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Abstract

The future of theoretical physics is unclear. Two large areas that fall under the
umbrella of theoretical physics are cosmology and quantum gravity. Modern
cosmology is relatively a much younger field than quantum gravity, and both
of these fields require further developments of general relativity. In this thesis
we do not hope to resolve the problems facing modern cosmology or theories
of quantum gravity. Rather, we will conduct original research into aspects of
general relativity that may be used in the future to aid the development and
testing of theories of cosmology and quantum gravity.

It is our view that the largest problem facing astrophysics and cosmology
stem from the existence of the dark sector of the Universe. The implication
here being that more than ninety percent of the energy density of the Uni-
verse is “missing in action” and seemingly consists of dark energy and dark
matter. Furthermore, it is apparent that there exist conceptual flaws in our
understanding of observational concepts such as expansion versus motion and
observer biases. To this end, we investigate the standard spacetime metric used
in cosmology, the Friedmann-Lemaitre-Roberston-Walker (FLRW) metric in
a peculiar coordinate system — the Painlevé-Gullstrand coordinates. In this
coordinate system (slicing), space is no longer expanding, rather, the galaxies
are receding from each other. We hope this will aid in the understanding of
expansion, motion, curvature, and observer bias with future work. We further
investigate the possibility of black holes in cosmology being directly coupled to
the accelerated expansion of the Universe — in other words, black holes as a
source for dark energy. However, we show that this is highly implausible.

Relatively recently it has been postulated that the near black hole horizon
limit may be a regime where quantum gravity effects become relevant i.e., quan-
tum gravity may not be restricted to near the Planck scale. We investigate a
curious model of black and white holes that shows how one may transition into
the other over a finite period of time. This is research conducted in the near
horizon limit of the Schwarzschild black hole. We introduce a time dependent
function into the usual Schwarzschild black hole spacetime (leaving this new
spacetime not a simple coordinate transformed version of the original). This
function allows the black hole to transition into a white hole. Importantly, the
action for this transition can be shown to be zero, meaning it can be added to
the Feynman path integral at no cost.

Finally, we move to investigating the black hole memory effect. During the
last decade, there has been an interesting connection made between the Bondi—
Metzner—Sachs (BMS) group — an infinite dimensional group of symmetries
found at null infinity — and the gravitational memory effect. In particular, it
was shown that the passage of a gravitational wave that alters a Schwarzschild



black hole is seen as a supertranslation of the spacetime at null infinity. We
extend these calculations to the Kerr and Kerr—Newman black holes. Hence,
showing that there may be a way to verify the abstract mathematical ideas
predicated on the BMS group by detection of the memory effect in future ob-
servations. It is our hope that when future gravitational wave detectors such as
the laser-interferometer-space-antenna (LISA) are launched, research conducted
in this thesis may shed light on how the memory may relate to black holes in
their asymptotic & near horizon limits to aid our understanding of the nature
of quantum gravity:.
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Chapter 1

Introduction

In 1915 Einstein published his theory of general relativity (GR), a theory in
which gravity is no longer a force — as in Newton’s theory — rather, gravity is
an emergent property of the geometry of spacetime [I]. As Wheeler quoted:
In Einstein’s theory, “matter tells spacetime how to curve and spacetime tells
matter how to mowve”.

The first experimental verification of GR came shortly after its develop-
ment: it successfully explained the precession of the perihelion of MercuryE]
[2] and the curving of starlight due to the gravitational field of the sunf [4].
General relativity went on to provide a foundation for gravitational redshift [5]
which was qualitatively described by Einstein in 1907 [6]. Furthermore, in 1964,
Shapiro [7] predicted the existence of the Shapiro time delay predicated on gen-
eral relativity. In recent times, the detection of gravitational waves with the
Laser Interferometer Gravitational-Wave Observatory (LIGO) [8] was another
confirmation of GR being the ‘correct’ theory of gravity. While GR has pro-
vided a description of gravity to high precision on small scales (when compared
to the size of the Universe), its applicability on large scales is not thoroughly
tested and is a point of debate.

Along with Einstein’s famous mass-energy relation and general relativity,
some may consider this the dawn of modern theoretical physics. This claim
may indeed seem bold as theoretical physics has been a field of interest for
centuries, if not millennia. After all, by definition, all one requires is a theory
— A system of ideas which is intended to explain something. Many of these early
theories were well approximated & explained by calculus and relatively simple
relations from experimental datafl This is in stark contrast to modern theories

In fact, the perihelion of Mercury was a retrodiction of GR as data collected over the
previous century indicated there was more to gravity than Newton’s theory.

2The bending of starlight was in fact, already predicted from Newtonian gravity [3] but
the quantitative result here was out by roughly a factor of two. General relativity provided
a much more accurate quantitative prediction.

30f course, there is a comment that could be made here about the current state of theo-
retical physics and experimental data.



such as GR where gravity itself is explained via a four-dimensional manifold,
something we cannot see, but is in some sensd| there. These theories now
require high-precision instruments to verify, are not free of immense statistical
biases, and/or conceptual hurdles. All of this is to say, the true beginning of
modern theoretical physics (in my opinion) is associated with the realisation
that geometry and deep mathematical structures are required to explain the
Universe.

Einstein was, of course, not the only pioneer of modern theoretical physics,
there were many pioneers of what we consider modern physics during the 20"
century. However, despite many advances across all areas of theoretical physics,
the profound realisation that deep and beautiful mathematical structures were
“required” to explain the Universe caused many of the problems we face in
theory today. It became a want, a need, for everything to ‘fit nicely’. This led us
into the realm of ‘unfalsifiable’ theories, a deviation from the scientific method
in the name of elegance. Hubris, after all, is part of the human condition.

Two key problems began to emerge as we progressed towards the 215 cen-
tury.

i Despite many attempts, general relativity, a classical theory, has not been
quantised, holding back our progress towards a Grand Unified Theory. This
has led to the “‘holy grail” of physics — a theory of quantum gravity. While
there have been a plethora of theories proposed, many remain in the realm
of “mathematical speculations” and have not been observationally verified.
This thesis and the papers it contains does not address or attempt to solve
quantum theory directly. However, we conduct original research of black
holes in their near horizon limits. In recent years more of the community
has begun to suspect that this limit may admit observation evidence of
quantum gravity phenomenon, hence our interest in this regime.

ii Our observations of the Universe — which founded the modern theory of
cosmology — began to point towards a ‘mysterious’ dark sector of the Uni-
verse that makes up more than 90 percent of the energy density of the
Universe at the current epoch. This dark sector of course, is comprised of
dark energy and dark matter — both of which do not interact via any of the
fundamental forces, except gravity. Once again, this thesis does not directly
address a new theory of cosmology or how we may solve the problem of
the dark sector. However, we present a unique slicing of spacetime in the
hope that with further developments we may be able to deviate from the
standard model.

A theory of Quantum gravity has been sought after for at least a hundred

years. What is so intrinsically difficult about quantising gravity? We have
many theories that remain unsatisfactory to date as none of our state-of-the-

4Clearly, Maxwell’s equations were also a set of equations that were hinting at something
hidden behind the veil, but the true mathematical depth here was yet to be discovered.



art tools to probe the quantum realm have produced results that can prove
(and in some cases disprove) any current theory to be correct. From a pure
theoretical perspective, the problem is likely more fundamental. In GR, gravity
is encoded in the very geometry of spacetime. All of its successes and spectacular
predictions emerge from this encoding. To creatd’] a theory of gravity that was
about geometry, Einstein required a new language to describe all of classical
physics, he required Riemannian geometry. Spacetime was now represented as
a 4-dimensional manifold equipped with a metric with sharp light cones that
are deterministic, and matter? Matter was now represented by tensor fields.
Quantum mechanics, however, is a probabilistic theory. How does one even
begin to create an even newer language - a sort of “qauntised Riemannian
geometry”. Furthermore, if one can even quantise the metric, what of the light
cones which would now, intrinsically, not be sharp and deterministic.

Evidently, this has proved to be a monumental task — something the great-
est minds over the last century have not been able to resolve. Out of this search,
theories such as Kaluza—Klein emerged. Kaluza—Klein theory showed that elec-
tromagnetism could be unified with gravity, at the cost of an extra dimension.
String theory built upon Kaluza—Klein and then there were more “minimally
modified” theories such as loop quantum gravity. The failure of these ideas
has not gone unnoticed of course. Many have critiqued these theories and their
continued pursuit, for instance, Lee Smolin’s “The Trouble with Physics” [9],
Peter Woit’s “Not even Wrong” [10], or Sabine Hossenfelder’s “Lost in Maths”
[T1]. Tt is perhaps important to realise, however, that a lot of progress was
made during the time these theories were developed. For instance, the stan-
dard model of particle physics emerged in the 20th century as a result of another
mathematical construct, gauge theories.

In this ongoing, seemingly impossible quest for quantum gravity, one of the
most useful theoretical playgrounds appears to be black holes. From our current
understanding, black holes contain curvature singularities’) which manifestly
require new physics. These singularities may reveal underlying symmetrieq’| of
‘the full theory’ of quantum gravity or suggest how evolution could remain well-
defined through a singularity. (This is the case, for instance in certain timelike
singularities in string theory.) It turns out that examination of the black hole
horizon may contain clues towards the next step for general relativity — as
implied by (but not limited by) black hole thermodynamics [I3]. Indeed, in
the increasingly popular Anti-de Sitter/conformal field theory (AdS/CFT) cor-

5We shall not delve into the topic of whether “physical theories are created or found”
here. ..

5The event horizon (the surface of “no return”) and singularities are both topics of debate.
In particular, event horizons may not be exist, rather, they should be understood as long lived
apparent horizons. Furthermore, in recent years, there has been a small argument put forward
by Roy Kerr [12] regarding the nature of singularities and Penrose’s singularity theorems.

"Yet another discussion could be had here regarding the nature of symmetries in physics
and our immense love of pursuing them.



respondence one finds a set of symmetry generators, and their commutation
relations admit a rich algebra that can be related to black hole thermodynam-
ics. This is something we shall discuss briefly, when discussing near horizon
physics, the black hole memory effect, and the Bondi—van der Burg—Metzner—
Sachs (BMS) group.

Much like quantum gravity, modern cosmology has also faced many problems,
albeit for an arguably shorter time. The current standard model of cosmology, A
Cold Dark Matter (ACDM), is based on the Friedmann—Lemaitre-Roberston—
Walker (FLRW) solution to the Einstein equations, describing a expanding
spacetime that is isotropic and homogeneoudﬂ. One arrives at the Universe being
isotropic because of our observations of the Cosmic Microwave Background
(CMB). The CMB is the earliest light in the Universe that we can observe,
and from our place in the cosmos, it does appear to be isotropic to one part in
ten—thousandﬂ Therefore, the CMB, as we see it, suggests that at the point of
decoupling — when the Universe had cooled enough such that light could escape
the ‘hot, dense mess’ — the Universe was in fact, close to isotropic. Coupling
isotropy with the Copernican principle; the notion that, we, on Earth, do not
occupy a ‘privileged’ place in the Universe, gives us homogeneity. Putting
all these pieces together, we arrive at the cosmological principle which states:
“on sufficiently large scales the spatial distribution of matter is isotropic and
homogeneous”.

Of course, we have not discussed where the accelerated expansion part of the
standard model comes from, let alone the expanding part. The first evidence
of an expanding Universe came from the observation of extragalactic nebulae
by Edwin Hubble. These observations showed a positive trend between the
distance of these nebulae and their radial velocities — suggesting the Universe
is expanding [14]. After which in 1998 Riess et al. [15] followed by Perlmutter et
al. in 1999 [16], fit astrophysical data to the FLRW model and found something
unexpected — the Universe was not only expanding, the expansion was also
accelerating. The surveys which serve as the foundation for this were observing
type la supernovae (SNela). The SNela observed appeared to be fainter than
predicted by the FLRW model. Therefore, the cosmological constant which had
been omitted since the early 20th century made a return, becoming part of the
standard model. The cosmological constant in modern times, is associated with
“dark energy” — a repulsive negative pressure, opposing gravity, that drives
the expansion of the Universe at late times. To date, the ACDM model — with
the addition of standard perturbation theory and Newtonian N-body numerical
simulations — has explained most of our cosmological observations.

There have been, however, a growing number of tensions in the past two

81t is useful to point out that ‘isotropic’ here means that the Universe is observed to be
the ‘same’ in every direction. Homogeneity, is a stronger condition that states that something
is observed to be isotropic from every point in the Universe.

9Many subtleties have been omitted here for ease of reading.
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decades between the predictions of the ACDM model and observations. These
tensions include the ‘lack of power” at the largest scales in the CMB power spec-
trum, and the recent 3.7¢ tension between local measurements of the Hubble
parameter [17, [18] compared to the inferred value from the CMB [19]. Fur-
thermore, there is a growing tension with the lack of ‘direct observation’ of the
‘dark sector’ of the Universe. These tensions may be — as most would lead one
to believe — due to of insufficient precision, or systematic errors.

While cynicism is an easy hole to fall into, there are groups around the world
who are looking beyond the standard model of cosmology. One contribution to
this debate, Wiltshire’s timescape model |20} 2], 22], claims that the expansion
is not actually accelerating. Rather, our perception of this accelerated expan-
sion is more of a fundamental issue associated with how one calibrates time
parameters in the presence of cosmological backreaction. Wiltshire’s group has
also made steps towards reducing the need for dark matter in galaxies [23] and
strong lensing [24]. Only time will tell if the dark sector of the Universe is fun-
damental or if it is an emergent property of our observations and biases.

In this thesis we will discuss a variety of topics surrounding black holes.
Namely, black holes in cosmology, their near horizon limits, and their inter-
action with gravitational waves. All the ideas explored in this thesis aim to
form theory that will aid observation in the coming decades. We will begin in
Chapter [2| by giving a brief overview of the 3+ 1 formalism in general relativity.
We will then introduce a unusual slicing for cosmological spacetimes — The
Painlevé-Gullstrand slicing. In this slicing, we will see that space is no longer
expanding, rather fluid elements (commonly, thought of as galaxies) are reced-
ing away from each other. This will potentially provide a natural framework for
the question of what is “motion and what is expansion”. This chapter will in-
vestigate the FLRW spacetime and discuss how all of the symmetry generators
transform under this choice of slicing. We will then provide a sort-of catalogue
of cosmologies in this slicing. Namely, de Sitter space, the Kottler spacetime,
and the McVittie spacetime.

In Chapter [3| we shall investigate a new series of articles which claim that
black holes couple with the expansion of the Universe. The proposed mecha-
nism for this is black holes leaking dark energy into the Universe. We discuss
how black holes coupling to the large scale dynamics of the Universe is implau-
sible due to the truly immense separation of scales. We then use various exact
solutions of black holes embedded in expanding spacetimes to show there is no
correlation on theoretical grounds. For this, we use similar slicings of spacetime
as we did in chapter 1, building on the ideas of expansion versus motion.

In Chapterwe discuss (Schwarzschild) black and white holes. In particular,
we will show that by the introduction of a function depending solely on the
radial coordinate, r, one can obtain a static black and white hole in horizon-
penetrating coordinates. Secondly, we will move to the near-horizon form of



these spacetimes and show that a clear distinction can be made between a
“black and white” horizon. We further introduced a function of time as well.
This spacetime will now describe a ‘black-to-white hole bounce’. Finally, the
action of this bounce in the transition region will be investigated in order to
discuss how quantum physics would be affected by this ‘bounce’.

In Chapter 5| the black hole gravitational memory effect is explored. The
memory effect has been shown to be one vertex of the infrared triangle [25]; the
other two being asymptotic symmetries and soft theorems. The infrared trian-
gle is a figurative triangle that illustrates how these three aspects of physics —
which previously seemed disconnected — in recent years have been shown to
be mathematically related. The black hole memory effect in this scheme illus-
trates that when a gravitational wave strikes a black hole, the spacetime is left
permanently altered. Amazingly, the linear order approximation of this change
is seen as a BMS supertranslation at null infinity, Z. This effect has been dis-
cussed in the literature for close to ten years; for instance see refs [26] 27, 28§].
However, the supertranslations of the Kerr solution have not been previously
calculated. We will do exactly this in Chapter 5 — compute the supertrans-
lated Kerr spacetime and discuss how the asymptotic charges are changed due
to a gravitational wave. In years to come we expect the gravitational memory
effect to be detectable and so further development of this formalism with exact
solutions such as the Kerr spacetime may prove vital.

In Chapter [f] we compute the memory effect for a more general black hole, the
Kerr—-Newman spacetime. With the presence of an electromagnetic field (the
gauge field), the memory effect becomes slightly more interesting. A similar
investigation was undertaken by Donnay et.al [2§] for the Reisnner—Nordstrom
solution. In their paper it was found that there is a permanent change in
the gauge field as well as the spacetime metric; this is also the case for the
Kerr-Newman spacetime. We further bring the Kerr-Newman spacetime into
its extremal near horizon form to examine the memory effect as seen from an
observer near the horizon. Following the calculations from refs [28], 29], we find
that there is a non-trivial change in the electromagnetic charge generator on
the horizon. This implies the existence of soft electric hair that is implanted
from the passage of a gravitational wave. The effect of gravitational waves on
the horizon charges & the electromagnetic field and its ties to the AdS/CFT
correspondence may prove to aid our understanding of quantum gravity.



Chapter 2

Cosmology in
Painlevé—Gullstrand
coordinates

Cosmology is most typically analyzed using standard co-moving coordinates, in
which the galaxies are (on average, up to presumably small peculiar velocities)
“at rest”, while “space” is expanding. This, however, is merely a specific co-
ordinate choice; and it is important to realise that for certain purposes other,
(sometimes radically different), coordinate choices might also prove useful and
informative, but without changing the underlying physics. Specifically, herein
we shall consider the k£ = 0 spatially flat FLRW cosmology but in Painlevé—
Gullstrand coordinates — these coordinates are very explicitly not co-moving:
“space” is now no longer expanding, although the distance between galaxies is
still certainly increasing.

This particular coordinate/slicing choice, therefore, further provides a natu-
ral way of addressing the difference between (peculiar) motion versus expansion
in cosmology in astrophysics. Whether space is expanding or the galaxies are
receding — the physical redshift we observe is the same. Since space expanding
is a more cosmology based concept and galaxy motion is more of an astrophysi-
cal concept, Painlevé—Gullstrand coordinates provide a middle ground for these
two fields.

Working in these Painlevé-Gullstrand coordinates provides an alternate view-
point on standard cosmology, the symmetries thereof, and also makes it some-
what easier to handle cosmological horizons. With a longer view, we hope that
investigating these Painlevé-Gullstrand coordinates might eventually provide
a better framework for understanding large deviations from idealised FLRW
spacetimes. We illustrate these issues with a careful look at the Kottler and

McVittie spacetimes.

Coordinate freedom in general relativity is an extremely powerful tool; but
a very subtle one that took almost 45 years for most of the general relativ-

7



ity community to fully internalize. A judicious choice of coordinates can often
make some aspect of the physics easy and obvious, but may make other aspects
of the physics more obscure. On the other hand, no coordinate choice, (no
matter how obtuse), can actually change the underlying physics. For instance,
at a purely theoretical level, locally geodesic and Riemann normal coordinate
systems greatly simplify manipulations leading to the Bianchi identities. At a
more physical level, locally geodesic and Riemann normal coordinate systems
greatly simplify analysis and understanding of the Einstein equivalence princi-
ple. See any of a vast number of relevant textbooks for more details on these
issues [30, BT, [32], B3], 34, [35} [36], 37, 38, [39) 40}, 41].

In this chapter we will explore some unusual coordinate choices in cosmology.
While typically in a cosmological setting one uses comoving coordinates, tied
to the average Hubble flow, this is by no means a necessary choice. Choosing
non-comoving coordinates, (specifically, a cosmological variant of the Painlevé-
Gullstrand coordinates) will simplify some aspects of the discussion, while (ap-
parently) making other aspects more complicated, but without changing the
underlying physics. For relevant background on Painlevé-Gullstrand coordi-
nates see references [42], 43, [44] [45] 46], 47, [48, [49], 50, 511, 52} 53], 54], B5].

Explicitly choosing a cosmological variant of the Painlevé-Gullstrand coordi-
nates will allow us to eliminate the expansion of “space”. The price we pay here
is that typical galaxies will now be represented by “moving” Eulerian observers
— the distance between galaxies will still be increasing, there will still be a Hub-
ble flow. Furthermore, in these Painlevé-Gullstrand coordinates the light cones
are “tipped over” so that “faster-than-light” with respect to non-expanding
“space” is not the same as “faster-than-light” with respect to the locally de-
fined light-cones. This provides an alternative viewpoint on the Hubble expan-
sion, one that some cosmologists might be more comfortable with. We carefully
consider the symmetries of FLRW spacetime, the crucial difference between ap-
parent horizons and causal horizons, and as an example of large deviations from
FLRW consider several versions of the Kottler and McVittie spacetimes. Our
conventions will be those of Misner-Thorne-Wheeler [32].



2.1 Preliminaries: Definition of a Foliation

Any spacetime (M, g) that is globally hyperbolic can be foliated by a family of
spacelike hypersurfaces, ¥ ;. We define a foliation or slicing by supposing there
exists a scalar field, £ on M (which has non vanishing gradient), such that each
hypersurface is a level surface of t.

VteR, X,:={peM,t(p) =t} (2.1)
Since the gradient of ¢ does not vanish, the ¥, are non-intersecting:
Y. NEy =9 for t#£t" (2.2)

Each hypersurface, X, is called a slice of the foliation. Generally, we assume
the hypersurfaces to be spacelike and thus the foliation covers M:

M= ]z, (2.3)

teR

Foliation Kinematics

The kinematics of a foliation are determined by the 3-dimensional slices, >, the
infinitesimal neighbouring slice, ;. 4; and the 4-dimensional space that fills the
space between the slices. Misner, Thorne, and Wheeler, [56] and Alcubierre [57]
discuss physical notions that are required to give the chosen foliation structure
a sense of “rigidity”. The physical notions are:

e A notion of how to measure proper distances given by the metric, h;; .
This is often called the induced metric on the hypersurfaces.

e The lapse function which defines a notion of proper time between slices.

e The relative velocity of observers travelling normal to the slices (Eulerian
observers) and the worldlines corresponding to constant spatial coordi-
nates. This is given by the shift vector, 3.

Terms such as “velocity” and “observer” are used here simply for physical mo-
tivation, they are not intrinsically required.

Eulerian Observers

The idea of Eulerian observers is fundamental to the 3+ 1 splitting of spacetime.
We can regard n, the normal vector to the hypersurfaces (see as
the 4-velocity of an Eulerian observer. The worldlines of Eulerian observers are
obviously orthogonal to the hypersurfaces ¥;. One may physically interpret
this as meaning that the spacelike hypersurface, > ;, is locally the surface of
simultaneity of the Eulerian observers.



Lapse Function

Recall that the normal vector to ¥;, m, which is timelike and future-directed
must be collinear to the vector Vi. Hence we will write

n:=—NVt, (2.4)

1 1/2
Vit -Vt

The minus sign here is chosen so that n is future-oriented. Furthermore, the

with

value of NV ensures that n is a timelike unit vector with norm = —1. The scalar
field N is the lapse function, coined by Wheeler in 1964 [58]. By construction we
also have N > 0, i.e., the lapse function never vanishes for a ‘regular’ foliation,
or equivalently,

n =—Ndt. (2.6)

To properly understand the physical interpretation of the lapse function, let
us introduce the normal evolution vector:

m = Nn, (2.7)
i.e., it has the properties
m-m=-N> and V,t=m'V,t=1 (2.8)

A consequence of this last property is that the hypersurface ¥, 5 can be ob-
tained from the previous hypersurface, ¥;, by the ‘small displacement’ m dt.
In particular, one can show if p corresponds to a point with the coordinate
position, x, then

t(p") =t(x+mot) =t(p) + ot. (2.9)

The last equality shows p’ € ¥, 5. Hence we say the vector m dt ‘carries 3,
into X5’ . This notion is perfectly described by the Lie dem’vativd] as the Lie
derivative is associated directly with generating diffeomorphisms between man-
ifolds (in this case, hypersurfaces). We describe the action of the Lie derivative
of the curves and tangent vectors of ¥; along m as ‘evolving the hypersur-
face along the normal direction’. This justifies the name “normal evolution
vector”.

Finally, to understand the role of the lapse function better, let us consider two
events on a worldline of some Eulerian observer. Let t be the time coordinate

of the event p € ¥, and t + §t the ‘time’ of p’ € 3, (refer to [Figure 2.1| for
an illustration). We note that the proper time between these two events, o7

'For an understanding of why the Lie derivative is natural for describing this scenario, the
reader may refer to Appendix B of ref [36].
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Figure 2.1: Diagram of a point in 3; and ;5 from [59]. The hypersurface
Y, evolves into ;.5 by the Lie derivative along m. The point p' € ¥,
is determined by p € ¥ by the change in m over some time, Jt i.e., by a
displacement m dt. The length of this displacement is the change in proper
time, 7, for an Eulerian observer following the worldline connecting p and p'.

(measured by the Eulerian observer) is given by the metric length of the timelike
vector linking these two events:

(2.10)

This justifies the name “lapse function” given to N. N relates the time coor-
dinate which labels the slices of the foliation to the physical time, 7 measured
by an Eulerian observer. Without the notion of observers, the lapse function
is said to determine how far consecutive slices are from each other in the slice-
orthogonal time direction at each point.

Shift Vector

To define a shift vector, B, we require the notion of coordinates on our spacetime
manifold. We introduce the natural basis, 8, = (8;,0;) of the tangent place,
T, (M) associated with the coordinates, z#. The vector which we usually refer
to as the ‘time vector’, d;, has the same properties as m. In particular, the
tangent vectors on 7, (3;) can evolve along either 8; or m and the difference
is given by a shift in reference coordinates. The two vectors only coincide if
the spatial coordinates ¢ are such that the 2' = constant lines are orthogonal
to X 4. The difference between 8; and m was also coined the shift vector by
Wheeler in 1964 [58] and is denoted by £:

For an illustration of this difference, one may refer to [Figure 2.2 Note that
the shift vector is tangent to the hypersurface as n - 3 = 0. One can think of
the shift vector as generating spatial diffeomorphisms relating points between
successive slices [60].

11
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x! = cons.

Figure 2.2: Tllustration of the shift vector, B from [59]. The coordinates (z*) on
Y, define the ‘time vector’, 8, by the z° = constant lines. The shift vector is
the difference between the time vector and m, therefore, the difference between
the spacetime coordinates 2%, and the 2 = constant lines.

341 Splitting of the Metric

The components of the metric tensor, g, on M with respect to the coordinates
x# are defined as

g = g da’ ® da”. (2.12)
We can therefore compute each component by using
Guw =49 (a;u 81/) (213)
Using ([2.11) we find
goo =9g(8y,8;) = 8,- 8, = —N* + 3- 3. (2.14)
Similarly we haveﬂ
goi = (m+B)-0; =5, (2.15)

since m - @; = 0 by definition. Finally, the spatial part of the metric must be
the induced metri(ﬂ

9ij = hij. (2.16)
Collecting all of these components together we havelﬂ
—N?+ B B* /Bj)

g < Bi hij (2.17)

2Note that we have used only Latin indices for the scalar product of the shift vector as it
is tangent to the constant time hypersurfaces, meaning there is no time component

3All Latin indices (spatial indices) are raised and lowered by the induced metric on the
spatial slices.

4Interestingly, if we consider the evolution of the 3-metric, h, by taking the Lie derivative
(denotes byL) along m we find:

Lonhyy = —2NK,,.

This relationship means that the extrinsic curvature can also be thought of as a measure of
how the induced metric evolves in time.
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or,
ds* = g, da* da” = —N?dt* + hy; (dz’ + B*dt)(da? + B7dt). (2.18)

The inverse metric in matrix form il
1 /-1 B
. ) ! o
g N2 (/Bz Nth]_ﬁzﬁj)‘ (219)

2.2 Painlevé—Gullstrand Slicing

In this chapter, we will discuss Cosmology in Painlevé-Gullstrand coordinates.
While one may see the relevant literature [42, 43| 44l 45] 46, 147, 49| 48, 50,
511, 52, (53], 541, 55], we will present a brief definition to provide a self-contained
experience.

2.2.1 Strong Painlevé—Gullstrand Coordinates

We shall label any coordinate system as being in strong Painlevé—Gullstrand
form if the spacetime line element can be written as

= 2
ds2=:—dﬂ-+‘df-5<n). (2.20)

L.e., the metric can be written in the following form:

-1+ B B* ‘ Bi }
G = . (2.21)
8 [ B 10y
Equivalently, for the inverse metric
-1 ‘ —B
w — . - —
g [ Ay } . (2.22)

From this abstract mathematical definition, it is not entirely obvious what
quality we are looking for in our spacetimes. It is in fact that the spatial slices
are flat, shown explicitly by the d;; in the space-space component of the metric
(12.21)).

2.2.2 Weak Painlevé—Gullstrand Coordinates

We shall say that a coordinate system is of weak Painlevé-Gullstrand form if
the spacetime line element can be written as
2

dﬁ:-N%ﬁ+%ﬁ—ﬁw

(2.23)

50ne may notice that while gi; = h g™ # h¥ in general. They are, however, equal in

the case of vanishing shift.

R
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I.e., the metric can be cast in the form

[ =N+ 85 | =B
gﬂy—{ 7, i 5 ] (2.24)

Equivalently, for the inverse metric

uro__ _]'/N2 _BZ/NQ
g = [ _Bj/NQ 57 — B Bj/N2 ] . (2.25)

The difference here being that, now, the lapse is no longer restricted to
being unity. In other words, we recover (2.18) and ([2.19) with h;; restricted to
spatially flat slices only.

2.2.3 Conformal Painlevé—Gullstrand

Lastly, we shall say that a coordinate system is of conformal Painlevé—Gullstrand
form if the spacetime line element is conformal to (either strong or weak versions
of) the Painlevé-Gullstrand line element. Either

N 2
ds? = 02 {—dt2 + ‘df— 3 dt‘ } , (2.26)

or

= 2
ds? = 02 {—N2 d? + ‘d:f— 3 dt‘ } . (2.27)

With all the preliminaries out of the way, we will move to applying this infor-
mation to cosmological spacetimes.
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2.3 Spatially lat FLRW cosmology

Observational evidence points to the spatially flat & = 0 FLRW
cosmology as being an excellent zeroth-order approximation to the very large-
scale structure of spacetime — beyond the scale of statistical homogeneity [30,
31, 37, B2]. As discussed, however, there are growing tensions in cosmology
that are perhaps reaching a tipping point. Therefore, one ultimately might be
interested in investigating large non-perturbative deviations from FLRW cos-
mology [61], [62] 63, 64, [65], 66, [67, 68]. For now we shall focus on the idealised
case of exact FLRW spacetime. This is simply because we wish to develop an
interesting catalogue of spacetimes that communicate with the standard model
cosmologists first and foremost. Standard presentations of FLRW spacetime can
be found in many places, see for instance refs [30, B} 32) 33, 34}, 35, 36l B7, 39,
38, 140, [41]. Let us start by considering several useful coordinate systems.

2.3.1 Standard comoving coordinates
Spherical polar version

The most common presentation of the spatially flat £ = 0 FLRW cosmology is
in terms of the explicit line element

ds* = —dt* + a(t)*{dr* + r2dQ?}, (2.28)

where dQ? = d#? + sin?# d¢?. In these coordinates the ¢ coordinate is the
physical time measured by a fiducial observer of normalized 4-velocity V¢ =
(1,0,0,0), so that V, = (—1,0,0,0). The purely radial ingoing and outgoing
light rays are described by the time-dependent opening angle

dr 1
—|=—. 2.29
dt| af(t) (2.29)
In these coordinates the t = (constant) spatial slices are 3-flat but expand-
mg
ds3 = a(t)*{dr* + r*dQ*}. (2.30)

For the spatially flat case kK = 0 one has a choice as to whether the coordinate
r is dimensionless while the scale factor a has units of length, or wice versa.
For nonzero spatial curvature, if one sets k = &1 then one is forced to take the
coordinate r to be dimensionless, while the scale factor a has units of length.
We shall make the same choice in the spatially flat £ = 0 case.

15



Cartesian version

One could equally well use comoving Cartesian coordinates for the spatial
slices

ds? = —dt* + a(t)*{dz* + dy® + dz*}. (2.31)

Or equivalently,

ds3 = a(t)*{dz? + dy® + d2*}. (2.32)
Doing so will not change the physics, just the presentation. For instance the
light cones are now described by the time-dependent opening angle
dx 1
—|=—. 2.33
dt a(t) (2:33)
For the fiducial observers we still have the normalized 4-velocity V* = (1, 0,0, 0),
so that V, = (—=1,0,0,0).

2.3.2 Conformal time coordinate

Define a conformal time coordinate by

n(t) = /0 %- (2.34)

Note that with our conventions the scale factor a has units of distance so that
the conformal time is dimensionless. One can formally invert this definition to
obtain t(n), and thereby implicitly define a(n) = a(t(n)).

Spherical polar version
Using conformal time we can re-cast the line element as
ds® = a(n)*{—dn® + dr* + r*dQ?}. (2.35)

This choice of coordinate system makes manifest the fact that £ = 0 FLRW
spacetime is conformally flat (the Weyl tensor is identically zero).

This conformal time coordinate has the technical advantage that the radial
ingoing and outgoing light rays are now particularly simple

dr

—| =1 2.36

dn (2.36)
In contrast, the proper time (clock time) measured by a fiducial observer, now
with normalized 4-velocity V¢ = ﬁ (1,0,0,0), becomes more complicated.

Note that for the related co-vector one now has V, = a(n) (—1,0,0,0). For the
proper time one has

() = / " () dn. (2.37)

This is a common theme of coordinate freedom — coordinates can often be
chosen to make some formulae simpler, (in this case, the light cones), at the
cost of complicating other formulae (in this case, the proper time).
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Cartesian version

We could equally use comoving Cartesian coordinates for the spatial slices and

re-write (2.35) as
ds® = a(n)?{—dn? + dz* + dy? + d2*}. (2.38)
The light cones are now particularly simple

dz

—| =1 2.
= (2:39)

This simplified light cone structure makes the causal structure in these confor-
mal coordinates particularly easy to deal with. For the fiducial observers we
again have both V* = ﬁ (1,0,0,0) and V, = a(n) (—1,0,0,0).

2.3.3 Painlevé—Gullstrand coordinates

We shall now introduce the cosmological Painlevé-Gullstrand coordinate sys-
tems. (For relevant background discussion see references [42 43 [44), 145 46, 147,
49, 48, (501, 511, 52, (3] B4, 55].)

Spherical polar version

Metric: Starting from the standard line element , let us now make the
time-dependent coordinate transformation 7 = a(t) r. Then 7 is a Schwarzschild
radial coordinate, based on the notion of area, since the area of a 2-sphere of
coordinate radius 7 is simply 47 7%. (Consequently, these are sometimes called
“area coordinates”.)

Furthermore
A7 = a(t) dr + ra(t) dt = a(t) dr + H(t) 7 dt, (2.40)
where H(t) = a(t)/a(t) is the Hubble parameter. Therefore,
a(t)dr =dr — H(t)rdt. (2.41)
Consequently in these coordinates the line element becomes
ds* = —dt* + {[dF — H(t) 7 dt]* + 72dQ?}. (2.42)
That is

ds® = —(1 — H(t)?7*) dt* — 2H(t) 7 dF dt + {d7* + 72dQ?}. (2.43)
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Note that the line element only contains the scale factor implicitly, via
the Hubble parameter H(t). Furthermore, in these new coordinates the ¢ =
(constant) spatial slices are again 3-flat, but are now non-ezpanding

ds; = dr* + 7dQ2. (2.44)

Adopting ADM terminology, as shown in (or see for instance
refs [69] [70]), all the non-trivial aspects of the & = 0 FLRW spacetime geome-

try have now been pushed into the shift vector, 8; = go; = (—H(t) 7,0,0). The
lapse function is still unity, one still has N2 = —g' = 1. Coordinate systems
of this type are called Painlevé-Gullstrand coordinates [42] 43] 144] [45] 46, [47].
Very many, (but certainly not all), physically interesting spacetimes can be put
into this Painlevé-Gullstrand form. For example: all of the Schwarzschild space-

2
o)

all of the Lense-Thirring spacetime [52, 53, 54, 55], all spherically symmetric

time [49) 50], most of the Reissner—Nordstrom spacetime (the region r >

spacetimes (at least locally) can be recast in this formﬂ but not the Kerr or
Kerr—Newman spacetimes [71] [72].

