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Abstract

The future of theoretical physics is unclear. Two large areas that fall under the
umbrella of theoretical physics are cosmology and quantum gravity. Modern
cosmology is relatively a much younger field than quantum gravity, and both
of these fields require further developments of general relativity. In this thesis
we do not hope to resolve the problems facing modern cosmology or theories
of quantum gravity. Rather, we will conduct original research into aspects of
general relativity that may be used in the future to aid the development and
testing of theories of cosmology and quantum gravity.

It is our view that the largest problem facing astrophysics and cosmology
stem from the existence of the dark sector of the Universe. The implication
here being that more than ninety percent of the energy density of the Uni-
verse is “missing in action” and seemingly consists of dark energy and dark
matter. Furthermore, it is apparent that there exist conceptual flaws in our
understanding of observational concepts such as expansion versus motion and
observer biases. To this end, we investigate the standard spacetime metric used
in cosmology, the Friedmann–Lemâıtre-Roberston–Walker (FLRW) metric in
a peculiar coordinate system — the Painlevé–Gullstrand coordinates. In this
coordinate system (slicing), space is no longer expanding, rather, the galaxies
are receding from each other. We hope this will aid in the understanding of
expansion, motion, curvature, and observer bias with future work. We further
investigate the possibility of black holes in cosmology being directly coupled to
the accelerated expansion of the Universe — in other words, black holes as a
source for dark energy. However, we show that this is highly implausible.

Relatively recently it has been postulated that the near black hole horizon
limit may be a regime where quantum gravity effects become relevant i.e., quan-
tum gravity may not be restricted to near the Planck scale. We investigate a
curious model of black and white holes that shows how one may transition into
the other over a finite period of time. This is research conducted in the near
horizon limit of the Schwarzschild black hole. We introduce a time dependent
function into the usual Schwarzschild black hole spacetime (leaving this new
spacetime not a simple coordinate transformed version of the original). This
function allows the black hole to transition into a white hole. Importantly, the
action for this transition can be shown to be zero, meaning it can be added to
the Feynman path integral at no cost.

Finally, we move to investigating the black hole memory effect. During the
last decade, there has been an interesting connection made between the Bondi–
Metzner–Sachs (BMS) group — an infinite dimensional group of symmetries
found at null infinity — and the gravitational memory effect. In particular, it
was shown that the passage of a gravitational wave that alters a Schwarzschild



black hole is seen as a supertranslation of the spacetime at null infinity. We
extend these calculations to the Kerr and Kerr–Newman black holes. Hence,
showing that there may be a way to verify the abstract mathematical ideas
predicated on the BMS group by detection of the memory effect in future ob-
servations. It is our hope that when future gravitational wave detectors such as
the laser-interferometer-space-antenna (LISA) are launched, research conducted
in this thesis may shed light on how the memory may relate to black holes in
their asymptotic & near horizon limits to aid our understanding of the nature
of quantum gravity.
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Chapter 1

Introduction

In 1915 Einstein published his theory of general relativity (GR), a theory in

which gravity is no longer a force – as in Newton’s theory – rather, gravity is

an emergent property of the geometry of spacetime [1]. As Wheeler quoted:

In Einstein’s theory, “matter tells spacetime how to curve and spacetime tells

matter how to move”.

The first experimental verification of GR came shortly after its develop-

ment: it successfully explained the precession of the perihelion of Mercury1

[2] and the curving of starlight due to the gravitational field of the sun2 [4].

General relativity went on to provide a foundation for gravitational redshift [5]

which was qualitatively described by Einstein in 1907 [6]. Furthermore, in 1964,

Shapiro [7] predicted the existence of the Shapiro time delay predicated on gen-

eral relativity. In recent times, the detection of gravitational waves with the

Laser Interferometer Gravitational-Wave Observatory (LIGO) [8] was another

confirmation of GR being the ‘correct’ theory of gravity. While GR has pro-

vided a description of gravity to high precision on small scales (when compared

to the size of the Universe), its applicability on large scales is not thoroughly

tested and is a point of debate.

Along with Einstein’s famous mass-energy relation and general relativity,

some may consider this the dawn of modern theoretical physics. This claim

may indeed seem bold as theoretical physics has been a field of interest for

centuries, if not millennia. After all, by definition, all one requires is a theory

— A system of ideas which is intended to explain something. Many of these early

theories were well approximated & explained by calculus and relatively simple

relations from experimental data3. This is in stark contrast to modern theories

1In fact, the perihelion of Mercury was a retrodiction of GR as data collected over the
previous century indicated there was more to gravity than Newton’s theory.

2The bending of starlight was in fact, already predicted from Newtonian gravity [3] but
the quantitative result here was out by roughly a factor of two. General relativity provided
a much more accurate quantitative prediction.

3Of course, there is a comment that could be made here about the current state of theo-
retical physics and experimental data.
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such as GR where gravity itself is explained via a four–dimensional manifold,

something we cannot see, but is in some sense4 there. These theories now

require high-precision instruments to verify, are not free of immense statistical

biases, and/or conceptual hurdles. All of this is to say, the true beginning of

modern theoretical physics (in my opinion) is associated with the realisation

that geometry and deep mathematical structures are required to explain the

Universe.

Einstein was, of course, not the only pioneer of modern theoretical physics,

there were many pioneers of what we consider modern physics during the 20th

century. However, despite many advances across all areas of theoretical physics,

the profound realisation that deep and beautiful mathematical structures were

“required” to explain the Universe caused many of the problems we face in

theory today. It became a want, a need, for everything to ‘fit nicely’. This led us

into the realm of ‘unfalsifiable’ theories, a deviation from the scientific method

in the name of elegance. Hubris, after all, is part of the human condition.

Two key problems began to emerge as we progressed towards the 21st cen-

tury.

i Despite many attempts, general relativity, a classical theory, has not been

quantised, holding back our progress towards a Grand Unified Theory. This

has led to the “‘holy grail” of physics — a theory of quantum gravity. While

there have been a plethora of theories proposed, many remain in the realm

of “mathematical speculations” and have not been observationally verified.

This thesis and the papers it contains does not address or attempt to solve

quantum theory directly. However, we conduct original research of black

holes in their near horizon limits. In recent years more of the community

has begun to suspect that this limit may admit observation evidence of

quantum gravity phenomenon, hence our interest in this regime.

ii Our observations of the Universe — which founded the modern theory of

cosmology — began to point towards a ‘mysterious’ dark sector of the Uni-

verse that makes up more than 90 percent of the energy density of the

Universe at the current epoch. This dark sector of course, is comprised of

dark energy and dark matter — both of which do not interact via any of the

fundamental forces, except gravity. Once again, this thesis does not directly

address a new theory of cosmology or how we may solve the problem of

the dark sector. However, we present a unique slicing of spacetime in the

hope that with further developments we may be able to deviate from the

standard model.

A theory of Quantum gravity has been sought after for at least a hundred

years. What is so intrinsically difficult about quantising gravity? We have

many theories that remain unsatisfactory to date as none of our state-of-the-

4Clearly, Maxwell’s equations were also a set of equations that were hinting at something
hidden behind the veil, but the true mathematical depth here was yet to be discovered.
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art tools to probe the quantum realm have produced results that can prove

(and in some cases disprove) any current theory to be correct. From a pure

theoretical perspective, the problem is likely more fundamental. In GR, gravity

is encoded in the very geometry of spacetime. All of its successes and spectacular

predictions emerge from this encoding. To create5 a theory of gravity that was

about geometry, Einstein required a new language to describe all of classical

physics, he required Riemannian geometry. Spacetime was now represented as

a 4–dimensional manifold equipped with a metric with sharp light cones that

are deterministic, and matter? Matter was now represented by tensor fields.

Quantum mechanics, however, is a probabilistic theory. How does one even

begin to create an even newer language - a sort of “qauntised Riemannian

geometry”. Furthermore, if one can even quantise the metric, what of the light

cones which would now, intrinsically, not be sharp and deterministic.

Evidently, this has proved to be a monumental task — something the great-

est minds over the last century have not been able to resolve. Out of this search,

theories such as Kaluza–Klein emerged. Kaluza–Klein theory showed that elec-

tromagnetism could be unified with gravity, at the cost of an extra dimension.

String theory built upon Kaluza–Klein and then there were more “minimally

modified” theories such as loop quantum gravity. The failure of these ideas

has not gone unnoticed of course. Many have critiqued these theories and their

continued pursuit, for instance, Lee Smolin’s “The Trouble with Physics” [9],

Peter Woit’s “Not even Wrong” [10], or Sabine Hossenfelder’s “Lost in Maths”

[11]. It is perhaps important to realise, however, that a lot of progress was

made during the time these theories were developed. For instance, the stan-

dard model of particle physics emerged in the 20th century as a result of another

mathematical construct, gauge theories.

In this ongoing, seemingly impossible quest for quantum gravity, one of the

most useful theoretical playgrounds appears to be black holes. From our current

understanding, black holes contain curvature singularities6, which manifestly

require new physics. These singularities may reveal underlying symmetries7 of

‘the full theory’ of quantum gravity or suggest how evolution could remain well-

defined through a singularity. (This is the case, for instance in certain timelike

singularities in string theory.) It turns out that examination of the black hole

horizon may contain clues towards the next step for general relativity — as

implied by (but not limited by) black hole thermodynamics [13]. Indeed, in

the increasingly popular Anti–de Sitter/conformal field theory (AdS/CFT) cor-

5We shall not delve into the topic of whether “physical theories are created or found”
here. . .

6The event horizon (the surface of “no return”) and singularities are both topics of debate.
In particular, event horizons may not be exist, rather, they should be understood as long lived
apparent horizons. Furthermore, in recent years, there has been a small argument put forward
by Roy Kerr [12] regarding the nature of singularities and Penrose’s singularity theorems.

7Yet another discussion could be had here regarding the nature of symmetries in physics
and our immense love of pursuing them.
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respondence one finds a set of symmetry generators, and their commutation

relations admit a rich algebra that can be related to black hole thermodynam-

ics. This is something we shall discuss briefly, when discussing near horizon

physics, the black hole memory effect, and the Bondi–van der Burg–Metzner–

Sachs (BMS) group.

Much like quantum gravity, modern cosmology has also faced many problems,

albeit for an arguably shorter time. The current standard model of cosmology, Λ

Cold Dark Matter (ΛCDM), is based on the Friedmann–Lemâıtre–Roberston–

Walker (FLRW) solution to the Einstein equations, describing a expanding

spacetime that is isotropic and homogeneous8. One arrives at the Universe being

isotropic because of our observations of the Cosmic Microwave Background

(CMB). The CMB is the earliest light in the Universe that we can observe,

and from our place in the cosmos, it does appear to be isotropic to one part in

ten-thousand9. Therefore, the CMB, as we see it, suggests that at the point of

decoupling — when the Universe had cooled enough such that light could escape

the ‘hot, dense mess’ — the Universe was in fact, close to isotropic. Coupling

isotropy with the Copernican principle; the notion that, we, on Earth, do not

occupy a ‘privileged’ place in the Universe, gives us homogeneity. Putting

all these pieces together, we arrive at the cosmological principle which states:

“on sufficiently large scales the spatial distribution of matter is isotropic and

homogeneous”.

Of course, we have not discussed where the accelerated expansion part of the

standard model comes from, let alone the expanding part. The first evidence

of an expanding Universe came from the observation of extragalactic nebulae

by Edwin Hubble. These observations showed a positive trend between the

distance of these nebulae and their radial velocities — suggesting the Universe

is expanding [14]. After which in 1998 Riess et al. [15] followed by Perlmutter et

al. in 1999 [16], fit astrophysical data to the FLRW model and found something

unexpected — the Universe was not only expanding, the expansion was also

accelerating. The surveys which serve as the foundation for this were observing

type 1a supernovae (SNe1a). The SNe1a observed appeared to be fainter than

predicted by the FLRW model. Therefore, the cosmological constant which had

been omitted since the early 20th century made a return, becoming part of the

standard model. The cosmological constant in modern times, is associated with

“dark energy” — a repulsive negative pressure, opposing gravity, that drives

the expansion of the Universe at late times. To date, the ΛCDM model — with

the addition of standard perturbation theory and Newtonian N-body numerical

simulations — has explained most of our cosmological observations.

There have been, however, a growing number of tensions in the past two

8It is useful to point out that ‘isotropic’ here means that the Universe is observed to be
the ‘same’ in every direction. Homogeneity, is a stronger condition that states that something
is observed to be isotropic from every point in the Universe.

9Many subtleties have been omitted here for ease of reading.
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decades between the predictions of the ΛCDM model and observations. These

tensions include the ‘lack of power’ at the largest scales in the CMB power spec-

trum, and the recent 3.7σ tension between local measurements of the Hubble

parameter [17, 18] compared to the inferred value from the CMB [19]. Fur-

thermore, there is a growing tension with the lack of ‘direct observation’ of the

‘dark sector’ of the Universe. These tensions may be — as most would lead one

to believe — due to of insufficient precision, or systematic errors.

While cynicism is an easy hole to fall into, there are groups around the world

who are looking beyond the standard model of cosmology. One contribution to

this debate, Wiltshire’s timescape model [20, 21, 22], claims that the expansion

is not actually accelerating. Rather, our perception of this accelerated expan-

sion is more of a fundamental issue associated with how one calibrates time

parameters in the presence of cosmological backreaction. Wiltshire’s group has

also made steps towards reducing the need for dark matter in galaxies [23] and

strong lensing [24]. Only time will tell if the dark sector of the Universe is fun-

damental or if it is an emergent property of our observations and biases.

In this thesis we will discuss a variety of topics surrounding black holes.

Namely, black holes in cosmology, their near horizon limits, and their inter-

action with gravitational waves. All the ideas explored in this thesis aim to

form theory that will aid observation in the coming decades. We will begin in

Chapter 2 by giving a brief overview of the 3+1 formalism in general relativity.

We will then introduce a unusual slicing for cosmological spacetimes — The

Painlevé–Gullstrand slicing. In this slicing, we will see that space is no longer

expanding, rather fluid elements (commonly, thought of as galaxies) are reced-

ing away from each other. This will potentially provide a natural framework for

the question of what is “motion and what is expansion”. This chapter will in-

vestigate the FLRW spacetime and discuss how all of the symmetry generators

transform under this choice of slicing. We will then provide a sort-of catalogue

of cosmologies in this slicing. Namely, de Sitter space, the Kottler spacetime,

and the McVittie spacetime.

In Chapter 3 we shall investigate a new series of articles which claim that

black holes couple with the expansion of the Universe. The proposed mecha-

nism for this is black holes leaking dark energy into the Universe. We discuss

how black holes coupling to the large scale dynamics of the Universe is implau-

sible due to the truly immense separation of scales. We then use various exact

solutions of black holes embedded in expanding spacetimes to show there is no

correlation on theoretical grounds. For this, we use similar slicings of spacetime

as we did in chapter 1, building on the ideas of expansion versus motion.

In Chapter 4 we discuss (Schwarzschild) black and white holes. In particular,

we will show that by the introduction of a function depending solely on the

radial coordinate, r, one can obtain a static black and white hole in horizon-

penetrating coordinates. Secondly, we will move to the near-horizon form of
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these spacetimes and show that a clear distinction can be made between a

“black and white” horizon. We further introduced a function of time as well.

This spacetime will now describe a ‘black-to-white hole bounce’. Finally, the

action of this bounce in the transition region will be investigated in order to

discuss how quantum physics would be affected by this ‘bounce’.

In Chapter 5 the black hole gravitational memory effect is explored. The

memory effect has been shown to be one vertex of the infrared triangle [25]; the

other two being asymptotic symmetries and soft theorems. The infrared trian-

gle is a figurative triangle that illustrates how these three aspects of physics —

which previously seemed disconnected — in recent years have been shown to

be mathematically related. The black hole memory effect in this scheme illus-

trates that when a gravitational wave strikes a black hole, the spacetime is left

permanently altered. Amazingly, the linear order approximation of this change

is seen as a BMS supertranslation at null infinity, I+. This effect has been dis-

cussed in the literature for close to ten years; for instance see refs [26, 27, 28].

However, the supertranslations of the Kerr solution have not been previously

calculated. We will do exactly this in Chapter 5 — compute the supertrans-

lated Kerr spacetime and discuss how the asymptotic charges are changed due

to a gravitational wave. In years to come we expect the gravitational memory

effect to be detectable and so further development of this formalism with exact

solutions such as the Kerr spacetime may prove vital.

In Chapter 6 we compute the memory effect for a more general black hole, the

Kerr–Newman spacetime. With the presence of an electromagnetic field (the

gauge field), the memory effect becomes slightly more interesting. A similar

investigation was undertaken by Donnay et.al [28] for the Reisnner–Nordström

solution. In their paper it was found that there is a permanent change in

the gauge field as well as the spacetime metric; this is also the case for the

Kerr-Newman spacetime. We further bring the Kerr–Newman spacetime into

its extremal near horizon form to examine the memory effect as seen from an

observer near the horizon. Following the calculations from refs [28, 29], we find

that there is a non-trivial change in the electromagnetic charge generator on

the horizon. This implies the existence of soft electric hair that is implanted

from the passage of a gravitational wave. The effect of gravitational waves on

the horizon charges & the electromagnetic field and its ties to the AdS/CFT

correspondence may prove to aid our understanding of quantum gravity.
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Chapter 2

Cosmology in
Painlevé–Gullstrand
coordinates

Cosmology is most typically analyzed using standard co-moving coordinates, in

which the galaxies are (on average, up to presumably small peculiar velocities)

“at rest”, while “space” is expanding. This, however, is merely a specific co-

ordinate choice; and it is important to realise that for certain purposes other,

(sometimes radically different), coordinate choices might also prove useful and

informative, but without changing the underlying physics. Specifically, herein

we shall consider the k = 0 spatially flat FLRW cosmology but in Painlevé–

Gullstrand coordinates — these coordinates are very explicitly not co-moving:

“space” is now no longer expanding, although the distance between galaxies is

still certainly increasing.

This particular coordinate/slicing choice, therefore, further provides a natu-

ral way of addressing the difference between (peculiar) motion versus expansion

in cosmology in astrophysics. Whether space is expanding or the galaxies are

receding — the physical redshift we observe is the same. Since space expanding

is a more cosmology based concept and galaxy motion is more of an astrophysi-

cal concept, Painlevé–Gullstrand coordinates provide a middle ground for these

two fields.

Working in these Painlevé–Gullstrand coordinates provides an alternate view-

point on standard cosmology, the symmetries thereof, and also makes it some-

what easier to handle cosmological horizons. With a longer view, we hope that

investigating these Painlevé–Gullstrand coordinates might eventually provide

a better framework for understanding large deviations from idealised FLRW

spacetimes. We illustrate these issues with a careful look at the Kottler and

McVittie spacetimes.

Coordinate freedom in general relativity is an extremely powerful tool; but

a very subtle one that took almost 45 years for most of the general relativ-
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ity community to fully internalize. A judicious choice of coordinates can often

make some aspect of the physics easy and obvious, but may make other aspects

of the physics more obscure. On the other hand, no coordinate choice, (no

matter how obtuse), can actually change the underlying physics. For instance,

at a purely theoretical level, locally geodesic and Riemann normal coordinate

systems greatly simplify manipulations leading to the Bianchi identities. At a

more physical level, locally geodesic and Riemann normal coordinate systems

greatly simplify analysis and understanding of the Einstein equivalence princi-

ple. See any of a vast number of relevant textbooks for more details on these

issues [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41].

In this chapter we will explore some unusual coordinate choices in cosmology.

While typically in a cosmological setting one uses comoving coordinates, tied

to the average Hubble flow, this is by no means a necessary choice. Choosing

non-comoving coordinates, (specifically, a cosmological variant of the Painlevé–

Gullstrand coordinates) will simplify some aspects of the discussion, while (ap-

parently) making other aspects more complicated, but without changing the

underlying physics. For relevant background on Painlevé–Gullstrand coordi-

nates see references [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55].

Explicitly choosing a cosmological variant of the Painlevé–Gullstrand coordi-

nates will allow us to eliminate the expansion of “space”. The price we pay here

is that typical galaxies will now be represented by “moving” Eulerian observers

— the distance between galaxies will still be increasing, there will still be a Hub-

ble flow. Furthermore, in these Painlevé–Gullstrand coordinates the light cones

are “tipped over” so that “faster-than-light” with respect to non-expanding

“space” is not the same as “faster-than-light” with respect to the locally de-

fined light-cones. This provides an alternative viewpoint on the Hubble expan-

sion, one that some cosmologists might be more comfortable with. We carefully

consider the symmetries of FLRW spacetime, the crucial difference between ap-

parent horizons and causal horizons, and as an example of large deviations from

FLRW consider several versions of the Kottler and McVittie spacetimes. Our

conventions will be those of Misner–Thorne–Wheeler [32].
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2.1 Preliminaries: Definition of a Foliation

Any spacetime (M, g) that is globally hyperbolic can be foliated by a family of

spacelike hypersurfaces, Σ t. We define a foliation or slicing by supposing there

exists a scalar field, t̃ onM (which has non vanishing gradient), such that each

hypersurface is a level surface of t̃.

∀t ∈ R, Σ t := {p ∈M, t̃(p) = t}. (2.1)

Since the gradient of t̃ does not vanish, the Σ t are non-intersecting:

Σ t ∩ Σ t ′ = ∅ for t ̸= t ′. (2.2)

Each hypersurface, Σ t is called a slice of the foliation. Generally, we assume

the hypersurfaces to be spacelike and thus the foliation coversM:

M =
⋃
t∈R

Σ t. (2.3)

Foliation Kinematics

The kinematics of a foliation are determined by the 3-dimensional slices, Σ t, the

infinitesimal neighbouring slice, Σ t+dt and the 4-dimensional space that fills the

space between the slices. Misner, Thorne, and Wheeler, [56] and Alcubierre [57]

discuss physical notions that are required to give the chosen foliation structure

a sense of “rigidity”. The physical notions are:

• A notion of how to measure proper distances given by the metric, h ij .

This is often called the induced metric on the hypersurfaces.

• The lapse function which defines a notion of proper time between slices.

• The relative velocity of observers travelling normal to the slices (Eulerian

observers) and the worldlines corresponding to constant spatial coordi-

nates. This is given by the shift vector, β.

Terms such as “velocity” and “observer” are used here simply for physical mo-

tivation, they are not intrinsically required.

Eulerian Observers

The idea of Eulerian observers is fundamental to the 3+1 splitting of spacetime.

We can regard n, the normal vector to the hypersurfaces (see Figure 2.2) as

the 4–velocity of an Eulerian observer. The worldlines of Eulerian observers are

obviously orthogonal to the hypersurfaces Σ t. One may physically interpret

this as meaning that the spacelike hypersurface, Σ t, is locally the surface of

simultaneity of the Eulerian observers.
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Lapse Function

Recall that the normal vector to Σ t, n, which is timelike and future-directed

must be collinear to the vector ∇⃗t. Hence we will write

n := −N ∇⃗t, (2.4)

with

N :=

(
−1

∇⃗t · ∇⃗t

)1/2

. (2.5)

The minus sign here is chosen so that n is future-oriented. Furthermore, the

value of N ensures that n is a timelike unit vector with norm = −1. The scalar
field N is the lapse function, coined by Wheeler in 1964 [58]. By construction we

also have N > 0, i.e., the lapse function never vanishes for a ‘regular’ foliation,

or equivalently,

¯
n = −N dt. (2.6)

To properly understand the physical interpretation of the lapse function, let

us introduce the normal evolution vector:

m := Nn, (2.7)

i.e., it has the properties

m ·m = −N2 and ∇m t = mµ∇µ t = 1. (2.8)

A consequence of this last property is that the hypersurface Σ t+δt can be ob-

tained from the previous hypersurface, Σ t, by the ‘small displacement’ m δt.

In particular, one can show if p corresponds to a point with the coordinate

position, x, then

t(p′) = t(x+m δt) = t(p) + δt . (2.9)

The last equality shows p ′ ∈ Σ t+δt. Hence we say the vector m δt ‘carries Σ t

into Σ t+δt’. This notion is perfectly described by the Lie derivative1 as the Lie

derivative is associated directly with generating diffeomorphisms between man-

ifolds (in this case, hypersurfaces). We describe the action of the Lie derivative

of the curves and tangent vectors of Σt along m as ‘evolving the hypersur-

face along the normal direction’. This justifies the name “normal evolution

vector”.

Finally, to understand the role of the lapse function better, let us consider two

events on a worldline of some Eulerian observer. Let t be the time coordinate

of the event p ∈ Σ t and t + δt the ‘time’ of p ′ ∈ Σ t (refer to Figure 2.1 for

an illustration). We note that the proper time between these two events, δτ

1For an understanding of why the Lie derivative is natural for describing this scenario, the
reader may refer to Appendix B of ref [36].
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Figure 2.1: Diagram of a point in Σt and Σt+δt from [59]. The hypersurface
Σt evolves into Σt+δt by the Lie derivative along m. The point p′ ∈ Σt+δt

is determined by p ∈ Σ by the change in m over some time, δt i.e., by a
displacement m δt. The length of this displacement is the change in proper
time, δτ , for an Eulerian observer following the worldline connecting p and p′.

(measured by the Eulerian observer) is given by the metric length of the timelike

vector linking these two events:

δτ =
√
−g(m,m) δt

= N δt.
(2.10)

This justifies the name “lapse function” given to N . N relates the time coor-

dinate which labels the slices of the foliation to the physical time, τ measured

by an Eulerian observer. Without the notion of observers, the lapse function

is said to determine how far consecutive slices are from each other in the slice-

orthogonal time direction at each point.

Shift Vector

To define a shift vector, β, we require the notion of coordinates on our spacetime

manifold. We introduce the natural basis, ∂µ = (∂t,∂i) of the tangent place,

Tp (M) associated with the coordinates, xµ. The vector which we usually refer

to as the ‘time vector’, ∂t, has the same properties as m. In particular, the

tangent vectors on Tp (Σt) can evolve along either ∂t or m and the difference

is given by a shift in reference coordinates. The two vectors only coincide if

the spatial coordinates xi are such that the xi = constant lines are orthogonal

to Σ t. The difference between ∂t and m was also coined the shift vector by

Wheeler in 1964 [58] and is denoted by β:

β := ∂t −m = ∂t −Nn. (2.11)

For an illustration of this difference, one may refer to Figure 2.2. Note that

the shift vector is tangent to the hypersurface as n · β = 0. One can think of

the shift vector as generating spatial diffeomorphisms relating points between

successive slices [60].
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Figure 2.2: Illustration of the shift vector, β from [59]. The coordinates (xi) on
Σt define the ‘time vector’, ∂t by the xi = constant lines. The shift vector is
the difference between the time vector and m, therefore, the difference between
the spacetime coordinates xα, and the xi = constant lines.

3+1 Splitting of the Metric

The components of the metric tensor, g, onM with respect to the coordinates

xµ are defined as

g = gµν dx
µ ⊗ dxν . (2.12)

We can therefore compute each component by using

gµν = g (∂µ,∂ν). (2.13)

Using (2.11) we find

g00 = g(∂t,∂t) = ∂t · ∂t = −N2 + β · β. (2.14)

Similarly we have2

g0i = (m+ β) · ∂i = βi, (2.15)

since m · ∂i = 0 by definition. Finally, the spatial part of the metric must be

the induced metric3,

gij = hij. (2.16)

Collecting all of these components together we have4

gµν =

(
−N2 + βk β

k βj

βi hij

)
(2.17)

2Note that we have used only Latin indices for the scalar product of the shift vector as it
is tangent to the constant time hypersurfaces, meaning there is no time component

3All Latin indices (spatial indices) are raised and lowered by the induced metric on the
spatial slices.

4Interestingly, if we consider the evolution of the 3-metric, h, by taking the Lie derivative
(denotes byL) along m we find:

Lmhµν = −2NKµν .

This relationship means that the extrinsic curvature can also be thought of as a measure of
how the induced metric evolves in time.
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or,

ds2 = gµν dx
µ dxν = −N2 dt2 + hij (dx

i + β idt)(dxj + β jdt). (2.18)

The inverse metric in matrix form is5

g µν =
1

N2

(
−1 β j

β i N 2 hij − β i β j

)
. (2.19)

2.2 Painlevé–Gullstrand Slicing

In this chapter, we will discuss Cosmology in Painlevé–Gullstrand coordinates.

While one may see the relevant literature [42, 43, 44, 45, 46, 47, 49, 48, 50,

51, 52, 53, 54, 55], we will present a brief definition to provide a self-contained

experience.

2.2.1 Strong Painlevé–Gullstrand Coordinates

We shall label any coordinate system as being in strong Painlevé–Gullstrand

form if the spacetime line element can be written as

ds2 = −dt2 +
∣∣∣dx⃗− β⃗ dt

∣∣∣2. (2.20)

I.e., the metric can be written in the following form:

gµν =

[
−1 + βk β

k βi

βj δij

]
. (2.21)

Equivalently, for the inverse metric

gµν =

[
−1 −βi

−βj δij − βi βj

]
. (2.22)

From this abstract mathematical definition, it is not entirely obvious what

quality we are looking for in our spacetimes. It is in fact that the spatial slices

are flat, shown explicitly by the δij in the space-space component of the metric

(2.21).

