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Resumo

Usamos as regras de soma da QCD para obter a massa dos pentaquarks Θ+(1540)

e Ξ−−(1862), a largura de decaimento da Θ+ e a constante de acoplamento e fator de

forma presentes no vértice J/ψDD∗.

No estudo dos pentaquarks, usamos dois tipos de campos interpolantes contendo

dois diquarks altamente correlacionados. Obtemos as massas consistentes com os dados

experimentais, porém esta regra de soma têm uma grande contribuição do cont́ınuo e

a OPE não é muito boa. Obtivemos uma largura de decaimento compat́ıvel com os

valores experimentais desde que sejam subtráıdos diagramas que representam a Θ+

como um estado ligado K − n.

No estudo do vértice J/ψDD∗ calculamos o fator de forma e a constante de acopla-

mento, considerando três casos: D off-shell, D∗ off-shell e J/ψ off-shell. A constante

de acoplamento é a mesma nesses três casos, porém o fator de forma depende da es-

colha da part́ıcula off-shell, onde para a J/ψ off-shell o fator de forma é bem mais

duro que o fator de forma obtido para os outros casos. Também comparamos os nossos

resultados com outros métodos: o modelo de quark méson constituintes e o modelo de

quarks relativ́ısticos constituintes.



Abstract

We use the QCD sum rules to obtain the masses of the pentaquarks Θ+(1540) and

Ξ−−(1862), Θ+ decay width and the coupling constant and the form factor for the

J/ψDD∗ vertex.

In the study of the pentaquarks, we use two kinds of interpolating fields, containing

two highly correlated diquarks. We get the masses in a good agreement with the experi-

mental value, but this sum rule has a large continuuum contribution and the OPE

convergence is not so good. We get the decay width compatible with the experimental

value, since we subtract the diagrams that represent Θ+ as a K − n bound state.

In the study of J/ψDD∗ vertex, we calculate the form factor and the coupling

constant considering three cases: D off-shell, D∗ off-shell and J/ψ off-shell. The

coupling constant is the same in those three cases, however the form factor depends

on the choice of the particle off-shell, where for the J/ψ off-shell the form factor is

much harder than the form factor obtained for the other cases. We also compare our

results with other methods: the constituent quark meson model and the relativistic

constituent quark model.
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Caṕıtulo 1

Introdução

Em 1997, Diakonov, Petrov e Polyakov, usando um modelo de sólitons quirais [1],

previram a existência de um bárion com spin 1/2, isospin 0 carga +1 e estranheza

+1. O fato da estranheza desse bárion ser +1, garante que seu conteúdo mı́nimo de

quarks seja ududs̄, ou seja, um pentaquark. A previsão para a massa desse bárion foi

de m = 1530 MeV e a sua largura foi de 15MeV.

Até 2003, ainda não tinha sido observado nenhuma part́ıcula que fosse compat́ıvel

com essa previsão teórica. As evidências para essa part́ıcula só surgiram recentemente

com os experimentos [2, 3], onde foi observado o pentaquark Θ+(1540), com massa e

largura de decaimento compat́ıveis com as previsões de Diakonov et al.. O fato dessa

part́ıcula não ter sido observada anteriormente foi explicada pela sua largura muito

estreita, que deixou essa part́ıcula inviśıvel aos antigos dados [4]. Outros pentaquarks

também foram posteriormente observados: Ξ−−(1862) [5] e a Θ0
C(3099) [6], porém com

uma evidência bem mais fraca que a Θ+.

O fato de vários experimentos recentes não terem observado esses pentaquarks [7],

deixa claro que a existência dos pentaquarks ainda não está completamente consoli-

dada. Dzierba et. al. [8] usa esses resultados, sobre a não observação dos pentaquarks,

para defender a inexistência dessas part́ıculas. Por outro lado, Kabana [9] apresenta

várias explicações para esses resultados nulos para a observação dos pentaquarks.

Uma propriedade interessante desses pentaquarks é a sua largura de decaimento

muito pequena, que sugere que os pentaquarks possuem uma estrutura interna muito

1



2 CAPÍTULO 1. INTRODUÇÃO

estável. Atualmente existe uma grande quantidade de estimativas para a largura de

decaimento da Θ+, recentemente catalogadas no Particle Data Group [10].

Um modelo interessante para a estrutura dos pentaquarks é o estado diquark-

diquark-antiquark proposto por Jaffe e Wilczek (JW) [11]. Em JW, cada par de

diquark possui spin zero e o estado resultante dessa combinação é um antidecupleto

10f e um octeto 8̄f fig. 1.1, em SU(3) de sabor, que consegue acomodar os pentaquarks

Θ+(1540) e Ξ−−(1862), além da ressonância Roper N(1440), que é o primeiro estado

excitado do nucleon.
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s
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Figura 1.1: Os pentaquarks representantes do modelo de Jaffe e Wilczek.

