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Abstract

This thesis studies the geometry of hyperbolic monopoles using supersymmetry in

four and six dimensions. On the one hand, we show that starting with a four dimen-

sional supersymmetric Yang-Mills theory provides the necessary information to study

the geometry of the complex moduli space of hyperbolic monopoles. On the other

hand, we require to start with a six dimensional supersymmetric Yang-Mills theory

to study the geometry of the real moduli space of hyperbolic monopoles. In chapter

two, we construct an o�-shell supersymmetric Yang-Mills-Higgs theory with complex

fields on three-dimensional hyperbolic space starting from an on-shell supersymmet-

ric Yang-Mills theory on four-dimensional Euclidean space. We, then, show that hy-

perbolic monopoles coincide precisely with the configurations that preserve one half

of the supersymmetry. In chapter three, we explore the geometry of the moduli space

of hyperbolic monopoles using the low energy linearization of the field equations.

We find that the complexified tangent bundle to the hyperbolic moduli space has a

2-sphere worth of integrable structures that act complex linearly and behave like unit

imaginary quaternions. Moreover, we show that these complex structures are parallel

with respect to the Obata connection, which implies that the geometry of the com-

plexified moduli space of hyperbolic monopoles is hypercomplex. We also show, as

a requirement of analysing the geometry, that there is a one-to-one correspondence

between the number of solutions of the linearized Bogomol’nyi equation on hyper-

bolic space and the number of solutions of the Dirac equation in the presence of hy-

perbolic monopole. In chapter four and five, we shift the focus to supersymmetric

Yang-Mills theories in six dimensional Minkowskian spacetime. Via dimensional re-

duction we construct a supersymmetric Yang-Mills Higgs theory on R3 with real fields
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which we then promote to H3. Under certain supersymmetric constraints, we show

that hyperbolic monopoles configurations of this theory preserve, again, one half of

the supersymmetry. Then, through investigating the geometry of the moduli space

we show that the moduli space is described by real coordinate functions (zero modes),

and we construct two sets of 2-sphere of real complex structures that act linearly on

the tangent bundle of the moduli space, but don’t behave like unit quaternions. This

result coincides with the result of Bielawski and Schwachhöfer, who called this new

type of geometry pluricomplex geometry. Finally, we show that in the limiting case,

when the radius of curvature H3 is set to infinity, the geometry becomes hyperkähler

which is the geometry of the moduli space of euclidian monopoles.
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Chapter 1

Introduction

1.1 Monopoles and the Higgs mechanism

In the mid sixties and early eighties of the previous century, two major ideas were sug-

gested to answer some unsolved questions in Particle Physics and Cosmology. These

theories play, also, significant roles in the monopoles study at the level of constructing

them and solving their existence problem. The general acceptance of these two the-

ories has led to enormous experimental researches for more than forty years, which

have recently flourished into a grand discovery for one of them and some promising

results for the other.

At one end of the spectrum we have the famous discovery of the Higgs boson on

the 4th of July 2012 at the CERN’s large hadron collider via a collaborative work of

the ATLAS and CMS experiments [1, 2]. The discovery of the Higgs boson didn’t just

mark the finding of the last missing fundamental particle, but it, more importantly,

verifies the correctness of our understanding for the mechanism responsible for mass

generation, the Higgs mechanism. The Higgs mechanism has been used in locally

gauge invariant theories to give masses to bosons and fermions. The importance of

the role of this mechanism has guaranteed François Englert and Peter Higgs the Nobel

prize in physics on the 8th of October 2013:

for the theoretical discovery of a mechanism that contributes to our understanding

of the origin of mass of subatomic particles, and which recently was confirmed
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through the discovery of the predicted fundamental particle, by the ATLAS and

CMS experiments at CERN’s Large Hadron Collider

For the magnetic monopoles the discovery of the Higgs boson is of crucial im-

portance and very intimate mathematical connection. The original notion of a mag-

netic monopole, a stable particle carrying a magnetic charge, appeared as a natural

suggestion for a symmetry between the electric and magnetic fields in the Maxwell’s

equations. Dirac in 1931 [3] was the first to give a convincing argument of the mono-

poles concept by constraining their existence to the quantization of the electric charge.

However, the Dirac monopoles doesn’t have regular magnetic potential. Any vector

potential whose curl is equal to a field of Coulomb form must be singular along a line

(Dirac string) running from the origin to spatial infinity. This physical anomaly in

addition to the lack of experimental evidence led to a natural fade of the idea of mag-

netic monopoles. Moreover, Dirac’s electric charge quantization argument was later

replaced by the fact that the electromagnetic U(1) gauge group in a unified gauge the-

ory is compact, which implies that the electric charge operator obeys commutation

relations with other operators of the theory and these relations require that the eigen-

values of the electric charge operator to be integer multiple of a fundamental unit.

The beautiful twist in the history of magnetic monopoles happened in 1974 when

’t Hooft [4] and Polyakov [5] independently found finite energy solutions for the bo-

sonic part of the Georgi-Glashow model. The ’t Hooft-Polyakov solutions asymptotic-

ally behave like Dirac monopoles, however, unlike Dirac monopoles, ’t Hooft-Polyakov

monopoles enjoy regularity at every point in space. This regularity is due to the non-

zero vacuum expectation value of the Higgs field which forms the cornerstone of the

Higgs mechanism. When the Higgs mechanism was discovered [6, 7, 8, 9, 10], it was

the first successful attempt that allows to incorporate mass in a gauge theory without

breaking the renormalizability. The Georgi-Glashow model is an upgrade of the Yang-

Mills theory [11] by coupling it to a Higgs field, and hence using the Higgs mechanism,

via spontaneous breaking of the gauge symmetry, to generate mass for the particle

contents of the theory which consist of two massive charged vector bosons, a massive

neutral scalar, and a photon. Studying the particle spectrum of a gauge theory is com-
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monly achieved by fixing the gauge and then expanding the theory around a vacuum

configuration. This method only lays our hands on the perturbative spectrum, but it

is always interesting to investigate the spectrum beyond the perturbation theory. This

is equivalent to looking for static stable solutions of the field equations, other than the

vacuum configuration, i.e. “soliton solutions”. The energy finiteness implies that the

fields must approach the vacuum configurations at spatial infinity (sphere). In the

Georgi-Glashow model the vacuum configurations define a sphere of radius equal to

the vacuum expectation value of the Higgs field. Hence each field configuration can

be understood as a map from the spatial boundary S2 to the vacuum manifold S2vac

with a topological degree. Moreover, since the topological degree is an integer, it im-

plies that configurations with di�erent degree can’t be transformed into each other via

any continuos deformation. In addition, any field configuration satisfying the finite

energy constraints must become abelian outside the core of the monopoles and hence

a solution of a version of Maxwell’s field equations [12]. If we consider the vacuum

configuration to be the constant map, hence of degree zero, then the ’t Hooft-Polyakov

solutions satisfy all the required conditions. The last, but most important, imprint of

the non-zero vacuum expectation value of the Higgs field on the monopole is via its

nature. The nature of the monopole source can be best understood by evaluating the

total flux of the magnetic field which gives an integer multiple of 2⇡, and hence invari-

ant under any time evolution of the field configurations. This implies that the source

of the field configurations, and in particular the ’t Hooft-Polyakov monopole, is purely

topological [13], and hence the everywhere smoothness of the non-abelian monopoles.

Although a pure Yang-Mills theory has no soliton-like solutions in three space

dimensions [14], the addition of a Higgs field with a non zero vacuum expectation

value leads to the generation of the monopoles in their modern form. This significant

physical signature that the Higgs field and the Higgs mechanism has on monopoles

makes the discovery of the Higgs particle a huge success for the monopole physics as

well.

The popular description of the Higgs mechanism is a case of spontaneous local

gauge symmetry breaking [15]. A local gauge symmetry is not a symmetry of nature
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but of our description of the physics in nature, in other words a local gauge symmetry

connects di�erent mathematical descriptions of the same physical state. This means

that we shouldn’t expect any physical consequences from spontaneous gauge sym-

metry breaking. However, the Higgs mechanism’s physical consequences are math-

ematically evident and experimentally measured. This conceptual problem has led

many philosophers of physics to investigate the correctness of the mechanism and to

question the existence of a grand unified theory inspired by the success of the quantum

electrodynamics and based on analogy with its gauge symmetry [16, 17, 18, 19, 20,

21]. In addition, this conceptual discussion had also concerned some physicists like

’t Hooft [22] and Witten [23]. Luckily this confusion about the Higgs mechanism can

be gauged away by describing the mechanism in a gauge invariant way. This proced-

ure can be done by first writing the action in terms of gauge invariant variables, hence

rendering the theory independent of the involved gauge group. This will factor out the

gauge symmetry and therefore will be no need to fix the gauge. Then we can proceed

in the traditional way by studying small fluctuations around the ground state. This

procedure was originally done by Higgs for abelian gauge theories [8] and by Kibble

for the non abelian case [24]. Moreover, this gauge independent account for the Higgs

mechanism is discussed in Rubakov [25], and more recently has been adopted in some

reviews and papers [26, 27, 28, 29].

1.2 Monopoles and inflation

At the other end of the spectrum we have some promising recent results that sup-

port an inflationary scenario in the birth of the Universe, in addition to experimental

confirmations of predictions made by the inflation theory. The inflation theory in its

various models, the old [30], the new [31, 32], and the chaotic [33], has inserted in

the very early history of the Universe an extra phase of exponential expansion, the

inflationary phase, where in 10-36 seconds the distance between two points stretched

by at least a factor of 1026, which means that the size of an atomic nucleus became

the size of the solar system [34]. This rapid exponential expansion solves the ques-

tions that the standard Big Bang Cosmology alone can’t answer. Among these ques-
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tions is the lack of experimental detection for the primordial monopoles that appear

naturally in Grand Unified Theories [35]. The ’t Hooft-Polyakov monopoles are solu-

tions to the Georgi-Glashow model where the symmetry group SU(2) of the model

is spontaneously broken by the vacuum configuration to U(1), which has a nontrivial

fundamental group ⇡1(U(1)) = Z. It turns out that topological solutions appear as

natural property when the symmetry group breaks by the vacuum manifold into a

subgroup that has a nontrivial fundamental group, this mechanism is known as the

Kibble mechanism [24]. Grand Unified Theories are invariant under the action of

simple gauge groups that must break down after phase transition to leave the U(1)

group of electromagnetism intact, hence formation of magnetic monopoles. If we as-

sume that inflation took place at the energy scale of the Grand Unified Theory, then all

the magnetic monopoles were produced during inflation, and therefore their density

was diluted by the exponential expansion to an unobservable level.

Inflation has gone through many stages from being a very speculative idea to be-

coming part of the standard Cosmology. Inflation is not only a theory that was con-

structed to fit some preexisting facts, but it also made a bunch of predictions. After

thirty years of constructing the inflation theory, all of its predictions have been con-

firmed except for the gravitational waves. The most important inflation predictions

that have been very successful, thanks to the remarkable progress in the development

of the microwave detectors starting with the Cosmic Background Explorer (COBE) [36],

are:

Decrease in the curvature of the Universe: Just like the curvature of a balloon de-

creases as the balloon is inflated, the curvature of the Universe is decreasing since

inflation ended, and the current Cosmic Microwave Background (CMB) measurements

show that the curvature is at least four times the curvature of the observable Universe

[37].

Non-invariant scale of the density perturbation: The inflationary phase has to end, so

as time progresses the inflation rate slowly decreases. The quantum fluctuations gen-

erated during inflation are proportional to the inflation rate [38]. Hence, fluctuations

generated earlier have bigger amplitude and were stretched more, whereas fluctu-
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ations that were generated later have smaller amplitude and didn’t stretch as much.

Therefore, according to inflation we should expect to see density perturbations of lar-

ger amplitude on larger angular scale of the CMB angular power spectrum, and to see

those of smaller amplitude on smaller angular scale. Strong evidence of a departure

from scale invariance has indeed been found through analysis of the CMB angular

power spectrum [39].

Gaussian perturbation: In vacuum a free field �, the inflaton field in the inflationary

scenario, has a Gaussian probability distribution (wave function of harmonic oscil-

lator in its ground state is Gaussian). Using Taylor expansion, we see that the energy

density perturbation �⇢ = (dV/d�)�� + 1
2(d

2V/d�2)��2 departs from Gaussianity by

the second derivative of the potential energy V(�). However, for inflation to work the

second derivative of the potential energy should be very small (the slow-roll condition

of the inflaton field [38]). Hence, according to inflation the CMB fluctuations should

be very precisely, but not exactly, Gaussian. According to the most recent Planck data

[40] the CMB density fluctuations departure from Gaussianity is smaller than 0.1%.

In addition to these significant evidences for inflation, there are some others that have

already been experimentally confirmed, for a full review one can check the most recent

review from the Planck collaboration [40] .

However, a key prediction of the inflation theory, the primordial gravitational

waves, remains unconfirmed. The 2.7K photons left from the Big Bang is uniform

as we cross the cosmos with a small deviation measured to be �S = �T
T ⇠ 10-5 [41].

This anisotropy in the cosmic microwave background can be understood in the con-

text of quantum perturbations in the gravitational and scalar fields during inflation.

The e�ect of the quantum fluctuations in the scalar field on the inhomogeneity of the

CMB is physically di�erent than the e�ect caused by the fluctuations in the gravita-

tional field. On the one hand, the quantum fluctuations in the scalar field, �s, caused

the perturbations in the energy density, have become denser due to gravity and later

formed galaxies and other stellar objects that fill the cosmos (e.g. Andromeda galaxy

and Milky Way are approaching each other and will collide to form a bigger object).

On the other hand, quantum fluctuations in the gravitational field during inflation
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“tensor fluctuation := �T” formed the primordial gravitational waves which caused

vorticity in the polarization field of the CMB. But, a signature of primordial gravita-

tional waves on the polarization of the CMB, called “B modes”, has not been found

yet. Several balloon and ground based experiments are relentlessly collecting data

to measure the CMB polarization so that they can tease out the signature of gravita-

tional waves. In March of last year, the BICEP2 collaboration announced the detection

of B modes whose power spectrum had an angular momentum consistent with in-

flation [42]. Subsequent data from the Planck collaboration [43] and, most recently, a

collaborative cross-correlation of BICEP2 and Planck data sets [44] have demonstrated

that the signal originally reported by BICEP2 is consistent with having arisen entirely

from dust emission in our own galaxy. However, the Planck/BICEP2 collaboration was

able to put an upper limit for the tensor to scalar ratio r =
�2
T

�2
S

, which turns out to be

consistent with that obtained indirectly by the Planck collaboration in 2013 based on

the analysis of the CMB temperature fluctuations only. Detecting the “B modes” and

hence measuring r , would allow cosmologists to infer the energy scale of the inflation-

ary potential and determine the right model for the potential energy. Bamba, Nbjiri,

and Odintsov [45] have, recently, constructed di�erent scalar field models for inflation

that can be consistent with di�erent limits of r. The quest for the B-modes of the CMB

is not over, BICEP2 and Planck are collecting data on di�erent frequencies, and there

are two proposals for new generations of balloon experiments the LiteBIRD which is

a polarization-sensitive microwave experiment planned to be launched in 2020, and

the COrE+ proposal (COrE for Cosmic Origins Explorer) for a CMB detector with 10

times more sensitivity than Planck and planned to be launched in late 2020.

After all the empirical successes, inflation is by far the best candidate for the mech-

anism that generated the primordial density fluctuations and the primordial grav-

itational waves. The 2014 Kavli Prize in Astrophysics was awarded to Alan Guth,

Andrei Linde, and Alexei Starbinsky for their leading work on cosmic inflation. The

consequences of the inflation evidences along with the ATLAS/CMS results on the

monopoles study are staggering. The only argument that was against studying mono-

poles, absence of experimental evidence, is now weakened by the inflation empirical
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successes, and hopefully will soon be washed away once the B modes are detected.

The essential role that magnetic monopoles play in Grand Unified Theories, in ad-

dition to the mathematical beauty they carry in their constructions or in the geometry

of their moduli spaces, make them a very interesting topic and a fruitful domain of

research.

1.3 BPS monopoles

The mathematical beauty of the geometry of the monopole moduli space geometry

represents the heart of this thesis. The monopole addressed are the Bogomol’nyi-

Prasad-Sommerfield, “BPS”, monopoles with arbitrary charge, 2⇡N, on hyperbolic

space. For charge 2⇡, a spherically symmetric BPS monopole is a ’t Hooft-Polyakov

monopole with minimum energy. Prasad and Sommerfield [46] first studied static

minimum energy solutions for the Georgi-Glashow model. They obtained a limiting

example of the ’t Hooft Polyakov monopoles when they investigated the spherically

symmetric case with charge equal to 2⇡. Later, Bogomol’nyi [47] analyzed static solu-

tions with minimum energy, and derived the field equation describing them, namely,

the Bogomol’nyi equation.

1.3.1 BPS monopoles on R3

BPS monopoles—that is, the solutions of the Bogomol’nyi equation—have been un-

der the microscope by mathematicians and physicists for a long time. This equation

and its solutions can be studied on any oriented Riemannian 3-manifold, but they are

particularly interesting in Euclidean and hyperbolic spaces. One inspiring observa-

tion about BPS monopoles in these spaces is that they can be viewed as instantons in

four-dimensional Euclidean space left invariant under the action of a one-parameter

subgroup of isometries: translations (resp. rotations) in the case of Euclidean (resp.

hyperbolic) BPS monopoles. Another way of saying this is that the Bogomol’nyi equa-

tion results from the four-dimensional self-duality equation by demanding independ-

ence on one of the coordinates.
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To begin with, consider the Bogomol’nyi equation in Euclidean space

rA� = - ? FA, (1.1)

where � satisfies some suitable boundary conditions that make the L2 norm of FA

finite and ? is the Hodge operator of R3. For a detailed treatment of Euclidean mono-

poles, one can check [48, 49, 50]. The ingredients of the Bogomol’nyi equation can be

cast into a geometrical framework, where A can be viewed as a connection on a prin-

cipal G-bundle P over R3 and FA as its curvature. The Higgs field � is a section of the

adjoint bundle adP over R3; that is, the associated vector bundle to P corresponding to

the adjoint representation of G on its Lie algebra, and rA is the covariant derivative

operator induced on adP. A pair (A,�) satisfying equation (1.1) is what we call a Euc-

lidean monopole. If we now interpret � as being the x4 component of the connection,

then equation (1.1) becomes the self-duality Yang-Mills equation on R4

FA = ?FA, (1.2)

where all the fields are independent of the x4 coordinate, and the ?-operation is now

with respect to the flat Euclidean metric on R4.

1.3.2 BPS monopoles on H3

For the case of hyperbolic monopoles we simply replace the Euclidean base space R3

with hyperbolic spaceH3. To construct hyperbolic monopoles from instantons, instead

of considering translationally invariant solutions of equation (1.2) we will, however,

look for rotationally invariant solutions [51]. To be specific consider the flat Euclidean

metric in R4

ds2 = dx21 + dx22 + dx23 + dx24 . (1.3)
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If we choose the rotations to be in the (x1, x2)-plane and we let r and ✓ be the polar

coordinates in that plane, we have

ds2 = dr2 + r2d✓2 + dx23 + dx24

= r2
✓
d✓2 +

dr2 + dx23 + dx24
r2

◆
.

(1.4)

The rotations now act simply as shifts in the angular variable ✓. This coordinate system

is valid in the complement R4 \ R2 of the x1 = x2 = 0 plane. Inside the parenthesis we

recognise the metric on S1 ⇥H3, which is therefore shown to be conformal to R4 \ R2.

Now a wonderful fact about the self-duality equation is its conformal invariance:

the Hodge ? is conformally invariant acting on middle-dimensional forms in an even-

dimensional manifold. This allows us to drop the conformal factor r2 from the metric

without altering the equation. If we now impose the condition that the gauge po-

tential A is S1 invariant, i.e., rotationally symmetric in the (x1, x2)-plane, and if we

define A✓=�, the self-duality equation becomes the Bogomol’nyi equation on H3. The

Bogomol’nyi equation on H3 is also given by equation (1.1) but with the ?-operation

of H3. The first constructions of a monopole solution on hyperbolic space were given

in [52, 53, 54].

A BPS monopole in hyperbolic space is labelled by a mass m 2 R+ and a charge

k 2 Z+ given by
m = lim

r!1
|�(r)|

k = lim
r!1

1
4⇡m

Z

H3
tr(FA ^rA�) ,

(1.5)

and it is known [55] that hyperbolic monopoles exist for all values of m and k. In

contrast to the Euclidean monopoles, m cannot be rescaled to unity in the hyperbolic

case, as the value of m a�ects the monopole solutions [56]. Alternatively, one can

normalise the mass to unity, but only at the price of rescaling the hyperbolic metric to

one of curvature -1/m2. The rotationally invariant instanton on R4\R2 corresponding

to a hyperbolic monopole of charge k and massmwill extend to a rotationally invariant

instanton on all of R4 if (and only if) m 2 Z.

In [57] Manton interpreted low energy dynamics of monopoles as geodesic mo-
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tion on the moduli space; that is, the space of solutions up to gauge equivalence, and

this ushered in an era of much activity in the study of the geometry of the moduli

space. For the case of Euclidean monopoles, Atiyah and Hitchin showed in [48] that

the moduli space has a natural hyperkähler metric and they found the explicit form of

the metric for the moduli space of charge 2. Moreover, the metric of the moduli space

of well separated monopoles was found in [58], where the monopoles were treated as

point particles carrying scalar, electric and magnetic charges.

The hyperbolic case is much less understood. In [51], where Atiyah introduced

hyperbolic monopoles, he writes:

Moreover, by varying the curvature of hyperbolic space and letting it tend to zero,

the Euclidean case appears as a natural limit of the hyperbolic case. While the

details of this limiting procedure are a little delicate, and need much more careful

examination than I shall give here, it seems reasonable to conjecture that the moduli

of monopoles remains unaltered by passing to the limit.

Atiyah also showed [59] that the moduli spaceMk,m of hyperbolic monopoles of charge

k and mass m can be identified with the space of rational maps of the form

a1z
k-1 + a2z

k-2 + · · ·+ ak

zk + b1zk-1 + · · ·+ bk
with k > 1, (1.6)

where the polynomials in the numerator and denominator are relatively prime. Since

the a1, . . . ,ak,b1, . . . ,bk are complex numbers, the moduli space has real dimension

4k.

Most of the progress in the study of hyperbolic monopoles was focused on find-

ing methods of constructing multimonopole solutions, either by building a hyperbolic

version of the Nahm transform [56, 60, 61, 62] or by studying the spectral curves asso-

ciated with hyperbolic monopoles [63, 64, 65]. Progress on the geometry of the moduli

space was hindered by the early realisation [56] that the natural L2 metric, which in

the Euclidean case induces upon reduction a hyperkähler metric on the moduli space,

does not converge in the case of hyperbolic monopoles, suggesting that the geometry

of the moduli space is not in fact Riemannian. Nevertheless, Hitchin [66] constructed
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a family gm of self-dual Einstein metrics on the moduli space of centered hyperbolic

monopoles with mass m 2 Z, which in the flat limit m ! 1 recovers the Atiyah–

Hitchin metric. It is an interesting open question to relate Hitchin’s construction to

the physics of hyperbolic monopoles.

The situation has changed dramatically in recent times due to the seminal work

of Bielawski and Schwachhöfer, based on earlier work of O. Nash [67]. Nash used

a new twistorial construction of Mk,m to show that the complexification of the real

geometry of the moduli space of hyperbolic monopoles is similar in some respects

to the complexification of a hyperkähler geometry. Building on that work, Bielawski

and Schwachhöfer [68] identified the real geometry of the moduli space of hyper-

bolic monopoles as “pluricomplex geometry”, which is equivalent to saying that there

is a C-linear hypercomplex structure on the complexification TCMk,m of the tangent

bundle to the moduli space. Later in [69] Bielawski and Schwachhöfer studied the Eu-

clidean limit of the pluricomplex moduli space of hyperbolic monopoles, and showed

that in the limit one recovers an enhanced hyperkähler geometry, richer by an addi-

tional complex structure.

1.3.3 BPS monopoles geometries

Every textbook on monopoles, or solitons in general, dedicates a chapter on di�eren-

tial geometry and topology as a preliminary for the study of their moduli spaces. As

mentioned in the previous section, the geometry of the moduli space of BPS mono-

poles can be very rich, depending on which background we study the Bogomol’nyi

equation and, also, on the fields being complex or real, i.e. whether we are studying

the real or the complex moduli space. In this section we review the geometries of

the known moduli spaces of BPS monopoles. This is a brief description of each geo-

metry, for a full review on the constructions of the objects of each geometry one can

refer to chapter three of [50] and chapter three of [61], or [70, 71, 72] for very thorough

references on the subject.

We will start by making some key definitions for these geometries. Suppose that

a 2n-dimensional manifold M admits a globally defined (1, 1) tensor J with local ex-
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pression Jµ
⌫dxµ ⌦ @⌫, which enjoys the following properties:

Jµ
µ = 0, (1.7)

Jµ
J

⌫ = -�µ
⌫, (1.8)

then the tensor is called an almost complex structure and M is called an almost com-

plex manifold. Using the almost complex structure, we can define a mixed three-

tensor, called the Nijenhuis tensor N, with components

Nµ⌫
⇢ =

1
6
Jµ

�@[�J⌫]
⇢ - (µ$ ⌫). (1.9)

It can be proven that the Nijenhuis tensor vanishes identically if and only if the almost

complex structure is a complex structure (also called integrable complex structure)

(see e.g. [73]). The latter condition means that it is possible to find a holomorphic atlas

on M, i.e. in every chart coordinates {zm, z̄m̄} exist for which

Jm
n = i�m

n, Jm̄
n̄ = -i�m̄

n̄, Jm̄
n = Jm

n̄ = 0, (1.10)

with m, m̄ = 1, . . . ,n. If an almost complex manifold is Riemannian and the metric

satisfies

Jµ
⇢J⌫

�g⇢� = gµ⌫, (1.11)

the metric is called almost hermitian. This condition is equivalent to Jµ⌫ = Jµ
⇢g⌫⇢

being antisymmetric, and Jµ⌫ is then called the fundamental two-form. An almost

hermitian manifold is called hermitian if the Nijenhuis tensor vanishes, and there exist

a connection that preserves both the complex structure and the metric. An important

class of hermitian manifolds are Kähler manifolds. For a Kähler manifold, the corres-

ponding connection on the tangent bundle is the Levi-Civita connection.

Suppose that V = R4n . A triple H = (J1, J2, J3) of complex structures with

J↵J� = -I4n�
↵� + ✏↵��J� (1.12)
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is called a hypercomplex structure on V . Denote the space of endomorphisms of V by

EndV . The three-dimensional subspace Q of EndV , defined by

Q = RJ1 + RJ2 + RJ3, (1.13)

is called a quaternionic structure, i.e. Q is the set of real linear combinations of the

complex structures.

Hypercomplex manifolds: Given a manifold with an almost hypercomplex structure,

there always exists a unique connection, � , preserving it

Dµ
~J⌫

⇢ = @µ~J⌫
⇢ - �µ⌫

�~J�
⇢ + �µ�

⇢~J⌫
� = 0. (1.14)

If the torsion vanishes, the manifold is called hypercomplex and this is equivalent with

the vanishing of the diagonal Nijenhuis tensor defined as

Nd
µ⌫

⇢ =
1
6
~Jµ

�@[�~J⌫]
⇢ - (µ$ ⌫). (1.15)

In that case, the torsionless a�ne connection on the tangent manifold TM is called the

Obata connection [74] and its components are given by the following expression:

o

�µ⌫
⇢ = -1

6

h
2@(µ~J⌫)

� +~J(µ
⌧ ⇥ @⌧~J⌫)�

i
·~J�⇢. (1.16)

More generally, given an almost hypercomplex structure, the unique connection pre-

serving it is given by

�µ⌫
⇢ =

o

�µ⌫
⇢ +Nd

µ⌫
⇢. (1.17)

Hyperkähler manifolds: These are Riemannian manifolds with hermitian hypercom-

plex structures, and where the Obata connection coincides with the Levi-Civita con-

nection.

