In the Lagrangian formalism it arises
from gauging a continuous subgroup H in the WZNW model for the group G
[41, 42, 43, 44, 45, 46]. The resulting action functional is then invariant under
all transformations g — €(h) ge(h™!) for arbitrary functions h = h(z,z) € H
which depend on both variables z and z. The symbol € denotes the embedding
of H in G.

Chiral properties

Let us review the GKO construction and the determination of coset chiral
algebras [47]. It suffices to restrict ourselves to the holomorphic sector in
what follows. The embedding H < G descends to an embedding of the cor-
responding Lie algebras h — g. The latter then induces an embedding of
affine Kac-Moody algebras Gk’ > gr. The levels are related by the equa-
tion k' = x.k, where . is the index of the embedding e. We will denote
the chiral algebras which are generated by g and b by A(G) and A(H),
respectively. The coset chiral algebra A(G/H) is the maximal subalgebra
of A(G) which commutes with the image of A(H) in A(G). It possesses
a Virasoro subalgebra Vir(c®/) which is generated by the Virasoro field
TG/M — TG _ TH The central charge of the coset chiral algebra is given by
the difference ¢&/M = G — M,

Before we can define the full CFT which corresponds to the gauged
WZNW model, we first have to understand the representation theory of
the chiral algebra A(G/H). At least two approaches are available, one
more geometrical and one more algebraical. The possible generalization
to arbitrary CFT’s in mind we will focus on the simple current approach
[113, 114, 115, 116].

It is convenient to distinguish the sectors of the G and H theories by using
different types of labels,

Ok MV, p, ... € Rep(G) by a,b,c,... € Rep(H) .

The decomposition of an irreducible representation i of A(G) into represen-
tations of the subalgebra A(G/H) ® A(H) reads

MG = P HDeH! . (2.20)

u (w,a)
ac€Rep(H)

The so-called branching spaces H G/ 1) CONstitute a representation of A(G/H).
We will assume for a moment that all of them are even irreducible. Note that
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some of these representations may be trivial, i.e. zero-dimensional. This phe-
nomenon occurs if a representation H is not contained in a representation
HE.

These branching selection rules may be understood on the level of the
horizontal subalgebras fh and g. Up to isomorphism, the embedding h — g
of the corresponding Lie algebras can be defined by specifying a projection
P L@ — L from the weight lattice of g to the one of . This projection
is dual to the injection of Cartan subalgebras. Any allowed pair (p,a) in the
decomposition (2.20) has to satisfy the constraint Py —a € PQ where Q
denotes the root lattice of g. If this relation were not satisfied, there would
be no chance to find a weight in the weight system of p that is projected
onto a. We denote the set of allowed coset labels by

Al(G/H) = {(n,a)|Pu—aecPQ} C Rep(G) x Rep(H)

In addition, certain pairs (i, a) need to be identified because they give rise
to exactly the same sector [117, 118]. Generically, this field identification
corresponds to elements in the common center Z(G)N E(Z (H)) of the groups
G and H?

Before we continue, let us make the last statement more precise. For two
elements J € Z(G) and J' € Z(H), we say that the pair (J,J') lies in the

common center if the relation

Qs(n) = Qu(Pu) (2.21)

holds for all weights u € Rep(G), ensuring that both elements act in the
same way. The abelian group of all pairs (J, J') satisfying condition (2.21)
shall be denoted by Giq. By construction, Gjq is a subgroup of the product
Z(G) x Z(H). Sometimes this group is also called identification group. Note
that it depends explicitly on the embedding ¢ we have used.

The first application of the identification group Giq is that it allows to
reformulate the branching selection rule which has been formulated above in
a completely algebraic way. It turns out that the allowed weights may be
described by

Al(G/H) = { (1 a) ’ Qs(p) = Qy(a) for all (J,J') € Ga } . (2.22)

Below we shall also need a projector which implements the previous branch-
ing selection rule. This is rather easy to introduce by the explicit formula

°In so-called Maverick cosets (see e.g. [119]) and cosets arising from conformal embed-
dings this statement is not true. Conformal embeddings, however, are restricted to k = 1
and all known Maverick cosets also are a low level phenomenon.
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Gl

The definition (2.22) of All(G/H) directly implies that P(u,a) = 1 for all
(i, a) in the set All(G/H) and that it vanishes otherwise.

Moreover, we can now also address the issue of field identification. Let us
note that for generic sectors (p, a), (v,b) € All(G/H), the modular S-matrix
of the coset theory is given by

P(u,a) Z 2™ Qs =Q ()] (2_23)

J)J/)Egid

G/H _ G GH

S(,u,a)(zz,b) — |gld| SHV Sab 3 (2.24)
which follows (up to the prefactor) from the modular transformation prop-
erties of eq. (2.20). If we act on the first weight by an element (J, J') € G,
we obtain

G/H _ 21 [Qs(v)-Qu(b)] oG/H — gG/H
Sumrawn = €T Spawn = Swaws)

from equation (2.7). The phase factor vanishes because of the branching se-
lection rule expressed in relation (2.22). This hints towards an identification
of the sectors (Ju, J'a) and (p, a). In fact, under certain simplifying assump-
tions one can show that inequivalent irreducible representations of the coset
theory are labeled by orbits

ln,a] € Rep(G/H) = Al(G/H)/Ga - (2.25)

Complications arise when there exist fixed points, i.e. sectors with the prop-
erty (Ju, J'a) = (u,a) for at least one pair (J, J') € Giq. In this case, the rep-
resentation spaces carry (reducible) representations of the relevant stabilizer
subgroup of Gjq. Determining the irreducible constituents and the associated
modular data is known as fixed point resolution [120, 115, 121, 122]. We
will circumvent these technical difficulties by assuming that our field identi-
fication has no fixed points. Under these circumstances, all orbits Giq - (1, a)
have the same length |Giq].

From the expression (2.24) and Verlinde’s formula (2.5) we can easily
deduce the following expression for the fusion coefficients of the coset model,

[O',C] J— JU J’C
Ny = >, NN (2.26)
(J,J)€Gia
This result already constrains the possible form of automorphisms and simple
currents in coset theories to a large extent.
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The set Aut(G/H) of coset automorphisms is the subset of all tupels
(Qq, Q) of automorphisms of the groups G and H such that € = QgoeoQy'.
On the algebraic level this relation implies that the element (Q¢(u), Qu(a))
is an allowed coset weight if and only if (p,a) is. Geometrically, it allows
to replace the embedding € of H into G by the concatenation Qg o€ o Q'
but still to describe the same coset. This procedure corresponds to a coset
CFT with a modular invariant of automorphism type. The simple currents
in coset theories are also easily described. They are simply given by the set

Z(G/H) = (Z(G) x Z(H) N AI(G/H)) /Gia.

Bulk and boundary theory

The natural modular invariant partition function of a coset theory is associ-
ated to the charge conjugate Hilbert space

G/H _ G/H _ G/H
HOM = @D MLy o H
[1,a)€Rep(G/H)

Yet, this is not the only choice as there also exist orbifold models or partition
functions of automorphism type. The latter just correspond to a reinterpre-
tation € = Qg o € 0 Q' of the action of the subgroup which is divided out.

The boundary theory of the coset model for a given gluing automorphism
(Qq, Qu) may be constructed once the boundary theories of its constituents
G and H are known [123, 108, 124]. For simplicity, we shall assume that the
symmetric part of the coset spectrum can be determined from the set

Al¥(G/H) = Spec“c(G) x Spec(H) N All(G/H)

Unfortunately, the action of the field identification group Giq does not need
to close inside this set. Let us therefore define the group G which is the
largest subgroup of Gijq whose action closes on the set All“(G/H). We are
now able to define the set of Ishibashi states

Spec’(G/H) = All“(G/H) /Gy .

All orbits have the same length since G;q was assumed to act free of fixed
points.

Let ¢% and " denote the structure constants which enter in the con-
struction of boundary states in the theories G and H. The boundary states
in the coset are then given by

w B G\ M (,7H) @
|(p77ﬂ)> _ |gl|dg|1’dg|1d| Z (¢ )P (?/J )r |(M7a)>> ’

G H
(ma)eSpec(G/M) v/ O0n 1/ S0a
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where the group G5 is defined below. This expression is independent of the
chosen representatives for the Ishibashi states provided that the boundary
labels satisfy the selection rule

QJ(p) = QJ/(T) for (J,J'") € G (see eq. (2.17)) .

The set of allowed boundary labels will be denoted by AlI®(G/H). Let G5 be
the quotient of the field identification group G;q by dividing out its stabilizer
on AlI’(G/H). As can be checked explicitly, the expressions for the boundary
labels |(p,r)) and |(Jp, J'r)) with (J,J') € GB coincide. Hence, these labels
have to be identified. Possible fixed points would have to be resolved but we
simply assume absence of the latter as usual. The set of boundary states in
our coset theory is then given by

B = AlF(G/H) /G5 .

Using world-sheet duality one may finally determine the spectrum of bound-
ary excitations between two boundary conditions. The result reads

G/H . v G/H
Zoor] = D Yo )y () Xy (@)
[v,b]€eRep(G/H) (J, J’)egB

and can be shown to satisfy all consistency requirements.

The maximally symmetric D-branes in the coset G/H which we just con-
structed possess a nice geometrical interpretation on the “covering” space G.
They wrap the subset of G/H which is obtained by projecting the product
of twisted conjugacy classes [125, 126, 127]

Ci(Qa) - Qaoe(Ch(Qy") = {9 /1% (g e(h 294" (")) |g € G, h e H}

down to the coset. The compatibility with this projection follows from the
defining property € = dg o€ o Qﬁl of coset automorphisms.

2.4.3 Orbifolds and products

In conformal field theory there exist several tools to construct new models out
of a given one. An example was already provided by the coset construction in
the last section. In this section we will give a detailed account of the orbifold
construction which can be used to describe the quotient of an arbitrary CFT
by a discrete subgroup of its center. For completeness we also discuss product
CF'T’s. Special focus is laid on permutation branes.
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Orbifold theories

Assume that we have given a conformal field theory G based on the chiral al-
gebra A(G) and a charge conjugate partition function. If the theory possesses
a non-trivial center, one can define an orbifold G/T" of the original theory with
respect to a simple current subgroup I' C Z(.A). The consistency of this con-
struction requires all elements of I to have integer conformal weight. The
chiral algebra A(G/I') which we use to describe the orbifold is still given
by A(G) but there is a projection onto invariant representations and the
modular invariant becomes non-charge-conjugate. The central charge is not
affected by the orbifolding procedure.

Before we are able to construct the modular invariant partition function,
we need some further preparations. First of all, only sectors p € Rep(A)
with vanishing monodromy charge Qr(x) = 0 with respect to the whole
group I' contribute to the theory. They constitute the set of allowed orbifold
representations All(G/I'). The selection rule may be implemented by means

of the projector
1 e
P(p) = m 262 Qs (k)
Jer

The relevant set of representations Rep(G/I") then consists of orbits [u] of
elements p € All(G/I') with respect to I. Denote by S, the stabilizer of a
representative p of [u] under the action of I'. The appearance of non-trivial
stabilizers indicates the existence of orbifold fixed points which in principle
have to be resolved.

The modular invariant partition function which corresponds to the orb-
ifold is given by the expression

27 = 3 |Su| (Z m(q)) ( 2[:} X"*(q))

[u]€Rep(G/T') vely]

If one of the stabilizers S|, is non-trivial, the associated representations are
not irreducible. In this case the fixed points have to be resolved [115, 121].
Throughout this thesis we will assume absence of fixed points for simplicity,
i.e. |S[M]| =1.

Boundary states for orbifolds may easily be constructed using the data of
its covering theory. To start with, the automorphisms of an orbifold theory
are those of the covering theory which map the group I' to itself. This
condition guarantees that the action w([u]) = [w(i)] on the representation
labels is well-defined. As was described in section 2.3.2, the boundary states
la) of the covering theory admit an action of the simple current group T
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The basic idea is then to form invariant combinations of these boundary
states which may thus be projected down to the orbifold. More precisely,
one obtains

orb _ Yo" o Yt
]y \/sz| \/ITZZ Z\/S—Wlu»

Jell Jel' pu o

This picture also suggests that the orbifold boundary labels are given by
orbits of boundary labels in the covering theory. Eventually, there exist
fixed points which have to be resolved, but this topic is beyond the scope
of this introduction. The same intuitive picture of superposing branes in
the covering space may be used to visualize the geometry of branes in the
orbifold.

From eq. (2.16) one may deduce the relation ¢y" = > ; wJa“/\/|_ﬂ =

IT| P(p) 1o" which implies that only Ishibashi states appearing in the orb-
ifold partition function are taken into account. The spectrum of open strings
between orbifold D-branes can then easily be evaluated to read

Z[C‘)lﬁ?b] = Z Z (nN)Jba XM = Z (nu)[b} “l Xu .

nERep(G) Jel' 1ERep(G)

This partition function satisfies all consistency requirements and can be
shown to be invariant under the orbifold action.

Let us finally mention that there exist more general orbifolds than con-
sidered in this section. They will, however, not be needed in this thesis and
therefore we decided not to include them in our presentation.

Product theories

Let G; denote two conformal field theories based on the chiral algebras A(G;).
Then it is very easy to define a chiral algebra for the product G; x Go by
A(Gy x Gg) = A(G1) ® A(Gz). The resulting theory has central charge
¢1 + ¢y with respect to the Virasoro field T(z) = T4(z) + T4(2). The physical
irreducible representations are given by the set Rep(G; x G2) = Rep(Gy) X
Rep(Gz) and both — the representation spaces itself and the characters —
factorize in a similar way. As a consequence the modular S-matrix is given by

G1xGa Gy G . . . .
(o) (a2,02) = 5,50y, from which factorization of the fusion rules follows

as well. The modular invariant partition function is defined by Z%1xG2 =
Z%1 752 In terms of non-linear o-models the product theory belongs to the
sum of the two action functionals.

The boundary conditions in product theories are easily described. If
the theories are different, the group of automorphisms factorizes, Aut(Gy x
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Go) = Aut(G1)®Aut(Gz). The same holds true for the maximally symmetric
boundary states in this case. In the product of two identical CFT’s G = Gy =
Gy a new phenomenon appears®. The group of automorphisms possesses an
additional generator (... which exchanges fields from G; and Gs.

Consider an arbitrary automorphism € = Q. o (21,€2). As usual, this
map induces a permutation w = Wexe © (W1, ws) on the irreducible repre-
sentations. If we restrict ourselves to two identical charge conjugate parti-
tion functions for simplity, the symmetric part of Rep(G x G) is given by
Spec” = {((p,wi(p)) | # = wa 0wy () }. This set is isomorphic to the sym-
metric part of the spectrum of a single G-theory with gluing automorphism
Qa = Qy 0. Assume that we have a solution 1 for the boundary theory
related to this automorphism. Then the boundary states for the product
theory are given by

¥e) "
) = > (Sc?” | (s wi (1))
p=waoon(y) " OM

These permutation branes (without the additional automorphisms €, )
have been constructed in [128]. Their spectrum reads

GxG G\ P1 o G .G
Zﬂlzz (Q) = Z (nU)p N,ulm X le(;u)(Q) : (2'27)

2
0,41 ,142

Note the existence of the additional twist in the label of the second character.

In WZNW theories there exists a simple geometric interpretation for these
branes. According to the general scheme they are localized along twisted
conjugacy classes CJ(:’XG(Q). This set may also be described as the preimage
of the set C%(Qz o ;) under the twisted “multiplication” u(g1,g2) = ¢ -
Q(g2) [129]. The considerations of this subsection can easily be extended to
products of any (finite) number of conformal field theories.

5We emphasize that two WZNW theories based on the same group are different if their
level does not agree.



Chapter 3

Symmetry breaking boundary
conditions in RCFT

In the last chapter we discussed maximally symmetric boundary conditions
in rational conformal field theories. Unfortunately, these are neither capa-
ble of reproducing all the charges of D-branes in string theory nor defect
lines in statistical physics which go beyond full reflection or transmission.
The present chapter provides a systematic analysis of more general bound-
ary conditions which break parts of the symmetry. After a short sketch
of the general ideas we turn our attention to WZNW models, where both
the algebraic and the geometric constructions are discussed in great detail.
The results and ideas of this chapter will also serve as the foundation for
the description of boundary conditions in asymmetric cosets in the following
chapter.

3.1 Symmetry breaking and conformal
embeddings

In the description of maximally symmetric boundary conditions in section
2.3 we assumed that every field in the left chiral algebra A is glued with
another one in the right chiral algebra A by the use of some automorphism
Q. If more general boundary conditions shall be described, one obviously has
to relax this condition.

The ultimate goal would be to characterize boundary conditions which
solely preserve the common Virasoro subalgebra Vir(c) of the two chiral al-
gebras A and A. This amounts to demand that only the Virasoro fields are
glued on the boundary, T(7) = T(r) for 7 € 9%, without any additional
restrictions on the other fields. In this case, however, one immediately runs

42
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into technical difficulties as the original theory will in general not be rational
with respect to the left and right moving Virasoro algebra. This means that
the spectrum becomes infinite and all the powerful tools which are familiar
from rational BCFT such as Cardy’s condition etc. break down.

To remain within the realm of rational conformal field theory one has to
choose a suitable intermediate symmetry algebra A,.q to be preserved. The
chiral algebra A..q on the one hand has to contain the Virasoro subalgebra
Vir(c) — A of the original theory. But at the same time it has to be
sufficiently large such that the original CF'T remains rational if we reinterpret
it with respect to the smaller algebra. We will speak of a rational conformal
embedding A,eq — A if these two conditions are satisfied.

Our aim is the classification of boundary conditions which preserve the
chiral algebra A..q. According to the general procedure, we select an auto-
morphism Q € Aut(A,eq) and impose the gluing conditions (2.10) for fields
in A,.q. Since no conditions are imposed on the other fields of A which com-
mute with A,.q, the original symmetry of the bulk theory will in general be
broken at the boundary. But as the algebra A,.q is conformally embedded
into A, their Virasoro fields coincide and at least the conformal symmetry of
the larger chiral algebra will be preserved as well.

In order to construct the associated boundary states we have to find
the Ishibashi states first. According to the general scheme one obtains an
Ishibashi state for every €2-symmetric combination of irreducible representa-
tions of A..q in the bulk state space. The latter has been originally given in
terms of representations of the chiral algebra A ® A. We thus have to know
the branching rules which describe the decomposition!

M, = P b Ha
a€Rep(Ayred)
of representations Rep(A) into representations Rep(A,eq). The numbers
b," > 0 are called branching coefficients.? If this procedure is applied to
the full bulk Hilbert space (2.3), we are led to

H=EP 270, 0" Ha®Hs = P Z2°° Ha®Hs . (3.1)
,LL,,L_L,O(,O_Z a,o

For the boundary theory to be rational the last sum should contain only a
finite number of terms. As a consequence there will then exist just a finite
number of Ishibashi and boundary states, respectively.

'We include the possibility of a decomposition into an infinite number or even a con-
tinuum of sectors, but assume the numbers b,“ to be finite.

2They do not have to be confused with branching functions. Since we are dealing with
conformal embeddings, the branching coefficients do not depend on q.
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Up to now, no general procedure is known which allows to construct
boundary states for the symmetry reduced state space (3.1). This is not
very surprising as in most of the cases even the branching coefficients b,” are
not known explicitly. In the remaining parts of this chapter we will therefore
focus on WZNW theories where very concrete expressions can be found. The
following chapter will then be devoted to the study of asymmetrically gauged
WZNW models. The latter even necessitate the introduction of symmetry
breaking boundary conditions as we will see.

Let us conclude this section with a short remark. One should expect to
recover boundary conditions in the described framework which do not only
preserve the algebra A,.q but in fact some larger algebra or even the full chiral
algebra A. In this way a classification of all rational conformal embeddings
of subalgebras into .4 will lead to a whole hierarchy of symmetry breaking
boundary conditions.

3.2 Symmetry reduced gluing conditions for
WZNW models

Our aim is now to apply the ideas of the preceding section to the case of
WZNW theories. We will start with a discussion of rational conformal em-
beddings which arise naturally in these models and illuminate their geometric
origin. Afterwards we will construct the associated boundary states and cal-
culate the spectra of boundary excitations.

3.2.1 Which symmetry to preserve?

Before we dive into technical details let us pause for a moment to recall that
maximally symmetric boundary conditions in WZNW models possess a ge-
ometric interpretation as twisted conjugacy classes C;(Q) = {¢ fQ(¢ ") }
[26, 27, 29]. As such they admit an obvious action ¢’ — gg’ of the group
G which induces translations along the conjugacy class. It is a natural as-
sumption that symmetry breaking boundary conditions are associated to
submanifolds D of G which only admit the action of some subgroup H — G.
On the level of chiral algebras this naively would correspond to preserving
only an affine Kac-Moody subalgebra A(H) — A(G).

This proposal, however, faces a severe problem, at least on the algebraic
side. First of all, the embedding A(H) — A(G) is not conformal in general.
Yet, as was pointed out in the preceding section we need a conformal embed-
ding to ensure that the energy momentum tensor is preserved. Embeddings
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of affine Kac-Moody algebras which are conformal can only occur if the level
of the numerator G equals £ = 1. This means that they constitute an almost
irrelevant class of models.

A natural way out of this dilemma is to preserve not only the subalgebra
A(H) but also the coset chiral algebra A(G/H). The embedding

A(G/H) ® A(H) — A(G) (3.2)

is indeed conformal by definition of the coset construction. Furthermore, the
theory remains rational with respect to the smaller algebra. The embed-
ding thus provides an explicit example of what we called before a rational
conformal embedding.

It is natural to iterate and generalize the previous idea by considering an
arbitrary embedding chain of subgroups

H:UN‘—>UN_1<—>""—>U1°—>UQ:G. (33)
In this case, the chiral subalgebra which should be preserved is given by
A(Up/Up) @ A(U1 /Uy) @ -+ - @ A(Uny_1/Un) @ A(Uyn) — A(G) . (3.4)

Yet, before we are able to comment on the construction of symmetry breaking
boundary states related to this decomposition, we first have to get acquainted
with its geometric origin in more detail and to classify possible gluing con-
ditions.

3.2.2 Gluing conditions and their geometric origin

In order to understand the more general situation it is very instructive to
recall the parametrization and the geometric interpretation of maximally
symmetric gluing conditions. On the level of the group the latter correspond
to the breaking of the loop group symmetry ¢’ — gp(z) g’Q(ggl(Z)) in the
bulk® to the action ¢’ — gg' Q(g!) of the diagonal subgroup G(7) on the
boundary where g = ¢g(7). In this prescription the only free parameter which
could be introduced to relate left and right action was the automorphism 2.

The situation, however, changes drastically in the present situation. If
the diagonal subgroup G(7) of the bulk symmetry is further broken to a
subgroup H(7), there are several distinct possibilities to define its action on
elements of the target space G. The geometric intuition suggests that in

3The explicit inclusion of the automorphism {2 corresponds to an interpretation of the
theory in terms of a partition function of automorphism type.
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principle every action ¢’ — ep,(h) ¢’ er(h™!) could be used where €1, and eg
denote two different embeddings* of H in G. But there are at least two ways
to see that this simple picture does not hold true in general and that one
therefore has to impose some additional consistency conditions.

Let us first comment on the geometric interpretation of symmetry reduc-
tion for the bulk theory. The usual affine currents J#(2) and J#(%) are defined
using the action ¢ — gr(z) ¢ Q(ggl(i)) of the loop group G(z) x G(z). They
are elements of the Lie algebra g. In the present situation, however, it is more
natural to interpret the whole theory with respect to the smaller loop group
symmetry H(z) x H(2) which is implemented by ¢ +— e, (hi(2)) ¢’ er (hg'(2)).
This symmetry leads to two conserved currents J9(z) and J9(2) which take
values in the Lie algebra . The gluing conditions we have been interested
in before, may easily be rephrased to read hy(7) = hgr(7) or, equivalently,
J9(1) = J(7) for 7 € OX. The last equation in particular implies a consis-
tency condition for the choice of embeddings €, /r: they have to be chosen in
such a way that holomorphic and anti-holomorphic currents both generate
Kac-Moody algebras with identical levels.

Another constraint arises from the following observation: the decompo-
sition of chiral algebras (3.2) may be different for the holomorphic and an-
tiholomorphic part, respectively, since they might correspond to different
GKO constructions. It is clear that under these circumstances no reasonable
gluing conditions can be defined in which holomorphic and antiholomorphic
coset fields are mapped one to one into each other. We thus have to find a
sensible way to restrict the choices of embeddings e;,/gr. The same remarks
apply to the iterated case (3.3) where one has to deal with embedding chains

€L/R = eil/)R 0---0 eg;;){ for left and right hand side, respectively.

A proposal for symmetry breaking boundary conditions

An elegant and natural way out is provided by demanding left and right
embeddings to be related by automorphisms. In our context this means by
definition that both of them may be defined in terms of one single set of
embedding maps ¢; : U; — U;_; and a collection of automorphisms 2;, one
for each group U;. More precisely, they should be expressible by

€], = €] 0€0---0€ and
L 10 € N (3.5)

er =o€ 0ioeo0-roey 100y 10eyolly

4We will use the phrase embedding to denote a group homomorphism which descends
to an injective map on the level of the Lie algebras. This condition ensures that the
embedding map preserves the dimension, but allows for non-trivial wrapping numbers.



Maximal symmetry Reduced symmetry
Bulk symmetries: G(z) x G(2) H(z) x H(z)
g gu(2) ¢ g — e (hi(z) g
g — 9 m'(2)) g — g er(hg'(2))
Chiral algebra: A(G) ®RA(U;/Ui) @ A(Uy)
Gluing condition: gr(7) = gr(7) hi,(t) = hr(7)
Associated geometry: Cr(2) “TIY, CEZ(QZ) 7
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Table 3.1: The procedure of symmetry breaking based on egs. (3.3) and (3.5).

This condition does not only ensure the equality of levels of the two chiral
currents J9(z) and JY(z). Furthermore, it also guarantees that the decom-
position of the chiral algebra A(G) leads to isomorphic subalgebras of the
form (3.4) for both holomorphic and antiholomorphic degrees of freedom.

The remaining part of this chapter will be devoted to the construction of
boundary states associated to the decomposition proposed in the last para-
praph. We will also show that they possess a geometric interpretation as a
product of twisted conjugacy classes

D{U, Q. fi} = cﬁo(go).eglc:(cgl(gl)) .....egNG<cg;v(QN)) (3.6)

which is embedded into the group manifold G. To make this expression
well-defined we finally need to specify the embeddings

U,G
te = Qpoeolljoeo---og_108y_10¢

(3.7)

eV — ¢ J0---oey_j0en .

The maps €'V can be used to define an action of the subgroup H on the
individual conjugacy classes. The whole procedure of symmetry breaking is
summarized in table 3.1 in a compact way.

Implementing the symmetries

The defining property of the embedding chain (3.3) guarantees that every
group U; admits an action of the group H = U,. Let us assume that this
action is mediated by the embedding map ¢Vt which has been defined in
eq. (3.7). The twisted conjugacy classes CEZ(QZ) which enter our proposal
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for the D-brane geometry posses an obvious action of the group U; and thus
also an action of H which is induced by eV,

In order to describe the symmetry properties in detail it is useful to recall
that the exact definition of the twisted conjugacy classes is given by

C[jl (Ql) = { Sy fl 91(8;1) ’ s € U }

Let us denote by ¢; the elements of the image of these twisted conjugacy
classes in G, i.e. ¢, € eglG(Cgl(Ql)). Using this notation, the desired action
of H on the twisted conjugacy classes can be formulated as follows,

si — V(R s, = ¢ — g9 oV (h) e o odVi(nTl) | (3.8)
. . U,G _ UG
Due to the recursion relations €y o 4 0 €41 = € also the product

of twisted conjugacy classes (3.6) admits a well-defined action of H. An
arbitrary element x € D{Ul, Q, fl} transforms as

T EL(h) x ER(h_l) - D{Ul, Ql, fl} (39)

and thus reproduces just the action of H which shall be preserved by our
D-brane. As conjectured above, the subset D{Ul, Q, fl} of G thus indeed
provides a natural candidate for a geometric description of the symmetry
breaking D-branes which arise from the algebraic description via the decom-
position (3.4).

Discussion

Our proposal (3.6) for the geometry of symmetry breaking D-branes re-
duces to the usual description of maximally symmetric D-branes after taking
Q =id and f; = e for [ > 0. This observation is in accordance with the
algebraic results which will allow us as well to identify Cardy’s states among
the symmetry breaking boundary states.

These statements may be generalized and used to illustrate the hierar-
chical structure of the symmetry breaking D-branes which are described by
the product of twisted conjugacy classes (3.6). Let us consider a fixed em-
bedding chain (3.3). By choosing an automorphism €; to act trivially and
the corresponding element f; to be given by the group unit we can achieve
that the conjugacy class Cgl (€) may be omitted from the expression (3.6)
for the geometry of the D-brane. Hence, we could have equally well omitted
the group U, from the embedding chain (3.3) in order to describe the same
D-brane. To obtain a classification of D-branes in the group manifold G
which preserve an arbitrary continuous subgroup it is thus enough to find all
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inequivalent chains of mazimal embeddings. Let us recall that an embedding
is called maximal if there is no group which can be placed in between.

We conclude with a few remarks. The first concerns the dimension of
the D-branes which correspond to the product of twisted conjugacy classes
(3.6). For a naive evaluation of the dimension one would simply add the
dimensions of the twisted conjugacy classes present in eq. (3.6). It is obvious
that this procedure would rapidly exceed the dimension of the group itself if
one takes embedding chains (3.3) with a large number of subgroups. Up to
now we lack a general dimension formula for this kind of D-branes. Let us
only emphasize at this point the remarkable fact that they tend to be more
and more space-filling the more we break the symmetry.

We even believe that branes which cover the whole target space can be
constructed for every WZNW model, at least for suitable choices of the level.
A natural candidate for such a space-filling brane is obtained by taking the
product of a non-degenerate ordinary conjugacy class of G and a distin-
guished twisted conjugacy class of its maximal torus 7 = U(1)"#%k%  The
first is isomorphic to G/7 [29], i.e. has dimension dim G — rank G, while the
second is given by 7 itself. Space-filling branes have been argued to play an
important role in phenomenological model building [130].

3.2.3 Symmetry breaking boundary states

We are now going to substantiate our proposal using the abstract tools of
conformal field theory. To keep the algebraic discussion as transparent as
possible we will restrict ourselves to a detailed presentation of the simplest
case in large parts of this section, i.e. to an embedding chain H — G without
additional subgroups U;. We will work out a new set of boundary condi-
tions extending the usual Cardy type conditions. Explicit expressions for
the boundary states and the associated open string spectra are provided for
different gluing conditions. Afterwards we state the expected results for more
general embedding chains with additional intermediate subgroups.

Decomposition of the bulk theory

We will now describe the decomposition of the bulk Hilbert space with re-
spect to the reduced symmetry algebra (3.2). For simplicity we will restrict
ourselves to a simply-connected group manifold. As was explained in sec-
tion 2.4.1, the latter is described by a WZNW theory with charge conjugate
partition function. Non-simply-connected groups can be treated by means of
the orbifold construction which has been reviewed in section 2.4.3.
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Our considerations will be based on an embedding H — G which is
defined in terms of homomorphisms €, = ¢ and eg = g o € o Q. For
simplicity we also restrict ourselves to choices of automorphisms such that
e, = er. This condition enables us to stay within the realm of ordinary
adjoint coset constructions since the pair (g, Qﬁl) is a coset automorphism.
More general choices are possible, but they require additional techniques
and therefore we postpone their discussion to chapter 4 which deals with
asymmetric cosets.

Under the restriction to A(G/H) ® A(H), the irreducible representations
of A(G) can easily be reduced to

G _ G/H H
M= @ My ©Ta -
(1,a)EAI(G/H)

Note that the sum is restricted to those values of a for which the branching
selection rule (2.22) is satisfied. Essentially the same calculation applies
to the antiholomorphic sector. Yet, in this case one has to be aware of
the additional automorphisms which enter the embedding er in eq. (3.5)
compared to the expression for €. They do not change the interpretation of
the coset but lead to a twist of the representation label. One thus obtains

/G —~G/H —H
M = D Mactwzt @y © Tar
(m,a)eAN(G/H)

where we also employed that for our choice of automorphisms the label
(wa(p), wg'(@)) is allowed if and only if (u,a) is allowed. By combining
the last two formulas one can finally determine the decomposition of the full
charge conjugate state space,

HE = P HIM @ 1T @ HOM RHL . (3.10)

(n,a) (wa () wy (@)t
(1,a),(11,3) EAL(G/H)

Let us stress that the resulting theory is not charge conjugate with respect
to the smaller chiral algebra. In particular, the boundary states preserving
the algebra A(G/H) ® A(H) cannot be constructed by Cardy’s solution.

