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Abstract

Combining colored toric geometry and Lie symmetries, we engineer
qubit systems in the context of the D-brane physics in type II super-
strings. Concretely, we establish a correspondence between such quan-
tum systems and a class of K3 isolated singularities using operation
techniques of graph theory. We first analyze 1 andf 2-qubits in some de-
tails and show that they are associated with the geometric engineering
of six dimensional gauge theories obtained from type ITA superstring in
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the presence of D2-branes probing one and two su(2) singularities of the
K3 surface, respectively. Using a possible factorization of vector fields,
we reveal that the corresponding gauge symmetry breaking provides
states of such qubit systems. After that, we discuss the corresponding
entanglement. Applying graph theory operations to colored toric poly-
valent geometry, we then investigate multi-qubits in terms of D2-branes
probing several su(2) isolated singularities of the K3 surface. The gauge
field factorization generates abelian toric manifolds interpreted as Car-
tan sub-symmetries.

Subject Classifications: 32C35, 58 A14, 81T30, 81P45, 83C57

Keyswords: String theory; Quantum information theory; Graph theory;
Toric geometry; Mirror symmetry, Calabi-Yau singularities; Lie symmetries

1 Introduction

Recently, it has been remarked that quantum information theory (QIT) has
received many interests mainly in relation with black hole physics and entan-
glement entropy [1, 2, 3]. In particular, qubit systems have been extensively in-
vestigated using different approaches like superstring and graph theories [4-16].
More precisely, a nice correspondence between the stringy black holes and such
systems have been established by considering the compactification scenario.
In this way, the supersymmetric STU black hole embedded in the II super-
strings has been related to 3-qubits by exploiting hyperdeterminant calcultions
[8, 9, 10]. This black hole/qubit correspondence has been enriched by many
generalizations including superqubits using supermanifold computations[13].
Among others, works based on toric manifolds has been developed leading
to a classification of qubit systems in terms of black hole charges in type II
superstrings in the presence of D-brane objects[16]. Moreover, some studies
have been proposed by using the Andinkra graph theory being exploited in
the study of the supersymmetric representation theory [13, 14, 15, 16, 17].
In particular, these graphs have been elaborated to classify a class of qubits
linked to extremal black branes in type II superstring compactified on complex
manifolds [13]. Motivated by such results, colored toric graphs of a product of
CP! projective spaces have been also used to deal with concepts of QIT associ-
ated with logic gates [15]. Alternatively, a geometric method based on simple
singularities corresponding to Arnold’s classification has been explored to in-
vestigate the entanglement nature of pure qudit systems[18, 19, 20]. In this
way, a special interest has been devoted to the case of Dy (so(8)) singularity
to approach 4-qubits.

The aim of this work is to contribute to these activities by using geomet-
ric engineering method developped in [21] to engineer qubit systems in the
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context of D2-branes in type II superstrings. Concretely, we give a correspon-
dence between such quantum systems and a class of Lie symmetries via graph
theory. The 1 and 2-qubit are analyzed in some details and are found to be
associated with the geometric engineering of six dimensional theories obtained
from type IIA superstring in the presence of D2-branes probing one and two
isolated su(2) singularities of the K3 surface, respectively. Then, we discuss
on the corresponding entanglement. Implementing graph operations of toric
polyvalent geometry explored in string theory, we approach multi-qubits in
terms of several su(2) isolated singularities. Using colored toric geometry, we
link the n-qubits to non zero roots of n copies of su(2) Lie symmetry carrying
information on D2-brane charges. Precisely, the corresponding Weyl group
can be identified with the Z} symmetry associated with the existence of 2"
states in type IIA superstring obtained from D2-branes wrapping on n iso-
lated CP"’s represented by colored hypercube graphs. In the corresponding
six dimensional gauge symmetry breaking, n copies of local SU(2) can split
SU2)jpear = U(Dipear X SU(2) 05, Producing T" manifolds. This could be
interpreted as the Cartan sub-symmetries of the studied Lie structures.

This paper is organized as follows. In section 2, we give a concise pre-
sentation on Lie symmetries. Section 3 concerns the geometric engineering of
lower dimensional qubits in terms of D2-branes in type IIA superstring com-
pactifications on the K3 surface with su(2) isolated singularities. In section 4,
we establish a correspondence between multi-qubits and the K3 singularities
using colored graph theory of polyvalent type IIA geometry and its operations.
Section 5 is devoted to discussions and including remarks.

