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Abstract

This thesis studies the geometry of hyperbolic monopoles using supersymmetry in
four and six dimensions. On the one hand, we show that starting with a four dimen-
sional supersymmetric Yang-Mills theory provides the necessary information to study
the geometry of the complex moduli space of hyperbolic monopoles. On the other
hand, we require to start with a six dimensional supersymmetric Yang-Mills theory
to study the geometry of the real moduli space of hyperbolic monopoles. In chapter
two, we construct an off-shell supersymmetric Yang-Mills-Higgs theory with complex
fields on three-dimensional hyperbolic space starting from an on-shell supersymmet-
ric Yang-Mills theory on four-dimensional Euclidean space. We, then, show that hy-
perbolic monopoles coincide precisely with the configurations that preserve one half
of the supersymmetry. In chapter three, we explore the geometry of the moduli space
of hyperbolic monopoles using the low energy linearization of the field equations.
We find that the complexified tangent bundle to the hyperbolic moduli space has a
2-sphere worth of integrable structures that act complex linearly and behave like unit
imaginary quaternions. Moreover, we show that these complex structures are parallel
with respect to the Obata connection, which implies that the geometry of the com-
plexified moduli space of hyperbolic monopoles is hypercomplex. We also show, as
a requirement of analysing the geometry, that there is a one-to-one correspondence
between the number of solutions of the linearized Bogomol'nyi equation on hyper-
bolic space and the number of solutions of the Dirac equation in the presence of hy-
perbolic monopole. In chapter four and five, we shift the focus to supersymmetric
Yang-Mills theories in six dimensional Minkowskian spacetime. Via dimensional re-

duction we construct a supersymmetric Yang-Mills Higgs theory on R? with real fields



which we then promote to H3. Under certain supersymmetric constraints, we show
that hyperbolic monopoles configurations of this theory preserve, again, one half of
the supersymmetry. Then, through investigating the geometry of the moduli space
we show that the moduli space is described by real coordinate functions (zero modes),
and we construct two sets of 2-sphere of real complex structures that act linearly on
the tangent bundle of the moduli space, but don’t behave like unit quaternions. This
result coincides with the result of Bielawski and Schwachhofer, who called this new
type of geometry pluricomplex geometry. Finally, we show that in the limiting case,
when the radius of curvature H? is set to infinity, the geometry becomes hyperkéhler

which is the geometry of the moduli space of euclidian monopoles.
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Chapter 1

Introduction

1.1 Monopoles and the Higgs mechanism

In the mid sixties and early eighties of the previous century, two major ideas were sug-
gested to answer some unsolved questions in Particle Physics and Cosmology. These
theories play, also, significant roles in the monopoles study at the level of constructing
them and solving their existence problem. The general acceptance of these two the-
ories has led to enormous experimental researches for more than forty years, which
have recently flourished into a grand discovery for one of them and some promising
results for the other.

At one end of the spectrum we have the famous discovery of the Higgs boson on
the 4" of July 2012 at the CERN'’s large hadron collider via a collaborative work of
the ATLAS and CMS experiments [1, 2]. The discovery of the Higgs boson didn’t just
mark the finding of the last missing fundamental particle, but it, more importantly,
verifies the correctness of our understanding for the mechanism responsible for mass
generation, the Higgs mechanism. The Higgs mechanism has been used in locally
gauge invariant theories to give masses to bosons and fermions. The importance of
the role of this mechanism has guaranteed Frangois Englert and Peter Higgs the Nobel

prize in physics on the 8" of October 2013:

for the theoretical discovery of a mechanism that contributes to our understanding

of the origin of mass of subatomic particles, and which recently was confirmed
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through the discovery of the predicted fundamental particle, by the ATLAS and
CMS experiments at CERN's Large Hadron Collider

For the magnetic monopoles the discovery of the Higgs boson is of crucial im-
portance and very intimate mathematical connection. The original notion of a mag-
netic monopole, a stable particle carrying a magnetic charge, appeared as a natural
suggestion for a symmetry between the electric and magnetic fields in the Maxwell’s
equations. Dirac in 1931 [3] was the first to give a convincing argument of the mono-
poles concept by constraining their existence to the quantization of the electric charge.
However, the Dirac monopoles doesn’t have regular magnetic potential. Any vector
potential whose curl is equal to a field of Coulomb form must be singular along a line
(Dirac string) running from the origin to spatial infinity. This physical anomaly in
addition to the lack of experimental evidence led to a natural fade of the idea of mag-
netic monopoles. Moreover, Dirac’s electric charge quantization argument was later
replaced by the fact that the electromagnetic U(1) gauge group in a unified gauge the-
ory is compact, which implies that the electric charge operator obeys commutation
relations with other operators of the theory and these relations require that the eigen-
values of the electric charge operator to be integer multiple of a fundamental unit.

The beautiful twist in the history of magnetic monopoles happened in 1974 when
't Hooft [4] and Polyakov [5] independently found finite energy solutions for the bo-
sonic part of the Georgi-Glashow model. The 't Hooft-Polyakov solutions asymptotic-
ally behave like Dirac monopoles, however, unlike Dirac monopoles, "t Hooft-Polyakov
monopoles enjoy regularity at every point in space. This regularity is due to the non-
zero vacuum expectation value of the Higgs field which forms the cornerstone of the
Higgs mechanism. When the Higgs mechanism was discovered [6, 7, 8, 9, 10], it was
the first successful attempt that allows to incorporate mass in a gauge theory without
breaking the renormalizability. The Georgi-Glashow model is an upgrade of the Yang-
Mills theory [11] by coupling it to a Higgs field, and hence using the Higgs mechanism,
via spontaneous breaking of the gauge symmetry, to generate mass for the particle
contents of the theory which consist of two massive charged vector bosons, a massive

neutral scalar, and a photon. Studying the particle spectrum of a gauge theory is com-
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monly achieved by fixing the gauge and then expanding the theory around a vacuum
configuration. This method only lays our hands on the perturbative spectrum, but it
is always interesting to investigate the spectrum beyond the perturbation theory. This
is equivalent to looking for static stable solutions of the field equations, other than the
vacuum configuration, i.e. “soliton solutions”. The energy finiteness implies that the
fields must approach the vacuum configurations at spatial infinity (sphere). In the
Georgi-Glashow model the vacuum configurations define a sphere of radius equal to
the vacuum expectation value of the Higgs field. Hence each field configuration can
be understood as a map from the spatial boundary S? to the vacuum manifold S2 .
with a topological degree. Moreover, since the topological degree is an integer, it im-
plies that configurations with different degree can’t be transformed into each other via
any continuos deformation. In addition, any field configuration satisfying the finite
energy constraints must become abelian outside the core of the monopoles and hence
a solution of a version of Maxwell’s field equations [12]. If we consider the vacuum
configuration to be the constant map, hence of degree zero, then the 't Hooft-Polyakov
solutions satisfy all the required conditions. The last, but most important, imprint of
the non-zero vacuum expectation value of the Higgs field on the monopole is via its
nature. The nature of the monopole source can be best understood by evaluating the
total flux of the magnetic field which gives an integer multiple of 27r, and hence invari-
ant under any time evolution of the field configurations. This implies that the source
of the field configurations, and in particular the 't Hooft-Polyakov monopole, is purely
topological [13], and hence the everywhere smoothness of the non-abelian monopoles.

Although a pure Yang-Mills theory has no soliton-like solutions in three space
dimensions [14], the addition of a Higgs field with a non zero vacuum expectation
value leads to the generation of the monopoles in their modern form. This significant
physical signature that the Higgs field and the Higgs mechanism has on monopoles
makes the discovery of the Higgs particle a huge success for the monopole physics as
well.

The popular description of the Higgs mechanism is a case of spontaneous local

gauge symmetry breaking [15]. A local gauge symmetry is not a symmetry of nature
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but of our description of the physics in nature, in other words a local gauge symmetry
connects different mathematical descriptions of the same physical state. This means
that we shouldn’t expect any physical consequences from spontaneous gauge sym-
metry breaking. However, the Higgs mechanism’s physical consequences are math-
ematically evident and experimentally measured. This conceptual problem has led
many philosophers of physics to investigate the correctness of the mechanism and to
question the existence of a grand unified theory inspired by the success of the quantum
electrodynamics and based on analogy with its gauge symmetry [16, 17, 18, 19, 20,
21]. In addition, this conceptual discussion had also concerned some physicists like
't Hooft [22] and Witten [23]. Luckily this confusion about the Higgs mechanism can
be gauged away by describing the mechanism in a gauge invariant way. This proced-
ure can be done by first writing the action in terms of gauge invariant variables, hence
rendering the theory independent of the involved gauge group. This will factor out the
gauge symmetry and therefore will be no need to fix the gauge. Then we can proceed
in the traditional way by studying small fluctuations around the ground state. This
procedure was originally done by Higgs for abelian gauge theories [8] and by Kibble
for the non abelian case [24]. Moreover, this gauge independent account for the Higgs
mechanism is discussed in Rubakov [25], and more recently has been adopted in some

reviews and papers [26, 27, 28, 29].

1.2 Monopoles and inflation

At the other end of the spectrum we have some promising recent results that sup-
port an inflationary scenario in the birth of the Universe, in addition to experimental
confirmations of predictions made by the inflation theory. The inflation theory in its
various models, the old [30], the new [31, 32], and the chaotic [33], has inserted in
the very early history of the Universe an extra phase of exponential expansion, the
inflationary phase, where in 103 seconds the distance between two points stretched
by at least a factor of 1026, which means that the size of an atomic nucleus became
the size of the solar system [34]. This rapid exponential expansion solves the ques-

tions that the standard Big Bang Cosmology alone can’t answer. Among these ques-
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tions is the lack of experimental detection for the primordial monopoles that appear
naturally in Grand Unified Theories [35]. The 't Hooft-Polyakov monopoles are solu-
tions to the Georgi-Glashow model where the symmetry group SU(2) of the model
is spontaneously broken by the vacuum configuration to U(1), which has a nontrivial
fundamental group m;(U(1)) = Z. It turns out that topological solutions appear as
natural property when the symmetry group breaks by the vacuum manifold into a
subgroup that has a nontrivial fundamental group, this mechanism is known as the
Kibble mechanism [24]. Grand Unified Theories are invariant under the action of
simple gauge groups that must break down after phase transition to leave the U(1)
group of electromagnetism intact, hence formation of magnetic monopoles. If we as-
sume that inflation took place at the energy scale of the Grand Unified Theory, then all
the magnetic monopoles were produced during inflation, and therefore their density
was diluted by the exponential expansion to an unobservable level.

Inflation has gone through many stages from being a very speculative idea to be-
coming part of the standard Cosmology. Inflation is not only a theory that was con-
structed to fit some preexisting facts, but it also made a bunch of predictions. After
thirty years of constructing the inflation theory, all of its predictions have been con-
firmed except for the gravitational waves. The most important inflation predictions
that have been very successful, thanks to the remarkable progress in the development
of the microwave detectors starting with the Cosmic Background Explorer (COBE) [36],
are:

Decrease in the curvature of the Universe: Just like the curvature of a balloon de-
creases as the balloon is inflated, the curvature of the Universe is decreasing since
inflation ended, and the current Cosmic Microwave Background (CMB) measurements
show that the curvature is at least four times the curvature of the observable Universe
[37].

Non-invariant scale of the density perturbation: The inflationary phase has toend, so
as time progresses the inflation rate slowly decreases. The quantum fluctuations gen-
erated during inflation are proportional to the inflation rate [38]. Hence, fluctuations

generated earlier have bigger amplitude and were stretched more, whereas fluctu-
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ations that were generated later have smaller amplitude and didn’t stretch as much.
Therefore, according to inflation we should expect to see density perturbations of lar-
ger amplitude on larger angular scale of the CMB angular power spectrum, and to see
those of smaller amplitude on smaller angular scale. Strong evidence of a departure
from scale invariance has indeed been found through analysis of the CMB angular
power spectrum [39].

Gaussian perturbation: In vacuum a free field ¢, the inflaton field in the inflationary
scenario, has a Gaussian probability distribution (wave function of harmonic oscil-
lator in its ground state is Gaussian). Using Taylor expansion, we see that the energy
density perturbation 5p = (dV/d$)8¢ + 5(d*V/ddp?)s¢? departs from Gaussianity by
the second derivative of the potential energy V(¢). However, for inflation to work the
second derivative of the potential energy should be very small (the slow-roll condition
of the inflaton field [38]). Hence, according to inflation the CMB fluctuations should
be very precisely, but not exactly, Gaussian. According to the most recent Planck data
[40] the CMB density fluctuations departure from Gaussianity is smaller than 0.1%.
In addition to these significant evidences for inflation, there are some others that have
already been experimentally confirmed, for a full review one can check the most recent
review from the Planck collaboration [40] .

However, a key prediction of the inflation theory, the primordial gravitational
waves, remains unconfirmed. The 2.7K photons left from the Big Bang is uniform
as we cross the cosmos with a small deviation measured to be 65 = %T ~ 107° [41].
This anisotropy in the cosmic microwave background can be understood in the con-
text of quantum perturbations in the gravitational and scalar fields during inflation.
The effect of the quantum fluctuations in the scalar field on the inhomogeneity of the
CMB is physically different than the effect caused by the fluctuations in the gravita-
tional field. On the one hand, the quantum fluctuations in the scalar field, &;, caused
the perturbations in the energy density, have become denser due to gravity and later
formed galaxies and other stellar objects that fill the cosmos (e.g. Andromeda galaxy
and Milky Way are approaching each other and will collide to form a bigger object).

On the other hand, quantum fluctuations in the gravitational field during inflation
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“tensor fluctuation := 61" formed the primordial gravitational waves which caused
vorticity in the polarization field of the CMB. But, a signature of primordial gravita-
tional waves on the polarization of the CMB, called “B modes”, has not been found
yet. Several balloon and ground based experiments are relentlessly collecting data
to measure the CMB polarization so that they can tease out the signature of gravita-
tional waves. In March of last year, the BICEP2 collaboration announced the detection
of B modes whose power spectrum had an angular momentum consistent with in-
flation [42]. Subsequent data from the Planck collaboration [43] and, most recently, a
collaborative cross-correlation of BICEP2 and Planck data sets [44] have demonstrated
that the signal originally reported by BICEP2 is consistent with having arisen entirely
from dust emission in our own galaxy. However, the Planck /BICEP2 collaboration was
able to put an upper limit for the tensor to scalar ratio r = %, which turns out to be
consistent with that obtained indirectly by the Planck collaboration in 2013 based on
the analysis of the CMB temperature fluctuations only. Detecting the “B modes” and
hence measuring r, would allow cosmologists to infer the energy scale of the inflation-
ary potential and determine the right model for the potential energy. Bamba, Nbjiri,
and Odintsov [45] have, recently, constructed different scalar field models for inflation
that can be consistent with different limits of r. The quest for the B-modes of the CMB
is not over, BICEP2 and Planck are collecting data on different frequencies, and there
are two proposals for new generations of balloon experiments the LiteBIRD which is
a polarization-sensitive microwave experiment planned to be launched in 2020, and
the COrE+ proposal (COrE for Cosmic Origins Explorer) for a CMB detector with 10
times more sensitivity than Planck and planned to be launched in late 2020.

After all the empirical successes, inflation is by far the best candidate for the mech-
anism that generated the primordial density fluctuations and the primordial grav-
itational waves. The 2014 Kavli Prize in Astrophysics was awarded to Alan Guth,
Andrei Linde, and Alexei Starbinsky for their leading work on cosmic inflation. The
consequences of the inflation evidences along with the ATLAS/CMS results on the
monopoles study are staggering. The only argument that was against studying mono-

poles, absence of experimental evidence, is now weakened by the inflation empirical
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successes, and hopefully will soon be washed away once the B modes are detected.
The essential role that magnetic monopoles play in Grand Unified Theories, in ad-

dition to the mathematical beauty they carry in their constructions or in the geometry

of their moduli spaces, make them a very interesting topic and a fruitful domain of

research.

1.3 BPS monopoles

The mathematical beauty of the geometry of the monopole moduli space geometry
represents the heart of this thesis. The monopole addressed are the Bogomol'nyi-
Prasad-Sommerfield, “BPS”, monopoles with arbitrary charge, 2N, on hyperbolic
space. For charge 2, a spherically symmetric BPS monopole is a 't Hooft-Polyakov
monopole with minimum energy. Prasad and Sommerfield [46] first studied static
minimum energy solutions for the Georgi-Glashow model. They obtained a limiting
example of the 't Hooft Polyakov monopoles when they investigated the spherically
symmetric case with charge equal to 27t. Later, Bogomol'nyi [47] analyzed static solu-
tions with minimum energy, and derived the field equation describing them, namely,

the Bogomol'nyi equation.

1.3.1 BPS monopoles on R?

BPS monopoles—that is, the solutions of the Bogomol'nyi equation—have been un-
der the microscope by mathematicians and physicists for a long time. This equation
and its solutions can be studied on any oriented Riemannian 3-manifold, but they are
particularly interesting in Euclidean and hyperbolic spaces. One inspiring observa-
tion about BPS monopoles in these spaces is that they can be viewed as instantons in
four-dimensional Euclidean space left invariant under the action of a one-parameter
subgroup of isometries: translations (resp. rotations) in the case of Euclidean (resp.
hyperbolic) BPS monopoles. Another way of saying this is that the Bogomol'nyi equa-
tion results from the four-dimensional self-duality equation by demanding independ-

ence on one of the coordinates.
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To begin with, consider the Bogomol'nyi equation in Euclidean space

VA(b :_*FAa (11)

where ¢ satisfies some suitable boundary conditions that make the L2 norm of Fa
finite and « is the Hodge operator of R3. For a detailed treatment of Euclidean mono-
poles, one can check [48, 49, 50]. The ingredients of the Bogomol'nyi equation can be
cast into a geometrical framework, where A can be viewed as a connection on a prin-
cipal G-bundle P over R? and FA as its curvature. The Higgs field ¢ is a section of the
adjoint bundle adP over R3; that is, the associated vector bundle to P corresponding to
the adjoint representation of G on its Lie algebra, and V A is the covariant derivative
operator induced on adP. A pair (A, ¢) satisfying equation (1.1) is what we call a Euc-
lidean monopole. If we now interpret ¢ as being the x4 component of the connection,

then equation (1.1) becomes the self-duality Yang-Mills equation on R*

FAZ*FA, (12)

where all the fields are independent of the x4 coordinate, and the x-operation is now

with respect to the flat Euclidean metric on R*.

1.3.2 BPS monopoles on H?

For the case of hyperbolic monopoles we simply replace the Euclidean base space R3
with hyperbolic space H3. To construct hyperbolic monopoles from instantons, instead
of considering translationally invariant solutions of equation (1.2) we will, however,
look for rotationally invariant solutions [51]. To be specific consider the flat Euclidean
metric in R*

ds? = dx3 + dxd + dxd + dx? . (1.3)
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If we choose the rotations to be in the (x1,x2)-plane and we let r and 6 be the polar

coordinates in that plane, we have

ds? = dr? +12de? + dx? + dx?

2 <d92+ dr2+d>;§+dx?1> .
T

(1.4)

The rotations now act simply as shifts in the angular variable 6. This coordinate system
is valid in the complement R? \ R? of the x; = x2 = 0 plane. Inside the parenthesis we
recognise the metric on S! x H3, which is therefore shown to be conformal to R* \ R2.

Now a wonderful fact about the self-duality equation is its conformal invariance:
the Hodge « is conformally invariant acting on middle-dimensional forms in an even-
dimensional manifold. This allows us to drop the conformal factor v from the metric
without altering the equation. If we now impose the condition that the gauge po-
tential A is S! invariant, i.e., rotationally symmetric in the (x1,x2)-plane, and if we
define Ag=¢, the self-duality equation becomes the Bogomol'nyi equation on H3. The
Bogomol'nyi equation on H? is also given by equation (1.1) but with the x-operation
of H3. The first constructions of a monopole solution on hyperbolic space were given
in [52, 53, 54].