2.2.2 Weak Painlevé–Gullstrand Coordinates

We shall say that a coordinate system is of weak Painlevé–Gullstrand form if

the spacetime line element can be written as

ds2 = −N2 dt2 +
∣∣∣dx⃗− β⃗ dt

∣∣∣2. (2.23)

5One may notice that while gij = hij , g
ij ̸= h ij in general. They are, however, equal in

the case of vanishing shift.
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I.e., the metric can be cast in the form

gµν =

[
−N2 + βkβk −βi

−βj δij

]
. (2.24)

Equivalently, for the inverse metric

gµν =

[
−1/N2 −βi/N2

−βj/N2 δij − βi βj/N2

]
. (2.25)

The difference here being that, now, the lapse is no longer restricted to

being unity. In other words, we recover (2.18) and (2.19) with hij restricted to

spatially flat slices only.

2.2.3 Conformal Painlevé–Gullstrand

Lastly, we shall say that a coordinate system is of conformal Painlevé–Gullstrand

form if the spacetime line element is conformal to (either strong or weak versions

of) the Painlevé–Gullstrand line element. Either

ds2 = Ω2

{
−dt2 +

∣∣∣dx⃗− β⃗ dt
∣∣∣2} , (2.26)

or

ds2 = Ω2

{
−N2 dt2 +

∣∣∣dx⃗− β⃗ dt
∣∣∣2} . (2.27)

With all the preliminaries out of the way, we will move to applying this infor-

mation to cosmological spacetimes.
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2.3 Spatially flat FLRW cosmology

Observational evidence points to the spatially flat k = 0 FLRW

cosmology as being an excellent zeroth-order approximation to the very large-

scale structure of spacetime — beyond the scale of statistical homogeneity [30,

31, 37, 32]. As discussed, however, there are growing tensions in cosmology

that are perhaps reaching a tipping point. Therefore, one ultimately might be

interested in investigating large non-perturbative deviations from FLRW cos-

mology [61, 62, 63, 64, 65, 66, 67, 68]. For now we shall focus on the idealised

case of exact FLRW spacetime. This is simply because we wish to develop an

interesting catalogue of spacetimes that communicate with the standard model

cosmologists first and foremost. Standard presentations of FLRW spacetime can

be found in many places, see for instance refs [30, 31, 32, 33, 34, 35, 36, 37, 39,

38, 40, 41]. Let us start by considering several useful coordinate systems.

2.3.1 Standard comoving coordinates

Spherical polar version

The most common presentation of the spatially flat k = 0 FLRW cosmology is

in terms of the explicit line element

ds2 = −dt2 + a(t)2{dr2 + r2dΩ2}, (2.28)

where dΩ2 = dθ2 + sin2 θ dϕ2. In these coordinates the t coordinate is the

physical time measured by a fiducial observer of normalized 4-velocity V a =

(1, 0, 0, 0), so that Va = (−1, 0, 0, 0). The purely radial ingoing and outgoing

light rays are described by the time-dependent opening angle∣∣∣∣drdt
∣∣∣∣ = 1

a(t)
. (2.29)

In these coordinates the t = (constant) spatial slices are 3-flat but expand-

ing

ds23 = a(t)2{dr2 + r2dΩ2}. (2.30)

For the spatially flat case k = 0 one has a choice as to whether the coordinate

r is dimensionless while the scale factor a has units of length, or vice versa.

For nonzero spatial curvature, if one sets k = ±1 then one is forced to take the

coordinate r to be dimensionless, while the scale factor a has units of length.

We shall make the same choice in the spatially flat k = 0 case.
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Cartesian version

One could equally well use comoving Cartesian coordinates for the spatial

slices

ds2 = −dt2 + a(t)2{dx2 + dy2 + dz2}. (2.31)

Or equivalently,

ds23 = a(t)2{dx2 + dy2 + dz2}. (2.32)

Doing so will not change the physics, just the presentation. For instance the

light cones are now described by the time-dependent opening angle∣∣∣∣dx⃗dt
∣∣∣∣ = 1

a(t)
. (2.33)

For the fiducial observers we still have the normalized 4-velocity V a = (1, 0, 0, 0),

so that Va = (−1, 0, 0, 0).

2.3.2 Conformal time coordinate

Define a conformal time coordinate by

η(t) =

∫ t

0

dt̄

a(t̄)
. (2.34)

Note that with our conventions the scale factor a has units of distance so that

the conformal time is dimensionless. One can formally invert this definition to

obtain t(η), and thereby implicitly define a(η) = a(t(η)).

Spherical polar version

Using conformal time we can re-cast the line element as

ds2 = a(η)2{−dη2 + dr2 + r2dΩ2}. (2.35)

This choice of coordinate system makes manifest the fact that k = 0 FLRW

spacetime is conformally flat (the Weyl tensor is identically zero).

This conformal time coordinate has the technical advantage that the radial

ingoing and outgoing light rays are now particularly simple∣∣∣∣drdη
∣∣∣∣ = 1. (2.36)

In contrast, the proper time (clock time) measured by a fiducial observer, now

with normalized 4-velocity V a = 1
a(η)

(1, 0, 0, 0), becomes more complicated.

Note that for the related co-vector one now has Va = a(η) (−1, 0, 0, 0). For the
proper time one has

τ(η) =

∫ η

0

a(η̄) dη̄. (2.37)

This is a common theme of coordinate freedom — coordinates can often be

chosen to make some formulae simpler, (in this case, the light cones), at the

cost of complicating other formulae (in this case, the proper time).
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Cartesian version

We could equally use comoving Cartesian coordinates for the spatial slices and

re-write (2.35) as

ds2 = a(η)2{−dη2 + dx2 + dy2 + dz2}. (2.38)

The light cones are now particularly simple∣∣∣∣dx⃗dη
∣∣∣∣ = 1. (2.39)

This simplified light cone structure makes the causal structure in these confor-

mal coordinates particularly easy to deal with. For the fiducial observers we

again have both V a = 1
a(η)

(1, 0, 0, 0) and Va = a(η) (−1, 0, 0, 0).

2.3.3 Painlevé–Gullstrand coordinates

We shall now introduce the cosmological Painlevé–Gullstrand coordinate sys-

tems. (For relevant background discussion see references [42, 43, 44, 45, 46, 47,

49, 48, 50, 51, 52, 53, 54, 55].)

Spherical polar version

Metric: Starting from the standard line element (2.28), let us now make the

time-dependent coordinate transformation r̄ = a(t) r. Then r̄ is a Schwarzschild

radial coordinate, based on the notion of area, since the area of a 2-sphere of

coordinate radius r̄ is simply 4π r̄2. (Consequently, these are sometimes called

“area coordinates”.)

Furthermore

dr̄ = a(t) dr + r ȧ(t) dt = a(t) dr +H(t) r̄ dt, (2.40)

where H(t) = ȧ(t)/a(t) is the Hubble parameter. Therefore,

a(t) dr = dr̄ −H(t) r̄ dt. (2.41)

Consequently in these coordinates the line element becomes

ds2 = −dt2 + {[dr̄ −H(t) r̄ dt]2 + r̄2dΩ2}. (2.42)

That is

ds2 = −(1−H(t)2 r̄2) dt2 − 2H(t) r̄ dr̄ dt+ {dr̄2 + r̄2dΩ2}. (2.43)
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Note that the line element only contains the scale factor implicitly, via

the Hubble parameter H(t). Furthermore, in these new coordinates the t =

(constant) spatial slices are again 3-flat, but are now non-expanding

ds23 = dr̄2 + r̄2dΩ2. (2.44)

Adopting ADM terminology, as shown in section 2.1 (or see for instance

refs [69, 70]), all the non-trivial aspects of the k = 0 FLRW spacetime geome-

try have now been pushed into the shift vector, βi = g0i = (−H(t) r̄, 0, 0). The

lapse function is still unity, one still has N2 = −gtt = 1. Coordinate systems

of this type are called Painlevé–Gullstrand coordinates [42, 43, 44, 45, 46, 47].

Very many, (but certainly not all), physically interesting spacetimes can be put

into this Painlevé–Gullstrand form. For example: all of the Schwarzschild space-

time [49, 50], most of the Reissner–Nordström spacetime (the region r > Q2

2m
),

all of the Lense–Thirring spacetime [52, 53, 54, 55], all spherically symmetric

spacetimes (at least locally) can be recast in this form;6 but not the Kerr or

Kerr–Newman spacetimes [71, 72].

In these Painlevé–Gullstrand coordinates there is manifestly an apparent

horizon, (where gtt = 0), at the Hubble radius r̄Hubble = 1/H(t). Addi-

tionally, the fiducial Eulerian (geodesic) observers have covariant 4-velocity

Va = (−1, 0, 0, 0), which now corresponds to the contravariant 4-velocity V a =

(1, H(t) r̄, 0, 0). So a typical galaxy (ignoring peculiar velocities) is certainly

“moving” in this coordinate system. While “space” is now non-expanding, the

Hubble flow is explicit, with V r = H(t) r̄.

The radial ingoing and outgoing light rays are now described by∣∣∣∣dr̄dt −H(t) r̄

∣∣∣∣ = 1. (2.45)

That is
dr̄

dt
= H(t) r̄ ± 1, (2.46)

whereas a typical galaxy (vanishing peculiar velocity) is moving with 3-velocity

dr̄

dt
= H(t) r̄, (2.47)

which safely lies inside the light cone.

Tetrad: A suitable co-tetrad is easily read off from the line element:

et̂a = (1, 0, 0, 0); er̂a = (−Hr̄, 1, 0, 0); eθ̂a = (0, 0, r̄, 0); eϕ̂a = (0, 0, 0, r̄ sin θ).

(2.48)

6In spherical symmetry the only obstructions to the global existence of Painlevé–
Gullstrand coordinates are the possible existence of wormhole throats, (since then the area
radial coordinate cannot be monotone), and/or negative Misner–Sharp quasi-local mass [46],
(since then the shift vector is forced to become imaginary).
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The corresponding tetrad is then given by the timelike leg

et̂
a = V a = (1, H(t) r̄, 0, 0); (2.49)

and the particularly simple spatial triad

er̂
a = (0, 1, 0, 0); eθ̂

a =

(
0, 0,

1

r̄
, 0

)
; eϕ̂

a =

(
0, 0, 0,

1

r̄ sin θ

)
. (2.50)

It is easy to check that with ηm̂n̂ = diag{−1, 1, 1, 1} one has (as expected):

gab = ηm̂n̂ em̂a en̂b; ηm̂n̂ = gab em̂
a en̂

b. (2.51)

A brief computation yields the orthonormal components of the Riemann ten-

sor

Rt̂r̂t̂r̂ = Rt̂θ̂t̂θ̂ = Rt̂ϕ̂t̂ϕ̂ = −H2 − Ḣ = − ä

a
; Rr̂θ̂r̂θ̂ = Rr̂ϕ̂r̂ϕ̂ = Rθ̂ϕ̂θ̂ϕ̂ = H2.

(2.52)

The Weyl tensor is (as expected) identically zero, while for the Einstein and

Ricci tensors one has

Gt̂t̂ = 3H2; Gr̂r̂ = Gθ̂θ̂ = Gϕ̂ϕ̂ = −3H2 − 2Ḣ; (2.53)

and

Rt̂t̂ = −3H2 − 3Ḣ = −3 ä

a
; Rr̂r̂ = Rθ̂θ̂ = Rϕ̂ϕ̂ = 3H2 + Ḣ. (2.54)

The Ricci scalar is R = 12H2 + 6Ḣ.
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These orthonormal components (that is, components in the basis defined

by the orthonormal tetrad) are identical (as they should be) to the standard

orthonormal components defined in comoving coordinates. The cosmological

Friedmann equations will be unaffected. The fiducial observers, with 4-velocity

V a = (1, H(t) r̄, 0, 0) are geodesic.

Cartesian version

One could also construct a Cartesian version of Painlevé–Gullstrand coordi-

nates.

Metric: Define

x̄ = r̄ sin θ cosϕ; ȳ = r̄ sin θ sinϕ; z̄ = r̄ cos θ. (2.55)

Then r̄ =
√

x̄2 + ȳ2 + z̄2, and our spherical polar Painlevé–Gullstrand version

of k = 0 FLRW spacetime,

ds2 = −(1−H(t)2 r̄2)dt2 − 2H(t) r̄ dr̄ dt+ {dr̄2 + r̄2dΩ2}, (2.56)

now becomes

ds2 = −(1−H(t)2 {x̄2 + ȳ2 + z̄2})dt2 − 2H(t) {x̄ dx̄+ ȳ dȳ + z̄ dz̄} dt
+ {dx̄2 + dȳ2 + dz̄2}.

(2.57)

That is

ds2 = −dt2 +
{
[dx̄−H(t) x̄ dt]2 + [dȳ −H(t) ȳ dt]2 + [dz̄ −H(t) z̄ dt]2

}
.

(2.58)

In 3-vector notation the line element is

ds2 = −dt2 +
[
d⃗̄x−H(t) ⃗̄x dt

]2
. (2.59)

The light cones are now simply∣∣∣∣d⃗̄xdt −H(t) ⃗̄x

∣∣∣∣ = 1. (2.60)

That is
d⃗̄x

dt
= H(t) ⃗̄x+ n̂, (2.61)

where n̂ is an arbitrary unit vector in 3-space.

Since a typical galaxy (zero peculiar velocity) is moving with 3-velocity

d⃗̄x

dt
= H(t) ⃗̄x, (2.62)

the Hubble flow lies safely inside the light cones.
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Tetrad: A suitable co-tetrad is easily read off from the line element:

et̂a = (1, 0, 0, 0) ; ex̂a = (−Hx̄, 1, 0, 0) ;

eŷa = (−Hȳ, 0, 1, 0) ; eẑa = (−Hz̄, 0, 0, 1)
(2.63)

The corresponding tetrad is thus:

et̂
a = (1, Hx̄,Hȳ,Hz̄) ex̂

a = (0, 1, 0, 0) ;

eŷ
a = (0, 0, 1, 0) ; eẑ

a = (0, 0, 0, 1) .
(2.64)

Note how simple the spatial triad now is: eî
j = δi

j. A brief computation yields

the orthonormal components of the Riemann tensor

Rt̂̂it̂ĵ = −{H
2 + Ḣ} δij = −

ä

a
δij; Rîĵk̂l̂ = H2{δikδjl − δilδjk}. (2.65)

The Weyl tensor is (as expected) still identically zero, while for the Einstein

and Ricci tensors one has

Gt̂t̂ = 3H2; Gîĵ = −{3H
2 + 2Ḣ}δij; (2.66)

and

Rt̂t̂ = −3Ḣ − 3H2 = −3 ä

a
; Rîĵ = {Ḣ + 3H2}δij. (2.67)

The Ricci scalar is still R = 6Ḣ + 12H2.

These orthonormal components (that is, components in the basis defined

by the orthonormal tetrad) are identical (as they should be) to the standard

orthonormal components defined in the usual comoving coordinates. Conse-

quently the cosmological Friedmann equations will be unaffected. The fiducial

observers, with 4-velocity V a = (1, H(t) x̄, H(t) ȳ, H(t) z̄) are geodesic.

2.3.4 Summary

Cosmological Painlevé–Gullstrand coordinates, (appropriate to k = 0 FLRW

spacetime), have some very nice features. Three-space is flat and non-expanding

— but the price one pays for this is that the light cones are “tipped over” and

that the galaxies are “moving” with respect to “space”.

The Hubble flow is then very explicit

d⃗̄x

dt
= H(t) ⃗̄x. (2.68)

The light cones are characterized by

d⃗̄x

dt
= H(t) ⃗̄x+ n̂, |n̂| = 1. (2.69)

There is as always a “conservation of difficulty” inherent in any coordinate

choice; since the underling physics cannot change.
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2.4 Symmetries of spatially flat FLRW:

Explicit, partial, and hidden

The FLRW spacetime possesses a number of explicit symmetries (associated

with Killing vectors) and hidden symmetries (associated with Killing tensors

and Killing–Yano 2-forms). These symmetries are often more obvious in appro-

priately chosen coordinates. We present several examples below.

2.4.1 Killing vectors

The explicit symmetries of FLRW spacetime are associated with the rotational

and translational Killing vectors.

Spherical symmetry

The 2-sphere S2, with metric ds2 = dθ2 + sin2 θ dϕ2, can be shown to have an

over-complete set of linearly dependent (rotational) Killing vectors. They can

most easily be chosen to be (see for instance [36, page 139]):

R1 = − sinϕ ∂θ −
cosϕ

tan θ
∂ϕ; R2 = cosϕ ∂θ −

sinϕ

tan θ
∂ϕ; R3 = ∂ϕ; (2.70)

and are subject to the constraint

(cosϕ tan θ)R1 + (sinϕ tan θ)R2 +R3 = 0. (2.71)

It is easy to check that these three vectors all satisfy Killing’s equation, that is

[R{1,2,3}](a;b) = 0.

Note that R3 is particularly simple; and has the obvious physical interpre-

tation of corresponding to a translation in the azimuthal ϕ coordinate; a ro-

tation around the poles located at θ ∈ {0, π}. In counterpoint R1 and R2

at first look a little more complicated, but there is no substantial difference;

they correspond to rotations around the points (θ = π/2;ϕ ∈ {0, π}) and

(θ = π/2;ϕ ∈ {π/2, 3π/2}) respectively. (These are the points where the Killing

vectors R1 and R2 vanish.) These Killing vectors defined on S2 can then be

bootstrapped without alteration into the generic spherically symmetric 3-space:

ds2 = grr(r) dr
2 + r2(dθ2 + sin2 θ dϕ2).

Specifically, flat 3-space in Cartesian coordinates, with line element given

by ds2 = dx2 + dy2 + dz2, is also spherically symmetric and exhibits an over-

complete set of linearly dependent (rotational) Killing vectors:

R1 = y ∂z − z ∂y; R2 = z ∂x − x ∂z; R3 = x ∂y − y ∂x; (2.72)

subject to the constraint

xR1 + y R2 + z R3 = 0. (2.73)
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This presentation makes manifest the intimate relationship between the (rota-

tional) Killing vectors and the angular momentum operators of quantum me-

chanics. (For some specific purposes we see that Cartesian coordinates are

clearly superior to spherical polar coordinates.) These Killing vectors can then

be bootstrapped into the (3+1) dimensional FLRW spacetime; in any of the

various coordinate systems discussed above.

Spatial translation symmetry

The FLRW spacetimes also possess 3 linearly independent spatial translation

Killing vectors. For the k = 0 FLRW spacetime in standard comoving Cartesian

coordinates, where one has ds2 = −dt2 + a(t)2{dx2 + dy2 + dx2}, these spatial

translation Killing vectors are simply

T1 = ∂x; T2 = ∂y; T3 = ∂z. (2.74)

However, since x̄i = a(t)xi, and we want to find the translation Killing vectors

for the Painlevé–Gullstrand form of FLRW

ds2 = −dt2 +
{
[dx̄−H(t) x̄ dt]2 + [dȳ −H(t) ȳ dt]2 + [dz̄ −H(t) z̄ dt]2

}
,

(2.75)

we observe that

∂

∂xi
=

∂x̄a

∂xi

∂

∂x̄a
=

∂x̄j

∂xi

∂

∂x̄j
+

∂t

∂xi

∣∣∣∣
x̄

∂

∂t
= a(t)

∂

∂x̄i
. (2.76)

So in the Painlevé–Gullstrand Cartesian coordinate system the space translation

Killing vectors are

T1 = a(t) ∂x̄; T2 = a(t) ∂ȳ; T3 = a(t) ∂z̄. (2.77)

If one wishes instead to use comoving spherical polar coordinates then the

spatial translation Killing vectors appear to be somewhat less intuitive

T1 = ∂x =
∂xa

∂x

∂

∂xa
= sin θ cosϕ ∂r +

cos θ cosϕ

r
∂θ −

sinϕ

r sin θ
∂ϕ ; (2.78)

T2 = ∂y =
∂xa

∂y

∂

∂xa
= sin θ sinϕ ∂r +

cos θ sinϕ

r
∂θ +

cosϕ

r sin θ
∂ϕ ; (2.79)

T3 = ∂z =
∂xa

∂z

∂

∂xa
= cos θ ∂r −

sin θ

r
∂θ . (2.80)

That is: while one can certainly use spherical polar coordinates to describe

the spatial translations, after all, it’s just a coordinate change. It is, therefore,

unsurprising that the relevant Killing vectors then (superficially) appear to be

somewhat more complicated.
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Similarly if one wishes to use Painlevé–Gullstrand spherical polar coordinates

then the spatial translation Killing vectors are

T1 = a(t) ∂x̄ = a(t)

{
sin θ cosϕ ∂r̄ +

cos θ cosϕ

r̄
∂θ −

sinϕ

r̄ sin θ
∂ϕ

}
;(2.81)

T2 = a(t) ∂ȳ = a(t)

{
sin θ sinϕ ∂r̄ +

cos θ sinϕ

r̄
∂θ +

cosϕ

r̄ sin θ
∂ϕ

}
; (2.82)

T3 = a(t) ∂z̄ = a(t)

{
cos θ ∂r̄ −

sin θ

r̄
∂θ

}
. (2.83)

In short, for some purposes the use of spherical polar coordinates is less useful

than one might hope.

Time translation not-quite symmetry

Since the FLRW spacetime is explicitly time dependent there is no Killing

vector for time translations — however, one does have the next best thing — a

conformal Killing vector for time translations. Specifically the timelike co-vector

T ♭ = −a(t) dt, that is Ta = −(a(t), 0, 0, 0), which in comoving coordinates has

vector components T a = a(t) (1, 0, 0, 0), and in Painlevé–Gullstrand coordinates

has vector components T a = a(t)(1, Hx̄,Hȳ,Hz̄), is a conformal Killing vector

which satisfies7

LT g = ȧ(t) g . (2.84)

Explicitly

T(a;b) = ȧ(t) gab . (2.85)

This is enough to guarantee a conservation law for affinely parameterized null

geodesics

a(t)
dt

dλ
= (constant). (2.86)

The existence of this timelike conformal Killing vector is ultimately the rea-

son why the locally measured energy of freely propagating photons is propor-

tional to the inverse of the scale factor

E(t) a(t) = (constant). (2.87)

Equivalently, this timelike conformal Killing vector guarantees that the locally

measured wavelength of freely propagating photons is proportional to the scale

factor

λ(t) ∝ a(t). (2.88)

The existence of this timelike conformal Killing vector in FLRW spacetimes is

often not emphasized or explained in pedagogical presentations, but is central

to understanding photon propagation over cosmological distances.

7recall that L is the Lie derivative.
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2.4.2 Killing tensors

In addition to the obvious Killing vectors (corresponding to rotations and spatial

translations), and the trivial Killing tensors that one can build out of the metric

and the Killing vectors, the k = 0 FLRW geometry possesses two (non-trivial)

Killing tensors. These satisfy the 3-index version of Killing’s equation K(ab;c) =

0.

Spherical symmetry

Due to spherical symmetry there is a non-trivial Killing tensor (see for in-

stance [53]) which in comoving spherical polar coordinates takes the form

(KΩ)ab dx
a⊗dxb = a(t)4r4{dθ2+sin2 θ dϕ2} = (a(t)2r2 dθ)2+(a(t)2r2 sin θ dϕ)2.

(2.89)

In components

(KΩ)ab = a(t)2r2{gab +∇at∇bt− a(t)2∇ar∇br}. (2.90)

Using the Painlevé–Gullstrand r̄ coordinate, where r̄ = a(t)r, one simply

has

(KΩ)ab = r̄2{gab +∇at∇bt− (∇ar̄ −H(t) r̄∇at) (∇br̄ −H(t) r̄∇bt)}. (2.91)

Then in Painlevé–Gullstrand, spherical polar coordinates a brief calculation

yields

(KΩ)ab dx
a ⊗ dxb = r̄4{dθ2 + sin2 θ dϕ2} = (r̄2 dθ)2 + (r̄2 sin θ dϕ)2. (2.92)

Furthermore in Painlevé–Gullstrand Cartesian coordinates one can write

(KΩ)ab =


0 0 0 0
0 ȳ2 + z̄2 −x̄ȳ −x̄z̄
0 −x̄ȳ x̄2 + z̄2 −ȳz̄
0 −x̄z̄ −ȳz̄ x̄2 + ȳ2

 , (2.93)

that is

(KΩ)ab dx
a⊗dxb = (x̄2+ ȳ2+ z̄2)(dx̄2+dȳ2+dz̄2)−(x̄ dx̄+ ȳ dȳ+ z̄ dz̄)2. (2.94)

All four of these different coordinate representations of the angular Killing ten-

sor KΩ carry the same mathematical and physical information. It is easy to

check that in any of these situations KΩ satisfies the 3-index version of Killing’s

equation [KΩ](ab;c) = 0.
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Spatial translation symmetry

There is also a non-trivial Killing tensor associated with uniformity of the spatial

slices Σ. See for instance [36, page 344]. In comoving coordinates this takes the

simple form

(KΣ)ab dx
a ⊗ dxb = a(t)4{dr2 + r2(dθ2 + sin2 θ dϕ2} = a(t)4{dx2 + dy2 + dz2}.

(2.95)

This can also be written as

(KΣ)ab = a(t)2(gab +∇at∇bt). (2.96)

Equivalently

(KΣ)ab dx
a ⊗ dxb = a(t)2

{
ds2 + dt2

}
. (2.97)

Phrased in this way it is clear what happens in Painlevé–Gullstrand coordinates.

First, in Painlevé–Gullstrand spherical polar coordinates, from equation (2.42)

one has

(KΣ)ab dx
a ⊗ dxb = a(t)2

{
(dr̄ −H(t)r̄dt)2 + r̄2(dθ2 + sin2 θ dϕ2)

}
. (2.98)

In contrast, in Painlevé–Gullstrand Cartesian coordinates, from equation (2.58)

one has

(KΣ)ab dx
a ⊗ dxb = a(t)2

{
[dx̄−H(t) x̄ dt]2 + [dȳ −H(t) ȳ dt]2

+ [dz̄ −H(t) z̄ dt]2
}
.

(2.99)

It is easy to check that in any of these situations KΣ satisfies the 3-index version

of Killing’s equation [KΩ](ab;c) = 0.

2.4.3 Killing–Yano tensor

A Killing–Yano 2-form Yab dx
a∧dxb satisfies the differential equation Ya(b;c) = 0.

Thus, if we define Kab = Yae g
ef Yfb, then (with indices between vertical bars

not being included in the symmetrization process) we have

K(ab;c) = Y(a|e|;c g
ef Y|f |b) + Y(a|e g

ef Yf |b;c) = 0 + 0 = 0. (2.100)

That is, the existence of a Killing–Yano 2-form implies the existence of a 2-index

Killing tensor.

Specifically, the existence of the 2-index Killing tensor (KΩ)ab dx
a⊗dxb that

is associated with spherical symmetry is related to the existence of a Killing–

Yano 2-form (YΩ)ab dx
a ∧ dxb. In comoving spherical polar coordinates

(YΩ)ab dx
a ∧ dxb = a(t)3r3 sin θ dθ ∧ dϕ =

(a(t)2r2 dθ) ∧ (a(t)2r2 sin θ dϕ)

a(t)r
.

(2.101)
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In our Painlevé–Gullstrand spherical polar coordinates one simply has

(YΩ)ab dx
a ∧ dxb = r̄3 sin θ dθ ∧ dϕ =

(r̄2 dθ) ∧ (r̄2 sin θ dϕ)

r̄
. (2.102)

The Killing–Yano tensor is colloquially referred to as the square root of the

Killing tensor: Kad = Yab g
bc Ycd. Because the Killing–Yano tensor is a 2-form,

represented by an anti-symmetric matrix, if it is nonzero it can only have rank 2

or rank 4; which then forces the associated Killing tensor to either have rank 2 or

rank 4. Since the Killing tensor associated with uniformity of the spatial slices

is manifestly rank 3, that particular Killing tensor will not have an associated

Killing–Yano 2-form.

2.4.4 Summary

FLRW spacetimes possess significant symmetry structure. The spatial and ro-

tational Killing vectors are the most obvious symmetries, but they are far from

the only symmetries. The timelike conformal Killing vector can be viewed as

an approximate symmetry, one that still leads to a conservation law for null

geodesics.

More subtle are the “hidden” symmetries encoded in the non-trivial Killing

tensors and the Killing–Yano tensor. The specific choice of coordinate system

can make some of these symmetries manifest, at the cost of making other sym-

metries less obvious.

2.5 Cosmological horizons

Cosmological horizons can be quite tricky to properly define and interpret [73].

While event horizons are mathematically ‘clean’ concepts, and their use under-

lies many of the singularity theorems, there is a precise technical sense in which

any physical observer (represented by a finite-size finite-duration laboratory)

cannot ever, even in principle, detect an event horizon [74]. The point is that

event horizons are teleological, and defining them requires one to back-track

from the trump of doom8. (Quasi-local horizons are much better behaved in

this regard; quasi-local horizons can be detected using finite-size finite-duration

laboratories.) In the words of Stephen Hawking [75] (applied in the context of

black hole physics):

“The absence of event horizons means that there are no black holes

— in the sense of regimes from which light can’t escape to infinity.

There are however apparent horizons which persist for a period of

time.”

Similar, related but distinct, issues arise in cosmology. One must be very careful

to distinguish quasi-local horizons from causal horizons.