In our setting for symmetry breaking boundary conditions we are free to
impose independent gluing conditions in the individual parts A(G/H) and
A(H) of the reduced chiral algebra. But since we took already into account
the automorphisms Qg and Qy when decomposing the Hilbert spaces we are
now allowed to impose trivial gluing conditions,

(0(2) = (=1)" () IB) = (v(z) = (-1)"*¥(2)) |B) = 0,
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for arbitrary fields ¢ € A(G/H) and ¢ € A(H). Note that these conditions
ensure the Virasoro field T¢ = TS 4 TH of the theory to be preserved
along the boundary, i.e. conformal symmetry is conserved. One might think
of other choices of gluing conditions, but they may all be rephrased in terms
of the present trivial one by a redefinition of the automorphisms g and Q.
Note in particular that it suffices to specify two automorphisms in contrast
to what one might have guessed at first instant. This feature is completely
obvious from the geometric point of view. On the algebraic level it relies
on the particular form of the partition function (3.10) where an additional
automorphism could be removed by relabeling the index a.

Naively, one might think that boundary states satisfying the previous
gluing conditions can be factorized into boundary states of the two chiral
algebras A(G/H) and A(H). However, this is not true because the parti-
tion function does not factorize. In the next subsection we shall discuss the
special case in which both automorphisms €2g and Qy are trivial to get ac-
quainted with the necessary techniques. Afterwards, we address more general
possibilities of automorphisms.

Untwisted boundary states

Let us start with boundary conditions for which both automorphisms g
and Qy reduce to the identity. This immediately implies Qq/m ® Qg =
id ® id which in turn reduces to the identity map w = id x id on the set
Rep(G/H) x Rep(H) of sectors. The constituents of the Hilbert space (3.10)
which are left-right-symmetric are thus given by
HS eoHE @ H ., @ HIL

There are no elements of the form (J,0) in the field identification group Giq
of the coset G/H. Hence, Ishibashi states are labeled unambigously by pairs
(1, a) € Spec'®™d = All(G/H), i.e. u, a run over all representations such that
the branching selection rule (2.22) is satisfied. Let us point out that in these
labels no field identification is made.

We choose the standard normalization of Ishibashi states such that
()] @ P P2 |, b)) = o op &/ (@) (@)

As we shall see, the elementary boundary states are labeled by elements [p, r]
from the set B4 = (Rep(G) x Rep(H))/Giq. Their expansion in terms of
Ishibashi states reads

o) = > BY () (3.11)

(m,a)€AN(G/H)
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with coefficients B[p(f;f ja) being determined by the modular S-matrix of the G
and the H theory through the simple formula

6 =

(ma) Spu Sg 319

R (3.12)
SSL Oa

The proof of this claim proceeds in several steps. Let us first note that the
labels (p,r) and (Jp, J'r) lead to the same boundary state for (J,J') € Gq.
This is a simple consequence of eq. (2.7) and the definition (2.22) of All(G/H).
We will now show that the proposed boundary states possess a consistent
open string spectrum. Finally, it remains to demonstrate that the identity
field propagates in between two boundary conditions if and only if the latter
are identical.

Let us begin by computing the open string spectrum in between two
boundary conditions [py,71] and [py, ro],

%(LO—’—EO_C/lQ) | [

Z = Z[pl,h][pz,rz](Q) = <[p1,7“1]|(j pg,?“2]>

_ p (wa) p (ma) oG/H H G/H H
= X [ BB G S | X @)X )

(1,a),[v,b,c
5504555 SHaSLSSE ] oym
= (Gl Y [SG i Sneppeien | B 0) x )
(), [v,bl.c Op 0a*0a

In the second step we inserted our expression (3.12) for the coefficients of the
boundary states and formula (2.24) for the S-matrix of the coset model. Note
that the coefficients of the individual characters on the right hand side are
not expected to be integers since we still sum over labels which are related
by the action of the identification group. Now we use that the quantum
dimensions S,, /Sy, form a representation of the fusion algebra,

Sha Srya Sit
GH S«_IQ{ - Z Nrflr; SCIZ—I ) (3.13)
Oa Oa dGRep(H) Oa

and obtain

S'G SG SVG SH QH SH .
7 = |G| Z erdq prpr w daSlﬁz ca X(u{b) (q) X?(q)
(,a),[v,bl,c,d On 0a

5To save space we omit the ranges of the summation indices. The summation rules
are: (u,a) € All(G/H), [u,a] € Rep(G/H) and all other (single) indices run over Rep(G)
or Rep(H), respectively.
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If the sum over the pairs (i, a) was not restricted by the branching selection
rule (2.22), the quotients of S-matrices could be evaluated by means of the
Verlinde formula (2.5). But as it stands, this step cannot be performed so
easily. However, we can implement the constraint my means of the projector
P(u, a) which has been defined in (2.23). This procedure yields

S¢S SS SHGHGH |
Z = 1Gal > Pl )Nrdr [ "1“5"2“ & S X(,,fS(Q)Xff(Q)
[, c.d Ou Oa
i G G G
_ Z 62 Qs(u) d+ [SPIP«SPZHSVH S Sbasca] XG/H( )XH(q)
_ T Q riT H v,b
w,a,[v,bl,c.d Q@ v SOM Sta o
(Jv‘]/)egid

We then use the fact that the exponentials may be pulled into the S-matrices
with the help of eq. (2.7), which gives

SpruSouuST SHSESE |
Z = Nndr;[ Pt S””’“ X (@) X (q)
0,[vb].c.d On Oa
(JzJ/)egid

As the field identification demands XS// b = XE/VHJ,I,) we may collect the

summations over (J,J') € Gyq and [v,b] € Rep(G/H) to give a sum over
(v,b) € All(G/H). Then, applying in addition the Verlinde formula (2.5), we
finally arrive at

G/H
Zpiriionr = 2 N NL NLXGy@xia) - (314)
(v,b)EAL(G/H)
¢,d€Rep(H)

In the last step we also used some symmetries (2.6) of the fusion rule co-
efficients and charge conjugation invariance of the characters. Thereby we
have shown that Z can be expanded into characters of the chiral algebra
A(G/H) ® A(H) with manifestly non-negative integer coefficients.

Finally, we now wish to convince ourselves that the vacuum representa-
tion appears exactly once in the boundary partition function (3.14) with two
identical elementary boundary conditions and that it does not contribute
whenever the two boundary conditions are different. This is somewhat ob-
scured by the possible field identification. By a calculation similar to the
previous one it is possible to rewrite the partition function in the form

r G/H
Z(Pl,rl)»(P2,7"2) - E : 5§1pg(sj%’r‘2 J/o J'o)(q) X?(Q) + o,
(ijl)egid
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where --- stands for other contributions that do not contain the vacuum
character of A(G/H)®.A(H). Hence, the identity field only appears if (p1,71)
and (pg, r9) are identical up to the action of Giq, in agreement with our claim.

Let us conclude with some comments. First note that the partition func-
tion (3.14) cannot be obtained by decomposing the usual Cardy boundary
partition function. In fact, if we decompose the latter into characters of

A(G/H) ® A(H), we obtain

14 1 G H
Zope = NY X = > NL xXah@xi'(9)
vEeRep(G) (v,b)eAll(G/H)

where the labels b for the A(H)-sector coincide with the second label of the
coset theory. But this is not the case for most of the partition functions of
our boundary states. In other words, our new boundary theories manifestly
break some of the chiral symmetry A(G) of the bulk theory. Note, however,
that the right hand side of the previous equation coincides with the partition
function for the pair [py, 0], [p2, 0]. In other words, for the states of the special
form |[p,0]), the maximal chiral symmetry is restored and these states can
be identified with Cardy’s boundary states.

Twisted boundary states

Our construction possesses a natural extension to cases in which we choose
two arbitrary automorphism €2g and Qy which satisfy € = Qg o €0 Qy. As
argued before, the gluing in the factor A(H) can be chosen to be trivial. One
then obtains a non-trivial gluing automorphism Qg = (Qg, Q") in the
remaining factor A(G/H). We will assume that we know the solution of the
auxiliary theories based on gluing automorphisms Qg and Q" for the chiral
algebras A(G) and A(H).

With this solution of the auxiliary problem in mind, we can now return to
our main goal of finding new symmetry breaking boundary states for the G-
theory. Once more, we have to determine which sectors in the decomposition
(3.10) can contribute Ishibashi states. The condition is

(.a),a) ~ ((walp)wi'(a)),a)

We did not write “=" because the labels must be related only up to a field
identification in the coset part. Since the Rep(H) part is not subject to any
field identification, the previous relation immediately implies @ = a. Hence
we are left to decide whether for given (i, a) € All(G/H) we are able to find
an element (J, J') € Giq of the field identification group such that

(Ju, J'a) = (walp),wy'(a))
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Solutions to this equation are certainly obtained for labels (u,a) which are
themselves invariant under the given pair of automorphisms. We will actually
assume in the following that these are the only ones. Additional solutions
may eventually be found but they are always related to some kind of fixed
point resolution [108, 124].

Let us denote the total gluing automorphism by € = Qg x id. With
the previous assumptions the set of Ishibashi states may be written as

Spec” = {((n,a),a) | (p,a) € Al(G/H) and (wg(u),wy (a)) = (u,a)}

As in the previous subsection no field identification is imposed. Using the
coefficients 9% and ! from the solution of the auxiliary G- and H-theory,
we define boundary states by

Z (w >p (wH)r

lp:7]) = 56 S (1, @), a))) (3.15)

((m.a),a)€Spec”

This expression imitates the construction of the last subsection. The bound-
ary states are given by orbits of the tupels (p,r) with respect to the identi-
fication group Giq. The absence of field identification in the Ishibashi labels
implies the absence of selection rules in the boundary labels.

Along the line of our previous computations, one can work out the bound-
ary partition function which is given by the formula

; r G/H
Z[L;irciL[p%rQ](Q) = Z (ng)pz1 Nbfc (ng)rf X(V{b) (@) xe'(q) - (3.16)
(v,b)EAI(G/H)
¢,deRep(H)

It contains the NIM-reps that come along with the solutions of the auxil-
iary G- and H-theories. It is easy to check that this expression satisfies all
consistency requirements.

Extrapolation to the general case

It is not difficult to generalize the results which have been obtained in the last
two subsections for the simplest case of an embedding H < G to the more
general embedding chain (3.3) and to an arbitrary choice of embedding maps
(3.5). An exact treatment would require an inadequate effort in comparison
with the new insights which might be gained. Since the general expressions
nevertheless turn out to be useful in the next section we decided to sketch the
results while assuming absence of all technicalities such as field identification
and branching selection rules.
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The decomposition of the chiral algebras (3.4) is accompanied by the
corresponding one
G Up/Us Un-1/Un U
R = GB{M} H(uoym) D O H iy ) © T

of representation spaces HSO of A(G). Like before the decomposition of the
antiholomorphic part looks slightly different as it has to reflect the different
choices of H-actions which are used to define the currents J9(z) and J(2).
To be precise, we obtain

G ~7Uo/U1 / Un

H = D, 7 QH oy @ LY

(WO(HO),VI) (WN 1(vN-1), wn(vN)

The last two relations induce an analogous decomposition of the full charge
conjugate partition function HE.

Imposing trivial gluing conditions on all constituents of the reduced chiral
algebra (3.4) enforces the conditions py = wo(po) and p; = v = wi(v)
for the symmetric part of H® from which we can obtain Ishibashi states
\to, -+, ). The associated boundary states

wUO ©o wUl B wUN N
|p07”' 7PN> = Z ( ) ( U)lpl o ( S ) |:u07 ' )MN>> (317)
0

{Mi} SOMO O;ul N

can be constructed using the solutions 1Y for the auxiliary CFT’s based on
the chiral algebras A(U;). The calculation of bulk field propagation between
two of these boundary states by world-sheet duality yields the Hilbert space

N
Hep = P (ng}o)p” [ NN, (n/\l)pl] Hl o @ - @ HYY  (3.18)

0 v Ul
{vi,0i,\i} =1

of boundary excitations. We used the abbreviation p = (pg,- - ,pn) to
denote the boundary label. As before, the numbers N are fusion coefficients
of the affine Lie algebras (1;),. The calculation proceeds in essentially the
same way as those in the previous subsections.

Symmetry breaking from T-duality

An alternative way of constructing symmetry breaking boundary states was
suggested by Maldacena, Moore and Seiberg [131, 35]. Their construction is
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based on a regular subgroup H < 7 of the Cartan torus of G. By definition,
H is abelian. Under these circumstances one can proof the T-duality

G = (GHxH)/T (3.19)

where I' is a suitable orbifold group. The right hand side should be un-
derstood as an orbifold based on the product theory G/H x H with charge
conjugate modular invariant partition function. It is thus rather simple to
construct boundary states for the right hand side of (3.19) along the lines of
section 2.4.3. One can actually show that our approach contains the results
of [131, 35] as a special case. More details can be found in appendix C.

3.3 Geometric interpretation

After these algebraic considerations we are prepared to justify our proposal
for the geometry (3.6) which is associated to symmetry breaking boundary
states. As this geometrical interpretation is mainly relevant for string theory,
we will from now on also use the synonym D-brane to denote the conformal
boundary conditions. Our symmetry breaking D-branes will turn out to ad-
mit a natural interpretation after a target space reinterpretation. Additional
evidence comes from a comparison of open string spectra evaluated both from
the algebraic and the geometric point of view.

3.3.1 Target space reinterpretation

The usual interpretation of a WZNW theory relies on the group G itself as
target space. In the context of the decomposition (3.4) of the chiral algebra
it is, however, more convenient to work with the space

UpxU; xU; x---x Uy x Uy Gx X

Quew _ = . 3.20
U1XU1X-"XUNXUN X ( )

This statement is a generalization of a proposal which has been formulated
in the context of coset theories [127]. The specific form of the auxiliary space
X arises from the decomposition of chiral algebras (3.4). It is motivated
by the close connection between coset CFT’s U;/U;y; and product CFT’s
U; x U1 which itself is based on the similarity of modular properties. The
extension of G by X introduces additional degrees of freedom which have to
be removed by dividing through X again. The precise action of X on G x X
will be given in eq. (3.21) below.
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The equivalence of the spaces G and G"" seems to be obvious at first
sight. Nevertheless we have to be very careful as G carries additional struc-
ture which should be reflected in G"¥. In particular, G admits an action
of the group G x G, i.e. the regular action from the left and from the right.
The group G x G should be considered as the “constant” part of the WZNW
symmetry G(z) x G(zZ). When we consider symmetry breaking boundary
conditions which arise from the embedding chain (3.3), the action of G x G
thus has to be broken to an action of the subgroup H x H where the embed-
ding of the latter is given by the map (er, eg). We will argue below that the
same action of H x H can be found on G*" provided that one uses the correct
action of X on G x X in the definition (3.20). To be precise, the elements of
G™®" should be given by tupels (ug, ), w1, -+, uy_1,un_1, Uy, un) € G x X
subject to the identifications

(uj,w) ~ (up-t7' 4 -w) and

) (3.21)
(ul,l,ug) ~ (ul,l Y oe(s ), s ug) for t;, s, € U,

The remaining action of H x H on the target space G™" on the other hand
should be defined by

(o, -+ un) = (en(ha)uo, - uy Qu(h3")) (3.22)

The identification (3.21) shows that the new target space G"*V is a specific
example of an asymmetric coset, for which a non-adjoint action of the sub-
group is divided out. A general discussion of asymmetric coset spaces will
follow in the next chapter.

In view of constructing the boundary WZNW functional for symmetry
breaking boundary conditions in the following section it is useful to work out
the natural representatives of elements in G*". Using the embeddings eglG
which have been defined in eq. (3.7), the canonical representatives may be

written

(uo - eg (uy - wr) - .. - eg¥ S (uy un), .. €) (3.23)
This relation shows that elements of G*" may be represented naturally as
elements of G. Note however, that one and the same element of G is rep-
resented by a whole orbit of elements in G x X. This shows explicitly the
drastical increase of degrees of freedom which are associated to the decom-
position (3.4) of the chiral algebra.

The reader may wonder why we had to choose such a complicated iden-
tification (3.21) to define the coset G"". A partial answer is given by the
remarkable relation between the representative (3.23) and the form of the
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product of twisted conjugacy classes (3.6). The deeper reason for this partic-
ular choice of identification, however, arises from demanding the equality of
G and G"" including the given action of H x H on each of these groups. The
latter is already suggested by the following observation: the action of H x H
on G™" which was given in eq. (3.22) translates as desired into the action
x +— €e,(hy) x egr(hgr) for an arbitrary representative x € G of the form (3.23).
It can also be understood if one does not work on the level of manifolds,
but descends to the algebras of functions F(G) and F(G"") which inherit
the given action of H x H but allow for a linear representation. According
to a theorem of Gel’fand and Naimark, also the topology of a manifold is
completely contained in its algebra of functions. Showing the equality

F(G) = F(G™Y) = Invy (]—"(G ><X)> (3.24)

as H x H modules is thus enough to establish the equivalence of the target
spaces G and G"" including the action of H x H. The relation (3.24) may
be proven by using the Peter-Weyl theorem which gives the decomposition
of the algebra of functions on a group into irreducible representations under
left and right regular action of the group G itself. Restricting the action to
H x H and taking all twists into account we exactly recover equality (3.24).

The considerations of the last paragraph are the classical analogue of the
decomposition (3.4) of chiral algebras. Let us recall that the interpretation
of G as the target space of a WZNW theory is supported by the deep relation
between the spectrum of closed strings and the algebra of functions on the
group. According to the Peter-Weyl theorem the algebra of functions F(G)
is recovered from the ground state structure of the charge conjugate partition
function of the WZNW theory in the limit £ — oo when interpreted as a
G x G module with respect to left and right regular action of G. As already
mentioned above, the group G x G should be considered as the “constant”
part of G(z) x G(2). After symmetry reduction, the decomposition (3.4) of
the chiral algebras has to be accompanied by an analogous decomposition of
the closed string Hilbert space. On the geometrical side this corresponds to
the interpretation of the G x G module F(G) as an H x H module where the
embedding is given by (e, €r).

3.3.2 Justification of the proposed brane geometry

The target space reinterpretation (3.20) enables us to check the proposal (3.6)
for the geometry of symmetry breaking D-branes. The coefficients entering
the boundary states (3.17) are indeed identical with those of certain boundary
states in the product space G x X. The first factor for instance may be
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interpreted as an ordinary twisted brane in the factor G = Ug. A comparison
with the results of section 2.4.3 in addition shows that each of the other
factors corresponds to a twisted permutation brane in one of the factors
U; x U; which is based on the automorphisms ) = Qo (id, €;) involving
an exchange of group factors. Altogether one concludes that the boundary
state describes a D-brane in G x X which wraps the (direct) product of
twisted conjugacy classes

Cio(Q) x C}J{IXUl(Q’l) X ... X C;J],VNXUN(Q&) : (3.25)
The labels f] € U, are determined by the labels p; in the usual way and have
thus to satisfy certain quantization conditions. Remembering the identifica-
tions (3.21) it is not difficult to check that the previous expression may be
consistently projected down to the coset G™" = G x X/X. Or to express it
in a different way, the action of X on an arbitrary element of the set (3.25)
just leads to a translation along this submanifold.

The expression (3.25) considered as a subset of the manifold G™" =
G x X/ X simplifies considerably if one works out the associated representative
(3.23) which can be considered as an element of the group G itself. In this
way we just recover the product of images of twisted conjugacy classes (3.6).
The labels are related to the previous ones by f; = f/* € U;. The quantization
conditions may also be understood from the Lagrangian picture which will
be discussed below.

One may ask whether arranging the twisted conjugacy classes in the def-
inition (3.6) in different order would lead to new results. It is easy to show
that this is not the case. Exchanging two conjugacy classes merely leads to
a redefinition of embedding maps and automorphisms. Under these circum-
stances it is natural to work with one standard representative. In our case
the latter is defined to be given by eq. (3.6).

The formalism which has been described in the previous sections provides
a whole hierarchy of symmetry breaking D-branes. The classification of all
these objects is greatly simplified by the following observation which is well
known from maximally symmetric D-branes. Instead of allowing all choices of
automorphisms we may restrict ourselves to the case of outer automorphisms.
The appearance of an inner automorphism €;(u;) = b, bl_1 in the product of
twisted conjugacy classes (3.6) just corresponds to putting this automorphism
to the identity in the expressions (3.5) and (3.6), to replace f; by f;b, and
to multiply the resulting expression for eq. (3.6) with the element e'“(b;!)
from the right. Geometrically, this procedure induces an overall shift of the
brane. The same idea also enables us to choose specific representatives for
whole classes of outer automorphisms by separating their “inner part”.
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There are several consistency checks which may be used to test our pro-
posal for the geometry of symmetry breaking D-branes. First of all, we
already know that the set (3.6) admits the correct action of the group H as
given in table 3.1. We will now investigate the open string spectrum based on
the geometric formulation and compare it with the result from the algebraic
approach. As an independent check we will finally construct the boundary
WZNW functional associated to these branes.

Comparison with the algebraic approach

In the large volume limit £ — oo one is able to extract geometric information
out of the algebraic description of the D-brane. The ground state structure
of the partition function for open strings which start and end on the same
brane for instance should tend to the algebra of functions on the brane. Since
the latter carries in our case an action of the subgroup H which is induced by
its action on the D-brane world-volume (3.6), we are able to compare both
approaches. In their common area of validity we will find full agreement
between the algebraic and the geometric picture.

In the geometric picture only the ground state structure of the Hilbert
space (3.18) can be recovered. Let us thus denote by H,(g%) the set of all ground
states which are present in eq. (3.18) for p’ = p. Our aim is to find an explicit
expression for this space which solely contains geometric information in the
limit k& — oo. The ground states of affine representations transform in a
representation of the underlying Lie algebra which is usually denoted by the
same symbol. In contrast, it is more difficult to give a geometrical meaning
to the coset representations. We can solely determine the number of ground
states they contain. The latter is given by the branching coefficients which
describe the embedding of the associated horizontal subalgebras. These con-
siderations provide a dictionary of how to extract geometrical information

out of eq. (3.18). We simply have to replace affine representations HE; by

. U . U;/U .
representation spaces V' of u; and branching spaces H(Vlwll:ll) by branching

coefficients of the embedding u;;; < ;. When represented as a module of
H we end up with the following expression,

N
HO) @ (nUo)ppo N >\z+ (nglz) P o1 VVIJ{]N ’ (3.26)

Pp Yo / po vo; pr V-1
1=1
for the space of ground states. The geometric limit of a WZNW theory is
obtained by sending the level k of the affine Kac-Moody algebra g, to infinity.
This automatically forces the levels of the Kac-Moody subalgebras (i), to
do the same. In this limit the fusion coefficients N entering eq. (3.18,3.26)
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reduce to tensor product coefficients and the NIM-reps nY* have a natural

geometrical interpretation as well. More details can be found an appendix
B.2.

Let us now turn our attention to the evaluation of D-brane spectra in
the geometric picture. As was shown in [32, 33| for ordinary conjugacy
classes and then generalized in [34] to the twisted case, there is always a
non-commutative geometry associated to these objects, see appendix B. In
some sense this reflects the geometric limit of the non-commutative algebra
of open string vertex operators. For the ground states this algebra indeed
becomes coordinate independent in the large volume limit k& — oo as their
conformal dimensions tend to zero. For an arbitrary D-brane wrapped around
the twisted conjugacy class C}’jl (Ql) this non-commutative algebra admits an
action of U; under which it decomposes into modules V,}ljl according to

Acii ) = B, (), v (3.27)

The attentive reader might object that in our situation and for [ # 0 not
the previous conjugacy class is the relevant one, but the permutation branes
which entered the geometry (3.25). Yet, it is not difficult to check that
the same expression would be obtained for Invy, .A(C;?XU’ (©])) where the

invariance is defined with respect to the identification (u), ;) ~ (u}-t; ', t;-u;)
for t; € U; (see eq. (3.21)). For our further discussion it is not necessary to
know the form of the matrices nV* in detail. It is only important to note that
the numbers nVt entering eq. (3.26) coincide with those in eq. (3.27) in the
limit k& — oo. The proof can be found in appendix B.2.

The module structure of the algebra for a (direct) product of twisted
conjugacy classes is given by the tensor product of the individual modules.
We thus obtain the spectrum of open string ground states

N
A(D{Uz,thl}) = @{w} [H(nul);l] VVHO®...®VVIJJVN . (3.28)
1=0

interpreted as a module of the group Uy x -+ x Uy. In our approach of
section 3.2.2, the twisted conjugacy classes are not viewed as modules of the
groups U;, but as modules of the diagonally embedded H = Upy. Hence,
we should fully decompose the module (3.28) with respect to H in order to
read off the spectrum of ground states belonging to the D-brane described
by D{Ul, Q, fl}. In this way we get a number of additional branching and
tensor product coefficients.
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It is now straightforward to check the equality of the expressions on the
right hand side of egs. (3.26) and (3.28) in the limit & — oo, both con-
sidered as H modules. In other words we have just proven the relation
A(D{Ul, Q, fl}) = H,()(,)J) in this limit which expresses the agreement of the
open string spectra obtained both from an algebraic and a geometric point
of view, respectively. Let us emphasize that in the present situation the
geometric open string algebra A(D{Ul, , fl}) may not be identified with
the algebra of functions on the D-brane world-volume 'D{UZ,QZ, fl} c G.
Again this may be interpreted as an effect in favour of working with the new
target space G"". When considered as an object in G, the points in the
D-brane world-volume can be covered more than once. Obviously it is not
possible to describe the new degrees of freedom which are associated to such
multiple wrappings and superpositions of D-branes by the usual algebra of
functions on the world-volume D{Ul, Q, fl} C G. Similar observations have
been discussed in [131].

3.4 The boundary WZNW functional

An independent check of our proposal for the geometry of symmetry breaking
D-branes may be achieved in the Lagrangian framework. We first review
the general construction for WZNW models and specialize afterwards to the
geometric situation we are interested in.

3.4.1 The general structure of the Lagrangian

Geometrically, a WZNW theory is described by a non-linear o-model of fields
g : ¥ — G which live on a two-dimensional world-sheet > and take values
in the group manifold G. The latter will be assumed to be simple, but it
is straightforward to generalize our results to reductive groups, i.e. to those
which are a direct product of simple groups and U(1) factors. The action
functional for this theory is given by [24, 27]

S\?VZNW(g’k;D) = Sanlglk) + Syz(glk) + S5(glk) (3.29)

and consists of three parts, the usual kinetic term, the so-called Wess-Zumino
term and a boundary term. All of them contain a parameter & > 0 subject
to certain consistency conditions (see below). The kinetic term is given by

ko2 L
St (glk) = T Ed2ztr3{3gg 19997}
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The trace is evaluated in some non-trivial unitary representation R of the Lie
algebra g of G. This is indicated by the explicit appearance of the Dynkin
index I of the representation. The symbol trgz denotes the trace of dim R-
dimensional matrices. The combination 2/1g trg is a normalized trace which
is independent of the representation R, see appendix A.

The Wess-Zumino term is defined in terms of its associated three-form
wWZ, Tts contribution to the boundary WZNW functional (3.29) is given by

Say(glk) = k2 wV%  with  WwWV%(g) = 1trR(g_ldg)3 . (3.30)
Ar IR Jp 3
This integral extends over a three-dimensional manifold B whose boundary
is given by 0B = X U D where D is a disjoint union of (topological) discs
filling the holes of 3 such that ¥ U D has no boundaries [27]. For notational
simplicity we will assume that D consists of exactly one disc.

To complete the definition of the boundary WZNW functional (3.29) we
finally have to define the boundary term. It is given by the integral

k 2

Sg(9|k) = EE b

wp (3.31)

of a two-form wp over the auxiliary disc D. We assume that the boundary
of ¥ and the whole disc D are mapped into the subset D{Ul, Q, fl} of G.
The first condition justifies the use of the word D-brane when referring to
this submanifold. The boundary two-form wp entering the definition (3.31)
depends crucially on the choice of the D-brane and will be specified below.

The physics which is described by the action functional (3.29) should not
depend on the two auxiliary manifolds B and D. This leads to restrictions
such as quantization conditions for the level [132] and the allowed transverse
position of the D-branes [27, 125, 126]. Let us be a little bit more specific.
For compact simply-connected simple Lie groups topological considerations
regarding the Wess-Zumino term force k to be an integer. This may be
different for non-simply-connected or non-compact groups. In the case of
G = SO(3) the level k has to be even for instance and for G = SL(2,R) we
obtain no additional constraints on the level. To show the invariance of the
action functional (3.29) under infinitesimal deformations of the disc it suffices
to prove the relation dwp = wWZ|D. Taking global aspects of the embedding
of the disc into account one recovers certain quantization conditions which
render the path integral well-defined. For maximally symmetric branes, i.e.
twisted conjugacy classes, these have been shown to coincide with the CFT
description [27].



65

Let us assume for a moment the absence of a world-sheet boundary.
In this case, only the first two terms of the action functional (3.29) sur-
vive and it is not difficult to show that it is invariant under all trans-
formations g +— g,(2) gggr (). This is the famous loop group symmetry
G(z) x G(z) of the WZNW theory that we already encountered before at
different stages. This symmetry is generated by two Lie algebra valued cur-
rents J(z) = —k dgg~" and J(2) = k g~'0g which are chiral by the equations
of motion. As a consequence one obtains two commuting copies of the affine
Kac-Moody algebra g;. at level k.

In the presence of a world-sheet boundary the previous arguments break
down. For ¥ being the upper half plane for instance, the two coordinates z
and z cannot be considered as independent anymore on the real axis z = Z.
Calculating the variation of S5, (g|k) + S$(glk) under the transformation
g g.(7) g gg'(7) with 7 € OX thus leads to a non-vanishing result similar to
an anomaly. The latter has to be compensated by the boundary term S5 (g|k)
which also necessitates to relate g;, and gg on the boundary. This procedure
strongly reminds one of gauging a global symmetry and this analogy will be
confirmed in the next chapter.

3.4.2 The boundary two-form and consistency

The two-form wp which enters the boundary term (3.31) depends on the
D-brane one intends to describe. For the D-brane D{ Uy, Q, fl} which wraps
the product of twisted conjugacy classes (3.6) it is given by the expression

wp = Z wp(Cry -+ yc1) - (3.32)

The elements ¢; € U; parametrize the individual twisted conjugacy classes,
see our statements in the vicinity of eq. (3.8). The boundary two-forms
entering the previous definition are specified by [57]

wD(cl) = tI'R{€UlG (Sfldsl fl QZ<S;1dSl) flil)}

(3.33)
wp(cp, -+ ,a) = —trp{e/ - gt depCryr - - - cader

If D{Ul,Ql, fl} is a single twisted conjugacy class, the expression (3.32)
reduces to that found for maximally symmetric D-branes [27]. For a product
of two twisted conjugacy classes we recover boundary terms which have been
used to describe maximally symmetric D-branes in coset spaces [125, 126].
Our expressions also contain as a special case the results of [133] by taking
the “embedding chain” U(1) < G and a particular choice of automorphisms.
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We will now argue that the action functional (3.29) is quantum mechani-
cally well-defined, i.e. single-valued under the path integral. First, infinitesi-
mal deformations of the disc do not alter the value of the action functional as
is shown in detail in appendix D.1. Different embeddings of the disc which
are not continously connected on the other hand will in general lead to dif-
ferent values of the action. If one imposes certain quantization conditions on
the allowed values of the elements f;, the action can be shown to differ by
multiples of 27, thus rendering the path integral well-defined. This quanti-
zation just coincides with the integrality conditions for representation labels
of affine Kac-Moody algebra and selection rules for coset sectors which arise
in the exact CFT approach [27, 125, 126].

Note that the boundary two-form wp does not only depend on the values
of the field g on the boundary but also on the exact decomposition into a
product g = ¢ - - - ¢y of elements of the individual twisted conjugacy classes.
This observation is very important since under certain circumstances the
sets D{Ul, Q, fl} and D{UE, O, f } are identical although their parameters
disagree. Yet, the algebraic analysis of the previous sections suggests that
they should describe different D-branes with different spectrum and different
mass density. This becomes particularly important for products of twisted
conjugacy classes which cover the whole group G. The solution to this puzzle
is connected to the target space reinterpretation which has been presented
in section 3.3.1. In the larger “covering” space G x X the shape of all our
D-branes is indeed distinct.