O valor da massa do Ξ−−(1862) nesse modelo de quarks é aproxidamente 100 MeV

menor do que o observado experimentalmente. A extensão desse modelo para incluir

a Θ0
C(3099) fornece um desvio maior de 400MeV [11].

Uma abordagem para o estudo dos pentaquarks consiste em usar métodos não-

perturbativos da cromodinâmica quântica (QCD), onde destacamos o uso das Regras

de Soma da QCD (QCDSR). Vários grupos têm usado as QCDSR para o estudo

da Θ+(1540) [12, 13, 14, 15, 16, 17], Ξ−−(1862) [18] e Θ0
C(3099) [19]. Nosso grupo

desenvolveu trabalhos para dois desses pentaquarks, a Θ+(1540) [17] e o Ξ−−(1862)

[18], usando dois tipos de corrente para os pentaquarks, motivadas na proposta de JW.

Todos esses trabalhos em regras de soma da QCD se limitaram em obter a massa dos

pentaquarks. Entretanto, no trabalho da Ref.[13], foi feita a primeira previsão para a
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paridade da Θ+ em QCDSR.

O entendimento da largura de decaimento tão pequena da Θ+(1540) tem se mostrado

um grande desafio teórico. Recentemente, Jaffe [20] mostrou que a largura obtida pelo

método de sólitons quirais é o dobro do valor previsto por Diakonov et al. [1], que nos

leva a sérias dúvidas sobre a confiabilidade deste método para a obtenção da largura

de decaimento.

Usando as QCDSR, Oganesian [15] sugeriu uma explicação qualitativa para a

largura da Θ+. Ele partiu de observações simples a respeito das simetrias das cor-

rentes que descrevem os hádrons no decaimento, e as propriedades do diagrama básico

do decaimento no lado teórico da regra de soma. As análises apresentadas em [15] são

apenas qualitativas, mas chega-se à conclusão de que a largura de decaimento seria

proporcional a α2
s〈q̄q〉2, devido a necessidade de troca de gluons para se obter estados

finais singletos de cor, a partir de um pentaquark que tem uma estrutura de cor não

trivial.

Num trabalho recente, Diakonov [21] apresenta uma outra interpretação para a

largura estreita da Θ+. Nesse trabalho se considera que o nucleon produzido no de-

caimento está num estado de cinco quarks. Assim a largura de decaimento estreita

da Θ+ é explicada qualitativamente pela baixa superposição entre o nucleon e a sua

componente de cinco quarks.

A largura de decaimento da Θ+ foi recentemente estudada pelo nosso grupo [22],

usando as QCDSR. Nossos estudos mostram que a largura de decaimento obtida só

seria compat́ıvel com as observações experimentais se a paridade da Θ+ fosse positiva.

Também exploramos a interpretação de Kondo et al. [23] para a estrutura interna dos

pentaquarks, através da seleção de diagramas para a nossa função de vértice.

Um outro problema atual na f́ısica de hádrons consiste na busca da evidência da

formação do plasma de quarks e gluons (QGP). A QCD prevê [24] que a densidades

de energia altas, a matéria hadrônica sofre uma transição de fase para um estado
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de quarks e gluons desconfinados, permitindo que uma nova f́ısica, semelhante aos

instantes iniciais após ao Big Bang, possa ser estudada.

Matsui e Satz [25] mostraram que no QGP, além do desconfinamento ocorre também

a blindagem de cor, em virtude da qual, o potencial entre o quark e o anti-quark se

torna de alcance tão curto que a formação de um estado ligado se torna bastante

dif́ıcil. Assim, uma das assinaturas da formação do plasma é a supressão na formação

da part́ıcula J/ψ.

A supressão da J/ψ já foi observada experimentalmente [26] em colisões de ı́ons

pesados relativ́ısticos p + A, O + U , S + U e Pb + Pb. Para as colisões p + A, a

supressão observada da J/ψ e ψ′ pode ser explicada pela absorção de um precursor

comum, provavelmente um estado não ressonante octeto de cor nos quarks ((cc̄)8g),

pelos nucleons [27]. Esta explicação pode ser extendida para colisões do tipo O + U

e S + U para a J/ψ, mas não para a ψ′, onde uma supressão adicional é observada.

Nas colisões Pb + Pb também se observou uma supressão adicional para a J/ψ, que

poderia ser interpretada como um sinal da formação do QGP. Entretanto, existem

outros mecanismos, além da formação do QGP, que poderiam explicar a supressão

observada.

Portanto, enquanto existem sugestões de que a supressão anômala evidencia a

formação do QGP, outros mecanismos mais convencionais, baseados na reação da J/ψ

com os fragmentos da colisão, ainda devem ser considerados, antes de termos uma

conclusão acerca do QGP.