8Of course, this is a much more grand trump of doom than just the end of days on Earth!
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2.5.1 Apparent horizon (Hubble sphere)

Consider the 2-sphere located at r̄(t), with area

S(t) = 4π r̄(t)2, (2.103)

and ask how this area evolves as the 2-sphere expands or contracts at the speed

of light

dr̄

dt
= H(t) r̄ ± 1. (2.104)

Then for outgoing light rays

Ṡ+(t) = 8πr̄

(
dr̄

dt

)
+

= 8πr̄ (H(t) r̄ + 1) > 0, (2.105)

while for ingoing light rays

Ṡ−(t) = 8πr̄

(
dr̄

dt

)
−
= 8πr̄ (H(t) r̄ − 1) . (2.106)

Note that Ṡ−(t) changes sign at r̄(t) = H(t)−1. That is, an apparent horizon is

present at the Hubble sphere r̄Hubble(t) = H(t)−1 (sometimes called the “speed

of light sphere”).

One could also work in comoving coordinates where

S(t) = a(t)2 4π r(t)2, (2.107)

and

Ṡ±(t) = 8π {a(t)ȧ(t)r(t)2 + a(t)2r(t)ṙ±(t)} = S(t)

{
H ± 1

a(t)r(t)

}
. (2.108)

There is again an apparent horizon when Ṡ− = 0, at the same physical location

where

r̄Hubble(t) = a(t) rHubble(t) = H(t)−1. (2.109)

This apparent horizon is emphatically not a causal horizon; there is no ob-

struction to crossing an apparent horizon.9 If one wishes to work in SI units,

reinstating the speed of light, then

r̄Hubble(t) = a(t) rHubble(t) =
c

H(t)
. (2.110)

9Despite claims sometimes made in the literature, the Hubble radius is not “the distance
light travels since the Big Bang”.
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2.5.2 Particle horizon (causal horizon)

In contrast the particle horizon is a causal horizon determined by how far an

outward moving light ray could move from its source (or equivalently how far

an incoming light ray could move towards its reception point). For definiteness

let us assume the light ray is emitted at time t = 0 at location r̄ = 0, then one

is interested in solving the differential equation

dr̄

dt
= H(t) r̄ + 1. (2.111)

Equivalently
dr̄

dt
− ȧ

a
r̄ = a

d(r̄/a)

dt
= 1, (2.112)

where

d(r̄/a) =
dt

a
, (2.113)

This has the obvious solution (t∗ being the time of the Big Bang when a(t∗) =

0)
r̄(t)

a(t)
= r(t) =

∫ t

t∗

dt

a(t)
= η(t). (2.114)

Equivalently

r̄particle(t) = a(t) rparticle(t) = a(t) η(t). (2.115)

This particle horizon is by construction a causal horizon. Note that the par-

ticle horizon has a very simple representation in terms of the conformal time

coordinate.

2.5.3 Summary

The apparent horizon (Hubble sphere) and particle horizon are distinct con-

cepts, and can occur at radically different locations:

r̄Hubble(t) = a(t) rHubble(t) =
c

H(t)
, (2.116)

versus

r̄particle(t) = a(t) rparticle(t) = a(t)

∫ t

t∗

dt

a(t)
= a(t) η(t). (2.117)

In particular, since the Hubble sphere is not a causal horizon, one should not

attempt to apply “causality” arguments to the Hubble sphere.
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What is always true based on dimensional analysis is that

r̄particle(t) = r̄Hubble(t)× (dimensionless number). (2.118)

However, there is absolutely no reason for this dimensionless number to be of

order unity. In fact in the presence of cosmological inflation, whether it be

exponential inflation, a(t) ∼ exp(Hinflation t), or power law inflation, a(t) ∼ tn

with n ∈ (0, 1], the integral η(t) =
∫ t

t∗
dt
a(t)

formally diverges, pushing the Big

Bang out to negative infinity in conformal time, η∗ → −∞, while pushing the

particle horizon out to positive infinity, r̄particle → +∞. Even if cosmological

inflation switches on and off at some finite time, the particle horizon can be

made arbitrarily large compared to the Hubble radius.

2.6 de Sitter spacetime

The de Sitter spacetime is most typically presented in static coordinates:

ds2 = −
(
1−H2r̄2

)
dt̄2 +

dr̄2

1−H2r̄2
+ r̄2dΩ2. (2.119)

For this line element the Einstein tensor is Gab = −(3H2)gab, corresponding to

a pure cosmological constant. Using the coordinate transformation

t̄ = t+

∫
Hr̄

1−H2r̄2
dr̄ = t+

ln(1−H2r̄2)

2H
, (2.120)

we can cast de Sitter spacetime into Painlevé–Gullstrand form

ds2 = −dt2 + [dr̄ −Hr̄ dt]2 + r̄2dΩ2. (2.121)

Finally, to make it abundantly clear that de Sitter spacetime is just a special case

of FLRW spacetime, consider the specific coordinate transformation r̄ = r eHt,

so that dr̄ = eHt(dr + Hrdt), and use this to recast the Painlevé–Gullstrand

form of the de Sitter spacetime in the comoving form:

ds2 = −dt2 + e2Ht
{
dr2 + r2dΩ2

}
. (2.122)

Let us now generalize this discussion, first to the Kottler (Schwarzschild-de

Sitter) spacetime, (which already presents a few subtleties), and then to the

more complex and subtle McVittie spacetime.

2.7 Kottler spacetime

2.7.1 Standard form of Kottler

The Kottler (Schwarzschild–de Sitter) spacetime is most typically presented in

static coordinates [76]:

ds2 = −
(
1− 2m

r̄
−H2r̄2

)
dt̄2 +

dr̄2

1− 2m
r̄
−H2r̄2

+ r̄2dΩ2. (2.123)
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For this line element the Einstein tensor is Gab = −(3H2)gab, corresponding

to pure cosmological constant, plus a central “point mass”10. The fiducial ob-

servers are in this situation best taken to be integral curves of the timelike

Killing vector, and so are described by the non-geodesic 4-velocity field

V a =
1√

1− 2m/r̄ −H2r̄2
(1, 0, 0, 0) ; Va =

√
1− 2m/r̄ −H2r̄2 (−1, 0, 0, 0).

(2.124)

Here the 4-acceleration for this set of fiducial observers is

Aa = V b∇bV
a =

(
0,

m

r̄2
−H2r̄ , 0, 0

)
. (2.125)

2.7.2 Five variant forms of Kottler

Under suitable coordinate changes, we first present three alternative Painlevé–

Gullstrand-like formulations of the Kottler spacetime:

• Using the coordinate transformation

t̄ = t+

∫
Hr̄√

1− 2m/r̄(1− 2m/r̄ +H2r̄2)
dr̄ , (2.126)

we cast the metric into the form

ds2 = −
(
1− 2m

r̄

)
dt2 +

[dr̄ −Hr̄
√

1− 2m/r̄ dt]2

1− 2m
r̄

+ r̄2dΩ2, (2.127)

which we can also write as

ds2 = −
(
1− 2m

r̄

)
dt2 +

[
dr̄√

1− 2m/r̄
−Hr̄ dt

]2
+ r̄2dΩ2. (2.128)

This form of the metric neatly disentangles the local physics, (depending

only on the point mass m), from the cosmological physics (depending

only on the Hubble parameter H). Specifically, as m→ 0 this becomes de

Sitter space in Painlevé–Gullstrand form (2.121), whereas if H → 0 this

becomes Schwarzschild in standard form.

The fiducial observers (4-orthogonal to the spatial slices, so V ♭ ∝ dt) are

in this situation described by the non-geodesic 4-velocity field

V a =

(
1√

1− 2m/r̄
,Hr, 0, 0

)
; Va =

√
1− 2m/r̄ (−1, 0, 0, 0).

(2.129)

Here the 4-acceleration is

Aa = V b∇bV
a =

(
0,

m

r̄2
, 0, 0

)
. (2.130)

10While most physicists would likely call this mass a point mass, the more mathematical
relativists would likely view the mass concentrated in the singularities on the boundary of
the spacetime.
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• Using the coordinate transformation

t̄ = t+

∫ √
2m/r̄√

1−H2r̄2 (1− 2m/r̄ +H2r̄2)
dr̄ , (2.131)

we have another partial Painlevé–Gullstrand form

ds2 = −
(
1−H2r̄2

)
dt2+

[dr̄ −
√

2m/r̄
√
1−H2r̄2 dt]2

1−H2r̄2
+ r̄2dΩ2, (2.132)

which we can also write as

ds2 = −
(
1−H2r̄2

)
dt2 +

[
dr̄√

1−H2r̄2
−
√

2m/r̄ dt

]2
+ r̄2dΩ2, (2.133)

As m→ 0 this becomes de Sitter in static form (2.119), whereas if H → 0

this becomes Schwarzschild in Painlevé–Gullstrand form.

The fiducial observers (4-orthogonal to the spatial slices, so V ♭ ∝ dt) are

in this situation described by the non-geodesic 4-velocity field

V a =

(
1√

1−H2r̄2
,

√
2m

r̄
, 0, 0

)
; Va =

√
1−H2r̄2 (−1, 0, 0, 0).

(2.134)

Here the 4-acceleration is

Aa = V b∇bV
a =

(
0, H2r̄ , 0, 0

)
. (2.135)

• Using the coordinate transformation

t̄ = t+

∫ √
2m/r̄ +H2r̄2

1− 2m/r̄ −H2r̄2
dr̄ , (2.136)

we have the full Painlevé–Gullstrand form

ds2 = −dt2 +
[
dr̄ −

√
2m/r̄ +H2r̄2 dt

]2
+ r̄2dΩ2. (2.137)

As m → 0 this becomes de Sitter in Painlevé–Gullstrand form (2.121),

whereas if H → 0 this becomes Schwarzschild in Painlevé–Gullstrand

form. The fiducial observers (4-orthogonal to the spatial slices, so V ♭ ∝
dt) are in this situation described by the geodesic 4-velocity field

V a =
(
1,
√

2m/r̄ +H2r̄2, 0, 0
)
; Va = (−1, 0, 0, 0). (2.138)

It is easy to check that the 4-acceleration is zero: Aa = V b∇bV
a = 0.

These four line elements (2.123)-(2.128)-(2.133)-(2.137) are all equally valid

slicings of the Kottler spacetime; in all cases the Einstein tensor is Gab =

−(3H2)gab, corresponding to pure cosmological constant (in the presence of a
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central point mass). Depending on one’s choice of slicing, one could make differ-

ent choices of fiducial observer, focussing on different aspects of the physics.

Finally to make it abundantly clear that Kottler spacetime is just a special

case of Schwarzschild embedded in a specific FLRW (de Sitter) spacetime, con-

sider the coordinate transformation r̄ = reHt, so that dr̄ = eHt(dr + Hrdt),

and use this to recast the Painlevé–Gullstrand form of the Kottler spacetime

(2.137) into the not entirely obvious comoving form:

ds2 = −dt2 + e2Ht

{[
dr +

(
Hr −

√
2me−3Ht/r +H2r2

)
dt
]2

+ r2dΩ2

}
.

(2.139)

Expanding, we have

ds2 = −
{
1− e2Ht

(
Hr −

√
2me−3Ht/r +H2r2

)2}
dt2

−2
(
Hr −

√
2me−3Ht/r +H2r2

)
drdt+ e2Ht

{
dr2 + r2dΩ2

}
. (2.140)

It is relatively easy to explicitly check that the Einstein tensor is still Gab =

−3H2gab.

In this form the connection between Kottler spacetime and spatially flat

k = 0 FLRW is manifest since the limit m→ 0 simply yields

ds2 = −dt2 + e2Ht
{
dr2 + r2dΩ2

}
. (2.141)

The fiducial observers for (2.139) or (2.140) are described by the geodesic

4-velocity field

V a =
(
1,−

[
Hr −

√
2me−3Ht/r +H2r2

]
, 0, 0

)
; Va = (−1, 0, 0, 0).

(2.142)

It is relatively easy to check that the 4-acceleration is zero: Aa = V b∇bV
a =

0.

In the same manner we can convert the (2.128) form of the Kottler spacetime

into a distinct not entirely obvious comoving form

ds2 = −
(
1− 2me−Ht

r

)
dt̄2 + e2Ht


(
dr +Hr

[
1−

√
1− 2me−Ht/r

]
dt
)2

1− 2me−Ht

r


+ e2Ht

{
r2dΩ2

}
.

(2.143)

It is relatively easy to explicitly check that the Einstein tensor is still Gab =

−3H2gab. Furthermore, as m→ 0 one recovers (2.122) the comoving slicing of

the de Sitter spacetime.
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The fiducial observers 4-orthogonal to the spatial slices are in this situation

described by the non-geodesic 4-velocity field

V a =

(
1, Hr

[
1−

√
1− 2me−Ht/r

]
, 0, 0

)
√

1− 2me−Ht/r
;

Va =
√

1− 2me−Ht/r (−1, 0, 0, 0) .

(2.144)

Here the 4-acceleration is

Aa = V b∇bV
a =

(
0,

me−3Ht

r̄2
, 0, 0

)
. (2.145)

2.7.3 Summary

Whereas the Kottler (Schwarzschild–de Sitter) spacetime is most commonly

presented in static coordinates (2.123), it can with a little work be converted into

Painlevé–Gullstrand form (2.128)-(2.133)-(2.137), and therefore into comoving

coordinates — as per (2.139)–(2.140) and (2.143) above. While finding the

required coordinate transformations is relatively straightforward, the process is

not entirely obvious.

2.8 McVittie spacetime

The McVittie spacetime [77, 78, 79, 80] is a perfect fluid spacetime that is as

close as one can get to modelling a Schwarzschild black hole embedded in an

arbitrary FLRW spacetime.

2.8.1 Traditional form of McVittie spactime

It is traditional to work in isotropic coordinates, where for k = 0 the McVittie

line element is given by the equivalent of [77]:

ds2 = −

(
1− m

2a(t)r̃

1 + m
2a(t)r̃

)2

dt2 +

(
1 +

m

2a(t)r̃

)4

a(t)2{dr̃2 + r̃2dΩ2}. (2.146)

• For a(t) = 1 this is Schwarzschild spacetime in isotropic coordinates.

• For m = 0 this is a generic spatially flat k = 0 FLRW spacetime.

• While not entirely obvious, for a(t) = eHt this is indeed Kottler (Schwarzschild-

de Sitter) spacetime in disguise.

In these coordinates the fiducial observer (4-orthogonal to the spatial slices) has

4-velocity

V a =

(
1 + m

2a(t)r̃

1− m
2a(t)r̃

)
(1, 0, 0, 0); (2.147)
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and the unit radial vector is

Ra =

(
1 +

m

2a(t)r̃

)−2
1

a(t)
(0, 1, 0, 0). (2.148)

Straightforward computation yields the orthonormal stress-energy compo-

nents. The density is particularly simple,

ρ =
3

8π

ȧ2

a2
=

3

8π
H2, (2.149)

whereas the pressure is slightly more complicated

p =
1

8π

{
−2aä+ ȧ2

a2
− 4m/[2ar̃]

1−m/[2ar̃]

aä− ȧ2

a2

}
=

1

8π

{
−3H2 − 2Ḣ − 4m/[2ar̃]

1− m
2ar̃

Ḣ

}
=

1

8π

{
−3H2 − 2

1 + m
2ar̃

1− m
2ar̃

Ḣ

}
. (2.150)

All other components of the stress-energy are zero. Note that the energy density

is identically that of FLRW, while the pressure asymptotes to that of FLRW. In

view of the fact that there is a non-zero pressure gradient the fiducial observers,

being in this situation defined by the fluid flow, will now not be geodesic. In

fact the fiducial observers have 4-acceleration

Aa = V b∇bV
a =

m

a2r̄2(1 + m
2ar̃

)3(1− m
2ar̃

)
Ra, (2.151)

and satisfy the Euler equation of fluid equilibrium

(ρ+ p)Aa = −
(
gab + V aV b

)
∇bp. (2.152)

2.8.2 McVittie spacetime in Schwarzschild radial coor-
dinates

Kaloper–Kleban–Martin [78] rewrite the McVittie line element by defining the

Schwarzschild radial coordinate r̄ by

r̄ =

(
1 +

m

2a(t)r̃

)2

a(t)r̃, (2.153)

and transforming the line element into the equivalent of

ds2 = −
(
1− 2m

r̄

)
dt2 +

[dr̄ −
√
1− 2m/r̄ H(t)r̄ dt]2

1− 2m/r̄
+ r̄2dΩ2. (2.154)

Let us rewrite this as

ds2 = −
(
1− 2m

r̄

)
dt2 +

[
dr̄√

1− 2m/r̄
−H(t)r̄dt

]2
+ r̄2dΩ2. (2.155)
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This form of the metric again neatly disentangles the local physics, (depend-

ing only on the point mass m), from the cosmological physics, (depending only

on the Hubble parameter H(t), which is now allowed to be time-dependent).

Specifically, setting H(t) → H yields equation (2.128), one of the representa-

tions of Kottler spacetime, while setting m → 0 yields equation (2.42) one of

the Painlevé–Gullstrand representations of k = 0 FLRW spacetime.

The Eulerian observer has 4-velocity

Va =
√

1− 2m/r̄ (−1, 0, 0, 0); V a =

(
1√

1− 2m/r̄
,H(t)r̄, 0, 0

)
; (2.156)

and the unit radial vector is

Ra =
√

1− 2m/r̄ (0, 1, 0, 0); Ra =

(
−H(t)r̄,

1√
1− 2m/r̄

, 0, 0

)
. (2.157)

The density and pressure are now

ρ =
3H(t)2

8π
; p = −ρ+ Ḣ(t)

4π
√
1− 2m/r̄

. (2.158)

The fiducial observers have non-zero 4-acceleration

Aa =
(
0,

m

r̄2
, 0, 0

)
, (2.159)

and satisfy the Euler equation of fluid equilibrium

(ρ+ p)Aa = −
(
gab + V aV b

)
∇bp. (2.160)

2.8.3 McVittie spacetime in comoving radial coordinates

Now set r̄ = a(t)r, so that dr̄ = a(t) (dr +H(t)rdt). Then

ds2 = −
(
1− 2m

a(t)r

)
dt2+

a(t)(dr +H(t)rdt)√
1− 2m

a(t)r

−H(t)a(t)rdt

2

+a(t)2r2dΩ2.

(2.161)

We, therefore, obtain a comoving form of the McVittie spacetime

ds2 = −
(
1− 2m

a(t)r

)
dt2 + a(t)2

{[(
dr +H(t)r

[
1−

√
1− 2m

a(t)r

]
dt
)2

1− 2m
a(t)r

]

+ r2dΩ2

}
.

(2.162)

• For a(t) = 1, so thatH(t) = 0, this is Schwarzschild spacetime in standard

coordinates.
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• For a = eHt, so that H(t)→ H, this is equivalent to the (2.143) represen-

tation of Kottler spacetime.

• For m = 0 this is standard k = 0 FLRW spacetime in comoving coordi-

nates.

The natural Eulerian observer (the closest you can get to defining the Hubble

flow) is specified by the unit 4-vector

V a =

(
1,−H(t)r

[
1−

√
1− 2m

a(t)r

]
, 0, 0

)
1− 2m

a(t)r

. (2.163)

This corresponds to the covector

Va =

√
1− 2m

a(t)r
(−1, 0, 0, 0). (2.164)

The unit radial 4-vector is

Ra =

√
1− 2m

a(t)r

a(t)
(0, 1, 0, 0). (2.165)

This corresponds to the covector

Ra =
a(t)√
1− 2m

a(t)r

(
H(t)r

[
1−

√
1− 2m

a(t)r

]
, 1, 0, 0

)
. (2.166)

In the appropriate orthonormal basis the energy density is still

ρ =
3

8π

ȧ2

a2
=

3

8π
H(t)2 (2.167)

while the pressure now becomes

p =
1

8π

−3H(t)2 + 2
Ḣ(t)√
1− 2m

a(t)r

.

 (2.168)

All other components of the stress-energy are zero. The fiducial observers have

non-zero 4-acceleration

Aa =

(
0,

m

r2a(t)3
, 0, 0

)
, (2.169)

and satisfy the Euler equation of fluid equilibrium

(ρ+ p)Aa = −
(
gab + V aV b

)
∇bp. (2.170)
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2.8.4 McVittie spacetime
in (conformal) Painlevé–Gullstrand form

On quite general grounds, (since McVittie spacetime is spherically symmet-

ric, does not possess any wormhole throats, and has a non-negative Misner–

Sharp quasi-local mass), a (full) Painlevé–Gullstrand form for McVittie space-

time must exist [51]. However, as Faraoni has pointed out [80, 46], that (full)

Painlevé–Gullstrand form depends on a quite messy (and implicit) integrat-

ing factor, over which one has little to no control; making the (full) Painlevé–

Gullstrand form completely explicit seems a formidable task. Fortunately, there

is an intermediate step, a conformal Painlevé–Gullstrand form, that is much

easier to make fully explicit.

Start with McVittie spacetime in traditional form:

ds2 = −

(
1− m

2a(t)r̃

1 + m
2a(t)r̃

)2

dt2 +

(
1 +

m

2a(t)r̃

)4

a(t)2{dr̃2 + r̃2dΩ2}. (2.171)

Define r̄ = a(t)r̃. Then as usual dr̃ = d(r̄/a) = (dr̄−H(t) r̄ dt)/a, and so

ds2 = −
(
1− m

2r̄

1 + m
2r̄

)2

dt2 +
(
1 +

m

2r̄

)4
{[dr̄ −H(t) r̄ dt]2 + r̄2dΩ2}. (2.172)

This is not quite of Painlevé–Gullstrand form; but it is conformal to Painlevé–

Gullstrand form:

ds2 =
(
1 +

m

2r̄

)4{
−
(
[1− m

2r̄
]2

[1 + m
2r̄
]6

)
dt2 + {[dr̄ −H(t) r̄ dt]2 + r̄2dΩ2}

}
.

(2.173)

Note the spatial slices are conformally flat, and both the conformal factor and

lapse function are time independent — the only time-dependence has now been

isolated in the Hubble parameter H(t). Straightforward computation yields the

temporal and radial legs of the tetrad

V a =
1 + m

2r

1− m
2r

(
1, H(t)r, 0, 0

)
; Ra =

(
0,

1

1 + m
2r

, 0, 0

)
. (2.174)

The orthonormal stress-energy components are:

ρ =
3

8π
H(t)2; p =

1

8π

{
−3H(t)2 − 2

1 + 2m
r̄

1− m
2r̄

Ḣ(t)

}
. (2.175)

All other components of the stress-energy are zero. As required this is a perfect

fluid, and as H(t) → H, so that Ḣ = 0, one recovers the isotropic form of

Kottler spacetime.

2.8.5 Summary

We have now extracted 4 equivalent forms of the McVittie spacetime — the tra-

ditional (2.146), the Schwarzschild variant (2.154)–(2.155), a comoving variant

(2.162), and finally a conformally Painlevé–Gullstrand (2.173) variant.
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2.9 Discussion

Overall, we have seen that coordinate freedom in cosmology can be used to

repackage and reorganize standard cosmological models in multiple different

ways. This repackaging and reorganization can often simplify some aspects of

the physics, while making other aspects seem more (apparently) complex.

• We have explored three specific ways of rewriting the generic k = 0 FLRW

cosmologies; equations (2.28), (2.35), (2.42), and their Cartesian versions

(2.31), (2.31), (2.57), there are many others. The three we have explored

either make the Hubble flow simple, or make the light cones simple, or

make the spatial slices simple. But there is no free lunch; the underlying

physics is invariant.

• We have similarly considered three versions of de Sitter space, (2.119),

(2.121), (2.122); either making the spacetime manifestly static, or making

the spatial slices flat, or making the connection to generic FLRWmanifest.

• For the Kottler spacetime we have developed six different line elements,

(2.123), (2.127), (2.132), (2.137), (2.139), (2.143); focussing on different

aspects of the physics. One either makes the spacetime manifestly static,

or has three ways to make the spatial slices relatively simple, or has two

ways to make the connection to generic FLRW manifest. There are yet

other possibilities that one might explore.

• For the McVittie spacetime we presented four different line elements,

(2.146), (2.154), (2.162), (2.173), two of which seem to be novel. The

traditional version (2.146) is spatially isotropic, but every nonzero met-

ric component is explicitly time dependent. The Schwarzschild version

(2.154) sets three metric components to be time independent, and tightly

constrains the time dependence of the remaining terms. The “comoving”

line element (2.162) makes the connection with generic k = 0 FLRWmani-

fest, while the conformally Painlevé–Gullstrand version (2.173) makes the

spatial slices time independent and eliminates explicit occurrences of the

scale factor a(t) in favour of the Hubble parameter H(t).

Perhaps the most bizarre feature of the above discussion is that one can

apparently eliminate the expansion of the universe with a suitable choice of co-

ordinates; of course there is then a different price to pay — the light cones then

“tip over” and one must be much more careful when deciding which trajectories

are now to be regarded as “superluminal”. Specifically, the variant presenta-

tions of the Kottler and McVittie line elements give one a much better handle

on how to merge the gravitational field of a non-perturbative localized compact

object with the Hubble flow of an asymptotically FLRW cosmology. Finally we

point out that familiarity with these variant coordinate systems is also helpful

in understanding the symmetries (both explicit and hidden); and in demystify-

ing the horizon structure. Ultimately we would be interested in extending these

ideas to generic non-perturbative deviations from FLRW cosmology.
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Chapter 3

Black Holes Embedded in
FLRW Cosmologies

There has recently been some considerable interest expressed in a highly specu-

lative model of black hole evolution — allegedly by a postulated direct coupling

between black holes and cosmological expansion independently of accretion or

mergers. We wish to make several cautionary comments in this regard. At least

three exact solutions corresponding to black holes embedded in a FLRW back-

ground are known, (Kottler, McVittie, Kerr-de Sitter), and they show no hint

of this claimed effect.Therefore, implying that this claimed effect (if it exists at

all) is certainly nowhere near ubiquitous.

The dark sector of the Universe poses an immense problem for our current

understanding of physics. Dark matter is constrained by many observations —

dating back to Lord Kelvin who presented his theory on this elusive type of

matter in 1884 [81]. Dark matter was further constrained by galaxy rotation

curves [82, 83, 84]. While there has been some progress made recently in relaxing

this constraint by using “full GR” [23] there are still many observations that

constrain dark matter1.

Dark energy supposedly makes up a much larger percentage of the energy

density of the Universe at the current epoch. This dark energy drives the

accelerated expansion of the Universe that we observe. While dark energy may

constitute a larger percentage of the Universe, it remains undetected and there

is no accepted source of dark energy. As present, there is a minority (slowly, but

surely this minority is growing) opinion in the community 2 that dark energy

simply does not exist and “can be done away with”. This, perhaps started

with Buchert [85] with the realisation that averaging the Einstein equations

1Not to mention, dark matter has somewhat also become a particle physics problem now;
Intertwining both regimes of physics.

2Certain readers may not be happy with this statement. Yes, this situation is far more
nuanced than stated. It is in fact true that more and more tensions in the theoretical physics
and cosmology community are arising and some are beginning to accept that, perhaps, our
foundations are not correct.
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“properly” results in an extra term(s) in the “Friedmann equations” — the

backreaction terms. Wiltshire then built upon this in 2007 with the timescape

model [20, 21], wherein he explores more fundamental ideas of how we calibrate

clocks. Only time will tell if we can do away with dark energy entirely.

Regardless of our stance on dark energy and the perceived accelerated ex-

pansion of the Universe, recently some rather bold and unusual claims have

been made regarding how black holes might directly interact with the overall

FLRW cosmological expansion [86]. (See also the somewhat earlier closely re-

lated references [87, 88, 89] which developed the theoretical framework for these

claims.)

Key parts of the claims made in ref [86] were that:

• “The Kerr black hole solution is ... provisional as its behavior at infinity

is incompatible with an expanding universe.”.

• “Black hole models with realistic behavior at infinity predict that the

gravitating mass of a black hole can increase with the expansion of the

universe independently of accretion or mergers...” .

• “The redshift dependence of the mass growth implies that, at z ≤ 7,

black holes contribute an effectively constant cosmological energy density

to Friedmann’s equations.”.

There are a number of significant problems with these claims:

• The truly enormous “separation of scales” that is observed to occur be-

tween galactic dynamics and cosmological dynamics makes all such claims

grossly implausible. (More on this specific point below.)

• There are at least three exact solutions to the Einstein equations that

embed black holes in expanding universes, (Kottler, McVittie, and Kerr–

de Sitter), and in those known exact solutions the claimed effect simply

does not occur.

• The underlying theoretical framework [87, 88, 89] adopted in ref [86] ap-

pears to be deeply flawed [90]. (One key issue here is that the cosmological

mass fraction sequestered in black holes simply does not lead to an equal

but opposite pressure; a “black hole gas” mimics “dust”, it does not mimic

“dark energy”.) Several other authors have made related cautionary com-

ments [91, 92].

• An independent observational analysis [93] strongly excludes the claimed

effect at ∼ 3σ, and is compatible with zero effect at ∼ 1σ. (The technical

difficulty with making this bound even tighter lies in guaranteeing that

the observational sample is free of false positives. This could be due to the

possible growth of superficially quiescent black holes actually being driven

due to some unaccounted for variant of the usual processes of accretion

and/or mergers.)

41



• Several other independent observational and/or numerical analyses simi-

larly disfavour the existence of the claimed effect, see for instance [94, 95,

96, 97, 98].

In this chapter we will concentrate on the general relativistic aspects of the

situation. We will pay particular attention both to physically relevant approx-

imations, and to the known exact theoretical solutions. We will argue that

based on the known exact solutions there is simply no physical reason to ex-

pect the claimed effect to occur, and good physics reasons to reject the claimed

effect.