Pluricomplex manifolds: On a manifold with pluricomplex geometry we have two 2-

sphere of integrable complex structures (i.e. Q1 and Q2 according to (1.13)) that don’t

have any anticommutation relations between them, and these complex structures de-
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compose the complexified tangent space as C2n⌦C2. If we complexify a pluricomplex

structure we get a hypercomplex structure. This implies that if we look at the complex

thickening MC of a manifold M with pluricomplex geometry we find that its geometry

is hypercomplex. Thus, the pluricomplex geometry on M can be viewed as a biqua-

ternionic geometry on MC. These di�erent views of the pluricomplex geometry are

discussed in this thesis via the study of the geometry of the real and complex moduli

spaces of hyperbolic monopoles.

1.4 Monopoles and rigid supersymmetry

All topological solitons saturate a certain energy bound, and this feature gives a sign

that they are supersymmetric in nature. This link is rooted in the fact that in a massive

supersymmetry representation with central charges the bound is enforced by the unit-

arity property of the supersymmetry transformations [75].

The study of the supersymmetric extensions of topological objects was initiated by

Zumino studying the supersymmetry of instantons [76]. Starting with N = 2 super-

symmetric Yang-Mills theory on four dimensional Euclidean space, Zumino showed

that instantons are supersymmetric under half of the supersymmetry parameters, and

using supersymmetry he computed the index of the Dirac operator by showing that for

solutions with winding number n of the SU(2) supersymmetric Yang-Mills equations

there are 8n-dimensional space of instantons and 4n-dimensional space of solutions

for Dirac equation and hence recovering the results of Atiyah, Hitchin and Singer [77],

and Brown et al. [78]. Moreover, the supersymmetric extensions of lumps and vor-

tices have been also successfully investigated in [79] and in [80, 81] receptively. As for

Skyrmions, the energy satisfies certain topological bound which is called the Faddeev-

Bogomol’nyi lower bound [82]. But unlike other topological objects, this bound cannot

be saturated for a non-trivial value of the Skyrme field when the spatial domain is R3.

However, if the spacial domain is taken to be S3 the bound can be saturated [83], but

a supersymmetric extension for the Skyrme model on S3 has not yet been found.

The supersymmetry of Euclidean BPS monopoles was obtained in [84, 85, 86] among

others. In this thesis we will exhibit the supersymmetric extension in detail for the case
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of the hyperbolic monopoles. For the Euclidean case one can show that monopoles

are supersymmetric objects by staring from N = 1 supersymmetric Yang-Mills the-

ory in six dimensional Minkowski space and then perform a dimensional reduction

to N = 2 supersymmetric Yang-Mills-Higgs theory in four dimensional Minkowski

space. Then, by analyzing the static solutions of the field equation for bosons and fer-

mions we find that solutions of the Bogomol’nyi equations plus their superpartners

(supersymmetric BPS monopoles configurations) form a subset of the field equations

that minimize the energy and only break half of the supersymmetry. A similar ap-

proach is to start with N = 1 supersymmetric Yang-Mills theory in ten dimensional

Minkowski space and then perform a dimensional reduction toN = 4 supersymmetric

Yang-Mills-Higgs theory in four dimensional Minkowski space. A detailed treatment

for both cases can be found in Figueroa-O’Farrill’s notes [87].

The study of the supersymmetry of hyperbolic monopoles, on the other hand, is

di�erent because of the need to construct a supersymmetric Yang-Mills-Higgs the-

ory on a curved space, namely the hyperbolic space. This kind of supersymmetry

on a curved background where the gravity is not dynamic is now known as rigid su-

persymmetry. Rigid supersymmetry has been very fashionable in the last few years,

and many results have shown that one can learn a lot about a theory by putting it

on curved space. Hence, many known supersymmetric theories were, recently, stud-

ied on curved spaces which led to some important developments and interesting res-

ults especially in testing the AdS/CFT conjecture and computing new observables in

known theories. The AdS/CFT conjecture is a proposed duality relating the quantum

physics of strongly correlated many-body systems to the classical dynamics of gravity

in one higher dimension. In its original appearances [88, 89, 90], the correspondence

related a four-dimensional Conformal Field Theory (CFT) to the geometry of an anti-

de Sitter (AdS) space in five dimensions. Studying supersymmetric theories on curved

spaces, for the purpose of finding examples that second the AdS/CFT correspond-

ence, was initiated with Pestun [91], who studied N = 4 supersymmetric Yang-Mills

theory on S4. Pestun computed the partition functions and the correlation functions of

Wilson loops and proved the Erickson-Semeno�-Zarembo/Drukker-Gross conjecture

30



[92, 93] used in many studies to test duality. This seminal work inspired Kapustin at

al. [94] to study supersymmetric theories on S3 to compute the partition function via

the localization techniques and successfully test some duality conjectures. In addition,

many other curved spaces become popular for supersymmetric theories for example

S3 ⇥ S1 [95] and S2 ⇥ S1 [96].

Traditionally, constructing a supersymmetric theory on a curved background can

be done as follows; we start with a supersymmetric Lagrangian on flat space LRn writ-

ten in terms of the dynamical field components of the theory, and supersymmetry

transformations �✏ relating the bosonic fields to fermionic ones and vice versa. When

we place the theory on a non trivial manifold by simply introducing the metric into

LRn we find that, in general, curved space breaks supersymmetry. We then try to re-

store supersymmetry by adding correction terms that are invariant under the gauge

symmetry groups under consideration and inversely proportional to powers of the

characteristic size of the curved space. We keep doing this iterative procedure, we

first try terms inversely proportional to the radius if it doesn’t work we add terms

inversely proportional to the square of the radius and so on, until the modified Lag-

rangian becomes invariant under the modified supersymmetry transformations and

the supersymmetry algebra closes. This procedure will be followed here to construct

a supersymmetric Yang-Mills-Higgs Lagrangian on H3. Historically, this method was

first adopted by Zumino in 1977 to study N = 1 supersymmetric theory on AdS4 [97],

then used by Diptiman Sen in 1987 to study various supersymmetric theories on S3⇥R1

[98], and recently, starting from 2007, there is a vast literature, part of which mentioned

in the previous paragraph, using this method to study supersymmetric theories on

curved spaces mainly for duality testings purposes.

The big interest in supersymmetric theories on non trivial background has motiv-

ated Festuccia and Seiberg [99] to find a general procedure to construct these theor-

ies. Their method is quite useful because it makes use of the supergravity theories

that exist in literature. We start with a supergravity theory which can naturally be

written as Lcurved +Lsugra, where Lcurved contains the part of the dynamical fields

and their covariant derivative that would exist without gravity (in a supersymmet-
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ric theory), and Lsugra contains the fields that were introduced after we coupled the

theory to supergravity like gravitinos ( µ) and auxiliary fields. By setting the grav-

itino transformation equal to zero we find the constraint on the supersymmetry para-

meter which can be satisfied for di�erent choices of the auxiliary and gravity fields.

If we find a field configuration for {gµ⌫, µ, aux. fields} that is invariant under su-

persymmetry transformation it implies that Lcurved is invariant under the supersym-

metry transformation, and then we can render gravity non-dynamical. Using this

method, Festuccia and Seiberg were able to reproduce all the popular supersymmet-

ric theories on AdS4, S4, S3 ⇥ S1 and S3 ⇥ R. Based on this seminal work, many pro-

jects have been devoted to studying the properties for compact curved backgrounds

to exhibit supersymmetry in various dimension and for both signatures, Euclidean

[100, 101, 102, 103, 104, 105, 106, 107], and Lorentzian [108, 103, 109, 110]. The reason

behind the interest in compact manifold is that supersymmetric field theories on com-

pact manifold are useful scheme for localization techniques which can be used to cal-

culate some observables. The background considered in this thesis is H3, which is a

non-compact manifold, but it would be nice if Festuccia and Seiberg method can be

used to reproduce our results for a supersymmetric Yang-Mills-Higgs theory on H3.

1.5 Summary and overview

In the spirit of the preceding discussion, this thesis studies the geometry of the mod-

uli space of hyperbolic monopoles using supersymmetry, and thus shows that the

pluricomplex nature of the moduli space of hyperbolic monopoles is a natural con-

sequence of supersymmetry. With our approach we find that starting from a Euc-

lidean four dimensional supersymmetric Yang–Mills theory and constructing a su-

persymmetric Yang–Mills–Higgs theory on H3 will lead to studying the geometry of

the complex moduli space of hyperbolic monopoles, which we show to be hypercom-

plex. On the other hand, starting from a Minkowskian six dimensional supersymmet-

ric Yang–Mills theory and constructing a supersymmetric Yang–Mills–Higgs theory

onH3 allow to explore the real moduli space of hyperbolic monopolies which we show

to be pluricomplex. One novel aspect of our construction is that the constraints coming
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from supersymmetry are imposed by demanding the closure of the supersymmetry

algebra and not the invariance of the e�ective action for the moduli, which does not ex-

ist due to the lack of convergence of the L2 metric. This is reminiscent of the results of

Stelle and Van Proeyen [111] on Wess–Zumino models without an action functional,

in which the geometry is relaxed from Kähler to complex flat. In fact, morally one

could say that pluricomplex is to hyperkähler what complex flat is to Kähler. Revis-

iting supersymmetric theories by relaxing the requirement of an action existence was

also studied in [112, 113, 114]. Another novel aspect of our construction is the connec-

tion between geometry and low energy supersymmetric dynamics. Supersymmetry

relates fermions to bosons, which means it relates objects that satisfy first order di�er-

ential equation, the fermions, to objects that satisfy second order di�erential equation,

the bosons. At the level of moduli space, these relations can be interpreted as maps

between the odd and even coordinates of the moduli space, and hence one would ex-

pect that a lot of information about the geometry of the moduli space can be read o�

the supersymmetry transformations.

Chapter two is dedicated to construct a supersymmetric Yang–Mills–Higgs theory

in hyperbolic space by starting with supersymmetric Yang–Mills theory on Minkowski

spacetime, euclideanising to a supersymmetric Yang–Mills theory on R4, reducing to

R3 and deforming to a supersymmetric theory on H3. Then we show that the hyper-

bolic monopoles coincide with the configurations which preserve precisely one half

of the supersymmetry.

In chapter three, we show that the geometry of the complex moduli space of hy-

perbolic monopoles is hypercomplex. We start the analysis of the moduli space by

studying the linearisation of the Bogomol’nyi equation and identifying the bosonic

and fermionic zero modes and how the unbroken supersymmetry relates them. A

possibly surprising result is the fact that supersymmetry suggests a small modifica-

tion of the Gauss law constraint, which depends explicitly on the hyperbolic curvature.

Moreover, as a byproduct of our analysis we find the index of the Dirac operator in

the presence of a hyperbolic monopole. Then we linearise the unbroken supersym-

metry and by demanding the on-shell closure of the supersymmetry algebra we find
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the conditions satisfied by the geometry of the moduli space.

In chapter four, we shift the focus to the study of supersymmetric Yang–Mills–

Higgs theory on H3 with real fields which we obtain by dimensional reduction of six

dimensional supersymmetric Yang–Mills theory on Minkowski space. We compare

our results with family A theories from [115] which is model describing how to obtain

a supersymmetric Yang–Mills theory on Rn⇥M(d+1-n) starting from a supersymmet-

ric Yang–Mills action R(d,1), where M is a manifold that admits Killing spinors. We

show that our theory coincides with an example from family A, where d = 5, n = 3 and

M is H3 and we study the supersymmetry algebra of the obtained theory. The special

feature about this theory is that it is invariant under real supersymmetry transforma-

tions which hints that the ansatz for the zero modes that will later represents the basis

of the moduli space are real.

In chapter five, we show that the geometry of the real moduli space of hyperbolic

monopoles is pluricomplex. We show, first, that under supersymmetric constraints

the equations of motion obtained in chapter four can be simplified to Bogomol’nyi

equation on H3 plus a Dirac equation for the fermions. Then, we show that the super-

symmetric hyperbolic monopoles satisfy the simplified field equations and that they

are 1
2 “BPS” saturated. After that, we start analyzing the real moduli space, so we use

the unbroken supersymmetry transformations to construct real zero modes which we

show to satisfy the linearized Bogomol’nyi equation and a gauge background condi-

tion. Furthermore, by demanding that the complex structures on the tangent space

must map the zero modes again to solutions of the linearized Bogomol’nyi equation

and Gauss’s law we construct two families of integrable complex structures that we

show to have the properties of pluricomplex structures defined in [68]. In other words,

we find two sets of 2-sphere complex structures that don’t anticommute, and hence

form a biquaternionic algebra. We finish this chapter by showing that in the limiting

case, when the radius of curvature of hyperbolic space is set to infinity, the geometry

of Euclidean monopoles emerges from the geometry of hyperbolic monopoles.

The thesis ends with with three appendices. The first one is on the Frölicher–

Nijenhuis bracket of two endomorphisms, in the second one we show that the con-

34



nection defined on the complex moduli space of hyperbolic monopoles is the Obata

connection, and in the third one we reduce the supersymmetry transformations of

supersymmetric Yang-Mills theory from R(5,1) to R3.
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Chapter 2

Supersymmetric Yang-Mills-Higgs

Theory on H3 with Complex Fields

2.1 Introduction

The purpose of this chapter is to present a systematic construction of supersymmetric

theories in hyperbolic space by the following procedure: start with supersymmetric

Yang–Mills in Minkowski spacetime, euclideanise à la van Nieuwenhuizen–Waldron

[116], reduce to R3 and deform to a theory on H3. The euclideanisation will require

complexifying the fields in the theory, which will turn out later to be crucial to study

the geometry of the complex moduli space.

2.2 O�-shell supersymmetry in Euclidean 4-space

The first step has been done in [116], except that we expect that auxiliary fields should

play an important role and thus must promote the theory to one with o�-shell closure

of supersymmetry (up to possibly gauge transformations).
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2.2.1 On-shell SYM theory on R4

The Euclidean supersymmetric Yang–Mills action in R4 is obtained by integrating the

Lagrangian density

L(4) = -Tr�†R /D L - 1
4 Tr F

2 , (2.1)

whereTrdenotes an ad-invariant inner product on the Lie algebra g of the gauge group

G, and where the subscripts L,R denote the projections

 L = 1
2(I+ �

5) and �†R = 1
2�

†(I- �5) , (2.2)

where �5 = �1�2�3�4, where �µ�⌫ = �µ⌫ + �µ⌫. This means that that (�5)2 = 1. We

can raise and lower indices with impunity, since the metric is �µ⌫. The action defined

by L(4) is invariant under gauge transformations, which infinitesimally take the form

�⇤ L = [⇤, L] �⇤�
†
R = [⇤,�†R] and �⇤Aµ = -Dµ⇤ = -@µ⇤+ [⇤,Aµ] ,

(2.3)

with ⇤ 2 C1(R4; g). Furthermore, it is invariant under the supersymmetry transform-

ations
�" L = 1

2�
µ⌫Fµ⌫"L

�"�
†
R = -1

2"
†
R�

µ⌫Fµ⌫

�"Aµ = -"†R�µ L + �†R�µ"L ,

(2.4)

where "L and "†R are constant spinor parameters of the indicated chirality. Since "L

and "†R are independent, we actually have two supersymmetry variations, which we

will denote �L and �R and leave the parameter unspecified when there is no danger of

confusion. In this notation we have

�L L = 1
2�

µ⌫Fµ⌫"L

�L�
†
R = 0

�LAµ = �†R�µ"L

�R L = 0

�R�
†
R = -1

2"
†
R�

µ⌫Fµ⌫

�RAµ = -"†R�µ L .

(2.5)
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2.2.2 Introducing auxiliary field

Notice that if � 0L is defined as �L but with a di�erent supersymmetry parameter, say " 0L,

then on the gauge field [�L, � 0L]Aµ = 0, and similarly [�R, � 0R]Aµ = 0. On the fermion,

however, this will not be true o�-shell and it is for that reason that we will introduce

an auxiliary field. Indeed, one finds

[�L, �
0
L] L = �L(

1
2�

µ⌫Fµ⌫"
0
L)- �

0
L(

1
2�

µ⌫Fµ⌫"L) . (2.6)

Using that

�LFµ⌫ = Dµ�LA⌫ -D⌫�LAµ = Dµ(�
†
R�⌫"L)-D⌫(�

†
R�µ"L) , (2.7)

whence

[�L, �
0
L] L = Dµ�

†
R�⌫"L�

µ⌫" 0L -Dµ�
†
R�⌫"

0
L�

µ⌫"L , (2.8)

where we have used that �†µ = �µ and also that (�† )† = + †� for anticommuting

spinors. (One might think that the + sign violates the sign rule, but it does not because

 and  † are independent fields, etc.)

In order to further manipulate the right-hand side of [�L, � 0L] L we must make use

of a Fierz identity. The basic Fierz identity in R4 for anticommuting spinors is given

by

 �† = -1
4�

† I- 1
4�

†�5 �5 -
1
4�

†�µ �µ + 1
4�

†�µ�5 �µ�5 +
1
8�

†�µ⌫ �µ⌫ . (2.9)

Two special cases will play a rôle in what follows:

 L�
†
R = -1

2�
†
R�

µ L�µPR , (2.10)

and

 R�
†
R = -1

2�
†
R RPR - 1

8�
†
R�

µ⌫ R�µ⌫ , (2.11)

where PR = 1
2(I - �5). Of course, for commuting spinors, we simply flip all signs in
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the right-hand side.

Using the Fierz formula (2.10), we may rewrite

[�L, �
0
L] L = -1

2Dµ�
†
R�

�" 0L�
µ⌫���⌫"L + 1

2Dµ�
†
R�

�"L�
µ⌫���⌫"

0
L . (2.12)

Using that �µ⌫���⌫ = -�µ� - 3�µ�, we rewrite

[�L, �
0
L] L = 3

2�
†
R

 �
/D" 0L"L-

3
2�

†
R

 �
/D"L"

0
L+

1
2Dµ�

†
R�⌫"

0
L�

µ⌫"L-
1
2Dµ�

†
R�⌫"L�

µ⌫" 0L . (2.13)

Comparing with equation (2.8) we see that

µ�†R�⌫"L�
µ⌫" 0L -Dµ�

†
R�⌫"

0
L�

µ⌫"L = �†R
 �
/D" 0L"L - �†R

 �
/D"L"

0
L , (2.14)

whence, in summary,

[�L, �
0
L] L = �†R

 �
/D" 0L"L - �†R

 �
/D"L"

0
L , (2.15)

which vanishes for all "L, " 0L if and only if �†R
 �
/D = 0, which is the field equation for �†R.

This suggests introducing an auxiliary field, historically denoted by D, and modifying

the supersymmetry variation of  L by a term proportional to D, namely

�L L = D"L + 1
2�

µ⌫Fµ⌫"L . (2.16)

Now, we see that

[�L, �
0
L] L = (�LD- �†R

 �
/D"L)"

0
L - (� 0LD- �†R

 �
/D" 0L)"L , (2.17)

whence we deduce that if we set

�LD = �†R
 �
/D"L = Dµ�

†
R�

µ"L (2.18)
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then [�L, � 0L] L = 0. But now we have to check that [�L, � 0L]D = 0 as well:

[�L, �
0
L]D = �L(Dµ�

†
R�

µ" 0L)- �
0
L(Dµ�

†
R�

µ"L)

= [�LAµ,�
†
R]�

µ" 0L - [� 0LAµ,�
†
R]�

µ"L

= 2[�†R�µ"L,�
†
R�

µ" 0L] ,

(2.19)

where we have used that �L�†R = 0. We now use the Fierz identity (2.10) and (in matrix

notation) rewrite

[�L, �
0
L]D = 2�†R�µ"L�

†
R�

µ" 0L - 2�†R�µ"
0
L�

†
R�

µ"L

= -�†R�µ�⌫�
µ" 0L�

†
R�

⌫"L + �†R�µ�⌫�
µ"L�

†
R�

⌫" 0L

= 2�†R�⌫"
0
L�

†
R�

⌫"L - 2�†R�⌫"L�
†
R�

⌫" 0L

= 2[�†R�µ"
0
L,�

†
R�

µ"L] ,

(2.20)

which is to be compared with equation (2.19), from where we see that indeed [�L, � 0L]D = 0.

In a similar way we work out �RD by the requirement that [�R, � 0R]�
†
R = 0. Let ↵ be

a number to be determined and let

�R�
†
R = ↵D"†R - 1

2"
†
R�

µ⌫Fµ⌫ . (2.21)

Then

[�R, �
0
R]�

†
R = �R

⇣
↵D"†R - 1

2"
0
R
†�µ⌫Fµ⌫

⌘
- � 0R

⇣
↵D"†R - 1

2"
†
R�

µ⌫Fµ⌫

⌘

= ↵�RD"
0
R
† + "†R�⌫Dµ L"

0
R
†�µ⌫ - ("R $ " 0R) .

(2.22)

We use the Fierz identity (2.10)

Dµ L"
0
R
† = -1

2"
0
R
†��Dµ L��PR (2.23)

to rewrite

[�R, �
0
R]�

†
R = ↵�RD"

0
R
† - 1

2"
0
R
†��Dµ L"

†
R�⌫���

µ⌫ - ("R $ " 0R) . (2.24)
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We now use that �⌫���µ⌫ = -�µ� + 3�µ� to rewrite the above equation as

[�R, �
0
R]�

†
R = ↵�RD"

0
R
† + 1

2"
0
R
†��Dµ L"

†
R�

µ� - 3
2"

0
R
† /D L"

†
R - ("R $ " 0R) . (2.25)

Comparing with equation (2.22), we see that

" 0R
†��Dµ L"

†
R�

µ� - ("R $ " 0R) = " 0R
† /D L"

†
R - ("R $ " 0R) , (2.26)

whence finally

[�R, �
0
R]�

†
R =

⇣
↵�RD+ "†R /D L

⌘
" 0R

† - ("R $ " 0R) , (2.27)

which vanishes provided that

�RD = -
1
↵
"†R /D L . (2.28)

As before, one checks that [�R, � 0R]D = 0.

We fix ↵ by closing the supersymmetry algebra on the gauge field: we expect that

it should close to a translation up to a gauge transformation. Indeed,

[�L, �R]Aµ = �L(-"
†
R�µ L)- �R(�

†
R�µ"L)

= -"†R�µ
�
D+ 1

2�
⌫⇢F⌫⇢

�
"L - "†R

�
↵D- 1

2�
⌫⇢F⌫⇢

�
�µ"L

= -(1+ ↵)"†R�µ"LD- 1
2"

†
R (�µ�

⌫⇢ - �⌫⇢�µ) "LF⌫⇢ ,

(2.29)

whence we see that ↵ = -1 and using that [�µ,�⌫⇢] = 2�⌫µ�
⇢ - 2�⇢µ�⌫, we rewrite

[�L, �R]Aµ = 2"†R�
⇢"LF⇢µ

= 2"†R�
⇢"L(@⇢Aµ - @µA⇢ + [A⇢,Aµ])

= ⇠⇢@⇢Aµ -Dµ⇤ ,

(2.30)

where ⇠⇢ = 2"†R�
⇢"L and ⇤ = ⇠⇢A⇢.

In a similar way, one shows that the algebra closes as expected also on  L, �†R and
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D. Indeed, on  L one has

[�L, �R] L = -�R(D"L + 1
2�

µ⌫Fµ⌫"L)

= -"†R /D L"L - �⌫µ"†R�⌫Dµ L"L

= -�⌫�µ"L"
†
R�⌫Dµ L ,

(2.31)

which upon using the Fierz identity (2.9) for "L"†R becomes

[�L, �R] L = 1
2"

†
R�

⇢"L�
⌫�µ�⇢�⌫Dµ L . (2.32)

Now, we use that �⌫�µ⇢�⌫ = 0 in four dimensions in order to rewrite this as

[�L, �R] L = 2"†R�
µ"LDµ L = ⇠µ@µ L + [⇤, L] , (2.33)

as expected. The calculation for [�L, �R]�†R is similar. Finally, we check closure on D:

[�L, �R]D = �L("
†
R
/D L)- �R(�

†
R

 �
/D"L)

= "†R�µ[�
†
R�

µ"L, L] + "
†
R
/D(D"L + 1

2�
µ⌫Fµ⌫"L)

+ ("†RD+ 1
2"

†
R�

µ⌫Fµ⌫)
 �
/D"L + ["†R�µ L,�

†
R]�

µ"L

= "†R�
⇢(D⇢D+ 1

2�
µ⌫D⇢Fµ⌫)"L + "†R(D⇢D+ 1

2"
†
R�

µ⌫D⇢Fµ⌫)�
⇢"L

= 2"†R�
⇢D⇢D"L + 1

2"
†
R(�

⇢�µ⌫ + �µ⌫�⇢)D⇢Fµ⌫"L .

(2.34)

Using that �⇢�µ⌫ +�µ⌫�⇢ = 2�⇢µ⌫ and the Bianchi identity D[⇢Fµ⌫] = 0, we conclude

that

[�L, �R]D = 2"†R�
⇢D⇢D"L = ⇠⇢@⇢D+ [⇤,D] , (2.35)

as desired.
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2.2.3 O�-shell SYM theory on R4

In summary, the following supersymmetry transformations

�LAµ = �†R�µ"L

�L L = D"L + 1
2�

µ⌫Fµ⌫"L

�L�
†
R = 0

�LD = �†R
 �
/D"L

�RAµ = -"†R�µ L

�R L = 0

�R�
†
R = -"†RD- 1

2"
†
R�

µ⌫Fµ⌫

�RD = "†R /D L

(2.36)

obey

[�L, �
0
L] = 0 [�R, �

0
R] = 0 whereas [�L, �R] = L⇠ + �

gauge
⇤ , (2.37)

where ⇠µ = 2"†R�
µ"L and ⇤ = ⇠µAµ.

The action given by the Lagrangian (2.1) is not invariant under the supersymmetry

transformations in (2.36) unless we also add a term depending on the auxiliary field.

Indeed, the invariant action is given by

L(4) = -Tr�†R /D L - 1
4 Tr F

2 - 1
2 TrD

2 . (2.38)

It should be remarked that the euclideanisation has in fact complexified the fields in

the original Yang–Mills theory. Indeed, the spinor representation in Euclidean signa-

ture is not of real type, as it is in Lorentzian signature and the supersymmetry trans-

formations further force the bosonic fields to be complex as well.

We may promote this action to an arbitrary Riemannian 4-manifold simply by co-

variantising the derivatives, so that Dµ now also contains the spin connection. Doing

so and taking "L and "†R to be spinor fields, we find that

�LL
(4) = -rµTr�†R�⌫"L(Dgµ⌫ + Fµ⌫)- 1

2 Tr�
†
R�

⇢�µ⌫Fµ⌫r⇢"L , (2.39)

and

�RL
(4) = 1

2r⇢Tr Fµ⌫"
†
R�

µ⌫⇢ L - 1
2 Trr⇢"

†
R�

µ⌫�⇢Fµ⌫ L , (2.40)
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from where we see that if "L and "†R are not parallel, the action is not invariant. This

will be remedied for the dimensionally reduced action in three dimensions by adding

further terms in the action provided that "L and "†R are Killing spinors.

2.3 Reduction to Euclidean 3-space

The spin group in four dimensions is Spin(4) ⇠= Spin(3) ⇥ Spin(3). The spin group in

three dimensions is Spin(3) and embeds in Spin(4) as the diagonal Spin(3) in Spin(3)⇥

Spin(3). Therefore in three dimensions there is no distinction between L and R spinors.

We reduce to three dimensions along the fourth coordinate, whence we assume that

@4 = 0 on all fields and parameters.

We take the following explicit realisation for the four-dimensional gamma matrices:

�j =

0

B@
0 -i�j

i�j 0

1

CA �4 =

0

B@
0 I

I 0

1

CA and hence �5 = �1�2�3�4 =

0

B@
I 0

0 -I

1

CA .