2 Lie symmetries

For later use, we start by giving a concise review on Lie symmetry back-
grounds, used in many physical area including high energy and condensed
matter physics. Roughly, a Lie symmetry L is a vector space together with
an antisymmetric bilinear bracket [,] : L x L — L satisfying, among others,
the famous Jacobi identity ([a, [b, c]] + [c, [a, b]] + [, [c,a]] = 0). It is realized
that any semi-simple Lie symmetry can be viewed as a direct sum of simple
Lie symmetries [22, 23, 24]. It is recalled that the Cartan subalgebra H is
generated by the all semi-simple elements, being the maximal toric abelian Lie
sub-algebra playing a remarkable role in the study of the classification of Lie
symmetries. Moreover, it is observed that L may then be written as the direct
sum of H and the subspace Fa

L=H®®Ea (2.1)

where F is given by
Er =®,L,. (2.2)
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It is recalled that L, is defined by
L, ={x € L|h,z] = a(z)x} (2.3)

for x inside L and « ranges over all elements of the dual of H. In Lie sym-
metries, these vectors a are known by roots associated with vector particle
states used in the standard model physics. In particular, the corresponding
basic concepts of the root systems will be exploited later to approach QIT. It
is noted that a root system A of a Lie symmetry is defined as a subset of an
euclidean space F satisfying the following constraints

1. A is finite and spans F, 0 is not an element of it,
2. if ais a root of A, then ka is also but only for £ = +a,

3. for any root av in A, the later is invariant under reflection o,, where

O-a(ﬂ) = ﬁ_ < B,OZ > a,
4. if o and B are two roots of A, then the quantity < 8, a > is in Z.

It is has been shown that the root system A involves several information
about the associated Lie symmetry structure. These information will be rele-
vant in the present work to deal with qubit systems. In finite Lie symmetries,
it has been shown that there is a nice relation given by

dim L = dim H + |A| (2.4)

where |A| indicates the number of the roots associated with L. The dimension
of H, noted dim H, is called also the rank which is identified with the number
of the simple roots which could be interpreted as the basis of A. To make
contact with qubits, we will consider a particular Lie symmetry constrained
by

dimL =n+2n (2.5)

where we have used
dim H = n, |A] = 2n. (2.6)

We will see later that n will be identified with the order of the qubit. An alter-
native way to classify these symmetries is to use the Cartan matrices obtained
from the scalar product between the simple roots. For such symmetries, we
will consider the Cartan matrix A = (A;;) of size n by n given by

It is recalled that this matrix can be encoded in a nice graph called Dynkin
graphs, or diagrams. In this graph, the diagonal elements correspond to ver-
tices and the non diagonal elements describe the number of the edges between
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them. In fact, the number of the edges between a vertex ¢ and a vertex j is
given by A;;Aj;.

In what follows, we combine these Lie symmetries and the geometric en-
gineering method, used in the construction of six dimensional theories from
string theory in the presence of D-branes, to investigate quantum information
systems.

3 Geometric engineering of lower dimensional
qubits

In this section, we engineer qubit systems from D-branes wrapped on CP'’s
used in the deformation of su(2) isolated singularities of the K3 surface.

3.1 Qubits from Type ITA supertring on the K3 surface

It is noted that the qubit has been extensively investigated from different phys-
ical and mathematical aspects[4, 5, 6, 7|. Using quantum mechanics notation
(Dirac notation), 1-qubit is described by the following state

) = col0) + 1) (3.1)
where ¢; are complex numbers verifying the probability condition
co® + |er|? = 1. (3.2)

The condition can be interpreted geometrically in terms of the so-called Bloch
sphere. Similarly, the 2-qubits are represented by the following state

|¢> = COO|00> + 010|10> + 001’01> + C11|11>. (33)
In this case, the probability relation becomes
|cool® 4 [erof® + [eon [* + [en|* =1 (3.4)

describing a 3-dimensional complex projective space CP? generalizing the Bloch
sphere. This analysis can be extended to n-qubits associated with 2" configu-
ration states. Using the binary notation, the general state reads as

W) = Z Ciy.in| 1 -+ n), (3.5)

i1..in=0,1

where the complex coefficients ¢;, ;, verify the normalization condition

Z Ciy..in Ciy i, = L. (3.6)

i1..in=0,1
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This equation generates the CP?"~! complex projective space. An inspection
shows that the qubit systems can be engineered form D-branes placed at cer-
tain singularities of type IIA polyvalent geometry [21]. In what follows, we
refer to it as m-valent geometry. More precisely, we will show that this ge-
ometry produces the states of n-qubit systems. In this way, a quantum state
could interpreted in terms of D2-branes wrapping isolated CP'’s in type ITA
superstring compactificatied on the K3 surface. We expect that the n-valent
geometry should encode certain data on the associated D-brane physics offer-
ing a new take on the geometric realization of QIT using techniques based on
a quantum geometry, Lie symmetries, and colored graph theory. To establish
this link, we investigate first the the case of lower dimensional qubits. Then,
we give a general statement for multi-qubits in the next section using graph
theory operations including sum and cartesian products. The 1-qubit can be
elaborated using the geometry associated with a local description of the K3
surface where the manifold develops a singularity corresponding to vanish-
ing intersecting CP'’s. It is recalled that the K3 surface is a 2-dimensional
Calabi-Yau manifold involving the Kahler structure permitting the existence
of a global nonvanishing holomorphic 2-form assured by a SU(2) Holonomy
group|25, 26]. This manifold can be constructed using different approaches,
including the orbifold one. The latter can be done in terms of the T* manifold
modulo discrete isometries of the SU(2) holonomy group. In particular, it can
be built by using the complex coordinates of such a torus