3.1 Separation of scales

We start the discussion by pointing out that there is a truly enormous separation

of scales between galactic black hole physics and cosmological physics. Even

the heaviest known galactic black holes have masses only of order 3× 1010 solar

masses, corresponding to a Schwarzschild radius ≲ 10−3 parsec. In contrast, the

cosmological homogeneity scale is typically taken to be of order ≳ 108 parsecs3,

and the Hubble scale is even larger, of order 1010 parsec. There simply is no

plausible mechanism for directly coupling milli-parsec black hole physics to giga-

parsec cosmological physics. (For related comments see refs [99, 100].)

What is much more plausible is to directly couple the observed black hole

candidates found in most spiral galaxy cores to matter in their immediate envi-

ronment — the galactic cores and galaxies in which they reside. This of course

implies black hole evolution due to the utterly standard processes of accretion

and/or mergers, which is exactly what the authors of ref [86] are claiming to

side-step.

More quantitatively, even in the absence of an explicit exact solution to

the Einstein equations, we can argue as follows: Any attempt at inserting a

black hole into a FLRW cosmology will at the very least involve two separate

mass scales — m the mass of the central black hole, and ρFLRW r3, the FLRW

contribution to the mass contained in a ball of radius r. Combining these two

quantities defines a natural distance scale

r∗ = 3

√
m

ρFLRW

. (3.1)

At distances r < r∗ black hole physics dominates, at distances r > r∗ the FLRW

cosmology dominates. We will see this natural transition-distance scale crop up

repeatedly in the discussion below.

3This is usually called the statistical scale of homogeneity (SSH) and estimates thereof are
most often based on the galaxy-galaxy 2–point correlation method.
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3.2 Exact solutions in general relativity

There are at least three well-known exact solutions of Einstein’s equations for

black holes embedded in expanding FLRW universes:

• Schwarzschild–de Sitter (Kottler);

• Schwarzschild–FLRW (McVittie);

• Kerr–de Sitter.

Note that de Sitter spacetime is just a special case of FLRW, which, in appropri-

ate coordinates, corresponds to exponential expansion a(t) = eHt, with constant

Hubble parameter H. Furthermore, in the standard framework of ΛCDM cos-

mology, the universe at the current epoch is believed to already be cosmological

constant dominated. Therefore, it follows that de Sitter space is an excellent

approximation to both the near-current-epoch and future expansion history of

the universe. Allowing for a completely arbitrary expansion history for the scale

factor a(t), (as in the Schwarzschild–FLRW (McVittie) spacetime discussed be-

low), while it would be “nice to have”, is not really critical for purposes of the

current discussion.

3.2.1 Schwarzschild–de Sitter (Kottler)

Let us start from Schwarzschild–de Sitter (Kottler) spacetime presented in its

most common form, in static (t, r) coordinates [101]:

ds2 = −
(
1− 2m

r
−H2r2

)
dt2 +

dr2

1− 2m
r
−H2r2

+ r2dΩ2. (3.2)

This coordinate system makes it obvious that at small r one recovers the

Schwarzschild solution, and that the mass m of the central black hole is not

changing. In Kottler spacetime the natural distance scale (in physical units)

reduces to

r∗ = 3

√
m

ρFLRW

−→ 3

√
mc2

H2
, (3.3)

and can be identified as the radius of the OSCO, (the outermost stable circular

orbit) [76, 102]. For r ≪ r∗ the physics is black-hole dominated, for r ≫ r∗ the

physics is cosmological-constant dominated.
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Now this particular static slicing makes the physical interpretation in terms of

an exponentially expanding FLRW spacetime not entirely obvious. Therefore,

we are required to make a few coordinate transformations to make this fully

explicit. To proceed with the discussion, we first substitute

dt = dt̄+

√
2m
r
+H2r2

1− 2m
r
−H2r2

dr, (3.4)

to go to (t̄, r) Painlevé–Gullstrand coordinates, (as shown in Chapter 2)

ds2 = −dt̄2 +

[
dr −

√
2m

r
+H2r2 dt̄

]2
+ r2dΩ2. (3.5)

Second, we now set r = eHt̄ r̄, so that dr = eHt̄ [dr̄ + r̄Hdt̄]. Then in these

new (t̄, r̄) coordinates, which is exactly (2.140)

ds2 = −dt̄2 + e2Ht̄

(dr̄ +{Hr̄ −
√

2m e−3Ht̄

r̄
+H2r̄2

}
dt̄

)2

+ r̄2dΩ2

 .

(3.6)

Note that at large distances{
Hr̄ −

√
2me−3Ht̄

r̄
+H2r̄2

}
= Hr̄

{
1−

√
1 +

2me−3Ht̄

H2r̄3

}

= − m

Hr̄2
e−3Ht +O

(
1

r̄5

)
. (3.7)

Thus at large r̄

ds2 = −dt̄2 + e2Ht̄
[
dr̄2 + r̄2dΩ2

]
+O

(
1

r̄2

)
, (3.8)

making it obvious that the Schwarzschild–de Sitter (Kottler) black hole is em-

bedded in an exponentially expanding FLRW universe.

We emphasize that in this specific example there simply is no coupling be-

tween the mass parameter m and the cosmological parameter H; they are in-

dependent constants.
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3.2.2 Schwarzschild–FLRW (McVittie)

The Schwarzschild–FLRW (McVittie) spacetime metric [77, 78, 79, 80] describes

an eternal black hole that has been part of the universe ever since the Big Bang

— if in contrast one wants to describe a black hole that forms from stellar col-

lapse, then a segment of the Schwarzschild–FLRW (McVittie) spacetime should

be used — only for describing the quiescent period after the initial collapse and

ringdown.

McVittie spacetime can be represented in any of the following four completely

equivalent forms, as shown in Chapter 2 [103]:

ds2 = −

(
1− m

2a(t)r̃

1 + m
2a(t)r̃

)2

dt2 +

(
1 +

m

2a(t)r̃

)4

a(t)2{dr̃2 + r̃2dΩ2}. (3.9)

ds2 =
(
1 +

m

2r̄

)4{
−
(
[1− m

2r̄
]2

[1 + m
2r̄
]6

)
dt2 + {[dr̄ −H(t)r̄dt]2 + r̄2dΩ2}

}
. (3.10)

ds2 = −
(
1− 2m

r̂

)
dt2 +

[
dr̂√

1− 2m/r̂
−H(t)r̂dt

]2
+ r̂2dΩ2. (3.11)

ds2 = −
(
1− 2m

a(t)r

)
dt2

+ a(t)2



(
dr +H(t)r

[
1−

√
1− 2m

a(t)r

]
dt
)2

1− 2m
a(t)r

+ r2dΩ2

 .

(3.12)

All four of these coordinate systems use the same time coordinate t, and also

the same angular coordinates {θ, ϕ}, while we have used coordinate freedom

of general relativity to adopt differing radial coordinates {r̃, r̄, r̂, r}. (The rel-

evant coordinate transformations connecting these differing radial coordinates

are explicitly presented in ref [103].)

In all four of these coordinate systems the energy density is determined by

finding the time-like eigenvector of the stress-energy, and is easily calculated to

be [103]:

ρ =
3

8π
H(t)2. (3.13)

The pressure is determined by the space-like eigenvectors of the stress energy

and is more subtle: Depending on which of the coordinate systems (3.9)–(3.12)

one adopts one finds the superficially differing but physically equivalent results,

as discussed in Chapter 2 [103]:

p = −ρ− 1

4π

1 + m
2a(t)r̃

1− m
2a(t)r̃

Ḣ(t); (3.14)

= −ρ− 1

4π

1 + m
2r̄

1− m
2r̄

Ḣ(t); (3.15)

= −ρ− 1

4π

1√
1− 2m/r̂

Ḣ(t); (3.16)

= −ρ− 1

4π

1√
1− 2m

a(t)r

Ḣ(t). (3.17)
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At large distances, in all four of these coordinate systems, one recovers the

standard spatially flat (k = 0) FLRW result:

p→ −ρ− Ḣ(t)

4π
. (3.18)

Turning now to the explicit representations of the spacetime metric, at suit-

ably large distances, a(t)r̃ ≫ m, the line element (3.9) implies

ds2 ≈ −dt2 + a(t)2{dr̃2 + r̃2dΩ2}, (3.19)

which clearly is (k = 0) FLRW with arbitrary scale factor a(t).

On the other hand at suitably small distances, r̄H(t)≪ 1, the line element

(3.10) implies

ds2 ≈
(
1 +

m

2r̄

)4{
−
(
[1− m

2r̄
]2

[1 + m
2r̄
]6

)
dt2 + {dr̄2 + r̄2dΩ2}

}
. (3.20)

This is just Schwarzschild spacetime in isotropic coordinates. The mass of the

central black hole is simply m, a time-independent constant. Note there is

no mass flux onto the central black hole; there is no accretion. That is, there

simply is no direct coupling between the mass parameterm and the cosmological

parameter H(t) = ȧ(t)/a(t); they are independent quantities. As previously

noted, the only even slightly tricky part of the analysis was in setting up the

coordinate transformations used to make these properties manifest.

3.2.3 Kerr–de Sitter

Rotating black holes are much more subtle than their non-rotating counter-

parts. The basic asymptotically flat Kerr spacetime was first discovered some

60 years ago in 1963, see reference [104]. Further discussion can be found in [105]

and [106, 107, 108, 109, 110], and more recently in references [111, 112, 113,

114, 115, 116, 117, 118].

The Kerr–de Sitter (KdS) geometry is even more subtle than Kerr, and was

first obtained by Carter some 10 years later in 1973; still some 50 years ago, see

refs [119, 120]. The Kerr–de Sitter geometry represents an eternal rotating black

hole embedded in de Sitter spacetime. For a recent easily accessible discussions

see reference [121], and even more recently see [122, 123].

For a black hole formed from stellar collapse, one should certainly wait until

after the initial collapse and ringdown, until the black hole is quiescent. One

should also wait until the universe is old enough to be cosmological constant

dominated — as is now expected to be the situation in the current epoch. That

is, the Kerr–de Sitter geometry should be a good approximation to rotating

black holes in the current epoch. (This point is implicit in the discussion of

ref [121].)
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The metric for the Kerr–de Sitter spacetime is most typically presented in

stationary coordinates [119, 120]:

ds2 =−
(r2 + a2)(1− Λ

3
r2)− 2mr

r2 + a2 cos2 θ

[
dt− a sin2 θ dϕ

1 + 1
3
Λa2

]2
+ sin2 θ

[
1 + 1

3
Λa2 cos2 θ

r2 + a2 cos2 θ

] [
adt− (r2 + a2)dϕ

1 + 1
3
Λa2

]2
+ (r2 + a2 cos2 θ)

[
dr2

(r2 + a2)(1− Λ
3
r2)− 2mr

+
dθ2

(1 + 1
3
Λa2 cos2 θ)

]
.

(3.21)

(Warning: Here a is the spin parameter a = J/m, not the FLRW scale factor

a(t).) In this spacetime, the cosmological constant is related to the Hubble

constant by Λ = 3H2. A perhaps mildly surprising aspect of this line element is

the presence of the constant 1+ 1
3
Λa2 = 1+H2a2 in several strategic places.

To be able to efficiently use computer algebra packages, it is more beneficial

to have this metric in a fully expanded form, and to eliminate the trigonometric

functions. We therefore re-write the line element in the following form:

gµν dx
µdxν =−

[
∆r −∆θ a

2(1− χ2)

ρ2 Ξ2

]
dt2 +

ρ2

∆r

dr2 +
ρ2

∆θ (1− χ2)
dχ2

+
(1− χ2)

ρ2 Ξ2

[
∆θ (r

2 + a2)2 −∆ra
2 (1− χ2)

]
dϕ2

− 2a(1− χ2)

ρ2 Ξ2

[
∆θ (r

2 + a2)−∆r

]
dtdϕ .

(3.22)

Here
χ = cos θ;

∆r = r2 + a2 − 2mr +
Λ

3
r2 (r2 + a2);

∆θ = 1 +
Λ

3
a2 cos2 θ = 1 +

Λ

3
a2χ2;

ρ2 = r2 + a2 cos2 θ = r2 + a2χ2;

Ξ = 1 +
Λ

3
a2 .

(3.23)

The Kerr-de Sitter spacetime is a Λ-vacuum solution of the Einstein field

equations, an Einstein manifold, and therefore satisfies

Rµν = −Λgµν ; Gµν = +Λgµν . (3.24)

Using, for example, sagemath or Maple, we may easily check this is in fact

true.

47



We must also check that the Weyl tensor is nonzero, and that the Weyl

scalar, C µναβC µναβ is position-dependent: Indeed

C µναβC µναβ = −m2(a2χ2 + 4arχ+ r2) (a2χ2 − 4arχ+ r2) (r2 − a2χ2)

(r2 + a2χ2)6
,

(3.25)

which depends on both r and χ. Furthermore, the Kretschmann scalar,

RµναβR µναβ is also non-zero and position-dependent. Lastly, due to the Kerr–

de Sitter spacetime no longer being a pure vacuum solution to the Einstein

equations, we expect the difference between the Kretschmann scalar and Weyl

scalar to be non-zero (and position-independent). We find

RµναβR µναβ − C µναβC µναβ =
8

3
Λ2 . (3.26)

When Λ = 0 — where the Kerr metric is recovered — the difference is

zero.

We will subsequently look at the asymptotic large-distance behaviour and

verify that in a suitable coordinate system the cosmological constant Λ can be

reinterpreted in terms of a constant Hubble parameter H (with Λ = 3H2), and

an exponentially growing scale factor a(t) = eHt. For now let us focus on a

number of internal consistency checks for the Kerr–de Sitter spacetime.

3.3 Extended consistency checks for

Kerr–de Sitter

In this section we shall check that the Kerr-de Sitter spacetime does in fact

(under suitable circumstances) reduce to the Kerr, Kottler, and de Sitter space-

times as required.

3.3.1 Kerr spacetime

We first investigate the Λ = 0 limit of the KdS metric given in (3.22), resulting

in the Kerr spacetime. This results in a vacuum solution to the Einstein equa-

tions, hence, providing the basis for a variety of consistency checks for the KdS

spacetime.

When Λ = 0 we obtain the line element

gµν dx
µdxν =−

[
∆̄r − a2(1− χ2)

ρ2

]
dt2 +

ρ2

∆̄r

dr2 +
ρ2

(1− χ2)
dχ2

+
(1− χ2)

ρ2

[
(r2 + a2)2 − ∆̄ra

2 (1− χ2)
]
dϕ2

− 2a(1− χ2)

ρ2

[
(r2 + a2)− ∆̄r

]
dtdϕ ,

(3.27)

where ∆̄r = r2 + a2 − 2mr.
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To check this is in fact the Kerr spacetime, we compute the curvature quan-

tities such as the Ricci tensor, Weyl tensor, Kretschmann scalar, and Weyl

scalar. For a vacuum solution we expect the Ricci tensor to be zero and, there-

fore, the Riemann tensor and Weyl tensor to be equal. We verify this using

sagemath/Maple. Furthermore, we find that the Riemann tensor and Weyl

tensor are equal, non zero and position dependent. Lastly, the Weyl scalar and

Kretschmann scalar are equal (as expected).

3.3.2 Kottler Spacetime

In the a→ 0 limit of the KdS spacetime, we recover the Kottler (Schwarzschild–

de Sitter) spacetime. Firstly

∆r → ∆̂r = r2 − 2mr − Λr4

3
= r2

(
1− 2m

r
− 1

3
Λr2
)
. (3.28)

Then

(ds2)Kottler = −
∆̂r

r2
[dt]2 + (1− χ2)r2 [dϕ]2 + r2

[
dr2

∆̂r

+
dχ2

(1− χ2)

]
. (3.29)

Rewritten, this becomes

(ds2)Kottler = −
∆̂r

r2
dt2 +

r2

∆̂r

dr2 + r2
[

dχ2

(1− χ2)
+ (1− χ2)dϕ2

]
. (3.30)

That is,

(ds2)Kottler = −
(
1− 2m

r
− 1

3
Λr2
)
dt2 +

dr2

1− 2m
r
− 1

3
Λr2

+r2
[

dχ2

(1− χ2)
+ (1− χ2)dϕ2

]
. (3.31)

This metric is evidently the Kottler spacetime [101] in standard (t, r) coordi-

nates (and not entirely standard (χ, ϕ) coordinates). We may now perform the

same consistency checks on this spacetime as we did in the KdS case. We ex-

pect similar results, as it is no longer a pure vacuum solution and corresponds

to pure cosmological constant. We again find

Rµν = Λ gµν ; Gµν = −Λ gµν . (3.32)

The curvature quantities such as the Riemann tensor and Weyl tensor are not

equal, they are again non-zero and position-dependent.

The Kretschmann scalar is

RµναβR µναβ =
8

3
Λ2 +

48m2

r6
, (3.33)
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and the Weyl scalar is

C µναβC µναβ =
48m2

r6
. (3.34)

The difference is simply

RµναβR µναβ − C µναβC µναβ =
8

3
Λ2 , (3.35)

which is the same result as in the KdS case. This is to be expected since in the

KdS case, the difference did not depend on the angular momentum.

3.3.3 de Sitter Spacetime

The last parameter we shall set to zero is the mass of the black hole, m → 0.

The only change in the metric components is that now

∆r → ∆̃r = r2 + a2 − Λr2

3
(r2 + a2) = (r2 + a2)

(
1− 1

3
Λa2

)
. (3.36)

The KdS line element now reduces to

gµν dx
µdxν =−

[
∆̃r −∆θ a

2(1− χ2)

ρ2 Ξ2

]
dt2 +

ρ2

∆̃r

dr2 +
ρ2

∆θ (1− χ2)
dχ2

+
(1− χ2)

ρ2 Ξ2

[
∆θ (r

2 + a2)2 − ∆̃ra
2 (1− χ2)

]
dϕ2

− 2a(1− χ2)

ρ2 Ξ2

[
∆θ (r

2 + a2)− ∆̃r

]
dtdϕ .

(3.37)

Though not entirely obvious, this is actually de Sitter space in (rotating)

oblate spheroidal coordinates.

In this m → 0 limit, it is easy to check that the Weyl tensor is zero (and,

therefore, the Weyl scalar will be zero too). The Kretschmann scalar is found

to be

RµναβR µναβ =
8

3
Λ2 . (3.38)

Note, that (as expected) this is (trivially) the difference of the Kretschmann

scalar and Weyl scalar, as for the KdS and Kottler cases.

One may now go one step further and perform an explicit coordinate transfor-

mation on the line element (3.37) to obtain the “standard” form of the de Sitter

metric. Using the explicit coordinate transformation given in ref [121]

T =
t

Ξ
;

Φ = ϕ− aΛt

3Ξ
;

y cosΘ = rχ;

y2 =
1

Ξ

[
r2∆θ + a2(1− χ2)

]
,

(3.39)
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one can show that (3.37) reduces to

gµν dx
µdxν = −(1− Λ

3
y2)dT 2 +

1

1− Λ
3
y2

dy2 + y2dΘ2 + y2 sin2ΘdΦ2 . (3.40)

This is in fact the standard form for de Sitter space, presented in terms of the co-

ordinates (T, y,Θ,Φ), which we could simply re-name (t, r, θ, ϕ) if desired.

Performing two further coordinate transformations allows us to cast this

metric into a form where — explicitly — space is exponentially expanding.

First, we transform the time coordinate according to

T = t̃+

∫
Hy

1−H2y2
dy = t̃+

ln (1−H2y2)

2H
, (3.41)

resulting in the Painlevé–Gullstrand (2.121) form of de Sitter space:

gµν dx
µdxν = −dt̃ 2 + [ dy −Hy dt ]2 + y2dΩ2 . (3.42)

Secondly, we transform the radial coordinate according to

y = r̃eHt , (3.43)

resulting in de Sitter space in comoving coordinates:

gµν dx
µdxν = −dt̃ 2 + e 2Ht̃{dr̃2 + r̃2dΩ2} . (3.44)

Therefore, it is apparent that, as desired, the m→ 0 limit of Kerr–de Sitter is

indeed the exponentially growing FLRW spacetime.

3.4 Asymptotic behaviour of Kerr-de Sitter

The claim that the mass of a black hole grows as a function of time has been

proven to be false thus far. In subsection 3.2.1 we have shown that for the

Schwarzschild–de Sitter (Kottler) spacetime the mass of the central black hole

is simply m, a time independent constant. In sub-section 3.2.2 we obtained

the same result for McVittie (Schwarzschild–FLRW) spacetime. We shall now

show that this also holds for the Kerr–de Sitter black hole by considering the

asymptotic behaviour of the Kerr–de Sitter spacetime.
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3.4.1 Small r expansion

Let us begin with ‘small’ r, i.e., |Λ|r2 ≪ 1, while keeping r > a. It is perhaps

obvious that we should expect — when close to the central black hole — the

metric to be of the form “Kerr + perturbation”. For the following analysis we

shall use the binomial expansion in r. We note that in this limit:

1

Ξ2
≈ 1− 2

3
Λa2 ;

1

∆θ

≈ 1− 1

3
Λa2χ2 .

(3.45)

Component by component we explicitly find

(gtt)KdS ≈ (gtt)Kerr −
2

3
Λa2 (gtt)Kerr +O

(
Λa2

)
= (gtt)Kerr

(
1 +O

(
Λa2

))
;

(grr)KdS ≈ (grr)Kerr +
1

3
Λr2 (grr)Kerr +O

(
Λr2
)
= (grr)Kerr

(
1 +O

(
Λr2
))

;

(gθθ)KdS ≈ (gθθ)Kerr −
1

3
Λa2χ2 (gθθ)Kerr +O

(
Λa2χ2

)
= (gθθ)Kerr

(
1 +O

(
Λa2χ2

))
;

(gϕϕ)KdS ≈ (gϕϕ)Kerr −
2

3
Λa2 (gϕϕ)Kerr +O

(
Λr2
)
= (gϕϕ)Kerr

(
1 +O

(
Λr2
))

;

(gϕt)KdS ≈ (gϕt)Kerr −
2

3
Λa2 (gϕt)Kerr +O

(
Λr2
)
= (gϕt)Kerr

(
1 +O

(
Λr2
))

.

(3.46)

Note that the grr term is not merely a straightforward binomial expansion in r.

Rather, we use the fact that in the region of interest

(grr)KdS =
ρ2

(r2 + a2)(1−H2r2)− 2mr
≈ ρ2

r2 + a2 − 2mr

1

1−H2r2
, (3.47)

which is true as we can safely neglect O(r3) terms. Finally, since χ ∈ [−1, 1]
and we have assumed a < r, all the individual components of the Kerr–de Sitter

metric may be written as

(gµν)KdS = (gµν)Kerr

(
1 +O

(
Λr2
))

. (3.48)

Consequently at small distances (meaning |Λ|r2 ≪ 1) Kerr–de Sitter reduces

to Kerr as expected — with a constant unchanging mass parameter m, and

no sign of any direct coupling between the de Sitter expansion and the central

black hole.
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3.4.2 Large r expansion

For the large r expansion we assume r ≫ m (we also assume m > a to avoid

naked singularities). However, we do not want r to become cosmologically

enormous, we still want to keep |Λ|r2 ≲ 1. (If Λ > 0 one certainly does not

want to go past the cosmological horizon at rC ≈ 1/
√
Λ. In counterpoint, if

Λ < 0, corresponding to an asymptotically anti-de Sitter space, there is simply

no need to go past r ∼ 1/
√
|Λ| to detect cosmological physics.)

As we are a suitably large (but not too large) distance away from the black

hole, one would expect the metric to be of the form “de Sitter + perturbation”.

For all of the metric components except the grr component, we may easily

separate out the mass terms and then expand about large r:

(gtt)KdS = (gtt)dSO +
2mr

ρ2Ξ2
≈ (gtt)dSO +

2m

r
+O

(m
r3

)
;

(gθθ)KdS = (gθθ)dSO ≈ (gθθ)dSO +O
(
2m

r

)
;

(gϕϕ)KdS = (gϕϕ)dSO +
2mra2(1− χ2)4

ρ2Ξ2

1

Ξ2

≈ (gϕϕ)dSO +
2m

r

1

Ξ2
a2(1− χ2)4 +O

(
2m

r3

)
;

(gϕt)KdS = (gϕt)dSO +
2mra(1− χ2)2

ρ2Ξ2

1

Ξ2

≈ (gϕt)dSO +
2m

r

1

Ξ2
a(1− χ2)2 +O

(
2m

r3

)
.

(3.49)

Here, the subscript dSO is used to make it explicit that this is a component of

the de Sitter metric in oblate spheroidal coordinates. The (grr)KdS component

is most easily dealt with by writing:

(grr)KdS = (grr)dSO −
2mr(r2 + a2χ2)

(r2 + a2)2 (1−H2r2)2

≈ (grr)dSO −
2m

r

1

(1−H2r2)2

[
1 +O

(
a2

r2

)]
. (3.50)

Therefore, we may write the Kerr–de Sitter metric expanded about large r

(r ≫ m, but r not cosmologically large, |Λ|r2 ≲ 1) as

(gµν)KdS = (gµν)dSO +O
(
2m

r

)
. (3.51)

As required, when approaching large (but not too large) r the Kerr–de Sit-

ter spacetime asymptotically approaches de Sitter space. (Which, as we have

already seen, after suitable coordinate transformations can be recast in terms

of an exponentially growing scale factor a(t) = exp(Ht).)

We emphasize (again) that in this specific Kerr–de Sitter example there

simply is no coupling between the mass parameter m and the cosmological

parameter H; they are independent constants.

53



3.5 Kerr–FLRW spacetime?

While we have seen that Kerr–de Sitter, corresponding to specifically exponen-

tial expansion at asymptotic spatial infinity, can be written down explicitly in

a not too complicated form, we know of no equivalent result for Kerr–FLRW

for a general scale factor a(t). There is a reason for this: in Kerr’s original

article [104] he asked whether it would be possible to find a (perfect fluid) in-

terior solution for what is now called Kerr spacetime. This is a question that

still remains open after 60 years. Only partial results are known, in terms

of anisotropic non-perfect fluids and other anisotropic sources [124, 125, 126].

Finding an exact Kerr–FLRW spacetime would be tantamount to finding a

time-dependent perfect fluid exterior solution to the Kerr black hole — which

would be at least as hard as the still unsolved problem of finding a perfect fluid

interior solution.

However, as mentioned in section 3.1, the largest known galactic black holes

have masses of order 3× 1010 m⊙. This corresponds to a Schwarzschild radius

≲ 10−3 parsec, whereas the statistical scale of homogeneity is of order ≳ 108

parsecs. Therefore, having a solution that asymptotes to a perfect fluid on scales

such that the FLRW solution is applicable is certainly good enough.

Furthermore, observational evidence strongly suggests that the universe is

currently cosmological constant dominated, so the relevant FLRW spactime,

now and for the foreseeable future, is de Sitter. Therefore, the Kerr-de Sitter

solution is, for all practical purposes, certainly good enough.

3.6 Black hole internal structure?

As part of the plausibility argument for entertaining a possible direct black-

hole/ cosmology coupling, ref [86] suggested that this might have something to

do with an assumed non-trivial internal structure for black holes. Specifically,

was dark energy inside the black hole slowly being released? Several authors

have tried to make this idea more precise. While certainly there is widespread

agreement that regular black holes and more generally black holes with a non-

vacuum interior are of interest [127, 128, 129, 130, 131, 132, 133, 134, 135], there

is much less agreement as to whether such black hole variants directly couple

to the cosmology they are embedded in. Most investigations suggest there is no

such direct coupling [136, 137, 138, 139]. The few investigations that suggest

there is such an effect yield predictions that are quantitatively and qualitatively

at variance [140] with the original proposal of reference [86].
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3.7 Discussion

Starting from three relatively well-known exact solutions to the Einstein equa-

tions, (Kottler, McVittie, Kerr-de Sitter) all of which successfully embed black

holes in a suitable FLRW background, we have seen that these exact solu-

tions exhibit no evidence of any “direct coupling” between the black hole mass

and the cosmological expansion. Furthermore, several purely phenomenological

investigations have similarly failed to find evidence for any “direct coupling”

between the black hole mass and the cosmological expansion.

Indeed the enormous separation of scales between milli-parsec black hole

physics and giga-parsec cosmological physics renders any such “direct coupling”

(independently of accretion or mergers) grossly implausible. While we under-

stand the want and need to explain where dark energy comes from, this over-

whelming force that drives the accelerated expansion of the Universe, black

holes, simply cannot be it. We, therefore, urge extreme caution and care when

mooting such ideas.
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Chapter 4

Black-to-White Bounce and
Near-Horizon Physics

Black and white holes play remarkably contrasting roles in general relativity

versus observational astrophysics. While there is observational evidence for the

existence of compact objects that are “cold, dark, and heavy”, which thereby

are natural candidates for black holes, the theoretically viable time-reversed

variants — the “white holes” — have nowhere near the same level of obser-

vational support. In this chapter we shall explore the theoretical possibility

that the connection between black and white holes is much more intimate than

commonly appreciated.

We shall first construct “horizon penetrating” coordinate systems that differ

from the standard curvature coordinates only in a small near-horizon region.

Thereby, emphasizing that ultimately the distinction between black and white

horizons depends only on near-horizon physics. We shall then construct an ex-

plicit model for a “black-to-white transition” where all of the nontrivial physics

is confined to a compact region of spacetime. This is a finite-duration finite-

thickness, (in principle arbitrarily small), region straddling the näıve horizon.

