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Abstract: The algebraic group theory approach to pairing in nuclei is an old subject and yet it con-

tinues to be important in nuclear structure, giving new results. It is well known that for identical

nucleons in the shell model approach with j − j coupling, pairing algebra is SU(2) with a comple-

mentary number-conserving Sp(N) algebra and for nucleons with good isospin, it is SO(5) with

a complementary number-conserving Sp(2Ω) algebra. Similarly, with L − S coupling and isospin,

the pairing algebra is SO(8). On the other hand, in the interacting boson models of nuclei, with

identical bosons (IBM-1) the pairing algebra is SU(1, 1) with a complementary number-conserving

SO(N ) algebra and for the proton–neutron interacting boson model (IBM-2) with good F-spin, it is

SO(3, 2) with a complementary number-conserving SO(ΩB) algebra. Furthermore, in IBM-3 and

IBM-4 models several pairing algebras are possible. With more than one j or ℓ orbit in shell model,

i.e., in the multi-orbit situation, the pairing algebras are not unique and we have the new paradigm of

multiple pairing [SU(2), SO(5) and SO(8)] algebras in shell models and similarly there are multiple

pairing algebras [SU(1, 1), SO(3, 2) etc.] in interacting boson models. A review of the results for

multiple multi-orbit pairing algebras in shell models and interacting boson models is presented

in this article with details given for multiple SU(2), SO(5), SU(1, 1) and SO(3, 2) pairing algebras.

Some applications of these multiple pairing algebras are discussed. Finally, multiple SO(8) pairing

algebras in shell model and pairing algebras in IBM-3 model are briefly discussed.

Keywords: pairing; multiple algebras; multi-j shell model; interacting boson models; SU(2); SO(5);

Sp(2Ω); SU(1, 1); SO(Ω); SO(3, 2); LST coupling; SO(8); IBM-3,4

1. Introduction

Pairing is one of the most important concepts in nuclear structure physics and its
fingerprints are seen clearly in binding energies of nuclei, ground state spins, odd-even
effects, beta decay, double beta decay, orbit occupancies and so on [1,2]. Very early Bohr,
Mottelson and Pines [3] suggested the use of BCS theory for pairing in nuclei and all
the subsequent developments in this direction are well reviewed in [4–6]. Focusing on
nuclear shell model [7,8], algebraic group theory approach to pairing has started receiving
attention following Racah’s seniority quantum number [9,10]. For identical nucleons in a
single-j shell, pair state is coupled to angular momentum zero and the corresponding pair
creation operators are unique. The pair-creation operator, pair-annihilation operator and
the number operator generate the SU(2) pairing algebra. The eigenstates of the pairing
Hamiltonian, that is a product of pair-creation and pair-annihilation operators, carry the
SU(2) quasi-spin or seniority quantum number. There are several single-j shell nuclei that
are known to carry seniority quantum number (v) as a good or useful quantum number;
see [7] and also [11–14] and references therein for full details of quasi-spin and seniority
for identical particles and their applications. Even when single-j shell seniority is a broken
symmetry, seniority quantum number is useful as it provides a basis for constructing shell
model Hamiltonian matrices [15]. Pairing symmetry with nucleons occupying several
j-orbits is more complex and less well understood from the point of view of its goodness
or usefulness in nuclei. Restricting to nuclei with identical valence nucleons (protons or
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neutrons), and say these nucleons occupy several-j orbits, then it is possible to consider
the pair-creation operator to be a sum of the single-j shell pair-creation operators with
arbitrary phases and for each choice there will be quasi-spin SU(2) algebra giving multi-
orbit or generalized seniority quantum number v. With r number of orbits there will be
2r−1 number of SU(2) pairing algebras. With 2Ω = ∑j(2j + 1), the spectrum generating
algebra (SGA) is U(2Ω) and the pairing SU(2) algebra is complementary to the Sp(2Ω)
algebra in U(2Ω) ⊃ Sp(2Ω) with v denoting the irreducible representations (irreps) of
Sp(2Ω) that belong to a given number m of identical nucleons [m denotes the irrep of
U(2Ω)]. The usefulness or goodness of these multiple pairing algebras is not well known
except a special situation that was studied long ago by Arvieu and Moszkowski (AM) [16]
in the context of surface delta interaction. We will discuss this in detail in Section 2. In
addition, pair states with linear superposition of single-j shell pair states with arbitrary
coefficients are used in generating low-lying states of nuclei, such as Sn isotopes, with
good generalized seniority [7], and they are also employed in the so called broken pair
model [17]. On the other hand, these are also used in providing a microscopic basis for
the interacting boson model [18]. Going beyond all these, there are also attempts to solve
and apply more general pairing Hamiltonian’s by Pan Feng et al. [19] and also a pair shell
model was developed by Arima and Zhao [20].

In the interacting boson models [21–23], the SO(N B) algebras in the SGA U(N B) are
well known. For example SO(6) in sdIBM-1, SO(15) and SO(14) in sdgIBM-1 and so on.
However, what is not often emphasized is that the SO(N B) algebras correspond to pairing
for bosons. In fact, for identical bosons in single ℓ shell (for example d orbit in sdIBM,
g in sdgIBM) or in multi-ℓ situation (for example sd, sdg etc.), the pairing algebra is the
non-compact SU(1, 1) algebra and the better known SO(N B) algebras are complementary
algebras (see Section 3 ahead) [21,24]. However, just as the situation with identical fermions,
here also there will be multiple SU(1, 1) pairing algebras (with r number of ℓ orbits, there
will be 2r−1 number of algebras) and for each of these there will be a complementary
SO(N B) algebra. These multiple multi-orbit pairing algebras and their applications are
described in Section 3.

Pairing in identical fermion systems is easy to deal with as the algebra is SU(2).
However, the situation changes if we consider nucleons with isospin (T) degree of freedom.
Here, the algebra changes to the more complex SO(5) algebra that generates seniority
(v) and in addition also reduced isospin (t) [25,26]. Another important result is that the
SO(5) contains only isovector pair-creation and -annihilation operators (an unsatisfactory
aspect of the SO(5) pairing algebra of shell model is that it does not contain isoscalar pair
operators). With isospin, in a single-j orbit the SGA is U(4Ω) with 2Ω = (2j + 1). The
Sp(2Ω) algebra in U(4Ω) ⊃ [U(2Ω) ⊃ Sp(2Ω)]⊗ SUT(2) is complementary to SO(5) with
(v, t) uniquely labeling the Sp(2j + 1) irreps. For the first papers on single-j shell pairing
with isospin see [25–31]. Similarly, for the technical work on the more complicated SO(5)
algebra [for example, deriving analytical formulas for the Wigner and Racah coefficients
for SO(5)] see [30,32–38] and for recent applications see [39–46] and references therein.
Although many of the single-j shell results extend to the multi-j shell situation with (2j + 1)
replaced by 2Ω = ∑j(2j + 1), a crucial aspect of the multi-j shell SO(5) pairing algebra
is that there will be multiple SO(5) algebras (also the corresponding multiple Sp(2Ω)
algebras) as the pair-creation operator here is no longer unique. Section 4 describes these
multiple SO(5) isovector pairing and seniority Sp(2Ω) multi-j algebras with isospin in
nuclei and their applications.

Parallel to pairing in shell model with isospin is the pairing with F-spin in interacting
boson models. Making a distinction between proton bosons and neutron bosons and
treating them as projections of a fictitious (F) spin 1/2 object, we have pnIBM or IBM-2
with F-spin degree of freedom (F-spin in IBM is mathematically similar to isospin in shell
model). As we present in Section 5, the pairing algebra changes from SU(1, 1) to more
complicated SO(3, 2) algebra [47]. More importantly, in the multi-ℓ situation there will be
multiple SO(3, 2) algebras and for each of these there will be a complementary SO(ΩB)
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algebra. In Section 5 multiple multi-orbit SO(3, 2) pairing algebras with F-spin in IBMs
are discussed.

Going further, interestingly multiple pairing algebras appear also in the LST pairing
SO(8) algebra in shell model and also in the isospin invariant IBM-3 model and spin-isospin
invariant IBM-4 model; see [48–54] for SO(8) algebra and [21,55,56] for IBM-3 and IBM-4.
In Section 6 we will briefly describe multiple SO(8) pairing algebras in shell model and the
pairing algebras in IBM-3.

Before proceeding further, let us stress that the most important aspect of pairing
algebras is the complementarity between the pairing algebras with number non-conserving
generators and the shell model/IBM algebras with only number-conserving generators [57].
A general mathematical theory describing this complementarity is due to Neergard [58–61]
and this is based on Howe’s general duality theorem [62,63]. It is important to mention
that the first proof of complementarity is due to Helmers [28] and later work is due
to Rowe et al. [64]. We will not discuss these more mathematically rigorous results in
this paper.

Many of the results in Sections 2–4 are presented in two conference proceedings [65,66].
Furthermore, the present article complements the results obtained for multiple SU(3)
algebras in nuclei as reported in [67–69].

2. Multiple Multi-Orbit Pairing Algebras in Shell Model: Identical Nucleons

With identical nucleons (protons or neutrons) in a single-j shell, the pair-creation
operator S+ and annihilation operator S− = (S+)† and the number operator [n̂ or more
appropriately n̂ − N/2 with N = (2j + 1), generate remarkably the quasi-spin SU(2)
algebra. The quasi-spin quantum number Q and its z-component MQ can be used to label
many (m)-particle states. On the other hand, the SGA is U(N) and the Sp(N) subalgebra of
U(N) is ‘complementary’ to the quasi-spin SU(2) algebra. The seniority quantum number
v that labels the states according to Sp(2j + 1) algebra [v labels Sp(N) irreps] corresponds
to Q and similarly, particle number m that labels the irreps of U(2j + 1) corresponds to MQ.
Seniority quantum number gives number of particles that are not in zero coupled pairs.
Thus, the classification of states given by (Q, MQ) with number non-conserving operators,
is the same as the one given by the shell model chain U(N) ⊃ Sp(N) which contains
only number-conserving operators. More importantly, this solves the pairing Hamiltonian
Hp = −S+S− and allows one to extract m dependence of many particle matrix elements of
a given operator. All these are well known [7].

All the single-j shell results extend to the multi-j shell situation i.e., for identical
particles occupying several-j orbits, with (2j + 1) replaced by 2Ω = ∑j(2j + 1). In this
situation, v is called generalized seniority. A new result that appears for the multi-j situation
is that there will be multiple quasi-spin (or Sp(2Ω)) algebras with the pair-creation operator
here being a sum of single-j pair-creation operators with different phases; S+ = ∑j αjS+(j);

αj = ±1. Then, clearly with r number of j-orbits, there will be 2r−1 number of quasi-spin

SU(2) and the corresponding 2r−1 Sp(2Ω) algebras. Sections 2.1 and 2.2 give details of
these multiple multi-orbit pairing SU(2) and the complementary Sp(N) algebras. The
complementarity is established at the level of quadratic Casimir invariants of various group
algebras that appear here. These multiple multi-j quasi-spin algebras (one for each αj

choice) play an important role in deciding selection rules for electric and magnetic multi-
pole operators. This is the topic of Section 2.3. Correlations between realistic interactions
and pairing interactions that correspond to various multiple pairing algebras are studied in
Section 2.4. Applications of multi-j seniority describing data in certain nuclei is presented
in Section 2.5 with results drawn from [7,70–73]. Finally, a summary is given in Section 2.6.
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2.1. Multiple Multi-Orbit Pairing SU(2) Algebras

Let us say there are m number of identical fermions (protons or neutrons) in j orbits j1,
j2, . . ., jr. Now, it is possible to define a generalized pair-creation operator S+ as

S+ = ∑
j

αjS+(j) ; S+(j) = ∑
m>0

(−1)j−ma†
jma†

j−m =

√
2j + 1

2

(
a†

j a†
j

)0
. (1)

Here, αj are free parameters and assumed to be real. The m used for number of particles
should not be confused with the m in jm. Given the S+ operator, the corresponding pair-
annihilation operator S− is

S− = (S+)
† = ∑

j

αjS−(j) ; S−(j) = (S+(j))† = −
√

2j + 1

2

(
ãj ãj

)0
. (2)

Note that ajm = (−1)j−m ãj−m. The operators S+, S− and S0,

S0 =
n̂ − Ω

2
; Ω = ∑

j

Ωj , Ωj = (2j + 1)/2 , (3)

form the generalized quasi-spin SU(2) algebra [hereafter called SUQ(2)] only if

α2
j = 1 for all j . (4)

Note that n̂ = ∑jm a†
jmajm, is the number operator. With Equation (4) we have,

[S0 , S±] = ±S± , [S+ , S−] = 2S0 . (5)

Thus, in the multi-orbit situation for each

{
αj1 , αj2 , . . . , αjr

}

with αji = ±1 there is a SUQ(2) algebra defined by the operators in Equations (1)–(3). For
example, say we have three j orbits j1, j2 and j3. Then, without loss of generality we can
choose α1 = +1 and then (α2, α3) can take values (+1,+1), (+1,−1), (−1,+1), (−1,−1)
giving four pairing SUQ(2) algebras. Similarly, with four j orbits, there will be eight SUQ(2)
algebras and in general for r number of j orbits there will 2r−1 number of SUQ(2) algebras.
The consequences of having these multiple pairing SUQ(2) algebras will be investigated
in the following. Before going further let us mention that the SUQ(2) here should not
be confused with the quantum group SUq(2) of Biedenharn and Macfarlane [74,75] (see
also [76]).

Though well known, for later use and for completeness, some of the results of
the SUQ(2) algebra are that the S2 = S+S− − S0 + S2

0 operator and the S0 operator in
Equation (3) define the quasi-spin s and its z-component ms with S2|sms〉 = s(s + 1)|sms〉
and S0|sms〉 = ms|sms〉. Furthermore, from Equation (3) we have ms = (m − Ω)/2; the
m here is number of particles. Moreover, it is possible to introduce the so called seniority
quantum number v such that s = (Ω − v)/2 giving,

s = (Ω − v)/2 , ms = (m − Ω)/2 ,
v = m, m − 2, . . . , 0 or 1 for m ≤ Ω

= (2Ω − m), (2Ω − m)− 2, .., 0 or 1 for m ≥ Ω .
(6)

Note that the total number of single particle states is N = 2Ω and therefore for m > Ω

one has fermion holes rather than particles. With the pairing Hamiltonian Hp given by

Hp = −G S+S− (7)
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where G being the pairing strength, the following results will provide a meaning to the
seniority quantum number “v”,

〈S+S−〉sms = 〈S+S−〉mv = 〈m, v, β | S+S− | m, v, β〉
= 1

4 (m − v)(2Ω − m − v + 2) ,
(8)

|m, v, β〉 =

√
(Ω − v − p)!

(Ω − v)!p!
(S+)

m − v
2 |v, v, β〉 ; p =

(m − v)

2
. (9)

with these, it is clear that for a given v and m there are (m − v)/2 zero coupled pairs in
eigenstates of Hp. Thus, v gives the number of particles that are not coupled to angular mo-
mentum zero. In Equation (9), β is an extra label that is required to specify a (j1, j2, . . . , jr)m

state completely.
Before going further, an important result (to be used later) that follows from

Equations (1) and (2) is,

4S+S− = 4 ∑
j

S+(j)S−(j) + ∑
j1>j2

αj1 αj2

× ∑
k

√
2k + 1

{[(
a†

j1
ãj2

)k(
a†

j1
ãj2

)k
]0

+

[(
a†

j2
ãj1

)k(
a†

j2
ãj1

)k
]0
}

.
(10)

2.2. Multiple Multi-Orbit Complementary Sp(N) Algebras

In the (j1, j2, . . . , jr)m space, often it is more convenient to start with the U(N) algebra
generated by the one-body operators uk

q(j1, j2),

uk
q(j1, j2) =

(
a†

j1
ãj2

)k

q
. (11)

The total number of generators is obviously N2 and N = 2Ω. All m fermion states will
be antisymmetric and therefore belong uniquely to the irrep {1m} of U(N). The quadratic
Casimir invariant of U(N) is easily given by

C2(U(N)) = ∑
j1,j2

(−1)j1−j2 ∑
k

uk(j1, j2) · uk(j2, j1) , (12)

with eigenvalues

〈C2(U(N))〉m = m(N + 1 − m) ; N = 2Ω . (13)

Equation (13) can be proved by writing the one and two-body parts of C2(U(N)) and
then showing that the one-body part is 2Ωn̂ and the two-body part will have two-particle
matrix elements diagonal with all of them having value −2.

More importantly, U(N) ⊃ Sp(N) and the Sp(N) algebra is generated by the N(N + 1)/2
number of generators uk

q(j, j) with k=odd only and Vk
q (j1, j2), j1 > j2 where

Vk
q (j1, j2) = [N (j1, j2, k)]1/2

[(
a†

j1
ãj2

)k

q
+ X(j1, j2, k)

(
a†

j2
ãj1

)k

q

]
, {X(j1, j2, k)}2 = 1 . (14)

The quadratic Casimir invariant of Sp(N) is given by,

C2(Sp(N)) = 2 ∑
j

∑
k=odd

uk(j, j) · uk(j, j) + ∑
j1>j2;k

Vk(j1, j2) · Vk(j1, j2) . (15)

The Sp(N) algebra will be complementary to the quasi-spin SU(2) algebra defined
for a given set of

{
αj1 , αj2 , . . . , αjr

}
provided

N (j1, j2, k) = (−1)k+1αj1 αj2 , X(j1, j2, k) = (−1)j1+j2+kαj1 αj2 . (16)
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Using Equations (12) and (14)–(16) along with Equation (10) it is easy to derive the
following important relation,

C2(U(N))− C2(Sp(N)) = 4S+S− − n̂ . (17)

Now, Equations (8), (13) and (17) will give

〈C2(Sp(N)〉m,v = v(2Ω + 2 − v) (18)

and this proves that the seniority quantum number v corresponds to the Sp(N) irrep 〈1v〉.
In summary, given the SUQ(2) algebra generated by {S+, S−, S0} operators for a

given set of
{

αj1 , αj2 , . . . , αjr

}
with αji = +1 or −1, there is a complementary (↔) Sp(N)

subalgebra of U(N) generated by

Sp(N) : uk(j, j) =
(

a†
j ãj

)k

q
with k = odd ,

Vk
q (j1, j2) =

[
(−1)k+1αj1 αj2

]1/2
[(

a†
j1

ãj2

)k

q
+ (−1)j1+j2+kαj1 αj2

(
a†

j2
ãj1

)k

q

]
with j1 > j2 .

(19)

As the Sp(N) generators are one-body operators and that Sp(N) ↔ SUQ(2), there will
be special selection rules for electro-magnetic transition operators connecting m fermion
states with good seniority. These are well known for a special choice of α’s [7] and their
relation to the multiple SU(2) algebras or equivalently to the

{
αj1 , αj2 , . . . , αjr

}
set is the

topic of the next Section.

2.3. Selection Rules and Matrix Elements for Electro-Magnetic Transitions

Electro-magnetic (EM) operators are essentially one-body operators (two and higher-
body terms are usually not considered). In order to derive selection rules and matrix

elements for allowed transitions, let us consider the commutator of S+ with
(

a†
j1

ãj2

)k

q
.

Firstly we have easily,

[
S+(j) ,

(
a†

j1
ãj2

)k

q

]
= −δj,j2

(
a†

j1
a†

j2

)k

q
. (20)

This gives [
S+ ,

(
a†

j1
ãj2

)k

q
+ X

(
a†

j2
ãj1

)k

q

]

= −αj2

(
a†

j1
a†

j2

)k

q

{
1 − X αj1 αj2 (−1)j1+j2+k

}

= 0 if X = αj1 αj2 (−1)j1+j2+k

6= 0 if X = −αj1 αj2 (−1)j1+j2+k .

(21)

Note that the commutator being zero implies that the operator is a scalar T0
0 with

respect to SUQ(2) and otherwise it will be a quasi-spin vector T1
0 . In either situation the Sz

component of T is zero as a one-body operator can not change particle number. Thus, for
j1 6= j2 we have

Uk
q(j1, j2) = Nu

{(
a†

j1
ãj2

)k

q
+ αj1 αj2 (−1)j1+j2+k

(
a†

j2
ãj1

)k

q

}
→ T0

0 ,

Wk
q (j1, j2) = Nw

{(
a†

j1
ãj2

)k

q
− αj1 αj2 (−1)j1+j2+k

(
a†

j2
ãj1

)k

q

}
→ T1

0 .
(22)

Here Nu and Nw are some constants. Similarly, for j1 = j2 we have
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(
a†

j ãj

)k

q
with k odd → T0

0 ,
(

a†
j ãj

)k

q
with k even → T1

0 except for k = 0 .
(23)

The results in Equation (22) are easy to understand as Uk
q in Equation (22) is to within

a factor same as Vk
q of Equation (19) and therefore a generator of Sp(N). Hence it cannot

change the v quantum number of a m-particle state. Moreover, as Sp(N) ↔ SUQ(2), clearly

Uk
q will be a SUQ(2) scalar. Similarly turning to Equation (23), as

(
a†

j ãj

)k

q
with k odd are

generators of Sp(N) and hence they are also SUQ(2) scalars.
The general form of electric and magnetic multi-pole operators TEL and TML respec-

tively with L = 1, 2, 3, . . . is, with X = E or M,

TXL
q = ∑

j1,j2

ǫXL
j1,j2

(
a†

j1
ãj2

)L

q

= ∑
j

ǫXL
j,j

(
a†

j ãj

)L

q
+ ∑

j1>j2

ǫXL
j1,j2

[(
a†

j1
ãj2

)L

q
+

ǫXL
j2,j1

ǫXL
j1,j2

(
a†

j2
ãj1

)L

q

]
.

(24)

Therefore, ǫXL
j2,j1

/ǫXL
j1,j2

along with Equations (22) and (23) will determine the selection

rules. Then,
ǫXL

j2,j1

ǫXL
j1,j2

= αj1 αj2(−1)j1+j2+L → T0
0 w.r.t. SUQ(2) ,

ǫXL
j2,j1

ǫXL
j1,j2

= −αj1 αj2(−1)j1+j2+L → T1
0 w.r.t. SUQ(2) .

(25)

Thus, the SUQ(2) tensorial nature of TXL depends on the αi choice. For T0
0 we have

v → v and for T1
0 we have v → v, v ± 2 transitions. It is well known [7,16] that for TEL and

TML operators,

ǫEL
j2,j1

ǫEL
j1,j2

= −(−1)ℓ1+ℓ2+j1+j2+L ,
ǫML

j2,j1

ǫML
j1,j2

= (−1)ℓ1+ℓ2+j1+j2+L . (26)

In Equation (26) ℓi is the orbital angular momentum of the ji orbit. Therefore, com-
bining results in Equations (22)–(26) together with parity selection rule will give seniority
selection rules, in the multi-orbit situation, for electro-magnetic transition operators when
the observed states carry seniority quantum number as a good quantum number. The
selection rules with the choice αji = (−1)ℓi for all i are as follows.

1. TEL with L even will be T1
0 w.r.t. SUQ(2).

2. TEL with L odd will be T1
0 w.r.t. SUQ(2). However, if all j orbits have same parity,

then TEL with L odd will not exist. Therefore here, for the transitions to occur, we
need minimum two orbits of different parity.

3. TML with L odd will be T0
0 w.r.t. SUQ(2).

4. TML with L even will be T0
0 w.r.t. SUQ(2). However, if all j orbits have same parity,

then TML with L even will not exist. Therefore here, for the transitions to occur, we
need minimum two orbits of different parity.

5. For T0
0 only v → v transitions are allowed while for T1

0 both v → v and v → v ± 2
transition are allowed. For both m is not changed.

The above rules were given already by Arvieu and Moszkowski [16] and described
by Talmi [7]. As stated by Arvieu and Moszkowski, they have introduced the choice
αi = (−1)ℓi “for convenience” and then found that it will make surface delta interaction a
SUQ(2) scalar. It is important to note that for SUQ(2) generated by αi 6= (−1)ℓi , the above
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rules (1)–(4) will be violated and then Equation (25) has to be applied. This is a new result
and it was reported first in [65] (see also [77]). A similar result applies to interacting boson
models as presented in Section 3.

Applying the Wigner–Eckart theorem for the many particle matrix elements in good
seniority states, the number dependence of the matrix elements of T0

0 and T1
0 operators is

easily determined. For fermions we simply need SU(2) Wigner coefficients [78]. Results
for fermion systems are given for example in [7]. For completeness we will give these here,

〈
m, v, α | T0

0 | m, v′, β
〉
= δv,v′

〈
v, v, α | T0

0 | v, v, β
〉

,
〈
m, v, α | T1

0 | m, v, β
〉
=

Ω − m

Ω − v

〈
v, v, α | T1

0 | v, v, β
〉

,

〈
m, v, α | T1

0 | m, v − 2, β
〉
=

√
(2Ω − m − v + 2)(m − v + 2)

4(Ω − v + 1)

〈
v, v, α | T1

0 | v, v − 2, β
〉

.

(27)

Before turning to applications, within the shell model context it is necessary to conform
that a realistic pairing operator do respect the condition αi = (−1)ℓi . In order to test this, we
will use correlation coefficient between operators as defined in French’s spectral distribution
method [79].

2.4. Correlation between Operators and Phase Choice in the Pairing Operator

Given an operator O acting in m particle spaces and assumed to be real, its m particle
trace is 〈〈O〉〉m = ∑α 〈m, α | O | m, α〉 where |m, α 〉 are m-particle states. Similarly, the
m-particle average is 〈O〉m = [d(m)]−1〈〈O〉〉m where d(m) is m-particle space dimension.
In m particle spaces it is possible to define, using the spectral distribution method of
French [79,80], a geometry [80,81] with norm (or size or length) of an operator O given by

|| O ||m=
√〈

ÕÕ
〉m

; Õ is the traceless part of O. With this, given two operators O1 and

O2, the correlation coefficient

ζ(O1,O2) =

〈
Õ1Õ2

〉m

|| O1 ||m || O2 ||m
, (28)

gives the cosine of the angle between the two operators. Thus, O1 and O2 are same within
a normalization constant if ζ = 1 and they are orthogonal to each other if ζ = 0 [79,81]. The
most recent application of norms and correlation coefficients, defined above, to understand
the structure of effective interactions is due to Draayer et al. [82–84].

Clearly, in a given shell model space, given a realistic effective interaction Hamiltonian
H, the ζ in Equation (28) can be used as a measure for its closeness to the pairing Hamil-
tonian HP = S+S− with S+ defined by Equation (1) for a given set of αj’s. Evaluating
ζ(H, HP) for all possible αj sets, it is possible to identify the αj set that gives maximum
correlation of Hp with H. Following this, ζ(H, HP) is evaluated for effective interactions in
(0 f7/2, 0 f5/2, 1 p3/2, 1 p1/2), (0 f5/2, 1 p3/2, 1 p1/2, 0g9/2) and (0g7/2, 1d5/2, 1d3/2, 2s1/2, 0h11/2)
spaces using GXPF1 [85], JUN45 [86] and jj55-SVD [87] interactions respectively. As we are
considering only identical particle systems and also as we are interested in studying the
correlation of H’s with HP’s, only the T = 1 part of the interactions is considered (dropped
are the T = 0 two-body matrix elements and also the single particle energies). With this
ζ(H, HP) are calculated in the three spaces for different values of the particle number m and
for all possible choices of αj’s defining S+ and hence HP. Results are given in Table 1. It is

clearly seen that the choice αj = (−1)ℓi gives the largest value for ζ and hence it should be
the most preferred choice. This is a significant result justifying the choice made by AM [16],
although the magnitude of ζ is not more than 0.3. Thus, realistic H are far, on a global
m-particle space scale, from the simple pairing Hamiltonian. However, it is likely that the
generalized pairing quasi-spin or sympletic symmetry may be an effective symmetry for
low-lying state and some special high-spin states [12]. Evidence for this will be discussed
in Section 2.5.
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Table 1. Correlation coefficient ζ between the T = 1 part of a realistic interaction and the pairing

Hamiltonian Hp for various particle numbers (m) in three different shell model spaces. The single

particle (sp) orbits for these three spaces are given in column #1. The range of m values used is given

in column #3. The phases αj for each orbit in the generalized pair-creation operator are given in

column #4 (the order is the same as the sp orbits listed in column #1). The variation in ζ with particle

number m is given in column #5. Results for the phase choices that give |ζ| < 0.15 for all m values

are not shown in the table. See Section 2.4 for further discussion.