(2.41)

This means that we can take  L =

0

B@
 

0

1

CA and �†R =

✓
0 �†

◆
. The basic Fierz identity

for anticommuting spinors in three dimensions is

 �† = -1
2�

† - 1
2�

†�j �j . (2.42)

The gauge field decomposes as Aµ  (Ai,�). The supersymmetry parameters "L and

"†R also decompose as  L and �†R do: "L =

0

B@
✏L

0

1

CA and "†R =

✓
0 ✏†R

◆
.
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2.3.1 O�-shell SYMH theory on R3

In terms of the three-dimensional quantities we have the following supersymmetry

transformations:

�LAi = i�†�i✏L

�L� = �†✏L

�L�
† = 0

�LD = i�†
 �
/D✏L + [�,�†✏L]

�L = D✏L + i
2"ijkF

ij�k✏L - iDi��
i✏L

�RAi = -i✏†R�i 

�R� = -✏†R 

�R�
† = -D✏†R - i

2"ijkF
ij✏†R�

k - i✏†R�
iDi�

�RD = i✏†R /D + ✏†R[�, ]

�R = 0 ,

(2.43)

where now

[�L, �
0
L] = 0 = [�R, �

0
R] and [�L, �R] = L⇠ + �

gauge
⇤ , (2.44)

with ⇠i = 2i✏†R�
i✏L and ⇤ = ⇠iAi + 2✏†R✏L�.

The reduction of the action (2.38) to three dimensions is

L(3) = -iTr�† /D -Tr�†[�, ]- 1
4 Tr F

2 - 1
2 Tr |D�|

2 - 1
2 TrD

2 , (2.45)

where /D = �iDi, F2 = FijF
ij and |D�|2 = Di�D

i�. It can again be suitably covari-

antised to define it on a Riemannian 3-manifold. Its variation under supersymmetry

can be read o� from equations (2.39) and (2.40). Doing so, one finds

�LL
(3) = -iriTr�

† ��iD+ �jF
ij - iDi�

�
✏L+Tr�†�i�`

�
1
2"jk`F

jk -D`�
�
ri✏L (2.46)

and

�RL
(3) = riTr "

ijk✏†R
�
-1

2Fjk + iDj��k
�
 + Trri✏

†
R

�
1
2"jk`F

jk +D`�
�
�`�i . (2.47)
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2.4 Deforming to curved space

We now wish to improve the action L(3) and the supersymmetry transformations

of the fermions and the auxiliary field in order for the new L(3) to transform into

a total derivative when the spinor parameters are not necessarily parallel. For reas-

ons that will be clear later, we will, instead, take the spinor parameters to be Killing:

ri✏L = �L�i✏L and ri✏
†
R = �R✏

†
R�i for some (either real or imaginary) constants �L

and �R. We add terms

L(3)  L(3) + ↵1Tr�
† + 1

2↵2Tr�
2 + ↵3Tr�D+ 1

2↵4TrD
2 (2.48)

to the Lagrangian and also

�L  �L + �1�✏L

�LD �LD+ �2�
†✏L

�R�
†  �R�

† - �3✏
†
R�

�RD �RD+ �4✏
†
R ,

(2.49)

for some constants ↵1,↵2,↵3,↵4,�1,�2,�3,�4 to be determined.

We start by computing �LL
(3). Using equation (2.46), we arrive at (henceforth

dropping Tr from the notation)

�LL
(3) = riX

i
L - �L(

1
2"jk`F

jk -D`�)�
†�`✏L - i�1�

† /D(�✏L)- �2D�
†✏L

+ ↵1�
† �(D+ �1�)✏L + i(12"ijkF

ij -Dk�)�
k✏L

�
+ ↵2��

†✏L + ↵3D�
†✏L

+ ↵3�
⇣
i�†
 �
/D✏L + �2�

†✏L
⌘
+ ↵4D

⇣
i�†
 �
/D✏L + [�,�†✏L] + �2�

†✏L
⌘
, (2.50)

where Xi
L = -i�†

�
�iD+ �jFij - iDi�

�
✏L, and where we have used that �i�j�i = -�j.

The �†F terms vanish provided that ↵1 = -i�L, which also takes care of the �†Di�

terms. The �†DAi terms impose ↵4 = 0, whereas the �†�Ai terms become a total

derivative riY
i
L, with Yi

L = -i�1��
†�i✏L, provided that ↵3 = -�1. The �†D terms

vanish if �2 = -(�1 + i�L) and the �†� terms vanish provided that ↵2 = -�2
1.

In summary,

L(3) := -i�† /D - �†[�, ]- i�L�
† - 1

4F
2 - 1

2 |D�|
2 - 1

2(D+ �1�)
2 (2.51)
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transforms as

�LL
(3) = ri

⇣
-i�†

�
�i(D+ �1�) + �jF

ij - iDi�
�
✏L

⌘
, (2.52)

under

�LAi = i�†�i✏L

�L� = �†✏L

�L�
† = 0

�L = (D+ �1�)✏L + i
2"ijkF

ij�k✏L - iDi��
i✏L

�LD = i�†
 �
/D✏L + [�,�†✏L]- (�1 + i�L)�

†✏L ,

(2.53)

with ri✏L = �L�i✏L.

Notice that the action depends on �L, hence once the action is fixed, the sign of the

Killing constant in the Killing spinor equation is also fixed.

Next we compute �RL(3) and use equation (2.47) to find

�RL
(3) = riX

i
R - �R(

1
2"jk` +D`�)✏

†
R�

` + i�3�✏
†
R
/D - �4D✏

†
R + �2

1�✏
†
R 

+ i�L
⇣
(D+ �3�)✏

†
R + i(12"ijkF

ij +Dk�)✏
†
R�

k 
⌘

+ �1D✏
†
R - �1�(i✏

†
R
/D + �4✏

†
R ) , (2.54)

where we have again used �i�j�i = -�j and where Xi
R = "ijk✏†R

�
-1

2Fjk + iDj��k
�
 .

The F terms vanish provided that �R = -�L, and this also takes care of the Di� 

terms. Notice that this means that the vector field ⇠i = 2i✏†R�
i✏L is a Killing vector,

and not merely conformal Killing. Indeed,

ri⇠j = 2i�R✏
†
R�i�j✏L + 2i�L✏

†
R�j�i✏L

= -2i�L✏
†
R(�i�j - �j�i)✏L

= -2i�L"ijk⇠
k ,

(2.55)

whence ri⇠j +rj⇠i = 0.
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The Ai� terms vanish provided that �3 = �1, whereas the vanishing of the D 

terms set �4 = �1 + i�L, which also takes care of the � terms.

In summary, and letting �L = -�R = �,

L(3) := -i�† /D - �†[�, ]- i��† - 1
4F

2 - 1
2 |D�|

2 - 1
2(D+ �1�)

2 (2.56)

transforms as

�RL
(3) = ri

⇣
"ijk✏†R

�
-1

2Fjk + iDj��k
�
 
⌘
, (2.57)

under

�RAi = -i✏†R�i 

�R� = -✏†R 

�R�
† = -(D+ �1�)✏

†
R - i(12"ijkF

ij +Dk�)✏
†
R�

k

�R = 0

�RD = i✏†R /D + ✏†R[�, ] + (�1 + i�)✏†R ,

(2.58)

with ri✏L = ��i✏L and ri✏
†
R = -�✏†R�i.

2.4.1 SYMH theory on H3

One can show that the supersymmetry algebra of the left and right supersymmetry

transformations closes as follows:

[�L, �
0
L] = 0 = [�R, �

0
R] and [�L, �R] = L⇠ + �

gauge
⇤ + �R$ , (2.59)

for ⇠i = 2i✏†R�
i✏L and⇤ = ⇠iAi+2✏†R✏L�, and where �R$ is an R-symmetry transform-

ation with $ = -4�✏†R✏L, where

�R$ = i$ and �R$�
† = -i$�† . (2.60)

Indeed, it’s induced from four-dimensions, where it is generated by �5. Notice that $

is actually constant, so that this is indeed a rigid R-symmetry transformation. Simil-
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arly, it is worth remarking that L⇠ now means the spinorial Lie derivative [117] on the

spinor fields, which in our case becomes

L⇠ = ⇠iri + �⇠i�i and L⇠�
† = ⇠iri�

† - �⇠i�†�i . (2.61)

One can check that this is indeed the expression which follows by evaluating the defin-

ition L⇠ = r⇠ + ⇢(A⇠), with A⇠ the skew-symmetric endomorphism of the tangent

bundle defined by A⇠(X) = -rX⇠ and where ⇢ is the spin representation.

The parameter �1 remains free and can be set to zero if so desired. This is equivalent to

the field redefinition D D+�1�. Doing so, we have that the action with Lagrangian

L(3) = -i�† /D - �†[�, ]- i��† - 1
4F

2 - 1
2 |D�|

2 - 1
2D

2 (2.62)

transforms as

�LL
(3) = ri

⇣
-i�†

�
�iD+ �jF

ij - iDi�
�
✏L

⌘
(2.63)

�RL
(3) = ri

⇣
"ijk✏†R

�
-1

2Fjk + iDj��k
�
 
⌘

(2.64)

under

�LAi = i�†�i✏L

�L� = �†✏L

�L�
† = 0

�L = D✏L + i(12"ijkF
ij -Dk�)�

k✏L

�LD = i�†
 �
/D✏L + [�,�†]✏L - i��†✏L ,

�RAi = -i✏†R�i 

�R� = -✏†R 

�R�
† = -D✏†R - i(12"ijkF

ij +Dk�)✏
†
R�

k

�R = 0

�RD = i✏†R /D + ✏†R[�, ] + i�✏†R ,

(2.65)

with ri✏L = ��i✏L and ri✏
†
R = -�✏†R�i.

2.5 Some remarks

The first remark is that there is only a mass term for the fermions, yet none for the

scalar. (This is a choice.) The choice of � is dictated by the geometry up to a sign, but

50



that sign is immaterial since � appears in the action.

Secondly, it seems that the action is not “exact” in that L(3)✏†R✏L 6= �L�R⌅ for any

reasonable ⌅.

Thirdly, we remark that this theory agrees morally with one of the theories in Fam-

ily A in [115]. In fact, if we eliminate the auxiliary field, then it agrees with the theory

described by equation (3.10) in that paper, denoted N = 2 in d = 3. Finally, let us

comment on the geometry of the manifolds admitting Killing spinors. The integrabil-

ity condition for solutions of the Killing spinor equation ri✏L = ��i✏L says that the

metric is Einstein. The vanishing of the Weyl tensor in three dimensions implies that

the Riemann curvature tensor of an Einstein three-dimensional Riemannian manifold

can be written purely in terms of the scalar curvature and the metric; in other words,

it has constant sectional curvature, where the value of the scalar curvature is related

to the Killing constant � by R = -24�2 in our conventions. Therefore the existence of

Killing spinors with real � forces the manifold to be hyperbolic, whereas for imagin-

ary � it would be spherical. In the simply-connected case, we have three-dimensional

hyperbolic space and the 3-sphere, respectively, which admit the maximum number

of such Killing spinors, with either sign of the Killing constant.
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Chapter 3

Geometry of the Complex Moduli

Space of Hyperbolic Monopoles

3.1 Introduction

This chapter is dedicated to the study of the geometry of the complex moduli space of

hyperbolic monopoles. We show that the geometry is hypercomplex. We first show

that hyperbolic monopoles are 1
2 “BPS” saturated, which means they preserve half of

the supercharges we started with. The reason for tackling the complex space instead

of the real space at this level can be traced back to the step where we euclideanised

Yang-Mills theory that renders the hyperbolic monopole fields complex. We analyze

the geometry using the low-energy supersymmetric dynamics, hence, as a first step,

we construct a supermultiplet of bosonic and fermionic zero modes that we show to

satisfy the linearized Bogomol’nyi equation and Dirac equation respectively, so, these

modes can be thought of, now, as bases of the tangent space of the Bogomol’nyi solu-

tions. Moreover, since we are studying the moduli space, we show that the bosonic

zero modes satisfy a gauge background condition. We also show that we have an

isomorphism between the vector spaces of bosonic zero modes and fermionic zero

modes, which means that for hyperbolic monopoles of charge n, the index of the Dirac

operator in the presence of hyperbolic monopoles is 4n. This is the hyperbolic ana-

logue of Zumino result [118] for Euclidean monopoles. That result can be rederived
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without using supersymmetry via the calculation of the index of the Dirac operator in

the presence of a monopole. For hyperbolic monopoles this calculation has not been

performed, to our knowledge, but it is conceivable that it may be possible using the

generalisation of the Callias index theorem [119] in [120]. Then, we construct a set of

endomorphisms on TC(H
3⇥S1), that we show to satisfy the quaternionic algebra, and

map zero modes to zero modes. This will lead to defining complex structures on the

tangent space to the moduli space, which we use in linearizing the the unbroken su-

persymmetry transformation. Finally by closing the supersymmetry algebra we find

the geometric identities defining the geometry of the complex moduli space.

3.2 Moduli space of BPS configurations

In this section we start the analysis of the geometry of the moduli space of BPS con-

figurations. The first observation, which is crucial for this approach to the problem, is

that the BPS configurations are precisely the BPS monopoles with D = 0. More pre-

cisely, bosonic configurations for which �L = 0 are precisely those obeying D = 0

and Dk� = 1
2"ijkF

ij, for which the �L supersymmetries with parameter ✏L obeying

ri✏L = ��i✏L are preserved. This is easy to see by writing

�L = (D+ i(12"ijkF
ij -Dk�)�

k)✏L (3.1)

and noticing that the determinant of D+i(12"ijkF
ij-Dk�)�k is zero if and only if D = 0

and 1
2"ijkF

ij - Dk� = 0. Similarly, the bosonic configurations with Dk� = -1
2"ijkF

ij

and D = 0 are precisely the ones which preserve the �R supersymmetries with para-

meter ✏†R obeying ri✏
†
R = -�✏†R�i. It is the these latter bosonic BPS configurations

whose moduli space M we will study in the rest of this chapter. The moduli space M

is defined as the quotient P/G of the space P of solutions of the Bogomol’nyi equation

Di�+ "ijkF
jk = 0 (3.2)
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by the action of the group G of gauge transformations:

A 7! gAg-1 - dgg-1 and � 7! g�g-1 , (3.3)

where g : H3 ! G is a smooth function. We mention once again that the Euclidean

theory has complex fields, so that strictly speaking the half-BPS states actually corres-

pond to complexified hyperbolic monopoles with D = 0.

3.2.1 Zero modes

Consider a one-parameter family Ai(s),�(s) of bosonic BPS configurations, where s is

a formal parameter. This means that for all s, they obey the Bogomol’nyi equation

Di(s)�(s) + "ijkF
jk(s) = 0 . (3.4)

Di�erentiating with respect to s at s = 0, we find

Di(0)�̇- [�(0), Ȧi] + "ijkD
j(0)Ȧk = 0 , (3.5)

where Ȧi =
@Ai

@s

���
s=0

, �̇ = @�
@s

���
s=0

and Di(0) = @i + [Ai(0),-]. Equation (3.5) is the lin-

earisation at (Ai(0),�(0)) of the Bogomol’nyi equation and solutions of that equation

will be termed bosonic zero modes.

One way to generate bosonic zero modes is to consider the tangent vector to the

orbit of a one-parameter subgroup of the group of gauge transformations. The sub-

space of such zero modes is the tangent space to the gauge orbit of (Ai(0),�(0)). The

true tangent space to the moduli space can be identified with a suitable complement

of that subspace. A choice of such a complement is essentially a choice of connection

on the principal G-bundle P ! M. In the absence of a natural Riemannian metric on

P, we will employ supersymmetry to define this connection.

Supersymmetry relates the bosonic zero modes to fermionic zero modes  ̇which are
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solutions of the (already linear) field equations for  at (Ai(0),�(0)):

/D(0) ̇- i[�(0),  ̇] + � ̇ = 0 . (3.6)

Let ⌘, ⇣ be Killing spinors on hyperbolic space satisfying

ri⌘ = ��i⌘ and ri⇣
† = -�⇣†�i . (3.7)

Of course, hyperbolic space has the maximal number of either class of such Killing

spinors.

Let (Ȧi, �̇) satisfy the linearised Bogomol’nyi equation (3.5) and let

 ̇ = iȦi�
i⌘- �̇⌘ . (3.8)

We claim that  ̇ so defined is a fermionic zero mode provided that (Ȧi, �̇) obey in

addition the generalised Gauss law

Di(0)Ȧi + [�(0), �̇] + 4i��̇ = 0 . (3.9)

Indeed, with the tacit evaluation at s = 0,

/D
⇣
iȦi�

i⌘- �̇⌘
⌘
+ i

h⇣
iȦi�

i⌘- �̇⌘
⌘
,�

i
+ �

⇣
iȦi�

i⌘- �̇⌘
⌘

= iDjȦi�
j�i⌘+ iȦi�

j�irj⌘-Di�̇�
i⌘- �̇ /r⌘- [Ȧi,�]�

i⌘- i[�̇,�]⌘+ i�Ȧi�
i⌘- ��̇⌘

= iDiȦi⌘- "
ijkDiȦj�k⌘-Di�̇�

i⌘- 4��̇⌘- [Ȧi,�]�
i⌘- i[�̇,�]⌘ ,

where we have used that �j�i�j = -�i and that /r⌘ = 3�⌘. We can rewrite the resulting

expression as follows

⇣
iDiȦi - i[�̇,�]- 4��̇

⌘
⌘-

⇣
"ijkDiȦj +Dk�̇+ [Ȧk,�]

⌘
�k⌘ , (3.10)

which contains two kinds of terms: those which are proportional to �k⌘ vanish be-

cause of the linearised Bogomol’nyi equation (3.5), whereas the ones proportional to
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⌘ cancel if and only if the generalised Gauss law (3.9) is satisfied.

One might be surprised by the last term in the generalised Gauss law as this is

absent in the case of Euclidean monopoles. And indeed, we see that in the flat space

limit � ! 0 this term disappears. The Gauss law is a gauge-fixing condition, or more

geometrically, it is an Ehresmann connection on the principal gauge bundle P ! M

over the moduli space; that is, a G-invariant complement to the tangent space to the

gauge orbit through every point of P. It is not hard to see that condition (3.9) is G-

invariant and that it provides a complement to the gauge orbits. However it is not,

as in the case of Euclidean monopoles, the perpendicular complement to the tangent

space to the gauge orbits relative to a G-invariant metric on P.

Conversely, if  ̇ obeys equation (3.6), then

Ȧi = -i⇣†�i ̇ and �̇ = -⇣† ̇ (3.11)

obey the linearised Bogomol’nyi equation (3.5) and the generalised Gauss law (3.9).

Indeed, and again with the tacit evaluation at s = 0,

Di

⇣
-⇣† ̇

⌘
+"ijkD

j
⇣
-i⇣†�k ̇

⌘
-
h
�,

⇣
-i⇣†�i ̇

⌘i

= -ri⇣
† ̇- ⇣†Di ̇- i"ijkrj⇣†�k ̇- i"ijk⇣

†�kDj ̇+ i⇣†�i[�,  ̇]

= �⇣†�i ̇- ⇣†Di ̇+ i⇣†[�,  ̇] + i�"ijk⇣
†�jk ̇- i"ijk⇣

†�kDj ̇ .

We now use that "ijk�jk = 2i�i and that i[�,  ̇] = /D ̇+ � ̇ to arrive at

Di

⇣
-⇣† ̇

⌘
+ "ijkD

j
⇣
-i⇣†�k ̇

⌘
-
h
�,

⇣
-i⇣†�i ̇

⌘i

= -⇣†Di ̇- i"ijk⇣
†�kDj ̇+ ⇣†�i /D ̇ ,

which is seen to vanish after using that �i�j = gij + i"ijk�
k to expand �i /D ̇.

3.2.2 A four-dimensional formalism

It is convenient for calculations to introduce a four-dimensional language. This amounts

to working on the four-dimensional manifoldH3⇥S1, but where the fields are invariant
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under translations in S1. The relevant Cli�ord algebra is now generated by �µ = (�i, �4)

given by

�i =

0

B@
0 �i

�i 0

1

CA �4 =

0

B@
0 i

-i 0

1

CA (3.12)

which satisfy �µ�⌫ + �⌫�µ = 2�µ⌫I. Let ⇣R =

0

B@
0

⇣

1

CA and ⌘R =

0

B@
0

⌘

1

CA, which obey the

Killing spinor equations

ri⌘R = -i��i�4⌘R and ri⇣
†
R = -i�⇣†R�4�i , (3.13)

and in addition r4⌘R = 0 and r4⇣
†
R = 0. The zero modes are now  ̇L =

0

B@
 ̇

0

1

CA and

Ȧµ = (Ȧi, �̇) and the relations (3.8) and (3.11) between them can now be rewritten

respectively as

 ̇L = iȦµ�
µ⌘R and Ȧµ = -i⇣†R�µ ̇L . (3.14)

Also, in four-dimensional language the fermionic zero modes are defined by the

equation

/D ̇L = -i��4 ̇L , (3.15)

whereas those defining the bosonic zero modes are

D[µȦ⌫] = -1
2"µ⌫⇢�D

⇢Ȧ� and DµȦµ = -4i�Ȧ4 . (3.16)

The first equation is simply the statement that the g-valued 2-form D[µȦ⌫] is antiself-

dual.

It is perhaps pertinent to remark that equations (3.14) are not meant to be under-

stood as mutual inverse relations; that is, substituting the first equation for Ȧµ in the

second equation does not lead to an identity and neither does substituting the second

equation for  ̇L into the first. What these relations do mean is that given a bosonic

zero mode Ȧµ and a Killing spinor ⌘ on H3, the RHS of the second of the above equa-

tions defines a fermionic zero mode; and that, conversely, given a fermionic zero mode
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 ̇L and a Killing spinor ⇣ on H3, the RHS of the first of the above equations defines a

bosonic zero mode.

3.2.3 Computing the index using supersymmetry

Let us define the vector spaces

K± = {⇠R|ri⇠R = ⌥i��i�4⇠R and r4⇠R = 0} . (3.17)

K± is a two-dimensional complex vector space isomorphic to the vector space of Killing

spinor fields on H3 with the stated sign of the Killing constant; that is,

K± ⇠= {⇠|ri⇠ = ±��i⇠} . (3.18)

Then letting Z0 and Z1 stand for the vector spaces of (complexified) bosonic and fer-

mionic zero modes, respectively, we have exhibited real bilinear maps

K+ ⇥ Z0 ! Z1

(⌘R, Ȧµ) 7! iȦµ�
µ⌘R

and
K- ⇥ Z1 ! Z0

(⇣R,  ̇L) 7! -i⇣†R�µ ̇L .
(3.19)

We may compose the maps to arrive at

K+ ⇥ K- ⇥ Z0 ! Z0

(⌘R, ⇣R, Ȧµ) 7! ⇣†R⌘RȦµ + ⇣†R�µ
⌫⌘RȦ⌫

(3.20)

and
K+ ⇥ K- ⇥ Z1 ! Z1

(⌘R, ⇣R,  ̇L) 7! 2⇣†R⌘R ̇L ,
(3.21)

where in deriving these identities we have used the Fierz identity (2.11) for commuting

spinors.

If we fix ⇣R and ⌘R such that ⇣†R⌘R = 1
2 , which we can always do, then the composite

map in equation (3.21) is the identity, which implies that the maps in equation (3.19)

are invertible. In particular, this implies that the vector spaces Z0 and Z1 of (complexi-
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fied) bosonic and fermionic zero modes, respectively, are isomorphic. Therefore the

number of fermionic zero modes is 4n, where n is the monopole charge.

3.2.4 Complex structures

We start by defining some natural endomorphisms of the complexified tangent bundle

of H3 ⇥ S1 which can be built out of the Killing spinors.

Let us choose a complex basis ⌘R↵ and ⇣R�, for ↵,� = 1, 2, for the vector spaces K+

and K- of Killing spinors, respectively, which satisfies in addition the normalisation

condition ⇣†R↵⌘R� = �↵�. Let A↵� be the endomorphism of TC(H
3 ⇥ S1) defined by

A↵�µ
⌫ = -i⇣†R↵�µ

⌫⌘R� , (3.22)

where �µ⌫ = 1
2(�µ�

⌫ - �⌫�µ). Then one can show that the linear combinations

I = A11 J = 1
2(A12 +A21) K = -

i

2
(A12 -A21) (3.23)

satisfy the quaternion algebra

I2 = J2 = -I IJ = -JI = K . (3.24)

More invariantly, if ⌘R 2 K+ and ⇣R 2 K-, let

Eµ
⌫ = -i⇣†R�µ

⌫⌘R (3.25)

denote the corresponding endomorphism of TC(H
3 ⇥ S1). It follows from the fact that

⌘R, ⇣R have negative chirality, i.e., �1234⌘R = -⌘R and similarly for ⇣R, that Eµ⌫ is self-

dual:
1
2"µ⌫⇢�E

⇢� = Eµ⌫ , (3.26)

and also that

Eµ
⇢E⇢

⌫ = -(⇣†R⌘R)
2�µ

⌫ . (3.27)

The proof of this expression follows from the Fierz identity (2.11) and tedious use of
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the Cli�ord relations. Hence if we choose ⌘R and ⇣R such that ⇣†R⌘R = 1, then the

endomorphism E is a (complex-linear) almost complex structure on TC(H
3 ⇥ S1).

In addition, from the fact that ⌘R, ⇣R are Killing spinors it also follows that

r4Eµ⌫ = 0, riE4j = 2i�Eij riEjk = -2i�
�
�ijE4k - �ikE4j

�
. (3.28)

Indeed, the first equation follows from the fact that r4⇣R = 0 = r4⌘R. The second

equation follows from the following calculation:

riE4j = ri

⇣
-i⇣†R�4�j⌘R

⌘

= -i
⇣
-i�⇣†R�4�i

⌘
�4�j⌘R - i⇣†R�4�j (-i��i�4⌘R)

= -�⇣†R�4�i�4�j⌘R - �⇣†R�4�j�i�4⌘R

= �⇣†R
�
�i�j - �j�i

�
⌘R

= 2�⇣†R�ij⌘R

= 2i�Eij ,

(3.29)

where we have used the Cli�ord relations and the fact that ri⇣
†
R = -i�⇣†R�4�i.

The third and final equation follows from a similar calculation:

riEjk = ri

⇣
-i⇣†R�jk⌘R

⌘

= -i
⇣
-i�⇣†R�4�i

⌘
�jk⌘R - i⇣†R�jk (-i��i�4⌘R)

= -�⇣†R�4�i�jk⌘R - �⇣†R�jk�i�4⌘R

= -�⇣†R�4
�
�i�jk - �jk�i

�
⌘R .

(3.30)

We now use the following consequences of the Cli�ord relations:

�i�jk = �ijk + �ij�k - �ik�j and �jk�i = �jki + �ik�j - �ij�k (3.31)

whence

�i�jk - �jk�i = 2�ij�k - 2�ik�j , (3.32)
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and hence

riEjk = -�⇣†R�4
�
2�ij�k - 2�ik�j

�
⌘R

= -2��ij⇣
†
R�4�k⌘R + 2��ik⇣

†
R�4�j⌘R

= -2i�
�
�ijE4k - �ikE4j

�
.

(3.33)

Now we show that the endomorphisms Eµ
⌫ act naturally on the bosonic zero

modes Ȧµ. In other words, we show that if Ȧµ obeys the linearised Bogomol’nyi equa-

tion (3.5) and the generalised Gauss law (3.9), then so does its image Ḃµ := Eµ
⌫Ȧ⌫

under such an endomorphism.