It remains to be shown that the boundary WZNW functional (3.29) is
invariant under the action (3.8,3.9) of H on the boundary. Let us thus de-
termine the variation of the boundary WZNW functional under an arbitrary
infinitesimal action of h(7) = 1 +iw(7) € H(7). A lengthy but straightfor-
ward calculation results in

N
dwp = —i Y tr{ dw’eo - aadac gt +
=0

(N) -1 -1
+ dwy ey cr g dclclH---cN} ,

where the abbreviations wIEO) = ¢Vo(w) and w&N) = €gV% 0 Qp(w) have been
introduced for convenience. The variation of the Wess-Zumino term may be

determined from
WV = — dtr{ dwio)dgg_l + dwl(;{N)g_ldg } . (3.34)

After integration it will give two contributions which arise from the boundary
XU D of B. The first one belonging to Y is canceled by the variation of the
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kinetic term. If we restrict the discussion to the disc which is mapped to the
set D{Ul, Q, fl}, the variation (3.34) further simplifies to

N
5wWZ}D = — Z dtr{ dw£0)60 - -cl_ldclcl_l . -051 +
1=0
+ dculgfv)c]_\,1 oot deey e en } :

Obviously, the contributions from dw"“% and dwp cancel each other exactly.
The details of the calculation can be found in appendix D.1. This completes
the proof of the symmetry of the D-branes D{Ul, Q, fl} under the action of
the subgroup H.



Chapter 4

Asymmetric cosets

An important class of conformal field theories is constituted by coset models.
They do not only provide realizations of the minimal models for all kinds of
conformal and superconformal algebras. They also describe string theory on
coset spaces G/H and have been the core of our previous constructions which
led to symmetry breaking boundary states in WZNW theories. The usual
notion of a coset refers to gauging the adjoint action of a subgroup H in a
WZNW model based on the group G. In the present chapter we will deliver
a comprehensive study of asymmetric cosets which result from gauging more
general actions of the subgroup H.

4.1 The bulk theory

In this first subsection we are going to describe the bulk geometry of asym-
metric cosets. We will start with a detailed formulation of the general setup
and of the conditions that conformal invariance imposes on the basic data.
The origin of the latter can be explained with the help of the classical ac-
tions which we shall briefly recall in the second subsection. We then provide
expressions for the bulk partition functions and establish their modular in-
variance. Finally, we present some examples showing the wide applicability
of asymmetric cosets. In an appendix to this section we correct some earlier
results of Guadagnini et al. [51, 134].

4.1.1 The geometry of asymmetric cosets

Two Lie groups G and H enter the construction of a coset G/H. Both of them
are assumed to be reductive so that they split into a product of simple groups
and U(1) factors. Let the number of these factors be n and r, respectively, i.e.
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we take G and H to be of the form G = G; x---x G, and H=H; x--- x H,.
Furthermore we assign to each factor G; in the decomposition of G a level
k;. It is convenient to combine the set of all these levels into a vector & =
(kl’ - 7]@”)

Along with the two groups G and H we need to specify an action of H
on G. We take the latter to be of the form g — er,(h) ger(h™") where er /g :
H — G denote two group homomorphisms which descend to embeddings of
the corresponding Lie algebras. In the usual coset theories €, and e are
the same. An asymmetry in the coset construction arises when we drop this
condition and allow for two different maps.

The coset space G/H consists of orbits under the action of H on G,
G/H = {geGlg~e(h)ger(h ") forheH} .

To be precise, we should display the dependence on the choice of €1, /r. But
since we consider these maps to be fixed once and for all, we decided to
suppress them from our symbol G/H for the coset space.

Let us stress, however, that the geometry is very sensitive to the choice
of er,/r. The ordinary adjoint cosets always have fixed points, e.g. the unit
element. These lead to all kinds of singularities in the coset geometry, in-
cluding boundaries and corners. A lot of freedom in model building can
be obtained by considering asymmetric cosets. Some of the new theories
even possess smooth background geometries like the five-dimensional base
SU(2) x SU(2)/U(1) of the conifold. Other models have isolated singulari-
ties such as the big-bang singularity in the four-dimensional Nappi-Witten
geometry SL(2,R) x SU(2)/R x R. The general insights which will be gained
in the present chapter will prove useful for the detailed study of the last two
models in chapter 5.

The basic data we have introduced so far, i.e. the two groups G, H,
the vector k of levels and the maps €y, €g, will enter the construction of two-
dimensional non-linear o-models with target space G/H. To ensure conformal
invariance, however, these data have to obey one important constraint which
we can formulate using the notion of an embedding index z. € Mat(n x r)
for the homomorphism € : H — G. To define x. we split € into a matrix
of homomorphisms € : Hy < G; where s = 1,...,7, and i = 1,...,n,
run through the factors of H and G, respectively. The embedding index
1. =z = (2%) is a matrix with elements of the form

i L tri{ R; 0 (X)) Ry o e¥(Y) }
= T R (X) Ba(0)] for XY ebp\{0} . (4.1)
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The traces are evaluated using two arbitrary non-trivial representations R;
and R, of the Lie subalgebras g; and b, respectively, whose Dynkin indices
I;, I, appear as a prefactor. Observe that the number that is computed by
the expression on the right hand side does not depend on the choice of the
elements X, Y and representations R;, R,. Let us also note that the map €%
is allowed to map H, onto the unit element in G; for some choices of ¢ and
s. In this case, the corresponding matrix element 2" vanishes.

Let us now consider the embedding indices 1, and xg for the two homo-
morphisms €, and eg. A conformal theory with target space G/H exists for
our choice of levels k, provided that the latter obey the following constraint!

In other words, the vector of levels must lie in the kernel of x;, — zr. For
symmetric cosets this condition is trivially satisfied with any choice of k.
Asymmetric cosets, however, constrain the admissible levels.

4.1.2 The classical action functional

Using the basic data we have introduced in the previous subsection, we can
write down the classical action of the asymmetrically gauged WZNW model.
As usual, this consists of several pieces. To begin with, there is the WZNW
action for the numerator group G,

S\CI\;]ZNW (9|k) = Z S\C/;ViZNW<gi‘ki) (4.3)
i=1
with ¢ = ¢1---¢,. This action is a sum over the WZNW actions for the
individual groups G; without any interaction terms. These building blocks
are explicitly given by
Gi ki 2 2 —15, —1 G
SSimwloli) = =357 [ Eotrfong G0} + SSlalky)
w1l Js

The fields g; are evaluated in some (unspecified) non-trivial representation
of the group G;, whose Dynkin index I; appears as a prefactor. The last
contribution is defined as usual in terms of the Wess-Zumino three-forms
wV% given in eq. (3.30). Consistency of the associated quantum theories
enforces quantization constraints on the levels k;. For simply-connected sim-
ple constituents G; the level k; has to be an integer. For the U(1)-part and
non-simply-connected groups the constraint is different.

'If there are two or more identical groups among the H, or G;, this equation has to
hold up to a possible relabeling of these groups on one side.
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The action functional (4.3) is invariant under “global” transformations of
the form g(z, 2) — gr(2) g(z, 2) g5 (2) where g,(2) and gr(Zz) are arbitrary
(anti-) holomorphic G-valued functions. Our subgroup H along with the
two homomorphisms e;,/;gr can be used to gauge some part of this WZNW
symmetry. To this end we consider the model

SG/H (ga A7 A‘ kv EL/R Z S\?VZNW + Z Z ‘S’lcrit/HS : (44)

i=1 s=1

For lack of space we left out the functional dependence on the fields and the
parameters. The building blocks SG i/Hs — Sﬁt/HS( gi, Ay, Ag ! k;, eL/R of the
second term are given by [52]

. k; 2
SGi/Ms M 2
int A -[z

+ 2 EL(AS) gi ER(As) 91'_1 - €L(/_18) €L(As) — ER(AS) ER(AS)} . (4-5)

st

A% tr;{ 2eL(As) Ogig; " — 2 er(As) g; ' Og;

In this formula we omitted the superscripts on er/r. The gauge fields
A, A, take values in the Lie algebra b,. It is not difficult to check that the
full action (4.4) is invariant under the following set of infinitesimal gauge
transformations

§A, = 10w, +ilws, As] , 6Ay = 10w, +ilws, Ay
0g; = ien(ws) g —igier(ws) for ws = ws(z,2) € b

provided that the levels k; obey the constraint (4.2). In fact, under gauge
transformations the action behaves according to

55 _ B2 [ () 0eon) (A Do)
1= 1 s= 1

+ 5 (As) Oeg; (ws) — Oef (ws) € (As) }

and so it vanishes whenever eq. (4.2) holds true. We have therefore shown
that the data introduced above indeed label different two-dimensional con-
formal field theories.

4.1.3 Algebraic description of asymmetric cosets

Our aim now is to present a few elements of the exact solution. We shall
begin with some remarks on the relevant chiral algebras and then address the
construction of the modular invariant partition function for our asymmetric
coset theories.
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Chiral algebras and heteroticity

In the following let us denote the chiral algebra of the WZNW model for the
group G and levels k; by A(G). This algebra is generated by a sum of affine
Lie algebras with levels k;, one for each factor in the decomposition of the
reductive group G. The two maps e /g give rise to two embeddings of the
chiral algebra A(H) into A(G). Let us note that A(H) is generated by a sum
of affine algebras, one for each factor in the product H = H; x --- x H,.. The
levels of these affine algebras form a vector (k.)s—; ., whose entries are re-
lated to the levels of A(G) by k" = xr/r k (matrix notation). Our assumption
(4.2) means that er,/g give rise to two (possibly inequivalent) embeddings of
the same chiral algebra A(H) into A(G). Given these embeddings, we employ
the usual GKO construction to obtain two coset algebras A = A(G/H, L)
and A = A(G/H, eg) which form the left and right chiral algebras of the
asymmetric coset model. Note that these two chiral algebras can be different
if the two maps €, and er are not identical. In this sense, asymmetric coset
models of the kind that we consider in this note are heterotic conformal field
theories.

A proposal for the partition function

The state space of any conformal field theory decomposes into representa-
tions of the chiral algebras. Our task now is to find a combination of these
representations which does not only reflect the geometry of the target space
G/H but is at the same time also consistent from a conformal field theory
point of view. The second requirement implies that the vacuum must be
unique and that the partition function is modular invariant.

The first condition, namely the relation of our exact solution to the space
G/H, means that in the limit of large levels k the space of ground states
has to reproduce the space of functions on G/H. Actually, we can turn this
around for a moment and use the harmonic analysis on G/H to get some
ideas about the structure of the state space. To this end, let us recall that
the algebra F(G) of functions on G may be considered as a G x G-module
under left and right regular action. The Peter-Weyl theorem states that this
module decomposes into irreducibles according to

FG) =P V.oV ,

where p" is the conjugate of p. Since we want to divide G by the action of H,
it is convenient to decompose the space of functions on G into representations
of H. The space of functions on G/H is then obtained as the H-invariant part
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of F(G). We easily find
f(G> = @ V/J,@Vu-ﬁ-
~ P (br)u” (br)u+” Va @ Vi (4.6)

= (P (0w (br) N2 Vi

The symbols by,/z denote the branching coefficients of the inclusion e,/ :
H — G. The coefficients Nai+ for the decomposition of the tensor product
of representations of H enter when we restrict the action of H x H to its
diagonal subgroup H = Hp. Taking the invariant part of (4.6) corresponds
to putting d = 0 or, equivalently, a = ¢ and hence we have shown that

+

@ (bL)ua (bR)/ﬁa C .

This is the space that we want to reproduce from the ground states of our
exact solution when we send the levels to infinity. With a bit of experience
in coset chiral algebras and their representation theory it is not too difficult
to come up with a good proposal for the conformal field theory state space
that meets this requirement.

1%

F(G/H) = Invy, (F(G))

The rough idea is to replace the branching coefficients b, by coset sectors
H(C;/ CI:I) But this rule is a bit too simple and has to be refined in several
directions. First of all, the coset sectors are labeled by representations of
the affine Lie algebras g and 6 not by those of the groups G and H. This
observation leads to a natural cut-off restricting the representations which
one should take along. It will be crucial in the following that due to relation
(4.2) this cut-off will be the same for the representations of the holomorphic

and the antiholomorphic chiral algebra.

Further issues which always enter the representation theory of coset chiral
algebras are selection rules and field identification. In this case, however,
the sets of representations for the holomorphic and antiholomorphic part
do not necessarily coincide and the corresponding rules may disagree. As
a consequence, it is an absolutely non-trivial task to combine left and right
representations in such a way that they lead to a modular invariant partition
function. Fortunately, at least the sets of labels for the representations are
identical for left and right movers due to condition (4.2).

In the following we label sectors of A(G) by u, v, ..., and we use the letters
a,b, ..., for sectors of A(H). Let us denote by (G/H)r/r the cosets which
are based on the embeddings e, /g : H = G and by Giq(L/R) the associated
field identification groups. Based on these quantities we can introduce the
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functions Py, /g (1, a) which project onto allowed coset labels All(L/R). More
details of these constructions have been provided in section 2.4.2.

Having introduced all the relevant notions from the representation theory
of coset chiral algebras we are finally able to spell out our proposal for the
state space,

HOM = D HE e HE (4.7)

(m,a)
[1,a)€Rep(G/H)

where the set Rep(G/H) is defined by
Rep(G/H) = Al(G/H)/Gq with ",
4.8
All(G/H) = AI(G/H), NAII(G/H)g and Gq = Gia(L)NGu(R) .

Note that the field identification group Gy admits a natural interpretation
as the stabilizer of the action g — e,(h) ger(h™!), i.e.

Ga = {(z,7) |7 € ZH), z=e.(z)) =r(?) € Z(G)}

In writing our formula (4.7) we implicitly assumed that the action of the
field identification group Giq on All(G/H) possesses no fixed points or, equiv-
alently, that all orbits [u, a] have the same length. It should be stressed that
fixed points for the action of Giq(L/R) on All(G/H)y, g are not ruled out by
this assumption.

Although the expression (4.7) looks very simple and almost like a charge
conjugate state space, it is actually quite non-trivial. Let us in particular
emphasize once more that the representations which appear in the holomor-
phic and antiholomorphic parts are completely different and are by no means
comparable even though they are labeled by the same set.

Modular invariance

As we mentioned before, our proposal (4.7) for the state space has to pass
a number of tests before we can accept it as a candidate for the state space
of our conformal field theory. From our discussion above it is not difficult to
see that at large level, the space of ground states coincides with the space
of functions on G/H. Moreover, taking the quotient of allowed weights with
respect to Giq in eq. (4.8) ensures that there is a unique vacuum in HS/™M,
Hence, it only remains to demonstrate that our Ansatz also leads to a mod-
ular invariant partition function. To this end it is convenient to write the
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partition function in the form?
_ 1 o i
7ed) = g D Pulma) Priua) XGiy " (@) Xom (@)

The factor 1/|Giq| in front of this expression removes a common factor from
the whole expression in such a way that the vacuum character possesses a
trivial prefactor. The summation in the previous expression runs over all
labels © and a and we enforce the restriction to the allowed coset labels by
inserting the corresponding projectors.

It is now rather straightforward to compute the behaviour of this partition
function under the modular S-transformation that replaces ¢ = exp(2mi )

by ¢ = exp(—2mi/T),

_ Py (p,a) Pr(p, a) (G/H)L  \ —(G/H)p [~
D = D T eSS 030 @

/J,,CL,I/,A,b,C

We would like to use the unitarity of the S-matrices to simplify this expres-
sion. But before we can do so, we have to eliminate the projectors. To this
end we insert the explicit formulas (2.23) for the projectors in terms of mon-
odromy charges and then pull the latter into the S-matrices by shifting their
indices with the action of simple currents, see eq. (2.7). This gives

a (G/H)L (q) —(G/H)R(q—)

b S SH, X X
_ Jll/ aJ ud2A"aJbe A(v,b) (Ae)
SZ(q,q) = § § il
(1,9 €Gia (L) pmavbe Gial - 1Gia(L)] - 1Ga(R)

(Jz,Jé)Ggid(R)

Now we are able to perform the sum over p and a to obtain

SZan - Y% 570 03t Xiom (@) X35 (@)
& Gial - 1Ga(L)] - [Gua(R))]

(J1,J7)€Gia (L) vAbe
(J2,J5)€Gia(R)

At this stage we may resum the label. Then we see that part of the prefactor
cancels and we are left with

_ (G/101 () G/
S2(0.0) = o= |Z Xy (@) Xy (@)

2For notational reasons we omit the charge conjugation in the second character. This
simplification does not affect the outcome of the calculation.
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This is exactly the behavior modular invariance requires from our partition
function. Note that the restriction to allowed coset labels is implicitly con-
tained in the previous expression since coset characters vanish if the relevant
branching selection rule is not satisfied. Let us finally add that our partition
function is also invariant under modular T-transformations which send 7 to
T+ 1.

4.1.4 Special cases and examples

Our general construction includes a number of interesting special cases. We
shall therefore use this subsection to discuss two different classes of asym-
metric cosets. These will suffice to describe the most familiar examples, the
Nappi-Witten background [53] and the T%4-spaces [54].

Asymmetric cosets from automorphisms

In the simplest imaginable setup for asymmetric cosets the left and right
embeddings are related by automorphisms. More precisely, we are think-
ing of situations in which the left homomorphism ¢, = € is related to eg =
Qg o €0 Qg by composition with two automorphisms g and Qg of G and
H, respectively. Let us notice that the concatenation of an embedding with
an automorphism gives another embedding with the same embedding index.
This observation guarantees the validity of the anomaly cancellation condi-
tion (4.2). In contrast to our treatment of cosets in earlier chapters we will
now not assume that left and right embedding coincide. Otherwise we would
simply end up with an ordinary adjoint coset with a partition function of
automorphism type.

For the explicit construction of the state space (4.7) we have to know
the centers Giq(L) and Giq(R) in detail. Note that every element (J,J') €
Gia(L) is mapped to an element (wg(J),wu(J’)) € Gia(R) by the action of
the pair (wg,wn). The right center is thus the image of the left center,
Ga(R) = (wa,wn)(Gia(L)), and the common center is the intersection of
these two sets. Similarly the allowed coset labels are related by All(G/H)g =
(wa, wn) (Al(G/H);,). To prove this statement one employs the invariance
property (2.9) of the monodromy charges with respect to automorphisms.

These observations enable us to find a rather explicit expression for the
state space. In our example the general formula (4.7) can be simplified due
to the fact that left and right moving chiral algebra are isomorphic. We
will therefore express the state space in terms of quantities of the left chiral

algebra only. All we need to do is to replace the coset representations HESgI)R



77

through HESC/; I(B)LWH(G)). By construction, the latter is non-trivial if and only

if the first one was. If we combine these facts we finally arrive at

oH (G/H)L o (G/H)L
HM = @D He " OH o
[,a]€Rep(G/H)

Let us emphasize once more that the coset sectors are both defined with
respect to the same embedding € = ¢, in this expression. The asymmetry
enters in the explicit appearance of the twists of labels and in an (implicit)
reduction of labels over which we sum.

The most prominent example of asymmetric cosets of the type considered
in this subsection is provided by the Nappi-Witten background [53]. Tt is
obtained as a coset of the product group G = SL(2,R) x SU(2) with respect
to some abelian subgroup H = R x R. In this case, the automorphism {2 is
trivial while 2 exchanges the two factors of R. The model will be discussed
in detail in section 5.3.

Examples of GMM-type

Let us now consider a slightly more complicated family of examples in which
the numerator group is a product G; x Gy of two groups G; and Gy which
possess a common subgroup H. Our aim is to describe the coset G; x Go/H
where the first homomorphism €}, = e x €, embeds H into the group G and
er = €] x e sends elements of H into G;. The Lagrangian description of
such models was developed by Guadagnini, Martellini and Mintchev (GMM)
more than fifteen years ago [51, 134]. In appendix D.2 we show how their
results can be recovered from the more general expression (4.4). We also use
the opportunity to correct some statements of GMM concerning the current
algebra relations and the validity of the affine Sugawara/GKO construction
for this type of coset models.

The Lagrangian treatment of appendix D.2 and algebraic intuition lets
us expect manifestly heterotic coset models with a symmetry based on the
product of chiral algebras

A((G1)ry) @ A((Go)ry/Hi) @ A((G1)ry /Hi) @ A((G2)ry)

One can easily see that the field identification group for the coset Gy x Go/H
is given by

Ga = {(0,0,J)[(0,J) € Ga(G1/H) N Gia(G2/H) }

The allowed coset labels consist of triples (u, o, a) such that (i, a) and («, a)
are allowed for the G;/H and Go/H cosets, respectively. Coset representa-
tions are then obtained by dividing out the field identifications Giq. The
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resulting state space simply reads

. G Go/H —~Gi1/H —G
H= @ HroHIloHI onl: (4.9)
[1,c,a]€Rep(G/H)

It reflects the fact that in both the left and the right moving algebra one still
finds a residual current symmetry.

For the physical applications we are particularly interested in a special
choice of product group and subgroup, namely G; = Gy = SU(2) and H =
U(1). Under these circumstances the GMM-model describes five-dimensional
non-Einstein T?%-spaces [54]. The special case p = ¢ = 1 admits a direct
interpretation as the base of the conifold (see, e.g., [135]). This example will
be discussed in detail in section 5.4.

4.2 The boundary theory

In this section we will investigate the construction of boundary states in
asymmetric coset theories and their geometric interpretation. The deep con-
nection to the corresponding analysis in WZNW models will be illuminated.
It turns out that any boundary functional for a WZNW theory which respects
some arbitrary symmetry H on the boundary may be used to describe the
boundary functional for the associated gauged WZNW theory in which the
given action of H is divided out. The inverse statement holds also true. We
comment on the algebraic considerations which are necessary to construct
boundary states and provide a rough classification of asymmetric cosets.
The heterotic nature of these models will force us to break part of the bulk
symmetry which in some cases presumably leads to a non-rational boundary
theory.

4.2.1 The Lagrangian approach

The action functional of a bulk gauged WZNW theory is invariant under
all transformations ¢’ — e, (h) ¢’ er(h™1) for arbitrary functions h = h(z, z)
which take values in the subgroup H. In contrast to the group case one is thus
not necessarily faced with the problem of having to relate the purely holo-
morphic symmetry ¢’ +— gr,(z) ¢’ with the purely antiholomorphic symmetry
¢+ ¢ gr(Z) on the boundary where z and Z are not independent anymore.
Naively, it should suffice to map the field g on the boundary into an arbitrary
subset of G which is invariant under the action of H to be gauged away.

As one might have expected, this simple picture fails to succeed. If 3
has a boundary, one indeed has to modify the Wess-Zumino term of the bulk
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action (4.4) since there does not exist a manifold B such that its boundary
is given by X. As in the WZNW case, one has to glue a set D of discs
to the boundaries of ¥ such that the disjoint union ¥ U D possesses no
boundary. But if one then calculates the anomaly under the transformation
g + eL(h) g er(h™1), one ends up with an integral over the discs D which
remains from the variation of the Wess-Zumino term. Since this anomaly
obviously is identical to the one which arises in the WZNW case, it can for
instance be compensated by adding one of the boundary terms which have
been worked out in section 3.4.

The results of the last two paragraphs may be summarized as follows:

Every D-brane on G whose world-volume is invariant under the
action x +— ep(h)zer(h™!) of a subgroup H may be projected
down to the corresponding coset G/H. Vice versa, every brane on
an arbitrary coset G/H of the previous form can be interpreted as
a brane on the group G itself. The only difference in the boundary
action functionals consists in the bulk interaction term which has
to be added for the coset theories in order to obtain the desired
local gauge invariance.

These statements up to now are solely based on the classical action. However,
we will soon see that the general picture is supported in the full quantum
theory which results from the algebraic description.

Let us conclude with a remark. The previous results imply that all the
branes on group manifolds which have been constructed in section 3.4 can
be considered as a brane in a suitably chosen coset. Yet, they do not rule
out the possibility to obtain further branes both for groups and cosets.

4.2.2 The algebraic description

The construction of boundary states relies on formulating gluing conditions
for the chiral currents in a common conformal subalgebra of A and A. Despite
of the possibility of asymmetric cosets being heterotic such an algebra always
exists since both chiral algebras contain an identical copy of the Virasoro
algebra. In most of the cases, however, the original theory will not be rational
with respect to the Virasoro algebra. We thus require a systematic method
to recover intermediate symmetries.

The canonical way to construct subalgebras of a coset algebra A(G/H)
consists of considering some intermediate group H — U — G. In this
framework one is naturally led to the rational conformal embedding

A(G/U)® A(U/H) — A(G/H) . (4.10)
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As in the group case this procedure may be iterated based on arbitrary em-
bedding chains of the form (3.3). Nevertheless, it might turn out to be impos-
sible to find a common subalgebra using this procedure if one starts with ar-
bitrary holomorphic and antiholomorphic coset chiral algebras A(G/H, €, /)
arising from different embeddings of the subgroup H.

To illustrate this statement assume a numerator of the product form
G = SU(3)x x SU(3)3x where the ratio of the group sizes is fixed as indicated.
There exist two different ways to embed the subgroup H = SU(2)4, into
G. To see how this works we have to recall that there are two ways of
embedding SU(2) into SU(3), one with embedding index z. = 1 and the
other one with z. = 4. Let us denote the associated embeddings by ¢; and
€4, respectively. The left action of H on G is then defined using the diagonal
embedding €1, = (€1, €1) while for the right action one takes eg = (€4, €), i.e.
the subgroup is solely embedded into the first group factor. Obviously, the
consistency condition (4.2) is satisfied such that the coset is well-defined.

For the holomorphic chiral algebra there only exist intermediate groups
of the form SU(2), x SU(2)3;, or the diagonal SU(3)4x. Yet, none of these is
suitable for a decomposition of the antiholomorphic chiral algebra because
the embedding of SU(2) in SU(3) is already maximal. Consequently, in this
case it is impossible to identify a common subsymmetry of left and right
movers using decompositions of the form (4.10). This fact suggests that for
this model there exists no common rational subalgebra at all although we do
not have a rigorous proof for this conjecture.

The reasoning of the last few paragraphs leads us to the following conclu-
sion. For a rough classification of asymmetric coset theories it is convenient
to distinguish two cases which require a qualitatively completely different
treatment:

1. There exists no common conformal subalgebra with respect to which
the theory remains rational. In this case the boundary theory will
inevitably be non-rational despite the rationality of the bulk theory.

2. If there exists at least one common subalgebra A,.q with respect to
which the theory stays rational, the same will hold for the boundary
theory which preserves this algebra.

An example which presumably falls into the first class was already given in
the previous paragraphs. Among the models which belong to the second
class one finds in particular all the WZNW theories and ordinary adjoint
coset models. In the next section we will introduce and discuss a rather large
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Figure 4.1: Asymmetric cosets of generalized automorphism type.

class of so-called cosets of generalized automorphism type which also pertain
to this class.?

4.3 Cosets of generalized automorphism type

A large class of asymmetric cosets is introduced which covers all the examples
of section 4.1.4 and whose boundary theory may be solved. Our construc-
tion relies on the identification of smaller chiral symmetries for which the
boundary theory remains rational. Formulas for the boundary states and
the partition functions of the boundary theories will be provided at the end
of the section. Finally, we comment on the geometric interpretation of the
boundary states.

4.3.1 Definition and examples

We will call an asymmetric coset G/H to be of generalized automorphism
type whenever the following condition holds: there should exist a chain of
subgroups U; together with embedding maps ¢; : U; — U;_; and a collection
of automorphisms €2; such that

H:UN‘—>UN_1‘—>-'-;>U1‘—)U0:G’
€, = €1 060 -0€y and (4.11)

e = Qpoeofdjoeo---oey_100y_j0eyolly

This definition is strongly inspired by the treatment of symmetry breaking
boundary conditions in chapter 3. Note, however, that we did not demand
the left and right action of H on G to coincide, i.e. we allow for €, # er. An
illustration of the conditions (4.11) can be found in figure 4.1.

Our general prescription includes a number of very familiar classes of
CFT’s. First of all, one can recover ordinary cosets with a partition function

3In the last few lines the statement of rationality is only valid if the numerator group
is compact.
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Figure 4.2: The action of the subgroup in GMM- and Nappi-Witten models.

of automorphism type whenever e, = eg. For H being the trivial group
one ends up with the WZNW case. For the latter our new construction has
already been applied successfully to determine symmetry breaking boundary
conditions. This observation supports our claim that the boundary theory
for asymmetric cosets of generalized automorphism type should be rather
easy to access. Our assumptions on the existence of a chain of embeddings
and its properties indeed guarantee that the resulting theories are rational
with respect to the common conformal subalgebra

Ared = AUp/Up) ® AU /Us) @ -+ @ A(Uy_1/Uy) — A(G/H) (4.12)

of the holomorphic and antiholomorphic chiral algebra. But before we present
the solution of the boundary theory, let us first show how the physically most
important examples fit into the general scheme.

Examples

Remarkably, all explicit examples of asymmetric cosets which have been in-
troduced in section 4.1.4 can easily be seen to be of generalized automor-
phism type. This statement particularly holds true for the Nappi-Witten
background as well as for all GMM models.

In the GMM models one can take the product group Uy = H x H as
an intermediate group which sits in between U, = H and the numerator
Uy = G = Gy x Gy. Denote by €1, = (e,¢€,) and eg = (€], e) the embeddings
in terms of which the coset has been defined originally. Let us then define
the embedding e; = (e,id) of H in H x H, the embedding ¢; = (€}, ¢€),) of
the latter in G; X Gy and the automorphism 4 (hy, hy) = (he, hy). In terms
of these new objects the original embeddings may be rephrased according
to €1, = €1 0 €3 and er = €1 0 )y 0 €5. This means that GMM models are of
generalized automorphism type as proposed before. The common subalgebra
of the holomorphic and antiholomorphic chiral algebra which corresponds to
this interpretation is given by

Area = A((G1)r, /Hi) ® A((Ga)r,/Hi) ® A(Hy) . (4.13)

This appears to be the largest subalgebra which can be preserved on the
boundary.
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Essentially the same considerations apply to the Nappi-Witten back-
ground. In this case there is even no need to introduce an additional in-
termediate subgroup. Only an automorphism which interchanges the two
factors of the subgroup R x R has to be specified. For both models we
provided an illustration in figure 4.2.

4.3.2 Solution of the boundary theory

With the experience we have gained in the group case in chapter 3 it is now
very simple to solve the boundary theory for asymmetric cosets of generalized
automorphism type. Yet, one has to be aware of the fact that there may exist
several different representations of the asymmetric coset under consideration
in terms of embedding chains of the form (4.11). In general, they will (like in
the group case) lead to different boundary theories. We will therefore assume
that we have fixed a distinguished set of intermediate groups U;, embeddings
¢; and automorphisms 2;.

The chiral algebra which should be preserved by the boundary conditions
has already been identified in eq. (4.13). We are again free to choose trivial
gluing conditions for all the currents in the coset chiral algebras A(U;/U;41)
since alternative choices could be expressed in a redefinition of the automor-
phisms €2;. In order to determine the Ishibashi states, the symmetry reduc-
tion must be accompanied by a decomposition of the bulk Hilbert space (4.7).
For the individual coset representations we find

G/H _ UO/U1 Un—2/Un-1 Un-1/Un
H(Hva) - @ Huul ®Hm\r 2,UN-1) ®HMN 1,a)
o G/H Uo/Us ) Un-1/Un
H(u,a)+ o EB H(wo(u ):v1) ®H(WN_1(VN_1),w1;1(a))+

We had to include the automorphisms {2; in one half of the coset represen-
tations because in the original formulation of the symmetry reduction left
and right chiral algebra are just isomorphic, not identical. By inserting the
automorphisms 2; explicitly we are able to formulate the theory in terms of
one single chiral algebra A,.q. These considerations are similar to those that
have already been encountered in section 4.1.4.

The conditions for the Ishibashi states may easily be written down. Yet,
due to the presence of field identification in the individual coset chiral alge-
bras the system of relations

(1, 1)~ (wo(p),v1)
(1 piv1) ~ (wivi), Vig1) (4.14)

(uv-1,a) ~ (wy-1(vn-1),wy'(a))
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is extremely difficult to solve. The further discussion will thus focus on two
special cases, N = 2 with particular assumptions on the automorphisms on
one hand and absence of field identification on the other.