Sp Orbits Interaction m αj ζ(H, Hp)

0g7/2, 1d5/2,
1d3/2, 2s1/2,

0h11/2

jj55-SVD 2–30 (+,+,+,+,−) 0.33–0.11

(+,+,+,−,−) 0.26–0.09

(+,+,−,+,−) 0.17–0.06

0 f5/2, 1 p3/2,
1 p1/2, 0g9/2

jun45 2–20 (+,+,+,−) 0.42–0.21

(+,+,−,−) 0.27–0.13

(+,−,+,−) 0.15–0.07

0 f7/2, 1 p3/2,
0 f5/2, 1 p1/2

gxpf1 2–18 (+,+,+,+) 0.36–0.33

(+,+,+,−) 0.22–0.20

Before turning to applications of multiple pairing algebras, it is useful to add that in
principle the spectral distribution method can be used to study the mixing of seniority
quantum number in the eigenstates generated by a given Hamiltonian by using the so
called partial variances [11,79]. The vi → v f partial variances, with vi 6= v f , are defined by

σ2(m, vi → m, v f ) = [d(m, vi)]
−1

∑
α,β

∣∣∣
〈

m, v f , β | H | m, vi, α
〉∣∣∣

2
. (29)

In Equation (29), d(m, v) is the dimension of the (m, v) space. It is important to note
that the partial variances can be evaluated without constructing the H matrices but by
using the propagation equations. These are available both for fermion and boson systems;
see [88–90]. However, propagation equations for the more realistic σ2(m, vi, J → m, v f , J)
partial variances are not yet available.

2.5. Applications

In order to understand the variation of B(EL) [similarly B(ML)] for fermion systems,
for states with good seniority, some numerical examples are shown in Figures 1 and 2.
Firstly, consider an electric multi-pole (of multi-polarity L) transition between two states
with same v value. Then, the B(EL) ∝ [(Ω − m)/(Ω − v)]2 as seen from the second
equation in Equation (27). Note that, with αji = (−1)ℓi , the TEL operators are T1

0 w.r.t.
SUQ(2). Assuming v = 2, variation of B(EL) with particle number m is shown for three
different values of Ω and m varying from 2 to 2Ω − 2 in Figure 1. It is clearly seen that
B(EL) decrease up to mid-shell and then again increases, i.e., B(EL) vs m is an inverted
parabola. The parabolas shift depending on the value of Ω. In addition, shown in Figure 1
is also the variation with m for states with v = 1 and 4. Assuming the ground 0+ and first
excited 2+ states of a nucleus belong to v = 0 and v = 2 respectively, B(E2; 2+ → 0+)
variation with particle number is calculated using the third equation in Equation (27) giving
B(E2) ∝ (2Ω − m − v + 2)(m − v + 2)/4(Ω − v + 1). The variation of B(E2) is that it will
increase up to mid-shell and then decrease; i.e., the B(E2; 2+ → 0+) vs m is a parabola.
This is shown in Figure 2 for three different values of Ω and again one sees a shift in
the parabolas with Ω changing. Similar is the result for more general B(EL) transitions,
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assuming that the transitions are from states with a v value to those with v − 2; see the
lower panel in Figure 2.
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Figure 1. Upper panel shows variation of B(EL) with particle number m for five different values of Ω

and seniority v for v → v transitions. Similarly, lower panel shows variation of quadrupole moment

Q(J) with particle number m and for three different values of Ω. The quadrupole moments are for

states with seniority v. These results, useful in shell model description, are obtained by applying

the second formula in Equation (27). The B(EL) values are scaled such that the maximum value is

100 and similarly, |Q(J)| is scaled such that the maximum value is 1. Thus, the B(EL) and Q(J) in the

figure are not in any units. See Section 2.5 for further discussion.

First examples for the goodness of generalized seniority in nuclei are Sn isotopes. Note
that for Sn isotopes the valence nucleons are neutrons with Z = 50, a magic number. From
Equation (8) it is easy to see that the spacing between the first 2+ state (it will have v = 2)
and the ground state 0+ (it will have v = 0) will be independent of m, i.e., the spacing
should be same for all Sn isotopes and this is well verified by experimental data [7]. Going
beyond this, recently B(E2; 2+1 → 0+1 ) data for 104Sn to 130Sn are analyzed using the results
in Equation (27), i.e., the results in Figure 2. Data show a dip at 116Sn and they are close
to adding two displaced parabolas; see Figure 1 in [71]. This is understood by employing
0g7/2, 1d5/2, 1d3/2 and 2s1/2 orbits for neutrons in 104Sn to 116Sn with Ω = 10 and 100Sn
core. Similarly, 1d5/2, 1d3/2, 2s1/2 and 0h11/2 orbits with Ω = 12 and 108Sn core for 116Sn to
130Sn. Then, the B(E2) vs m structure follows from Figure 2 by shifting appropriately the
centers of the two parabolas in the figure and defining properly the beginning and end
points. It is also shown in [71] that shell model calculations with an appropriate effective
interaction in the above orbital spaces reproduce the results from the simple formulas given
by seniority description and the experimental data.
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Figure 2. Upper panel shows variation of B(E2; v = 2, 2+ → v = 0, 0+) with particle number m for

three different values of Ω. Similarly, lower panel shows variation of B(EL) with particle number

m for transitions between states with v to states with v − 2. These results, useful in shell model

description, are obtained by applying the third formula in Equation (27). The B(EL) and B(E2) values

are scaled such that the maximum value is 100 and therefore they are not in any units. See Section 2.5

for further discussion.

In addition to B(E2; 2+ → 0+) data, there is now good data available for B(E2)’s and
B(E1)’s for some high-spin isomer states in even Sn isotopes. These are: B(E2; 10+ → 8+)
data for 116Sn to 130Sn and B(E2; 15− → 13−) for 120Sn to 128Sn and B(E1; 13− → 12+) in
120Sn to 126Sn. The states 10+ and 8+ are interpreted to be v = 2 states while 15−, 13− and
12+ are v = 4 states. Therefore, all these transitions are v → v transitions and their variation
with m will be as shown in Figure 1. This is well verified by data [70] by assuming that the
active sp orbits are 0h11/2, 1d3/2 and 2s1/2 with Ω = 9 (see also Figure 1 with Ω = 9). The
results with Ω = 8 and Ω = 7, obtained by dropping 2s1/2 and 1d3/2 orbits respectively,
are not in good accord with the data. In all this and in the analysis in [72,73], it is assumed
that the α and β in Equation (27) are independent of m, i.e., they remain same for a given
isotopic chain.

In summary, both the B(E2; 2+ → 0+) data and the B(E2) and B(E1) data for high-
spin isomer states are explained by assuming goodness of generalized seniority with the

choice β j = (−1)ℓj but with effective Ω values. Although the sp orbits (and hence Ω

values) used are different for the low-lying levels and the high-spin isomer states, the good
agreements between data and effective generalized seniority description on one hand and
the correlation coefficients presented in Section 2.4 on the other show that for Sn isotopes
generalized seniority is possibly an ‘emergent symmetry’or a “partial dynamical symmetry
(PDS)” (see [14] for PDS). Let us add that although detailed nuclear structure calculations
are possible for Sn isotopes [91], generalized seniority gives simple explanation for trends
seen in some of the observables.
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Going beyond Sn isotopes, with some further assumptions, near constancy of the ener-
gies of 2+1 and 3−1 levels and also B(E2; 2+1 → 0+1 ) and B(E3; 3−1 → 0+1 ) using Equation (27)
for B(EL)’s in Cd and Te isotopes are explained well [72]. In this study, neutrons in 0g7/2,
0h11/2, 1d5/2, 1d3/2 and 2s1/2 orbits in various combinations, depending on their occupancy,
giving Ω = 9 − 12 are employed. Further, more recently Equation (27) is applied success-
fully to explain empirical data on g-factors, quadrupole moments and B(E2) values for
the 13/2+, 12+ and 33/2+ isomers in Hg, Pb and Po isotopes. See Figure 1 for variation
of quadrupole moments Q(J) with particle number m [this is obtained using the second
formula in Equation (27)] and the decrease as we move towards mid-shell region is seen in
data [73]. In addition, B(E2; 2+1 → 0+1 ) values in these isotopes are also explained [73]. In
this study used are Equation (27) and neutrons in the single particle orbits 0h9/2, 0i13/2, 1 f7/2,
2 p3/2 and 1 f5/2 giving Ω = 13, 17 and 18 depending on the occupancy of these orbits [73].

2.6. Summary

In this section presented are results on multiple multi-orbit pairing SU(2) and the
complementary SO(N) algebras in j − j coupling shell model for identical nucleons. The
relationship between quasi-spin tensorial nature of one-body transition operators and the
phase choices in the multi-orbit pair-creation operator is presented. As pointed out in
Sections 2.1 and 2.2, some of the results here are known before for some special situations.
Selection rules for EM transition strengths as determined by multiple multi-orbit pairing
algebras are presented in Section 2.3. In Section 2.4, results for the correlation coefficient
between the pairing operator with different choices for phases in the generalized pair-
creation operator and realistic effective interactions are presented. It is found that the
choice advocated by AM [16] gives maximum correlation though its absolute value, no
more than 0.3, is small. Applications using particle number variation in electromagnetic
transition strengths, of multiple pairing algebras are briefly discussed in Section 2.5 drawing
from the recent analysis by Maheswari and Jain [70–73]. Generalized seniority with phase
choice advocated by AM appear to describe B(E2) and B(E1) data in Sn isotopes both for
low-lying states and high-spin isomeric states. This agreement also appears to extend to
Cd, Te, Hg, Pb and Po isotopes. Though deviations from the results obtained using AM
choice is a signature for multiple multi-orbit pairing algebras, direct experimental evidence
for the multiple pairing algebras is not yet available. This requires examination of data
where EM selection rules are violated.

3. Multiple Multi-Orbit Pairing Algebras in Interacting Boson Models: Identical
Boson Systems

3.1. Multiple Quasi-Spin SUQ(1, 1) and Complementary SO(N ) Pairing Algebras

Going beyond the shell model, also within the interacting boson models, i.e., for example
in sd, sp, sdg and sdp f IBM’s, again it is possible to have multiple pairing algebras as we
have several ℓ orbits in these models but with bosons [21–23,55,56,92–94]. Here, as is well
known, the pairing algebra is SUQ(1, 1) instead of SUQ(2) [95]. Let us consider IBM with
identical bosons carrying angular momentum ℓ1, ℓ2, . . . , ℓr and the parity of an ℓi orbit is
(−1)ℓi . Now, again it is possible to define a generalized boson pair-creation operator SB

+ as

SB
+ = ∑

ℓ

βℓS
B
+(ℓ) ; SB

+(ℓ) =
1

2 ∑
m

(−1)mb†
ℓmb†

ℓ−m =

√
2ℓ+ 1

2
(−1)ℓ

(
b†
ℓ
b†
ℓ

)0
=

1

2
b†
ℓ
· b†

ℓ
. (30)

Here, βℓ are free parameters and assumed to be real. Given the SB
+ operator, the

corresponding pair-annihilation operator SB
− is

SB
− =

(
SB
+

)†
= ∑

ℓ

βℓS
B
−(ℓ) ; SB

−(ℓ) =
(

SB
+(ℓ)

)†
= (−1)ℓ

√
2ℓ+ 1

2

(
b̃ℓ b̃ℓ

)0
=

1

2
b̃ℓ · b̃ℓ . (31)

Note that bℓm = (−1)l−m b̃ℓ−m. The operators SB
+, SB

− and SB
0 , with n̂B = ∑ℓm a†

ℓmaℓm

the number operator,
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SB
0 =

n̂B + ΩB

2
; ΩB = ∑

ℓ

ΩB
ℓ

, ΩB
ℓ
= (2ℓ+ 1)/2 (32)

form the generalized quasi-spin SU(1,1) algebra [hereafter called SUB
Q(1, 1)—the SUQ(1, 1)

here should not be confused with the quantum group SUq(1, 1) of Kulish [96]] only if

β2
ℓ
= 1 for all ℓ . (33)

with Equation (33) we have,

[
SB

0 , SB
±
]
= ±SB

± ,
[
SB
+ , SB

−
]
= −2SB

0 . (34)

Thus, in the multi-orbit situation for each

{β} =
{

βℓ1
, βℓ2

, . . . , βℓr

}
; βℓi

= ±1 , (35)

there is a SUB
Q(1, 1) algebra defined by the operators in Equations (30)–(32). Thus, in general

for r number of ℓ orbits there will 2r−1 number of SUB
Q(1, 1) algebras. Let us mention that

(SB)2 = (SB
0 )

2 − SB
0 − SB

+SB
− and SB

0 = (n̂B + ΩB)/2 provide the quasi-spin s and the S0

quantum number ms giving the basis |s, ms 〉 [56,92],

(SB)2 |s, ms, γ 〉 = s(s − 1) |s, ms, γ 〉 , S0 |s, ms, γ 〉 = ms |s, ms, γ 〉 ;
ms = s, s + 1, s + 2, . . .
⇒
s = (ΩB + ωB)/2 , ms = (ΩB + NB)/2 , ωB = NB, NB − 2, . . . , 0 or 1,

SB
+SB

− |s, ms, γ 〉 = SB
+SB

−
∣∣NB, ωB, γ

〉
= 1

4 (NB − ωB)(ωB + NB + 2ΩB − 2)
∣∣NB, ωB, γ

〉
.

(36)

Here, NB is number of bosons and γ is an additional label needed for complete
specification of a state with NB number of bosons.

Just as for fermions, corresponding to each of the 2r−1 SUB
Q(1, 1) algebras there will be,

in the (ℓ1, ℓ2, . . . , ℓr)NB
space, a SO(N ) subalgebra of U(N ) with N = 2ΩB = ∑ℓ(2ℓ+ 1).

The U(N ) algebra is generated by the N 2 number of operators

uk
q(ℓ1, ℓ2) =

(
b†
ℓ1

b̃ℓ2

)k

q
. (37)

As all the NB boson states need to be symmetric, they belong uniquely to the irrep
{NB} of U(N ). The quadratic Casimir invariant of U(N ) is easily given by

C2(U(N )) = ∑
ℓ1,ℓ2

(−1)ℓ1+ℓ2 ∑
k

uk(ℓ1, ℓ2) · uk(ℓ2, ℓ1) , (38)

with eigenvalues

〈C2(U(N ))〉NB

= NB(NB +N − 1) . (39)

More importantly, U(N ) ⊃ SO(N ) and the N (N − 1)/2 generators of SO(N )
are [55],

SO(N ) : uk
q(ℓ, ℓ) with k odd ,

Vk
q (ℓ1, ℓ2) =

{
(−1)ℓ1+ℓ2Y(ℓ1, ℓ2, k)

}1/2
[(

b†
ℓ1

b̃ℓ2

)k

q
+ Y(ℓ1, ℓ2, k)

(
b†
ℓ2

b̃ℓ1

)k

q

]
;

Y(ℓ1, ℓ2, k) = (−1)k+1 βℓ1
βℓ2

.

(40)

Just as for fermion systems, the SO(β)(N ) defined by Equation (40) is complementary

to the quasi-spin SU
B:(β)
Q (1, 1) defined by Equations (30)–(32) and this follows from the

following relations that are proved in [55],
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4SB
+SB

− = C2(U(N ))− n̂B − C2(SO(N )) ,

C2(SO(N )) = ∑
ℓ

C2(SO(Nℓ)) + ∑
ℓi<ℓj

∑
k

Vk
(
ℓi, ℓj

)
· Vk

(
ℓi, ℓj

)
;

C2(SO(Nℓ)) = 2 ∑
k=odd

uk(ℓ, ℓ) · uk(ℓ, ℓ) ;

=⇒ 〈C2(SO(N ))〉NB ,ωB

= ωB(ωB +N − 2) .

(41)

In the last step we have used Equations (36) and (39). Thus, the irreps of SO(β)(N )
are labeled by the symmetric irreps

[
ωB

]
with

ωB = NB, NB − 2, . . . , 0 or 1 . (42)

In summary, we have established at the level of quadratic Casimir invariants that there
are multiple SUB(1, 1) algebras each with a complementary number-conserving SO(N )
algebra when we have identical bosons in several ℓ orbits. An important property is that
the spectrum in the symmetry limit, generated by

HB
P = GBSB

+SB
− ,

will not depend on {β}; see Equation (36). However, the eigenfunctions do depend on {β}
and a method to construct the eigenfunctions is given in Appendix A. Now, as an example,
we will consider the dependence on {β} giving selection rules for EM transitions.

3.2. Selection Rules and Matrix Elements for One-Body Transition Operators

Given a general one-body operator

Tk
q = ∑

ℓ1,ℓ2

ǫk
ℓ1,ℓ2

(
b†
ℓ1

b̃ℓ2

)k

q

= ∑
ℓ

ǫk
ℓ,ℓ

(
b†
ℓ
b̃ℓ

)k

q
+ ∑

ℓ1>ℓ2

ǫk
ℓ1,ℓ2

[(
b†
ℓ1

b̃ℓ2

)k

q
+

ǫk
ℓ2,ℓ1

ǫk
ℓ1,ℓ2

(
b†
ℓ2

b̃ℓ1

)k

q

]
,

(43)

as SO(N ) ↔ SUB(1, 1), it should be clear from the generators in Equation (40) that the

diagonal
(
b†
ℓ
b̃ℓ
)k

q
parts will be SUB

Q(1, 1) scalars T0
0 for k odd and vectors T1

0 for k even

(except for k = 0). Similarly, the off diagonal parts

[(
b†
ℓ1

b̃ℓ2

)k

q
+

ǫk
ℓ2,ℓ1

ǫk
ℓ1,ℓ2

(
b†
ℓ2

b̃ℓ1

)k

q

]

will be SUB
Q(1, 1) scalars T0

0 or vectors T1
0 ,

ǫk
ℓ2,ℓ1

ǫk
ℓ1,ℓ2

= (−1)k+1βℓ1
βℓ2

→ T0
0 ,

ǫk
ℓ2,ℓ1

ǫk
ℓ1,ℓ2

= (−1)kβℓ1
βℓ2

→ T1
0 . (44)

Thus, the selection rules for the boson systems are similar to those for the fermion
systems. Results in Equations (40) and (44) together with a condition for the seniority
tensorial structure will allow us to write proper forms for the EM operators in boson
systems. Let us say that SB

+ is given by

SB
+ = ∑

ℓ

βℓ

2
b†
ℓ
· b†

ℓ
; βℓ = +1 or − 1 . (45)
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If we impose the condition that the TE,L=even and TM,L=odd operators are T1
0 and T0

0
w.r.t. SUB

Q(1, 1), just as the fermion operators are w.r.t. SUQ(2) (see Section 2), then

TL = ∑
ℓ

ǫL
ℓ,ℓ

(
b†
ℓ
b̃ℓ

)L

q
+ ∑

ℓ1>ℓ2

ǫL
ℓ1,ℓ2

[(
b†
ℓ1

b̃ℓ2

)L

q
+ βℓ1

βℓ2

(
b†
ℓ2

b̃ℓ1

)L

q

]
;

⇒
TEL → T1

0 , TML → T0
0 .

(46)

Note that for ℓ1 6= ℓ2, parity selection rule implies that (−1)ℓ1+ℓ2 must be +1. Similarly,
the parity changing TE,L=odd and TM,L=even operators are,

TL = ∑
ℓ1>ℓ2

ǫL
ℓ1,ℓ2

[(
b†
ℓ1

b̃ℓ2

)L

q
− βℓ1

βℓ2

(
b†
ℓ2

b̃ℓ1

)L

q

]
;

⇒
TEL → T1

0 , TML → T0
0 .

(47)

Note that for ℓ1 6= ℓ2, parity selection rule implies that (−1)ℓ1+ℓ2 must be −1 and
therefore here we need orbits of different parity as in sp and sdp f IBM’s. On the other hand,
if we impose the condition that TEL is T0

0 w.r.t. SUB
Q(1, 1), then

TE,L=even = ∑
ℓ1>ℓ2

ǫL
ℓ1,ℓ2

[(
b†
ℓ1

b̃ℓ2

)L

q
− βℓ1

βℓ2

(
b†
ℓ2

b̃ℓ1

)L

q

]
; (−1)ℓ1+ℓ2 = +1 ,

TE,L=odd = ∑
ℓ1>ℓ2

ǫL
ℓ1,ℓ2

[(
b†
ℓ1

b̃ℓ2

)L

q
+ βℓ1

βℓ2

(
b†
ℓ2

b̃ℓ1

)L

q

]
; (−1)ℓ1+ℓ2 = −1

⇒
TEL → T0

0 .

(48)

Similarly, TML can be chosen to be T1
0 w.r.t. SUB

Q(1, 1). Examples for sd, sp, sdg and
sdp f systems are discussed ahead.

Applying the Wigner–Eckart theorem for the many particle matrix elements in good
seniority states, the number dependence of the matrix elements of T0

0 and T1
0 operators is

easily determined. Here, we need SU(1, 1) Wigner coefficients. Using SU(1, 1) algebra (see
for example [95]), we have

〈
NB, ωB, α | T0

0 | NB, ωB, β
〉
=

〈
ωB, ωB, α | T0

0 | ωB, ωB, β
〉

,
〈

NB, ωB, α | T1
0 | NB, ωB, β

〉
=

ΩB + NB

ΩB + ωB

〈
ωB, ωB, α | T1

0 | ωB, ωB, β
〉

,
〈

NB, ωB, α | T1
0 | NB, ωB − 2, β

〉
=√

(2ΩB + NB + ωB − 2)(NB − ωB + 2)

4(ΩB + ωB − 1)

〈
ωB, ωB, α | T1

0 | ωB, ωB − 2, β
〉

.

(49)

Note the well-established Ω → −Ω symmetry between the fermion and boson sys-
tem formulas in Equations (27) and (49); see also [55,56,90]. Moreover, T1

0 generates both
v(ωB) → v(ωB) and v(ωB) → v(ωB)± 2 transitions while T0

0 only v(ωB) → v(ωB) transi-
tions for fermion (boson) systems. The later matrix elements are independent of number of
particles. Equation (49) is useful only when ωB << NB. In Figure 3, variation of B(EL) for
boson systems with boson number assuming ωB = 2 for both ωB → ωB and ωB → ωB − 2
transitions are shown by employing the last two equations in Equation (49). The B(EL)
values increase with NB and this variation is quite different from the variation seen in
Figures 1 and 2 for fermion systems. However, for boson system such as those described by
IBM, it is well known that the low-lying states correspond to highest seniority (ωB = NB)
and therefore, Equation (49) will not give, for example, B(EL) trends in yrast levels.
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Figure 3. Variation of B(EL) with particle number NB for ωB → ωB and ωB → ωB − 2 for transitions

for two values of ΩB and seniority ωB. Results are for boson systems and they are obtained by

applying the last two equations in Equation (49). The B(EL) values are scaled such that the maximum

value is 100 and therefore they are not in any units. See Section 3.2 for further discussion.

3.3. Applications to EM Transition Operators

3.3.1. sdIBM

In the applications to interacting boson models, let us first consider the SO(6) limit of
sdIBM. Then, we have U(6) ⊃ SO(6) and the complementary SU(1, 1) algebra corresponds
to the sd pair S+ = s†s† ± d† · d†. Arima and Iachello [21] used the choice S+ = s†s† −
d† · d†. The corresponding SU(1, 1) we denote as SU(−)(1, 1). Similarly, the SU(1, 1) with
S+ = s†s† + d† · d† is denoted by SU(+)(1, 1). Corresponding to the two SU(1, 1) algebras,
there will be two SO(6) algebras as pointed out first in [97]. Their significance is seen
in quantum chaos studies [98,99]. For illustration, let us consider the tensorial structure
of the E2 operator. Following the discussion in Section 3.2, the E2 transition operator
will be T0

0 w.r.t. SU(−)(1, 1) if we choose TE2 = α(s†d̃ + d† s̃)2
µ where α is a constant.

This is the choice made in [21] and this operator will not change the seniority quantum
number (called σ in [21]) defining the irreps of SO(6) that is complementary to SU(−)(1, 1).
However, if we demand that the TE2 operator should be T1

0 w.r.t. SU(−)(1, 1), then we
have TE2 = α1(d

†d̃)2
µ + iα2(s

†d̃ − d† s̃)2
µ. This operator will have both σ → σ and σ → σ ± 2

transitions. On the other hand, TE2 = α1(d
†d̃)2

µ + α2(s
†d̃ + d† s̃)2

µ will be a mixture of T0
0

and T1
0 operators.

Employing TE2 = α (s†d̃ + d† s̃)2
µ, analytical formulas for B(E2)’s in the two SO(6)

limits are derived in [97]. Used is U(6) ⊃ SO(±)(6) ⊃ SO(5) ⊃ SO(3) giving the basis
states |N, σ, τ, L 〉 where σ and τ are SO(6) and SO(5) irreps with σ = N, N − 2, . . . , 0 or 1
and τ = 0, 1, . . . , σ. The τ → L rules are well known [21]. For the low-lying levels σ = N
and for these the following formula was derived in [97],

B(E2; N, N, τ + 1, Li → N, N, τ, L f )SO(+)(6)

=

(
τ + 2

N + 1

)2

B(E2; N, N, τ + 1, Li → N, N, τ, L f )SO(−)(6)

(50)

and for example [21],

B(E2; N, N, τ + 1, Li = 2τ + 2 → N, N, τ, L f = 2τ)SO(−)(6)

= α2 (N − τ)(N + τ + 4)(τ + 1)(4τ + 5)

(2τ + 5)
.

(51)
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Thus, B(E2)s carry the signature of multiple SO(6) algebras in IBM.

3.3.2. spIBM

In the second example we will consider the sp boson model, also called vibron model
with applications to diatomic molecules [100] and two-body clusters in nuclei [101,102].
Just as in sdIBM, here we have U(4) ⊃ SO(4) and there will be two SO(4) algebras with
S+ = s†s† + βp† · p†; β = ±1. The general form of the E1 operator (to lowest order)

in this model is TE1 = ǫsp

(
s† p̃ ± p† s̃

)1

µ
. With SU(+)(1, 1) defined by S+ = s†s† + p† ·

p†, from Equation (47) we see that TE1 = iǫ
(
s† p̃ − p† s̃

)1

µ
will be T1

0 w.r.t. SU(+)(1, 1).

Similarly, with SU(−)(1, 1) defined by S+ = s†s† − p† · p†, from Equation (46) we see that

TE1 = ǫ
(
s† p̃ + p† s̃

)1

µ
will be T1

0 w.r.t. SU(−)(1, 1). If the definitions of TE1 are interchanged,

then they will be T0
0 w.r.t. the corresponding SU(1, 1) algebras. These results are described

and applied in [100,103,104].

3.3.3. sdgIBM

In the third example we will consider the sdg interacting boson model [22] and there is
new interest in this model in the context of quantum phase transitions (QPT) [105]. With s, d
and g bosons, the generalized pair operator here is S+ = s†s† ± d† · d† ± g† · g† giving four
SU(+,±,±)(1, 1) algebras and the corresponding SO(+,±,±)(15) algebras in U(15) ⊃ SO(15);
the superscripts in SU(+,±,±)(1, 1) and similarly in SO(15) are the signs of the s, d and g
pair operators in S+. In QPT studies, Van Isacker et al. [105] have chosen the operators
(s†d̃ + d† s̃)2

µ and (s† g̃ + g† s̃)4
µ to be SO(15) scalars. Then, from Equation (44) it is seen

that the SO(15) will correspond to the SU(+,−,−)(1, 1) algebra with Hp = S+S− where
S+ = s†s† − d† · d† − g† · g†. Note that here the sd-part is the same as the one used by Arima
and Iachello (see the sdIBM discussion above). In another recent study, the E2 operator in
sdgIBM was chosen to be [106]

TE2 = α1(d
†d̃)2

µ + α2(g† g̃)2
µ + α3(s

†d̃ + d† s̃)2
µ + α4(d

† g̃ + g†d̃)2
µ .

With respect to the SU(+,−,−)(1, 1) above, this operator will be a mixture of T0
0 and T1

0

operators. However, w.r.t. SU(+,+,+)(1, 1), it will be a pure T1
0 operator. It should be clear

that with different choices of SU(1, 1) algebras (there are four of them), the QPT results for
transition to rotational SU(3) limit in sdgIBM will be different. It is important to investigate
this going beyond the results presented in [105]. Moreover, it will be useful to extend
Equation (50) to sdgIBM with the four SO(15) (or SU(1, 1)) algebras and test these using,
say, the B(E2) and B(E4) data for Pd isotopes (they are examined using a different model
in [107]).