O principal ingrediente nos cálculos baseados na dissociação hadrônica da J/ψ é a

seção de choque de absorção da J/ψ pelos hádrons. Estimativas usando QCD pertur-

bativa dão valores muito pequenos para explicar a supressão observada. Por exemplo,

para explicar a supressão da J/ψ observada nas colisões p+A precisa-se de uma seção

de choque de absorção de ≈ 7.5mb [27, 28], enquanto que a QCD perturbativa fornece

≈ 2 − 3mb. Essa seção de choque tem sido investigada usando vários métodos, em
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particular, pelas teorias hadrônicas baseadas em lagrangianas efetivas [29, 30, 31].

O problema desses modelos baseados em lagrangianas efetivas é que eles depen-

dem de constantes de acoplamento e fatores de forma que não são fenomenologicamente

conhecidos e raramente podem ser obtidas de dados experimentais. Os vários cálculos

feitos com lagrangianas efetivas diferem devido aos métodos usados para estimar essas

constantes, e principalmente pela escolha dos fatores de forma nos vértices, que re-

duzem drasticamente a seção de choque de dissociação [29].

Nos trabalhos mais antigos, em geral se assume um fator de forma de monopólo nos

vértices hadrônicos, que introduz um outro parâmetro desconhecido, o cutoff. Além

disso, usa-se as relações de SU(4) e o método da dominância do méson vetorial, que são

aproximações questionáveis, para estimar as constantes de acoplamento. Por exemplo,

as relações de SU(4) colocam num mesmo multipleto o quark pesado c e outros quarks

leves. Como os resultados obtidos para as seções de choque são muito senśıveis com

a escolha das constantes de acoplamento e dos fatores de forma, isso nos mostra a

importância de se ter um cálculo confiável para obter os fatores de forma e constantes

de acoplamento.

As QCDSR vem sendo utilizadas no cálculo das constantes de acoplamento e fatores

de forma nesses vértices hadrônicos [32, 33, 34, 35, 36, 37]. Nós mostramos aqui o

cálculo do fator de forma e constante de acoplamento no vértice J/ψDD∗.

Este trabalho está organizado da seguinte maneira. No caṕıtulo 2, apresentamos o

método das QCDSR e o formalismo para o cálculo das funções de correlação de dois e

três pontos. No caṕıtulo 3, aplicamos as QCDSR para calcular a massa e a paridade

dos pentaquarks Θ+ e Ξ−−. No caṕıtulo 4, apresentamos o cálculo para a largura de

decaimento da Θ+ e a teoria de conecxão de cores. No caṕıtulo 5, mostramos o estudo

do vértice J/ψDD∗, onde calculamos o acoplamento e o seu fator de forma, além de

comparar nossos resultados com outros trabalhos recentes. Concluimos, então, com

um resumo dos principais resultados obtidos e as perspectivas futuras deste trabalho.



Caṕıtulo 2

Método das Regras de Soma da
QCD

O método das regras de soma da QCD tem sido usado com bastante sucesso na des-

crição das propriedades hadrônicas (massas, constantes de acoplamento, larguras de

decaimentos, fatores de forma) a partir de parâmetros da QCD. O método foi origi-

nalmente introduzido por Shifman, Vainshtein e Zakharov em 1979 [38] para descrever

propriedades mesônicas. A extensão para bárions foi feita por Ioffe [39] (ver também

[40]). Existem várias revisões detalhadas sobre o assunto [41, 42, 43, 44].

O método das regras de soma da QCD se baseia no cálculo de funções de correlação

(também chamadas de correlatores) de operadores locais compostos. Cada operador

composto é construido usando campos de quarks e/ou gluons, de tal forma a possuirem

os mesmos números quânticos do hádron que queremos estudar. Em geral esses opera-

dores são chamados de campos interpolantes. A suposição fundamental do método das

QCDSR é o prinćıpio da dualidade, que assume que um hádron pode ser equivalente-

mente descrito em termos dos graus de liberdade hadrônicos e em termos dos graus de

liberdade da QCD. Assim, o procedimento básico do método das QCDSR consiste de

três pontos: 1) calcula-se a função de correlação em termos dos graus de liberdade da

QCD, empregando-se a expansão no produto de operadores (OPE) de Wilson [45], 2)

calcula-se a mesma função de correlação em termos de estados intermediários f́ısicos

empregando-se relações de dispersão [46] que incorporam um ansatz simples para a

6
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densidade espectral e 3) compara-se, através de um procedimento adequado, essas duas

descrições para se extair informações sobre as propriedades hadrônicas em termos das

quantidades fundamentais do vácuo da QCD.

A essência da OPE é a separação de todas flutuações de campos em escalas: peque-

nas e grandes distâncias ou, no espaço dos momentos, grandes e pequenos momentos

(tipo espaço). Na QCD essa separação quase sempre corresponde à separação entre a

f́ısica perturbativa e a não-perturbativa. Assim, na OPE, os coeficientes da expansão

são calculados a partir da QCD usando-se a teoria de perturbação, e portanto possuem

informação sobre a f́ısica de pequenas distâncias (ou grandes momentos) enquanto que

a f́ısica não perturbativa é parametrizada através dos elementos de matriz de uma

série de operadores locais: os condensados. Em prinćıpio, os condensados são cal-

culáveis diretamente da QCD (usando-se, por exemplo, simulações na rede), mas na

prática eles são usualmente determinados fenomenológicamente a partir de uma série

de regras de soma, e aplicados em outras. Conseqüentemente, o sucesso do método

depende crucialmente do fato de ser posśıvel truncar essa série infinita num número

finito e pequeno de termos.