In these Painlevé—Gullstrand coordinates there is manifestly an apparent
horizon, (where g; = 0), at the Hubble radius Tuuppe = 1/H(t). Addi-
tionally, the fiducial Eulerian (geodesic) observers have covariant 4-velocity
V, = (—1,0,0,0), which now corresponds to the contravariant 4-velocity V' =
(1, H(t)7,0,0). So a typical galaxy (ignoring peculiar velocities) is certainly
“moving” in this coordinate system. While “space” is now non-expanding, the
Hubble flow is explicit, with V" = H(t) r.

The radial ingoing and outgoing light rays are now described by

dr
— —H(t)r| =1. 2.45
5 - o (249
That is
T By (2.46)
dt ’ '
whereas a typical galaxy (vanishing peculiar velocity) is moving with 3-velocity
dr
—=H(t)r 2.47
= H, (247

which safely lies inside the light cone.

Tetrad: A suitable co-tetrad is easily read off from the line element:

e, =(1,0,0,0); ¢y =(—Hr1,0,0); €, =(0,0,70); e =/(0,0,0,7sin).
(2.48)

6In spherical symmetry the only obstructions to the global existence of Painlevé—
Gullstrand coordinates are the possible existence of wormhole throats, (since then the area
radial coordinate cannot be monotone), and/or negative Misner—Sharp quasi-local mass [46],
(since then the shift vector is forced to become imaginary).
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The corresponding tetrad is then given by the timelike leg
e;* =Ve=(1,H(t)7,0,0); (2.49)

and the particularly simple spatial triad

1 1
e’f‘a = (07 1; 07 0)’ eéa - (07 O’ — O) ’ eéa = (O’ 07 07 —> ° (250)
r

rsin 6
It is easy to check that with 7, = diag{—1,1,1, 1} one has (as expected):
Gab = Nii €0 €5 i = Yab €n” €5 (2.51)
A brief computation yields the orthonormal components of the Riemann ten-

Sor

Riwip = Rigsp = qu%(& = -H?—H= _SQ Rir6 = Rigrg = Rogog =

(2.52)
The Weyl tensor is (as expected) identically zero, while for the Einstein and
Ricci tensors one has

Gy = 3H?; G = Gy = GquS = —3H%— ZH; (2.53)

and
Ry = —3H—3H = -3 g; Ris = Ryy= Ry =3H>+ H.  (2.54)

The Ricci scalar is R = 12H? + 6H.
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These orthonormal components (that is, components in the basis defined
by the orthonormal tetrad) are identical (as they should be) to the standard
orthonormal components defined in comoving coordinates. The cosmological
Friedmann equations will be unaffected. The fiducial observers, with 4-velocity
Ve =(1,H(t)70,0) are geodesic.

Cartesian version

One could also construct a Cartesian version of Painlevé—Gullstrand coordi-
nates.

Metric: Define

Z=T cosb. (2.55)

=3
<
=
)
o
o
n
ASS
Y|
Il
=3
<
=
>
<
=
=

T =

Then 7 = \/Z2? + y? + 22, and our spherical polar Painlevé-Gullstrand version
of k =0 FLRW spacetime,

ds? = —(1 — H(t)*7)dt* — 2H (t) 7 dF dt + {d7* + 72dQ?*}, (2.56)

now becomes
ds* = —(1— H(t)*{z* + y* + 2°})dt* —2H(t) {zdz + ydy + zdz} dt

2.57
+ {dz* + dy® + dz*}. (2:57)

That is

ds? = —dt* + {[dz — H(t) 2 dt]* + [dy — H(t) ydt]* + [dz — H(t) zdt]*} .

(2.58)
In 3-vector notation the line element is
ds? = —dt* + [d7 — H(t) Ta1]’. (2.59)
The light cones are now simply
Cg —~Hb) | =1. (2.60)
That is -
% — H()F+n, (2.61)

where 7 is an arbitrary unit vector in 3-space.

Since a typical galaxy (zero peculiar velocity) is moving with 3-velocity

dz -
—=H({)Z 2.62
= HE (262)

the Hubble flow lies safely inside the light cones.
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Tetrad: A suitable co-tetrad is easily read off from the line element:

'y =(1,0,0,0); €', =(—Hz,1,0,0):

A . (2.63)
e’y =(—Hy,0,1,0); €, =(—Hz0,0,1)
The corresponding tetrad is thus:
e;*=(1,Hz,Hy,Hz) e;*=1(0,1,0,0);
= (L HE H H2) e = (0,1,0,0) 6

e;* =(0,0,1,0) ; e:*=(0,0,0,1) .

Note how simple the spatial triad now is: e/ = §,7. A brief computation yields
the orthonormal components of the Riemann tensor

- a

The Weyl tensor is (as expected) still identically zero, while for the Einstein
and Ricci tensors one has

Gy = 3H2; G;j = —{3H2 + 2H}5ij; (2.66)

and ..
. a .
Ry = —3H —3H? = -3 = Ry= {H + 3H?}5,;. (2.67)

The Ricci scalar is still R = 6H + 12H?.

These orthonormal components (that is, components in the basis defined
by the orthonormal tetrad) are identical (as they should be) to the standard
orthonormal components defined in the usual comoving coordinates. Conse-

quently the cosmological Friedmann equations will be unaffected. The fiducial
observers, with 4-velocity V* = (1, H(t) z, H(t) y, H(t) Z) are geodesic.

2.3.4 Summary

Cosmological Painlevé—Gullstrand coordinates, (appropriate to k& = 0 FLRW
spacetime), have some very nice features. Three-space is flat and non-expanding
— but the price one pays for this is that the light cones are “tipped over” and
that the galaxies are “moving” with respect to “space”.

The Hubble flow is then very explicit
dz

— = H(t)7. 2.
= H(1)7 (268)
The light cones are characterized by
dz -
d—f —H)F+#n, |a|=1 (2.69)

There is as always a “conservation of difficulty” inherent in any coordinate
choice; since the underling physics cannot change.
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2.4 Symmetries of spatially flat FLRW:
Explicit, partial, and hidden

The FLRW spacetime possesses a number of explicit symmetries (associated

with Killing vectors) and hidden symmetries (associated with Killing tensors

and Killing—Yano 2-forms). These symmetries are often more obvious in appro-
priately chosen coordinates. We present several examples below.

2.4.1 Killing vectors

The explicit symmetries of FLRW spacetime are associated with the rotational
and translational Killing vectors.

Spherical symmetry

The 2-sphere S?, with metric ds? = df? + sin? @ d¢?, can be shown to have an
over-complete set of linearly dependent (rotational) Killing vectors. They can
most easily be chosen to be (see for instance [36 page 139)]):

) cos ¢ sin ¢
Ry = —sin¢g 0y — " Op; Ry = cos ¢ 0y — - Op; R3 = 0y; (2.70)
and are subject to the constraint
(cos ¢ tanf) Ry + (sin ¢ tan )Ry + R3 = 0. (2.71)

It is easy to check that these three vectors all satisfy Killing’s equation, that is
[R123})(ap) = 0.

Note that Rj is particularly simple; and has the obvious physical interpre-
tation of corresponding to a translation in the azimuthal ¢ coordinate; a ro-
tation around the poles located at 8 € {0,7}. In counterpoint R; and R
at first look a little more complicated, but there is no substantial difference;
they correspond to rotations around the points (6 = 7/2;¢ € {0,7}) and
(0 =7m/2;¢ € {n/2,3m/2}) respectively. (These are the points where the Killing
vectors Ry and R, vanish.) These Killing vectors defined on S? can then be
bootstrapped without alteration into the generic spherically symmetric 3-space:
ds? = g, (r) dr? 4+ 1r2(d6? + sin® 0 dp?).

Specifically, flat 3-space in Cartesian coordinates, with line element given
by ds? = da? + dy? + dz?, is also spherically symmetric and exhibits an over-
complete set of linearly dependent (rotational) Killing vectors:

Ry =y 0, — 20y; Ry =20, —x0,; R3 =20, — y 0y; (2.72)
subject to the constraint
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This presentation makes manifest the intimate relationship between the (rota-
tional) Killing vectors and the angular momentum operators of quantum me-
chanics. (For some specific purposes we see that Cartesian coordinates are
clearly superior to spherical polar coordinates.) These Killing vectors can then
be bootstrapped into the (3+1) dimensional FLRW spacetime; in any of the
various coordinate systems discussed above.

Spatial translation symmetry

The FLRW spacetimes also possess 3 linearly independent spatial translation
Killing vectors. For the & = 0 FLRW spacetime in standard comoving Cartesian
coordinates, where one has ds? = —dt* + a(t)*{dz?® + dy* + dz?}, these spatial
translation Killing vectors are simply

T1 = 8w7 TQ = 8y7 T3 = az. (274)

However, since 7' = a(t)z’, and we want to find the translation Killing vectors
for the Painlevé-Gullstrand form of FLRW

ds? = —dt? + {[dz — H(t) 2dt]* + [dy — H(t) 5 dt)* + [dz — H(t) zdt]*}

we observe that

o o0 0w o ot| 0 9
o~ owor  owow od| o Waz (2.76)

So in the Painlevé—Gullstrand Cartesian coordinate system the space translation
Killing vectors are

Ty =a(t)dy;  Tr=a(t)dy;  Ty=alt)o-. (2.77)

If one wishes instead to use comoving spherical polar coordinates then the
spatial translation Killing vectors appear to be somewhat less intuitive

dx® 0 cosf cos ¢ sin ¢

T, =0, = 5 %:sln0c0s¢8T+T89—rsin0 0y ;(2.78)
B Ot 0 _ cos f sin ¢ cosog .
T,=0, = dy 0w = sinf sin¢ 0, + . 89+rsin0 0y (2.79)
ox® 0 sin ¢/
T3=0, = 9% Do cosf 0, — Oy . (2.80)

That is: while one can certainly use spherical polar coordinates to describe
the spatial translations, after all, it’s just a coordinate change. It is, therefore,
unsurprising that the relevant Killing vectors then (superficially) appear to be
somewhat more complicated.
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Similarly if one wishes to use Painlevé—Gullstrand spherical polar coordinates
then the spatial translation Killing vectors are

_ _ : cos cosg .  sing .
Ty =a(t)0: = a(t) {sm@ cos ¢ Oy + ——— Oy —d 8¢} ;(2.81)
Thy=a(t)0y; = a(t) {sinH sin ¢ 05 + M Oy + EO_S¢ 8¢} ;(2.82)
Tsind
Ty =a(t)d: = a(t) {cose By — 5129 ag}. (2.83)

In short, for some purposes the use of spherical polar coordinates is less useful
than one might hope.

Time translation not-quite symmetry

Since the FLRW spacetime is explicitly time dependent there is no Killing
vector for time translations — however, one does have the next best thing — a
conformal Killing vector for time translations. Specifically the timelike co-vector
T° = —a(t) dt, that is T, = —(a(t),0,0,0), which in comoving coordinates has
vector components 7% = a(t) (1,0,0,0), and in Painlevé-Gullstrand coordinates
has vector components 7% = a(t)(1, Hz, Hy, HZ), is a conformal Killing vector
which satisfied]

Lrg=a(t)g. (2.84)
Explicitly

T(a;b) = a(t) Gab - (285)

This is enough to guarantee a conservation law for affinely parameterized null
geodesics

(#) 55 = (constan) (2.86)

— = (constant). .
a(t) =+ = (consta

The existence of this timelike conformal Killing vector is ultimately the rea-
son why the locally measured energy of freely propagating photons is propor-
tional to the inverse of the scale factor

E(t) a(t) = (constant). (2.87)

Equivalently, this timelike conformal Killing vector guarantees that the locally
measured wavelength of freely propagating photons is proportional to the scale
factor

A(t) o< a(t). (2.88)

The existence of this timelike conformal Killing vector in FLRW spacetimes is
often not emphasized or explained in pedagogical presentations, but is central
to understanding photon propagation over cosmological distances.

"recall that £ is the Lie derivative.
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2.4.2 Killing tensors

In addition to the obvious Killing vectors (corresponding to rotations and spatial
translations), and the trivial Killing tensors that one can build out of the metric
and the Killing vectors, the k = 0 FLRW geometry possesses two (non-trivial)
Killing tensors. These satisfy the 3-index version of Killing’s equation K 4,) =
0.

Spherical symmetry

Due to spherical symmetry there is a non-trivial Killing tensor (see for in-
stance [53]) which in comoving spherical polar coordinates takes the form

(Kq)apy dz®dz’ = a(t)r*{d6?+sin? 0 dp*} = (a(t)?r® dO)*+(a(t)*r?sinf do)>.

(2.89)

In components
(Kq)ap = a(t)’r*{gap + Vat Vit — a(t)* Vur Vyr}. (2.90)
Using the Painlevé-Gullstrand 7 coordinate, where 7 = a(t)r, one simply

has
(KQ)ap = 72 {gap + Vat Vit — (VoF — H(t) TV ot) (VyF — H(t)FVt)}. (2.91)

Then in Painlevé-Gullstrand, spherical polar coordinates a brief calculation
yields

(Ko)a dz® ® dab = 7*{d#* +sin? 0 dp*} = (7 dF)? + (F*sinf dp)?.  (2.92)

Furthermore in Painlevé-Gullstrand Cartesian coordinates one can write

0 0 0 0
0 PP+ -3y —ZZ
(Ko)w = | 15 212 gz | (2.93)
0 -—zz —yz 2+

that is
(KQ)ap dz*@da’ = (22 4+ 7% +22)(dz* +dg? +dz%) — (2 dz+ g dy+2dz)?. (2.94)

All four of these different coordinate representations of the angular Killing ten-
sor Kq carry the same mathematical and physical information. It is easy to
check that in any of these situations K¢ satisfies the 3-index version of Killing’s
equation [Ko|( e = 0.
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Spatial translation symmetry

There is also a non-trivial Killing tensor associated with uniformity of the spatial
slices ¥ See for instance [36, page 344]. In comoving coordinates this takes the
simple form

(Ks)ap dz” @ da® = a(t)*{dr® + r*(d6” + sin® 0 d¢’} = a(t)*{da” + dy® + dz°}.

(2.95)
This can also be written as
(Ks)ab = a(t)*(gap + Vat Vit). (2.96)
Equivalently
(Ks)ap dz® @ da’ = a(t)? {ds® + dt*} . (2.97)

Phrased in this way it is clear what happens in Painlevé-Gullstrand coordinates.
First, in Painlevé-Gullstrand spherical polar coordinates, from equation ([2.42])
one has

(K)o dz® @ dz’ = a(t)? {(dF — H(t)rdt)* + 7*(d0® +sin®6d¢?) } . (2.98)

In contrast, in Painlevé—Gullstrand Cartesian coordinates, from equation ([2.58|)
one has

(Ks)ap dz® @ dz® = a(t)2{[dg:~ — H(t)zdt]* + [dy — H(t) y dt]?
(2.99)
+ [dz — H(t) zdt]Q}.

It is easy to check that in any of these situations Ky, satisfies the 3-index version
of Killing’s equation [Kq](p;e) = 0.

2.4.3 Killing—Yano tensor

A Killing—Yano 2-form Yy, dz® Adx? satisfies the differential equation Yasep = 0.
Thus, if we define K, = Y,. g Y}y, then (with indices between vertical bars
not being included in the symmetrization process) we have

Kabie) = Yialele 9 Yigip) + Yiale 97 Yippsey = 04+ 0 = 0. (2.100)

That is, the existence of a Killing—Yano 2-form implies the existence of a 2-index
Killing tensor.

Specifically, the existence of the 2-index Killing tensor (Kgq)q dz® @ dz® that
is associated with spherical symmetry is related to the existence of a Killing—
Yano 2-form (Yq)a dz® A dz®. In comoving spherical polar coordinates

(a(t)*r? dO) A (a(t)*r?sind do)
a(t)r

(Ya)ap dz® A dz® = a(t)®r®sinf df A d¢ =
(2.101)
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In our Painlevé-Gullstrand spherical polar coordinates one simply has

(72 df) A (7 sin 6 do)

(Ya)ap dz® A da® = PP sinf do A dg = (2.102)

The Killing—Yano tensor is colloquially referred to as the square root of the
Killing tensor: Koq = Ya ¢ Yoq. Because the Killing-Yano tensor is a 2-form,
represented by an anti-symmetric matrix, if it is nonzero it can only have rank 2
or rank 4; which then forces the associated Killing tensor to either have rank 2 or
rank 4. Since the Killing tensor associated with uniformity of the spatial slices
is manifestly rank 3, that particular Killing tensor will not have an associated
Killing-Yano 2-form.

2.4.4 Summary

FLRW spacetimes possess significant symmetry structure. The spatial and ro-
tational Killing vectors are the most obvious symmetries, but they are far from
the only symmetries. The timelike conformal Killing vector can be viewed as
an approximate symmetry, one that still leads to a conservation law for null
geodesics.

More subtle are the “hidden” symmetries encoded in the non-trivial Killing
tensors and the Killing—Yano tensor. The specific choice of coordinate system
can make some of these symmetries manifest, at the cost of making other sym-
metries less obvious.

2.5 Cosmological horizons

Cosmological horizons can be quite tricky to properly define and interpret [73].
While event horizons are mathematically ‘clean’ concepts, and their use under-
lies many of the singularity theorems, there is a precise technical sense in which
any physical observer (represented by a finite-size finite-duration laboratory)
cannot ever, even in principle, detect an event horizon [74]. The point is that
event horizons are teleological, and defining them requires one to back-track
from the trump of doomﬁ. (Quasi-local horizons are much better behaved in
this regard; quasi-local horizons can be detected using finite-size finite-duration
laboratories.) In the words of Stephen Hawking [75] (applied in the context of
black hole physics):

“The absence of event horizons means that there are no black holes
— in the sense of regimes from which light can’t escape to infinity.
There are however apparent horizons which persist for a period of
time.”

Similar, related but distinct, issues arise in cosmology. One must be very careful
to distinguish quasi-local horizons from causal horizons.

80f course, this is a much more grand trump of doom than just the end of days on Earth!
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2.5.1 Apparent horizon (Hubble sphere)

Consider the 2-sphere located at 7(t), with area
S(t) = 4n 7 (t)?, (2.103)

and ask how this area evolves as the 2-sphere expands or contracts at the speed
of light

dr
— =H(t)r+1. 2.104
= H(t)7 (2.104)
Then for outgoing light rays
) _[dr _ _
Sy (t) = 8nr (E) =87 (H(t)7+1) >0, (2.105)
+
while for ingoing light rays
. _[(dr _ _
S_(t) = 8nr (E) =8nr(H(t)r—1). (2.106)

Note that S_(t) changes sign at 7(t) = H(t)~'. That is, an apparent horizon is
present at the Hubble sphere Tyupbie(t) = H(t)™' (sometimes called the “speed
of light sphere”).

One could also work in comoving coordinates where
S(t) = a(t)* 4mr(t)?, (2.107)

and

1

$.(0) = 87 {ala(t)r (1) + altPr()is (1)) = S(1) {H t s

} . (2.108)

There is again an apparent horizon when S_ = 0, at the same physical location
where

fHubble(t) = a(t) THubble(t) = H(t)_l. (2109)

This apparent horizon is emphatically not a causal horizon; there is no ob-
struction to crossing an apparent horizon.ﬂ If one wishes to work in SI units,
reinstating the speed of light, then

C

ok (2.110)

THubble(t) = a(t) rHubble(t) =

9Despite claims sometimes made in the literature, the Hubble radius is not “the distance
light travels since the Big Bang”.
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2.5.2 Particle horizon (causal horizon)

In contrast the particle horizon is a causal horizon determined by how far an
outward moving light ray could move from its source (or equivalently how far
an incoming light ray could move towards its reception point). For definiteness
let us assume the light ray is emitted at time ¢ = 0 at location © = 0, then one
is interested in solving the differential equation

dr

— =H(@{)r+ 1. 2.111
S H@) T+ (2.111)
Equivalently
dr a _ d(r/a)
— _ Fr=g=1"_ 2.112
o T at ’ (2.112)
where &t
d(r/a) = —, (2.113)
a

This has the obvious solution (¢, being the time of the Big Bang when a(t,) =
0)

1= [ (2114)
Equivalently
Fparticle(t) = a(t) rparticle(t) = a(t) n(t). (2.115)

This particle horizon is by construction a causal horizon. Note that the par-
ticle horizon has a very simple representation in terms of the conformal time
coordinate.

2.5.3 Summary

The apparent horizon (Hubble sphere) and particle horizon are distinct con-
cepts, and can occur at radically different locations:

THubble (t) = a(t) THubble(t) = HD)’ (2.116)
7:panrticle(t) = a(t) Tparticle@) = a(t) /t % = a(t) n(t) (2117)

In particular, since the Hubble sphere is not a causal horizon, one should not
attempt to apply “causality” arguments to the Hubble sphere.
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What is always true based on dimensional analysis is that
Tparticle(t) = THubble(f) X (dimensionless number). (2.118)

However, there is absolutely no reason for this dimensionless number to be of
order unity. In fact in the presence of cosmological inflation, whether it be
exponential inflation, a(t) ~ exp(Hinflation t), or power law inflation, a(t) ~ t"
with n € (0, 1], the integral n(t) = ftt* % formally diverges, pushing the Big
Bang out to negative infinity in conformal time, n, — —oo, while pushing the
particle horizon out to positive infinity, 7particie — +00. Even if cosmological
inflation switches on and off at some finite time, the particle horizon can be
made arbitrarily large compared to the Hubble radius.

2.6 de Sitter spacetime

The de Sitter spacetime is most typically presented in static coordinates:

dr?
2 _ 22\ 172 —2 192
ds* = — (1 — H*r*) dt e T A (2.119)
For this line element the Einstein tensor is Gu, = —(3H?)gqs, corresponding to
a pure cosmological constant. Using the coordinate transformation

_ HfF In(1 — H?7?%)
t=t —dr=t+ —= 2.120
L R L A - S (2.120)
we can cast de Sitter spacetime into Painlevé—Gullstrand form
ds* = —dt* + [dF — HF dt]* + 7*dQ>. (2.121)

Finally, to make it abundantly clear that de Sitter spacetime is just a special case
of FLRW spacetime, consider the specific coordinate transformation 7 = r ef’*,
so that di = eff(dr + Hrdt), and use this to recast the Painlevé-Gullstrand

form of the de Sitter spacetime in the comoving form:
ds? = —dt* + " {dr® + r?dQ*} . (2.122)

Let us now generalize this discussion, first to the Kottler (Schwarzschild-de
Sitter) spacetime, (which already presents a few subtleties), and then to the
more complex and subtle McVittie spacetime.

2.7 Kottler spacetime

2.7.1 Standard form of Kottler

The Kottler (Schwarzschild—de Sitter) spacetime is most typically presented in
static coordinates [76]:

2 dr?
ds? = — (1 — 77” _ H%:?) 4 + 2_m7"_ g A (2.123)
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For this line element the Einstein tensor is Ga = —(3H?)gap, corresponding
to pure cosmological constant, plus a central “point mass”m. The fiducial ob-
servers are in this situation best taken to be integral curves of the timelike
Killing vector, and so are described by the non-geodesic 4-velocity field

1
Ve = 1,0,0,0); V,=+/1-2m/7F— H?/2 (-1,0,0,0).
\/1—2m/f—H2F2( ) v / ( )
(2.124)
Here the 4-acceleration for this set of fiducial observers is
A = VPV, Ve = (0, g ~ H% 0, 0) . (2.125)

2.7.2 Five variant forms of Kottler

Under suitable coordinate changes, we first present three alternative Painlevé—
Gullstrand-like formulations of the Kottler spacetime:
e Using the coordinate transformation
Hr

- / 1= 2m/i(1 — 2m /7 + H2)

we cast the metric into the form

2 dr — Hr /1 — 2m/7 dt]?
d32:—<1——m)dt2+[r Vo m/T ]+f2d92, (2.127)

t

dr, (2.126)

r 1 -2

7

which we can also write as

ds® = — (1—2?7”) dt* + [L—Hrdt

J1—2m/r

This form of the metric neatly disentangles the local physics, (depending

2
+7d0%. (2.128)

only on the point mass m), from the cosmological physics (depending
only on the Hubble parameter H). Specifically, as m — 0 this becomes de
Sitter space in Painlevé-Gullstrand form (2.121)), whereas if H — 0 this
becomes Schwarzschild in standard form.

The fiducial observers (4-orthogonal to the spatial slices, so V” o dt) are
in this situation described by the non-geodesic 4-velocity field

1
Vo= ——= Hr,0,0];  V,=+/1-2m/r (-1,0,0,0).
V1-=2m/r
(2.129)

Here the 4-acceleration is

A% = VP,V = (0, g 0, 0) . (2.130)

10While most physicists would likely call this mass a point mass, the more mathematical
relativists would likely view the mass concentrated in the singularities on the boundary of
the spacetime.
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e Using the coordinate transformation

v 2m/T dr (2.131)

t:t+/ T,
1 — H?r2 (1 —2m/T + H?*/?)

we have another partial Painlevé—Gullstrand form

[dF — \/2m/T /1 — H2/2 dt]?
1— H2?

ds? = — (1 — H*P) dt* + +72d0?, (2.132)

which we can also write as
dr
V1 — H?%r2

As m — 0 this becomes de Sitter in static form (2.119)), whereas if H — 0
this becomes Schwarzschild in Painlevé—Gullstrand form.

2
ds?* = — (1 — H*™) dt* + V2m/F dt| +72dQ?, (2.133)

The fiducial observers (4-orthogonal to the spatial slices, so V” o dt) are
in this situation described by the non-geodesic 4-velocity field

1 2m
Vi=| —== —,0,0); Vo= V1-— H*? —1,0,0,0).
(m V7 ) v ( )

(2.134)
Here the 4-acceleration is

A* = VPV, Ve = (0, H*7,0,0). (2.135)

e Using the coordinate transformation

2 = H2—2
\/2m/7 + H?r d4F

t = 2.1
t t+/1—2m/f—H27_°2 ’ (2.136)
we have the full Painlevé-Gullstrand form
2
ds? = —dt* + [df —\/2m /¥ + H22 dt] + 72d02. (2.137)

As m — 0 this becomes de Sitter in Painlevé-Gullstrand form (2.121)),
whereas if H — 0 this becomes Schwarzschild in Painlevé-Gullstrand

form. The fiducial observers (4-orthogonal to the spatial slices, so V” o
dt) are in this situation described by the geodesic 4-velocity field

v — (1, om/7 + H2f2,0,0> . V,=(-1,0,0,0). (2.138)

It is easy to check that the 4-acceleration is zero: A* = Vv, Ve = 0.

These four line elements (2.123))-(2.128)-(2.133))-(2.137)) are all equally valid
slicings of the Kottler spacetime; in all cases the Einstein tensor is G, =

—(3H?)gap, corresponding to pure cosmological constant (in the presence of a
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central point mass). Depending on one’s choice of slicing, one could make differ-
ent choices of fiducial observer, focussing on different aspects of the physics.

Finally to make it abundantly clear that Kottler spacetime is just a special
case of Schwarzschild embedded in a specific FLRW (de Sitter) spacetime, con-
sider the coordinate transformation 7 = ref’t so that dF = eff'(dr + Hrdt),
and use this to recast the Painlevé-Gullstrand form of the Kottler spacetime

(2.137) into the not entirely obvious comoving form:

2
ds? = —dt* + { [dr + (Hr — /2me=3Ht [y 4 H2r2> dt} + TQdQZ} :

(2.139)
Expanding, we have

2
ds* = —{1—62Ht (Hr—\/2m6—3Ht/7’+H2r2) }dt2

-2 (Hr — \/2me—3Ht [ ¢ H2r2> drdt + " {dr® + r*dQ*} . (2.140)

It is relatively easy to explicitly check that the Einstein tensor is still G4, =
—3H?g.

In this form the connection between Kottler spacetime and spatially flat
k =0 FLRW is manifest since the limit m — 0 simply yields

ds® = —dt* + " {dr* 4+ r*dQ*} . (2.141)

The fiducial observers for (2.139)) or (2.140]) are described by the geodesic
4-velocity field

Ve — (1, _ [Hr — /2me—3Ht]r ¢ H%?] ,0,0) . V,=(-1,0,0,0).
(2.142)

It is relatively easy to check that the 4-acceleration is zero: A* = VOV, V* =
0.

In the same manner we can convert the (2.128)) form of the Kottler spacetime
into a distinct not entirely obvious comoving form

(ar + Hr [1 = /T 2me 77| dt>2

1— 2me—H?t

r

Ht

dsz__<1_2me

df? + 21!
-

+ 2 {r2dQ?} .
(2.143)
It is relatively easy to explicitly check that the Einstein tensor is still G4, =
—3H?g,,. Furthermore, as m — 0 one recovers the comoving slicing of
the de Sitter spacetime.
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The fiducial observers 4-orthogonal to the spatial slices are in this situation
described by the non-geodesic 4-velocity field

) @Jﬁp_mﬁa%ﬁmﬁQQ
Vi= /I 2me Ty ; (2.144)

1 —2me=Ht/r (-1,0,0,0).

Here the 4-acceleration is

F2

—3Ht
AT = VI,V = <o, me o, o) . (2.145)

2.7.3 Summary

Whereas the Kottler (Schwarzschild-de Sitter) spacetime is most commonly
presented in static coordinates , it can with a little work be converted into
Painlevé-Gullstrand form ([2.128)-(2.133))-(2.137)), and therefore into comoving
coordinates — as per f and above. While finding the

required coordinate transformations is relatively straightforward, the process is

not entirely obvious.

2.8 McVittie spacetime

The McVittie spacetime [77, [78, [79], 80] is a perfect fluid spacetime that is as
close as one can get to modelling a Schwarzschild black hole embedded in an
arbitrary FLRW spacetime.

2.8.1 Traditional form of McVittie spactime

It is traditional to work in isotropic coordinates, where for & = 0 the McVittie
line element is given by the equivalent of [77]:

AT m \*
ds? = — [ ——== | d*+ (1 6)2{d® +7dQ%}. (2146
5 <1+2£)F> —i—( +2a(t)F> a(t)*{dr* +7 } ( )
e For a(t) =1 this is Schwarzschild spacetime in isotropic coordinates.

e For m = 0 this is a generic spatially flat £ = 0 FLRW spacetime.

e While not entirely obvious, for a(t) = e’* this is indeed Kottler (Schwarzschild-
de Sitter) spacetime in disguise.

In these coordinates the fiducial observer (4-orthogonal to the spatial slices) has
4-velocity

14 2
Wz(—i%ﬂUﬂ&m; (2.147)

L - 2a(t)7
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and the unit radial vector is

m
2a(t

a - 1
R® = (1+ )f) ey (0,1,0,0). (2.148)

Straightforward computation yields the orthonormal stress-energy compo-
nents. The density is particularly simple,

3 a? 3 5
= ——=— 2.149
P=Sra?  8r ( )
whereas the pressure is slightly more complicated
L f 2aa+a®  4Am/2a7] ad -
P = & a? 1—m/[2ar] a?
1 . 4 2ar] -
_ L oy Am/Rer]
8T 1—g=
1 1+ = .
= —{-3H*-2 2 [} (2.150)
8T 1—g=

All other components of the stress-energy are zero. Note that the energy density
is identically that of FLRW, while the pressure asymptotes to that of FLRW. In
view of the fact that there is a non-zero pressure gradient the fiducial observers,
being in this situation defined by the fluid flow, will now not be geodesic. In
fact the fiducial observers have 4-acceleration

A = VY, Ve = m R 2.151
vb a2f2(1+%>3(1 - ﬂ) 9 ( )

2ar

and satisfy the Euler equation of fluid equilibrium
(p+p)A® = — (g" + VV?) Vyp. (2.152)

2.8.2 McVittie spacetime in Schwarzschild radial coor-
dinates

Kaloper—Kleban-Martin [78] rewrite the McVittie line element by defining the
Schwarzschild radial coordinate 7 by

= (1 + L)Q a(t)7, (2.153)

and transforming the line element into the equivalent of

dr — /1 —2m/r H(t)r dt]?
4 — — (1= 2™ g2 4 197 m/r HOP | a2 (2.154)
T 1—2m/7

Let us rewrite this as

ds? = — (1 - Q—m) dt* + [L — H(t)rdt
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This form of the metric again neatly disentangles the local physics, (depend-
ing only on the point mass m), from the cosmological physics, (depending only
on the Hubble parameter H(t), which is now allowed to be time-dependent).
Specifically, setting H(t) — H yields equation (2.128), one of the representa-
tions of Kottler spacetime, while setting m — 0 yields equation (2.42)) one of
the Painlevé—Gullstrand representations of £ = 0 FLRW spacetime.

The Eulerian observer has 4-velocity

- . a __ 1 77 .
V,=+/1-2m/F (-1,0,0,0); V°= (—W,H@) ,o,o), (2.156)

and the unit radial vector is
1
R*=+/1-2m/7(0,1,0,0); R, = (—H(t)r —,0,0) . (2.157)

The density and pressure are now

3H(t)? H(t)

_ ; = —p4 . 2.158
P~ " PP e T —amr (2.158)

The fiducial observers have non-zero 4-acceleration

u m

AT = (0, f—2,0,0), (2.159)

and satisfy the Euler equation of fluid equilibrium
(p+p)A* = — (¢ + V*V®) Vyp. (2.160)

2.8.3 McVittie spacetime in comoving radial coordinates

Now set 7 = a(t)r, so that d7 = a(t) (dr + H(t)rdt). Then
2

2 _ _2_m 2 a(t)(dr + H(t)rd?) . alt)r a(t)2r2d02
ds® = (1 a(t)r) dt” + 1_% H(t)a(t)rdt| +a(t)*r=dQ=.

(2.161)
We, therefore, obtain a comoving form of the McVittie spacetime

(dr + H(t)r [1 — /1 féﬂ dt>2

2m
L=
+72d0? 3.
(2.162)
e Fora(t) =1, sothat H(t) = 0, this is Schwarzschild spacetime in standard

coordinates.
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o For a = ef'') so that H(t) — H, this is equivalent to the ([2.143)) represen-
tation of Kottler spacetime.

e For m = 0 this is standard £ = 0 FLRW spacetime in comoving coordi-
nates.

The natural Eulerian observer (the closest you can get to defining the Hubble
flow) is specified by the unit 4-vector

. (1, _H(t)r [1 ~_Ji- ;T";} ,0,0) | 16

2m
L - a(t)r
This corresponds to the covector
2m
Veo=14/1— (—=1,0,0,0). (2.164)
a(t)r
The unit radial 4-vector is
1 — 2m
a(t)r
re=Y__“" 10,0 (2.165)

This corresponds to the covector

O (H(t)r [1 — 1= Q—m] ,1,0,0) . (2.166)

_ 2m a(t)r
1 a(t)r ( )

In the appropriate orthonormal basis the energy density is still

3a — EH@? (2.167)

p= 8rma? 87

while the pressure now becomes

1 H(t)
= —{-BH(t)?+2 —t—.
P= o ()" + —

a(t)r

(2.168)

All other components of the stress-energy are zero. The fiducial observers have
non-zero 4-acceleration

o m
A* = (0, el ,0,0), (2.169)

and satisfy the Euler equation of fluid equilibrium
(p+p)A* = — (¢ + V*V®) Vyp. (2.170)
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2.8.4 McVittie spacetime
in (conformal) Painlevé—Gullstrand form

On quite general grounds, (since McVittie spacetime is spherically symmet-
ric, does not possess any wormhole throats, and has a non-negative Misner—
Sharp quasi-local mass), a (full) Painlevé-Gullstrand form for McVittie space-
time must exist [51]. However, as Faraoni has pointed out [80) 46], that (full)
Painlevé-Gullstrand form depends on a quite messy (and implicit) integrat-
ing factor, over which one has little to no control; making the (full) Painlevé-
Gullstrand form completely explicit seems a formidable task. Fortunately, there
is an intermediate step, a conformal Painlevé—Gullstrand form, that is much
easier to make fully explicit.