A BPS monopole in hyperbolic space is labelled by a mass m € R* and a charge
k € Z* given by

m = lim |¢(r)]

1 (1.5)

k= rli_>1rrgo yp— JHS tr(FA AVad),
and it is known [55] that hyperbolic monopoles exist for all values of m and k. In
contrast to the Euclidean monopoles, m cannot be rescaled to unity in the hyperbolic
case, as the value of m affects the monopole solutions [56]. Alternatively, one can
normalise the mass to unity, but only at the price of rescaling the hyperbolic metric to
one of curvature —1/m?. The rotationally invariant instanton on R*\ R? corresponding
to a hyperbolic monopole of charge k and mass m will extend to a rotationally invariant

instanton on all of R* if (and only if) m € Z.

In [57] Manton interpreted low energy dynamics of monopoles as geodesic mo-
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tion on the moduli space; that is, the space of solutions up to gauge equivalence, and
this ushered in an era of much activity in the study of the geometry of the moduli
space. For the case of Euclidean monopoles, Atiyah and Hitchin showed in [48] that
the moduli space has a natural hyperkéhler metric and they found the explicit form of
the metric for the moduli space of charge 2. Moreover, the metric of the moduli space
of well separated monopoles was found in [58], where the monopoles were treated as
point particles carrying scalar, electric and magnetic charges.

The hyperbolic case is much less understood. In [51], where Atiyah introduced

hyperbolic monopoles, he writes:

Moreover, by varying the curvature of hyperbolic space and letting it tend to zero,
the Euclidean case appears as a natural limit of the hyperbolic case. While the
details of this limiting procedure are a little delicate, and need much more careful
examination than I shall give here, it seems reasonable to conjecture that the moduli

of monopoles remains unaltered by passing to the limit.

Atiyah also showed [59] that the moduli space My ,, of hyperbolic monopoles of charge

k and mass m can be identified with the space of rational maps of the form

a1z a4 4 ay
Zk+brzkl 4o+ by

withk > 1, (1.6)

where the polynomials in the numerator and denominator are relatively prime. Since
the ai,..., ak, by,..., by are complex numbers, the moduli space has real dimension
4k.

Most of the progress in the study of hyperbolic monopoles was focused on find-
ing methods of constructing multimonopole solutions, either by building a hyperbolic
version of the Nahm transform [56, 60, 61, 62] or by studying the spectral curves asso-
ciated with hyperbolic monopoles [63, 64, 65]. Progress on the geometry of the moduli
space was hindered by the early realisation [56] that the natural L? metric, which in
the Euclidean case induces upon reduction a hyperkéhler metric on the moduli space,
does not converge in the case of hyperbolic monopoles, suggesting that the geometry

of the moduli space is not in fact Riemannian. Nevertheless, Hitchin [66] constructed
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a family g, of self-dual Einstein metrics on the moduli space of centered hyperbolic
monopoles with mass m € Z, which in the flat limit m — oo recovers the Atiyah—
Hitchin metric. It is an interesting open question to relate Hitchin’s construction to
the physics of hyperbolic monopoles.

The situation has changed dramatically in recent times due to the seminal work
of Bielawski and Schwachhofer, based on earlier work of O. Nash [67]. Nash used
a new twistorial construction of My ;, to show that the complexification of the real
geometry of the moduli space of hyperbolic monopoles is similar in some respects
to the complexification of a hyperkédhler geometry. Building on that work, Bielawski
and Schwachhoéfer [68] identified the real geometry of the moduli space of hyper-
bolic monopoles as “pluricomplex geometry”, which is equivalent to saying that there
is a C-linear hypercomplex structure on the complexification TcMy  of the tangent
bundle to the moduli space. Later in [69] Bielawski and Schwachhofer studied the Eu-
clidean limit of the pluricomplex moduli space of hyperbolic monopoles, and showed
that in the limit one recovers an enhanced hyperkéhler geometry, richer by an addi-

tional complex structure.

1.3.3 BPS monopoles geometries

Every textbook on monopoles, or solitons in general, dedicates a chapter on differen-
tial geometry and topology as a preliminary for the study of their moduli spaces. As
mentioned in the previous section, the geometry of the moduli space of BPS mono-
poles can be very rich, depending on which background we study the Bogomol'nyi
equation and, also, on the fields being complex or real, i.e. whether we are studying
the real or the complex moduli space. In this section we review the geometries of
the known moduli spaces of BPS monopoles. This is a brief description of each geo-
metry, for a full review on the constructions of the objects of each geometry one can
refer to chapter three of [50] and chapter three of [61], or [70, 71, 72] for very thorough
references on the subject.

We will start by making some key definitions for these geometries. Suppose that

a 2n-dimensional manifold M admits a globally defined (1, 1) tensor ] with local ex-
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pression J,,Ydx* ® 9., which enjoys the following properties:

Jut =0, (1.7)

Ju Te¥ = —d,", (1.8)

then the tensor is called an almost complex structure and M is called an almost com-
plex manifold. Using the almost complex structure, we can define a mixed three-

tensor, called the Nijenhuis tensor N, with components
o_1lro P
Nuv :6]u a[(r]v] — (L v). (19)

It can be proven that the Nijenhuis tensor vanishes identically if and only if the almost
complex structure is a complex structure (also called integrable complex structure)
(seee.g. [73]). The latter condition means that it is possible to find a holomorphic atlas

on M, i.e. in every chart coordinates {z™, z™} exist for which

Jm™ = 1dm ™, Ja™t = —dm", Ja" =Jm™ =0, (1.10)
with m, m = 1,...,n. If an almost complex manifold is Riemannian and the metric
satisfies

Ju®Jv?gpo = Guvs (1.11)

the metric is called almost hermitian. This condition is equivalent to Juv = Ju."gvp
being antisymmetric, and J,. is then called the fundamental two-form. An almost
hermitian manifold is called hermitian if the Nijenhuis tensor vanishes, and there exist
a connection that preserves both the complex structure and the metric. An important
class of hermitian manifolds are Kdhler manifolds. For a Kihler manifold, the corres-
ponding connection on the tangent bundle is the Levi-Civita connection.

Suppose that V = R4™ . A triple H = (J, ]2, J?) of complex structures with

JETP = —Iyn 6% 4 eXBY]Y (1.12)
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is called a hypercomplex structure on V. Denote the space of endomorphisms of V by

EndV. The three-dimensional subspace Q of EndV, defined by
Q =RJ! +RJ2+RJ3, (1.13)

is called a quaternionic structure, i.e. Q is the set of real linear combinations of the
complex structures.
Hypercomplex manifolds: Given a manifold with an almost hypercomplex structure,

there always exists a unique connection, I', preserving it
DIV = 0uJvP = Tuv T o® 4+ TuoPTv " = 0. (1.14)

If the torsion vanishes, the manifold is called hypercomplex and this is equivalent with

the vanishing of the diagonal Nijenhuis tensor defined as
INCIIES P Y 1.15
wv —EIH [U]v] _(HHV)' ( . )

In that case, the torsionless affine connection on the tangent manifold TM is called the

Obata connection [74] and its components are given by the following expression:
[e] 1 — N N s
Fun® = =5 200,70 + T % 0<% - To®. (1.16)

More generally, given an almost hypercomplex structure, the unique connection pre-
serving it is given by

Mav® = PP + N4, P (1.17)

Hyperkdhler manifolds: These are Riemannian manifolds with hermitian hypercom-
plex structures, and where the Obata connection coincides with the Levi-Civita con-
nection.

Pluricomplex manifolds: On a manifold with pluricomplex geometry we have two 2-
sphere of integrable complex structures (i.e. Q; and Q2 according to (1.13)) that don't

have any anticommutation relations between them, and these complex structures de-
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compose the complexified tangent space as C>™ @ C2. If we complexify a pluricomplex
structure we get a hypercomplex structure. This implies that if we look at the complex
thickening M of a manifold M with pluricomplex geometry we find that its geometry
is hypercomplex. Thus, the pluricomplex geometry on M can be viewed as a biqua-
ternionic geometry on M€. These different views of the pluricomplex geometry are
discussed in this thesis via the study of the geometry of the real and complex moduli

spaces of hyperbolic monopoles.

1.4 Monopoles and rigid supersymmetry

All topological solitons saturate a certain energy bound, and this feature gives a sign
that they are supersymmetric in nature. This link is rooted in the fact that in a massive
supersymmetry representation with central charges the bound is enforced by the unit-
arity property of the supersymmetry transformations [75].

The study of the supersymmetric extensions of topological objects was initiated by
Zumino studying the supersymmetry of instantons [76]. Starting with N = 2 super-
symmetric Yang-Mills theory on four dimensional Euclidean space, Zumino showed
that instantons are supersymmetric under half of the supersymmetry parameters, and
using supersymmetry he computed the index of the Dirac operator by showing that for
solutions with winding number n of the SU(2) supersymmetric Yang-Mills equations
there are 8n-dimensional space of instantons and 4n-dimensional space of solutions
for Dirac equation and hence recovering the results of Atiyah, Hitchin and Singer [77],
and Brown et al. [78]. Moreover, the supersymmetric extensions of lumps and vor-
tices have been also successfully investigated in [79] and in [80, 81] receptively. As for
Skyrmions, the energy satisfies certain topological bound which is called the Faddeev-
Bogomol'nyilower bound [82]. But unlike other topological objects, this bound cannot
be saturated for a non-trivial value of the Skyrme field when the spatial domain is R3.
However, if the spacial domain is taken to be S? the bound can be saturated [83], but
a supersymmetric extension for the Skyrme model on $3 has not yet been found.

The supersymmetry of Euclidean BPS monopoles was obtained in [84, 85, 86] among

others. In this thesis we will exhibit the supersymmetric extension in detail for the case
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of the hyperbolic monopoles. For the Euclidean case one can show that monopoles
are supersymmetric objects by staring from N = 1 supersymmetric Yang-Mills the-
ory in six dimensional Minkowski space and then perform a dimensional reduction
to N = 2 supersymmetric Yang-Mills-Higgs theory in four dimensional Minkowski
space. Then, by analyzing the static solutions of the field equation for bosons and fer-
mions we find that solutions of the Bogomol'nyi equations plus their superpartners
(supersymmetric BPS monopoles configurations) form a subset of the field equations
that minimize the energy and only break half of the supersymmetry. A similar ap-
proach is to start with N = 1 supersymmetric Yang-Mills theory in ten dimensional
Minkowski space and then perform a dimensional reduction to N = 4 supersymmetric
Yang-Mills-Higgs theory in four dimensional Minkowski space. A detailed treatment
for both cases can be found in Figueroa-O’Farrill’s notes [87].

The study of the supersymmetry of hyperbolic monopoles, on the other hand, is
different because of the need to construct a supersymmetric Yang-Mills-Higgs the-
ory on a curved space, namely the hyperbolic space. This kind of supersymmetry
on a curved background where the gravity is not dynamic is now known as rigid su-
persymmetry. Rigid supersymmetry has been very fashionable in the last few years,
and many results have shown that one can learn a lot about a theory by putting it
on curved space. Hence, many known supersymmetric theories were, recently, stud-
ied on curved spaces which led to some important developments and interesting res-
ults especially in testing the AdS/CFT conjecture and computing new observables in
known theories. The AdS/CFT conjecture is a proposed duality relating the quantum
physics of strongly correlated many-body systems to the classical dynamics of gravity
in one higher dimension. In its original appearances [88, 89, 90], the correspondence
related a four-dimensional Conformal Field Theory (CFT) to the geometry of an anti-
de Sitter (AdS) space in five dimensions. Studying supersymmetric theories on curved
spaces, for the purpose of finding examples that second the AdS/CFT correspond-
ence, was initiated with Pestun [91], who studied N = 4 supersymmetric Yang-Mills
theory on $*. Pestun computed the partition functions and the correlation functions of

Wilson loops and proved the Erickson-Semenoff-Zarembo /Drukker-Gross conjecture
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[92, 93] used in many studies to test duality. This seminal work inspired Kapustin at
al. [94] to study supersymmetric theories on S? to compute the partition function via
the localization techniques and successfully test some duality conjectures. In addition,
many other curved spaces become popular for supersymmetric theories for example
$3 x S [95] and S? x S! [96].

Traditionally, constructing a supersymmetric theory on a curved background can
be done as follows; we start with a supersymmetric Lagrangian on flat space Lgn writ-
ten in terms of the dynamical field components of the theory, and supersymmetry
transformations 5. relating the bosonic fields to fermionic ones and vice versa. When
we place the theory on a non trivial manifold by simply introducing the metric into
Lgrn we find that, in general, curved space breaks supersymmetry. We then try to re-
store supersymmetry by adding correction terms that are invariant under the gauge
symmetry groups under consideration and inversely proportional to powers of the
characteristic size of the curved space. We keep doing this iterative procedure, we
first try terms inversely proportional to the radius if it doesn’t work we add terms
inversely proportional to the square of the radius and so on, until the modified Lag-
rangian becomes invariant under the modified supersymmetry transformations and
the supersymmetry algebra closes. This procedure will be followed here to construct
a supersymmetric Yang-Mills-Higgs Lagrangian on H3. Historically, this method was
tirst adopted by Zumino in 1977 to study N = 1 supersymmetric theory on AdS, [97],
then used by Diptiman Sen in 1987 to study various supersymmetric theories on $3 xR*
[98], and recently, starting from 2007, there is a vast literature, part of which mentioned
in the previous paragraph, using this method to study supersymmetric theories on
curved spaces mainly for duality testings purposes.

The big interest in supersymmetric theories on non trivial background has motiv-
ated Festuccia and Seiberg [99] to find a general procedure to construct these theor-
ies. Their method is quite useful because it makes use of the supergravity theories
that exist in literature. We start with a supergravity theory which can naturally be
written as L curved + Lsugra, Where Leyrveq contains the part of the dynamical fields

and their covariant derivative that would exist without gravity (in a supersymmet-
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ric theory), and L 4rq contains the fields that were introduced after we coupled the
theory to supergravity like gravitinos (\»,,) and auxiliary fields. By setting the grav-
itino transformation equal to zero we find the constraint on the supersymmetry para-
meter which can be satisfied for different choices of the auxiliary and gravity fields.
If we find a field configuration for {g,, ., aux. fields} that is invariant under su-
persymmetry transformation it implies that £cyrveq is invariant under the supersym-
metry transformation, and then we can render gravity non-dynamical. Using this
method, Festuccia and Seiberg were able to reproduce all the popular supersymmet-
ric theories on AdSy, $*, S? x S! and S? x R. Based on this seminal work, many pro-
jects have been devoted to studying the properties for compact curved backgrounds
to exhibit supersymmetry in various dimension and for both signatures, Euclidean
[100, 101, 102, 103, 104, 105, 106, 107], and Lorentzian [108, 103, 109, 110]. The reason
behind the interest in compact manifold is that supersymmetric field theories on com-
pact manifold are useful scheme for localization techniques which can be used to cal-
culate some observables. The background considered in this thesis is H3, which is a
non-compact manifold, but it would be nice if Festuccia and Seiberg method can be

used to reproduce our results for a supersymmetric Yang-Mills-Higgs theory on H3.

1.5 Summary and overview

In the spirit of the preceding discussion, this thesis studies the geometry of the mod-
uli space of hyperbolic monopoles using supersymmetry, and thus shows that the
pluricomplex nature of the moduli space of hyperbolic monopoles is a natural con-
sequence of supersymmetry. With our approach we find that starting from a Euc-
lidean four dimensional supersymmetric Yang-Mills theory and constructing a su-
persymmetric Yang-Mills-Higgs theory on H? will lead to studying the geometry of
the complex moduli space of hyperbolic monopoles, which we show to be hypercom-
plex. On the other hand, starting from a Minkowskian six dimensional supersymmet-
ric Yang-Mills theory and constructing a supersymmetric Yang-Mills-Higgs theory
on H3 allow to explore the real moduli space of hyperbolic monopolies which we show

to be pluricomplex. One novel aspect of our construction is that the constraints coming
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from supersymmetry are imposed by demanding the closure of the supersymmetry
algebra and not the invariance of the effective action for the moduli, which does not ex-
ist due to the lack of convergence of the L? metric. This is reminiscent of the results of
Stelle and Van Proeyen [111] on Wess—Zumino models without an action functional,
in which the geometry is relaxed from Kéahler to complex flat. In fact, morally one
could say that pluricomplex is to hyperkédhler what complex flat is to Kdhler. Revis-
iting supersymmetric theories by relaxing the requirement of an action existence was
also studied in [112, 113, 114]. Another novel aspect of our construction is the connec-
tion between geometry and low energy supersymmetric dynamics. Supersymmetry
relates fermions to bosons, which means it relates objects that satisfy first order differ-
ential equation, the fermions, to objects that satisfy second order differential equation,
the bosons. At the level of moduli space, these relations can be interpreted as maps
between the odd and even coordinates of the moduli space, and hence one would ex-
pect that a lot of information about the geometry of the moduli space can be read off
the supersymmetry transformations.

Chapter two is dedicated to construct a supersymmetric Yang-Mills-Higgs theory
in hyperbolic space by starting with supersymmetric Yang-Mills theory on Minkowski
spacetime, euclideanising to a supersymmetric Yang-Mills theory on R*, reducing to
R? and deforming to a supersymmetric theory on H3. Then we show that the hyper-
bolic monopoles coincide with the configurations which preserve precisely one half
of the supersymmetry.

In chapter three, we show that the geometry of the complex moduli space of hy-
perbolic monopoles is hypercomplex. We start the analysis of the moduli space by
studying the linearisation of the Bogomol'nyi equation and identifying the bosonic
and fermionic zero modes and how the unbroken supersymmetry relates them. A
possibly surprising result is the fact that supersymmetry suggests a small modifica-
tion of the Gauss law constraint, which depends explicitly on the hyperbolic curvature.
Moreover, as a byproduct of our analysis we find the index of the Dirac operator in
the presence of a hyperbolic monopole. Then we linearise the unbroken supersym-

metry and by demanding the on-shell closure of the supersymmetry algebra we find
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the conditions satisfied by the geometry of the moduli space.

In chapter four, we shift the focus to the study of supersymmetric Yang-Mills—
Higgs theory on H? with real fields which we obtain by dimensional reduction of six
dimensional supersymmetric Yang-Mills theory on Minkowski space. We compare
our results with family A theories from [115] which is model describing how to obtain
a supersymmetric Yang-Mills theory on R™ x mid+1-n) starting from a supersymmet-
ric Yang-Mills action R(¢Y), where M is a manifold that admits Killing spinors. We
show that our theory coincides with an example from family A, whered = 5,n = 3and
M is H? and we study the supersymmetry algebra of the obtained theory. The special
feature about this theory is that it is invariant under real supersymmetry transforma-
tions which hints that the ansatz for the zero modes that will later represents the basis
of the moduli space are real.

In chapter five, we show that the geometry of the real moduli space of hyperbolic
monopoles is pluricomplex. We show, first, that under supersymmetric constraints
the equations of motion obtained in chapter four can be simplified to Bogomol'nyi
equation on H? plus a Dirac equation for the fermions. Then, we show that the super-
symmetric hyperbolic monopoles satisfy the simplified field equations and that they
are 3 “BPS” saturated. After that, we start analyzing the real moduli space, so we use
the unbroken supersymmetry transformations to construct real zero modes which we
show to satisfy the linearized Bogomol'nyi equation and a gauge background condi-
tion. Furthermore, by demanding that the complex structures on the tangent space
must map the zero modes again to solutions of the linearized Bogomol'nyi equation
and Gauss’s law we construct two families of integrable complex structures that we
show to have the properties of pluricomplex structures defined in [68]. In other words,
we find two sets of 2-sphere complex structures that don’t anticommute, and hence
form a biquaternionic algebra. We finish this chapter by showing that in the limiting
case, when the radius of curvature of hyperbolic space is set to infinity, the geometry
of Euclidean monopoles emerges from the geometry of hyperbolic monopoles.

The thesis ends with with three appendices. The first one is on the Frolicher—

Nijenhuis bracket of two endomorphisms, in the second one we show that the con-
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nection defined on the complex moduli space of hyperbolic monopoles is the Obata
connection, and in the third one we reduce the supersymmetry transformations of

supersymmetric Yang-Mills theory from R(®>!) to R3.
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Chapter 2

Supersymmetric Yang-Mills-Higgs
Theory on H? with Complex Fields

2.1 Introduction

The purpose of this chapter is to present a systematic construction of supersymmetric
theories in hyperbolic space by the following procedure: start with supersymmetric
Yang-Mills in Minkowski spacetime, euclideanise a la van Nieuwenhuizen—Waldron
[116], reduce to R and deform to a theory on H3. The euclideanisation will require
complexifying the fields in the theory, which will turn out later to be crucial to study

the geometry of the complex moduli space.