2=z +1, 2 = 2 +1, 1=1,2 (3.7)

and imposing an extra Z, symmetry acting on the complex variables z; as
follows

This action involves 16 fixed points given by

o 1 1 1 1 1 1 1 1 1

(Zi, Zé) = (0, 0), (0, 5), (O, 52), (O, § + 52)), (57 0) . (5 + 52, 5 + 52) (39)

It has been shown that each fixed point corresponds to a vanishing 2-sphere

identified with CP'. To see that, one considers a local version of the K3

surface. Indeed, the orbifold T*/Z, can be viewed as a non compcat space

given by C? /Z,, which is known by su(2) (A;) space described by the following
equation

Ty = 2 (3.10)

where z, y and z are Zs-invariants. In this way, they are related to the local
coordinates z; and z of C? as follows

r=12z, T=2, y=2, (3.11)
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The local geometry is singular at * = y = 2z = 0 which can be replaced by
S? which is isomorphic to CP'. The blowing up of 16 fixed points (singular
points) change the Hodge diagram of T* by adding the twisted sector. This
diagram is given by

h00 1
hl,O hO,l 0 0
h20 Rt R | 20 1.
h2’1 h1,2 0 0
h?? 1

where hP? denotes the number of the holomorphic and the anti-holomorphic
forms of degree (p,q). It turns that the local version of the K3 surface can
involve more complicated singularities associated with ADE Lie symmetries.
For instance, near the su(3) singular point, the geometry can be viewed as an
asymptotically locally Euclidean (ALE) complex space which is algebraically
given by the blowing down of two intersecting CP' spaces according to the
su(3) Dynkin graph. In this context, this configuration is considered as a
l-valent geometry since each CP' intersects only another one which can be
represented by two vertices as the su(3) Dynkin graph in type IIB mirror
geometry. Cutting such a 1-valent vertex, we get one vertex corresponding
to the su(2) Dynkin graph associated with the su(2) singularity of the K3
surface discussed before. The singularity can be removed by blowing up the
singular point by a CP! complex curve. It has been revealed that this type ITA
geometry generates a six dimensional SU(2) gauge model associated with W%+
gauge field bosons. The W° gauge vector is identified with a vector field A;
obtained from the RR three-form A3 according to the following decomposition

Ag — Al A w (312)

where w is 2-form on CP' of the K3 surface compactification. However, the
W* vector multiplet arises from the D2-brane wrapped on CP' used to re-
move su(2) singularity of the K3 surface. In this compactification, a D2-brane
wrapping around such a complex curve gives two states depending on the
two possible orientations for the wrapping procedure[21]. In Lie algebras, this
procedure can be supported by the root system decomposition of su(2) Lie
symmetry. It is recalled that su(2) is a 3-dimensional Lie symmetry defined
by following commutation relations

[h,e] =e, [h, f] = —f, le, f] = 2h, (3.13)

where {e, h, f} is called the Cartan basis. Its Cartan factorization reads as

su(2) =H® Lia®L_, (3.14)
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where H is the Cartan subalgebra generated by h [22, 23, 24]. In terms of the
Cartan basis, it can be rewritten as

su(2) =Ch @ Ced Cf. (3.15)

Adopting a binary digit notation, according to which + corresponds to 0 and
— corresponds to 1, we will show that the two states of 1-qubit, which will be
denoted |£) is linked to the two-dimensional vector space associated with the
root system

A(su(2)) = {a, —a}. (3.16)
This space is given by the following quotient space
2
Ex = 31;([ ) el (3.17)

Inspired by D-brane physics, we can show that the correspondence
Li, = C‘+>’ L_, :C’_>

gives rise to a mapping between the qubit states and the states of the charged
D2-brane appearing in the K3 surface compactification with the su(2) singu-
larity used in the geometric engineering of six dimensional gauge theories.
Like in four dimensions, the SU(2) gauge group could be associated with
SU(2); x U(1)y of the electroweak theory mediated by the weak gauge bosons,
the photon with the isospin and the hypercharge as corresponding charges. In
this way, SU(2) vector field W= (z), can split into a U(1) vector field A, (z)
and generators o¢ of global SU(2) in the fundamental representation as

Wi (z) = e Mgt (=0,+ (3.18)
where the generators o°
mutation relations

are the Pauli matrices which satisfy the su(2) com-

[O’k, Jq = 20€m0 " (3.19)

where €, is an antisymmetric tensor. The corresponding gauge symmetry
breaking of the local SU(2) gauge group is

SU(2),01 — U1y % SU(2) (3.20)

loca loca global*

Therefore, the above expression (3.18) shows an hidden quantum feature (spin
5) of a classical non-abelian gauge field. In this way, the SU(2) gauge theory
can be linked to 1-qubit system. Combining these data, the 1-qubit system
can be obtained from the particle states of SU(2) interaction mediated by
W=0_ A possible connection could be done by proposing the following linear
combination form between the D2-brane states

4+) = a|WT) 4+ bW (3.21)
=) = —bW™) +aW°)
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where a and b are real parameters satisfying
a’+b* =1 (3.22)

It is noted that this condition can be interpreted as the geometric realization
of the U(1) gauge symmetry in terms of one-dimensional circle S' identified
with the h generator of su(2) Lie symmetry. Using this geometric constraint,
the normalization conditions are now satisfied

(+]+) = (-]-)=a+V =1 (3.23)
(+]-) = (=|+)=—ab+ab=0. (3.24)

In the context of superstring compactifications, the probability of measuring
the qubit in certain states could be determined in terms of winding numbers
on CP'. This will be investigated in other occasions.