Start with McVittie spacetime in traditional form:

m 2 4
ds? — — L mr de? + (1 NG ~) a(t)*{dr® + #2dQ*}. (2.171)
L+ 5. 2a(t)r

Define 7 = a(t)7. Then as usual d7 = d(7/a) = (d7 — H(t) 7 dt)/a, and so

e (1Y el (1+ @>4 {[dF — H(t) 7 df)? + 72402, (2.172)
1+ o

This is not quite of Painlevé—Gullstrand form; but it is conformal to Painlevé—
Gullstrand form:

ds* = (1 + T>4 {— (ﬂ> dt?* + {[dr — H(t) 7 dt]* + F2d§22}}
2r 1+ 5]° '
(2.173)
Note the spatial slices are conformally flat, and both the conformal factor and
lapse function are time independent — the only time-dependence has now been
isolated in the Hubble parameter H(t). Straightforward computation yields the
temporal and radial legs of the tetrad

1+ 1
yo— "o (1, H(t)r,0,0); R = (0, ——00). (2.174)
1= 1+5
The orthonormal stress-energy components are:
3 1 1+2z
p=—Ht)?  p=—13-3H(t)?-2 T H(t) . (2.175)
8T 8T — 5

All other components of the stress-energy are zero. As required this is a perfect
fluid, and as H(t) — H, so that H = 0, one recovers the isotropic form of
Kottler spacetime.

2.8.5 Summary

We have now extracted 4 equivalent forms of the McVittie spacetime — the tra-

ditional (2.146]), the Schwarzschild variant ([2.154)—(2.155)), a comoving variant
(2.162)), and finally a conformally Painlevé-Gullstrand (2.173)) variant.
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2.9 Discussion

Overall, we have seen that coordinate freedom in cosmology can be used to
repackage and reorganize standard cosmological models in multiple different
ways. This repackaging and reorganization can often simplify some aspects of
the physics, while making other aspects seem more (apparently) complex.

e We have explored three specific ways of rewriting the generic £ = 0 FLRW

cosmologies; equations (2.28), (2.39)), (2.42)), and their Cartesian versions
(2.31), (2.31), (2.57)), there are many others. The three we have explored
either make the Hubble flow simple, or make the light cones simple, or

make the spatial slices simple. But there is no free lunch; the underlying
physics is invariant.
e We have similarly considered three versions of de Sitter space, (2.119),

(2.121)), (2.122)); either making the spacetime manifestly static, or making
the spatial slices flat, or making the connection to generic FLRW manifest.

e For the Kottler spacetime we have developed six different line elements,
(2.123), (2.127), (2.132)), (2.137), (2.139)), (2.143)); focussing on different

aspects of the physics. One either makes the spacetime manifestly static,

or has three ways to make the spatial slices relatively simple, or has two
ways to make the connection to generic FLRW manifest. There are yet
other possibilities that one might explore.

e For the McVittie spacetime we presented four different line elements,
(2.146), (2.154), (2.162), (2.173), two of which seem to be novel. The
traditional version is spatially isotropic, but every nonzero met-
ric component is explicitly time dependent. The Schwarzschild version
sets three metric components to be time independent, and tightly
constrains the time dependence of the remaining terms. The “comoving”
line element makes the connection with generic £ = 0 FLRW mani-
fest, while the conformally Painlevé-Gullstrand version (2.173)) makes the
spatial slices time independent and eliminates explicit occurrences of the

scale factor a(t) in favour of the Hubble parameter H(t).

Perhaps the most bizarre feature of the above discussion is that one can
apparently eliminate the expansion of the universe with a suitable choice of co-
ordinates; of course there is then a different price to pay — the light cones then
“tip over” and one must be much more careful when deciding which trajectories
are now to be regarded as “superluminal”. Specifically, the variant presenta-
tions of the Kottler and McVittie line elements give one a much better handle
on how to merge the gravitational field of a non-perturbative localized compact
object with the Hubble flow of an asymptotically FLRW cosmology. Finally we
point out that familiarity with these variant coordinate systems is also helpful
in understanding the symmetries (both explicit and hidden); and in demystify-
ing the horizon structure. Ultimately we would be interested in extending these
ideas to generic non-perturbative deviations from FLRW cosmology.
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Chapter 3

Black Holes Embedded in
FLRW Cosmologies

There has recently been some considerable interest expressed in a highly specu-
lative model of black hole evolution — allegedly by a postulated direct coupling
between black holes and cosmological expansion independently of accretion or
mergers. We wish to make several cautionary comments in this regard. At least
three exact solutions corresponding to black holes embedded in a FLRW back-
ground are known, (Kottler, McVittie, Kerr-de Sitter), and they show no hint
of this claimed effect. Therefore, implying that this claimed effect (if it exists at
all) is certainly nowhere near ubiquitous.

The dark sector of the Universe poses an immense problem for our current
understanding of physics. Dark matter is constrained by many observations —
dating back to Lord Kelvin who presented his theory on this elusive type of
matter in 1884 [RI]. Dark matter was further constrained by galaxy rotation
curves [82],[83,[84). While there has been some progress made recently in relaxing
this constraint by using “full GR” [23] there are still many observations that
constrain dark matteifl]

Dark energy supposedly makes up a much larger percentage of the energy
density of the Universe at the current epoch. This dark energy drives the
accelerated expansion of the Universe that we observe. While dark energy may
constitute a larger percentage of the Universe, it remains undetected and there
is no accepted source of dark energy. As present, there is a minority (slowly, but
surely this minority is growing) opinion in the community EI that dark energy
simply does not exist and “can be done away with”. This, perhaps started
with Buchert [85] with the realisation that averaging the Einstein equations

!Not to mention, dark matter has somewhat also become a particle physics problem now;
Intertwining both regimes of physics.

2Certain readers may not be happy with this statement. Yes, this situation is far more
nuanced than stated. It is in fact true that more and more tensions in the theoretical physics
and cosmology community are arising and some are beginning to accept that, perhaps, our
foundations are not correct.
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“properly” results in an extra term(s) in the “Friedmann equations” — the
backreaction terms. Wiltshire then built upon this in 2007 with the timescape
model |20} 21], wherein he explores more fundamental ideas of how we calibrate
clocks. Only time will tell if we can do away with dark energy entirely.

Regardless of our stance on dark energy and the perceived accelerated ex-
pansion of the Universe, recently some rather bold and unusual claims have
been made regarding how black holes might directly interact with the overall
FLRW cosmological expansion [86]. (See also the somewhat earlier closely re-
lated references [87, 88|, [89] which developed the theoretical framework for these
claims.)

Key parts of the claims made in ref [86] were that:

e “The Kerr black hole solution is ... provisional as its behavior at infinity
is incompatible with an expanding universe.”.

e “Black hole models with realistic behavior at infinity predict that the
gravitating mass of a black hole can increase with the expansion of the
universe independently of accretion or mergers...” .

e “The redshift dependence of the mass growth implies that, at z < 7,
black holes contribute an effectively constant cosmological energy density
to Friedmann’s equations.”.

There are a number of significant problems with these claims:

e The truly enormous “separation of scales” that is observed to occur be-
tween galactic dynamics and cosmological dynamics makes all such claims
grossly implausible. (More on this specific point below.)

e There are at least three exact solutions to the Einstein equations that
embed black holes in expanding universes, (Kottler, McVittie, and Kerr—
de Sitter), and in those known exact solutions the claimed effect simply
does not occur.

e The underlying theoretical framework [87), 88, [R9] adopted in ref [86] ap-
pears to be deeply flawed [90]. (One key issue here is that the cosmological
mass fraction sequestered in black holes simply does not lead to an equal
but opposite pressure; a “black hole gas” mimics “dust”, it does not mimic
“dark energy”.) Several other authors have made related cautionary com-
ments [911 [92].

e An independent observational analysis [93] strongly excludes the claimed
effect at ~ 30, and is compatible with zero effect at ~ 1o. (The technical
difficulty with making this bound even tighter lies in guaranteeing that
the observational sample is free of false positives. This could be due to the
possible growth of superficially quiescent black holes actually being driven
due to some unaccounted for variant of the usual processes of accretion
and/or mergers.)
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e Several other independent observational and/or numerical analyses simi-
larly disfavour the existence of the claimed effect, see for instance [94] [95]
96), 07, 98].

In this chapter we will concentrate on the general relativistic aspects of the
situation. We will pay particular attention both to physically relevant approx-
imations, and to the known exact theoretical solutions. We will argue that
based on the known exact solutions there is simply no physical reason to ex-
pect the claimed effect to occur, and good physics reasons to reject the claimed
effect.

3.1 Separation of scales

We start the discussion by pointing out that there is a truly enormous separation
of scales between galactic black hole physics and cosmological physics. Even
the heaviest known galactic black holes have masses only of order 3 x 10 solar
masses, corresponding to a Schwarzschild radius < 1072 parsec. In contrast, the
cosmological homogeneity scale is typically taken to be of order > 108 parsecsﬂ
and the Hubble scale is even larger, of order 10'° parsec. There simply is no
plausible mechanism for directly coupling milli-parsec black hole physics to giga-
parsec cosmological physics. (For related comments see refs [99, [100].)

What is much more plausible is to directly couple the observed black hole
candidates found in most spiral galaxy cores to matter in their immediate envi-
ronment — the galactic cores and galaxies in which they reside. This of course
implies black hole evolution due to the utterly standard processes of accretion
and/or mergers, which is exactly what the authors of ref [86] are claiming to
side-step.

More quantitatively, even in the absence of an explicit exact solution to
the Einstein equations, we can argue as follows: Any attempt at inserting a
black hole into a FLRW cosmology will at the very least involve two separate
mass scales — m the mass of the central black hole, and peprw 7%, the FLRW
contribution to the mass contained in a ball of radius . Combining these two
quantities defines a natural distance scale

m

(3.1)

Ty = 2 .
PFLRW
At distances r < r, black hole physics dominates, at distances r > r, the FLRW
cosmology dominates. We will see this natural transition-distance scale crop up
repeatedly in the discussion below.

3This is usually called the statistical scale of homogeneity (SSH) and estimates thereof are
most often based on the galaxy-galaxy 2—point correlation method.
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3.2 Exact solutions in general relativity

There are at least three well-known ezact solutions of Einstein’s equations for
black holes embedded in expanding FLRW universes:

e Schwarzschild—de Sitter (Kottler);
e Schwarzschild-FLRW (McVittie);
o Kerr—de Sitter.

Note that de Sitter spacetime is just a special case of FLRW, which, in appropri-

At with constant

ate coordinates, corresponds to exponential expansion a(t) = e
Hubble parameter H. Furthermore, in the standard framework of ACDM cos-
mology, the universe at the current epoch is believed to already be cosmological
constant dominated. Therefore, it follows that de Sitter space is an excellent
approximation to both the near-current-epoch and future expansion history of
the universe. Allowing for a completely arbitrary expansion history for the scale
factor a(t), (as in the Schwarzschild-FLRW (McVittie) spacetime discussed be-
low), while it would be “nice to have”, is not really critical for purposes of the

current discussion.

3.2.1 Schwarzschild—de Sitter (Kottler)

Let us start from Schwarzschild-de Sitter (Kottler) spacetime presented in its
most common form, in static (¢,r) coordinates [101]:

2m dr?
2 2,2 2 2 102
This coordinate system makes it obvious that at small r one recovers the
Schwarzschild solution, and that the mass m of the central black hole is not
changing. In Kottler spacetime the natural distance scale (in physical units)

m 5/ mc?
re = ¢ — A\ =5 3.3
PFLRW H? ( )

and can be identified as the radius of the OSCO, (the outermost stable circular
orbit) [76l, [102]. For r < r, the physics is black-hole dominated, for > r, the
physics is cosmological-constant dominated.

reduces to
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Now this particular static slicing makes the physical interpretation in terms of
an exponentially expanding FLRW spacetime not entirely obvious. Therefore,
we are required to make a few coordinate transformations to make this fully
explicit. To proceed with the discussion, we first substitute

/2_m+H2,,,2
dt = df + . d

1—27"‘—11127"2

T, (3.4)

to go to (¢,r) Painlevé-Gullstrand coordinates, (as shown in Chapter [2)

2
2 -
dr — /22 + H22 dE| + r2d02. (3.5)
T

Second, we now set 7 = e’* 7, so that dr = e’* [d7 + FHdf]. Then in these
new (t,7) coordinates, which is exactly (2.140))

_ 2

2 2 2HT _ _ 2m e~ 3H1 _ T 2 102

ds* = —dt* +e dir + { Hf —\| —— + H?72 5 dt | +7dQ
7

(3.6)

ds? = —di® +

Note that at large distances

- Qme—SHf - - Qme—SHE
(e B ) = o B

Thus at large 7
- 1
ds* = —di* + " [dF? + 72dQ*] + O (—2> : (3.8)
r
making it obvious that the Schwarzschild-de Sitter (Kottler) black hole is em-
bedded in an exponentially expanding FLRW universe.

We emphasize that in this specific example there simply is no coupling be-
tween the mass parameter m and the cosmological parameter H; they are in-
dependent constants.
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3.2.2 Schwarzschild-FLRW (McVittie)

The Schwarzschild-FLRW (McVittie) spacetime metric [77, [78, 79, 80] describes
an eternal black hole that has been part of the universe ever since the Big Bang
— if in contrast one wants to describe a black hole that forms from stellar col-
lapse, then a segment of the Schwarzschild-FLRW (McVittie) spacetime should
be used — only for describing the quiescent period after the initial collapse and
ringdown.

McVittie spacetime can be represented in any of the following four completely
equivalent forms, as shown in Chapter [2[ [103]:

2
1— —m_ 4
ds? = — [ 207 dt2+(1+ m ) £)2{d? + #2dQ?}. 3.9

i (1 2&2) 2a(t>f a< ) { ' ' } ( )

ds? = (1 + T>4 {— (ﬂ) dt* + {[dr — H(t)rdt]* + F2d§22}} . (3.10)

27 [1+ 56
9 di ’
ds? = — (1 — m) A+ | — _ H@)RdE| + 72402 3.11
; NPT 30

2
(ar+ H(r 1= /1= 28] ar) (3.12)
2 202

2m
a(t)r

All four of these coordinate systems use the same time coordinate ¢, and also
the same angular coordinates {6, ¢}, while we have used coordinate freedom
of general relativity to adopt differing radial coordinates {7, 7,7, r}. (The rel-
evant coordinate transformations connecting these differing radial coordinates
are explicitly presented in ref [103].)

In all four of these coordinate systems the energy density is determined by
finding the time-like eigenvector of the stress-energy, and is easily calculated to

be [103]: ;
p= S—WH(t)Z. (3.13)

The pressure is determined by the space-like eigenvectors of the stress energy
and is more subtle: Depending on which of the coordinate systems f
one adopts one finds the superficially differing but physically equivalent results,
as discussed in Chapter 2| [L03]:

1 1+ﬁ .
p o= —pe o B ) (3.14)
47T1_2a(t)f
11+
= —p— — = H(t); 3.15
P g T HO (.15
1 1 .
R N T (3.16)
m /1 —2m/7
1 1 .
= —p—— — H(t). (3.17)




At large distances, in all four of these coordinate systems, one recovers the
standard spatially flat (k = 0) FLRW result:

H(t)
4w

Turning now to the explicit representations of the spacetime metric, at suit-
ably large distances, a(t)7 > m, the line element implies

pP— —p— (3.18)

ds? ~ —dt* + a(t)*{d7* + FdQ?}, (3.19)

which clearly is (k = 0) FLRW with arbitrary scale factor a(t).
On the other hand at suitably small distances, 7H(t) < 1, the line element

(3.10) implies
4 1— )2
ds? ~ (1 + ﬁ) {— (M) de? + {dr* + erQQ}} : (3.20)

2r 1+ 52]°

This is just Schwarzschild spacetime in isotropic coordinates. The mass of the
central black hole is simply m, a time-independent constant. Note there is
no mass flux onto the central black hole; there is no accretion. That is, there
simply is no direct coupling between the mass parameter m and the cosmological
parameter H(t) = a(t)/a(t); they are independent quantities. As previously
noted, the only even slightly tricky part of the analysis was in setting up the
coordinate transformations used to make these properties manifest.

3.2.3 Kerr—de Sitter

Rotating black holes are much more subtle than their non-rotating counter-
parts. The basic asymptotically flat Kerr spacetime was first discovered some
60 years ago in 1963, see reference [104]. Further discussion can be found in [105]
and [106, 107, 108, 109, 1T0], and more recently in references [111], 112} 113
1141 115 116, 117, 118§].

The Kerr—de Sitter (KdS) geometry is even more subtle than Kerr, and was
first obtained by Carter some 10 years later in 1973; still some 50 years ago, see
refs [119,[120]. The Kerr—de Sitter geometry represents an eternal rotating black
hole embedded in de Sitter spacetime. For a recent easily accessible discussions
see reference [121], and even more recently see [122] 123].

For a black hole formed from stellar collapse, one should certainly wait until
after the initial collapse and ringdown, until the black hole is quiescent. One
should also wait until the universe is old enough to be cosmological constant
dominated — as is now expected to be the situation in the current epoch. That
is, the Kerr—de Sitter geometry should be a good approximation to rotating
black holes in the current epoch. (This point is implicit in the discussion of
ref [121].)
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The metric for the Kerr—de Sitter spacetime is most typically presented in
stationary coordinates [119] [120]:

ds? — — (r* +a*)(1 - %7‘2) —2mr {dt — asin? quﬁ] 2

r2 + a2 cos? 0 14+ %Aa2

+sin’ 0 14+ %Aa2 cos” 07 [adt — (r? + a®)d¢ i
"2+ a2 cos2 0 1+ 3Aa?
d7,,2 d92
2 200820 '
+ (r* + a” cos® 6) (r2 +a?)(1— 22) —2mr + (1+ 3Aa?cos? )

(3.21)
(Warning: Here a is the spin parameter a = J/m, not the FLRW scale factor
a(t).) In this spacetime, the cosmological constant is related to the Hubble
constant by A = 3H?. A perhaps mildly surprising aspect of this line element is
the presence of the constant 1+5Aa® = 14+H?a? in several strategic places.

To be able to efficiently use computer algebra packages, it is more beneficial
to have this metric in a fully expanded form, and to eliminate the trigonometric
functions. We therefore re-write the line element in the following form:

AT‘ - AO a2(1 B X2)

2 =2
pPE

2 2
a2+ Pqrre P
AT A=)

2

G dot'da” = — dy

2
+ (1p2 :,é ) |:A0 (7“2 + a2)2 . ATCLQ(l _ XQ):| dng (322)

2a(1 — x?)
o p2 =2

[A(, (r2 +a?) — AT] dtde .

Here
X = cos b,
2, 2 Aoioa o
Ar=r"+a —2mr+§r (r* 4+ a%);
A A
Ng=1+ §a2 cos?f =1+ §a2x2; (3.23)
p® =1+ a® cos® 0 = r* + a*\*;
A,

=1+ —a”.
+3a

The Kerr-de Sitter spacetime is a A-vacuum solution of the Einstein field

[1]

equations, an Einstein manifold, and therefore satisfies
R, = —Aguw; G = +Agu. (3.24)

Using, for example, sagemath or Maple, we may easily check this is in fact
true.
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We must also check that the Weyl tensor is nonzero, and that the Weyl
scalar, C*8 (' .5 is position-dependent: Indeed

m?2(a®x? + dary +r?) (a®>x? — darx + 12) (r? — a®x?)
(12 + a2)®

Y

Cwaﬁcumﬁ - _

(3.25)
which depends on both r and y. Furthermore, the Kretschmann scalar,
RMB R 45 is also non-zero and position-dependent. Lastly, due to the Kerr—
de Sitter spacetime no longer being a pure vacuum solution to the Einstein
equations, we expect the difference between the Kretschmann scalar and Weyl
scalar to be non-zero (and position-independent). We find

RMOSR as — CMBC as = §A2. (3.26)

When A = 0 — where the Kerr metric is recovered — the difference is
Zero.

We will subsequently look at the asymptotic large-distance behaviour and
verify that in a suitable coordinate system the cosmological constant A can be
reinterpreted in terms of a constant Hubble parameter H (with A = 3H?), and

Ht

an exponentially growing scale factor a(t) = e”*. For now let us focus on a

number of internal consistency checks for the Kerr—de Sitter spacetime.

3.3 Extended consistency checks for
Kerr—de Sitter

In this section we shall check that the Kerr-de Sitter spacetime does in fact
(under suitable circumstances) reduce to the Kerr, Kottler, and de Sitter space-
times as required.

3.3.1 Kerr spacetime

We first investigate the A = 0 limit of the KdS metric given in (3.22)), resulting
in the Kerr spacetime. This results in a vacuum solution to the Einstein equa-
tions, hence, providing the basis for a variety of consistency checks for the KdS
spacetime.

When A = 0 we obtain the line element

2, P v
dt* + A dr® + 11—
Ao sarao e 6
_ %;XQ) (2 +a%) = A, ] dedo,

A, = a®(1-x%)
2

2

G datda” = — dy

where A, = 2 + a® — 2mr.
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To check this is in fact the Kerr spacetime, we compute the curvature quan-
tities such as the Ricci tensor, Weyl tensor, Kretschmann scalar, and Weyl
scalar. For a vacuum solution we expect the Ricci tensor to be zero and, there-
fore, the Riemann tensor and Weyl tensor to be equal. We verify this using
sagemath/Maple. Furthermore, we find that the Riemann tensor and Weyl
tensor are equal, non zero and position dependent. Lastly, the Weyl scalar and
Kretschmann scalar are equal (as expected).

3.3.2 Kottler Spacetime

In the a — 0 limit of the KdS spacetime, we recover the Kottler (Schwarzschild—
de Sitter) spacetime. Firstly

A 4
Ar—>Ar:r2—2mr—A—T:r2 1—2—m—1Ar2 . (3.28)
3 r 3
Then
() cter =~ P+ (1= 2o+ [ 4 T (39)
Kottler 7’2 Ar (1 _ X2) . .
Rewritten, this becomes
2 A, 2 T g 2 dx® 2\ 1,42
(ds®) Kottter = _ﬁdt + A—dr +r m + (1= x")d¢”| . (3.30)
That is,
2m 1 dr?
2 - e - 2 2
(dS )Kottle’r = (1 ” 3/\7" ) dt” + 1— 2Tm — %A?“Q
d 2
+7"2 [ﬁ + (1 - XQ)d¢2:| . (331)

This metric is evidently the Kottler spacetime [I01] in standard (¢,r) coordi-
nates (and not entirely standard (x, ¢) coordinates). We may now perform the
same consistency checks on this spacetime as we did in the KdS case. We ex-
pect similar results, as it is no longer a pure vacuum solution and corresponds
to pure cosmological constant. We again find

R =MNgu; G =-Ngu. (3.32)

The curvature quantities such as the Riemann tensor and Weyl tensor are not
equal, they are again non-zero and position-dependent.

The Kretschmann scalar is

8 48m?
RMPR as = 30 + =5

, (3.33)
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and the Weyl scalar is

48m?
CHOC g = — . (3.34)
r
The difference is simply
8
RMPR g — CHMPC ap = 3 A%, (3.35)

which is the same result as in the KdS case. This is to be expected since in the
KdS case, the difference did not depend on the angular momentum.

3.3.3 de Sitter Spacetime

The last parameter we shall set to zero is the mass of the black hole, m — 0.
The only change in the metric components is that now

- Ar? 1
A, — A =1 +a® - %(7’2 +a?) = (r* + a?) (1 — gAaQ) . (3.36)

The KdS line element now reduces to
Pz

A, — Nga(1—?) d
Ag(1—x?) X

2 =2
prE

2

2
G dat'da” = — dt? + g— dr® +

r

+ (1p2—’:>;2) |:A6 (T2 + a2)2 . ATCL2(]_ . X2)i| dng (337)

2a(1 — x?) -
— W [Ag (T2 + a2) — Ari| dtd(b .

Though not entirely obvious, this is actually de Sitter space in (rotating)
oblate spheroidal coordinates.

In this m — 0 limit, it is easy to check that the Weyl tensor is zero (and,
therefore, the Weyl scalar will be zero too). The Kretschmann scalar is found
to be g

RWWRszgﬂ. (3.38)
Note, that (as expected) this is (trivially) the difference of the Kretschmann

scalar and Weyl scalar, as for the KdS and Kottler cases.

One may now go one step further and perform an explicit coordinate transfor-
mation on the line element (3.37)) to obtain the “standard” form of the de Sitter
metric. Using the explicit coordinate transformation given in ref [121]

t
At
R
3= (3.39)
ycos© =ry;

1
?/2:5 r?Ag+a?(1 - x|,

—
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one can show that (3.37)) reduces to

A 1
g drtdz” = —(1 — gy2)dT2 + —5 Ay’ +4°dO° + ¢y?sin® © dd? . (3.40)
3Y

1_3

This is in fact the standard form for de Sitter space, presented in terms of the co-
ordinates (T, y, ©, ®), which we could simply re-name (¢, , 8, ¢) if desired.

Performing two further coordinate transformations allows us to cast this
metric into a form where — explicitly — space is exponentially expanding.
First, we transform the time coordinate according to

- Hy - In(1— H?*y?)
T il ) 41
t+/1_H2y2dy t+ Vi : (3.41)

resulting in the Painlevé-Gullstrand form of de Sitter space:
G dztda” = —dt* + [dy — Hy dt]* + y*dQ>. (3.42)
Secondly, we transform the radial coordinate according to
y = et (3.43)
resulting in de Sitter space in comoving coordinates:
g datda” = —di? + e A/ + 7240 . (3.44)

Therefore, it is apparent that, as desired, the m — 0 limit of Kerr—de Sitter is
indeed the exponentially growing FLRW spacetime.

3.4 Asymptotic behaviour of Kerr-de Sitter

The claim that the mass of a black hole grows as a function of time has been
proven to be false thus far. In subsection we have shown that for the
Schwarzschild—de Sitter (Kottler) spacetime the mass of the central black hole
is simply m, a time independent constant. In sub-section we obtained
the same result for McVittie (Schwarzschild-FLRW) spacetime. We shall now
show that this also holds for the Kerr—de Sitter black hole by considering the
asymptotic behaviour of the Kerr—de Sitter spacetime.
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3.4.1 Small r expansion

Let us begin with ‘small’ r, i.e., |A|r? < 1, while keeping r > a. It is perhaps
obvious that we should expect — when close to the central black hole — the
metric to be of the form “Kerr + perturbation”. For the following analysis we
shall use the binomial expansion in . We note that in this limit:

1 2

5zl—gAag;

3 1A22 (3.45)
—~1—-- .

Ay gh X

Component by component we explicitly find

2

gACLz (gtt)Kerr + O<Aa2) - (gtt)Kerr (1 + O(ACLQ)),

1
(grr)KdS ~ (grr)Kerr + §A7’2 (grr)Ke'rr + O(AT2) = (grr)Kerr <1 + O(AT2>>’
1
(900) kas = (960) Kerr — gA&Q X (900) kerr + O(Aa®x?)
= (9o0) Kerr (1 + O(AaZXQ));

2
(g¢¢)KdS ~ (g¢¢)Kerr - gACLz <g¢¢)Kerr + O(ATQ) = <g¢¢)Kerr <1 + O(AT2)>§

(gtt>KdS ~ (gtt)Kerr -

(9pt)kds = (Ggt) Kerr — gAGQ (96t) kerr + O(AT?) = (got) Kerr <1 + O(AT2)> :
(3.46)
Note that the g, term is not merely a straightforward binomial expansion in r.
Rather, we use the fact that in the region of interest

2 2
p p !
= = 4
(9re)icas (r2+a?)(1 — H?r2) —2mr — r2+a?—2mr 1 — H??’ (3.47)

which is true as we can safely neglect O(r?) terms. Finally, since x € [—1,1]
and we have assumed a < r, all the individual components of the Kerr—de Sitter
metric may be written as

(9ur)as = (9ur)err (14 O(Ar2) ). (3.48)

Consequently at small distances (meaning |A|r? < 1) Kerr—de Sitter reduces
to Kerr as expected — with a constant unchanging mass parameter m, and

no sign of any direct coupling between the de Sitter expansion and the central
black hole.
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3.4.2 Large r expansion

For the large r expansion we assume r > m (we also assume m > a to avoid
naked singularities). However, we do not want r to become cosmologically
enormous, we still want to keep |[Ajr*> < 1. (If A > 0 one certainly does not
want to go past the cosmological horizon at ro ~ 1/ V/A. In counterpoint, if
A < 0, corresponding to an asymptotically anti-de Sitter space, there is simply
no need to go past r ~ 1/ \/W to detect cosmological physics.)

As we are a suitably large (but not too large) distance away from the black
hole, one would expect the metric to be of the form “de Sitter + perturbation”.
For all of the metric components except the g,. component, we may easily
separate out the mass terms and then expand about large r:

2mr 2m m
(9tt)kas = (gut)aso + ﬁ ~ (9tt)aso + T + O(ﬁ>;

2
(900) kas = (900)aso = (goe)aso + O(Tm>;

2mra(1 — x3)* 1
252 =2

(9¢¢)de = (9¢¢)dso +

2m 1 2m
~ (9os)aso + Taaz(l - X)'+0 (—)7
2mra(l —x?)? 1
(9t)Kkas = (9st)aso + P =

—_—

~ (9gt)aso + széa(l -X*)?+0 (i—?) -
Here, the subscript dSO is used to make it explicit that this is a component of
the de Sitter metric in oblate spheroidal coordinates. The (g,.)kas component
is most easily dealt with by writing:
2mr (r? + a®x?)
(grr)kas = (grr)aso — (2 1 a2)2(1 — H2r2)?

~ (go)aso — 2—7”(1_—;22)2 {1 +0(a’—2)} (3.50)

Therefore, we may write the Kerr—de Sitter metric expanded about large r
(r > m, but 7 not cosmologically large, |A|r? < 1) as

() as = (G )aso + O<2—m> : (3.51)

r

As required, when approaching large (but not too large) r the Kerr—de Sit-
ter spacetime asymptotically approaches de Sitter space. (Which, as we have
already seen, after suitable coordinate transformations can be recast in terms
of an exponentially growing scale factor a(t) = exp(Ht).)

We emphasize (again) that in this specific Kerr—de Sitter example there
simply is no coupling between the mass parameter m and the cosmological
parameter H; they are independent constants.
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3.5 Kerr—FLRW spacetime?

While we have seen that Kerr—de Sitter, corresponding to specifically exponen-
tial expansion at asymptotic spatial infinity, can be written down explicitly in
a not too complicated form, we know of no equivalent result for Kerr-FLRW
for a general scale factor a(t). There is a reason for this: in Kerr’s original
article [104] he asked whether it would be possible to find a (perfect fluid) in-
terior solution for what is now called Kerr spacetime. This is a question that
still remains open after 60 years. Only partial results are known, in terms
of anisotropic non-perfect fluids and other anisotropic sources [124], [125] [126].
Finding an exact Kerr-FLRW spacetime would be tantamount to finding a
time-dependent perfect fluid exterior solution to the Kerr black hole — which
would be at least as hard as the still unsolved problem of finding a perfect fluid
interior solution.

However, as mentioned in section [3.1] the largest known galactic black holes
have masses of order 3 x 10! m. This corresponds to a Schwarzschild radius
< 1073 parsec, whereas the statistical scale of homogeneity is of order > 10%
parsecs. Therefore, having a solution that asymptotes to a perfect fluid on scales
such that the FLRW solution is applicable is certainly good enough.

Furthermore, observational evidence strongly suggests that the universe is
currently cosmological constant dominated, so the relevant FLRW spactime,
now and for the foreseeable future, is de Sitter. Therefore, the Kerr-de Sitter
solution is, for all practical purposes, certainly good enough.

3.6 Black hole internal structure?

As part of the plausibility argument for entertaining a possible direct black-
hole/ cosmology coupling, ref [86] suggested that this might have something to
do with an assumed non-trivial internal structure for black holes. Specifically,
was dark energy inside the black hole slowly being released? Several authors
have tried to make this idea more precise. While certainly there is widespread
agreement that reqular black holes and more generally black holes with a non-
vacuum interior are of interest [127], 128 [129] 130} 131}, [132), 133, [134], 135], there
is much less agreement as to whether such black hole variants directly couple
to the cosmology they are embedded in. Most investigations suggest there is no
such direct coupling [136, 137, 138, 139]. The few investigations that suggest
there is such an effect yield predictions that are quantitatively and qualitatively
at variance [140] with the original proposal of reference [86].
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3.7 Discussion

Starting from three relatively well-known exact solutions to the Einstein equa-
tions, (Kottler, McVittie, Kerr-de Sitter) all of which successfully embed black
holes in a suitable FLRW background, we have seen that these exact solu-
tions exhibit no evidence of any “direct coupling” between the black hole mass
and the cosmological expansion. Furthermore, several purely phenomenological
investigations have similarly failed to find evidence for any “direct coupling”
between the black hole mass and the cosmological expansion.

Indeed the enormous separation of scales between milli-parsec black hole
physics and giga-parsec cosmological physics renders any such “direct coupling”
(independently of accretion or mergers) grossly implausible. While we under-
stand the want and need to explain where dark energy comes from, this over-
whelming force that drives the accelerated expansion of the Universe, black
holes, simply cannot be it. We, therefore, urge extreme caution and care when
mooting such ideas.
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Chapter 4

Black-to-White Bounce and
Near-Horizon Physics

Black and white holes play remarkably contrasting roles in general relativity
versus observational astrophysics. While there is observational evidence for the
existence of compact objects that are “cold, dark, and heavy”, which thereby
are natural candidates for black holes, the theoretically viable time-reversed
variants — the “white holes” — have nowhere near the same level of obser-
vational support. In this chapter we shall explore the theoretical possibility
that the connection between black and white holes is much more intimate than
commonly appreciated.

We shall first construct “horizon penetrating” coordinate systems that differ
from the standard curvature coordinates only in a small near-horizon region.
Thereby, emphasizing that ultimately the distinction between black and white
horizons depends only on near-horizon physics. We shall then construct an ex-
plicit model for a “black-to-white transition” where all of the nontrivial physics
is confined to a compact region of spacetime. This is a finite-duration finite-
thickness, (in principle arbitrarily small), region straddling the naive horizon.
Moreover we shall show that it is possible to arrange the “black-to-white tran-
sition” to have zero action — so that it will not be subject to destructive
interference in the Feynman path integral. This then raises the very intriguing
possibility that astrophysical black holes might be interpretable in terms of a
quantum superposition of black and white horizons — a “gray” horizon.

Classical black holes are objects that — from a theoretical perspective — are
very well understood within the standard framework of the theory of general
relativity [37, [32], 40} 33, 41}, 35] 36], 39].

Likewise, the observational [141], 142} [143] 144! 145] and phenomenological [146],
147,148, [134], [149] situations are both increasingly well understood. The (math-
ematical) event horizon, or the physically more relevant long-lived apparent
horizon [75], [74], is often dubbed “the point of no return” and is not really a
problematic issue under suitable coordinate choices. However, one certainly
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finds that the central singularity still causes many conceptual problems with
our understanding of physics. One of the most prominent problems being the
destruction of information as it approaches the singularity. Some of the theo-
ries that are put forward to resolve the information paradox are soft hairs that
evaporate to null infinity (discussed in Chapter 5| and Chapter @, and white
holes. While we will not delve into the information paradox itself in this chap-
ter, it is important to understand some of the motivation behind white holes. A
representative selection of references includes [150} 151} 152} 153] 154, 155, 156,
157, 158, 159, 160, 161, 162, 163, 79l 164, 165, 166, 167, 168, 169, [170].

White holes, as the name may suggest, are hypothesised to be the opposite
of black holes; a “time reversed” black hole. Matter is radiated from the horizon
instead of being absorbed thereby. There are many theories as to how white
holes might form from black holes, most of which involve some sort of quantum
mechanical effect. A representative selection of references includes [171] [172]
173, 174, 1775 176, 177, [178) 179, 180) 181l [182) 183, 184 [185] [186] 187, 188,
189 190}, 191], 192, 193], 194], [195].

One specific example of this phenomenon can be found in reference [I71],
where the authors discuss “gray” horizons — as hypothetical quantum super-
positions of black and white horizons. Another example can be found in ref [174]
where the authors hypothesise that black holes quantum tunnel into white holes
once a black hole evaporates down to the Planck mass. Other theories, such as
those proposed in refs [173], [I80], involve modifying large wedges of the space-
time (typically all the way down to the central singularity) in order to have a
black hole “bounce” to a white hole.