2.2 Off-shell supersymmetry in Euclidean 4-space

The first step has been done in [116], except that we expect that auxiliary fields should
play an important role and thus must promote the theory to one with off-shell closure

of supersymmetry (up to possibly gauge transformations).
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2.2.1 On-shell SYM theory on R*

The Euclidean supersymmetric Yang-Mills action in R* is obtained by integrating the
Lagrangian density

LW = _TrxiBy — 1 Tre?, 2.1)

where Tr denotes an ad-invariant inner product on the Lie algebra g of the gauge group

G, and where the subscripts L, R denote the projections
br=3M+y  and  x=5x'(T-v"), 22)

where v° = yly2y3y4, where y*yY = y*Y + §*V. This means that that (y°)2 = 1. We
can raise and lower indices with impunity, since the metric is 8,.v. The action defined

by £*) is invariant under gauge transformations, which infinitesimally take the form

SabL =AWl Saxk=[Axk] and  SAAL=-DuA=-3,A+IA A,
(2.3)
with A € C*®(R*%; g). Furthermore, it is invariant under the supersymmetry transform-

1 LlVl:
651.])] — *2'}/ L y&

ek = kP 24

8eAu = —ekvibr + Xkvper ,
where ¢; and ¢}, are constant spinor parameters of the indicated chirality. Since ¢¢
and EL are independent, we actually have two supersymmetry variations, which we

will denote &; and o and leave the parameter unspecified when there is no danger of

confusion. In this notation we have

Stbr = 3y*VFuver drbL =0
Sixk =0 Srxh = —Leb vy (2.5)
6LAu = XJ{QYuEL 6RAu = _SJ]quull)L .
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2.2.2 Introducing auxiliary field

Notice thatif 5{ is defined as 5; but with a different supersymmetry parameter, say €1,
then on the gauge field [61,5{]A, = 0, and similarly [5g,d;]A, = 0. On the fermion,
however, this will not be true off-shell and it is for that reason that we will introduce

an auxiliary field. Indeed, one finds

(5, 0 Iwr = dr(3V* Y Fuver) — 81 (3" Fuver) - (2.6)
Using that
81 Fuv = DudLAy — D81 A, = Dy(xkhyver) — Dy (xhyuer) (2.7)
whence
51, 8{1Wr = Duxhyvery*Vel — Duxhyvelv*Ver , (2.8)

where we have used that yl, = y,, and also that (xT)" = +Tx for anticommuting
spinors. (One might think that the + sign violates the sign rule, but it does not because
P and P are independent fields, etc.)

In order to further manipulate the right-hand side of 51, §{ ]ir; we must make use

of a Fierz identity. The basic Fierz identity in R* for anticommuting spinors is given

by
Px' = —IxI = 1Y 0ys — Iy M v+ XYY byers + XY by . (29)
Two special cases will play a role in what follows:
Yrxk = —Ixky*ryuPr, (2.10)

and

Wrxk = —3xk0rPr — Ixky* bRy 2.11)

where Pr = %(]I —vs5). Of course, for commuting spinors, we simply flip all signs in
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the right-hand side.

Using the Fierz formula (2.10), we may rewrite

81,87 1Wr = —3Duxk Y el V"V Yovver + DXk Y ety vovef - (2.12)

Using that y*YysY+v = —Yuo — 30,0, We rewrite
’ 3.1 = / 3.1 s / 1 T [T 1 t uv ./
(o, 81 1L = jXRDELEL —35XR Deper + 3DuXRYveLY" e — 3DuXxpyveryH er - (2.13)
Comparing with equation (2.8) we see that

f o f el IV 15 e t e e!
uXRYveLY"Y el — Duxpyvery*Ver = xgPerer —xgDerer (2.14)

whence, in summary,
— —
51, 8{ 1L =Xk Defer —xpDeref (2.15)

<
which vanishes for all ¢ , ¢{ if and only if x% D =0, which is the field equation for xE.
This suggests introducing an auxiliary field, historically denoted by D, and modifying

the supersymmetry variation of {1 by a term proportional to D, namely
St = Der + s¥* Fuver . (2.16)
Now, we see that
(6,81 1W = (8D —ngeL)sﬁ — (6D — x£§££)£L , (2.17)
whence we deduce that if we set

G f
6]_D = XRIZ£]_ = DHXRVHEL (218)
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then [51,5{ ]y = 0. But now we have to check that [51,5{]D = 0 as well:

(51, 8{1D = 51(Dyuxky*ei) — 81 (Dyxky*er)
= 5L AL xhIv" el — 18] Ay xhIvter (2.19)

= 2[XTRYLL£L7 XLVHEI/_} )

where we have used that ZSLXJ{2 = 0. We now use the Fierz identity (2.10) and (in matrix

notation) rewrite

51, 811D = 2xhvuerxky el — 2xhvuel xhy er

= —XRYWYV YL XRY e + XRY WYY erxky Vel

(2.20)

= 2xkyvelxhy er — 2xhyverxhy Vel

= 20xhvuel, xkyted ,

which is to be compared with equation (2.19), from where we see thatindeed [6; , 5{ ]D = 0.
In a similar way we work out gD by the requirement that [0, 6,’2]){{2 =0. Let abe

a number to be determined and let
SrXL = aDel, — LelyHVE 2.21
RXR ER T 2ERYT v . (2.21)

Then

i = (D Jeky) 58 (sDCk k™)

(2.22)
= OCéRDE],QT + e%vaull)Le{zTy‘“’ — (e ¢ €R) -
We use the Fierz identity (2.10)
Dulpo/]/zT = _%E'IIQTVGDLLIJ)LYGPR (223)
to rewrite
[5R, SplxXk = arDepl — Ler Ty Db ehyvyoy™Y — (er ¢ k) - (2.24)

41



We now use that v, yoy"Y = —y.o + 30,6 to rewrite the above equation as

bR, E{Q]XL = adgrDep! + %e,’QWUDqueJ{Qy”“ — %s{ﬁlﬁtﬁai2 — (er ¢ €R) - (2.25)
Comparing with equation (2.22), we see that
EszYoDulbLﬁLY”U —(er > eg) = iﬁTDﬂJLEL — (er ¢ €R), (2.26)
whence finally
(5, OkIxk = (@0rD + kDL ) et — (ex > ek , (2.27)
which vanishes provided that
L
5RD = _EERDwL . (228)

As before, one checks that [6g, 631D = 0.
We fix « by closing the supersymmetry algebra on the gauge field: we expect that

it should close to a translation up to a gauge transformation. Indeed,

81, 8r] AL = 81 (—ehyudr) — SR (XkYuer)
= —ehyu (D+3yYPFyp) &1 — eh (aD — 3vYPFyp) Yuer (2.29)

= —(1+ o)ehyuerD — dek (vuv*® —v"Py) et Fvp

whence we see that « = —1 and using that [y,,, y¥°] = 25)v° — 260vY, we rewrite

51, SRIA L = 2ehyPer Foy
= 2ebyPer (0pAL — 0uAp + [Ap, Ayl (2.30)

— £P0,A, —DUA,

where £° = 2s£yp£L and A = EPA,.

In a similar way, one shows that the algebra closes as expected also on x% and
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D. Indeed, on {; one has

51, 8rIWr = —8r(Der + 3" Fuver)
= —ehDPrer —y ek yvDuvrer (2.31)

= —yYy*erebyvDutbr

which upon using the Fierz identity (2.9) for e ¢}, becomes

(61, drIbL = %ETR‘YPSLYVY“YPYVDM-LI)L : (2.32)

Now, we use that y¥vy,,y+ = 0 in four dimensions in order to rewrite this as

(5, Srhbr = 2ehy* et Dybr = E*dbr + A, i (2.33)
as expected. The calculation for (51, 612]){{Q is similar. Finally, we check closure on D:

(51, 581D = 51 (ehBbr) — Sr(xk Ber)
= ehvulxpyter, Wil + ek B(Der + Sy Fuver)
T (ehD + Leby* ) Ber + lehyabr, xhivter (2.34)
= EL‘}/Q(DDD + %Y”VDpFw)eL + aL(DpD + %ELV“VDDFWW%L

=2l y°D,Der + %e%(ypy“v +vY"VyP)DoFuver -

Using that yPy*Y 4 y#Vy®? = 2yP*Y and the Bianchi identity D(,F,.; = 0, we conclude

wv

that

51, 6r]D = 2ehyPD,Der = £P0,D + [A, DI, (2.35)

as desired.
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2.2.3 Off-shell SYM theory on R*

In summary, the following supersymmetry transformations

SLAL = vauaL ORAL = _ETRYLLII)L
Stpr = Dep + $¥* Fuver Srpr =0
(2.36)
6L)(,T2 =0 6;3)(?z = —ELD - %e%y‘“’ﬁw
i i
51D =xpDPer 5rD = e By
obey
51,8{]=0  [6g,8r] =0  whereas  [5,8g] =Lg +85 © , (2.37)

where £* = 257@/“& and A = EHA .
The action given by the Lagrangian (2.1) is not invariant under the supersymmetry
transformations in (2.36) unless we also add a term depending on the auxiliary field.

Indeed, the invariant action is given by
LW = —Trxhpy — 1 Tr P2 — 1 TrD2. (2.38)

It should be remarked that the euclideanisation has in fact complexified the fields in
the original Yang-Mills theory. Indeed, the spinor representation in Euclidean signa-
ture is not of real type, as it is in Lorentzian signature and the supersymmetry trans-
formations further force the bosonic fields to be complex as well.

We may promote this action to an arbitrary Riemannian 4-manifold simply by co-
variantising the derivatives, so that D, now also contains the spin connection. Doing

so and taking ¢; and ¢l, to be spinor fields, we find that
s LW = —Vu ’I‘rx};yvsL(Dg”V +FHY) — %TrxLypy“VFwVpeL , (2.39)

and

SRLW = 1V, TrFuy ey oL — § Tr Voehy Y yPFuaibr | (2:40)
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from where we see that if ¢; and aL are not parallel, the action is not invariant. This
will be remedied for the dimensionally reduced action in three dimensions by adding

further terms in the action provided that e; and ¢}, are Killing spinors.

2.3 Reduction to Euclidean 3-space

The spin group in four dimensions is Spin(4) = Spin(3) x Spin(3). The spin group in
three dimensions is Spin(3) and embeds in Spin(4) as the diagonal Spin(3) in Spin(3) x
Spin(3). Therefore in three dimensions there is no distinction between L and R spinors.
We reduce to three dimensions along the fourth coordinate, whence we assume that
04 = 0 on all fields and parameters.

We take the following explicit realisation for the four-dimensional gamma matrices:

0 —id 0 1T Lo
;= ’ Y4 = and hence  ys5 =v1v2y3ys =
o 0 I 0 0 —I
(2.41)

¥
This means that we can take {1 = and xL = <0 XT>. The basic Fierz identity
0

for anticommuting spinors in three dimensions is
Px' = —3x"p — sxTolpol . (242)
The gauge field decomposes as A, ~ (Ai, ¢). The supersymmetry parameters ¢; and

eL
el, also decompose as W and x, do: e1 = and ¢f, = <0 e%).
0
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2.3.1 Off-shell SYMH theory on R?

In terms of the three-dimensional quantities we have the following supersymmetry
transformations:

StA; = ix'orer SpAL = —ieLoiw

Srdp =xTer Srb = —eh
5LXT =0 ZSRXT = —De;r2 — %eiij”eEGk — ie]gcriDicb

5D = ix! Dep + b x et 5rD = ief DY + ek, ]

51 = Dep + SeijFIo el —iDidoter Srp =0,
(2.43)
where now
[6r,5{]1 =0=[6g,04) and  [8r,0r] = Lg + 8658, (2.44)
with &' = 2ieloter and A = £'A; + 2eher .
The reduction of the action (2.38) to three dimensions is
LB = ATy By — Trxfd, v — 1 Tr P2 — L TrD)* — L Tr D? (2.45)

where B = 0'D;, F? = Fi;FY and [D$> = Di$pD'¢. It can again be suitably covari-
antised to define it on a Riemannian 3-manifold. Its variation under supersymmetry

can be read off from equations (2.39) and (2.40). Doing so, one finds

s L3

—iV; Trx' (¢'D + 05F9 —iD'$) er + TrxTo'o! (SejkeP* — D) Vier (2.46)

and

5rLB) = Vi TreV*el (—1Fj +iDjdow) ¥ + TrViek (ejP* + Ded) o'op . (2.47)
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2.4 Deforming to curved space

We now wish to improve the action £(3) and the supersymmetry transformations
of the fermions and the auxiliary field in order for the new £ to transform into
a total derivative when the spinor parameters are not necessarily parallel. For reas-
ons that will be clear later, we will, instead, take the spinor parameters to be Killing:
Vier = ApLojer and Vie,g = AR €L(Ti for some (either real or imaginary) constants Ap

and Ag. We add terms
L3 s £ o Trxhp + Joo Tr d? + a3 Tr ¢D + oy Tr D2 (2.48)
to the Lagrangian and also

S ~ o + Brder Srx" ~ SrxT — f53€12¢
(2.49)

5LD ~ 8D + Bax'er 8rD ~ 5rD + Bael,
for some constants o, o, 3, &4, 1, B2, B3, B4 to be determined.
We start by computing §; £3). Using equation (2.46), we arrive at (henceforth

dropping Tr from the notation)

51£3) = ViXt —Ar(LejeP* — Ded)xToler —iBix D (der) — B2Dxler
+oax' (D + Bid)er +1i(FeiFI —Drd)ofer) + aadpxer + azDxler

— —
+ o (i Ber + BaxTer ) +ouD (ixt Ber + [o,xTer] + BaxTer ) , (250)

where X! = —ix! (¢'D + 0jFY — iD'¢) €1, and where we have used that o'cj0; = —o0j.

The x'F terms vanish provided that «; = —iA;, which also takes care of the x'Did
terms. The x'DA; terms impose oy = 0, whereas the x'pA; terms become a total
derivative VY, with Y} = —ipi¢dxToter, provided that o3 = —B1. The x'D terms
vanish if B2 = —(B1 + iAL) and the x'¢ terms vanish provided that oy = —B2.

In summary,

£ = —ix "B — x" [, p] — idrx T — §F° — 3D — (D + pr¢)’ (2.51)
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transforms as
6[_,5(3) = Vi (—IXT (Ui(D + Bld)) + G]Fll - lDld)) €[_) ) (252)

under

SLAL = ixTorer

Sup =xTer

Six =0 (2.53)
Spp = (D + Bidler + 2eijkFio*er —iDidpoter

5 t ot
61D =ix"Der +[d,x"er] — (1 +ir)x e,

With vie]_ = 7\]_0‘i€[_.
Notice that the action depends on A1, hence once the action is fixed, the sign of the
Killing constant in the Killing spinor equation is also fixed.

Next we compute dg £ (3) and use equation (2.47) to find

5rL) = ViXk — Ar(3¢jke + Ded)eho'V + iBspek B — BaDefp + ek
Finp ((D + Bad)ehb + 1L e FU + Dk¢)eLokxp)

+B1Def — B1dp(ieh B + Baefh) , (254)

where we have again used o'0j0; = —0j and where X} = si)’ke;r2 (—3Fjk +1iDjdoy) b.

The Fip terms vanish provided that Ax = —Ar, and this also takes care of the Do

terms. Notice that this means that the vector field &' = 2ieLGieL is a Killing vector,
and not merely conformal Killing. Indeed,

Vi((_,j = 2i7\R€J{20‘iO‘j€[_ + Qi)\]_eTRO‘j Oi€L
2—20\[_612(0'10')' —0')'0'1)€]_ (255)

= —2iALeiRES

whence Vi&; + V& = 0.
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The Ai$p terms vanish provided that 33 = 31, whereas the vanishing of the D
terms set B4 = B1 + iAr, which also takes care of the ¢ terms.

In summary, and letting A = —Ag = A,
LE = —ix B — xT[o, ] — b — {F* — 3D — (D + B1¢)? (2.56)

transforms as

5RL(3) =Vi (Eijke;rz (—%ij + iDjd)O'k) 'Lb) , (2.57)
under
5RA1 = —ie,g(rﬂb
SR = —efh
Srx" = —(D + B1d)ef — i(5eijiF + Did)eo® (2.58)
Srp =0
8rD = ief B + ek, W] + (B1 +iN)ehw
with Vier = Aojer and VieL = —)\eacri.

24.1 SYMH theory on H?

One can show that the supersymmetry algebra of the left and right supersymmetry

transformations closes as follows:
(61,8{] =0=[8g,8,) and  [5r,0r] =Lg + 8% & +6% , (2.59)

for &t = 2ieLUieL and A = EA; + 2eLech, and where R is an R-symmetry transform-

ation with © = —4?\(—:};6L, where
SRp=imp and  SRxT =—iwx'. (2.60)

Indeed, it’s induced from four-dimensions, where it is generated by y°. Notice that ®

is actually constant, so that this is indeed a rigid R-symmetry transformation. Simil-
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arly, it is worth remarking that £; now means the spinorial Lie derivative [117] on the

spinor fields, which in our case becomes

Lep=EWVip+A&toyp  and  LexM =&WVixf —Agixio; . (2.61)

One can check that this is indeed the expression which follows by evaluating the defin-
ition £z = Vg + p(Ag), with A the skew-symmetric endomorphism of the tangent
bundle defined by A (X) = —Vx& and where p is the spin representation.

The parameter 31 remains free and can be set to zero if so desired. This is equivalent to

the field redefinition D ~» D+ 31¢. Doing so, we have that the action with Lagrangian

LB = —ix By — x T, p] — idxTp — {F* — JID¢* — 3D? (2.62)
transforms as
51613 = Vi (—ix! (o'D + 0FY —iD') e ) (2.63)
5rLB) = vy (sﬁkeJ{2 (—3Fjx +iDjdoy) ll)) (2.64)
under
5[_Ai = iXTO'ie]_ 5RA1 = —ie;gcﬂl)
Std=x'er SR = —ehw
5]_)(r =0 6RXT = —DGL — i(%ii)’kFij + Dkd))GTRO'k
Si = Dep +1i(3ejxFY — Did)o®er r =0
_it Her — ind ot i .
oD = X me]_ + [¢7X ]€[_ 1)\X €L, orD = 1€Rw¢ =+ GR[d))II)] + l)\GR.LI) )
(2.65)
with Vier = Aojer and Vie;r2 = —)\e;m.

2.5 Some remarks

The first remark is that there is only a mass term for the fermions, yet none for the

scalar. (This is a choice.) The choice of A is dictated by the geometry up to a sign, but

50



that sign is immaterial since A appears in the action.

Secondly, it seems that the action is not “exact” in that £(®) el ey # 81 6z= for any
reasonable =.

Thirdly, we remark that this theory agrees morally with one of the theories in Fam-
ily A in [115]. In fact, if we eliminate the auxiliary field, then it agrees with the theory
described by equation (3.10) in that paper, denoted N = 2 in d = 3. Finally, let us
comment on the geometry of the manifolds admitting Killing spinors. The integrabil-
ity condition for solutions of the Killing spinor equation Vie; = Aojer says that the
metric is Einstein. The vanishing of the Weyl tensor in three dimensions implies that
the Riemann curvature tensor of an Einstein three-dimensional Riemannian manifold
can be written purely in terms of the scalar curvature and the metric; in other words,
it has constant sectional curvature, where the value of the scalar curvature is related
to the Killing constant A by R = —24A? in our conventions. Therefore the existence of
Killing spinors with real A forces the manifold to be hyperbolic, whereas for imagin-
ary A it would be spherical. In the simply-connected case, we have three-dimensional
hyperbolic space and the 3-sphere, respectively, which admit the maximum number

of such Killing spinors, with either sign of the Killing constant.
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Chapter 3

Geometry of the Complex Moduli
Space of Hyperbolic Monopoles

3.1 Introduction

This chapter is dedicated to the study of the geometry of the complex moduli space of
hyperbolic monopoles. We show that the geometry is hypercomplex. We first show
that hyperbolic monopoles are 1 “BPS” saturated, which means they preserve half of
the supercharges we started with. The reason for tackling the complex space instead
of the real space at this level can be traced back to the step where we euclideanised
Yang-Mills theory that renders the hyperbolic monopole fields complex. We analyze
the geometry using the low-energy supersymmetric dynamics, hence, as a first step,
we construct a supermultiplet of bosonic and fermionic zero modes that we show to
satisfy the linearized Bogomol'nyi equation and Dirac equation respectively, so, these
modes can be thought of, now, as bases of the tangent space of the Bogomol'nyi solu-
tions. Moreover, since we are studying the moduli space, we show that the bosonic
zero modes satisfy a gauge background condition. We also show that we have an
isomorphism between the vector spaces of bosonic zero modes and fermionic zero
modes, which means that for hyperbolic monopoles of charge n, the index of the Dirac
operator in the presence of hyperbolic monopoles is 4n. This is the hyperbolic ana-

logue of Zumino result [118] for Euclidean monopoles. That result can be rederived
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without using supersymmetry via the calculation of the index of the Dirac operator in
the presence of a monopole. For hyperbolic monopoles this calculation has not been
performed, to our knowledge, but it is conceivable that it may be possible using the
generalisation of the Callias index theorem [119] in [120]. Then, we construct a set of
endomorphisms on T¢(H? x S1), that we show to satisfy the quaternionic algebra, and
map zero modes to zero modes. This will lead to defining complex structures on the
tangent space to the moduli space, which we use in linearizing the the unbroken su-
persymmetry transformation. Finally by closing the supersymmetry algebra we find

the geometric identities defining the geometry of the complex moduli space.