Exact treatment of a special case

To provide a solution of the boundary problem, let us first restrict to em-
bedding chains of depth N = 2. This does not only cover all the examples
to be discussed later on, but it simplifies our notations as well. We will also

set 0y = id = Qs and write U; = U. The remaining automorphism will be
abbreviated by 2, = Q.

With the previous assumptions being made the system of equations (4.14)
can now be solved. From the G/U cosets we obtain the condition u; = 1y
modulo field identifications of the form (0,.J) € Giq(G/U). From the U/H
cosets one gets p11 = w(rvp). This is due to the fact that elements of the group
Gia(U/H) cannot have the form (J,0). The first condition then translates
into p1 = Jw(p). We will assume that this condition can only be fulfilled
for w(py) = p1.* Generalized coherent states |u, v, a)) for this setup are thus
labeled by triples u, a, @ such that

(u, ) € Al(G/U) (aya) € AI(U/H) wla) = a .

In addition we have to identify these generalized coherent states according
to the identification rule

[Ty, J'a)) ~ |p,e,a)  for () € Ga -

Let 1.“ be the solution for the boundary theory with Q-twisted gluing
conditions in the auxiliary algebra A(U). Then we may define boundary
states for the asymmetric coset by

o) = 37 Plua) Plasa) o Y20 S o)
Py T) = w, & a, a U oH w, &, a
S& SOO[ \/S()a

The boundary states have to satisfy the selection rule @ ;(p) = Q/(r) since
the formula should not depend on the specific representative of the Ishibashi
states. Also, we may implement the identification of boundary states

[Jp,z, J'r) ~ |p,z,7) for (J,J') €Gia .

4This condition can be non-trivial only if there exist elements in the center of H which
are mapped to the unit element by both e, and ¢eg.
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Using world-sheet duality, it is not difficult to derive formulas for the bound-
ary partition functions. As usual we start from the following expression
involving the coefficients of boundary states

SG SCG 4 xqh S
o p1u™~ pap z1 Fzo rla 7’2& G/U _U/H
Z - Z P(/”’? Od) P(CY’ a’) Solu S S S(I)—{Z X(lu,,a) X(a,a)

(q)
and perform the modular S-transformation to obtain

7 = Z SPGl#SIE}QMSEM le v, S,Ba SEQS,I"{NS
N SO.LL S S SOa

G/U U/H
X P(Ma O‘) P(Oz, CL) X(V/ﬂ) X(’Y/b) (Q)

We now want to pass to an unrestricted sum over p,a,a (« still has to
be symmetric). This can be achieved if we express the projectors in terms
of monodromy charges and pull the corresponding simple currents into the
S-matrices, see egs. (2.23) and (2.7). We are thus led to

oG G I, o H QH QH G/U U/H
7 — ZSPWSM#SJWM ¢Z SJ’,@aSJQ’YOé ST1CLST2aSJ2ba (,/B)X( )(Q)
S5, St St 16" 1G4

The expression may be evaluated directly by means of the Verlinde formula
(2.5) and eq. (3.13), so that the final result is given by

1 Jb GJ/U _U/H
Z = s 3 N N (). N

. 2 G/U _ U/H
= Z Np'gly NBW (715) err; X, )X(Vb)(Q) :

Before we propose a geometric interpretation which is consistent with this
spectrum, we shall first discuss a more general situation.

Sketch of the general case

Let us now proceed to a second case which can be treated exactly. In the
absence of field identification and, equivalently, branching selection rules the
equations (4.14) are solved by the set of all symmetric labels p; = w;(u;) (we
have set po = p and puy = a). The different boundary conditions are then
associated with the boundary states

wUO 1o wUl B wUN 115
po. - on) =Y S (U)l’” --( oy b0, -+ )

{pi=wi(pi)} Souo Opa SO,uN
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The structure constants )Vt are taken from maximally symmetric solutions
for the auxiliary BCFT’s based on the chiral algebras A(U;). The associated
spectra of boundary excitations

o =D (), [N e () ”1<nUN> M @ o He

o'p Yo / po vo; ol ON Jpy (v0,01) (vN-1,0N)
{l/i 7)\1} =1

are obtained following the standard arguments of world-sheet duality. For
the details of the calculation we refer the reader to the last subsection. Let
us emphasize the structural relationship of the previous formulae with the
results that have been obtained in the WZNW case in chapter 3. In fact, this
similarity is not accidental but just confirms the outcome of the Lagrangian
description of boundary conditions in asymmetric cosets in section 4.2.1.

Geometric interpretation

In accordance with our general statements in section 4.2.1, the geometric in-
terpretation of our boundary conditions carries directly over from the WZNW
case. For an asymmetric coset of generalized automorphism type G/H, which
is represented by eq. (4.11) one finds a whole set of branes which cover the
product of twisted conjugacy classes (3.6) on the “covering” group G. Note
that all of them may be projected down to the coset G/H. Of course, the
validity of our proposal could also be explicitly checked once again by hand.
The authors of [136] suggested a different brane geometry, but they did not
provide any algebraic evidence for their prescription.



Chapter 5

Applications

In the last chapter of this thesis we present several applications of the rather
general results which have been obtained before. In the cosmological Nappi-
Witten background SL(2,R) x SU(2) /R x R we will be able to identify branes
which pass through the big-bang big-crunch singularities and connect differ-
ent closed universes. Our analysis is based on the study of branes in the
numerator groups, where especially symmetry breaking and — for the group
manifold SL(2,R) x SU(2) or its cover AdS; x SU(2) — non-factorizing branes
will attract our attention. The second example is constituted by TP4-spaces,
cosets of the form SU(2) x SU(2)/U(1), which are close relatives to the base
S? x S? of the conifold. Finally, symmetry breaking defect lines which may
be used to separate two WZNW theories based on the same Kac-Moody
algebra, but at different levels, will be worked out explicitly.

5.1 D-branes in R, U(1), SU(2) and SL(2,R)

The first section of this chapter will be devoted to the study of branes in
group manifolds of dimension less or equal to three. Since an immanent fea-
ture of our construction is the hierarchical structure which comes with the
embedding chains of the form (3.3), we start with the two abelian groups
of dimension one before we proceed to cases of increasing complexity. The
results of the following subsections will have direct implications for our inves-
tigations of branes in the Nappi-Witten background and in the TP%-spaces.

87
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5.1.1 Branes in R and U(1)

Algebraic description

The target spaces M = R and M = U(1) are particularly simple from the
string theory point of view. The associated conformal field theory is given
by a free boson X which is compactified on a circle for M = U(1). In both
cases the spectrum generating algebra is described by two commuting copies
of the Heisenberg algebra u(1) which are generated by the modes of the fields
0X and 0X. In the first case the representations which have to be employed
form a continuum which can be thought of as labeling possible values of the
momentum. In the second case the representations form an infinite discrete
set which is labeled by a quantized momentum and a winding number. For
special values of the compactification radius the symmetry is enhanced. At
these points the representations organize themselves in a finite number of
representations of the larger u(1); algebra. The number k € N is the analogue
of the level in an affine Lie algebra.

The maximally symmetric conformal boundary conditions for the free
boson are well-known. They can be either of Neumann or Dirichlet type,

Neumann: 0X = 90X |, Dirichlet: 0X = —-0X .

They correspond to gluing automorphisms of the form Q4 (J) = +J. For the
boson on the real line there exists exactly one boundary state which corre-
sponds to the Neumann condition. In contrast it admits Dirichlet boundary
states for every real number zy. They can be interpreted as a space-filling
brane and point-like branes sitting at x = x¢, respectively.

Let us now discuss the theory which is based on the rational algebra
(1) in slightly more detail. The latter appears naturally in our construc-
tion of symmetry breaking boundary states for SU(2), and higher rank com-
pact groups. The algebra possesses 2k integrable irreducible representations
which we will denote by a = —k + 1,--- , k. Their conformal weights are
given by h, = a?/4k. The fusion product reads a xb = (a + b) which is
understood modulo 2k, i.e. all sectors consist of simple currents. The asso-
ciated monodromy charges read Q,(b) = —ab/2k. The automorphisms €
act on the representations as wy(a) = +a. Due to the periodicity of the
representation labels there are now two solutions to the equation w_ () = u,
namely p = 0, k. They yield two boundary states

5 = 3 S = w2 [0 )]
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which correspond to space-filling branes with a Wilson line. During the
calculation we used the explicit expressions

g _ 1 1
" V2k V2
As usual, world-sheet duality determines the spectrum of open strings

Zey = Z () X0 = Z é [1 +€n<_1)y} Xv (5.1)

v v

e immw/k and Pt = (6u0 + 5,uk)

stretching between two D-branes of type ¢ and 1. From the expression for
the matrices n, we can read off the action axn = (—1)%7 of a simple current
a on a boundary label 7, see our discussion in section 2.3.2.

Geometric interpretation

Both spaces R and U(1) can be considered as abelian groups under addition
and multiplication, respectively. It is thus not surprising that the previous
features can also be formulated in purely geometrical terms, i.e. using the
notion of twisted conjugacy classes.

The automorphisms (2. which have been used to formulate the gluing
conditions above may be integrated to yield automorphisms of the associated
groups. On the group level they simply induce an inversion,

QY () = e and QF(\) = £ . (5.2)

The careful reader might object that for the real numbers the multiplica-
tion with any non-zero number gives an automorphism. Let us recall, how-
ever, that in our definition the automorphism also had to preserve the scalar
product in the Lie algebra. This condition restricts the possibilities to the
multiplication with +1.

Denote by H one of the groups U(1) or R. Since H is abelian, the twisted
conjugacy classes which correspond to the automorphisms QI consist either
of a single point or they wrap the whole group. To be precise, one obtains

cpol) {{f o 53

Following the algebraic discussion, the number f is quantized in the u(1)-
theory where it can only take powers of the root of unity e™* or the values
+1, respectively, depending on whether we consider Dirichlet or Neumann
boundary conditions.
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5.1.2 Branes in SU(2)
Algebraic details

The background SU(2) is described by a WZNW theory based on the affine
Lie algebra su(2);. The value of the level k € N is a measure for the size
of the group manifold. The model possesses a geometric regime which can
be reached by sending the level to infinity. For finite values of k£, however,
stringy effects are not negligible.

The affine Lie algebra su(2), possesses k + 1 integrable irreducible repre-

sentations p = 0, - - - , k of conformal weight
poo— pet2)
wo — < .
4(k + 2)

Since the Dynkin diagram of su(2) consists of just one point, it admits no
non-trivial symmetries and hence there does not exist any non-trivial outer
automorphism of SU(2). In contrast, the extended Dynkin diagram possesses
a Zs-symmetry which corresponds to the simple current J = k which acts
as J x u = k — p and gives rise to the monodromy charges Q () = /2.
For even values of k£ this simple current symmetry can be used to define an
orbifold theory which describes the space SO(3) = SU(2)/Zo.

Let us now describe the boundary theory of the su(2), WZNW model.
For the maximally symmetric branes the whole story is rather short. As there
is no diagram automorphism at our disposal we just end up with k+ 1 Cardy

branes. Additional — symmetry breaking — branes have been constructed in
[131] using the T-duality

SU(2) = (SU((2)/U(1) xU()) /Z .

In agreement with our investigations in appendix C, the same branes can be
recovered from our approach by using an embedding chain U(1) — SU(2)
and the decomposition (3.2) of chiral algebras.

The symmetry breaking branes on SU(2) fall into two classes, depending
on the gluing condition in the U(1)-part. The selection of a trivial automor-
phism yields k(k + 1) so-called A-branes, which — according to our general
description in section 3.2.3 — are parametrized by the set

gidxid _ <Rep(SU(2)k) X Rep(U(l)k)> /gid ;

and among which one recovers the k + 1 Cardy branes. The non-trivial
element (k, k) of the field identification Giq = Zs of the coset SU(2)/U(1)
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Maximally symmetric and symmetry breaking D-branes on

Figure 5.1:
The latter arise from the rotation indicated in the central picture.

SU(2).
They generically cover a three-dimensional subset of S3.

acts by (u,a) — (k— p,a+ k). The B-branes which arise from choosing the
inversion for gluing the U(1)-fields, are labeled by the set

Bidxw— _ (Rep(SU(Q)k) X B‘”—(U(l)k)) /gid )

where the boundary labels of U(1) are given by {+} and the group Giq induces
the identification (y, ) ~ (k — p, £(—1)¥). For odd k one obtains exactly
k 4+ 1 B-branes. In the case of even k the action of G;q possesses two fixed
points (k/2,7n) which have to be resolved, and one ends up with k + 4 B-
branes. The associated spectra can be determined from eq. (3.16).

The geometric regime
The group manifold SU(2) may be realized as a subset of C%. To be more

precise, the parametrization reads
SU(Q) = { (_2%2 2) | 21, %2 € C with |21|2 -+ ’22|2 =1 } . (54)

Sometimes we will just write down the tupel (z1, z2) when we refer to elements

of SU(2). The automorphisms of SU(2) are all inner automorphisms, i.e. they

may be expressed using the adjoint action. It is, however, useful to introduce

an extra notation for the automorphism
%a)(1%) (5.5)

(Zl 22) = (—01(1))(*2221

zZ1 z2
) —Z2 Z1
It is inner because it can be

Y ( —Z2 Z1
which corresponds to complex conjugation.
9.8) €SU(2).

represented as a conjugation with the matrix (
In order to construct symmetry breaking D-branes we have to classify all

inequivalent chains of embeddings down to the smallest continuous subgroup
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U(1). Actually, for the group SU(2) this is essentially the only subgroup
which is at our disposal. There exist several inequivalent embeddings

W) = (i aeng) MR 69

The integer n corresponds to a winding number. It determines the index of
the embedding according to the formula z, = n?.

Let us now apply the results of the chapters 3 and 4 in order to identify
the geometry of symmetry breaking D-branes on the group manifold SU(2).
The necessary data, i.e. the embedding chain U(1) < SU(2) together with
embedding maps €75V as well as possible automorphisms has already been

provided. According to eq. (3.6), the shape of the D-branes which may be
constructed based on these informations is given by

C]ScU(QSU) . QSU o EE’SU (C]EJ/(Qi))

The automorphism 2y may be chosen to act trivially without restrictions
since its omission just induces an overall translation of the brane. Similarly,
also the twisted conjugacy class of the U(1)-factor may be omitted whenever
one uses the automorphism €2,. We are thus left with the investigation
of the conjugacy classes of SU(2) and, eventually, the effects of its right
multiplication with the subset €}V (U(1)) C SU(2).

Let us start with a discussion of the conjugacy classes of SU(2) first
[26]. If the element f takes values in the center, f = e, the associated
conjugacy class consists of just one point. For all other choices they are two-
dimensional spheres S? which are embedded into SU(2) = S3. Tt is simple
to find a parametrization for the conjugacy classes by taking the trace, since
the latter is a class function, i.e. constant on adjoint orbits. For a WZNW
theory at level & we have k + 1 spheres S? which sit at the special values
Re(z1) = cos B¢ with = 0,--- k. For y = 0,k they degenerate to the
zero-dimensional objects mentioned before. An illustration of these facts is
given on the left hand side of figure 5.1.

To describe symmetry breaking D-branes we have to multiply the conju-
gacy classes of SU(2) by twisted conjugacy classes of U(1). Choosing a trivial
automorphism simply amounts to a translation. When considering a non-
trivial automorphism we have to take the union of all the shifted images. We
will not write down the explicit expressions, but only refer to the illustration
on the right hand side of figure 5.1. The symmetry breaking D-branes are
either one- or three-dimensional. While the first ones are equatorial circles,
the latter wrap a three-dimensional subset of the group, but generically leave
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some parts uncovered. Let us emphasize that we also find space-filling branes
by considering the conjugacy classes of SU(2) with p = k/2 for even values
of k. It is remarkable to note that a generic point of all these D-branes is
covered twice. This observation is related to the fact that the space-filling
branes can be further resolved into elementary branes. Hence, we found full
agreement with the results of [131, 133] which have been obtained based on
T-duality.

5.1.3 Branes in SL(2,R)
Algebraic aspects

The exact treatment of the background SL(2,R) in terms of conformal field
theory is a very delicate subject. Only recently, Maldacena and Ooguri pro-
posed the use of a mixture of certain discrete and continuous representations
for the description of the bulk spectrum and showed the consistency of their
proposal [137]. Remarkably, the energy spectrum of the corresponding rep-
resentations needs not to be bounded from below. An essential ingredient in
the construction is the spectral flow operation which relates different repre-
sentations and which can be interpreted as the action of elements of the loop
group SL(2,R) which are not continuously connected to the identity.

In the present work we will have nothing new to say about the algebraic
aspects of constructing D-branes in SL(2,R) or its covering space AdS;. We
will merely use the geometric insights which have been gained in chapter 3
to obtain a picture of what should be expected in the exact CF'T description.
We actually anticipate that many features of our extrapolation will survive
the step to the rigorous treatment.

Background geometry and basic definitions

The group SL(2,R) may be described as a subset of four dimensional flat
space. In this parametrization the connection to the matrix form is given by

<X0+X3 X+ X,

1 . 2 yv2 2 yv2 _

It is convenient to introduce cylindrical coordinates r, 6 and a periodic time
7. These take values in the domains r € [0, co] and 0, 7 € [0, 27r[. The precise
relation to the previous parametrization is given by

Xo+iXy = € coshr and X5+iX, = e’sinhr . (5.8)
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Figure 5.2: Parametrization of SL(2,R).

In the cylindrical coordinates, the manifold SL(2,R) may be depicted as in
figure 5.2 with top and bottom of the cylinder identified. The covering space
AdSj3 is obtained by resolving the periodicity of time, i.e. by extending its
range to 7 € R. The region r — oo describes the boundary of AdSs.

In order to be able to characterize maximally symmetric branes, but
also for the symmetry breaking ones, we need to determine the equivalence
classes of outer automorphisms. In contrast to the SU(2)-case there indeed
exists (up to concatenation with a conjugation) exactly one non-trivial outer
automorphism of SL(2, R) which reads

s, {fa by  (d c\ (0 1\ [fa D\ (0 1

2 (c d>_(b a)_<10 c d)\1 0) ~ (5.9)
Note that this automorphism allows a representation as conjugation with the
matrix My = (9}) which is not an element of SL(2,R).

For the construction of symmetry breaking D-branes we need to classify
all subgroups of SL(2, R) together with their embedding maps and automor-
phisms. It can easily be seen that there exist essentially two subgroups, a
compact SO(2) = U(1) and a non-compact R. The relevant embedding maps
of the former are given by

USL( id) _ cosng  sinng
e () (_ sinng cosnd for n € Z\{0} . (5.10)
They are unique up to conjugation. The parameter n gives the winding
number and determines the value of the embedding index according to x. =
n?. Let us recall that our definition of an embedding map just demanded it to
be injective on the level of the Lie algebra, not on the level of the group. As a
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Figure 5.3: Representatives of maximally symmetric D-branes in SL(2, R).
From left to right we have the following types: point-like, dSs, Ho and AdSs
branes.

consequence we are also able to define two inequivalent classes of embedding
maps for the subgroup R,

e 0 R,SL cos B\ sinfBA

RSL(\\ _ —
€ (A) = 0 o) and & (A) = —sin B\ cos BA

, (5.11)

with non-vanishing parameters o and 3 which determine the value of the
embedding index. The automorphisms of the groups U(1) and R as well as
the geometric interpretation of the associated twisted conjugacy classes have
already been provided in section 5.1.1.

Brane geometry

The extrapolation of our exact results which have been obtained for compact
groups lets us expect a large set of D-branes on SL(2,R). To be more precise,
they should be located along the point-wise product

CJScL(QSL) . QSL o) EH’SL (CJI:I/ (Qi)) (512)

of twisted conjugacy classes. The subgroup H may be chosen either to be
U(1) or R. Additional freedom comes with the selection of an embedding
¢S and our choice of the automorphisms.

Maximally symmetric D-branes belong to twisted conjugacy classes of
SL(2,R). They show up whenever the twisted conjugacy class of the abelian
group H is chosen to be point-like, i.e. if the automorphism €2, is used. Let us
briefly review the classification of these maximally symmetric branes which
traces back to the work of Stanciu, Bachas and Petropoulos [138, 139].
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Figure 5.4: Certain classes of symmetry breaking D-branes on SL(2, R). They
are obtained from those in figure 5.3 by a simultaneous (¢, 7)-rotation.

Ordinary conjugacy classes which come with the automorphism g, = id
fall into three types. Let us recall that all elements of a conjugacy classes
are mapped to the same number by taking the trace. Fixing X in eq. (5.7)
to some value C' € R while putting no constraints on the other coordinates
therefore gives a first rough classification. The resulting submanifold may
be disconnected showing that only demanding X, = C' does not lead to a
complete solution of the classification problem. It is nevertheless useful to
work with this description. The equation Xy = cos 7 coshr = C' admits very
different types of solutions depending on whether |C| < 1 or |C| > 1. For
|C'| > 1 one recovers dS, branes while for |C| < 1 branes are obtained which
are localized on hyperbolic planes Hy. In the limit |C'| — 1 they degenerate
to two instantonic point-like D-branes at 7 = 0, 7 which are associated to the
center of SL(2, R) and others sitting on the light cone. Representatives of this
zoo of conjugacy classes are visualized in figure 5.3. It was argued in [139]
that all these D-branes are unphysical. The Hy and the point-like branes
are instantonic objects while the dS; branes are spoiled by a supercritical
electrical field.

Twisted conjugacy classes associated to the automorphism (5.9) are clas-
sified by the relation tr(Myg) = 2X; = 2C. According to eq. (5.8) this
condition translates into C' = sinfsinhr. In this situation there is no need
to distinguish different cases. All these twisted conjugacy classes describe
AdS, branes which are invariant under time translations and extend to the
boundary of AdS; at # = 0,7 [139]. They are illustrated in the right-most
picture of figure 5.3.

Let us now turn to the description of symmetry breaking D-branes. Ac-
cording to the expression (5.12), we may multiply the twisted conjugacy
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classes of SL(2,R) by a twisted conjugacy class C}} (Q4) of H = U(1) or
H = R. For Q, the latter are point-like. This induces a translation of the
original D-brane. The situation is more interesting for the automorphism
Q_. In this case the twisted conjugacy class reduces to H itself and one has
to consider the superposition of all shifted images.

This analysis is particularly simple for H = U(1). In this case the multi-
plication of an element (r,8,7) of SL(2,R) with an element e* of U(1) just
induces the simultaneous rotation (6, 7) — (0 £n\, 7+£n\) of angle and time
coordinate. The sign and the wrapping number n are fixed by the choice
of twist Q5" and embedding €VS". As the twisted conjugacy class is given
by the whole U(1), one may immediately evaluate the geometry of the re-
sulting D-branes. By rotation of the dS, and the AdS, branes one obtains
D-branes which fill all space outside a cylinder of radius ry = arcosh|C| or
ro = arsinh|C|, respectively. For degenerate cases they provide space-filling
branes similar to those arising from the rotation of Hy branes. If one rotates
the O-branes on the other hand, these sweep out the axis r = 0. To get some
impression of these geometries we visualized all four of them in figure 5.4.
Let us emphasize that the generic point in the world-volume of rotated dS,
and AdS, branes is covered twice.

For H = R we have to distinguish two embeddings (5.11). The usage of
€§’SL gives essentially the same result as for U(1). For EE’SL, in contrast, the
discussion becomes quite involved as the shift acts in a very intricate way —
at least in our coordinates (r, 6, 7). To get an idea of what is going on, let us
consider the case where the conjugacy class of SL(2,R) reduces to a point.
The D-brane is then parametrized by matrices of the form diag(£e*, £e=*)
with A € R. It turns out that these are instantonic one-dimensional branes
localized at times 7 = 0, 7, respectively, and running all the way from r = 0 to
r = oo in the directions # = 0, 7. They do not seem to make sense physically
and we will not discuss them in more detail. Notice that our results confirm

the predictions for the geometry which arise from T-duality [131, 133].

5.2 D-branes in AdS; x S°

In this section we will apply our general framework to advance the classifi-
cation of D-branes in the target space G = SL(2,R) x SU(2). Breaking the
symmetry down to a suitable subgroup allows us to construct non-factorizing
D-branes whose world-volume cannot be written as a direct product of the
form Dgp, X Dgy. Since the covering space of SL(2,R) is AdS3 and the group
SU(2) is diffeomorphic to S? our results have immediate implications for the
string backgrounds AdSz x S® x T* and AdS3 x % x S? x ST [38, 39].
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Following the general scheme for constructing symmetry breaking D-
branes we first have to classify all inequivalent chains of maximal embeddings
which reside in the product group SL(2,R) x SU(2). In addition one needs to
classify every automorphism of all the subgroups which emerge during that
procedure. Common subgroups of SL(2,R) and SU(2) can then be used to
construct non-factorizing symmetry breaking D-branes.

5.2.1 Embedding chains and automorphisms

The continuous subgroups of the product SL(2,R) x SU(2) are easily clas-
sified. There are essentially two choices of embedding chains which may be
used for our construction. The first one is given by the maximal embedding

H, x H, — SL(2,R) x SU(2) , (5.13)

where H; and Hy equal one of the groups U(1) or R. Without loss of generality
we assume that H; is embedded into SL(2, R) and H, is embedded into SU(2).
In this case the embedding map is given by St x 25U Also, we should
demand H; # H, since otherwise the embedding chain could be enlarged by
the common subgroup which sits diagonally in the product H; x Hs.

The last statement already suggests the second possible choice for a chain
of maximal embeddings. It is specified by

Again, the symbol H denotes either of the groups U(1) or R. The numbers
ki, ki, k are a measure for the size of the groups or, equivalently, the normal-
ization of the scalar product which is used in the associated Lie algebra. The
embedding map can be decomposed as [¢™SE x ¢SU] o HXH Without any
restriction we can assume the first embedding in relation (5.14) to have the
diagonal form e™*H(p) = (h, h). The remaining freedom is then solely con-
tained in the embedding maps €5t x €5V from H x H to SL(2,R) x SU(2).
An embedding where the subgroup H is just mapped into one of the factors
H x H can effectively be described by omitting the subgroup H and working
with a chain of depth N = 1.

Finally, we have to discuss the automorphisms of all the groups which
entered the expressions (5.13) and (5.14). For the product groups SL(2,R) x
SU(2) and H; x Hy the automorphisms factorize, i.e. they may be represented
as a direct product of automorphisms of the individual constituents. The sit-
uation, however, is different for the embedding chain (5.14) and the product
group Hy, X Hy, . If both constituents have the same size, i.e. if k] = kj, there
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exists an additional automorphism €2, which exchanges the two groups. On
the algebraic side the condition imposed is equivalent to the statement that
one deals with two identical copies of the chiral algebra A(H). Note that
the numbers k] are already completely fixed given the numbers k; and the
embedding €S x SV In our applications based on the embedding chain
(5.14) we will work with automorphisms of the form Qu,q = Qo [Qf x O],
where 0 € {id, Qcx.} denotes a possible exchange of the two group factors
and QI O are two arbitrary automorphisms of H.

We are now almost prepared to address the question of D-brane geometry
in SL(2,R) x SU(2). All we still need is a better understanding of certain
twisted conjugacy classes. For SL(2,R) x SU(2) and the subgroup H; X
H, which appears in the chain (5.13) the twisted conjugacy classes simply
factorize in those of the individual consituents, cf. the previous section. It
is slightly more complicated to find an expression for the twisted conjugacy
classes CHXH(QHxH). Considering first the case with {2 = id the conjugacy
classes factorize like before and we obtain

{fi} x{fo} , O =id, Qf =id
HxH - {fi} xH | O =id, O #£id
C(fl,fz)(QHXH) ’Q:id - H % {fg} : Q{I ?é id, le —id (5'15)

HxH , QF#£id, Q8 £id .

In this case the element (f1, f2) has to satisfy QH(f;) = f;. With non-trivial
twist, i.e. with  # id, we have the restrictions f; = Q(fs) and fo = QY (f1).
It thus suffices to work with one label f = f; which satisfies Qi o QY (f) = f.
A straightforward analysis yields

Hx H , Q£ Q!
oo | {(s£ Q)| s € H} o =0t

This concludes our presentation of the necessary tools for the determination
of symmetry breaking D-branes in SL(2,R) x SU(2).

When constructing D-branes in the product geometry SL(2,R) x SU(2),
it is convenient to distinguish three cases which either lead to factorizing
branes or two different mechanisms for obtaining non-factorizing branes. The
discussion of this classification will be the subject of the following three
subsections.

C (o)

(5.16)

5.2.2 Factorizing branes

Factorizing D-branes whose world-volume may be written as a direct product
of the form Dgp, X Dgy arise naturally from the embedding chain (5.13). They
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may also be obtained from the chain (5.14) if one restricts oneself to the
automorphism {2 = id and if one in addition “excludes” the last subgroup H
by hand. De facto, the latter can be achieved by choosing the trivial set {e}
for the conjugacy class which is associated to this group.

Let us discuss the geometry of these D-branes now. According to the
general expression (3.6) they are localized along the product

5 () - Qs 0 5l () )| ¢ [C50 (i) - 25V (CBe () )

This factorized geometry is completely under control using the dictionary
which has been provided in the previous sections. The dimensions of these
D-branes range from 0 to 6, the shape from point-like to space-filling. We
will not bother to discuss these D-branes any further, but focus our attention
on the description of non-factorizing D-branes.

5.2.3 Non-factorizing branes from diagonal embeddings

The first type of non-factorizing D-branes is obtained by using the embedding
chain (5.14) and choosing an automorphism Quuy = Qo [ x Qff] which
does not involve an exchange of the two factors. In other words we demand
2 = id. The geometry associated to this kind of symmetry breaking D-brane
is described by the product

(e () % ()] - o (C @) - a(ch @) . (617)
where the embeddings have been abbreviated by €¢; = (QSL o eH’SL) x 1SV

and €y = [Qgp, 05 x 15U o (O x OfF) 0 HHXH et us start our discussion
with a given product of conjugacy classes of SL(2,R) and SU(2). As can be
seen from eq. (5.15) the effect of the multiplication with Cgc;i) (QHxH) is a
combination of a translation and a factorized smearing as described in the
sections 5.1.2 and 5.1.3. The effect of the multiplication with C?{) (QH) in con-
trast is more interesting as it can provide the reason for non-factorizability.
If this conjugacy class is O-dimensional, it translates the whole D-brane by
a constant amount leaving factorizability unaffected. On the other hand it
may reduce to H itself. Under these circumstances one obtains a continuous
superposition of shifted D-branes. Due to the diagonal embedding of H into
H x H, the shift acts on both factors SL(2, R) and SU(2) simultaneously. This
feature is responsible for non-factorizability.

Since the discussion of the geometry of these D-branes becomes rather
involved in the general case, we prefer to illustrate our considerations in two
simple examples. Assume first that H = R, 1Sk = e®SL - (HSU — EE’SU and
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that we set f1 = fo = f3 = f1 = e, Qg = id and Q! = QI = id. This implies
that the twisted conjugacy classes of SL(2,RR), SU(2) and H x H entering
(5.17) reduce to unit elements. In order to obtain a non-trivial result we
choose Qy # id such that the remaining twisted conjugacy class in eq. (5.17)
is given by H. After its embedding into SL(2,R) x SU(2) one recovers the
curve

cosa\  sinaA cos B\ sinBA .

((— sina\  cos oM) ’ (— sin B\ cos ﬁ)\)) with AeR-.
The numbers «, § specifiy the embedding of R into the individual group fac-
tors. A closer comparison of this expression with egs. (5.7,5.8) shows that
aX may be identified with time 7. This configuration thus describes a num-
ber of D-particles each having a circular trajectory in the group factor SU(2)
while sitting on the axis r = 0 of SL(2,R). The number of D-particles is
determined by the relative values of a and (3. If the ratio is irrational one
obtains an infinite number of particles which form a dense set in SU(2) at
each instance of time. The appearance of multiple D-particles is due to the
periodicity of time in SL(2,R). This artifact disappears on the covering space
AdS3 which has a non-compact time-coordinate. Obviously, it is straightfor-
ward to generalize the previous idea to two-spheres which are rotating in the
SU(2) factor in the evolution of time.