Having discussed 1-qubit case, we move now to the 2-qubit systems defined
in a 4 dimensional Hilbert space. The 2-qubit model, which is interesting from
entanglement applications, will correspond to 2-valent geometry appearing in
the A3 type ITA superstring. In the geometric engineering method, it contains
a central CP' which intersects two other ones according to the As Dynkin
graph in type IIB mirror description [21]. Removing the central vertex, we get
a graph which can be identified with the Dynkin graph of the su(2) & su(2)
Lie symmetry. In this way, the corresponding type IIA geometry involves two
isolated CP'’s in the K3 surface compctifications. Two D2-branes, will be
denoted by A and B respectively, wrapping around such a geometry will give
four states depending on the two possible orientations on each CP'. In Lie
algebra formwork, these configurations correspond to the root system

A: {aA,—aA,aB,—aB} (325)

of the su(2) @ su(2) Lie symmetry. In this way, the root system decomposition
providing a four dimensional vector space

Ex=FE,, ®E,, (3.26)
where the factors E, are given by
EO&A = L:tOéA7 EaB = L:I:aB- (327)

In this case, the Weyl group will be identified with the Zy x Zy symmetry
associated with the existence of four states in type ITA superstring using two
D2-branes wrapping two isolated CP's of the K3 surface in the type ITA
compactification. In the six dimensional gauge symmetry breaking, two copies
of local SU(2) can split as

SU(2)1000 X SU(2)00 — U(L)7 . X SU(2)? (3.28)

local global
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The associated tensorial Hilbert space read as
Clt)a @ Clt)p (3.29)
with the following constraints required by the 1-qubit realizations
ad+bi =1 ay+by=1 (3.30)

It is noted that this condition produces a geometric realization of the U(1)?
gauge symmetry in terms of a trivial fibration of two circles producing a torus

T2,
3.2 Quantum entanglement from gauge vector bosons

The main point of this subsection is to discuss the corresponding entanglement
in terms of su(2) gauge filed bosons. It is recalled that to approach this concept
one should compute the concurrence quantity providing a tool to study the
separability defined in terms the spin-flip operation. For pure states associated
with 2-qubit states |¢) > p, the concurrence noted by C(|t) >4p) is given by

C(lv >ap) = | < ¥l > | (3.31)

where | >= 0, ® 0,[¢* >4p and where o, is the Pauli matrix along the y
direction [27]. In this way, [¢)* > 4p indicates the complex conjugate of |¢) > p.
For later use, the notation will be changed. In particular, one considers the
standard basis {| — — >,| — + >,| + — >, | + + >} associated with the gauge
vector boson charges of six dimensional gauge theories. In this case, the pure
state reads as

[ >ap=cyq|++>+c y| —+>+ci | +—>+e | ++> (3.32)

where ¢y, c_, ¢, and c, . are complex coefficients satisfying the normal-
ization condition

et P+ e PP+ ley P+ e P = 1. (3.33)
The calculation shows that the quantity C'(|i) >) takes the following form
C(l¢ >) =2[cprc— —cpcyl. (3.34)
The state |1) > is separable if one has
CiiC_=cCqi C_,. (3.35)
Other ways, it is entangled if one has

C__Cyy 7é C_1Cqp_. (336)
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We expect that these conditions can be satisfied by the charges of D2-branes
wrapping non trivial cycles in the K3 surface. A possible connection can be
provided by writing the state |[¢) >4p in the basis {{|WT > |[W~ > |[W° >}
associated with the su(2) brane charges in six dimensions. Indeed, one can
consider the six dimensional vector field decomposition

[++> = axap|WTWT >4 +asbg|WTWO > 45 +baap|WOW™T > 45 +babg|WOW > 45
|+ —> = —aabg|WTW™ >ap +aaap|WTWO > a5 —babg|WOW ™ >4p +baag|WTW? > 45
|l—+> = 7bAaB|W_W+ >AB 7bAbB|W_WO >AB +aAaB|WOW+ >AB +aAbB|W0W0 >AB
| ——> = babg|W W~ >ap —baag|W W >ap +aabg|WOW > 45 —asbp|WOW™ >4p

Motivated with the usual computation, one may propose the following matrix
associated with su(2) D2-brane charges

—c_4babp —c__byap c__bpbp c_1baap
cy—apap + cyyaabp —cy—aabp Ct++aaap
(3.37)

The corresponding invariant det M can encodes information of the correspond-
ing two qubits. In fact, the connection can be given

B det M
"~ 2a%agbabpe_

( c—_apgap+c—yapbp +cy_baap +cy4babp —cy_babgp —c—_aabp c—tasap +cytbaap
M =

C(ly >)

(3.38)

It follows from this equation that the data of 2-qubits states can be extracted
from two D2- brane charges associated with two copies of 3 vector states of
the su(2) Lie symmetry. We believe that this observation on the quantum
entanglement information deserves deeper investigation.