Apesar dos condensados conterem informações não perturbativas, a OPE é basi-

camente uma expansão em curtas distâncias, e numa ordem finita só pode descrever

precisamente a função de correlação se os momentos (tipo espaço) forem suficiente-

mente grandes. Por outro lado, nós queremos obter informações sobre as excitações

de mais baixa energia da densidade espectral, que sabemos dominar a função de cor-

relação somente para momentos pequenos. Como será então posśıvel comparar essas

duas descrições ? O segredo está na aplicação da transformada de Borel a essas duas

representações [38]. As QCDSR são o resultado da identificação da transformada

de Borel da função de correlação calculada na OPE com a transformada de Borel da

função de correlação fenomenológica. A transformada de Borel melhora a convergência

da OPE suprimindo a contribuição dos condensados de dimensões mais altas. No lado
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fenomenológico a transformada de Borel muda a supressão dos estados excitados de

uma lei de potência para uma lei exponencial, além de eliminar os polinômios de

subtração presentes na representação espectral do correlator.

É importante enfatizar que o método das QCDSR é aproximado. Ele requer uma

certa quantidade de análise e não pode ser formalizado da mesma forma que, por

exemplo, a solução da equação de Shrödinger. Por outro lado, ele não é um modelo.

Qualquer modelo requer necessariamente suposições ad hoc, e a precisão das pre-

visões correspondentes não pode ser controlada de dentro do modelo. No método das

QCDSR, uma vez que os valores dos condensados forem estabelecidos, não existe mais

nenhuma liberdade; eles próprios nos contam se este ou aquele problema em particular

é solúvel. A virtude do método é que ele é anaĺıtico, simples e aberto para análises

qualitativas onde se pode facilmente ver o que se relaciona com o que.

2.1 Função de correlação de dois pontos

A função de correlação de dois pontos é usada, nas regra de soma, para a obtenção

da massa e da constante de acoplamento entre o campo interpolante e o hádron con-

siderado. Para mésons vetoriais descarregados, podemos relacionar diretamente essa

constante de acoplamento com a largura de decaimento desses mésons no par elétron-

pósitron.

A função de correlação de dois pontos é definida por:

Π(q) = i
∫
d4xeiqx〈0|T{j(x)j†(0)}|0〉, (2.1)

onde |0〉 é o vácuo da QCD, T é o operador de ordenação temporal e j(x) é a corrente

(ou campo interpolante) do hádron.

O campo interpolante é construido a partir dos operadores de campos dos quarks,

combinados de forma a obtermos os mesmos números quânticos da part́ıcula em

questão. No caso dos mésons, o D∗ por exemplo, o campo interpolante tem a forma:

jµ(x) = q̄a(x)γµca(x) , (2.2)
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onde q(x) e c(x) são operadores de campo de um quark leve (u ou d) e do quark charme

respectivamente, com o ı́ndice de cor a. A matriz γµ representa a matriz de Dirac, que

dá o carácter vetorial à corrente na Eq. (2.2). Para um méson pseudoescalar, o méson

D por exemplo, a corrente é dada por:

j5(x) = iq̄a(x)γ5ca(x) . (2.3)

2.1.1 Lado Fenomenológico

No lado fenomenológico da regra de soma, a função de correlação pode ser avaliada

pela inserção de uma série completa de estados f́ısicos hadrônicos intermediários, que

se acoplam com a corrente considerada, cujo espectro está representado na Fig.(2.1).

q q

Meson

estado fundamental

m
0

inicio dos estados do 
continuo

m
0
+∆

Figura 2.1: Estados ressonantes de um sistema q̄q.

As propriedades anaĺıticas da função de correlação podem ser obtidas através de

uma representação espectral,

Π(q) =
∫ ∞

0
ds

ρ(s, q)

s− q2 − iε
+ · · · (2.4)

onde ρ(s, q) é a densidade espectral, que contém as propriedades espectrais dos hádrons

e as reticências representam os termos de subtração (polinômios em q2 com coeficientes

desconhecidos) que asseguram que a contribuição do contorno de integração no infinito

se anula.

Nas QCDSR, o modelo adotado para a densidade espectral é

ρ(s, q) = ρP (s, q)δ(s−m2
0) + ρC(s, q)Θ(s−m∗2), (2.5)



10 CAPÍTULO 2. MÉTODO DAS REGRAS DE SOMA DA QCD

onde ρP (s, q) = 〈0|j|q〉〈q|j†|0〉 (ver apêndice A).

A informação sobre ρC(s, q) virá do lado teórico da QCD via uso da dualidade

quark-hádron: ρC(s, q) = ρQCD(s, q).