In this chapter we will propose simple and explicit fully classical models for
a white hole, and in particular for a black-to-white hole transition.

e Firstly, starting from the standard (Hilbert) form of the Schwarzschild
metric in curvature coordinates, we shall introduce a simple coordinate
change, through a function depending solely on the radial coordinate, 7.
Specific choices of this function will result in a static black hole and white
hole in horizon-penetrating coordinates — such as Painléve-Gullstrand,
Kerr—Schild, and Eddington—Finkelstein coordinates.

e Secondly, we shall localize the required coordinate change to a compact
near-horizon radial region, showing that both black and white holes can
be cast into the standard manifestly static form outside of some compact
radial region. Thus a clean distinction can be made between “black” and
“white” horizons with minimal modifications to the standard (Hilbert)
form of the Schwarzschild metric.

e Thirdly, we introduce a function of time to create a non-vacuum space-
time, one that is no longer static, and which describes a black to white
hole “bounce”; with the “bounce” being confined to a compact (arbitrar-
ily small) region of spacetime. Furthermore, an analysis of the action
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in the transition region will be conducted, the radial null curves will be
investigated, and various energy conditions will be checked. Finally, we
shall connect the discussion to quantum physics by applying the Feynman
functional integral approach.

Our approach will only require fine tuning of the Schwarzschild spacetime in a
compact radial region near the horizon. Therefore, the entire spacetime outside
of a small neighbourhood of r = 2m will be that of the standard (Hilbert)
form of Schwarzschild spacetime. This is achieved by the use of smooth bump
functions that will not create discontinuities in the metric; and, therefore, the
Christoffel symbols will not be discontinuous, and the Riemann tensor will not
contain delta-function contributions.

4.1 Static black and white horizons: Global
analysis

Firstly, we will introduce a particularly simple model for (static) black and
white horizons, by performing some absolutely minimal modifications of stan-
dard textbook results. We begin with the Schwarzschild spacetime (in the usual
Hilbert /curvature coordinates):

2 dr?

ds* = — (1= ) ar+ — 2 42402, (4.1)
r 1—2m/r

Using the following coordinate transformation,

t—t+ F(r); dt — dt + f(r)dr, (4.2)

results in the line element

dr?

— + QA 4.
1—2m/r r (4:3)

2
ds? = — (1 - —m) (dt + F(r)dr)? +
r
Expanding, this implies

2

ds* = — (1 - _m) dt* — 2(1 —2m/r) f(r)drdt

r

] (4.4)

+ {—1 o — (L =2m/r)f(r)?| dr* + r*dQ>.

It is important to note that this line element is still Ricci flat, and so is merely
the Schwarzschild geometry in disguise, for arbitrary f(r).
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Without any loss of generality, one may choose:

h(r)

I = T

This then results in the line element

1 — h(r)?

2m
2 _ _&m 2
ds® = <1 > dt* — 2h(r)drdt + L “om/r

r

} dr? + r2dQ. (4.6)

All of these line elements, for arbitrary h(r), are just (coordinate) variants of
the standard Schwarzschild spacetime — they are all Ricci-flat for arbitrary
h(r). For specific choices for the function h(r) we obtain some particularly well
known coordinate variants of the Schwarzschild spacetime.

4.1.1 Painléve—Gullstrand coordinates

Set h(r) — £+/2m/r, then

2
ds? = — <1 - _m) dt* F 2v/2m/r drdt + dr* + r*dQ>. (4.7)
r

2
Examining the radial null condition, —dt* + (dr F/2m/r dt) = 0, we see

that in this coordinate system the radial null curves are

% =+1++/2m/r, (4.8)

where the signs are to be chosen independently.

e For a black hole we choose
dr
a = Ztl — 1/ 2m/7", (49)

with 2 € {0, —2} at horizon crossing (r = 2m).

e In contrast for a white hole we choose

d
d—z = £1++/2m/r, (4.10)

with 2 € {+2,0} at horizon crossing (r = 2m).
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4.1.2 Kerr—Schild coordinates
Set h(r) — £2m/r, then
2
ds® = —dt* + dr? + r2d? + Tm(dt + dr). (4.11)

Examining the radial null condition, —dt? + dr® + (2m/r)(dt + dr)? = 0, in this
coordinate system we find the radial null curves are either
d d 4
r T m

i B 4.12
a0 T om (412)
where the signs are to be chosen in a correlated manner.
e Thus, for a black hole we choose either
d d 4
d_:; = —1 (ingoing), or d—; =1- " +n;m (“outgoing”), (4.13)

with % € {—1,0} at horizon crossing (r = 2m).

e In contrast for a white hole we choose either

dr 1 (outgoing) dr n 4m
— = outgoing); or — =
dt gOme); dt r+ 2m

with 2 € {1,0} at horizon crossing (r = 2m).

(“ingoing”), (4.14)

4.1.3 Eddington—Finkelstein null coordinates
Set h(r) = %1, then

ds* = —(1 — 2m/r)dt* F 2drdt + r*d* . (4.15)
Depending on the choice of sign, 4, one usually relabels t — u or t — v.

e The ingoing Eddington—Finkelstein coordinates are typically given as
ds* = —(1 —2m/r)dv? + 2dvdr + r*dQ* . (4.16)

Examining the radial null condition, [—(1 — 2m/r)dv + 2dr|dv = 0, and
noting that this quantity must be negative for timelike curves, we find the
radial null curves are
dr dr 1—=2m/r
— = —00; -—=
dv dv 2
The ingoing Eddington-Finkelstein coordinates, therefore, represent a
black hole with % € {—o0,0} at horizon crossing (r = 2m).

(4.17)

e The outgoing Eddington—Finkelstein coordinates are typically given as
ds* = —(1 —2m/r)du® — 2dudr + r*dQ* . (4.18)

Examining the radial null condition, [—(1 — 2m/r)du — 2dr]du = 0, and
noting that this quantity must be negative for timelike curves, we find the
radial null curves are

dr _ dr 1 —2m/r

% = +00; @ = ——2 .
The outgoing Eddington—Finkelstein coordinates, therefore, represent a
white hole with 2 € {+00,0} at horizon crossing (r = 2m).
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4.1.4 Generic horizon-penetrating coordinates

From the above we see that all three of these coordinate systems, Painléve—
Gullstrand, Kerr—Schild, and Eddington—Finkelstein provide three specific ez-
amples of horizon-penetrating coordinates. In each case, depending on whether
one is in a black hole or a white hole configuration, one of the radial null
geodesics remains frozen on the horizon. l.e., the coordinate velocity is zero —
while the other crosses the horizon with a non-zero coordinate velocity.

Of course there are infinitely many other horizon-penetrating coordinates [196,
197, 198, 199, 200, 201], some of which we explore below, these three ezamples
are just three of the most obvious ones. We can make the required coordinate
transformations fully explicit by noting

Fr) = / Fr) dr = / i) o (4.20)

1—2m/r

Then, for these three specific examples, we see

Fra(r) = + / V2T o 4 9mn (1_— V2m/7"> . (4.21)

1—=2m/r 1+ +/2m/r
2
Fks(r) = :I:/#Z/r dr = £2mIn(r — 2m); (4.22)
1
Fpr(r) =+ / = 2mjr dr = £r £ 2mln(r — 2m). (4.23)

These three functions all share the feature of being somewhat unpleasantly be-
haved near spatial infinity. Specifically, for these three coordinate systems one
has (perhaps unexpectedly) to make unboundedly large alterations to the time
coordinate near spatial infinity, where the gravitational field is weak. Such be-
haviour, while not fatal, is perhaps somewhat annoying. We shall first seek
to ameliorate it by keeping the function h(r) finite and localised to a com-
pact region thereby keeping the function f(r) integrable, and the function F'(r)
bounded.
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4.2 Static black and white horizons:
Local analysis

We now let h(r) be a bump function. At the horizon, pick h(2m) = £1, with
h(r) being some finite smooth function of compact support. Then we have a
version of the Schwarzschild line element presented with localised version of
horizon penetrating coordinates. At r = 2m there is either a black or white
horizon depending on the sign of h(2m). This line element goes to the standard
Hilbert form of Schwarzschild at some finite 7, (both large and small r). That
is: support{h(r)} C [rc,rs], with 2m € (r-,r>). This is still a Ricci-flat
coordinate transformed version of Schwarzschild:

1 — h(r)?

2m
2 2
ds” = (1 ) dt* — 2h(r)drdt + L om

r

} dr? +1r2dQ2. (4.24)

Note specifically that to get horizon-penetrating coordinates, (and so obtain
either an explicitly black or explicitly white horizon) one only needs to adjust
the coordinates in the immediate vicinity of the horizon. “Global” changes to
the coordinates are by no means necessary.

We check the ingoing/outgoing null curves to verify that the coordinates are
in fact horizon penetrating. We have

— (1 — 277”) dt* — 2h(r)drdt + [%] dr® = 0. (4.25)

Therefore, rearranging to obtain a differential equation in dr/dt,

r r

— (1 — 2—m)2 —2 (1 — 2_m) h(r)i+ [1 = h(r)*] 7> = 0. (4.26)

This is an easily solved quadratic for 7, leading to

1—2m/r
= . 4.27
" TR0 (4.27)
Depending on the (implicit) sign choice hiding in h(2m) = £1, and the explicit
sign choice £ multiplying h(r), one of these null curves will be trapped at
the horizon (with 7y = 0). The other null curve crosses the horizon with a
coordinate speed that is formally 0/0, and so must be determined by using

I’Hopital’s rule:
1

=t —. 4.2
TH 2m h'(2m) (4.28)
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Therefore, we find these are generically horizon-penetrating coordinates (At
least one of the radial null curves has non-zero coordinate velocity at horizon
crossing). The net amount by which we have to adjust the time coordinate to
achieve this localised horizon-penetrating behaviour is

> >
AF = F(00) — F(0) = F(rs) — F(re) = / % dr = / :f(;; dr.
(4.29)
The naive singularity at the horizon » = 2m is an integrable singularity, so the

r< <

net shift in the time coordinate is finite.

4.3 Black-to-white bounce: Compact transition
region

We now wish to move away from consideration of static black and white holes,
and explore a classical model of a black-to-white hole transition. To do so, we
make the following change:

h(r) — s(t) h(r). (4.30)

This is no longer just a coordinate transformation. The spacetime is no longer
Ricci-flat. Specifically, we consider the metric
1 — s(t)*h(r)?

ds? = —(1 —2m/r)dt* — 2s(t)h(r)drdt + [ 1—2m/r

} dr? 4+ r*dQ*. (4.31)

We again take h(2m) = +1, and take h(r) to be of compact support, i.e.,

support{h(r)} C [r-,r~]. Furthermore we shall also assume that 1 — s(¢)? is of
compact support with s(t) — +1 at large [¢|. In fact we shall take s(+o00) = £1
and s(—oo) = F1, since we want to enforce a sign flip in s(¢) to enforce a black-
to-white transition. That is, support{l — s(t)*} C [t-,¢~]. This in turn implies
support{s(t)} C [t<,t~]. We again emphasize: this geometry is not Ricci flat

— it is no longer just a coordinate transformation /]

4.3.1 Einstein tensor

Since the spacetime is not just a coordinate transformation of the Schwarzschild
metric, the Einstein tensor and Ricci tensor will now be non-zero. We calculate
the Einstein tensor, (using Maple), its non-zero radial-temporal components are

B 25(t)h(r)
r(1—2m/r)’

while the orthonormal angular components are

d?[s%(t)] /dt? h(r)?
2(1—2m/r)

Gtt == O, Gmn = (432)

(L= m/mhO) o

G = GJ’J’ - r(1—2m/r)

+H (r)3(t) —

!Somewhat similar constructions can be found in refs [179, [182].
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The Ricci scalar is

PO RE? 22 = 3m/r)h(r)s()
R= = o 30+ == i (4.34)

The Einstein tensor is of compact support — it is only non-zero where both
h(r) and the derivatives {s(t),5(t)} are non-zero. Note that both the metric
determinant, g = —r*sin®f, and the volume element, \/—g = r?sinf, are
independent of both A(r) and s(t).

4.3.2 Finite action for the bounce

The contribution to the action from the transition region is finite. First we
note

S:/\/—ng4a::/\/—ng4x:47r/r2Rdtdr. (4.35)

But the t integration yields

/ :o <d2[§;<t>]) dt = {@} i: —0-0=0, (4.36)

" /_Oo (dzgf)) dt = [s(t)]F = +1 — (F1) = +2. (4.37)
Therefore,

S = +4r / r? {4]1’(7“) + 4(i & i”;?/g %f)(r)] dr. (4.38)

Now, integrating by parts in the radial coordinate yields

/ - P21 (r)dr = [r?h(r)] "7 - / ” 2rh(r)dr = — / - 2rh(r)dr. (4.39)

o0 —00 o0

Thus,

S = +4r / r {—Sh(r) + 4(2(1_3’7;7/1 %(T)] dr. (4.40)

After some algebra, this is explicitly:

= 2079 [ &
S = :|:167rm/ i Qm/r) = +16mm e 2m (4.41)

r< r<

(The naive singularity at r = 2m is again an integrable singularity.)
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While the interpolating spacetime geometry is now dynamic —mnot static—
the total action can be written in terms of the time-shift (4.29)) at late and early
times, (when the geometry is static), as

S = +167m AF. (4.42)

The reason the finiteness of the action is important is that finite-action config-

urations can easily contribute non-destructively to the Feynman path-integral.
(The contributions of infinite action configurations tend to ‘wash out’ due to
destructive interference.)

4.3.3 Zero action for the bounce

Perhaps unexpectedly, by making a suitable (symmetric) choice for h(r) we can
even drive the action of our black-to-white bounce to zero, not just keeping it
finite.

For example: Take rv = 2m+ A, and r. = 2m— A, and subsequently choose
h(r) = £(2m/r)B(|r — 2m|); where B(z) is a bump function with B(0) = 1
and B(A) = 0; in this static case this leads to coordinates that are locally
Kerr—Schild in the immediate vicinity of the horizon.

Then for the action of the black-to-white bounce, after integrating out the
time dependence, from (4.41)) we have:

> h 2m+A 9 B _9
S = :l:167rm/ & dr = +167m ( m/rr) (’T m’) dr
re (1—=2m/r) 2m—A (1—2m/r) )
4.43
2m—+A B o 2 +A B
= +327m? Bllr = 2ml) dr = :|:327Tm2/ (1) dz. (4.44)
2m—A (’l“ - 2’[7’1,) YN z

Here we have defined z = r—2m. This integral obviously vanishes by symmetry,
but for clarity, being careful with the integrable singularity

S 11_13% (/_AE B(LZ|) dz + /f B(fD dz> : (4.45)

$ oc lim (/A B(lzn dz—/f B(LZD dz) = 0. (4.46)

We may therefore conclude that one can even construct a zero-action compact

Thus,

support Lorentzian “bounce” that converts black holes to white holes (and wvice
versa). Note here, that in (4.45]), we are taking the standard Cauchy principal
value. One may argue that this integral does not in fact result in zero and will
have a complex part added to it. This is the case if one uses ‘Feynman’s ie
prescription’[202] which is common in quantum field theories [203] but not so
common in relativity.
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4.3.4 Radial null curves

The radial null curves in this time dependent geometry are specified by

1 — s(t)?h(r)?

—(1—2m/r) dt* — 2s(t)h(r)drdt + [ 1= 2m/r

] dr? = 0. (4.47)
That is

—(1 = 2m/r)* = 2s(t)h(r)(1 — 2m/r)r + [1 — s(t)*h(r)?]* = 0. (4.48)
This is a simple quadratic for r, implying

dr | (1—-2m/r)

B . 4.49
R TE ) 49
Unfortunately this ODE is not separable, and is not easy to solve.
The radial null tangent vectors to the null curves are of the form
. (1—2m/r) )
E* o> (1,7,0,0) =1, £—;0,0) . 4.50
(1.5:00) = (1 20

In regions where s(¢)? = 1, and using the fact that we always impose h(2m) = 1,
one or the other of these radial null curves will be horizon penetrating. (In
particular at early and late times, where |s(t)| = 1, one or the other of the null
curves will penetrate the naive horizon.)

During the bounce we can, for simplicity, assert |s(t)| < 1, and in fact s(¢)
must, by construction, pass through zero. We can also for simplicity assert
|h(r)] < 1, with equality only at the naive horizon r = 2m. Under these
conditions the denominator 1 F s(¢)h(r) is always non-zero. Both incoming and
outgoing null rays will be (temporarily) trapped at the naive horizon, both with
7y = 0 — at least until the end of the bounce — when, as per our analysis
above, one or the other null curve can cross » = 2m with non-zero coordinate
velocity.

4.3.5 Energy conditions

While it is by now clear that the classical point-wise energy conditions of general
relativity are not truly fundamental [204] 205, 206], (since they are all violated
to one extent or another by quantum effects [207, 208, 209, 210, 211]) they
are nevertheless extremely good diagnostics for detecting “unusual physics”.
This merits a very careful examination [212, 213 214, 215]. The status of
integrated energy conditions [216, 217, 18] and quantum inequalities is much
more subtle [219]. In the current context it is most useful to focus on the null
energy condition (NEC) and trace energy condition (TEC).
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NEC: The condition for the null energy condition (NEC) to hold is Gy k* k* >
0. The quantity G k% k® can be easily calculated for radial null curves, and in
this case is:

0 b (I1—=2m/r)* \ _25(t)h(r)(1 —2m/r)
Gt oG (i) =~ A (4

Since the denominator is non-negative we see

Gap K*k® oc —5(t) h(r) (1 — 2m/7). (4.52)

Regardless of the sign of §(¢), or the sign of h(2m), the product 5(¢t) (1 —2m/r)
will certainly flip sign as one crosses the naive horizon at r = 2m. Therefore,
the NEC is definitely violated in parts of the black-to-white transition region.
Furthermore, this automatically implies that the WEC, SEC, and DEC are also
violated in parts of the black-to-white transition region.

TEC: The trace energy condition (TEC) is important mainly for historical
reasons [204], though there is currently some resurgence of interest in this long-
abandoned energy condition. (The TEC is useful for ordinary laboratory mat-
ter, but is already known to be violated by the equation of state for the mate-
rial in the deep core of neutron stars, and in fact for any “stiff” system where

w = p/p exceeds 1/+/3.)
The TEC asserts
9 T = —(p — 3p) < 0. (4.53)

For the Einstein tensor this becomes g, G® < 0, and for the Ricci scalar
R > 0. But this would imply a positive semidefinite action, and we know
that the black-to-white transition region is non-vacuum and can be chosen to
have zero action. Therefore, there must certainly be regions in the compact
black-to-white transition region where the TEC is violated.

ANEC: Analyzing the averaged null energy condition (ANEC) would require
one to trace the null geodesics through the bounce region, and to unambiguously
identify a suitable null affine parameter. Unfortunately, this is one of those
situations where (despite recent progress [220]) these issues are still in the “too
hard” basket.

Overall, we see that key point-wise energy conditions are definitely violated

by the black-to-white bounce. This is an invitation to think carefully about the
underlying physics.
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4.4 Quantum implications

Despite considerable efforts, we do not as yet have a fully acceptable and widely
agreed upon theory of quantum gravity. On the other hand, there are plausible
and tolerably well accepted partial models — such as approximations based
on semi-classical gravity (and quantized linearized weak-field gravity for that
matter). One issue on which there is widespread agreement is the use of the
Feynman functional integral formalism in the semi-classical regime.

One of the key features of the Feynman functional integral formalism is
that quantum amplitudes are dominated by classical configurations (plus fluc-
tuations). In the current context, the fact that we have found zero-action
black-to-white bounces, combined with the fact that the usual classical vacuum
(Schwarzschild) is also zero-action, implies that these configurations reinforce
constructively. If the black-to-white bounces are to be quantum mechanically
suppressed, such suppression will have to come from the quantum fluctuations,
not from the leading order term.

This situation is somewhat reminiscent of the role played by instanton con-
tributions to the QCD vacuum [221], 222] 223] 224]. There are significant dif-
ferences, zero-action versus finite action, Lorentzian signature versus Euclidean
signature — but crucial key features are similar. Indeed, the existence of lo-
calized zero-action configurations is not all that unusual, also occurring in flat
Minkowski space classical field theories [225], though their implications have
not been particularly well studied.

This suggests the possibility that astrophysical black holes (the “cold, dark,
and heavy” objects detected by astronomers) might be in a quantum superpo-
sition of black hole and white hole states. For somewhat similar suggestions,
differing in detail, see also [173), 174} 175}, 176} 177, 178, 179, 180, 18T, 182} 183
184, (185, (186, 187, 188, 189, 190} 19T) 192} 193] 194, 195]. Finally one could
speculate that this is evidence in favour of quantum physics becoming domi-
nant in near-horizon physics. This was, for many decades, (pre-2000 CE) a
minority opinion within the general relativity community, as there was a broad
but not universal consensus that quantum physics should only come into play
in the deep core where curvature reaches Planck scale values. More recently
(post-2000 CE) the situation is more nuanced.

One of the main counterweights to that prior (pre-2000 CE) consensus opin-
ion is the “gravastar” model [129] 128| 226], 130], 131} 227, 228, 229] 230} 231]
232, [133], where quantum physics kicks in at/near the would-be horizon. Sim-
ilarly for the “fuzzball” model, stringy physics [233, 234, 235] 2306], 237, 23§]
kicks in at/near the would-be horizon. Furthermore, for the “firewall” pro-
posal [239, 240, 241), 242] 243, 244, 245, 246l 247, 248, 249] something again
happens at /near the would-be horizon. While these proposals typically severely
impact on the spacetime geometry throughout the entire interior region, the
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novel construction we are dealing with affects only the near-horizon spacetime
geometry.

4.5 Discussion

In this chapter we wanted to investigate if a simple and compelling classical
model of a black-to-white hole transition could be found. We began by perform-
ing a simple coordinate transformation of the standard Schwarzschild metric by
modifying the radial coordinate. This resulted in the line element

1 — h(r)?

2m
2 2
ds® = — (1 — —) dte — 2h(r)d7“dt + {—1 2m/r

} dr? +7r2dQ*.  (4.54)
r

For specific choices of h(r) this returns the Schwarzschild spacetime in other well
known coordinates, such as the Painlevé—Gullstand, Kerr—Schild, and Eddington—
Finkelstein coordinates. By imposing the restriction h(2m) = +1 we showed
that this line element can model a classical black or white hole where one or
the other of the null curves are horizon penetrating with non-zero coordinate

velocity
1

F—.
2m h'(2m)

By choosing h(r) to be of compact support, we demonstrated that we could

(4.55)

P =

confine the non-trivial aspects of black and white horizons to a compact radial
region straddling the naive horizon r = 2m.

By introducing a time-dependent function, s(¢), we then produced a simple
classical model for a black-hole-to-white-hole transition. This spacetime, how-
ever, was no longer just a coordinate transformation of Schwarzschild spacetime.
The introduction of s(t) led to the following line element

1 — s(t)*h(r)?

ds? = —(1 — 2m/r)dt® — 2s(t)h(r)drdt + { 1—2m/r

} dr? 4+ r2dQ?%. (4.56)

The non-static spacetime in these coordinates was found (at early and late
times) to have horizon penetrating null curves with coordinate velocity

1

TG (4.57)

Py =

During the bounce itself the behaviour of the null curves is much trickier.

We further showed that the action in the transition region was finite,

)

More importantly though, this action can be arranged to be zero by carefully

S = 16mm /Tf % dr. (4.58)

choosing h(r). This proves to be a significant result as this action could then
be added to the Feynman path integral and have no impact on any quantum

amplitudes. 6



For tractability and ease of exposition the current analysis has focussed on
the Schwarzschild spacetime, though there is no real difficulty (apart from te-
dium) in working with the outer horizon of non-extremal Reissner—Nordstrom
or indeed any spherically symmetric non-extremal black hole. Extremal black
holes would seem to require a more subtle analysis. In a different direction,
there are certainly purely technical issues arising in dealing with non-extremal
Kerr and Kerr—Newman, a topic we hope to turn to in the future. We do
not expect to encounter any fundamental issues with non-extremal Kerr and
Kerr—Newman, but the extremal case is again likely to be problematic.
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Chapter 5

The Kerr Memory Effect at Null
Infinity

Over the last decade or so, various — seemingly disconnected — parts of physics
have been shown to be mathematically connected in the infrared regime. The
connections we will investigate here are one leg of the ‘Infrared Triangle’ [25] (see
. This leg illustrates the gravitational memory effect and asymptotic
symmetries of null infinity are related. The infrared triangle may be a step
forward in understanding quantum gravity. In particular, the memory effect
will potentially be observable in the near future due to missions such as LISA
[250]. Therefore, further development of these formalisms may lead to true
observations of the nature of quantum gravity.

MEMORY
EFrecT

Fouyir VARUUM
SFORM TRANNTION

( WARD )
SOFT IDENTITY ASYMPTOTIC

THEOREM SYMMETRY

Figure 5.1: The infrared triangle from ref [25]: Three different areas of physics
are realised as one in the infrared limit (at null infinity).
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In this chapter we compute the memory effect due to a gravitational wave
striking a Kerr black hole as seen by an observer at null infinity. This is done
by working in Bondi—Sachs coordinates. It was shown by Hawking, Perry, and
Strominger (HPS) that the memory effect due to a gravitational shockwave is
seen as a pure BMS supertranslation from null infinity. Hence, it is of interest to
compute the supertranslated Kerr solution in Bondi—Sachs coordinates. Finally,
the gravitational wave is said to implant soft supertranslation hair on the event
horizon of the black hole which carries superrotation charge. We will explicitly
calculate the change in superrotation charge on the event horizon due to the
supertranslation hair.

Since the observational discovery of gravitational waves nearly a decade ago
by the Laser Interferometer Gravitational-Wave Observatory (LIGO) (and other
detectors such as Virgo and KAGRA), many have wondered about detection
of the gravitational memory effect — the permanent alteration of a system
due to a transient gravitational wave (for instance, see [Figure 5.2)). The mem-
ory effect has been discussed in the literature since 1972, first introduced by
Zel’dovich and Polnarev [251], then greatly expanded upon in the last few
decades by Christodoulou and others [252 253] 254, 255 256], 257, 258]. In
the past few years there has been a deep mathematical connection made be-
tween the gravitational memory effect and a set of infinite symmetries at null
infinity [259, 260, 25|, 27, 26]. These symmetries are associated to a set of trans-
formations known as supertranslations and superrotations, collectively known as
supertransformations. In fact, when two particles are left permanently displaced
by a gravitational wave, the initial and final states are related by a supertrans-
lation.

This group of infinite symmetries has been known of for nearly 60 years, first
introduced by Bondi, van der Burg, Metzner and Sachs [261], 262, 263, 264] -
known as the BMS grouff!] In recent years, there has been further research
and development of the BMS algebra [265] 266], 267] and the charges associated
with supertranslations and superrotations. These charges have led to a hope
of better understanding the ‘scattering problem’ in general relativity [259, 25].
Furthermore, it seems that charges associated with supertransformations may
play an important role in resolving — part of — the information loss problem
[268, 26, 27]. This is addressed by asserting that gravitational waves implant
soft supertranslation hair on the event horizons of black holes. The soft hair
is then evaporated off to null infinity, thereby preserving information from past
null infinity through to future null infinity. Therefore, detection of the memory
effect may offer a better understanding of abstract mathematical ideas and how
they may be physically realised. Unfortunately, the memory effect will likely
not be observationally detected until after the Laser Interferometer Space An-

!Unfortunately, van der Burg’s name is often forgotten.
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Figure 5.2: Particle configurations as a gravitational wave passes (time running
left to right). The memory effect results in the final configuration differing from
the initial. From ref [257]

tenna (LISA) [269, 250] is launched.

Here we will discuss the effects of a transient gravitational shockwave striking
the Kerr black hole as seen from an observer at future null infinityP} We follow
the calculations of HPS and others [26, 25, 270] who have discussed the effects
of a transient shock wave striking Schwarzschild and Reissner Nordstrom black
holes. These authors show that the deformation of a black hole due to a gravi-
tational shockwave (the memory effect) is seen as a pure BMS supertranslation
from future null z’nﬁmtyﬂ. Hence, we will compute the explicit supertranslated
Kerr solution in Bondi—Sachs coordinates.

We will begin by summarising the expanded Bondi-Sachs metric, asymp-
totic Killing vectors which generate symmetries that have associated charges,
and the relationship between the memory effect and supertranslations. In
we will discuss the Kerr solution in general Bondi—Sachs coordinates
introduced by Fletcher and Lun [271] and put it in the Bondi—Sachs gauge.
In with the Kerr solution in the Bondi—Sachs gauge we will find
the supertranslated metric functions. Finally, in we will calculate
the supertransformation charges associated to the supertranslation hair that is
implanted on the Kerr black hole due to the gravitational shockwave.

5.1 The BMS Group

In 1962 Bondi, Metzner, van der Burg and Sachs (BMS) [261), 262] 264] were
attempting to find a group of diffeomorphisms at null infinity which acted non-
trivially on asymptotic data. BMS found an infinite dimensional group which
contained the Poincaré group as a subgroup [25, 272, 273, 267]. This group has
an infinite amount of generators known as supertransformations [267, 25l 27].
This was a surprising result as it meant that general relativity did not reduce
to special relativity in the weak field limit and the symmetries found at null
infinity were not those of the Poincaré group alone.

2Tt is worth mentioning that we do not have an effective operational answer for “where is
null infinity”, nor do we claim to. It is an interesting question to ask, however. How does one
define an operational notion of null infinity and how “far one has to be from the source” to
observe something that is being radiated off to null infinity.

3There are additional effects that are not seen from null infinity, and this will be discussed

in |[subsection 5.1.4
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In physics — since the 1920s, most of the fundamental interactions can be
described as ‘gauge theories’. The transformations between gauges are called
gauge transformations. These transformations form a gauge group (a specific
type of Lie group), which has an associated Lie algebra of group generators.
These group generators have an associated gauge field and the gauge field is
used in the Lagrangian of a theory to ensure that the theory is gauge invariant.
In general relativity, the gauge symmetry is diffeomorphism invariance.

In the literature, asymptotic gauge symmetry groups (AGS) are defined
as the quotient group of allowed gauge symmetries and trivial gauge symme-
tries [25]. The ‘need’ for asymptotic symmetry groups arises from noting that
Noether’s theorem only applies to on-shell physics. The use of asymptotic sym-
metries allows one to generalise Noether’s theorem to examine symmetries of
spacetime that may occur off-shell [274]. In the case of BMS, the asymptotic
boundary they wished to investigate was null infinity.

When investigating asymptotic symmetries we impose boundary conditions
that reflect the nature of a spacetime at the boundary. These boundary condi-
tions should be weak enough to allow all physically possible solutions to exist,
but also strong enough that charges — i.e., globally conserved quantities — are
finite and well defined [25, 272]. In general relativity, however, it is difficult
to impose boundary conditions and therefore determine how a system should
behave at the boundary. When considering spatial infinity, i°, the AGS are the
Poincaré group symmetries which consist of Lorentz transformations and space-
time translations. In terms of Noether’s theorem, the ADM mass is defined by
symmetries at 1© while the Bondi mass is defined by symmetries at future null
infinity, Z%.

Definitions of the BMS group

In general relativity, there is no global conservation of 4-momentum. This is
because the extended form of energy—momentum conservation,

Vv, T" =0,

is not integrable. However, if a spacetime possesses a Killing vector, £# then the
current, J* = TH ¢, admits a conserved charge. Therefore, we say that the ex-
istence of a Killing vector field results in the existence of continuous symmetries
which imply a conserved charge via Noether’s theorem. Furthermore, Killing
vectors of a spacetime for a group of symmetries. Under the Lie bracket, these
Killing vectors or more generally, symmetry generators, generate a Lie algebra.
For instance, in the case of Minkowski space, the global Killing vectors form
the Poincaré group and the commutation relations of the Killing vectors gener-
ate the Poincaré algebra. The BMS group, is an infinite dimensional symmetry
group formed by an infinite number of asymptotic Killing vectors or supertrans-
formations. These Killing vectors generate the bms, algebra.
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We can further denote the BMS group in abstract mathematical notation
[25, 275],

BMS = S x SO(1, 3).

Note that SO(1, 3) is a representation of the Lorentz group and S is the group of
supertranslations. Here x is the semi-direct product which simply means that
elements of the BMS group are pairs of elements in the Lorentz transformation
group, and the group of supertranslations. To compare this definition with
something more familiar, we can define the Poincaré group as [267]

Poincaré = T x SO(1, 3).

Here T} is the group of spacetime translations.

5.1.1 The Bondi—Sachs Metric

Bondi, van der Burg, Metzner, and Sachs [261], 262, 264] wanted to define
a concept of asymptotic flatness at null infinity. The falloffs needed to be
restrictive enough that unphyiscal spacetimes — such as those with infinite
energy — would be ruled out, yet not so restrictive such that physical spacetimes
and gravitational waves would be ruled out. While the falloffs may differ in the

literature, we will use the choice made by BMS [261], 262, 264, 25]:

Juu = -1+ O(T_l)v Gur = -1+ O(’I“_Q), GuA = O(TO)’

2 (5.1)
gaB =T ’YAB_’_O(T); 9rr :grAZO-
The class of allowed asymptotic line elements for these falloffs is given by
ds* = — du® — 2dudr + r’y4pd04dOF
9 :
4 Sbondi g2 4 10 5 dOAAOP + DBCypdude?
r
1 FD
+ 1672 {C C’FD}dudr (5.2)

+ %(% A+ %aAmbondi - éaA{CFDCFD}>dUd@A

n imB {erPCpp} derder + ..
where ©4 € {6, ¢} and the uppercase Latin indices run over #,¢. D, is the
covariant derivative on the 2-sphere with respect to the 2—sphere metric, v45.
The function myenq; is the Bondi mass aspect, which is in general a function of u
and the angles, 6, ¢. This can be used to obtain the Bondi mass after integrating
Mpondi OVer the entire 2—sphere at null infinity. In the case of the Kerr spacetime,
the Bondi mass is simply, M, the mass of the black hole. N4 is the angular
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moment aspect. Contracting N4 with the generator of rotations and integrating
over the entire sphere is related to the total angular momentum of the spacetime.
Cyup is another field which is symmetric and traceless (y*2C4p = 0). The
retarded time derivative of C'4p is in fact the Bondi news tensor,

NAB = 8UCAB. (53)

The news tensor is the gravitational analogue of the Maxwell field strength and
its square is proportional to the energy flux across Z* [25] 260].

It is important to note that N4 is defined slightly differently in various parts
of the literature — usually depending on the asymptotic expansion ([5.2)). For
instance, Comperé in refs [276, 277] has a decomposition that leads to N4 being

defined add

3 1
Ny = —53,4 <CBCCBC> — ZCABDCCAC- (5.4)

However, Strominger in ref [25] and Comperé in ref [260] uses the decomposition

(5.2), which leads to N4 being defined as

2y, L BCY ._ )
3NA 166A<CBCC ).—g uA - (55)

1)

Here, g, 1 corresponds to the r—*

expansion in g,4. We will opt to use the
second definition as the superrotation charge will not be changed. This can be
seen explicitly in the case of the Kerr solution.

5.1.2 Asymptotic Killing Vector

Symmetries of a spacetime are associated to Killing vectors of that spacetime.
Hence, before discussing the charges associated with symmetries in our space-
time, we must first briefly discuss the Killing vectors of our spacetime - or
rather, the asymptotic Killing vectors. The most general Killing vector, &, that
preserves the metric to leading order is [25]

1

r

€40, = fO, + DAf+icABDBf+o 1 da
272 73

1 1(1 1 1
+ §D2f—;{ DAfDBCAB‘f’ZCABDADBf}+O<T—2)] Oy .

2
(5.6)
Here, f is a function of the angular coordinates (6, ¢) only and D? is the stan-

dard Laplacian on the 2-sphere. However, since the analysis conducted here is

4This corresponds to pure vacuum and the mass contribution is omitted.
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only a calculation to linear order — as done by HPS [26], the Killing vector is
truncated: ] ]
faaa = fau + §D2far - _DAfaA . (57)
r

This does indeed beg the question of whether a second order analysis would
still show that the memory effect — as seen from null infinity — is still a
supertranslation with the Killing vector (/5.6)).