3.2 Moduli space of BPS configurations

In this section we start the analysis of the geometry of the moduli space of BPS con-
figurations. The first observation, which is crucial for this approach to the problem, is
that the BPS configurations are precisely the BPS monopoles with D = 0. More pre-
cisely, bosonic configurations for which §;1 = 0 are precisely those obeying D = 0
and Dy = %siijij, for which the §; supersymmetries with parameter e; obeying

Vier = Aojer are preserved. This is easy to see by writing
S = (D +i(5ekF — Didp)o*)er (3.1)

and noticing that the determinant of D+1( % eijkF —Dy¢)o* is zeroif and only if D = 0
and 1ejxFY — Dy ¢ = 0. Similarly, the bosonic configurations with Dydp = —LeqjFY
and D = 0 are precisely the ones which preserve the 6 supersymmetries with para-
meter el, obeying Viel = —Aeloi. It is the these latter bosonic BPS configurations
whose moduli space M we will study in the rest of this chapter. The moduli space M

is defined as the quotient P/§ of the space P of solutions of the Bogomol'nyi equation

Did + Eiijjk =0 (32)
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by the action of the group § of gauge transformations:

1 1

A~ gAg  —dgg~ and ¢ — gd)g_1 , (3.3)

where g : H> — G is a smooth function. We mention once again that the Euclidean
theory has complex fields, so that strictly speaking the half-BPS states actually corres-

pond to complexified hyperbolic monopoles with D = 0.

3.2.1 Zero modes

Consider a one-parameter family A;(s), ¢ (s) of bosonic BPS configurations, where s is

a formal parameter. This means that for all s, they obey the Bogomol'nyi equation
Di(s)d(s) + e P*(s) = 0. (3.4)
Differentiating with respect to s at s = 0, we find

Di(0)d — [$(0), Ai] + eijk DI (0)A* =0, (3.5)

where A; = aa};i o b= % . and D;(0) = 9; + [A4(0), —]. Equation (3.5) is the lin-

earisation at (A;(0), $(0)) of the Bogomol'nyi equation and solutions of that equation
will be termed bosonic zero modes.

One way to generate bosonic zero modes is to consider the tangent vector to the
orbit of a one-parameter subgroup of the group of gauge transformations. The sub-
space of such zero modes is the tangent space to the gauge orbit of (A;(0), $(0)). The
true tangent space to the moduli space can be identified with a suitable complement
of that subspace. A choice of such a complement is essentially a choice of connection
on the principal §-bundle P — M. In the absence of a natural Riemannian metric on
P, we will employ supersymmetry to define this connection.

Supersymmetry relates the bosonic zero modes to fermionic zero modes \p which are
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solutions of the (already linear) field equations for 1 at (A;(0), $(0)):
B(0) — ildp(0), Y] +Mp =0 . (3.6)
Let n, ¢ be Killing spinors on hyperbolic space satisfying
Vin=Ao;n and Vil =—Allo; . (3.7)

Of course, hyperbolic space has the maximal number of either class of such Killing
spinors.

Let (A, ¢) satisfy the linearised Bogomol'nyi equation (3.5) and let
P =iAjoin—n. (3.8)

We claim that 1 so defined is a fermionic zero mode provided that (Ai, d) obey in

addition the generalised Gauss law
D' (0)A; + [$(0), ] +4ird = 0. (3.9)
Indeed, with the tacit evaluation at s = 0,

W) (i/\icin — d)n) +1 Ki}'\ioin — d)Tl) ; CD} +A (iAiGiﬂ - d)Tl)
=1iDjAi0)o'n +iA;070'Vjn — Didoin — ¢V — [A¢, dlo'n —il, dIn + iAA o' — Adn

=iD'Aim — e*DiAjoum — Dido'n — 4Adm — [Ai, dlo'n —ild, dn ,

where we have used that ¢ 0;0; = —0; and that ¥n = 3An. We can rewrite the resulting

expression as follows
(iD*Ai — ild, o]~ 4Ad) n — (¢7DiA; + D¢ + A¥, ¢l) o, (3.10)

which contains two kinds of terms: those which are proportional to oxn vanish be-

cause of the linearised Bogomol'nyi equation (3.5), whereas the ones proportional to
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n cancel if and only if the generalised Gauss law (3.9) is satisfied.

One might be surprised by the last term in the generalised Gauss law as this is
absent in the case of Euclidean monopoles. And indeed, we see that in the flat space
limit A — 0 this term disappears. The Gauss law is a gauge-fixing condition, or more
geometrically, it is an Ehresmann connection on the principal gauge bundle P — M
over the moduli space; that is, a §-invariant complement to the tangent space to the
gauge orbit through every point of P. It is not hard to see that condition (3.9) is G-
invariant and that it provides a complement to the gauge orbits. However it is not,
as in the case of Euclidean monopoles, the perpendicular complement to the tangent
space to the gauge orbits relative to a §-invariant metric on P.

Conversely, if {» obeys equation (3.6), then
Ai=—ilfoyp and  d=—C (3.11)

obey the linearised Bogomol'nyi equation (3.5) and the generalised Gauss law (3.9).

Indeed, and again with the tacit evaluation at s = 0,

Dy (—Cle)) +eijx D] <—1CTGk1b) — [(1)7 (—iCTUﬂi))}
= Vil — ("D — e VT o b — teijic (T DI + icT ol ]

= Ao — D + i [, ¥ + iAeiji T ¥ — ieiji T o DI
We now use that e,07% = 2ic; and that i[d, {] = B + M to arrive at

D; (7(:%) + eijxD’ (—iCTthb) — {d)a <*iCTUi‘i’>}

=Dy — iy To DI + (o B
which is seen to vanish after using that oy05 = gij + iEijkO'k to expand o D).

3.2.2 A four-dimensional formalism

Itis convenient for calculations to introduce a four-dimensional language. This amounts

to working on the four-dimensional manifold H? x S!, but where the fields are invariant
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under translations in S!. The relevant Clifford algebra is now generated by I, = (I, T4)

given by

M= Iy = (3.12)

0 0
which satisfy T.Ty + VI, = 26,1 Let (r = and ng = , which obey the

¢ n
Killing spinor equations
Ving = —iAlMmg ~ and  Vich = —ACkTuly (3.13)
o ; : ¥
and in addition V4nr = 0 and V4, = 0. The zero modes are now Vi = and
0
Au = (A, ) and the relations (3.8) and (3.11) between them can now be rewritten
respectively as
W =iA Mg and A, = —igLMWr . (3.14)

Also, in four-dimensional language the fermionic zero modes are defined by the
equation

DV = —iAY; (3.15)

whereas those defining the bosonic zero modes are

DAy = —SeuvpeDPAY  and  DMA, = —4idA4 . (3.16)

The first equation is simply the statement that the g-valued 2-form D, A, is antiself-
dual.

It is perhaps pertinent to remark that equations (3.14) are not meant to be under-
stood as mutual inverse relations; that is, substituting the first equation for A, in the
second equation does ot lead to an identity and neither does substituting the second
equation for Y1 into the first. What these relations do mean is that given a bosonic
zero mode A, and a Killing spinor n on H?, the RHS of the second of the above equa-

tions defines a fermionic zero mode; and that, conversely, given a fermionic zero mode
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Y, and a Killing spinor ¢ on H3, the RHS of the first of the above equations defines a

bosonic zero mode.

3.2.3 Computing the index using supersymmetry

Let us define the vector spaces
KE = {Er|Vikr = FiAiEr and  Viég =0} . (3.17)

K* is a two-dimensional complex vector space isomorphic to the vector space of Killing

spinor fields on H? with the stated sign of the Killing constant; that is,
KT = {§|Vi& = £A0iE) . (3.18)

Then letting Z, and Z; stand for the vector spaces of (complexified) bosonic and fer-

mionic zero modes, respectively, we have exhibited real bilinear maps

K+XZO—>Z1 K™ x 21— Zy
and (3.19)

(g, Ay) = 1AM R (Cr,W1) s —iCkT Y1

We may compose the maps to arrive at

KT x K™ x Zo — Zy
(3.20)

(MR, CRy Ay CLHRAH + CLFHVHRA‘V

and

Kt x K™ xZ1 — Z3
(3.21)

(MR, Cr, W1 ) = 20Enr¥r

where in deriving these identities we have used the Fierz identity (2.11) for commuting
spinors.

If we fix (g and ng such that C%nR = %, which we can always do, then the composite
map in equation (3.21) is the identity, which implies that the maps in equation (3.19)

are invertible. In particular, this implies that the vector spaces Zy and Z; of (complexi-
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tied) bosonic and fermionic zero modes, respectively, are isomorphic. Therefore the

number of fermionic zero modes is 4n, where n is the monopole charge.

3.24 Complex structures

We start by defining some natural endomorphisms of the complexified tangent bundle
of H3 x S! which can be built out of the Killing spinors.

Let us choose a complex basis nr« and (g, for «, f = 1, 2, for the vector spaces K*
and K~ of Killing spinors, respectively, which satisfies in addition the normalisation

condition ClTacanB = 84p. Let Aqp be the endomorphism of Tc(H? x S1) defined by
Aapn = —iCh T MR (3.22)
where I',Y = (T, Y —TVT,,). Then one can show that the linear combinations
[=An J = 3(A12+ Ag1) K= —%(Au —Aa1) (3.23)
satisfy the quaternion algebra
P=1?=-1 IJ=-JI=K. (3.24)
More invariantly, if ng € K* and (g € K—, let
EyY = —iCkNnr (3.25)

denote the corresponding endomorphism of Tc(H? x S1). It follows from the fact that

NR, Cr have negative chirality, i.e., I'234nr = —Mmr and similarly for (g, that E . is self-
dual:
$euvpoEPY = Epy (3.26)
and also that
ELPEyY = —(Chmr)%6,Y . (3.27)

The proof of this expression follows from the Fierz identity (2.11) and tedious use of
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the Clifford relations. Hence if we choose nr and (g such that CLnR = 1, then the
endomorphism E is a (complex-linear) almost complex structure on To(H? x S!).

In addition, from the fact that ng, (r are Killing spinors it also follows that
ViEuy =0,  ViEy = 2iAEy; ViEj = —2iA (845Eax — 8ikEay) - (3.28)

Indeed, the first equation follows from the fact that V4(g = 0 = Vng. The second

equation follows from the following calculation:

Viky =V (—iCEFJmR)
= i (—ACk Ty ) TuTymg — ikl (AT Tng)

= —ACRTUMTUMMR — ACRTaTTiTmg

(3.29)
= Nk (13T = T3T) e
= QACLFHT]R
— 2iAEy; ,
where we have used the Clifford relations and the fact that V; = —i)\C,T2 Tyly.
The third and final equation follows from a similar calculation:
Vikjx = Vi (_iCLrjknR)
=—i (—i?\C,TJJi) MR — 10k Tk (—ATTmR)
(3.30)
= —MerlrirjleR - }\CJ{erkrirllnR
= ALk (T — Tili) M -
We now use the following consequences of the Clifford relations:
I“il“jk = Fijk + 513' Fk — 6ikl‘j and ijri = iji + 5ikrj — 511' Fk (331)
whence
Fil“]-k — F]-kl“i = 261] I — 26ikF]- s (332)
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and hence

ViEji = —ACTa (2651 — 254T3) e
= —2A84;ChTaNnR + 2811 C Tl (3.33)

= —2i (84 Eax — ikEyy) -

Now we show that the endomorphisms E," act naturally on the bosonic zero
modes A,,. In other words, we show that if A,, obeys the linearised Bogomol'nyi equa-
tion (3.5) and the generalised Gauss law (3.9), then so does its image B, := E, YA,
under such an endomorphism.

We start with the generalised Gauss law (3.9). By definition,

DBy, = D* (E, VA, )

= VH*ELYAy + E*YDLA,

=V'EYAy + EMD A, (3.34)

= —4AESA;

= —4iABy ,
where we have used equation (3.28) and the fact that, since E*Y is selfdual and D, A,
antiselfdual, their inner product vanishes. Thus we see that B,, obeys the generalised
Gauss law (3.9).

Next we show that B, obeys the linearised Bogomol'nyi equation (3.5), which says

that D, B, is antiselfdual, or equivalently, that

DiB4 + EijijBk =0. (335)
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Using equations (3.26) and (3.28), we calculate the first term in the left-hand side:

DiB, = D; (E4jAj)
= V1E4jAj + E4jDiAj
(3.36)
= 2iAEijAj + EgyDiA;

= —QiAaijkE4kAj + E4jDiAj ,
and then also the second term:

ejkDjBx = eijxDj (EklAl + Ek4A4)
= eijic (ViEAL = ViEaAs + BEaDjAL+ EaDjAs)
= eijkc (20AEqA; — 20Ae5aEanAs + BaDjAL — EqcDjAq )
= 2iheqjEarA + 4AEg AL — ejerimEamDjAL — EqeeiDiAy (3:37)
= 2iAeijiEanA; — E4jDjA; — EqreijDjAy
= 2iAeijkEarAj — E4DjA; — Eai(DiAx — DyAy)

= Qi)\ﬁijkE4kAj - E4kDiAk )

where we have used that A, obeys the linearised Bogomol'nyi equation (3.5) and the
generalised Gauss law (3.9). Finally, we notice that the sum of the two terms vanish.
In summary, we have shown that the vector E,,Y A, is tangent to the moduli space.
Since there is a quaternion algebra in the span of the endomorphisms E ., we see that
the complexified tangent space to the moduli space is a quaternionic vector space.
Indeed, if we let A4,, denote a complex frame for the complexified tangent space to M
at (A, ¢), then we may define endomorphisms J, J and X of the tangent space at that

point by
JaPApy = 1.V Ay Ja®Avy = JuVAay KaPApp =KV Agy - (3.38)

Letting the point (A, ¢) vary we obtain a field of endomorphisms of TcM which we
also call 7,7, X. It is evident that just like I, ], K generate a quaternion algebra, so do

J,d,X.

63



3.3 Geometry of the moduli space

In order to probe the geometry of the moduli space M of hyperbolic monopoles, we
will consider the multiplet corresponding to a one-dimensional sigma model, except
that we do not have an action for this model. In other words, we will consider maps
X:R —= M, t — X(t) and the associated fermions 6 which are sections of TTX*TcM: the
(oddified) pullback by X of the complexified tangent bundle of M. In this section we
will first linearise the supersymmetry transformations and in this way arrive at an ex-
pression for the supersymmetry transformations of the bosonic moduli. We will then
derive the supersymmetry transformations of the fermionic moduli by demanding

closure of the one-dimensional N = 4 supersymmetry algebra.

3.3.1 Linearising the supersymmetry transformations

In this section we will derive the supersymmetry transformations for the bosonic zero
modes by linearising the supersymmetry transformations preserved by the mono-
poles.

The dr supersymmetry transformations preserved by hyperbolic monopole con-
figurations are given by equation (2.65). On the gauge field, and in four-dimensional

language, it can be written as

SeAy = —ieh MW, (3.39)
which is already linear, hence at the level of the zero modes becomes

SeA, = —iekM W . (3.40)

Choose a basis ¥; , for the space Z; of fermionic zero modes. This defines a basis
Ay for the space Zg of complexified bosonic zero modes via the second map in equa-
tion (3.19): namely,

Aqy = LT Wi, (3.41)

where (g € K™ is a fixed Killing spinor. From equation (3.21) we may invert this to
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write V[ , = iAaHF“nR for some g € K such that CLnR = %
We now expand the general bosonic zero mode A, = A4, X® as a linear combina-
tion of the basis Aau and similarly for the general fermionic zero mode Y =Y ,00.

Inserting this in equation (3.40), we obtain
SeAy = AqubeX® = Agyel MM nR0% = Ag,efnr0® + elM " nrAL, 0% .  (3.42)

The term eLl‘anR is a linear combination of the almost complex structures I,,, J,.”
and K, V:

ek R = exly” + el + e3KyY (343)
whence

AqudeX® =1 (MY + €Y + 3K,Y) AavO® + efnrA a0 . (3.44)

From equation (3.38), we may write the action of these complex structures on Agy in
terms of the almost complex structures J, J, X on TcM. The end result is that

AqudeX® = (1% + €23 + 3K p* + e'Tp®) Aqu6® (3.45)

where we have defined ¢* = ef,ngr. We remark that the ¢1>34 are Grassmann odd

since so is eg. Since the A, are linearly independent, equation (3.45) is equivalent to
85X = (e'0p% + €20 + e Kp® + eI %) 0° (3.46)

which defines the supersymmetry transformations for the bosonic moduli X.
It should be possible to derive the supersymmetry transformations for the fermi-
onic moduli 8¢ from the gauge theory as well, but we have been unable to do this and

instead we will derive them by demanding the closure of the supersymmetry algebra.

3.3.2 Closure of the moduli space supersymmetry algebra

We shall now constrain the geometry of the moduli space by demanding closure of

the supersymmetry algebra. In contrast with the case of Euclidean monopoles, where
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the geometry of the moduli is constrained by demanding the invariance under super-
symmetry of the effective action for the zero modes, the lack of convergence of the L2
metric means that we cannot write down an action for the zero modes. It is the closure
of the supersymmetry on the zero modes which will give us geometrical information.

To this end let us define odd derivations 54, A = 1,...,4, by §:X® = e*5,XY; that
is,

SAXY =0%EApT, (3.47)

where €4 = (7,7, XK, 1), or completely explicitly,
51X =0%T, % 5oX* =0%0p % 53XT =0°Kp®  54X% =0C. (3.48)

Hyperbolic monopoles are half-BPS, whence they preserve 4 of the 8 supercharges of
the supersymmetric Yang-Mills theory and this means that the supersymmetry on
the zero modes should close on the one-dimensional N = 4 supersymmetry algebra:
. d
OA0B + 0BdA =210a8— . (349)

dt

Imposing this on X* will determine the supersymmetry transformations of the

fermionic moduli 6¢. For example,
53X =X/ = §540% =iX'®, (3.50)
where X'¢ represents the time derivative of X¢. Also, we have
52X =X/ = §10% = —iX'®J,* —0Y090.7,%74°7. 2, (3.51)

and similarly for 52 and &3 by replacing J by J and X, respectively. Next we impose

540X = —6;104X? for i = 1,2, 3. For example,
0 =08184X +6456:X% = 090" (04Tp % + 0cTp¢T4 T ®) | (3.52)

and similarly for J and X. This allows to rewrite in a slightly simpler way the super-
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symmetry transformations for the 0¢:

518% = —iX"*Jp* +6°0°0.Jp®

626(1 — —iX/bea + ebecacgba

(3.53)
530% = —iX"*Kp® +0°0°0. K@
540¢ =iX’e .
We, now, introduce the connection by defining its coefficients ', ¢ as
0°0°0.Eap® = Tpc 054 X", (3.54)

where the connection symbol, with Latin indices, should not be confused with the
Dirac gamma matrices symbol, with Greek indices, we used for earlier. By definition

I" is torsion free since for A = 4 we find that equation (3.54) becomes

I—‘bc(1 = cba ; (355)

The other characteristics of I will be recovered by closing the algebra. The odd deriv-

ations 55, A = 1,4, (1 =1, 2,3) now becomes

5 X% = &;9,0° §:0% = —i&; Y p X' + M 205 XY, (3.56)

54X = 0° 540% = iX'® 4 T “0°84X", (3.57)

where &; are the endomorphisms of TcM defined in (3.38). Demanding that (3.56)
obey the one-dimensional N = 4 supersymmetry algebra will constrain the geometry,
as we will now show.