We start with the generalised Gauss law (3.9). By definition,

DµḂµ = Dµ
⇣
Eµ

⌫Ȧ⌫

⌘

= rµEµ
⌫Ȧ⌫ + Eµ⌫DµA⌫

= riEi
⌫Ȧ⌫ + Eµ⌫D[µA⌫]

= -4i�E4
jȦj

= -4i�Ḃ4 ,

(3.34)

where we have used equation (3.28) and the fact that, since Eµ⌫ is selfdual and D[µA⌫]

antiselfdual, their inner product vanishes. Thus we see that Ḃµ obeys the generalised

Gauss law (3.9).

Next we show that Ḃµ obeys the linearised Bogomol’nyi equation (3.5), which says

that D[µḂ⌫] is antiselfdual, or equivalently, that

DiḂ4 + "ijkDjḂk = 0 . (3.35)
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Using equations (3.26) and (3.28), we calculate the first term in the left-hand side:

DiḂ4 = Di

⇣
E4jȦj

⌘

= riE4jȦj + E4jDiȦj

= 2i�EijȦj + E4jDiȦj

= -2i�"ijkE4kȦj + E4jDiȦj ,

(3.36)

and then also the second term:

"ijkDjḂk = "ijkDj

⇣
EklȦl + Ek4Ȧ4

⌘

= "ijk
⇣
rjEklȦl -rjE4kȦ4 + EklDjȦl + Ek4DjȦ4

⌘

= "ijk
⇣
2i�E4kȦj - 2i�"jklE4lȦ4 + EklDjȦl - E4kDjȦ4

⌘

= 2i�"ijkE4kȦj + 4i�E4iȦ4 - "ijk"klmE4mDjȦl - E4k"ijkDjȦ4

= 2i�"ijkE4kȦj - E4jDjȦi - E4k"ijkDjȦ4

= 2i�"ijkE4kȦj - E4jDjȦi - E4k(DiȦk -DkȦi)

= 2i�"ijkE4kȦj - E4kDiȦk ,

(3.37)

where we have used that Ȧµ obeys the linearised Bogomol’nyi equation (3.5) and the

generalised Gauss law (3.9). Finally, we notice that the sum of the two terms vanish.

In summary, we have shown that the vector Eµ
⌫Ȧ⌫ is tangent to the moduli space.

Since there is a quaternion algebra in the span of the endomorphisms Eµ
⌫, we see that

the complexified tangent space to the moduli space is a quaternionic vector space.

Indeed, if we let Ȧaµ denote a complex frame for the complexified tangent space to M

at (A,�), then we may define endomorphisms I, J and K of the tangent space at that

point by

Ia
bȦbµ = Iµ

⌫Ȧa⌫ Ja
bȦbµ = Jµ

⌫Ȧa⌫ Ka
bȦbµ = Kµ

⌫Ȧa⌫ . (3.38)

Letting the point (A,�) vary we obtain a field of endomorphisms of TCM which we

also call I, J,K. It is evident that just like I, J,K generate a quaternion algebra, so do

I, J,K.
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3.3 Geometry of the moduli space

In order to probe the geometry of the moduli space M of hyperbolic monopoles, we

will consider the multiplet corresponding to a one-dimensional sigma model, except

that we do not have an action for this model. In other words, we will consider maps

X : R!M, t! X(t) and the associated fermions ✓ which are sections of ⇧X⇤TCM: the

(oddified) pullback by X of the complexified tangent bundle of M. In this section we

will first linearise the supersymmetry transformations and in this way arrive at an ex-

pression for the supersymmetry transformations of the bosonic moduli. We will then

derive the supersymmetry transformations of the fermionic moduli by demanding

closure of the one-dimensional N = 4 supersymmetry algebra.

3.3.1 Linearising the supersymmetry transformations

In this section we will derive the supersymmetry transformations for the bosonic zero

modes by linearising the supersymmetry transformations preserved by the mono-

poles.

The �R supersymmetry transformations preserved by hyperbolic monopole con-

figurations are given by equation (2.65). On the gauge field, and in four-dimensional

language, it can be written as

�✏Aµ = -i✏†R�µ L , (3.39)

which is already linear, hence at the level of the zero modes becomes

�✏Ȧµ = -i✏†R�µ ̇L . (3.40)

Choose a basis  ̇La for the space Z1 of fermionic zero modes. This defines a basis

Ȧaµ for the space Z0 of complexified bosonic zero modes via the second map in equa-

tion (3.19): namely,

Ȧaµ := -i⇣†R�µ ̇La , (3.41)

where ⇣R 2 K- is a fixed Killing spinor. From equation (3.21) we may invert this to
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write  ̇La = iȦaµ�
µ⌘R for some ⌘R 2 K+ such that ⇣†R⌘R = 1

2 .

We now expand the general bosonic zero mode Ȧµ = ȦaµX
a as a linear combina-

tion of the basis Ȧaµ and similarly for the general fermionic zero mode  ̇L =  ̇La✓
a.

Inserting this in equation (3.40), we obtain

�✏Ȧµ = Ȧaµ�✏X
a = Ȧa⌫✏

†
R�µ�

⌫⌘R✓
a = Ȧaµ✏

†
R⌘R✓

a + ✏†R�µ
⌫⌘RȦa⌫✓

a . (3.42)

The term ✏†R�µ
⌫⌘R is a linear combination of the almost complex structures Iµ

⌫, Jµ⌫

and Kµ
⌫:

✏†R�µ
⌫⌘R = "1Iµ

⌫ + "2Jµ
⌫ + "3Kµ

⌫ , (3.43)

whence

Ȧaµ�✏X
a = i

�
"1Iµ

⌫ + "2Jµ
⌫ + "3Kµ

⌫
�
Ȧa⌫✓

b + ✏†R⌘RȦaµ✓
a . (3.44)

From equation (3.38), we may write the action of these complex structures on Ȧa⌫ in

terms of the almost complex structures I, J, K on TCM. The end result is that

Ȧaµ�✏X
a =

�
"1Ib

a + "2Jb
a + "3Kb

a + "4Ib
a
�
Ȧaµ✓

b , (3.45)

where we have defined "4 = ✏†R⌘R. We remark that the "1,2,3,4 are Grassmann odd

since so is ✏R. Since the Ȧaµ are linearly independent, equation (3.45) is equivalent to

�✏X
a =

�
"1Ib

a + "2Jb
a + "3Kb

a + "4Ib
a
�
✓b , (3.46)

which defines the supersymmetry transformations for the bosonic moduli Xa.

It should be possible to derive the supersymmetry transformations for the fermi-

onic moduli ✓a from the gauge theory as well, but we have been unable to do this and

instead we will derive them by demanding the closure of the supersymmetry algebra.

3.3.2 Closure of the moduli space supersymmetry algebra

We shall now constrain the geometry of the moduli space by demanding closure of

the supersymmetry algebra. In contrast with the case of Euclidean monopoles, where
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the geometry of the moduli is constrained by demanding the invariance under super-

symmetry of the e�ective action for the zero modes, the lack of convergence of the L2

metric means that we cannot write down an action for the zero modes. It is the closure

of the supersymmetry on the zero modes which will give us geometrical information.

To this end let us define odd derivations �A, A = 1, . . . , 4, by �✏Xa = "A�AXa; that

is,

�AXa = ✓bEAb
a , (3.47)

where EA = (I, J,K, I), or completely explicitly,

�1X
a = ✓bIb

a �2X
a = ✓bJb

a �3X
a = ✓bKb

a �4X
a = ✓a . (3.48)

Hyperbolic monopoles are half-BPS, whence they preserve 4 of the 8 supercharges of

the supersymmetric Yang–Mills theory and this means that the supersymmetry on

the zero modes should close on the one-dimensional N = 4 supersymmetry algebra:

�A�B + �B�A = 2i�AB
d

dt
. (3.49)

Imposing this on Xa will determine the supersymmetry transformations of the

fermionic moduli ✓a. For example,

�24X
a = iX 0a =) �4✓

a = iX 0a , (3.50)

where X 0a represents the time derivative of Xa. Also, we have

�21X
a = iX 0a =) �1✓

a = -iX 0bIb
a - ✓b✓d@cIb

eId
cIe

a , (3.51)

and similarly for �2 and �3 by replacing I by J and K, respectively. Next we impose

�4�iX
a = -�i�4Xa for i = 1, 2, 3. For example,

0 = �1�4X
a + �4�1X

a = ✓d✓b (@dIb
a + @cIb

eId
cIe

a) , (3.52)

and similarly for J and K. This allows to rewrite in a slightly simpler way the super-
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symmetry transformations for the ✓a:

�1✓
a = -iX 0bIb

a + ✓b✓c@cIb
a

�2✓
a = -iX 0bJb

a + ✓b✓c@cJb
a

�3✓
a = -iX 0bKb

a + ✓b✓c@cKb
a

�4✓
a = iX 0a .

(3.53)

We, now, introduce the connection by defining its coe�cients �bca as

✓b✓c@cEAb
a = �bc

a✓c�AXb, (3.54)

where the connection symbol, with Latin indices, should not be confused with the

Dirac gamma matrices symbol, with Greek indices, we used for earlier. By definition

� is torsion free since for A = 4 we find that equation (3.54) becomes

�bc
a = �cb

a , (3.55)

The other characteristics of � will be recovered by closing the algebra. The odd deriv-

ations �A, A = i, 4, (i = 1, 2, 3) now becomes

�iX
a = Ei

a
b✓

b �i✓
a = -iEi

a
bX

0b + �bc
a✓c�iX

b , (3.56)

�4X
a = ✓a �4✓

a = iX0a + �bc
a✓c�4X

b, (3.57)

where Ei are the endomorphisms of TCM defined in (3.38). Demanding that (3.56)

obey the one-dimensional N = 4 supersymmetry algebra will constrain the geometry,

as we will now show.

Let us start by demanding closure of the supersymmetry algebra on the Xa; that

is,

(�A�B + �B�A)Xa = 2i�ABX
0a . (3.58)
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We start with A = i and B = j and we compute �i�jXa using equation (3.56):

�i�jX
a = �i

�
Ej

a
b✓

b
�

= @cEj
a
b�iX

c✓b + Ej
a
b�i✓

b

= @cEj
a
b�iX

c✓b + Ej
a
b

�
-iEi

b
cX

0c + �cd
b✓d�iX

c
�

= -iEj
a
bEi

b
cX

0c +
�
@cE

a
j d - �cd

bEj
a
b

�
�iX

c✓b

= -iEj
a
bEi

b
cX

0c + Ei
c
e

�
@cE

a
j d - �cd

bEj
a
b

�
✓e✓d ,

(3.59)

whence the left-hand side of equation (3.58) becomes

�
�i�j + �j�i

�
Xa = -i

�
Ej

a
bEi

b
c + Ei

a
bEj

b
c

�
X0c

+ Ei
c
e

�
@cEj

a
d - �cd

bEj
a
b

�
✓e✓d + Ej

c
e

�
@cEi

a
d - �cd

bEi
a
b

�
✓e✓d . (3.60)

Equation (3.58) is satisfied provided that

Ej
a
bEi

b
c + Ei

a
bEj

b
c = -2�ij�

a
c (3.61)

and that

�
Ei

c
e@cEj

a
d - �cd

bEi
c
eEj

a
b + Ej

c
e@cEi

a
d - �cd

bEj
c
eEi

a
b

�
✓e✓d = 0 . (3.62)

Equation (3.61) is satisfied by virtue of the definition of the endomorphisms Ei (3.38).

Equation (3.62) becomes

Ei
c
e@cEj

a
d - �cd

bEi
c
eEj

a
b + Ej

c
e@cEi

a
d - �cd

bEj
c
eEi

a
b =

Ei
c
d@cEj

a
e - �ce

bEi
c
dEj

a
b + Ej

c
d@cEi

a
e - �ce

bEj
c
dEi

a
b . (3.63)

Defining the covariant derivative of an endomorphism Ea
b as

raE
b
c = @aE

b
c - �ac

dEb
d + �ad

bEd
c, (3.64)
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so in terms of covariant derivatives equation (3.62) can be written as

Ei
c
ercEj

a
d + Ej

c
ercEi

a
d - Ei

c
drcEj

a
e - Ej

c
drcEi

a
e = 0 . (3.65)

As shown in Appendix 7.1, taking into account that r is torsion-free, this is nothing

but
⇥
Ei,Ej

⇤
= 0 , (3.66)

where the bracket is the Frölicher–Nijenhuis bracket of the two endomorphismsEi and

Ej, thought of as vector valued one-forms, given by equation (7.10) in Appendix 7.1

for endomorphisms K and L. Now closing the algebra with A = 4 and B = i, we get

@eEi
a
d - �ed

bEi
a
b - �cd

aEi
c
e = @dEi

a
e - �de

bEi
a
b - �ce

aEi
c
d . (3.67)

which in terms of the covariant derivative becomes

reEi
a
d = rdEi

a
e . (3.68)

We will now show that equation (3.68) already implies that the Ei are parallel with

respect to r, whence equation (3.66) is automatically satisfied. This result will rely

on the existence (shown in Appendix 7.2) of a torsion-free connection
o

r satisfying
o

rEi = 0. We will refer to
o

r as the Obata connection, since it is the analogue of the

Obata connection of a hypercomplex structure [74]. Indeed, let us show that the tensor

S = r-
o

r vanishes as a result of equation (3.68), whence r =
o

r.

To see this, let r =
o

r+ S, so that

rXY -
o

rXY = SXY = S(X, Y) , (3.69)

which defines the endomorphism SX. Equation (3.68) is easily seen to be equivalent

to

(rXEi)Y = (rYEi)X , (3.70)
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for all vector fields X, Y. We now use that

rXEi =
o

rXEi + [SX,Ei] = [SX,Ei] , (3.71)

where the bracket here is simply the commutator of endomorphisms. This allows us

to rewrite equation (3.70) as

0 = [SX,Ei]Y - [SY ,Ei]X

= SXEiY - EiSXY - SYEiX+ EiSYX

= S(X,EiY)- S(Y,EiX) ,

(3.72)

where we have used that SXY = SYX due to the fact that bothr and
o

r are torsion-free.

Using again that S(X, Y) = S(Y,X), we see that Ei is S-symmetric; that is,

S(EiX, Y) = S(X,EiY) . (3.73)

But now the quaternion algebra says that E3 = E1E2, whence using equation (3.73)

repeatedly we see that

S(E3X, Y) = S(E1E2X, Y) = S(E2X,E1Y) = S(X,E2E1Y) = -S(X,E3Y) .

But equation (3.73) also says that S(E3X, Y) = S(X,E3Y), whence we see that for all X, Y

S(X,E3Y) = 0 , (3.74)

and since E3 is invertible, that S(X, Y) = 0 for all X, Y, as desired.

We now demand closure of the supersymmetry algebra on the fermionic coordin-

ates ✓a:

(�A�B + �B�A) ✓a = 2i�AB✓
0a . (3.75)

We will see that the algebra closes without imposing any further conditions on the

geometry. In a similar treatment to the one done with the the bosonic coordinates, we
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start with A = i and B = j. We compute �i�j✓a using equation (3.56):

�i�j✓
a = -i@cEj

a
b�iX

cX0b - iEj
a
b(�iX

b) 0 + @d�
a
bc�iX

d✓c�jX
b

+ �abc�i✓
c�jX

b + �abc✓
c�i�jX

b . (3.76)

Using that (Ei) 0 = @bEiX
0b, we may rewrite this as

�i�j✓
a = -i@cEj

a
b�iX

c✓dX0b - iEj
a
b@dEi

b
cX

0d✓c - iEj
a
bEi

b
c✓

0c

+ @d�
a
bcEi

d
cEj

b
f✓

e✓c✓f - i�abcEi
c
dEj

d
e✓

eX0d

+ �abc�
c
de✓

d�iX
e�jX

b + �abc✓
c�i�jX

b . (3.77)

The left-hand side of equation (3.75) can then be written as

(�i�j + �j�i)✓
a = 2i�ij✓

0a + Rbcd
aEi

b
eEj

c
f✓

d✓e✓f

- i
�
Ei

c
e@cEj

a
d + Ej

c
e@cEi

a
d + Ei

a
b@dEj

b
e + Ej

a
b@dEi

b
e

+ �bc
aEi

c
dEj

b
e + �bc

aEj
c
dEi

b
e + 2�de

a�ij
�
X0d✓e , (3.78)

where we have used the closure of the supersymmetry algebra on the Xa and the

definition of the curvature tensor for the connection r:

Rabc
d = @b�ac

d - @a�bc
d + �ac

e�be
d - �bc

e�ae
d . (3.79)

Comparing with the closure condition (3.75), we see that there are two kinds of of-

fending terms: those linear in ✓ and those cubic in ✓. We will now show that both

terms vanish as a consequence of rEi = 0.

First, the terms linear in ✓ are easily seen to be zero by replacing @aEi
b
c with

�ac
dEi

b
d - �ad

bEi
d
c, which is equivalent to Ei being r-parallel. Doing so, and us-

ing the torsion-free condition �abc = �ba
c and the closure condition (3.61), we see that

all terms cancel.

Before we proceed to show that terms cubic in ✓ vanish, we compute the closure

of algebra when A = B = 4 and when A = 4, but B = i. In a similar, yet simpler
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calculation we find

2�4✓
a = 2i✓0a + Rbcd

a✓d✓b✓c,

(�4�i + �i�4)✓
a = Rbcd

aEi
c
f✓

d✓b✓f.

Hence, the terms cubic in ✓ in all cases will vanish if and only if

Sd,e,fRbcd
aEA

b
eEB

c
f = 0 , (3.80)

where S denotes skew-symmetrisation in the relevant symbols. Equivalently, but

more invariantly, they will vanish if and only if for all vector fields X, Y,Z,

SX,Y,ZR(EAX,EBY)Z = 0 . (3.81)

If A = B = 4, then this is true by virtue of the algebraic Bianchi identity for the torsion-

free connection r. If A = 4, but B = i, then condition (3.81) becomes equivalent to

SX,Y,ZR(X,EiY)Z
?
= 0 . (3.82)

Using the algebraic Bianchi identity, we can turn the left-hand side of this equation

into

-SX,Y,Z (R(Z,X)EiY + R(EiY,Z)X) . (3.83)

Since Ei is r-parallel, it is invariant under the infinitesimal holonomy representation,

whence in particular it commutes with the curvature operators R(X, Y); that is,

R(Z,X)EiY = EiR(Z,X)Y . (3.84)

This means that the first term in (3.83) vanishes due to the algebraic Bianchi identity,

whereas the second term is given by

-SX,Y,ZR(EiY,Z)X = +SX,Y,ZR(Z,EiY)X = -SX,Y,ZR(X,EiY)Z , (3.85)
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which is the negative of what we started with, whence it too vanishes:

SX,Y,ZR(X,EiY)Z = 0 . (3.86)

Finally, if A = i and B = j, condition (3.81) becomes

SX,Y,ZR(EiX,EjY)Z
?
= 0 . (3.87)

We again use the algebraic Bianchi identity to rewrite the right-hand side as

-SX,Y,Z
�
R(Z,EiX)EjY + R(EjY,Z)EiX

�
. (3.88)

Using that Ei and Ej commute with the curvature operators, we may rewrite this as

-SX,Y,Z
�
EjR(Z,EiX)Y + EiR(EjY,Z)X

�
, (3.89)

and both terms are now seen to vanish by virtue of equation (3.86). In summary, the

supersymmetry algebra closes on the fermionic moduli.

To summarize the results of this section, the supersymmetry algebra closes on the

moduli. This is because the complex-linear endomorphisms I, J,K on TCM are parallel

relative to a (unique) torsion-free connection, whence in particular the quaternionic

structure they define on TCM is integrable: their Frölicher–Nijenhuis brackets vanish,

therefore MC is hypercomplex. In the terminology of Bielawski and Schwachhöfer

this means that M is a pluricomplex manifold, which we have hereby shown to follow

naturally from supersymmetry.
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Chapter 4

Supersymmetric Yang-Mills-Higgs

Theory on H3 with Real Fields

4.1 Introduction

We saw in the chapters two and three that starting from a supersymmetric Yang-Mills

theory on a Euclidean space and constructing a supersymmetric Yang-Mills-Higgs

theory on hyperbolic space gives a theory with complex fields, and hence it paves the

way to explore the geometry of the complex space of hyperbolic monopoles. From our

results in chapter three we can deduce the nature of the geometry of the real moduli

space of hyperbolic monopoles using the properties of pluricomplex geometry [68],

however, it is more solid to tackle the real moduli space directly, and for that sake

we construct a supersymmetric Yang-Mills-Higgs theory on H3 where the gauge field

components are real. Our starting point is a supersymmetric Yang-Mills theory on

Minkowski space R(1,5) which we reduce to R3 and then promote to H3. Next, we find

the equations of motion which are more general than the usual supersymmetric Yang-

Mills-Higgs fields equations, however we show later, using certain supersymmetric

constraints, that supersymmetric hyperbolic monopoles form a subset of the equations

of motion solutions. Finally, we compare our theory to an example of family “A” from

[115] and then we study the superalgebra.
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4.2 On-shell supersymmetry in Minkowski 6-Spacetime

The existence of an on-shell supersymmetric theory in a certain dimension requires

a balance between the bosonic and fermionic degrees of freedom. Supersymmetric

Yang-Mills theory exists in six dimension if we we take the fermionic field to be of

Weyl nature. The gauge field has six real components, one is removed by gauge in-

variance, and the equation of motion projects out another, hence we are down to four

degrees of freedom. The Weyl spinor has four non zero complex components, two of

which are projected out by the equation of motion, hence we are down to two com-

plex components or four degrees of freedom. The N = 1 supersymmetric Yang-Mills

theory was first constructed in [121], which we review briefly in this section.

The Minkowskian supersymmetric Yang-Mills Lagrange density function in R(1,5)

is

L(1,5) = -
1
2
GABG

AB +  ̄�ADA , (4.1)

where the capital alphabet indices A,B,C, . . . run from 0 to 5. The gauge group index

has been suppressed, but it should be understood that each term is an ad-invariant

inner product on a Lie algebra g.

We choose the Lie algebra structure constant to be real, hence the generators T↵

and so are the gauge fields WA = W↵
AT↵ are antihermitian. The field strength and the

covariant derivatives are given by

GAB = @AWB - @BWA + [WA,WB], DA = @A + [WA, ], (4.2)

so GAB is also antihermitian.  is an anticommuting Weyl spinor,  ̄ is Dirac adjoint

of  , hence we have

(�† )† = - †�,  ̄ =  †�0. (4.3)

�A are 6-dimensional unitary gamma matrices that satisfy

{�A, �B} = 2⌘AB, ⌘AB = diag(-1,+1, . . . ,+1), �†A = -�0�A�
-1
0 .
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With these definitions one can check that the Lagrangian (4.1) is Hermitian.

In addition to the SO(5, 1) Lorentz invariance and gauge invariance, the action

defined by L(1,5) is invariant under the following supersymmetry transformations

�WA = "̄�A -  ̄�A", (4.4)

� = �ABGAB", (4.5)

� ̄ = -"̄�ABGAB, (4.6)

where �AB = 1
2 [�

A, �B], and " is the supersymmetry parameter which is a constant

spinor, and of same nature as  .

4.3 Reduction to R3

Starting with N = 1 theory in D = 5 + 1 flat space time, we quotient now by R(2,1)to

obtain a theory on R3.

4.3.1 Reduction of bosonic fields

The gauge fields WA and  upon reduction will depend only on xi, i = 1, 2, 3, which

means that @0 ⌘ @4 ⌘ @5 ⌘ 0. This breaks the Lorentz invariance SO(5, 1) down to

SO(3) ⇥ SO(2, 1). The gauge field WA breaks down into Wi, a 3-dimensional gauge

field, and the other three components, Wµ : W0 = �0,W4 = �4, and W5 = �5, are

scalar fields transforming as vectors under the R-symmetry SO(2, 1). In terms of these

fields, the field strength breaks up as Gij, Giµ = Di�µ and Gµ⌫ = [�µ,�⌫]. We will

keep the fermionic part reduction to the next section, so the Lagrangian with only the

bosonic part reduced, will read as

LSYM = -
1
2
GijG

ij -Di�µD
i�µ -

1
2
[�µ,�⌫][�

µ,�⌫] +  ̄� iDi +  ̄�µ[�µ, ]. (4.7)

4.3.2 Reduction of fermionic fields

The gamma matrices {�M} are in the Cli�ord group Cl(5, 1) and they satisfy the Clif-

ford algebra {�M, �N} = 2⌘MNI8, where ⌘MN is mostly positive. Upon reduction, {�M}
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will be decomposed into two sets. The first set is �i, form the representation of the

Cl(3, 0), and satisfy {�i,�j} = 2�ijI2, where as the second set is �̄µ, form the repres-

entation of the Cl(2, 1), and satisfy {�̄µ, �̄⌫} = 2⌘µ⌫I2. �i will be chosen to be the Pauli

matrices �i = {�1,�2,�3} so the volume element ! = iI, and �̄µ = {i�2,�1,�3} with

volume element !̄ = I.

Since the reduction is from even to odd dimension the decomposition of �M will

include an “auxiliary” matrix. A possible decomposition is given by

�i = I2 ⌦ �i ⌦ �1,

�µ = �̄µ ⌦ I2 ⌦ �2.

One can easily check now that all the properties of the �M are satisfied by this

choice.

�2µ = (�̄µ ⌦ I2 ⌦ �2)(�̄µ ⌦ I2 ⌦ �2)

= �̄2µ ⌦ I22 ⌦ �22 =

8
>><

>>:

-I8 if µ = 0,

I8 if µ = 4 or 5
,

�2i = (I2 ⌦ �i ⌦ �1)(I2 ⌦ �i ⌦ �1)

= I22 ⌦ �2i ⌦ �21 = I8,

The anticommutation relations are also satisfied

{�µ, �i} = {I2 ⌦ �µ ⌦ �1, �̄i ⌦ I2 ⌦ �2}

= �̄i ⌦ �µ ⌦ {�1,�2} = 0.

And finally, the volume element of the �M is given by

�012345 = �045.�123

= (�̄045 ⌦ I2⌦�2).(I2 ⌦ �123 ⌦ �1)

= �̄045 ⌦ �123 ⌦-i�3 = I4 ⌦ �3.
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The decomposition of the spinor depends on the action of �µ on the  . In six dimen-

sional notation  is a spinor of positive chirality, hence

�µ . = (I2 ⌦ �µ ⌦ �1). ⌦

0

B@
1

0

1

CA

where  = 1
2(I+ �7) , then  can be written as

 =

0

B@
1

0

1

CA⌦ 1 ⌦

0

B@
1

0

1

CA+

0

B@
0

1

1

CA⌦ 2 ⌦

0

B@
1

0

1

CA ,

and the conjugation of the spinor decomposes as

 ̄ =  †�0

= [

✓
1 0

◆
⌦ †

1 ⌦
✓
1 0

◆
+

✓
0 1

◆
⌦ †

2 ⌦
✓
1 0

◆
].[i�2 ⌦ I2 ⌦ �2]

=

✓
0 1

◆
⌦ †

1 ⌦
✓
0 -i

◆
+

✓
-1 0

◆
⌦ †

2 ⌦
✓
0 -i

◆
.

4.3.3 Reduction of the Lagrangian

The reduction of the spinors and gamma matrices will e�ect only the fermionic part

of the Lagrangian (4.7), which is given by

Lf =  ̄� iDi +  ̄�µ[�µ, ].

As for � iDi we get

� iDi = {I2 ⌦ �i ⌦ �1}.{

0

B@
1

0

1

CA⌦Di 1 ⌦

0

B@
1

0

1

CA+

0

B@
0

1

1

CA⌦Di 2 ⌦

0

B@
1

0

1

CA}

=

0

B@
1

0

1

CA⌦ �iDµ 1 ⌦

0

B@
0

1

1

CA+

0

B@
0

1

1

CA⌦ �iDi 2 ⌦

0

B@
0

1

1

CA ,
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therefore  ̄� iDi becomes

 ̄� iDi = -i †
1�

iDi 2 + i †
2�

iDi 1. (4.8)

Now, for �µ[�µ, ] we get

�µ[�µ, ] = {�̄µ ⌦ I2 ⌦ �2}.{

0

B@
1

0

1

CA⌦ [�i, 1]⌦

0

B@
1

0

1

CA+

0

B@
0

1

1

CA⌦ [�i, 2]⌦

0

B@
1

0

1

CA}

= �̄i

0

B@
1

0

1

CA⌦ [�i, 1]⌦

0

B@
0

i

1

CA+ �̄i

0

B@
0

1

1

CA⌦ [�i, 2]⌦

0

B@
0

i

1

CA .