5.1.3 Associated Charges and Charge Conservation

It is well known that the symmetries of spacetime are associated to conserved
charges via Noether’s theorem. Before the discovery of the BMS group, the
largest symmetry group was the Poincaré group, which has associated con-
served charges such as energy and momentum. The BMS group, which is an
infinite dimensional group of symmetries at null infinity also has charges asso-
ciated to supertranslations and superrotations.

Supertranslation charge and its conservation is given by [25]

1 _
Q}_ = E/I_,r d2@ ﬁfmbondi = E/_ d2® ﬁfmbondi - Qf . (58)

Here f is a function of angular coordinated’and can be thought of as the gener-
ator of supertranslations. In general, the supertranslation charges will depends
on advanced/retarded time. This is simply due to mpeng; — in general — de-
pending on advanced/retarded time. This conservation ‘law’ is a statement
about the total energy of the system.

5Note that integration is carried out over the 2-sphere at null infinity.
6Note that while f is often chosen to be a spherical harmonic function, it is not limited to
be only a spherical harmonic.
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Figure 5.3: This Penrose diagram illustrates how charges are carried from past
null infinity to the future. The gravitational wave travelling from vy on Z~
strikes the horizon (H*) and the horizon charges are then evaporated off to the
future, at Z. Thus, charges are preserved from the past to the future even
with the presence of a black hole in the spacetime.

Superrotation charge and its conservation is given bym

1 1

QY = —/ d?0 \AY AN, = —/ 0 AYAN,=Qy,  (5.9)
87T T+ 87T _

where Y4 is an arbitrary vector field on the 2-sphere ﬁ In the case that Y4

is one of the 6 global conformal Killing vectors on the 2-sphere ([5.9)) expresses

conservation of ADM angular momentum and boost charges.

The notation used here indicates that supertransformation charge at future
null infinity, Z* should match the supertransformation charge at past null infin-
ity, Z~. Furthermore, these matching conditions are a statement about having
a well-posed scattering problem in general relativity (see [Figure 5.3). The exis-
tence of these conserved charges is — at least in principle — verifiable with the
gravitational memory effect, which may be detectable in the near future.

"This definition of superrotation charge follows from using (5.5)) as our definition of Ny4.
In the case that one uses ([5.4]), superrotation charge is expressed via [266]

Qy = 16% /d2@ VYA [2NA + %aA (OBCCBCH .

8As is the case for f, the components of Y4 are often chosen to be spherical harmonic
functions, however, the components of Y4 are not limited to be spherical harmonics.

78



5.1.4 The Black Hole Memory Effect and Supertransla-
tions

During the last decade there has been a lot of discussion regarding the gravita-
tional memory effect and the direct correspondence of this effect with the BMS
group — for instance, one may see refs [25] 26, 27, 260, 276], 278, 279, 280]. It
was shown by HPS [26] that a deformation due to a shockwave defined via a
impulse energy-momentum tensor of the form [’

T = PTG s, (5.10)

42

where g is the monopole contribution of the shock wave and 7T'(z) characterises
the angular profile of the wave is equivalent to a BMS supertranslation at null
infinity (for a Schwarzschild black hole). Such a supertranslation is given by tak-
ing the Lie derivative of the spacetime metric — in this case, the Schwarzschild
metric — along the asymptotic Killing vectoﬂ,

10, = fO, — %DQfar + %DAfaA. (5.11)

However, as HPS [26] state, supertranslations only equate to part of the defor-
mation a gravitational wave would produce when striking a black hole.

Intuitively, gravitational waves, which carry energy, should impart some of
this energy to the black hole it strikes and it should alter the mass and/or
(angular) momentum. In fact, it was shown by HPS [26] that there was a change
in the mass of a Schwarzschild black hole due to the monopole contribution ()
of the shockwave. Therefore, the ful["Y| “memory effect” due to such a shockwave
was written ad’ 9

S = LGy + 7’“‘51)“5””. (5.12)

Here dg,,, refers to the permanent change in the spacetime due to a gravitational
wave. Therefore, the ADM mass of the hairy Schwarzschild black hole would be
m = M + p after the gravitational shockwave strikes the black hole. However,
while the mass of the black hole may change, the Bondi mass of the black hole
— at least at linear order — does not change. This further emphasises that the
memory effect is not entirely captured by BMS supertransformations. However,
the black hole memory effect as seen from null infinity s entirely captured by
BMS' supertranslations.

91f one wishes to see the full details of this derivation, they may see page 137 of Strominger’s
lecture notes [25].

ONote the sign change here due to changing from retarded time to advanced time.

" The word full is used here, however, it is worth noting that this is only an analysis at
linear order.

12The Heaviside terms here have been neglected as we are assuming the shockwave has
already struck the black hole.
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This discussion is important when analysing the calculations in this chapter.
Applying the same gravitational shockwave ((5.10]) used in [26], 25, 270] to the
Kerr solution is a non-trivial task and thus one does not know for certain what
the other components to the memory effect will appear. A common suspicion
within the community is that there may be another monopole contribution to
the mass term that appears in the g,4 component of the metric. This would
imply a change in the angular momentum of the Kerr black hole due to a grav-
itational shockwave — which will not be seen at null infinity by observation of
the superrotation ChargeE[

13Recall that if one changes the ADM mass of a rotating black hole, this changes the ADM
angular momentum. 1s would, therefore, change the behaviour at spatial infinity, <%, but

gul Thi Id, therefi hange the behavi ial infinity, i, b
not null infinity, Z.
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5.2 The Kerr Metric

We will now discuss the Kerr metric in general Bondi—Sachs coordinates. The
Kerr solution was first introduced in generalised Bondi—Sachs coordinates by
Fletcher and Lun [271]. They were interested in investigating gravitational
radiation in the Kerr spacetime. As we are interested in the behaviour of this
solution at large r, i.e., expanded in powers of 1/r, we shall only present the

asymptotic line element™] found in the appendix of ref [271]:

2

oM 2 o520 — 1g2
ds? = — (1—T)du2—2<1+a CO8 VT 59 )dudf

7 7
2aM + 2a*sin 0 2aM sin” 0
—2cos9(a— alf + fa”sin )dud@—Z(&)dudqﬁ
7 7
L <1 N 2as~in0 N 2a? — 322 COS29> 46
7 7
—|—f2<sin29—2asjn?C0829+a2_3a2COS2~§+3a2COS49 A+ ...
7 7
(5.13)

The line element given in does not, however, satisfy the Bondi-Sachs
gauge. This gauge is reached by requiring the coordinate, r, to be the “luminos-
ity distance” [261]. This is, however, misleading as the term luminosity distance
means something quite different in cosmology. In fact, r, is simply chosen to be

an areal coordinate that varies along null rays and satisfies det(gap) = r*sin? .
This is achieved by deﬁning{ﬂ,

acos20 a? 1 1
ro= — — |4 260 - 5.14
" T+2 sin 6 +8 ( €08 +sin29>r ( )

With this radial coordinate the line element ([5.13) may be recast into the

14We have chosen to not list the gy, term here since it is of order O(1/r). Comparing this
to it is clear that this term will be of subleading order and not used in the analysis.

15Tn fact, this is not the only reason this transformation is chosen. This coordinate trans-
formation also leads to the trace of C4p vanishing and the metric taking the form .
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following form[*}

2
ds? = — 1—% du?® —2 1—a+2i dudr
r 16 sin® 6 r2

1 2a M sin®
_2< a cosf acosH{SM_i_ .a39}—>dud0—2<a sin 9>dud¢

2sin? 6 4 sin r r
2

2
+ <r2+ siz9T+ 28(111120) de* + <r2sin26’—asin6’7“+%> de? + ...
(5.15)

By comparing the expanded form of Kerr solution in the Bondi-Sachs gauge in
(5.15) with (5.2) we may read off N4, Cup, and CypC4®8 for the Kerr solu-

tion.

2a?
sin?@’

Capdz?dz® = ¢ d#?* — asin 6 d¢?;
Ny = 3aM cos 0 ;

sin ¢ (5.16)
Ny = —3aM sin’ 0

Mbondi = M.

OABCAB =

One may note here that the coordinate transformation is singular when
sin @ = 0. However, this is in fact only a coordinate singularity as one may con-
firm by checking both the Ricci and Kretschmann scalars. Both of these scalar
invariants remain finite when sin § = 0. Intuitively, one may see this as a result
of using simple null geodesics — those with zero angular momentum about the
axis of symmetry — to arrive at this particular version of the Kerr solution.
Simple null geodesics were used by Fletcher and Lun [271] as the principal null
directions of the Kerr solution do not form constant u hypersurfaces. This fea-
ture has been discussed in the literature and does limit the applicability of this
metric in numerical studies — one may see refs [281], 282] for further discussions.

Furthermore, note that we are using retarded time instead of advanced time.
The original calculations by HPS [26, 25] were done in advanced time. However,
we are interested in the potential observation of the supertranslated Kerr black
hole in the future of the black hole being struck by a gravitational WaveE|.

6The g, component here differs from ref [266]. This is in fact a small error in Appendix
D of their paper and can be verified by computing dr. Furthermore, one may note that this
component now correctly provides the scalar, CABC .

7By following the calculations of Fletcher and Lun [271] changing from retarded time to
advanced time will only require a sign change. Therefore, if one wishes to see charges implanted
on the horizon, one can easily do so by changing the a sign in the relevant components.
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5.3 Supertranslations of the Kerr Spacetime

Unlike the cases considered in refs |26, 270, 29] — which are non-rotating space-

times — there are several other terms involved when calculating the diffeomor-
phisms of the Kerr solution in the form (5.13). All of these diffeomorphisms are
explicitly given by

5guu = E{guu = gaaozguu + Gav auga + guaauga ) (517)

where the € is once again the asymptotic Killing vector in (5.11)). The super-
translated metric functions are found to be:

2
6guu:_MD2f;
r
1 acosf
5ur:_ D? )
g r2 2 sin? 6 /
1 9 1 a cosf
0guop = — | Oaf + 506D f | + | 2MOpf — 0o3 5——=,;00f ¢ | ;
2 T 2 sin“ 0

a cosf

1 1
= - 9,0 “oma,f -2 :
6gu¢> <8¢f + 2&;5 f) + . < 8¢f 9 sin? 98¢89f> ;

cos

(59@9:{2892f_D2f}7’—.L{+1D2f+2 - 89f—2392f};
sin 6 2 sin 6

dGpp = {28¢2f—|—28111900898¢f —sinzﬁsz}r

- Sizg{%sw OD2f + cos 00, f + 20,2f % .

(5.18)
Comparing the supertranslated metric functions with refs [26, 270, 29] it is
clear that upon setting a = 0 we recover the supertranslated Schwarzschild
black hole{ig]. One may note that the supertranslated C4p field is the same for
the Kerr solution and Schwarzschild. This is to be expected as in refs [25] 260]
is it shown that there should be no change unless myong; is actually a function

of retarded /advanced time.

The new metric functions are defined via

guu = G T 5g;w > (519)

8The notation used in this thesis is more explicit when comparing to the referenced papers.
This leads to the gg4 supertranslation looking slightly different. This is, however, due to the
fact that the covariant derivatives have been calculated explicitly and not left in the form

Da(Dpf).
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which are:

guu =
Gur =

8acos€ 1
1— D*f s — |;
{16 sin 9 16 sin’ 6 f}r2>7

(-
(
S { acose ‘oS aeDQf}
-
.

 2sin

acosf a

{(8M +

Y — 2MOyf + 4

2ot ef”

8¢f+ 8¢D f) {—2CLMSID 0+2M8¢f—gcosea¢ ef}

sin® 6

99927“2—1—{81 0+2agf D2f}

- °_ 4 D2f+2cosef99f—2aef
sinf) 2sind

Gop = r°sin® 0 + { —asin9+28¢2f+2008981n98¢f—sin26D2f}r

_ sizﬁ{ — as12n9 + %sin2 OD*f + cos 00, f + 20,° f

(5.20)
The supertranslated Kerr metric in is referred to as a “hairy black
hole”. The hair carried is soft supertranslation hair, which have corresponding
charges. From the metric components, one can read off C45C4E, Cyp, and N,

after the Kerr spacetime has been supertranslated.
20>  16acosf

sin® 6 sin® 6

CapCHP = D*f;

CapdzAdz® = (ﬁ 20,2 f — D? f) 46?

cosf

— (a sinf — 20,2 f — 2 aqbf — sin 9D2f> de?; (5.21)

Ny =3M{acosO+0pf} + = aﬁg{ cos? [ °f — —aef]}

3 0
Ny = 3M{—asin®0 + d,f} + §aa¢{ cos [DQf - —aef} }
sin
and the supertranslated event horizon is now located at

1Dﬂf. (5.22)

(ry)f=ry+ 5
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It is apparent that several terms in the supertranslated metric functions are
once again singular when sinf = 0. If one is to use this solution for numerical
studies then it is likely that f must be restricted to very particular functions in
order to eliminate this issue.

5.4 Charges

With the supertranslated spacetime — the hairy Kerr black hole — we may now
discuss the superrotation charges. These charges are associated to the super-
translation hair which are evaporated off the event horizon to future null infinity.

5.4.1 Supertranslation Charge

As discussed by HPS [26], 25] supertranslation hair do not impart supertrans-
lation charge. Recall that the supertranslation charge observed at future null
infinity is defined as follows:

Q=1 [ POV it (5.23)

" in

It is now clear that since the Bondi mass aspect, mpongi, is not changed due to
the supertranslation alone we will not have any supertranslation charge turned
on by supertranslation hair. However, it is worth noting that in Donnay et al.
[270] and ref [29] an analysis of the Schwarzschild and Kaluza-Klein spacetimes
in the near horizon limit is conducted. This analysis shows that nontrivial su-
pertranslation charge is turned on at the horizon due to the gravitational wave
that is absent at null infinity. Furthermore, one may see ref [283] for an analysis
relating near horizon displacement effects to supertransformation charges.

5.4.2 Superrotation Charge

Supertranslation hair does, however, carry superrotation charge. The superro-
tation charge that is measured at future null infinity is given by

1
Qy —/ *0 /7Y Ny . (5.24)
T+

:871'

Using ((5.21)) we see that superrotation charge present at null infinity is

1
Qy_yo =— ﬁdQGYO 3Ma cos 6 +

87T T+

(5.25)
1 9 <0 3 coslr o, 1
5 | videy 89f—|—2a89{sin29[Df 2agf} ,
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and

Qy—ys :i/ —/7d*0Y?3Masin® 0 +
87T T+
3 cosf 1, 1
5¢f+§“8¢{sm29[17 I- 55’¢f]}] -

Here the first lines correspond to the bald Kerr black hole superrotation charges

| (5.26)
— [ dPey?

871— T+

and can easily be recovered if the supertranslation function f vanishes. Fur-
thermore, as one would expect when a = 0 we recover the superrotation charges
of the hairy Schwarzschild black hole [26, 270, 29]. As shown by Barnich and
Troessaert in [266], when Y is the Killing vector, d,, (5.26)) corresponds to con-
servation of angular momentum (for the bald Kerr black hole). For the hairy
Kerr black hole, one may see that the zero-mode superrotation charge (when
f=0and Y? = 1) given by , does not change and will still correspond

to conservation of angular momentum.

Detection of these charges still remains an open question. One first requires
an operational notion of finite infinity. Secondly, we require a notion of what
higher order charges would be observed as in our detectors. In theory, the su-
pertranslation field should be detectable via classical tests of general relativity
such as the bending of light [276] 284] 285]. However, as Comperé discusses in
[276], one would need an array of detectors surrounding the central object in
order to deduce the superrotation charges, thereby confirming the existence of
the supertranslation field.

5.4.3 Supertransformation charges and the Memory ef-
fect

In |[subsection 5.1.4| we discussed that it has been shown the mass, M — in the

case of the Schwarzschild spacetime — is changed by a factor of p which is
the monopole contribution to the shockwave. We discussed that in the case of
Kerr, this shockwave may also change the mass term present in the g, terms.
This would change the angular momentum of the Kerr black hole, as one may
expect, from the passing of a gravitational wave. Since the mass of the black
hole is changed, one may ask why there is no supertranslation charge found at
null infinity or why the zero-mode of superrotation charge (angular momentum)
is not changed.

Recall, however, that supertranslation and superrotation charges are only
defined for Z+ and Z~. This, therefore, becomes a statement of what an observer
at null infinity measures as the memory effect rather than what the memory
effect may be for all observers. Indeed, it seems that the change in mass and,
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therefore, changes in momentum and/or angular momentum are not measurable
at null infinity via the measurement of superrotation charges.

5.5 Discussion

We have studied the effects of a BMS supertranslation on the Kerr black hole
in Bondi coordinates. This was first done by taking the asymptotic expansion
of this solution which matches perfectly with the general BMS expansion of
an asymptotically flat metric after a coordinate change given by .
In we then found the supertranslated metric functions — the hairy
Kerr black hole — which were used to to determine the supertranslation and
superrotation charges that may be found at null infinity in [section 5.4

We discussed the change in these supertransformation charges due to the su-
pertranslation hair implanted on the Kerr black hole by the gravitational wave.
It was shown that supertranslation charge was absent at null infinity. How-
ever, the supertranslation hair did in fact turn on superrotation charge that
was detectable at null infinity, given by and . We showed that the
zero-mode of the superrotation charge remained unchanged at null infinity since
any change in mass is not due to pure supertranslations. While detection of
these charges still requires further technological and theoretical developments,
calculations of these charges does hope to provide a better understanding of the
scattering problem when astrophysical, rotating black holes are involved.

The near horizon limit of the extremal Kerr solution was not discussed.
It was shown in refs [270, 29] that there was a non-trivial supertranslation
charge turned on at the horizon for the hairy Schwarzschild and Kaluza—Klein
spacetimes. Hence, the near horizon Kerr limit would be interesting to explore.
Furthermore, the charged Kerr black hole — the Kerr-Newman solution —
would be interesting to explore as it has been shown that the presence of a
vector potential will lead to soft electric hair [27]. The Kerr—-Newman memory
effect in the asymptotic limit and the near-horizon limit will be explored in

Chapter [0}
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Chapter 6

Kerr—-Newman Memory effect
and Near-Horizon Physics

6.1 Introduction

In this Chapter, we extend the calculations undertaken in Chapter This
is done by first bringing the Kerr-Newman spacetime into the Bondi-Sachs
gauge by means of zero angular momentum null geodesics. We compute the
memory effect produced at the black hole horizon by a transient gravitational
shock wave, which from future null infinity is seen as a Bondi-Metzner—Sachs
supertranslation. This results in a change of the supertransformation charges
at infinity between the spacetime geometries defined by the black hole before,
and after, the shockwave scattering. For an extremal Kerr—Newman black hole,
we give the complementary description of this process in the near-horizon limit,
as seen by an observer hovering above the horizon. This was not done in the
Kerr case in the previous chapter. In this limit, we compute the supertran-
formation charges and compare them to those calculated at null infinity. We
analyse the effect of these transformations on the electromagnetic gauge field

and explore the self-interaction between this and the angular momentum of the

black hole.

The Kerr-Newman spacetime [286] describes a rotating, charged Black Hole
(BH) and represents the most general of the asymptotically Minkowskian, sta-
tionary BH solutions to the Einstein—-Maxwell equations. It is a direct gen-
eralisation of the Kerr solution [287] for a chargeless, rotating BH. The Kerr
solution is widely accepted as providing an accurate description of the exterior
spacetime surrounding realistic BHs. In particular, the matching of its ray trac-
ing predictions with the recent direct observations of Sagittarius A* and M&87*
further support its relevance [288], 289 141], 290]. In spite of these successes,
a more realistic representation of a BH would have to include the effects of its
inherent electromagnetic charge, in principle varying over time due to the in-fall
of charged matter. The Kerr—Newman solution represents a first step in this
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direction, as it provides the spacetime geometry for an intrinsically charged,
stationary, rotating BH. As such, the study of this solution is of critical interest

for understanding the dynamics and structure of physically realistic BHs.

Furthermore, a regime of interest is the Near Horizon (NH) limit of the Kerr—
Newman spacetime, specifically the case of an extremal Kerr-Newman BH.
Indeed, the study of the NH limit of classical BHs is of fundamental importance
for the investigation of their geometry and topology, carrying consequences for
any traditional approach to quantum gravity [291], 292]. Here, extremal BHs are
highly relevant because even as semi-classical objects, they remain inert, since
they do not emit any Hawking radiation [293 294]. As such, they represent
simple objects for investigating links between quantum physics and general
relativity.

Additionally, the NH limit provides a framework for describing the gravita-
tional shockwave scattering as seen by an observer hovering above the horizon.
Therefore, it provides a complementary analysis to the memory effect study
carried out at null infinity. For such cases as the Reisnner— Nordstrom and
Kaluza—Klein BHs, the NH observer is known to measure a horizon superro-
tation after the scattering process has occurred — something absent at null
infinity [28, 29]. Moreover, the passage of a gravitational shockwave imparts
soft electric hairs on the horizon of charged BH, thus showing the interplay
between the gravitational and electromagnetic fields. We will reproduce these
calculations for the near horizon extremal Kerr-Newman BH. Furthermore, we
will show that the interaction between angular momentum and the electromag-

netic field is present even for the bald extremal Kerr—Newman solution.

In section we put the Kerr-Newman metric in the Bondi-Sachs gauge.
In section we supertranslate the resulting spacetime, electromagnetic gauge
field and discuss the physical implications of this procedure in the presence of
charge. In Section we explore NH physics for an extremal Kerr-Newman
BH and relate the effect of outgoing gravitational radiation to null infinity with
the respective modifications of the BH horizon. Section presents a brief

summary of the results and a discussion regarding future lines of research.

6.2 Kerr—Newman Spacetime in the
Bondi—Sachs Gauge

The Kerr—-Newman line element in Boyer—Lindquist coordinates {_, 7,0, 95} is

2N
,sin” 0

52

p

72 A
a5t = (5 a0?) 2+ (01 - asin 000 — (%06 - aat? 0, (6
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with

A(F) =7 +a* — Z; (6.2)
=(r)=2M7 — Q% (6.3)
p*(7,0) = 7 + a® cos® 0; (6.4)
A%(F) =1+ a?, (6.5)

where M, a and () are, the mass, angular momentum per unit mass, and electric
charge respectively, of the Kerr-Newman black hole in geometrised units. We
alm to cast in the BS gauge. To do so, we first move from the Boyer—
Lindquist coordinates to the general Bondi-Sachs (GBS) coordinates, in which
the metric has to respect the constraints and then impose the falloffs
through a further coordinate transformation. Only once is put into the BS
gauge, a meaningful analysis of the asymptotic structure is then possible.

Analogous to the pioneering work of Fletcher & Lun on the Kerr metric [295]
and the following expansion by Houque & Virmani to the Kerr—de Sitter solu-
tion [296], we begin by considering Zero Angular Momentum Null Geodesicﬂ
(ZANGs) in the Kerr-Newman spacetime in Boyer-Lindquist coordinates [}

These are

a2

_2— = —

A (Y - g (6.7)

Plax) ~ ! ‘

A,

=) =Q 6.8
dgo a=

72 _— = — .

where A is an affine parameter along the ZANGs, FE is the constant of motion
interpreted as the energy of the photons, and the remaining functions appearing

in equations — are

S (7, 6) = A' — a®Asin®0, (6.10)
Br)=A'—?X°A, (6.11)
Q7. 0) = a> B2 (X* — sin®0) . (6.12)

X = X(7,0) is related to Carter’s separation constant, K,
by K = a®> E2X” [297]. Hence, it also results as a constant of

geodesic motion
d .
—X(r,0) =0. 1
SX(,8) =0 (6.13)

!Otherwise known as Zero Angular Momentum (null) Observers, null ZAMOs
2To maintain a consistent nomenclature with the existing literature, we resolve to use the
same notation adopted by Fletcher & Lun and Houque & Virmani [295, [296].

90



When @ = 0, equations (6.6)—(6.9) reduce to equations (12)—(15) of [295], as

it should be expected. Moreover, we point out that as for the pure Kerr case
solution, the r.h.s. of is a function of 7 alone. We can now proceed to
write the Kerr—Newman metric in GBS coordinates. To do so, we start with
the coordinate transformation

t=a+J(W0), (6.14)
r=r, (6.15)
6 =0(7.0), (6.16)
¢ =06+ L(,0), (6.17)

where the functions J(7,6), 6(F,8) and L(7,6) are arbitrarily defined, at this
stage. The coordinate transform is chosen in this manner as to preserve the
simple form of the Killing vector fields in the new coordinate system

0f = 05, (6.18)
05 = 0. (6.19)
(6.20)

We further impose that the integral curves of the ZANGs, in the new coordi-
nates, are lines of constant {7, 6, ¢}, i.e.

do

i 0, (6.21)
dé

—_ = 22
d¢

9@ _q 2
o =0 (6.23)

Applying the coordinate transformation (6.14))—(6.17]) with conditions (/6.21])—
(6-23) to (6.6)—(6.9) gives

% - BZ—A, (6.24)
?9_? - g%, (6.25)

_AB

with ) ) B
j_; _ j_; _ %, (6.27)

The choice of the positive root for B, combined with (6.14)) and (6.24)), indicates
that we are using a retarded time coordinate and that the ZANGs are outgoing
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rather than ingoing null geodesics. Furthermore, from and (| - we
deduce,
X =X(0). (6.28)

Since we have picked 7 = 7 we can take the square root of (6.26) and integrate
to obtain

/ / 047 _ Ly, (6.29)
vV X? —sin 6’
where
adr’
ax(rT) = ) 6.30
x(7) V2t a?)? — 2X2(r2 +a? — 2 M1 + Q2) (6.30)
and
dax a (6.31)
ar  B(r) '

Here, when a is positive, ax, is chosen to be a negative, monotonically increasing
function.

To integrate (6.29) we notice that the Lh.s. is the Legendre incomplete
integral of the first kind and hence defines the Jacobi elliptic sine (sn) function.
Thus, we have

sn <:|:aXX+ H(0), %) X2 > 1
sinf = tanh(iax +H(0 ) =1 ) (6.32)

Xsn(+ax +H(F), X?) sin?d< X2 <1

where H(f) is an arbitrary function of §. We now require § — 8 for 7 — oo,
that is, the two angular coordinates must match at large distances. Therefore,
we obtain
sn ! (sin 6, X2) X2>1
H = { tanh™!(sin 0) X?2=1 ) (6.33)
sn‘%%,)@) sinf < X2 <1

Finally, by requiring a fixed equatorial plane under the transformation of co-
ordinates — 0 = +7/2 +— 0 = +7/2 — the case X2 = 1 is selectedl This
corresponds to choosing the simplest possible class of ZANGs with non-zero
energy. Indeed, it forces both Carter’s constant (Q = K —a® E* ) and the total
angular momentum about the axis of symmetry to be zero.

Here, we must also stress an interesting difference between the coordinate
systems built following this procedure for the Kerr, Kerr-de Sitter and Kerr—
Newman spacetimes. For the latter, due to the presence of the charge term
in the denominator of , the coordinate system is not well-defined over

3Henceforth, the subscript X is dropped from ax.
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the whole spacetime. Indeed, by analysing (6.30) for X = 1, we see that the

coordinate chart develops a singularity at the real positive root of
P(r; M;a;Q) = (r* +a*)? — a®*(r* + a®> —2Mr + Q). (6.34)

Therefore, in the Kerr—Newman case, the coordinate system will not be
global, unlike in Kerr and Kerr—de Sitter. However, the coordinate singularity
appears only below the outer horizon of the charged BH. Thus, the coordinate
chart built using ZANGs can still be used in studying the asymptotic structure

of the spacetime. Then, by using equations and we obtain
tanh ™' (sinf) = tanh ™' (sinf) + (6.35)

with

adr’

\/7,'4 ¥ a2(r'2 T2 M — QQ) )

a(f) = — (6.36)

From ([6.35)), and choosing the plus side in front of a;, we directly deduce

~ D
sind = o ) (6.37)
cosf = _cosh , (6.38)
C cosha
where
C' =1+ tanhasing, (6.39)
D = tanha + sinf . (6.40)

From (6.37)), (6.38]), (6.39) and (|6.40) we obtain

00 B cosf da cos B a

- - - - _ -7 - 41
or  Ccoshadr  Ccosha B(r)’ (6.41)
00 1
—_ = 42
00 Ccosha (6-42)
Therefore, we have
_ 32 .
596D (0.43

_ ~ a= ~ o~
d¢ =dop+ == dr + h(7,0)da , 6.44

6= dd+ Z AT hD (6:44)

~ cos a 1 .

ey - T - 4

40 Ccosha B dr C cosh a 47, (6.45)

where g(7,0) = 8J(7,0)/00 and h(7,0) = OL(#0)/90. To complete the co-
ordinate transformation, we need to establish the function form of ¢(7,6) and
h(7,6). From the condition

grg =10, (6.46)
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we deduce the form of g(7,6) as

~ acosf
rl) = ——5—, 6.47
9(7.9) C?2 cosh® (6.47)
whilst from the integrability condition
0;0: L(7,0) = 0:0; L(7,0) , (6.48)
we get
h(7,0) = h(6). (6.49)
Without losing any generality we are then free to choose
h(f) = 0. (6.50)

Therefore, (6.24)), (6.25)), (6.41)), (6.42)), (6.47) and (6.50)) completely define the

correct coordinate transform — (6.14))-(6.17)) — to cast the line element (6.1]) into
the GBS form

S ~2 = ] -
ds? — — (1 - ~—2> di? — 2% dii dF — 2(1 . 72> L5 dadd
p

1]t

p* ) C2 cosh® a

aZ D\’ . - P 2\ a%cos?l | -
2 (DN s [P (i E) @l ] 6
02 (C) udg + [02 cosh? a ( ,52> C4 cosh? a
a?cosf (D\’A . - D\’%2% .
_ 9 WY () 2qdad+ (Z) Zag.
202COSh201(O) p? qb—i_(C'> p? ¢

Finally, to put the line element (6.51]) into the BS gauge we apply the fol-
lowing coordinate transformation (|5.14})[298]

i=u, (6.52)

6=0, (6.53)

6=, (6.54)
acos260 a? 1 1

F= — — 20+ —— | —. )

7 r—|—2 e~ + 3 <4COS +sin26)r (6.55)

At the expansion order of interest in r, we find the metric components to

bl

4The calculations put forward in this chapter have been checked with the Mathemathica

codes described in
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2M  aM cscf cos 20 + Q?
Guu = —1+ === - el +0(r ) ;
a’*csc?0  a® (2M + acos4fcsch) 4
2aMsin®0  asin® (3a M cos 20 + 2aM + Q?siné _
Jup = — " + ( 3 )—I—O(r 3);
1 3 M
o = SacotOescd+ acosf (acsc® + 8M)
2 4r
_acotfesch (4a® + Q%) cos20
272
acotfcsch (3a*cos46 + 2 (2a* — TaM sin 0 + 3aM sin 30 + Q?)) 3
Ar2 +0 (1) ;
1 2 0 cos 40 + 8M cos?
goo = 1> +arcsc + 5(12 csc? 0 + @ (acse COS4 i cos”6) +0 (T_2) ;
T
2a?M sin?@cos  a’sinfcos (5aM cos20 + Q*sin b _
g =~ A ARl Lo ()
G = 12 $in% 0 — ar sinf + %2 a® sin 0 cot? 9(040; 40 — 2 cos 26)
a’sin® (4asin* 0 — 5asin® 6 + a + 2 M sin® 0
+ ( . ) + 0O (7"72) .
(6.56)

Furthermore, we can compute the electromagnetic four-potential in the se-
lected gauge. We start by considering the four-potential in Boyer—Lindquist

coordinates B B
A, dzt = gdt_—l— ag sin?0dg . (6.57)
p p
Moving to GBS coordinates, we then find
~_fQ~fQ~22~ancosé~fQD2~
A“dSL’“ = ?du—i—ﬁ(r +a )dr+?md9+a§ 5 do, (658)

where p = 72 + a? — a2 (D/C)*. Given that A; is solely a function of 7, it can
be set to zero via a classical U(1) gauge transformation. Then, by moving to
the BS gauge we find

Ayda — (9 B anosQche@)du

r 212
2 _
N a@ cosd L8 Q) cscB(cos B — 3 cos 30) 40
r 4r?
N <aQ sin? 0 _a’Q Sin«9(3(:20829 + 2)) db + O(r?)
r 2r
(6.59)

Thus, we can now move to the evaluation of the asymptotic structure of the
spacetime.
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6.3 The Memory Effect at Null Infinity

The gravitational memory effect as seen by an observer at null infinity has been
shown to be equivalent to a BMS supertranslation. Following the investigation
of the Kerr memory effect at null infinity in Chapter [5| (in particular, )
[298], we now focus on the Kerr-Newman memory effect. The supertranslated
metric functions are once again calculated via

5g;w = ‘Cfg;w?

where ¢ is the asymptotic Killing vector, (5.7)). We find

1 M(1 — 2sin® 0
5guu:ﬁ{_MT+Q2+a ( ' Sin )}sz

sin 0
aM 4
+ =y (=2 + cos26) cotfcsch pOpf + O(r*); (6.60)
1 | acosf
= — D? E 61
S Gur T2{251n20} f+0(r?); (6.61)
1 1 0 1
59u0 = —{aef + 50D } r{2M09f Z (“ — 0ef> } - —2{622691”}
+ lz{ aM csc cos 29}89f +O(r ®); (6.62)
1 1 a cos@ 1
5gu¢:—{8¢f+§8¢D2 } +;{2M8¢f 08¢ gf} ——2{Q28¢f}
+ %{ M csc 0 cos 29}8¢f +0(r™); (6.63)

cos@
0900 = {23le sz} sme{ + = D2f +2 0] ~ 2892]”} o(r);
(6.64)
0Gpp = {28¢2f +2sinfcos0 0y f — sin? 0D2f}r

a

{lsm 0D f + cos 00, f + 20,° f} +(’)(r_1) :
(6.65)

sin 6
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Additionally, the supertranslated gauge field components at null infinity
are:

0A, = ;gDQf — —csc@(cos%cot@ - 2s1n29>69f +0(?);  (6.66)
dAp = 5D2 fO,Ap — OpfOpAp (6.67)
2
+ <% - GQCO;QH CSCQ)aef + AcOpDCf + O(r ).

(6.68)

As can be seen, the supertranslated gauge field has components which match
the leading order parts of the original gauge field. Therefore, when an observer
at null infinity measures the Maxwell field through F),,, they will observe a
difference in a bald Kerr—Newman spacetime and hairy Kerr—-Newman space-
time.

Comparing the supertranslated metric components with (5.2) we find C,5C45,
Cap, Na, and myong;, after the impact of the gravitational waveﬂ

2a? 16a cos 8

sin® 6 sin? 6

CypCAB = D?f; (6.69)

Cypdztda? = <ﬁ +200°f — D2f> de?

cos 6

— (a sin ) — 20,° f — 2 8¢f — sin (9D2f) de?; (6.70)

Ny =3M{acosf + dyf ) + gaae{scosé’ [D2f - —aef} } (6.71)
Ny =3M{—asin®0 + df } + 2 aa¢{ COSZ[D?f—%an}}; (6.72)
Mpondi — M. (673)

We are now in a position to discuss the supertranslation and superrotation
charges that are implanted on the BH horizon, as seen by an observer at null
infinity. As expected [27, 298], the scattering of a gravitational wave by the
BH will not excite supertranslation charge. However, this process, equivalent

5There have been developments in the BMS group where authors have started investi-
gating higher order terms in the expansion. For instance in refs [299] 282] there are higher
order terms, such as ‘E p’ and ‘F4p’ which appear in the gap expansion. However, these
modifications are made for the inclusion of a cosmological constant. The relevance of these
terms in our analysis and the effect these may have on charges that we observe at null infinity
remains unclear and is perhaps an avenue for further research. Furthermore, the incorpora-
tion of these terms would likely also require tweaking of the transformation , similar to
what is done in ref [282].
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to a supertranslation at null infinity, will modify the superrotation charge. The
superrotation charge that is measured at future null infinity is given by

1

Qy = 3 /I+ d’6 YN, (6.74)

Using we get,

1
Qy—ys = — o \/’7d2@Y03Ma6050+

8
. st (6.75)
- \/_dQGY" Bof + 2 aag - [DQf——agf}
and
Qy_ys = L —/7d*0Y?3Masin? § +
87T T+
st (6.76)
5 | VIEOY?|0f + 3 a8¢{s [DQf——a¢f]}]

The first terms in and correspond to the bald Kerr—Newman
BH superrotation charges and can easily be recovered if the supertranslation
function f vanishes. Furthermore, when a = 0 we recover the superrotation
charges of the hairy Schwarzschild BH [26, 28, 29]. Moreover, as shown by
Barnich and Troessaert in [266], when Y is the Killing vector, 0, (6.76]) corre-
sponds to conservation of angular momentum for both the bald Schwarzschild
and Kerr BH. For the hairy Kerr-Newman BH, one may see that the zero-mode
superrotation charge (when f = 0 and Y® = 1) given by , does not change
and will still correspond to the conservation of angular momentum.