Let us start by demanding closure of the supersymmetry algebra on the X¢; that
is,

(6A08 +0BOA) X = 2i6ABX,a . (358)
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We start with A = iand B = j and we compute 6;5;X“ using equation (3.56):

5:18; X = 8; (&;%40°)
=0c&;% 01X 0" + &%, 50"
= 0c&9p8:X0° + &% (1€ X/C + Tea®048:XC) (3.59)
= 190 & X + (0cEfa —Tea”€5%) 5:X 0P

= —iﬁjab&bcx’c + &% (aCEj“d — chbco,jab) pepd s

whence the left-hand side of equation (3.58) becomes

(515)' + 5]'51) X4 = (Sjabgibc + €iab8]'bc) x’c

+ &% (0c€%a —Tea€5%) 0904 + &% (0c€:i%a —TeaEi%) 0909 . (3.60)
Equation (3.58) is satisfied provided that
&% Ei % + €1 &% = —2650% (3.61)
and that
(Ei%0c€5% —Tea®Ei%e&i% + €1%edc€i%a —Tca®€i%e€:%) 0°04 = 0. (3.62)

Equation (3.61) is satisfied by virtue of the definition of the endomorphisms &; (3.38).

Equation (3.62) becomes

€i%0cEi%a —Tea€i%Ei% + &;%e0c€i% —Tea®Eie&i% =

€1%40cE% —Tee®Ei%a8% + E€%a0c€i% —Tee" €594 % . (3.63)
Defining the covariant derivative of an endomorphism €%, as

Va((:bc = aagbc - racdgbd + radbgdm (364)
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so in terms of covariant derivatives equation (3.62) can be written as
EiceVCEjad + chevceiad — 8i°dVC8)-ae — chdvc&ae =0. (365)

As shown in Appendix 7.1, taking into account that V is torsion-free, this is nothing
but

[€:,€5] =0, (3.66)

where the bracket is the Frolicher-Nijenhuis bracket of the two endomorphisms £; and
&;, thought of as vector valued one-forms, given by equation (7.10) in Appendix 7.1

for endomorphisms K and L. Now closing the algebra with A =4 and B =i, we get
0e€1% —Tea®&i% —Tea®Eife = 0a€i% —Tae €% —Tee“Ei%a - (3.67)
which in terms of the covariant derivative becomes
Veli% =Va€i% . (3.68)

We will now show that equation (3.68) already implies that the £; are parallel with
respect to V, whence equation (3.66) is automatically satisfied. This result will rely
on the existence (shown in Appendix 7.2) of a torsion-free connection v satisfying
%Ei = 0. We will refer to % as the Obata connection, since it is the analogue of the
Obata connection of a hypercomplex structure [74]. Indeed, let us show that the tensor
S=V-— % vanishes as a result of equation (3.68), whence V = %

To see this, let V = % + S, so that
(o]
VxY —VxY =58xY=S5(X,Y), (3.69)

which defines the endomorphism Sx. Equation (3.68) is easily seen to be equivalent
to

(VxEY = (Vy&X, (3.70)
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for all vector fields X, Y. We now use that
VxEi = Vi + [Sx, &l = [Sx, €4l , (3.71)

where the bracket here is simply the commutator of endomorphisms. This allows us

to rewrite equation (3.70) as

0 = [Sx, Ei]Y — [Sy, Ei]X
=Sx&iY — EiSxY — Sy & X+ &Sy X (3.72)

= S(X7 EIY) - S(Y7 81X) )

where we have used that SxY = Sy X due to the fact that both V and % are torsion-free.

Using again that S(X, Y) = S(VY, X), we see that &; is S-symmetric; that is,
S(EX,Y) =S(X, &Y) . (3.73)

But now the quaternion algebra says that €3 = £;&2, whence using equation (3.73)

repeatedly we see that
S(E3X,Y) =S(E1E2X,Y) =S(E2X,E1Y) =S(X, E2E1Y) = —S(X, E3Y) .
But equation (3.73) also says that S(E€3X,Y) = S(X, £3Y), whence we see that for all X,Y
S(X,&3Y) =0, (3.74)

and since &3 is invertible, that S(X,Y) = 0 for all X, Y, as desired.
We now demand closure of the supersymmetry algebra on the fermionic coordin-
ates 0¢:

(6708 +0BOA)0% = 216/\36’“ . (375)

We will see that the algebra closes without imposing any further conditions on the

geometry. In a similar treatment to the one done with the the bosonic coordinates, we
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start with A =1iand B = j. We compute 6;5;0“ using equation (3.56):

81809 = —10:&; % pdi X X® —1i&; % (8:XP)" + 04l b 8:X40°8;XP

+ %5108 XP +T%,c0°6:8;X" . (3.76)
Using that (£;)’ = 9, &X', we may rewrite this as

518;0% = —10:&;%p8iX0IX® —18;%,04E:17 X/ 10 —1€;94,EP0'C
+ adFabCSidCEjbfeeecef — iFabCEicd&-deeeX’d

+ T8 T5.098:X8;XP +T,.0°8:8;X" . (3.77)
The left-hand side of equation (3.75) can then be written as

(615)' + 5]'51)9(1 = Qiéije’a + Rbcda&be&jcfedeeef
—1(€1%0cE%a +&%0cEi % + E1%%0a&; e + &% 504

FToc€ia8% + Toe *€59aEi e + 2Tae *845) X'40°, (3.78)

where we have used the closure of the supersymmetry algebra on the X¢ and the

definition of the curvature tensor for the connection V:

Ra‘bcd = abl—‘acd - aar‘bcd + I—‘acerbed - rbceraed . (379)

Comparing with the closure condition (3.75), we see that there are two kinds of of-
fending terms: those linear in 6 and those cubic in 8. We will now show that both
terms vanish as a consequence of VE&; = 0.

First, the terms linear in 0 are easily seen to be zero by replacing 9,&;°. with
Tac9€i%q — Taa®&i4c, which is equivalent to &; being V-parallel. Doing so, and us-
ing the torsion-free condition I'; ¢ = T, o€ and the closure condition (3.61), we see that
all terms cancel.

Before we proceed to show that terms cubic in 8 vanish, we compute the closure

of algebra when A = B = 4 and when A = 4, but B = i. In a similar, yet simpler
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calculation we find

26409 = 210’ + Rpq“090°0¢,

(848; +8:84)0% = Rpca*€;°5090°0".
Hence, the terms cubic in 0 in all cases will vanish if and only if
Gd,efRocaEa’eEps =0, (3.80)

where & denotes skew-symmetrisation in the relevant symbols. Equivalently, but

more invariantly, they will vanish if and only if for all vector fields X, Y, Z,
Sx,v,zR(EAX,ERY)Z=0. (3.81)

If A = B =4, then this is true by virtue of the algebraic Bianchi identity for the torsion-

free connection V. If A = 4, but B = i, then condition (3.81) becomes equivalent to
Gx.v.zR(X,€Y)Z 20 (3.82)

Using the algebraic Bianchi identity, we can turn the left-hand side of this equation
into

— Gx.v.z (RIZ,X)EY + R(EY, Z)X) . (3.83)

Since &; is V-parallel, it is invariant under the infinitesimal holonomy representation,

whence in particular it commutes with the curvature operators R(X, Y); that is,
R(Z,X)ELY = E{R(Z,X)Y . (3.84)

This means that the first term in (3.83) vanishes due to the algebraic Bianchi identity,

whereas the second term is given by

—6x,v,zR(E1Y, Z)X = +6x,vy,zR(Z, E;Y)X = —6x,v,zR(X, &1 Y)Z , (3.85)
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which is the negative of what we started with, whence it too vanishes:
Sx,v,zR(X,EY)Z=0. (3.86)
Finally, if A = i and B =j, condition (3.81) becomes
Gxv.zR(EX, EY)Z £ 0. (3.87)
We again use the algebraic Bianchi identity to rewrite the right-hand side as
—6x,v,z (R(Z, EiX)&E;Y + R(&yY, Z)EiX) . (3.88)
Using that €; and €; commute with the curvature operators, we may rewrite this as
—Gx,v,z (&R(Z, & X)Y + ER(&;Y, 2)X) (3.89)

and both terms are now seen to vanish by virtue of equation (3.86). In summary, the
supersymmetry algebra closes on the fermionic moduli.

To summarize the results of this section, the supersymmetry algebra closes on the
moduli. This is because the complex-linear endomorphisms J, J, X on Tc)M are parallel
relative to a (unique) torsion-free connection, whence in particular the quaternionic
structure they define on TcM is integrable: their Frolicher-Nijenhuis brackets vanish,
therefore MC is hypercomplex. In the terminology of Bielawski and Schwachhéfer
this means that M is a pluricomplex manifold, which we have hereby shown to follow

naturally from supersymmetry.
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Chapter 4

Supersymmetric Yang-Mills-Higgs
Theory on H? with Real Fields

4.1 Introduction

We saw in the chapters two and three that starting from a supersymmetric Yang-Mills
theory on a Euclidean space and constructing a supersymmetric Yang-Mills-Higgs
theory on hyperbolic space gives a theory with complex fields, and hence it paves the
way to explore the geometry of the complex space of hyperbolic monopoles. From our
results in chapter three we can deduce the nature of the geometry of the real moduli
space of hyperbolic monopoles using the properties of pluricomplex geometry [68],
however, it is more solid to tackle the real moduli space directly, and for that sake
we construct a supersymmetric Yang-Mills-Higgs theory on H? where the gauge field
components are real. Our starting point is a supersymmetric Yang-Mills theory on
Minkowski space R(!:5) which we reduce to R? and then promote to H?. Next, we find
the equations of motion which are more general than the usual supersymmetric Yang-
Mills-Higgs fields equations, however we show later, using certain supersymmetric
constraints, that supersymmetric hyperbolic monopoles form a subset of the equations
of motion solutions. Finally, we compare our theory to an example of family “A” from

[115] and then we study the superalgebra.
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4.2 On-shell supersymmetry in Minkowski 6-Spacetime

The existence of an on-shell supersymmetric theory in a certain dimension requires
a balance between the bosonic and fermionic degrees of freedom. Supersymmetric
Yang-Mills theory exists in six dimension if we we take the fermionic field to be of
Weyl nature. The gauge field has six real components, one is removed by gauge in-
variance, and the equation of motion projects out another, hence we are down to four
degrees of freedom. The Weyl spinor has four non zero complex components, two of
which are projected out by the equation of motion, hence we are down to two com-
plex components or four degrees of freedom. The N = 1 supersymmetric Yang-Mills
theory was first constructed in [121], which we review briefly in this section.

The Minkowskian supersymmetric Yang-Mills Lagrange density function in R(1:%)
is

1 _
L(1,5] — *iGABGAB +\PFADA\F7 (4:1)

where the capital alphabet indices A, B, C,. .. run from 0 to 5. The gauge group index
has been suppressed, but it should be understood that each term is an ad-invariant
inner product on a Lie algebra g.

We choose the Lie algebra structure constant to be real, hence the generators T,
and so are the gauge fields Wy = W T, are antihermitian. The field strength and the

covariant derivatives are given by
GaB :aAWB—GBWA—HWA,WB], DAW:aA‘{’+[WA,‘P], (42)

s0 Gag is also antihermitian. V¥ is an anticommuting Weyl spinor, ¥ is Dirac adjoint

of ¥, hence we have
ATy = iy, Y =iy, (4.3)
I are 6—dimensional unitary gamma matrices that satisfy

{Ta,Ts} = 2nAB, nap = diag(—1,+1,...,+1), M= —Toraly L.
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With these definitions one can check that the Lagrangian (4.1) is Hermitian.
In addition to the SO(5, 1) Lorentz invariance and gauge invariance, the action

defined by £ 1) is invariant under the following supersymmetry transformations

W =elpa V¥ — quA g, (4.4)
§W =T*BGage, (4.5)
§W = —eMBGag, (4.6)

where MB = 1[I TB], and e is the supersymmetry parameter which is a constant

spinor, and of same nature as V.

4.3 Reduction to R?

Starting with N = 1 theory in D = 5 + 1 flat space time, we quotient now by R(>!)to

obtain a theory on R3.

4.3.1 Reduction of bosonic fields

The gauge fields W and ¥ upon reduction will depend only on x',i = 1,2, 3, which
means that g = 04 = 05 = 0. This breaks the Lorentz invariance SO(5,1) down to
SO(3) x SO(2,1). The gauge field Wa breaks down into W;, a 3-dimensional gauge
field, and the other three components, W, : Wy = ¢o, W4 = ¢4, and W5 = o5, are
scalar fields transforming as vectors under the R—symmetry SO(2, 1). In terms of these
fields, the field strength breaks up as Gij, Gi,, = Di¢y and G,y = (b, dv]. We will
keep the fermionic part reduction to the next section, so the Lagrangian with only the

bosonic part reduced, will read as
1 - . 1 _ _
Lsym = *§GijG” —Di¢, D" — §[¢u, O], Y]+ YTDW +YTH b, V. (4.7)

4.3.2 Reduction of fermionic fields

The gamma matrices {T'v1} are in the Clifford group Cl(5,1) and they satisfy the Clif-

ford algebra {Tnv, 'n} = 2nmnIs, where nain is mostly positive. Upon reduction, {Th}
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will be decomposed into two sets. The first set is y;, form the representation of the
C1(3,0), and satisfy {yi,y;j} = 20i;I2, where as the second set is y,,, form the repres-
entation of the Cl(2, 1), and satisfy {y,, Yv} = 2nu~v12. vi will be chosen to be the Pauli
matrices y; = {01, 02, 03} so the volume element w = il, and y, = {io2, 01, 03} with
volume element @ = I.

Since the reduction is from even to odd dimension the decomposition of Ty will

include an “auxiliary” matrix. A possible decomposition is given by

Nn=I®y ®o,

M =7y, ® I ® os.

One can easily check now that all the properties of the 'y, are satisfied by this

choice.

M= {. 0l o)y, ® e o)
—Is ifu=0,
=7, ©T® 03 = ,
Ig ifu=4orb

P =Ivi®o)l®yi®o)

=TI ®v; ® o} =14,
The anticommutation relations are also satisfied

NN} ={l ® v, ® 01,y ® o ® 02}

:T/i_ ®Yu ®{0—17 0-2} = 0
And finally, the volume element of the I'y; is given by

T012345 = To45.T123
= (Yoas ® I2®02).(I2 ® y123 ® 071)

= Yo45 @ Y123 ® —io3 = 4 ® 03.
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The decomposition of the spinor depends on the action of I';, on the ¥. In six dimen-

sional notation V¥ is a spinor of positive chirality, hence

1
ru Y= (]IQ QYu® Gl)‘ll) @
0
where { = (I + I'1)¥, then ¥ can be written as
1 1 0 1
Y= ®P1 ® + @Yo ® s
0 0 1 0

and the conjugation of the spinor decomposes as

Y =y,

—(10)®M®<10>+@ Q®¢%%ﬁ0ﬁﬁ®®b®®]
=<01)@“@(0—0+<&(0®@®<0—0-

4.3.3 Reduction of the Lagrangian

The reduction of the spinors and gamma matrices will effect only the fermionic part

of the Lagrangian (4.7), which is given by
Lp=Wr'D¥ + Y[, V.

As for T'D; ¥ we get

. . 1 1 0 1
MDDV ={h ®y"®o1}.{ ®@ DY ® + ® Die ® }
0 0 1 0

1 . 0 0 _ 0
— @YDy ® + ®@v'Dib2 ® ;
0 1 1 1
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therefore YI'D; ¥ becomes
YD ¥ = —ibly Diwy + ibfy Divs. (4.8)

Now, for T'*[¢,,, V] we get

1 1 0 1
Moy, ¥l ={F" @l ® oo}{ ® [bi, 1] ® + ® [Ppi, b2l ® }
0 0 1 0
1 0 |0 0
=y ® (b1, P1l ® + ® [bi, Pl ®
0 i 1 i

Hence, the final form of YT*[¢,,, V] is

1
®1I)H¢u,1b2]+<—l 0)?“ @ Pl [dy, 1]

Wt [y, V] = (0 1) M
0

1

1 0
+ (o 1) | @ vl v+ (_1 o) v [ ] 2 whign vl
0 1

= !5, Wl — Wids, Wil + VI [da, Wil — Wi da, Wal + Wildo, Wil + Wildo, bal.
(4.9)

Putting everything together, (5.4,5.5) in (4.7), will give the supersymmetric Yang-

Mills-Higgs Lagrangian on three dimensional Euclidean background

1
£ — _=
2

— iy Dipa + Ly Dipr — Wi s, Wal — (s, ¥1] (4.10)

GyGY — DipuDOH — [y, dl(6*, ")

+ Wl + do, W1] — Wi [da — o, wal.

As for the reductions of the supersymmetry transformations, they are done in details

in the appendix section (7.3).
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4.3.4 SYMonR3

The result obtained from the reductions of Lagrangian and the supersymmetry trans-

formations encourage the following definition

A+:(b4+(b07 A*:¢4_¢07 (b:d)57

hence, in three dimensional Euclidean space the the Lagrangian becomes

1 1

£=-5GyGY - IDi¢||*> — DiALD'A_ — (b, AL ][b, A_] — TALAY
— ]y Dipa + by Dipy — Wi, wal — i, 1] + W] AL, 1] (411)
—piA -, Pal,

and the supersymmetry transformations that leave this Lagrangian invariant are

SW; = —telyiva + iedyivr + tblvies — fyier,
A4 = 2Phes — 2elpo,

SA_ = 2elpy — 20ley,
(4.12)

8¢ = —elwy — el +biea + Wiey,
Sh1 =y Gijer — e1[As, A_] —2eo[A_, d] + 2y (2D A_ + e1Did),

Sh2 =vIGuves + ealAy, Al + 261 (AL, ] + 2iy'(e1DiA 4 — e2Did).

The action and the superysmmetry transformations are richer than the theory ob-
tained in chapter two due to the reduction from a higher dimensional theory. How-
ever, we can still see some resemblance, the theory here looks like a generalized N = 2
supersymmetric Yang-Mills-Higgs with ¢ playing the role of the Higgs field. The
tields (W;, ¢, A, A_) are real, which can be seen from the superysmmetry transform-
ations. This is the benefit of starting with a theory in Minkowski space and this will
help us, later when we analyze the real moduli space of hyperbolic monopoles, to

show that the supersymmetry transformations play the role of real zero modes.
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The variation of the action under the supersymmetry transformation is given by

816 = —0we] (YIV 1Gyj +vMPalA A+ 2vP1 (A, ¢

— iy P1DiA L + vy aDid) + c.c.
and

820 = 10 eb (Y Iy oGy + V¥ U1 AL, A — 2y alA L, )

— iy DAL — iy'y*p1Did) + c.c.

which will vanish since the superysmmetry parameters e; and e2 are constant spinors

on R3.

4.3.5 Dimensional analysis

In h = ¢ = 1 units, all quantities are measured in units of energy raised to some power.

In this case we have for example [m] = [p*] = E*! or simply [m] = [p"] = 1, while
[x"] = —1. The action on a general n—manifold is given by
S= J d"V.,

where for the case R™, d™V = dx!dx? ... dx™, so on R? the Lagrangian of a field theory

has dimensionality [£] = 3. From equation (4.11) we deduce that

(1] = o] =1, (Guv] =

which implies that
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To have a correct dimensionality for all the Lagrangian terms we must add the non-

abelian coupling constant q, so the Lagrangian will read as

2
L= —%Gi]’Gij — ||Did)||2 —_ D1A+D1A7 _ q2[¢,A+][¢7A7] _ qZ[AJr,A,]Q
— Iy IDips + Wiy D — qul[d, wal — ql[d, Wil + quiA L, 1]

— qUA Dol

4.4 Promoting supersymmetry to hyperbolic space

If instead of R? we place the theory on a Riemannian 3—dimensional spin manifold
with metric gy, the story then is different, since, in general, constant spinors don’t exist

on curved backgrounds. The covariant derivative of the supersymmetry parameter is
1 ™
Vie = 0;e + Zijwi) g,

where w;’* are the spin connection of the vielbein introduced on the spin manifold.