4 Multi-qubits from graph theory of polyva-
lent type IIA geometry

A close inspection shows that multi-qublits needs new materials inspired by
graph theory operations. It has been suggested that such systems could be ap-
proached using quiver methods dealing with several gauge factors. However,
these quantum systems should be dealt with differently since they will be
associated with graphs having non linear vertices. In particular, such quivers
should involve polyvalent vertices being connected to more than two other ones
as discussed in the previous section. In the geometric engineering method of
four-dimensional gauge theories obtained from type II superstrings compact-
ified on Calabi-Yau manifolds, the associated graphs have been explored to
deal with singularities based on indefinite Lie algebras generalizing the finite
and affine symmetries. A close inspection shows that the n-valent geometry
can involve a nice graph representation by combining toric geometry and Lie
symmetry structures. It is recalled that a graph G is defined by a pair of sets
G = (V(G), E(G)), where V(G) is the vertex set and E(G) indicates the edge
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set [28, 29, 30]. Two vertices are adjacent if they are connected by a edge. For
each non oriented graph G, we associate a symmetric squared matrix called
adjacency matrix I(G) = (I;;), whose elements are either 0 or 1

[ .)€ EG),
I”‘{o, (i,)) & E(G). (4.1

It has been observed that this nice matrix, which plays a primordial role to
provide connections with many areas in mathematical and physics, encodes
all the information on the graph in question. These data can be exploited
to present a graphic representation of complicated physical systems including
standard models of particle physics, or more generally non trivial quiver gauge
models built from string theory compactified on singular Calabi-Yau manifolds.
A special example of graphs which is relevant in the present work is n-valent
geometry sharing similar properties with the star graph containing a cental
vertex connected with n ones. In Lie symmetry, these graphs have been used to
represent indefinite Lie algebras generalizing the finite and affine symmetries.
For n = 3, one can recover the 3-valent geometry appearing in the finite so(8)
Lie algebra, known Els\o by D,4. For n = 4, however, one can get the 4-valent

vertex of the affine so(8) Dynkin graph, known also by Dy. More generally, the
graph which represents the n-valent geometry could be discussed in the context
of toric manifolds explored in type II superstring compactifications [21]. It is
recalled that a m-dimensional toric manifold X™ can be represented by a toric
graph G(X™) spanned by m + n vertices v; belonging to the m-dimensional
lattice Z™ [31, 32, 33, 34, 35]. These vertices satisfy the following r relations

m-+n

quvi:(), gzla"wn? (42)
=1

where ¢/ are integers called Mori vectors carrying many mathematical and
physical data. In particular, this geometry can be built physically using a two-
dimensional N' = 2 supersymmetric linear sigma model described in terms of
n+m chiral superfields ®; with charge ¢¢,i =1,...,n+m; £ =1,...,n under
U(1)®" gauge symmetry [36]. We then have

o, — eiZﬂeqf@“ i=1,....,n+m, (4.3)

where the ¥,’s are the gauge group parameters. The D’-term equations are
obtained by minimizing the Kahler potential of the 2D N = 2 superfield action

Sne2 = /d20d49/C + (/ d>od’0W + cc) (4.4)

with respect to the gauge superfields V,. It is recalled that K is the usual
gauge invariant Kahler term, while W is a chiral superpotential with superfield
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dependence as,

K = K[®,.., 0 Vi, Vi,
W = W[, .., Py, (4.5)

as well as coupling constant moduli which have not been specified. Using the
explicit expression of I and putting back into

oK
D' = =m0 =0 4.6
a‘/g |9—D ) ( )
we get the following D*-term equations
n+m
qu|¢i‘2:re7 6217"'767 (47)
i=1

where the 7¢s are FI coupling parameters and where the ¢,’s are the leading
scalar fields of the chiral superfield ®;. Dividing by U(1)®" gauge symmetry,
one gets a m-dimensional toric variety, represented by a graph G(X™). It turns
out that toric geometry can be extended by introducing a color data leading
to a colored toric geometry. The toric data {v;, ¢'} will be replaced by

{’Uivqucf}a = 17"')”7 (48)

where ¢ indicates also the color of the edges carrying physical information of
qubit states. In this way, one may propose the following mapping

N = 2 linear sigma model <+ colored graph (4.9)

which be useful in the discussion of the geometric engineering of qubits.