We note that the calculated charges are no different from those obtained
for the Kerr solution, as seen in ([5.26)) and ([5.25)[298]. Therefore, within the
current framework, the expected memory effect at null infinity in these two

spacetimes is indistinguishable. This follows from the electric charge, @), ap-
pearing only at a higher order than r~! in the expansion of the metric in the
BS gauge. In our opinion, this result represents a clear drawback of the cur-
rent, first-order framework. A higher-order approach is needed to distinguish
fundamentally different spacetimes, such as the Kerr and Kerr—Newman solu-
tions, and should therefore be pursued as an important milestone for the field
[300].

Nonetheless, we point out that the presence of an electromagnetic field in
the Kerr-Newman spacetimes gives a novel method to measure the scattering
of a gravitational wave from the BH, via the change in the field. In particular,
if such a change were to be detected and agree with our calculations, it could be
considered as an indirect test for the presence of supertransformation charges.
However, such a measurement clearly presents observational challenges.
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6.4 Near Horizon Physics:
Extremal Kerr—Newman

We now shift our attention to the NH form of the Kerr—-Newman spacetime. In
particular, contrary to the null infinity analysis, we show that the two space-
times differ in their response to the scattering of a gravitational shockwave.
Indeed, in the Kerr-Newman case, the gravitational wave excites supertrans-
formation charges and implants soft, electric hair on the horizon, due to its
interaction with the electromagnetic four-potential. To determine the charges
that are implanted on the horizon, we must first find the NH metric compo-
nents, and secondly, derive an expression for the electromagnetic gauge field in
the NH limit. Chrusciel [301] shows that the general form of a NH metric is
given by

ds®* = —2Rkdv® + 2dvdR 4 2RO dvda? + Qupdaida® + ... (6.77)

A

where v is the advanced time, x* are angular coordinates, 64, Qap = 2, 7%a Bﬁ

are in principle arbitrary metric functions of v and 24, and x is the surface
gravity. Note, that when dealing with an extremal horizon, the surface gravity
vanishes, i.e., k = 0. In the coordinate used in (6.77), the horizon is now located
at R = 0 and the ellipsis are to denote terms that are O(R?). Furthermore, we
have the constraints

grr =0, gwr=1, gar=0. (6.78)
Additionally, in analogy to refs [278, 28], we use the boundary conditions
Gow = =26 R+ O(R2) . Gua = 04R + O(R2) , gap = Qap + O(R) . (6.79)

We can then find a set of asymptotic Killing vectors that preserve (6.78)) and
(6.79), generating an algebra consisting of both supertranslations and superro-
tations. The resulting Killing vectors are

R
€19, = f0, + (YA — Opf / dR’gAB)aA
R (6.80)
+ (Z(v,xA) — RO f + Ouf / dR'gABgUB)aR.

As is the case in refs [278, 28], we find a vector, Y4, that is a “constant”

of integration that represents the horizon superrotation{]. Then, using the

5Note the use of the internal index, a, here. This is required in the case of the NH
Kerr—Newman metric as we can not use only one scaling factor for Qog and Qee.

"It is important to point out that one does not need a gravitational shockwave here to
have “a superrotation/supertranslation charge”. These aspects exist as a property of the
asymptotic structure of the NH metric.
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NH asymptotic Killing vector, we compute the general supertranslated metric
functions; k, 04, and Q45 subject to (6.79) ﬁ

(55:“& = ££/<L = 0, (681)
(55(9,4 =Ly0s+ f0,04 — 2604f — 20,04f + QBC&,QABDCf , (682)
5§QAB = f0,Q2uB + LyQup. (683)

To properly study the NH physics of a charged BH, we must also discuss the
NH expansion of the gauge field. The Taylor expansion of the U(1) electromag-
netic gauge field near R = 0 is given by [2§]

A, = AV 4 RAW (v, 21) + O(R?), (6.84)
Ap = AV (2 + RAY (v, 2Y) + O(R?) (6.85)
Ar =0. (6.86)

Here AY is the Coulomb potential. In particular, we find that the supertrans-
lated gauge field components take the form:

5eA, =0, (6.87)
5eAp = Y040 + AD05YC + 05U (6.88)

Where U is an arbitrary function of angular coordinates and is referred to as
the electromagnetic charge generator, just as f is referred to as the generator
of supertranslations.

We now discuss the NH extremal Kerr-Newman spacetime and provide the
supertranslated metric functions. This will allow us to examine the effect of
a gravitational shockwave — under the identification of supertranslations with
the scattering of such waves by the BH — on the extremal horizon as seen by an
observer near the horizon. This leads to a horizon superrotation that is absent
at null infinityP] similar to the Schwarzschild and Kaluza—Klein cases discussed
in [28], 29] respectively.

6.4.1 Near Horizon Metric and Gauge Four-Potential

To derive the extremal NH Kerr—-Newman metric, we begin by defining [301]

t=et, (6.89)
=M +er, (6.90)

8We correct a small mistake here that is present in ref [278]. This third equation now
correctly states that the Lie derivative of Q245 is along Y and not &.

9In Chapter We stated that there is a change in the superrotation charges at null infinity
due to the supertranslation. However, in the near horizon case, (mathematically due to
the boundary conditions) we note that there is also a superrotation that has associated

supertranslation charges discussed in [subsection 6.4.
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¢=d+e 51, (6.92)

where r§ = M? + a®. After taking the limit € — 0, the metric becomes

) 7”0

2 ~ A~
ds* = (1 — a_2 sin? 9> {——df2 2 di* + rﬁd&Q}

2 -1 2
N A ~ 2aM N
+ r2sin® 0 <1 — a_2 sin? 8) {dgb + a4 r dt} : (6.93)
r

0 T

This metric is clearly singular on the horizon. Hence, we apply the following
coordinate transform

~ T‘
t=v -2 6.94
o (6.94)
=R, (6.95)
=0, (6.96)
2Ma 7
b= — log [ —
2 og (7“0) , (6.97)

leading to the line element

2 24 2@ 2
g = 8= e ) {_R—de — 2dVdR + rgd@ﬂ
o 7o
42 2
s sin” © 2aM
75— |dP RAV 6.98
r2 — a?sin® © [ * ra ] ’ (6.98)

which is regular for R = 0. We may now read off the metric functions in
(6.77)):

k=0; (6.99)
fo =0; (6.100)
2a M sin® ©
g = = . 6.101
@ r2 — a2 sin? © ( )
Qoo = 15 — a’ sin” O; (6.102)
4 2
Qopg = ro Sin” O (6.103)

12 —a? sin? ©

We must now bring the Kerr-Newman gauge potential into the form ((6.84)).
Performing the same coordinate transformations as we did for the metric, we
first find:

Q M2—a20082é) R Msin2d -
i QeMsmT0 5 (6.104)
r2 <M2—|—a2 cos2 9) M? + a? cos? 0

A, dit =
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where we have eliminated the constant term e (M Q/r) in A; through a U(1)
gauge transformation before taking the limit for small e. With the final coordi-
nate transformation ({6.94)), we obtain

2 _ 2.2 L2
Q (M? — a® cos @)RdV+ QaM sin”© 4 (6.105)

A, dXH =
a 13 (M? + a?cos? ©) M? +a?cos?©

where we have renormalised Ar = —(M? — a?)(Q/r3) R~ with a further U(1)
gauge transform. Note, that the Coulomb potential does not appear here.
However, because it is coordinate-independent, this can be added back in at
any point without changing the Maxwell field. Moreover, as expected, we will
see that the Coulomb potential will not appear in the expressions for surface
charges.

6.4.2 Near Horizon Supertranslations and Charges

Bringing the asymptotic Killing vector, (5.7) to the NH limit for the extremal
case — i.e., M? = a® + Q* — and supertranslating the NH Kerr-Newman space-
time (6.98)) we find the following metric components

R? (r2 — a®sin*© rd sin? © 2aMR\*
gvv = ——2( s 3 ) + = . 5 2 ( 1 ) ; (6.106)
g U r§ — a®sin” © o
2 1
Joo = {7’8 — o sin? @}{1 _ —agf} Fa’sin200f (6.107)
Ty Ty
1 o }{ 5 r2sin20 )
= — = O — ———F=0of —20 }, 6.108
Joe {T+ rZ —a?sin® © e r2 — a?sin® © of of g )
r2 — a’sin® O
GgvR = ————, (6.109)

2
7o

1 2aM in 2072
qu,:{_2“—}{s1n2@—waef—a§f}3, (6.110)
T

— 02 <in2 _ 42ain2
ryri—a*sin®© § — a*sin” ©

gve = { 1 22a—]\42®}{200t @8¢f—6@a¢.f} R, (6111)

ryrg — a?sin

9rr =10, (6.112)
gre =0, (6.113)
9R® :0, (6114)
gos =0. (6.115)

We can now compare our results with the supertranslated extremal NH Kerr—
Newman spacetime, see , and the general NH supertranslated metric func-
tions, see —. Since Q4 does not depend on retarded /advanced time,
from (6.83) we find the corresponding horizon superrotation to be

1
Ya=:Daf . (6.116)
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Surprisingly, this does not differ from the horizon superrotation of a
Schwarzschild BH found in [28]. Indeed, this is perhaps not expected as the
Kerr class of solutions are already rotating. However, this could be intuitively
understood by noticing that the correlation between the memory effect and
supertranslations — in both regimes, null infinity, and NH — is only examined
at linear order. In fact, one can show that if {245 does not depend on advanced
or retarded time, we will always have a horizon superrotation of this form —
up to a factor which depends on the horizon radius.

The diffeomorphisms generated by asymptotic Killing vectors have associated
horizon charges. The derivation of these charges stem from ref [274] and are
also discussed in refs [28] 302]. The NH charges take the form:

Q[X, YA U] = 16% / dOd® sin © r2 <2X — Y40, —4aUA — 4A§§>YBAS>) .

(6.117)
In the extremal case, it is apparent that the surface gravity vanishes and so too
does the Hawking temperature [293] 294]. This leads to an interesting scenario
in which the Hawking temperature is no longer the associated zero-mode for
the first charge. In this case, this zero-mode (the supertranslation charge) is
associated with the product of Bekenstein-Hawking entropy and the geometric
temperature [28,303]. The second term is analogous to the superrotation charge
found at null infinity. The third term is due to the electromagnetic generator

and the last term mixes the superrotation vector field with the gauge field.
Let the associated charges to X, Y4, and U be X, Y4, and U respectively.

The associated zero-mode (bald) horizon charges are

2
7o

X =Q1,0,0] = 7, (6.118)

Yo =9[0,Y°=1,Y"=0,0=0, (6.119)

VP =09[0,Y*=1,0] = % /d@dfb sin © 7 <0q> - 4A¢A§/1)> . (6.120)
T

U= 0[0,0,1] = —i /d@dcb $in © 12 <A<V1>>
2M a
) (1 — = arctan <M)> . (6.121)

The zero mode of Y?® gives the angular momentum of the BH as measured by the
hovering observer. As one may note, there is a contribution to this zero-mode
from the gauge field which does not vanish. Therefore, we see a strong interac-
tion between the electromagnetic gauge potential and the angular momentum
of the BH, with the former influencing the latter for the chosen observer. As
the gauge field vanishes, we retrieve the extremal NH Kerr solution, and the
angular momentum depends solely on 6. The final charge, U, the zero-mode
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charge corresponding to the electromagnetic charge generator, gives the total
electric charge of the BH as measured in the NH limit. Here, the complemen-
tary effect is observed and the angular momentum of the BH effectively shields
the intrinsic charge for the NH observers. Remarkably, these unexpected effects
of the self-interactions between angular momentum and electric charge are not
found via a null infinity analysis. Thus, they further indicate the importance
in general relativity of studying the same phenomena using a plurality of ob-
servers. Lastly, one may verify that these charges do indeed agree with the
extremal Reissner—Nordstrom horizon when a — 0 as seen in ref [28].

We may also use (6.117]) to determine the zero-mode of the NH charges of
the supertranslated horizon. To do so, we compute

49@: {i%}{200’5@8@f—8@6¢f}; (6122)

M r? — a?sin”©

: 2
eq):{ ! %}{siﬁ@—wa@f—aﬁ}; (6.123)
T

M r? — a?sin”© 2 —a2sin’©

o _ Q) (M*—d*cos’0) 1, (M?—a’cos’O) |
A= T%{(M2+a2 cos? O) M(99 (M2 + a2 cos? @)3@f ; (6.124)
©  QaMsin*©
A = M? + a2 cos? © +04s, (6.125)
(6.126)

where 0 Ap is given below. Interestingly, we see that once the NH spacetime is
supertranslated by the passage of a gravitational wave, then fg is no longer zero.
However, even though the NH geometry is transformed, the zero-mode horizon
charges remain unchanged. This is because we are setting the supertranslation
generator, f, to zerﬂ in all cases.

In the bald and supertranslated BHs we already see an interplay between the
electromagnetic field and angular momentum. However, a further interaction
between the gravitational and electromagnetic fields can be investigated by de-
termining the change in the electromagnetic field generator due to the memory
effect in the NH limit

U= / (YCaCA;@ + AVHLYC — 5§AB) daz? | (6.127)

Here, Y is the horizon superrotation,

1
Y4 = MDAf, (6.128)

10Tp fact, f, can be expanded in Fourier modes which relate it linearly to X in the extremal
case. Hence, when setting X to zero, we are also setting f to zero, and the zero-modes now
correspond solely to the bald near-horizon geometry.
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and

beAp = —Qa {a@( s’ © )a@f - ( : )&a&pf} .
M? + a? cos? © M? + a? cos? ©
(6.129)
This illustrates that the gravitational memory effect due to the passing of a

gravitational wave is not only seen as a supertranslation from null infinity,
but in the NH limit implants soft electric hair on the extremal Kerr—Newman
horizon.

6.5 Discussion

Motivated by the rising relevance of the gravitational memory effect, in this
chapter we have investigated the connection between the scattering of a gravi-
tational shockwave by the Kerr-Newman black hole, as seen in the near-horizon
region and in the far asymptotic region.

In ref [27] the authors showed that a transient gravitational shockwave mod-
ifies the black hole geometry in a way that can be interpreted as a BMS super-
translation at null infinity. Here, we have brought for the first time the Kerr—
Newman black hole in the Bondi-Sachs gauge and computed the action of a
BMS supertranslation on its asymptotic structure. In particular, we discussed
the change in the supertransformation charges due to the supertranslation hair
implanted on the Kerr—Newman black hole by the gravitational wave. We have
shown that the supertranslation charge was absent at null infinity, whilst a su-
perrotation charge is instead detectable. Furthermore, the zero-mode of the
superrotation charge remains unchanged, as any change in mass cannot be cap-
tured by the action of pure BMS supertranslations.

Following the pioneering work of Donnay et al [302], we studied the gravi-
tational memory effect in the near horizon limit of an extremal Kerr—Newman
black hole. Surprisingly, we found that the corresponding horizon superrotation
matches the one computed for non-rotating black holes. Moreover, we find that
no non-trivial supertranslation charge is turned on at the horizon, due to the
extremality of the black hole. Finally, we show that the scattering of the gravi-
tational shockwave by the black hole implants soft electric hair on the horizon,
via its interaction with the electromagnetic gauge field.

Some questions remain open and require further study. Indeed, we showed
that a higher-order formalism is needed to properly capture the full properties
of the spacetime when dealing with the memory effect. Consequently, a rigorous
definition, and interpretation, of higher-order charges would be required. Fur-
thermore, we have found a series of previously unexplored interactions between
the gravitational and electromagnetic fields. To wit, the presence of electric
charge invalidates the construction of the Bondi-Sachs coordinates as a global
coordinate patch for the spacetime, failing below the horizon. Moreover, we
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have showed that the electric charge, and angular momentum, inferred for the
black hole by a near horizon observer differ from what would be measured in
the asymptotic region, on account of the interplay between these two quantities.
This unexpected interaction between spin and charge requires further clarifica-
tion, with a possible avenue of research leading to the study of a similar effect
in higher dimensional, charged, rotating black holes.
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Chapter 7

Conclusion

The future of cosmology and quantum gravity is unclear. Cosmology, in par-
ticular seems to be reaching a ‘tipping point’, where observations of different
astrophysical events/objects are producing vastly different results. Without
doubt, this is likely due to the over-simplification of the concordance model —
ACDM, predicated on a spatially flat FLRW spacetime — which fails to ad-
dress many fundamental questions. Furthermore, several decades have passed
and there has been no direct detection of dark energy and dark matter. Not
only has there been no detection, there has also not been any proposed mech-
anism for their production that has been replicated or observed. In this thesis
we did not attempt to develop a new theory of cosmology or statistical method
for observation, rather we addressed fundamental questions regarding observers.

In terms of quantum gravity, it has seemed that we are on the edge of dis-
covering the ‘next big thing’ for the last (at least) fifty years. Despite many
promising theories such as loop quantum gravity and string theory, we are still
no closer to having observational evidence for how gravity behaves on quantum
scales. While we did not discuss any theory of quantum gravity directly, we
investigated the ‘black-to-white’ hole bounce and discussed the quantum im-
plications of this. We further probed the memory effect of black holes at null
infinity and in the near-horizon limit.

We began by introducing a coordinate system/slicing of spacetime that is
new to cosmology — the Painlevé-Gullstrand coordinates/slicing. This was
done, firstly in the spatially flat (k = 0) FLRW spacetime. It was shown that in
this slicing, space is no longer expanding, however, the galaxies (fluid particles)
are still receding from each other. In other words, the Hubble flow became very
explicit in this choice of coordinates. We then proceeded by calculating all of
the Killing vectors and Killing tensors in Painlevé-Gullstrand coordinates. This
was done because Killing vectors and the symmetries they represent are a cor-
nerstone of theoretical physics due to the conservation laws they are associated
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with. For purely cosmological spacetimes, we further considered three versions
of de Sitter space, (2.119)), (2.121)), (2.122). These either made the spacetime
static, the spatial slices flat, or made the connection to generic FLRW manifest.

For black holes embedded in cosmological spacetime we considered the Kot-
tler spacetime and the McVittie spacetime. For Kottler, we developed six dif-
ferent line elements, (2.123)), (2.127)), (2.132)), (2.137), (2.139), (2.143]). These
line elements focused on different aspects of ‘the physics’. It was shown that one

can either make the spacetime manifestly static, or make the spatial slices ‘sim-
ple’, or make the connection to a generic FLRW spacetime manifest. For the

McVittie spacetime we presented four different line elements, (2.146)), (2.154)),

(2.162)), (2.173)), two of which seem to be novel. The traditional version (|2.146))

is spatially isotropic, but every nonzero metric component is explicitly time
dependent. The “comoving” line element makes the connection with
generic k = 0 FLRW manifest. While the conformally Painlevé-Gullstrand
version makes the spatial slices time independent and eliminates ex-
plicit occurrences of the scale factor a(t) in favour of the Hubble parameter

H(t).

We then moved on to discussing an increasingly popular proposed mecha-
nism for the production of dark energy [86, 87, 88| [89]. This idea was that black
holes could grow independently of accretion or mergers due to dark energy pro-
duction in their interiors. This is supposedly correlated with the accelerated
expansion of our Universe. While an independent observational analysis had
strongly excluded these claims at ~ 30 [93] we chose to investigate this claim
on a purely theoretical basis. We started with three relatively well-known exact
solutions to the Einstein equations (Kottler, McVittie, Kerr-de Sitter) all of
which successfully embed black holes in suitable FLRW background. We have
seen that these exact solutions exhibit no evidence of any “direct coupling”
between the black hole mass and the cosmological expansion. While an embed-
ding of the Kerr black hole in an asymptotically FLRW spacetime would have
been ideal to show that the Kerr black hole also does not couple to cosmological
expansion such an embedding has proven to be in the “too hard basket”.

We further discussed the enormous scales of separation between milli-parsec
black hole physics and giga-parsec cosmological physics. Even on a pure in-
tuitive level, these scales render any coupling between black holes and cosmic
evolution implausible. Despite our views on the dark sector of the Universe, we
understand the need to explain the source(s) of dark energy within the current
paradigm of cosmology. However, we showed that — on theoretical grounds —
black holes simply cannot be this mysterious source.

108



In the next part of this thesis we moved to exploring pure black hole space-
times. The aim of this research was to investigate novel ideas that may aid our
understanding of the nature of quantum gravity and the graviton. We first inves-
tigated if a simple and compelling classical model of a black-to-white hole tran-
sition could be found. We began by performing a simple coordinate transforma-
tion of the standard Schwarzschild metric by modifying the radial coordinate.
We showed that for specific choices of hA(r) in the Schwarzschild space-
time — in other well known coordinates — was found; such as the Painlevé—
Gullstand, Kerr—Schild, and Eddington—Finkelstein coordinates. By imposing
the restriction h(2m) = £1 we showed that this line element can model a clas-
sical black or white hole where one or the other of the null curves are horizon
penetrating with nonzero coordinate velocity.

By further introducing a time-dependent function, s(¢), we then produced a
simple classical model for a black-hole-to-white-hole transition. This spacetime,
however, was no longer just a coordinate transformation of Schwarzschild space-
time. The non-static spacetime in these coordinates was found (at early and
late times) to have horizon penetrating null curves with coordinate velocity. We
found that the the action in the transition region was finite. More importantly,
however, this action can be arranged to be zero by carefully choosing h(r).
This proved to be a significant result as this action could then be added to the
Feynman path integral and have no impact on any quantum amplitudes. Fur-
thermore, this investigation could lead one to speculate that quantum physics
could become dominant in the near-horizon limit. This is contrary to the other
more-universal consensus that quantum physics should only be relevant when
curvature reaches the Planck scale. Evidently, there is room for future research
here. We hope to expand these calculations to the Reissner—Nordstrom, Kerr,
Kerr—-Newman solutions and their extremal variants in the future.

Motivated by the rising relevance of the gravitational memory effect in fu-
ture observational missions, we investigated the connection between the BMS
group and the memory effect for black holes. We extended the current body
of literature and pioneering work of Donnay et al [28, [302] by investigating
the Kerr and Kerr-Newman memory effect. Hawking, Perry and Strominger
in [27] showed that a transient gravitational shockwave modifies the black hole
geometry in a way that can be interpreted as a BMS supertranslation at null
infinity. In Chapter 5] we extended the supertranslation and charge calculations
by HPS and Donnay et al to the Kerr solution. In order to do this, we first
brought the Kerr solution into the Bondi—Sachs gauge. After supertranslat-
ing the spacetime we discussed the supertranslation and superrotation charges
that one would observe at operational null infinity in order to verify the grav-
itational memory effect for the Kerr spacetime. This calculation showed that
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there was a non-trivial superrotation charge turned on at null infinity due to the
supertranslation hair that was implanted on the horizon due to the passing of a
gravitational shockwave. As one would expect, in the absence of rotation, i.e.,
a — 0, the supertranslated spacetime and the associated charges were that of
the Schwarzschild spacetime. We did not show explicitly that the gravitational
wave induces a permanent change in the metric as is done for the Schwarzschild
case; this is a calculation that is quite dense and will be an avenue for future
research.

In Chapter [6] we moved the memory effect-BMS group investigation to the
the Kerr-Newman spacetime. We brought, for the first time, the Kerr—Newman
black hole in the Bondi-Sachs gauge and computed the action of a BMS super-
translation on its asymptotic structure. We again discussed the change in the
supertransformation charges due to the supertranslation hair implanted on the
Kerr—-Newman black hole by the gravitational wave. As was the case for the
Kerr spacetime, superrotation charge was shown to be detectable at null infinity,
while the supertranslation charge was not. We showed that there should also be
a change in the gauge field, leading to another method of detection for the mem-
ory effect — illustrating an interplay between gravitation and electromagnetism.

We further studied the gravitational memory effect and horizon charges in
the near-horizon limit of an extremal Kerr-Newman black hole. Interestingly,
The horizon charges of the bald extremal Kerr-Newman black hole showed that
the angular momentum of the black hole depended on the gauge field. This fur-
ther illustrated the interplay between gravitation and the electromagnetic field.
Upon supertranslating the near-horizon extremal Kerr—Newman black hole we
found that there is a also a horizon superrotation that has an associated super-
translation charge — which was absent at null infinity. Finally, we showed that
the scattering of the gravitational shockwave by the black hole implants soft
electric hair on the horizon, via its interaction with the electromagnetic gauge
field.

As for all research, there are many questions and avenues for future study.
Painlevé-Gullstrand coordinates have been investigated briefly in ref [304] for
different cosmological spacetimes. In these spacetimes — those that have a
global non-zero curvature — it was shown that there is no global notion of si-
multaneity. This raises interesting questions about observation of the CMB and
time in the Universe. It would be of great interest to investigate inhomogenous
spacetimes in this slicing, such as the Szekeres solution.

Research into the dark sector of the Universe is ongoing. In this thesis we
simply addressed a proposal for dark energy that could not be a solution to
our current concordance model. Of course, proving or disproving the existence
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of dark energy will take more than a simple discussion based on theory alone.
With new observational missions such as Euclid, and ongoing tensions in the
cosmology community, it is only a matter of time — we believe — before we
enter a new era of cosmological research.

While the infrared triangle and the correspondence between the memory
effect & the BMS group are fascinating, they are not free of conceptual and
technical hurdles. As we discussed, the connection between the black hole mem-
ory effect and supertranslations of the BMS group is only established at linear
order. Indeed, the memory effect at null infinity does not capture the entire
‘memory effect’ - it does not capture the change in Bondi mass. Beyond theo-
retical development, detection of supertransformation charges remains an open
question. Even if all of these questions are addressed, we do not know ex-
actly how one could take this research and use it to further develop a theory
of quantum gravity, even though implicit assumptions of the graviton are made
in the foundations of these calculations. Clearly, just as is the case for the last
fifty years, the more interesting connections we find, the more questions arise. . .

In the end, there are many open ended questions to the research under-
taken in this thesis. We hope that the theories further developed here will aid
observation in the near future for both cosmology and quantum gravity.

111



Bibliography

1]
2]

[9]
[10]
[11]

[12]
[13]

A. Einstein, Zur Allgemeinen Relativitdtstheorie, Sitzungsberichte der
Preussischen Akadamie der Wissenschaften 1915 (1915) 778.

U.L. Verrier, Lettre de M. Le Verrier a M. Faye sur la théorie de
Mercure et sur le mouvement du périhélie de cette planéte, vol. 49,
Comptes rendus hebdomadaires des séances de 1’Académie des sciences
(Paris) (1859).

S.L. Jaki, Johann Georg von Soldner and the gravitational bending of

light, with an english translation of his essay on it published in 1801,
Foundations of Physics 8 (1978) 927.

F.W. Dyson, A.S. Eddington and C. Davidson, IX. A determination of
the deflection of light by the sun’s gravitational field, from observations
made at the total eclipse of may 29, 1919, Philosophical Transactions of
the Royal Society of London. 220 (1920) 291.

R.V. Pound and G.A. Rebka Jr, Apparent weight of photons, Phys. Rev.
Lett. 4 (1960) 337.

A. Einstein, On the relativity principle and the conclusions drawn from
it, Jahrb Radioaktivitat Elektronik 4 (1907) 411.

L.I. Shapiro, Fourth Test of General Relativity, Phys. Rev. Lett. 13
(1964) 789.

LIGO ScIENTIFIC COLLABORATION AND VIRGO COLLABORATION
collaboration, Observation of gravitational waves from a binary black

hole merger, Phys. Rev. Lett. 116 (2016) 061102.
L. Smolin, The trouble with physics: The rise of string theory, the fall of

a science, and what comes next (2006).

P. Woit, Not even wrong: The failure of string theory and the continuing
challenge to unify the laws of physics, Random House (2007).

S. Hossenfelder, Lost in math: How beauty leads physics astray, Hachette
UK (2018).

R.P. Kerr, Do Black Holes have Singularities?, 2312.00841.

R.M. Wald, The thermodynamics of black holes, Living Rev. Rel. 4
(2001) 6 |[gr-qc/9912119|.

112


https://doi.org/10.1103/PhysRevLett.13.789
https://doi.org/10.1103/PhysRevLett.13.789
https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/2312.00841
https://doi.org/10.12942/lrr-2001-6
https://doi.org/10.12942/lrr-2001-6
https://arxiv.org/abs/gr-qc/9912119

[14]

[15]

[16]

[17]

[18]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

E. Hubble, A relation between distance and radial velocity among
extra-galactic nebulae, Proceedings of the National Academy of Sciences

15 (1929) 168.

A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks,
P.M. Garnavich et al., Observational evidence from supernovae for an

accelerating universe and a cosmological constant, Astronomical Journal
116 (1998) 1009.

S. Perlmutter, G. Aldering, G. Goldhaber, R. Knop, P. Nugent,

P.G. Castro et al., Measurements of w and X from 42 high-redshift
supernovae, Astrophysical Journal 517 (1999) 565.

A.G. Riess, S. Casertano, W. Yuan, L. Macri, B. Bucciarelli,

M.G. Lattanzi et al., Milky way cepheid standards for measuring cosmic
distances and application to gaia dr2: implications for the hubble
constant, Astrophysical Journal 861 (2018) 126.

A.G. Riess, S. Casertano, W. Yuan, L. Macri, J. Anderson,

J.W. MacKenty et al., New parallaxes of galactic cepheids from spatially
scanning the hubble space telescope: Implications for the hubble constant,
Astrophysical Journal 855 (2018) 136.

PLANCK collaboration, Planck 2018 results. VI. Cosmological
parameters, Astronomy € Astrophysics 641 (2020) A6 [1807.06209].

D.L. Wiltshire, Cosmic clocks, cosmic variance and cosmic averages,
New Journal of Physics 9 (2007) 377.

D.L. Wiltshire, Average observational quantities in the timescape
cosmology, Phys. Rev. D 80 (2009) 123512.

D.L. Wiltshire, Solution to the cosmological constant problem,
2404.02129.

M. Galoppo and D.L. Wiltshire, Fzact solutions for differentially
rotating galaxies in general relativity, 2406.14157.

C. Harvey-Hawes and D.L. Wiltshire, Revisiting the effect of lens mass
models in cosmological applications of strong gravitational lensing,
2403.11997.

A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge
Theory, Princeton University Press, Princeton (2017), [1703.05448].

S.W. Hawking, M.J. Perry and A. Strominger, Superrotation charge and
supertranslation hair on black holes, JHEP 05 (2017) 161 [1611.09175].

S.W. Hawking, M.J. Perry and A. Strominger, Soft Hair on Black Holes,
Phys. Rev. Lett 116 (2016) 231301 [1601.00921].

L. Donnay, G. Giribet, H.A. Gonzalez and A. Puhm, Black hole memory
effect, Phys. Rev. 98 (2018) 124016 [1809.07266|.

113


https://doi.org/10.1051/0004-6361/201833910
https://arxiv.org/abs/1807.06209
https://arxiv.org/abs/2404.02129
https://arxiv.org/abs/2406.14157
https://arxiv.org/abs/2403.11997
https://arxiv.org/abs/1703.05448
https://doi.org/10.1007/JHEP05(2017)161
https://arxiv.org/abs/1611.09175
https://doi.org/10.1103/PhysRevLett.116.231301
https://arxiv.org/abs/1601.00921
https://doi.org/10.1103/PhysRevD.98.124016
https://arxiv.org/abs/1809.07266

[29]
[30]
[31]
[32]
[33]
[34]
[35]

[36]

R. Gaur, Implanting soft hairs on Kaluza-Klein black holes, Honour’s
thesis, Unwwversity of Canterbury (2019) .

P.J.E. Peebles, Principles of Physical Cosmology, Princeton University
Press, Princeton (9, 2020).

S. Weinberg, C'osmology, Oxford Unviversity press, Oxford, England
(2008).

C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, W. H.
Freeman, San Francisco (1973).

R.M. Wald, General Relativity, Chicago Univ. Pr., Chicago, USA (1984),
10.7208 /chicago /9780226870373.001.0001.

T. Padmanabhan, Gravitation: foundations and frontiers, Cambridge
University Press, Cambridge, England (2010).

J.B. Hartle, Gravity: An introduction to Einstein’s general relativity,
Pearson, London, England (2003).

S.M. Carroll, Spacetime and Geometry: An Introduction to General
Relativity, Cambridge University Press, Cambridge, England (7, 2019),
10.1017/9781108770385.

S. Weinberg, Gravitation and Cosmology: Principles and Applications of
the General Theory of Relativity, John Wiley and Sons, New York
(1972).

E. Poisson, A relativist’s toolkit: the mathematics of black-hole

mechanics, Cambridge university press, Cambridge, England (2004).

M.P. Hobson, G.P. Efstathiou and A.N. Lasenby, General relativity: an
introduction for physicists, Cambridge University Press, Cambridge,
England (2006).

R. Adler, M. Bazin, M. Schiffer and J.E. Romain, Introduction to
General Relativity Second edition, McGraw—Hill, New York (1975).

R. d’Inverno, Introducing Einstein’s relativity, Oxford Unviersity Press,
Oxford, England (1992).

P. Painleve, La mécanique classique et la théorie de la relativité.,
L’Astronomie, vol. 36, pp. 6-9 36 (1922) 6.

P. Painlevé, La gravitation dans la mécanique de newton et dans la
mécanique d’einstein, CR Acad. Sci.(Paris) 173 (1921) 873.

A. Gullstrand, Allgemeine Losung des statischen Finkdérperproblems in
der Finsteinschen Gravitationstheorie, vol. 16,8 of Arkiv for matematik,
astronomi och fysik, Almqvist & Wiksell, Stockholm (1922).

K. Martel and E. Poisson, Regular coordinate systems for Schwarzschild
and other spherical space-times, Am. J. Phys. 69 (2001) 476
[gr-qc/0001069).

114


https://doi.org/http://dx.doi.org/10.26021/11296
https://doi.org/10.7208/chicago/9780226870373.001.0001
https://doi.org/10.1017/9781108770385
https://doi.org/10.1119/1.1336836
https://arxiv.org/abs/gr-qc/0001069

[46]
[47]
[48]
[49]
[50]
[51]

[52]

[53]

[54]

V. Faraoni and G. Vachon, When Painlevé—Gullstrand coordinates fail,
Fur. Phys. J. C' 80 (2020) 771 [2006.10827].

M. Visser, Heuristic approach to the Schwarzschild geometry, |Int. J.
Mod. Phys. D 14 (2005) 2051 [gr-qc/0309072].

M. Visser, Acoustic propagation in fluids: An Unezpected example of
Lorentzian geometry, gr-qc/9311028.

M. Visser, Acoustic black holes: Horizons, ergospheres, and Hawking
radiation, Class. Quant. Grav. 15 (1998) 1767 [gr-qc/9712010].

C. Barceld, S. Liberati and M. Visser, Analogue gravity, |Living Rev. Rel.
3 (2011) 14/ [gr-qc/0505065].

A.B. Nielsen and M. Visser, Production and decay of evolving horizons,
Class. Quant. Grav. 23 (2006) 4637 |[gr-qc/0510083].

J. Baines, T. Berry, A. Simpson and M. Visser, Painlevé-Gullstrand
form of the Lense—Thirring Spacetime, Universe 7 (2021) 105
[2006 . 14258).

J. Baines, T. Berry, A. Simpson and M. Visser, Killing Tensor and
Carter Constant for Painlevé-Gullstrand Form of Lense—Thirring
Spacetime, |Universe 7 (2021) 473 [2110.01814].