Na Ref.[10] podemos observar que o espectro medido para a maioria dos hádrons

obedece aproximadamente ao esboço da Fig.(2.1), mas com um pequeno número de

estados excitados medidos. A J/ψ é uma das part́ıculas com o maior número de

estados excitados medidos, e comparando a diferença entre as massas da J/ψ e da ψ′

obtemos ∆ = 589MeV. Para as part́ıculas D0 e D∗ ainda não foram medidos seus

estados ressonantes.

Nesta situação de completa ignorância sobre os estados excitados, uma postura

utilizada nas QCDSR [47] consiste em ajustar o valor do parâmetro ∆, representado

na Fig.(2.1), de tal forma a reproduzir a massa experimental dos hádrons. Na Ref.[43]

usa-se teoricamente um valor comum para todos os hádrons que é ∆ ∼ 500MeV.

2.2 Função de correlação de três pontos

A função de correlação de três pontos nos permite estudar vértices, como o mostrado

na Fig. 2.2, que nos fornecerá informações sobre as constantes de acoplamento entre

as part́ıculas, e sobre seus fatores de forma.

p

q

p
(1)

(2) (3)

Figura 2.2: Vértice de três part́ıculas.
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A função de correlação de três pontos é definida por:

Γ(p, p′) =
∫
d4xd4ye−i(p

′−p)yeip
′x〈0|T{j3(x)j†2(y)j†1(0)}|0〉. (2.6)

2.2.1 Lado Fenomenológico

No caso da função de correlação de três pontos, o lado fenomenológico da regra de

soma também pode ser avaliada pela inserção de séries completas dos estados f́ısicos

hadrônicos intermediários. Assim, saturando a função de três pontos na Eq.(2.6) com

os estados que representam as part́ıculas 1,2 e 3 na Fig. 2.2 obtemos (ver apêndice B):

Γ(p, p′) =
〈0|j3|3〉V (p, p′)〈2|j†2|0〉〈1|j†1|0〉

(p2 −m2
1 + iε)(q2 −m2

2 + iε)(p′2 −m2
3 + iε)

. (2.7)

Além da contribuição dos pólos, dada na Eq.(2.7), devemos incluir também a con-

tribuição dos estados excitados, e isso pode ser feito expressando a função de três

pontos através de uma relação de dispersão dupla. Ioffe e Smilga [48] propuseram o

seguinte modelo para a parte invariante do lado fenomenológico da função de vértice

Eq.(2.6):

Γ(p2, p′2) =
∫ ρ(s, u, q2)dsdu

(s− p2)(u− p′2)
+ · · · , (2.8)

onde,

ρ(s, u, q2) = ρA(s, u, q2) + ρB(s, u, q2) + ρC(s, u, q2), (2.9)

com

ρA(s, u, q2) = a(q2)δ(s−m2
1)δ(u−m2

3), (2.10)

que dá a contribuição dos pólos, fornecida na Eq.(2.7),

ρB(s, s′, p2) = b1(u, q
2)δ(s−m2

1)Θ(u− uo) + b2(s, q
2)δ(u−m2

3)Θ(s− s0), (2.11)

que fornece a contribuição de transições envolvendo um pólo e estados excitados, onde

u0 e s0 fornecem os limiares do cont́ınuo, e

ρC(s, u, q2) = C(s, u, q2)Θ(s− s0)Θ(u− u0), (2.12)
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que dá a contribuição dos estados no cont́ınuo. Na Eq.(2.8), as reticências representam

novamente os termos de subtração, que asseguram que a contribuição do contorno de

integração no infinito se anula.

Comparando as Eqs.(2.7), (2.8) e (2.10) podemos identificar a(q2) como

a(q2) =
〈0|j3|3〉V (q2)〈2|j†2|0〉〈1|j†1|0〉

(q2 −m2
2)

. (2.13)

Um problema deste modelo, para a inclusão da contribuição dos estados excitados

na regra de soma de três pontos, está relacionado com a região de integração na

Eq.(2.8). Ioffe e Smilga [49] consideraram a regra de soma considerando apenas as

regiões de integração I e II na Fig. 2.3. Nesse modelo, a região I, que é a região

onde os seus lados são os limiares do cont́ınuo, representa a contribuição dos estados

fundamentais, Eq.(2.10). A região II, representaria a contribuição dos estados no

cont́ınuo, Eq.(2.12), que podemos aproximar pela expressão obtida no lado da QCD,

via uso da dualidade quark-hádron. As regiões III não são muito bem entendidas e,

segundo Ioffe e Smilga, a contribuição dessas regiões seria pequena. Eles estudaram

o caso onde uma pequena parte da região III é considerada, domı́nio triangular Fig.

2.3, e observaram que o efeito dessa mudança não foi significativo. Na Ref.[50] foi

analisado efeitos importantes da região III.

Num outro trabalho [48], Ioffe e Smilga consideram o efeito da região III, através

da contribuição das transições pólo cont́ınuo Eq.(2.11).