3.3.4. sdp f IBM

In the final example, let us consider the sdp f model [23,93,94] applied recently with
good success in describing E1 strength distributions in Nd, Sm, Gd and Dy isotopes [108]
and also spectroscopic properties (spectra, and E2 and E1 strengths) of even–even 98−110Ru
isotopes [109]. Note that the parities of the p and f orbit are negative. In sdp f IBM, following
the results in Sections 3.1 and 3.2, there will be eight generalized pairs S+ and the algebra
complementary to the SU(1, 1) is SO(16) in U(16) ⊃ SO(16). Keeping the SO(6) pair
structure, as chosen by Arima and Iachello, of sdIBM intact we will have four S+ pairs,
S+ = s†s† − d† · d† ± p† · p† ± f † · f † giving SU(+,−,±,±)(1, 1) and correspondingly four
SO(+,−,±,±)(16) algebras. For each of the four choices, one can write down the TE2 and TE1

operators that transform as T0
0 or T1

0 w.r.t. SU(1, 1). In [23], SU(+,−,−,−)(1, 1) is employed.
Then, the E2 and E1 operators employed in [23,108,109] will be mixture of T0

0 and T1
0 w.r.t.

to SU(+,−,−,−)(1, 1). For example, the E1 operator used is
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TE1 = αsp

(
s† p̃ + p† s̃

)1

µ
+ αpd

(
p†d̃ + d† p̃

)1

µ
+ αd f

(
d† f̃ + f †d̃

)1

µ
. (52)

The first term in the operator will be T1
0 and the remaining two terms will be T0

0 w.r.t.

SU(+,−,−,−)(1, 1). However if we use αsp

(
s† p̃ − p† s̃

)1

µ
in the above, then the whole operator

will be T0
0 . It will be interesting to employ the Hp = S+S− with S+ given above (there will

be four choices) in the analysis made in [109] and confront the data.

3.4. Application to QPT

Quantum phase transitions (QPT) are studied in sdIBM in great detail using the U(5),
SU(3) and SO(6) algebras of this model [110]. This topic continues to be important with
new investigations and experimental tests [111,112]. For example, with recent interest in
sdg [105] and sdp f [108,109] IBM’s, it will be interesting to study QPT and order–chaos
transitions in these models, in a systematic way, employing Hamiltonians that interpolate
the different pairing algebras in these models. Such studies for the simpler sd and sp IBM’s
are available; see [98,99,110]. Construction of the Hamiltonian matrix for the interpolating
Hamiltonians is straightforward as described briefly in Appendix A. As an example, results
for the spectra for a sdgIBM system are shown in Figure 4. The SGA for sdgIBM is U(15)
and the generalized pairing algebra here is SO(15) in U(15) ⊃ SO(15). Dividing the
space into sd and g spaces, there will be two SO(15) algebras and therefore it is possible to
consider a Hamiltonian that interpolates the three symmetry limits

I. U(15) ⊃ Usd(6)⊕ Ug(9) ⊃ SOsd(6)⊕ SOg(9) ⊃ K ,

I I. U(15) ⊃ SO(+)(15) ⊃ SOsd(6)⊕ SOg(9) ⊃ K ,

I I I. U(15) ⊃ SO(−)(15) ⊃ SOsd(6)⊕ SOg(9) ⊃ K .

(53)

The algebra K will not play any role in our present discussion. Note that the U(15)
irrep is given by total number of bosons NB in the system. Number of sd bosons NB

sd and
number g bosons NB

g label the irreps of Usd(6) and Ug(9) respectively. The SO(15) label

ωB = NB, NB − 2, . . .. Similarly, the SOsd(6) and SOg(9) labels are ωB
sd and ωB

g respectively.

The rules for ωB → (ωB
sd, ωB

g ) are well known [113]. Employed in the calculations is the
interpolating Hamiltonian

Hsdg =
[
(1 − ξ)/NB

]
n̂g +

[
(ξ/(NB)2

] [
4(Ssd

+ + xS
g
+)(S

sd
− + xS

g
−)− NB(NB + 13)

]
(54)

where Ssd
+ is the S+ operator for the sd boson system and S

g
+ for the g boson system. Results

are presented in Figure 4 for a sdg system with 50 bosons and (ωB
sd, ωB

g ) = (0, 0). Figure
clearly shows order–chaos–order transition as we have two SO(15) or SU(1, 1) algebras in
the model both giving the same spectrum for ξ = 1 and x = ±1. Let us add that QPT here
was studied in the past by varying ξ with x = 1 (equivalently x = −1) and it is shown that
the transition point is ξ = 0.2 [114,115]. Going further, it is possible to extend the two level
results in Figure 4 using the four SU(1, 1) or SO(15) algebras in s, d and g space. Then we
have in place of (Ssd

+ + xS
g
+), the operator (Ss

+ ± x Sd
+ ± y S

g
+). Explorations using this will

give further insights in QPT and the role of multiple pairing algebras in IBM.
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Figure 4. Energy spectra for 50 bosons and (ωB
sd, ωB

g ) = (0, 0) in sdgIBM with the Hamiltonian given

by Equation (54). In each panel, energy spectra are shown as a function of the parameter ξ taking

values from 0 to 1. Results are shown in the figures for x = 1, 0.8, 0.5, 0.2, 0, −0.2, −0.5, −0.8 and

−1. Note that x = 1 and −1 correspond to the two SO(15) or SU(1, 1) algebras in the model. In the

figures, energies are not in any units. See Section 3.4 for further discussion.

Finally, turning to fermion systems, just as using Equations (53) and (54) for QPT in
IBM, it is also possible to use in a two orbit identical nucleon example (with Ω = Ω1 + Ω2),
a Hamiltonian interpolating between the following three algebras

I. U(2Ω) ⊃ Sp(+)(2Ω) ⊃ Sp(2Ω1)⊕ Sp(2Ω2) ⊃ R

II. U(2Ω) ⊃ Sp(−)(2Ω) ⊃ Sp(2Ω1)⊕ Sp(2Ω2) ⊃ R
II I. U(2Ω) ⊃ U(2Ω1)⊕ U(2Ω2) ⊃ Sp(2Ω1)⊕ Sp(2Ω2) ⊃ R

(55)

A study using these and their extensions will give insights into QPT in shell model spaces.

3.5. Summary

In this section, multiple pairing algebras SU(1, 1) and the better known complemen-
tary SO(N ) algebras in multi-orbit interacting boson models, with identical bosons, such
as sd, sp, sdg and sdp f IBM’s are presented. The relationship between quasi-spin tenso-
rial nature of one-body transition operators and the phase choices in the multi-orbit pair
creation operator is derived for identical boson systems described by interacting boson
models. All these results are presented in Sections 3.1 and 3.2. As pointed out in these
Sections, some of the results here are known before for some special situations. Turning to
applications to interacting boson model description of collective states, imposing specific
tensorial structure with respect to pairing SU(1, 1) algebras is possible as discussed with
various examples in Section 3.3. It will be interesting to derive results for B(E2)’s (say in sdg
and sdp f IBM’s) and B(E1)’s (in sdp f IBM) with fixed tensorial structure for the transition
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operator but with wavefunctions that correspond to different SU(1, 1) algebras. Such an
exercise was carried out before only for sdIBM as discussed in Section 3.3.1. Finally, an
application to QPT in nuclei is presented in Section 3.4.

4. Multiple Multi-Orbit Pairing Algebras in Shell Model with Isospin

Going beyond identical nucleon (fermion) and interacting boson systems considered
in Sections 2 and 3, now we will consider pairing algebras for nucleons with isospin. As
already mentioned in the introduction (Section 1), with isospin the pairing algebra is SO(5).
In Section 4.1 the pairing SO(5) and the complementary seniority and reduced isospin
generating Sp(2Ω) algebras are described for multi-j situation giving their generators and
the quadratic Casimir operators. With r number of j orbits, there will be 2r−1 number
of SO(5) algebras and for each of these there will be a corresponding Sp(2Ω) algebra as
shown in Section 4.1. Section 4.2 gives a brief discussion of the irrep reductions and also
the formulas for constructing many-particle matrix elements of the pairing Hamiltonian
generating multiple SO(5) algebras. In Section 4.3 presented are three applications. Finally,
Section 4.4 gives a summary.

4.1. Multiple Multi-j Shell SO(5) and Sp(2Ω) Algebras

4.1.1. Number-Conserving Group Chain with Sp(2Ω) Generating Seniority and
Reduced Isospin

Let us consider a system of m nucleons in r number of spherical j orbits (j1, j2, . . . , jr)
with Ω defined by

2Ω =
r

∑
k=1

(2jk + 1) ; 2Ωjk = (2jk + 1). (56)

In addition, let us consider the one-body operators uk,t
mk ,mt

(j1, j2) in terms of the single
particle creation and annihilation operators in angular momentum j and isospin t spaces,

uk,t
mk ,mt

(j1, j2) =
(

a†
j1

1
2
ãj2

1
2

)k,t

mk ,mt

(57)

where ãj−m, 1
2−mt

= (−1)j−m+ 1
2−mt ajm, 1

2 mt
. Using angular momentum algebra it is easy to

prove that the 16Ω2 number of operators uk,t(j1, j2) form a closed algebra (note that t = 0, 1)
and this is the SGA U(4Ω). Moreover, we have the subalgebra

U(4Ω) ⊃ U(2Ω)⊗ SUT(2) . (58)

The operators uk,0
mk ,0(j1, j2) (4Ω2 in number) generate U(2Ω). Similarly, SUT(2) is

generated by isospin T with T1
µ given by

T1
µ = ∑

j=j1,j2,...,jr

√
2j + 1

2

(
a†

j 1
2
ãj 1

2

)0,1

µ
. (59)

It is easy to prove that the T1
µ commute with uk,0

mk ,0(j1, j2) operators giving Equation (58).
Let us add that the number operator is given by

n̂ = ∑
j=j1,j2,...,jr

√
2(2j + 1)

(
a†

j 1
2
ãj 1

2

)0,0
. (60)

Note that {T1
µ, n̂} generate UT(2). Following the known results for the multi-j shell

identical nucleon systems [65] and those for nucleons in a single-j shell with isospin, it is
easy to recognize that U(2Ω) ⊃ Sp(2Ω) and the generators of Sp(2Ω) are
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Sp(2Ω) : uk,0
µ,0(j, j) ; k = odd

Vk,0
µ,0(j1, j2) = N 1/2(j1, j2, k)

[
uk,0

µ,0(j1, j2) + X(j1, j2, k) uk,0
µ,0(j2, j1)

]
; j1 > j2 .

(61)

By simple counting, it is seen that the number of generators in Equation (61) is
(2Ω)(2Ω + 1)/2 as required for Sp(2Ω). An important task now is to find the conditions
on X(j1, j2, k) so that the generators in Equation (61) form Sp(2Ω) algebra that is comple-
mentary to the pairing SO(5) algebra; normalization factor N (j1, j2, k) is determined such
that the quadratic Casimir operator gives eigenvalues in standard form. Before we turn to
this, a few other remarks are in order.

Firstly, Sp(2Ω) contains angular momentum algebra SO(3) generated by J1
µ where

J1
µ = ∑

j

√
j(j + 1)(2j + 1) u1,0

µ,0 . (62)

with this, we have the decomposition, with only number-conserving operators,

U(4Ω) ⊃
[
U(2Ω) ⊃ Sp(2Ω) ⊃ SOJ(3)

]
⊗ SUT(2) (63)

All m nucleon states transform as the antisymmetric irrep {1m} of U(4Ω). Similarly,
the irreps of U(2Ω) will be two columned irreps {2m1 1m2} in Young tableaux notation with
2m1 + m2 = m and T = m2/2. Thus, the U(2Ω) irreps are labeled by (m, T). Given
a two-column irrep of U(2Ω), the Sp(2Ω) irreps also will be at most two-columned,
denoted by 〈2v1 1v2〉 in Young tableaux notation. Then, v = 2v1 + v2 is the seniority
quantum number and t = v2/2 is called reduced isospin. Group theory allows us to obtain
{2m11m2} → 〈2v11v2〉 → J reductions [116]. Examples are presented ahead in Section 4.2.
In order to understand better the complicated Sp(2Ω) algebra, the (v, t) quantum numbers
and their relation to pairing, we will turn to the complementary multi-j shell SO(5) algebra.

4.1.2. Multiple SO(5) Pairing Algebras with Isospin

Consider the angular momentum zero coupled isovector pair-creation operator A1
µ(j)

for nucleons in a single-j shell,

A1
µ(j) =

√
2j + 1

2

(
a†

j 1
2
a†

j 1
2

)0,1

0,µ
(64)

and its hermitian adjoint
[

A1
µ(j)

]†
,

[
A1

µ(j)
]†

=

√
2j + 1

2
(−1)µ

(
ãj 1

2
ãj 1

2

)0,1

0,−µ
. (65)

Now, with nucleons in (j1, j2, . . . , jr) orbits, pair-creation operator can be taken as a
linear combination of the single-j shell pair-creation operators but with different phases
giving the generalized pairing operator to be,

A1
µ(β) =

r

∑
p=1

β jp
A1

µ(jp) ; {β} = {β j1 , β j2 , . . . , β jr} = {±1,±1, . . .} . (66)

Similarly, the corresponding generalized pair-annihilation operator is

[
A1

µ(β)
]†

=
r

∑
p=1

β jp

[
A1

µ(jp)
]†

. (67)
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Using angular momentum algebra, it is easy to derive the commutators for the opera-
tors A1

µ(β), [A1
µ(β)]†, T1

µ and Q0 = [n̂ − 2Ω]/2. The results are independent of {β} when
β jp

= ±1 as in Equation (66),

[
A1

µ , (A1
−µ′)†

]
=

√
2 (−1)µ′ 〈

1µ 1µ′ | 1, µ + µ′〉 T1
µ+µ′ + δµ,−µ′(−Q0) ,[

A1
µ , Q0

]
= −A1

µ ,[
A1

µ , T1
µ′

]
=

√
2

〈
1µ 1µ′ | 1, µ + µ′〉A1

µ+µ′ ,[
T1

µ , T1
µ′

]
= −

√
2

〈
1µ 1µ′ | 1, µ + µ′〉 T1

µ+µ′ ,[
T1

µ , Q0

]
= 0 .

(68)

All the commutators that are not given above can be obtained by taking hermitian
conjugates on both sides of the above formulas. Furthermore, we have dropped {β} for
brevity and because the results are independent of {β}. Equation (68) shows that the ten
operators A1

µ(β), [A1
µ(β)]†, T1

µ and Q0 (equivalently n̂) form a pairing SO(β)(5) algebra for
each {(β)} set. Without loss of generality we can choose β j1 = +1 and then the remaining

β jp
will be ±1. Thus, there will be 2r−1 SO(5) algebras. Then, with two j orbits we have

two SO(5) algebras SO(+,+)(5) and SO(+,−)(5), with three we have four SO(5) algebras
SO(+,+,+)(5), SO(+,+,−)(5), SO(+,−,+)(5) and SO(+,−,−)(5), with four j orbits there will be
eight SO(5) algebras and so on.

Before proceeding further, let us define isovector pairing Hamiltonians Hp(β) for each
β set,

Hp(β) = −G ∑
µ

A1
µ(β)

[
A1

µ(β)
]†

. (69)

Here, G is the pairing strength. Then, the non-zero two-body matrix elements of Hp(β) are,

〈
(j f j f )J = 0, T = 1 | Hp(β) | (ji ji)J = 0, T = 1

〉
= −G

2

√
(2ji + 1)(2j f + 1) β ji β j f

(70)

and typically G ∼ 27/A. We can prove that the quadratic Casimir invariant of SO(β)(5) is,

C2(SO(β)(5)) = 2 ∑
µ

A1
µ(β)

[
A1

µ(β)
]†

+ T2 + Q0(Q0 − 3) . (71)

and this commutes with all the ten generators of SO(β)(5). This is used to identify the
complementary Sp(β)(2Ω) algebras as described below.

4.1.3. Multiple SO(β)(5) Algebras and the Complementary Sp(β)(2Ω) Algebras

With the generators of U(2Ω), Sp(2Ω) and SUT(2) given in Section 4.1.1, the quadratic
Casimir invariants of these algebras are

C2(U(2Ω)) = 2 ∑
j1,j2,k

(−1)j1−j2 uk,0(j1, j2) · uk,0(j2, j1) ,

C2(Sp(2Ω)) = 4 ∑
j

∑
k=odd

uk,0(j, j) · uk,0(j, j)

+2 ∑
j1>j2,k

Vk,0(j1, j2) · Vk,0(j1, j2) ,

C2(UT(2)) = ∑
j1,j2;t=0,1

√
(2j1 + 1)(2j2 + 1) u0,t(j1, j1) · u0,t(j2, j2) .

(72)
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Starting with these it is easy to prove that

C2(U(2Ω)) + C2(UT(2)) = n̂(2 + 2Ω) ,

C2(UT(2)) =
n̂2

2
+ 2T2 .

(73)

More importantly, carrying out considerable amount of angular momentum algebra,
we are able to prove that, if the following conditions hold

N (j1, j2, k) = (−1)k+1 β j1 β j2 , X(j1, j2, k) = (−1)j1+j2+k β j1 β j2 , (74)

then we have the equality

C2(U(2Ω))− C2(Sp(2Ω)) = 4 ∑
µ

A1
µ(β)

[
A1

µ(β)
]†

− n̂ . (75)

Thus, there is a Sp(β)(2Ω) that corresponds to the pairing Hamiltonians Hp(β) or the

SO(β)(5) algebra. More explicitly, we have the important relation, combining
Equations (71)–(73) and (75),

C2(SO(β)(5)) = −1

2
C2(Sp(β)(2Ω)) + Ω(Ω + 3) . (76)

The Equation (76) establishes that the multiple SO(β)(5) algebras with number non-
conserving generators and Sp(β)(2Ω) algebras with only number-conserving generators are
complementary provided Equation (74) is satisfied along with Equation (66). As mentioned
in the introduction, more formal mathematical proofs for all these are given recently by
Neergard [58–61]. It is also important to add that the expressions for Casimir invariants, in
a different form, are given by Racah very early [10,117].

Given the Sp(2j+ 1) irrep 〈2v1 1v2〉 or equivalently (v, t), the eigenvalues of C2(Sp(2j+ 1))
are given by (see for example [56,118])

〈C2(Sp(2j + 1))〉v,t = 2
[
Ω(Ω + 3)−

(
Ω − v

2

)(
Ω − v

2
+ 3

)
− t(t + 1)

]
. (77)

Further, SO(5) irreps are labeled by (ω1, ω2) with ω1 and ω2 both integers or half
integers and ω1 ≥ ω2 ≥ 0 [56,116,118]. Then, the eigenvalues of C2(SO(5)) are

〈C2(SO(5))〉(ω1,ω2) = ω1(ω1 + 3) + ω2(ω2 + 1) . (78)

Using this and Equations (76) and (78) show that (ω1, ω2) are equivalent to (v, t),

ω1 = Ω − v

2
, ω2 = t , (79)

Moreover, Equations (69), (71) (76) and (77) will give the eigenvalues of the isovector

pairing Hamiltonian H
(β)
p as

〈
H

(β)
p

〉m,T;v,t
= −G

4

[
(m − v)

(
2Ω + 3 − m + v

2

)
− 2T(T + 1) + 2t(t + 1)

]
. (80)

Note that SO(β)(5) ⊃ [SO(3) ⊃ SO(2)]⊗ U(1) subalgebra with SO(3) generating T,
SO(2) generating MT (Tz quantum number (N-Z)/2) and U(1) generating particle number

or H1 = (m − 2Ω)/2. Then, the eigenstates of H
(β)
p are

∣∣∣∣ΨH
(β)
p

〉
⇒

∣∣∣∣(Ω − v

2
, t), H1 =

m − 2Ω

2
, T, MT =

N-Z

2
, α

〉
. (81)
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In Equation (81), α are additional labels that may be needed for complete classification
of the eigenstates. Though the labels in Equation (81) do not depend on (β), explicit
structure of the wavefunctions do depend on (β); see Section 4.3. Thus, they will effect
various selection rules and matrix elements of certain transition operators (see Section 4.3).
Finally, with SO(5) algebra it is possible to factorize (m, T) dependence of various matrix
elements and this is the most important application of SO(5) pairing algebra [7,33,42].

4.2. Classification of Symmetry Adopted States and Their Construction

4.2.1. Classification of States

The first important question to be addressed, in applications of SO(5)/Sp(2Ω), is
enumeration of the irrep labels in Equation (81). To this end we will use [U(2Ω) ⊃
Sp(2Ω)]⊗ SUT(2). Rules for enumerating the U(2Ω) irreps {2a1b} allowed for a given
Sp(2Ω) irrep 〈2v1 1v2〉 are well known [116,119–121] and used for example in [53]. The
allowed {2a1b} irreps are given by the U(2Ω) Kronecker product of the irrep {2v11v2}
with all allowed {22r12s} type irreps. All final irreps {2a1b} are irreps for m nucleons with
m = 2a + b and T = b/2 (where appropriate, we need to use particle-hole equivalence of
U(2Ω) irreps). Let us consider v = 0 states and then t = 0 and 〈2v11v2〉 = 〈0〉. Therefore,
for (v, t) = (0, 0) we have

{
2a1b

}
=

{
22r12s

}
⇒ m = 4r + 2s, T = s

⇒ T =
m

2
− 2r =

m

2
,

m

2
− 2,

m

2
− 4, . . .

(82)

Note that here m is even. For v = 1 we have t = 1
2 and then 〈2v11v2〉 = 〈1〉. Therefore,

for (v, t) = (1, 1
2 ) we have

{
2a1b

}
=

{
22r12s

}
× {1} =

{
22r12s+1

}
⊕

{
22r+112s−1

}
s≥1

,
{

22r12s+1
}

⇒ m = 4r + 2s + 1, T = s + 1
2

⇒ T =
m

2
− 2r =

m

2
,

m

2
− 2,

m

2
− 4, . . . ,

{
22r+112s−1

}
⇒ m = 4r + 2s + 1, T = s − 1

2

⇒ T =
m

2
− 2r − 1 =

m

2
− 1,

m

2
− 3,

m

2
− 5, . . . .

(83)

Note that m is odd here. Results in Equations (82) and (83) are given in [7] and in
many other papers by using quite different methods. Proceeding further with v = 2, there
are two irreps 〈2〉 and

〈
12
〉

and they correspond to (v, t) = (2, 0) and (2, 1) respectively.
Then, for (v, t) = (2, 0) we have

{
2a1b

}
=

{
22r12s

}
× {2} =

{
22r+112s

}
⇒ m = 4r + 2s + 2, T = s

⇒ T =
m

2
− 2r − 1 =

m

2
− 1,

m

2
− 3,

m

2
− 5, . . . .

(84)

Finally, for (v, t) = (2, 1) we have
{

2a1b
}

=
{

22r12s
}
× {12} =

{
22r+112s

}
s≥1

⊕
{

22r12s+2
}
⊕

{
22r+212s−2

}
s≥1

,{
22r+112s

}
⇒ m = 4r + 2s + 2, T = s = m

2 − 2r − 1 ,{
22r12s+2

}
⇒ m = 4r + 2s + 2, T = s + 1 = m

2 − 2r ,{
22r+212s−2

}
⇒ m = 4r + 2s + 2, T = s − 1 = m

2 − 2r − 2 .

(85)

Note that here m is even and r = 0, 1, 2, . . .. A significant result that follows from
Equation (85) is that here there will be T multiplicity. Moreover, in Equations (82)–(85) we
need to apply particle-hole relation where appropriate (see Tables 1–4 for examples).

In reality, when pairing is important, often it is sufficient to enumerate the allowed
T values for a given (v, t) and m with seniority v = 0, 1 and 2. However, the procedure
used above extends to any v. For example, for the (m = 6, Ω = 6) system, for v = 4 the
{22r12s} = {12} only. Therefore , for (v, t) = (4, 0) we have {2a1b} = {12}× {22} = {2212}
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giving T = 1 only. For (v, t) = (4, 1) we have {12} × {212} = {23} + {2212} + {214}
giving T = 0, 1 and 2. Similarly, for (v, t) = (4, 2) we have {12} × {14} = {16} +
{214}+ {2212} giving T = 1, 2 and 3. Finally, for v = 6 we have (v, t) = (6, 0) → T = 0,
(v, t) = (6, 1) → T = 1, (v, t) = (6, 2) → T = 2 and (v, t) = (6, 3) → T = 3. In the same
manner, for m = 4 with v = 4 we have (v, t) = (4, 0) → T = 0, (v, t) = (4, 1) → T = 1 and
(v, t) = (4, 2) → T = 2.

Table 2 gives some examples for the basis state quantum numbers for m = 8, 6, 4,
2 and 0. Considered are systems with Ω = 5 and 6. These results are obtained using
the formulas in Equations (82)–(85). It is useful to note that in the table Tx means T is
appearing x number of times. In some of the results in the table we have applied particle
hole equivalence. For example for m = 8, Ω = 6 and (v, t) = (00) in Equation (82) for r = 0
and s = 4, the U(12) irrep {18} goes to {14} due to p − h equivalence giving T = 2 instead
of 4. Similarly, for m = 8, Ω = 5 and (v, t) = (00) the U(10) irrep {18} goes to {12} giving
T = 1 instead of T = 4 and for m = 6, the {16} goes to {14} giving T = 2 instead of 6. In
addition for some other (v, t), the restrictions on s in Equation (85) apply. Given the results
in Table 2, the basis states with positive parity and T = 0 for an example of eight nucleons
in two-orbits, with the first orbit having Ω1 = 6 with −ve parity and second orbit having
Ω2 = 5 with positive parity, will be 30 in number. These are listed in Table 3.

Table 2. Allowed T values for m = 8, 6, 4, 2 and 0 number of nucleons in an orbit for (v, t) = (0, 0),

(2, 0) and (2, 1). Results in column 3 are for Ω = 6 and in column 6 are for Ω = 5 . See Section 4.2.1

for further discussion.

Ω = 6 Ω = 5

m (v, t) T m (v, t) T

8 (0, 0) 0, 22 8 (0, 0) 0, 1, 2

(2, 0) 1, 3 (2, 0) 1, 3

(2, 1) 0, 1, 23, 3 (2, 1) 0, 12, 22, 3

6 (0, 0) 1, 3 6 (0, 0) 1, 2

(2, 0) 0, 2 (2, 0) 0, 2

(2, 1) 12, 2, 3 (2, 1) 12, 22

4 (0, 0) 0, 2 4 (0, 0) 0, 2

(2, 0) 1 (2, 0) 1

(2, 1) 0, 1, 2 (2, 1) 0, 1, 2

2 (0, 0) 1 2 (0, 0) 1

(2, 0) 0 (2, 0) 0

(2, 1) 1 (2, 1) 1

0 (00) 0 0 (0, 0) 0

Table 3. Basis states for a m = 8 system with T = 0 and positive parity. Quantum numbers are shown

for seniorities in the two orbits v1 and v2 ≤ 2. See Section 4.2.1 for further discussion.

# |(v1, t1)m1, T1 : (v2, t2)m2, T2 ; T = 0 〉

1 |(0, 0), 8, 0 : (0, 0)0, 0 ; 0 〉
2 |(2, 1), 8, 0 : (0, 0)0, 0 ; 0 〉
3 |(0, 0), 6, 1 : (0, 0)2, 1 ; 0 〉
4 |(0, 0), 6, 1 : (2, 1)2, 1 ; 0 〉
5 |(2, 1), 6, 1a : (0, 0)2, 1 ; 0 〉
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Table 3. Cont.