Moreover we shall show that it is possible to arrange the “black-to-white tran-

sition” to have zero action — so that it will not be subject to destructive

interference in the Feynman path integral. This then raises the very intriguing

possibility that astrophysical black holes might be interpretable in terms of a

quantum superposition of black and white horizons — a “gray” horizon.

Classical black holes are objects that — from a theoretical perspective — are

very well understood within the standard framework of the theory of general

relativity [37, 32, 40, 33, 41, 35, 36, 39].

Likewise, the observational [141, 142, 143, 144, 145] and phenomenological [146,

147, 148, 134, 149] situations are both increasingly well understood. The (math-

ematical) event horizon, or the physically more relevant long-lived apparent

horizon [75, 74], is often dubbed “the point of no return” and is not really a

problematic issue under suitable coordinate choices. However, one certainly
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finds that the central singularity still causes many conceptual problems with

our understanding of physics. One of the most prominent problems being the

destruction of information as it approaches the singularity. Some of the theo-

ries that are put forward to resolve the information paradox are soft hairs that

evaporate to null infinity (discussed in Chapter 5 and Chapter 6), and white

holes. While we will not delve into the information paradox itself in this chap-

ter, it is important to understand some of the motivation behind white holes. A

representative selection of references includes [150, 151, 152, 153, 154, 155, 156,

157, 158, 159, 160, 161, 162, 163, 79, 164, 165, 166, 167, 168, 169, 170].

White holes, as the name may suggest, are hypothesised to be the opposite

of black holes; a “time reversed” black hole. Matter is radiated from the horizon

instead of being absorbed thereby. There are many theories as to how white

holes might form from black holes, most of which involve some sort of quantum

mechanical effect. A representative selection of references includes [171, 172,

173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188,

189, 190, 191, 192, 193, 194, 195].

One specific example of this phenomenon can be found in reference [171],

where the authors discuss “gray” horizons — as hypothetical quantum super-

positions of black and white horizons. Another example can be found in ref [174]

where the authors hypothesise that black holes quantum tunnel into white holes

once a black hole evaporates down to the Planck mass. Other theories, such as

those proposed in refs [173, 180], involve modifying large wedges of the space-

time (typically all the way down to the central singularity) in order to have a

black hole “bounce” to a white hole.

In this chapter we will propose simple and explicit fully classical models for

a white hole, and in particular for a black-to-white hole transition.

• Firstly, starting from the standard (Hilbert) form of the Schwarzschild

metric in curvature coordinates, we shall introduce a simple coordinate

change, through a function depending solely on the radial coordinate, r.

Specific choices of this function will result in a static black hole and white

hole in horizon-penetrating coordinates — such as Painléve–Gullstrand,

Kerr–Schild, and Eddington–Finkelstein coordinates.

• Secondly, we shall localize the required coordinate change to a compact

near-horizon radial region, showing that both black and white holes can

be cast into the standard manifestly static form outside of some compact

radial region. Thus a clean distinction can be made between “black” and

“white” horizons with minimal modifications to the standard (Hilbert)

form of the Schwarzschild metric.

• Thirdly, we introduce a function of time to create a non-vacuum space-

time, one that is no longer static, and which describes a black to white

hole “bounce”; with the “bounce” being confined to a compact (arbitrar-

ily small) region of spacetime. Furthermore, an analysis of the action
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in the transition region will be conducted, the radial null curves will be

investigated, and various energy conditions will be checked. Finally, we

shall connect the discussion to quantum physics by applying the Feynman

functional integral approach.

Our approach will only require fine tuning of the Schwarzschild spacetime in a

compact radial region near the horizon. Therefore, the entire spacetime outside

of a small neighbourhood of r = 2m will be that of the standard (Hilbert)

form of Schwarzschild spacetime. This is achieved by the use of smooth bump

functions that will not create discontinuities in the metric; and, therefore, the

Christoffel symbols will not be discontinuous, and the Riemann tensor will not

contain delta-function contributions.

4.1 Static black and white horizons: Global

analysis

Firstly, we will introduce a particularly simple model for (static) black and

white horizons, by performing some absolutely minimal modifications of stan-

dard textbook results. We begin with the Schwarzschild spacetime (in the usual

Hilbert/curvature coordinates):

ds2 = −
(
1− 2m

r

)
dt2 +

dr2

1− 2m/r
+ r2dΩ2. (4.1)

Using the following coordinate transformation,

t→ t+ F (r); dt→ dt+ f(r)dr, (4.2)

results in the line element

ds2 = −
(
1− 2m

r

)
(dt+ f(r)dr)2 +

dr2

1− 2m/r
+ r2dΩ2. (4.3)

Expanding, this implies

ds2 =−
(
1− 2m

r

)
dt2 − 2(1− 2m/r)f(r)drdt

+

[
1

1− 2m/r
− (1− 2m/r)f(r)2

]
dr2 + r2dΩ2.

(4.4)

It is important to note that this line element is still Ricci flat, and so is merely

the Schwarzschild geometry in disguise, for arbitrary f(r).
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Without any loss of generality, one may choose:

f(r) =
h(r)

1− 2m/r
. (4.5)

This then results in the line element

ds2 = −
(
1− 2m

r

)
dt2 − 2h(r)drdt+

[
1− h(r)2

1− 2m/r

]
dr2 + r2dΩ2. (4.6)

All of these line elements, for arbitrary h(r), are just (coordinate) variants of

the standard Schwarzschild spacetime — they are all Ricci-flat for arbitrary

h(r). For specific choices for the function h(r) we obtain some particularly well

known coordinate variants of the Schwarzschild spacetime.

4.1.1 Painléve–Gullstrand coordinates

Set h(r)→ ±
√
2m/r, then

ds2 = −
(
1− 2m

r

)
dt2 ∓ 2

√
2m/r drdt+ dr2 + r2dΩ2. (4.7)

Examining the radial null condition, −dt2 +
(
dr ∓

√
2m/r dt

)2
= 0, we see

that in this coordinate system the radial null curves are

dr

dt
= ±1±

√
2m/r, (4.8)

where the signs are to be chosen independently.

• For a black hole we choose

dr

dt
= ±1−

√
2m/r, (4.9)

with dr
dt
∈ {0,−2} at horizon crossing (r = 2m).

• In contrast for a white hole we choose

dr

dt
= ±1 +

√
2m/r, (4.10)

with dr
dt
∈ {+2, 0} at horizon crossing (r = 2m).
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4.1.2 Kerr–Schild coordinates

Set h(r)→ ±2m/r, then

ds2 = −dt2 + dr2 + r2dΩ2 +
2m

r
(dt± dr)2. (4.11)

Examining the radial null condition, −dt2 + dr2 + (2m/r)(dt± dr)2 = 0, in this

coordinate system we find the radial null curves are either

dr

dt
= ∓1, or

dr

dt
= ±1∓ 4m

r + 2m
, (4.12)

where the signs are to be chosen in a correlated manner.

• Thus, for a black hole we choose either

dr

dt
= −1 (ingoing), or

dr

dt
= 1− 4m

r + 2m
(“outgoing”), (4.13)

with dr
dt
∈ {−1, 0} at horizon crossing (r = 2m).

• In contrast for a white hole we choose either
dr

dt
= 1 (outgoing); or

dr

dt
= −1+ 4m

r + 2m
(“ingoing”), (4.14)

with dr
dt
∈ {1, 0} at horizon crossing (r = 2m).

4.1.3 Eddington–Finkelstein null coordinates

Set h(r) = ±1, then

ds2 = −(1− 2m/r)dt2 ∓ 2drdt+ r2dΩ2 . (4.15)

Depending on the choice of sign, ±, one usually relabels t→ u or t→ v.

• The ingoing Eddington–Finkelstein coordinates are typically given as

ds2 = −(1− 2m/r)dv2 + 2dvdr + r2dΩ2 . (4.16)

Examining the radial null condition, [−(1 − 2m/r)dv + 2dr]dv = 0, and

noting that this quantity must be negative for timelike curves, we find the

radial null curves are

dr

dv
= −∞;

dr

dv
=

1− 2m/r

2
. (4.17)

The ingoing Eddington–Finkelstein coordinates, therefore, represent a

black hole with dr
dv
∈ {−∞, 0} at horizon crossing (r = 2m).

• The outgoing Eddington–Finkelstein coordinates are typically given as

ds2 = −(1− 2m/r)du2 − 2dudr + r2dΩ2 . (4.18)

Examining the radial null condition, [−(1 − 2m/r)du − 2dr]du = 0, and

noting that this quantity must be negative for timelike curves, we find the

radial null curves are

dr

du
= +∞;

dr

du
= −1− 2m/r

2
. (4.19)

The outgoing Eddington–Finkelstein coordinates, therefore, represent a

white hole with dr
du
∈ {+∞, 0} at horizon crossing (r = 2m).
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4.1.4 Generic horizon-penetrating coordinates

From the above we see that all three of these coordinate systems, Painléve–

Gullstrand, Kerr–Schild, and Eddington–Finkelstein provide three specific ex-

amples of horizon-penetrating coordinates. In each case, depending on whether

one is in a black hole or a white hole configuration, one of the radial null

geodesics remains frozen on the horizon. I.e., the coordinate velocity is zero —

while the other crosses the horizon with a non-zero coordinate velocity.

Of course there are infinitely many other horizon-penetrating coordinates [196,

197, 198, 199, 200, 201], some of which we explore below, these three examples

are just three of the most obvious ones. We can make the required coordinate

transformations fully explicit by noting

F (r) =

∫
f(r) dr =

∫
h(r)

1− 2m/r
dr. (4.20)

Then, for these three specific examples, we see

FPG(r) = ±
∫ √

2m/r

1− 2m/r
dr = ±2

√
2mr ± 2m ln

(
1−

√
2m/r

1 +
√

2m/r

)
; (4.21)

FKS(r) = ±
∫

2m/r

1− 2m/r
dr = ±2m ln(r − 2m); (4.22)

FEF (r) = ±
∫

1

1− 2m/r
dr = ±r ± 2m ln(r − 2m). (4.23)

These three functions all share the feature of being somewhat unpleasantly be-

haved near spatial infinity. Specifically, for these three coordinate systems one

has (perhaps unexpectedly) to make unboundedly large alterations to the time

coordinate near spatial infinity, where the gravitational field is weak. Such be-

haviour, while not fatal, is perhaps somewhat annoying. We shall first seek

to ameliorate it by keeping the function h(r) finite and localised to a com-

pact region thereby keeping the function f(r) integrable, and the function F (r)

bounded.
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4.2 Static black and white horizons:

Local analysis

We now let h(r) be a bump function. At the horizon, pick h(2m) = ±1, with
h(r) being some finite smooth function of compact support. Then we have a

version of the Schwarzschild line element presented with localised version of

horizon penetrating coordinates. At r = 2m there is either a black or white

horizon depending on the sign of h(2m). This line element goes to the standard

Hilbert form of Schwarzschild at some finite r, (both large and small r). That

is: support{h(r)} ⊆ [r<, r>], with 2m ∈ (r<, r>). This is still a Ricci-flat

coordinate transformed version of Schwarzschild:

ds2 = −
(
1− 2m

r

)
dt2 − 2h(r)drdt+

[
1− h(r)2

1− 2m/r

]
dr2 + r2dΩ2. (4.24)

Note specifically that to get horizon-penetrating coordinates, (and so obtain

either an explicitly black or explicitly white horizon) one only needs to adjust

the coordinates in the immediate vicinity of the horizon. “Global” changes to

the coordinates are by no means necessary.

We check the ingoing/outgoing null curves to verify that the coordinates are

in fact horizon penetrating. We have

−
(
1− 2m

r

)
dt2 − 2h(r)drdt+

[
1− h(r)2

1− 2m/r

]
dr2 = 0. (4.25)

Therefore, rearranging to obtain a differential equation in dr/dt,

−
(
1− 2m

r

)2

− 2

(
1− 2m

r

)
h(r)ṙ +

[
1− h(r)2

]
ṙ2 = 0. (4.26)

This is an easily solved quadratic for ṙ, leading to

ṙ = ∓1− 2m/r

1± h(r)
. (4.27)

Depending on the (implicit) sign choice hiding in h(2m) = ±1, and the explicit

sign choice ± multiplying h(r), one of these null curves will be trapped at

the horizon (with ṙH = 0). The other null curve crosses the horizon with a

coordinate speed that is formally 0/0, and so must be determined by using

l’Hôpital’s rule:

ṙH = ± 1

2m h′(2m)
. (4.28)
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Therefore, we find these are generically horizon-penetrating coordinates (At

least one of the radial null curves has non-zero coordinate velocity at horizon

crossing). The net amount by which we have to adjust the time coordinate to

achieve this localised horizon-penetrating behaviour is

∆F = F (∞)− F (0) = F (r>)− F (r<) =

∫ r>

r<

h(r)

1− 2m/r
dr =

∫ r>

r<

r h(r)

r − 2m
dr.

(4.29)

The näıve singularity at the horizon r = 2m is an integrable singularity, so the

net shift in the time coordinate is finite.

4.3 Black-to-white bounce: Compact transition

region

We now wish to move away from consideration of static black and white holes,

and explore a classical model of a black-to-white hole transition. To do so, we

make the following change:

h(r)→ s(t) h(r). (4.30)

This is no longer just a coordinate transformation. The spacetime is no longer

Ricci-flat. Specifically, we consider the metric

ds2 = −(1− 2m/r)dt2− 2s(t)h(r)drdt+

[
1− s(t)2h(r)2

1− 2m/r

]
dr2 + r2dΩ2. (4.31)

We again take h(2m) = ±1, and take h(r) to be of compact support, i.e.,

support{h(r)} ⊆ [r<, r>]. Furthermore we shall also assume that 1− s(t)2 is of

compact support with s(t)→ ±1 at large |t|. In fact we shall take s(+∞) = ±1
and s(−∞) = ∓1, since we want to enforce a sign flip in s(t) to enforce a black-

to-white transition. That is, support{1− s(t)2} ⊆ [t<, t>]. This in turn implies

support{ṡ(t)} ⊆ [t<, t>]. We again emphasize: this geometry is not Ricci flat

— it is no longer just a coordinate transformation.1

4.3.1 Einstein tensor

Since the spacetime is not just a coordinate transformation of the Schwarzschild

metric, the Einstein tensor and Ricci tensor will now be non-zero. We calculate

the Einstein tensor, (using Maple), its non-zero radial-temporal components are

Gtt = 0; Grr = −
2ṡ(t)h(r)

r(1− 2m/r)
; (4.32)

while the orthonormal angular components are

Gθ̂θ̂ = Gϕ̂ϕ̂ =
d2[s2(t)]/dt2 h(r)2

2(1− 2m/r)
+h′(r)ṡ(t)− (1−m/r)h(r)ṡ(t)

r(1− 2m/r)
. (4.33)

1Somewhat similar constructions can be found in refs [179, 182].
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The Ricci scalar is

R = −d2[s2(t)]/dt2 h(r)2

(1− 2m/r)
−2h′(r)ṡ(t)+

2(2− 3m/r)h(r)ṡ(t)

r(1− 2m/r)
. (4.34)

The Einstein tensor is of compact support — it is only non-zero where both

h(r) and the derivatives {ṡ(t), s̈(t)} are non-zero. Note that both the metric

determinant, g = −r4 sin2 θ, and the volume element,
√
−g = r2 sin θ, are

independent of both h(r) and s(t).

4.3.2 Finite action for the bounce

The contribution to the action from the transition region is finite. First we

note

S =

∫ √
−g R d4x =

∫ √
−g R d4x = 4π

∫
r2 R dtdr. (4.35)

But the t integration yields∫ +∞

−∞

(
d2[s2(t)]

dt2

)
dt =

[
d[s2(t)]

dt

]+∞

−∞
= 0− 0 = 0, (4.36)

and ∫ +∞

−∞

(
ds(t)

dt

)
dt = [s(t)]+∞

−∞ = ±1− (∓1) = ±2. (4.37)

Therefore,

S = ±4π
∫

r2
[
4h′(r) +

4(2− 3m/r)h(r)

r(1− 2m/r)

]
dr. (4.38)

Now, integrating by parts in the radial coordinate yields∫ +∞

−∞
r2h′(r)dr =

[
r2h(r)

]+∞
−∞ −

∫ +∞

−∞
2rh(r)dr = −

∫ +∞

−∞
2rh(r)dr . (4.39)

Thus,

S = ±4π
∫

r

[
−8h(r) + 4(2− 3m/r)h(r)

(1− 2m/r)

]
dr. (4.40)

After some algebra, this is explicitly:

S = ±16πm
∫ r>

r<

h(r)

(1− 2m/r)
dr = ±16πm

∫ r>

r<

r h(r)

(r − 2m)
dr . (4.41)

(The näıve singularity at r = 2m is again an integrable singularity.)
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While the interpolating spacetime geometry is now dynamic —not static—

the total action can be written in terms of the time-shift (4.29) at late and early

times, (when the geometry is static), as

S = ±16πm ∆F. (4.42)

The reason the finiteness of the action is important is that finite-action config-

urations can easily contribute non-destructively to the Feynman path-integral.

(The contributions of infinite action configurations tend to ‘wash out’ due to

destructive interference.)

4.3.3 Zero action for the bounce

Perhaps unexpectedly, by making a suitable (symmetric) choice for h(r) we can

even drive the action of our black-to-white bounce to zero, not just keeping it

finite.

For example: Take r> = 2m+∆, and r< = 2m−∆, and subsequently choose

h(r) = ±(2m/r)B(|r − 2m|); where B(x) is a bump function with B(0) = 1

and B(∆) = 0; in this static case this leads to coordinates that are locally

Kerr–Schild in the immediate vicinity of the horizon.

Then for the action of the black-to-white bounce, after integrating out the

time dependence, from (4.41) we have:

S = ±16πm
∫ r>

r<

h(r)

(1− 2m/r)
dr = ±16πm

∫ 2m+∆

2m−∆

(2m/r)B(|r − 2m|)
(1− 2m/r)

dr

(4.43)

= ±32πm2

∫ 2m+∆

2m−∆

B(|r − 2m|)
(r − 2m)

dr = ±32πm2

∫ +∆

−∆

B(|z|)
z

dz. (4.44)

Here we have defined z = r−2m. This integral obviously vanishes by symmetry,

but for clarity, being careful with the integrable singularity

S ∝ lim
ϵ→0

(∫ −ϵ

−∆

B(|z|)
z

dz +

∫ ∆

ϵ

B(|z|)
z

dz

)
. (4.45)

Thus,

S ∝ lim
ϵ→0

(∫ ∆

ϵ

B(|z|)
z

dz −
∫ ∆

ϵ

B(|z|)
z

dz

)
= 0. (4.46)

We may therefore conclude that one can even construct a zero-action compact

support Lorentzian “bounce” that converts black holes to white holes (and vice

versa). Note here, that in (4.45), we are taking the standard Cauchy principal

value. One may argue that this integral does not in fact result in zero and will

have a complex part added to it. This is the case if one uses ‘Feynman’s iϵ

prescription’[202] which is common in quantum field theories [203] but not so

common in relativity.
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4.3.4 Radial null curves

The radial null curves in this time dependent geometry are specified by

−(1− 2m/r) dt2 − 2s(t)h(r)drdt+

[
1− s(t)2h(r)2

1− 2m/r

]
dr2 = 0. (4.47)

That is

−(1− 2m/r)2 − 2s(t)h(r)(1− 2m/r)ṙ + [1− s(t)2h(r)2]ṙ2 = 0. (4.48)

This is a simple quadratic for ṙ, implying

dr

dt
= ± (1− 2m/r)

[1∓ s(t)h(r)]
. (4.49)

Unfortunately this ODE is not separable, and is not easy to solve.

The radial null tangent vectors to the null curves are of the form

ka ∝ (1, ṙ; 0, 0) =

(
1,± (1− 2m/r)

[1∓ s(t)h(r)]
; 0, 0

)
. (4.50)

In regions where s(t)2 = 1, and using the fact that we always impose h(2m) = 1,

one or the other of these radial null curves will be horizon penetrating. (In

particular at early and late times, where |s(t)| = 1, one or the other of the null

curves will penetrate the näıve horizon.)

During the bounce we can, for simplicity, assert |s(t)| < 1, and in fact s(t)

must, by construction, pass through zero. We can also for simplicity assert

|h(r)| ≤ 1, with equality only at the näıve horizon r = 2m. Under these

conditions the denominator 1∓ s(t)h(r) is always non-zero. Both incoming and

outgoing null rays will be (temporarily) trapped at the näıve horizon, both with

ṙH = 0 — at least until the end of the bounce — when, as per our analysis

above, one or the other null curve can cross r = 2m with non-zero coordinate

velocity.

4.3.5 Energy conditions

While it is by now clear that the classical point-wise energy conditions of general

relativity are not truly fundamental [204, 205, 206], (since they are all violated

to one extent or another by quantum effects [207, 208, 209, 210, 211]) they

are nevertheless extremely good diagnostics for detecting “unusual physics”.

This merits a very careful examination [212, 213, 214, 215]. The status of

integrated energy conditions [216, 217, 218] and quantum inequalities is much

more subtle [219]. In the current context it is most useful to focus on the null

energy condition (NEC) and trace energy condition (TEC).
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NEC: The condition for the null energy condition (NEC) to hold isGab k
a kb ≥

0. The quantity Gab k
a kb can be easily calculated for radial null curves, and in

this case is:

Gab k
a kb ∝ Grr

(
(1− 2m/r)2

[1∓ s(t)h(r)]2

)
= −2ṡ(t)h(r)(1− 2m/r)

[1∓ s(t)h(r)]2
. (4.51)

Since the denominator is non-negative we see

Gab k
a kb ∝ −ṡ(t)h(r) (1− 2m/r). (4.52)

Regardless of the sign of ṡ(t), or the sign of h(2m), the product ṡ(t) (1− 2m/r)

will certainly flip sign as one crosses the näıve horizon at r = 2m. Therefore,

the NEC is definitely violated in parts of the black-to-white transition region.

Furthermore, this automatically implies that the WEC, SEC, and DEC are also

violated in parts of the black-to-white transition region.

TEC: The trace energy condition (TEC) is important mainly for historical

reasons [204], though there is currently some resurgence of interest in this long-

abandoned energy condition. (The TEC is useful for ordinary laboratory mat-

ter, but is already known to be violated by the equation of state for the mate-

rial in the deep core of neutron stars, and in fact for any “stiff” system where

w ≡ p/ρ exceeds 1/
√
3.)

The TEC asserts

gab T
ab = −(ρ− 3p) ≤ 0. (4.53)

For the Einstein tensor this becomes gabG
ab ≤ 0, and for the Ricci scalar

R ≥ 0. But this would imply a positive semidefinite action, and we know

that the black-to-white transition region is non-vacuum and can be chosen to

have zero action. Therefore, there must certainly be regions in the compact

black-to-white transition region where the TEC is violated.

ANEC: Analyzing the averaged null energy condition (ANEC) would require

one to trace the null geodesics through the bounce region, and to unambiguously

identify a suitable null affine parameter. Unfortunately, this is one of those

situations where (despite recent progress [220]) these issues are still in the “too

hard” basket.

Overall, we see that key point-wise energy conditions are definitely violated

by the black-to-white bounce. This is an invitation to think carefully about the

underlying physics.
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4.4 Quantum implications

Despite considerable efforts, we do not as yet have a fully acceptable and widely

agreed upon theory of quantum gravity. On the other hand, there are plausible

and tolerably well accepted partial models — such as approximations based

on semi-classical gravity (and quantized linearized weak-field gravity for that

matter). One issue on which there is widespread agreement is the use of the

Feynman functional integral formalism in the semi-classical regime.

One of the key features of the Feynman functional integral formalism is

that quantum amplitudes are dominated by classical configurations (plus fluc-

tuations). In the current context, the fact that we have found zero-action

black-to-white bounces, combined with the fact that the usual classical vacuum

(Schwarzschild) is also zero-action, implies that these configurations reinforce

constructively. If the black-to-white bounces are to be quantum mechanically

suppressed, such suppression will have to come from the quantum fluctuations,

not from the leading order term.

This situation is somewhat reminiscent of the role played by instanton con-

tributions to the QCD vacuum [221, 222, 223, 224]. There are significant dif-

ferences, zero-action versus finite action, Lorentzian signature versus Euclidean

signature — but crucial key features are similar. Indeed, the existence of lo-

calized zero-action configurations is not all that unusual, also occurring in flat

Minkowski space classical field theories [225], though their implications have

not been particularly well studied.

This suggests the possibility that astrophysical black holes (the “cold, dark,

and heavy” objects detected by astronomers) might be in a quantum superpo-

sition of black hole and white hole states. For somewhat similar suggestions,

differing in detail, see also [173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183,

184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195]. Finally one could

speculate that this is evidence in favour of quantum physics becoming domi-

nant in near-horizon physics. This was, for many decades, (pre-2000 CE) a

minority opinion within the general relativity community, as there was a broad

but not universal consensus that quantum physics should only come into play

in the deep core where curvature reaches Planck scale values. More recently

(post-2000 CE) the situation is more nuanced.

One of the main counterweights to that prior (pre-2000 CE) consensus opin-

ion is the “gravastar” model [129, 128, 226, 130, 131, 227, 228, 229, 230, 231,

232, 133], where quantum physics kicks in at/near the would-be horizon. Sim-

ilarly for the “fuzzball” model, stringy physics [233, 234, 235, 236, 237, 238]

kicks in at/near the would-be horizon. Furthermore, for the “firewall” pro-

posal [239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249] something again

happens at/near the would-be horizon. While these proposals typically severely

impact on the spacetime geometry throughout the entire interior region, the
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novel construction we are dealing with affects only the near-horizon spacetime

geometry.

4.5 Discussion

In this chapter we wanted to investigate if a simple and compelling classical

model of a black-to-white hole transition could be found. We began by perform-

ing a simple coordinate transformation of the standard Schwarzschild metric by

modifying the radial coordinate. This resulted in the line element

ds2 = −
(
1− 2m

r

)
dt2 − 2h(r)drdt+

[
1− h(r)2

1− 2m/r

]
dr2 + r2dΩ2 . (4.54)

For specific choices of h(r) this returns the Schwarzschild spacetime in other well

known coordinates, such as the Painlevé–Gullstand, Kerr–Schild, and Eddington–

Finkelstein coordinates. By imposing the restriction h(2m) = ±1 we showed

that this line element can model a classical black or white hole where one or

the other of the null curves are horizon penetrating with non-zero coordinate

velocity

ṙH = ± 1

2m h′(2m)
. (4.55)

By choosing h(r) to be of compact support, we demonstrated that we could

confine the non-trivial aspects of black and white horizons to a compact radial

region straddling the näıve horizon r = 2m.

By introducing a time-dependent function, s(t), we then produced a simple

classical model for a black-hole-to-white-hole transition. This spacetime, how-

ever, was no longer just a coordinate transformation of Schwarzschild spacetime.

The introduction of s(t) led to the following line element

ds2 = −(1− 2m/r)dt2− 2s(t)h(r)drdt+

[
1− s(t)2h(r)2

1− 2m/r

]
dr2+ r2dΩ2 . (4.56)

The non-static spacetime in these coordinates was found (at early and late

times) to have horizon penetrating null curves with coordinate velocity

ṙH = ± 1

2m h′(2m)
. (4.57)

During the bounce itself the behaviour of the null curves is much trickier.

We further showed that the action in the transition region was finite,

S = 16πm

∫ r>

r<

h(r)

(1− 2m/r)
dr . (4.58)

More importantly though, this action can be arranged to be zero by carefully

choosing h(r). This proves to be a significant result as this action could then

be added to the Feynman path integral and have no impact on any quantum

amplitudes.
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For tractability and ease of exposition the current analysis has focussed on

the Schwarzschild spacetime, though there is no real difficulty (apart from te-

dium) in working with the outer horizon of non-extremal Reissner–Nordström

or indeed any spherically symmetric non-extremal black hole. Extremal black

holes would seem to require a more subtle analysis. In a different direction,

there are certainly purely technical issues arising in dealing with non-extremal

Kerr and Kerr–Newman, a topic we hope to turn to in the future. We do

not expect to encounter any fundamental issues with non-extremal Kerr and

Kerr–Newman, but the extremal case is again likely to be problematic.
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Chapter 5

The Kerr Memory Effect at Null
Infinity

Over the last decade or so, various — seemingly disconnected — parts of physics

have been shown to be mathematically connected in the infrared regime. The

connections we will investigate here are one leg of the ‘Infrared Triangle’ [25] (see

Figure 5.1). This leg illustrates the gravitational memory effect and asymptotic

symmetries of null infinity are related. The infrared triangle may be a step

forward in understanding quantum gravity. In particular, the memory effect

will potentially be observable in the near future due to missions such as LISA

[250]. Therefore, further development of these formalisms may lead to true

observations of the nature of quantum gravity.

Figure 5.1: The infrared triangle from ref [25]: Three different areas of physics
are realised as one in the infrared limit (at null infinity).
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In this chapter we compute the memory effect due to a gravitational wave

striking a Kerr black hole as seen by an observer at null infinity. This is done

by working in Bondi–Sachs coordinates. It was shown by Hawking, Perry, and

Strominger (HPS) that the memory effect due to a gravitational shockwave is

seen as a pure BMS supertranslation from null infinity. Hence, it is of interest to

compute the supertranslated Kerr solution in Bondi–Sachs coordinates. Finally,

the gravitational wave is said to implant soft supertranslation hair on the event

horizon of the black hole which carries superrotation charge. We will explicitly

calculate the change in superrotation charge on the event horizon due to the

supertranslation hair.