The variation of the Lagrangian now reads as

5L = —ingJ{(yijyktplGij +Yk¢2[A+aA—]

+ 2y A4, b — iy 'Y 1 DAL +iylyRaDid) + c.c.
and

826 = iVieeh (Y Iy oGy + v U1[A4, A

— 2y*Pa[A L, d] — iy aDiA L — iy'y i Did) + c.c.

Unless we are considering parallel spinors (Vie = 0) this Lagrangian will not be su-

persymmetric. But we are mainly interested in Hyperbolic manifold H? which admits
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Killing spinors. Killing spinors in 3 dimensions satisfy the following equation

Vi€(1,2) = K(1,2)Yi€-

In order to restore supersymmetry, we follow the same procedure we did in chapter
two by adding terms that are invariant under the gauge group and Lorentz transform-
ation, to the Lagrangian and the supersymmetry transformations. Then by imposing
the invariance of the action and the on-shell closure of the supersymmetry transform-
ations we find the coefficient of each term. However, we can benefit from results in
chapter two to massively reduce the calculation here. Notice, first, that the action (4.11)
with A and A_ switched off looks exactly like an on-shell supersymmetric version of
the action (2.45). Hence, when k1 = —kg = k, and in the absence of A and A_, we can
promote (4.11) to H? by merely adding a term equal to iK[ll)Ill)z + ll);lbl] to the action
and leaving the supersymmetry transformations intact. When we include terms with
A, and A_ back, we require the addition of terms that have A+ and A_ and invari-
ant under the group SO(2, 1) and the gauge group. The only possible choice is a term
proportional to Tr(AA_) (Where traces are suppressed in this chapter), and using the
dimensional analysis we find that it has to be proportional, actually, to k2A;A_. As
for the supersymmetry transformations, the closure of the algebra along with dimen-
sionality of fields imply that terms proportional to 1A, e1A_, e2A and e2A_ should
be added to the supersymmetry transformation of the fermions. In other words the
new action and supersymmetry transformation (8; for example) have to be modified
as

L~ L4 ik Tpe + W] + ak?A L A (4.13)

and

d1p1 ~ 11 + B1A €1 + P2A g1 d12 ~ d12 + B3A €1 + P4A_¢€7,
(4.14)

for some constants «, 1, B2, B3, B4 to be determined.

The invariance of the action now can be done faster and easier where we have only
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to worry about the variation of the terms with A, and A_ in the Lagrangian and only
the variation of the old terms via the new addition to the suersymmetry transform-
ations. Imposing the invariance tells us that « = 3 =4 and ;1 = f2 = 4 = 0. In
addition, this result implies that there will be no modification for the supersymmetry
transformation 8212 and a term equal to —4kA_ should be added to 521;. Finally,
the resulting Lagrangian on a 3-dimensional Riemannian manifold admitting Killing
spinor is given by

1 . : 1
L) =—2GyGY — IDi¢|* — D;A DA — [, Aylld,A] — JALAT

— Iy D + iy Db — Wi, wal — Wild, w1l + WAL, b1l

—WIA ol +4PA LA+ ik(b]s + i), (4.15)

which is invariant under the following supersymmetry transformations

81 Wi = —ielyipy — iplyier, 8sWi = iefyin + ilvie,
51AL =0 oA = 2hes — 2elpo,
51A = 2elpy —20Tey, 5oA_ =0,

819 = —e by +ler, 82 = —elp1 +Pleo,

S1b1 =vIGijer —e1lAs, AT+ 2ty eiDid,  Sabr = —2ea[A, b] + 2iy eaDiA_ — dkerA
5102 = 2e1[AL, &) + 21y e1DiA L +4ke1Ay,  Sabo = vIGijen + e2[Ay, A_] — 2iy'eaDid,

(4.16)

where

Vier = —Viea = KYie. (4.17)

These modifications imply that k has to be real for £?) to be Hermitian. But « is related
to the radius of curvature of our space via the integrability condition which is given
by R = 4d(d — 1)k? = —24«2. For real k, the radius of curvature has to be negative,

which is the case of H3. If we consider the upper half plane model of hyperbolic space
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with radius of curvature “1”, then the metric is given by

12
ds® = 2—2(de + dy? + dz?), (4.18)

Computing the scalar curvature (with Ryg = R*4,,p) we get

6
R=—= =4+
2z~ K= Fp

where we chose to work with negative «.

4.4.1 Equations of motion

Using the Euler-Lagrange equations the field equations can be easily derived, for in-

stance for the equations of motion for the vector field W, we need to solve

oL oL
m - ==Y, 4.1
Vg~ awn 0 (4.19)

and similarly for the other fields. With some patience one obtains the following set of
equations of motion:

Vector field W;:

2D G™™ = —2[D"¢, ] — [D"A,,A_] — [D"A_,A,]

— AR IY™, o] + Y™, P, (4.20)
Scalar field ¢:
DmD™ = —[ld, A_], Ayl — [ld, Asl, AT — W], ol — Wb, 1), (4.21)
Scalar field A_:
DwD™A- = (6, [0, A+ 1A A A 4Rl bi] — A (422)
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Scalar field A :

DimD™A; = 16,16, A1+ A4 A AT — [, ha] — A

Spinor Vs:

YD + ihba, G + 1AL, Wil + Qllxpg 0.

Spinor Y:

YD1 — ilb1, bl +ilA_, Po] — 2%11)1 =0.

These equations of motion which follow from the Lagrangian (4.13) looks a bit com-
plicated and not related to the Bogmol’'nyi equation on H3. However, one can reduce
these equations to simpler forms by taking certain restrictions which are invariant un-
der supersymmetry. This calculation is done in the next chapter.

These equations exhibit symmetries inherited from the symmetries of the Lag-
rangian: gauge transformation, supersymmetry transformation, Lorentz transform-
ation, in addition to SO(2, 1) that acts on the vector (¢,A,,A_) and transform the

. _ i .
spinors as\{ — e 4V’wa1b, where f,, are real functions.

4.4.2 Relation with other theories

The supersymmetric theory obtained here (4.15,4.16) can be related to family “A”
theories obtained by Matthias Blau [122, 115]. According to the dimension, on which
we would like to study supersymmetric Yang-Mills theories, Blau derived the general
model of theories on curved spaces admitting Killing spinors written in terms of fields
in higher dimensions. For example, family “A” theories are those that obtained by
reduction to dimensions less than or equal to 5. In our notations theories “A” are

given by

d—m
L=Lsym —40’[(n—2) ) ¢F + (n—4)Pp3] — (n— 4)a¥TPY, (4.23)
o8
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and the superysmmetry transformations are given by

SWm = (eTmVY —‘I’FMe), (424)

d—m
§W=TMNeGpn —4al ) ¢uTHTPe+ (n—4)dpel, (4.25)
o8

where Lsym stands for the unmodified supersymmetric Yang-Mills theory on flat
space, n is the dimension of the reduced theory, d is the dimension from where we
started before reduction, and « and p are related to the Killing spinor equation as
follows

Vie = alilPe, (4.26)

where the integrability condition for Killing spinor of such form is given by
=&?(I'")?n(n—1). (4.27)

In order to obtain our theory from this family we need to set d = 6 and n = 3, and also

to choose p = 5 and « = 57. Hence for these choices we get

Lsym = —§GAB GMB +Yri*DAY + 5 [ 3 + b3l +5 \yr5w (4.28)
5WA = éFA‘{’ — \PFA(-I (4:29)
§W=T"BeGap — ZT[q;OrO + aT4re (4.30)

One can understand this theory as a supersymmetric Yang-Mills theory on H3 x R3,
which is best manifested by the behavior of the spinor € on this manifold where we
have Vie = alilPe and Ve = 0. This point of view comes from Bér’s cone con-
struction [123] that relates Killing spinor fields to parallel spinor fields on auxiliary
manifolds. If we now use the decompositions of the bosonic fields, the fermionic
fields, and the gamma matrices introduced in sections (4.3.1,4.3.2), to reduce (4.28)
and (4.29,4.30) we find that this action and supersymmetry transformations match

exactly with our results (4.15) and (4.16).
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4.4.3 Super algebra

The closure of the new supersymmetry transformations algebra need to be checked,
where we use the modified N = 1 version from sections (4.3.1,4.3.2). We will study
the action of the commutator of two supersymmetry transformations associated with
two Killing spinors €; and e satisfying the Killing spinor equation (4.26), where here
e1 and e represent the same spinor taken at two different points. Naturally, we should
expect the closure to give diffeomorphisms and gauge transformations, and if any new
infinitesimal transformation term appears, the Lagrangian must be invariant under
the action of this transformation. The action of the commutator on our multiplet, gives
1

81, 89]dy = EXGAL + i[a()%cbo + &5 bl

81, 80]W; = EAGa: + %[5051490 + &5,

(51, 85]W = ELD W + %sjnrsw %amrmy.

where

Ea =€1Taes —€olaeq

In order to understand the right hand side of the supersymmetry algebra, we need
to understand the nature of the vector &£;. The covariant derivatives of the different

components of & that appear in above algebra give
i
Vida = —1&s5ia;

hence not all components of £ are constant, and &; in particular is a Killing vector.
On the other hand, &,,5 is constant. Using these identities and defining the parameter

w = EAWa, we can write the algebra in terms of isometries and gauge transformations

[61,862]W; = L: Wi + 8, Wi.
i
[51u 62](1)}4 = ]—E,d)u + 6w¢u + i‘(-,;,w5d)v'

61,82]% = LeW + 80 ¥ + T &5V,
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where

dwWo =—-Dpw, dwPm = [w, dml, SV = [w,VY].

The equation of motion for the fermion has been used to ensure the closure of the
supersymmetry algebra, hence the on shell closure. In checking the computation of
the algebra closure the Mathematica package GAMMA [124] was used.

In addition to the expected diffeomorphism and gauge transformation we find a
boost of the scalars and fermions by a constant matrix &5,.. This boost represents the

R— symmetry (SO(2,1)) algebra of the theory.
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Chapter 5

Geometry of the Real Moduli Space
of Hyperbolic Monopoles

5.1 Introduction

In this chapter we explore the geometry of the real moduli space of hyperbolic mono-
poles. We will show first that supersymmetric hyperbolic monopoles form a subset
of solutions to the equations of motion derived in the previous section, provided we
use some supersymmetric constraints. However, these constraints are only supersym-
metric under half of the supersymmetry transformations, which implies that super-
symmetric hyperbolic monopoles are i “BPS” saturated. Then, we start analyzing
the moduli space of these “BPS” hyperbolic monopoles using the supersymmetry of
low energy dynamics. We construct an ansatz of zero modes that we show to satisfy
the linearized Bogomol'nyi equation and the Dirac equation. The difference from our
analysis in chapter three, is that the ansatz we construct, here, using the supersym-
metry transformation are real, which we show to satisfy, as well, a gauge background
condition, and hence form real coordinate functionals for the moduli space. Then we
aim at constructing structures on the target space of the moduli space and studying
their properties. We construct two sets of 2-sphere complex structures that map zero

modes orthogonal to the gauge orbits into zero modes that are again orthogonal to the

gauge orbit, and we show that these two sets of complex structures don’t have any an-
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ticommutation relations between them. This just another way of saying that we have
a biquaternionic algebra on the moduli space of hyperbolic monopoles “pluricomplex
geometry”. Finally, we show that in the limiting case when the radius of curvature
of the hyperbolic space is set to infinity the pluricomplex geometry gives the hyper-
Ké&hler geometry, the geometry of Euclidean monopoles and hence proving Atiyah’s

conjecture.

5.2 Breaking half of supersymmetry

In the following, a set of restrictions which are invariant under supersymmetry, will
be imposed on the equations of motion. This will reduce the equations of motion into
a simpler familiar form. One of the solutions of these equations is the supersymmetric
hyperbolic monopole. But this solution will be shown to break half of the supersym-
metry transformation obtained after imposing the restrictions.

Consider the following three constrains which will be applied to the equations of

motion and the supersymmetry transformations

v Gy = 21y Do,

A_=0, (6.1)

These constraints are invariant under the supersymmetry transformation §;. Apply-

ing these restrictions on the equations of motion will give

DiGY = —[D'¢, ¢l, (5.2)
D;Di¢p =0, (5.3)
D;D'A_ =0,
DDA = {6, 16 AT — b} tha) — A
v'Dips =0, (5.4)
¥Dobs + s, 6] + gk = 0. 9
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The solutions of the Bogomol'nyi equation together with the Bianchi identity on hy-

perbolic space H? (4.18),

1 _ : z _
Di¢ = 5V 9l€1jKkg' ™ g* " Gmn = _ﬁeijijka (5.6)

D;i(xGY) =0, (5.7)

where €5y represents the Levi-Civita symbol on flat space, form a subset of the solu-
tions of the first two equations (5.2, 5.3), hence we can trade (5.2, 5.3) with (5.6, 5.7)
since we are just interested in the space of solutions of the Bogomol'nyi equation. Us-
ing now the internal symmetry SO(2,1) we can set A, = 0 and the fourth equation

will have the following simpler form
DiD'A; = —[}, ¥al. (5.8)

A solution that satisfies equations (5.4,5.5,5.6,5.8) is the solution of the hyperbolic
monopole in the bosonic theory along with A, = 0 and ({1,{2) = (0,0). Thus the
hyperbolic monopole solutions of the bosonic theory continue to be monopole in the
supersymmetric theory. The hyperbolic monopole with A, = 0 and (P1,¥P2) = (0,0)
will be denoted as the supersymmetric hyperbolic monopole solutions, and we will
be looking at the space of these solutions. Imposing the constraints (5.1) on the super-

symmetry transformations (4.16) will give

Wi = *1811/111)2 — ilP;Yiﬁh
816 = —e{wy +Pher,

| 50 (5.9)

d1h2 = 2e1[A 4, d] +2iy'e1 DA — TElAJrv

10 =01AL =8A_ =0,
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and

Sopo = —4iy'eaDid.
SoA; = 2Phes — 2eho, (5.10)

5aWi = 82 = 52A_ = dopy = 0.

After setting the scalar field A equal to zero, we can see that only the first set of super-
symmetry transformations satisfy the supersymmetric monopole solution, however
the second set will generate non zero fermions. This means that §; is the unbroken
supersymmetry leaving the supersymmetric solution invariant and 8 is the broken
supersymmetry. This partial breaking of supersymmetry is a generic feature of su-
persymmetry field theories admitting topologically non-trivial solutions. It was first
noticed by Witten and Olive [75] and is best understood by showing that the algebra

of supersymmetry charges are modified by topological charges.

5.3 Real moduli space of hyperbolic monopoles

In the previous section we concluded that the supersymmetric BPS configurations are
solutions with A_ = A} =11 = P2 =0, and (W, ¢) satisfy the Bogomol'nyi equation
(5.6) . These configurations are exactly the hyperbolic monopole solutions. The geo-
metry of these configurations is best analyzed using the linearized equations of motion
and their solutions (zero modes). These zero modes will later be used as coordinate
functions of our real moduli space. Hence, unlike the complexified zero modes that

we constructed in [125], the zero modes in this analysis will be real.

5.3.1 Zero modes

Using the same definitions and notations we used in [125] section (3.1) (with only one
exception, W; for the gauge field instead of A;), we will use the linearized unbroken
supersymmetry to pair the bosonic and fermionic zero modes in a supermultiplet.

The unbroken supersymmetry transformation (5.9) teaches us that real bosonic zero
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modes can be chosen to be

Wi = -ty + iy,

(5.11)
$=—("p+T),
where ( is an even spinor satisfying
V-C——i iC (5.12)
1% — 21Yl 9 M

Its quite straight forward to check that the ansatz (5.11) satisfy the linearized Bogo-
mol'nyi equation

D (0)d — [$(0), Wi] + e5xDI (O)W* = 0. (5.13)

However, a better way of checking is by noticing that our zero modes here are just the
real part of the complexified zero modes defined in [125] equation (3.11), and since
the linearized Bogomol'nyi equation coefficients are real, hence (5.11) should also be a
solution to (5.13). In addition the zero modes have to be tangent to the moduli space,
hence they have to satisfy as well the gauge back ground condition. However the story
here is a bit different, the gauge background condition satisfied by the compilexified
zero modes in [125] equation (3.9) has complex coefficients. This means that the real
zero modes (5.11) will satisfy a slightly different condition. Its not difficult to see that

the gauge background condition that (5.11) should satisfy is given by
oo .21 . .
DO + [(0), §] + T-(ble— ) =0, (5.14)

where the factor % here is 4A in [125]. Indeed with a quick check we verify that (5.11)

satisfy the gauge background condition (5.14).

DY (Al yi + W iyi0) + [, —Cp —hT ) + ?(Mc i)

— DY (i) + DHYD) — [0, T — [, 1T + ?u‘ﬁc _ %c*u’).
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We now use equation (5.12) and y'y; = 3 to arrive at

o1hh — ity DY — ¢, ) - Tt

.. 3. . 2 .
+HD Wy — 2—{11)*(: — [P, 11+ {w*c,

which will vanish since the first line is nothing but the equation of motion (linear) of
femions 1 and second line is its dagger.
Since we don’t require 1 to be real, the fermionic zero modes, which can be found

by inverting equation (5.11),

P =iWiy'n — én, (5.15)
where
1
Din = 5rvin. (5.16)

still [125] satisfy the equation of motion for the fermions (5.5). Using the fact thatn'¢
is covariantly constant [126], we can conveniently choose them such that they satisfy

conditions required by inversion, which can be shown to be equal to 1.

5.3.2 Six/Four dimensional language

At the level where our base space is H? x R3, the bosonic fields (Wi, ¢,A_, A ) and the
fermionic fields (1,12) depend only on the coordinates of H3. The supersymmetric
hyperbolic monopoles are the solutions with A_ = A, =1 = Py = 0, and (Wi, $)
satisfy the Bogomoln'yi equation. In this section we aim at examining the geometry
of the real moduli space of hyperbolic monopoles. In particular, we would like to con-
struct complex structures (in our case they are real endomorphisms) on the tangent
space of the moduli space and study their characteristics. For this sake, its convenient,
and sufficient for now while elaborating on few observations, to introduce the four di-
mensional notation which amounts to woking on the four-dimensional space H3 x R!.

Our gamma matrices TT; will be
”i = ; r[4 = )
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and they satisfy the Clifford algebra

{IMy, TT;} = 291,

where i = (i,4). The spinors are chiral in four dimensions and take the following form

and the four dimensional bosonic zero modes will be given by

Wi = (Wi, ).

With these definitions, the bosonic and fermionic zero modes read now as

Wi = —i(¢TT W — Wi ), (5.17)

W = {W;IT4n, (5.18)

where the Killing spinors now satisfy the following equations

Vit = 5T Mg, Vil =0, (5.19)
Vin = _iﬂi Tym, vV =0. (5.20)

And finally the Linearized equations of motions are given by

Duwi] = _%513' mn DTWE, (5.21)
DiW; = _%(\wmc + ITyW), (5.22)
PV — —2lln4tp. (5.23)

5.3.3 Complex structures

The bosonic zero modes are real (5.17), hence one needs to construct real complex

structures, which act as real linear map on the tangent space of the moduli space and
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maps every real zero mode to another real zero mode. We have two possible choices

of real structures M and N4g, that agree with our zero modes ansatz, defined by

Mapi? = UCETT Ing +nl T 1¢p), (5.24)
Nog

2= (MM Ing —nlTT3 1), (5.25)

One might think that we made the wrong choice of sign, and the above choices would
give pure complex structures, however the antihemiticity of IT; > make them pure real.

¢ and 1 belong to the following sets of solutions in C?