# |(v1, t1)m1, T1 : (v2, t2)m2, T2 ; T = 0 〉

6 |(2, 1), 6, 1b : (0, 0)2, 1 ; 0 〉
7 |(2, 1), 6, 1a : (2, 1)2, 1 ; 0 〉
8 |(2, 1), 6, 1b : (2, 1)2, 1 ; 0 〉
9 |(2, 0), 6, 0 : (2, 0)2, 0 ; 0 〉
10 |(0, 0), 4, 0 : (0, 0)4, 0 ; 0 〉
11 |(0, 0), 4, 0 : (2, 1)4, 0 ; 0 〉
12 |(2, 1), 4, 0 : (0, 0)4, 0 ; 0 〉
13 |(2, 1), 4, 0 : (2, 1)4, 0 ; 0 〉
14 |(2, 0), 4, 1 : (2, 0)4, 1 ; 0 〉
15 |(2, 0), 4, 1 : (2, 1)4, 1 ; 0 〉
16 |(2, 1), 4, 1 : (2, 0)4, 1 ; 0 〉
17 |(2, 1), 4, 1 : (2, 1)4, 1 ; 0 〉
18 |(0, 0), 4, 2 : (0, 0)4, 2 ; 0 〉
19 |(0, 0), 4, 2 : (2, 1)4, 2 ; 0 〉
20 |(2, 1), 4, 2 : (0, 0)4, 2 ; 0 〉
21 |(2, 1), 4, 2 : (2, 1)4, 2 ; 0 〉
22 |(0, 0), 2, 1 : (0, 0)6, 1 ; 0 〉
23 |(0, 0), 2, 1 : (2, 1)6, 1a ; 0 〉
24 |(0, 0), 2, 1 : (2, 1)6, 1b ; 0 〉
25 |(2, 1), 2, 1 : (0, 0)6, 1 ; 0 〉
26 |(2, 1), 2, 1 : (2, 1)6, 1a ; 0 〉
27 |(2, 1), 2, 1 : (2, 1)6, 1b ; 0 〉
28 |(2, 0), 2, 0 : (2, 0)6, 0 ; 0 〉
29 |(0, 0), 0, 0 : (0, 0)8, 0 ; 0 〉
30 |(0, 0), 0, 0 : (2, 1)8, 0 ; 0 〉

4.2.2. Construction of Many-Particle Pairing H Matrix with Multiple SO(5) Algebras

In order to probe the role of multiple pair SO(β)(5) algebras with isospin, we need to
obtain the eigenstates of the pairing Hamiltonian Hp as a function of {β}’s. A convenient
basis for constructing the Hp matrix is the product basis defined by the single-j shell
SO(5) basis. We will illustrate this using two j-orbits, say j1 and j2. Hereafter, we call the
corresponding spaces a and b respectively (or 1 and 2). Then, the basis states are,

Ψab(T MT) =
∣∣∣(ωa

1ωa
2)βa Ha Ta , (ωb

1ωb
2)βb Hb Tb; T MT

〉

↔ |(v1, t1)β1 m1 T1 , (v2, t2)β2 m2 T2; T MT 〉
(86)

Given m number of nucleons with nucleons m1 in number in the first orbit and m2

in the second orbit, m = m1 + m2. Then, with Ω1 = j1 +
1
2 and Ω2 = j2 +

1
2 , we have

Ha = m1
2 − Ω1 and Hb = m2

2 − Ω2. Similarly Ta and Tb are the isospins in the two spaces
respectively. Furthermore, the βr (or βr) labels are additional labels that are required as
discussed in [33,35]; see Equation (90) ahead. In the second line in Equation (86), we used
the equivalent and often simpler (vi, ti) labels and mi instead of Ha (or Hb). Now, a general
pairing Hamiltonian is,
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Hp(ξ, α) =
(1 − ξ)

m
n̂2 −

ξ

m2

{
4 ∑

µ

A1
µ(α)

[
A1

µ(α)
]†
}

;

A1
µ(α) = A1

µ(j1) + α A1
µ(j2)

(87)

Here n̂2 is the number operator for the second orbit and ξ and α are parameters
changing from 0 to 1 and +1 to −1 respectively. Note that for ξ = 1 and α = +1 we have
a SO(+)(5) algebra in the total two-orbit space and similarly for ξ = 1 and α = −1 the
SO(−)(5) algebra. This follows from the results in Section 4.1.

The diagonal matrix elements of Hp in the basis defined by Equation (86) follow easily
from Equations (79) and (80) and they will be independent of the β labels. With n̂2 giving
m2 in the chosen basis, we have

〈
(v1, t1)β1 m1 T1 , (v2, t2)β2 m2 T2; TMT | Hp(ξ, α) | (v1, t1)β1 m1 T1 , (v2, t2)β2 m2 T2; TMT

〉

=
(1 − ξ)

m
m2 −

ξ

m2

[
A + α2B

]
;

A =
{
(m1 − v1)

(
2Ω1 + 3 − m1+v1

2

)
− 2T1(2T1 + 1) + 2t1(t1 + 1)

}
,

B =
{
(m2 − v2)

(
2Ω2 + 3 − m2+v2

2

)
− 2T2(2T2 + 1) + 2t2(t2 + 1)

}
.

(88)

Similarly, off-diagonal matrix elements follow from the SO(5) ⊃ [SOT(3) ⊃ SO(2)]⊗
U(1) tensorial structure of A1

µ(j) and
[

A1
µ(j)

]†
operators. The general tensorial form is

T
(ω1,ω2)
H1,T,MT

. Then, A1
µ(j) tensorial structure in the j-space is T

(11)
1,1,µ and

[
A1

µ(j)
]†

tensorial

structure within a phase factor is T
(11)
−1,1,−µ. Now, the off-diagonal matrix elements of Hp

are first written in terms of the product of the reduced matrix elements of A1(j1) and[
A1(j2)

]†
in the j1 and j2 spaces. Then, applying the Wigner–Eckart theorem using the

SO(5) ⊃ SO(3)⊗ U(1) reduced Wigner coefficients and the formula

〈
(ω1ω2) || T(11) || (ω1ω2)

〉
= [(ω1(ω1 + 3) + ω2(ω2 + 1)]1/2

as described in detail in [33] (see Equation (14) of this paper) will finally give,

〈
(ωa

1ωa
2)βa

f Ha
f Ta

f , (ωb
1ωb

2)βb
f Hb

f Tb
f ; T MT | Hp(ζ, α)

| (ωa
1ωa

2)βa
i Ha

i Ta
i , (ωb

1ωb
2)βb

i Hb
i Tb

i ; T MT

〉
= −

(
4ξ

m2

)
(α)

×
[
(ωa

1(ω
a
1 + 3) + ωa

2(ω
a
2 + 1)

]1/2
[
(ωb

1(ω
b
1 + 3) + ωb

2(ω
b
2 + 1)

]1/2

× (−1)
Ta

f +Tb
f +T+1

√
(2Ta

f + 1)(2Tb
f + 1)

{
T Tb

f Ta
f

1 Ta
i Tb

i

}

×
〈
(ωa

1ωa
2)βa

i Ha
i Ta

i (11)1, 1 || (ωa
1ωa

2)βa
f Ha

f Ta
f

〉

×
〈
(ωb

1ωb
2)βb

i Hb
i Tb

i (11)− 1, 1 || (ωb
1ωb

2)βb
f Hb

f Tb
f

〉
.

(89)

Note that Ha
i = m1

2 −Ω1, Hb
i = m2

2 −Ω2, Ha
f =

m1+2
2 −Ω1 and Hb

f =
m2−2

2 − Ω2. Simi-

larly, the 〈− −−− || − −−−〉 are the SO(5) ⊃ SO(3)⊗U(1) reduced Wigner coefficients.
For the m = 6 system considered in the next section, the needed Wigner coefficients

follow from Tables III in [33] and Table A.1 of [35]. It is important to mention that the β

labels are not needed for the SO(5) irreps of the type (ω, 0). For the (ω, 1) irreps used is the
β label as defined in [35]. This gives for example for T ≤ 1, in the convention used in [35],
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for (ω, 1) irrep
H1 = −ω, T = 1 → β = 2
H1 = −ω + 1, T = 0 → β = 1
H1 = −ω + 1, T = 1 → β = 0
H1 = −ω + 2, T = 12 → β = 1, 2
H1 = −ω + 3, T = 0 → β = 1
H1 = −ω + 3, T = 1 → β = 0

(90)

Finally, Equation (89) can be extended to three or more orbits by using isospin T
couplings. Thus, Hp construction is possible with multiple SO(β)(5) algebras provided all
the needed Wigner coefficients in Equation (89) are known. It is useful to add that the basis
defined by Equation (86), with multi-orbit extension was employed in the Rochester–Oak
Ridge shell model code [15].

4.3. Applications of Multiple SO(5) and Sp(2Ω) Algebras

4.3.1. Selection Rules for Electromagnetic Transitions

Electromagnetic transition operators TEL and TML are one-body operators and selec-
tion rules for these follow from their SO(5) ⊃ [SOT(3) ⊃ SO(2)]⊗U(1) tensorial structure.

The general tensorial form is T
(ω1,ω2)
H1,T,MT

. Firstly, the creation operators transform as T
( 1

2 , 1
2 )

1
2 , 1

2 ,± 1
2

.

Similarly, the annihilation operator with an appropriate phase factor transforms as T
( 1

2 , 1
2 )

− 1
2 , 1

2 ,± 1
2

.

Therefore the SO(5) tensorial structure of one-body operators (they will be of the form a†a)
is given by (ω1, ω2) where

(ω1, ω2) =

(
1

2
,

1

2

)
×

(
1

2
,

1

2

)
= (11)⊕ (10)⊕ (00) . (91)

Note that (11) irrep is ten-dimensional, (10) five-dimensional and (00) is one-dimensional.
The general formula for SO(5) dimensions is [116,118],

d(ω1ω2) =
(ω1 − ω2 + 1)(ω1 + ω2 + 2)(2ω1 + 3)(2ω2 + 1)

6
. (92)

Clearly, the 10 SO(β)(5) generators transform as the (11) irrep of SO(β)(5) but not as

the (11) irrep of another SO(β′)(5) with β 6= β′.
With X = E or M, the general form of electric and magnetic multi-pole operators,

ignoring the isospin part, is

TXL
q = ∑

j1,j2

ǫXL
j1,j2

(
a†

j1
ãj2

)L

q

= ∑
j

ǫXL
j,j

(
a†

j ãj

)L

q
+ ∑

j1>j2

ǫXL
j1,j2

[(
a†

j1
ãj2

)L

q
+

ǫXL
j2,j1

ǫXL
j1,j2

(
a†

j2
ãj1

)L

q

]
.

(93)

As the electric TEL and magnetic TML L-th multi-pole transition operators are one-
body operators, their SO(5) tensorial character is (11)⊕ (10)⊕ (00). Action of the (00) part
on a SO(5) irrep (ω1ω2) is simple. The (10) and (11) parts acting on a state with SO(5)

irrep (ω1ω2) will generate states with SO(5) irreps (ω
f
1 ω

f
2 ) and the rules for enumerating

the allowed (ω
f
1 ω

f
2 ) correspond to the Kronecker product

(ω1, ω2)× (a, b) → ∑(ω
f
1 , ω

f
2 )⊕ ; (a, b) = (1, 0) , (1, 1) .
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For the irreps of interest for the examples considered in Section 4.2, Sections 4.3.2 and 4.3.3
the following results for Kronecker products will suffice and they follow from the rules given
in [116,119,120],

(ω, 0)× (1, 0) → (ω − 1, 0)⊕ (ω + 1, 0)⊕ (ω, 1) ,
(ω, 1)× (1, 0) → (ω + 1, 1)⊕ (ω, 2)ω≥2 ⊕ (ω, 1)⊕ (ω, 0)⊕ (ω − 1, 1)ω≥2 ,
(ω, 0)× (1, 1) → (ω + 1, 1)⊕ (ω, 1)⊕ (ω, 0)⊕ (ω − 1, 1)ω≥2 ,
(2, 1)× (1, 1) → (1, 0)⊕ (1, 1)⊕ (2, 0)⊕ (2, 1)2 ⊕ (2, 2)

⊕ (3, 0)⊕ (3, 1)⊕ (3, 2) ,
(4, 1)× (1, 1) → (3, 0)⊕ (3, 1)⊕ (3, 2)⊕ (4, 0)⊕ (4, 1)2 ⊕ (4, 2)

⊕ (5, 0)⊕ (5, 1)⊕ (5, 2) .

(94)

These can be changed easily into the rules for (v, t)× (a, b) → (v f , t f ).
With H1 = 0 for one-body operators, a isoscalar TXL

q will be (11)⊕ (00); the (10) irrep
gives only isovector operators. Thus, isoscalar EM transition that involve states with differ-
ent (v, t) will be generated purely by the (11) irrep part of TXL. Further, Equations (61), (74)
and (93) show that it is possible for TEL and TML to be generators of Sp(β)(2Ω) depending
on ǫXL

j2,j1
/ǫXL

j1,j2
. Then, they will preserve (v, t) or (ω1ω2) quantum numbers (note that the

group generators when acting on group irreps will not change the irrep labels). With these,
we have the following results.

1. The isovector parts of TEL and TML will not be Sp(β)(2Ω) scalars as the generators of
this algebra consists of only isoscalar operators.

2. The TEL with L even (they preserve parity) will not be generators of any Sp(β)(2Ω)

as uk=even,t=0(j, j) are not generators. In addition, even for L odd [they change parity
and hence we need j f (ℓ f ) 6= ji(ℓi)], the TEL will not be generators of Sp(β)(2Ω);
see Equation (26).

3. The isoscalar part of TML with L odd (they preserve parity) can be Sp(β)(2Ω) scalars.

Firstly, the first part of TML as given by Equation (93) consists of only the generators of
Sp(β)(2Ω) as L is odd. The second part also consists of only the generators provided
one uses the Arvieu and Moszkowski [7,16] choice of β j(ℓ) = (−1)ℓ for the j(ℓ) orbits;
see Equation (26).

4. The TML with L even will change parity and hence the TML involve only the second

part in Equation (93). Clearly, the isoscalar TML will be Sp(β)(2Ω) scalars if β j(ℓ) =

(−1)ℓ for the j(ℓ) orbits.

With the phase choice β j(ℓ) = (−1)ℓ, the selection rule from the generators that they
will not change (v, t) or (ω1ω2) irreps can be used for ML transitions in experimental tests.
Moreover, if in an energy region high seniority v states occur with the immediate states
below it having seniority v′ << v, then all EL and ML transitions will be forbidden to
these levels as EL and ML transitions can change seniority only by units of 2, i.e., transition
for v → v ± 2 states only allowed. In addition, the (m, T) dependence of, say, magnetic
moments and B(E2)’s can be written down using the SO(5) Wigner coefficients listed
in [33–35]; see Ref. [7] for some examples.

4.3.2. Energy Levels and Order–Chaos Transitions

In the second application, let us consider a two level system with first level having
Ω1 = 6 with −ve parity and the second level having Ω2 = 5 with +ve parity. This is
appropriate for nuclei in A = 56–80 region so that the (1p3/2, 0 f5/2, 1p1/2) orbits with
degenerate single particle levels giving the Ω1 = 6 orbit (we will call it orbit #1 or (a) and
0g9/2 giving the Ω2 = 5 orbit (we will call it orbit #2 or (b). In our numerical calculations
we use the system with six nucleons in the above two orbits and without any restriction
on vi in any of the two orbits. Then, the number of +ve parity basis states for m = 6 and
T = 0 with all allowed vi, i = 1, 2 (vi ≤ 6) will be 24 and these are listed in Table 4. It is
important to note that the m = 6 basis states are multiplicity free.



Symmetry 2023, 15, 497 30 of 57

Table 4. Basis states for the m = 6 system with T = 0 and for all allowed v1 and v2. Here, Ω1 = 6

and Ω2 = 5. See Section 4.3.2 for further discussion.

# |(v1, t1)m1, T1 : (v2, t2)m2, T2 ; T = 0 〉

1 |(6, 0), 6, 0 : (0, 0)0, 0 ; 0 〉
2 |(4, 1), 6, 0 : (0, 0)0, 0 ; 0 〉
3 |(2, 0), 6, 0 : (0, 0)0, 0 ; 0 〉
4 |(4, 0), 4, 0 : (2, 0)2, 0 ; 0 〉
5 |(4, 1), 4, 1 : (0, 0)2, 1 ; 0 〉
6 |(4, 1), 4, 1 : (2, 1)2, 1 ; 0 〉
7 |(2, 1), 4, 0 : (2, 0)2, 0 ; 0 〉
8 |(2, 0), 4, 1 : (0, 0)2, 1 ; 0 〉
9 |(2, 0), 4, 1 : (2, 1)2, 1 ; 0 〉
10 |(2, 1), 4, 1 : (0, 0)2, 1 ; 0 〉
11 |(2, 1), 4, 1 : (2, 1)2, 1 ; 0 〉
12 |(0, 0), 4, 0 : (2, 0)2, 0 ; 0 〉
13 |(0, 0), 2, 1 : (4, 1)4, 1 ; 0 〉
14 |(2, 0), 2, 0 : (4, 0)4, 0 ; 0 〉
15 |(2, 1), 2, 1 : (4, 1)4, 1 ; 0 〉
16 |(2, 0), 2, 0 : (0, 0)4, 0 ; 0 〉
17 |(2, 0), 2, 0 : (2, 1)4, 0 ; 0 〉
18 |(2, 1), 2, 1 : (2, 0)4, 1 ; 0 〉
19 |(2, 1), 2, 1 : (2, 1)4, 1 ; 0 〉
20 |(0, 0), 2, 1 : (0, 0)4, 1 ; 0 〉
21 |(0, 0), 2, 1 : (2, 1)4, 1 ; 0 〉
22 |(0, 0), 0, 0 : (6, 0)6, 0 ; 0 〉
23 |(0, 0), 0, 0 : (4, 1)6, 0 ; 0 〉
24 |(0, 0), 0, 0 : (2, 0)6, 0 ; 0 〉

Using the basis states in Table 4, the matrix for Hp defined by Equation (87) is con-
structed using Equation (88) for the diagonal matrix elements and Equation (89) for the
off-diagonal matrix elements. The SO(5) ⊃ SO(3)⊗ U(1) Wigner coefficients needed are
all available from Table III in [33] and Table A.1 in [35]. As we are using all allowed (viti)
states in the Ω1 = 6 and Ω2 = 5 space for six nucleons (m = 6) with T = 0, diagonal-
ization of Hp(ξ = 1, α = ±1) will give eigenvalues that must be same as those given
by Equation (80) with (Ω = 11, m = 6, T = 0) and (v, t) = (6, 0), (4, 1) and (2, 0). The
eigenvalues are 0, −1.222 and −2.333 respectively. Thus, there will be degeneracies in the
spectrum. There are two states with eigenvalue −2.333 and (v, t) = (2, 0), nine with eigen-
value −1.222 and (v, t) = (4, 1) and thirteen with eigenvalue 0 and (v, t) = (6, 0). It is easy
to see that the wavefunctions are of the form |(v1, t1)(v2, t2)(v, t)γ, m = 6, T = 0 〉 where γ

are additional labels. Therefore, a sum of C2(SO(a)(5)) and C2(SO(b)(5)) will remove some
of the degeneracies in the spectrum without changing the eigenvectors. Following this, we
have added the term −(ξ/m2)[C2(SO(a)(5)) + 3

4 C2(SO(b)(5))] to Hp(ξ, α), i.e., used the
modified Hamiltonian

Hmod
p (ξ, α) =

(1 − ξ)

m
n̂2 −

ξ

m2

{
4 ∑

µ

A1
µ(α)

[
A1

µ(α)
]†

+ C2(SOa(5)) +
3

4
C2(SOb(5))

}
(95)
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and calculated the eigenvalues for the (m = 6, T = 0) system. Shown in Figure 5 are the
energies of the 24 states as a function of ξ for nine α values. In Table 5 the wavefunctions
structure for α = ±1 (with ξ = 1) is shown for all the 24 wavefunctions. With the α

dependence shown in the Table, clearly the two SO(+)(5) and SO(−)(5) limits generate
different results for EM transition strengths, two nucleon transfer (TNT) strengths etc. Some
TNT examples are discussed in the next subsection.
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E

Figure 5. Energy spectra generated by the pairing Hamiltonian Hmod
p in Equation (95) as a function of

ξ and α. Note that the energies (E) are unitless. Results are for a two-orbit system with (m = 6, T = 0).

See Section 4.3.2 for further discussion.

As seen from Figure 5, clearly by changing (ξ, α) it is possible to study order–chaos–
order transitions as the spectrum for α = +1 and α = −1 is identical. The QPT here is
smoothed as we have a fermion system and the particle number is not large. It is easy to
see that as we change ξ and α, there is transition among the following three group chains

I. U(4Ω) ⊃ U(4Ω1)⊕ U(4Ω2) ⊃
[
Sp(2Ω1)⊗ SUT1

(2)
]
⊕

[
Sp(2Ω2)⊗ SUT2

(2)
]

⊃ K ⊗ SUT(2)

I I. U(4Ω) ⊃ Sp(+)(2Ω)⊗ SUT(2) ⊃ [Sp(2Ω1)⊕ Sp(2Ω2)]⊗ SUT(2)
⊃ K ⊗ SUT(2)

I I I. U(4Ω) ⊃ Sp(−)(2Ω)⊗ SUT(2) ⊃ [Sp(2Ω1)⊕ Sp(2Ω2)]⊗ SUT(2)
⊃ K ⊗ SUT(2)

(96)
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Table 5. Eigenvalues (E) and eigenstates (Ψ) for the m = 6 system with T = 0 and positive parity.

Eigenstates are given as an expansion in the basis states given in Table 4. As stated in the text,

eigenstates are of the form |m(v1t1)(v2t2)(vt)T = 0 〉. See Section 4.3.2 for further discussion.

E Ψ

−4.417
|6(0, 0)(2, 0)(2, 0)T = 0 〉 =

√
13
35 |4(0, 0)0 : 2(2, 0)0; 0 〉 −

α
√

16
35 |2(0, 0)1 : 4(2, 0)1; 0 〉+

√
6

35 |0(0, 0)0 : 6(2, 0)0; 0 〉

−4.278
|6(2, 0)(0, 0)(2, 0)T = 0 〉 =

√
11
42 |6(2, 0)0 : 0(0, 0)0; 0 〉 −

α
√

20
42 |4(2, 0)1 : 2(0, 0)1; 0 〉+

√
11
42 |2(2, 0)0 : 4(0, 0)0; 0 〉

−3.347 |6(0, 0)(2, 1)(4, 1)T = 0 〉 = |2(0, 0)1 : 4(2, 1)1; 0 〉

−3.306
|6(0, 0)(2, 0)(4, 1)T = 0 〉 =

√
26
55 |4(0, 0)0 : 2(2, 0)0; 0 〉+

α
√

2
55 |2(0, 0)1 : 4(2, 0)1; 0 〉 −

√
27
35 |0(0, 0)0 : 6(2, 0)0; 0 〉

−3.222 |6(2, 1)(0, 0)(4, 1)T = 0 〉 = |4(2, 1)1 : 2(0, 0)1; 0 〉
−3.167 |6(2, 0)(0, 0)(4, 1)T = 0 〉 =

√
1
2 |6(2, 0)0 : 2(0, 0)0; 0 〉 −

√
1
2 |2(2, 0)0 : 4(0, 0)0; 0 〉

−3.139
|6(0, 0)(4, 1)(4, 1)T = 0 〉 =√

6
11 |2(0, 0)1 : 4(4, 1)1; 0 〉 − α

√
5

11 |0(0, 0)0 : 6(4, 1)0; 0 〉

−3.014
|6(2, 1)(2, 1)(4, 1)T = 0 〉 =√

6
11 |4(2, 1)1 : 2(2, 1)1; 0 〉 − α

√
5

11 |2(2, 1)1 : 4(2, 1)1; 0 〉

−2.972
|6(2, 1)(2, 0)(4, 1)T = 0 〉 =√

7
11 |4(2, 1)0 : 2(2, 0)0; 0 〉 − α

√
4

11 |2(2, 1)1 : 4(2, 0)1; 0 〉

−2.958
|6(2, 0)(2, 1)(4, 1)T = 0 〉 =√

5
11 |4(2, 0)1 : 2(2, 1)1; 0 〉 − α

√
6

11 |2(2, 0)0 : 4(2, 1)0; 0 〉

−2.889
|6(4, 1)(0, 0)(4, 1)T = 0 〉 =√

6
11 |6(4, 1)0 : 0(0, 0)0; 0 〉 − α

√
5

11 |4(4, 1)1 : 2(0, 0)1; 0 〉

−2.083
|6(0, 0)(2, 0)(6, 0)T = 0 〉 =√

12
77 |4(0, 0)0 : 2(2, 0)0; 0 〉+ α

√
39
77 |2(0, 0)1 : 4(2, 0)1; 0 〉+

√
26
77 |0(0, 0)0; 6(2, 0)0 〉

−1.944
|6(2, 0)(0, 0)(6, 0)T = 0 〉 =

√
5
21 |6(2, 0)0 : 0(0, 0)0; 0 〉+

α
√

11
21 |4(2, 0)1 : 2(0, 0)1; 0 〉+

√
5

21 |2(2, 0)0 : 4(0, 0)0; 0 〉

−1.917
|6(0, 0)(4, 1)(6, 0)T = 0 〉 =√

5
11 |2(0, 0)1 : 4(4, 1)1; 0 〉+ α

√
6

11 |0(0, 0)0 : 6(4, 1)0; 0 〉

−1.792
|6(2, 1)(2, 1)(6, 0)T = 0 〉 =√

5
11 |4(2, 1)1 : 2(2, 1)1; 0 〉+ α

√
6

11 |2(2, 1)1 : 4(2, 1)1; 0 〉

−1.750
|6(2, 1)(2, 0)(6, 0)T = 0 〉 =√

4
11 |4(2, 1)0 : 2(2, 0)0; 0 〉+ α

√
7

11 |2(2, 1)1 : 4(2, 0)1; 0 〉

−1.736
|6(2, 0)(2, 1)(6, 0)T = 0 〉 =√

6
11 |4(2, 0)1 : 2(2, 1)1; 0 〉+ α

√
5

11 |2(2, 0)0 : 4(2, 1)0; 0 〉
−1.708 |6(0, 0)(6, 0)(6, 0)T = 0 〉 = |0(0, 0)0 : 6(6, 0)0; 0 〉

−1.667
|6(4, 1)(0, 0)(6, 0)T = 0 〉 =√

5
11 |6(4, 1)0 : 0(0, 0)0; 0 〉+ α

√
6

11 |4(4, 1)1 : 2(0, 0)1; 0 〉
−1.583 |6(2, 1)(4, 1)(6, 0)T = 0 〉 = |2(2, 1)1 : 4(4, 1)1; 0 〉
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Table 5. Cont.

E Ψ

−1.486 |6(2, 0)(4, 0)(6, 0)T = 0 〉 = |2(2, 0)0 : 4(4, 0)0; 0 〉
−1.458 |6(4, 1)(2, 1)(6, 0)T = 0 〉 = |4(4, 1)1 : 2(2, 1)1; 0 〉
−1.361 |6(4, 0)(2, 0)(6, 0)T = 0 〉 = |4(4, 0)0 : 2(2, 0)0; 0 〉
−1.333 |6(6, 0)(0, 0)(6, 0)T = 0 〉 = |6(6, 0)0 : 0(0, 0)0; 0 〉

The algebra K above will not play any role when we use the Hamiltonian in Equation (95).
Further analysis of the QPT involving the three limits in Equation (96) is important and this
needs to be addressed in future.

4.3.3. Two-Nucleon Transfer

In order to bring out explicitly the role of multiple SO(5) algebras, we will consider in
this Subsection two-particle transfer. As an example let us consider removal of a isovector
pair from the lowest state (see Table 5) of the (m = 6, T = 0) system considered in
Section 4.3.2 and this will generate some of the states of the (m = 4, T = 1) system. To study
the transfer strengths, we have diagonalized Hmod

p (ξ = 1, α = ±1) in (m = 4, T = 1) space
and the basis states here are 14 in number; see Table 6. Then, the eigenstates (see Table 7)
belong to (v, t) = (21), (20) and (41) irreps of SO(±)(5) in the four-nucleon space. There
are three, two and nine states respectively with these irreps [the corresponding eigenvalues
are −2.75, −2.5 and 0 respectively if we drop the C2(SO(5)) parts in Equation (95)]. The
transition operator is chosen to be

P1(β) =
[

A1
µ(1)

]†
+ β

[
A1

µ(2)
]†

(97)

and (1) and (2) here correspond to the Ω1 = 6 and Ω2 = 5 spaces. Acting with the operator
P on the (m = 6, T = 0) ground state (gs) will generate states #4 and #7 in Table 7 of the
(m = 4, T = 1) system. From Table 5 we have,

|(m = 6, T = 0) gs 〉 =
√

13
35 |4(0, 0)0 : 2(2, 0)0; T = 0 〉 − α

√
16
35 |2(0, 0)1 : 4(2, 0)1; T = 0 〉

+
√

6
35 |0(0, 0)0 : 6(2, 0)0; T = 0 〉

(98)

As both [A1
µ(i)]

† operators will not change (v1, t1) and (v2, t2) in Equation (98), clearly

only the states #4 and #7 listed in Table 7 will be generated by the action of P1(β). Then,
the transfer strengths are given by

S(m = 6, T = 0 : gs → m = 4, T = 1 : #X) =∣∣〈m = 4, T = 1 : X || P1(β) || m = 6, T = 0 : gs
〉∣∣2 ; X = 4, 7 .