In our second example we choose Q258 = Q5L but still fix H =R, St =
xSl fa = fi=¢, O = Ol = id and O # id. The set (5.17) is obtained
from the product AdS, x S? by performing simultaneous shifts in both factors.
If we focus only on the AdSs-part for a moment, we already know the resulting
geometry from section 5.1.3. It is given by all points (7,6, 7) which satisfy
r > ro = arsinh|C| for some constant C'. These points are generically not
located on the twisted conjugacy class of SL(2,R) we have started from. We
thus have to decompose them into an element (r,6,7') and a shift A such
that (6,7) = (¢ + A\, 7 + \) and sin#'sinhr = C, i.e. such that (r,6',7) is
an element of the twisted conjugacy class. With every solution 6] we have
another one 0, = m — 0]. In the exceptional case r = ry we have only one
solution ¢} = 0, = w/2. For r = ry = 0 the angle can be chosen arbitrary.
For simplicity we shall assume ry > 0 in what follows.

The two shifts A/, associated to the angles 6 /2 have to come from the
embedding 55 (¢) of € € R in SL(2,R). As a&;» is only defined modulo 27

there are several choices 592 = (Ay2 + 27mal)/a of elements in R which may
be used to recover these shifts. These elements have to be used to implement
the shift on the SU(2)-part. Using the embedding eﬁ’SU as before, these shifts
are determined by the angles 5(A1/2 + 2mal)/a. For o = 8 = 1 we arrive at
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the following picture. The D-brane in SL(2,R) x SU(2) is parametrized by
points (r,6,7) in SL(2,R) with r» > rq. Over each of these points one has
two spheres S? which are generated out of the conjugacy class of SU(2) by
the action of the shifts Ai/5(7). In the limiting regimes r — ro and r — oo
the two-spheres move closer and closer until they finally coincide. For more
general choices of a and 3 the number of two-spheres over each point in
SL(2,R) may be larger.

5.2.4 Non-factorizing branes from group interchanging
twists

The second possibility to obtain non-factorizing branes is again associated
to the embedding chain (5.14), but now it includes a twist 2 = Q. of the
subgroup H x H which interchanges the two group factors. Let us recall that
the existence of this automorphisms enforces some constraints on the relative
size — the levels — of SL(2,R) and SU(2) and the embeddings one uses.

After these remarks we can proceed as in the previous section. The
geometry which belongs to our present choice of embedding chain may be
read off from the product

- (Qa) x GV ()] - e (CM (@) - e(Ch(@n) L (518)
where we used the abbreviations ¢ = (Qgp, 0 €55) x €5V and €, = [Qgp, 0
eSL ¢ SU] 0 Qg 0 €M The discussion of the conjugacy class Cl (Qm)

gives no new insights compared to the previous section. Despite of this
fact there is still a significant qualitative difference, as we are now allowed
to work with the expressions (5.16) for the conjugacy classes C}{SXH(QHxH).
While the first possibility in (5.16) implies the usual factorized smearing, the
second induces a superposition of simultaneous shifts in the two group factors
similar to those which have been revealed for C}i (QH) It is an interesting
question to see whether the joint action of two independent simultaneous
shifts will lead to new features.

To illustrate these considerations we choose a setup where H = R, St =

RSl HSU — GE’SU, fi=fa=¢€ Qg =id and Q' = O = Q, for n = +1
as well as Qg = Q_. The product of the embedding of the last two twisted
conjugacy classes (5.18) is parametrized by two real numbers A, A" and reads

costy  sin cos?y)’  sin)’
—siny costy) T \—siny’ cosv)’ ’
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Figure 5.5: The group manifold SL(2, R).

with ¥ = a(pX\ + N + f3) and ¢’ = (A — X + f3). We recognize that the
joint action of simultaneous shifts for n = 1 leads to a factorized structure
again as both ¢ and ¢’ are independent. For n = —1 the translations are
“collinear” and one thus just recovers a shifted version of the non-factorizing
D-brane which is already familiar from the previous subsection.

5.3 The big-bang big-crunch space-time

Recently, there has been renewed interest [140] in the Nappi-Witten back-
ground [53] which describes a closed universe between a big-bang and a big-
crunch singularity. It was shown that the dynamics couples the closed uni-
verse to regions in space-time which formerly were believed to be unphysical.
The full geometry is given by the coset SL(2,R) x SU(2)/R x R where the
groups in the denominator act asymmetrically on both factors in the numer-
ator. Here we shall apply our general framework to the discussion of brane
geometries in these asymmetric cosets. We believe that the construction
of the corresponding boundary states in these non-compact backgrounds is
possible using results from [141, 142].

5.3.1 The bulk geometry

Let us review the geometry of the target space first. For our purposes it is
convenient to follow eq. (5.7) and to parametrize the group manifold SL(2, R)
in terms of four real numbers Xy, - - - , X3 satisfying X7 — X7+ X3 — X2 = 1.
This set can be depicted as a product of hyperbolas X? — X2 = r and
X2 — X2 =1+r in the (X, X)-plane and the (X, X3)-plane, respectively.
These hyperbolas are fibered over the real coordinate r and they degenerate
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Figure 5.6: The group manifold SL(2,R) after gauging.

in one of the two planes for r = —1,0. We thus have to distinguish the
regions r > 0, 0 > r > —1 and —1 > r. The resulting geometry is pictured
in figure 5.5 as a fibre over r € R. The parametrization of SU(2) in terms of
complex coordinates z1, z5 has already been introduced in section 5.1.2.

In the next step we have to specify the action of the subgroup R x R
on SL(2,R) x SU(2). To make contact with the general setting of chapter 4
let us introduce the notation G = Gy x Gy = SL(2,R) x SU(2) and H =
R x R. The coset we want to consider is defined by using the identification
g ~ er(h) ger(h™') where the left and right homomorphisms of the subgroup
H are specified by [53]

e’ 0 e 0
€L<p7 T) = 0 e P X 0 e—i'r
e ™ 0 e % 0
€R<IO> T) = 0 e’ X 0 6ip

Using these expressions it is not difficult to see that the action of H leaves
the quantities X2 — X2, X7 — X2, |21| and |25| invariant. In fact, these
transformations correspond to boosts on the hyperbolas and rotations in
the complex planes. Deviating from the analysis in [140] we will perform the
gauge fixing completely in the SL(2, R) part of the target space. As can easily
be seen, the gauge transformations allow to gauge the SL(2,RR) hyperbolas
down to two disconnected points. This procedure completely removes the
gauge freedom except for singular points at » = —1,0. These locations
correspond to the big-bang and big-crunch singularities and we will not be
concerned too much with details of the geometry at these special points. The
findings of these considerations are illustrated in the figures 5.6 and 5.7.
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Figure 5.7: An alternative representation of the group manifold SL(2,R)
after gauging.

It is now only a short step to recover the results of [140]. Let us introduce
the symbols L, R, T, B which are shorthand for left, right, top and bottom
and specify the location of points relative to the origin of the coordinate
system in the planes which are shown in figure 5.6. The regions of SL(2,R)
which appear in the fibre over » € R can be described by pairs of symbols
L, R, T, B, one for each of the planes. A short look at figure 5.6 reveals that
only twelve different combinations are allowed. Working out the connectivity
properties of these different regions we arrive at figure 5.8 which has also been
obtained in [140]. In order to simplify the comparison with [140] we have
adopted their notation in the last picture. The translation can be performed
by means of table 5.1 (see also figure 5.9). From figure 5.8 we observe that
there are four closed compact universes I-IV which are connected at the big-
bang and big-crunch singularities. At each instant of time they have the
topology of a three-sphere S if one takes the SU(2) factor into account. The
periodicity of time may be resolved by turning to the infinite cover AdSs of
SL(2,R). In addition to the closed universes there are eight whiskers which
are also connected to the singularities. Over each point in the whisker one
has a S3.

5.3.2 The D-branes

Let us now begin to place branes into this geometry [143, 55]. Since the
Nappi-Witten background falls into the class of asymmetric cosets of general-
ized automorphism type, there is a well-defined prescription for the geometry
of many branes. According to the results of section 4.3 we first have to find
embedding chains which interpolate between R x R and SL(2,R) x SU(2).
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Unfortunately, there is no way to construct a non-trivial embedding chain, so
one is left with the chain of depth N = 1 where Uy = G = SL(2,R) x SU(2)
and Uy =H=R x R.

Our next task consists in finding a homomorphism ¢ : H — G and all
choices of automorphisms €2y and €; such that the conditions (4.11) are
satisfied. We are allowed to set € = €. If we define an automorphism 2
of R x R by Q(p,7) = (—7,—p), then the right action can be expressed as
er = €0 and the condition (4.11) simplifies to

Qpoeco)y = €o) . (5.19)

D-branes in the Nappi-Witten background should be localized along the fol-
lowing product of twisted conjugacy classes,

C3F (wo) X CR(wp) | - (wo x wp) 0 e(CF () (5.20)

before projecting to the coset. Here, we split g = wy X wy, into the product
of automorphisms for SL(2,R) and SU(2), respectively. There are several
choices of automorphisms €, wy,w( which satisfy our condition (5.19) and
we will discuss all of them in the following.

Let us start with the discussion of the twisted conjugacy class C?XR(QI).
The most general automorphism of the additive group R x R is implemented
by a non-singular 2 x 2-matrix. In our situation, however, not all choices
are allowed. The only choices which have the chance to be consistent with
condition (5.19) are Q(p,7) = (n7,&p) where n,& = £1. The resulting
geometry is given by

R x R , for £ = —n
{(fit XN fo=nN)|NER} for&=n .

Embedding these sets into SL(2, R) x SU(2) by means of the map (w; X w})oe
leads to the same result in both cases after gauge fixing.

CrH () = { (5.21)

When investigating the geometry of the D-branes (5.20) in the big-bang
big-crunch target space it is convenient to focus on the SL(2, R)-part as all in-
teresting features arise from this factor. We thus only have to distinguish two
different cases, corresponding to the two types of twisted conjugacy classes
of SL(2,R). As most of the group SL(2,R) — except for two isolated points
for each value of r, respectively — will be gauged away, it even suffices to
address the following two questions:

1. Which ranges of r are covered by the twisted conjugacy classes?
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Figure 5.8: The big-bang big-crunch scenario.

2. Does the conjugacy class extend along one or even both branches of
the hyperbolas, i.e. does the D-brane cover one or two points for fixed
value of r after gauging?

The twisted conjugacy classes of SL(2,R) are easily described, see our
discussion in section 5.1.3. In the untwisted case it is useful to distinguish
two types. There are two point-like conjugacy classes which correspond to the
center of SL(2, R) while all others are two-dimensional. The point-like branes
are specified by Xy = £1 and X; = Xy = X3 = 0, i.e. they are localized at
r = 0. After gauging they sit at the singularities between the closed universes
[-IT and ITI-1V, respectively. The two-dimensional conjugacy classes are of
the form Xy = C' = const. with arbitrary values of the remaining coordinates.
According to the constraint (5.7) we obtain r = C* — 1 — X2 < C? — 1. This
means that the conjugacy class after gauging covers at least all four whiskers
2,24, 4. For C' # 0 the conjugacy class grows into two of the four closed
universes starting from the singularity which joins them. Depending on the
sign of C' these are the regions I-II (for C' > 0) and III-IV (for C' < 0). If |C|
reaches the value 1 (from below), the conjugacy class stretches completely
through both of the closed universes. Increasing |C| further, the conjugacy
classes start to reach into two of the remaining whiskers — 1,1’ for C' > 1 and
3,3 for C' < —1. Note, that the multiplication with the twisted conjugacy
class of R x R has no influence on the possible values of r as it simply
corresponds to some boost on the hyperbolas which will be gauge fixed to a
point in any case.

The twisted conjugacy classes arise from the automorphism which reverses
the sign of Xy and Xj3. The corresponding twisted conjugacy classes are
given by X; = C = const. According to the constraint (5.7) we obtain
r = C? — X2 < (2. The discussion is similar as in the untwisted case. For



108

(X0, X3) (X1, Xo)
L s
- \\// + - \\// +
- //\\ + - //\\ +

Figure 5.9: Different regions of SL(2,R) and where they appear in our pic-
ture. The matrix elements indicate the sign of Xy+ X3 and X; £+ X5, respec-
tively.

(R, T) (L,T) (L,B) (RR) (R,L) (BT) (T,T) (LL) (L,R) (T,B)

IT III IV 1 v 2 2/ 3 3 4

Table 5.1: Translation table for the twelve different regions.

all values of C' the twisted conjugacy classes pass through all four closed
universes I-IV and the four whiskers 2,2',4,4". For C' # 0 the conjugacy
classes also cover part of the whiskers 1,3 (C' > 0) or 1/,3 (C' < 0). The
results of the last two paragraphs are illustrated in figure 5.10.

So far we have only considered the SL(2,R)-part of the target space. To
obtain the complete picture we have also to take the SU(2)-part into account
as well as the product with the twisted conjugacy class C?XR(Ql). We already
argued that the latter has no effect on the SL(2, R)-part as it does not affect
the value of r and may thus be gauged away. This statement also implies
that the resulting D-branes factorize (in the same sense as the gauge fixing
factorized). If we try to solve condition (5.19) with wy = id, i.e. if we want
to take the ordinary conjugacy classes in the SL(2,R) part, we have to use
an automorphism €2; of R x R with n = 1. Depending on the choice of £ we
are still able to obtain both expressions for twisted conjugacy classes that
appear in eq. (5.21). The same statement holds true for n = —1, i.e. for the
case of a twisted conjugacy class in the SL(2,R) part.

It is now very simple to describe the geometry of the D-branes in the
SU(2)-part. We simply have to multiply the (shifted) conjugacy class of
SU(2) with elements of the form diag(e®, e~*) for all values of \. As was
argued in section 5.1.2, this procedure corresponds to a smearing of the
original conjugacy class.
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Figure 5.10: D-branes in the big-bang big-crunch scenario. The branes on
the left hand side have been constructed with an ordinary conjugacy class of
SL(2,R) while for the right ones a twisted conjugacy class was employed.

Let us conclude with a short summary of our results. For convenience
we illustrated all essential information about the target space and about its
D-branes in the figure 5.10. While the D-branes cover the high-lightened
regions in the SL(2,R)-part, we also have a three-sphere over each of these
points which is partly covered by the D-brane. The geometry of the latter
is either given by a circle around some equator or by a smeared two-sphere
which covers a three-dimensional subset of S3.

5.4 TP spaces and the base of the conifold

The spaces T?? that we are about to analyze next are simple generalizations
of the space T''. The latter is a close relative of the base of the conifold
in which the RR-fluxes are replaced by a NSNS background field [54]. Our
general theory provides a large class of boundary theories for this background,
including branes that wrap one of the three-spheres in T*'. Related objects
play an important role in the conifold geometry (see for example [135]).

5.4.1 The bulk geometry

The T?? spaces are defined to be quotients SU(2),, x SU(2)x,/U(1); where
the U(1) subgroup acts by twisted conjugation, i.e. according to (g1,¢92) +
(g1€1(h7), €4(h) g2). The embeddings €] = €Y and ¢}, = €%V are defined
by

i er? 0 ~ (i
G = (3 Se) = @)
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The action of the subgroup U(1) on the numerator SU(2) x SU(2) can be
obtained from the choice of embedding maps

EL:€><€/2 , GR:€/1><€.

If we parametrize the first factor SU(2) by (z1,29) as in section 5.1.2 and
similarly use (21, z5) for the second factor, we realize that the action of h =
exp(iT) € U(1) can be stated more explicitly by the formula

(21,22, 2),25) > (e 21, €T 2, €172 €7 2)) . (5.22)

The corresponding gauged WZNW functional is free of anomalies provided
that k = k1 p? = ko ¢? (see condition (4.2)). Note that the resulting coset still
has a SU(2) x SU(2) symmetry which is realized by (g7, g5) — (91 91, g5 92)-

The geometry of the coset may be deduced by using the action (5.22) to
put z; to a real number. This prescription works fine except for z; = 0 where
we have to gauge 29 instead. The resulting geometry is based on a product
of a two-sphere times a three-sphere. A detailed analysis yields

T = SU(2) xSU(2) /U(1) = (S*xS*) /Z, ,

since due to the non-trivial embeddings only part of the U(1) has to be used
for the gauge fixing and an orbifold action remains.

5.4.2 The D-branes

Let us now have a look for the D-branes in this geometry [143, 55]. The
TP4-spaces fall into the GMM-class of asymmetric coset theories which has
been introduced in section 4.1.4. The latter, however, just form a subset of
asymmetric cosets of generalized automorphism type, see our discussion in
section 4.3. Therefore there is a good chance to reveal the geometry of a
large number of D-branes for T??-spaces.

According to the general procedure we are instructed to select a chain of
subgroups. In the present situation, the only possibility turns out to be a
chain of depth N = 2 consisting of Uy = U(1)g, U; = U(1)x x U(1); and
Up = SU(2), x SU(2)x,. We also pick embedding maps €, : Uy — U; defined
by €2(h) = e x h and ¢ : Uy — Uj given through ¢ = ¢, x ¢,. All what
remains to be done is to choose a set of three automorphisms g, €21, 25 such
that the conditions (4.11) are satisfied. The localization of the D-branes
would then be given by the product

CSUXSU(QO) Qo6 (CUXU(Ql>) -Qpoe 08y 0ey (CU(QQ)) )
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if considered on the “covering” space SU(2) x SU(2). Yet, although these
branes possess the correct symmetry, there is some problem with this pro-
posal in the present case since a naive application of this prescription would
lead to cosets of the form U/U in the algebraic description.

The way out is suggested by the expression (4.13) for the maximal chiral
algebra in GMM models which can be preserved on the boundary. It lets us
suggest a natural target space reinterpretation of the form

G1XG2 . G1XG2XHXHXH
H N HxHxHxH

(5.23)

It is a tricky issue to incorporate the correct action of the subgroup H*. Let
us propose the identifications

((g1,92), (h1, ho, h3)) ~ (919(;1 oe(k ),92),(h1,kh2,h3)>
~ ((91:9: Q0. 0 (k7)) (b1, hay ko) )
((g1,92), (a7 (671), )

”(@mﬂ@w%@WAW”@>

In order to recover the original coset we have to constrain the automorphisms.
The analogue of condition (4.11) in the present situation reads

Qg, 06,0t = € . (5.24)

Note that this equation does not refer to the automorphism €2g, in any way.
Finally, we define the remaining action of H

((91,92), (h1, ha, h3)) = ((€1(K) g1, 92), (ha, ho, hs (k7))

which shall be preserved by the D-brane. One can easily see that the choice
of automorphisms Qg,, Q¢,, 21 and €2y exhausts all freedom of performing
twists.

The simplest way to check our last assertion is to descend to the level
of the algebra of functions, or equivalently, to the partition function of the
associated CFT. Since our main aim is to obtain a rough idea of what is
going on, we neglect field identification! and write

= PH S oHE @ HE @ HEY

(@) (way (1)w1(b))

Gz /H
(way (a),0)

+ ® H + ® HEQ(C)Jr

! This assumption is valid if p and ¢ are relatively prime or in the infinite volume limit.
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The only place where an additional twist could enter is in the a-variable. It
would relate the variables a with ¢ when we impose gluing conditions, but
actually it can be absorbed in a redefinition of €2,. The gluing conditions
also tell us that — for the symmetric part of the Hilbert space — b and ¢ are
actually completely determined by the choice of a. As a consequence there
is only one H-parameter left for the Ishibashi states and hence also for the
boundary states.

For the D-brane geometry, the previous remarks imply the occurrence of
a cyclically twisted conjugacy class in the group H x H x H which enters the
numerator of expression (5.23). To be more precise, we expect

CIIM(eyel) = { (ki fhy ™t ko f QT (k3 ), kaQa(FRTY)) | bty ko ks € H )

to be the relevant object. For the constituents G; and G we obtain ordinary
twisted conjugacy classes Cﬁl(le) and C?’;(QGQ) as usual.

In order to be able to identify the geometry of the brane we have to
project the set

Ci (Qa,) x C2(Qa,) x €M (eycl) € Gy x Gy x HxHx H

down to the coset, i.e. to fix the gauge. For our purposes, the most suitable
representative for elements in the coset (5.23) turns out to be

({90, 5 h)) g2 Qs © (ha)). (es )

Since we are not dealing with single elements ¢;, go but with whole conju-
gacy classes, we can use translation invariance along C%?(Qq,) to rewrite the
previous expression as

(CF1(Q6,),C2 (Qa,) Qa, 0 €(Qu(ha)hihs)) C Gy x Gy

This form is the most convenient for the evaluation of the brane geometry
since the gauge fixing, i.e. putting the complex coordinate z; parametrizing
the Gi-part to a positive real number, may be performed straightaway.

The geometry and the dimensions of the resulting branes depend crucially
on the exact form of the expression

Ql(hg)hlhg for (hl,hg,hg) € C}JXUXU<CYC1.)

Depending on the choice of automorphisms §2; and 25 one obtains either a
point-like or a one-dimensional object which we will abbreviate by CY(£2)
since it coincides geometrically with a single twisted conjugacy class of H. If
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Q1 # id or €y # id, the same holds true for 2. Appropriate choices of the
automorphisms Qg,, ©; and €, enable us to obtain both types for CH(Q). If
we employ for example the inversion ; = QY in combination with the inner
automorphism g, = v which has been defined in eq. (5.5), the set CY(Q)
will be one-dimensional. In contrast, it will be point-like if all automorphisms
are chosen to be trivial. One may easily check that the constraint (5.24) is
satisfied in both cases.

Having all these details in mind, the brane world-volume can be written
C%U X CJSCQU X C}JXUXU(cyCI.)
— {(Tezl:ie(’r’)’ /1 - T2 6i¢2, rleﬂ:ia’(r/)-i-iqd)’ /1 . r/g 6i¢'2—iQ¢) }

if considered on the covering space SU(2) x SU(2). The signs £ can assume all
four possible choices and the parameters r and ' take values in the intervals
¢ <r <1andcd < <1, where the non-negative constants ¢, ¢ depend
on the labels of the conjugacy classes in the SU(2)-parts and parametrize
their trace. The functions 6 and ¢’ are implicitly defined by the relations
rcosf(r) = ¢, v’ cos (r") = /. The angles ¢, ¢ are not constrained while
the value of ¢ is restricted by the condition e'® € CV(Q).

The gauge may be fixed by using the transformation (5.22) with pr =
+0(r). After a redefinition of ¢; and ¢» we end up with the following subset

CBY x ¢V x CPXUXU(cycl.)
_ {(7", /1 — 2 eizz)g’ Tleiief(r/)iiq/p9(r)+iq¢’ 1 — 2 €i¢>’2) }

This rather explicit expression immediately allows us to read off the dimen-
sions of branes in the TP%-spaces. The generic brane is thus four- or five-
dimensional, depending on whether CY(2) is point-like or one-dimensional.
For each of the special choices ¢ = 1 or ¢ = 1 one looses two dimensions,
since the radial variables will be constrained to » = 1 or v/ = 1 in this
case. As a conclusion we found branes of all dimensionality inside of the
TPi-spaces. When the levels are even, it is in particular possible to reveal
three-dimensional branes which fill one of the three-spheres of T?P%. Related
objects play an important role for string theory on the conifold.

5.5 Defect lines in WZNW theories

Our final goal is to apply the general formalism to the construction of non-
trivial defect lines between different conformal field theories. According
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to our remarks in section 2.1.2 this can be achieved by considering non-
factorizing boundary states in products of two or more conformal field theo-
ries. While our previous examples for branes in such backgrounds centered
around the geometric interpretation, we shall now emphasize the algebraic
aspects. After a short reminder of the general setup and additional motiva-
tion we will illustrate the constructive power of our formulas by considering
defects between WZNW models.

5.5.1 Boundary states in tensor products

In the last few sections we already encountered a number of examples in
the context of string theory where product conformal field theories played a
crucial role. Another important application of the latter arises by considering
a one-dimensional quantum system with a defect (see e.g. [86, 144, 145, 146,
147] and [148, 149] for higher dimensional analogues), or, more generally, two
different systems on the half-lines z < 0 and z > 0 which are in contact at
the origin. The defect or contact at = 0 could be totally reflecting, or more
interestingly, it could be partially (or fully) transmissive. To fit such system
into our general discussion, we apply the usual folding trick (see figure 2.3).
After such a folding, the defect or contact is located at the boundary of a
new system on the half-line. In the bulk, the new theory is simply a product
of the two models that were initially placed to both sides of the contact at
x=0.

Factorizing boundary states for the new product theory on the half line
correspond to totally reflecting defects or contacts. With our new boundary
states we can go further and couple the two systems in a non-trivial way.
Since we always start with conformal field theories G; = G- and Gy = G- on
either side of x = 0, it is natural to look for contacts that preserve conformal
invariance. This requires to preserve the sum of the two Virasoro algebras
of the individual theories. After folding the system, the preserved Virasoro
algebra is diagonally embedded into the product theory G = Gy x Ga. Of
course, one can often embed a larger chiral algebra H and then look for
defects that preserve this extended symmetry. This is exactly the setup to
which our general ideas of chapter 3 apply.

The construction of non-factorizing boundary states in product theories
may also shed new light on the K-theory conjecture [150, 151]. In the case of
S3 x 83, for example, stable factorizable branes carry only zero-brane charge.
But K-theory predicts the existence of additional branes with non-vanishing
three-brane charge which cannot be built up from branes on the factors S3.
Hence, there is a strong demand for additional boundary states.
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5.5.2 Defect lines with jumping central charge

Our goal is now to construct examples of defect lines that join two conformal
field theories with different central charge. Such situations are known to
appear on the boundary of an AdS-space whenever there is a brane in the
bulk which extends all the way to the boundary [66, 67, 68, 69]. To be
specific, we will choose two WZNW models based on the same semi-simple
Lie group H but at different levels k; and hence with different central charges
¢; = k; dimH/(k; + ¢¥). The boundary states we shall discuss may also be
interpreted as D-branes in the product geometry H; X Hs in which the two
factors may have different volume.

In this setup, the “G-theory” is provided by the charge conjugate modular
invariant partition function for A(G) = A(H;) ® A(Hy) = A(bx, ® bi,). Now
we are instructed to choose some chiral subalgebra A(P). There are many
different choices, but for simplicity we shall use the affine algebra 6k1+k2
which is embedded diagonally into 6k1 S 6k2- In other words, P = Hp and
A(Hp) = A(br;+4,)-

We start by introducing some pieces of notation. As we have to deal with
three different affine algebras 6, it is convenient to use different labels for the
sectors of each of these algebras,

p,v,--- € Rep(Hy) , «,8,--- € Rep(Hs) , a,b,--- € Rep(Hp) .

In the case under consideration, the projection is given by P(u, o) = p+ «
and hence the branching selection rule (2.22) reduces to i+ o —a € Q where
Q denotes the root lattice of h. Consequently, the coset fields are labeled by
triples

((u,a),a) € Rep(Hy x Hy x Hp) with p+a—a€Q

which give rise to a set All(H; x Hy/Hp) of allowed tripels. Next we have to
describe the field identifications. Let Z(H;) be the centers of the H;-theories
which — under our assumptions — are all ismorphic. The common center is
given by the diagonal subset

{((J,J),])} = Ga = Zp C Z(H;) x Z(H,) x Z(Hp)
and leads us to the identification rules
((Jn, Ja), Ja) ~ ((1,0),a)

Note in particular that no additional field identifications occur even in the
case where the levels coincide, k; = ko = k, and the two types of fields u, o
take values in the same set.
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Affine Lie algebra ‘ AV BY oM pP Eél) ES)
Fixed points for & in UsNoe Ny 2Np 2N 3Np; 2N
15| (n+1)

Table 5.2: Existence of fixed points under simple current actions.

After this preparation we can address the issue of field identification fixed
points and spell out conditions for their absence. For the moment, let us
focus on one of the factors and denote it by H. Every outer automorphism
J € Z(H) is associated with a unique permutation 7; of affine fundamental
weights. Denoting affine weights by square brackets, this action may be
written as

J[)‘()? T /\'r] = [)‘WJ(U)’ SR /\W.J(T‘)]

Thus the existence of a field identification fixed point is equivalent to finding
an affine weight such that A\; = A; ;) for all 2 = 0,--- ,r and at least one
non-trivial J € Z(H). The condition for the existence of such weights have
been studied and the results for all simple Lie algebras are summarized in
table 5.2. Note that the exceptional groups Fs, Fy and G5 have trivial centers
and thus no field identification or selection rules.

To illustrate the rules summarized in table 5.2, let us derive them for the
special case of Ay. The group Z (Agl)) = 73 is generated by the shift

‘][A07A17A2] - [A27A07)\1]

In terms of non-affine weights, this action reads J(A1, A2) = (k— A1 — Ao, Ap).
Hence, a fixed point would have to satisfy \;y = Ay and Ay = k — A\ — Ag,
i.e. it should be given by (k/3,k/3). Obviously this is not an element of the
weight lattice unless the level k is a multiple of three.

Except from the B-series, we can always find levels for which the action
of the center Z(H) on the weights has no fixed points. In the context of
our construction, we have three different sets of labels on which this groups
acts at the same time and it is sufficient if at least one of the values ki, ko
or ki + ko avoids the values specified in table 5.2. In the following we shall
assume that this condition is satisfied. Otherwise one would have to resolve
the fixed points following reference [122], which leads to technical difficulties
but no conceptually new insights.

The rest is now straightforward. Let us recall from section 2.4.3 that the
modular S-matrix of the “numerator theory” factorizes according to

HyxH _ qQH; oH (o) _ v
S(Mlza)(’iﬁ) - SIWI Sé and N(u,a)(y,ﬁ) - Nupu Naﬁ :
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Our boundary states are now labeled by Giq-orbits of triples ((p, v), r). When
we finally insert these expressions into the formula (3.14), we can read off
the boundary partition function,

v Hy xH2 /H
Z(q) = Z [Np{’pz Nvlfvz NT?TQ Ndbc} X((,ljg);)/ ®(q) xeP(a)
((V76)7b)7c7d

which describes the spectrum of fields living between the boundary condi-
tions [(,01, m), rl} and [(pg, Y2), 7’2]. When reinterpreted in terms of defects,
our formulas provide us with a large set of possible junctions between two
conformal field theories. Note that these have different central charge if

key # ko,



Chapter 6

Conclusions and outlook

In the present work we provided a comprehensive study of two-dimensional
boundary conformal field theories which are obtained from asymmetrically
gauged Wess-Zumino-Novikov-Witten theories. Even though conformal in-
variance imposes strong constraints, a lot of freedom in model building is
gained. Our investigations shed light on both the abstract algebraic ap-
proach and the geometric interpretation. The detailed analysis of several
interesting examples showed the wide applicability of our results.

One of the main characteristics of asymmetric cosets is their heterotic
symmetry algebra. As a consequence, the construction of the bulk theory re-
quired to go beyond the standard coset construction which applies for adjoint
cosets. For the same reason, there is no chance to define conformal boundary
conditions which preserve the full symmetry. Instead, we have been forced to
introduce boundary conditions which break part of the symmetry [56, 57, 55].

The key ingredient in most of our constructions was a distinguished class
of asymmetric cosets of so-called “generalized automorphism type”. This
rather large set contains ordinary adjoint cosets and WZNW theories as spe-
cial cases but, among others, also all models of GMM-type [51]. In contrast to
generic asymmetric cosets with rational spectrum which might lead to a non-
rational boundary theory, we have been able to construct rational boundary
theories for those of generalized automorphism type [55].

Let us briefly summarize some details of our results. The analysis of
symmetry breaking boundary conditions in arbitrary CFT’s was initiated in
chapter 3 based on the idea of rational conformal embeddings. The latter
allowed to reduce the symmetry of the model in a way which is compatible
with conformal invariance. In WZNW theories based on a group G this
has been attained by choosing an arbitrary continuous subgroup H. On the
algebraic level, this choice had to be accompanied by the decomposition of
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the original chiral algebra A(G) into the tensor product A(H) ® A(G/H) of
the smaller WZNW-symmetry and its associated coset algebra.

In this framework the construction of boundary states which only preserve
the reduced symmetry has been achieved for different kinds of gluing condi-
tions. The only input we needed was the solution for maximally symmetric
boundary conditions in the G- and the H-theory, respectively. By iterating
the symmetry reduction, i.e. by introducing whole embedding chains (3.3)
of intermediate groups, an entire hierarchy of symmetry breaking boundary
states could be recovered.

We proposed the product (3.6) of twisted conjugacy classes, one for each
group in the embedding chain, for the localization of these branes. This was
justified by symmetry considerations and the comparison of the algebraic out-
come for the open string spectrum with expectations from non-commutative
geometry. The proposal was further substantiated by the construction of the
corresponding boundary WZNW functional. In view of future applications
the identification of branes which cover (at least almost) all the space might
play an important role [130].