Since the observational discovery of gravitational waves nearly a decade ago

by the Laser Interferometer Gravitational-Wave Observatory (LIGO) (and other

detectors such as Virgo and KAGRA), many have wondered about detection

of the gravitational memory effect — the permanent alteration of a system

due to a transient gravitational wave (for instance, see Figure 5.2). The mem-

ory effect has been discussed in the literature since 1972, first introduced by

Zel’dovich and Polnarev [251], then greatly expanded upon in the last few

decades by Christodoulou and others [252, 253, 254, 255, 256, 257, 258]. In

the past few years there has been a deep mathematical connection made be-

tween the gravitational memory effect and a set of infinite symmetries at null

infinity [259, 260, 25, 27, 26]. These symmetries are associated to a set of trans-

formations known as supertranslations and superrotations, collectively known as

supertransformations. In fact, when two particles are left permanently displaced

by a gravitational wave, the initial and final states are related by a supertrans-

lation.

This group of infinite symmetries has been known of for nearly 60 years, first

introduced by Bondi, van der Burg, Metzner and Sachs [261, 262, 263, 264] -

known as the BMS group1. In recent years, there has been further research

and development of the BMS algebra [265, 266, 267] and the charges associated

with supertranslations and superrotations. These charges have led to a hope

of better understanding the ‘scattering problem’ in general relativity [259, 25].

Furthermore, it seems that charges associated with supertransformations may

play an important role in resolving — part of — the information loss problem

[268, 26, 27]. This is addressed by asserting that gravitational waves implant

soft supertranslation hair on the event horizons of black holes. The soft hair

is then evaporated off to null infinity, thereby preserving information from past

null infinity through to future null infinity. Therefore, detection of the memory

effect may offer a better understanding of abstract mathematical ideas and how

they may be physically realised. Unfortunately, the memory effect will likely

not be observationally detected until after the Laser Interferometer Space An-

1Unfortunately, van der Burg’s name is often forgotten.
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Figure 5.2: Particle configurations as a gravitational wave passes (time running
left to right). The memory effect results in the final configuration differing from
the initial. From ref [257]

tenna (LISA) [269, 250] is launched.

Here we will discuss the effects of a transient gravitational shockwave striking

the Kerr black hole as seen from an observer at future null infinity2. We follow

the calculations of HPS and others [26, 25, 270] who have discussed the effects

of a transient shock wave striking Schwarzschild and Reissner Nordström black

holes. These authors show that the deformation of a black hole due to a gravi-

tational shockwave (the memory effect) is seen as a pure BMS supertranslation

from future null infinity3. Hence, we will compute the explicit supertranslated

Kerr solution in Bondi–Sachs coordinates.

We will begin by summarising the expanded Bondi–Sachs metric, asymp-

totic Killing vectors which generate symmetries that have associated charges,

and the relationship between the memory effect and supertranslations. In sec-

tion 5.2 we will discuss the Kerr solution in general Bondi–Sachs coordinates

introduced by Fletcher and Lun [271] and put it in the Bondi–Sachs gauge.

In section 5.3 with the Kerr solution in the Bondi–Sachs gauge we will find

the supertranslated metric functions. Finally, in section 5.4 we will calculate

the supertransformation charges associated to the supertranslation hair that is

implanted on the Kerr black hole due to the gravitational shockwave.

5.1 The BMS Group

In 1962 Bondi, Metzner, van der Burg and Sachs (BMS) [261, 262, 264] were

attempting to find a group of diffeomorphisms at null infinity which acted non-

trivially on asymptotic data. BMS found an infinite dimensional group which

contained the Poincaré group as a subgroup [25, 272, 273, 267]. This group has

an infinite amount of generators known as supertransformations [267, 25, 27].

This was a surprising result as it meant that general relativity did not reduce

to special relativity in the weak field limit and the symmetries found at null

infinity were not those of the Poincaré group alone.

2It is worth mentioning that we do not have an effective operational answer for “where is
null infinity”, nor do we claim to. It is an interesting question to ask, however. How does one
define an operational notion of null infinity and how “far one has to be from the source” to
observe something that is being radiated off to null infinity.

3There are additional effects that are not seen from null infinity, and this will be discussed
in subsection 5.1.4.
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In physics — since the 1920s, most of the fundamental interactions can be

described as ‘gauge theories’. The transformations between gauges are called

gauge transformations. These transformations form a gauge group (a specific

type of Lie group), which has an associated Lie algebra of group generators.

These group generators have an associated gauge field and the gauge field is

used in the Lagrangian of a theory to ensure that the theory is gauge invariant.

In general relativity, the gauge symmetry is diffeomorphism invariance.

In the literature, asymptotic gauge symmetry groups (AGS) are defined

as the quotient group of allowed gauge symmetries and trivial gauge symme-

tries [25]. The ‘need’ for asymptotic symmetry groups arises from noting that

Noether’s theorem only applies to on-shell physics. The use of asymptotic sym-

metries allows one to generalise Noether’s theorem to examine symmetries of

spacetime that may occur off-shell [274]. In the case of BMS, the asymptotic

boundary they wished to investigate was null infinity.

When investigating asymptotic symmetries we impose boundary conditions

that reflect the nature of a spacetime at the boundary. These boundary condi-

tions should be weak enough to allow all physically possible solutions to exist,

but also strong enough that charges — i.e., globally conserved quantities — are

finite and well defined [25, 272]. In general relativity, however, it is difficult

to impose boundary conditions and therefore determine how a system should

behave at the boundary. When considering spatial infinity, i0, the AGS are the

Poincaré group symmetries which consist of Lorentz transformations and space-

time translations. In terms of Noether’s theorem, the ADM mass is defined by

symmetries at i0 while the Bondi mass is defined by symmetries at future null

infinity, I+.

Definitions of the BMS group

In general relativity, there is no global conservation of 4-momentum. This is

because the extended form of energy–momentum conservation,

∇ν T
µν = 0,

is not integrable. However, if a spacetime possesses a Killing vector, ξµ then the

current, Jµ = T µνξν admits a conserved charge. Therefore, we say that the ex-

istence of a Killing vector field results in the existence of continuous symmetries

which imply a conserved charge via Noether’s theorem. Furthermore, Killing

vectors of a spacetime for a group of symmetries. Under the Lie bracket, these

Killing vectors or more generally, symmetry generators, generate a Lie algebra.

For instance, in the case of Minkowski space, the global Killing vectors form

the Poincaré group and the commutation relations of the Killing vectors gener-

ate the Poincaré algebra. The BMS group, is an infinite dimensional symmetry

group formed by an infinite number of asymptotic Killing vectors or supertrans-

formations. These Killing vectors generate the bms4 algebra.
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We can further denote the BMS group in abstract mathematical notation

[25, 275],

BMS = S ⋊ SO(1, 3).

Note that SO(1, 3) is a representation of the Lorentz group and S is the group of

supertranslations. Here ⋊ is the semi-direct product which simply means that

elements of the BMS group are pairs of elements in the Lorentz transformation

group, and the group of supertranslations. To compare this definition with

something more familiar, we can define the Poincaré group as [267]

Poincaré = T4 ⋊ SO(1, 3).

Here T4 is the group of spacetime translations.

5.1.1 The Bondi–Sachs Metric

Bondi, van der Burg, Metzner, and Sachs [261, 262, 264] wanted to define

a concept of asymptotic flatness at null infinity. The falloffs needed to be

restrictive enough that unphyiscal spacetimes — such as those with infinite

energy — would be ruled out, yet not so restrictive such that physical spacetimes

and gravitational waves would be ruled out. While the falloffs may differ in the

literature, we will use the choice made by BMS [261, 262, 264, 25]:

guu = −1 +O(r−1), gur = −1 +O(r−2), guA = O(r0),
gAB = r2γAB +O(r), grr = grA = 0 .

(5.1)

The class of allowed asymptotic line elements for these falloffs is given by

ds2 =− du2 − 2dudr + r2γABdΘ
AdΘB

+
2mbondi

r
du2 + rCABdΘ

AdΘB +DBCABdudΘ
A

+
1

16r2

{
CFDCFD

}
dudr

+
1

r

( 4

3
NA +

4u

3
∂Ambondi −

1

8
∂A

{
CFDCFD

})
dudΘA

+
1

4
γAB

{
CFDCFD

}
dΘAdΘB + . . .

(5.2)

where ΘA ∈ {θ, ϕ} and the uppercase Latin indices run over θ, ϕ. DA is the

covariant derivative on the 2–sphere with respect to the 2–sphere metric, γAB.

The function mbondi is the Bondi mass aspect, which is in general a function of u

and the angles, θ , ϕ. This can be used to obtain the Bondi mass after integrating

mbondi over the entire 2–sphere at null infinity. In the case of the Kerr spacetime,

the Bondi mass is simply, M , the mass of the black hole. NA is the angular
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moment aspect. Contracting NA with the generator of rotations and integrating

over the entire sphere is related to the total angular momentum of the spacetime.

CAB is another field which is symmetric and traceless (γABCAB = 0). The

retarded time derivative of CAB is in fact the Bondi news tensor,

NAB := ∂uCAB . (5.3)

The news tensor is the gravitational analogue of the Maxwell field strength and

its square is proportional to the energy flux across I+ [25, 260].

It is important to note that NA is defined slightly differently in various parts

of the literature — usually depending on the asymptotic expansion (5.2). For

instance, Comperé in refs [276, 277] has a decomposition that leads to NA being

defined as4

NA := − 3

32
∂A

(
CBCC

BC
)
− 1

4
CABDCC

AC . (5.4)

However, Strominger in ref [25] and Comperé in ref [260] uses the decomposition

(5.2), which leads to NA being defined as

2

3
NA −

1

16
∂A

(
CBCC

BC
)
:= g(1)uA . (5.5)

Here, g
(1)
uA corresponds to the r−1 expansion in guA. We will opt to use the

second definition as the superrotation charge will not be changed. This can be

seen explicitly in the case of the Kerr solution.

5.1.2 Asymptotic Killing Vector

Symmetries of a spacetime are associated to Killing vectors of that spacetime.

Hence, before discussing the charges associated with symmetries in our space-

time, we must first briefly discuss the Killing vectors of our spacetime - or

rather, the asymptotic Killing vectors. The most general Killing vector, ξ, that

preserves the metric (5.2) to leading order is [25]

ξα∂α := f∂u +

[
− 1

r
DAf +

1

2r2
CABDBf +O

(
1

r3

)]
∂A

+

[
1

2
D2f − 1

r

{
1

2
DAfDBC

AB +
1

4
CABDADB f

}
+O

(
1

r2

)]
∂r .

(5.6)

Here, f is a function of the angular coordinates (θ, ϕ) only and D2 is the stan-

dard Laplacian on the 2–sphere. However, since the analysis conducted here is

4This corresponds to pure vacuum and the mass contribution is omitted.
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only a calculation to linear order — as done by HPS [26], the Killing vector is

truncated:

ξα∂α = f ∂u +
1

2
D2f∂r −

1

r
DAf∂A . (5.7)

This does indeed beg the question of whether a second order analysis would

still show that the memory effect — as seen from null infinity — is still a

supertranslation with the Killing vector (5.6).

5.1.3 Associated Charges and Charge Conservation

It is well known that the symmetries of spacetime are associated to conserved

charges via Noether’s theorem. Before the discovery of the BMS group, the

largest symmetry group was the Poincaré group, which has associated con-

served charges such as energy and momentum. The BMS group, which is an

infinite dimensional group of symmetries at null infinity also has charges asso-

ciated to supertranslations and superrotations.

Supertranslation charge and its conservation is given by5 [25]

Q+
f =

1

4π

∫
I+

d2Θ
√
γ fmbondi =

1

4π

∫
I−

d2Θ
√
γ fmbondi = Q−

f . (5.8)

Here f is a function of angular coordinates6 and can be thought of as the gener-

ator of supertranslations. In general, the supertranslation charges will depends

on advanced/retarded time. This is simply due to mbondi — in general — de-

pending on advanced/retarded time. This conservation ‘law’ is a statement

about the total energy of the system.

5Note that integration is carried out over the 2–sphere at null infinity.
6Note that while f is often chosen to be a spherical harmonic function, it is not limited to

be only a spherical harmonic.
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Figure 5.3: This Penrose diagram illustrates how charges are carried from past
null infinity to the future. The gravitational wave travelling from v0 on I−
strikes the horizon (H+) and the horizon charges are then evaporated off to the
future, at I++ . Thus, charges are preserved from the past to the future even
with the presence of a black hole in the spacetime.

Superrotation charge and its conservation is given by7

Q+
Y =

1

8π

∫
I+

d2Θ
√
γ Y ANA =

1

8π

∫
I−

d2Θ
√
γ Y ANA = Q−

Y , (5.9)

where Y A is an arbitrary vector field on the 2–sphere 8. In the case that Y A

is one of the 6 global conformal Killing vectors on the 2–sphere (5.9) expresses

conservation of ADM angular momentum and boost charges.

The notation used here indicates that supertransformation charge at future

null infinity, I+ should match the supertransformation charge at past null infin-

ity, I−. Furthermore, these matching conditions are a statement about having

a well-posed scattering problem in general relativity (see Figure 5.3). The exis-

tence of these conserved charges is — at least in principle — verifiable with the

gravitational memory effect, which may be detectable in the near future.

7This definition of superrotation charge follows from using (5.5) as our definition of NA.
In the case that one uses (5.4), superrotation charge is expressed via [266]

QY =
1

16π

∫
d2Θ
√
γ Y A

[
2NA +

1

16
∂A

(
CBCC

BC
)]

.

8As is the case for f , the components of Y A are often chosen to be spherical harmonic
functions, however, the components of Y A are not limited to be spherical harmonics.
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5.1.4 The Black Hole Memory Effect and Supertransla-
tions

During the last decade there has been a lot of discussion regarding the gravita-

tional memory effect and the direct correspondence of this effect with the BMS

group — for instance, one may see refs [25, 26, 27, 260, 276, 278, 279, 280]. It

was shown by HPS [26] that a deformation due to a shockwave defined via a

impulse energy-momentum tensor of the form 9

Tvv =
µ+ T (z)

4πr2
δ(v − v0), (5.10)

where µ is the monopole contribution of the shock wave and T (z) characterises

the angular profile of the wave is equivalent to a BMS supertranslation at null

infinity (for a Schwarzschild black hole). Such a supertranslation is given by tak-

ing the Lie derivative of the spacetime metric — in this case, the Schwarzschild

metric — along the asymptotic Killing vector10,

ξµ∂µ = f∂v −
1

2
D2f∂r +

1

r
DAf∂A . (5.11)

However, as HPS [26] state, supertranslations only equate to part of the defor-

mation a gravitational wave would produce when striking a black hole.

Intuitively, gravitational waves, which carry energy, should impart some of

this energy to the black hole it strikes and it should alter the mass and/or

(angular) momentum. In fact, it was shown by HPS [26] that there was a change

in the mass of a Schwarzschild black hole due to the monopole contribution (µ)

of the shockwave. Therefore, the full11 “memory effect” due to such a shockwave

was written as12

δgµν = Lξgµν +
2µ

r
δvµδ

v
ν . (5.12)

Here δgµν refers to the permanent change in the spacetime due to a gravitational

wave. Therefore, the ADM mass of the hairy Schwarzschild black hole would be

m = M + µ after the gravitational shockwave strikes the black hole. However,

while the mass of the black hole may change, the Bondi mass of the black hole

— at least at linear order — does not change. This further emphasises that the

memory effect is not entirely captured by BMS supertransformations. However,

the black hole memory effect as seen from null infinity is entirely captured by

BMS supertranslations.

9If one wishes to see the full details of this derivation, they may see page 137 of Strominger’s
lecture notes [25].

10Note the sign change here due to changing from retarded time to advanced time.
11The word full is used here, however, it is worth noting that this is only an analysis at

linear order.
12The Heaviside terms here have been neglected as we are assuming the shockwave has

already struck the black hole.
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This discussion is important when analysing the calculations in this chapter.

Applying the same gravitational shockwave (5.10) used in [26, 25, 270] to the

Kerr solution is a non-trivial task and thus one does not know for certain what

the other components to the memory effect will appear. A common suspicion

within the community is that there may be another monopole contribution to

the mass term that appears in the guϕ component of the metric. This would

imply a change in the angular momentum of the Kerr black hole due to a grav-

itational shockwave — which will not be seen at null infinity by observation of

the superrotation charge13.

13Recall that if one changes the ADM mass of a rotating black hole, this changes the ADM
angular momentum. This would, therefore, change the behaviour at spatial infinity, i0, but
not null infinity, I.
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5.2 The Kerr Metric

We will now discuss the Kerr metric in general Bondi–Sachs coordinates. The

Kerr solution was first introduced in generalised Bondi–Sachs coordinates by

Fletcher and Lun [271]. They were interested in investigating gravitational

radiation in the Kerr spacetime. As we are interested in the behaviour of this

solution at large r, i.e., expanded in powers of 1/r, we shall only present the

asymptotic line element14 found in the appendix of ref [271]:

ds2 =−

(
1− 2M

r̃

)
du2 − 2

(
1 +

a2 cos2 θ − 1
2
a2

r̃2

)
dudr̃

− 2 cos θ

(
a− 2aM + 2a2 sin θ

r̃

)
dudθ − 2

(
2aM sin2 θ

r̃

)
dudϕ

+ r̃2

(
1 +

2a sin θ

r̃
+

2a2 − 3a2 cos2 θ

r̃2

)
dθ2

+ r̃2

(
sin2 θ − 2a sin θ cos2 θ

r̃
+

a2 − 3a2 cos2 θ + 3a2 cos4 θ

r̃2

)
dϕ2 + . . .

(5.13)

The line element given in (5.13) does not, however, satisfy the Bondi-Sachs

gauge. This gauge is reached by requiring the coordinate, r, to be the “luminos-

ity distance” [261]. This is, however, misleading as the term luminosity distance

means something quite different in cosmology. In fact, r, is simply chosen to be

an areal coordinate that varies along null rays and satisfies det(gAB) = r4 sin2 θ.

This is achieved by defining15,

r̃ := r +
a

2

cos 2θ

sin θ
+

a2

8

(
4 cos 2θ +

1

sin2 θ

)
1

r
. (5.14)

With this radial coordinate the line element (5.13) may be recast into the

14We have chosen to not list the gθϕ term here since it is of order O(1/r). Comparing this
to (5.2) it is clear that this term will be of subleading order and not used in the analysis.

15In fact, this is not the only reason this transformation is chosen. This coordinate trans-
formation also leads to the trace of CAB vanishing and the metric taking the form (5.2).
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following form16:

ds2 = −

(
1− 2M

r

)
du2 − 2

(
1− a2

16 sin2 θ

1

r2

)
dudr

− 2

(
− a

2

cos θ

sin2 θ
− a cos θ

4
{8M +

a

sin3 θ
}1
r

)
dudθ − 2

(
2aM sin2 θ

r

)
dudϕ

+

(
r2 +

a

sin θ
r +

a2

2 sin2 θ

)
dθ2 +

(
r2 sin2 θ − a sin θ r +

a2

2

)
dϕ2 + . . .

(5.15)

By comparing the expanded form of Kerr solution in the Bondi-Sachs gauge in

(5.15) with (5.2) we may read off NA, CAB, and CABC
AB for the Kerr solu-

tion.

CABC
AB ≡ 2a2

sin2 θ
;

CABdx
AdxB ≡ a

sin θ
dθ2 − a sin θ dϕ2;

Nθ ≡ 3aM cos θ ;

Nϕ ≡ −3aM sin2 θ;

mbondi ≡M .

(5.16)

One may note here that the coordinate transformation (5.14) is singular when

sin θ = 0. However, this is in fact only a coordinate singularity as one may con-

firm by checking both the Ricci and Kretschmann scalars. Both of these scalar

invariants remain finite when sin θ = 0. Intuitively, one may see this as a result

of using simple null geodesics — those with zero angular momentum about the

axis of symmetry — to arrive at this particular version of the Kerr solution.

Simple null geodesics were used by Fletcher and Lun [271] as the principal null

directions of the Kerr solution do not form constant u hypersurfaces. This fea-

ture has been discussed in the literature and does limit the applicability of this

metric in numerical studies — one may see refs [281, 282] for further discussions.

Furthermore, note that we are using retarded time instead of advanced time.

The original calculations by HPS [26, 25] were done in advanced time. However,

we are interested in the potential observation of the supertranslated Kerr black

hole in the future of the black hole being struck by a gravitational wave17.

16The gur component here differs from ref [266]. This is in fact a small error in Appendix
D of their paper and can be verified by computing dr̃. Furthermore, one may note that this
component now correctly provides the scalar, CABCAB .

17By following the calculations of Fletcher and Lun [271] changing from retarded time to
advanced time will only require a sign change. Therefore, if one wishes to see charges implanted
on the horizon, one can easily do so by changing the a sign in the relevant components.
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5.3 Supertranslations of the Kerr Spacetime

Unlike the cases considered in refs [26, 270, 29] — which are non-rotating space-

times — there are several other terms involved when calculating the diffeomor-

phisms of the Kerr solution in the form (5.13). All of these diffeomorphisms are

explicitly given by

δgµν := Lξgµν = ξα∂αgµν + gαν ∂µξ
α + gµα∂ν ξ

α , (5.17)

where the ξ is once again the asymptotic Killing vector in (5.11). The super-

translated metric functions are found to be:

δguu = −MD2f

r2
;

δgur =
1

r2
a cos θ

2 sin2 θ
D2f ;

δguθ = −

(
∂θf +

1

2
∂θD

2f

)
+

1

r

(
2M∂θf − ∂θ

{
a

2

cos θ

sin2 θ
∂θf

})
;

δguϕ = −

(
∂ϕf +

1

2
∂ϕD

2f

)
+

1

r

(
2M∂ϕf −

a

2

cos θ

sin2 θ
∂ϕ∂θf

)
;

δgθθ =

{
2∂θ

2f −D2f

}
r − a

sin θ

{
+

1

2
D2f + 2

cos θ

sin θ
∂θf − 2∂θ

2f

}
;

δgϕϕ =

{
2∂ϕ

2f + 2 sin θ cos θ ∂ϕf − sin2 θD2f

}
r

− a

sin θ

{
1

2
sin2 θD2f + cos θ∂ϕf + 2∂ϕ

2f

}
.

(5.18)

Comparing the supertranslated metric functions with refs [26, 270, 29] it is

clear that upon setting a = 0 we recover the supertranslated Schwarzschild

black hole18. One may note that the supertranslated CAB field is the same for

the Kerr solution and Schwarzschild. This is to be expected as in refs [25, 260]

is it shown that there should be no change unless mbondi is actually a function

of retarded/advanced time.

The new metric functions are defined via

ḡµν := gµν + δgµν , (5.19)

18The notation used in this thesis is more explicit when comparing to the referenced papers.
This leads to the gϕϕ supertranslation looking slightly different. This is, however, due to the
fact that the covariant derivatives have been calculated explicitly and not left in the form
DA(DBf) .
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which are:

ḡuu = −

(
1− 2M

r
−M

D2f

r2

)
;

ḡur = −

(
1−

{
a2

16 sin2 θ
+

8a cos θ

16 sin2 θ
D2f

}
1

r2

)
;

ḡuθ = −

{
− a

2

cos θ

sin2 θ
+ ∂θf +

1

2
∂θD

2f

}

−

{
− a cos θ

4
{8M +

a

sin3 θ
} − 2M∂θf + ∂θ

[
a

2

cos θ

sin2 θ
∂θf

]}
1

r
;

ḡuϕ = −

(
∂ϕf +

1

2
∂ϕD

2f

)
+

{
− 2aM sin2 θ + 2M∂ϕf −

a

2

cos θ

sin2 θ
∂ϕ∂θf

}
1

r
;

ḡθθ = r2 +

{
a

sin θ
+ 2∂θ

2f −D2f

}
r

− a

sin θ

{
− a

2 sin θ
+

1

2
D2f + 2

cos θ

sin θ
∂θf − 2∂θ

2f

}
;

ḡϕϕ = r2 sin2 θ +

{
− a sin θ + 2∂ϕ

2f + 2 cos θ sin θ ∂ϕf − sin2 θD2f

}
r

− a

sin θ

{
− a sin θ

2
+

1

2
sin2 θD2f + cos θ∂ϕf + 2∂ϕ

2f

}
.

(5.20)

The supertranslated Kerr metric in section 5.3 is referred to as a “hairy black

hole”. The hair carried is soft supertranslation hair, which have corresponding

charges. From the metric components, one can read off CABC
AB, CAB, and NA

after the Kerr spacetime has been supertranslated.

CABC
AB =

2a2

sin2 θ
+

16a cos θ

sin2 θ
D2f ;

CABdx
AdxB =

(
a

sin θ
+ 2∂θ

2f −D2f

)
dθ2

−

(
a sin θ − 2∂ϕ

2f − 2
cos θ

sin θ
∂ϕf − sin2 θD2f

)
dϕ2;

Nθ = 3M{a cos θ + ∂θf }+
3

2
a∂θ

{
cos θ

sin2 θ

[
D2f − 1

2
∂θf
]}

;

Nϕ = 3M{−a sin2 θ + ∂ϕf }+
3

2
a∂ϕ

{
cos θ

sin2 θ

[
D2f − 1

2
∂θf
]}

,

(5.21)

and the supertranslated event horizon is now located at

(r+)f = r+ +
1

2
D2f . (5.22)
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It is apparent that several terms in the supertranslated metric functions are

once again singular when sin θ = 0. If one is to use this solution for numerical

studies then it is likely that f must be restricted to very particular functions in

order to eliminate this issue.

5.4 Charges

With the supertranslated spacetime — the hairy Kerr black hole — we may now

discuss the superrotation charges. These charges are associated to the super-

translation hair which are evaporated off the event horizon to future null infinity.

5.4.1 Supertranslation Charge

As discussed by HPS [26, 25] supertranslation hair do not impart supertrans-

lation charge. Recall that the supertranslation charge observed at future null

infinity is defined as follows:

Qf =
1

4π

∫
I+

d2Θ
√
γ fmbondi . (5.23)

It is now clear that since the Bondi mass aspect, mbondi, is not changed due to

the supertranslation alone we will not have any supertranslation charge turned

on by supertranslation hair. However, it is worth noting that in Donnay et al.

[270] and ref [29] an analysis of the Schwarzschild and Kaluza–Klein spacetimes

in the near horizon limit is conducted. This analysis shows that nontrivial su-

pertranslation charge is turned on at the horizon due to the gravitational wave

that is absent at null infinity. Furthermore, one may see ref [283] for an analysis

relating near horizon displacement effects to supertransformation charges.

5.4.2 Superrotation Charge

Supertranslation hair does, however, carry superrotation charge. The superro-

tation charge that is measured at future null infinity is given by

QY =
1

8π

∫
I+

d2Θ
√
γ Y ANA . (5.24)

Using (5.21) we see that superrotation charge present at null infinity is

QY=Y θ =
1

8π

∫
I+

√
γ d2ΘY θ 3Ma cos θ+

1

8π

∫
I+

√
γ d2ΘY θ

[
∂θf +

3

2
a∂θ

{
cos θ

sin2 θ

[
D2f − 1

2
∂θf
]}]

,

(5.25)
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and

QY=Y ϕ =
1

8π

∫
I+

−√γ d2ΘY ϕ 3Ma sin2 θ+

1

8π

∫
I+

√
γ d2ΘY ϕ

[
∂ϕf +

3

2
a∂ϕ

{
cos θ

sin2 θ

[
D2f − 1

2
∂ϕf
]}]

.

(5.26)

Here the first lines correspond to the bald Kerr black hole superrotation charges

and can easily be recovered if the supertranslation function f vanishes. Fur-

thermore, as one would expect when a = 0 we recover the superrotation charges

of the hairy Schwarzschild black hole [26, 270, 29]. As shown by Barnich and

Troessaert in [266], when Y ϕ is the Killing vector, ∂ϕ, (5.26) corresponds to con-

servation of angular momentum (for the bald Kerr black hole). For the hairy

Kerr black hole, one may see that the zero-mode superrotation charge (when

f = 0 and Y ϕ = 1) given by (5.26), does not change and will still correspond

to conservation of angular momentum.

Detection of these charges still remains an open question. One first requires

an operational notion of finite infinity. Secondly, we require a notion of what

higher order charges would be observed as in our detectors. In theory, the su-

pertranslation field should be detectable via classical tests of general relativity

such as the bending of light [276, 284, 285]. However, as Comperé discusses in

[276], one would need an array of detectors surrounding the central object in

order to deduce the superrotation charges, thereby confirming the existence of

the supertranslation field.

5.4.3 Supertransformation charges and the Memory ef-
fect

In subsection 5.1.4 we discussed that it has been shown the mass, M — in the

case of the Schwarzschild spacetime — is changed by a factor of µ which is

the monopole contribution to the shockwave. We discussed that in the case of

Kerr, this shockwave may also change the mass term present in the guA terms.

This would change the angular momentum of the Kerr black hole, as one may

expect, from the passing of a gravitational wave. Since the mass of the black

hole is changed, one may ask why there is no supertranslation charge found at

null infinity or why the zero-mode of superrotation charge (angular momentum)

is not changed.