J. Baines, T. Berry, A. Simpson and M. Visser, Geodesics for the
Painlevé-Gullstrand Form of Lense—Thirring Spacetime, Universe 8
(2022) 115 [2112.05228].

J. Baines, T. Berry, A. Simpson and M. Visser, Constant-r geodesics in
the Painlevé—Gullstrand form of Lense—Thirring spacetime, Gen. Rel.
Grav. 54 (2022) 79 [2202.09010).

C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, W. H.

Freeman, San Francisco (1973).

M. Alcubierre, Introduction to 3+ 1 numerical relativity, vol. 140,
Oxford University Press, Oxford, England (2008).

J. Wheeler, Geometrodynamics and the issue of the final state relativity,
groups and topology edited by dewitt cm and dewitt bs, 1964.

E. Gourgoulhon, 3+ 1 formalism in general relativity: bases of

numerical relativity, vol. 846, Springer Science, Heidelberg (2012).

T. Buchert, P. Mourier and X. Roy, On average properties of
inhomogeneous fluids in general relativity II1: general fluid cosmologies,
General Relativity and Gravitation 52 (2020) 1.

M. Visser, Conformally Friedmann—Lemaitre—Robertson—Walker
cosmologies, Class. Quant. Grav. 32 (2015) 135007 [1502.02758|.

P. Szekeres, A Class of Inhomogeneous Cosmological Models, Commun.
Math. Phys. 41 (1975) 55.

115


https://doi.org/10.1140/epjc/s10052-020-8345-4
https://arxiv.org/abs/2006.10827
https://doi.org/10.1142/S0218271805007929
https://doi.org/10.1142/S0218271805007929
https://arxiv.org/abs/gr-qc/0309072
https://arxiv.org/abs/gr-qc/9311028
https://doi.org/10.1088/0264-9381/15/6/024
https://arxiv.org/abs/gr-qc/9712010
https://doi.org/doi.org/10.12942/lrr-2011-3
https://doi.org/doi.org/10.12942/lrr-2011-3
https://arxiv.org/abs/gr-qc/0505065
https://doi.org/10.1088/0264-9381/23/14/006
https://arxiv.org/abs/gr-qc/0510083
https://doi.org/10.3390/universe7040105
https://arxiv.org/abs/2006.14258
https://doi.org/10.3390/universe7120473
https://arxiv.org/abs/2110.01814
https://doi.org/10.3390/universe8020115
https://doi.org/10.3390/universe8020115
https://arxiv.org/abs/2112.05228
https://doi.org/10.1007/s10714-022-02963-y
https://doi.org/10.1007/s10714-022-02963-y
https://arxiv.org/abs/2202.09010
https://doi.org/10.1088/0264-9381/32/13/135007
https://arxiv.org/abs/1502.02758
https://doi.org/10.1007/BF01608547
https://doi.org/10.1007/BF01608547

[63]

[64]

[65]
[66]

[67]

J. Garcia-Bellido and T. Haugboelle, Confronting
Lemaitre-Tolman-Bondi models with Observational Cosmology, JCAP
04 (2008) 003/ [0802.1523).

V. Marra, E.W. Kolb, S. Matarrese and A. Riotto, On cosmological
observables in a swiss-cheese universe, Phys. Rev. D 76 (2007) 123004
[0708.3622].

D. Garfinkle, Inhomogeneous spacetimes as a dark energy model, |Class.
Quant. Grav. 23 (2006) 4811 [gr-qc/0605088].

D.L. Wiltshire, Average observational quantities in the timescape
cosmology, Phys. Rev. D 80 (2009) 123512 [0909.0749].

D.L. Wiltshire, What is dust? - Physical foundations of the averaging
problem in cosmology, Class. Quant. Grav. 28 (2011) 164006
[1106.1693).

P.R. Smale and D.L. Wiltshire, Supernova tests of the timescape
cosmology, Mon. Not. Roy. Astron. Soc. 413 (2011) 367 [1009.5855].

R.L. Arnowitt, S. Deser and C.W. Misner, The Dynamics of general
relativity, (Gen. Rel. Grav. 40 (2008) 1997 [gr-qc/0405109].

E. Gourgoulhon, 3+1 formalism and bases of numerical relativity,
gr-qc/0703035.

J.A. Valiente Kroon, On the nonezistence of conformally flat slices in
the Kerr and other stationary space-times, Phys. Rev. Lett. 92 (2004)
041101 [gr-qc/0310048].

J.A. Valiente Kroon, Asymptotic expansions of the Cotton-York tensor
on slices of stationary space-times, |Class. Quant. Grav. 21 (2004) 3237
l[gr-qc/0402033.

G.F.R. Ellis and T. Rothman, Lost horizons, Am. J. Phys. 61 (1993)
883

M. Visser, Physical observability of horizons, Phys. Rev. D 90 (2014)
127502 1407 .7298).

S.W. Hawking, Information Preservation and Weather Forecasting for
Black Holes, 1401.5761.

P. Boonserm, T. Ngampitipan, A. Simpson and M. Visser, Innermost
and outermost stable circular orbits in the presence of a positive
cosmological constant, Phys. Rev. D 101 (2020) 024050 [1909.06755].

G.C. McVittie, The mass-particle in an expanding universe, Mon. Not.
Roy. Astron. Soc. 93 (1933) 325.

N. Kaloper, M. Kleban and D. Martin, Mc Vittie’s Legacy: Black Holes
in an Ezpanding Universe, Phys. Rev. D 81 (2010) 104044/ [1003.4777].

K. Lake and M. Abdelqader, More on McVittie’s Legacy: A
Schwarzschild - de Sitter black and white hole embedded in an

116


https://doi.org/10.1088/1475-7516/2008/04/003
https://doi.org/10.1088/1475-7516/2008/04/003
https://arxiv.org/abs/0802.1523
https://doi.org/10.1103/PhysRevD.76.123004
https://arxiv.org/abs/0708.3622
https://doi.org/10.1088/0264-9381/23/15/002
https://doi.org/10.1088/0264-9381/23/15/002
https://arxiv.org/abs/gr-qc/0605088
https://doi.org/10.1103/PhysRevD.80.123512
https://arxiv.org/abs/0909.0749
https://doi.org/10.1088/0264-9381/28/16/164006
https://arxiv.org/abs/1106.1693
https://doi.org/10.1111/j.1365-2966.2010.18142.x
https://arxiv.org/abs/1009.5855
https://doi.org/10.1007/s10714-008-0661-1
https://arxiv.org/abs/gr-qc/0405109
https://arxiv.org/abs/gr-qc/0703035
https://doi.org/10.1103/PhysRevLett.92.041101
https://doi.org/10.1103/PhysRevLett.92.041101
https://arxiv.org/abs/gr-qc/0310048
https://doi.org/10.1088/0264-9381/21/13/009
https://arxiv.org/abs/gr-qc/0402033
https://doi.org/10.1119/1.17400
https://doi.org/10.1119/1.17400
https://doi.org/10.1103/PhysRevD.90.127502
https://doi.org/10.1103/PhysRevD.90.127502
https://arxiv.org/abs/1407.7295
https://arxiv.org/abs/1401.5761
https://doi.org/10.1103/PhysRevD.101.024050
https://arxiv.org/abs/1909.06755
https://doi.org/10.1093/mnras/93.5.325
https://doi.org/10.1093/mnras/93.5.325
https://doi.org/10.1103/PhysRevD.81.104044
https://arxiv.org/abs/1003.4777

[80]

[81]
[82]

[83]

[84]

[85]

[90]

[91]
[92]

[93]

asymptotically ANCDM cosmology, |Phys. Rev. D 84 (2011) 044045
[1106 . 3666].

V. Faraoni, A.F. Zambrano Moreno and R. Nandra, Making sense of the
bizarre behaviour of horizons in the McVittie spacetime, Phys. Rev. D
85 (2012) 083526 [1202.0719|.

W.T.B. Kelvin, Baltimore lectures on molecular dynamics and the wave

theory of light, CJ Clay and Sons (1904).

K.C. Freeman, On the Disks of Spiral and SO Galaxies, Astrophysical
Journal 160 (1970) 811.

V.C. Rubin and J. Ford, W. Kent, Rotation of the Andromeda Nebula
from a Spectroscopic Survey of Emission Regions, | Astrophysical Journal

159 (1970) 379.
V.C. Rubin, J. Ford, W. K. and N. Thonnard, Rotational properties of

21 SC galaxies with a large range of luminosities and radii, from NGC
4605 (R=4kpc) to UGC 2885 (R=122kpc)., apj 238 (1980) 471.
T. Buchert, On average properties of inhomogeneous fluids in general

relativity: dust cosmologies, General Relativity and Gravitation 32
(2000) 105.

D. Farrah et al., Observational Evidence for Cosmological Coupling of
Black Holes and its Implications for an Astrophysical Source of Dark
Energy, Astrophys. J. Lett. 944 (2023) L31 [2302.07878].

K.S. Croker and J.L. Weiner, Implications of Symmetry and Pressure in
Friedmann Cosmology. 1. Formalism, Astrophys. J. 882 (2019) 19
[2107.06643].

K. Croker, K. Nishimura and D. Farrah, Implications of Symmetry and
Pressure in Friedmann Cosmology. II. Stellar Remnant Black Hole Mass
Function, 1904 .03781.

K.S. Croker, J. Runburg and D. Farrah, Implications of Symmetry and
Pressure in Friedmann Cosmology. II1. Point Sources of Dark Energy
that Tend toward Uniformity, Astrophys. J. 900 (2020) 57.

T. Mistele, Comment on “Observational Evidence for Cosmological
Coupling of Black Holes and its Implications for an Astrophysical Source
of Dark Energy”, Res. Notes AAS 7 (2023) 101/ [2304.09817].

S.L. Parnovsky, Can black holes be a source of dark energy?,
2302.13333l

P.P. Avelino, Can gravitational vacuum condensate stars be a dark
energy source?, | JCAP 08 (2023) 005 [2303.06630].

L. Lei et al., Black holes as the source of dark energy: A stringent test
with high-redshift JWST AGNs, Sci. China Phys. Mech. Astron. 67
(2024) 229811 [2305.03408].

117


https://doi.org/10.1103/PhysRevD.84.044045
https://arxiv.org/abs/1106.3666
https://doi.org/10.1103/PhysRevD.85.083526
https://doi.org/10.1103/PhysRevD.85.083526
https://arxiv.org/abs/1202.0719
https://doi.org/10.1086/150474
https://doi.org/10.1086/150474
https://doi.org/10.1086/150317
https://doi.org/10.1086/150317
https://doi.org/10.1086/158003
https://doi.org/10.3847/2041-8213/acb704
https://arxiv.org/abs/2302.07878
https://doi.org/10.3847/1538-4357/ab32da
https://arxiv.org/abs/2107.06643
https://arxiv.org/abs/1904.03781
https://doi.org/10.3847/1538-4357/abad2f
https://doi.org/10.3847/2515-5172/acd767
https://arxiv.org/abs/2304.09817
https://arxiv.org/abs/2302.13333
https://doi.org/10.1088/1475-7516/2023/08/005
https://arxiv.org/abs/2303.06630
https://doi.org/10.1007/s11433-023-2233-2
https://doi.org/10.1007/s11433-023-2233-2
https://arxiv.org/abs/2305.03408

[94] C.L. Rodriguez, Constraints on the Cosmological Coupling of Black
Holes from the Globular Cluster NGC 3201, Astrophys. J. Lett. 947
(2023) L12 [2302.12386].

[95] R. Andrae and K. El-Badry, Constraints on the cosmological coupling of
black holes from Gaia, Astron. Astrophys. 673 (2023) L10 [2305.01307].

[96] L. Amendola, D.C. Rodrigues, S. Kumar and M. Quartin, Constraints
on cosmologically coupled black holes from gravitational wave

observations and minimal formation mass, Mon. Not. Roy. Astron. Soc.
528 (2024) 2377| [2307.02474].

[97] S. Ghodla, R. Easther, M.M. Briel and J.J. Eldridge, Observational
implications of cosmologically coupled black holes, 2306 .08199.

[98] E. Bentivegna, T. Clifton, J. Durk, M. Korzynski and K. Rosquist,
Black-Hole Lattices as Cosmological Models, Class. Quant. Grav. 35
(2018) 175004 [1801.01083].

[99] J. Sadeghi, S. Noori Gashti, M.R. Alipour and M.A.S. Afshar, Can black

holes cause cosmic expansion?, 2305.12545.

[100] Y. Wang and Z. Wang, Decoupling between gravitationally bounded
systems and the cosmic expansion, 2304.01059.

[101] F. Kottler, Uber die physikalischen Grundlagen der Einsteinschen
Gravitationstheorie, Annalen Phys. 361 (1918) 401.

[102] T. Berry, A. Simpson and M. Visser, Photon spheres, ISCOs, and
0OSCOs: Astrophysical observables for regular black holes with
asymptotically Minkowski cores, Universe 7 (2020) 2 [2008.13308].

[103] R. Gaur and M. Visser, Cosmology in Painlevé-Gullstrand coordinates,
JCAP 09 (2022) 030| [2207 .08375].

[104] R.P. Kerr, Gravitational field of a spinning mass as an example of
algebraically special metrics, Phys. Rev. Lett. 11 (1963) 237.

[105] R.P. Kerr, Gravitational collapse and rotation, Quasi-stellar sources and
gravitational collapse: Proceedings of the First Texas Symposium on
Relativistic Astrphysics, edited by Ivor Robinson, Alfred Schild, and E.L
Schiicking, Unviversity of Chicago Press, Chicago. (1965).

[106] E.T. Newman, R. Couch, K. Chinnapared, A. Exton, A. Prakash and
R. Torrence, Metric of a Rotating, Charged Mass, J. Math. Phys. 6
(1965) 918.

[107] E.T. Newman and A.L. Janis, Note on the Kerr spinning particle metric,
J. Math. Phys. 6 (1965) 915.

[108] R.H. Boyer and R.W. Lindquist, Mazimal analytic extension of the Kerr
metric, | J. Math. Phys. 8 (1967) 265.

[109] B. Carter, Global structure of the Kerr family of gravitational fields,
Phys. Rev. 174 (1968) 1559.

118


https://doi.org/10.3847/2041-8213/acc9b6
https://doi.org/10.3847/2041-8213/acc9b6
https://arxiv.org/abs/2302.12386
https://doi.org/10.1051/0004-6361/202346350
https://arxiv.org/abs/2305.01307
https://doi.org/10.1093/mnras/stae143
https://doi.org/10.1093/mnras/stae143
https://arxiv.org/abs/2307.02474
https://arxiv.org/abs/2306.08199
https://doi.org/10.1088/1361-6382/aac846
https://doi.org/10.1088/1361-6382/aac846
https://arxiv.org/abs/1801.01083
https://arxiv.org/abs/2305.12545
https://arxiv.org/abs/2304.01059
https://doi.org/10.1002/andp.19183611402
https://doi.org/10.3390/universe7010002
https://arxiv.org/abs/2008.13308
https://doi.org/10.1088/1475-7516/2022/09/030
https://arxiv.org/abs/2207.08375
https://doi.org/10.1103/PhysRevLett.11.237
https://doi.org/10.1063/1.1704351
https://doi.org/10.1063/1.1704351
https://doi.org/10.1063/1.1704350
https://doi.org/10.1063/1.1705193
https://doi.org/10.1103/PhysRev.174.1559

[110] J.M. Bardeen, Kerr Metric Black Holes, Nature 226 (1970) 64.

[111] D.L. Wiltshire, M. Visser and S.M. Scott, The Kerr spacetime: Rotating
black holes in general relativity, Cambridge University Press (1, 2009).

[112] M. Visser, The Kerr spacetime: A Brief introduction, in Kerr Fest:
Black Holes in Astrophysics, General Relativity and Quantum Gravity,
6, 2007 [0706.0622).

[113] R.P. Kerr, Discovering the Kerr and Kerr-Schild metrics, in Kerr Fest:
Black Holes in Astrophysics, General Relativity and Quantum Gravity,
6, 2007 [0706.1109).

[114] D. Rajan and M. Visser, Cartesian Kerr-Schild variation on the
Newman—Janis trick, Int. J. Mod. Phys. D 26 (2017) 1750167
[1601.03532].

[115] J. Baines and M. Visser, Physically motivated ansatz for the Kerr
spacetime, Class. Quant. Grav. 39 (2022) 235004 [2207 .09034].

[116] J. Baines and M. Visser, Killing Horizons and Surface Gravities for a
Well-Behaved Three-Function Generalization of the Kerr Spacetime,
Universe 9 (2023) 223 [2303.07380].

[117] T. Adamo and E.T. Newman, The Kerr-Newman metric: A Review,
Scholarpedia 9 (2014) 31791 [1410.6626).

[118] S.A. Teukolsky, The Kerr Metric, Class. Quant. Grav. 32 (2015) 124006
[1410.2130).

[119] B. Carter, Black holes equilibrium states, in Les Houches Summer School
of Theoretical Physics: Black Holes, pp. 57-214, 1973.

[120] B. Carter, Republication of: Black hole equilibrium states, Gen. Rel.
Grav. 41 (2009) 2873.

[121] S. Akcay and R.A. Matzner, Kerr-de Sitter Universe, |Class. Quant.
Grav. 28 (2011) 085012 [1011.0479).

[122] P.-C. Li, M. Guo and B. Chen, Shadow of a Spinning Black Hole in an
Expanding Universe, Phys. Rev. D 101 (2020) 084041 [2001.04231].

[123] P. Hintz and A. Vasy, The global non-linear stability of the Kerr-de
Sitter family of black holes, 1606.04014.

[124] V. De La Cruz and W. Israel, Spinning Shell as a Source of the Kerr
Metric, Phys. Rev. 170 (1968) 1187.

125] W. Israel, Source of the Kerr metric, Phys. Rev. D 2 (1970) 641,
126] F.Z. Majidi, Another Kerr interior solution, 1705.00584.

127] E. Mottola, Gravitational Vacuum Condensate Stars, 2302 .09690.
]

128] P.O. Mazur and E. Mottola, Gravitational Condensate Stars: An
Alternative to Black Holes, Universe 9 (2023) 88 [gr-qc/0109035].

[
[
[
[

119


https://doi.org/10.1038/226064a0
https://arxiv.org/abs/0706.0622
https://arxiv.org/abs/0706.1109
https://doi.org/10.1142/S021827181750167X
https://arxiv.org/abs/1601.03532
https://doi.org/10.1088/1361-6382/ac9bc5
https://arxiv.org/abs/2207.09034
https://doi.org/10.3390/universe9050223
https://arxiv.org/abs/2303.07380
https://doi.org/10.4249/scholarpedia.31791
https://arxiv.org/abs/1410.6626
https://doi.org/10.1088/0264-9381/32/12/124006
https://arxiv.org/abs/1410.2130
https://doi.org/10.1007/s10714-009-0888-5
https://doi.org/10.1007/s10714-009-0888-5
https://doi.org/10.1088/0264-9381/28/8/085012
https://doi.org/10.1088/0264-9381/28/8/085012
https://arxiv.org/abs/1011.0479
https://doi.org/10.1103/PhysRevD.101.084041
https://arxiv.org/abs/2001.04231
https://arxiv.org/abs/1606.04014
https://doi.org/10.1103/PhysRev.170.1187
https://doi.org/10.1103/PhysRevD.2.641
https://arxiv.org/abs/1705.00584
https://arxiv.org/abs/2302.09690
https://doi.org/10.3390/universe9020088
https://arxiv.org/abs/gr-qc/0109035

[129] P.O. Mazur and E. Mottola, Gravitational vacuum condensate stars,
Proc. Nat. Acad. Sci. 101 (2004) 9545 [gr-qc/0407075|.

[130] M. Visser and D.L. Wiltshire, Stable gravastars: An Alternative to black
holes?, Class. Quant. Grav. 21 (2004) 1135/ [gr-qc/0310107].

[131] C. Cattoen, T. Faber and M. Visser, Gravastars must have anisotropic
pressures, Class. Quant. Grav. 22 (2005) 4189 [gr-qc/0505137].

[132] R. Carballo-Rubio, F. Di Filippo, S. Liberati and M. Visser,
Singularity-free gravitational collapse: From regqular black holes to
horizonless objects, 2302.00028.

[133] R. Carballo-Rubio, F. Di Filippo, S. Liberati and M. Visser, A
connection between reqular black holes and horizonless ultracompact
stars, JHEP 08 (2023) 046 [2211.05817].

[134] R. Carballo-Rubio, F. Di Filippo, S. Liberati and M. Visser,
Phenomenological aspects of black holes beyond general relativity, |Phys.
Rev. D 98 (2018) 124009 [1809.08238)].

[135] A. Simpson and M. Visser, Regular black holes with asymptotically
Minkowski cores, Universe 6 (2019) 8 [1911.01020].

[136] M. Cadoni, A.P. Sanna, M. Pitzalis, B. Banerjee, R. Murgia, N. Hazra
et al., Cosmological coupling of nonsingular black holes, JCAP 11 (2023)
007 [2306.11588].

[137] C.-S. Chu and R.-X. Miao, Fermi model of a quantum black hole, Phys.
Rev. D 110 (2024) 046001 [2307 .06164].

[138] R. Casadio, Quantum dust cores of black holes, Phys. Lett. B 843 (2023)
138055| [2304.06816].

[139] S.-J. Gao and X.-D. Li, Can Cosmologically Coupled Mass Growth of
Black Holes Solve the Mass Gap Problem?, Astrophys. J. 956 (2023) 128
[2307.10708].

[140] D.F. Lépez, S. Abarghouei Nejad and J.G. Pereira, De Sitter-Invariant
Black Holes, |Universe 9 (2023) 333 [2307.08108].

[141] EVENT HORIZON TELESCOPE collaboration, First M87 Event Horizon
Telescope Results. 1. The Shadow of the Supermassive Black Hole,
Astrophys. J. Lett. 875 (2019) L1 [1906.11238].

[142] EVENT HORIZON TELESCOPE collaboration, First M87 Event Horizon

Telescope Results. IV. Imaging the Central Supermassive Black Hole,
Astrophys. J. Lett. 875 (2019) L4 [1906.11241].

[143] EVENT HORIZON TELESCOPE collaboration, First M87 Event Horizon
Telescope Results. VI. The Shadow and Mass of the Central Black Hole,
Astrophys. J. Lett. 875 (2019) L6 [1906.11243].

[144] EVENT HORIZON TELESCOPE collaboration, First Sagittarius A* Event
Horizon Telescope Results. 1. The Shadow of the Supermassive Black

120


https://doi.org/10.1073/pnas.0402717101
https://arxiv.org/abs/gr-qc/0407075
https://doi.org/10.1088/0264-9381/21/4/027
https://arxiv.org/abs/gr-qc/0310107
https://doi.org/10.1088/0264-9381/22/20/002
https://arxiv.org/abs/gr-qc/0505137
https://arxiv.org/abs/2302.00028
https://doi.org/10.1007/JHEP08(2023)046
https://arxiv.org/abs/2211.05817
https://doi.org/10.1103/PhysRevD.98.124009
https://doi.org/10.1103/PhysRevD.98.124009
https://arxiv.org/abs/1809.08238
https://doi.org/10.3390/universe6010008
https://arxiv.org/abs/1911.01020
https://doi.org/10.1088/1475-7516/2023/11/007
https://doi.org/10.1088/1475-7516/2023/11/007
https://arxiv.org/abs/2306.11588
https://doi.org/10.1103/PhysRevD.110.046001
https://doi.org/10.1103/PhysRevD.110.046001
https://arxiv.org/abs/2307.06164
https://doi.org/10.1016/j.physletb.2023.138055
https://doi.org/10.1016/j.physletb.2023.138055
https://arxiv.org/abs/2304.06816
https://doi.org/10.3847/1538-4357/ace890
https://arxiv.org/abs/2307.10708
https://doi.org/10.3390/universe9070333
https://arxiv.org/abs/2307.08108
https://doi.org/10.3847/2041-8213/ab0ec7
https://arxiv.org/abs/1906.11238
https://doi.org/10.3847/2041-8213/ab0e85
https://arxiv.org/abs/1906.11241
https://doi.org/10.3847/2041-8213/ab1141
https://arxiv.org/abs/1906.11243

[145]

[146]

[147]

Hole in the Center of the Milky Way, Astrophys. J. Lett. 930 (2022) L12
[2311.08680L

EVENT HORIZON TELESCOPE collaboration, First Sagittarius A* Event
Horizon Telescope Results. VI. Testing the Black Hole Metric,
Astrophys. J. Lett. 930 (2022) L17 [2311.09484].

D. Psaltis, F. Ozel, C.-K. Chan and D.P. Marrone, A General
Relativistic Null Hypothesis Test with Event Horizon Telescope
Observations of the black-hole shadow in Sgr A*, |Astrophys. J. 814
(2015) 115 [1411.1454].

A.E. Broderick, T. Johannsen, A. Loeb and D. Psaltis, Testing the
No-Hair Theorem with Event Horizon Telescope Observations of
Sagittarius A*, Astrophys. J. 784 (2014) 7 [1311.5564].

[148] V. Cardoso and L. Gualtieri, Testing the black hole ‘no-hair’ hypothesis,

[149]

[150]
[151]
[152]
[153]
[154]
[155]
[156]
[157)
[158]
[159]

[160]

Class. Quant. Grav. 33 (2016) 174001 [1607.03133].

R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio and M. Visser,
On the viability of regular black holes, JHEP 07 (2018) 023
[1805.02675].

A. Ashtekar, J. Olmedo and P. Singh, Quantum extension of the Kruskal
spacetime, Phys. Rev. D 98 (2018) 126003/ [1806.02406].

J. Macher and R. Parentani, Black/White hole radiation from dispersive
theories, Phys. Rev. D 79 (2009) 124008/ [0903.2224].

A. Barrau, C. Rovelli and F. Vidotto, Fast Radio Bursts and White Hole
Signals, Phys. Rev. D 90 (2014) 127503 [1409.4031].

D.M. Eardley, Death of White Holes in the Early Universe, Phys. Rev.
Lett. 33 (1974) 442.

C. Barceld, R. Carballo-Rubio and L.J. Garay, Where does the physics of
extreme gravitational collapse reside?, Universe 2 (2016) 7 [1510.04957].

C. Rovelli and F. Vidotto, Small black/white hole stability and dark
matter, Universe 4 (2018) 127 [1805.03872].

R.M. Wald and S. Ramaswamy, Particle Production by White Holes,
Phys. Rev. D 21 (1980) 2736.

C. Rovelli and F. Vidotto, White-hole dark matter and the origin of past
low-entropy, 1804 .04147.

M.L. McClure, K. Anderson and K. Bardahl, Non-isolated dynamic
black holes and white holes, Phys. Rev. D 77 (2008) 104008/ [0803.2671].

O.B. Zaslavskii, On White Holes as Particle Accelerator, Grav. Cosmol.
24 (2018) 92 [1707.07864).

A. Barrau, L. Ferdinand, K. Martineau and C. Renevey, Closer look at
white hole remnants, |Phys. Rev. D 103 (2021) 043532 [2101.01949].

121


https://doi.org/10.3847/2041-8213/ac6674
https://arxiv.org/abs/2311.08680
https://doi.org/10.3847/2041-8213/ac6756
https://arxiv.org/abs/2311.09484
https://doi.org/10.1088/0004-637X/814/2/115
https://doi.org/10.1088/0004-637X/814/2/115
https://arxiv.org/abs/1411.1454
https://doi.org/10.1088/0004-637X/784/1/7
https://arxiv.org/abs/1311.5564
https://doi.org/10.1088/0264-9381/33/17/174001
https://arxiv.org/abs/1607.03133
https://doi.org/10.1007/JHEP07(2018)023
https://arxiv.org/abs/1805.02675
https://doi.org/10.1103/PhysRevD.98.126003
https://arxiv.org/abs/1806.02406
https://doi.org/10.1103/PhysRevD.79.124008
https://arxiv.org/abs/0903.2224
https://doi.org/10.1103/PhysRevD.90.127503
https://arxiv.org/abs/1409.4031
https://doi.org/10.1103/PhysRevLett.33.442
https://doi.org/10.1103/PhysRevLett.33.442
https://doi.org/10.3390/universe2020007
https://arxiv.org/abs/1510.04957
https://doi.org/10.3390/universe4110127
https://arxiv.org/abs/1805.03872
https://doi.org/10.1103/PhysRevD.21.2736
https://arxiv.org/abs/1804.04147
https://doi.org/10.1103/PhysRevD.77.104008
https://arxiv.org/abs/0803.2671
https://doi.org/10.1134/S0202289318010164
https://doi.org/10.1134/S0202289318010164
https://arxiv.org/abs/1707.07864
https://doi.org/10.1103/PhysRevD.103.043532
https://arxiv.org/abs/2101.01949

161]

[162]

[163]
[164]
165]
[166]
[167]

168

[169]

[170]

[171]
[172]

[173]

[174]

[175]

[176]

I. Nikitin, Stability of white holes revisited, Bled Workshops Phys. 21
(2020) 221 [1811.03368).

C. Barceld, R. Carballo-Rubio, L.J. Garay and G. Jannes, Do transient
white holes have a place in Nature?, J. Phys. Conf. Ser. 600 (2015)
012033l

S.D.H. Hsu, White holes and eternal black holes, Class. Quant. Grav. 29
(2012) 015004 [1007 . 2934).

Y. Kedem, E.J. Bergholtz and F. Wilczek, Black and White Holes at
Material Junctions, Phys. Rev. Res. 2 (2020) 043285 [2001.02625].

G.E. Volovik, The Hydraulic jump as a white hole, JETP Lett. 82 (2005)
624 [physics/0508215|.

R. Gomez, S. Husa, L. Lehner and J. Winicour, Gravitational waves from
a fissioning white hole, Phys. Rev. D 66 (2002) 064019 [gr-qc/0205038].

A. Retter and S. Heller, The Revival of White Holes as Small Bangs,
New Astron. 17 (2012) 73 [1105.2776].

L.J. Garay, C. Barcel6, R. Carballo-Rubio and G. Jannes, Do stars die
too long?, in 14th Marcel Grossmann Meeting on Recent Developments
in Theoretical and Fxperimental General Relativity, Astrophysics, and
Relativistic Field Theories, vol. 2, pp. 1718-1723, 2017, DOL.

N.T. Bishop and A.S. Kubeka, Quasi-Normal Modes of a Schwarzschild
White Hole, Phys. Rev. D 80 (2009) 064011 [0907 . 1882].

G. Jannes and G. Rousseaux, The circular jump as a hydrodynamic
white hole, in 2nd Amazonian Symposium on Physics: Analogue Models

of Gravity, 30 Years Celebration, 3, 2012 [1203.6505].

P. Hajicek and C. Kiefer, Singularity avoidance by collapsing shells in
quantum gravity, Int. J. Mod. Phys. D 10 (2001) 775/ [gr-qc/0107102).

P. Hajicek, Unitary dynamics of spherical null gravitating shells, Nucl.
Phys. B 603 (2001) 555 [hep-th/0007005].

H.M. Haggard and C. Rovelli, Quantum-gravity effects outside the
horizon spark black to white hole tunneling, Phys. Rev. D 92 (2015)
104020 [1407.0989].

E. Bianchi, M. Christodoulou, F. D’Ambrosio, H.M. Haggard and

C. Rovelli, White Holes as Remnants: A Surprising Scenario for the End
of a Black Hole, Class. Quant. Grav. 35 (2018) 225003/ [1802.04264].

J. Olmedo, S. Saini and P. Singh, From black holes to white holes: a
quantum gravitational, symmetric bounce, Class. Quant. Grav. 34 (2017)
225011/ [1707.07333].

C. Barcelo, R. Carballo-Rubio, L.J. Garay and G. Jannes, The lifetime
problem of evaporating black holes: mutiny or resignation, Class. Quant.
Grav. 32 (2015) 035012 [1409.1501].

122


https://arxiv.org/abs/1811.03368
https://doi.org/10.1088/1742-6596/600/1/012033
https://doi.org/10.1088/1742-6596/600/1/012033
https://doi.org/10.1088/0264-9381/29/1/015004
https://doi.org/10.1088/0264-9381/29/1/015004
https://arxiv.org/abs/1007.2934
https://doi.org/10.1103/PhysRevResearch.2.043285
https://arxiv.org/abs/2001.02625
https://doi.org/10.1134/1.2166908
https://doi.org/10.1134/1.2166908
https://arxiv.org/abs/physics/0508215
https://doi.org/10.1103/PhysRevD.66.064019
https://arxiv.org/abs/gr-qc/0205038
https://doi.org/10.1016/j.newast.2011.07.003
https://arxiv.org/abs/1105.2776
https://doi.org/10.1142/9789813226609_0174
https://doi.org/10.1103/PhysRevD.80.064011
https://arxiv.org/abs/0907.1882
https://arxiv.org/abs/1203.6505
https://doi.org/10.1142/S0218271801001578
https://arxiv.org/abs/gr-qc/0107102
https://doi.org/10.1016/S0550-3213(01)00140-7
https://doi.org/10.1016/S0550-3213(01)00140-7
https://arxiv.org/abs/hep-th/0007005
https://doi.org/10.1103/PhysRevD.92.104020
https://doi.org/10.1103/PhysRevD.92.104020
https://arxiv.org/abs/1407.0989
https://doi.org/10.1088/1361-6382/aae550
https://arxiv.org/abs/1802.04264
https://doi.org/10.1088/1361-6382/aa8da8
https://doi.org/10.1088/1361-6382/aa8da8
https://arxiv.org/abs/1707.07333
https://doi.org/10.1088/0264-9381/32/3/035012
https://doi.org/10.1088/0264-9381/32/3/035012
https://arxiv.org/abs/1409.1501

[177]

[178]

[179]

[180]

[181]

[182]

[183]

184]

[185]

[186]
[187)
[188]
[189]

[190]

[191]

T. De Lorenzo and A. Perez, Improved Black Hole Fireworks:
Asymmetric Black-Hole-to- White-Hole Tunneling Scenario, Phys. Rewv.
D 93 (2016) 124018 [1512.04566].

N. Bodendorfer, F.M. Mele and J. Miinch, Mass and Horizon Dirac
Observables in Effective Models of Quantum Black-to-White Hole
Transition, |Class. Quant. Grav. 38 (2021) 095002 [1912.00774].

C. Barceld, R. Carballo-Rubio and L.J. Garay, Mutiny at the white-hole
district, Int. J. Mod. Phys. D 23 (2014) 1442022 [1407.1391].

C. Barceld, R. Carballo-Rubio and L.J. Garay, Black holes turn white
fast, otherwise stay black: no half measures, JHEP 01 (2016) 157
[1511.00633].

J. Ben Achour, S. Brahma, S. Mukohyama and J.P. Uzan, Towards
consistent black-to-white hole bounces from matter collapse, JCAP 09
(2020) 020 [2004.12977].

C. Barceld, R. Carballo-Rubio and L.J. Garay, Exponential fading to
white of black holes in quantum gravity, Class. Quant. Grav. 34 (2017)
105007/ [1607 . 03480)].

M. Christodoulou and F. D’Ambrosio, Characteristic Time Scales for
the Geometry Transition of a Black Hole to a White Hole from
Spinfoams, 1801.03027.

P. Martin-Dussaud and C. Rovelli, Evaporating black-to-white hole,
Class. Quant. Grav. 36 (2019) 245002 [1905.07251].

A. Maciel, D.C. Guariento and C. Molina, Cosmological black holes and
white holes with time-dependent mass, Phys. Rev. D 91 (2015) 084043
[1502.01003].

S. Brahma and D.-h. Yeom, Effective black-to-white hole bounces: The
cost of surgery, Class. Quant. Grav. 35 (2018) 205007 [1804.02821].
J.M. Bardeen, Models for the nonsingular transition of an evaporating
black hole into a white hole, 1811.06683.

H.M. Haggard and C. Rovelli, Black to white hole tunneling: An exact
classical solution, Int. J. Mod. Phys. A 30 (2015) 1545015.

A. Rignon-Bret and C. Rovelli, Black to white transition of a charged
black hole, Phys. Rev. D 105 (2022) 086003/ [2108.12823].

M. Han, C. Rovelli and F. Soltani, Geometry of the black-to-white hole
transition within a single asymptotic region, Phys. Rev. D 107 (2023)
064011 [2302.03872].