Em todos nossos trabalhos usamos o modelo de Ioffe: consideramos a contribuição

das transições pólo-cont́ınuo, e a região retangular II para a contribuição dos estados

no cont́ınuo.

Seguindo a prescrição descrita acima, e transferindo a contribuição dos estados no

cont́ınuo para o lado direito da regra de soma, obtemos:

ΓPP (p2, p′2) + ΓPC1(p
2, p′2) + ΓPC2(p

2, p′2) =
∫ s0

0

∫ u0

0
dsdu

ρQCD(s, u, q2)

(s− p2)(u− p′2)
, (2.14)
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s

I

III

III

s
0

u II

u
0

Figura 2.3: Região de integração s,u.

onde

ΓPP (p, p′) =
〈0|j3|p′〉V (p, p′)〈q|j†2|0〉〈p|j†1|0〉

(p2 −m2
1 + iε)(q2 −m2

2 + iε)(p′2 −m2
3 + iε)

, (2.15)

ΓPC1(p
2, p′2) =

1

m2
1 − p2

∫ ∞

u0

du
b1(u, q

2)

u− p′2
, (2.16)

ΓPC2(p
2, p′2) =

1

m2
3 − p′2

∫ ∞

s0
ds
b2(s, q

2)

s− p2
. (2.17)

2.3 Transformada de Borel

Com o objetivo de suprimir a contribuição dos estados excitados no lado fenomenológico

e reduzir a contribuição dos operadores de dimensões mais altas na OPE, utilizamos

a transformada de Borel na regra de soma. A transformada de Borel é definida por:

(−1)n(Q2)n+1

n!

(
d

dQ2

)n
f(Q2) = f̃(M2), (2.18)

onde Q2 = −q2, e M2, finito, é definido por,

M2 =
Q2

n

∣∣∣∣∣
n→∞,Q2→∞

.

Definindo a operação transformada de Borel por: B[f(Q2)] = f̃(M2), podemos mostrar

facilmente que,

B

[
1

Q2 +m2

]
= e−

m2

M2 , (2.19)
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B[ln(Q2)] = −M2, (2.20)

B

[
1

Q2

]
= 1. (2.21)

Transformadas de Borel de funções do tipo 1/(Q2 + m2)k, podem ser obtidas pela

aplicação o operador ∂
∂m2 na Eq.(2.19). Pela definição na Eq.(2.18), vemos claramente

que a transformada de Borel de qualquer polinômio é zero. É esse fato que nos permite

não nos preocuparmos com os termos de subtração nas Eqs. (2.4) e (2.8).

O ideal, no formalismo das QCDSR, seria encontrar uma região de M2 em que

ocorresse tanto a supressão dos operadores de ordem mais alta, quanto uma melhor

descrição do estado fundamental. Isso resultaria numa boa superposição entre os

lados fenomenológico e da QCD. De uma forma ainda mais ideal, o resultado deveria

ser independente de M2. Na verdade, estamos a procura de um resultado, o mais

independente posśıvel de M2, que forneça uma comparação razoável entre os dois

lados das regras de soma.



Caṕıtulo 3

Regra de Soma para Θ(1540) e
Ξ(1862)

3.1 O campo interpolante dos pentaquarks

Ao contrário dos mésons 1, o campo interpolante que descreve um bárion não é único

e, no caso dos pentaquarks, as possibilidades são ainda maiores do que para estados

de três quarks. Até o presente momento foram usadas várias propostas de campos

interpolantes nas QCDSR [12, 13, 14, 15, 16, 17, 18]. A primeira corrente usada

foi a de Zhu [12], que se baseou num esquema de estado ligado K − n. Uma outra

possibilidade seria seguir a sugestão dada por JW na Ref.[11], de que o pentaquark

possui uma estrutura diquark-diquark-antiquark. Assim, nosso primeiro passo será o

da construção da corrente para um diquark.

Um diquark é simplesmente a combinação de dois quarks. Portanto o campo

interpolante para um diquark deve ser semelhante ao campo interpolante de um méson,

que é da forma:

jmeson = q̄Γq, (3.1)

onde Γ é uma matriz de Dirac. Por simplicidade não estamos considerando graus de

liberdade de isospin e cor. Para construir o campo de um diquark temos apenas que

trocar o q̄ em jmeson por seu análogo na conjugação de carga. O análogo na conjugação

1Só existe uma única corrente para o méson vetorial e para o méson pseudoescalar existe duas
correntes que se acoplam com esse estado: a corrente axial vetorial e a corrente pseudoescalar.