Recall, however, that supertranslation and superrotation charges are only

defined for I+ and I−. This, therefore, becomes a statement of what an observer

at null infinity measures as the memory effect rather than what the memory

effect may be for all observers. Indeed, it seems that the change in mass and,
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therefore, changes in momentum and/or angular momentum are not measurable

at null infinity via the measurement of superrotation charges.

5.5 Discussion

We have studied the effects of a BMS supertranslation on the Kerr black hole

in Bondi coordinates. This was first done by taking the asymptotic expansion

of this solution which matches perfectly with the general BMS expansion of

an asymptotically flat metric (5.2) after a coordinate change given by (5.14).

In section 5.3 we then found the supertranslated metric functions — the hairy

Kerr black hole — which were used to to determine the supertranslation and

superrotation charges that may be found at null infinity in section 5.4.

We discussed the change in these supertransformation charges due to the su-

pertranslation hair implanted on the Kerr black hole by the gravitational wave.

It was shown that supertranslation charge was absent at null infinity. How-

ever, the supertranslation hair did in fact turn on superrotation charge that

was detectable at null infinity, given by (5.25) and (5.26). We showed that the

zero-mode of the superrotation charge remained unchanged at null infinity since

any change in mass is not due to pure supertranslations. While detection of

these charges still requires further technological and theoretical developments,

calculations of these charges does hope to provide a better understanding of the

scattering problem when astrophysical, rotating black holes are involved.

The near horizon limit of the extremal Kerr solution was not discussed.

It was shown in refs [270, 29] that there was a non-trivial supertranslation

charge turned on at the horizon for the hairy Schwarzschild and Kaluza–Klein

spacetimes. Hence, the near horizon Kerr limit would be interesting to explore.

Furthermore, the charged Kerr black hole — the Kerr–Newman solution —

would be interesting to explore as it has been shown that the presence of a

vector potential will lead to soft electric hair [27]. The Kerr–Newman memory

effect in the asymptotic limit and the near-horizon limit will be explored in

Chapter 6.
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Chapter 6

Kerr–Newman Memory effect
and Near-Horizon Physics

6.1 Introduction

In this Chapter, we extend the calculations undertaken in Chapter 5. This

is done by first bringing the Kerr–Newman spacetime into the Bondi–Sachs

gauge by means of zero angular momentum null geodesics. We compute the

memory effect produced at the black hole horizon by a transient gravitational

shock wave, which from future null infinity is seen as a Bondi–Metzner–Sachs

supertranslation. This results in a change of the supertransformation charges

at infinity between the spacetime geometries defined by the black hole before,

and after, the shockwave scattering. For an extremal Kerr–Newman black hole,

we give the complementary description of this process in the near-horizon limit,

as seen by an observer hovering above the horizon. This was not done in the

Kerr case in the previous chapter. In this limit, we compute the supertran-

formation charges and compare them to those calculated at null infinity. We

analyse the effect of these transformations on the electromagnetic gauge field

and explore the self-interaction between this and the angular momentum of the

black hole.

The Kerr–Newman spacetime [286] describes a rotating, charged Black Hole

(BH) and represents the most general of the asymptotically Minkowskian, sta-

tionary BH solutions to the Einstein–Maxwell equations. It is a direct gen-

eralisation of the Kerr solution [287] for a chargeless, rotating BH. The Kerr

solution is widely accepted as providing an accurate description of the exterior

spacetime surrounding realistic BHs. In particular, the matching of its ray trac-

ing predictions with the recent direct observations of Sagittarius A* and M87*

further support its relevance [288, 289, 141, 290]. In spite of these successes,

a more realistic representation of a BH would have to include the effects of its

inherent electromagnetic charge, in principle varying over time due to the in-fall

of charged matter. The Kerr–Newman solution represents a first step in this
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direction, as it provides the spacetime geometry for an intrinsically charged,

stationary, rotating BH. As such, the study of this solution is of critical interest

for understanding the dynamics and structure of physically realistic BHs.

Furthermore, a regime of interest is the Near Horizon (NH) limit of the Kerr–

Newman spacetime, specifically the case of an extremal Kerr–Newman BH.

Indeed, the study of the NH limit of classical BHs is of fundamental importance

for the investigation of their geometry and topology, carrying consequences for

any traditional approach to quantum gravity [291, 292]. Here, extremal BHs are

highly relevant because even as semi-classical objects, they remain inert, since

they do not emit any Hawking radiation [293, 294]. As such, they represent

simple objects for investigating links between quantum physics and general

relativity.

Additionally, the NH limit provides a framework for describing the gravita-

tional shockwave scattering as seen by an observer hovering above the horizon.

Therefore, it provides a complementary analysis to the memory effect study

carried out at null infinity. For such cases as the Reisnner– Nordström and

Kaluza–Klein BHs, the NH observer is known to measure a horizon superro-

tation after the scattering process has occurred — something absent at null

infinity [28, 29]. Moreover, the passage of a gravitational shockwave imparts

soft electric hairs on the horizon of charged BH, thus showing the interplay

between the gravitational and electromagnetic fields. We will reproduce these

calculations for the near horizon extremal Kerr–Newman BH. Furthermore, we

will show that the interaction between angular momentum and the electromag-

netic field is present even for the bald extremal Kerr–Newman solution.

In section 6.2 we put the Kerr–Newman metric in the Bondi-Sachs gauge.

In section 6.3 we supertranslate the resulting spacetime, electromagnetic gauge

field and discuss the physical implications of this procedure in the presence of

charge. In Section 6.4 we explore NH physics for an extremal Kerr–Newman

BH and relate the effect of outgoing gravitational radiation to null infinity with

the respective modifications of the BH horizon. Section 6.5 presents a brief

summary of the results and a discussion regarding future lines of research.

6.2 Kerr–Newman Spacetime in the

Bondi–Sachs Gauge

The Kerr–Newman line element in Boyer–Lindquist coordinates
{
t̄, r̄, θ̄, ϕ̄

}
is

ds2 = −
(
dr̄2

∆̄
+ dθ̄2

)
ρ̄2 + (dt̄− a sin2 θ̄ dϕ̄)2

∆̄

ρ̄2
− (Ā2 dϕ̄− a dt̄)2

sin2 θ̄

ρ̄2
, (6.1)
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with

∆̄(r̄) = r̄2 + a2 − Ξ; (6.2)

Ξ̄(r̄) = 2M r̄ −Q2; (6.3)

ρ̄2(r̄, θ̄) = r̄2 + a2 cos2 θ̄; (6.4)

Ā2(r̄) = r̄2 + a2, (6.5)

where M,a and Q are, the mass, angular momentum per unit mass, and electric

charge respectively, of the Kerr–Newman black hole in geometrised units. We

aim to cast (6.1) in the BS gauge. To do so, we first move from the Boyer–

Lindquist coordinates to the general Bondi–Sachs (GBS) coordinates, in which

the metric has to respect the constraints and then impose the falloffs (5.1)

through a further coordinate transformation. Only once (6.1) is put into the BS

gauge, a meaningful analysis of the asymptotic structure is then possible.

Analogous to the pioneering work of Fletcher & Lun on the Kerr metric [295]

and the following expansion by Houque & Virmani to the Kerr–de Sitter solu-

tion [296], we begin by considering Zero Angular Momentum Null Geodesics1

(ZANGs) in the Kerr–Newman spacetime in Boyer–Lindquist coordinates 2.

These are

ρ̄2
dt̄

dλ
=

Σ̄
2

∆̄
E , (6.6)

ρ̄4
(
dr̄

dλ

)2

= B̄
2
E2 , (6.7)

ρ̄4
(
dθ̄

dλ

)2

= Ω̄ , (6.8)

ρ̄2
dϕ̄

dλ
=

aΞ̄

∆̄
E , (6.9)

where λ is an affine parameter along the ZANGs, E is the constant of motion

interpreted as the energy of the photons, and the remaining functions appearing

in equations (6.6)–(6.9) are

Σ̄
2
(r̄, θ̄) = Ā

4 − a2 ∆̄ sin2 θ̄ , (6.10)

B̄
2
(r̄) = Ā

4 − a2 X̄
2
∆̄ , (6.11)

Ω̄(r̄, θ̄) = a2E2 (X̄
2 − sin2 θ̄) . (6.12)

X̄ = X̄(r̄, θ̄) is related to Carter’s separation constant, K,

by K = a2E2 X̄
2
[297]. Hence, it also results as a constant of

geodesic motion
d

dλ
X̄(r̄, θ̄) = 0 . (6.13)

1Otherwise known as Zero Angular Momentum (null) Observers, null ZAMOs
2To maintain a consistent nomenclature with the existing literature, we resolve to use the

same notation adopted by Fletcher & Lun and Houque & Virmani [295, 296].
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When Q = 0, equations (6.6)–(6.9) reduce to equations (12)–(15) of [295], as

it should be expected. Moreover, we point out that as for the pure Kerr case

solution, the r.h.s. of (6.9) is a function of r̄ alone. We can now proceed to

write the Kerr–Newman metric in GBS coordinates. To do so, we start with

the coordinate transformation

t̄ = ũ+ J(r̃, θ̃) , (6.14)

r̄ = r̃ , (6.15)

θ̄ = θ̄(r̃, θ̃) , (6.16)

ϕ̄ = ϕ̃+ L(r̃, θ̃) , (6.17)

where the functions J(r̃, θ̃), θ̄(r̃, θ̃) and L(r̃, θ̃) are arbitrarily defined, at this

stage. The coordinate transform is chosen in this manner as to preserve the

simple form of the Killing vector fields in the new coordinate system

∂t̄ = ∂ũ , (6.18)

∂ϕ̄ = ∂ϕ̃ . (6.19)

(6.20)

We further impose that the integral curves of the ZANGs, in the new coordi-

nates, are lines of constant {ṽ, θ̃, ϕ̃}, i.e.

dṽ

dλ
= 0 , (6.21)

dθ̃

dλ
= 0 , (6.22)

dϕ̃

dλ
= 0 . (6.23)

Applying the coordinate transformation (6.14)–(6.17) with conditions (6.21)–

(6.23) to (6.6)–(6.9) gives

∂J

∂r̃
=

Σ̄
2

B̄∆̄
, (6.24)

∂L

∂r̃
=

aΞ̄

∆̄B̄
, (6.25)(

∂θ̄

∂r̃

)2

=
Ω̄

B̄
2
E2

, (6.26)

with
dr̃

dλ
=

dr̄

dλ
=

B̄E

ρ̄2
. (6.27)

The choice of the positive root for B̃, combined with (6.14) and (6.24), indicates

that we are using a retarded time coordinate and that the ZANGs are outgoing
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rather than ingoing null geodesics. Furthermore, from (6.13) and (6.22) we

deduce,

X̄ = X̃(θ̃) . (6.28)

Since we have picked r̄ = r̃ we can take the square root of (6.26) and integrate

to obtain ∫ θ̄ dθ′√
X2 − sin2 θ′

= ±
∫ r̃ a dr′

B̃(r′)
=: ±αX , (6.29)

where

αX(r̃) =

∫
r̃

a dr′√
(r′2 + a2)2 − a2X2 (r′2 + a2 − 2Mr′ +Q2)

, (6.30)

and
dαX

dr̃
=

a

B(r̃)
. (6.31)

Here, when a is positive, αX , is chosen to be a negative, monotonically increasing

function.

To integrate (6.29) we notice that the l.h.s. is the Legendre incomplete

integral of the first kind and hence defines the Jacobi elliptic sine (sn) function.

Thus, we have

sin θ̄ =


sn
(
±αXX+H(θ̃), 1

X2

)
X2 > 1

tanh
(
±αX +H(θ̃)

)
X2 = 1

X sn(±αX +H(θ̃), X2) sin2 θ̄ ≤ X2 < 1

, (6.32)

where H(θ̃) is an arbitrary function of θ̃. We now require θ̄ → θ̃ for r̃ → ∞,

that is, the two angular coordinates must match at large distances. Therefore,

we obtain

H =


sn−1(sin θ̃, 1

X2 ) X2 > 1

tanh−1(sin θ̃) X2 = 1

sn−1
(

sin θ̃
X

,X2
)

sin2 θ̄ ≤ X2 < 1

. (6.33)

Finally, by requiring a fixed equatorial plane under the transformation of co-

ordinates – θ̄ = ±π/2 ←→ θ̃ = ±π/2 – the case X2 = 1 is selected3. This

corresponds to choosing the simplest possible class of ZANGs with non-zero

energy. Indeed, it forces both Carter’s constant (Q = K − a2E2 ) and the total

angular momentum about the axis of symmetry to be zero.

Here, we must also stress an interesting difference between the coordinate

systems built following this procedure for the Kerr, Kerr–de Sitter and Kerr–

Newman spacetimes. For the latter, due to the presence of the charge term

in the denominator of (6.30), the coordinate system is not well-defined over

3Henceforth, the subscript X is dropped from αX .
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the whole spacetime. Indeed, by analysing (6.30) for X = 1, we see that the

coordinate chart develops a singularity at the real positive root of

P (r;M ; a;Q) = (r2 + a2)2 − a2(r2 + a2 − 2Mr +Q2) . (6.34)

Therefore, in the Kerr–Newman case, the coordinate system will not be

global, unlike in Kerr and Kerr–de Sitter. However, the coordinate singularity

appears only below the outer horizon of the charged BH. Thus, the coordinate

chart built using ZANGs can still be used in studying the asymptotic structure

of the spacetime. Then, by using equations (6.32) and (6.33) we obtain

tanh−1(sin θ̄) = tanh−1(sin θ̃)± α , (6.35)

with

α(r̃) = −

∫
∞

r̃

a dr′√
r′4 + a2(r′2 + r′2M −Q2)

. (6.36)

From (6.35), and choosing the plus side in front of α, we directly deduce

sin θ̄ =
D

C
, (6.37)

cos θ̄ =
cos θ̃

C coshα
, (6.38)

where

C = 1 + tanhα sin θ̃ , (6.39)

D = tanhα + sin θ̃ . (6.40)

From (6.37), (6.38), (6.39) and (6.40) we obtain

∂θ̄

∂r̃
=

cos θ̃

C coshα

dα

dr̃
=

cos θ̃

C coshα

a

B(r̃)
, (6.41)

∂θ̄

∂θ̃
=

1

C coshα
. (6.42)

Therefore, we have

dt̄ = dũ+
Σ̃2

B̃ ∆̃
dr̃ + g(r̃, θ̃) dθ̃ , (6.43)

dϕ̄ = dϕ̃+
aΞ̃

B̃ ∆̃
dr̃ + h(r̃, θ̃) dθ̃ , (6.44)

dθ̄ =
cos θ̃

C coshα

a

B
dr̃ +

1

C coshα
dθ̃ , (6.45)

where g(r̃, θ̃) = ∂J(r̃, θ̃)/∂θ̃ and h(r̃, θ̃) = ∂L(r̃, θ̃)/∂θ̃. To complete the co-

ordinate transformation, we need to establish the function form of g(r̃, θ̃) and

h(r̃, θ̃). From the condition

gr̃ θ̃ = 0 , (6.46)
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we deduce the form of g(r̃, θ̃) as

g(r̃, θ̃) =
a cos θ̃

C2 cosh2 α
, (6.47)

whilst from the integrability condition

∂θ̃∂r̃L(r̃, θ̃) = ∂r̃∂θ̃L(r̃, θ̃) , (6.48)

we get

h(r̃, θ̃) = h(θ̃). (6.49)

Without losing any generality we are then free to choose

h(θ̃) = 0. (6.50)

Therefore, (6.24), (6.25), (6.41), (6.42), (6.47) and (6.50) completely define the

correct coordinate transform – (6.14)-(6.17) – to cast the line element (6.1) into

the GBS form

ds2 =−

(
1− Ξ̃

ρ̃2

)
dũ2 − 2

ρ̃2

B̃
dũ dr̃ − 2

(
1− Ξ̃

ρ̃2

)
a cos θ̃

C2 cosh2 α
dũdθ̃

− 2
aΞ̃

ρ̃2

(
D

C

)2

dũdϕ̃+

[
ρ̃2

C2 cosh2 α
−

(
1− Ξ̃

ρ̃2

)
a2 cos2 θ̃

C4 cosh4 α

]
dθ̃2

− 2
a2 cos θ̃

C2 cosh2 α

(
D

C

)2
∆̃

ρ̃2
dθ̃dϕ̃+

(
D

C

)2
Σ̃2

ρ̃2
dϕ̃2 .

(6.51)

Finally, to put the line element (6.51) into the BS gauge we apply the fol-

lowing coordinate transformation (5.14)[298]

ũ = u , (6.52)

θ̃ = θ , (6.53)

ϕ̃ = ϕ , (6.54)

r̃ = r +
a

2

cos 2θ

sin θ
+

a2

8

(
4 cos 2θ +

1

sin2 θ

)
1

r
. (6.55)

At the expansion order of interest in r, we find the metric components to

be4

4The calculations put forward in this chapter have been checked with the Mathemathica
codes described in Appendix B.
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guu = −1 + 2M

r
− aM csc θ cos 2θ +Q2

r2
+O

(
r−3
)
;

gur = −1 +
a2 csc2 θ

8r2
+

a2 (2M + a cos 4θ csc θ)

2r3
+O

(
r−4
)
;

guϕ = −2aM sin2 θ

r
+

a sin θ (3aM cos 2θ + 2aM +Q2 sin θ)

r2
+O

(
r−3
)
;

guθ =
1

2
a cot θ csc θ +

a cos θ (a csc3 θ + 8M)

4r

− a cot θ csc θ (4a2 +Q2) cos 2θ

2r2
−

a cot θ csc θ (3a2 cos 4θ + 2 (2a2 − 7aM sin θ + 3aM sin 3θ +Q2))

4r2
+O

(
r−3
)
;

gθθ = r2 + ar csc θ +
1

2
a2 csc2 θ +

a2 (a csc θ cos 4θ + 8M cos2 θ)

4r
+O

(
r−2
)
;

gθϕ = −2a2M sin2 θ cos θ

r
+

a2 sin θ cos θ (5aM cos 2θ +Q2 sin θ)

r2
+O

(
r−3
)
;

gϕϕ = r2 sin2 θ − ar sin θ +
a2

2
+

a3 sin θ cot2 θ(cos 4θ − 2 cos 2θ)

4r

+
a2 sin θ

(
4a sin4 θ − 5a sin2 θ + a+ 2M sin3 θ

)
r

+O
(
r−2
)
.

(6.56)

Furthermore, we can compute the electromagnetic four-potential in the se-

lected gauge. We start by considering the four-potential in Boyer–Lindquist

coordinates

Aµdx̄
µ =

r̄Q

ρ̄2
dt̄+ a

r̄Q

ρ̄2
sin2 θ̄dϕ̄ . (6.57)

Moving to GBS coordinates, we then find

Aµdx̃
µ =

r̃Q

ρ̃2
dũ+

r̃Q

B̃∆̃
(r̃2+a2)dr̃+

r̃Q

ρ̃2
a cos θ̃

C2 cosh2 α
dθ̃+a

r̃Q

ρ̃2

(
D

C

)2

dϕ̃ , (6.58)

where ρ̃ = r̃2 + a2 − a2 (D/C)2. Given that Ar̃ is solely a function of r̃, it can

be set to zero via a classical U(1) gauge transformation. Then, by moving to

the BS gauge we find

Aµdx
µ =

(
Q

r
− aQ cos 2θ csc θ

2r2

)
du

+

(
aQ cos θ

r
+

a2Q csc θ(cos θ − 3 cos 3θ)

4r2

)
dθ

+

(
aQ sin2 θ

r
− a2Q sin θ(3 cos 2θ + 2)

2r2

)
dϕ +O(r−3) .

(6.59)

Thus, we can now move to the evaluation of the asymptotic structure of the

spacetime.
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6.3 The Memory Effect at Null Infinity

The gravitational memory effect as seen by an observer at null infinity has been

shown to be equivalent to a BMS supertranslation. Following the investigation

of the Kerr memory effect at null infinity in Chapter 5 (in particular, (5.18) )

[298], we now focus on the Kerr–Newman memory effect. The supertranslated

metric functions are once again calculated via

δgµν = Lξgµν ,

where ξ is the asymptotic Killing vector, (5.7). We find

δguu =
1

r3

{
−Mr +Q2 +

aM(1− 2 sin2 θ)

sin θ

}
D2f

+
aM

r3

{
(−2 + cos 2θ) cot θ csc θ

}
∂θf +O

(
r−4
)
; (6.60)

δgur =
1

r2

{
a cos θ

2 sin2 θ

}
D2f +O

(
r−3
)
; (6.61)

δguθ = −

{
∂θf +

1

2
∂θD

2f

}
+

1

r

{
2M∂θf − ∂θ

(
a

2

cos θ

sin2 θ
∂θf

)}
− 1

r2

{
Q2∂θf

}

+
1

r2

{
aM csc θ cos 2θ

}
∂θf +O(r−3) ; (6.62)

δguϕ = −

{
∂ϕf +

1

2
∂ϕD

2f

}
+

1

r

{
2M∂ϕf −

a

2

cos θ

sin2 θ
∂ϕ∂θf

}
− 1

r2

{
Q2∂ϕf

}

+
1

r2

{
aM csc θ cos 2θ

}
∂ϕf +O(r−3) ; (6.63)

δgθθ =

{
2∂θ

2f −D2f

}
r − a

sin θ

{
+

1

2
D2f + 2

cos θ

sin θ
∂θf − 2∂θ

2f

}
+O

(
r−1
)
;

(6.64)

δgϕϕ =

{
2∂ϕ

2f + 2 sin θ cos θ ∂ϕf − sin2 θD2f

}
r

− a

sin θ

{
1

2
sin2 θD2f + cos θ∂ϕf + 2∂ϕ

2f

}
+O

(
r−1
)
.

(6.65)
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Additionally, the supertranslated gauge field components at null infinity

are:

δAu = −1

2

Q

r2
D2f − 1

r2
csc θ

(
cos 2θ cot θ + 2 sin 2θ

)
∂θf +O(r−3) ; (6.66)

δAB =
1

2
D2f∂rAB − ∂θf∂θAB (6.67)

+

(
Q

r
− aQ cos 2θ csc θ

2r2

)
∂θf + AC∂BD

Cf +O(r−3) .

(6.68)

As can be seen, the supertranslated gauge field has components which match

the leading order parts of the original gauge field. Therefore, when an observer

at null infinity measures the Maxwell field through Fµν , they will observe a

difference in a bald Kerr–Newman spacetime and hairy Kerr–Newman space-

time.

Comparing the supertranslated metric components with (5.2) we find CABC
AB,

CAB, NA, and mbondi, after the impact of the gravitational wave5.

CABC
AB =

2a2

sin2 θ
+

16a cos θ

sin2 θ
D2f ; (6.69)

CABdx
AdxB =

(
a

sin θ
+ 2∂θ

2f −D2f

)
dθ2

−

(
a sin θ − 2∂ϕ

2f − 2
cos θ

sin θ
∂ϕf − sin2 θD2f

)
dϕ2 ; (6.70)

Nθ = 3M{a cos θ + ∂θf }+
3

2
a∂θ

{
cos θ

sin2 θ

[
D2f − 1

2
∂θf
]}

; (6.71)

Nϕ = 3M{−a sin2 θ + ∂ϕf }+
3

2
a∂ϕ

{
cos θ

sin2 θ

[
D2f − 1

2
∂θf
]}

; (6.72)

mbondi = M . (6.73)

We are now in a position to discuss the supertranslation and superrotation

charges that are implanted on the BH horizon, as seen by an observer at null

infinity. As expected [27, 298], the scattering of a gravitational wave by the

BH will not excite supertranslation charge. However, this process, equivalent

5There have been developments in the BMS group where authors have started investi-
gating higher order terms in the expansion. For instance in refs [299, 282] there are higher
order terms, such as ‘EAB ’ and ‘FAB ’ which appear in the gAB expansion. However, these
modifications are made for the inclusion of a cosmological constant. The relevance of these
terms in our analysis and the effect these may have on charges that we observe at null infinity
remains unclear and is perhaps an avenue for further research. Furthermore, the incorpora-
tion of these terms would likely also require tweaking of the transformation (5.14), similar to
what is done in ref [282].
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to a supertranslation at null infinity, will modify the superrotation charge. The

superrotation charge that is measured at future null infinity is given by

QY =
1

8π

∫
I+

d2Θ
√
γ Y ANA . (6.74)

Using (6.69) we get

QY=Y θ =
1

8π

∫
I+

√
γ d2ΘY θ 3Ma cos θ+

1

8π

∫
I+

√
γ d2ΘY θ

[
∂θf +

3

2
a∂θ

{
cos θ

sin2 θ

[
D2f − 1

2
∂θf
]}]

,

(6.75)

and

QY=Y ϕ =
1

8π

∫
I+

−√γ d2ΘY ϕ 3Ma sin2 θ+

1

8π

∫
I+

√
γ d2ΘY ϕ

[
∂ϕf +

3

2
a∂ϕ

{
cos θ

sin2 θ

[
D2f − 1

2
∂ϕf
]}]

.

(6.76)

The first terms in (6.75) and (6.76) correspond to the bald Kerr–Newman

BH superrotation charges and can easily be recovered if the supertranslation

function f vanishes. Furthermore, when a = 0 we recover the superrotation

charges of the hairy Schwarzschild BH [26, 28, 29]. Moreover, as shown by

Barnich and Troessaert in [266], when Y ϕ is the Killing vector, ∂ϕ, (6.76) corre-

sponds to conservation of angular momentum for both the bald Schwarzschild

and Kerr BH. For the hairy Kerr–Newman BH, one may see that the zero-mode

superrotation charge (when f = 0 and Y ϕ = 1) given by (6.76), does not change

and will still correspond to the conservation of angular momentum.

We note that the calculated charges are no different from those obtained

for the Kerr solution, as seen in (5.26) and (5.25)[298]. Therefore, within the

current framework, the expected memory effect at null infinity in these two

spacetimes is indistinguishable. This follows from the electric charge, Q, ap-

pearing only at a higher order than r−1 in the expansion of the metric in the

BS gauge. In our opinion, this result represents a clear drawback of the cur-

rent, first-order framework. A higher-order approach is needed to distinguish

fundamentally different spacetimes, such as the Kerr and Kerr–Newman solu-

tions, and should therefore be pursued as an important milestone for the field

[300].

Nonetheless, we point out that the presence of an electromagnetic field in

the Kerr–Newman spacetimes gives a novel method to measure the scattering

of a gravitational wave from the BH, via the change in the field. In particular,

if such a change were to be detected and agree with our calculations, it could be

considered as an indirect test for the presence of supertransformation charges.

However, such a measurement clearly presents observational challenges.

98



6.4 Near Horizon Physics:

Extremal Kerr–Newman

We now shift our attention to the NH form of the Kerr–Newman spacetime. In

particular, contrary to the null infinity analysis, we show that the two space-

times differ in their response to the scattering of a gravitational shockwave.

Indeed, in the Kerr–Newman case, the gravitational wave excites supertrans-

formation charges and implants soft, electric hair on the horizon, due to its

interaction with the electromagnetic four-potential. To determine the charges

that are implanted on the horizon, we must first find the NH metric compo-

nents, and secondly, derive an expression for the electromagnetic gauge field in

the NH limit. Chruściel [301] shows that the general form of a NH metric is

given by

ds2 = −2Rκdv2 + 2dvdR + 2RθAdvdx
A + ΩABdx

AdxB + ... , (6.77)

where v is the advanced time, xA are angular coordinates, θA, ΩAB ≡ Ωa γ
a
AB

6

are in principle arbitrary metric functions of v and xA, and κ is the surface

gravity. Note, that when dealing with an extremal horizon, the surface gravity

vanishes, i.e., κ = 0. In the coordinate used in (6.77), the horizon is now located

at R = 0 and the ellipsis are to denote terms that are O(R2). Furthermore, we

have the constraints

gRR = 0 , gvR = 1 , gAR = 0 . (6.78)

Additionally, in analogy to refs [278, 28], we use the boundary conditions

gvv = −2κR +O(R2) , gvA = θAR +O(R2) , gAB = ΩAB +O(R) . (6.79)

We can then find a set of asymptotic Killing vectors that preserve (6.78) and

(6.79), generating an algebra consisting of both supertranslations and superro-

tations. The resulting Killing vectors are

ξµ∂µ = f∂v +
(
Y A − ∂Bf

∫ R

dR′gAB
)
∂A

+
(
Z(v, xA)−R∂vf + ∂Af

∫ R

dR′gABgvB

)
∂R .

(6.80)

As is the case in refs [278, 28], we find a vector, Y A, that is a “constant”

of integration that represents the horizon superrotations7. Then, using the

6Note the use of the internal index, a, here. This is required in the case of the NH
Kerr–Newman metric as we can not use only one scaling factor for ΩΘΘ and ΩΦΦ.

7It is important to point out that one does not need a gravitational shockwave here to
have “a superrotation/supertranslation charge”. These aspects exist as a property of the
asymptotic structure of the NH metric.
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NH asymptotic Killing vector, we compute the general supertranslated metric

functions; κ, θA, and ΩAB subject to (6.79) 8.