Ky ={Col Vila = +2llmrr4ca}, (5.26)

i
Ko = {ncx‘ VilNg = _iﬂiﬂélncx}- (527)

For computation purposes we can choose to start with a particular choice for the basis

of K, and K_. Using the model of hyperbolic space given in (4.18), we find

0 0
1 0 1 0
0 = 5 ) (o = 3 (5.28)
[—(x—1iy)+ 1]z 2 [—(x+iy)— 1]z~ 2
1 1
z2 z2
0 0
1 0 1 0
m=s . n2 =3 . (5.29)
z2 —7z2
[(x +1iy) + 1)z~ 2 [—(x+1iy) + 1]z~
that satisfy the condition
1
Cling = 58ap (5.30)

The structures in equations (5.24,5.25) as they stand don’t give the real endomorph-
isms we are after since the square of each one of them or of any real combination

doesn’t give minus the identity matrix. If we take the covariant derivative of of the
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square of (5.24) and the square of (5.25) we get

. 8
Vin(Napi ?Nep; ©) = —I[(C};CB)(”TXYmTIB) — (minp) (Chymp)ldik,

. 8
Vim(Mapi "Map; <) = T1(ChCp)MEymng) + (bnp) (ChymCp)Id:™,

which doesn’t give zero. In the previous result we used the Fierz identity for commut-

ing spinors (¢ and n), given by
1 1
T ZnT Py BT
' = N ¢+ oY CYu-
In other words we have, for example for M1 and Ny, the following properties

(Nll)Q = —f(X,y,Z).]L (531)

(Mll)Q = _g(xaya Z’)']L (532)

where f(x,y,z) and g(x,y, z) are real rational functions equal to

4 2 2 -1 2 2 1 2 2)\2

f(x,y,z):—x+x( +y +z2)+( +y +z)’
4z

XAyt 4+ (=14 22)2 +2y2(1 +22) + 2x2(—1 +y? + 22)

9(7‘:9;2) = 422 .

Moreover, the other structures like %(Mm + Moq), %(Mlg — Ma1), %(N 12 + No1), and
%(N 12 — Na1) also follow similar properties as in equations (5.31, 5.32).
These properties plus the fact that the zero modes are real resulting from a six dimen-

sional theory, motivate us to define the real endomorphism Xyg by

M N
Xep=| & TP (5.33)
—Nupg Map

where one can now show that the linear combinations

1 1
R = X1 S = §(X12 + Xo1) T= 27(X12 — Xo1), (5.34)
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satisfy the quaternion algebra
RZ=82=—_1 RS=-SR=T. (5.35)

Hence if we define

I =a;R+ asS+ asT,

where aj, az, and a3 are real numbers with ) ; a? = 1, we get a 2-sphere of complex
structures. (note that the complex structures have only real entires, as required). The
square of I gives

P=—(af+a3+a})I (5.36)

A significant note that worth mentioning is that the dimension of the Xp confirms
that starting with a six dimensional theory is necessary for studying the real moduli
space of hyperbolic monopoles. This will be manifested when X, acts on the zero
modes.
Another possible choice of a real endomorphism, similar to the definition of Xz, is
given by

~Map Nap

Yoc[S = (537)
—Nupg —Mgsp.

Using the properties (5.31,5.32) one can show that Y, is equal to the negative of the

inverse of the transpose of X 3. One can, also, show here that the linear combinations
O0=Yn P:%(Y12+Y21) Q:%(YIQ*YH),
satisfy the quaternion algebra
0> =P>=-I OP =—PO = Q.

Hence the complex structure J, defined as

] =110+ baP + b30Q,
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where by, by, and b3 are real numbers with } ; b% = 1, gives a 2-sphere of complex

structures. The square of | gives
J? = —(bf + b3 + b3).I (5.38)

One interesting property is that I and ] don’t anticommute, neither any of the set
{R, S, T} anticommute with any of the set {O, P, Q}. Note also that {R,S, T} and {O.P.Q}
are integrable by construction. This follows from the fact that the structures Nz and
Mg are the the real and imaginary part of the endomorphism A, we defined in
[125] section 3.3. We have A1, %(Alg + A1) and %(Alg — Ag1) integrable, and since
the Frolicher-Nijenhuis bracket is a real operator it implies that My, %(Mm + Maoy),
£ (M2 — Mai), Ni1, 3(Ni2 + Ngjy) and o-(Nq2 — Nay) satisfy the Frolicher-Nijenhuis
bracket and hence integrable.

The action of the complex structures on the zero modes can be achieved by writing the
two possible choices of real zero modes in a couple. The components of the couple are
actually the real and the imaginary part of the complex zero modes we defined in
[125]. Let W; be the couple of zero modes and V; be the second possible choice of real
zero modes, then

W, AT + 19T

Wi=| | = o : (5.39)

The actions of X;) and Y;! on W are given by
Mllwl + Nllvl —MllWl + NllVl

XJW; = - R YIW; = . B (5.40)
—N LJ,Wi + M;lvi —Nilwi — M-llvi

Hence we can read now the images Wj resulting from the action of X;} and Y;! on the

zero modes

X{W; = MW, + NJv;
= —2¢ 1Ty In(¥1T150) + 20T 1 (¢T3 9). (5.41)

YllWl = —MllWl + NllVl
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= =20y In(CTW) + 20T 2 (W1TT;0). (5.42)

The complex structures X and Y must map zero modes to zero modes. This means that
the images of W; (and V;) under the action of the X and Y have to satisfy the linear-
ized Bogomol'nyi equation (5.21) and Gauss’s law (5.22). Starting with the linearized
Bogomol'nyi equation, which we denote by “B”, we have shown in [125] section (3.3)
that the first term in (5.42) (¢'TT; In CTﬂi‘P) satisfies B. If we denote ¢TT;J)n by “A” and
CTﬂi‘P by “Z”, then we have B(AZ) = 0. We also have, in [125], that B(Z) = 0. Since B
is linear and has real coefficients, then B(ATZT) = 0 and B(Z") = 0. This implies that
21 is a zero mode and hence B(AZ") = 0 which gives B(ATZ) = 0. Therefore, Xiiwi
is a solution for the linearized Bogmol'nyi equation and similarly for Y{JW;.

One more thing to check if XiiWi and YLiWi are also solutions to Gauss’s law (5.22).

By definition

DYX{IWj) = DY{MHW; + MyIDIW; + DN )V; + NJDYY;
=D MW + MIDEW;) + DY NIV + NID I,
=D{(M{)W; + DY(NJ)V;, (5.43)
where in the last line we used the fact that M;} and N;! are selfdual (since ) and ¢ have
negative chirality) and on the other hand D@Wi] and D@Vi] are antiselfdual, hence
M{D uWi ;and N{/D @Vi ) vanish. We also used that

. 1 : 1
D1M4j = _TN” D1N4j = IMij.

Now we have

2 2

DMy = N4 DNy = — My, (5.44)
hence plugging (5.44) in (5.43) we get
DYX{W;) = I(N4]Wj - MJV;). (5.45)
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In order to check if this gives the correct right hand side, we have to check how the
right hand side of the Gauss’s law (5.22) change under the action of the endomorphism
X. The right hand side of the Gauss’s law is given by (2Vy), hence its image under the
action of X is (5.40)

Xy (%\'/)-) = %(—Ny'v'vj +MJV)), (5.46)
which is not equal to the right hand side of (5.45). This implies that image of X doesn’t

satisfy also the Gauss’s law.

Quite similarly we can check if the image of Y satisfies Gauss’s law. We have,

DYYJW;) = —D'(M{)W; + DY (NJ)V;

2 L. .
= —I(N4JW)' + M4]Vj),
and the image of the right hand side of Gauss’s law under the action of Y is given by
i3y 2 NV v
Yy (IV]‘) = —I(N4 W)' + My Vj). (5.47)

This implies that
C 2 ..
DH(YiIWj) = I(Y41V1 ), (5.48)

hence Yi,iwi is tangent to the moduli space. Therefore Y is a real endomorphism that
maps every zero mode tangent to the moduli space to zero mode tangent to the moduli
space. Let {W;} be the bases of the a subspace of the real tangent space TM to the real
moduli space M. The previous result shows that YiiWi (but not X-liWi ) is tangent to
the moduli space. Let Y be the of endomorphisms on the real tangent space defined
by

Y-}Wai = Yo" Wy (5.49)

Through the previous relation, we easily see that the endomorphism on TM; inherit
the same characteristics of Y, and gives a 2-sphere of (real) complex structures.
Moreover, if we now take the set of real zero modes {VL} to be the bases of another

subspace of the real tangent space TMy. This set of bases satisfy the same linearized
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Bogomol'nyi equation but different gauge background condition. The gauge back-
ground condition for {V;} corresponds to a part of the condition we found in [125]
equation (3.9) which the imaginary elements of the zero modes satisfy. In a similar
way to the previous discussion, we find that Xi,ivi (but not Yiivi ) satisfy the gauge
background condition of {V}. Hence, if we take X to be the set of endomorphisms on

the real tangent space TM, defined by
Xi!Vaj = Xa"Voi, (5.50)

we see that the X will have the same characteristics as those of X, and therefore gives

another set of 2-sphere of complex structures.

54 Comparison and remark

In this section we compare the results of the previous section with Bielawski and
Schwachhoéfer construction of the pluricomplex geometry. We show that the objects
that appear as a natural consequence of supersymmetry to describe the geometry of
the real moduli space of hyperbolic monopoles are similar to the objects that Bielawski
and Schwachhoéfer defined to describe the pluricomplex geometry. Their construction
was actually inspired by studying the geometry of moduli space of hyperbolic mono-
poles. Then we give in a table a dictionary that relates our notations to Bielawski
and Schwachhoéfer notations. We finish this section with a remark about the relation
between the real and complex structures on the moduli space of hyperbolic mono-

poles.

5.4.1 Comparison with Bielawski and Schwachhoéfer results

In their paper [68] Bielawski and Schwachhofer describe the geometry of the real mod-
uli space of hyperbolic monopoles, which they call pluricomplex geometry, as a gen-
eralization of the hypercomplex geometry, where we still have a 2-sphere of complex
structures but they no longer behave like unit imaginary quaternions. A sphere in

their description does not mean the standard sphere in the subspace spanned by three
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integrable complex structures, however it means a diffeomorphic image of a 2-sphere
in the space of complex structures, i.e. an embedding of $? into GL(2n,R)/GL(n,C).
Their construction for the pluricomplex geometry is as follows:

Let V be a 2n-dimensional real vector space, and J(V) ~ GL(2n,R)/GL(n,C) be the
space of complex structures on V. The space J(V) is constructed by two holomorphic
maps taking values in CP!-s spaces of complex structures. The firstmap K : CP! — 7(V),
takes every ¢ € CP! and gives K(V) = J; € J(V), and hence forms a subspace of
), VE’O. This map motivates a similar one but from different set of CP! complex
structures defined by o : CP! — CP!, such that ¢(¢) = n = ¢ !. Then the holo-
morphic map K : CP! — (V) forms another subspace of J(V), namely, \A7}:’O = \7%}1.
For (¢,n) € CP! x CP!, the elements of Vé’o and \7?,1’,11 don'’t satisfy any anticommuta-
tion relations. This lead to constructing a coherent sheaf J on an algebraic curve S in

CP! x CP! described as
S ={(¢,n) € CPY x CPL Ve NV, # 0},

where S is called the characteristic curve and J the characteristic sheaf on the pluricom-
plex structure.

Our results show that the exact construction of pluricomplex space follows from
studying the geometry of real moduli space of hyperbolic monopoles using supersym-
metry. We have the endomorphisms X and Y act linearly on different sets of zero modes
{W,,} and {V,,} respectively, each X and Y give a 2-sphere (CP') worth of (real) complex
structures {R, T, S} and {O, P, Q}, where we don’t find any anticommutation proper-
ties between the two sets. This allows us to construct two sets of complex structures
{X, Y} on the moduli space which inherit all the characteristics of {X, Y}, which means
that both X and Y give two sets of 2-sphere complex structures but we don’t have any
anti-commutation relations between them. In the following table we give a small dic-
tionary for the terms defined in Bielawski and Schwachhéfer construction and what

they correspond for in our terminology.
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Objects B&S Notation Our Notation

CP! x CP! elements ., ¢t X,Y=(x")"1!
Endomorphisms on M Je, Tz X, Y
Maps K, K XV =XV, YW = YW

In addition to this picture Bielawski and Schwachhofer gives another point of view:
An integrable pluricomplex structure on a manifold M can be viewed as an integrable
hypercomplex structure on a complex thickening MC of M, commuting with the tau-
tological complex structure of M€ i.e. a pluricomplex geometry of M is biquaternionic
geometry of MC. This picture is also derived in our results by complexifying the mod-
uli space described in this chapter, which means doing the exact calculation done in

chapter three, which lead to a hypercomplex geometry.

5.4.2 Remark on the complex and real geometry

The main equations that determine the geometry of the moduli space of monopoles
are the linearized Bogomol'nyi equation and the gauge background condition. The
gauge background condition is derived when we build the supermultiplet of zero
modes. It is the condition that makes the zero modes orthogonal to the gauge or-
bits. This condition is one of the main players that renders the geometry of hyperbolic
monopoles different than the geometry of Euclidean monopoles, and it is also the main
factor in making the geometry of the complex and real moduli spaces of hyperbolic
monopoles different. Recall that for complex hyperbolic monopoles, the linearized

Bogomol'nyi equation and the gauge background condition are given by
DAy = —SeuvpeDPAY  and  DMA, = —4iMAy, (5.51)

where A is equal to 5; if we take the upper half space model of hyperbolic space (4.18).
For the Euclidean monopoles the equations have the same form, except for the right
hand side of the gauge background condition which is equal to zero (it is the limit as
1 — c0). Hence, in the Euclidean case the linearized field equations are real, which im-

ply that weather we take their solutions (zero modes) to be real or complex it doesn’t
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make any difference. Therefore, the real and the complex moduli spaces of Euclidean
monopoles have the same geometry (hyperkdhler geometry). However, for the case of
hyperbolic monopoles this extra pure complex term directly implies that these equa-
tions can only have complex solutions, i.e. complex coordinates functionals on the
moduli space, and hence the real moduli space must have different geometry. For the
real geometry we started from higher dimensional gauge theory, and after reduction
and linearization we found two sets of real zero modes (W;, V;) satisfying the same
linearized Bogomol'nyi equation in (5.51), but different gauge background conditions
given by

.. . . 2.
DLWL = %V4 and Dlvi = *TW4 . (552)

By relating the bosonic zero modes (V'Vi, Vi ) to fermionic zero modes (5.39) we con-
structed the geometric objects of the real moduli space, and showed that they match
the pluricomplex geometry objects.

Starting from a six dimensional supersymmetric Yang-Mills theory gives inform-
ation about the real coordinates of the moduli space of hyperbolic monopoles, and
hence probe its geometry. However, this approach is just looking at the same prob-
lem from different angle, and that should make our vision and understanding of the
problem better, yet provide the same results. In other words, it should be also possible
to look at the geometry of the complex moduli space when we start from six dimen-
sional supersymmetric Yang-Mills theory. This is actually simple, all we need to do is

to write the zero modes (W;, V;) in the form
Ai =W 1V, (5.53)

and then all the equations for the complex fields are obtained by simple algebra. This
note actually confirms our results by deriving same results from different starting
point.

Therefore, supersymmetry via the gauge background condition distinguishes between
the 2-sphere complex structures that can be linearly made to satisfy the quaternionic

relations and those that cannot. Moreover, supersymmetry in different dimensions al-
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lows us to explore the real and the complex moduli spaces of hyperbolic monopoles,

and confirm the results of one of them by using the results of the other.

5.5 Limiting case “hyperkdhler geometry”

Every new term introduced in the process of promoting our theory from flat space
to hyperbolic space is inversely proportional to the radius of curvature. This feature
makes studying the limiting scheme very easy and the results very transparent.

First, by setting the radius of curvature to infinity, thatis 1 — oo, the Killing spinors

equations defined in (5.19,5.20) agree
l—o00=Vi(=Vin=0.
This implies that
Mopi ) = 21K 2, Napil =0,

Hence

Xoc[S = Yoc[S = 5 (554)
0 Mag

Therefore we have now one set of 3 complex structures

T =Xy, F2 = %(XIZ + Xa1), FB) = %(Xm — Xo1), (5.55)

which are integrable and satisfy the quaternionic algebra (5.34,5.35). Using these
complex structures we define complex structures on the moduli space with same prop-
erties via (5.49).

Moreover, the new factors in Dirac equation and Gauss’s law that appeared due
to writing them on hyperbolic space are, also, inversely proportional to 1, hence these

equations along with the linearized Bogomol'nyi equation coincide with their form
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on flat space when 1 — oo

. 1 . - .
DuWﬂ = —5 Ei]‘manwﬂ, DlWi = 0, D‘}/ = 0, (556)

and they are satisfied by the zero modes ansatz defined by (5.17,5.18). Therefore the
zero modes W; and ¥ are coordinate functionals on the moduli space and will be used
to linearize the action. For that sake we introduce the bosonic q,(t) and fermionic
pa(t) collective coordinates of the moduli space, for a = 1,...,4n, where t is a para-
meter introduced, such that the evolution of the monopoles in t values can be viewed
as that of a fictitious particle moving in a configuration space, the space of minimum
energy.

We first expand the bosonic zero mode W; = W,;q“ as a linear combination of the
basis Wai and similarly for the fermionic zero mode Y = W_p? Then, we expand the
supersymmetric Yang-Mills-Higgs action in terms of the collective coordinates{qq, pa}
and we keep only the non trivial order. Since we are only interested, in this section, in
the geometry we will just focus on the bosonic part of the Lagrangian (4.15) given by

1 . A 1 4
£=-564GY — [Did]” ~ DiA DA — [, A, A] = AL A + GALA

and in the limit where ¢ — oo is given by

1 4 i 1
L= —iGilel — HD1¢|\2 —D;ALD'A_ —[d, AL ]lp,A_] — 1[A%Ai]Q, (5.57)

which as expected coincide with the bosonic part of the Lagrangian we found on Eu-
clidean space (4.11). Now, apply the supersymmetric constraints (5.1) to the lagrange
density and then we expand around the supersymmetric Bogomol'nyi solution. After
applying the constraints the lagrange density will simply read as £ = —1G;GY — ||D; | 2,

which constitutes only the potential energy part of the action,
1 2 3
P=|5IGyll + IDidl” ax’.

The geodesic motion comes from the kinetic part. In the spirit of the argument used
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in [127, 128], for a given path (W;(t), ¢(t)) in the moduli space, the kinetic energy can
be defined as
7= [ IGoi]1+ Do @,

and in this case the Lagrange function is then given by L = T — P, and the action is
given by [ Ldt.