15
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de carga de um campo de quark é dado por:

qc = δCq̄T , (3.2)

onde C = iγ2γ0 é a matriz conjugação de carga e δ é uma fase arbitrária. Da Eq.(3.3)

é fácil ver que

q̄c = δ∗qTC. (3.3)

Assim, tomando δ = 1, o campo interpolante de um diquark é dado genericamente

por:

jdiquark = qTCΓq. (3.4)

JW propõe que os diquarks dos pentaquarks no antidecupleto da Fig. 1.1 tenham

spin zero e estejam na representação 3̄ de cor e sabor. Assim, no caso de diquarks ud

temos

judc = εabcu
T
aCΓdb, (3.5)

onde Γ = 1 ou γ5 para diquarks com spin zero. Em particular, o diquark na Eq.(3.5)

possui isopin zero. Isso pode ser mostrado usando-se as relações de isospin dadas pela

álgebra de SU(2) [47],

I3u =
1

2
u, I3d = −1

2
d, (3.6)

I+d = u, I−u = d,

I+u = I−d = 0, (3.7)

onde I± = I1±iI2
2

, representam os operadores de ńıvel que transformam os quarks u e

d. Em termos dos operadores I3, I+ e I− o operador de isospin é definido como:

I2 = I2
3 +

1

2
(I+I− + I−I+) , (3.8)

onde

Ik = Ik(1) + Ik(2), (3.9)
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onde Ik(n) age no quark número n. Assim, obtemos de imediato I3j
ud
c = 0. Por outro

lado temos,

I+j
ud
c = εabcu

T
aCΓub, (3.10)

I−j
ud
c = εabcd

T
aCΓdb. (3.11)

Como esses diquarks possuem spin zero, temos que a parte de spin de sua função de

onda é antissimétrica pela troca de part́ıculas, logo temos a propriedade,

qTa (1)CΓqb(2) = −qTa (2)CΓqb(1), (3.12)

onde estamos usando genericamente a letra q para designar qualquer um dos quarks u

ou d, e usamos os números (1) e (2) para deixar expĺıcita a troca nos quarks. Usando o

fato de que a corrente do diquark é um número, temos que judc = judc
T
, assim obtemos

a relação,

(qTa (1)CΓqb(2))T = qTa (1)CΓqb(2) = −qTb (2)CΓqa(1), (3.13)

já que ΓT = Γ, [Γ, C] = 0 para Γ = 1, γ5, e CT = −C. Portanto, contraindo com o

tensor antissimétrico εabc as Eqs.(3.12) e (3.13), vemos que:

εabcu
T
aCΓub = εabcd

T
aCΓdb = 0. (3.14)

Assim, I+j
ud
c = I−j

ud
c = 0, que nos fornece isospin zero para o diquark na Eq.(3.8).

A corrente do pentaquark que obedece a uma estrutura diquark-diquark-antiquark

pode ter isospin zero somente se for construida com dois diquarks diferentes, já que dois

diquarks iguais se comportam como bósons idênticos, e se são antisimétricos na cor,

o estado final tem que ser simétrico em isospin. Assim, a corrente para o pentaquark

Θ+ construida à partir de dois diquarks ud que tenham spin e isospin zero e estejam

na representação 3̄ de cor é dada por [13]:

η2(x) = εabcεdef εcfg[uTa (x)Cdb(x)][u
T
d (x)Cγ5de(x)]Cs̄

T
g (x), (3.15)

como cada diquark na Eq.(3.15) tem isospin zero, fica direta a demostração de que a

corrente na Eq.(3.15) tem também isospin zero.
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Por outro lado, podemos construir uma corrente para a Θ+ com dois diquarks

iguais, se permitirmos que o estado representado tenha isospin 1. Apesar de haver

uma forte indicação experimental de que o estado de pentaquark observado possui

isospin zero [3], nós iremos considerar também o caso de uma corrente com isospin 1.

Assim temos [17]:

η1(x) = tθ1(x) + θ2(x), (3.16)

onde,

θn(x) = εabc[uTa (x)CΓndb(x)][u
T
c (x)CΓnde(x)]Cs̄

T
e (x), n = 1, 2,

onde t é um parâmetro arbitrário, e Γ1 = γ5, Γ2 = 1. No apêndice C mostramos

explicitamente que o isospin dessa corrente é 1.

Podemos obter a corrente para o pentaquark Ξ−− através da troca u ⇀↽ s, como

podemos ver na Fig. 1.1. Assim obtemos das correntes nas Eqs.(3.16) e (3.15):

ηΞ
1 = tεabc[sTaCγ5db][s

T
c Cγ5de]Cū

T
e + εabc[sTaCdb][s

T
c Cde]Cū

T
e , (3.17)

ηΞ
2 = εabcεdefεcfg[sTaCdb][s

T
dCγ5de]Cū

T
g . (3.18)

No apêndice C mostramos explicitamente que o isospin dessas correntes é I = 3/2.

3.1.1 Cálculo da paridade para as correntes

Para férimons a transformação de paridade é definida por,

ψ,(−~r, t) = ξγ0ψ(~r, t), (3.19)

onde a paridade é positiva se ξ = 1 e negativa se ξ = −1.

Por outro lado, a conjugação de carga de ψ definida por ψC = Cψ̄T , se transforma

via,

ψC,(−~r, t) = Cψ̄,T (−~r, t),

onde usando a Eq.(3.19), obtemos

ψC,(−~r, t) = −ξγ0ψ
C(~r, t). (3.20)
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Assim, vemos que os campos ψ e ψC possuem paridade oposta.