(99)

As all the states appearing in Equation (99) contain the α parameter [α = +1 for
SO(+)(5) and α = −1 for SO(−)(5)], the two-particle transfer strengths carry information
about α, i.e., multiple SO(5) algebras. With the states having the structure |(T1T2)T 〉, the
reduced matrix elements in Equation (99) will be sum of the reduced matrix elements of[

A1(1)
]†

and
[
A1(2)

]†
in the Ω1 and Ω2 spaces respectively (each multiplied by a factor as

follows from Equations (7.1.7) and (7.1.8) in [78]). Formula for the reduced matrix elements
of [A1(i)]† is [33],

〈
(ω1ω2)H f , Tf ||

[
A1

]† || (ω1ω2)Hi, Ti

〉
= [(ω1(ω1 + 3) + ω2(ω2 + 1)]1/2

×(−1)Ti+Tf +1
√

2Ti + 1
〈
(ω1ω2)H f , Tf (11)1 − 1 || (ω1ω2)Hi, Ti

〉 (100)
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All the SO(5) Wigner coefficients in Equation (100) are available in [33]. Using these
and carrying out all the simplifications will give

S(m = 6, T = 0 : gs → m = 4, T = 1 : #4) =
21

25
[3 + 2βα]2 ,

S(m = 6, T = 0 : gs → m = 4, T = 1 : #7) =
2

175
[1 − βα]2 .

(101)

It is clearly seen that for β = α, the transition from (m = 6, T = 0)gs to state #7 of
(m = 4, T = 1) system is forbidden. This is due to the fact that for β = α, the transfer opera-
tor P1(β) is a generator of SO(α=β))(5) and the six-particle state belongs to (ω1ω2) = (2, 0)
irrep while the four-particle state belongs to (ω1ω2) = (4, 1) irrep; see Tables 5 and 7.
Equation (101) clearly shows that the two-particle transfer strengths depend on α (i.e., they
are different for α = + and −1) in the situation β 6= α. Finally, it is also possible to consider
pp, nn and pn pairs in the ground states of a (m, T) system and study their α dependence;
see [39,40] for the importance of such a study.

Table 6. Basis states for the m = 4 system with T = 1 and for all allowed v1 and v2. Here, Ω1 = 6

and Ω2 = 5. See Section 4.3.3 for further discussion.

# |(v1, t1)m1, T1 : (v2, t2)m2, T2 ; T = 1 〉

1 |(2, 0), 4, 1 : (0, 0)0, 0 ; 1 〉
2 |(2, 1), 4, 1 : (0, 0)0, 0 ; 1 〉
3 |(4, 1), 4, 1 : (0, 0)0, 0 ; 1 〉
4 |(2, 0), 2, 0 : (2, 1)2, 1 ; 1 〉
5 |(2, 0), 2, 0 : (0, 0)2, 1 ; 1 〉
6 |(2, 1), 2, 1 : (2, 0)2, 0 ; 1 〉
7 |(2, 1), 2, 1 : (2, 1)2, 1 ; 1 〉
8 |(2, 1), 2, 1 : (0, 0)2, 1 ; 1 〉
9 |(0, 0), 2, 1 : (2, 0)2, 0 ; 1 〉
10 |(0, 0), 2, 1 : (2, 1)2, 1 ; 1 〉
11 |(0, 0), 2, 1 : (0, 0)2, 1 ; 1 〉
12 |(0, 0), 0, 0 : (2, 0)4, 1 ; 1 〉
13 |(0, 0), 0, 0 : (2, 1)4, 1 ; 1 〉
14 |(0, 0), 0, 0 : (4, 1)4, 1 ; 1 〉

Table 7. Eigenvalues (E) and eigenstates (Ψ) for the m = 4 system with T = 1 and positive parity.

Eigenstates are given as an expansion in the basis states given in Table 6. As stated in the text,

eigenstates are of the form |m(v1t1)(v2t2)(vt)T = 1 〉. See Section 4.3.3 for further discussion.

# E Ψ

1 −8 |4(0, 0)(0, 0)(2, 1)T = 1 〉 = |2(0, 0)1 : 2(0, 0)1; T = 1 〉

2 −7.531

|4(0, 0)(2, 1)(2, 1)T = 1 〉 =√
6

11 |2(0, 0)1 : 2(2, 1)1; T = 1 〉 −
α
√

5
11 |0(0, 0)0 : 4(2, 1)1; T = 1 〉

3 −7.25

|4(2, 1)(0, 0)(2, 1)T = 1 〉 =√
6

11 |4(2, 1)1 : 0(0, 0)0; T = 1 〉+
α
√

5
11 |2(2, 1)1 : 2(0, 0)1; T = 1 〉
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Table 7. Cont.

# E Ψ

4 −7.188
|4(0, 0)(2, 0)(2, 0)T = 1 〉 =

√
3
5 |2(0, 0)1 : 2(2, 0)0; T = 1 〉+

α
√

2
5 |0(0, 0)0 : 4(2, 0)1; T = 1 〉

5 −6.875
|4(2, 0)(0, 0)(2, 0)T = 1 〉 =√

1
2 |4(2, 0)1; 0(0, 0)0 〉+ α

√
1
2 |2(2, 0)0; 2(0, 0)1 〉

6 −4.781

|4(0, 0)(2, 1)(4, 1)T = 1 〉 =√
5

11 |2(0, 0)1 : 2(2, 1)1; T = 1 〉+
α
√

6
11 |0(0, 0)0 : 4(2, 1)1; T = 1 〉

7 −4.688

|4(0, 0)(2, 0)(4, 1)T = 1 〉 =√
2
5 |2(0, 0)1 : 2(2, 0)0; T = 1 〉 −

α
√

3
5 |0(0, 0)0 : 4(2, 0)1; T = 1 〉

8 −4.5

|4(2, 1)(0, 0)(4, 1)T = 1 〉 =√
5

11 |4(2, 1)1 : 0(0, 0)0; T = 1 〉 −
α
√

6
11 |2(2, 1)1 : 2(2, 0)1; T = 1 〉

9 −4.375

|4(2, 0)(0, 0)(4, 1)T = 1 〉 =√
1
2 |4(2, 0)1 : 0(0, 0)0; T = 1 〉 −

α
√

1
2 |2(2, 0)0 : 2(0, 0)1; T = 1 〉

10 −4.313 |4(0, 0)(4, 1)(4, 1)T = 1 〉 = |0(0, 0)0 : 4(4, 1)1; T = 1 〉
11 −4.031 |4(2, 1)(2, 1)(4, 1)T = 1 〉 = |2(2, 1)1 : 2(2, 1)1 : T = 1 〉
12 −3.938 |4(2, 1)(2, 0)(4, 1)T = 1 〉 = |2(2, 1)1 : 2(2, 0)0; T = 1 〉
13 −3.906 |4(2, 0)(2, 1)(4, 1)T = 1 〉 = |2(2, 0)0 : 2(2, 1)1; T = 1 〉
14 −3.75 |4(4, 1)(0, 0)(4, 1)T = 0 〉 = |4(4, 1)1 : 0(0, 0)0; T = 1 〉

4.4. Summary

Multiple multi-orbit pairing SO(5) and the complementary Sp(2Ω) algebras with
isospin degree of freedom for nucleons are described in this section. The complementarity
is established at the level of quadratic Casimir operators. Besides giving some details of
these algebras in Section 4.1, described in Section 4.2 are the methods for obtaining the
irrep labels for SO(5) ⊃ [SOT(3) ⊃ SOMT

(2)]⊗ U(1) algebra, i.e., the allowed values of
T for a given m of U(1) and (v, t) of SO(5). Tables are given for some particle numbers
of interest. In addition, a method to construct symmetry defined Hamiltonian matrix in
a two space example is also given. In this situation there will be two SO(5) algebras and
the wavefunctions that correspond to the two SO(5) algebras are tabulated explicitly in
two examples. Going further, in Section 4.3 three applications of multiple SO(5) algebras
are described and these are: (i) selection rules for EM operators; (ii) a simple Hamiltonian
generating order–chaos–order transitions; (iii) two nucleon transfer strength. Further
exploration of these and other examples will give us more signatures that are useful in
finding empirical examples for multiple SO(5) algebras in nuclei.

5. Multiple Pairing Algebras in Proton–Neutron Interacting Boson Model with
Fictitious (F) Spin

For a two-species boson systems (such as the proton–neutron interacting boson model
(pnIBM or IBM2) [21]), it is possible to introduce a fictitious (F) spin for the bosons such that
the two projections of F represent the two species. Then, for N bosons the total fictitious
spin F takes values N/2, N/2 − 1, . . ., 0 or 1/2. For such a system with N number of
bosons occupying orbits with angular momentum (ℓ1, ℓ2, . . . , ℓr) and the Hamiltonian
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preserving F-spin, the SGA is U(2ΩB) ⊃ U(ΩB)⊗ SUF(2) with SUF(2) generating F-spin
and ΩB = ∑ℓ(2ℓ+ 1). For example, for pn − sdIBM, pn − sdgIBM and pn − sdp f IBM we
have ΩB = 6, 15 and 16 respectively. There is good evidence that heavy nuclei preserve
F-spin [21,122–125]. Here below we will show that they are multiple pairing algebras for
boson systems with F-spin and consider some of their applications. It is important to
stress that although we consider pairing algebras for bosons, their physical interpretation
is different as is well known in the example of the SO(6) limit of IBM-1 [21].

5.1. Multiple Pairing SO(3, 2) Algebras with F-Spin

Let us consider a system of N bosons in r number of spherical ℓ orbits (ℓ1, ℓ2, . . . , ℓr)
and each boson carrying F-spin 1/2 degree of freedom. Then, total number of degrees of
freedom for a singe boson is 2ΩB where ΩB = ∑ℓ ΩB

ℓ
and ΩB

ℓ
= (2ℓ+ 1). Now, it is easy

to see that the 4(ΩB)2 number of one-body operators U
k, f0
mk ,m f0

(ℓ1, ℓ2), with f0 = 0 and 1,

U
k, f0
mk ,m f0

(ℓ1, ℓ2) =
(

b†
ℓ1

1
2
b̃
ℓ2

1
2

)k, f0

mk ,m f0

(102)

where b† and b are single boson creation and annihilation operators in angular momentum and

F-spin spaces, generate the SGA U(2ΩB). Note that b̃
ℓm, 1

2 m f
= (−1)ℓ+m+ 1

2+m f b
ℓ−m, 1

2−m f
.

Moreover, with good F-spin symmetry, we have the subalgebra

U(2ΩB) ⊃ U(ΩB)⊗ SUF(2) . (103)

The operators Uk,0
mk ,0(ℓ1, ℓ2) [(ΩB)2 in number] generate U(ΩB). Similarly, SUF(2) is

generated by F-spin operator F̂ where

F1
µ = ∑

ℓ

√
2ℓ+ 1

2

(
b†
ℓ

1
2
b̃
ℓ

1
2

)0,1

µ
. (104)

In addition, the number operator N̂B and the total angular momentum operator L̂ are given by

N̂B = ∑
ℓ

√
2(2ℓ+ 1)

(
b†
ℓ

1
2
b̃
ℓ

1
2

)0,0
,

L1
µ = ∑

ℓ

√
ℓ(ℓ+ 1)(2ℓ+ 1)

(
b†
ℓ

1
2
b̃
ℓ

1
2

)1,0

µ
.

(105)

Note that {F̂, N̂B} generate UF(2). It is useful to note that all N boson states transform
as the symmetric irrep {N} of U(2ΩB) and the irreps of U(ΩB) will be two-rowed, given
by {N1, N2}, N1 ≥ N2 in Young tableaux notation with N1 + N2 = N and F = (N1 − N2)/2.
Thus, the U(ΩB) irreps are labeled by (N1, N2) or (N, F).

Turning to pairing, for boson systems with F-spin and a single ℓ orbit, the pair-creation
operator with angular momentum zero and F-spin 1 is B1

µ(ℓ) where

B1
µ(ℓ) =

√
2ℓ+ 1

2

(
b†
ℓ

1
2
b†
ℓ

1
2

)0,1

0,µ
(106)

and its hermitian adjoint
[

B1
µ(ℓ)

]†
is,

[
B1

µ(ℓ)
]†

=

√
2ℓ+ 1

2
(−1)1−µ

(
b̃
ℓ

1
2
b̃
ℓ

1
2

)0,1

0,−µ
. (107)
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Now, with bosons in (ℓ1, ℓ2, . . . , ℓr) orbits, the pair-creation operator can be taken as a
linear combination of the single-ℓ shell pair-creation operators but with different phases
giving the generalized pairing operator (it is no longer unique) to be,

B1
µ(β) = ∑

ℓ

βℓB1
µ(ℓ) ; {β} = {βℓ1

, βℓ2
, . . . , βℓr

} = {±1,±1, . . .} . (108)

The corresponding generalized pair-annihilation operator is

[
B1

µ(β)
]†

= ∑
ℓ

βℓ

[
B1

µ(ℓ)
]†

. (109)

Using straightforward but lengthy angular momentum algebra, it is easy to derive

the commutators for the operators B1
µ(β), [B1

µ(β)]†, F1
µ and Q0 = [N̂B + ΩB]/2. Note the

difference in Q0 for fermions. The results are independent of {β} when βℓp
= ±1 as in

Equation (108),

[
B1

µ , (B1
−µ′)†

]
= 2

[√
2 (−1)µ′ 〈

1µ 1µ′ | 1, µ + µ′〉 F1
µ+µ′ + δµ,−µ′(−Q0)

]
,[

B1
µ , Q0

]
= −B1

µ ,[
B1

µ , F1
µ′

]
=

√
2

〈
1µ 1µ′ | 1, µ + µ′〉B1

µ+µ′ ,[
F1

µ , F1
µ′

]
= −

√
2

〈
1µ 1µ′ | 1, µ + µ′〉 F1

µ+µ′ ,[
F1

µ , Q0

]
= 0 .

(110)

Equation (110) shows that the ten operators B1
µ(β), [B1

µ(β)]†, F1
µ and Q0 (equivalently

N̂B) form an algebra for each {β} set and this is the non-compact Lie algebra SO(β)(3, 2).
This was pointed out for the first time for bosons with F-spin by Lerma et al. [47]. Some
mathematical details of SO(3, 2) algebra are given [118] and references therein. With-
out loss of generality we can choose βℓ1

= +1 and then the remaining βℓp
will be ±1.

Thus, there will be 2r−1 SO(3, 2) algebras. Then, with two ℓ orbits we have two SO(3, 2)
algebras SO(+,+)(3, 2) and SO(+,−)(3, 2), with three ℓ orbits we have four SO(3, 2) alge-
bras SO(+,+,+)(3, 2), SO(+,+,−)(3, 2), SO(+,−,+)(3, 2) and SO(+,−,−)(3, 2), with four ℓ orbits
there will be eight SO(3, 2) algebras and so on. Before proceeding further, let us introduce
the pairing Hamiltonians Hp(β) for bosons,

HB
p (β) = GB ∑

µ

B1
µ(β)

[
B1

µ(β)
]†

(111)

where GB is the pairing strength. Now we will consider the complementary SO(Ω) algebra
for further results.

5.2. Complementary SO(ΩB) Algebras

Starting with the SGA U(2ΩB) ⊃ U(ΩB) ⊗ SUF(2), it is easy to recognize that
U(ΩB) ⊃ SO(ΩB) and the generators of SO(ΩB) are

SO(ΩB) : Uk,0
µ (ℓ, ℓ) with k odd,

Vk,0
µ (ℓ1, ℓ2) = N 1/2(ℓ1, ℓ2, k)

[
Uk,0

µ (ℓ1, ℓ2) + X(ℓ1, ℓ2, k)Uk,0
µ (ℓ2, ℓ1)

]
, ℓ1 > ℓ2

(112)

with N and X determined such that SO(ΩB) is complementary to the pairing SO(3, 2)
algebra. Towards this end we will define the quadratic Casimir operators (C2) of the various
algebras involved and then we will use the formulas for their eigenvalues as given for
example in [118]. The quadratic Casimir invariants of U(ΩB), UF(2) and SO(ΩB) are
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C2(U(ΩB)) = 2 ∑
ℓ1,ℓ2,k

(−1)ℓ1−ℓ2 Uk,0(ℓ1ℓ2) · Uk,0(ℓ2ℓ1) ,

C2(UF(2)) = ∑
ℓ1,ℓ2; f=0,1

√
(2ℓ1 + 1)(2ℓ2 + 1)) U0, f (ℓ1ℓ1) · U0, f (ℓ2ℓ2) =

(N̂B)2

2
+ 2F̂2 ,

C2(SO(ΩB)) = 4 ∑
ℓ ; k=odd

Uk,0(ℓℓ) · Uk,0(ℓℓ) + 2 ∑
ℓ1>ℓ2 ; k

Vk,0(ℓ1ℓ2) · Vk,0(ℓ1ℓ2) .

(113)

Using angular momentum algebra and Equation (113) the following important rela-
tions are derived,

C2(U(ΩB))− C2(UF(2)) = N̂B(ΩB − 2) ,

C2(U(ΩB))− C2(SO(ΩB)) = N̂B + 2 ∑
µ

B1
µ(β)

[
B1

µ(β)
]† (114)

and the second equality above is valid only when

X(ℓ1, ℓ2, k) = (−1)ℓ1+ℓ2+1+kβℓ1
βℓ2

. (115)

Note that for proper scaling for the Casimir operators, also needed is

N (ℓ1, ℓ2, k) = (−1)k+1βℓ1
βℓ2

.

with βℓ defining the generalized pair B1
µ(β), we have from Equations (114) and (115) the

correspondence

SO(ΩB) → SO(β)(ΩB) ↔ SO(β)(3, 2)

and
[
U(ΩB) ⊃ SO(β)(ΩB)

]
⊗SUF(2) solves the pairing Hamiltonian given by Equation (111).

With the U(ΩB) irreps labeled by (N1, N2) or (N, F), the SO(β)(ΩB) irreps are labeled by

[σ1, σ2] with σ1 ≥ σ2 or by (σ, f ) where σ = σ1 + σ2 and f = (σ1 − σ2)/2. Then, σ is seniority,
like quantum number, and f is reduced F-spin. With these, the SO(ΩB) symmetry algebra
and the corresponding basis states are

SO(ΩB) : U(2ΩB) ⊃
[
U(ΩB) ⊃ SO(β)(ΩB)

]
⊗

[
SUF(2) ⊃ UMF

(1)
]

,

Basis states: : |(N, F, MF), (σ, f ), α 〉 ↔ |N; {N1, N2} [σ1, σ2] MF, α 〉 .
(116)

where α are additional labels needed for complete specification of the basis states and MF

is Fz eigenvalue with −F ≤ MF ≤ F. Note that sometimes MF is included in α. Formulas
for the eigenvalues of the U(ΩB) and SO(β)(ΩB) are well known [56,118,121],

〈
C2(U(ΩB))

〉m,F
=

N(2ΩB + N − 4)

2
+ 2F(F + 1) ,

〈
C2(SO(β)(ΩB))

〉σ, f
=

σ(2ΩB + σ − 6)

2
+ 2 f ( f + 1) .

(117)

The first formula here also follows easily from the first equality in Equation (114).
Using Equations (111), (114) and (117) we have

〈

∑
µ

B1
µ(β)

[
B1

µ(β)
]†
〉N,F,σ, f

= (GB)
−1

〈
HB

p (β)
〉N,F,σ, f

=
1

4
(N − σ)(2ΩB − 6 + N + σ) + F(F + 1)− f ( f + 1) .

(118)
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Thus, the pairing Hamiltonian HB
p is solvable by the SO(ΩB) symmetry (pairing

eigenvalues do not depend on (β) and MF). In order to establish the above correspondence
with SO(β)(3, 2) algebra, we will rewrite the second formula in Equation (117) as

1

2

〈
C2(SO(β)(ΩB))

〉(ωB
1 ,ωB

2 )
=

[
ωB

1 (ω
B
1 − 3) + ωB

2 (ω
B
2 + 1)

]
− ΩB

2

(
ΩB

2
− 3

)
;

ωB
1 =

ΩB + σ

2
, ωB

2 = f .

(119)

with these we can identify the subalgebra of SO(3, 2) algebra, the corresponding irrep
labels (basis states) and the quadratic Casimir operator of SO(3, 2),

SO(3, 2) : SO(3, 2) ⊃
[
SUF(2) ⊃ UMF

(1)
]
⊗ UQ0

(1) ,

Basis states :
∣∣∣(ωB

1 , ωB
2 ), Q0 = ΩB+N

2 , F, MF

〉
,

C2(SO(β)(3, 2)) = −B1
µ(β)

[
B1

µ(β)
]†

+ F2 + Q0(Q0 − 3) ,
〈
C2(SO(β)(3, 2)

〉(ωB
1 ,ωB

2 )
=

[
ωB

1 (ω
B
1 − 3) + ωB

2 (ω
B
2 + 1)

]
.

(120)

Then, we have the formula

〈
(GB)

−1 HB
p (β)

〉(ωB
1 ,ωB

2 ),Q0,F
= Q0(Q0 − 3) + F(F + 1)−

[
ωB

1 (ω
B
1 − 3) + ωB

2 (ω
B
2 + 1)

]
. (121)

It is important to note that Equations (119) and (77) are related by Ω → −Ω symmetry.
Finally, for obtaining the spectrum generated by HB

p (β) we need (N, F) → (σ, f ) reductions

or the set of (N, F) allowed for a given (σ, f ) or (ωB
1 , ωB

2 ). We will turn to this now.

5.3. Irreducible Representations

For labeling the eigenstates of HB
P (β), for a N boson system we need the irrep reduc-

tions (N, F) → (σ, f ). A simple method for this is to use the results for Kronecker products
(denoted by × below) of the irreps of U(ΩB) and similarly for SO(ΩB). The rules for these
follow from the Schur functions theory as given in [116,119,120] and for the present purpose
the simplified results given for example in [56,113] will be adequate (see also Section 3).
Given a two-rowed irrep {N1, N2} of U(ΩB), it can be expanded in terms of Kronecker
products involving only symmetric irreps,

{N1, N2} = {N1} × {N2} − {N1 + 1} × {N2 − 1} ; {0} = 1 and {−a} = 0 . (122)

Similarly, the Kronecker product of any two symmetric SO(ΩB) irreps, with ΩB ≥ 5,
will give

[P]× [Q] =
Q

∑
k=0

Q−k

∑
r=0

[P − Q + k + 2r, k] ; P ≥ Q . (123)

Equations (122) and (123) along with the well known result from the pairing algebra
for identical boson systems [65],

{N} → [σ] = [N], [N − 2], . . . , [0] or [1] (124)

will give the reductions for any (N, F) to (σ, f )’s. Note that {N} in Equation (124) is the
symmetric irrep of U(ΩB) with F = N/2 and similarly [σ] is a symmetric irrep of SO(ΩB)
with f = σ/2. Using Equations (122)–(124) we obtain for example
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{N − 1, 1} −→ [σ1, σ2] =
[N/2]−1

∑
r=0

[N − 2r − 1, 1]⊕
[(N−1)/2]−1

∑
r=0

[N − 2r − 2, 0] ,

{N − 2, 2} −→ [σ1, σ2] =
[N/2]−2

∑
r=0

[N − 2r − 2, 2]⊕
[(N−1)/2]−2

∑
r=0

[N − 2r − 3, 1]⊕

[N − 2, 0]⊕ [N − 2 − 2[(N − 2)/2], 0]⊕
[(N)/2]−3

∑
r=0

[N − 2r − 4, 0]2 .

(125)

In these equations [X/2] is the integer part of X/2 and there is multiplicity (i.e., some
irreps appear more than once) in the {N − 2, 2} reductions. For F < N/2 − 2, numerical
results for the reductions can be obtained easily using Equations (122)–(124) as they are
easy to program. Table 8 gives results for (N, F = N/2 − 3) and Table 9 gives results for
(N, F = N/2 − 4).

Table 8. U(ΩB) irreps {N , 3} reductions to SO(ΩB) irreps [σ1, σ2] for N = 3 to 15 and ΩB ≥ 5.

The SO(ΩB) irreps are given as α[σ1 σ2] where α is the multiplicity. Note that N = N + 3,

F = (N − 3)/2 = N/2 − 3, σ = σ1 + σ2 and f = (σ1 − σ2)/2. See Section 5.3 for further discussion.

{3 3}
1[ 1 1] 1[ 3 1] 1[ 3 3]

{4 3}
1[ 1 0] 1[ 2 1] 1[ 3 0] 1[ 3 2] 1[ 4 1] 1[ 4 3]

{5 3}
1[ 1 1] 1[ 2 0] 2[ 3 1] 1[ 4 0] 1[ 3 3] 1[ 4 2] 1[ 5 1] 1[ 5 3]

{6 3} 1[ 1 0] 1[ 2 1] 2[ 3 0] 1[ 3 2] 2[ 4 1] 1[ 5 0] 1[ 4 3] 1[ 5 2]

1[ 6 1] 1[ 6 3]

{7 3}
1[ 1 1] 1[ 2 0] 2[ 3 1] 2[ 4 0] 1[ 3 3] 1[ 4 2] 2[ 5 1] 1[ 6 0]

1[ 5 3] 1[ 6 2] 1[ 7 1] 1[ 7 3]

{8 3}
1[ 1 0] 1[ 2 1] 2[ 3 0] 1[ 3 2] 2[ 4 1] 2[ 5 0] 1[ 4 3] 1[ 5 2]

2[ 6 1] 1[ 7 0] 1[ 6 3] 1[ 7 2] 1[ 8 1] 1[ 8 3]

{9 3}
1[ 1 1] 1[ 2 0] 2[ 3 1] 2[ 4 0] 1[ 3 3] 1[ 4 2] 2[ 5 1] 2[ 6 0]

1[ 5 3] 1[ 6 2] 2[ 7 1] 1[ 8 0] 1[ 7 3] 1[ 8 2] 1[ 9 1] 1[ 9 3]

{10 3}
1[ 1 0] 1[ 2 1] 2[ 3 0] 1[ 3 2] 2[ 4 1] 2[ 5 0] 1[ 4 3] 1[ 5 2]

2[ 6 1] 2[ 7 0] 1[ 6 3] 1[ 7 2] 2[ 8 1] 1[ 9 0] 1[ 8 3] 1[ 9 2]

1[10 1] 1[10 3]

{11 3}
1[ 1 1] 1[ 2 0] 2[ 3 1] 2[ 4 0] 1[ 3 3] 1[ 4 2] 2[ 5 1] 2[ 6 0]

1[ 5 3] 1[ 6 2] 2[ 7 1] 2[ 8 0] 1[ 7 3] 1[ 8 2] 2[ 9 1] 1[10 0]

1[ 9 3] 1[10 2] 1[11 1] 1[11 3]

{12 3}
1[ 1 0] 1[ 2 1] 2[ 3 0] 1[ 3 2] 2[ 4 1] 2[ 5 0] 1[ 4 3] 1[ 5 2]

2[ 6 1] 2[ 7 0] 1[ 6 3] 1[ 7 2] 2[ 8 1] 2[ 9 0] 1[ 8 3] 1[ 9 2]

2[10 1] 1[11 0] 1[10 3] 1[11 2] 1[12 1] 1[12 3]

{13 3}
1[ 1 1] 1[ 2 0] 2[ 3 1] 2[ 4 0] 1[ 3 3] 1[ 4 2] 2[ 5 1] 2[ 6 0]

1[ 5 3] 1[ 6 2] 2[ 7 1] 2[ 8 0] 1[ 7 3] 1[ 8 2] 2[ 9 1] 2[10 0]

1[ 9 3] 1[10 2] 2[11 1] 1[12 0] 1[11 3] 1[12 2] 1[13 1] 1[13 3]
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Table 8. Cont.

{14 3}
1[ 1 0] 1[ 2 1] 2[ 3 0] 1[ 3 2] 2[ 4 1] 2[ 5 0] 1[ 4 3] 1[ 5 2]

2[ 6 1] 2[ 7 0] 1[ 6 3] 1[ 7 2] 2[ 8 1] 2[ 9 0] 1[ 8 3] 1[ 9 2]

2[10 1] 2[11 0] 1[10 3] 1[11 2] 2[12 1] 1[13 0] 1[12 3] 1[13 2]

1[14 1] 1[14 3]

{15 3}
1[ 1 1] 1[ 2 0] 2[ 3 1] 2[ 4 0] 1[ 3 3] 1[ 4 2] 2[ 5 1] 2[ 6 0]

1[ 5 3] 1[ 6 2] 2[ 7 1] 2[ 8 0] 1[ 7 3] 1[ 8 2] 2[ 9 1] 2[10 0]

1[ 9 3] 1[10 2] 2[11 1] 2[12 0] 1[11 3] 1[12 2] 2[13 1] 1[14 0]

1[13 3] 1[14 2] 1[15 1] 1[15 3]

Table 9. U(ΩB) irreps {N , 4} reductions to SO(ΩB) irreps [σ1, σ2] for N = 4 to 14 and ΩB ≥ 5.