The potential energy will give the charge number. For the kinetic energy, we expand
the arbitrary t-dependent fields, where t-dependance is via the collective coordinates,

hence

T —j 1Gos |2 + Do |2 = 2j 1Go|”
R3 R3

R3

where § = 9. Note that 3, W; doesn't satisfy in general the gauge background condi-

2

)

0 Wiq“ _DiWO‘

2
0Ws —3:Wo — Wi Wal| =2
] . N

tion, hence we decompose it into a component tangent to the moduli space, W, and

another perpendicular, Diw, (w, are gauge parameters), then

(Wai + Diwa)g® — DEWOHQ

T:2J
R3

. . 2
= 2J WaiWei1G9q° + HDi(waqa 7WO)H b
R3

where we dropped any multiplication between Wi and D iWq using the gauge back-
ground condition. If we now work with gauge s.t. wq.q® = Wy and substitute the

kinetic energy in the action we get
I ..
L=59a04%4" — %,

where k is the charge number and gq1, = i fWaini dx®. And finally, the Levi-Civita

connection is given by

1
Tabe = i{aagbc +0vJac — acgab}-

110



Using the definition of the metric g,. we have
1 .. . .
0agbc = 1 JRS(aaWbiWci + Wbiaawci)-

First note that [rs 9aWpiWei = [gs 9oWaiWei. This can be simply seen by noticing

that
JRS aaWbiW@ = JRS aa(abW-l — Diwb)\/\/ci (558)
which follows from having D;W; = 0. Similarly we have
J ab\/\/ci\/\/ai = J aCWbiWai and J aaWcini = J aCWaini. (559)
R3 R3 R3 R3
Using (5.58,5.59) in the connection equation we find that
1 L
Fabe = 4J 0aWpiWei. (5.60)
R3

The complex structures (5.55) obtained after we took the limit are integrable, they sat-
isfy the quaternionic algebra and map zero modes to zero modes (i.e. 5?11\/'\/1 satisfy
the linearized Bogomol'nyi equation and the gauge background condition). These
properties are inherited from X and remain intact after taking the limit. Since &?'ii\/\/i
is tangent to the moduli space, one can define endomorphisms T on the tangent space
by g’iiWai = T4°Wai. These endomorphisms via their definition are actually integ-
rable complex structures on the moduli space, and they satisfy the quaternionic al-
gebra. One can also show that these complex structures are parallel with respect to
the connection (5.60) (see e.g. [79] or [87]). So the limiting case has given us a metric,
connection and integrable complex structures that satisfy the quaternionic algebra and

preserved by the Levi-Civita connection, whence produced the hyperkéhler geometry.
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Chapter 6

Conclusion and Outlook

In this thesis, an old question of Atiyah about the nature of the geometry of the mod-
uli space of hyperbolic monopoles is answered. Unlike the previous approaches to
this problem, which used twistor construction, we use supersymmetry to solve it. We
found that the geometry of the complex moduli space of hyperbolic monopoles is
hypercomplex and the geometry of the real moduli space is pluricomplex geometry.
Pluricomplex geometry is a generalization of the hypercomplex geometry where the
complex structures define a diffeomorphic image of the standard 2-sphere, an embed-
ding of the S? into GL(2n,R)/GL(n,C), and they don’t admit any anticommutation
relations. Moreover, we showed that we have a one-to-one correspondence between
the number of solutions of Bogomol'nyi equation and the number of solutions of Dirac
equation in the presence of hyperbolic monopoles. The feature that makes using su-
persymmetry a favorable approach to solve for the geometry of a supersymmetric con-
figurations is that by deriving the supersymmetry transformations we are indirectly
finding the solutions of the equations of motion on the tangent space of the config-
uration space and hence rendering our job of studying these solutions and extract-
ing information about the complex structures, connections or other geometric objects
much easier. In other words, the supersymmetry transformations furnish a complete
scheme which we can use to read information about the geometry of the configura-
tion space, which again confirms the importance of supersymmetry as a mathematical

machinery to relate the equation of motion of objects of different nature and hence re-
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vealing hidden information about their configuration space.

The procedure used in this thesis raises few interesting questions that worth in-
vestigating:

First, in this thesis two new supersymmetric Yang-Mills-Higgs Lagrangian on H?
are derived using the method of deforming the supersymmetric theory on a flat space
by new terms that depend on the radius of curvature. It would be really interest-
ing, however, to derive these Lagrangians using the method of Festuccia and Seiberg
[99]. This method has been employed, so far, to derive supersymmetric field theories
on compact backgrounds due to interests in the localization techniques to compute
new observables. The first step in recovering our Lagrangians using this new method
would be finding a four dimensional supergravity theory with Yang-Mills fields where
the metric H? x R or H? x S! form one of the solutions of the gravity field.

Second, in tackling the complex moduli space of hyperbolic monopoles we started
from a supersymmetric Yang-Mills on Euclidean space, however we studied the real
moduli space by starting from a supersymmetric Yang-Mills on Minkowskian space.
This arises an interesting question, if it is always the case that euclideanising a super-
symmetric theory will pave the way to study the complex configuration space, and
hence if we are interested in studying the complex thickening of a configuration space
using supersymmetry we should first euclideanise the supersymmetric mother the-
ory.

Third, Manton formulated in [57] the gauge theory dynamics by arguing that slowly
moving monopoles flow geodesics in the moduli space. Manton argument applies
for gauge theories where the true configuration space is Riemannian. However, what
happens for a case with target manifold being non-Riemannian, like for the case of the
dynamics of hyperbolic monopoles ? We guess that a generalized argument should be
established that governs the dynamics of all kind of monopoles, where, also, the nat-
ural action for a path on the moduli space defined in [129] should also be generalized.
If this generalization is established we expect that the Hitchen set of metrics for the
moduli space of two centered hyperbolic monopoles [66] can be recovered. It is worth

mentioning that recently a promising attempt has been established by Paul Sutcliffe
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at al. [62] to derive the metric of the moduli space of hyperbolic monopoles using the
fact that hyperbolic monopole is uniquely defined by the abelian magnetic field on the
boundary of hyperbolic space. In their paper, an integral form for the metric has been
given, and the metric of the moduli space of single hyperbolic monopole, namely H3,
has been derived.

Fourth, unlike monopoles on flat space, Skyrmions don't satisfy the linear energy
bound, also known as Faddeev-Bogmol'nyi lower bound [82], for non-trivial value of
the field, which cuts the hope of deriving a supersymmetric extension to the Skyrme
action [130, 131] on flat space. However, Manton and Ruback showed in [83] that the
saturation can be made possible with non trivial values of the field if we promote the
bosonic Skyrme action to S®. The saturation of the bound in addition to its linear-
ity imply the existence of a supersymmetric extension for the Skyrme action on S°.
The crucial point here is that from our experience with supersymmetric monopole
on H3 we know how the supersymmetry variation of the fermions looks, namely the
Faddeev-Bogomol'nyi equation, and hence building on that it shouldn’t be difficult to

use Noether method and guess the fermionic content of the action.
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Chapter 7
Appendix

7.1 The Frolicher—Nijenhuis bracket of endomorphisms

The Frolicher-Nijenhuis bracket defines graded Lie superalgebra structure on the space
Q°*(M; TM) of vector-valued differential forms on a manifold M. For a modern treat-
ment see [132, Chapter 8]. This bracket extends the Lie bracket of vector fields, thought
of as elements of Q% M; TM). Endomorphisms of TM can be thought of as elements
of Q1(M;TM) and the Frolicher—Nijenhuis bracket defines a symmetric bilinear map
[—,—]: QY M; TM) x Q1 (M; TM) — Q2(M;TM). Paragraph 8.12 in [132] gives an ex-
plicit expression of the Frolicher-Nijenhuis bracket [K, L] of two endomorphisms K, L

in terms of the Lie bracket of vector fields: namely,

K, LI(X,Y) = [KX, LY] — [KY, LX] — L[KX, Y] 4+ LIKY, X]

— KILX, Y] + K[LY, X] + (LK + KL)[X, Y] . (7.1)
Applying this to X = 0, and Y = 9y, we find

[K, L](aay ab) = [Kacat’ml—bdad} - [KbCaCa Ladad] - L[KaCaC7 ab]
+ L[Kp D¢, da] — K[Ladc, dp] + K[Lp e, dal
(7.2)
= (Kq®dcLp® = Lp0cKa® — KpdcLa® + Lo dcKp?

+0pKaLe® —0aKpLe? 4+ 9pLa“Ke? — 0qLpKe?) B4 -
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It is perhaps easier to remember the case K = L:
LK, KI(X, Y) = [KX, KY] — K[KX, Y] + K[KY, X] + K?[X, Y] , (7.3)

from which we can recover the general case by the standard polarisation trick. Apply-

ing this to X =94 and Y = 0y, we find

LK, KI(3a, 0b) = [Ka e, Kp9dal — KIKo e, dp] + K[Kp e, dal -

= (Kq®dcKp? — Kp0cKq® — 9 KaKed + 0aKpKe?) 94 -

If V is a torsion-free connection on the tangent bundle, we may write the Lie
bracket of vector fields as

X,Y] = VxY — VyX, (7.5)

whence a small calculation yields the following equation for the Frolicher—Nijenhuis

bracket [K, K]:
%[K, KI(X,Y) = (VkxK)Y — (VkyK)X + K(VyK)IX — K(VxK)Y . (7.6)
For endomorphisms which obey equation (3.70), that is,
(VxK)Y = (VyK)X, (7.7)
the Frolicher-Nijenhuis bracket [K, K] is given by
K KX, Y) = (VkxK)Y = (VkyK)X, (7.8)
which polarises to

(K, LI(X,Y) = (VkxL)Y — (VkyL)X + (VLxK)Y — (VLyK)X. (7.9)
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Applying this to X = 9, and Y = 9y, we see that
[K,L](3a,dp) = (KaVcLdp =K Veldq + La VK — L VeK4) dq,  (7.10)

which agrees for K = &; and L = &; with equation (3.65).

7.2 Obata Connection

In this section of the appendix we prove the existence of the Obata connection ¥ on the
complex space of hyperbolic monopoles, studied in chapter 3, by explicitly deriving

the following formula for its Christoffel symbols:
?abc :—% [26(a§b)d+g(ae X aeEb)d} _gdc’ (711)

where & = (€1,E2,E3) = (J,d,K) represents the three complex structures on TcM.
The equation for the hypercomplex space connection was first derived by Morio Obata

[133]. Recall that the complex structures satisfy the quaternion algebra:
EAEp = —bag +e€arcéc. (7.12)

The Obata connection is defined to be the unique torsion-free connection for which
%E = 0. We will drop the superscript “o” on the connection and the Christoffel sym-
bols in what follows.

To begin with, since J, g, X are parallel, we obtain

30T + T, 0%, — T, 7 =0, (7.13)
3adb° +T5ed% —TEpd% =0, (7.14)
3aKp® + T, Ky, — e, KEe = 0. (7.15)

Multiplying (7.13), (7.14) and (7.15) with 3¢, J¢. and K9, , respectively, we get

rdy +739.047p¢ + 34T I¢, =0, (7.16)
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rgb + gdcaagbc + Hdcrcclegeb = Oa (717)

rdy +K40,Kp¢ + KT K, = 0. (7.18)

Swap a with b and use the fact that the connection is torsion free (%, =Tg,), we get

o = —9%0(aT6)" = % a1 7%b) (7.19)
rgb :73dca(a3b)c73dcr(ca|e‘geb), (7.20)
My = —K%(aKp)© = KT K, (7.21)
or
O + 799000 +I90pTaC = —TC, 95T — TE,T¢ 9%, (7.22)
2rcilb + Hdcaagbc =+ Hdcabgac = _rcclegebgdc - rﬁeﬂeaﬁdc, (723)
d + K00 Kp€ + KK = —TE KK — T K K. (7.24)

Equations (7.22), (7.23), and (7.24) form the first set of equations that will be later used
in computing the unique connection. To get the other set of equations, we will start,
now, with V,J,¢ = 0 alone, and with some computations we will get two equations.
Then, similar calculations will be done for V,J,¢ = 0 and VX ¢ = 0, to obtain four
other equations, which form a set of six equations along with the two equations we

obtained from V,J,¢ = 0. To be explicit, consider

0aJpS +T5 I —TE,I% =0, (7.25)

multiplying this equation with g4 first, we get

J90aTp¢ +T5,99.7%, +TE, K =0, (7.26)

multiplying this result with X, we get

3dcaajbcj<af + rgegdcjebjcaf + rgbjcdejcaf = O) (727)
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swapping b with f, we get

J90T:°K Y +TC.9%4 76K +TEKL K =0, (7.28)

adding the last two equations, gives

Hdcaajbcxaf + gdcaajfcxab + rg_egdcjebjcaf

+TEd% T K Yy + TE KK +TE KK, =0, (7.29)

Starting again from the same equation V,Ju¢ = 0, but now we multiply it first with

K4, and then we multiply the result with J¢ as follows:

0adp +T5I% —TEpI% =0, (7.30)
K0T +TE, KA T, — T 9% =0, (7.31)
Ke0aTpd% + TS KT, I% — T, d%ed% =0, (7.32)
swapping b with f,we get
chaaﬂfcgab + FgeJCdCJefé]“b — Fgfadegab = 0, (733)

adding the last two equations, gives

chaajbcgaf + chaajfcgab + rccledecJebHaf

T, KT8 % — T d%ed % —Td%d% = 0. (7.34)

We are going to do computations similar to that done for V,J,¢ = 0, but starting
now from V,Jv,¢ = 0, and the two equations we obtain that are analogous to equa-

tions (7.29) and (7.34) are :

Ke0adpT% +K0qdeCT% +TE KT

+ T, KA. 86T, + T, 94T +TEJ9.7%, =0, (7.35)

121



and

jdcaagbchaf + jdcaangfKab + rgejdcgebjcaf

+ FgejdcaeffKab — ngineK“f — FgfineiKab =0. (7.36)

Similarly from VX ¢ = 0, we obtain the following two equations:

J9c0aKp 9% +I9c0aK T % + TSI K%

F I KE % + T8, d%d% +Td%d% =0, (7.37)

and

J40aKpT%% + 40K T% +TEJ4KEpI%

FTE % KT, —TE T4 T — T8I, J%, = 0. (7.38)

The six equations (7.29), (7.34), (7.35), (7.36), (7.37) and (7.38), will be combined to give
a new set of new equations in which, later, we will substitute (7.22), (7.23) and (7.24),
and then will be added to give the Obata connection. Subtracting (7.36) from (7.37)

gives

jdcaaj{bcgaf + jdcaaichHab + r(clejdcg{ebgaf + rgejdcg{efgab
HTE,3%ed% +T8:3%% —99c0adp K% — 71904 ¢K %

T8 I9: %KY —TET9: K +TE KK + KKy, =0, (7.39)

and relabeling indices as follows

re J9.9, K% =T 799K =T, J9.J% K (7.40)

re. 9. 3%, K% =T, 99 d% K =T, 74 % K¢, (7.41)
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equation (7.39) becomes

Jdcaag{bcgaf + jdcaag{fcgab - jdcaagbcg{af - jdcaagfcg{ab

+r§bgde3af + rgfgdegab + rgbxdejcaf + rgfxdej(ab =0.

Substituting (7.23) and (7.24) into (7.42), we get

jdcaaxbcgaf + jdcaa:KCfgab - f]dcaagbcgcaf - f]dcaagcfgcab

= AN + 39060 + 39 0u9¢° + K20 Kp S + KA Dp K€

or

AT = —390¢0b° — 3% 0pd¢¢ — K4 0:¢K b — K4 0p K€

+Jdcaag<bcgaf + Jdcaaxcfgab - jdcaagbcxaf - jdcaagcfxab-

Second, subtracting (7.34) from (7.35) gives

fK‘dcaagbcjaf =+ chaagfcjab + rgbjdejaf + r(elfjdejab

—K90a9p9% — K049 + T4 % + T4 % =0,

and substituting (7.22) and (7.23) in (7.46), we get

ATR = —79.0¢0p — 9074 — 3900 — J9c0ud¢¢

‘Hchaagbcjaf + :chaagfcjab - Cchaajbcgaf - :chaajfcgab-

Now, subtracting (7.38) from (7.29) gives

3dcaajbcj<af + gdcaajfcxab - Hdaajcbcjaf - 3daaj<fcjab

+r§bj<:dej<af + rgfg{dejcab + rgbjdejaf + rgfjdejab = 07
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(7.43)

(7.44)

(7.45)

(7.46)

(7.47)

(7.48)



and substituting (7.22) and (7.24) into (7.48), we get

Arde = —7909,¢ — 9907 — K4 0K ¢ — K4 0p Ky

+Hdcaajbcg<af + Hdcaajfcxab - 3daag<bcgaf - gdaaxfcjab (749)

Finally, adding (7.45), (7.47) and (7.49) yields the formula (7.11) for the Obata connec-
tion.
7.3 Reduction of the supersymmetry transformations

Using the definitions defined in section (4.3.2) the supersymmetry transformations
(4.4,4.5) is reduced, in this section, from R(®>!) to R3.

Starting, first, with the variation of the bosonic fields

SW; = el ¥ — ‘Pl}a,

we have
£= <0 1> ®el® (0 i>+(1 0)®s£® (0 i)
) 1 0 0 0
My = ®vidv1 ® + ®vid2 ® ;
0 1 1 1
hence
iy = 7151'\/11])2 + iE;Yiﬂ)l.
similarly
Ylie = _ilpJ{Yi£2 + iﬂ%wel,
Therefore

dW; = —iEIYﬂbz + ie%%lbl + hb%/i£2 — ill);%il-
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The variation of the zero component of the scalar field gives

0o = elp¥ — q/roﬁ

=ylie ¢y

1 1 0 1
={<1 0)@11){@(1 0>+<0 1)@11)5@(1 0)}.{ ®e1® + e | |}
0 0 1

1 1 0 1
—{<1 0)@8{@(1 0>+<0 1>®s£®<1 0>}-{ ®1P1 ® + P | |}

0 0 1 0
=Pler +Plea — el — efio.

The variation of the fourth component of the gauge field is given by
Sy = ey — \PDLE.

We have

er4={(o 1)@8{@(0 —i>+<—1 o>®e£®(0 —i>}-{01®112®02}
=<1 0)@5{@(1 o>+<o —1>®s$®(1 0>,

then

1 1 0 1
er4‘P={<1 0)®si®<1 0>+(0 _1)@)5;@(1 0>}.{ @Y1 ® + ® P2 ® }
0 0 1 0

= 8111)1 — Eglbz-

Similarly

Urye =Pleg —leo,

therefore

dby = ely¥W — q}r4£

= EJ{ﬂ)l — €£1P2 — 11)151 +II)J£€2-
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The last component of the bosonic fields 65, we have

S5 = elzY¥ — \Pr5£,

We have
1 1 0 1
Y = {03 ® Iy ® 09}.{ ®R1P; ® + ® P2 ® }
0 0 1 0
1 0 0 0
= P ® + ®@ P2 ® ;
0 i —1 i
then
_ i ; 1 0
6F5‘P:{<0 1>®61®<0 —i>+<—1 0>®£2®(0 —i>}{ ®VP1 ® +
0 i -1

= —elpy — el

Similarly

Wlse = —Pples — ey,

therefore

8¢5 = —ej g — efbr +P]ea +ber.

The final piece is the reduction of the fermionic field variation, in six dimensional

terms we have

Y =TABeGag. (7.50)

We’ll start with the first term,
TBeGap =M eGuy + TeGyj + 2M* Gy, (7.51)
which requires finding the spin generators
rM=I ey,
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MY =y ol oI,

M =Tt =y @ y' @ ios.

The first part of equation (7.51) gives

. iy 1 1 0 1
MeGy ={la @ yY @ I} { ®e1® + ® €2 ® G v
0 0 1 0

1 s 1 0 s 1

= ®vYYGije1 @ + ®vYGije2 ®
0 0 1 0
Y9Gijer
'yijG..€2

= v (7.52)

0
0
The second part of equation (7.51) gives
1 1 0 1
MYeGuy =y @l @ Ir}{ Qe ® + ®e2® 1G v
0 0 1 0
1 1 0 1
={y* ®er® +y*Y ®ex® 1Guv
0 0 1 0
We have
Yo4 = 03, Yos = —01, Y45 = —102,
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then

-1 1 0 1
THYeGuy = 2{ ®e1® + ®er ® }Gos
0 0 1 0
0 1 1 1
+2{ ®e1® + Qe ® }Gos
1 0 0 0
0 1 -1 1
+2{ ®e1® + ® e ® }Gas
1 0 0 0

—e1ldo, dal + e2ldo, ds] — e2ldy, ds]

e2[do, dal + e1ldo, dsl + 1(d4, ds)
0

=2

0

As for the last term in equation (7.51) , we get

. . 1 1 0 1
MreGiy =(Y* @y ®@iosH ®Re1® + ®e2®
0 0 1 0
1 . i . i
={y" ®Y'e1® +y* ®yea® | |IGiy
0 0 1 0

The components of equation (7.53) are as follows

0 0 . i -1 . i
MeGip = { Rv'er ® + Rv'es ® 1Gio
1 0 0 0
—iyteaDido
| WrieDido
0
0
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Also we have

4 0 . i 1 . i
M*eGig =1{ Rv'e1® + QY2 ® 1Gia
1 0 0 0
iyleaDidy
_ iyte1Dida
0
0
and similarly
5 1 . i 0 . i
MPeGis ={ @v'er ® + ®Yve® }Gis
0 0 -1 0
iyte1Dids
| —irteaDids
0
0
Therefore
—iyteaDido iyteaDidy iyte1Dids
- iyte1Dido iyte1Dida —iyteaDids
FI”EGiu _ 1 + 1 + 1
0 0 0
0 0 0

iyYeaDi(pa — do) + e1D b5

) iy{e1Di(dpa + do) — e2Dids . (7.54)

0

0
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Inserting equations (7.52, 7.53, 7.54) in (7.50) , we get

1 =v"VGuver + 2{—e1ldo, sl — e2[ds — do, dsl}
+ 2iy*{e2D . (pg — o) + e1D s,
o =YV Guven + 2{ealdo, dal + e1[ds + do, d5l}

+ 2ity*{e1D (s + do) — e2D b5}
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