In contrast to the case of WZNW models our study of asymmetric coset
theories G/H in section 4 had to start nearly from scratch, i.e. with the
construction of the bulk theory. Since the action g — e1,(h) geg(h™") of the
subgroup H which is divided out, does not need to be symmetric, the resulting
CFT is heterotic in many cases, i.e. the left and right moving chiral algebras
disagree. After some refinements of the usual coset construction we have
nevertheless been able to propose a reasonable partition function (4.7) which
possesses the correct geometrical limit. The condition of modular invariance
turned out to be equivalent to the condition (4.2) of local gauge invariance of
the classical action functional (4.4). Both restrict the choices of embeddings
er, and eg which are compatible with conformal invariance.

The heterotic nature of the symmetry algebra was also a serious obstacle
for constructing boundary theories which by definition rely on gluing chiral
fields from the left and right moving sector living in the same symmetry
algebra. Although one knows about a natural prescription for symmetry re-
duction in coset chiral algebras which is closely related to that in the WZNW
case, it may happen that all potential reductions of this sort are incompatible
for left and right moving chiral algebra. In the worst case one would even
have to break the symmetry down to the pure conformal symmetry thus
leaving the realm of rational CFT and making a solution almost impossible.

The special class of asymmetric cosets of generalized automorphism type
circumvents these difficulties. Basically, we demanded that both actions e, /g
of the subgroup H can be formulated in terms of a single embedding chain and
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that they should only differ by automorphisms in the intermediate groups,
see eq. (4.11). In spite of these severe restrictions, all asymmetric cosets
which attracted physicists so far, like the Nappi-Witten background or the
base of the conifold, belong to this class.

Our solution of the boundary problem for asymmetric cosets of general-
ized automorphism type resembles the construction of symmetry breaking
boundary conditions in WZNW models. Most of the results which have
been obtained for the latter indeed carry over to the more general situation
whenever certain simple consistency conditions are satisfied. The validity of
this statement is suggested by the algebraic, the geometric but also by the
Lagrangian approach.

The general investigation of asymmetric coset theories has been accom-
panied by a detailed discussion of a number of illustrative examples in chap-
ter 5. The descriptive power of our approach was first used to illuminate
the structure of symmetry breaking D-branes in the group manifolds SU(2)
and SL(2,R), where we found full agreement with results obtained before by
using arguments from T-duality [131, 133]. The insights which were gained
in these toy models have then been used to propose non-factorizing branes
on the product space SL(2,R) x SU(2).

By dividing out the subgroup R xR we arrived at the cosmological Nappi-
Witten background. Among others, we found branes, which stretch through
the singularities and connect different universes. Other branes just cease
to exist after a certain instant of time. As another example we considered
branes in TP4-spaces whose representative 7! is closely related to the base of
the conifold. Here, we could in particular identify a brane which wraps one
of the three-spheres. Finally, our general prescription could also be applied
successfully to construct non-trivial defect lines between two WZNW theories
based on the same Lie algebra, but at different levels.

It would be interesting to extend our results in several directions. First
of all, the stability of our branes remains to be analyzed. For the target
spaces SU(2) and SU(2)/U(1) it is known that most of them are unstable
[131]. The same can be expected for groups of higher rank and their cosets,
respectively. A comprehensive answer, however, would require to understand
the full dynamics of our branes. This could be achieved by generalizing recent
results on the dynamics of maximally symmetric branes in group manifolds
[33, 16, 34] and ordinary coset theories [127, 152, 124]. A key ingredient for a
solution of this problem will presumably be the target space reinterpretation
of section 3.3.1 in combination with the results of appendix B.

It is still unknown whether symmetry breaking branes can carry charge.
This would not only stabilize some of them, but might also help to verify the
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proposal according to which charges are classified by an appropriate version of
K-theory [150, 151]. For group manifolds for instance there exists a mismatch
between the branes known to carry charge and the prediction of twisted K-
theory. Up to now, the K-theory conjecture could only be confirmed for
SU(2) and SU(3), but already for groups such as SU(2) x SU(2) one still
lacks one of the two expected charges if the sizes of the two factors disagree.
The knowledge about the brane dynamics would also shed new light on this
issue [16, 36].

Apart from these very interesting problems there also exist a number of
more fundamental issues which are related to our research and which we shall
briefly summarize now.

e The ezxact construction of branes on non-compact spaces is still not well-
developed despite recent progress (see [153, 142, 141] and references
therein). We hope that our results which have been extrapolated from
the rational case will finally experience a strict justification.

e The inclusion of D-branes in the AdS;/CFTs-correspondence predicts
CFT’s with defects [67, 68, 69, 149]. Since one expects defects with
jumping central charge, these provide a natural playground for our
theory of symmetry breaking boundary conditions.

e An extension of our results to o-models based on supergroups/cosets
could lead to branes in backgrounds with RR-fluxes [154, 155, 156].

e Asymmetric cosets might eventually give rise to new realizations of
both world-sheet and target space supersymmetry.

With the present work we have provided the foundation for further studies of
exactly solvable models in string theory and critical phenomena in statistical
physics. Its impact for future developments cannot be fully estimated at this
time, but we already pointed out some of the very promising applications.



Appendix A

Semi-simple Lie algebras

This appendix provides a brief survey of notions related to semi-simple Lie
algebras which have been used throughout the main text without further
explanation. In particular, we will focus on embeddings of those algebras
since they play a fundamental role in the coset construction and hence also
in the investigation of symmetry breaking boundary conditions, see chap-
ters 3 and 4. An important result of this chapter is an explicit formula
for branching coefficients which will enable us in appendix B to identify the
non-commutative world-volume algebra associated to twisted D-branes in the
large volume limit.

A.1 Definition and properties

A Lie algebra (£, -, -]) is a vector space £ over a field K which is equipped
with a bilinear multiplication [-,-] : £ x £ — £ such that the following
requirements hold,

antisymmetry: (X,Y] = —[Y, X]
Jacobi identity: (X, [V, Z]|+ [V, [Z, X))+ [Z,[X,Y]] =0 .

Given a basis T" of £, the Lie algebra is completely specified by the structure
constants which enter the multiplication [T, T7] = if%, T*. Every associa-
tive algebra 2 over K can be made into a Lie algebra by using the commutator
[X,Y] = XY — YX as the Lie bracket. In particular, this holds true for the
algebra gl(V') of endomorphisms of a vector space V. A representation of the
Lie algebra £ on a vector space V' is a homomorphism R : £ — gl(V') which
preserves the Lie bracket. An example is given by the adjoint representation
ad : £ — gl(£), where an element X € £ is mapped to the endomorphism
adyx = [X, -]. To each representation one can associate a module using the
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prescription X -v = R(X)v. Often we will not distinguish between represen-
tations and modules and simply denote both of them by the symbol V' of the
involved vector space.

From now on we will focus our attention to finite-dimensional Lie algebras
over the complex numbers. One of the most important quantities in the
structure theory of these Lie algebras is the Killing form which is defined by

K(X,Y) = tr{ady -ady }

Lie algebras for which the Killing form is non-degenerate are called semi-
simple. They may be represented as a direct sum of simple Lie algebras. The
latter are defined by the condition that they are neither abelian nor possess
a proper ideal.

A complete classification of simple Lie algebras has been achieved by
Cartan. There exists four infinite series A,,, B,, C, and D, as well as five
exceptional ones of type FEg, F7, Es and Fy,Gy. They are all completely
specified in terms of their Cartan matriz or, equivalently, by their Dynkin
diagram. For our purposes, however, it is enough to know about the root

space decomposition of g,
g = b D @ Ja >

acd

into a maximal commuting subalgebra h and one-dimensional root-spaces
go = {X € g|[h,2] = a(h)X, h € h}. The roots form a finite subset ® of
the dual space h*. All roots may be written as an integer linear combination
of so-called simple roots gy (i = 1,---,r), where r = dimb denotes the
rank of g. If all coefficients in the expansion o = ) \; a(;) are positive then
the root « is called positive, a > 0, otherwise negative. To each root « one
may associate a root generator E, which can be interpreted as a raising or
a lowering operator, depending on whether « is positive or negative. The
most important features of the commutation relations can be summarized in
80, 8-a) C B and [ga, 85] C Garp-

The Killing form induces a scalar product (-, - ) on the space h*. It can be
used to define the simple coroots oy = 20;) /(o). asy) € b* and its integer
span LY, the coroot lattice. The latter is dual to the weight lattice L which
is generated by the fundamental weights Ay € b*. Their sum, p = > Ay,
is called Weyl vector. The coefficients in the expansion A = Y A\; Ay of a
weight into fundamental weights A are called Dynkin label. On the weight
lattice one may define an action of the Weyl group W which is generated by
the reflections

si(n) = p— (1 ah) ae
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at the hyperplanes perpendicular to the simple roots a(;. Every element
w € W can be represented as a product of these reflections. Depending on
whether the number of the latter is even or odd we associate to w the value
¢(w) = £1. The homomorphism e is called the sign-function of W.

Let us now consider a finite-dimensional representation V,, of g. Since
all the (hermitian) basis elements h; of the Cartan subalgebra commute, the
associated matrices R, (h;) may be diagonalized simultaneously by choosing
a suitable basis |As) € V},. These vectors may be represented by a tuple (A);
— the weight — of their eigenvalues with respect to the generators h;. The
action of a root generator E, on a vector of weight A leads to a vector of
weight A + « (if it does not vanish). The content of any representation p
can be encoded in the weight system M, which keeps track of all weights
including their multiplicity.

Let us now consider the special class of irreducible integrable highest
weight representations, which are finite-dimensional and unitary. The set
of these representations is equal to the set

Pt =L/W {MGL’MZZMA@') anduieNo}

of dominant weights. Algebraically, the irreducible highest weight represen-
tation u € PT is specified as follows. There exists a vector |u) such that

hilpy = i |p) and Eylp)y =0 for a>0 ,

i.e. the vector possesses the correct weight and it is annihilated by the positive
root generators. All states in the representation are generated by repeated
application of the negative roots E_, on the vector |u) for @ > 0. The multi-
plicity of individual weights in the weight system A, can be calculated using
the Freudenthal recursion formula. The adjoint representation corresponds
to a particular weight 6 which is also known as highest root.

For several quantities in the context of irreducible and integrable highest
weight representations there exist explicit formulas. The dimension of a
module 1 € P* for example is given by dimp = [],.(u + p,a)/(p,a). The
Dynkin index of the representation on the other hand can be expressed as

1
I =
H rankg Z (U,I/)

veM,,

It determines the constant of proportionality which relates the Killing form
k with the bilinear form

ku(X,Y) = tr{ Ry(X)-R,(Y)} = I,/La s(X,Y)
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These forms are all non-degenerate (for u # 0) and can serve as a metric. In
order to obtain a metric which is independent of the representation u it is
convenient to employ the matrix

W9 = 1)L, w, (T T9) (A1)

in a given basis {T"}. The inverse x;; may be used to lower indices and allows
us to define the quadratic Casimir Q@ = 3=, ; xy; T"T7 € U(g) which commutes
with all elements of the Lie algebra g. According to Schur’s Lemma it acts
as a scalar if evaluated on irreducible representations. Its precise value can
be determined from the equation

Cu = (p,pt+2p)

Let us recall that the quadratic Casimir enters the expression for the con-
formal dimension of primary fields in WZNW models. The latter also in-
volves the dual Coxeter number ¢V which can be introduced by the equation
g" = Caa/2 = (0,p) + 1. For additional details and useful tables of data
related to simple Lie algebras including all Dynkin diagrams we refer the
reader to [110, 157, 158].

A.2 Embeddings of semi-simple Lie algebras

A subspace of a Lie algebra g which is itself closed under multiplication is
called a subalgebra. More formally, one speaks of an embedding p — g of
Lie algebras if there exists an injective homomorphism € : p — g. Under
these circumstances the image of € is isomorphic to p itself and constitutes
a subalgebra of g. Often we will also directly refer to p as a subalgebra. To
each embedding € : p — g one can associate an embedding indez. It is defined
as the constant of proportionality entering the equation Iz x. = Igo Which
relates the Dynkin index of a representation R of g with that of the induced
one Roeof p.

Given a finite-dimensional module of the Lie algebra g, it is an important
and natural question to ask how this module decomposes under restriction
of the action to the subalgebra p. This decomposition is described by non-
negative integer numbers, the so-called branching coefficients. The aim of
this section is to provide new tools for determining branching coefficients in
the case where both p and g are finite-dimensional semi-simple Lie algebras.
Several techniques have been developed to deal with this question. Among
them are the use of generating functions, Schur functions and a generalization
of Kostant’s multiplicity formula as well as different kinds of algorithms. For
details we refer the reader to [159, 160, 158, 110, 161] and references therein.
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Here, we develop a new approach which uses the fact that a semi-simple
Lie algebra g is naturally embedded in its affine extension g. This makes
available the powerful techniques of affine Kac-Moody algebras (see e.g. [25])
and conformal field theories related to such algebras (see [110] for instance).
To give an example, we remind the reader that Verlinde’s formula [101] for
fusion coefficients in g, WZNW theories gives a generalization of the concept
of tensor product coefficients of g. We will show that analogous relations
hold for branching coefficients if we extend either g or its subalgebra p to
the corresponding affine Kac-Moody algebra. In particular, in the first case
there exists a relation to the theory of conformal boundary conditions and
to the theory of fusion rings in WZNW models, see appendix B.

A.2.1 Verlinde-like formula for branching coefficients

We want to describe an embedding p — g of one finite-dimensional semi-
simple Lie algebra into another. For notational simplicity let us assume that
p actually is a simple Lie algebra but this does not restrict the validity of
our results. Denote the weight lattices of p and g by L and L, respectively.
Here and in what follows we will always use the convention that pu,v,--- € L
and a,b,--- € L. The finite-dimensional irreducible representations of the
Lie algebras p and g are in one-to-one correspondence to the weights with
non-negative integral Dynkin labels. These sets of integrable highest weights
of p are denoted by P+ = L/W, with Weyl group W, and similarly for g.
Let M, and M, be the weight systems of the representations a € PT and
i € PT including the multiplicities. The embedding can be characterized by
a projection P : (L) — (L) where (-) means the span of the corresponding
lattice over C. Under this projection, the weight system M, of the represen-
tation u € PT of g decomposes into weight systems of representations of p
according to

PM, = @ b."M, . (A.2)

achP+

The numbers b, € Ny are called branching coefficients. Our aim is to find an
explicit and general formula for the coefficients b,* with y € P* and a € P*.
To achieve this, we consider the untwisted affine extension py, of p. The level k
has to be chosen large enough and depends on the value of ;. This statement
will be made precise below. The integrable highest weights of p; are given by
the set P = L/(W, x kL") where we used the decomposition of the affine
Weyl group into a semi-direct product of finite Weyl group and translations
by k times the coroot lattice LY. If we introduce the notation k(c) = (6, ¢),
where 6 is the highest root of p we may write P;” = {a € P*|k(a) < k}. The
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bracket (,-), denotes the scalar product on the weight space (L) which is
induced by the Killing form. It is given in terms of the quadratic form matrix
F, if the weights are written using Dynkin labels, i.e. (a,b), = a’ F,b. In
the following we will always identify in a natural way an integrable highest
weight representation ¢ € P, of p;, with a highest weight ¢ € P* of p — py.

Before we continue, let us briefly introduce further objects that will be
needed as we proceed. The character of a highest weight representation
€ Pt of gis defined as

Xul) = Y el (A.3)

and analogously for p. The second ingredient of our formula is the modular
S-matrix of pj which, for a,b € P, is given by the Kac-Peterson formula
[25]

Sap = AAL/LY 72 (kgY) 72 e(w) exp -

weWw

271
k+gY

<w(a+p), b+p> p} .
(A.4)

This formula involves the rank of the Lie algebra r, the number of positive
roots |A, |, the Weyl vector p, the dual Coxeter number ¢g¥ = (6, p), + 1 and
a sum over the Weyl group W including its sign function e. We omit the
index p because we will not encounter the corresponding objects for the Lie
algebra g. Due to Weyl’s character formula we may write

Sba 21 _
Xa(&) = 5 where &, = —m(b +p) and a, b€ PS . (A5)
We are now prepared to state the first important result.

Theorem 1. Consider an embedding p — g of two finite-dimensional semi-
simple Lie algebras. Let P : (LY — (L) be the projection matriz characteriz-
ing the embedding and a € P+, € Pt be two arbitrary but integrable highest
weights. Define a map P* = Fy'PTF,: (L) — (L) and let k be a number

such that k > max{k(c)|b,“ # 0}. Then we have
b = S0 Y SuSwe FE P — S G S0 (PE) . (A6)
de P veMy dep;

Proof. For notational simplicity we assume p to be simple. Let us first note
that max{k(c)|b,“ # 0} exists as all weight systems involved are finite. We
then start by writing down the identity

Z bu° Zje = Z b Xe(&a) = xu(P*&a) - (A7)

_ 0 -
cEPI:" cePt
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If we multiply both sides of (A.7) with Sz, S and sum over all d € P,j
we obtain the desired result due to the unitarity d SiaSae = 0% of the
S-matrix. Thus we only have to motivate (A.7). The left equality simply
results from (A.5) and the condition on the level k, but the right equality
is more interesting. Let M, be the weight system of the representation p
including all multiplicities. We insert the definition (A.3) of the characters
into (A.7). After this substitution, the sum on the right hand side of (A.7) is
over M, and involves scalar products (v, -)s. In contrast to this, the sum in
the middle is over the projected weights PM,, and therefore involves scalar
products of the form (Pv,-),. The sum in both cases runs essentially over
the same set M,,. Therefore the equality in (A.7) holds if we can identify
the scalar products according to (Pv,-), = (v, P*-)y. Writing this relation in
terms of quadratic form matrices, we see that P* was constructed exactly in
a way that this identity holds. O

Notice the following remarkable observation. If we could rewrite P*¢; as
¢ for some integrable highest weight v of gy at a certain level k', we could
apply eq. (A.5) and eq. (A.6) would reduce to a Verlinde-like formula for
branching coefficients. In general, this does not seem to be possible because
Fy ! might cause negative entries in P*. We will see however in appendix
B that in some specific cases we are able to recover a Verlinde-like formula
using a different approach.

Let us briefly comment on the modifications if p is finite-dimensional and
semi-simple but not simple. Under these circumstances we have a decomposi-
tion p = @7_,p, of p into simple Lie algebras p,. In the affine extension, each
simple factor obtains its own level: pj, = &, (ps)r, with & = (ki,..., k,).
All relevant structures like the weight lattice, the Weyl group, the quadratic
form matrix and the modular S-matrix “factorize” in some sense, i.e. they are
given by a direct sum, a product, a block diagonal matrix or they factorize in
the original sense of the word. Obviously, the proof of theorem 1 still remains
valid if one takes these notational difficulties into account. In particular, the
condition k£ > max{k(c)|b,” # 0} actually means ks > max{ks(c)|b, # 0} in
this case.

A.2.2 An algorithm for branching coeffients

We will now use formula (A.6) to give a simple derivation of a well-known
algorithm [161] for the calculation of branching coefficients which is the basis
of many computer algebra programs'. The algorithm exhibits some similar-
ity with the Racah-Speiser algorithm for the calculation of tensor product

T am grateful to M. van Leeuwen for providing this information.



129

multiplicities (see also [25, 162, 163, 164, 165, 166, 71] for its extension to
fusion rules).

Theorem 2. Consider an embedding p — g of finite-dimensional semi-
simple Lie algebras. Let i € P be a highest weight of g and P : (L) — (L)
be the projection matrixz characterizing the embedding. The decomposition
PM, = &4, M, can be obtained by the following algorithm?.

1. Calculate the weight system of the representation p including the mul-
tiplicities. This gives some set M, C L.

2. Project this set to L and add the Weyl vector of the subalgebra p. Now
we are dealing with the set Z,, = PM, + p C L including the multiplic-
ities.

3. For each weight of Z,, use a Weyl reflection to map it into the fun-
damental Weyl chamber where all Dynkin labels are non-negative. An
algorithm in terms of elementary Weyl reflections can be found in [158]
for example.

4. Drop all weights lying on the boundary of the fundamental Weyl cham-
ber and subtract the Weyl vector p of the subalgebra p from the remain-
g ones.

5. Add up all these contributions including the signs of the relevant Weyl
reflections and the multiplicities.  The coefficient obtained for each
weight a € PT is just the number b,".

Proof. Again we assume p to be simple without loss of generality. Essentially,
the idea is to evaluate equation (A.6) for £ — oo. We insert the definitions
(A.3),(A.4) for the characters and the S-matrix. Denoting the prefactor by
N =|L/LY|7Y(k + ¢g¥)™" we obtain

bt =Ny D D, e(wr) €(ws) e T4

dEp,j wy,w2€W veM,,

(Pr+wip—w2(atp) ,d+p)p (AS)

where we already made use of the defining relation (v, P*¢;4)q = (Pv, &q), for
P*. The next step consists in evaluating the sum over d. We define a function
f(d) by b,* = Zdeﬁ,j f(d+ p). The function f(c) as read of from eq. (A.8)

has two important properties. First, it satisfies f(wc) = f(c) for all w € W.

2The author would like to thank I. Runkel and Ch. Schweigert for the collaboration on
[71] which uses similar techniques in a different context.
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Indeed, the Weyl reflection may be absorbed into a redefinition® of w;,ws
and v. To derive the second property let us define the set P, " e = =Pl +p. Tt
turns out that ]5,: J:;v exactly contains the elements of Pk ", ov Which do not lie
at the boundary of the corresponding affine Weyl chamber. This boundary
is given by the set of all weights which are invariant under at least one
elementary Weyl reflection including the shifted reflection at the k-dependent
hyperplane described by (6, -), = k+ ¢¥. One may show that f(c) =0 if cis
invariant under an affine fundamental Weyl reflection. To see this, note that
the function g,(c) = S, .-, which enters f(d) satisfies g,(wc) = €e(w)gs(c)
with respect to any affine Weyl transformation w € W x (k + g¥)LY. These
considerations lead to the simple relation

- L X fwo) = fle) - (A9)

We are now in a situation where we are able to perform the sum over ¢ €
L/(k+ gY)LY. The sum over the exponentials in eq. (A.8) exactly gives a
non-vanishing result if Pv + wip — wa(a + p) € (k+ ¢g¥)LY. In this case it
obviously compensates the normalization factor . In the limit ¥ — oo the
previous condition reduces to a Kronecker symbol and we are left with the
k-independent expression

M |W’ Z Z Z w2(a+p),73u+w1p . (Al())

w1 EW wa €W veM,,

Next shift w, to the other side of the Kronecker symbol (w,' = ws,) and
resum w;, — wow; as well as Pv +— wow,Pr. The expression under the sum
then obviously does not depend on wy anymore. By summing over wsy, we
compensate the factor 1/|W|. The final result is

Z Z Oauw(Prrtp)—p - (A.11)

veM, weW

For each weight Pr+p lying at the boundary of a Weyl chamber there always
exists an elementary Weyl reflection which leaves it fixed. These weights may
be omitted because they would contribute twice with different sign. Inserting
our result into equation (A.2) proves the theorem. O

3Note that the weight system which belongs to an arbitrary representation is invariant
under Weyl transformations. In particular this holds for the set PM,,.
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Using theorem 1 and formula (A.6) one may explicitly check some well-
known properties of branching coefficients. Thus one obtains

Corollary 1. Let h — p — g be an embedding chain of finite-dimensional
semi-simple Lie algebras and denote the integrable highest weights by «, 3, . . .
and a,b,... and p,v,... respectively. The branching coefficients have the
following properties.

1. The trivial representation 0 € P decomposes according to by® = 6f.

2. Denoting the conjugate representation by (-)*, the relation blﬁ‘ﬁ =0,"

holds.

3. The branching coefficients of the different embeddings in the chain fh —
p — g are related by b, =" b,"D.".

4. In the decomposition of a tensor product V, ® V,, both reductions are
equivalent, i.e. the branching coefficients satisfy

Z N,uAZ/ b/\a = Z b#c bl’d c((li
A c,d

Proof. The first relation holds because xo(-) = 1. For the second relation
one needs that the charge conjugation matrix satisfies C = CT = C~! as
well as Flo(C'= Co F and CpoP =P oy The third relation is due to the
fact that P*(h — p — g) = P*(p — g) o P*(h — p). The last property can
be checked using the Verlinde formula for N (this is valid if we choose k
large enough, see corollary 2), the unitarity of the S-matrix and the property
XuXv = 25 N, X of characters. O

The diagonal embedding g — g & g is distinguished since its branching
coefficients are deduced from the tensor product of representations in g. In
this case theorem 1 implies

Corollary 2. Let g be a finite-dimensional semi-simple Lie algebra and
V., Vi, be two fized integrable highest weight modules. There exists some
ko € N such that the coefficients in the decomposition V, @V, = @ANMAVVA
may be expressed by the Verlinde formula

A § : A v
N,, pA Ppu R p.

Sp0
pEP,;" P
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for all integers k > ky.

Proof. This is a simple consequence of theorem 1 and the fact that the
branching coefficients for the diagonal embedding g <— g ® g with projection
P(p1, p2) = p1+ pa are given by the tensor product multiplicities of g. Using
the definition one obtains P*(p) = (p, p). The character of g g in (A.6) de-
composes into a product of two characters of g with argument £,. Applying
equation (A.5) gives the desired result. O

From theorem 1 one may deduce integral formulae for branching coeffi-
cients. We will not provide a proof that this is always possible but only give
the idea and a simple example for illustration. First we observe that the S-
matrices and the character in (A.6) both have a dependence ~ (d+p)/(k+g")
on the summation index d. In addition, the two S-matrices give a total pref-
actor of the form (k4 ¢¥)™" where r is the rank of the subalgebra, i.e. the
number of independent components of d. Therefore it is likely that in many
(if not all) cases we may rewrite the sum as an integral in the limit k¥ — oo
and in this way recover an integral representation of branching coefficients.

We show how this works in a very simple example and rederive some
integral formula for the (of course well-known) tensor product multiplicities
of representations of Ay, i.e. the branching rules of the diagonal embedding
Ay — A1 @ Ay, The characters of A; read x,(x) = sinh §(a + 1)/ sinh § and
the S-matrix is given by

2 .
Sab = ”k+28mk5+2(a+1)(b+1) :

Using the factorization of the A; & Aj-character, equation (A.6) implies for
all k greater than some ky

a _ a
Na1a2 - b(a17a2)
k . w(a+1)(b+1) . 7w(ai+1)(b+1) . w(az+1)(b+1)
_ Z S = S =75 ST
o . w(b+1)
k+2 P sin =75

B / sinm(a + 1)z sinw(a; + 1)z sinw(ag + 1)x
B sin Tx

For the last equality we consider the sum to be a Riemann sum with an
equidistant partition of the interval [1/(k +2), (k+1)/(k + 2)] into intervals
of length Az = 1/(k 4 2). Due to continuity we may extend the interval to
[0,1]. As the integral exists, it is given by the previous series in the limit
k — oo. While such integral representations for general branching coefficients
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seem to be new, similar statements for tensor products can for example be
found in [110, p. 534].

We now want to show how our construction is related to the theory of
NIM-reps, see eq. (2.14) for a definition of the latter. Let p be a subalgebra
of g. Denote the tensor product multiplicities of p by N and the branching
coefficients by b,”. One can easily show that the matrices (nu)ba =>.b,Ng
constitute a NIM-rep of the fusion ring of the WZNW model associated with
gr at level k& — oo. In this limit the fusion rules N;f\u = limy_ N,SIZ))‘
reduce to the tensor product multiplicities of g. The proof of the NIM-
rep properties relies on the fact that the two possibilities of decomposing
a module V, ® V,, of g into modules of p are equivalent (compare corollary
1) and on the associativity of tensor products. It is easy to generalize the
theorems 1 and 2 and to obtain

(na),” = Z bNG = Z SaaSan Xu(P*Ea)

cePT depP;t (A 12)
= Z Z 6(’11)) 6a,w('Pu+b+p)—p .
veM, weW

While the equality in the first line holds for sufficiently large values of the
level k, there is no reference to the level in the second line.

As will be seen in appendix B, some of the NIM-reps (A.12) admit a con-
tinuation to finite values of the level k where they possess an interpretation
in conformal field theory. It is not known up to now whether this statement
may be generalized. Yet, we believe that a possible continuation of general
NIM-reps of the type (A.12) to finite values of k might be of importance for
a representation theoretic understanding of embeddings of quantum groups
at roots of unity as it provides a natural analogue to the transition from
tensor product to fusion coefficients (cf. [165, 166]). This last point has to
be clarified in future work. Note that there has been some progress recently
in understanding subgroups of quantum groups [167, 168, 169, 170, 171].



Appendix B

Maximally symmetric D-branes
on group manifolds

An essential ingredient of almost all the constructions in the present thesis
are maximally symmetric D-branes on group manifolds. While the logical
development of the subject only required a minimum knowledge about these
objects we find it nevertheless useful to provide some additional information.

We split the presentation in two parts. In the first part we consider the
case of finite level and work out an explicit expression for the spectrum of
open strings which is suitable for numeric evaluation on a computer [71]. In
the second part we investigate the theory in the large volume limit £ — oo,
where geometrical notions become available. We argue that the D-branes
possess a new kind of non-commutative world-volume and give an alternative
interpretation of the D-brane labels in this limit [70, 34].

B.1 The stringy regime

The aim of this section is to provide an exact analytic expression for the
spectrum of open strings which stretch between two maximally symmetric
D-branes on a group manifold G at finite level k. More precisely, we will
work in the following setting. Let g be an untwisted affine Lie algebra and €2
an automorphism of order N of its horizontal subalgebra g. In the WZNW
theory based on g at level £ with modular invariant given by charge conjuga-
tion, we consider boundary conditions for which left movers and right movers
are related by the automorphism €2 at the boundary. The spectrum of open
strings living between two such boundary conditions «, 3 is encoded in the

134



135

boundary partition function

Zpalq) = Z N/.LBOZXN(q) : (B.1)

where the sum over p runs over integrable highest weight representations of
g at level k and x,(q) are the corresponding characters. The set of boundary
conditions is given by twisted representations of g at level k and the annulus
coefficients N #% are the corresponding twisted fusion rules [28] (they have
been introduced in [111] in a different context).

In order to describe the set of twisted representations we need to introduce
some notation. We denote the weight lattice of the horizontal subalgebra g
by L. The lattice LV dual to L is the coroot lattice of g; a basis are the simple
coroots aé). The lattices L and LY inherit an action of the automorphism €2,
which can be decomposed into an outer automorphism {2y and an inner one
Q;, Q = Q; 0Qy. While the inner automorphism €2; can be chosen to be the
adjoint action of an element of a Cartan subalgebra and therefore induces a
trivial action on L and LY, the outer part )y can be chosen to be a diagram
automorphism of the Dynkin diagram of g. It acts on the lattices L and LY
by the permutations wo(Agy) = Ay and wp (a(vi)) = Oéz/wm-) of fundamental
weights or simple coroots, respectively. Without loss of generality we can
therefore assume €2 to be a diagram automorphism. The length of the orbit
{Au), w(Ay),w? (M), ...} will be denoted by n;. We also define the lattice
of symmetric weights L, = {,u €L | w(p) = ,u} which inherits the scalar
product from L.

An important ingredient in our algorithm is the subgroup [121, 172]
W, = {wEW}wow:wow}

of the Weyl group that commutes with the action of w. It is a Coxeter group
with the following generators s;: for orbits of length 1, take s, = s;. If
1 # wi, take the product 5; = s; S, - -+ S ni—1;- This prescription needs to be
modified, if the element A, ,,; of the Cartan matrix is non-vanishing, which
in our situation only happens for the outer automorphism of A,, and the
orbit consisting of the two nodes in the middle of the Dynkin diagram. In
this case, take 8; = s; Sui Si = Swi Si Swi-

We also need the orthogonal projection R, of weight space onto its sym-
metric subspace, defined by R, = % (1 +wA+-+ wN_l), N being the order
of w. For the implementation on a computer, one uses directly the action of
3; on symmetric weights:

2\ R, a(i))

5(\) = A— 20y - B.2
() (7%&(1'),7%04(1'))73@() (B2)
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While the symmetric weight lattice L, is not invariant under the full Weyl
group, it admits an action of W,,.