D.K. Hong, W.-C. Lin and D.-h. Yeom, Trouble with geodesics in

black-to-white hole bouncing scenarios, Phys. Rev. D 106 (2022) 104011
[2207.03183).

123


https://doi.org/10.1103/PhysRevD.93.124018
https://doi.org/10.1103/PhysRevD.93.124018
https://arxiv.org/abs/1512.04566
https://doi.org/10.1088/1361-6382/abe05d
https://arxiv.org/abs/1912.00774
https://doi.org/10.1142/S021827181442022X
https://arxiv.org/abs/1407.1391
https://doi.org/10.1007/JHEP01(2016)157
https://arxiv.org/abs/1511.00633
https://doi.org/10.1088/1475-7516/2020/09/020
https://doi.org/10.1088/1475-7516/2020/09/020
https://arxiv.org/abs/2004.12977
https://doi.org/10.1088/1361-6382/aa6962
https://doi.org/10.1088/1361-6382/aa6962
https://arxiv.org/abs/1607.03480
https://arxiv.org/abs/1801.03027
https://doi.org/10.1088/1361-6382/ab5097
https://arxiv.org/abs/1905.07251
https://doi.org/10.1103/PhysRevD.91.084043
https://arxiv.org/abs/1502.01003
https://doi.org/10.1088/1361-6382/aae1df
https://arxiv.org/abs/1804.02821
https://arxiv.org/abs/1811.06683
https://doi.org/10.1142/S0217751X15450153
https://doi.org/10.1103/PhysRevD.105.086003
https://arxiv.org/abs/2108.12823
https://doi.org/10.1103/PhysRevD.107.064011
https://doi.org/10.1103/PhysRevD.107.064011
https://arxiv.org/abs/2302.03872
https://doi.org/10.1103/PhysRevD.106.104011
https://arxiv.org/abs/2207.03183

[192]
193]

[194]

[195]

196]

197]

[198]

[199]

200]

201]

[202]

203]
204]

205

206]

J.M. Bardeen, Black holes to white holes II: quasi-classical scenarios for
white hole evolution, 2007 .00190.

S. Jalalzadeh, Quantum black hole—white hole entangled states, Phys.
Lett. B 829 (2022) 137058 [2203.09968].

A.A. Starobinsky, Quantum Effects in Cosmology and Black and White
Hole Physics, in Marcel Grossmann Meeting on the Recent Progress of
the Fundamentals of General Relativity, 1975.

G.E. Volovik, From black hole to white hole via the intermediate static
state, Mod. Phys. Lett. A 36 (2021) 2150117 [2103.10954].

O. Sarbach and M. Tiglio, Gauge invariant perturbations of
Schwarzschild black holes in horizon penetrating coordinates, Phys. Reuv.
D 64 (2001) 084016 |gr-qc/0104061].

M. Campanelli, G. Khanna, P. Laguna, J. Pullin and M.P. Ryan,
Perturbations of the Kerr space-time in horizon penetrating coordinates,
Class. Quant. Grav. 18 (2001) 1543 [gr-qc/0010034].

M.K. Bhattacharyya, D. Hilditch, K. Rajesh Nayak, H.R. Riiter and
B. Briigmann, Analytical and numerical treatment of perturbed black
holes in horizon-penetrating coordinates, Phys. Rev. D 102 (2020)
024039 [2004 .02558].

C. Cherubini, S. Filippi, A. Loppini, R. Moradi, R. Ruffini, Y. Wang
et al., Perfect relativistic magnetohydrodynamics around black holes in
horizon penetrating coordinates, Phys. Rev. D 97 (2018) 064038.

P. Boonserm, T. Ngampitipan and M. Visser, Near-horizon geodesics for
astrophysical and idealised black holes: Coordinate velocity and
coordinate acceleration, Universe 4 (2018) 68/ [1710.06139).

C. Cherubini, S. Filippi, A. Loppini, R. Ruffini, R. Moradi, Y. Wang

et al., On Kerr black hole perfect MHD processes in Doran coordinates,
in 16th Marcel Grossmann Meeting on Recent Developments in

Theoretical and Experimental General Relativity, Astrophysics and
Relativistic Field Theories, 2023, DOL.

M. Visser, Feynman’s i€ prescription, almost real spacetimes, and
acceptable complex spacetimes, JHEP 08 (2022) 129 [2111.14016).

E. Witten, A Note On Complex Spacetime Metrics, 2111.06514.

C. Barcel6 and M. Visser, Twilight for the energy conditions?, |Int. J.
Mod. Phys. D 11 (2002) 1553 |gr-qc/0205066].

E. Curiel, A Primer on Energy Conditions, Einstein Stud. 13 (2017) 43
[1405.0403).

E.-A. Kontou and K. Sanders, Energy conditions in general relativity
and quantum field theory, Class. Quant. Grav. 37 (2020) 193001
[2003.01815).

124


https://arxiv.org/abs/2007.00190
https://doi.org/10.1016/j.physletb.2022.137058
https://doi.org/10.1016/j.physletb.2022.137058
https://arxiv.org/abs/2203.09968
https://doi.org/10.1142/S0217732321501170
https://arxiv.org/abs/2103.10954
https://doi.org/10.1103/PhysRevD.64.084016
https://doi.org/10.1103/PhysRevD.64.084016
https://arxiv.org/abs/gr-qc/0104061
https://doi.org/10.1088/0264-9381/18/8/310
https://arxiv.org/abs/gr-qc/0010034
https://doi.org/10.1103/PhysRevD.102.024039
https://doi.org/10.1103/PhysRevD.102.024039
https://arxiv.org/abs/2004.02558
https://doi.org/10.1103/PhysRevD.97.064038
https://doi.org/10.3390/universe4060068
https://arxiv.org/abs/1710.06139
https://doi.org/10.1142/9789811269776_0369
https://doi.org/10.1007/JHEP08(2022)129
https://arxiv.org/abs/2111.14016
https://arxiv.org/abs/2111.06514
https://doi.org/10.1142/S0218271802002888
https://doi.org/10.1142/S0218271802002888
https://arxiv.org/abs/gr-qc/0205066
https://doi.org/10.1007/978-1-4939-3210-8_3
https://arxiv.org/abs/1405.0403
https://doi.org/10.1088/1361-6382/ab8fcf
https://arxiv.org/abs/2003.01815

207]

208

209

[210]

[211]

212]

[213]

214]

[215]

[216]

[217)

218]
[219]

[220]

M. Visser, Gravitational vacuum polarization. 1: Energy conditions in
the Hartle-Hawking vacuum, Phys. Rev. D 54 (1996) 5103
lgr-qc/9604007].

M. Visser, Gravitational vacuum polarization. 2: Energy conditions in
the Boulware vacuum, Phys. Rev. D 54 (1996) 5116 [gr-qc/9604008].

M. Visser, Gravitational vacuum polarization. 3: Energy conditions in
the (1+1) Schwarzschild space-time, Phys. Rev. D 54 (1996) 5123
lgr-qc/9604009).

M. Visser, Gravitational vacuum polarization. 4: Energy conditions in
the Unruh vacuum, Phys. Rev. D 56 (1997) 936/ [gr-qc/9703001].

M. Visser, Energy conditions and galaxy formation, in 8th Marcel
Grossmann Meeting on Recent Developments in Theoretical and
Ezperimental General Relativity, Gravitation and Relativistic Field
Theories (MG 8), pp. 1348-1350, 6, 1997 |gr-qc/9710010].

D. Hochberg and M. Visser, Dynamic wormholes, anti-trapped surfaces,
and energy conditions, Phys. Rev. D 58 (1998) 044021 [gr-qc/9802046].

F.S.N. Lobo, M.E. Rodrigues, M.V. de Sousa Silva, A. Simpson and

M. Visser, Novel black-bounce spacetimes: wormholes, regularity, energy
conditions, and causal structure, Phys. Rev. D 103 (2021) 084052
[2009.12057].

J. Santiago, S. Schuster and M. Visser, Tractor Beams, Pressor Beams
and Stressor Beams in General Relativity, Universe 7 (2021) 271
[2106.05002].

M. Visser, J. Santiago and S. Schuster, Tractor beams, pressor beams,
and stressor beams within the context of general relativity, in 16th Marcel
Grossmann Meeting on Recent Developments in Theoretical and
Experimental General Relativity, Astrophysics and Relativistic Field
Theories, 10, 2021, DOI [2110.14926].

R.M. Wald and U. Yurtsever, General proof of the averaged null energy
condition for a massless scalar field in two-dimensional curved
space-time, |Phys. Rev. D 44 (1991) 403.

E.E. Flanagan and R.M. Wald, Does back reaction enforce the averaged
null energy condition in semiclassical gravity?, Phys. Rev. D 54 (1996)
6233 [gr-qc/9602052].

M. Visser, Scale anomalies imply violation of the averaged null energy
condition, Phys. Lett. B 349 (1995) 443 |gr-qc/9409043].

L.H. Ford and T.A. Roman, Averaged energy conditions and quantum
inequalities, Phys. Rev. D 51 (1995) 4277 [gr-qc/9410043].

M. Visser, Efficient Computation of Null Affine Parameters, Universe 9
(2023) 521 [2211.07835).

125


https://doi.org/10.1103/PhysRevD.54.5103
https://arxiv.org/abs/gr-qc/9604007
https://doi.org/10.1103/PhysRevD.54.5116
https://arxiv.org/abs/gr-qc/9604008
https://doi.org/10.1103/PhysRevD.54.5123
https://arxiv.org/abs/gr-qc/9604009
https://doi.org/10.1103/PhysRevD.56.936
https://arxiv.org/abs/gr-qc/9703001
https://arxiv.org/abs/gr-qc/9710010
https://doi.org/10.1103/PhysRevD.58.044021
https://arxiv.org/abs/gr-qc/9802046
https://doi.org/10.1103/PhysRevD.103.084052
https://arxiv.org/abs/2009.12057
https://doi.org/10.3390/universe7080271
https://arxiv.org/abs/2106.05002
https://doi.org/10.1142/9789811269776_0063
https://arxiv.org/abs/2110.14926
https://doi.org/10.1103/PhysRevD.44.403
https://doi.org/10.1103/PhysRevD.54.6233
https://doi.org/10.1103/PhysRevD.54.6233
https://arxiv.org/abs/gr-qc/9602052
https://doi.org/10.1016/0370-2693(95)00303-3
https://arxiv.org/abs/gr-qc/9409043
https://doi.org/10.1103/PhysRevD.51.4277
https://arxiv.org/abs/gr-qc/9410043
https://doi.org/10.3390/universe9120521
https://doi.org/10.3390/universe9120521
https://arxiv.org/abs/2211.07835

[221]
[222]
[223]
[224]

[225]

[226]

[227]
[228]
[229]
[230]

[231]

[232]

[233]
[234]
[235]

236

G. 't Hooft, Computation of the Quantum Effects Due to a
Four-Dimensional Pseudoparticle, Phys. Rev. D 14 (1976) 3432.

C.G. Callan, Jr., R.F. Dashen and D.J. Gross, The Structure of the
Gauge Theory Vacuum, Phys. Lett. B 63 (1976) 334.

R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of
Instantons, Phys. Rev. Lett. 38 (1977) 1440.

F. Wilczek, Problem of Strong P and T Invariance in the Presence of
Instantons, Phys. Rev. Lett. 40 (1978) 279.

M. Visser, Physical wavelets: Lorentz covariant, singularity free, finite
enerqy, zero action, localized solutions to the wave equation, Phys. Lett.
A 315 (2003) 219| [hep-th/0304081)].

P.O. Mazur and E. Mottola, Weyl cohomology and the effective action
for conformal anomalies, Phys. Rev. D 64 (2001) 104022
[hep-th/0106151].

C.B.M.H. Chirenti and L. Rezzolla, How to tell a gravastar from a black
hole, Class. Quant. Grav. 24 (2007) 4191 [0706.1513].

B.M.N. Carter, Stable gravastars with generalised exteriors, Class.
Quant. Grav. 22 (2005) 4551 [gr-qc/0509087].

C.B.M.H. Chirenti and L. Rezzolla, On the ergoregion instability in
rotating gravastars, Phys. Rev. D 78 (2008) 084011 [0808.4080].

P. Martin Moruno, N. Montelongo Garcia, F.S.N. Lobo and M. Visser,
Generic thin-shell gravastars, JCAP 03 (2012) 034 [1112.5253].

F.S.N. Lobo, P. Martin-Moruno, N. Montelongo-Garcia and M. Visser,
Novel stability approach of thin-shell gravastars, in 1/th Marcel
Grossmann Meeting on Recent Developments in Theoretical and

Ezxperimental General Relativity, Astrophysics, and Relativistic Field
Theories, vol. 2, pp. 2033-2038, 2017, DOI [15612.07659].

F.S.N. Lobo, P. Martin-Moruno, N. Montelongo Garcia and M. Visser,
Linearised stability analysis of generic thin shells, in 13th Marcel
Grossmann Meeting on Recent Developments in Theoretical and

Ezxperimental General Relativity, Astrophysics, and Relativistic Field
Theories, pp. 1935-1937, 2015, DOI [1211.0605].

S.D. Mathur, The Fuzzball proposal for black holes: An Elementary
review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050].

S.D. Mathur, Fuzzballs and the information paradox: A Summary and
conjectures, 0810 .4525.

S.D. Mathur, The Information paradoz: A Pedagogical introduction,
Class. Quant. Grav. 26 (2009) 224001 [0909.1038|.

K. Skenderis and M. Taylor, The fuzzball proposal for black holes, |Phys.
Rept. 467 (2008) 117 [0804.0552].

126


https://doi.org/10.1103/PhysRevD.14.3432
https://doi.org/10.1016/0370-2693(76)90277-X
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1016/S0375-9601(03)01051-X
https://doi.org/10.1016/S0375-9601(03)01051-X
https://arxiv.org/abs/hep-th/0304081
https://doi.org/10.1103/PhysRevD.64.104022
https://arxiv.org/abs/hep-th/0106151
https://doi.org/10.1088/0264-9381/24/16/013
https://arxiv.org/abs/0706.1513
https://doi.org/10.1088/0264-9381/22/21/007
https://doi.org/10.1088/0264-9381/22/21/007
https://arxiv.org/abs/gr-qc/0509087
https://doi.org/10.1103/PhysRevD.78.084011
https://arxiv.org/abs/0808.4080
https://doi.org/10.1088/1475-7516/2012/03/034
https://arxiv.org/abs/1112.5253
https://doi.org/10.1142/9789813226609_0221
https://arxiv.org/abs/1512.07659
https://doi.org/10.1142/9789814623995_0321
https://arxiv.org/abs/1211.0605
https://doi.org/10.1002/prop.200410203
https://arxiv.org/abs/hep-th/0502050
https://arxiv.org/abs/0810.4525
https://doi.org/10.1088/0264-9381/26/22/224001
https://arxiv.org/abs/0909.1038
https://doi.org/10.1016/j.physrep.2008.08.001
https://doi.org/10.1016/j.physrep.2008.08.001
https://arxiv.org/abs/0804.0552

[237] S. Raju and P. Shrivastava, Critique of the fuzzball program, Phys. Rev.
D 99 (2019) 066009 [1804.10616].

[238] B. Guo, S. Hampton and S.D. Mathur, Can we observe fuzzballs or
firewalls?, JHEP 07 (2018) 162 [1711.01617].

[239] A. Almbheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes:
Complementarity or Firewalls?, JHEP 02 (2013) 062/ [1207.3123].

[240] A. Almbheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An
Apologia for Firewalls, JHEP 09 (2013) 018 [1304.6483].

[241] L. Susskind, The Transfer of Entanglement: The Case for Firewalls,
1210.2098.

[242] L. Susskind, Singularities, Firewalls, and Complementarity, 1208 .3445.

[243] M. Van Raamsdonk, Fvaporating Firewalls, JHEP 11 (2014) 038
[1307.1796).

[244] D.N. Page, Ezcluding Black Hole Firewalls with Extreme Cosmic
Censorship, JCAP 06 (2014) 051 [1306.0562).

[245] M. Saravani, N. Afshordi and R.B. Mann, Empty black holes, firewalls,
and the origin of Bekenstein—Hawking entropy, Int. J. Mod. Phys. D 23
(2015) 1443007 [1212.4176].

[246] T. Banks and W. Fischler, Holographic Space-Time Does Not Predict
Firewalls, 1208.4757.

[247] P. Chen, Y.C. Ong, D.N. Page, M. Sasaki and D.-h. Yeom, Naked Black
Hole Firewalls, Phys. Rev. Lett. 116 (2016) 161304/ [1511.05695].

[248] K. Larjo, D.A. Lowe and L. Thorlacius, Black holes without firewalls,
Phys. Rev. D 87 (2013) 104018 [1211.4620].

[249] S.D. Mathur and D. Turton, The flaw in the firewall argument, Nucl.
Phys. B 884 (2014) 566 [1306.5488].

[250] LISA collaboration, New horizons for fundamental physics with LISA,
Living Rev. Rel. 25 (2022) 4/|2205.01597].

[251] Y.B. Zel’'Dovich and A. Polnarev, Radiation of gravitational waves by a
cluster of superdense stars, Soviet Astronomy 18 (1974) 17.

[252] D. Christodoulou, Nonlinear nature of gravitation and
gravitational-wave experiments, Phys. Rev. Lett. 67 (1991) 1486.

[253] K.S. Thorne, Gravitational-wave bursts with memory: The
Christodoulou effect, |Phys. Rev. D 45 (1992) 520.

[254] A. Tolish and R.M. Wald, Retarded fields of null particles and the
memory effect, Phys. Rev. D 89 (2014) 064008 [1401.5831].

[255] M. Favata, Nonlinear gravitational-wave memory from binary black hole
mergers, Astrophys. J. Lett. 696 (2009) L159 [0902.3660].

[256] A. Tolish, L. Bieri, D. Garfinkle and R.M. Wald, Ezamination of a

127


https://doi.org/10.1103/PhysRevD.99.066009
https://doi.org/10.1103/PhysRevD.99.066009
https://arxiv.org/abs/1804.10616
https://doi.org/10.1007/JHEP07(2018)162
https://arxiv.org/abs/1711.01617
https://doi.org/10.1007/JHEP02(2013)062
https://arxiv.org/abs/1207.3123
https://doi.org/10.1007/JHEP09(2013)018
https://arxiv.org/abs/1304.6483
https://arxiv.org/abs/1210.2098
https://arxiv.org/abs/1208.3445
https://doi.org/10.1007/JHEP11(2014)038
https://arxiv.org/abs/1307.1796
https://doi.org/10.1088/1475-7516/2014/06/051
https://arxiv.org/abs/1306.0562
https://doi.org/10.1142/S021827181443007X
https://doi.org/10.1142/S021827181443007X
https://arxiv.org/abs/1212.4176
https://arxiv.org/abs/1208.4757
https://doi.org/10.1103/PhysRevLett.116.161304
https://arxiv.org/abs/1511.05695
https://doi.org/10.1103/PhysRevD.87.104018
https://arxiv.org/abs/1211.4620
https://doi.org/10.1016/j.nuclphysb.2014.05.012
https://doi.org/10.1016/j.nuclphysb.2014.05.012
https://arxiv.org/abs/1306.5488
https://doi.org/10.1007/s41114-022-00036-9
https://arxiv.org/abs/2205.01597
https://doi.org/10.1103/PhysRevLett.67.1486
https://doi.org/10.1103/PhysRevD.45.520
https://doi.org/10.1103/PhysRevD.89.064008
https://arxiv.org/abs/1401.5831
https://doi.org/10.1088/0004-637X/696/2/L159
https://arxiv.org/abs/0902.3660

[257]
[258]
[259]
[260]
[261]

262]

[263]
[264]

265

266]
267]

268
269
270]

271]

272]
273]

[274]

simple example of gravitational wave memory, Phys. Rev. D 90 (2014)
044060 [1405.6396].

A. Tolish, The Gravitational Wave Memory Effect and Classical
Scattering Problems, Ph.D. thesis, University of Chicago, 2017.

D. Garfinkle, Gravitational wave memory and the wave equation, Class.
Quant. Grav. 39 (2022) 135010 [2201.05543].

A. Strominger and A. Zhiboedov, Gravitational Memory, BMS
Supertranslations and Soft Theorems, JHEP 01 (2016) 086 [1411.5745].

G. Compere and A. Fiorucci, Advanced Lectures on General Relativity,
1801.07064.

H. Bondi, Gravitational Waves in General Relativity, Nature 186 (1960)
535
H. Bondi, M.G.J. van der Burg and A.-W.K. Metzner, Gravitational

waves in general relativity. 7. Waves from axisymmetric isolated
systems, Proc. Roy. Soc. Lond. A 269 (1962) 21.

R.K. Sachs, Gravitational waves in general relativity. 8. Waves in
asymptotically flat space-times, |Proc. Roy. Soc. Lond. A 270 (1962) 103.

R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128
(1962) 2851

G. Barnich and C. Troessaert, Symmetries of asymptotically flat 4
dimensional spacetimes at null infinity revisited, Phys. Rev. Lett. 105
(2010) 111103 [0909.2617].

G. Barnich and C. Troessaert, BMS charge algebra, JHEP 12 (2011) 105
[1106.0213).

G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence,
JHEP 05 (2010) 062 [1001.1541].

A. Strominger, Black Hole Information Revisited, 1706.07143.
LISA collaboration, Laser Interferometer Space Antenna, 1702.00786.

L. Donnay, G. Giribet, H.A. Gonzéalez and A. Puhm, Black hole memory
effect, Phys. Rev. 98 (2018) 124016 [1809.07266].

S.J. Fletcher and A.-W.-C. Lun, The Kerr spacetime in generalized
Bondi—Sachs coordinates, Classical and Quantum Gravity 20 (2003)
4153.

G. Compere, Advanced lectures on general relativity, Lecture Notes in
Physics, vol. 952, Springer, Switzerland (2019).

M. Boyle, Transformations of asymptotic gravitational-wave data, |Phys.
Rev. D 93 (2016) 084031 [1509.00862].

G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries,
conservation laws and central charges, Nucl. Phys. B 633 (2002) 3

128


https://doi.org/10.1103/PhysRevD.90.044060
https://doi.org/10.1103/PhysRevD.90.044060
https://arxiv.org/abs/1405.6396
https://doi.org/10.1088/1361-6382/ac7203
https://doi.org/10.1088/1361-6382/ac7203
https://arxiv.org/abs/2201.05543
https://doi.org/10.1007/JHEP01(2016)086
https://arxiv.org/abs/1411.5745
https://arxiv.org/abs/1801.07064
https://doi.org/10.1038/186535a0
https://doi.org/10.1038/186535a0
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1098/rspa.1962.0206
https://doi.org/10.1103/PhysRev.128.2851
https://doi.org/10.1103/PhysRev.128.2851
https://doi.org/10.1103/PhysRevLett.105.111103
https://doi.org/10.1103/PhysRevLett.105.111103
https://arxiv.org/abs/0909.2617
https://doi.org/10.1007/JHEP12(2011)105
https://arxiv.org/abs/1106.0213
https://doi.org/10.1007/JHEP05(2010)062
https://arxiv.org/abs/1001.1541
https://arxiv.org/abs/1706.07143
https://arxiv.org/abs/1702.00786
https://doi.org/10.1103/PhysRevD.98.124016
https://arxiv.org/abs/1809.07266
https://doi.org/10.1088/0264-9381/20/19/302
https://doi.org/10.1088/0264-9381/20/19/302
https://doi.org/10.1103/PhysRevD.93.084031
https://doi.org/10.1103/PhysRevD.93.084031
https://arxiv.org/abs/1509.00862
https://doi.org/10.1016/S0550-3213(02)00251-1

[hep-th/0111246].

[275] H. van der Ven, The BMS algebra and black hole information, Ph.D.
thesis, Utrecht University, 2016.

[276] G. Compere and J. Long, Classical static final state of collapse with
supertranslation memory, Class. Quant. Grav. 33 (2016) 195001
[1602.05197].

[277] G. Compere and J. Long, Vacua of the gravitational field, JHEP 07
(2016) 137 [1601 .04958).

[278] L. Donnay, G. Giribet, H.A. Gonzélez and M. Pino, Supertranslations
and Superrotations at the Black Hole Horizon, Phys. Rev. Lett 116
(2016) 091101 [1511.08687].

[279] L. Donnay, G. Giribet, H.A. Gonzalez and M. Pino, Eztended
Symmetries at the Black Hole Horizon, | JHEP 09 (2016) 100
[1607.05703).

[280] A.A. Rahman and R.M. Wald, Black Hole Memory, Phys. Rev. D 101
(2020) 124010 [1912.12808).

[281] L.R. Venter and N.T. Bishop, Numerical validation of the Kerr metric
in Bondi-Sachs form, Phys. Rev. D 73 (2006) 084023 [gr-qc/0506077].

[282] S.J. Hoque and A. Virmani, The Kerr—de Sitter spacetime in Bondi
coordinates, Class. Quant. Grav. 38 (2021) 225002/ [2108.01098].

[283] S. Bhattacharjee, S. Kumar and A. Bhattacharyya, Displacement
memory effect near the horizon of black holes, JHEP 03 (2021) 134
[2010. 16086].

[284] E. Teo, Gravitational lensing and supertranslations, Australasian
Conference on General Relativity and Gravitation, Hobart, Tasmania,
Dec 2023.

[285] S. Sarkar, S. Kumar and S. Bhattacharjee, Can we detect a
supertranslated black hole?, Phys. Rev. D 105 (2022) 084001
[2110.03547).

[286] E.T. Newman, E. Couch, K. Chinnapared, A. Exton, A. Prakash and
R. Torrence, Metric of a rotating, charged mass, Journal of

Mathematical Physics 6 (1965) 918.

[287] R.P. Kerr, Gravitational field of a spinning mass as an example of
algebraically special metrics, Phys. Rev. Lett. 11 (1963) 237.

[288] EVENT HORIZON TELESCOPE collaboration, First Sagittarius A* Event
Horizon Telescope results. I. The shadow of the supermassive black hole
in the center of the Milky Way, Astrophys. J. Lett. 930 (2022) L12.

[289] EVENT HORIZON TELESCOPE collaboration, First Sagittarius A* Event

Horizon Telescope results. V. Testing astrophysical models of the galactic
center black hole, Astrophys. J. Lett. 930 (2022) L16.

129


https://arxiv.org/abs/hep-th/0111246
https://doi.org/10.1088/0264-9381/33/19/195001
https://arxiv.org/abs/1602.05197
https://doi.org/10.1007/JHEP07(2016)137
https://doi.org/10.1007/JHEP07(2016)137
https://arxiv.org/abs/1601.04958
https://doi.org/10.1103/PhysRevLett.116.091101
https://doi.org/10.1103/PhysRevLett.116.091101
https://arxiv.org/abs/1511.08687
https://doi.org/10.1007/JHEP09(2016)100
https://arxiv.org/abs/1607.05703
https://doi.org/10.1103/PhysRevD.101.124010
https://doi.org/10.1103/PhysRevD.101.124010
https://arxiv.org/abs/1912.12806
https://doi.org/10.1103/PhysRevD.73.084023
https://arxiv.org/abs/gr-qc/0506077
https://doi.org/10.1088/1361-6382/ac2c1f
https://arxiv.org/abs/2108.01098
https://doi.org/10.1007/JHEP03(2021)134
https://arxiv.org/abs/2010.16086
https://doi.org/10.1103/PhysRevD.105.084001
https://arxiv.org/abs/2110.03547
https://doi.org/10.1063/1.1704351
https://doi.org/10.1063/1.1704351
https://doi.org/10.1103/PhysRevLett.11.237
https://doi.org/10.3847/2041-8213/ac6674
https://doi.org/10.3847/2041-8213/ac6672

290]

[291]
292]
[293]
[294]
[295]
[296]
[297)
298]
[299]

300]

301]
302]
303]

304]

EvVENT HORIZON TELESCOPE collaboration, First M87 Fvent Horizon

Telescope results. 1. Array and instrumentation, Astrophys. J. Lett. 875
(2019) L2.

G. Compere, The Kerr/CFT Correspondence and its Extensions, Living
Reviews in Relativity 15 (2012) 11.

H.K. Kunduri and J. Lucietti, Classification of Near-Horizon Geometries
of Extremal Black Holes, Living Reviews in Relativity 16 (2013) 8.

J.M. Bardeen, B. Carter and S.W. Hawking, The four laws of black hole
mechanics, Communications in Mathematical Physics 31 (1973) 161.

S.W. Hawking, Particle creation by black holes, Communications in
Mathematical Physics 43 (1975) 199.

S.J. Fletcher and A.W.C. Lun, The Kerr spacetime in generalized
Bondi-Sachs coordinates, Class. Quant. Grav. 20 (2003) 4153.

S.J. Hoque and A. Virmani, The Kerr-de Sitter Spacetime in Bondi
Coordinates, Class. Quant. Grav. 38 (2021) 225002 [2108.01098].

B. Carter, Global structure of the kerr family of gravitational fields,
Phys. Rev. 174 (1968) 15509.

R. Gaur, The Kerr memory effect at null infinity, arXiv e-prints (2024)
[2403.07302].

G. Compere, A. Fiorucci and R. Ruzziconi, The A-BMS, charge algebra,
JHEP 10 (2020) 205/ [2004 . 10769).

G. Compere, A. Fiorucci and R. Ruzziconi, The A-BMS, group of dSy
and new boundary conditions for AdSy, Class. Quant. Grav. 36 (2019)
195017 [1905.00971].

P. Chrusciel, The Geometry of Black Holes, Oxford University Press,
Oxford (September, 2020).

L. Donnay, G. Giribet, H.A. Gonzélez and M. Pino, Eztended
symmetries at the black hole horizon, JHEP 09 (2016) 100 [1607.05703|.
T. Hartman, K. Murata, T. Nishioka and A. Strominger, CF'T duals for
extreme black holes, JHEP 04 (2009) 019 [0811.4393].

J. Galinski, Painlevé-Gullstrand coordinate systems in familiar and
unfamiliar spacetimes’, University of Canterbury (2023) .

130


https://doi.org/10.3847/2041-8213/ab0c96
https://doi.org/10.3847/2041-8213/ab0c96
https://doi.org/10.12942/lrr-2012-11
https://doi.org/10.12942/lrr-2012-11
https://doi.org/10.12942/lrr-2013-8
https://doi.org/10.1007/BF01645742
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1088/0264-9381/20/19/302
https://doi.org/10.1088/1361-6382/ac2c1f
https://arxiv.org/abs/2108.01098
https://doi.org/10.1103/PhysRev.174.1559
https://arxiv.org/abs/2403.07302
https://doi.org/10.1007/JHEP10(2020)205
https://arxiv.org/abs/2004.10769
https://doi.org/10.1088/1361-6382/ab3d4b
https://doi.org/10.1088/1361-6382/ab3d4b
https://arxiv.org/abs/1905.00971
https://doi.org/10.1007/JHEP09(2016)100
https://arxiv.org/abs/1607.05703
https://doi.org/10.1088/1126-6708/2009/04/019
https://arxiv.org/abs/0811.4393

Appendix A

Painlevé—Gullstrand coordinates
and related formulae

Here we present some collected formulae for easy reference.

A.1 Spatially flat FLRW

By suitable choice of coordinates spatially flat FLRW spacetime can be repre-
sented in any of the following six equivalent forms:

ds? = —df? + a(t)*{dr? + r2d0?}, (A1)
ds® = —dt* + a(t)*{da® + dy* + d*}. (A.2)
ds* = a(n)*{—dn® + dr?* + r2dQ?}. (A.3)
ds* = a(n)*{~di® + da® + dy’ + d=*}. (A4)

ds* = —dt* + {[dF — H(t) 7 dt]* + 72dQ?}. (A.5)
ds? = —dt* + {[dz — H(t) zdt]* + [dy — H(t) ydt]* + [dz — H(t) zdt]*} .
(A.6)
A.2 Kottler

By suitable choice of coordinates Kottler (Schwarzschild-de Sitter) spacetime
can be represented in any of the following six equivalent forms:

d72
ds® = — (1 — QTm — HQFQ) de? + : - + 72d0°. (A7)

T — I H2p2

F— Hr /1 —2m/rdt]?
d52:_(1—27m) a2+ 197 Hrl 12m2m/r F i raoz, (A.8)

P
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[dF — \/2m/7 /1 — H22 dt]?
1— H%2

2
ds? = —d? + [df —2m/F + H?? dt} + 202, (A.10)

ds* = — (1 — H*r?) dt* + +72dQ, (A9)

ds? = —dt? + ! { [dr + (Hr — \/2me=3Ht [ ¢ H2r2> dt]2 + TZdQQ} :
(A.11)

2
9me—Ht dr+ Hr |1 — /1 —2me=Ht/r| dt
d82:—(1_ me )d?—i—e t < [ — — ] ) —I—T2dQQ
r __ zme
(A.12)

A.3 McVittie

By suitable choice of coordinates McVittie spacetime can be represented in any
of the following four equivalent forms:

m 2
ds? = — M de? + 1+ _m_ ' a(t)Q{dFQ + F2dﬂ2}. (A.13)
14 M 2a(t)T

2a(t)F

2
2m dr
ds? = — (1——) dt? + | — — H()Fdt| + 7202 A.14
. eyl (A.14)

ds? = — (1 _2m ) dt*+a(t)? <d7" Ao [1 ) = %} dt>2 + r2dQ?

2m
a(t)r — a0

(A.15)

ds* = (1 - 2%)4 {— (%) dt? + {[dF — H (t)7Fdt]* + erQQ}} . (A.16)
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Appendix B

Mathematica Codes for
Chapter 6

We have developed three ancillary Mathematica files relevant to the analysis of
Chapter [0 . A brief explanation on these files is provided below. The actual
Mathematica files are available on the arXiv as supplementary material to the
submission 2407.15289.

1. KerrNewmanGeneralisedBondiSachsForm.nb: this file writes the
Kerr-Newmann metric into the generalised Bondi—Sachs form.

2. KerrNewmanBondiGaugeComponentsExpansions.nb: this file com-
putes the Kerr-Newmann metric components expansions at null infinity in
the generalised Bondi—Sachs form; transforms the metric into the Bondi—-
Sachs gauge and computes their asymptotic expansion.

3. KerrNewman4PotentialNulllnfinity.nb: this file computes the elec-
tromagnetic four-potential in the Bondi-Sachs gauge.
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Appendix C

List of Papers Relevant to this
Thesis

This appendix contains a brief list of the papers that are included in this thesis
and ones that are notll

Published papers included in this thesis

1. Chapter 2: Cosmology in Painlevé-Gullstrand Coordinates
e https://arxiv.org/abs/2207.08375
e JCAP 09 (2022) 030
e Authors: Rudeep Gaur & Matt Visser
2. Chapter 3: Black holes embedded in FLRW cosmologies
e https://arxiv.org/abs/2308.07374
e Phys. Rev. D 110 (2024) 043529
e Authors: Rudeep Gaur & Matt Visser
3. Chapter 4: Black holes, white holes, and near-horizon physics
e https://arxiv.org/abs/2304.10692
e JHEP 05 (2024) 172
e Authors: Rudeep Gaur & Matt Visser

Unpublished papers included in this thesis

1. Chapter 5: The Kerr Memory Effect at Null Infinity
e https://arxiv.org/abs/2403.07302
e Status: Currently waiting with referee at JHEP
e Author: Rudeep Gaur

!The format will be: Chapter number, title of paper, arxiv link, journal reference, authors.
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2. Chapter 6: Kerr—Newman Memory Effect
e https://arxiv.org/abs/2407.15289
e Status: Currently waiting with referee at JHEP

e Authors: Marco Galoppo, Rudeep Gaur, and Christopher Harvey-
Hawes

Published papers not included in this thesis

This paper was written during the PhD and was a useful endeavour to expand
my skill set but was not included in my thesis.

1. Defect Wormholes Are Defective
e https://arxiv.org/abs/2407.15289
e Universe 9 (2023) 10, 452
e Authors: Joshua Baines, Rudeep Gaur, and Matt Visser

Beyond these papers, there are two or three that are works in progress.

These expand upon [chapter 2| and |[chapter 4. In particular, we have begun

to investigate the effects that slicing (especially Painléve-Gullstrand slicing)
has on backreaction and curvature. We also have very early calculations for
black-to-white bounces for spacetimes beyond Schwarzschild.
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