The SO(ΩB) irreps are given as α[σ1 σ2] where α is the multiplicity. Note that N = N + 4,

F = (N − 4)/2 = N/2 − 4, σ = σ1 + σ2 and f = (σ1 − σ2)/2. See Section 5.3 for further discussion.

{4 4}
1[ 0 0] 1[ 2 0] 1[ 2 2] 1[ 4 0] 1[ 4 2] 1[ 4 4]

{5 4}
1[ 1 0] 1[ 2 1] 1[ 3 0] 1[ 3 2] 1[ 4 1] 1[ 5 0] 1[ 4 3] 1[ 5 2]

1[ 5 4]

{6 4}
1[ 0 0] 2[ 2 0] 1[ 2 2] 1[ 3 1] 2[ 4 0] 2[ 4 2] 1[ 5 1] 1[ 6 0]

1[ 4 4] 1[ 5 3] 1[ 6 2] 1[ 6 4]

{7 4}
1[ 1 0] 1[ 2 1] 2[ 3 0] 1[ 3 2] 2[ 4 1] 2[ 5 0] 1[ 4 3] 2[ 5 2]

1[ 6 1] 1[ 7 0] 1[ 5 4] 1[ 6 3] 1[ 7 2] 1[ 7 4]

{8 4}
1[ 0 0] 2[ 2 0] 1[ 2 2] 1[ 3 1] 3[ 4 0] 2[ 4 2] 2[ 5 1] 2[ 6 0]

1[ 4 4] 1[ 5 3] 2[ 6 2] 1[ 7 1] 1[ 8 0] 1[ 6 4] 1[ 7 3] 1[ 8 2]

1[ 8 4]

{9 4}
1[ 1 0] 1[ 2 1] 2[ 3 0] 1[ 3 2] 2[ 4 1] 3[ 5 0] 1[ 4 3] 2[ 5 2]

2[ 6 1] 2[ 7 0] 1[ 5 4] 1[ 6 3] 2[ 7 2] 1[ 8 1] 1[ 9 0] 1[ 7 4]

1[ 8 3] 1[ 9 2] 1[ 9 4]

{10 4}
1[ 0 0] 2[ 2 0] 1[ 2 2] 1[ 3 1] 3[ 4 0] 2[ 4 2] 2[ 5 1] 3[ 6 0]

1[ 4 4] 1[ 5 3] 2[ 6 2] 2[ 7 1] 2[ 8 0] 1[ 6 4] 1[ 7 3] 2[ 8 2]

1[ 9 1] 1[10 0] 1[ 8 4] 1[ 9 3] 1[10 2] 1[10 4]

{11 4}
1[ 1 0] 1[ 2 1] 2[ 3 0] 1[ 3 2] 2[ 4 1] 3[ 5 0] 1[ 4 3] 2[ 5 2]

2[ 6 1] 3[ 7 0] 1[ 5 4] 1[ 6 3] 2[ 7 2] 2[ 8 1] 2[ 9 0] 1[ 7 4]

1[ 8 3] 2[ 9 2] 1[10 1] 1[11 0] 1[ 9 4] 1[10 3] 1[11 2] 1[11 4]

{12 4}
1[ 0 0] 2[ 2 0] 1[ 2 2] 1[ 3 1] 3[ 4 0] 2[ 4 2] 2[ 5 1] 3[ 6 0]

1[ 4 4] 1[ 5 3] 2[ 6 2] 2[ 7 1] 3[ 8 0] 1[ 6 4] 1[ 7 3] 2[ 8 2]

2[ 9 1] 2[10 0] 1[ 8 4] 1[ 9 3] 2[10 2] 1[11 1] 1[12 0] 1[10 4]

1[11 3] 1[12 2] 1[12 4]

{13 4}
1[ 1 0] 1[ 2 1] 2[ 3 0] 1[ 3 2] 2[ 4 1] 3[ 5 0] 1[ 4 3] 2[ 5 2]

2[ 6 1] 3[ 7 0] 1[ 5 4] 1[ 6 3] 2[ 7 2] 2[ 8 1] 3[ 9 0] 1[ 7 4]

1[ 8 3] 2[ 9 2] 2[10 1] 2[11 0] 1[ 9 4] 1[10 3] 2[11 2] 1[12 1]

1[13 0] 1[11 4] 1[12 3] 1[13 2] 1[13 4]

{14 4}
1[ 0 0] 2[ 2 0] 1[ 2 2] 1[ 3 1] 3[ 4 0] 2[ 4 2] 2[ 5 1] 3[ 6 0]

1[ 4 4] 1[ 5 3] 2[ 6 2] 2[ 7 1] 3[ 8 0] 1[ 6 4] 1[ 7 3] 2[ 8 2]

2[ 9 1] 3[10 0] 1[ 8 4] 1[ 9 3] 2[10 2] 2[11 1] 2[12 0] 1[10 4]

1[11 3] 2[12 2] 1[13 1] 1[14 0] 1[12 4] 1[13 3] 1[14 2] 1[14 4]
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For boson systems, it is well known that the states with F = N/2 will be lowest
in energy and then those with F = N/2 − 1 [21]. In order to obtain this ordering, it is
necessary to add Majorana interaction (M) term as recognized in IBM studies. Then, HB

p (β)
changes to

HB(GB, aB) = HB
p (β) + M ;

HB
p (β) = GB ∑

µ

B1
µ(β)

[
B1

µ(β)
]†

, M = aB

[
N̂B

2

(
N̂B

2
+ 1

)
− F̂2

]
(126)

with F̂2 eigenvalues being F(F + 1). See [21,126] for details regarding the Majorana term M.
The HB(GB, aB) eigenvalues E for some states with F = N/2 and F = N/2 − 1 are,

E(N; {N}[N]α) = 0,

E(N; {N}[N − 2]α) = GB (2N + 2),
E(N; {N}[N − 4]α) = GB (4N),
E(N; {N − 1, 1}[N − 1, 1]α) = aB N,

E(N; {N − 1, 1}[N − 2]α) = GB (N + 2) + aB N,

E(N; {N − 1, 1}[N − 3, 1]α) = GB (2N) + aB N,

E(N; {N − 1, 1}[N − 4]α) = GB (3N) + aB N .

(127)

These show the important result that for GB > 0 and aB > 0, the states with F = N/2
will be lowest in energy and the states with F = N/2 − 1 will lie at energy aBN above
the F = N/2 states and they will be next higher states. If aB = 0, the F = N/2 states
will not be separated from F = N/2 − 1 states. The states with F = N/2 − 1 are called
mixed symmetry states [21]. From Equation (127), it is clear that the formulas for irrep
reductions given in Equations (124) and (125) and the results in Tables 8 and 9 are sufficient
for most applications.

5.4. Applications

5.4.1. Selection Rules

In the symmetry limit, selection rules for EM transitions follow from Equations (112)
and (115). It is easy to see that only the isoscalar part of the EM operators will have selection
rules. General form of the isoscalar part of EM operators is, with X = E or M,

TXL = ∑
ℓ

xL
ℓ

UL,0
µ (ℓ, ℓ) + ∑

ℓ1>ℓ2

yL
ℓ1,ℓ2

VL,0
µ (ℓ1, ℓ2) . (128)

Therefore, isoscalar part of EL operators with L even will be SO(β)(ΩB) generators and
therefore connect only states having the same (σ1, σ2) [or (ωB

1 , ωB
2 )] provided we choose the

operators such that xL
ℓ
= 0 for all ℓ and VL,0 in Equation (128) are such that Equation (115)

is satisfied. This is indeed the choice made for quadrupole (L = 2) transition operator in
IBM-2 studies [21,124,125]. However, for ML operators with L-even, due to parity selection
rule UL,0 will not exist. Therefore, they will connect only states having the same (σ1, σ2)
[or (ωB

1 , ωB
2 )] provided we choose the operators such that VL,0 in Equation (128) satisfy

Equation (115). Turning to EM operators with L odd, both EL and ML operators with L
odd will connect only states having the same (σ1, σ2) [or (ωB

1 , ωB
2 )] provided we choose

the operators such that VL,0 in Equation (128) satisfy Equation (115). This is due the fact
that UL,0 with L odd (they are needed only for ML operators while they do not exist for
EL operators due to parity selection rule) are generators of SO(β)(ΩB). It is important
to add that the selection rules for the isoscalar part of EM operators will be violated if
the β in SOβ(ΩB) are not same as the {β} needed for defining VL,0 in Equation (128)
via Equation (115). These selection rules may provide some tests of the multiple pairing
algebras with good F-spin in interacting boson models (sd, sdg, sd f , sdp f etc) of nuclei.
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5.4.2. H Matrix Construction

Results for electromagnetic transition strengths, as generated by multiple multi-orbit
pairing algebras, can be obtained by developing the Wigner–Racah algebra for SO(3, 2)
and following the same procedure that is adopted in Section 4 for multiple multi-orbit
SO(5) algebras with isospin in shell model. It may be possible in future to follow the
methods used in Refs. [30–38] to obtain SO(3, 2) Wigner and Racah coefficients. As these
group theory results, to our knowledge, are not available, an alternative is to construct
the H matrix in a convenient basis and obtain the eigenfuctions generated for different
choices of β in Equations (108) and (111). To this end, one can use the MF basis, i.e., a basis

with proton (π) and neutron (ν) bosons. We will use the notation |π 〉 =
∣∣∣F = 1

2 , MF = 1
2

〉

and |ν 〉 =
∣∣∣F = 1

2 , MF = − 1
2

〉
. More explicitly, for a system of interacting bosons with sp

angular momenta ℓ1, ℓ2, . . ., a convenient basis is

∣∣ΦB(L)
〉
=

∣∣ ∏r=1,2,... { |φπ(ℓr : Lπ
r ) φν(ℓr : Lν

r ) 〉} ∆ L
〉

;

φρ(ℓr : L
ρ
r ) =

∣∣∣NB
ℓr :ρ ωB

ℓr :ρ α
ρ
r L

ρ
r

〉
, ρ = π, ν .

(129)

Here, ∑ℓ NB
ℓ:π = NB

π is number of proton bosons, ∑ℓ NB
ℓ:ν = NB

ν is number of neutron
bosons giving NB = NB

π + NB
ν the total number of bosons. Similarly, ωB

ℓ:π and ωB
ℓ:ν being the

ℓ boson seniorities in π and ν spaces. For a given nucleus (NB
π , NB

ν ) or (N, MF = NB
π − NB

ν )
are preserved. Similarly, L

ρ
r are the angular momentum of the NB

ℓr :ρ number of bosons

with sp angular momentum ℓr. Further, L is the total angular momentum obtained by
vector addition of all L

ρ
r . In addition, α

ρ
r and ∆ are additional labels needed for complete

specification of the basis states.
For example, the pairing Hamiltonian (GB)

−1 HB
p (β) in terms of π and ν bosons is

(GB)
−1 HB

p (β) =

{
2 ∑
ℓ1,ℓ2,ρ=π,ν

(−1)ℓ1+ℓ2 βℓ1
βℓ2

S
ρ
+(ℓ1)S

ρ
−(ℓ2)

}

+

{

∑
ℓ1,ℓ2;L

√
(2ℓ1 + 1)(2ℓ2 + 1)(2L + 1) βℓ1

βℓ2

[(
b†
ℓ1π b̃ℓ2π

)L(
b†
ℓ1ν b̃ℓ2ν

)L
]0
} (130)

The S+(ℓ) and S−(ℓ) operators appearing above are as defined by Equations (30) and (31).
Following the results in Appendix A, it is easy to write the matrix element of the terms involving
S+ and S− in the basis given by Equation (129). For the Second term in Equation (130) we
need the reduced matrix elements of b†

ℓ
and tables, formulas and computer programmes for

these are available for ℓ = 1 (p bosons), 2 (d bosons), 3 ( f ) bosons and 4 (g) bosons; see for
example [21,100,127–129]. Let us add that it is possible to consider a more general H with the
basis given in Equation (129), for example by adding splitting of single ℓ-orbit energies. Without
explicit matrix construction, energy eigenvalues are obtained in [47] by employing the so called
Richardson–Gaudin (RG) equations. Studied in [47] are energy spectra in sd, sdg and sd f boson
systems (however, in this study multiple pairing algebras with F-spin are not considered). Let
us add that it may be possible also to use in proton–neutron spaces the methods developed
by Feng Pan et al. [19]. Further investigations using these approaches or by constructing the
H matrix explicitly will give new insights into multiple pairing algebras in interacting boson
models with F-spin but this is for future.

Going beyond sdIBM-2, in sdgIBM-2, sd f IBM-2, sdp f IBM-2 and so on, there will be
many pairing algebras. For example, in sdgIBM-2 the SGA is U(30) and the first pairing
algebra corresponds to SO(15) in

U(30) ⊃ [U(15) ⊃ SO(15)]⊗ SUF(2)

with pair operator
B1

µ(sdg) = B1
µ(s)± B1

µ(d)± B1
µ(g) .
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The SO(15) can be decomposed further into three subalgebras

SO(15) ⊃ SOdg(14) ⊃ SOd(5)⊕ SOg(9) ,

SO(15) ⊃ SOsd(6)⊕ SOg(9) ⊃ SOd(5)⊕ SOg(9) ,
SO(15) ⊃ SOsg(10)⊕ SOd(5) ⊃ SOd(5)⊕ SOg(9) .

There are SO(3, 2) algebras corresponding to all these SO(n) algebras. It is important
to recognize that the choice of the four signs in B1

µ(sdg) will uniquely fix the sign choices
of the pair-creation operators that correspond to the various SO(n) algebras in the three
SO(15) subalgebras given above. Investigations of these various multiple pair algebras
may prove to be useful.

5.5. Summary

Multiple multi-orbit pairing SO(3, 2) and the complementary SO(ΩB) algebras with
F-spin in the proton–neutron interacting boson models of nuclei are described in this
Section. The complementarity is established at the level of quadratic Casimir operators.
Besides giving some details of these algebras in Sections 5.1 and 5.2, described in Section 5.3
are the methods for obtaining the irrep labels for U(2ΩB) ⊃ [U(ΩB) ⊃ SO(ΩB)]⊗ SUF(2)
algebra, i.e., the allowed values of (σ1, σ2) of SO(ΩB) for a given (N, F). Results for
F = N/2, N/2 − 1, N/2 − 2, N/2 − 3 and N/2 − 4 are presented. Going further, in
Section 5.4 some possible applications of multiple SO(3, 2) algebras are described. Further
explorations using group theory approach as in Section 4 but extended to SO(3, 2), by
explicit matrix construction, using the RG method employed in [47]) or by extending the
methods developed by Feng Pan are expected to give us signatures that are useful in finding
empirical examples for multiple SO(3, 2) algebras in nuclei.

6. Multiple Pairing Algebras with L − S Coupling in Shell Model and in IBM with
Isospin T = 1 Degree of Freedom

In the shell model with L − S coupling, a L = 0 coupled nucleon pair carries spin-
isospin degrees of freedom (ST) = (10) and (01). With this, the pairing algebra is SO(8) as
established first in [48]. More importantly, with nucleons occupying several ℓ-orbits, there
will be multiple SO(8) algebras and each of them contains both isoscalar and isovector
pair-creation operators unlike only isovector pair operator in the SO(5) pairing algebra for
nucleons in j orbits (see Section 4). The SO(8) algebra is complex with three subalgebra
chains as discussed ahead in Section 6.1. In addition, in Section 6.2 we will describe briefly
the various pairing algebras in the interacting boson model with the bosons carrying isospin
T = 1 degree of freedom (called IBM-3 or IBM-T [21,56]). Here also, there will be multiple
pairing algebras for sd, sdg, sd f , sdp f , . . . boson systems. As the algebras appearing in this
Section are quite complex, the presentation will be brief without too many details. We hope
that the discussion here will prompt many investigations of these algebras in future.

6.1. Multiple SO(8) Pairing Algebras in Shell Model

6.1.1. SO(8) and Its Three Subalgebras

In the shell model, in the situation that nucleons occupy ℓ orbits (i.e., they occupy both
j = ℓ± 1

2 orbits), then the nucleon pair coupled to orbital angular momentum zero, due to
antisymmetry, carries spin-isospin degrees of freedom (ST) = (10) and (01). With this, the
isoscalar and isovector pair-creation operators D†

µ(ℓ) and P†
µ(ℓ) respectively are

D†
µ(ℓ) =

√
2ℓ+ 1

2

(
a†
ℓ

1
2

1
2
a†
ℓ

1
2

1
2

)0,1,0

0,µ,0
, P†

µ(ℓ) =

√
2ℓ+ 1

2

(
a†
ℓ

1
2

1
2
a†
ℓ

1
2

1
2

)0,0,1

0,0,µ
(131)

with µ = −1, 0,+1. Note that we are using (L, S, T) order in Equation (131). For the
multi-orbit case, we have generalized isoscalar and isovector pair operators D†

µ and P†
µ as

linear combinations of single orbit operators except for phase factors giving
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D†
µ = ∑

ℓ

βℓ D†
µ(ℓ) , P†

µ = ∑
ℓ

βℓ P†
µ(ℓ) ; βℓ = +1 or − 1 . (132)

Now, the isoscalar plus isovector pairing Hamiltonian in LS-coupling is

HLST
p (x) = −(1 − x) ∑

µ

P†
µ Pµ − (1 + x) ∑

µ

D†
µDµ . (133)

Note that Pµ = (P†
µ)

† and Dµ = (D†
µ)

†. Most significant result here is that the twelve

operators (D†
µ , P†

µ , Dµ, Pµ), the six spin and isospin generators (S1
µ, T1

µ), the number

operator n̂ [or Q0 = n̂
2 − Ω, Ω = ∑(2ℓ + 1)] and the nine (στ)1,1

µ,µ′ operators, a total of

28 operators generate a SO(8) algebra independent of the βℓ in Equation (132) [48,53]
(note that the SO(8) algebra appearing here is different from the SO(8) appearing in the
schematic model for monopole and quadrupole pairing in nuclei by Ginocchio [130]). Thus,
there are multiple SO(8) algebras in shell model and the number is 2r−1 for r number of ℓ
orbits. Going further, each SO(8) algebra admits three subalgebra chains and the pairing
Hamiltonian in Equation (133) is diagonal in the basis defined by these subalgebra chains
for x = 0, 1,−1. These are [48,53],

x = 0 : SO(8) ⊃ SOST(6) ⊃ SOS(3)⊗ SOT(3) ,
x = 1 : SO(8) ⊃ [SOS(5) ⊃ SOS(3)]⊗ SOT(3) ,

x = −1 : SO(8) ⊃ [SOT(5) ⊃ SOT(3)]⊗ SOS(3) .
(134)

Noted that SOST(6) ⊃ SOS(3)⊗ SOT(3) above is the same as the well known SUST(4)
⊃ SUS(2)⊗ SUT(2) spin-isospin supermultiplet algebra [131]. By varying the parameter x
in Equation (133), it is possible to study the competition between isoscalar and isovector
pairing. It is important to recognize that HLST

p (x) contains only the generators of SO(8)
and therefore for all x values, the eigenstates will carry SO(8) quantum numbers. It is well
known that SO(8) irreps contain four numbers and they can be recasted into a seniority
quantum number v and three other numbers. It is useful to add that the shell model SGA is
U(4Ω) and the three subalgebra chains of this SGA that are in one-to-one correspondence
with the chains in Equation (134) are

x = 0 : U(4Ω) ⊃ [U(Ω) ⊃ SO(Ω)]⊗ [SOST(6) ⊃ SOS(3)⊗ SOT(3)]
x = 1 : U(4Ω) ⊃ [U(2Ω) ⊃ Sp(2Ω) ⊃ SO(Ω)⊗ SUT(2)]⊗ SUS(2)

x = −1 : U(4Ω) ⊃ [U(2Ω) ⊃ Sp(2Ω) ⊃ SO(Ω)⊗ SUS(2)]⊗ SUT(2) .
(135)

Using group theory, all the irrep labels for the algebras in Equation (135) can be
determined and by correspondence, the irrep labels of the algebras in Equation (134).
See [53,54] for details. Most importantly, for the SO(8) seniority v = 0 a convenient set of
basis states for a given number m of nucleons and a given value of Ω are the SO(6) basis
states, i.e., the states given by the chain with x = 0 above. These states are labeled by

∣∣∣Φ(ST)
SO(6)

〉
= |Ω, N, ω, (S, T), α 〉 .

The various quantum numbers appearing here are given by (assuming m is even) [49,53,54],

N = m/2 if m ≤ 2Ω , N = (4Ω − m)/2 if m > 2Ω ,
ω = N, N − 2, N − 4, . . . , 0 or 1,
S + T = ω, ω − 2, . . . , 0 or 1 .

(136)

For the SO(8) ⊃ SOST(6) ⊃ SOS(3)⊗ SOT(3) limit, for the above SO(8) seniority
v = 0 basis states, the Wigner–Racah algebra was developed in [49]. Further, the algebra
is also available for v = 1 and v = 2 states; see [49,52]. Using these, spectra and two-
nucleon and α transfer strengths are studied in some detail using H with SO(8) pairing
and considering only SO(8) seniority v = 0 in [50,51]. The SO(8) algebra was also applied
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to study some aspects of double β-decay matrix elements in [132] and in the study of
some aspects of IBM-4 (interacting boson model with spin-isospin degrees of freedom)
in [133,134].

6.1.2. Two-Nucleon Transfer in a Two-Orbit System

With our interest in this article being on multiple SO(8) algebras, here below we will
consider the simpler two-orbit situation and present some results for two-nucleon transfer
that distinguishes the two SO(8) algebras. Note that with two orbits there will be two
SO(8) algebras, with three orbits there will be four SO(8) algebras and so on.

Let us consider two orbits with Ω taking values say Ω1 for the first orbit and Ω2 for
the second orbit. Given that there are say m number of nucleons in these orbits, we can
distribute them in these orbits in all possible ways. Then, m = m1 + m2 with m1 number
of nucleons in orbit #1 and m2 in orbit #2. For each (m1, m2) we can generate the SO(6)
basis states in spaces 1 and 2 using Equation (136). Table 10 gives an example with Ω1 = 6,
Ω2 = 4 and m = 8 with total (S, T) = (0, 0). Note that the basis states are of the form,

∣∣∣Φ(ST)
SO1(6)⊕SO2(6)

〉
= |{ |Ω1, N1, ω1, (S1, T1), α1 〉 |Ω2, N2, ω2, (S2, T2), α2 〉} α12 (S, T) 〉 (137)

and here one is restricting the SO(8) seniorities v1 and v2 in the two spaces to v1 = 0 and
v2 = 0. With m = m1 + m2, the N1 above is defined by (Ω1, m1) following Equation (136)
and similarly the N2 by (Ω2, m2). Finally, the α labels in Equation (137) will not play any
role in the results presented here. Using the above basis and the algebra given in [49,131],
it is possible to construct the H matrix for the isoscalar plus isovector pairing Hamiltonian,

Hp(x, β) = −(1 − x)
[(

P†
1 + β P†

2

)
(P1 + β P2)

]
− (1 + x)

[(
D†

1 + β D†
2

)
(D1 + β D2)

]
. (138)

Adding the splitting of the energies of the two orbits and restricting to β = +1, spectra,
two nucleon transfer strengths and α transfer strengths are studied in two-orbit examples
in [51] and the systems studied are found to exhibit several interesting phase transitions.
As our interest is in multiple SO(8) algebras, we have analyzed the eigenvalues and
eigenvectors for various (ST) values as generated by Hp(x, β) for x = 0,±1 and β = ±1
using Ω1 = 6, Ω2 = 4 and m = 8. The results are as follows. Firstly, as is well known, the
eigenvalues do not depend on β and this is seen in the calculated results. For x = 0, the
eigevalues with respect to the eigenvalue of (ST) = (00)1 state for (ST)i = (02)1, (04)1,
(00)2, (02)2, (04)2, (01)1 and (10)1 are 38, 48, 6, 48, 58, 46 and 46 respectively. Further, for
x = 1, they are 42, 76, 20, 42, 76, 42 and 22. Similarly, for x = −1 they are 6, 20, 20, 26, 40,
22 and 42. These eigenvalues, all independent of β = ±1, clearly show that the spectrum in
isospin space, as expected [53], for x = −1 is rotational and for x = +1 close to vibrational
(see the spacing between T = 0, 2 and 4 states). However, the eigenfunctions do depend
on β. In order to exhibit this feature, we have studied two-nucleon transfer strengths in a
simple example as described below.

Two nucleon transfer strength for adding a pair of two nucleons coupled to (S0T0) = (01)
to the ground state of a m = 6 system with the two orbits as above and (SiTi) = (01)
generating m = 8 states with (S f Tf )i = (00)i are calculated using {T(01)}† = P† = (P†

1 + P†
2 )

as the transfer operator. Then, the transfer strength is given by

S(m = 6, (01) → m = 8, (00)i) =
∣∣∣
〈

m = 8, (00)i || P†
1 + P†

2 || m = 6, (01)1

〉∣∣∣
2

. (139)
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Table 10. SO(6) limit quantum numbers for the basis states in a two-orbit example with Ω1 = 6

and Ω2 = 4. Shown are the quantum numbers for eight nucleons (m = 8) with total (S, T) = (0, 0).

Note that the SO(8) seniorities for the nucleons in the two orbits are zero. See Section 6.1.2 for

further discussion.

# N1 ω1 S1 T1 N2 ω2 S2 T2

1 0 0 0 0 4 4 0 0

2 0 0 0 0 4 2 0 0

3 0 0 0 0 4 0 0 0

4 1 1 0 1 3 3 0 1

5 1 1 0 1 3 1 0 1

6 1 1 1 0 3 3 1 0

7 1 1 1 0 3 1 1 0

8 2 2 0 2 2 2 0 2

9 2 2 1 1 2 2 1 1

10 2 2 2 0 2 2 2 0

11 2 2 0 0 2 2 0 0

12 2 2 0 0 2 0 0 0

13 2 0 0 0 2 2 0 0

14 2 0 0 0 2 0 0 0

15 3 3 0 1 1 1 0 1

16 3 3 1 0 1 1 1 0

17 3 1 0 1 1 1 0 1

18 3 1 1 0 1 1 1 0

19 4 4 0 0 0 0 0 0

20 4 2 0 0 0 0 0 0

21 4 0 0 0 0 0 0 0

Note that 〈|| ||〉 is the reduced matrix element with respect to both spin and isospin.
For calculating S, first the eigenstates of m = 6 system are obtained using the Hamiltonian
given by Equation (138) for both β = +1 and −1. The basis states for the m = 6 states are
given in Table 11. Note that the eigenfunctions for m = 8 system are linear combination of
the basis states in Table 10 and similarly, for m = 6 in terms of the states in Table 11. These
are obtained by diagonalizing the Hp(x, β = ±1) matrices in m = 8 and m = 6 basis spaces.
Now, using angular momentum algebra, it is easy to see that all we need are the reduced
matrix elements of P†

1 in the first orbit basis states and P†
2 in the second orbit basis states.

From [49,51], we have following result (for an orbit with Ω):

〈
N f = Ni + 1, ω f = ωi ± 1, (00) || P† || Ni, ωi, (01)

〉

= f (Ω, Ω − Ni, Ω − N f , ωi, ω f )

〈 {
ωi, ωi

}
{1, 1}

(01) (01)
||

{
ω f , ω f

}

(00)

〉

SU(4)

.
(140)

Formulas for the f factors here are given in [49] and similarly, formulas for the SU(4)
coefficients are given in [131]. Using Equations (139) and (140) and the wavefunctions
obtained for m = 6 and m = 8 systems in the basis states given in Tables 10 and 11, the
transfer strengths are obtained. The strength to the first (00) state of the m = 8 system
with x = 0 for β = +1 is found to be 25 times the strength to the first (00) state for
β = −1. Similarly, it is 25 times also for the second (00) states. Thus, two nucleon transfer,
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distinguishes multiple SO(8) algebras. Further, for x = −1 the transfer strength for β = +1
is found to be 25 times the strength to the first (00) state for β = −1. However, for the
second (00) state the ratio is zero. Further, for x = +1, the strength to the first (00) state
for β = +1 and −1 are same and so is the result for the second (00) state. It is possible to
extend this study to a general x value and also for (10) transfer as well as for two nucleon
removal strengths. Further, using the formulation described in [51], it possible to study α

transfer strengths as a function of β.