δξκ = Lξκ = 0 , (6.81)

δξθA = LY θA + f∂vθA − 2κ∂Af − 2∂v∂Af + ΩBC∂vΩABDCf , (6.82)

δξΩAB = f∂vΩAB + LYΩAB . (6.83)

To properly study the NH physics of a charged BH, we must also discuss the

NH expansion of the gauge field. The Taylor expansion of the U(1) electromag-

netic gauge field near R = 0 is given by [28]

Av = A(0)
v +RA(1)

v (v, xA) +O(R2), (6.84)

AB = A
(0)
B (xA) +RA

(1)
B (v, xA) +O(R2) , (6.85)

AR = 0. (6.86)

Here A
(0)
v is the Coulomb potential. In particular, we find that the supertrans-

lated gauge field components take the form:

δξAv = 0, (6.87)

δξAB = Y C∂CA
(0)
B + A

(0)
C ∂BY

C + ∂BU. (6.88)

Where U is an arbitrary function of angular coordinates and is referred to as

the electromagnetic charge generator, just as f is referred to as the generator

of supertranslations.

We now discuss the NH extremal Kerr-Newman spacetime and provide the

supertranslated metric functions. This will allow us to examine the effect of

a gravitational shockwave — under the identification of supertranslations with

the scattering of such waves by the BH — on the extremal horizon as seen by an

observer near the horizon. This leads to a horizon superrotation that is absent

at null infinity9, similar to the Schwarzschild and Kaluza–Klein cases discussed

in [28, 29] respectively.

6.4.1 Near Horizon Metric and Gauge Four-Potential

To derive the extremal NH Kerr–Newman metric, we begin by defining [301]

t̄ = ϵ−1t̂ , (6.89)

r̄ = M + ϵr̂ , (6.90)

8We correct a small mistake here that is present in ref [278]. This third equation now
correctly states that the Lie derivative of ΩAB is along Y and not ξ.

9In Chapter 5 we stated that there is a change in the superrotation charges at null infinity
due to the supertranslation. However, in the near horizon case, (mathematically due to
the boundary conditions) we note that there is also a superrotation that has associated
supertranslation charges discussed in subsection 6.4.2.
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θ̄ = θ̂ , (6.91)

ϕ̄ = ϕ̂+ ϵ−1 a

r20
t̂ , (6.92)

where r20 = M2 + a2. After taking the limit ϵ→ 0, the metric becomes

ds2 =

(
1− a2

r20
sin2 θ̂

)[
− r̂2

r20
dt̂2 +

r20
r̂2
dr̂2 + r20dθ̂

2

]
+ r20 sin

2 θ̂

(
1− a2

r20
sin2 θ̂

)−1 [
dϕ̂+

2 aM

r40
r dt̂

]2
. (6.93)

This metric is clearly singular on the horizon. Hence, we apply the following

coordinate transform

t̂ = V − r20
r
, (6.94)

r̂ = R , (6.95)

θ̂ = Θ , (6.96)

ϕ̂ = Φ− 2Ma

r20
log

(
r̂

r0

)
, (6.97)

leading to the line element

ds2 =

(
r20 − a2 sin2Θ

)
r20

[
−R2

r20
dV 2 − 2dV dR + r20dΘ

2

]
+

r40 sin
2Θ

r20 − a2 sin2Θ

[
dΦ +

2aM

r40
RdV

]2
, (6.98)

which is regular for R = 0. We may now read off the metric functions in

(6.77):

κ = 0; (6.99)

θΘ = 0; (6.100)

θΦ =
2 aM sin2Θ

r20 − a2 sin2Θ
; (6.101)

ΩΘΘ = r20 − a2 sin2Θ; (6.102)

ΩΦΦ =
r40 sin

2Θ

r20 − a2 sin2Θ
. (6.103)

We must now bring the Kerr–Newman gauge potential into the form (6.84).

Performing the same coordinate transformations as we did for the metric, we

first find:

Aµdx̂
µ =

Q
(
M2 − a2 cos2 θ̂

)
r20

(
M2 + a2 cos2 θ̂

) r̂ dt̂+
QaM sin2 θ̂

M2 + a2 cos2 θ̂
dϕ̂ , (6.104)
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where we have eliminated the constant term ϵ−1(MQ/r20) in At̂ through a U(1)

gauge transformation before taking the limit for small ϵ. With the final coordi-

nate transformation (6.94), we obtain

AµdX
µ =

Q (M2 − a2 cos2Θ)

r20 (M
2 + a2 cos2Θ)

RdV +
QaM sin2Θ

M2 + a2 cos2Θ
dΦ , (6.105)

where we have renormalised AR = −(M2 − a2)(Q/r20)R
−1 with a further U(1)

gauge transform. Note, that the Coulomb potential does not appear here.

However, because it is coordinate-independent, this can be added back in at

any point without changing the Maxwell field. Moreover, as expected, we will

see that the Coulomb potential will not appear in the expressions for surface

charges.

6.4.2 Near Horizon Supertranslations and Charges

Bringing the asymptotic Killing vector, (5.7) to the NH limit for the extremal

case – i.e., M2 = a2 +Q2 – and supertranslating the NH Kerr–Newman space-

time (6.98) we find the following metric components

gV V = −R2

r20

(
r20 − a2 sin2Θ

)
r20

+
r40 sin

2Θ

r20 − a2 sin2Θ

(
2aMR

r40

)2

, (6.106)

gΘΘ =
{
r20 − a2 sin2Θ

}{
1− 2

r+
∂2
Θf
}
+

1

r+
a2 sin 2Θ∂Θf , (6.107)

gΦΦ =
{ 1

r+

r40
r20 − a2 sin2Θ

}{
r+ sin2Θ− r20 sin 2Θ

r20 − a2 sin2Θ
∂Θf − 2∂2

ϕf
}
, (6.108)

gV R = −r20 − a2 sin2Θ

r20
, (6.109)

gV Φ =

{
1

r+

2 aM

r20 − a2 sin2Θ

}{
sin2Θ− sin 2Θr20

r20 − a2 sin2Θ
∂Θf − ∂2

Φf

}
R , (6.110)

gV Θ =

{
1

r+

2 aM

r20 − a2 sin2Θ

}{
2 cotΘ∂Φf − ∂Θ∂Φf

}
R , (6.111)

gRR = 0 , (6.112)

gRΘ = 0 , (6.113)

gRΦ = 0 , (6.114)

gΘΦ = 0 . (6.115)

We can now compare our results with the supertranslated extremal NH Kerr–

Newman spacetime, see (6.93), and the general NH supertranslated metric func-

tions, see (6.81)-(6.83). Since ΩAB does not depend on retarded/advanced time,

from (6.83) we find the corresponding horizon superrotation to be

YA =
1

M
DAf . (6.116)
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Surprisingly, this does not differ from the horizon superrotation of a

Schwarzschild BH found in [28]. Indeed, this is perhaps not expected as the

Kerr class of solutions are already rotating. However, this could be intuitively

understood by noticing that the correlation between the memory effect and

supertranslations — in both regimes, null infinity, and NH — is only examined

at linear order. In fact, one can show that if ΩAB does not depend on advanced

or retarded time, we will always have a horizon superrotation of this form —

up to a factor which depends on the horizon radius.

The diffeomorphisms generated by asymptotic Killing vectors have associated

horizon charges. The derivation of these charges stem from ref [274] and are

also discussed in refs [28, 302]. The NH charges take the form:

Q [X, Y A, U ] =
1

16π

∫
dΘdΦ sinΘ r20

(
2X − Y AθA − 4UA

(1)
V − 4A

(0)
B Y BA

(1)
V

)
.

(6.117)

In the extremal case, it is apparent that the surface gravity vanishes and so too

does the Hawking temperature [293, 294]. This leads to an interesting scenario

in which the Hawking temperature is no longer the associated zero-mode for

the first charge. In this case, this zero-mode (the supertranslation charge) is

associated with the product of Bekenstein-Hawking entropy and the geometric

temperature [28, 303]. The second term is analogous to the superrotation charge

found at null infinity. The third term is due to the electromagnetic generator

and the last term mixes the superrotation vector field with the gauge field.

Let the associated charges to X, Y A, and U be X , YA, and U respectively.

The associated zero-mode (bald) horizon charges are

X = Q[1, 0, 0] = r20
2
, (6.118)

YΘ = Q[0, Y Θ = 1, Y Φ = 0, 0] = 0 , (6.119)

YΦ = Q[0, Y Φ = 1, 0] =
1

16π

∫
dΘdΦ sinΘ r20

(
θΦ − 4AΦA

(1)
V

)
, (6.120)

U = Q[0, 0, 1] = − 1

4π

∫
dΘdΦ sinΘ r20

(
A

(1)
V

)
= Q

(
1− 2M

a
arctan

( a

M

))
. (6.121)

The zero mode of YΦ gives the angular momentum of the BH as measured by the

hovering observer. As one may note, there is a contribution to this zero-mode

from the gauge field which does not vanish. Therefore, we see a strong interac-

tion between the electromagnetic gauge potential and the angular momentum

of the BH, with the former influencing the latter for the chosen observer. As

the gauge field vanishes, we retrieve the extremal NH Kerr solution, and the

angular momentum depends solely on θΦ. The final charge, U , the zero-mode
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charge corresponding to the electromagnetic charge generator, gives the total

electric charge of the BH as measured in the NH limit. Here, the complemen-

tary effect is observed and the angular momentum of the BH effectively shields

the intrinsic charge for the NH observers. Remarkably, these unexpected effects

of the self-interactions between angular momentum and electric charge are not

found via a null infinity analysis. Thus, they further indicate the importance

in general relativity of studying the same phenomena using a plurality of ob-

servers. Lastly, one may verify that these charges do indeed agree with the

extremal Reissner–Nordström horizon when a→ 0 as seen in ref [28].

We may also use (6.117) to determine the zero-mode of the NH charges of

the supertranslated horizon. To do so, we compute

θΘ =

{
1

M

2 aM

r20 − a2 sin2Θ

}{
2 cotΘ∂Φf − ∂Θ∂Φf

}
; (6.122)

θΦ =

{
1

M

2 aM

r20 − a2 sin2Θ

}{
sin2Θ− sin 2Θr20

r20 − a2 sin2Θ
∂Θf − ∂2

Φf

}
; (6.123)

A
(1)
V =

Q

r20

{
(M2 − a2 cos2Θ)

(M2 + a2 cos2Θ)
− 1

M
∂Θ

(M2 − a2 cos2Θ)

(M2 + a2 cos2Θ)
∂Θf

}
; (6.124)

A
(0)
B =

QaM sin2Θ

M2 + a2 cos2Θ
+ δAB , (6.125)

(6.126)

where δAB is given below. Interestingly, we see that once the NH spacetime is

supertranslated by the passage of a gravitational wave, then θΘ is no longer zero.

However, even though the NH geometry is transformed, the zero-mode horizon

charges remain unchanged. This is because we are setting the supertranslation

generator, f , to zero10 in all cases.

In the bald and supertranslated BHs we already see an interplay between the

electromagnetic field and angular momentum. However, a further interaction

between the gravitational and electromagnetic fields can be investigated by de-

termining the change in the electromagnetic field generator due to the memory

effect in the NH limit

U =

∫ (
Y C∂CA

(0)
B + A

(0)
C ∂BY

C − δξAB

)
dxB . (6.127)

Here, Y A is the horizon superrotation,

Y A =
1

M
DAf , (6.128)

10In fact, f , can be expanded in Fourier modes which relate it linearly to X in the extremal
case. Hence, when setting X to zero, we are also setting f to zero, and the zero-modes now
correspond solely to the bald near-horizon geometry.
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and

δξAB = −Qa

{
∂Θ

(
sin2Θ

M2 + a2 cos2Θ

)
∂Θf −

(
1

M2 + a2 cos2Θ

)
∂Θ∂Φf

}
.

(6.129)

This illustrates that the gravitational memory effect due to the passing of a

gravitational wave is not only seen as a supertranslation from null infinity,

but in the NH limit implants soft electric hair on the extremal Kerr–Newman

horizon.

6.5 Discussion

Motivated by the rising relevance of the gravitational memory effect, in this

chapter we have investigated the connection between the scattering of a gravi-

tational shockwave by the Kerr–Newman black hole, as seen in the near-horizon

region and in the far asymptotic region.

In ref [27] the authors showed that a transient gravitational shockwave mod-

ifies the black hole geometry in a way that can be interpreted as a BMS super-

translation at null infinity. Here, we have brought for the first time the Kerr–

Newman black hole in the Bondi–Sachs gauge and computed the action of a

BMS supertranslation on its asymptotic structure. In particular, we discussed

the change in the supertransformation charges due to the supertranslation hair

implanted on the Kerr–Newman black hole by the gravitational wave. We have

shown that the supertranslation charge was absent at null infinity, whilst a su-

perrotation charge is instead detectable. Furthermore, the zero-mode of the

superrotation charge remains unchanged, as any change in mass cannot be cap-

tured by the action of pure BMS supertranslations.

Following the pioneering work of Donnay et al [302], we studied the gravi-

tational memory effect in the near horizon limit of an extremal Kerr–Newman

black hole. Surprisingly, we found that the corresponding horizon superrotation

matches the one computed for non-rotating black holes. Moreover, we find that

no non-trivial supertranslation charge is turned on at the horizon, due to the

extremality of the black hole. Finally, we show that the scattering of the gravi-

tational shockwave by the black hole implants soft electric hair on the horizon,

via its interaction with the electromagnetic gauge field.

Some questions remain open and require further study. Indeed, we showed

that a higher-order formalism is needed to properly capture the full properties

of the spacetime when dealing with the memory effect. Consequently, a rigorous

definition, and interpretation, of higher-order charges would be required. Fur-

thermore, we have found a series of previously unexplored interactions between

the gravitational and electromagnetic fields. To wit, the presence of electric

charge invalidates the construction of the Bondi–Sachs coordinates as a global

coordinate patch for the spacetime, failing below the horizon. Moreover, we
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have showed that the electric charge, and angular momentum, inferred for the

black hole by a near horizon observer differ from what would be measured in

the asymptotic region, on account of the interplay between these two quantities.

This unexpected interaction between spin and charge requires further clarifica-

tion, with a possible avenue of research leading to the study of a similar effect

in higher dimensional, charged, rotating black holes.
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Chapter 7

Conclusion

The future of cosmology and quantum gravity is unclear. Cosmology, in par-

ticular seems to be reaching a ‘tipping point’, where observations of different

astrophysical events/objects are producing vastly different results. Without

doubt, this is likely due to the over-simplification of the concordance model —

ΛCDM, predicated on a spatially flat FLRW spacetime — which fails to ad-

dress many fundamental questions. Furthermore, several decades have passed

and there has been no direct detection of dark energy and dark matter. Not

only has there been no detection, there has also not been any proposed mech-

anism for their production that has been replicated or observed. In this thesis

we did not attempt to develop a new theory of cosmology or statistical method

for observation, rather we addressed fundamental questions regarding observers.

In terms of quantum gravity, it has seemed that we are on the edge of dis-

covering the ‘next big thing’ for the last (at least) fifty years. Despite many

promising theories such as loop quantum gravity and string theory, we are still

no closer to having observational evidence for how gravity behaves on quantum

scales. While we did not discuss any theory of quantum gravity directly, we

investigated the ‘black-to-white’ hole bounce and discussed the quantum im-

plications of this. We further probed the memory effect of black holes at null

infinity and in the near-horizon limit.

We began by introducing a coordinate system/slicing of spacetime that is

new to cosmology — the Painlevé–Gullstrand coordinates/slicing. This was

done, firstly in the spatially flat (k = 0) FLRW spacetime. It was shown that in

this slicing, space is no longer expanding, however, the galaxies (fluid particles)

are still receding from each other. In other words, the Hubble flow became very

explicit in this choice of coordinates. We then proceeded by calculating all of

the Killing vectors and Killing tensors in Painlevé–Gullstrand coordinates. This

was done because Killing vectors and the symmetries they represent are a cor-

nerstone of theoretical physics due to the conservation laws they are associated
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with. For purely cosmological spacetimes, we further considered three versions

of de Sitter space, (2.119), (2.121), (2.122). These either made the spacetime

static, the spatial slices flat, or made the connection to generic FLRW manifest.

For black holes embedded in cosmological spacetime we considered the Kot-

tler spacetime and the McVittie spacetime. For Kottler, we developed six dif-

ferent line elements, (2.123), (2.127), (2.132), (2.137), (2.139), (2.143). These

line elements focused on different aspects of ‘the physics’. It was shown that one

can either make the spacetime manifestly static, or make the spatial slices ‘sim-

ple’, or make the connection to a generic FLRW spacetime manifest. For the

McVittie spacetime we presented four different line elements, (2.146), (2.154),

(2.162), (2.173), two of which seem to be novel. The traditional version (2.146)

is spatially isotropic, but every nonzero metric component is explicitly time

dependent. The “comoving” line element (2.162) makes the connection with

generic k = 0 FLRW manifest. While the conformally Painlevé–Gullstrand

version (2.173) makes the spatial slices time independent and eliminates ex-

plicit occurrences of the scale factor a(t) in favour of the Hubble parameter

H(t).

We then moved on to discussing an increasingly popular proposed mecha-

nism for the production of dark energy [86, 87, 88, 89]. This idea was that black

holes could grow independently of accretion or mergers due to dark energy pro-

duction in their interiors. This is supposedly correlated with the accelerated

expansion of our Universe. While an independent observational analysis had

strongly excluded these claims at ∼ 3σ [93] we chose to investigate this claim

on a purely theoretical basis. We started with three relatively well-known exact

solutions to the Einstein equations (Kottler, McVittie, Kerr-de Sitter) all of

which successfully embed black holes in suitable FLRW background. We have

seen that these exact solutions exhibit no evidence of any “direct coupling”

between the black hole mass and the cosmological expansion. While an embed-

ding of the Kerr black hole in an asymptotically FLRW spacetime would have

been ideal to show that the Kerr black hole also does not couple to cosmological

expansion such an embedding has proven to be in the “too hard basket”.

We further discussed the enormous scales of separation between milli-parsec

black hole physics and giga-parsec cosmological physics. Even on a pure in-

tuitive level, these scales render any coupling between black holes and cosmic

evolution implausible. Despite our views on the dark sector of the Universe, we

understand the need to explain the source(s) of dark energy within the current

paradigm of cosmology. However, we showed that — on theoretical grounds —

black holes simply cannot be this mysterious source.
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In the next part of this thesis we moved to exploring pure black hole space-

times. The aim of this research was to investigate novel ideas that may aid our

understanding of the nature of quantum gravity and the graviton. We first inves-

tigated if a simple and compelling classical model of a black-to-white hole tran-

sition could be found. We began by performing a simple coordinate transforma-

tion of the standard Schwarzschild metric by modifying the radial coordinate.

We showed that for specific choices of h(r) in (4.6) the Schwarzschild space-

time — in other well known coordinates — was found; such as the Painlevé–

Gullstand, Kerr–Schild, and Eddington–Finkelstein coordinates. By imposing

the restriction h(2m) = ±1 we showed that this line element can model a clas-

sical black or white hole where one or the other of the null curves are horizon

penetrating with nonzero coordinate velocity.

By further introducing a time-dependent function, s(t), we then produced a

simple classical model for a black-hole-to-white-hole transition. This spacetime,

however, was no longer just a coordinate transformation of Schwarzschild space-

time. The non-static spacetime in these coordinates was found (at early and

late times) to have horizon penetrating null curves with coordinate velocity. We

found that the the action in the transition region was finite. More importantly,

however, this action can be arranged to be zero by carefully choosing h(r).

This proved to be a significant result as this action could then be added to the

Feynman path integral and have no impact on any quantum amplitudes. Fur-

thermore, this investigation could lead one to speculate that quantum physics

could become dominant in the near-horizon limit. This is contrary to the other

more-universal consensus that quantum physics should only be relevant when

curvature reaches the Planck scale. Evidently, there is room for future research

here. We hope to expand these calculations to the Reissner–Nordström, Kerr,

Kerr–Newman solutions and their extremal variants in the future.

Motivated by the rising relevance of the gravitational memory effect in fu-

ture observational missions, we investigated the connection between the BMS

group and the memory effect for black holes. We extended the current body

of literature and pioneering work of Donnay et al [28, 302] by investigating

the Kerr and Kerr–Newman memory effect. Hawking, Perry and Strominger

in [27] showed that a transient gravitational shockwave modifies the black hole

geometry in a way that can be interpreted as a BMS supertranslation at null

infinity. In Chapter 5, we extended the supertranslation and charge calculations

by HPS and Donnay et al to the Kerr solution. In order to do this, we first

brought the Kerr solution into the Bondi–Sachs gauge. After supertranslat-

ing the spacetime we discussed the supertranslation and superrotation charges

that one would observe at operational null infinity in order to verify the grav-

itational memory effect for the Kerr spacetime. This calculation showed that
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there was a non-trivial superrotation charge turned on at null infinity due to the

supertranslation hair that was implanted on the horizon due to the passing of a

gravitational shockwave. As one would expect, in the absence of rotation, i.e.,

a → 0, the supertranslated spacetime and the associated charges were that of

the Schwarzschild spacetime. We did not show explicitly that the gravitational

wave induces a permanent change in the metric as is done for the Schwarzschild

case; this is a calculation that is quite dense and will be an avenue for future

research.

In Chapter 6 we moved the memory effect-BMS group investigation to the

the Kerr–Newman spacetime. We brought, for the first time, the Kerr–Newman

black hole in the Bondi–Sachs gauge and computed the action of a BMS super-

translation on its asymptotic structure. We again discussed the change in the

supertransformation charges due to the supertranslation hair implanted on the

Kerr–Newman black hole by the gravitational wave. As was the case for the

Kerr spacetime, superrotation charge was shown to be detectable at null infinity,

while the supertranslation charge was not. We showed that there should also be

a change in the gauge field, leading to another method of detection for the mem-

ory effect — illustrating an interplay between gravitation and electromagnetism.

We further studied the gravitational memory effect and horizon charges in

the near-horizon limit of an extremal Kerr–Newman black hole. Interestingly,

The horizon charges of the bald extremal Kerr–Newman black hole showed that

the angular momentum of the black hole depended on the gauge field. This fur-

ther illustrated the interplay between gravitation and the electromagnetic field.

Upon supertranslating the near-horizon extremal Kerr–Newman black hole we

found that there is a also a horizon superrotation that has an associated super-

translation charge — which was absent at null infinity. Finally, we showed that

the scattering of the gravitational shockwave by the black hole implants soft

electric hair on the horizon, via its interaction with the electromagnetic gauge

field.

As for all research, there are many questions and avenues for future study.

Painlevé–Gullstrand coordinates have been investigated briefly in ref [304] for

different cosmological spacetimes. In these spacetimes — those that have a

global non-zero curvature — it was shown that there is no global notion of si-

multaneity. This raises interesting questions about observation of the CMB and

time in the Universe. It would be of great interest to investigate inhomogenous

spacetimes in this slicing, such as the Szekeres solution.

Research into the dark sector of the Universe is ongoing. In this thesis we

simply addressed a proposal for dark energy that could not be a solution to

our current concordance model. Of course, proving or disproving the existence

110



of dark energy will take more than a simple discussion based on theory alone.

With new observational missions such as Euclid, and ongoing tensions in the

cosmology community, it is only a matter of time — we believe — before we

enter a new era of cosmological research.

While the infrared triangle and the correspondence between the memory

effect & the BMS group are fascinating, they are not free of conceptual and

technical hurdles. As we discussed, the connection between the black hole mem-

ory effect and supertranslations of the BMS group is only established at linear

order. Indeed, the memory effect at null infinity does not capture the entire

‘memory effect’ - it does not capture the change in Bondi mass. Beyond theo-

retical development, detection of supertransformation charges remains an open

question. Even if all of these questions are addressed, we do not know ex-

actly how one could take this research and use it to further develop a theory

of quantum gravity, even though implicit assumptions of the graviton are made

in the foundations of these calculations. Clearly, just as is the case for the last

fifty years, the more interesting connections we find, the more questions arise. . .

In the end, there are many open ended questions to the research under-

taken in this thesis. We hope that the theories further developed here will aid

observation in the near future for both cosmology and quantum gravity.
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Painlevé–Gullstrand Form of Lense–Thirring Spacetime, Universe 8

(2022) 115 [2112.05228].

[55] J. Baines, T. Berry, A. Simpson and M. Visser, Constant-r geodesics in
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Appendix A

Painlevé–Gullstrand coordinates
and related formulae

Here we present some collected formulae for easy reference.

A.1 Spatially flat FLRW

By suitable choice of coordinates spatially flat FLRW spacetime can be repre-

sented in any of the following six equivalent forms:

ds2 = −dt2 + a(t)2{dr2 + r2dΩ2}, (A.1)

ds2 = −dt2 + a(t)2{dx2 + dy2 + dz2}. (A.2)

ds2 = a(η)2{−dη2 + dr2 + r2dΩ2}. (A.3)

ds2 = a(η)2{−dη2 + dx2 + dy2 + dz2}. (A.4)

ds2 = −dt2 + {[dr̄ −H(t) r̄ dt]2 + r̄2dΩ2}. (A.5)

ds2 = −dt2 +
{
[dx̄−H(t) x̄ dt]2 + [dȳ −H(t) ȳ dt]2 + [dz̄ −H(t) z̄ dt]2

}
.

(A.6)

A.2 Kottler

By suitable choice of coordinates Kottler (Schwarzschild-de Sitter) spacetime

can be represented in any of the following six equivalent forms:

ds2 = −
(
1− 2m

r̄
−H2r̄2

)
dt̄2 +

dr̄2

1− 2m
r̄
−H2r̄2

+ r̄2dΩ2. (A.7)

ds2 = −
(
1− 2m

r̄

)
dt2 +

[dr̄ −Hr̄
√

1− 2m/r̄ dt]2

1− 2m
r̄

+ r̄2dΩ2, (A.8)
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ds2 = −
(
1−H2r̄2

)
dt2 +

[dr̄ −
√
2m/r̄

√
1−H2r̄2 dt]2

1−H2r̄2
+ r̄2dΩ2, (A.9)

ds2 = −dt2 +
[
dr̄ −

√
2m/r̄ +H2r̄2 dt

]2
+ r̄2dΩ2. (A.10)

ds2 = −dt2 + e2Ht

{[
dr +

(
Hr −

√
2me−3Ht/r +H2r2

)
dt
]2

+ r2dΩ2

}
.

(A.11)

ds2 = −
(
1− 2me−Ht

r

)
dt̄2+e2Ht


(
dr +Hr

[
1−

√
1− 2me−Ht/r

]
dt
)2

1− 2me−Ht

r

+ r2dΩ2

 .

(A.12)

A.3 McVittie

By suitable choice of coordinates McVittie spacetime can be represented in any

of the following four equivalent forms:

ds2 = −

(
1− m

2a(t)r̃

1 + m
2a(t)r̃

)2

dt2 +

(
1 +

m

2a(t)r̃

)4

a(t)2{dr̃2 + r̃2dΩ2}. (A.13)

ds2 = −
(
1− 2m

r̄

)
dt2 +

[
dr̄√

1− 2m/r̄
−H(t)r̄dt

]2
+ r̄2dΩ2. (A.14)

ds2 = −
(
1− 2m

a(t)r

)
dt2+a(t)2



(
dr +H(t)r

[
1−

√
1− 2m

a(t)r

]
dt
)2

1− 2m
a(t)r

+ r2dΩ2

 .

(A.15)

ds2 =
(
1 +

m

2r̄

)4{
−
(
[1− m

2r̄
]2

[1 + m
2r̄
]6

)
dt2 + {[dr̄ −H(t)r̄dt]2 + r̄2dΩ2}

}
. (A.16)
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Appendix B

Mathematica Codes for
Chapter 6

We have developed three ancillary Mathematica files relevant to the analysis of

Chapter 6 . A brief explanation on these files is provided below. The actual

Mathematica files are available on the arXiv as supplementary material to the

submission 2407.15289.

1. KerrNewmanGeneralisedBondiSachsForm.nb: this file writes the

Kerr–Newmann metric into the generalised Bondi–Sachs form.

2. KerrNewmanBondiGaugeComponentsExpansions.nb: this file com-

putes the Kerr–Newmann metric components expansions at null infinity in

the generalised Bondi–Sachs form; transforms the metric into the Bondi–

Sachs gauge and computes their asymptotic expansion.

3. KerrNewman4PotentialNullInfinity.nb: this file computes the elec-

tromagnetic four-potential in the Bondi–Sachs gauge.
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Appendix C

List of Papers Relevant to this
Thesis

This appendix contains a brief list of the papers that are included in this thesis

and ones that are not1.

Published papers included in this thesis

1. Chapter 2: Cosmology in Painlevé–Gullstrand Coordinates

• https://arxiv.org/abs/2207.08375

• JCAP 09 (2022) 030

• Authors: Rudeep Gaur & Matt Visser

2. Chapter 3: Black holes embedded in FLRW cosmologies

• https://arxiv.org/abs/2308.07374

• Phys. Rev. D 110 (2024) 043529

• Authors: Rudeep Gaur & Matt Visser

3. Chapter 4: Black holes, white holes, and near-horizon physics

• https://arxiv.org/abs/2304.10692

• JHEP 05 (2024) 172

• Authors: Rudeep Gaur & Matt Visser

Unpublished papers included in this thesis

1. Chapter 5: The Kerr Memory Effect at Null Infinity

• https://arxiv.org/abs/2403.07302

• Status: Currently waiting with referee at JHEP

• Author: Rudeep Gaur

1The format will be: Chapter number, title of paper, arxiv link, journal reference, authors.
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2. Chapter 6: Kerr–Newman Memory Effect
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