Hence, the final form of  ̄�µ[�µ, ] is

 ̄�µ[�µ, ] =

✓
0 1

◆
�̄µ

0

B@
0

1

1

CA⌦ †
1[�µ, 2] +

✓
-1 0

◆
�̄µ

0

B@
1

0

1

CA⌦ †
2[�µ, 1]

+

✓
0 1

◆
�̄µ

0

B@
1

0

1

CA⌦ †
1[�µ, 1] +

✓
-1 0

◆
�̄µ

0

B@
0

1

1

CA⌦ †
2[�i, 2]

= - †
1[�5, 2]- 

†
2[�5, 1] + 

†
1[�4, 1]- 

†
2[�4, 2] + 

†
1[�0, 1] + 

†
2[�0, 2].

(4.9)

Putting everything together, (5.4, 5.5) in (4.7), will give the supersymmetric Yang-

Mills-Higgs Lagrangian on three dimensional Euclidean background

L(3) = -
1
2
GijG

ij -Di�µD
i�µ -

1
2
[�µ,�⌫][�

µ,�⌫]

- i †
1�

iDi 2 + i †
2�

iDi 1 - 
†
1[�5, 2]- 

†
2[�5, 1]

+ †
1[�4 + �0, 1]- 

†
2[�4 - �0, 2].

(4.10)

As for the reductions of the supersymmetry transformations, they are done in details

in the appendix section (7.3).
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4.3.4 SYM on R3

The result obtained from the reductions of Lagrangian and the supersymmetry trans-

formations encourage the following definition

A+ = �4 + �0, A- = �4 - �0, � = �5,

hence, in three dimensional Euclidean space the the Lagrangian becomes

L = -
1
2
GijG

ij - kDi�k2 -DiA+D
iA- - [�,A+][�,A-]-

1
4
[A+,A-]

2

- i †
1�

iDi 2 + i †
2�

iDi 1 - 
†
1[�, 2]- 

†
2[�, 1] + 

†
1[A+, 1]

- †
2[A-, 2],

(4.11)

and the supersymmetry transformations that leave this Lagrangian invariant are

�Wi = -i"†1�i 2 + i"†2�i 1 + i †
1�i"2 - i †

2�i"1,

�A+ = 2 †
2"2 - 2"†2 2,

�A- = 2"†1 1 - 2 †
1"1,

�� = -"†1 2 - "
†
2 1 + 

†
1"2 + 

†
2"1,

� 1 = �ijGij"1 - "1[A+,A-]- 2"2[A-,�] + 2i�i("2DµA- + "1Di�),

� 2 = �ijGµ⌫"2 + "2[A+,A-] + 2"1[A+,�] + 2i�i("1DiA+ - "2Di�).

(4.12)

The action and the superysmmetry transformations are richer than the theory ob-

tained in chapter two due to the reduction from a higher dimensional theory. How-

ever, we can still see some resemblance, the theory here looks like a generalized N = 2

supersymmetric Yang-Mills-Higgs with � playing the role of the Higgs field. The

fields (Wi,�,A+,A-) are real, which can be seen from the superysmmetry transform-

ations. This is the benefit of starting with a theory in Minkowski space and this will

help us, later when we analyze the real moduli space of hyperbolic monopoles, to

show that the supersymmetry transformations play the role of real zero modes.
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The variation of the action under the supersymmetry transformation is given by

�1L = -i@k"
†
1(�

ij�k 1Gij + �
k 2[A+,A-] + 2�k 1[A+,�]

- i�i�k 1DiA+ + i�i�k 2Di�) + c.c.

and

�2L = i@k"
†
2(�

ij�k 2Gij + �
k 1[A+,A-]- 2�k 2[A+,�]

- i�i�k 2DiA+ - i�i�k 1Di�) + c.c.

which will vanish since the superysmmetry parameters "1 and "2 are constant spinors

on R3.

4.3.5 Dimensional analysis

In  h = c = 1 units, all quantities are measured in units of energy raised to some power.

In this case we have for example [m] = [pµ] = E+1 or simply [m] = [pµ] = 1, while

[xµ] = -1. The action on a general n-manifold is given by

S =

Z
dnVL,

where for the case Rn, dnV = dx1dx2 . . .dxn, so on R3 the Lagrangian of a field theory

has dimensionality [L] = 3. From equation (4.11) we deduce that

[ 1] = [ 2] = 1, [Gµ⌫] =
3
2
,

which implies that

[�] = [A+] = [A-] =
1
2
.
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To have a correct dimensionality for all the Lagrangian terms we must add the non-

abelian coupling constant q, so the Lagrangian will read as

L = -
1
2
GijG

ij - kDi�k2 -DiA+D
iA- - q2[�,A+][�,A-]-

q2

4
[A+,A-]

2

- i †
1�

iDi 2 + i †
2�

iDi 1 - q †
1[�, 2]- q †

2[�, 1] + q †
1[A+, 1]

- q †
2[A-, 2],

with [q] = 1
2 .

4.4 Promoting supersymmetry to hyperbolic space

If instead of R3 we place the theory on a Riemannian 3-dimensional spin manifold

with metric gij, the story then is di�erent, since, in general, constant spinors don’t exist

on curved backgrounds. The covariant derivative of the supersymmetry parameter is

ri" = @i"+
1
4
�jk!i

jk",

where !i
jk are the spin connection of the vielbein introduced on the spin manifold.

The variation of the Lagrangian now reads as

�1L = -irk"
†
1(�

ij�k 1Gij + �
k 2[A+,A-]

+ 2�k 1[A+,�]- i�i�k 1DiA+ + i�i�k 2Di�) + c.c.

and

�2L = irk"
†
2(�

ij�k 2Gij + �
k 1[A+,A-]

- 2�k 2[A+,�]- i�i�k 2DiA+ - i�i�k 1Di�) + c.c.

Unless we are considering parallel spinors (ri" = 0) this Lagrangian will not be su-

persymmetric. But we are mainly interested in Hyperbolic manifold H3 which admits
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Killing spinors. Killing spinors in 3 dimensions satisfy the following equation

ri"(1,2) = (1,2)�i".

In order to restore supersymmetry, we follow the same procedure we did in chapter

two by adding terms that are invariant under the gauge group and Lorentz transform-

ation, to the Lagrangian and the supersymmetry transformations. Then by imposing

the invariance of the action and the on-shell closure of the supersymmetry transform-

ations we find the coe�cient of each term. However, we can benefit from results in

chapter two to massively reduce the calculation here. Notice, first, that the action (4.11)

with A+ and A- switched o� looks exactly like an on-shell supersymmetric version of

the action (2.45). Hence, when 1 = -2 = , and in the absence of A+ and A-, we can

promote (4.11) to H3 by merely adding a term equal to i[ †
1 2 +  

†
2 1] to the action

and leaving the supersymmetry transformations intact. When we include terms with

A+ and A- back, we require the addition of terms that have A+ and A- and invari-

ant under the group SO(2, 1) and the gauge group. The only possible choice is a term

proportional to Tr(A+A-) (where traces are suppressed in this chapter), and using the

dimensional analysis we find that it has to be proportional, actually, to 2A+A-. As

for the supersymmetry transformations, the closure of the algebra along with dimen-

sionality of fields imply that terms proportional to "1A+, "1A-, "2A+ and "2A- should

be added to the supersymmetry transformation of the fermions. In other words the

new action and supersymmetry transformation (�1 for example) have to be modified

as

L L+ i[ †
1 2 + 

†
2 1] + ↵

2A+A- (4.13)

and

�1 1  �1 1 + �1A+"1 + �2A-"1 �1 2  �1 2 + �3A+"1 + �4A-"1 ,

(4.14)

for some constants ↵,�1,�2,�3,�4 to be determined.

The invariance of the action now can be done faster and easier where we have only
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to worry about the variation of the terms with A+ and A- in the Lagrangian and only

the variation of the old terms via the new addition to the suersymmetry transform-

ations. Imposing the invariance tells us that ↵ = �3 = 4 and �1 = �2 = �4 = 0. In

addition, this result implies that there will be no modification for the supersymmetry

transformation �2 2 and a term equal to -4A- should be added to �2 1. Finally,

the resulting Lagrangian on a 3-dimensional Riemannian manifold admitting Killing

spinor is given by

L(3) = -
1
2
GijG

ij - kDi�k2 -DiA+D
iA- - [�,A+][�,A-]-

1
4
[A+,A-]

2

- i †
1�

iDi 2 + i †
2�

iDi 1 - 
†
1[�, 2]- 

†
2[�, 1] + 

†
1[A+, 1]

- †
2[A-, 2] + 42A+A- + i( †

1 2 + 
†
2 1), (4.15)

which is invariant under the following supersymmetry transformations

�1Wi = -i"†1�i 2 - i †
2�i"1, �2Wi = i"†2�i 1 + i †

1�i"2,

�1A+ = 0 �2A+ = 2 †
2"2 - 2"†2 2,

�1A- = 2"†1 1 - 2 †
1"1, �2A- = 0,

�1� = -"†1 2 + 
†
2"1, �2� = -"†2 1 + 

†
1"2,

�1 1 = �ijGij"1 - "1[A+,A-] + 2i�i"1Di�, �2 1 = -2"2[A-,�] + 2i�i"2DiA- - 4"2A-,

�1 2 = 2"1[A+,�] + 2i�i"1DiA+ + 4"1A+, �2 2 = �ijGij"2 + "2[A+,A-]- 2i�i"2Di�,

(4.16)

where

ri"1 = -ri"2 = �i". (4.17)

These modifications imply that  has to be real forL(3) to be Hermitian. But  is related

to the radius of curvature of our space via the integrability condition which is given

by R = 4d(d - 1)2 = -242. For real , the radius of curvature has to be negative,

which is the case of H3. If we consider the upper half plane model of hyperbolic space
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with radius of curvature “l”, then the metric is given by

ds2 =
l2

z2
(dx2 + dy2 + dz2), (4.18)

Computing the scalar curvature (with R↵� = Rµ
↵µ�) we get

R = -
6
l2

=)  = ± 1
2l
,

where we chose to work with negative .

4.4.1 Equations of motion

Using the Euler-Lagrange equations the field equations can be easily derived, for in-

stance for the equations of motion for the vector field Wa
i , we need to solve

rm[
@L

@(rmWn)
]-

@L

@Wn
= 0, (4.19)

and similarly for the other fields. With some patience one obtains the following set of

equations of motion:

Vector field Wi:

2DmGmn = -2[Dn�,�]- [DnA+,A-]- [DnA-,A+]

- i[ †
1�

n, 2] + i[ †
2�

n, 1]. (4.20)

Scalar field �:

DmDm� = -[[�,A-],A+]- [[�,A+],A-]- [ †
1, 2]- [ †

2, 1]. (4.21)

Scalar field A-:

DmDmA- = -[�, [�,A-]] +
1
2
[A-, [A+,A-]] + [ †

1, 1]-
1
l2
A-. (4.22)
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Scalar field A+:

DmDmA+ = -[�, [�,A+]] +
1
2
[A+, [A-,A+]]- [ †

2, 2]-
1
l2
A+.

Spinor  2:

�iDi 2 + i[ 2,�] + i[A+, 1] +
1
2l
 2 = 0.

Spinor  1:

�iDi 1 - i[ 1,�] + i[A-, 2]-
1
2l
 1 = 0.

These equations of motion which follow from the Lagrangian (4.13) looks a bit com-

plicated and not related to the Bogmol’nyi equation on H3. However, one can reduce

these equations to simpler forms by taking certain restrictions which are invariant un-

der supersymmetry. This calculation is done in the next chapter.

These equations exhibit symmetries inherited from the symmetries of the Lag-

rangian: gauge transformation, supersymmetry transformation, Lorentz transform-

ation, in addition to SO(2, 1) that acts on the vector (�,A+,A-) and transform the

spinors as  ! e-
i
4�

µ⌫fµ⌫ , where fµ⌫ are real functions.

4.4.2 Relation with other theories

The supersymmetric theory obtained here (4.15, 4.16) can be related to family “A”

theories obtained by Matthias Blau [122, 115]. According to the dimension, on which

we would like to study supersymmetric Yang-Mills theories, Blau derived the general

model of theories on curved spaces admitting Killing spinors written in terms of fields

in higher dimensions. For example, family “A” theories are those that obtained by

reduction to dimensions less than or equal to 5. In our notations theories “A” are

given by

L = LSYM - 4↵2[(n- 2)
d-nX

µ

�2
µ + (n- 4)�2

p]- (n- 4)↵ ̄�p , (4.23)
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and the superysmmetry transformations are given by

�WM = (✏̄�M -  ̄�M✏), (4.24)

� = �MN✏GMN - 4↵[
d-nX

µ

�µ�
µ�p✏+ (n- 4)�p✏], (4.25)

where LSYM stands for the unmodified supersymmetric Yang-Mills theory on flat

space, n is the dimension of the reduced theory, d is the dimension from where we

started before reduction, and ↵ and p are related to the Killing spinor equation as

follows

ri✏ = ↵�i�
p✏, (4.26)

where the integrability condition for Killing spinor of such form is given by

R = ↵2(�p)2n(n- 1). (4.27)

In order to obtain our theory from this family we need to set d = 6 and n = 3, and also

to choose p = 5 and ↵ = i
2l . Hence for these choices we get

LSYM = -
1
2
GABG

AB +  ̄�ADA +
1
l2
[-�2

0 + �
2
4] +

i

2l
 ̄�5 , (4.28)

�WA = ✏̄�A -  ̄�A✏, (4.29)

� = �AB✏GAB -
2i
l
[�0�

0 + �4�
4]�5✏. (4.30)

One can understand this theory as a supersymmetric Yang-Mills theory on H3 ⇥ R3,

which is best manifested by the behavior of the spinor ✏ on this manifold where we

have ri✏ = ↵�i�
p✏ and rµ✏ = 0. This point of view comes from Bär’s cone con-

struction [123] that relates Killing spinor fields to parallel spinor fields on auxiliary

manifolds. If we now use the decompositions of the bosonic fields, the fermionic

fields, and the gamma matrices introduced in sections (4.3.1, 4.3.2), to reduce (4.28)

and (4.29, 4.30) we find that this action and supersymmetry transformations match

exactly with our results (4.15) and (4.16).
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4.4.3 Super algebra

The closure of the new supersymmetry transformations algebra need to be checked,

where we use the modified N = 1 version from sections (4.3.1, 4.3.2). We will study

the action of the commutator of two supersymmetry transformations associated with

two Killing spinors ✏1 and ✏2 satisfying the Killing spinor equation (4.26), where here

✏1 and ✏2 represent the same spinor taken at two di�erent points. Naturally, we should

expect the closure to give di�eomorphisms and gauge transformations, and if any new

infinitesimal transformation term appears, the Lagrangian must be invariant under

the action of this transformation. The action of the commutator on our multiplet, gives

[�1, �2]�µ = ⇠AGAµ +
i

l
[⇠05µ�0 + ⇠

45
µ�4],

[�1, �2]Wi = ⇠AGAi +
i

l
[⇠05i�0 + ⇠

45
i�4],

[�1, �2] = ⇠LDL +
i

2l
⇠i�i�5 +

i

l
⇠5µ⌫�

µ⌫ .

where

⇠A = ✏̄1�A✏2 - ✏̄2�A✏1

In order to understand the right hand side of the supersymmetry algebra, we need

to understand the nature of the vector ⇠L. The covariant derivatives of the di�erent

components of ⇠ that appear in above algebra give

ri⇠A = -
i

l
⇠5iA,

hence not all components of ⇠A are constant, and ⇠i in particular is a Killing vector.

On the other hand, ⇠µ⌫5 is constant. Using these identities and defining the parameter

! = ⇠AWA, we can write the algebra in terms of isometries and gauge transformations

[�1, �2]Wi = L⇠Wi + �!Wi.

[�1, �2]�µ = L⇠�µ + �!�µ +
i

l
⇠µ⌫5�

⌫.

[�1, �2] = L⇠ + �! +
i

l
⇠µ⌫5�

µ⌫ .
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where

�!W� = -Dµ!, �!�m = [!,�m], �! = [!, ].

The equation of motion for the fermion has been used to ensure the closure of the

supersymmetry algebra, hence the on shell closure. In checking the computation of

the algebra closure the Mathematica package GAMMA [124] was used.

In addition to the expected di�eomorphism and gauge transformation we find a

boost of the scalars and fermions by a constant matrix ⇠5µ⌫. This boost represents the

R- symmetry (SO(2, 1)) algebra of the theory.
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Chapter 5

Geometry of the Real Moduli Space

of Hyperbolic Monopoles

5.1 Introduction

In this chapter we explore the geometry of the real moduli space of hyperbolic mono-

poles. We will show first that supersymmetric hyperbolic monopoles form a subset

of solutions to the equations of motion derived in the previous section, provided we

use some supersymmetric constraints. However, these constraints are only supersym-

metric under half of the supersymmetry transformations, which implies that super-

symmetric hyperbolic monopoles are 1
2 “BPS” saturated. Then, we start analyzing

the moduli space of these “BPS” hyperbolic monopoles using the supersymmetry of

low energy dynamics. We construct an ansatz of zero modes that we show to satisfy

the linearized Bogomol’nyi equation and the Dirac equation. The di�erence from our

analysis in chapter three, is that the ansatz we construct, here, using the supersym-

metry transformation are real, which we show to satisfy, as well, a gauge background

condition, and hence form real coordinate functionals for the moduli space. Then we

aim at constructing structures on the target space of the moduli space and studying

their properties. We construct two sets of 2-sphere complex structures that map zero

modes orthogonal to the gauge orbits into zero modes that are again orthogonal to the

gauge orbit, and we show that these two sets of complex structures don’t have any an-
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ticommutation relations between them. This just another way of saying that we have

a biquaternionic algebra on the moduli space of hyperbolic monopoles “pluricomplex

geometry”. Finally, we show that in the limiting case when the radius of curvature

of the hyperbolic space is set to infinity the pluricomplex geometry gives the hyper-

Kähler geometry, the geometry of Euclidean monopoles and hence proving Atiyah’s

conjecture.

5.2 Breaking half of supersymmetry

In the following, a set of restrictions which are invariant under supersymmetry, will

be imposed on the equations of motion. This will reduce the equations of motion into

a simpler familiar form. One of the solutions of these equations is the supersymmetric

hyperbolic monopole. But this solution will be shown to break half of the supersym-

metry transformation obtained after imposing the restrictions.

Consider the following three constrains which will be applied to the equations of

motion and the supersymmetry transformations

�ijGij = -2i�kDk�,

A- = 0,

 1 = 0.

(5.1)

These constraints are invariant under the supersymmetry transformation �1. Apply-

ing these restrictions on the equations of motion will give

DiG
ij = -[Dj�,�], (5.2)

DiD
i� = 0, (5.3)

DiD
iA- = 0,

DiD
iA+ = -[�, [�,A+]]- [ †

2, 2]-
1
l2
A+,

�iDi 1 = 0, (5.4)

�iDi 2 + i[ 2,�] +
1
2l
 2 = 0. (5.5)
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The solutions of the Bogomol’nyi equation together with the Bianchi identity on hy-

perbolic space H3 (4.18),

Di� = -
1
2

p
|g|✏̄ijkg

jmgknGmn = -
z

2l
✏̄ijkGjk, (5.6)

Di(⇤Gij) = 0, (5.7)

where ✏̄ijk represents the Levi-Civita symbol on flat space, form a subset of the solu-

tions of the first two equations (5.2, 5.3), hence we can trade (5.2, 5.3) with (5.6, 5.7)

since we are just interested in the space of solutions of the Bogomol’nyi equation. Us-

ing now the internal symmetry SO(2, 1) we can set A+ = 0 and the fourth equation

will have the following simpler form

DiD
iA+ = -[ †

2, 2]. (5.8)

A solution that satisfies equations (5.4, 5.5, 5.6, 5.8) is the solution of the hyperbolic

monopole in the bosonic theory along with A+ = 0 and ( 1, 2) = (0, 0). Thus the

hyperbolic monopole solutions of the bosonic theory continue to be monopole in the

supersymmetric theory. The hyperbolic monopole with A+ = 0 and ( 1, 2) = (0, 0)

will be denoted as the supersymmetric hyperbolic monopole solutions, and we will

be looking at the space of these solutions. Imposing the constraints (5.1) on the super-

symmetry transformations (4.16) will give

�1Wi = -i"†1�i 2 - i †
2�i"1,

�1� = -"†1 2 + 
†
2"1,

�1 2 = 2"1[A+,�] + 2i�i"1DiA+ -
2i
l
"1A+,

�1� = �1A+ = �1A- = 0,

(5.9)
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and

�2 2 = -4i�i"2Di�.

�2A+ = 2 †
2"2 - 2"†2 2,

�2Wi = �2� = �2A- = �2 1 = 0.

(5.10)

After setting the scalar fieldA+ equal to zero, we can see that only the first set of super-

symmetry transformations satisfy the supersymmetric monopole solution, however

the second set will generate non zero fermions. This means that �1 is the unbroken

supersymmetry leaving the supersymmetric solution invariant and �2 is the broken

supersymmetry. This partial breaking of supersymmetry is a generic feature of su-

persymmetry field theories admitting topologically non-trivial solutions. It was first

noticed by Witten and Olive [75] and is best understood by showing that the algebra

of supersymmetry charges are modified by topological charges.

5.3 Real moduli space of hyperbolic monopoles

In the previous section we concluded that the supersymmetric BPS configurations are

solutions with A- = A+ =  1 =  2 = 0, and (Wi,�) satisfy the Bogomol’nyi equation

(5.6) . These configurations are exactly the hyperbolic monopole solutions. The geo-

metry of these configurations is best analyzed using the linearized equations of motion

and their solutions (zero modes). These zero modes will later be used as coordinate

functions of our real moduli space. Hence, unlike the complexified zero modes that

we constructed in [125], the zero modes in this analysis will be real.

5.3.1 Zero modes

Using the same definitions and notations we used in [125] section (3.1) (with only one

exception, Wi for the gauge field instead of Ai), we will use the linearized unbroken

supersymmetry to pair the bosonic and fermionic zero modes in a supermultiplet.

The unbroken supersymmetry transformation (5.9) teaches us that real bosonic zero
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modes can be chosen to be

Ẇi = -i⇣†�i ̇+ i ̇†�i⇣,

�̇ = -(⇣† ̇+  ̇†⇣),
(5.11)

where ⇣ is an even spinor satisfying

ri⇣ = -
1
2l
�i⇣, (5.12)

Its quite straight forward to check that the ansatz (5.11) satisfy the linearized Bogo-

mol’nyi equation

Di(0)�̇- [�(0), Ẇi] + "ijkD
j(0)Ẇk = 0 . (5.13)

However, a better way of checking is by noticing that our zero modes here are just the

real part of the complexified zero modes defined in [125] equation (3.11), and since

the linearized Bogomol’nyi equation coe�cients are real, hence (5.11) should also be a

solution to (5.13). In addition the zero modes have to be tangent to the moduli space,

hence they have to satisfy as well the gauge back ground condition. However the story

here is a bit di�erent, the gauge background condition satisfied by the compilexified

zero modes in [125] equation (3.9) has complex coe�cients. This means that the real

zero modes (5.11) will satisfy a slightly di�erent condition. Its not di�cult to see that

the gauge background condition that (5.11) should satisfy is given by

Di(0)Ẇi + [�(0), �̇] +
2i
l
( ̇†⇣- ⇣† ̇) = 0, (5.14)

where the factor 2
l here is 4� in [125]. Indeed with a quick check we verify that (5.11)

satisfy the gauge background condition (5.14).

Di(-i⇣†�i ̇+ i ̇†�i⇣) + [�,-⇣† ̇-  ̇†⇣] +
2i
l
( ̇†⇣- ⇣† ̇)

= -iDi(⇣†�i ̇) + iDi( ̇�i⇣)- [�, ⇣† ̇]- [�,  ̇†⇣] +
2i
l
 ̇†⇣-

2i
l
⇣† ̇.
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We now use equation (5.12) and �i�i = 3 to arrive at

3i
2l
⇣† ̇- i⇣†�iD

i ̇- ⇣†[�,  ̇]-
2i
l
⇣† ̇

+iDi ̇†�i⇣-
3i
2l
 ̇†⇣- [�,  ̇†]⇣+

2i
l
 ̇†⇣,

which will vanish since the first line is nothing but the equation of motion (linear) of

femions  and second line is its dagger.

Since we don’t require  ̇ to be real, the fermionic zero modes, which can be found

by inverting equation (5.11) ,

 ̇ = iẆi�
i⌘- �̇⌘, (5.15)

where

Di⌘ =
1
2l
�i⌘. (5.16)

still [125] satisfy the equation of motion for the fermions (5.5). Using the fact that ⌘†⇣

is covariantly constant [126], we can conveniently choose them such that they satisfy

conditions required by inversion, which can be shown to be equal to 1
2 .

5.3.2 Six/Four dimensional language

At the level where our base space is H3⇥R3, the bosonic fields (Wi,�,A-,A+) and the

fermionic fields ( 1, 2) depend only on the coordinates of H3. The supersymmetric

hyperbolic monopoles are the solutions with A- = A+ =  1 =  2 = 0, and (Wi,�)

satisfy the Bogomoln’yi equation. In this section we aim at examining the geometry

of the real moduli space of hyperbolic monopoles. In particular, we would like to con-

struct complex structures (in our case they are real endomorphisms) on the tangent

space of the moduli space and study their characteristics. For this sake, its convenient,

and su�cient for now while elaborating on few observations, to introduce the four di-

mensional notation which amounts to woking on the four-dimensional space H3⇥ R1.

Our gamma matrices ⇧i will be

⇧i =

0

B@
0 �i

�i 0

1

CA , ⇧4 =

0

B@
0 i

-i 0

1

CA ,

96



and they satisfy the Cli�ord algebra

{⇧i,⇧j} = 2gijI,

where i = (i, 4). The spinors are chiral in four dimensions and take the following form

 ̇ =

0

B@
 ̇

0

1

CA , ⇣ =

0

B@
0

⇣

1

CA , ⌘ =

0

B@
0

⌘

1

CA ,

and the four dimensional bosonic zero modes will be given by

Ẇi = (Ẇi, �̇).

With these definitions, the bosonic and fermionic zero modes read now as

Ẇi = -i(⇣†⇧i ̇-  ̇†⇧i⇣), (5.17)

 ̇ = iẆi⇧
i⌘, (5.18)

where the Killing spinors now satisfy the following equations

ri⇣ =
i

2l
⇧i ⇧4⇣, r4⇣ = 0, (5.19)

ri⌘ = -
i

2l
⇧i ⇧4⌘, r4⌘ = 0. (5.20)

And finally the Linearized equations of motions are given by

D[iẆj] = -
1
2
"ijmnD

mẆn, (5.21)

DiẆi = -
2
l
( ̇†⇧4⇣+ ⇣

†⇧4 ̇), (5.22)

/D ̇ = -
i

2l
⇧4 ̇. (5.23)

5.3.3 Complex structures

The bosonic zero modes are real (5.17), hence one needs to construct real complex

structures, which act as real linear map on the tangent space of the moduli space and
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maps every real zero mode to another real zero mode. We have two possible choices

of real structures M↵� and N↵�, that agree with our zero modes ansatz, defined by

M↵�i
j = i(⇣†↵⇧i

j⌘� + ⌘†↵⇧i
j⇣�), (5.24)

N↵�i
j = (⇣†↵⇧i

j⌘� - ⌘†↵⇧i
j⇣�). (5.25)

One might think that we made the wrong choice of sign, and the above choices would

give pure complex structures, however the antihemiticity of⇧i
j make them pure real.