We may also define a symmetric coroot lattice (L"), = {8 € LY|w(8) =

6] } Note that L, and (L"), are not dual to each other. Instead one finds
that the lattice ((Lv)w)v dual to (L), involves fractional symmetric weights.
The projection R, restricts to a surjective map from L to ((Lv)w)v.

We summarize the expressions for the different lattices by comparing to
the situation for inner automorphisms where just two lattices appear:

o Weight lattice: L = {3, N Ay |N€Z} .
e Coroot lattice: LY = {Zl B Oz(vi) Wi € Z} cL .
In addition there are four lattices related to the automorphism €2.

e Symmetric weight lattice:
L, = {Zi)‘iA(i) | Ni € Ly Ay = )\i} Cc L .

e Symmetric coroot lattice:
(L) = {22, 6i gy ‘@‘ €Z, Bui= B} CLY .
e Fractional symmetric weight lattice:
(L)) = I, M [nihi € Z, i = N} O L
e Fractional symmetric coroot lattice:
(Lo)¥ = {22, 6i gy ‘nz Bi € Z, Bui = Bi} D (L)
Recall that the n; are the orbit lengths of fundamental weights.

The integrable highest weight modules of g at level k£ are in one-to-one
correspondence with elements in P = L/(W x kL"). The expression W x
kLY is just the decomposition of the affine Weyl group into a semi-direct
product of the finite Weyl group and the translations with respect to the
scaled coroot lattice. Alternatively, the affine Weyl group is generated by
finite Weyl reflections and one additional element, a shifted Weyl reflection.
The latter is a combination of an elementary reflection at the highest root
6 of g and a translation. This amounts to an orthogonal reflection with
respect to the hyperplane (6,-) = k. An analogous construction can be
performed with respect to the lattices L, and ((Lv)w)v. This defines the
sets Sf = Ly, /(W x k(LY),) and Bf = ((LY).)"/ (W, x k(L,)"). While
W, x k(L) is generated by W,, and the shifted Weyl reflection at (0, -) = k,
the corresponding shifted Weyl reflection for W, x k(L,,)" is at the hyperplane
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g ‘ Agn A3 A2n+1 D4 (trlahty) Dn E6

0o | 2(Ay+A@n) 20 AptAen Ao+Ae+Au 2A00 Ag+Ap

Table B.1: The vector 6, in the labeling conventions of reference [25, p. 53].

(0,,+) = k. The vector 6, in weight space is defined in table B.1. For each
of the three subsets there is a natural choice of a fundamental domain.

e Integrable highest weights
Pr = {A=>,MAu| A €Ngand (6,)) <k} .
e Symmetric integrable highest weights
S = { A= MAp [N €Ny, (0,0) <kand A\, = N} .

e Boundary labels correspond to twisted highest weight representations
[28] or, equivalently, to irreducible integrable highest weight represen-
tations of the corresponding twisted Lie algebra. They are labelled by

Bi = {B=308Aw|nifB €Ny, (0,,0) <k and 5 = B} -

There is a distinguished vector p, = >, n; 'A(; in the lattice ((LV)W)v which
is a fractional analogue of the Weyl vector p = > . Ai. We denote by
Pt St and Bl the subsets obtained from P, S, or B} after dropping
elements which belong to the boundary of the respective Weyl chamber, i.e.
are left invariant by at least one non-trivial element of W x kLY, W, X
k(LY), or W, x k(L,)", respectively. It is not difficult to see that there
exist identifications of the form P +p = B Y., S +p = S/, and B +
P = B,jjgv where ¢¥ is the dual Coxeter number of g. These are a simple
consequence of the fact that (0, p) = (6,,p,) =¢" — 1.

We are now prepared to state our result for the determination of twisted
fusion rules. It is a generalization of the Racah-Speiser algorithm for tensor
product multiplicities (see e.g. [158]) and the Kac-Walton formula [25, 162]
(see also [165, 164]) for ordinary fusion rules.

Theorem 3. The decomposition of the fusion product
pra = Y NoB
BeB;t

of an untwisted representation p € P of § and a twisted representation o €
B, into twisted representations can be obtained by the following algorithm:

1. Compute the weight system M, including multiplicities, of the finite
dimensional irreducible highest-weight representation i of the finite di-
mensional Lie algebra g.
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2. Use R, to project the set M, to the lattice of fractional symmetric
weights.

3. Add the weight a and the twisted Weyl vector p,, to the resulting weights.

4. Use the reflections (B.2) in W, and the shifted reflection at the plane

(0, ) = k+g" to map the set R,M,,+a+p, to the fundamental domain
+
Byygv-

5. Discard weights on the boundary Bk+gv\Bk+gv, i.e. those with at least
one vanishing entry or scalar product with 0,, equal to k + g¥. Sup-
ply each remaining contribution, counting multiplicities, with a sign
depending on whether the number of reflections has been even or odd.

6. Subtract the twisted Weyl vector p,,. Adding all contributions including
the relevant multiplicities and signs gives the fusion product.

We will split the proof into several steps. First, we summarize some earlier
results which will be important in the sequel. It was shown in [28, (2.57)]
that the twisted fusion coefficients for three weights p € P;f and «, 8 € B}
are given by the formula

Nuﬁazz

UGS:

S%LSLUSEL

Sba

(B.3)

where the matrix S is given by [28; (4.6)]

Se = (phase)|Lw/(k—i—gv)(LV)w|_1/2 3 e, (w)e ™ Fa (wlatp).otr)
weWy,

(B.4)
(see also [25, Theorem 13.9]). Note that it carries two different labels a €
B;" and o € S;". The symbol ¢, denotes the sign-function of W,. As the
generators of W, may be products of several generators of W, in general
the sign-function €, of W, does not coincide with the restriction of the sign-
function € of W to the subgroup W,. Using Weyl’s character formula, the
quotient of S-matrices S,,/Sp, which appears in (B.3) may be expressed as

Sio 2mi 211 () gt-p)
_ E FtgV B.5
E%o XH( k—F Vi U_+ﬁ)) VGM,e ( )

where M, denotes the weight system of the finite-dimensional highest-weight
module p of g including the multiplicities. If one inserts the expressions (B.4)
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and (B.5) into the definition (B.3), we may write

Nb = > flotp) = > flo) . (B.6)
O'ES;: UGS,:—IQ\/

where we used the rule S;" + p = S and defined the function

f(0) = |Lu/(k+g") (L"),
XD Y alw)afuwy) e mar Rrrmlet @ g g)

veEM, wi,w2€W,,

|—1

which takes symmetric weights ¢ € L, as arguments. Note that from the
property (wz,y) = (z,w 'y) and the definition of R, it follows (Rv, o) =
(v,0) for o € L.

Lemma 1. The function f is invariant under the action of W, x (k +
g")(LY), and vanishes for elements on the boundary of the Weyl chambers,

in particular on S,;EFQV\S,;TQV-

Proof. The property f(wo) = f(o) for w € W,, is proved by using (wz,y) =
(z,w™'y), invariance of the weight system M, under Weyl transformations
and redefinition of v, wy,wy. Due to €,(w)? = 1 possible signs cancel. As
R +wi(a+p,) —wa(B+po) € ((LV)w) ", the property f(o+ (k+g")8) =
f(o) for g € (LY), is obvious. To prove the second statement let us define
the auxiliary function g(o) = S¢, , which enters each summand of the
function f(o) as a factor. Similar as for f(o) one shows that g(wo + (k +
9")8) = eu(w)g(o) for all € (L), and w € W,. Let o be an element
of the boundary of the fundamental Weyl chamber, i.e. o € S \S/ .
Then it is either invariant under an elementary reflection or a combined
action of a translation and an elementary reflection w € W,,. The equation
g(0) = €,(w)g(o) now implies that g(o) = 0 and thus f(o) = 0 for o €
SEog\Si =

Corollary 3. Equation (B.6) can be rewritten as

Nis G Y X fwe) = e Y fle) . (B)

weW,, gesl;gv o€Ly/(k+gV)(LV)w

Lemma 2. Let I' be a lattice and I's C I' be a sublattice of the same rank as
['. Let TV and TY be the dual lattices to T, T's with respect to an inner product
(+,-). For any h € N and x € 'Y we have

Z eQWi(ﬂC,y)/h — |F/hrs‘ '5:(;6th
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Proof. We will use the fact that the characters y of irreducible representa-
tions of a finite group G are orthogonal in the sense that - g x(9)x'(g9) =
|G| - dy.- The quotient I'/AL; is a finite abelian group. For z € I'Y the func-
tion x, : I'/hly — C, x.(y) = > @¥/" is the character of an irreducible
representation of I'/hl's and the character y( of the trivial representation is
identical to one. The orthogonality relation reads, for = € T'Y,

Z e2ri@u/h — Z X:c(y>XO ’F/hF} Xa X0

yel /AT, yel /AT,
But x. = Yo is equivalent to z € hI'Y. O

Proof of Theorem 3. We insert expression (B.7) for f(o) into (B.8) and apply
Lemma 2 with ' = L,,, Ty = (L), and h = k + ¢". This results in

Z Z w1w2 577 v+wi (a+pw)—w2 (B+pw)€(k+gY ) (L)Y

VEMH w1, we €Wy,

N IWI

Using the invariance of all quantities under W, we are lead to the final result

= D D (W) Su@uraton)- (3o € g ) (L)Y - (B.9)
veM, weW,
The interpretation of the last formula then amounts to the algorithm of the
theorem. Step 5 follows since (3 + p,, is always in B,‘:; O]

Note that for inner automorphisms the sets P;", S;” and B all coincide
and we recover the Kac-Walton formula for ordinary fusion rules. Formula
(B.9) directly shows that the twisted fusion rules are integer numbers but
does not show that they are non-negative. (However, non-negativity follows
from the general theory [104].) We have also implemented the algorithm on
a computer and have verified that no negative integers appear for the first
few levels in the cases listed in table B.1.

B.2 Large volume limit and non-commutative
geometry

In the second part of this appendix we will work out the limit k& — oo of the
open string spectrum (B.9). In this limit, we are able to reveal a somewhat
natural identification of the set of twisted representations with representa-
tions of the subgroup G* of G which is invariant under the automorphism
). The twisted fusion coefficients (B.9) in turn may be expressed in terms
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of branching rules of the embedding G* < G and tensor product coefficients
of G¥ [70, 34]. Our findings lead to a proposal for the non-commutative
world-volume algebra of the ground states of open string vertex operators

[34).

B.2.1 Evaluation of the open string spectrum at k£ — oo

The careful reader will already have noticed the remarkable structural simi-
larity between the expressions (A.12) and (B.9). In this section we will make
this correspondence more precise. Our reasoning will be as follows. We start
with the assumption that we can distuingish a certain subalgebra h* of g
such that the equality

NE = Z b, Nb (B.10)

holds in the limit £ — oo after an appropriate identification a« = ¥(a) and
B = W(b) of the labels. To be precise, one has to find a bijection ¥ between
integrable representations of h* and twisted representations of g. This idea
in mind, we employ several structural arguments to impose severe constraints
on the allowed choices of the subalgebra h* which lead to a unique answer.

It turns out that in almost all cases h* is given by the invariant subalgebra
g [34]. The only case where our procedure predicts a different result is
g = As,, where we are lead to the orbit Lie algebra h* = C), and not to the
invariant subalgebra g* = B,,. Yet, in this specific case there exists a second
identification which results from taking an inequivalent inductive limit and
which leads to the invariant subalgebra [70].

Note that results closely related to those presented in this section have
also been found independently in [173, 174] for finite k using different meth-
ods. In all cases for which such a finite k extension exists, i.e. for the A, -series
in [173] as well as the D, -series and the Ag,-series in [174], our results may
also be recovered from the existing literature by taking k to infinity. Let
us emphasize, however, that in the cases of Ay, 1, D, (triality) and Eg our
treatment seems to indicate stronger statements, i.e. larger subgroups, for
finite k& than those proposed in [174].

The generic correspondence

In this first subsection we propose an identification of boundary labels with
representations of a distinguished subalgebra h* of g such that equation
(B.10) is satisfied using the data of the embedding h* < g after taking
the limit £ — oo. Neither is obvious that this will work a priori nor is clear
which subalgebra one should take. Starting from certain assumptions we will
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g order g“ orbit Lie algebra g relevant subalgebra h*
AQ 2 Al (I‘e = 4) Al Al (.Te = ].)
AQn—l 2 Cn Bn Cn
Agn 2 Bn Cn Cn — Agn_l
Dy 3 Go Gy Gy — Bj
D, 2 B, Ch1 B,
Eg 2 Fy Ey Ey

Table B.2: Some data related to outer automorphisms of simple Lie algebras.

first derive a set of consistency relations. Afterwards we will show that for
each g there is indeed a unique solution h* to these consistency equations
and that in most cases it is given by the invariant subalgebra g“.

It is now important to specify which structure our identification of bound-
ary labels and representations is supposed to preserve. Let (B“) be the in-
teger linear span of the set of boundary conditions B“, i.e. the full lattice
generated by elements of B“. Both the lattice (B*) and the weight lattice
L) permit an action of Weyl groups. In the first case this group is given
by the symmetric part W, = {w € W |w ow = w o w} of the Weyl group
of g and in the other case it is naturally given by Wy.. Furthermore, in
both cases we have a projection P : L® — LO*) and B, : L — (B¥),
respectively. The first defines the embedding h* — g and the latter is given
by the projection B, = (14w + -+ + w™™!) onto the symmetric part of
the weights, N being the order of w. As we will see, we have to find an
isomorphism ¥ : L) — (B¥) between the fractional lattice generated by
the boundary conditions and the weight lattice of the subalgebra which pre-
serves all of these structures. In particular it should be accompanied with
an isomorphism W : Wy — W, of the corresponding Weyl groups. To sum-
marize, we have to find a subalgebra h* and a functor-like map ¥ such that
the diagrams (B.11) commute. It turns out that the answer for both h* and
U is unique.

L@ P @) L) e o (p)
S A P
L@ 2 g (Bey YWy

In the following we restrict ourselves to a non-trivial diagram automorphism
w # id since our statements become trivial otherwise.

Remember that we only consider the limit k — co. For @ = ¥(a), f =
U(b) we want to proof the equality (B.10) where the last expression contains
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some branching coefficients for h* <— g and the tensor product coefficients of
the subalgebra. The equations (A.12) and (B.9) may be employed to rewrite
the left and right hand side in the limit £ — oo according to

o _
wd = E €w(w) 6Oé7w(PwV+B+pw)_pw
IIEMH,'LUGWW

Z buc cclL; = Z E(U)) (5a,w(79v+b+p)—p .

ZIEMM,’LUEth

(B.12)

The abbreviation ¥ € M, means that v runs over all weights in the weight
system of p. Both expressions are obviously equal to each other if the bijec-
tion W is structure preserving, i.e. if

Y(p) = pu
VoP = P, (B.13)
U(wa) = V(w)¥Y(a)

The last condition already constrains the possible subalgebras to a large
extent. Indeed, the Weyl group W, can be described as the Weyl group of
the so-called orbit Lie algebra of g with respect to the automorphism € (see
[121]). In some special cases this orbit Lie algebra coincides with the invariant
subalgebra g* while it does not for the whole A,, and D,, series. A survey of
these relations can be found in table B.2 which in part has been taken from
[28]. Note however that the Weyl groups of B, and C,, are isomorphic to
each other (see e.g. [157, p. 74]) which can most easily be seen by treating
them as abstract Coxeter groups. Thus by imposing the last constraint we
only have to decide which of possibly two subalgebras — the orbit Lie algebra
or the invariant subalgebra — and which specific kind of embedding we should
take. This choice is uniquely determined by the other two conditions. In the
cases of A,, 1 and D,, the orbit Lie algebra not even is a subalgebra so that
this possibility is ruled out immediately.

We will show in the most simple example of the Lie algebra A; how this
procedure works and then state only results for all the other cases. Let
us consider g = Ay with outer automorphism w(ay,as) = (ag,a;). The
relevant subalgebra is given by h* = A; and the projection to fractional
symmetric weights — which describe the boundary conditions of the theory —
reads P, (a1, az) = %(al +asg, a1 +as). There are two inequivalent embeddings
Ay — A, given by projections P, (a1, a2) = /Tc (a1 + a2) with embedding
index z. = 1 and x. = 4, respectively [110, p. 534]. Imposing the first
condition we see that

VoP, (ar,a2) = /e U(ay + az)
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This only equals P, (a1, as) for
1
N

The condition ¥(p) = p, = 3 (1,1) forces us to use the projection with
z. = 1. One can also check explicitly that the Weyl groups correspond to
each other. This is the first example where the relevant subalgebra is not
given by the invariant subalgebra (which has embedding index x, = 4) but
by the orbit Lie algebra. The same statement holds for the whole A, series
as we will see.

U(a) = (a,a) .

One can treat the whole ADE series using a case by case study. Let us
emphasize that we use the labeling conventions for weights which can be
found in [110, p. 540]. The projections have been determined using [159, p.
57-61] and the programs LiE [175] and SimpLie [176]. Note that LiE uses a
different labeling convention for the weights. For a useful table of branching
rules see also [177].

1. The case of Ay, 1 is straightforward. The relevant subalgebra is given
by the invariant subalgebra C,, < A,,_;. This is a maximal embedding
and the identification reads

2. The case A, is exceptional. Here the relevant subalgebra is given by
the orbit Lie algebra which can be described by the sequence of maximal
embeddings C,, — Ay, 1 — Ay, (for n = 1 we have A; — A,). The
identification reads

1 N 1 N 1 1
B o= = 1 = = %(\ />:\Ifo7>.
2 AR 2 / 11

There is a second identification related to the subalgebra B, — A,,
which will be discussed in the next subsection and which is the relevant
one for the main part of the paper.

3. The order 3 diagram automorphism of D, leads to the sequence of
maximal embeddings Gy — B3 — D, and to the identification
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4. For the order 2 automorphism of the D-series one obtains the maximal
embedding B,,_; — D,, and

2 2
1 1 1
o=z Y2 == N ) = Tep
ANtV A U VAN

5. Also the last case Eg behaves regular and yields the maximal embedding
F4 — E6 with

100010 0001
1 010100 1 0010 000001
P == 002000 N 0200 001000 =PYoP
w—2 010100 _2 0010 010100 - :
100010 0001 100010
000002 2000

These considerations show that in all cases but As, we may identify the
boundary labels with representations of the invariant subgroup G*. Let us
emphasize that it is possible to identify the set of Lie algebra representations
P; with the set of group representations Pg. in these cases as the corre-
sponding groups G“ are all simply-connected. The outcome of this section
is summarized in table B.2. A detailed discussion of the identification one
should use in the exceptional case of A,, is postponed to the next subsection.

The special case A,,

In the last section it was shown that under certain natural and well-founded
assumptions the relevant subalgebra h* which describes the boundary labels
is given by the orbit Lie algebra C,, in the case of A, and not by the invariant
subalgebra B,,. This contradicts our geometrical intuition as we are expecting
the invariant subalgebra (or even better: the invariant subgroup) to be the
relevant structure.

There exists, however, a different inductive limit, i.e. an identification
which involves the level k explicitly, which leads to the invariant subalgebra.
Indeed, in writing (B.12) we implicitly already took a very special limit. That
performing the limit £ — oo may have non-trivial effects can be seen from
simple current symmetries in fusion rules. In this case, all simple current
symmetries get lost and it becomes important on which “branch” of the
simple current orbits one sits while taking the limit. There is also another
point on which we have not been careful enough in the last subsection. The
geometric picture suggests that we should work with representations of the
invariant subgroup, not necessarily with those of the invariant subalgebra.
These two sets may differ as can easily be seen from the familiar example
of SO(3) which only allows SU(2) representations of integer spin. Note that
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the automorphism € in the case of SU(3) is just given by charge conjugation
and that SO(3) is exactly the invariant subgroup. Similar remarks hold for

the whole series SO(2N + 1) < SU(2N + 1), i.e. the whole Ay, series. All
this should be reflected in the new identification in a some way.

Let us now propose the new identification [70] and see whether it fits our
requirements. The construction only works for even values of the level k.
This fact may be reminiscent of the D-series modular invariants of SU(2)
describing a SO(3) WZNW model. Therefore we will assume k to be even in
what follows. This restriction will not be relevant in the limit k£ — oo.

The labels for the twisted boundary conditions in the WZNW model
based on A,, are given by half-integer symmetric weights o of A,,. To
be more specific, the Dynkin labels have to satisfy the relations 2qa; € Ny,
@ = Qapp1—; and Y a; < k/4. These labels may be interpreted as labels
of the invariant subalgebra B, of As,. The map from weights of B, to the
boundary labels is given by

1

n—1
W (ay, - a,) = Z(Qan,l,---,zal,k—QZai—an,---) . (B.14)
=1

Note that this map involves the level k£ explicitly and that it is only well-
defined for weights whose last Dynkin label a,, is even. This last condition
has two interpretations. From the group theoretical point of view it restricts
to representations of the Lie algebra B, which may be integrated to single-
valued representations of the group SO(2n + 1). From the Lie algebra point
of view it corresponds to the branching selection rule of the embedding B,, —
Ay, for which the map

Plir, - yisn) = (i1 + 20, d2 +bon-1, -, 2(in + ins1))

is the relevant projection.

Up to now, we have just seen that the structure of the identification
map (B.14) is consistent with our expectations, but of course the ultimate
check consists in the verification of equality (B.10). For small values of rank
and level we evaluated both sides using an implementation of the algorithms
which have been stated in the theorems 2 and 3 on a computer and found
full agreement. Until now we still lack a rigorous proof for arbitrary values
of the number n. Only for the simplest example n = 1, i.e. for the WZNW
model based on the Lie algebra Ay, more solid arguments are known which
support our claim. We use the opportunity to summarize them briefly.

The Lie algebra g = A has exactly one automorphism () related to a
non-trivial Dynkin diagram symmetry, where it acts as a permutation of
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nodes. On the level of weights it thus acts as a permutation of Dynkin labels
w(a, az) = (az,a1). The boundary labels are given by half-integer symmetric
weights a, 8 = (0,0),(1/2,1/2),---,(|k/2]/2, |k/2]/2). Here, the symbol
|z] denotes the largest integer number smaller or equal to x. The relevant
annulus coefficients [28]

L%/2] gw Sw g
N(k)a _ caPopP(0,0),(p1,82) B.15
(p1,p2) B UZ:% S(0,0),(0,0) ( )
may be calculated using the explicit formula
2 2
Se = sin —— (o + 1)(2a + 1) (B.16)

vk +3 k+3

where we identified the tupel « with one of its (identical) entries. Note the
remarkable similarity of this expression with the S-matrix of Agl).

In the last subsection we already encountered a bijection W which related
the annulus coefficient (B.15) to the embedding A; — A, with embedding
index z. = 1. Yet, as we will show now, the map ¥’ which has been defined in
eq. (B.14) yields the embedding with projection P(p1, p2) = 2(p1 + p2) and
embedding index 2/ = 4. For any even weight a of A; the definition (B.14)
reduces to ¥'(a) = (k/4,k/4) — (a/4,a/4). We use our new identification
map ¥’ to rewrite (B.16) according to

2(—1)°
S = S = \/(k:—+)3 sin kj_3(cr+ Da+1) .
Apart from a factor v/2(—1)7 this is just the S-matrix SA! of Agl) at level
k+ 1. Using (A.5) we are now able to write equation (B.15) as

k/2

(k) ¥'(a SA1 QA 2mi
N(M1M2 o 22 50‘1150171 M1M2)<_k+3(0+1’0+1)>

Remembering the definitions of P in theorem 1 and of &, in equation (A.5),
the argument of the character can be identified to be P™*¢,. By setting the
index b to zero, theorem 1 implies

k+1
a _ 1 GA1 QA x _ (k) ¥'(a)
b(l‘l»,U«Z) - kh_{go S 1 S ) X /—Ll p2) (Pl 6‘7) - kh—>Holo N(ul p2) W/(0)
=0
This equality holds because we are allowed to use the prefactor 2 to extend
the range of o from 0,--- ,k/2 to 0,--- ,k + 1. We have thus proved the

equality (B.10) for a special choice of parameters.
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B.2.2 Non-commutative D-brane world-volumes

According to the procedure suggested in [76, 32] (see also [74, 178] for similar
proposals in case of closed strings), the world-volume geometry of branes can
be read off from the correlators of boundary operators in the decoupling
regime k — oo '. Note that the conformal dimensions h, = C,/2(k +
g") of the boundary fields vanish in this limit so that the operator product
expansion

G @)U ) ~ D (= y)e T OO EI(y) for w <y

of primary open string vertex operators becomes independent of the world-
sheet coordinates. In particular, all conformal families in the boundary the-
ory contribute to the massless sector and thus to the gauge theory which
governs the low energy dynamics of the D-branes we are studying. The
program we have just sketched has been carried out successfully for the un-
twisted branes on compact group manifolds. In case of Ay, this leads to the
well-known fuzzy spheres [179, 32]. We will now describe the generalization

to arbitrary 2-twisted D-branes on compact simply-connected simple group
manifolds G.

There will be two guiding principles which lead to the identification of
the correct world-volume algebra. The first (and most important) is sym-
metry. As can be inferred from the expression for the open string spectrum
(B.1) the primary boundary fields w,(fb) indeed transform in an irreducible
representation p of the group G. The same G-module structure should be
reproduced by our world-volume algebra. Also the multiplicative structure
should be respected which only allows to multiply fields (%) and ¥ if the
adjacent indices coincide, b = b'.

In the previous section we explained that all possible 2-twisted D-branes
can be labeled by the set Pd. of representations of the invariant subgroup
GY = {9 € G|Q(g) = g}. This observation is already a major step towards
a geometrical interpretation. Let us stress that we use representations of the
group G* and not of its Lie algebra. The two sets of representations agree
only if G¥ is simply-connected. This is the case for all Lie algebras but the
A,, series where G = SO(2n + 1) and Pl = {u € Pﬂ}un even}. An
overview over the relevant groups and Lie algebras is given in table B.3.

After these comments we can now formulate our proposal for the world-
volume algebra. To this end, let V,,V, be two representation spaces for

"'When taking the limit & — 0o, we keep the open string data stable. In particular,
the low energy spectrum of open string modes does not change. A limit where the closed
string data is kept stable instead has been considered in [29].
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g order g¥ . G G*
A, 2 A 4 SU(3) SO(3)
Aoy g 2 C, 1 SU(2n) Sp(2n, C) N SU(2n)
Aoy, 2 B, 2 SU((2n + 1) SO(2n + 1)
Dy 3 Gy 1 Spin(8) = SO(8) Gy
D, 2 B, 1 Spin(2n)=S0(2n) Spin(2n—1) =S0(2n — 1)
Eg 2 Foo1 Es I

Table B.3: Simple Lie algebras, groups and more data related to outer auto-
morphisms.

irreducible representations a,b € Pg. of G*. As we will argue below, the rel-
evant algebraic structure governing strings stretching between two D-branes
of type a and b, respectively, is given by

A = Invge (F@)  where F@P = F(G)® Hom(V,,V;) . (B.17)

Here F(G) denotes the algebra of functions on the group G and Hom(V,, V)
is the vector space of linear transformations from V, to V;,. The auxiliary
space F@ can be regarded as a vector space of matrix valued functions on
the group G. It carries an action of the product group G x G* defined by

[(97 h) ' A] (g/) - Rb(h) A(g_lg,h) Ra(h)_l ) (B18)

where R,(h) € GL(V,) and R,(h) € GL(V};) represent h. In our construc-
tion of LAY we restrict to matrix valued functions Invge (.7-" (a’b)) which are
invariant under the action of {id} x G¥ C G x G”. Let us note that this
leaves us with an action of G on the space A of G*-invariants. Below we
will show that the G-module structure exactly coincides with the one of the
ground states in the open string partition function (B.1).

We can realize the G-module A®? explicitly in terms of G*-equivariant
functions on the group G,

A 2 A€ FUV| A(gh) = Ry(h) " A(g)Ra(h) for h € G*} . (B.19)

When the two involved representations are trivial, i.e. a = b = 0, elements of
A@) are simply invariant under right translations with respect to G C G.

There exists more structure on the spaces A@? if ¢ = b. In fact, A@ =
A(@®) inherits an associative product from the pointwise multiplication of
elements in F(®% . This turns the subspace A@ of G*-invariants into an
associative matrix algebra. Note that it also makes sense to multiply elements
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from A@b with those from A®°). The result will then be an element of A(®)
just as would be expected from the CF'T description.

The constructions we have outlined so far may easily be generalized to
arbitrary superpositions of D-branes. To this end we replace the irreducible
representations V,, V, in (B.17) by reducible ones. Let Vi be such a reducible
representation, i.e. Vo = @ Q*V,. It represents a superposition of ) Q°
D-branes in which Q® branes of type a € Pg. are placed on top of each
other. Strings ending on such a brane configuration () give rise to an algebra
A@ = AQQ) analogous to (B.17). For a stack of N identical branes of type
a € PZ., the constructions specialize and produce the typical Chan-Paton

factors,
AN(a) ~ IHVGW (f’(aﬂ)) ® Mat(N) . (B20)

Obviously, the left translation of the group G turns this into a G-module
with trivial action of G on Mat (V).

This concludes the formulation of our proposal for the algebra of “func-
tions on twisted D-branes”. We are now going to show that its predictions
agree with the exact CFT results described in the last section. In particular,
we shall confront the formula (B.19) with the CFT-spectrum of boundary
fields (B.1). Before we carry out the details, let us note that all sewing con-
straints [180] are automatically satisfied by our construction if we manage to
show that the spectra match. In fact, associativity is manifest in our pro-
posal and it is the only content of the sewing constraints when we send the
level k to infinity.

Hence, it remains to discuss the spectrum of open strings. The CFT
description provides an expression eq. (B.10) for the NIM-rep which describes
the spectrum of strings stretching between D-branes of type a,b € Pl in the
limit k& — oco. We claim that in this limit, the G-module of ground states is
isomorphic to the G-module A, We will prove this by decomposing .4
into irreducibles. To do so, let us note that there is a canonical isomorphism
Hom(V, W) = V*® W. Furthermore, we may apply the Peter-Weyl theorem
to decompose the algebra F(G) with respect to the regular action of G x G
into

F(G) = EBM U: U,

where p runs over all irreducible representations of G and the two factors of
G x G act on the two vector spaces U}, Uy, respectively. To make contact

with our definition of A(®" we have to restrict the right regular G action to
the subgroup G¥, which leaves us with the G x G*-module

FG) =P wluiev..
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The numbers b,° € Ny are the branching coefficients which count the mul-
tiplicity of the G*-module V, in U,. Combining these remarks we arrive
at
Jl’T(a,b) ~ @ bucU:®ch®‘/a*®‘/b .
u,c

It remains now to find the invariants under the G*-action. Note that G*
acts on the last three tensor factors. The number of invariants in the triple
tensor product of irreducible representations is simply given by the fusion
coefficients N 3 of G*. Hence, as a G-module, we have shown that

A = (b, Ng U (B.21)
n,c

This decomposition obviously agrees with the right hand side of the formula
(B.10) for the CFT NIM-rep.

As a simple cross-check we consider the case of trivial automorphism
2 = id where we can make contact to well-known results (see [32]). First we
observe that the construction above simplifies considerably since G* = G.
This implies that all the latin labels can be replaced by greek letters. In
particular, the boundary conditions are now labeled by representations of G
itself. The corresponding G-module structure is now given by

Awr) o @Nuiu U, .
p

This is in complete agreement with the known CF'T results which correspond
to Cardy’s case [102].

Another independent verification can be achieved by considering permu-
tation branes in the product group G x G which are based on the auto-
morphism Qex(g1,92) = (g2,91). In this case the invariant subgroup is G
itself and the branching coefficients reduce to the tensor product coefficients,
buw)” = Nf,. Under these circumstances our general expression (B.21) for
the non-commutative world-volume algebra reduces to

Alr) = @ pcf\ Nz, U(*p,/\)

7,0\

This result is again in perfect agreement with that which can be obtained
from the open string partition function (2.27) in the limit k¥ — oc.

The world-volume algebra (B.20) for stacks of twisted branes is the cen-
tral ingredient in the non-commutative gauge theory which governs their
dynamics in the large volume limit [33, 34]. The same structures are known
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to appear in the effective description of D-branes in coset theories [127, 181].
We believe that the ideas presented in this section together with the target
space interpretation (3.20) will also be crucial for understanding the dynam-
ics of symmetry breaking D-branes. Let us recall that the construction of
the latter could indeed essentially be reduced to an analysis of maximally
symmetric branes in some intermediate groups, see section 3.2.3.