Table 11. SO(6) limit quantum numbers for the basis states in a two orbit example with Ω1 = 6

and Ω2 = 4. Shown are the quantum numbers for six nucleons (m = 6) with total (S, T) = (0, 1).

Note that the SO(8) seniorities for the nucleons in the two orbits are zero. See Section 6.1.2 for

further discussion.

# N1 ω1 S1 T1 N2 ω2 S2 T2

1 0 0 0 0 3 3 0 1

2 0 0 0 0 3 1 0 1

3 1 1 0 1 2 2 0 2

4 1 1 0 1 2 2 0 0

5 1 1 0 1 2 0 0 0

6 1 1 1 0 2 2 1 1

7 2 2 0 2 1 1 0 1

8 2 2 1 1 1 1 1 0

9 2 2 0 0 1 1 0 1

10 2 0 0 0 1 1 0 1

11 3 3 0 1 0 0 0 0

12 3 1 0 1 0 0 0 0

6.2. Multiple Pairing Algebras in IBM-3

Interacting boson model with the bosons carrying angular momentum (ℓ1, ℓ2, . . .) and
isospin T = 1 (or an intrinsic spin 1) degree of freedom, the SGA is U(3Ω), Ω = ∑ℓ(2ℓ+ 1).
This model is called IBM-3 or IBM-T. For nuclei, it is possible to consider IBM-3 with sd,
sdg, sd f and sdp f bosons. The sd boson version was investigated with applications in the
past [42–44,135–137]. Interestingly, IBM-3 admits two types of pairing algebras and they
are related to U(3Ω) ⊃ SO(3Ω) and U(Ω) ⊃ SO(Ω). These are first discussed in [138] for
systems with several ℓi orbits but with ℓi = 0. Here, we will consider briefly the general
(ℓ1, ℓ2, . . .) systems.

6.2.1. Multiple SU(1, 1) Pairing Algebras with U(3Ω) ⊃ SO(3Ω)

Denoting isospin by t for a single boson, we have t = 1 in IBM-3. With bosons carrying
angular momentum (ℓ1, ℓ2, . . . , ℓr), single boson creation operator is b†

ℓ,m:t,mt
and then the

generators of the SGA U(3Ω) are

uL,k
q,µ(ℓi, ℓj) =

(
b†
ℓi ,1

b̃ℓj ,1

)L,k

q,µ
; i, j = 1 − r . (141)

Note that b̃ℓ,m,1,mt
= (−1)ℓ+m+1+mt bℓ,−m,1,−mt

. Ahead we will use the definition

AL,k · BL,k = (−1)L+k
√
(2L + 1)(2k + 1)

(
AL,k BL,k

)0,0
.

Going further, clearly we have U(3Ω) ⊃ SO(3Ω) and the generator of SO(3Ω) are
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uL,k
q,µ(ℓi, ℓi) with L + k = odd ;

VL,k
q,µ (ℓi, ℓj) =

[
α(i, j) (−1)ℓi+ℓj+L+k

]1/2 {
uL,k

q,µ(ℓi, ℓj) + α(i, j) (−1)L+k uL,k
q,µ(ℓj, ℓi)

}
; i > j ,

(142)

with the αi,j determined by the pairing algebra as we will show now. In the 3Ω space, the
pair-creation operator S+ is

S+ = ∑
ℓ

βℓ S+(ℓ) ; S+(ℓ) =
1

2
b†
ℓ,t=1 · b†

ℓ,t=1 , βℓ = ±1 . (143)

The operators {S+, S−, S0} with S− = (S+)† and S0 =
Ω + n̂

2
for each {β} = {β1, β2, . . .}

set, generate a SU(1, 1) pairing algebra and this is in correspondence with the SO(3Ω)
generated by the operators in Equation (142) satisfying

α(ℓi, ℓj) = −βℓi
βℓj

. (144)

Thus, we have in IBM-3 multiple pairing SU(1, 1) algebras with corresponding SO(3Ω)
algebras. These first class of pairing algebras are clearly established at the level of quadratic
Casimir operators. The following are easily proved [55] given Equations (141)–(144),

4S+S− = n̂(n̂ + 3Ω − 2)− C2(SO(3Ω)) ,

C2(SO(3Ω)) = ∑
L+k=odd;ℓ

uL,k(ℓ, ℓ) · uL,k(ℓ, ℓ) + ∑
i<j

∑
L,k

VL,k(ℓi, ℓj) · VL,k(ℓi, ℓj) ,

C2(U(3Ω)) = ∑
i,j

∑
L,k

(−1)ℓi+ℓj uL,k(ℓi, ℓj) · uL,k(ℓj, ℓi) .

(145)

Following the results presented in Section 3, given m number of bosons, the SO(3Ω)
irreps [equivalently the irreps of SU(1, 1)] are labeled by ω with ω = m, m − 2, . . ., 0 or 1.
With this, the eigenvalues of the Casimir operators are,

〈C2(U(3Ω))〉m,ω = m(m + 3Ω − 1) ,

〈C2(SO(3Ω))〉m,ω = ω(ω + 3Ω − 2) ,

〈4S+S−〉m,ω = (m − ω)(m + ω + 3Ω − 2)
(146)

Given several ℓ orbits, they can be grouped in different ways giving 3Ω = 3Ω1 +
3Ω2 + . . . and we can define again pairing SU(1, 1) ∼ SO(3Ωi) algebras in each 3Ωi space.
For example with sdgIBM-3, we have Ω = 15 and the SGA is U(45). With this first we
have SU(1, 1) ∼ SOsdg(45) pairing algebra and there will be four of these algebras as seen
from Equation (143). Further, we have SOsd(18), SOsg(30), SOdg(42) algebras (two each)
besides SOd(15) and SOg(27) algebras in sdgIBM-3. All these are pairing algebras with a
corresponding SU(1, 1) algebra for each of them. Thus, in IBM-3 there will be large number
of SU(1, 1) class of pairing algebras. It is challenging to investigate the various structures
that they generate.

6.2.2. Multiple Sp(6) Pairing Algebras with U(Ω) ⊃ SO(Ω)

In order to identify the second class of pairing algebras, let us first decompose the
space into orbital part and isospin part giving U(3Ω) ⊃ [U(Ω ⊃ SO(Ω)] ⊗ [SU(3) ⊃
SOT(3)] algebra. Generators of U(Ω), SO(Ω), SU(3) (and U(3)) and SOT(3) are identified
following the results in [55],
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U(Ω) : hL
q (ℓ1, ℓ2) =

√
3 uL,0

q,0 (ℓ1, ℓ2)

SO(Ω) : uL,0
q,0 (ℓ, ℓ) , L = odd , VL

q (ℓi, ℓj) with i < j

VL
q (ℓ1, ℓ2) = N 1/2

{
uL,0

q,0 (ℓ1, ℓ2) + α(ℓ1, ℓ2) (−1)LuL,0
q,0 (ℓ2, ℓ1)

}

U(3) : gk
µ = ∑

ℓ

√
(2ℓ+ 1) u0,k

0,µ(ℓ, ℓ) ; k = 0, 1, 2

SU(3) : gk
µ , k = 1, 2

SOT(3) : T1
µ =

√
2 g1

µ

U(1) : n̂ = ∑
ℓ

√
3(2ℓ+ 1) u0,0

0,0(ℓ, ℓ) .

(147)

Note that α(ℓ1, ℓ2) = ±1 and these are fixed by identifying the pairing algebra that
is complementary to the SO(Ω) algebra. For a pair coupled to angular momentum zero,
symmetric nature of the wavefunctions with respect to U(3Ω) show that the isospin K of
the pairs will be K = 0, 2 (K = 1 is forbidden due to symmetry). Therefore, we have six
pair-creation operators given by

PK
µ = ∑

ℓ

βℓ

√
(2ℓ+ 1)

(
b†
ℓ1b†

ℓ1

)0,K

0,µ
; K = 0, 2 , βℓ = ±1 . (148)

Now, the 21 operators P0,2
µ , [P0,2

µ ]†, g1,2
µ and n̂ generate the Sp(6) pairing algebra for

each {β} set. Thus, we have multiple Sp(6) pairing algebras and they will be complemen-
tary to the SO(Ω) algebras given above provided

N = (−1)L+1 βℓ1
βℓ2

, α(ℓ1, ℓ2) = (−1)ℓ1+ℓ2+1 βℓ1
βℓ2

, ℓ1 6= ℓ2 . (149)

with this we have the important relation,

Hp = ∑
K=0,2 ; µ

PK
µ

(
PK

µ

)†

= C2(U(Ω))− C2(SO(Ω))− n̂ .

(150)

The quadratic Casimir operators appearing here are given by

C2(U(Ω)) = ∑
ℓ1,ℓ2,L

(−1)ℓ1+ℓ2 hL(ℓ1, ℓ2) · hL(ℓ2, ℓ1) ,

C2(SO(Ω) = 2 ∑
ℓ,L=odd

uL(ℓ, ℓ) · uL(ℓ, ℓ) + ∑
ℓ1<ℓ2,L

VL(ℓ1, ℓ2) · VL(ℓ1, ℓ2) .
(151)

Besides these, C2(U(3)) = ∑k=0,1,2 gk · gk, C2(SU(3)) = (3/2)∑k=1,2 gk · gk and
C2(SOT(3)) = 2g1 · g1. Finally, given m number of bosons, the irreps of U(Ω) will be
three-rowed Young tableux { f1, f2, f3} with f1 ≥ f2 ≥ f3 ≥ 0 and f1 + f2 + f3 = m. Simi-
larly, the U(3) irreps are labeled by the same { f } = { f1, f2, f3} and those of SU(3) then are
(λ, µ) = ( f1 − f2, f2 − f3). Given a three-rowed U(Ω) irrep, the SO(Ω) irreps will be also
maximum three-rowed and denoted by [ω] = [ω1, ω2, ω3]. With this we have the states

|m, { f }, [ω] : (λ, µ)TmT 〉 and the reductions for { f } → [ω] and (λ, µ) → T follow from the
rules given in [53,116,119,135,139]. It is important to recognize that the Sp(6) algebra we
have is a non-compact Sp(6, R) algebra [118]. The irreps of Sp(6) are labeled by three num-
bers 〈λ1, λ2, λ3〉 and they will be in correspondence with [ω1, ω2, ω3] via Equation (150).
Moreover, with Sp(6) pairing we have the algebra Sp(6) ⊃ [SU(3) ⊃ SOT(3)]⊗U(1). This
algebra need to be analyzed in detail in future. Finally, by grouping the ℓ orbits in different
ways, it is easy to recognize that there will be large number of Sp(6) algebras in IBM-3. For
example, in sdgIBM-3 there will be Sp(6) algebras that correspond to Usd(18) ⊃ [Usd(6) ⊃
SOsd(6)] ⊗ [SU(3) ⊃ SOTsd

(3)], Usg(30) ⊃ [Usg(10) ⊃ SOsg(10)] ⊗ [SU(3) ⊃ SOTsg(3)]
and so on.
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6.3. Summary

Multiple SO(8) pairing algebras appear with LS-coupling in shell model and they
allow for both isoscalar and isovector pairing terms in the Hamiltonian. The SO(8) algebra
generates three subalgebras with each having a correspondence with a algebra chain
that starts with the SGA U(4Ω). In Section 6.1 these are briefly discussed along with a
method to construct H matrices in a two-orbit example assuming SO(8) seniority zero
in the two-orbits. Using this system, it is shown that two-nucleon transfer distinguishes
the two SO(8) pairing algebras possible although the energy spectra are same. More
detailed investigations of the multiple SO(8) pairing algebras are possible by developing
further the corresponding Wigner–Racah algebra. An alternative is to employ nuclear shell
model codes as attempted in [140,141] or use the Richardson–Gaudin method as discussed
in [142]. Turning to boson systems, described briefly in Section 6.2 are the two different
types of pairing algebras in IBM-3 (or IBM-T). The first one operates in the total 3Ω space
giving SU(1, 1) pairing algebra in correspondence with the U(3Ω) ⊃ SO(3Ω) algebra. The
other one is a Sp(6) pairing algebra in correspondence with SO(Ω) in the direct product
subalgebra U(3Ω) ⊃ [U(Ω) ⊃ SO(Ω)]⊗ [SU(3) ⊃ SOT(3)]. In the multi-orbit situation
(as in sd, sdg, sdp f etc.), there will be multiple SU(1, 1) and Sp(6) pairing algebras. These
algebras need to be investigated in further. Let us mention that the SO(8) and IBM-3
pairing algebras are important for heavy N = Z nuclei.

7. Conclusions and Future Outlook

Pairing plays a central role in nuclear structure and it is essential for many exotic
processes such as for example double beta decay. From the point of view of symmetries,
pairing algebras are a topic of investigation for many decades. In shell model for identical
nucleons, the pairing algebra is SU(2) and similarly for nucleons with isospin it is SO(5).
Furthermore, LS coupling gives SO(8) pairing algebra. In the same way, pairing algebra for
identical bosons in the interacting boson models is the non-compact SU(1, 1) algebra and
F-spin gives SO(3, 2) algebra. However, in the multi-orbit situation the pairing algebras are
not unique and recently it is recognized that we have the new paradigm of multiple multi-
orbit pairing algebras SU(2), SO(5) and SO(8) within shell model and SU(1, 1), SO(3, 2)
and Sp(6) within interacting boson models. In the present paper, a review of the results
for multiple multi-orbit pairing algebras in shell model and interacting boson models
is presented. In Section 2 results are presented for SU(2) pairing algebra for identical
nucleon systems in shell model and in Section 3 for SU(1, 1) pairing algebra for identical
bosons in interacting boson models. Similarly, in Sections 4 and 5 results are presented
for SO(5) pairing algebra for nucleons with isospin in shell model and SO(3, 2) pairing
algebra for bosons with F-spin in the interacting boson models. As seen from the results
presented in Sections 2–5, clearly a given set of multiple pairing algebras generate the same
spectrum but different results for properties such as EM transition strengths, two-nucleon
transfer strengths and so on that depend on the wavefunctions. In the final Section 6, the
more complex multiple SO(8) pairing algebras in shell model with LS-coupling and the
two classes of pairing algebras in interacting boson models with isospin T = 1 degree of
freedom are briefly described. Here the algebras need much more further development.
Summarizing, Table 12 gives the list of main cases of complementary algebras described in
the present review. Let us add that, although we have discussed only IBM-1, IBM-2, and
IBM-3 models, it is also possible to consider multiple pairing algebras in IBM-4, interacting
boson model with spin–isospin degrees of freedom [21,55,56]. The algebras here will be
much more complex and they will be discussed elsewhere. In addition, multiple multi-
orbit pairing algebras each generating a pairing Hamiltonian and combining this with
the quadrupole–quadrupole (Q.Q) Hamiltonians generated by multiple SU(3) algebras
(both in shell model and interacting bosons models [67–69]) will give multiple pairing
plus Q.Q Hamiltonians. Nuclear structure studies using these new class of pairing plus
Q.Q interactions will be interesting. Finally, it is our hope that the results presented in



Symmetry 2023, 15, 497 52 of 57

this review will lead to much further work on multiple pairing and also multiple SU(3)
algebras in future.

Table 12. Summary of pairing algebras considered in this article. See Sections 2–6 for details. Note

that SGA stands for spectrum generating algebra.

Model
Nature of

Constituents
SGA Pairing Algebra

Complementary
Number-Conserving

Algebra

j − j coupling identical nucleons U(N) SU(2) Sp(N) in
shell model U(N) ⊃ Sp(N)

Interacting identical bosons U(Ω) SU(1, 1) SO(Ω)
boson models (IBM-1) in U(Ω) ⊃ SO(Ω)

j − j coupling nucleons U(2Ω) SO(5) Sp(Ω) in U(2Ω) ⊃
shell model with isospin

[U(Ω) ⊃ Sp(Ω)]⊗
SUT(2)

Interacting bosons with U(2Ω) SO(3, 2) SO(Ω) in U(2Ω) ⊃
boson models (IBM-2) F-spin

[U(Ω) ⊃ SO(Ω)]⊗
SUF(2)

L − S coupling nucleons U(4Ω) SO(8) with; SO(Ω) in
shell model with isospin 3 limits-Equation (134) 3 limits-Equation (135)

Interacting bosons with U(3Ω) SU(1, 1) SO(3Ω)
boson models (IBM-3) isospin T = 1 in U(3Ω) ⊃ SO(3Ω)

Sp(6) SO(Ω) in U(3Ω) ⊃
[U(Ω) ⊃ SO(Ω)]⊗
[SU(3) ⊃ SOT(3)]
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Appendix A

Let us consider identical bosons in r number of ℓ orbits. Now, given the general
pairing Hamiltonian

HG
p = ∑

ℓ

ǫℓn̂
B
ℓ
+ SB

+SB
− ;

SB
+ = ∑

ℓ

xℓS
B
+(ℓ) , SB

+(ℓ) =
1

2
b†
ℓ
· b†

ℓ
,

(A1)

it will interpolate U(N ) ⊃ SO(N ) ⊃ ∑ℓ SO(Nℓ)⊕ pairing algebra and U(N ) ⊃ ∑ℓ[U(Nℓ) ⊃
SO(Nℓ)]⊕ pairing algebra for arbitrary values of xℓ’s and ǫℓ’s. Matrix representation for the
Hamiltonian HG

p is easy to construct by choosing the basis

Φ =
∣∣∣NB

ℓ1
, ωB

ℓ1
, αℓ1

; NB
ℓ2

, ωB
ℓ2

, αℓ2
; . . . NB

ℓr
, ωB

ℓr
, αℓr

〉
(A2)
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where αℓi
are additional labels required for complete specification of the basis states (they

play no role in the present discussion) and total number of bosons NB = ∑ℓ NB
ℓ

. The first
term (one-body term) in HG

p is diagonal in the Φ basis giving simply ∑ℓ ǫℓNB
ℓ

. The second
term can be written as

SB
+SB

− =

[

∑
ℓ

(xℓ)
2SB

+(ℓ)S
B
−(ℓ)

]
+


 ∑
ℓi 6=ℓj

xℓi
xℓj

SB
+(ℓi)S

B
−(ℓj)


 . (A3)

In the basis Φ, the first term is diagonal and its matrix elements follow directly from
Equation (36) and it is the second term that mixes the basis states Φ’s. The mixing matrix
elements follow from,

SB
+(ℓi)S

B
−(ℓj)

∣∣∣NB
ℓi

, ωB
ℓi

αℓi
; NB

ℓj
, ωB

ℓj
, αℓj

〉

=
1

4

√(
NB
ℓj
− ωB

ℓj

)(
2ΩB

ℓj
+ NB

ℓj
+ ωB

ℓj
− 2

)(
NB
ℓi
− ωB

ℓi
+ 2

)(
2ΩB

ℓi
+ NB

ℓi
+ ωB

ℓi

)

∣∣∣NB
ℓi
+ 2, ωB

ℓi
αℓi

; NB
ℓj
− 2, ωB

ℓj
, αℓj

〉
.

(A4)

It is important to note that the action of HG
p on the basis states Φ will not change the ωB

ℓ

quantum numbers. For boson numbers not large, it is easy to apply Equations (A3) and (A4)
and construct the HG

P matrices. It is easy to extend the above formulation to fermion systems
and also for the situation where two or more orbits are combined to a larger orbit. The later,
for example for sdgIBM gives U(15) ⊃ SO(15) ⊃ SOsd(6)⊕ SOg(9) and U(15) ⊃ [U(6) ⊃
SO(6)]⊕ [U(9) ⊃ SO(9)] interpolation [similarly with SOdg(14) and SOsg(10) algebras].
Finally, it is also possible to use the exact solution for the generalized pairing Hamiltonians
as given by Feng Pan, Draayer and others; see [19] and references therein.

References

1. Bohr, A.; Mottelson, B.R. Nuclear Structure, Vol. I; W.A. Benjamin Inc.: Reading, MA, USA, 1969.

2. Bohr, A.; Mottelson, B.R. Nuclear Structure Vol. II: Nuclear Deformations; W.A. Benjamin Inc.: Reading, MA, USA, 1975.

3. Bohr, A.; Mottelson, B.R.; Pines, D. Possible analogy between the excitation spectra of nuclei and those of the superconducting

metallic state. Phys. Rev. 1958, 110, 936–939. [CrossRef]

4. Broglia, R.A.; Zelevinsky, V. (Eds.) Fifty Years of Nuclear BCS: Pairing in Finite Systems; World Scientific: Singapore, 2013.

5. Suhonen, J. From Nucleons to Nucleus: Concepts of Microscopic Nuclear Theory; Springer: Berlin, Germany, 2010.

6. Brink, D.M.; Broglia, R.A. Nuclear Superfluidity: Pairing in Finite Systems; Cambridge University Press: Cambridge, UK, 2005.

7. Talmi, I. Simple Models of Complex Nuclei: The Shell Model and the Interacting Boson Model; Harwood: New York, NY, USA, 1993.

8. Menendez, J.; Poves, A.; Caurier, E.; Nowacki, F. Disassembling the nuclear matrix elements of the neutrinoless ββ decay. Nucl.

Phys. A 2009, 818, 139–151. [CrossRef]

9. Racah, G. Theory of Complex Spectra. III. Phys. Rev. 1943, 63, 367–382. [CrossRef]

10. Racah, G. Nuclear levels and Casimir operators. L. Farkas Memorial Volume Edited by A. Farkas and E.P. Wigner; Research Council of

Israel: Jerusalem, Israel, 1952; pp. 294–304.

11. Parikh, J.C. Group Symmetries in Nuclear Structure; Plenum: New York, NY, USA, 1978.

12. Van Isacker, P.; Heinze, S. Seniority in quantum many-body systems. I. Identical particles in a single shell. Ann. Phys. 2014, 349,

73–99. [CrossRef]

13. Escuderos, A.; Zamick, L. Seniority conservation and seniority violation in the g9/2 shell. Phys. Rev. C 2006, 73, 044302. [CrossRef]

14. Van Isacker, P.; Heinze, S. Partial conservation of seniority and nuclear isomerism. Phys. Rev. Lett. 2008, 100, 052501. [CrossRef]

15. French, J.B.; Halbert, E.C.; McGrory J.B.; Wong, S.S.M. Complex spectroscopy. Adv. Nucl. Phys. 1969, 3, 193–257.

16. Arvieu, R.; Moszkowski, S.A. Generalized seniority and the surface delta interaction. Phys. Rev. 1966, 145, 830–837. [CrossRef]

17. Allaart, K.; Boeker, E.; Bonsignori, G.; Savoia, M.; Gambhir, Y.K. The broken pair model for nuclei and its recent applications.

Phys. Rep. 1988, 169, 209–292. [CrossRef]

18. Iachello, F.; Talmi, I. Shell-model foundations of the interacting boson model. Rev. Mod. Phys. 1987, 59, 339–361. [CrossRef]

19. Pan, F.; Guan, X.; Dai, L.; Zhang, Y.; Draayer, J.P. Exact solutions of mean-field plus various pairing interactions and shape phase

transitions in nuclei. Eur. Phys. J. Spec. Top. 2020, 229, 2497–2526. [CrossRef]

20. Zhao, Y.M.; Arima, A. Nucleon-pair approximation to the nuclear shell model. Phys. Rep. 2014, 545, 1–45. [CrossRef]

21. Iachello, F.; Arima, A. The Interacting Boson Model; Cambridge University Press: Cambridge, UK, 1987.

22. Devi, Y.D.; Kota, V.K.B. sdg Interacting boson model : Hexadecupole degree of freedom in nuclear structure. Pramana J. Phys.

1992, 39, 413–491. [CrossRef]

http://doi.org/10.1103/PhysRev.110.936
http://dx.doi.org/10.1016/j.nuclphysa.2008.12.005
http://dx.doi.org/10.1103/PhysRev.63.367
http://dx.doi.org/10.1016/j.aop.2014.06.011
http://dx.doi.org/10.1103/PhysRevC.73.044302
http://dx.doi.org/10.1103/PhysRevLett.100.052501
http://dx.doi.org/10.1103/PhysRev.145.830
http://dx.doi.org/10.1016/0370-1573(88)90108-1
http://dx.doi.org/10.1103/RevModPhys.59.339
http://dx.doi.org/10.1140/epjst/e2020-000014-5
http://dx.doi.org/10.1016/j.physrep.2014.07.002
http://dx.doi.org/10.1007/BF02847336


Symmetry 2023, 15, 497 54 of 57

23. Kusnezov, D. Nuclear Collective Quadrupole-Octupole Excitations in the U(16) Spdf Interacting Boson Model. Ph.D. Thesis,

Princeton University, NJ, USA, 1988; unpublished.

24. Sun, H.; Zhang, M.; Feng, D.H. The analytic wavefunctions of the interacting boson model. Phys. Lett. B 1985, 163, 7–13.

[CrossRef]

25. Flowers, B.H. Studies in jj-coupling I. Classification of nuclear and atomic states. Proc. R. Soc. 1952, A212, 248–263.

26. Edmonds, A.R.; Flowers, B.H. Studies in jj-coupling II. Fractional Parentage coefficients and the central force energy matrix for

equivalent particles. Proc. R. Soc. 1952, 214, 515–532.

27. Kerman, A. Pairing forces and nuclear collective motion. Ann. Phys. 1961, 12, 300–329. [CrossRef]

28. Helmers, K. Sympletic invariants and Flower’s classification of shell model states. Nucl. Phys. 1961, 23, 594–611. [CrossRef]

29. Flowers, B.H.; Szpikowski, S. A generalized quasi-spin formalism. Proc. Phys. Soc. 1964, 84, 193–199. [CrossRef]

30. Hecht, K.T. Some simple R5 Wigner coefficients and their application. Nucl. Phys. 1965, 63, 177–213. [CrossRef]

31. Parikh, J.C. The role of isospin in pair correlations for configurations of the type (j)N . Nucl. Phys. 1965, 63, 214–232. [CrossRef]

32. Ginocchio, J.N. Generalized quasi-spin in neutron-proton systems. Nucl. Phys. 1965, 74, 321–347. [CrossRef]

33. Hecht, K.T. Five-dimensional quasi-spin: Exact solutions of a pairing hamiltonian in the J-T scheme. Phys. Rev. 1965, 139,

B794–B817. [CrossRef]

34. Hecht, K.T. Five-dimensional quasi-spin: The n,T dependence of shell-model matrix elements in the seniority scheme. Nucl. Phys.

A 1967, 102, 11–80. [CrossRef]

35. Hemenger, R.P.; Hecht, K.T. Five-dimensional quasi-spin: Towards a complete classification of the isospin characteristics of shell

model states in the seniority scheme. Nucl. Phys. A 1970, 145, 468–496. [CrossRef]

36. Hecht, K.T.; Szpikowski, S. On the new quasi-particle factorization of the j-shell. Nucl. Phys. A 1970, 158, 449–475. [CrossRef]

37. Hecht, K.T.; Elliott, J.P. Coherent-state theory for the proton-neutron quasi-spin group. Nucl. Phys. A 1985, 438, 29–40. [CrossRef]

38. Hecht, K.T. Wigner coefficients for the proton-neutron quasi-spin group: An application of vector coherent state technique. Nucl.

Phys. A 1989, 493, 29–60. [CrossRef]

39. Engel, J.; Langanke, K.; Vogel, P. Pairing and isospin symmetry in proton-rich nuclei. Phys. Lett. B 1996, 389, 211–216. [CrossRef]

40. Dobes, J. How to count nucleon pairs? Phys. Lett. B 1997, 413, 239–245. [CrossRef]

41. Stefanik, D.; Simkovic, F.; Muto, K.; Faessler, A. Two-neutrino double-β decay Fermi transition and two-nucleon interaction. Phys.

Rev. C 2013, 88, 025503. [CrossRef]

42. Elliott, J.P.; Evans, J.A.; Long, G.L. Shell-model matrix elements in the neutron-proton quasi-spin formalism using vector coherent

states. J. Phys. A Math. Gen. 1992, 25, 4633–4657. [CrossRef]

43. Elliott, J.P.; Evans, J.A.; Long, G.L.; Lac, V.S. Shell-model matrix elements in a neutron-proton quasi-spin formalism for several

shells. J. Phys. A Math. Gen. 1994, 27, 4465–4471. [CrossRef]

44. Evans, J.A.; Elliott, J.P.; Lac, V.S.; Long, G.L. An IBM-3 hamiltonian from a multi-j-shell model. Nucl. Phys. A 1995, 593, 85–94.