⇣ and ⌘ belong to the following sets of solutions in C2

K+ = {⇣↵| ri⇣↵ = +
i

2l
⇧i⇧4⇣↵}, (5.26)

K- = {⌘↵| ri⌘↵ = -
i

2l
⇧i⇧4⌘↵}. (5.27)

For computation purposes we can choose to start with a particular choice for the basis

of K+ and K-. Using the model of hyperbolic space given in (4.18), we find

⇣1 =
1
2

0

BBBBBBBB@

0

0

[-(x- iy) + 1]z-
1
2

z
1
2

1

CCCCCCCCA

⇣2 =
1
2

0

BBBBBBBB@

0

0

[-(x+ iy)- 1]z-
1
2

z
1
2

1

CCCCCCCCA

(5.28)

⌘1 =
1
2

0

BBBBBBBB@

0

0

z
1
2

[(x+ iy) + 1]z-
1
2

1

CCCCCCCCA

⌘2 =
1
2

0

BBBBBBBB@

0

0

-z
1
2

[-(x+ iy) + 1]z-
1
2

1

CCCCCCCCA

(5.29)

that satisfy the condition

⇣†↵⌘� =
1
2
�↵�. (5.30)

The structures in equations (5.24, 5.25) as they stand don’t give the real endomorph-

isms we are after since the square of each one of them or of any real combination

doesn’t give minus the identity matrix. If we take the covariant derivative of of the
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square of (5.24) and the square of (5.25) we get

rm(N↵�i
jN↵�j

k) = -
8
l
[(⇣†↵⇣�)(⌘

†
↵�m⌘�)- (⌘†↵⌘�)(⇣

†
↵�m⇣�)]�i

k,

rm(M↵�i
jM↵�j

k) =
8
l
[(⇣†↵⇣�)(⌘

†
↵�m⌘�) + (⌘†↵⌘�)(⇣

†
↵�m⇣�)]�i

k,

which doesn’t give zero. In the previous result we used the Fierz identity for commut-

ing spinors (⇣ and ⌘), given by

⇣⌘† =
1
2
⌘†⇣+

1
2
⌘†�µ⇣�µ.

In other words we have, for example for M11 and N11, the following properties

(N11)
2 = -f(x,y, z).I, (5.31)

(M11)
2 = -g(x,y, z).I, (5.32)

where f(x,y, z) and g(x,y, z) are real rational functions equal to

f(x,y, z) = -
x4 + 2x2(-1+ y2 + z2) + (1+ y2 + z2)2

4z2
,

g(x,y, z) = -
x4 + y4 + (-1+ z2)2 + 2y2(1+ z2) + 2x2(-1+ y2 + z2)

4z2
.

Moreover, the other structures like 1
2(M12 + M21), 1

2i(M12 - M21), 12(N12 + N21), and
1
2i(N12 -N21) also follow similar properties as in equations (5.31, 5.32).

These properties plus the fact that the zero modes are real resulting from a six dimen-

sional theory, motivate us to define the real endomorphism X↵� by

X↵� =

0

B@
M↵� N↵�

-N↵� M↵�

1

CA , (5.33)

where one can now show that the linear combinations

R = X11 S =
1
2
(X12 + X21) T =

1
2i

(X12 - X21), (5.34)
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satisfy the quaternion algebra

R2 = S2 = -I RS = -SR = T . (5.35)

Hence if we define

I = a1R+ a2S+ a3T ,

where a1, a2, and a3 are real numbers with
P

i a
2
i = 1, we get a 2-sphere of complex

structures. (note that the complex structures have only real entires, as required). The

square of I gives

I2 = -(a2
1 + a2

2 + a2
3).I (5.36)

A significant note that worth mentioning is that the dimension of the X↵� confirms

that starting with a six dimensional theory is necessary for studying the real moduli

space of hyperbolic monopoles. This will be manifested when X↵� acts on the zero

modes.

Another possible choice of a real endomorphism, similar to the definition of X↵�, is

given by

Y↵� =

0

B@
-M↵� N↵�

-N↵� -M↵�.

1

CA (5.37)

Using the properties (5.31, 5.32) one can show that Y↵� is equal to the negative of the

inverse of the transpose of X↵�. One can, also, show here that the linear combinations

O = Y11 P =
1
2
(Y12 + Y21) Q =

1
2i

(Y12 - Y21),

satisfy the quaternion algebra

O2 = P2 = -I OP = -PO = Q.

Hence the complex structure J, defined as

J = b1O+ b2P + b3Q,
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where b1, b2, and b3 are real numbers with
P

i b
2
i = 1, gives a 2-sphere of complex

structures. The square of J gives

J2 = -(b21 + b22 + b23).I (5.38)

One interesting property is that I and J don’t anticommute, neither any of the set

{R, S, T } anticommute with any of the set {O,P,Q}. Note also that {R, S, T } and {O.P.Q}

are integrable by construction. This follows from the fact that the structures N↵� and

M↵� are the the real and imaginary part of the endomorphism A↵� we defined in

[125] section 3.3. We have A11, 1
2(A12 + A21) and 1

2i(A12 - A21) integrable, and since

the Frölicher-Nijenhuis bracket is a real operator it implies that M11, 1
2(M12 + M21),

1
2i(M12 - M21), N11, 1

2(N12 + N21) and 1
2i(N12 - N21) satisfy the Frölicher-Nijenhuis

bracket and hence integrable.

The action of the complex structures on the zero modes can be achieved by writing the

two possible choices of real zero modes in a couple. The components of the couple are

actually the real and the imaginary part of the complex zero modes we defined in

[125]. Let Ẇi be the couple of zero modes and V̇i be the second possible choice of real

zero modes, then

Ẇi =

0

B@
Ẇi

V̇i

1

CA =

0

B@
-i⇣†⇧i ̇+ i ̇†⇧i⇣

-⇣†⇧i ̇-  ̇†⇧i⇣

1

CA . (5.39)

The actions of Xi
j and Yi

j on Wj are given by

Xi
jẆj =

0

B@
Mi

jẆj +Ni
jV̇j

-Ni
jẆj +Mi

jV̇j

1

CA , Yi
jẆj =

0

B@
-Mi

jẆj +Ni
jV̇j

-Ni
jẆj -Mi

jV̇j

1

CA . (5.40)

Hence we can read now the images Ẇj resulting from the action of Xi
j and Yi

j on the

zero modes

Xi
jẆj = Mi

jẆj +Ni
jV̇j

= -2⇣†⇧i
j⌘( ̇†⇧j⇣) + 2⌘†⇧i

j⇣(⇣†⇧j ̇). (5.41)

Yi
jẆj = -Mi

jẆj +Ni
jV̇j
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= -2⇣†⇧i
j⌘(⇣†⇧j ̇) + 2⌘†⇧i

j⇣( ̇†⇧j⇣). (5.42)

The complex structures X and Y must map zero modes to zero modes. This means that

the images of Ẇi (and V̇i) under the action of the X and Y have to satisfy the linear-

ized Bogomol’nyi equation (5.21) and Gauss’s law (5.22). Starting with the linearized

Bogomol’nyi equation, which we denote by “B”, we have shown in [125] section (3.3)

that the first term in (5.42) (⇣†⇧i
j⌘⇣†⇧j ̇) satisfies B. If we denote ⇣†⇧i

j⌘ by “A” and

⇣†⇧j ̇ by “Z”, then we have B(AZ) = 0. We also have, in [125], that B(Z) = 0. Since B

is linear and has real coe�cients, then B(A†Z†) = 0 and B(Z†) = 0. This implies that

Z† is a zero mode and hence B(AZ†) = 0 which gives B(A†Z) = 0. Therefore, Xi
jẆj

is a solution for the linearized Bogmol’nyi equation and similarly for YijẆj.

One more thing to check if Xi
jẆj and Yi

jẆj are also solutions to Gauss’s law (5.22).

By definition

Di(Xi
jẆj) = Di(Mi

j)Ẇj +Mi
jDiẆj +Di(Ni

j)V̇j +Ni
jDiV̇j

= Di(Mi
j)Ẇj +Mi

jD[iẆj] +Di(Ni
j)V̇j +Ni

jD[iV̇j]

= Di(Mi
j)Ẇj +Di(Ni

j)V̇j, (5.43)

where in the last line we used the fact that Mi
j and Ni

j are selfdual (since ⌘ and ⇣ have

negative chirality) and on the other hand D[iẆj] and D[iV̇j] are antiselfdual, hence

Mi
jD[iẆj] and Ni

jD[iV̇j] vanish. We also used that

DiM4j = -
1
l
Nij DiN4j =

1
l
Mij.

Now we have

DiMij =
2
l
N4j DiNij = -

2
l
M4j, (5.44)

hence plugging (5.44) in (5.43) we get

Di(Xi
jẆj) =

2
l
(N4

jẆj -M4
jV̇j). (5.45)
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In order to check if this gives the correct right hand side, we have to check how the

right hand side of the Gauss’s law (5.22) change under the action of the endomorphism

X. The right hand side of the Gauss’s law is given by (2l V̇4), hence its image under the

action of X is (5.40)

X4
j(
2
l
V̇j) =

2
l
(-N4

jẆj +M4
jV̇j), (5.46)

which is not equal to the right hand side of (5.45). This implies that image of X doesn’t

satisfy also the Gauss’s law.

Quite similarly we can check if the image of Y satisfies Gauss’s law. We have,

Di(Yi
jẆj) = -Di(Mi

j)Ẇj +Di(Ni
j)V̇j

= -
2
l
(N4

jẆj +M4
jV̇j),

and the image of the right hand side of Gauss’s law under the action of Y is given by

Y4
j(
2
l
V̇j) = -

2
l
(N4

jẆj +M4
jV̇j). (5.47)

This implies that

Di(Yi
jẆj) =

2
l
(Y4

jV̇j), (5.48)

hence Yi
jẆj is tangent to the moduli space. Therefore Y is a real endomorphism that

maps every zero mode tangent to the moduli space to zero mode tangent to the moduli

space. Let {Ẇi} be the bases of the a subspace of the real tangent space TM1 to the real

moduli space M. The previous result shows that YijẆj (but not Xi
jẆj) is tangent to

the moduli space. Let Y be the of endomorphisms on the real tangent space defined

by

Yi
jẆaj = Ya

bẆbi. (5.49)

Through the previous relation, we easily see that the endomorphism on TM1 inherit

the same characteristics of Y, and gives a 2-sphere of (real) complex structures.

Moreover, if we now take the set of real zero modes {V̇i} to be the bases of another

subspace of the real tangent space TM2. This set of bases satisfy the same linearized
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Bogomol’nyi equation but di�erent gauge background condition. The gauge back-

ground condition for {V̇i} corresponds to a part of the condition we found in [125]

equation (3.9) which the imaginary elements of the zero modes satisfy. In a similar

way to the previous discussion, we find that Xi
jV̇j (but not YijV̇j) satisfy the gauge

background condition of {V̇}. Hence, if we take X to be the set of endomorphisms on

the real tangent space TM2 defined by

Xi
jV̇aj = Xa

bV̇bi, (5.50)

we see that the X will have the same characteristics as those of X, and therefore gives

another set of 2-sphere of complex structures.

5.4 Comparison and remark

In this section we compare the results of the previous section with Bielawski and

Schwachhöfer construction of the pluricomplex geometry. We show that the objects

that appear as a natural consequence of supersymmetry to describe the geometry of

the real moduli space of hyperbolic monopoles are similar to the objects that Bielawski

and Schwachhöfer defined to describe the pluricomplex geometry. Their construction

was actually inspired by studying the geometry of moduli space of hyperbolic mono-

poles. Then we give in a table a dictionary that relates our notations to Bielawski

and Schwachhöfer notations. We finish this section with a remark about the relation

between the real and complex structures on the moduli space of hyperbolic mono-

poles.

5.4.1 Comparison with Bielawski and Schwachhöfer results

In their paper [68] Bielawski and Schwachhöfer describe the geometry of the real mod-

uli space of hyperbolic monopoles, which they call pluricomplex geometry, as a gen-

eralization of the hypercomplex geometry, where we still have a 2-sphere of complex

structures but they no longer behave like unit imaginary quaternions. A sphere in

their description does not mean the standard sphere in the subspace spanned by three
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integrable complex structures, however it means a di�eomorphic image of a 2-sphere

in the space of complex structures, i.e. an embedding of S2 into GL(2n,R)/GL(n,C).

Their construction for the pluricomplex geometry is as follows:

Let V be a 2n-dimensional real vector space, and J(V) ' GL(2n,R)/GL(n,C) be the

space of complex structures on V . The space J(V) is constructed by two holomorphic

maps taking values in CP1-s spaces of complex structures. The first mapK : CP1 ! J(V),

takes every ⇣ 2 CP1 and gives K(V) = J⇣ 2 J(V), and hence forms a subspace of

J(V), V1,0
⇣ . This map motivates a similar one but from di�erent set of CP1 complex

structures defined by � : CP1 ! CP1, such that �(⇣) = ⌘ = ⇣̄-1. Then the holo-

morphic map K̂ : CP1 ! J(V) forms another subspace of J(V), namely, V̂1,0
⇣ = V0,1

⇣̄-1 .

For (⇣,⌘) 2 CP1 ⇥ CP1, the elements of V1,0
⇣ and V0,1

⌘̄-1 don’t satisfy any anticommuta-

tion relations. This lead to constructing a coherent sheaf F on an algebraic curve S in

CP1 ⇥ CP1 described as

S = {(⇣,⌘) 2 CP1 ⇥ CP1;V1,0
⇣ \ V

0,1
⌘̄-1 6= 0},

where S is called the characteristic curve andF the characteristic sheaf on the pluricom-

plex structure.

Our results show that the exact construction of pluricomplex space follows from

studying the geometry of real moduli space of hyperbolic monopoles using supersym-

metry. We have the endomorphismsX and Y act linearly on di�erent sets of zero modes

{Ẇµ} and {V̇µ} respectively, each X and Y give a 2-sphere (CP1) worth of (real) complex

structures {R, T , S} and {O,P,Q}, where we don’t find any anticommutation proper-

ties between the two sets. This allows us to construct two sets of complex structures

{X,Y} on the moduli space which inherit all the characteristics of {X, Y}, which means

that both X and Y give two sets of 2-sphere complex structures but we don’t have any

anti-commutation relations between them. In the following table we give a small dic-

tionary for the terms defined in Bielawski and Schwachhöfer construction and what

they correspond for in our terminology.
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Objects B&S Notation Our Notation

CP1 ⇥ CP1 elements ⇣, ⇣̄-1 X, Y = (XT )-1

Endomorphisms on M J⇣, J⇣̄-1 X,Y

Maps K, K̂ XV̇ = XV̇, YẆ = YẆ

In addition to this picture Bielawski and Schwachhöfer gives another point of view:

An integrable pluricomplex structure on a manifold M can be viewed as an integrable

hypercomplex structure on a complex thickening MC of M, commuting with the tau-

tological complex structure of MC i.e. a pluricomplex geometry of M is biquaternionic

geometry of MC. This picture is also derived in our results by complexifying the mod-

uli space described in this chapter, which means doing the exact calculation done in

chapter three, which lead to a hypercomplex geometry.

5.4.2 Remark on the complex and real geometry

The main equations that determine the geometry of the moduli space of monopoles

are the linearized Bogomol’nyi equation and the gauge background condition. The

gauge background condition is derived when we build the supermultiplet of zero

modes. It is the condition that makes the zero modes orthogonal to the gauge or-

bits. This condition is one of the main players that renders the geometry of hyperbolic

monopoles di�erent than the geometry of Euclidean monopoles, and it is also the main

factor in making the geometry of the complex and real moduli spaces of hyperbolic

monopoles di�erent. Recall that for complex hyperbolic monopoles, the linearized

Bogomol’nyi equation and the gauge background condition are given by

D[µȦ⌫] = -1
2"µ⌫⇢�D

⇢Ȧ� and DµȦµ = -4i�Ȧ4 , (5.51)

where � is equal to 1
2l if we take the upper half space model of hyperbolic space (4.18).

For the Euclidean monopoles the equations have the same form, except for the right

hand side of the gauge background condition which is equal to zero (it is the limit as

l!1). Hence, in the Euclidean case the linearized field equations are real, which im-

ply that weather we take their solutions (zero modes) to be real or complex it doesn’t
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make any di�erence. Therefore, the real and the complex moduli spaces of Euclidean

monopoles have the same geometry (hyperkähler geometry). However, for the case of

hyperbolic monopoles this extra pure complex term directly implies that these equa-

tions can only have complex solutions, i.e. complex coordinates functionals on the

moduli space, and hence the real moduli space must have di�erent geometry. For the

real geometry we started from higher dimensional gauge theory, and after reduction

and linearization we found two sets of real zero modes (Ẇi, V̇i) satisfying the same

linearized Bogomol’nyi equation in (5.51), but di�erent gauge background conditions

given by

DiẆi =
2
l
V̇4 and DiV̇i = -

2
l
Ẇ4 . (5.52)

By relating the bosonic zero modes (Ẇi, V̇i) to fermionic zero modes (5.39) we con-

structed the geometric objects of the real moduli space, and showed that they match

the pluricomplex geometry objects.

Starting from a six dimensional supersymmetric Yang-Mills theory gives inform-

ation about the real coordinates of the moduli space of hyperbolic monopoles, and

hence probe its geometry. However, this approach is just looking at the same prob-

lem from di�erent angle, and that should make our vision and understanding of the

problem better, yet provide the same results. In other words, it should be also possible

to look at the geometry of the complex moduli space when we start from six dimen-

sional supersymmetric Yang-Mills theory. This is actually simple, all we need to do is

to write the zero modes (Ẇi, V̇i) in the form

Ȧi = Ẇi + iV̇i, (5.53)

and then all the equations for the complex fields are obtained by simple algebra. This

note actually confirms our results by deriving same results from di�erent starting

point.

Therefore, supersymmetry via the gauge background condition distinguishes between

the 2-sphere complex structures that can be linearly made to satisfy the quaternionic

relations and those that cannot. Moreover, supersymmetry in di�erent dimensions al-
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lows us to explore the real and the complex moduli spaces of hyperbolic monopoles,

and confirm the results of one of them by using the results of the other.

5.5 Limiting case “hyperkähler geometry”

Every new term introduced in the process of promoting our theory from flat space

to hyperbolic space is inversely proportional to the radius of curvature. This feature

makes studying the limiting scheme very easy and the results very transparent.

First, by setting the radius of curvature to infinity, that is l!1 , the Killing spinors

equations defined in (5.19, 5.20) agree

l!1) ri⇣ = ri⌘ = 0.

This implies that

M↵�i
j = 2i⇣†↵⇧i

j⇣�, N↵�i
j = 0,

Hence

X↵� = Y↵� =

0

B@
M↵� 0

0 M↵�

1

CA , (5.54)

Therefore we have now one set of 3 complex structures

F(1) = X11, F(2) =
1
2
(X12 + X21), F(3) =

1
2i

(X12 - X21), (5.55)

which are integrable and satisfy the quaternionic algebra (5.34, 5.35). Using these

complex structures we define complex structures on the moduli space with same prop-

erties via (5.49).

Moreover, the new factors in Dirac equation and Gauss’s law that appeared due

to writing them on hyperbolic space are, also, inversely proportional to l, hence these

equations along with the linearized Bogomol’nyi equation coincide with their form
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on flat space when l!1

D[iẆj] = -
1
2
"ijmnD

mẆn, DiẆi = 0, /D ̇ = 0, (5.56)

and they are satisfied by the zero modes ansatz defined by (5.17, 5.18). Therefore the

zero modes Ẇi and  ̇ are coordinate functionals on the moduli space and will be used

to linearize the action. For that sake we introduce the bosonic qa(t) and fermionic

⇢a(t) collective coordinates of the moduli space, for a = 1, . . . , 4n, where t is a para-

meter introduced, such that the evolution of the monopoles in t values can be viewed

as that of a fictitious particle moving in a configuration space, the space of minimum

energy.

We first expand the bosonic zero mode Ẇi = Ẇaiq
a as a linear combination of the

basis Ẇai and similarly for the fermionic zero mode  ̇ =  ̇a⇢
a. Then, we expand the

supersymmetric Yang-Mills-Higgs action in terms of the collective coordinates {qa, ⇢a}

and we keep only the non trivial order. Since we are only interested, in this section, in

the geometry we will just focus on the bosonic part of the Lagrangian (4.15) given by

L = -
1
2
GijG

ij - kDi�k2 -DiA+D
iA- - [�,A+][�,A-]-

1
4
[A+,A-]

2 +
4
`2
A+A-,

and in the limit where `!1 is given by

L = -
1
2
GijG

ij - kDi�k2 -DiA+D
iA- - [�,A+][�,A-]-

1
4
[A+,A-]

2, (5.57)

which as expected coincide with the bosonic part of the Lagrangian we found on Eu-

clidean space (4.11). Now, apply the supersymmetric constraints (5.1) to the lagrange

density and then we expand around the supersymmetric Bogomol’nyi solution. After

applying the constraints the lagrange density will simply read asL = -1
2GijG

ij - kDi�k2,

which constitutes only the potential energy part of the action,

P =

Z
1
2

��Gij

��+ kDi�k2 dx3.

The geodesic motion comes from the kinetic part. In the spirit of the argument used
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in [127, 128], for a given path (Wi(t),�(t)) in the moduli space, the kinetic energy can

be defined as

T =

Z
kG0ik+ kD0�k2 dx3,

and in this case the Lagrange function is then given by L = T - P, and the action is

given by
R
Ldt.

The potential energy will give the charge number. For the kinetic energy, we expand

the arbitrary t-dependent fields, where t-dependance is via the collective coordinates,

hence

T =

Z

R3
kG0ik2 + kD0�k2 = 2

Z

R3

��G0i
��2

= 2
Z

R3

���@0Wi
-
- @i

-
W0 - [Wi

-
,W0]

���
2
= 2

Z

R3

���@aWi
-
q̇a -Di

-
W0

���
2
,

where q̇ = dq
dt . Note that @aWi doesn’t satisfy in general the gauge background condi-

tion, hence we decompose it into a component tangent to the moduli space, Ẇai, and

another perpendicular, Di!a (!a are gauge parameters), then

T = 2
Z

R3

���(Ẇai
-
+Di

-
!a)q̇

a -Di
-
W0

���
2

= 2
Z

R3
[Ẇai

-
Ẇbi

-
q̇aq̇b +

���Di
-
(!aq̇

a -W0)
���
2
],

where we dropped any multiplication between Ẇai and Di
-
!a using the gauge back-

ground condition. If we now work with gauge s.t. !aq̇
a = W0 and substitute the

kinetic energy in the action we get

L =
1
2
gabq̇

aq̇b - k,

where k is the charge number and gab = 1
4

R
ẆaiẆbidx

3. And finally, the Levi-Civita

connection is given by

�abc =
1
2
{@agbc + @bgac - @cgab}.
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Using the definition of the metric gbc we have

@agbc =
1
4

Z

R3
(@aẆbiẆci + Ẇbi@aẆci).

First note that
R

R3 @aẆbiẆci =
R

R3 @bẆaiẆci. This can be simply seen by noticing

that

Z

R3
@aẆbiẆci =

Z

R3
@a(@bWi -Di!b)Ẇci (5.58)

which follows from having DiẆi = 0. Similarly we have

Z

R3
@bẆciẆai =

Z

R3
@cẆbiẆai and

Z

R3
@aẆciẆbi =

Z

R3
@cẆaiẆbi. (5.59)

Using (5.58, 5.59) in the connection equation we find that

�abc =
1
4

Z

R3
@aẆbiẆci. (5.60)

The complex structures (5.55) obtained after we took the limit are integrable, they sat-

isfy the quaternionic algebra and map zero modes to zero modes (i.e. ~Fi
jẆj satisfy

the linearized Bogomol’nyi equation and the gauge background condition). These

properties are inherited from ~X and remain intact after taking the limit. Since ~Fi
jẆj

is tangent to the moduli space, one can define endomorphisms ~T on the tangent space

by ~Fi
jẆaj = ~Ta

bẆbi. These endomorphisms via their definition are actually integ-

rable complex structures on the moduli space, and they satisfy the quaternionic al-

gebra. One can also show that these complex structures are parallel with respect to

the connection (5.60) (see e.g. [79] or [87]). So the limiting case has given us a metric,

connection and integrable complex structures that satisfy the quaternionic algebra and

preserved by the Levi-Civita connection, whence produced the hyperkähler geometry.
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Chapter 6

Conclusion and Outlook

In this thesis, an old question of Atiyah about the nature of the geometry of the mod-

uli space of hyperbolic monopoles is answered. Unlike the previous approaches to

this problem, which used twistor construction, we use supersymmetry to solve it. We

found that the geometry of the complex moduli space of hyperbolic monopoles is

hypercomplex and the geometry of the real moduli space is pluricomplex geometry.

Pluricomplex geometry is a generalization of the hypercomplex geometry where the

complex structures define a di�eomorphic image of the standard 2-sphere, an embed-

ding of the S2 into GL(2n,R)/GL(n,C), and they don’t admit any anticommutation

relations. Moreover, we showed that we have a one-to-one correspondence between

the number of solutions of Bogomol’nyi equation and the number of solutions of Dirac

equation in the presence of hyperbolic monopoles. The feature that makes using su-

persymmetry a favorable approach to solve for the geometry of a supersymmetric con-

figurations is that by deriving the supersymmetry transformations we are indirectly

finding the solutions of the equations of motion on the tangent space of the config-

uration space and hence rendering our job of studying these solutions and extract-

ing information about the complex structures, connections or other geometric objects

much easier. In other words, the supersymmetry transformations furnish a complete

scheme which we can use to read information about the geometry of the configura-

tion space, which again confirms the importance of supersymmetry as a mathematical

machinery to relate the equation of motion of objects of di�erent nature and hence re-
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vealing hidden information about their configuration space.

The procedure used in this thesis raises few interesting questions that worth in-

vestigating:

First, in this thesis two new supersymmetric Yang-Mills-Higgs Lagrangian on H3

are derived using the method of deforming the supersymmetric theory on a flat space

by new terms that depend on the radius of curvature. It would be really interest-

ing, however, to derive these Lagrangians using the method of Festuccia and Seiberg

[99]. This method has been employed, so far, to derive supersymmetric field theories

on compact backgrounds due to interests in the localization techniques to compute

new observables. The first step in recovering our Lagrangians using this new method

would be finding a four dimensional supergravity theory with Yang-Mills fields where

the metric H3 ⇥ R or H3 ⇥ S1 form one of the solutions of the gravity field.

Second, in tackling the complex moduli space of hyperbolic monopoles we started

from a supersymmetric Yang-Mills on Euclidean space, however we studied the real

moduli space by starting from a supersymmetric Yang-Mills on Minkowskian space.

This arises an interesting question, if it is always the case that euclideanising a super-

symmetric theory will pave the way to study the complex configuration space, and

hence if we are interested in studying the complex thickening of a configuration space

using supersymmetry we should first euclideanise the supersymmetric mother the-

ory.

Third, Manton formulated in [57] the gauge theory dynamics by arguing that slowly

moving monopoles flow geodesics in the moduli space. Manton argument applies

for gauge theories where the true configuration space is Riemannian. However, what

happens for a case with target manifold being non-Riemannian, like for the case of the

dynamics of hyperbolic monopoles ? We guess that a generalized argument should be

established that governs the dynamics of all kind of monopoles, where, also, the nat-

ural action for a path on the moduli space defined in [129] should also be generalized.

If this generalization is established we expect that the Hitchen set of metrics for the

moduli space of two centered hyperbolic monopoles [66] can be recovered. It is worth

mentioning that recently a promising attempt has been established by Paul Sutcli�e
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at al. [62] to derive the metric of the moduli space of hyperbolic monopoles using the

fact that hyperbolic monopole is uniquely defined by the abelian magnetic field on the

boundary of hyperbolic space. In their paper, an integral form for the metric has been

given, and the metric of the moduli space of single hyperbolic monopole, namely H3,

has been derived.