The simplest example in colored toric geometry, considered as the building
block of higher dimensional varieties, is CP'. This geometry is obtained by
taking m = n = 1. In this case, the Mori vector charge is ¢ = (1, 1) describing
the 1-valent geometry. It involves one U(1) toric symmetry acting on the local
coordinate x of CP' as follows

x— ez, (4.10)

This symmetry has two fixed points v_; and v; placed on the real line. These
two points (vertices), which describe the North and south poles respectively
of CP' satisfy the following constraint toric equation

vy + v = 0. (4.11)

In this way, CP' is represented by a colored toric graph identified with an
interval [v_y1,v;] with a circle on top. It vanishes at the vertices v_; and v;. In
graph theory, this graph is known by K.
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CP' 5 K, : 0—0 (4.12)

This toric representation can be easily extended to higher dimensional ge-

ometries using non trivial graphs. For projective space CP", the graphs become
simplex geometries. In this way, the S' circle fibration, of CP', is replaced by
T™ fibration over an n-dimensional simplex considered as a regular polytope
in toric geometry. Indeed, the T" collapses to a T"~! on each of the n faces of
the simplex, and to a T""2 on each of the (n — 2)-dimensional intersections of
these faces, etc.
It turns our that non trivial geometries, which we will be interested in here,
can be also approached using such a method. Concretely, the n-valent can be
discussed using toric geometry data. Indeed, the Mori vectors associated with
2-valent geometry take the following form

@ =(-2,1,1,0,...,0). (4.13)

In local geometries of the K3 surface known by the deformed ALE spaces,
the 2-valent vertices represent a linear chain of divisors with self intersection
(—2) and intersect two adjacent divisors once with contribution (+1). The
3-valent geometry, however, involves both 2-valent and 3-valent vertices which
has been appeared in different occasions. In string theory for instance, this
geometry has been used to incorporate fundamental matters in the geometric
construction of a quiver theory based on several SU gauge groups [21]. In
toric realization of the ALE spaces, the 3-valent geometry contains a central
divisor with self intersection (—2) intersecting three other divisors once with
contribution (41). In associated graph theory, the corresponding Mori vector
reads as

q=(-2,1,1,1,0,...,0). (4.14)

It has been suggested that the Calabi-Yau condition requires that this Mori
vector should be modified and takes the following form

g=(-2,1,1,1,-1,0,...,0). (4.15)

A close inspection shows that the 3-valent geometry has been explored in
the study of the complex deformation of the 7}, ,,, singularity defined as
the intersection of three chains type A, _1, A,,—1 and A,,_; appearing in the
blowing up of elliptic exceptional singularities Eg 7 g of the K3 surface:

FEg — T37373 : ZL‘? + l’g + Ig + )\ZL‘lfL’QIg
E7 — T2,474 . .CIZ% + ﬂfg + .fl?g + )\.1?1372563 (416)
Eg — T27376 : Qf? + l’g + Qfg + )\231[[2333

where A is a complex parameter[21]. This 7T}, ,, », singularity could be extended
to Ty, ps,...pn M-valent singularities by considering a non trivial intersection of
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n chains of 2-valent geometries formed by spheres in the Calabi-Yau manifolds
associated with 1 and 2-qubits as we have seen in the previous section.

In what follows, we would like to approach physically n-valent geometry. In
type ITA superstring, associated with the middle-degree cohomology, a n-valent
geometry can be described by a central sphere CP}, with self intersection (—2)
intersecting n other 1-dimensional projective spaces (CP, (£ = 1,...,n) with
contribution (41). In this way, the intersection numbers read as

CPy.CP; = -2
CP,.CP;, =1 (=1,...,n. (4.17)
In relation with the adjacency matrix in graph theory and toric geometry, the

intersection numbers of the n-valent geometry can be written in terms of Mori
vectors and Cartan matrices as follows

CP}CP} = qf/ = —2(5&! + ]gg/.

However, the Calabi-Yau condition requires that one should add an extra non
compact cycle with contribution 2—n. In string theory compactification on the
local K3 surface, this cycle does not affect the corresponding physics including
QIT. In this way, the Mori vector representing the central (C]P’(l) is given by

¢ =(-2,1,...,1,2—n). (4.18)
N——

n

Deleting the central vertex, we obtain the so-called empty graph having n
vertices leading to

In type IIB mirror geometry, this corresponds to the Dynkin graph of a particu-
lar Lie symmetry defined by n pieces of su(2) denoted by su(2) @ ... ® su(2).

n
In this way, the intersection numbers can be written in terms of the corre-
sponding Cartan matrix

CP,.CPy, = — Ay (4.20)

The Lie symmetry contains 2n roots and it is represented by a graph involving
n isolated vertices associated with CP"s in the mirror type IIB geometry.
However, the n CP"’s are represented by 2n vertices in type IIA geometry
associated with the non-zero root system decomposition

En=FEs, ®...0 Eq,, (4.21)
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where the space E, 4, corresponds to the /" su(2) symmetry defining the ¢
qubit. The vector space E, " which reads

By, = Lia, ® L_q,. (4.22)

can be represented by a colored K5 presented perviously.

For the vector space Ea, we need more methods to generate the corre-
sponding graph using disjoint union operations of Ks’s. To specific such a
disjoint union, we write Ko+ ... Ks. It is given by the sum operation in graph
theory associated with n colors.