[CrossRef]

45. Draayer, J.P.; Weeks, K.J. Towards a shell model description of the low-energy structure of deformed nuclei I. Even-even systems.

Ann. Phys. 1984, 156, 41–67. [CrossRef]

46. Draayer, J.P.; Han, C.S.; Weeks, K.J.; Hecht, K.T. Band crossing and the prealignment B(E2) anomaly in 126Ba. Nucl. Phys. A 1981,

365, 127–141. [CrossRef]

47. Lerma, S.H.; Errea, B.; Dukelsky, J.; Pittel S.; Van Isacker, P. Exactly solvable models of proton and neutron interacting bosons.

Phys. Rev. C 2006, 74, 024314.

48. Flowers, B.H.; Szpikowski, S. Quasi-spin in LS coupling. Proc. Phys. Soc. 1964, 84, 673–679. [CrossRef]

49. Pang, S.C. Exact solution of the pairing problem in the LST scheme. Nucl. Phys. A 1969, 128, 497–526. [CrossRef]

50. Evans, J.A.; Dussel, G.G.; Maqueda, E.E.; Perazzo, R.P.J. Isovector and isoscalar pairing correlations in a solvable model. Nucl.

Phys. A 1981, 367, 77–94. [CrossRef]

51. Dussel, G.G.; Maqueda, E.E.; Perazzo, R.P.J.; Evans, J.A. A two-level solvable model involving competing pairing interactions.

Nucl. Phys. A 1986, 450, 164–180. [CrossRef]

52. Hecht, K.T. Coherent-state theory for the LST quasi-spin group.Nucl. Phys. A 1985, 444, 189–208. [CrossRef]

53. Kota, V.K.B.; Castilho Alcarás, J.A. Classification of states in SO(8) proton-neutron pairing model. Nucl. Phys. A 2006, 764,

181–204. [CrossRef]

54. Rowe, D.J.; Carvalho, M.J. Duality relationships and supermultiplet symmetry in the O(8) pair-coupling model. J. Phys. A: Math.

Theor. 2007, 40, 471–500. [CrossRef]

55. Kota, V.K.B. O(36) Symmetry limit of IBM-4 with good s, d and sd boson spin-isospin Wigner’s SU(4) ∼ O(6) symmetries for

N ≈ Z odd-odd nuclei. Ann. Phys. 2000, 280, 1–34. [CrossRef]

56. Kota, V.K.B.; Sahu, R. Structure of Medium Mass Nuclei: Deformed Shell Model and Spin-Isospin Interacting Boson Model; CRC

Press/Taylor & Francis Group: Boca Raton, FL, USA, 2017.

57. Rowe, D.J.; Carvalho, M.J.; Repka, J. Dual pairing of symmetry and dynamical groups in physics. Rev. Mod. Phys. 2012, 84,

711–757. [CrossRef]

58. Neergard, K. Proof by characters of the orthogonal-orthogonal duality and relations of Casimir invariants. J. Math. Phys. 2019,

60, 81705. [CrossRef]

59. Neergard, K. Fock space dualities. J. Math. Phys. 2020, 61, 81702. [CrossRef]

http://dx.doi.org/10.1016/0370-2693(85)90181-9
http://dx.doi.org/10.1016/0003-4916(61)90008-2
http://dx.doi.org/10.1016/0029-5582(61)90285-1
http://dx.doi.org/10.1088/0370-1328/84/2/302
http://dx.doi.org/10.1016/0029-5582(65)90338-X
http://dx.doi.org/10.1016/0029-5582(65)90339-1
http://dx.doi.org/10.1016/0029-5582(65)90085-4
http://dx.doi.org/10.1103/PhysRev.139.B794
http://dx.doi.org/10.1016/0375-9474(67)90322-3
http://dx.doi.org/10.1016/0375-9474(70)90437-9
http://dx.doi.org/10.1016/0375-9474(70)90196-X
http://dx.doi.org/10.1016/0375-9474(85)90117-4
http://dx.doi.org/10.1016/0375-9474(89)90531-9
http://dx.doi.org/10.1016/S0370-2693(96)01294-4
http://dx.doi.org/10.1016/S0370-2693(97)01139-8
http://dx.doi.org/10.1103/PhysRevC.88.025503
http://dx.doi.org/10.1088/0305-4470/25/17/022
http://dx.doi.org/10.1088/0305-4470/27/13/021
http://dx.doi.org/10.1016/0375-9474(95)00326-V
http://dx.doi.org/10.1016/0003-4916(84)90210-0
http://dx.doi.org/10.1016/0375-9474(81)90391-2
http://dx.doi.org/10.1088/0370-1328/84/5/304
http://dx.doi.org/10.1016/0375-9474(69)90419-9
http://dx.doi.org/10.1016/0375-9474(81)90278-5
http://dx.doi.org/10.1016/0375-9474(86)90122-3
http://dx.doi.org/10.1016/0375-9474(85)90346-X
http://dx.doi.org/10.1016/j.nuclphysa.2005.09.011
http://dx.doi.org/10.1088/1751-8113/40/3/009
http://dx.doi.org/10.1006/aphy.1999.6006
http://dx.doi.org/10.1103/RevModPhys.84.711
http://dx.doi.org/10.1063/1.5111314
http://dx.doi.org/10.1063/5.0015578


Symmetry 2023, 15, 497 55 of 57

60. Neergard, K. Fermion Fock space dualities with orthogonal Lie algebras and related groups. arXiv 2021, arXiv:2006.08047v6.

61. Neergard, K. Fock space dualities. Bulg. J. Phys. 2021, 48, 390–399. [CrossRef]

62. Howe, R. Remarks on classical invariant theory. Trans. Am. Math. Soc. 1989, 313, 539–570. [CrossRef]

63. Howe, R. Perspectives in invariant theory. Isr. Math. Conf. Proc. 1995, 8, 1–234.

64. Rowe, D.J.; Repka, J.; Carvalho, M.J. Simple unified proofs of four duality theorems. J. Math. Phys. 2011, 52, 013507. [CrossRef]

65. Kota, V.K.B. Multiple multi-orbit fermionic and bosonic pairing and rotational SU(3) algebras. Bulg. J. Phys. 2017, 44, 454–465.

66. Kota, V.K.B.; Sahu, R. Multiple SO(5) isovector pairing and seniority Sp(2Ω) multi-j algebras with isospin. Bulg. J. Phys. 2021, 48,

411–420. [CrossRef]

67. Kota, V.K.B.; Sahu, R.; Srivastava, P.C. Shell model analysis of multiple SU(3)algebras in nuclei. Bulg. J. Phys. 2019, 46, 313–324.

68. Sahu, R.; Kota, V.K.B.; Srivastava, P.C. Quadrupole properties of the eight SU(3) algebras in (sdgi) space. Eur. Phys. J. Spec. Top.

2020, 229, 2389–2403. [CrossRef]

69. Kota, V.K.B.; Sahu, R. Multiple SU(3) algebras in interacting boson model and shell model: Results for (β, γ) bands and scissors

1+ band. Nucl. Phys. A 2021, 1016, 122313. [CrossRef]

70. Maheswari, B.; Jain, A.K. Odd tensor electric transitions in high-spin Sn-isomers and generalized seniority. Phys. Lett. B 2016, 753,

122–125. [CrossRef]

71. Maheswari, B.; Jain, A.K.; Singh, B. Asymmetric behavior of the B(E2; 0+ → 2+) values in 104˘130Sn and generalized seniority.

Nucl. Phys. A 2016, 952, 62–69. [CrossRef]

72. Maheswari, B. A unified view of the first excited 2+ and 3− states of Cd, Sn and Te isotopes. Eur. Phys. J. Special Topics 2020, 229,

2485–2495. [CrossRef]

73. Maheswari, B.; Choudhury, D.; Jain, A.K. Generalized seniority isomers in and around Z = 82 closed shell: A survey of Hg, Pb

and Po isotopes. Nucl. Phys. A 2021, 1014, 122277. [CrossRef]

74. L C Biedenharn, L.C. The quantum group SUq(2) and a q-analogue of the boson operators. J. Phys. A Math. Gen. 1989, 22,

L873–L878. [CrossRef]

75. Macfarlane, A.J. On q-analogues of the quantum harmonic oscillator and the quantum group SU(2)q. J. Phys. A Math. Gen. 1989,

22, 4581–4588. [CrossRef]

76. Arik, M.; Coon, D.D. Hilbert spaces of analytic functions and generalized coherent states. J. Math. Phys. 1976, 17, 524–527.

[CrossRef]

77. Hammad, M.M.; Fawaz, S.M.; El-Hammamy, M.N.; Motaweh, H.A.; Doma, S.B. Some algebraic structures for the bosonic three

level system. J. Phys. Commun. 2018, 2, 85010. [CrossRef]

78. Edmonds, A.R. Angular Momentum in Quantum Mechanics; Princeton: Princeton, NJ, USA, 1974.

79. Kota, V.K.B.; Haq, R.U. Spectral Distributions in Nuclei and Statistical Spectroscopy; World Scientific: Singapore, 2010.

80. Chang, F.S.; French, J.B.; Thio, T.H. Distribution methods for nuclear energies, level densities and excitation strengths. Ann. Phys.

1971, 66, 137–188. [CrossRef]

81. Potbhare, V. Correlation coefficients of effective interactions in the s − d shell. Nucl. Phys. A 1977, 289, 373–380. [CrossRef]

82. Sviratcheva, K.D.; Draayer, J.P.; Vary, J.P. Underlying symmetries of realistic interactions and the nuclear many-body problem.

Phys. Rev. C 2006, 73, 034324. [CrossRef]

83. Sviratcheva, K.D.; Draayer, J.P.; Vary, J.P. Global properties of fp-shell interactions in many-nucleon systems. Nucl. Phys. A 2007,

786, 31–46. [CrossRef]

84. Launey, K.D.; Dytrych, T.; Draayer, J.P. Similarity renormalization group and many-body effects in multi-particle systems. Phys.

Rev. C 2012, 85, 044003. [CrossRef]

85. Honma, M.; Otsuka, T.; Brown, B.A.; Mizusaki, T. New effective interaction for pf-shell nuclei and its implications for the stability

of the N = Z = 28 closed core. Phys. Rev. C 2004, 69, 034335. [CrossRef]

86. Honma, M.; Otsuka, T.; Mizusaki, T.; Hjorth-Jensen, M. New effective interaction for f5 pg9-shell nuclei. Phys. Rev. C 2009, 80,

064323. [CrossRef]

87. Qi, C.; Xu, Z.X. Monopole-optimized effective interaction for tin isotopes. Phys. Rev. C 2012, 86, 044323. [CrossRef]

88. Quesne, C.; Spitz, S. Spectral distributions of mixed configurations of identical nucleons in the seniority scheme I. Generalized

seniority scheme. Ann. Phys. 1974, 85, 115–151. [CrossRef]

89. Quesne, C.; Spitz, S. Spectral distributions of mixed configurations of identical nucleons in the seniority scheme II. Configuration-

seniority scheme. Ann. Phys. 1978, 112, 304–327. [CrossRef]

90. Kota, V.K.B. A symmetry for the widths of the eigenvalue spectra of boson and fermion systems. J. Phys. Lett. 1979, 40, L579–L582.

[CrossRef]

91. Togashi, T.; Tsunoda, Y.; Otsuka, T.; Shimizu, N.; Honma, M. Novel shape evolution in Sn isotopes from magic numbers 50 to 82.

Phys. Rev. Lett. 2018, 121, 062501. [CrossRef]

92. Kota, V.K.B.; Devi, Y.D. Nuclear Shell Model and the Interacting Boson Model: Lecture Notes for Practitioners; Report Published by

IUC-DAEF; Calcutta Center: Kolkata, India, 1996.

93. Kusnezov, D. The U(16) algebraic lattice. J. Phys. A Math. Gen. 1988, 22, 4271–4280. [CrossRef]

94. Kusnezov, D. The U(16) algebraic lattice. II. Analytic construction. J. Phys. A Math. Gen. 1990, 23, 5673–5695. [CrossRef]

95. Ui, H. SU(1, 1) quasi-spin formalism of the many-boson system in a spherical field. Ann. Phys. 1968, 49, 69–92. [CrossRef]

http://dx.doi.org/10.55318/bgjp.2021.48.5-6.390
http://dx.doi.org/10.1090/S0002-9947-1989-0986027-X
http://dx.doi.org/10.1063/1.3525978
http://dx.doi.org/10.55318/bgjp.2021.48.5-6.411
http://dx.doi.org/10.1140/epjst/e2020-000088-4
http://dx.doi.org/10.1016/j.nuclphysa.2021.122313
http://dx.doi.org/10.1016/j.physletb.2015.11.079
http://dx.doi.org/10.1016/j.nuclphysa.2016.04.021
http://dx.doi.org/10.1140/epjst/e2020-000097-3
http://dx.doi.org/10.1016/j.nuclphysa.2021.122277
http://dx.doi.org/10.1088/0305-4470/22/18/004
http://dx.doi.org/10.1088/0305-4470/22/21/020
http://dx.doi.org/10.1063/1.522937
http://dx.doi.org/10.1088/2399-6528/aad064
http://dx.doi.org/10.1016/0003-4916(71)90186-2
http://dx.doi.org/10.1016/0375-9474(77)90039-2
http://dx.doi.org/10.1103/PhysRevC.73.034324
http://dx.doi.org/10.1016/j.nuclphysa.2007.01.087
http://dx.doi.org/10.1103/PhysRevC.85.044003
http://dx.doi.org/10.1103/PhysRevC.69.034335
http://dx.doi.org/10.1103/PhysRevC.80.064323
http://dx.doi.org/10.1103/PhysRevC.86.044323
http://dx.doi.org/10.1016/0003-4916(74)90279-6
http://dx.doi.org/10.1016/S0003-4916(78)80002-5
http://dx.doi.org/10.1051/jphyslet:019790040022057900
http://dx.doi.org/10.1103/PhysRevLett.121.062501
http://dx.doi.org/10.1088/0305-4470/22/20/008
http://dx.doi.org/10.1088/0305-4470/23/24/010
http://dx.doi.org/10.1016/0003-4916(68)90184-X


Symmetry 2023, 15, 497 56 of 57

96. Kulish, P.P.; Damaskinsky, E.V. On the q oscillator and the quantum algebra suq(1, 1). J. Phys. A Math. Gen. 1990, 23, L415–L420.

[CrossRef]

97. Van Isacker, P.; Frank, A.; Dukelsky, J. Phase ambiguities in the O(6) limit of the interacting boson model. Phys. Rev. C 1985, 31,

671–673. [CrossRef]

98. Kusnezov, D. Incompleteness of representation theory: Hidden symmetries and quantum nonintegrability. Phys. Rev. Lett. 1997,

79, 537–540. [CrossRef]

99. Cejnar, P.; Jolie, J. Dynamical-symmetry content of transitional IBM-1 hamiltonians. Phys. Lett. B 1998, 420, 241–247. [CrossRef]

100. Iachello, F.; Levine, R.D. Algebraic Theory of Molecules; Oxford University Press: New York, NY, USA, 1995.

101. Iachello, F. Algebraic approach to nuclear quasimolecular spectra. Phys. Rev. C 1981, 23, 2778–2780. [CrossRef]

102. Daley, H.J.; Iachello, F. Nuclear vibron model. I. The SU(3) limit. Ann. Phys. 1986, 167, 73–98. [CrossRef]

103. Frank, A.; Lemus, R. The O(4) wave functions in the vibron model for diatomic molecules. J. Chem. Phys. 1986, 84, 2698–2702.

[CrossRef]

104. Frank, A.; Van Isacker, P. Algebraic Methods in Molecular and Nuclear Physics; Wiley: New York, NY, USA, 1994.

105. Van Isacker, P.; Bouldjedri, A.; Zerguine, S. Phase transitions in the sdg interacting boson model. Nucl. Phys. A 2010, 836, 225–241.

[CrossRef]

106. Hennig, A.; Spieker, M.; Werner, V.; Ahn, T.; Anagnostatou, V.; Cooper, N. Mixed-symmetry octupole and hexadecapole excitations

in the N = 52 isotones. Phys. Rev. C 2014, 90, 051302(R). [CrossRef]

107. Jafarizadeh, M.A.; Ranjbar, Z.; Fouladi, N.; Ghapanvari, M. Exactly solvable model of transitional nuclei based on dual algebraic

structure for the three level pairing model in the framework of sdg interacting boson model. Nucl. Phys. A 2018, 969, 114–137.

[CrossRef]

108. Spieker, M.; Pascu, S.; Zilges, A.; Iachello, F. Origin of low-lying enhanced E1 strength in rare-earth nuclei. Phys. Rev. Lett. 2015,

114, 192504. [CrossRef] [PubMed]

109. Jafarizadeh, M.A.; Majarshin, A.J.; Fouladi, N.; Ghapanvari, M. Investigation of quantum phase transitions in the spdf interacting

boson model based on dual algebraic structures for the four level pairing model. J. Phys. G Nucl. Part. Phys. 2016, 43, 095108.

[CrossRef]

110. Cejnar, P.; Jolie, J.; Casten, R.F. Quantum phase transitions in the shapes of atomic nuclei. Rev. Mod. Phys. 2010, 82, 2155–2212.

[CrossRef]

111. Cejnar, P.; Stransky, P. Quantum phase transitions in the collective degrees of freedom: nuclei and other many-body systems.

Phys. Scr. 2016, 91, 083006. [CrossRef]

112. Kota, V.K.B.; Jain, A.K. (Eds.) Role of Symmetries in Nuclear Physics. Eur. Phys. J. Spec. Top. 2020, 229, 2349–2628. [CrossRef]

113. Kota, V.K.B. Group Theoretical and Statistical Properties of Interacting Boson Models of Atomic Nuclei: Recent Developments. In

Focus on Boson Research, Ling, A.V., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2006; pp. 57–105.

114. Caprio, M.A.; Skrabacz, J.H.; Iachello, F. Dual algebraic structures for the two-level pairing model. J. Phys. A Math. Theor. 2011, 44,

075303. [CrossRef]

115. Kota, V.K.B. Lie algebra symmetries and quantum phase transitions in nuclei. Pramana-J. Phys. 2014, 82, 743–755. [CrossRef]

116. Wybourne, B.G. Symmetry Principles and Atomic Spectroscopy; Wiley: New York, NY, USA, 1970.

117. Racah, G. Group Theory and Spectroscopy; Princeton: Princeton, NJ, USA, 1951. Available online: http://cds.cern.ch/record/104181

(accessed on 7 February 2023).

118. Wybourne, B.G. Classical Groups for Physicists; Wiley: New York, NY, USA, 1974.

119. Littlewood, D.E. The Theory of Group Characters and Matrix Representations of Groups, 2nd ed.; AMS Chelsea Publishing: Providence,

RI, USA, 2006.

120. James, G.; Kerber, A. The Representation Theory of the Symmetric Group. In Encyclopedia of Mathematics and Its Applications Series;

Addison & Wesley: Reading, MA, USA, 1984; Volume 16.

121. Iachello, F. Lie Algebras and Applications; 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2015.

122. Harter, H.; von Brentano, P.; Gelberg, A.; Casten, R.F. F-spin multiplets in collective nuclei. Phys. Rev. C 1985, 32, 631–633.

[CrossRef]

123. Zamfir, N.V.; Casten, R.F.; von Brentano, P.; Chou, W.-T. F-spin multiplets of O(6)-like nuclei. Phys. Rev. C 1992, 46, R393–R396.

[CrossRef]

124. Van Isacker, P.; Heyde, K.; Jolie, J.; Servin, A. The F-spin symmetric limits of the neutron-proton interacting boson model. Ann.

Phys. 1986, 171, 253–296. [CrossRef]

125. Scholten, O.; Heyde, K.; Van Isacker, P.; Jolie, J.; Moreau, J.; Waroquier, M. Mixed-symmetry states in the proton-neutron

interacting boson model. Nucl. Phys. A 1985, 438, 41–77. [CrossRef]

126. Vyas, M.; Chavda, N.D.; Kota, V.K.B.; Potbhare, V. One- plus two-body random matrix ensembles for boson systems with F-spin:

analysis using spectral variances. J. Phys. A Math. Theor. 2012, 45, 265203. [CrossRef]

127. Bayman, B.F.; Lande, A. Tables of identical-particle fractional parentage coefficients. Nucl. Phys. 1966, 77, 1–80. [CrossRef]

128. Scholten, O. The Program Package PHINT Manual Book; National Superconducting Cyclotron Laboratory, Michigan State University:

East Lansing, MI, USA, 1982.

129. Devi, Y.D.; Kota, V.K.B. Fortran Programmes for Spectroscopic Calculations in (sdg)—Boson Space: The Package SDGIBM1; Physical

Research Laboratory Technical Report PRL-TN-90-68: Ahmedabad, India, 1990.

http://dx.doi.org/10.1088/0305-4470/23/9/003
http://dx.doi.org/10.1103/PhysRevC.31.671
http://dx.doi.org/10.1103/PhysRevLett.79.537
http://dx.doi.org/10.1016/S0370-2693(97)01533-5
http://dx.doi.org/10.1103/PhysRevC.23.2778
http://dx.doi.org/10.1016/S0003-4916(86)80007-0
http://dx.doi.org/10.1063/1.450343
http://dx.doi.org/10.1016/j.nuclphysa.2010.01.247
http://dx.doi.org/10.1103/PhysRevC.90.051302
http://dx.doi.org/10.1016/j.nuclphysa.2017.09.007
http://dx.doi.org/10.1103/PhysRevLett.114.192504
http://www.ncbi.nlm.nih.gov/pubmed/26024168
http://dx.doi.org/10.1088/0954-3899/43/9/095108
http://dx.doi.org/10.1103/RevModPhys.82.2155
http://dx.doi.org/10.1088/0031-8949/91/8/083006
http://dx.doi.org/10.1140/epjst/e2020-000209-2
http://dx.doi.org/10.1088/1751-8113/44/7/075303
http://dx.doi.org/10.1007/s12043-014-0725-6
http://cds.cern.ch/record/104181
http://dx.doi.org/10.1103/PhysRevC.32.631
http://dx.doi.org/10.1103/PhysRevC.46.R393
http://dx.doi.org/10.1016/0003-4916(86)90002-3
http://dx.doi.org/10.1016/0375-9474(85)90118-6
http://dx.doi.org/10.1088/1751-8113/45/26/265203
http://dx.doi.org/10.1016/0029-5582(66)90677-8


Symmetry 2023, 15, 497 57 of 57

130. Ginocchio, J.N. A schematic model for monopole and quadrupole pairing in nuclei. Ann. Phys. 1980, 126, 234–276. [CrossRef]

131. Hecht, K.T.; Pang, S.C. On the Wigner supermultiplet scheme. J. Math. Phys. 1969, 10, 1571–1616. [CrossRef]

132. S̆tefánik, D.; S̆imkovic, F.; Faessler, A. Structure of the two-neutrino double-β decay matrix elements within perturbation theory.

Phys. Rev. C 2015, 91, 064311. [CrossRef]

133. Kota, V.K.B. Fermionic O(8) and bosonic U(36) symmetry schemes for heavy N = Z nuclei. In Symmetries in Science XI, Gruber, B.,

Marmo, M., Yoshinaga, N., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 265–290.

134. Van Isacker, P.; Dukelsky, J.; Pittel, S.; Juillet, O. The fermion SO(8) model and its connection with an IBM-4 with L = 0 bosons.

J. Phys. G: Nucl. Part. Phys. 1998, 24, 1261–1276. [CrossRef]

135. Kota, V.K.B. Spectra and E2 transition strengths for N = Z even-even nuclei in IBM-3 dynamical symmetry limits with good s and

d boson isospins. Ann. Phys. 1998, 265, 101–133. [CrossRef]

136. García-Ramos, J.E.; Van Isacker, P. The interacting boson model with SU(3) charge symmetry and its applications to even-even

N ≈ Z nuclei. Ann. Phys. 1999, 274, 45–75. [CrossRef]

137. Al-Khudair, F.H. Investigation of isospin excited and mixed-symmetry states in even–even N = Z nuclei. Int. J. Mod. Phys. E 2018,

27, 1850065. [CrossRef]

138. Deota, H.N.; Chavda, N.D.; Kota, V.K.B.; Potbhare, V.; Vyas, M. Random matrix ensemble with random two-body interactions in

the presence of a mean field for spin-one boson systems. Phys. Rev. E 2013, 88, 022130. [CrossRef] [PubMed]

139. Elliott, J.P. Collective motion in the nuclear shell model I. Classification schemes for states of mixed configurations. Proc. R. Soc.

1958, A245, 128–145.

140. Lei, Y.; Pittel, S.; Sandulescu, N.; Poves, A.; Thakur, B.; Zhao, Y. M. Systematic study of proton-neutron pairing correlations in the

nuclear shell model. Phys. Rev. C 2011, 84, 044318. [CrossRef]

141. Drumev, K.P.; Georgieva, A.I.; Cseh, J.; Kota, V.K.B. Negative-parity states in sd-shell nuclei within the algebraic microscopic

pairing-plus-quadrupole shell model. AIP Conf. Proc. 2019, 2075, 070002.

142. Lerma H, S.; Errea, B.; Dukelsky, J.; Satula, W. Exact solution of the spin-isospin proton-neutron pairing Hamiltonian. Phys. Rev.

Lett. 2007, 99, 032501. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/0003-4916(80)90381-4
http://dx.doi.org/10.1063/1.1665007
http://dx.doi.org/10.1103/PhysRevC.91.064311
http://dx.doi.org/10.1088/0954-3899/24/7/008
http://dx.doi.org/10.1006/aphy.1997.5766
http://dx.doi.org/10.1006/aphy.1999.5911
http://dx.doi.org/10.1142/S0218301318500659
http://dx.doi.org/10.1103/PhysRevE.88.022130
http://www.ncbi.nlm.nih.gov/pubmed/24032798
http://dx.doi.org/10.1103/PhysRevC.84.044318
http://dx.doi.org/10.1103/PhysRevLett.99.032501

	Introduction
	Multiple Multi-Orbit Pairing Algebras in Shell Model: Identical Nucleons
	Multiple Multi-Orbit Pairing SU(2) Algebras
	Multiple Multi-Orbit Complementary Sp(N) Algebras
	Selection Rules and Matrix Elements for Electro-Magnetic Transitions
	Correlation between Operators and Phase Choice in the Pairing Operator
	Applications
	Summary

	Multiple Multi-Orbit Pairing Algebras in Interacting Boson Models: Identical Boson Systems
	Multiple Quasi-Spin SUQ(1,1) and Complementary SO(N) Pairing Algebras
	Selection Rules and Matrix Elements for One-Body Transition Operators
	Applications to EM Transition Operators
	sdIBM
	spIBM
	sdgIBM
	sdpfIBM

	Application to QPT
	Summary

	Multiple Multi-Orbit Pairing Algebras in Shell Model with Isospin
	Multiple Multi-j Shell SO(5) and Sp(2) Algebras
	Number-Conserving Group Chain with Sp(2) Generating Seniority and Reduced Isospin
	Multiple SO(5) Pairing Algebras with Isospin
	Multiple SO()(5) Algebras and the Complementary Sp()(2) Algebras

	Classification of Symmetry Adopted States and Their Construction
	Classification of States
	Construction of Many-Particle Pairing H Matrix with Multiple SO(5) Algebras

	Applications of Multiple SO(5) and Sp(2) Algebras
	Selection Rules for Electromagnetic Transitions
	Energy Levels and Order–Chaos Transitions
	Two-Nucleon Transfer

	Summary

	Multiple Pairing Algebras in Proton–Neutron Interacting Boson Model with Fictitious (F) Spin
	Multiple Pairing SO(3,2) Algebras with F-Spin
	Complementary SO(B) Algebras
	Irreducible Representations
	Applications
	Selection Rules
	H Matrix Construction

	Summary

	Multiple Pairing Algebras with L-S Coupling in Shell Model and in IBM with Isospin T=1 Degree of Freedom
	Multiple SO(8) Pairing Algebras in Shell Model
	SO(8) and Its Three Subalgebras
	Two-Nucleon Transfer in a Two-Orbit System

	Multiple Pairing Algebras in IBM-3 
	Multiple SU(1,1) Pairing Algebras with U(3) SO(3)
	Multiple Sp(6) Pairing Algebras with U() SO()

	Summary

	Conclusions and Future Outlook
	Appendix A
	References