Fourth, unlike monopoles on flat space, Skyrmions don’t satisfy the linear energy

bound, also known as Faddeev-Bogmol’nyi lower bound [82], for non-trivial value of

the field, which cuts the hope of deriving a supersymmetric extension to the Skyrme

action [130, 131] on flat space. However, Manton and Ruback showed in [83] that the

saturation can be made possible with non trivial values of the field if we promote the

bosonic Skyrme action to S3. The saturation of the bound in addition to its linear-

ity imply the existence of a supersymmetric extension for the Skyrme action on S3.

The crucial point here is that from our experience with supersymmetric monopole

on H3 we know how the supersymmetry variation of the fermions looks, namely the

Faddeev-Bogomol’nyi equation, and hence building on that it shouldn’t be di�cult to

use Noether method and guess the fermionic content of the action.
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Chapter 7

Appendix

7.1 The Frölicher–Nijenhuis bracket of endomorphisms

The Frölicher–Nijenhuis bracket defines graded Lie superalgebra structure on the space

⌦•(M; TM) of vector-valued di�erential forms on a manifold M. For a modern treat-

ment see [132, Chapter 8]. This bracket extends the Lie bracket of vector fields, thought

of as elements of ⌦0(M; TM). Endomorphisms of TM can be thought of as elements

of ⌦1(M; TM) and the Frölicher–Nijenhuis bracket defines a symmetric bilinear map

[-,-] : ⌦1(M; TM) ⇥⌦1(M; TM) ! ⌦2(M; TM). Paragraph 8.12 in [132] gives an ex-

plicit expression of the Frölicher–Nijenhuis bracket [K,L] of two endomorphisms K,L

in terms of the Lie bracket of vector fields: namely,

[K,L](X, Y) = [KX,LY]- [KY,LX]- L[KX, Y] + L[KY,X]

- K[LX, Y] + K[LY,X] + (LK+ KL)[X, Y] . (7.1)

Applying this to X = @a and Y = @b, we find

[K,L](@a,@b) = [Ka
c@c,Lb

d@d]- [Kb
c@c,La

d@d]- L[Ka
c@c,@b]

+ L[Kb
c@c,@a]- K[La

c@c,@b] + K[Lb
c@c,@a]

=
�
Ka

c@cLb
d - Lb

c@cKa
d - Kb

c@cLa
d + La

c@cKb
d

+ @bKa
cLc

d - @aKb
cLc

d + @bLa
cKc

d - @aLb
cKc

d
�
@d .

(7.2)
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It is perhaps easier to remember the case K = L:

1
2 [K,K](X, Y) = [KX,KY]- K[KX, Y] + K[KY,X] + K2[X, Y] , (7.3)

from which we can recover the general case by the standard polarisation trick. Apply-

ing this to X = @a and Y = @b, we find

1
2 [K,K](@a,@b) = [Ka

c@c,Kb
d@d]- K[Ka

c@c,@b] + K[Kb
c@c,@a]

=
�
Ka

c@cKb
d - Kb

c@cKa
d - @bKa

cKc
d + @aKb

cKc
d
�
@d .

(7.4)

If r is a torsion-free connection on the tangent bundle, we may write the Lie

bracket of vector fields as

[X, Y] = rXY -rYX , (7.5)

whence a small calculation yields the following equation for the Frölicher–Nijenhuis

bracket [K,K]:

1
2 [K,K](X, Y) = (rKXK)Y - (rKYK)X+ K(rYK)X- K(rXK)Y . (7.6)

For endomorphisms which obey equation (3.70), that is,

(rXK)Y = (rYK)X, (7.7)

the Frölicher–Nijenhuis bracket [K,K] is given by

1
2 [K,K](X, Y) = (rKXK)Y - (rKYK)X , (7.8)

which polarises to

[K,L](X, Y) = (rKXL)Y - (rKYL)X+ (rLXK)Y - (rLYK)X . (7.9)
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Applying this to X = @a and Y = @b, we see that

[K,L](@a,@b) =
�
Kc

arcL
d
b - Kc

brcL
d
a + LcarcK

d
b - LcbrcK

d
a

�
@d , (7.10)

which agrees for K = Ei and L = Ej with equation (3.65).

7.2 Obata Connection

In this section of the appendix we prove the existence of the Obata connection
o

r on the

complex space of hyperbolic monopoles, studied in chapter 3, by explicitly deriving

the following formula for its Christo�el symbols:

o

�ab
c = -1

6

h
2@(a~Eb)

d + ~E(a
e ⇥ @e~Eb)

d
i
· ~Ed

c, (7.11)

where ~E = (E1,E2,E3) = (I, J,K) represents the three complex structures on TCM.

The equation for the hypercomplex space connection was first derived by Morio Obata

[133]. Recall that the complex structures satisfy the quaternion algebra:

EAEB = -�AB + ✏ABCEC . (7.12)

The Obata connection is defined to be the unique torsion-free connection for which
o

r~E = 0. We will drop the superscript “o” on the connection and the Christo�el sym-

bols in what follows.

To begin with, since I, J,K are parallel, we obtain

@aIb
c + �caeI

e
b - �eabI

c
e = 0, (7.13)

@aJb
c + �caeJ

e
b - �eabJ

c
e = 0, (7.14)

@aKb
c + �caeK

e
b - �eabK

c
e = 0. (7.15)

Multiplying (7.13), (7.14) and (7.15) with Idc, Jdc and Kd
c , respectively, we get

�dab + Idc@aIb
c + Idc�

c
aeI

e
b = 0, (7.16)
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�dab + Jdc@aJb
c + Jdc�

c
aeJ

e
b = 0, (7.17)

�dab +Kd
c@aKb

c +Kd
c�

c
aeK

e
b = 0. (7.18)

Swap a with b and use the fact that the connection is torsion free (�dab = �dba), we get

�dab = -Idc@(aIb)
c - Idc�

c
(a|e|I

e
b), (7.19)

�dab = -Jdc@(aJb)
c - Jdc�

c
(a|e|J

e
b), (7.20)

�dab = -Kd
c@(aKb)

c -Kd
c�

c
(a|e|K

e
b), (7.21)

or

2�dab + Idc@aIb
c + Idc@bIa

c = -�caeI
e
bI

d
c - �cbeI

e
aI

d
c, (7.22)

2�dab + Jdc@aJb
c + Jdc@bJa

c = -�caeJ
e
bJ

d
c - �cbeJ

e
aJ

d
c, (7.23)

2�dab +Kd
c@aKb

c +Kd
c@bKa

c = -�caeK
e
bK

d
c - �cbeK

e
aK

d
c. (7.24)

Equations (7.22), (7.23), and (7.24) form the first set of equations that will be later used

in computing the unique connection. To get the other set of equations, we will start,

now, with raIb
c = 0 alone, and with some computations we will get two equations.

Then, similar calculations will be done for raJb
c = 0 and raKb

c = 0, to obtain four

other equations, which form a set of six equations along with the two equations we

obtained from raIb
c = 0. To be explicit, consider

@aIb
c + �caeI

e
b - �eabI

c
e = 0, (7.25)

multiplying this equation with Jdc first, we get

Jdc@aIb
c + �caeJ

d
cI

e
b + �eabK

d
e = 0, (7.26)

multiplying this result with Ka
f, we get

Jdc@aIb
cKa

f + �
c
aeJ

d
cI

e
bK

a
f + �

e
abK

d
eK

a
f = 0, (7.27)
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swapping b with f, we get

Jdc@aIf
cKa

b + �caeJ
d
cI

e
fK

a
b + �eafK

d
eK

a
b = 0, (7.28)

adding the last two equations, gives

Jdc@aIb
cKa

f + Jdc@aIf
cKa

b + �caeJ
d
cI

e
bK

a
f

+ �caeJ
d
cI

e
fK

a
b + �eabK

d
eK

a
f + �

e
afK

d
eK

a
b = 0 . (7.29)

Starting again from the same equation raIb
c = 0, but now we multiply it first with

Kd
c, and then we multiply the result with Jaf as follows:

@aIb
c + �caeI

e
b - �eabI

c
e = 0, (7.30)

Kd
c@aIb

c + �caeK
d
cI

e
b - �eabJ

d
e = 0, (7.31)

Kd
c@aIb

cJaf + �
c
aeK

d
cI

e
bJ

a
f - �

e
abJ

d
eJ

a
f = 0, (7.32)

swapping b with f,we get

Kd
c@aIf

cJab + �caeK
d
cI

e
fJ

a
b - �eafJ

d
eJ

a
b = 0, (7.33)

adding the last two equations, gives

Kd
c@aIb

cJaf +Kd
c@aIf

cJab + �caeK
d
cI

e
bJ

a
f

+ �caeK
d
cI

e
fJ

a
b - �eabJ

d
eJ

a
f - �

e
afJ

d
eJ

a
b = 0. (7.34)

We are going to do computations similar to that done for raIb
c = 0, but starting

now from raJb
c = 0, and the two equations we obtain that are analogous to equa-

tions (7.29) and (7.34) are :

Kd
c@aJb

cIaf +Kd
c@aJf

cIab + �caeK
d
cJ

e
bI

a
f

+ �caeK
d
cJ

e
fI

a
b + �eabI

d
eI

a
f + �

e
afI

d
eI

a
b = 0, (7.35)
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and

Idc@aJb
cKa

f + Idc@aJf
cKa

b + �caeI
d
cJ

e
bK

a
f

+ �caeI
d
cJ

e
fK

a
b - �eabK

d
eK

a
f - �eafK

d
eK

a
b = 0. (7.36)

Similarly from raKb
c = 0, we obtain the following two equations:

Idc@aKb
cJaf + Idc@aKf

cJab + �caeI
d
cK

e
bJ

a
f

+ �caeI
d
cK

e
fJ

a
b + �eabJ

d
eJ

a
f + �

e
afJ

d
eJ

a
b = 0, (7.37)

and

Jd@aKb
cIaf + Jd@aKf

cIab + �caeJ
d
cK

e
bI

a
f

+ �caeJ
d
cK

e
fI

a
b - �eabI

d
eI

a
f - �

e
afI

d
eI

a
b = 0. (7.38)

The six equations (7.29), (7.34), (7.35), (7.36), (7.37) and (7.38), will be combined to give

a new set of new equations in which, later, we will substitute (7.22), (7.23) and (7.24),

and then will be added to give the Obata connection. Subtracting (7.36) from (7.37)

gives

Idc@aKb
cJaf + Idc@aK

c
fJ

a
b + �caeI

d
cK

e
bJ

a
f + �

c
aeI

d
cK

e
fJ

a
b

+�eabJ
d
eJ

a
f + �

e
afJ

d
eJ

a
b - Idc@aJb

cKa
f - Idc@aJ

c
fK

a
b

-�caeI
d
cJ

e
bK

a
f - �caeI

d
cJ

e
bK

a
f + �eabK

d
eK

a
f + �eafK

d
eK

a
b = 0, (7.39)

and relabeling indices as follows

�caeI
d
cJ

e
bK

a
f = �ceaI

d
cJ

a
bK

e
f = �caeI

d
cJ

a
bK

e
f (7.40)

�caeI
d
cJ

e
bK

a
f = �ceaI

d
cJ

a
bK

e
f = �caeI

d
cJ

a
bK

e
f, (7.41)
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equation (7.39) becomes

Idc@aKb
cJaf + Idc@aKf

cJab - Idc@aJb
cKa

f - Idc@aJf
cKa

b

+�eabJ
d
eJ

a
f + �

e
afJ

d
eJ

a
b + �eabK

d
eK

a
f + �eafK

d
eK

a
b = 0. (7.42)

Substituting (7.23) and (7.24) into (7.42), we get

Idc@aKb
cJaf + Idc@aK

c
fJ

a
b - Idc@aJb

cKa
f - Idc@aJ

c
fK

a
b (7.43)

= 4�dbf + Jdc@fJb
c + Jdc@bJf

c +Kd
c@fKb

c +Kd
c@bKf

c (7.44)

or

4�dbf = -Jdc@fJb
c - Jdc@bJf

c -Kd
c@fKb

c -Kd
c@bKf

c

+Idc@aKb
cJaf + Idc@aK

c
fJ

a
b - Idc@aJb

cKa
f - Idc@aJ

c
fK

a
b. (7.45)

Second, subtracting (7.34) from (7.35) gives

Kd
c@aJb

cIaf +Kd
c@aJf

cIab + �eabI
d
eI

a
f + �

e
afI

d
eI

a
b

-Kd
c@aIb

cJaf -Kd
c@aIf

cJab + �eabJ
d
eJ

a
f + �

e
afJ

d
eJ

a
b = 0, (7.46)

and substituting (7.22) and (7.23) in (7.46), we get

4�dfb = -Idc@fIb
c - Idc@bIf

c - Jdc@fJb
c - Jdc@bJf

c

+Kd
c@aJb

cIaf +Kd
c@aJf

cIab -Kd
c@aIb

cJaf -Kd
c@aIf

cJab. (7.47)

Now, subtracting (7.38) from (7.29) gives

Jdc@aIb
cKa

f + Jdc@aIf
cKa

b - Jd@aKb
cIaf - Jd@aKf

cIab

+�eabK
d
eK

a
f + �

e
afK

d
eK

a
b + �eabI

d
eI

a
f + �

e
afI

d
eI

a
b = 0, (7.48)
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and substituting (7.22) and (7.24) into (7.48), we get

4�dbf = -Idc@fIb
c - Idc@bIf

c -Kd
c@fKb

c -Kd
c@bKf

+Jdc@aIb
cKa

f + Jdc@aIf
cKa

b - Jd@aKb
cIaf - Jd@aKf

cIab (7.49)

Finally, adding (7.45), (7.47) and (7.49) yields the formula (7.11) for the Obata connec-

tion.

7.3 Reduction of the supersymmetry transformations

Using the definitions defined in section (4.3.2) the supersymmetry transformations

(4.4, 4.5) is reduced, in this section, from R(5,1) to R3.

Starting, first, with the variation of the bosonic fields

�Wi = "̄�i -  ̄�i",

we have

"̄ =

✓
0 1

◆
⌦ "†1 ⌦

✓
0 -i

◆
+

✓
-1 0

◆
⌦ "†2 ⌦

✓
0 -i

◆

� i =

0

B@
1

0

1

CA⌦ �i 1 ⌦

0

B@
0

1

1

CA+

0

B@
0

1

1

CA⌦ �i 2 ⌦

0

B@
0

1

1

CA ,

hence

"̄� i = -i"†1�i 2 + i"†2�i 1.

similarly

 ̄�i" = -i †
1�i"2 + i †

2�i"1,

Therefore

�Wi = -i"†1�i 2 + i"†2�i 1 + i †
1�i"2 - i †

2�i"1.
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The variation of the zero component of the scalar field gives

��0 = "̄�0 -  ̄�0"

=  †"- "† 

= {

✓
1 0

◆
⌦ †

1 ⌦
✓
1 0

◆
+

✓
0 1

◆
⌦ †

2 ⌦
✓
1 0

◆
}.{

0

B@
1

0

1

CA⌦ "1 ⌦

0

B@
1

0

1

CA+

0

B@
0

1

1

CA⌦ "2 ⌦

0

B@
1

0

1

CA}

- {

✓
1 0

◆
⌦ "†1 ⌦

✓
1 0

◆
+

✓
0 1

◆
⌦ "†2 ⌦

✓
1 0

◆
}.{

0

B@
1

0

1

CA⌦ 1 ⌦

0

B@
1

0

1

CA+

0

B@
0

1

1

CA⌦ 2 ⌦

0

B@
1

0

1

CA}

=  †
1"1 + 

†
2"2 - "

†
1 1 - "

†
2 2.

The variation of the fourth component of the gauge field is given by

��4 = "̄�4 -  ̄�4".

We have

"̄�4 = {

✓
0 1

◆
⌦ "†1 ⌦

✓
0 -i

◆
+

✓
-1 0

◆
⌦ "†2 ⌦

✓
0 -i

◆
}.{�1 ⌦ I2 ⌦ �2}

=

✓
1 0

◆
⌦ "†1 ⌦

✓
1 0

◆
+

✓
0 -1

◆
⌦ "†2 ⌦

✓
1 0

◆
,

then

"̄�4 = {

✓
1 0

◆
⌦ "†1 ⌦

✓
1 0

◆
+

✓
0 -1

◆
⌦ "†2 ⌦

✓
1 0

◆
}.{

0

B@
1

0

1

CA⌦ 1 ⌦

0

B@
1

0

1

CA+

0

B@
0

1

1

CA⌦ 2 ⌦

0

B@
1

0

1

CA}

= "†1 1 - "
†
2 2.

Similarly

 ̄�4" =  †
1"1 - 

†
2"2,

therefore

��4 = "̄�4 -  ̄�4"

= "†1 1 - "
†
2 2 - 

†
1"1 + 

†
2"2.
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The last component of the bosonic fields ��5, we have

��5 = "̄�5 -  ̄�5",

We have

�5 = {�3 ⌦ I2 ⌦ �2}.{

0

B@
1

0

1

CA⌦ 1 ⌦

0

B@
1

0

1

CA+

0

B@
0

1

1

CA⌦ 2 ⌦

0

B@
1

0

1

CA}
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0
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1

0
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1

CA ,

then

"̄�5 = {

✓
0 1

◆
⌦ "†1 ⌦

✓
0 -i

◆
+

✓
-1 0

◆
⌦ "†2 ⌦

✓
0 -i

◆
}{

0

B@
1

0

1

CA⌦ 1 ⌦

0

B@
0

i

1

CA+

0

B@
0

-1

1

CA⌦ 2 ⌦

0

B@
0

i

1

CA}

= -"†1 2 - "
†
2 1.

Similarly

 ̄�5" = - †
1"2 - 

†
2"1,

therefore

��5 = -"†1 2 - "
†
2 1 + 

†
1"2 + 

†
2"1.

The final piece is the reduction of the fermionic field variation, in six dimensional

terms we have

� = �AB"GAB. (7.50)

We’ll start with the first term,

�AB"GAB = �µ⌫"Gµ⌫ + � ij"Gij + 2�µi"Gµi, (7.51)

which requires finding the spin generators

� ij = I2 ⌦ �ij ⌦ I2,
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�µ⌫ = �̄µ⌫ ⌦ I2 ⌦ I2,

� iµ = � i�µ = �̄µ ⌦ �i ⌦ i�3.

The first part of equation (7.51) gives

� ij"Gij = {I2 ⌦ �ij ⌦ I2}.{
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. (7.52)

The second part of equation (7.51) gives

�µ⌫"Gµ⌫ = {�̄µ⌫ ⌦ I2 ⌦ I2}.{

0

B@
1

0

1

CA⌦ "1 ⌦

0

B@
1

0

1

CA+

0

B@
0

1

1

CA⌦ "2 ⌦

0

B@
1

0

1

CA}Gµ⌫

= {�̄µ⌫

0

B@
1

0

1

CA⌦ "1 ⌦

0

B@
1

0

1

CA+ �̄µ⌫

0

B@
0

1

1

CA⌦ "2 ⌦

0

B@
1

0

1

CA}Gµ⌫

We have

�̄04 = �3, �̄05 = -�1, �̄45 = -i�2,

127



then

�µ⌫"Gµ⌫ = 2{
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As for the last term in equation (7.51) , we get

� iµ"Giµ = {�̄µ ⌦ �i ⌦ i�3}{
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The components of equation (7.53) are as follows

� i0"Gi0 = {
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.
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Also we have

� i4"Gi4 = {
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and similarly
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Therefore
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Inserting equations (7.52, 7.53, 7.54) in (7.50) , we get

� 1 = �µ⌫Gµ⌫"1 + 2{-"1[�0,�4]- "2[�4 - �0,�5]}

+ 2i�µ{"2Dµ(�4 - �0) + "1Dµ�5},

� 2 = �µ⌫Gµ⌫"2 + 2{"2[�0,�4] + "1[�4 + �0,�5]}

+ 2i�µ{"1Dµ(�4 + �0)- "2Dµ�5}.

130



Bibliography

[1] ATLAS Collaboration Collaboration, G. Aad et al., “Observation of a new

particle in the search for the Standard Model Higgs boson with the ATLAS

detector at the LHC,” Phys.Lett. B716 (2012) 1–29, arXiv:1207.7214 [hep-ex].

[2] CMS Collaboration Collaboration, S. Chatrchyan et al., “Observation of a new

boson at a mass of 125 GeV with the CMS experiment at the LHC,” Phys.Lett.

B716 (2012) 30–61, arXiv:1207.7235 [hep-ex].

[3] P. A. Dirac, “Quantized singularities in the electromagnetic field,”

Proc.Roy.Soc.Lond. A133 (1931) 60–72.

[4] G. ’t Hooft, “Magnetic monopoles in unified gauge theories,” Nucl.Phys. B79

(1974) 276–284.

[5] A. M. Polyakov, “Particle spectrum in the Quantum Field Theory,” JETP Lett.

20 (1974) 194–195.

[6] P. W. Higgs, “Broken symmetries, massless particles and gauge fields,”

Phys.Lett. 12 (1964) 132–133.

[7] P. W. Higgs, “Broken symmetries and the masses of gauge bosons,”

Phys.Rev.Lett. 13 (1964) 508–509.

[8] P. W. Higgs, “Spontaneous symmetry breakdown without massless bosons,”

Phys.Rev. 145 (1966) 1156–1163.

[9] F. Englert and R. Brout, “Broken symmetry and the mass of gauge vector

mesons,” Phys.Rev.Lett. 13 (1964) 321–323.

131

http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
http://dx.doi.org/10.1098/rspa.1931.0130
http://dx.doi.org/10.1016/0550-3213(74)90486-6
http://dx.doi.org/10.1016/0550-3213(74)90486-6
http://dx.doi.org/10.1016/0031-9163(64)91136-9
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRev.145.1156
http://dx.doi.org/10.1103/PhysRevLett.13.321


[10] G. Guralnik, C. Hagen, and T. Kibble, “Global conservation laws and massless

particles,” Phys.Rev.Lett. 13 (1964) 585–587.

[11] C.-N. Yang and R. L. Mills, “Conservation of isotopic spin and isotopic gauge

invariance,” Phys.Rev. 96 (1954) 191–195.

[12] E. Corrigan, D. I. Olive, D. Fairlie, and J. Nuyts, “Magnetic monopoles in SU(3)

gauge theories,” Nucl.Phys. B106 (1976) 475.

[13] N. Manton, “The force between ’t Hooft-Polyakov monopoles,” Nucl.Phys. B126

(1977) 525.

[14] G. Derrick, “Comments on nonlinear wave equations as models for elementary

particles,” J.Math.Phys. 5 (1964) 1252–1254.

[15] K. Brading and E. Castellani, “Symmetries in physics: philosophical

reflections,” arXiv:quant-ph/0301097 [quant-ph].

[16] J. Earman, “Laws, symmetry, and symmetry breaking: invariance,

conservation principles, and objectivity,” Philosophy of Science 71 no. 5, (2004)

1227–1241.

[17] C. Smeenk, “The elusive Higgs mechanism,” Philosophy of Science 73 no. 5,

(2006) 487–499.

[18] H. Lyre, “Does the Higgs mechanism exist?,” Int.Stud.Phil.Sci. 22 (2008)

119–133, arXiv:0806.1359 [physics.gen-ph].

[19] A. Wüthrich, “Eating Goldstone bosons in a phase transition: a critical review

of lyre’s analysis of the higgs mechanism,” Journal for General Philosophy of

Science 43 no. 2, (2012) 281–287.

[20] H. Lyre, “The just-so Higgs story: a response to adrian wüthrich,” Journal for

General Philosophy of Science 43 no. 2, (2012) 289–294.

[21] P. Kosso, “The epistemology of spontaneously broken symmetries,” Synthese

122 no. 3, (2000) 359–376.

132

http://dx.doi.org/10.1103/PhysRevLett.13.585
http://dx.doi.org/10.1103/PhysRev.96.191
http://dx.doi.org/10.1016/0550-3213(77)90294-2
http://dx.doi.org/10.1016/0550-3213(77)90294-2
http://dx.doi.org/10.1063/1.1704233
http://arxiv.org/abs/quant-ph/0301097
http://dx.doi.org/10.1080/02698590802496664
http://dx.doi.org/10.1080/02698590802496664
http://arxiv.org/abs/0806.1359


[22] G. ’t Hooft, ed., 50 years of Yang-Mills theory. World Scientific Publishing Co.

Pte. Ltd., Hackensack, NJ, 2005. http://dx.doi.org/10.1142/9789812567147.

[23] E. Witten, “From superconductors and four-manifolds to weak interactions,”

Bulletin of the AMS 44 (2007) 361–391.

[24] T. Kibble, “Symmetry breaking in non-Abelian gauge theories,” Phys.Rev. 155

(1967) 1554–1561.

[25] V. Rubakov, Classical theory of gauge fields. Princeton University Press, Princeton,

NJ, 2002. Translated from the 1999 Russian original by Stephen S. Wilson.

[26] L. Faddeev, “An alternative interpretation of the Weinberg-Salam model,”

arXiv:0811.3311 [hep-th].

[27] M. Chernodub, L. Faddeev, and A. J. Niemi, “Non-Abelian supercurrents and

electroweak theory,” JHEP 0812 (2008) 014, arXiv:0804.1544 [hep-th].

[28] T. Masson and J.-C. Wallet, “A remark on the spontaneous symmetry breaking

mechanism in the Standard Model,” arXiv:1001.1176 [hep-th].

[29] W. Struyve, “Gauge invariant accounts of the Higgs mechanism,”

Stud.Hist.Philos.Mod.Phys. 42 (2011) 226–236, arXiv:1102.0468

[physics.hist-ph].

[30] A. H. Guth, “The inflationary Universe: a possible solution to the horizon and

flatness problems,” Phys.Rev. D23 (1981) 347–356.

[31] A. D. Linde, “A new inflationary Universe scenario: a possible solution of the

horizon, flatness, homogeneity, isotropy and primordial monopole problems,”

Phys.Lett. B108 (1982) 389–393.

[32] A. Albrecht and P. J. Steinhardt, “Cosmology for Grand Unified Theories with

radiatively induced symmetry breaking,” Phys.Rev.Lett. 48 (1982) 1220–1223.

[33] A. D. Linde, “Chaotic inflation,” Phys.Lett. B129 (1983) 177–181.

133

http://dx.doi.org/10.1142/9789812567147
http://dx.doi.org/10.1142/9789812567147
http://dx.doi.org/10.1103/PhysRev.155.1554
http://dx.doi.org/10.1103/PhysRev.155.1554
http://arxiv.org/abs/0811.3311
http://dx.doi.org/10.1088/1126-6708/2008/12/014
http://arxiv.org/abs/0804.1544
http://arxiv.org/abs/1001.1176
http://dx.doi.org/10.1016/j.shpsb.2011.06.003
http://arxiv.org/abs/1102.0468
http://arxiv.org/abs/1102.0468
http://dx.doi.org/10.1103/PhysRevD.23.347
http://dx.doi.org/10.1016/0370-2693(82)91219-9
http://dx.doi.org/10.1103/PhysRevLett.48.1220
http://dx.doi.org/10.1016/0370-2693(83)90837-7


[34] A. H. Guth, ed., The inflationary Universe. The quest for a new theory of cosmic

origins. 1997.

[35] Y. Zeldovich and M. Y. Khlopov, “On the concentration of relic magnetic

monopoles in the Universe,” Phys.Lett. B79 (1978) 239–241.

[36] G. F. Smoot et al., “Structure in the COBE di�erential microwave radiometer

first-year maps,” 396 (Sept., 1992) L1–L5.

[37] Planck Collaboration, P. Ade et al., “Planck 2013 results. XVI. Cosmological

parameters,” Astron.Astrophys. 571 (2014) A16, arXiv:1303.5076

[astro-ph.CO].