Appendix C

Symmetry breaking from
T-duality

C.1 The basic idea

In [131, 35], Maldacena, Moore and Seiberg introduced a fascinating and very
intuitive way of constructing symmetry breaking D-branes in SU(N) group
manifolds. They made use of the T-duality

G=(GHxH)/T, (C.1)

which is known to hold provided that H is some regular subgroup of the max-
imal torus U(1)V~! of G = SU(NV) and T is a specific orbifold group. This
duality is very attractive as it allows to use the results for maximally sym-
metric boundary states in G/H x H. By taking an I'-invariant superposition
of these states one may then construct boundary states which project down
to the orbifold, i.e. to the group SU(N). Symmetry breaking is achieved by
choosing a non-trivial gluing automorphism in the H-part.

The aim of this section is two-fold. We will first work out the conditions
on the groups G, H and I" which have to hold such that a T-duality of the form
(C.1) is valid. If one restricts oneself to simple current orbifolds, one finds
a concrete expression for I' and strong constraints on the possible choices of
the subgroup H. In a second step we show that the results for symmetry
breaking boundary states which are obtained from T-duality in this special
situation fit into our more general framework of chapter 3.

153
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C.2 GGeneral considerations

To establish a T-duality of the form (C.1) we have to compare the state
spaces for the CFT’s on the left and on the right hand side. If they are
identical, there is a good chance that the duality holds, otherwise this is
certainly not the case. After a successful check of the spectrum one would
in principle have to compare all the correlation functions, but we will simply
assume the validity of the duality under these circumstances.

Let us start with a discussion of the CFT on the right hand side of (C.1).
In the following we restrict ourselves to simple current orbifolds for which
the group I' is a subgroup of the center Z(G/H) x Z(H). Note that all the
examples in the existing literature fall into this class. A general survey of
simple current orbifolds has been given in section 2.4.3 but it is useful to
restate the main formulas for the present situation.

The sectors ([, a],b) of A(G/H) ® A(H) fall into orbits [[u,a],b] with
respect to the action of I'. With each of these orbits we associate two num-
bers, namely the monodromy charges @ J([[,u,a], bD, J € I', and the order
|Siiu,a),0)| of the stabilizer subgroup. The orbifold bulk partition function is
then given by

2

oo XSt - (C2)

(vel,d)€l[p.a],b]

Z7q) = ) ‘Sma},b})

QF([[M?“LI]}):O

This expression has to be compared with the decomposed partition function
(3.10) of the charge conjugate theory. It will turn out that the existence of
an appropriate group I'" imposes strong constraints on the choice of H. Once
these constraints have been formulated, we shall compare our new boundary
states (3.11,3.12) with those arising from the orbifold construction.

To formulate necessary conditions for the equivalence of the partition
function (3.10) of the G-theory with one of the orbifold partition functions
(C.2), we shall concentrate on terms that contain a factor o xo from the
holomorphic sector,

G _ G/H H _G/H _H
AR Za Xio,00 Xo X[o,a] Xa + o,

orb  __ G/H H -G/H _H
Z = Z Xjo,0) Xo Xjjo, Xoo +
(J,J)er

The summation over a in the first expression is restricted such that (0,a) €
All(G/H). We can now read off one important condition for the equivalence:



155

all the labels a € Rep(H) that appear in the summation must be simple
currents of A(H), i.e. elements of Z(H). Under this condition we can set

I' = {([0,al,a) | (0,a) € AI(G/H)} C Z(G/H)x Z(H) .

By projection on the first or second factor, I" can be identified with a subgroup
of both Z(H) and Z(G/H). If the identification group Giq is trivial, it follows
that all sectors of A(H) must be simple currents, i.e. H must be abelian.
In cases with non-trivial field identification, the orbifold construction with
[ can reproduce the partition function of the G-theory even if some of the
sectors of H are not simple currents. We shall provide one example in section
C.4 below.

A more detailed comparison of the bulk partition functions reveals a sec-
ond necessary condition for the desired equivalence. Namely, one can see
that the orbifold and the G-theory can only agree if I' acts transitively on
the sets All,(G/H) := {(u,b) € All(G/H)}. In particular, this implies that
|AIl(G/H)/T| = [Rep(G)|.

C.3 Equivalence of boundary states

Let us assume a situation in which the duality (C.1) holds. Under these
circumstances there exist two different pictures in which one can construct
boundary states for one and the same CFT background. One can either
apply the procedure which has been developed in section 3.2.3 or one could
use the orbifold techniques of section 2.4.3. The aim of this section is to
show their equivalence and to provide the exact correspondence between
boundary states in both pictures. For simplicity we restrict ourselves to the
case without any twist.

Boundary states of the orbifold theory can be obtained from the Cardy
states |[u, al,b) = |[u, a])¢/" @ |b)! of the charge conjugate covering theory
by averaging over the action of the orbifold group I'. This leads to boundary
states of the form

1
,al,b|) = —— Jlu,al, J'b C.3
[, a], b)) JW(J,JZ)GF' (11, al, J'D) (C.3)

where the labels [[11,a],b] of boundary states now take values in the set
(Rep(G/H) x Rep(H))/I". Tt is also easy to calculate the boundary partition
function

orb - Jlo,e] Jf G/H_ H
Z[[M?“Lb]vuyvc]vd} - Z Z N[p,7a]+[y7(;] Nb+d X[o‘,e] Xf . (04)
(J,J"eT [o,e]eRep(G/H),feRep(H)
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When the orbifold action has fixed points, some of these states may be re-
solved further, but we will not discuss this issue. The main point here was to
outline how one can obtain boundary states in the background (C.2). They
are labeled by elements of (Rep(G/H) x Rep(H))/T.

We are now prepared to compare the brane spectra of the orbifold con-
struction with the spectra obtained in section 3.2.3. In the following analysis
we assume that H is abelian which is the case for all the examples considered
in [131, 35]. The orbifold construction of the background works for a slightly
larger class of cases, but in such cases the brane spectra can be different, at
least before resolving possible fixed points of I' (see below). Assuming that
Rep(H) = Z(H), we want to verify first that both constructions provide the
same number of boundary states. This amounts to saying that

(Rep(G/H) x Rep(H)) /T = (Rep(G) x Rep(H)) /Gia - (C.5)

By our assumption on H, the action of I" has no fixed points. The same holds
automatically true for the action of G;q. Therefore, our results of section 3.2.3
apply and it is easy to compute the order of the two sets in relation (C.5).
For the set on the left hand side we find that

Rep(G/H) x Rep(H)| _ [AI(G/H)[- [Rep(H)| _ [Rep(G)| - [Rep(H)]
r ] - |Gl |Gid

This agrees with the number of new boundary states on the right hand side
of eq. (C.5). If we drop the assumption Rep(H) = Z(H) the action of I' can
have fixed points so that the number of unresolved branes is smaller than
the number of branes we obtained from our construction.

To compare the open string spectra of the two sets of branes we have to
go a step further and choose an explicit isomorphism between the labels. Let
us propose

= [[wblc] — (mb—c) .

Note that b — ¢ € Rep(H) makes sense for two elements b, ¢ € Rep(H) since
we assume Rep(H) = Z(H) to be an abelian group. Furthermore, = is well-
defined because the action of I on the labels ([u, b], ¢) € Rep(G/H) x Rep(H)
adds the same a to b and ¢ so that their difference b — ¢ is left invariant.
In writing down the pair (4, b — ¢) we have to pick a representative (u,b)
of the sector [u,b]. This is unique up to the action of the identification
group Gig. But different representatives are mapped to the same Gig-orbit
in Rep(G) x Rep(H). Obviously, Z is surjective and hence, by our counting
above, it is a bijection between the two sets of labels.
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It is now straightforward to compare the boundary partition function
resulting from our construction with those arising from the orbifold analysis.
In the following we shall identify the elements ([0,a],a) € I with a € Z(H).
We first calculate the boundary partition function from the orbifold point of
view. Using the formula (2.26) we obtain

orb o o a+d ate G/H _H
Z[[“7b1}761}7[[yvb2}702] - Z NMV Nbf b NCT co X(O’,d) Xe :
a€l,(o,d)eAll(G/H)
e€Rep(H)

In this particular example, the fusion coefficients for the H-part are well-
known and parts of the sum may be carried out. A careful calculation leads
to ,
rb - c .G/H _ H
Zﬁ“ubl]ucl}’[[l’)bﬂ?cﬂ - Z N/JJ/ X(O’,d) Xd+02—01+b1—b2
(0,d)€AII(G/H)

Let us now consider the boundary partition function for the corresponding
weights (u, by —¢1) and (v, by — ¢2) in our approach. Again, a careful analysis
yields

_ o f d . G/H H
Z(,u,b1—61)7(V7b2—62) - Z N/u/ N(b17c1)+ (ba—c2) Nfe X(o,d) Xe
(0,d)EAL(G/H)
e,f€Rep(H)
_ o G/H H
- Z NNV X(U,d) Xd4co—c1+b1—bo
(0,d)EAL(G/H)

This agrees with the result of the orbifold construction and thus proves the
equivalence of the two approaches in the case of an abelian subgroup H. Apart
from being more general because it allows to use non-abelian subgroups,
our prescription also provides new conceptual insights and a more natural
geometric interpretation.

C.4 An instructive example

For our general comparison of brane spectra in the previous subsection we
assumed that H is abelian, i.e. that all sectors of A(H) are simple currents.
This assumption was sufficient for the equivalence of the bulk partition func-
tions but not necessary when the identification group Giq is non-trivial. In
this subsection we shall present one example for the latter case.

Let us set A(G) = A(SU(2)y, x SU(2)x,). This chiral algebra has several
subalgebras A(H) that we could choose for our construction of boundary
states. There are various abelian subalgebras that we could use such as
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A(H) = A(U(1)y,) or A(H) = A(U(1), ® U(1)x,) etc. To make things a bit
more interesting we shall pick a non-abelian subalgebra, namely the chiral
algebra that is generated by the diagonally embedded subalgebra s1(2), y,-
The corresponding projection of weights is given by P(u, o) = p+ . Sectors
of the coset theory are labeled by triples (p, a,a) with pu < ky, a0 < kg, a <
k1 + ko and the branching selection rule p+a—a =0 mod 2. One can show
that there is only one non-trivial field identification current (ky, ka2, k1 + k2).
It gives rise to the field identification

(M,O[,G) ~ (kl_ﬂy kQ_aa k1+k2_a) .

Since we want to avoid fixed points of the field identification we have to
consider the situation where at least one of the levels is odd.

We now specialize to the case k; = k3 = 1 for which the coset algebra is
the chiral algebra of the Ising model. The relevant lists of sectors are,

Rep(G) = Rep(SU(2); x SU(2);) = {(0,0),(0,1),(1,0),(1,1)}
Rep(H) = Rep(SU(2),) = {0,1,2}
Rep(G/H) = {(0,0,0) ~(1,1,2), (0,0,2) ~ (1,1,0), (0,1,1) ~ (1,0,1)} .

Next, we have to decompose the charge conjugated modular invariant par-
tition function for A(SU(2); x SU(2)) into characters of the reduced chiral
algebra. In our case this reads,

2 2 2 2
Z = ‘Xg),o)) +‘X%,1)’ +‘X8,0)‘ +‘X8,1)‘ (C.6)
G/H G/H a/H G/H G/H 2

= ‘X000X0+X(002)X2‘ +2)X011)X1‘ +‘X002 X0+X(000)X

where we already took the field identification into account. Following the
results of section 3.2.3 for trivial gluing conditions on the reduced chiral
algebra, we find six boundary states with labels from the set

B ={(0,0,0) ~ (1,1,2), (1,0,0) ~ (0,1,2), (0,1,0) ~ (1,0,2),
(1,1,0) ~ (0,0,2), (0,0,1) ~ (1,1,1), (1,0,1) ~ (0,1,1)} .

The four boundary states which are in the Gig-orbit of the labels (u, a,0)
with trivial last entry can be identified with the four Cardy states of the
model. All of them preserve the full chiral algebra A(G). For the remaining



159

two boundary states we find

G/H G/H G/H G/H
Z(0,0,1),(0,0,1) = X(o/o o)Xo + X(o/o 2)X2 + X(o/o 0)X2 + X(o/o 2)X0 - X(C(;LO) + Xﬁ,n
G/H
Z(0,0,1),(1,01) = 2X(0/1 1)X1 - Xao) + X(%J)

G/H G/H G/H G/H G
Z(1,01),(101) = X(0,0 O)XO + X(0.0 2)X2 + X(0.0 0)X2 + X 0,0 z)Xo = X(o 0 T X1, -

In particular, these boundary conditions preserve the full chiral symmetry!
This is rather accidental and it is related to the fact that SU(2); x SU(2),
possesses an outer automorphism which acts by exchanging the two sum-
mands. With our construction we just recovered the two boundary states
which belong to the associated twisted gluing condition. Note, however, that
the spectra of open strings which stretch in between the four Cardy and the
two non-Cardy type branes do only preserve the reduced chiral symmetry.

Before we conclude this section let us observe that the partition function
(C.6) actually is an orbifold partition function obtained with the orbifold

group
Iy = {([0,0,0],0),([0,0,2],2)} = Z, .

In fact, the partition function of our model is recovered from the general
expression (C.2) with the help of Qo022 ([[1 a,al,b]) = (b — a)/2 and
using that the weight [[0, 1,1], 1} is invariant under I'y. On the other hand,
H = SU(2)s is not abelian since (1) € Rep(SU(2)2) is not a simple current.

The orbifold group I'g acts on the set Rep(G/H) x Rep(H). Under this
action, the nine elements of the latter are grouped into four orbits of length
2 and one fixed point. Hence, before resolving of the fixed point one obtains
five boundary states of the form (C.3). But the one brane |(]0, 1, 1], 1)) which
is associated with the fixed point of 'y can be resolved into a sum of two
elementary branes. In this way we recover all the six branes with symmetry
A(G/H) ® A(H) from the orbifold construction. Note that in our approach
the issue of fixed point resolution did not arise.



Appendix D

More on the Lagrangian
approach

D.1 The computational details for symmetry
breaking branes

In this appendix we will provide the computational details which have been
omitted in section 3.4. It is convenient to choose a slightly more general
framework and to generalize the notion of twisted conjugacy classes. We will
then be able to include recent proposals of [136] in our description.

In the general approach we start with a family U, (I = 0,...,N) of
continuous subgroups H < U; — G which do not necessarily satisfy the
embedding chain property (3.3). To each of these subgroups we associate
three embeddings ¢V : H — U; and eg}g : Uy — G. The indices L/R stand
for left and right, respectively. We then define generalized twisted conjugacy
classes of U; in G by (cf. reference [136])

U;,G G G _

Cﬁl (GE}R) = {cl = EL fl i s, s | s, € Ul} ) (D.1)

These generalized twisted conjugacy classes admit an action of H under which
they transform as

s; — eVi(h)s;, = ¢ — %o eV (h) ¢ en'C o U (") . (D2)

By putting EEZG = UG, EEZG = eglG o and f; = ¢V'S(f;) we can recover

ordinary twisted conjugacy classes in this more general framework, i.e. the
setup of section 3.2.

One can easily verify that the set D{Ul, EE}% fl} which is generated by
the following product of generalized twisted conjugacy classes,

DU, efi, i} = € (eafR) - - () € G, (D3
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is invariant under the action of H provided that the embedding maps satisfy
the relations

'S ol — egl“G ol (D.4)
For later purposes we also have to require the embedding indices of the
left and right embeddings eg}g being identical for fixed subgroup U;. Both
conditions are automatically satisfied if we restrict to the original setup of
section 3.2. As a consequence of eq. (D.4) the elements x € D{Ul, egjg, fl}
transform according to

z = "G oellUn (h) x eglG o U1 (h_l) . (D.5)

To write down the boundary WZNW functional for D-brane candidates which
are localized along D{Ul, eg}g, fl} we have to generalize the definition (3.33)
to

wp(e)) = trplel (s ds)) fiew® (s dsy) ')

The other two-forms wp(cy, - - - , ¢;) are not modified, but one has to be aware
of the fact that the quantities ¢; now parametrize elements of the generalized
twisted conjugacy classes (D.1).

In this appendix we will present the computational details for the proof
that a) the boundary WZNW functional (3.29) is invariant under the in-
finitesimal action (D.2,D.5) of h = 1 4+ iw € H on the boundary and b)
that it is well-defined with respect to infinitesimal deformations of the disc
D. We will, however, not be concerned with global issues which give rise to
a quantization of generalized twisted conjugacy classes and branching selec-
tion rules. These global topological properties may possibly lead to severe
restrictions which prohibit certain subsets of the form (D.3). For example
we would not know how to model maximally symmetric D-branes which are
localized along the product of two conjugacy classes Cﬁ -Cg in the algebraic
description. This example suggests that there also might be problems with
the conformal invariance of the boundary WZNW functional (3.29) on the
quantum level even if the theory is classically well-defined. A justification of
the more general setting in terms of an algebraic description is therefore pro-
foundly desirable. These questions, however, have to be addressed in future
work.

Let us start with the first item, i.e. the invariance of the action functional
(3.29) under transformations of the form (D.2,D.5) on the boundary. Refer-
ing to the discussion in section 3.4 this amounts to a proof of the relation
dwW%|, = déwp. The elements of the twisted conjugacy classes transform
according to

()

o = iwy O

q — iqwg



162

where we introduced the short hand notations wI(f;R = EE}S{ o MUi(w).

The condition (D.4) of mutual consistency of the embedding maps obviously
translates into the relation wg) = w](f ), Supplied with this information it is
now very easy to calculate all variations

_ o ® : 0
d(crCry1 - co101) = GwWy CpCry1 - €10 — G CkCry1 " CQ1CWR

O

Similar relations hold for the inverse d¢; ' = iwy’c; ' —i cl_lw](f ) and for chains
of the form ¢; ¢!

—_ -1 -1 . ..
Gy G 1 G - Finally, we also need to know the variation

1

ode = d(z’wg) c — iclwg)) = idwg) c — ¢ dwg)—i—iwg) deg — idclwg) .
Due to these relations the transformation properties of wp(cg, - ,¢) may

easily be calculated. It turns out that all terms involving w cancel each other.
Only four terms involving dw survive. We summarize this result in

dwp(cp, -+ ,¢q) = —itr{cfl . ~c,;1 de(Jk) REE cl_ldcl}
+1 tr{cfl e c,;il dw£k+1) Cha1" - cl_ldcl}
. _ _ -1
— ztr{cl_ll ey ldckck+1 ceCy dwl% ) }

—i—itr{cl_l e Ck_ldeCkJ,_l s dwg)} )

When evaluating this expression special care has to be taken if [ = k+ 1. In
this case no factors cg,1 -+ - ¢;_1 appear between the differentials in lines two
and three.

Due to its different structure the variation of wp(¢;) has to be treated
separately. In this case we obtain

dwp(q) = —itr{dwg)dclcl_l —i—dwg)cl_ldcl} )
During the calculation we made use of
o = (s Frt @O (s s) frelS(st) — B (dsis )
dacy’ = % (dsis; ) — &' (s0) fren® (s dsn) £ e (s7)
Indeed, these two relations imply
itr{dwdeet + dwd o tde )

= —dwp(q) + itr{dwg)egle(dslsl_l) - dwg)egle (dsis; ')}
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If we rewrite the last term according to
tr{eglG (" (dw)dsis; ) — en'e (" (dw)dsis; ) }

we see that it vanishes provided the two embeddings eg}g have the same
embedding index.

Summing up all contributions and remembering that the variation of
wp(Ck, ck11) shows some subtleties we obtain

N
dwp = —1 Ztr{dw£0)co e cl_ldclcl_1 ‘e cal+dw§{N)c]_\,1 . ~cl_1dclcl+1 . ~CN}.
1=0

During the calculation we made use of several cancellations. Finally, we have
to compare this expression with the variation of the Wess-Zumino term. A
careful calculation gives

oWV = —idtr{dwio)dgg_l+dw1(;{N)g_1dg} .

This may easily be evaluated using the relations

N

-1 —1 —1
g dg = g Cy "G dchH_l <N
=0

N
dggi]' = Z Co* Cl*ldclcl_l e cal
1=0
The variation then reads

N
oWVt = — Z dtr{dw£0)00 eaodae et
1=0

+ dwl()f\[)cj\,1 e c;ldclcl+1 ce cN} .

Obviously, the contributions from dw"“% and dwp cancel each other exactly.

This proves that the product of generalized twisted conjugacy classes is in-
deed a valid candidate for the geometry of D-branes which preserve an action
of the group H.

Now we are able to address item b), i.e. the invariance of the action func-
tional (3.29) under infinitesimal deformations of the disc D. It is sufficient
to proof the relation dwp = w"”| . The calculation turns out to be very
involved if one tries to perform it directly. Therefore it is convenient to use
an induction argument instead, i.e. we supply the boundary two-form (3.32)
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with an additional label N and write wp(N). The number N + 1 is just the
number of generalized twisted conjugacy classes appearing in eq. (D.3). For
N = 0 we have wp(0) = wp(cp). Let us thus first determine

dwp(q) = —tr{eU’G (s7tdsysytdsy) fren'S (s tdsy) fi "1
—|—tr{eU’G ldsl)ﬁeglG(sl_ldslsl_ldsl)fl_l} .

On the other hand we have
W) = —tr{[ R0 e (s ) fre (s ) — e ldsis D]

= _tr{eUlG( 1dsl))—€R ((dsis 1)) }

—tr{fy e % (s, dsys M dsy) fren'S (s Mdsy) b
—|—tr{ fl 1 UZG(Sl—ldSl) fleglG(Sl_ldSlSl_ldSl)}

The first two terms vanish as the two embeddings by assumption have the
same embedding index. By specializing to [ = 0 we have proven dwp(N) =
wWZ‘D for N = 0.

Let us now turn to the case N > 0. It is convenient to introduce the
notation gy = co---cy = gy_1cny. In addition we also need the recursion
property wp(N) = wp(N—1)+3" " wp(ey, - -+, en). Using the representation
above we easily obtain gy'dgy = cy'den + cy gy dgn_1cy and thus we are
able to calculate

WZ (gN—l) + wWZ(CN)

WZ(QN) = w
+ tr{(deney') gyt dgn—1 + deney' (gntidgn-1)*}

By induction we have dwp(N — 1) = wW%(gny_1). We also proved already
that dw(cy) = wWV%(cy). It thus remains to check whether

N-1
dwp(c, -+ ,en) = tr{(dCNCJ_\zl)29&1_1dgN—1 + dCchzl(ngl_ldgN—l)Q}

= (D.6)
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Indeed, for the left hand side we find

N-1 N-1
dwp(ey, -+ ,eny) = Z tr{c;,lchcjvl _ c;ldclcl+1 . 'cN,lch}
1=0 1=0
N-1N-1
+ Z tlr{c]_\,1 . ~c,;1dckc,;1 - -cl_ldqu . cN_lch}
1=0 k=l
N-1 N-1
1 1
+ Z tr{cN e deey - e degCrg - -cN_lch} . (D.7)
1=0 k=l+1

To evaluate the right hand side of eq. (D.6) we use the explicit form of gn_;
as a product of ¢’s and write

-1
1 ...Cl dclcl+1 - CN_1

g;]l,ldngl == c

-1 —1 —1
dgn_1gn_1 = Co- - 'szldCzCl Gy

Taking the square of the first expression we arrive at

N-1N-1
-1 2 Z -1 -1 -1
(ngldngl) = C 1 ...Cl dcl...CNflcNfl..'dckck+l “rCN_1
1=0 k=0
N-1N-1
-1 -1 -1 -1
= C _1...Ck dckck ...Cl dclcl+1"'CN—1
1=0 k=l
N-1 N-1
—1 1
+ E E Cy_1° ¢ dacyy - cprdegCryr - en—y
1=0 k=l+1

Plugging all this into the right hand side of eq. (D.6) we finally find that

tr{(chc]‘vl)Qg]‘vildngl + deneyt (gxfl,ldgjvfl)?}

N-1
-1 -1 -1 -1
= E tr{chcN deney ey_y - ¢ deegyr -+ -cN,l}
1=0
N—1N-1
-1 -1 -1 -1 -1
+ E tr{chcN Cy_q° " Cp degey -+ - ¢ deepq - 'cN,l}
1=0 k=
N—1 N-1
+ tr{dc et e tde . d .
NCN Cn_1 1 1Cl+1 Cr—14CLCr41 CN-1

=0 k=l+1
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This expression coincides with the expression (D.7) and so our induction
argument is completed.

D.2 The GMM cosets revisited

In this appendix we would like to discuss further aspects of the GMM models
which have been introduced in section 4.1.4. They first appeared in reference
[51, 134]. These authors presented a Lagrangian formulation of these theories
and considered the associated current algebra. In our opinion their discussion
of the algebraic properties is not completely accurate. In particular, they
argued that the energy momentum tensor is not obtained by the standard
affine Sugawara [109] and coset constructions [47]. This statement seems
to be incorrect. We take this as an opportunity to review the Lagrangian
description and to correct some of their formulas.

The gauged WZNW functional (4.4) is quadratic in the gauge fields. It
may thus be simplified — in principle — by integrating out the gauge fields.
The resulting expressions will, however, remain quite formal in the general
case (see however [41, 42, 43, 44, 182]). The reason for these difficulties is
the third term in the interaction functional (4.5) which does not only contain
the gauge fields A and A but also the group element g. For the Gaussian
path integral to be performed one would need to diagonalize the quadratic
form matrix which depends explicitly on g.

For our particular choice of embeddings the corresponding term vanishes

and the path integral may easily be evaluated. The interaction functional
(4.5) reduces to

SG1 XGQ/H(gl’ g, A, A“ﬁ, €L/R)

int

ki 2 - _
= 4—1 — | &% tri{—2¢1(A) g; 091 — e1(A) e1(A) }
m I Jx
ke 2[5 T 1 i
+ = — [ &% tra{26:(A) Ogagy ' — €2(A) e2(A) }
4 IQ b))

It is fairly simple to read off the quadratic form matrix from this expression
and integrate out the gauge fields in full generality. We only have to be a bit
careful about our notations.

We may decompose the h-valued gauge fields A and A according to
A = A T* and A = A, T The abstract Lie algebra generators satisfy
the commutation relations [T, T"] = i f‘"ﬁ7 T7. Indices are raised and low-
ered using the Killing form £ and its inverse, see eq. (A.1). We may choose
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generators T% € {e,(T*), T'} of g, and generators T € {ex(T?), T} of gs.
These satisfy [T?,77] = if¥, T* and [T%, T = if®_ T¢. If all three indices
take values in the subalgebra b, the structure constants by construction just
reduce to the structure constants of f in the given basis. This is only true
as long as the index structure is as indicated because one would have to use
different Killing forms to lower the indices. From (4.1) it follows that these
forms are related by

¥ = 2%/ = k%), .

We see the embedding indices z; entering this expression.

The last relations imply
tr1{61 (A) €1 (A)} = [1 T AaAa y tTQ{GQ(A) EQ(A)} = IQ i) AaAa .

The formula )
/dny e—%yTAy-i-bTy — (27]-)71/ e%bTA’lb )

vdet A

for the Gaussian path integral may thus be applied using the parameters

y = (Aa) b = (_f—}ltrl{ﬁl(T“)gflém})

AP 22 try{ea(T7)0g295 " }

0 ziky g
A:(xQ_sz/ ﬂoaﬂ)
Ba

™

and

The matrix A is symmetric as by assumption k = z1k; = x2ks, see eq. (4.2),
and may easily be inverted. After performing the Gaussian path integral the
interaction term reads

G1xG
S (g1, gol K, er/m)

Kag k1ky 4 o 1= _
= —ﬁm/zdzz trl{el(T ) 9, 1891}tr2{62(Tﬁ)892921} (D.8)

This is exactly the expression that has been suggested in [51, 134].
The action functional (D.8) possesses a number of very interesting and
useful symmetries. By construction it is invariant under the infinitesimal

gauge transformations (g1, ¢2) — (g1(1 — ie1(w)), (1 + i €ex(w))gz) with w =
w(z,Z) € b. In addition, the model admits the symmetry G}(2) x G¥(2), i.e.
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it is invariant under (g1, 92) — (91(2) 91,9295 '(2)). The last symmetry is
generated by the currents

ko Ko, S _
J(2) = ~k0gigr’ — T2 ger(T)gr" tra{ea(T°) Ogags '}
241
- _ ki Ko _ o 15
J(2) = kogy'Ogo + }xﬁ 95 ' e2(T7)go tri{er(T*) g7 01}
142

which satisfy 0.J(z) = 0.J(z) = 0 by the equations of motion. During the
derivation we used the relation z1 k1 = x4 ks. Note that J takes values in
the Lie algebra g;, while J is from go. So the index structure is J?, J* which
makes explicit the heterotic nature of our coset. Both currents are gauge
invariant.

In the algebraic description of our asymmetric coset model we already
took some properties for granted which would have been expected from a
straightforward generalization of the GKO construction. We are now able to
justify this procedure more rigorously by working out the energy momentum
tensor and the commutation relations of the currents. Let us start with the
latter. It is convenient to introduce the fields

Ji = —ki0g1g;" Ji = kig;'0g
Jo = —kyDgagy* Jo = kygy'0g0

which correspond to the (former) G; and Gy currents, respectively. In terms
of these quantities one obtains

Re ay  —
J(z) = Ji + T o gra(T )911t1“2{€2(TB)J2}
21

_ _ Ko _ on T
J(z) = Jo + 7 g 93 e2(T7)go t1“1{61(T )Jl} 3
122
which shows how the gauge interaction term mixes the original currents.
The symmetry GY(z) x G5(Z) implies the Ward identities [110, (15.40)]

1 _ dz i _
X w,0)) = = § 3% wlT (X (w,w)

2 _ dz . _
R (Xw,0)) = § 5% I X w,0)

which are related to the transformations (5(Ll)g1 = jw;T" g, and (5g)gg =



169

—1 go w,I'*. From the previous equations we may derive the non-trivial OPE’s

Ji(2) J(w) = Zlf_fu Jk(“’”%
J(2) g1 (w, @) = Tzilfwz;w)
J(2) Hw, @) = Zlf_jfu Si(w, @) + (zkl—ﬁsﬁ
and
JU(z) J'(w) = Zlf_bw (@) (zkiﬂibﬁ
I ) = LT
76 By = L c<w>+<2ki“f;b)2

All the remaining OPE’s between the currents and the fields ¢g; and gs vanish.
Let us emphasize the asymmetry in the OPE’s which already showed up in
the algebraic construction.

Now, as the current symmetry is under control we can focus our attention
on the conformal symmetry, i.e. on the energy momentum tensor. Due to
the structure of the action functional for the asymmetric coset, the classical
chiral energy momentum tensors are given by

T = T1+T2+Tint and T = T1+T2+Tint .

The first two summands are the standard WZNW energy momentum tensors

1 - 1 _
T, = tryq J1J- T, = tryq J1J:
1 2k I 1"1{ 1 1} 1 2k I T1{ 1 1}
1 - 1 -
Ty = troq Jo . Ty, = troq JoJ:
2 2k I 1"2{ 2 2} 2 2k I TQ{ 2 2}
The extra summands are given by
o kl K‘;aﬁ 1
Ty = try { e (T) g1 091 } tf2{€2 ) 09295 "}
To [1 IQ
kl Rag

Tint tr1{61 gl 8g1} tr2{€2 TB 6’g2g21} .

) Il ]2
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It is very instructive to evaluate the expressions tr;J.J and trpJ.J. One is
then naturally lead to

1 . 1 1
T = —JJ + — a __ Oé:TGl TG2_TH
T JiJ" + % (J2)a(JS2) Soks (J2)a(J2) P ks
- 1 - = e &Y 1 - = =G1 | mG2  pH
T = — LT+ — (J):(Jy) — R i L |
2k2 JaJ + le (Jl)l(‘]l) 21'1]?1 Jl)a(Jl) k1 + ko x1k1

The additional factors z; and x5 arise due to the usage of the natural Killing
form for h-quantities. After quantizing the theory the levels get shifted by the
respective dual Coxeter numbers. Let us emphasize the following remarkable
fact: Due to the condition x1 k; = x5 ks left and right moving Virasoro
algebra possess the same central charge. This result also has been noted in
[51, 134] but the algebraic reasons remained unclear. In particular in the
last reference due to usage of inappropriate notation it was not realized that
the energy momentum tensor is actually defined by a combination of the
standard affine Sugawara and coset constructions.
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