C1 Cz Cn
o—0 + O—@+ ... +O—@ (4.23)
In graph theory, the vector space Ea can be represented by the n Ky which
is the graph consisting of n pairwise disjoint copies of Ks. In this way, the root
graph can be identified with a geometry involving 2n vertices. Geometrically,
this could represent the homological class of H?(K3) given by
Cl=CP'®...0CP! (4.24)

-
n

exhibiting U(1)" toric actions associated with colors. To elaborate the sigma
model describing the vector space Ea, we consider a type IIA geometry ob-
tained by n U(1) gauge fields Vi,..., and V,, and 2n chiral superfields gbf with
gauge charges with charges ¢ = (qf, qQ, .., qén) as follows,

¢ = (1,1,0,0,0,...,0,0,0)
¢¢ = (0,0,1,1,0,...,0,0,0)
¢ = (0,0,0,0,1,1,0...,0,0,0)

e = (4.25)
¢ = (0,0,0,0,0,..,0,1,1).
More precisely, the associated D-terms reads
0"+ = 7
= .. (4.26)

‘¢n71‘2+|¢n‘2 = Tn

This sigma model suffers from at least two problems. The first one is the
dimensionality problem. This can be solved using techniques of sigma models
developed in [37]. The second one is associated with the state number of n-
qubits. An examination shows that this problem comes from the fact that the
only integral solutions of the equation

on = 2" (4.27)
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are
n=1, n=2. (4.28)

To solve this problem, an extra operation motivated by the graph operations
are needed. To get the right states, one needs the cartesian product of colored
Ky’s. Indeed, consider type IIA string theory on the K3 surface. In this
compactification, there are 2™ ways for n 2D-branes to wrap n distinguishable
blowing up CP' represented by 2n vertices. It is remarked that the su(2)
geometric spaces are distinguishable giving rise 2" possible inequivalent states
obtained from the cartesian product of colored K5’s

K2 X K2 oo X K2 (429)
describing the tensor vector space
H, =Clt)s, ®...0 C|lE) 4, (4.30)

In graph theory, this space can be represented by

Cq C, Cn
O ¥ Oeee(D%¢ ... X QD) (431)
The graph shares a strong resemblance with the hypercube graph @,
formed by 2" vertices connected with 2"~ 1.n edges where each vertex involves
n colored edges incident to it [9]. In this way, one writes

KQXKQ...XKQZQn (432)

In this type ITA geometry, the graph (),, can represent wrapped D2-brane
states

|D2/CP}, D2/CPy, ... D2/CP.) (4.33)

A close inspection show that these states can be associated with the trivial
fibration of n CP"’s
CP'®...®CP! (4.34)

n

and their blow ups. In this way, the manifolds @, CP; involves a U(1)" toric
actions exhibiting 2" fixed points v;. It can be represented by by 2" vertices v;
which belongs to the Z" lattice verifying n toric equations. To build the sigma
model describing the Hilbert space H,,, the type IIA geometry is obtained by
2" —n U(1) gauge fields V;, and 2" chiral superfields ®;, ; with gauge charges
with charges qfl__i". In this way, one may also propose the following mapping

QIT <> N = 2 linear sigma model (4.35)
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Ea Hs

/m—m
— O e O

o0

OO0 + & O+0 o

Table 1: Graphs associated with 3-qubits

To see this, let us consider the blow up of CP* x CP' x CP* type IIA geometry
associated with 3-valent geometry. In colored sigma model, this manifold is
described by the D-term equations of two-dimensional N' = 2 supersymmetric
linear sigma model described in terms of 23 chiral superfields ®;,;,;, with charge

qfliQig, ¢=1,...,5 under U(1)®° gauge symmetry
¢ 2 _ _
Z qi1i2’i3‘¢’i1i2i3| — 7"@, g — 1, . e 75, (436)
inigiz=0,1

where the charges are given by

(1,0,0,1,0,0,0,0)

@ iy (0,1,0,0,1,0,0,0)

@ .. = (0,0,1,0,0,1,0,0) (4.37)
(
(

1
qi1i2i3

1,-1,0,0,0,0,1,0)
0,0,1,1,0,0,0,1).

4
qi1i2i3

5
Divigis =
It has been shown that the corresponding vertices v;,,,;, are given by

vooo = (1,0,0), vigo = (0,1,0), vo10 = (0,0,1), voo1 = (—1,0,0) (4.38)
U110 = (07 _170)a V101 = (0507 _1)7 V110 = (_L 1a0)7 U111 = (07 _17 _1)7

being connected with three colors describing 3-qubits. In this way, the asso-
ciated space are presented in table 1.