[38] D. Baumann, “TASI lectures on inflation,” arXiv:0907.5424 [hep-th].

[39] G. Hinshaw et al., “Nine-year Wilkinson Microwave Anisotropy Probe

(WMAP) observations: cosmological parameter results,” 208 (Oct., 2013) 19,

arXiv:1212.5226 [astro-ph.CO].

[40] Planck Collaboration, P. Ade et al., “Planck 2015 results. XIII. Cosmological

parameters,” arXiv:1502.01589 [astro-ph.CO].

[41] D. Fixsen, “The temperature of the cosmic microwave background,”

Astrophys.J. 707 (2009) 916–920, arXiv:0911.1955 [astro-ph.CO].

[42] BICEP2 Collaboration Collaboration, P. Ade et al., “Detection of B-Mode

polarization at degree angular scales by BICEP2,” Phys.Rev.Lett. 112 (2014)

241101, arXiv:1403.3985 [astro-ph.CO].

[43] Planck Collaboration, R. Adam et al., “Planck intermediate results. XXX. The

angular power spectrum of polarized dust emission at intermediate and high

Galactic latitudes,” arXiv:1409.5738 [astro-ph.CO].

[44] BICEP2, Planck Collaboration, P. Ade et al., “A joint analysis of BICEP2/Keck

array and Planck data,” Phys.Rev.Lett. 114 no. 10, (2015) 101301,

arXiv:1502.00612 [astro-ph.CO].

134

http://dx.doi.org/10.1016/0370-2693(78)90232-0
http://dx.doi.org/10.1086/186504
http://dx.doi.org/10.1051/0004-6361/201321591
http://arxiv.org/abs/1303.5076
http://arxiv.org/abs/1303.5076
http://arxiv.org/abs/0907.5424
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://arxiv.org/abs/1212.5226
http://arxiv.org/abs/1502.01589
http://dx.doi.org/10.1088/0004-637X/707/2/916
http://arxiv.org/abs/0911.1955
http://dx.doi.org/10.1103/PhysRevLett.112.241101
http://dx.doi.org/10.1103/PhysRevLett.112.241101
http://arxiv.org/abs/1403.3985
http://arxiv.org/abs/1409.5738
http://dx.doi.org/10.1103/PhysRevLett.114.101301
http://arxiv.org/abs/1502.00612


[45] K. Bamba, S. Nojiri, and S. D. Odintsov, “Reconstruction of scalar field theories

realizing inflation consistent with the Planck and BICEP2 results,” Phys.Lett.

B737 (2014) 374–378, arXiv:1406.2417 [hep-th].

[46] M. Prasad and C. M. Sommerfield, “An exact classical solution for the ’t Hooft

monopole and the Julia-Zee Dyon,” Phys.Rev.Lett. 35 (1975) 760–762.

[47] E. Bogomolny, “Stability of classical solutions,” Sov.J.Nucl.Phys. 24 (1976) 449.

[48] M. Atiyah and N. Hitchin, The geometry and dynamics of magnetic monopoles. M.

B. Porter Lectures. Princeton University Press, Princeton, NJ, 1988.

[49] N. Manton and P. Sutcli�e, Topological solitons. Cambridge Monographs on

Mathematical Physics. Cambridge University Press, Cambridge, 2004.

http://dx.doi.org/10.1017/CBO9780511617034.

[50] Y. M. Shnir, Magnetic monopoles. Texts and Monographs in Physics.

Springer-Verlag, Berlin, 2005.

[51] M. F. Atiyah, “Magnetic monopoles in hyperbolic spaces,” in Vector bundles on

algebraic varieties (Bombay, 1984), vol. 11 of Tata Inst. Fund. Res. Stud. Math.,

pp. 1–33. Tata Inst. Fund. Res., Bombay, 1987.

[52] C. Nash, “Geometry of hyperbolic monopoles,” J. Math. Phys. 27 no. 8, (1986)

2160–2164. http://dx.doi.org/10.1063/1.526985.

[53] A. Chakrabarti, “Construction of hyperbolic monopoles,” J.Math.Phys. 27

(1986) 340.

[54] P. J. Braam, “Magnetic monopoles on three-manifolds,” J. Di�erential Geom. 30

no. 2, (1989) 425–464.

http://projecteuclid.org/getRecord?id=euclid.jdg/1214443597.

[55] L. M. Sibner and R. J. Sibner, “Hyperbolic multi-monopoles with arbitrary

mass,” Comm. Math. Phys. 315 no. 2, (2012) 383–399.

http://dx.doi.org/10.1007/s00220-012-1562-4.

135

http://dx.doi.org/10.1016/j.physletb.2014.09.014
http://dx.doi.org/10.1016/j.physletb.2014.09.014
http://arxiv.org/abs/1406.2417
http://dx.doi.org/10.1103/PhysRevLett.35.760
http://dx.doi.org/10.1017/CBO9780511617034
http://dx.doi.org/10.1017/CBO9780511617034
http://dx.doi.org/10.1063/1.526985
http://dx.doi.org/10.1063/1.526985
http://dx.doi.org/10.1063/1.526985
http://dx.doi.org/10.1063/1.527338
http://dx.doi.org/10.1063/1.527338
http://projecteuclid.org/getRecord?id=euclid.jdg/1214443597
http://dx.doi.org/10.1007/s00220-012-1562-4
http://dx.doi.org/10.1007/s00220-012-1562-4


[56] P. J. Braam and D. M. Austin, “Boundary values of hyperbolic monopoles,”

Nonlinearity 3 no. 3, (1990) 809–823.

http://stacks.iop.org/0951-7715/3/809.

[57] N. Manton, “A remark on the scattering of BPS monopoles,” Phys.Lett. B110

(1982) 54–56.

[58] N. Manton, “Monopole interactions at long range,” Phys.Lett. B154 (1985) 397.

[59] M. F. Atiyah, “Instantons in two and four dimensions,” Comm. Math. Phys. 93

no. 4, (1984) 437–451.

http://projecteuclid.org/getRecord?id=euclid.cmp/1103941176.

[60] R. S. Ward, “Two integrable systems related to hyperbolic monopoles,” Asian J.

Math. 3 no. 1, (1999) 325–332, arXiv:9811.012 [hep-th]. Sir Michael Atiyah: a

great mathematician of the twentieth century.

[61] N. S. Manton and P. M. Sutcli�e, “Platonic hyperbolic monopoles,”

Commun.Math.Phys. 325 (2014) 821–845, arXiv:1207.2636 [hep-th].

[62] S. Bolognesi, A. Cockburn, and P. Sutcli�e, “Hyperbolic monopoles, JNR data

and spectral curves,” arXiv:1404.1846 [hep-th].

[63] M. Murray and M. Singer, “Spectral curves of non-integral hyperbolic

monopoles,” Nonlinearity 9 no. 4, (1996) 973–997.

http://dx.doi.org/10.1088/0951-7715/9/4/009.

[64] M. K. Murray and M. A. Singer, “On the complete integrability of the discrete

Nahm equations,” Comm. Math. Phys. 210 no. 2, (2000) 497–519.

http://dx.doi.org/10.1007/s002200050789.

[65] P. Norbury and N. M. Romão, “Spectral curves and the mass of hyperbolic

monopoles,” Comm. Math. Phys. 270 no. 2, (2007) 295–333.

http://dx.doi.org/10.1007/s00220-006-0148-4.

136

http://stacks.iop.org/0951-7715/3/809
http://dx.doi.org/10.1016/0370-2693(82)90950-9
http://dx.doi.org/10.1016/0370-2693(82)90950-9
http://dx.doi.org/10.1016/0370-2693(85)90417-4
http://projecteuclid.org/getRecord?id=euclid.cmp/1103941176
http://arxiv.org/abs/9811.012
http://dx.doi.org/10.1007/s00220-013-1864-1
http://arxiv.org/abs/1207.2636
http://arxiv.org/abs/1404.1846
http://dx.doi.org/10.1088/0951-7715/9/4/009
http://dx.doi.org/10.1088/0951-7715/9/4/009
http://dx.doi.org/10.1007/s002200050789
http://dx.doi.org/10.1007/s002200050789
http://dx.doi.org/10.1007/s00220-006-0148-4
http://dx.doi.org/10.1007/s00220-006-0148-4


[66] N. J. Hitchin, “A new family of Einstein metrics,” in Manifolds and geometry

(Pisa, 1993), Sympos. Math., XXXVI, pp. 190–222. Cambridge Univ. Press,

Cambridge, 1996.

[67] O. Nash, “A new approach to monopole moduli spaces,” Nonlinearity 20 no. 7,

(2007) 1645–1675. http://dx.doi.org/10.1088/0951-7715/20/7/007.

[68] R. Bielawski and L. Schwachhöfer, “Pluricomplex geometry and hyperbolic

monopoles,” Commun.Math.Phys. 323 (2013) 1–34, arXiv:1104.2270

[math.DG].

[69] R. Bielawski and L. Schwachhöfer, “Hypercomplex limits of pluricomplex

structures and the Euclidean limit of hyperbolic monopoles,”

arXiv:1201.0781 [math.DG].

[70] F. Denef, “TASI lectures on complex structures,” arXiv:1104.0254 [hep-th].

[71] A. Newlander and L. Nirenberg, “Complex analytic coordinates in almost

complex manifolds,” Ann. of Math. 65 (1957) 391–404.

[72] D. Alekseevsky and S. Marchiafava, “Quaternionic structures on a manifold

and subordinated structures,” Annali di Matematica Pura ed Applicata 171 (1996)

205–273.

[73] P. Candelas, “Lectures on complex manifolds,”.

[74] M. Obata, “A�ne connections on manifolds with almost complex, quaternion

or Hermitian structure,” Jap. J. Math. 26 (1956) 43–77.

[75] E. Witten and D. I. Olive, “Supersymmetry algebras that include topological

charges,” Phys.Lett. B78 (1978) 97.

[76] B. Zumino, “Euclidean supersymmetry and the many-instanton problem,”

Phys.Lett. B69 (1977) 369.

[77] M. Atiyah, N. J. Hitchin, and I. Singer, “Selfduality in four-dimensional

Riemannian geometry,” Proc.Roy.Soc.Lond. A362 (1978) 425–461.

137

http://dx.doi.org/10.1088/0951-7715/20/7/007
http://dx.doi.org/10.1088/0951-7715/20/7/007
http://dx.doi.org/10.1088/0951-7715/20/7/007
http://dx.doi.org/10.1007/s00220-013-1761-7
http://arxiv.org/abs/1104.2270
http://arxiv.org/abs/1104.2270
http://arxiv.org/abs/1201.0781
http://arxiv.org/abs/1104.0254
http://dx.doi.org/10.1016/0370-2693(78)90357-X
http://dx.doi.org/10.1016/0370-2693(77)90568-8
http://dx.doi.org/10.1098/rspa.1978.0143


[78] L. S. Brown, R. D. Carlitz, and C.-k. Lee, “Massless excitations in instanton

fields,” Phys.Rev. D16 (1977) 417–422.

[79] J. P. Gauntlett, “Low-energy dynamics of supersymmetric solitons,” Nucl.Phys.

B400 (1993) 103–125, arXiv:hep-th/9205008 [hep-th].

[80] N. Dorey, “The BPS spectra of two-dimensional supersymmetric gauge

theories with twisted mass terms,” JHEP 9811 (1998) 005,

arXiv:hep-th/9806056 [hep-th].

[81] N. Dorey, T. J. Hollowood, and D. Tong, “The BPS spectra of gauge theories in

two-dimensions and four-dimensions,” JHEP 9905 (1999) 006,

arXiv:hep-th/9902134 [hep-th].

[82] L. Faddeev, “Some comments on the many dimensional solitons,”

Lett.Math.Phys. 1 (1976) 289.

[83] N. Manton and P. Ruback, “Skyrmions in flat Space and curved space,”

Phys.Lett. B181 (1986) 137.

[84] A. D’Adda, R. Horsley, and P. Di Vecchia, “Supersymmetric magnetic

monopoles and dyons,” Phys.Lett. B76 (1978) 298.

[85] J. A. Harvey and A. Strominger, “String theory and the Donaldson

polynomial,” Commun.Math.Phys. 151 (1993) 221–232, arXiv:hep-th/9108020

[hep-th].

[86] J. P. Gauntlett, “Low-energy dynamics of N=2 supersymmetric monopoles,”

Nucl.Phys. B411 (1994) 443–460, arXiv:hep-th/9305068 [hep-th].

[87] J. Figueroa-O’Farrill, “Electromagnetic duality for children.”

http://www.maths.ed.ac.uk/~jmf/Teaching/EDC.html, 1995.

[88] J. M. Maldacena, “The large N limit of superconformal field theories and

supergravity,” Int.J.Theor.Phys. 38 (1999) 1113–1133, arXiv:hep-th/9711200

[hep-th].

138

http://dx.doi.org/10.1103/PhysRevD.16.417
http://dx.doi.org/10.1016/0550-3213(93)90399-A
http://dx.doi.org/10.1016/0550-3213(93)90399-A
http://arxiv.org/abs/hep-th/9205008
http://arxiv.org/abs/hep-th/9806056
http://dx.doi.org/10.1088/1126-6708/1999/05/006
http://arxiv.org/abs/hep-th/9902134
http://dx.doi.org/10.1007/BF00398483
http://dx.doi.org/10.1016/0370-2693(86)91271-2
http://dx.doi.org/10.1016/0370-2693(78)90792-X
http://dx.doi.org/10.1007/BF02096766
http://arxiv.org/abs/hep-th/9108020
http://arxiv.org/abs/hep-th/9108020
http://dx.doi.org/10.1016/0550-3213(94)90457-X
http://arxiv.org/abs/hep-th/9305068
http://www.maths.ed.ac.uk/~jmf/Teaching/EDC.html
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9711200


[89] S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from

noncritical string theory,” Phys.Lett. B428 (1998) 105–114,

arXiv:hep-th/9802109 [hep-th].

[90] E. Witten, “Anti-de Sitter space and holography,” Adv.Theor.Math.Phys. 2 (1998)

253–291, arXiv:hep-th/9802150 [hep-th].

[91] V. Pestun, “Localization of gauge theory on a four-sphere and supersymmetric

Wilson loops,” Commun.Math.Phys. 313 (2012) 71–129, arXiv:0712.2824

[hep-th].

[92] J. Erickson, G. Semeno�, and K. Zarembo, “Wilson loops in N=4

supersymmetric Yang-Mills theory,” Nucl.Phys. B582 (2000) 155–175,

arXiv:hep-th/0003055 [hep-th].

[93] N. Drukker and D. J. Gross, “An exact prediction of N=4 SUSYM theory for

string theory,” J.Math.Phys. 42 (2001) 2896–2914, arXiv:hep-th/0010274

[hep-th].

[94] A. Kapustin, B. Willett, and I. Yaakov, “Exact results for Wilson loops in

superconformal Chern-Simons theories with matter,” JHEP 1003 (2010) 089,

arXiv:0909.4559 [hep-th].

[95] C. Romelsberger, “Calculating the superconformal index and Seiberg duality,”

arXiv:0707.3702 [hep-th].

[96] Y. Imamura and S. Yokoyama, “Index for three dimensional superconformal

field theories with general R-charge assignments,” JHEP 1104 (2011) 007,

arXiv:1101.0557 [hep-th].

[97] B. Zumino, “Nonlinear realization of supersymmetry in de Sitter space,”

Nucl.Phys. B127 (1977) 189.

[98] D. Sen, “Supersymmetry in the space-time R⇥ S3,” Nucl.Phys. B284 (1987) 201.

[99] G. Festuccia and N. Seiberg, “Rigid supersymmetric theories in curved

superspace,” JHEP 1106 (2011) 114, arXiv:1105.0689 [hep-th].

139

http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://arxiv.org/abs/hep-th/9802150
http://dx.doi.org/10.1007/s00220-012-1485-0
http://arxiv.org/abs/0712.2824
http://arxiv.org/abs/0712.2824
http://dx.doi.org/10.1016/S0550-3213(00)00300-X
http://arxiv.org/abs/hep-th/0003055
http://dx.doi.org/10.1063/1.1372177
http://arxiv.org/abs/hep-th/0010274
http://arxiv.org/abs/hep-th/0010274
http://dx.doi.org/10.1007/JHEP03(2010)089
http://arxiv.org/abs/0909.4559
http://arxiv.org/abs/0707.3702
http://dx.doi.org/10.1007/JHEP04(2011)007
http://arxiv.org/abs/1101.0557
http://dx.doi.org/10.1016/0550-3213(77)90211-5
http://dx.doi.org/10.1016/0550-3213(87)90033-2
http://dx.doi.org/10.1007/JHEP06(2011)114
http://arxiv.org/abs/1105.0689


[100] H. Samtleben and D. Tsimpis, “Rigid supersymmetric theories in 4d

Riemannian space,” JHEP 1205 (2012) 132, arXiv:1203.3420 [hep-th].

[101] C. Klare, A. Tomasiello, and A. Za�aroni, “Supersymmetry on curved spaces

and holography,” JHEP 1208 (2012) 061, arXiv:1205.1062 [hep-th].

[102] T. T. Dumitrescu, G. Festuccia, and N. Seiberg, “Exploring curved superspace,”

JHEP 1208 (2012) 141, arXiv:1205.1115 [hep-th].

[103] J. T. Liu, L. A. Pando Zayas, and D. Reichmann, “Rigid supersymmetric

backgrounds of minimal o�-shell supergravity,” JHEP 1210 (2012) 034,

arXiv:1207.2785 [hep-th].

[104] T. T. Dumitrescu and G. Festuccia, “Exploring curved superspace (II),” JHEP

1301 (2013) 072, arXiv:1209.5408 [hep-th].

[105] A. Kehagias and J. G. Russo, “Global supersymmetry on curved spaces in

various dimensions,” Nucl.Phys. B873 (2013) 116–136, arXiv:1211.1367

[hep-th].

[106] C. Closset, T. T. Dumitrescu, G. Festuccia, and Z. Komargodski,

“Supersymmetric field theories on three-manifolds,” JHEP 1305 (2013) 017,

arXiv:1212.3388 [hep-th].

[107] H. Samtleben, E. Sezgin, and D. Tsimpis, “Rigid 6D supersymmetry and

localization,” JHEP 1303 (2013) 137, arXiv:1212.4706 [hep-th].

[108] D. Cassani, C. Klare, D. Martelli, A. Tomasiello, and A. Za�aroni,

“Supersymmetry in lorentzian curved spaces and holography,”

Commun.Math.Phys. 327 (2014) 577–602, arXiv:1207.2181 [hep-th].

[109] P. de Medeiros, “Rigid supersymmetry, conformal coupling and twistor

spinors,” JHEP 1409 (2014) 032, arXiv:1209.4043 [hep-th].

[110] K. Hristov, A. Tomasiello, and A. Za�aroni, “Supersymmetry on

three-dimensional Lorentzian curved spaces and black hole holography,”

JHEP 1305 (2013) 057, arXiv:1302.5228 [hep-th].

140

http://dx.doi.org/10.1007/JHEP05(2012)132
http://arxiv.org/abs/1203.3420
http://dx.doi.org/10.1007/JHEP08(2012)061
http://arxiv.org/abs/1205.1062
http://dx.doi.org/10.1007/JHEP08(2012)141
http://arxiv.org/abs/1205.1115
http://dx.doi.org/10.1007/JHEP10(2012)034
http://arxiv.org/abs/1207.2785
http://dx.doi.org/10.1007/JHEP01(2013)072
http://dx.doi.org/10.1007/JHEP01(2013)072
http://arxiv.org/abs/1209.5408
http://dx.doi.org/10.1016/j.nuclphysb.2013.04.010
http://arxiv.org/abs/1211.1367
http://arxiv.org/abs/1211.1367
http://dx.doi.org/10.1007/JHEP05(2013)017
http://arxiv.org/abs/1212.3388
http://dx.doi.org/10.1007/JHEP03(2013)137
http://arxiv.org/abs/1212.4706
http://dx.doi.org/10.1007/s00220-014-1983-3
http://arxiv.org/abs/1207.2181
http://dx.doi.org/10.1007/JHEP09(2014)032
http://arxiv.org/abs/1209.4043
http://dx.doi.org/10.1007/JHEP05(2013)057
http://arxiv.org/abs/1302.5228


[111] K. S. Stelle and A. Van Proeyen, “Wess-Zumino sigma models with

non-Kahlerian geometry,” Class.Quant.Grav. 20 (2003) 5195–5204,

arXiv:hep-th/0306244 [hep-th].

[112] E. Bergshoe�, S. Cucu, T. De Wit, J. Gheerardyn, R. Halbersma, et al.,

“Superconformal N=2, D = 5 matter with and without actions,” JHEP 0210

(2002) 045, arXiv:hep-th/0205230 [hep-th].

[113] J. Gheerardyn, “A Generalization of (very) special geometry,” Nucl.Phys. B680

(2004) 131–146, arXiv:hep-th/0310181 [hep-th].

[114] J. Gheerardyn, “Aspects of on-shell supersymmetry,” arXiv:hep-th/0411126

[hep-th].

[115] M. Blau, “Killing spinors and SYM on curved spaces,” JHEP 0011 (2000) 023,

arXiv:hep-th/0005098 [hep-th].

[116] P. van Nieuwenhuizen and A. Waldron, “On Euclidean spinors and Wick

rotations,” Phys.Lett. B389 (1996) 29–36, arXiv:hep-th/9608174 [hep-th].

[117] Y. Kosmann, “Dérivées de Lie des spineurs,” Ann. Mat. Pura Appl. (4) 91 (1972)

317–395.

[118] B. Zumino, “Euclidean Supersymmetry and the Many-Instanton Problem,”

Phys.Lett. B69 (1977) 369.

[119] C. Callias, “Index theorems on open spaces,” Commun.Math.Phys. 62 (1978)

213–234.

[120] J. Råde, “Callias’ index theorem, elliptic boundary conditions, and cutting and

gluing,” Comm. Math. Phys. 161 no. 1, (1994) 51–61.

http://projecteuclid.org/getRecord?id=euclid.cmp/1104269791.

[121] D. I. Olive, “The electric and magnetic charges as extra components of four

momentum,” Nucl.Phys. B153 (1979) 1.

141

http://dx.doi.org/10.1088/0264-9381/20/23/014
http://arxiv.org/abs/hep-th/0306244
http://dx.doi.org/10.1088/1126-6708/2002/10/045
http://dx.doi.org/10.1088/1126-6708/2002/10/045
http://arxiv.org/abs/hep-th/0205230
http://dx.doi.org/10.1016/j.nuclphysb.2003.12.034
http://dx.doi.org/10.1016/j.nuclphysb.2003.12.034
http://arxiv.org/abs/hep-th/0310181
http://arxiv.org/abs/hep-th/0411126
http://arxiv.org/abs/hep-th/0411126
http://arxiv.org/abs/hep-th/0005098
http://dx.doi.org/10.1016/S0370-2693(96)01251-8
http://arxiv.org/abs/hep-th/9608174
http://dx.doi.org/10.1016/0370-2693(77)90568-8
http://dx.doi.org/10.1007/BF01202525
http://dx.doi.org/10.1007/BF01202525
http://projecteuclid.org/getRecord?id=euclid.cmp/1104269791
http://dx.doi.org/10.1016/0550-3213(79)90588-1


[122] M. Blau and G. Thompson, “Euclidean SYM theories by time reduction and

special holonomy manifolds,” Phys.Lett. B415 (1997) 242–252,

arXiv:hep-th/9706225 [hep-th].

[123] C. Bår, “Real killing spinors and holonomy,” Communications in Mathematical

Physics 154 no. 3, (1993) 509–521.

http://projecteuclid.org/euclid.cmp/1104253076.

[124] U. Gran, “GAMMA: A Mathematica package for performing gamma matrix

algebra and Fierz transformations in arbitrary dimensions,”

arXiv:hep-th/0105086 [hep-th].

[125] J. Figueroa-O’Farrill and M. Gharamti, “Supersymmetry of hyperbolic

monopoles,” JHEP 1404 (2014) 074, arXiv:1311.3588 [hep-th].

[126] Y. Fujii and K. Yamagishi, “Killing spinors on spheres and hyperbolic

manifolds,” J.Math.Phys. 27 (1986) 979.

[127] R. Ward, “Slowly moving lumps in the CP1 model in (2+1)-dimensions,”

Phys.Lett. B158 (1985) 424.

[128] R. Leese, “Low-energy scattering of solitons in the CP1 model,” Nucl.Phys.

B344 (1990) 33–72.

[129] O. Babelon and C. Viallet, “On the Riemannian geometry of the configuration

space of gauge theories,” Commun.Math.Phys. 81 (1981) 515.

[130] T. Skyrme, “A nonlinear field theory,” Proc.Roy.Soc.Lond. A260 (1961) 127–138.

[131] G. S. Adkins, C. R. Nappi, and E. Witten, “Static properties of nucleons in the

Skyrme model,” Nucl.Phys. B228 (1983) 552.

[132] I. Kolá�, P. W. Michor, and J. Slovák, Natural operations in di�erential geometry.

Springer-Verlag, Berlin, 1993.

[133] M. Obata, “A�ne connections in a quaternion manifold and transformations

preserving the structure.,” J. Math. Soc. Japan 9 (1957) 406–416.

142

http://dx.doi.org/10.1016/S0370-2693(97)01163-5
http://arxiv.org/abs/hep-th/9706225
http://projecteuclid.org/euclid.cmp/1104253076
http://arxiv.org/abs/hep-th/0105086
http://dx.doi.org/10.1007/JHEP04(2014)074
http://arxiv.org/abs/1311.3588
http://dx.doi.org/10.1063/1.527118
http://dx.doi.org/10.1016/0370-2693(85)90445-9
http://dx.doi.org/10.1016/0550-3213(90)90684-6
http://dx.doi.org/10.1016/0550-3213(90)90684-6
http://dx.doi.org/10.1007/BF01208272
http://dx.doi.org/10.1016/0550-3213(83)90559-X
http://dx.doi.org/10.2969/jmsj/00940406

	Abstract
	Acknowledgements
	Introduction
	Monopoles and the Higgs mechanism
	Monopoles and inflation
	BPS monopoles
	BPS monopoles on R3
	BPS monopoles on H3
	BPS monopoles geometries

	Monopoles and rigid supersymmetry
	Summary and overview

	Supersymmetric Yang-Mills-Higgs Theory on H3 with Complex Fields
	Introduction
	Off-shell supersymmetry in Euclidean 4-space
	On-shell SYM theory on R4
	Introducing auxiliary field
	Off-shell SYM theory on R4

	Reduction to Euclidean 3-space
	Off-shell SYMH theory on R3

	Deforming to curved space
	SYMH theory on H3

	Some remarks

	Geometry of the Complex Moduli Space of Hyperbolic Monopoles
	Introduction
	Moduli space of BPS configurations
	Zero modes
	A four-dimensional formalism
	Computing the index using supersymmetry
	Complex structures

	Geometry of the moduli space
	Linearising the supersymmetry transformations
	Closure of the moduli space supersymmetry algebra


	Supersymmetric Yang-Mills-Higgs Theory on H3 with Real Fields
	Introduction
	On-shell supersymmetry in Minkowski 6-Spacetime
	Reduction to R3
	Reduction of bosonic fields
	Reduction of fermionic fields
	Reduction of the Lagrangian
	SYM on R3
	Dimensional analysis

	Promoting supersymmetry to hyperbolic space
	Equations of motion
	Relation with other theories
	Super algebra


	Geometry of the Real Moduli Space of Hyperbolic Monopoles
	Introduction
	Breaking half of supersymmetry
	Real moduli space of hyperbolic monopoles
	Zero modes
	Six/Four dimensional language
	Complex structures

	Comparison and remark
	Comparison with Bielawski and Schwachhöfer results
	Remark on the complex and real geometry

	Limiting case ``hyperkähler geometry''

	Conclusion and Outlook
	Appendix
	The Frölicher–Nijenhuis bracket of endomorphisms
	Obata Connection
	Reduction of the supersymmetry transformations