The D2-brane configurations of 3-qubits can be associated with 3-valent
vertex with three colored legs extending the 1-valent and 2-valent corresponds
to 1 and 2 qubits respectively. They are illustrated in table 2. It is observed
that the n-qubits are associated with polyvalent D2-brane charges living on n
colored legs.
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1 — qubit 2 — qubits ‘ 3 — qubits
D2 braiie
D9-brane D2 brane D2 brane D2 brane
© (D) ( )—/Be brane
states N *’\
D2 brane
geometry 1-valent 2-valent 3-valent

Table 2: Graphs of D2-brane charges associated with n-valent

Besides the root decomposition, proposed link can be supported by the
corresponding Wyel group in type ITA geometry given by

ZQX...XZQ. (439)
—_——

n

This symmetry can be associated with the hypercube graph involving n colors.
In the corresponding gauge symmetry breaking associated with D2-branes, n
copies of local SU(2) can split

SU@). ., — U x SU(2)" (4.40)

local global

producing a T™ manifold given by
ay, +b%, =1, ... a} +0b0% =1 (4.41)

A close inspection reveals that there is a possible correspondence between
N = 2 sigma model, quantum information physics, and graph theory. It is
given in the table 3.

N = 2 Sigma modem Quantum Information Graph theory
Target space Hilbert Space Colored Graphs
Chiral fields qubit states vertices
Number of chiral fields Dimension of the associated Hilbert space | numbers of vertices
Number of U(1) gauge symmetry Number of qubits Number of colors

Table 3: Correspondence between s Lie symmetries, graph theory, and quan-
tum information physics.

This link may offer a novel way to study quantum geometry associated
with quantum mechanical theory of strings and D-branes wrapping non trivial
cycles in the Calabi-Yau manifolds.
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5 Discussions and open questions

In this work, we have engineered multi-qubits from type II superstrings mov-
ing on the singular K3 surface. Concretely, we have combined n-valent geom-
etry, appearing in the Calabi-Yau manifolds used in the geometric engineering
method, Lie symmetries, and graph theory, to approach such quantum sys-
tems. In particular, we have investigated the 1 and 2- qubits in terms of
linear chain geometry in type ITA superstring. The geometries are nothing but
the Ay and A3 ALE spaces associated with the su(3) and su(4) singularities
respectively. For su(3) case, deleting one vertex we have obtained just one
CP! on which a D2-brane can wrap to give two states depending on the two
possible orientations of the CP*. This mechanism reproduces the states of a
1-qubit system using the Cartan decomposition of su(2) Lie algebra. This can
generate a two-dimensional vector space associated with the massive vector
states of the geometric engineering of SU(2) gauge theory in six dimensions.
In practice, this gauge symmetry can split into a U(1) vector field A, (x) and
generators of global SU(2) in the fundamental representation associated with
1-qubit system. A similar analysis has been presented for two isolated CP’s
producing 2-qubit systems. Then, a discussion on the corresponding entan-
glement has been given in terms of six-dimensional vector fiels obtained from
D2-brane charges. Moreover, we have given a geometric engineering picture
of n-qubits in terms of polyvalent geometry using graph operations and the
Cartan decomposition of su(2) @ ... ® su(2) Lie symmetry. In this way, we

-~

have linked the n-qubits to non zeronroots of such a Lie algebra associated with
D2-brane charges using graph operations of colored toric geometry. Precisely,
the Weyl group is identified with the Zs X ... X Zs symmetry associated with
the existence of 2"states in type IIA superstring using D2-branes wrapping two
isolated CP"’s. These geometries have been elaborated using a colored toric
graphs dual to N = 2 linear sigma model.

This work comes up with many open questions and remarks. The first
remark that one should do concerns associated with the n = 4 matching with
the results of the ADE correspondence in the context of QIF where 4-qubits
are linked to the Dy singulaiit\y [18, 19, 20]. In the present work, the 4-qubit

systems correspond to the so(8) affine Lie algebra. An inspection shows that
the singularity can arise in the study of IIB mirror geometry of a toric Calabi-
Yau Eglifold where the Mori vectors, up some details, are given in terms of
tBe\so(S) Cartan matrix. Using the mirror symmetry calculation applied to

so(8) Dynkin graph[21], one can obtain the following algebraic geometry

4 4 4 4 2 2 2 2 2
P(x1, 29, T3, 24, w) = ] + x5 + T3 + 4 + 21002324 + w(z] + 25 + 25 + 7)) +w”.

(5.1)
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This is a quasihomogenous hypersurface in the weighted projective space WCPLIL,I,LIQ
which may be considered as the deformation of a 4-valent singularity

T4747474 = .Téll + .T% + $§ + .173 -+ )\%1.2522?35134. (52)

It is recalled that this is a quartic in CP? identified with a K3 surface. In string
theory compactification, this geometry can produce a singular Calabi-Yau 4-
fold with a K3-fibration developing a 4-valent singularity. Type ITA superstring
on such a four-fold singularity provides a two dimensional field model. Using
the work of [21], the 4-valent iiggularity could be removed by a bouquet of

four-spheres arranged as the so(8) Dynkin graph. In this configuration, the
4-qubit states could be associated with wrapped D4-branes placed near such
a 4-valent singularity.

The intersecting problem is the discussion of entanglement associated with
higher dimensional n-valent singularities in type Il geometry. This will be ad-
dressed elsewhere.
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