Para bósons a transformação de paridade é dada por:

φ,(−~r, t) = ξφ(~r, t), (3.21)

onde novamente a paridade é positiva se ξ = 1 e negativa se ξ = −1.

Para calcular a paridade dos diquarks,

P c(x) = εabcuTa (x)Cdb(x),

Sc(x) = εabcuTa (x)Cγ5db(x), (3.22)

usamos a definição na Eq.(3.19). Assim, para o diquark P c(x) obtemos,

P ′c(−~r, t) = εabcu′Ta (−~r, t)Cd′b(−~r, t) = εabcuTa (~r, t)γ0Cγ0db(~r, t) = −εabcuTa (x)Cdb(x),

(3.23)

onde usamos o fato de que, por definição, todos os quarks possuem paridade positiva.

Assim, vemos que o diquark P c(x) tem paridade negativa, ou seja, é um pseudoescalar.

Usando o mesmo procedimento, obtemos que o diquark Sc(x) tem paridade positiva,

ou seja, é um escalar.

A corrente Eq.(3.16) é composta de dois diquarks iguais e um spinor de conjugação

de carga, assim a paridade da nossa corrente é negativa. Para a corrente na Eq.(3.15)

temos dois diquarks de paridades diferentes, o que fornece paridade positiva. Assim:

η,1(−~r, t) = −γ0η1(~r, t),

η,2(−~r, t) = +γ0η2(~r, t). (3.24)

3.2 Lado Fenomenológico

Como já vimos no caṕıtulo 2, o correlator fenomenológico para os bárions é dado por:

Πm
αβ(q) = −

∑

s=1,2

〈0|jα|q, s〉〈q, s|j̄β|0〉
q2 −m2 + iε

. (3.25)
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Considere uma corrente de paridade positiva, se o bárion com o qual ela se acopla

possui também paridade positiva, temos a regra fenomenológica,

〈0|jα(0)|q, s〉+ = λ+U
s
α(q), (3.26)

onde λ é o parâmetro que fornece o acoplamento da corrente com o pentaquark.

Entretanto, essa corrente pode também se acoplar com um bárion de paridade

negativa [40, 51]. No tratamento do lado fenomenológico é importante considerar o

fato, de que não sabemos a paridade do pentaquark e portanto temos que considerar

também a possibilidade do pentaquark ter paridade negativa. Assim

〈0|γ5jα(0)|q, s〉− = λ−U
s
α(q),

multiplicando por γ5 obtemos,

〈0|jα(0)|q, s〉− = λ−γ5U
s
α(q), (3.27)

que é uma equação equivalente a Eq.(3.26).

Inserindo as relações nas Eqs.(3.26) e (3.27) na Eq.(3.25), obtemos para os dois

casos

Π
m+

αβ (q) = − λ2
m+

q2 −m2
+ + iε

∑

s=1,2

Us
α(q)Ū

s
β(q), (3.28)

Π
m−

αβ (q) =
λ2
m−

q2 −m2
− + iε

γ5


∑

s=1,2

Us
α(q)Ū

s
β(q)


 γ5. (3.29)

Sabendo que,

∑

s=1,2

Us
α(q)Ū

s
β(q) = (6q +m)αβ, (3.30)

temos dois tipos de correlatores para o lado fenomenológico, dados por,

Πm±(q) = −λ2
±

6q ±m±
q2 −m2

± + iε
= 6qΠq + Π1. (3.31)

Escrevendo o lado da QCD em termos de uma relação de dispersão e passando a

contribuição dos estados do cont́ınuo para o lado teórico da regra de soma obtemos:

λ2
±

m2
± − q2

=
∫ s0±

0
ds
ρQCDq (s)

s− q2
, (3.32)
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±m±
λ2
±

m2
± − q2

=
∫ s0±

0
ds
ρQCD1 (s)

s− q2
. (3.33)

Onde, podemos notar por essas equações que a paridade só pode ser determinada

através da regra de soma na estrutura 1, devido a mudança do sinal do correlator

para os casos de paridade positiva ou negativa. Para o caso de uma corrente com

paridade positiva o aparecimento de um fator −1 na Eq.(3.33) indica que a paridade

da part́ıcula é negativa, por outro lado, se a paridade da corrente for negativa o sinal

−1 indica que a part́ıcula possui paridade positiva. Nas Refs.[13, 23, 51] é usado um

tratamento alternativo para o lado fenomenológico, que considera simultaneamente as

part́ıculas de paridade positiva e negativa.

Um importante estudo para a corrente dos pentaquarks é a a análise do acopla-

mento da corrente com o pólo P . As definições das contribuições do pólo e da res-

sonância R, na estrutura Πq são:

P =
λ2
±

m2
± − q2

, (3.34)

R =
∫ ∞

s0±
ds
ρQCDq (s)

s− q2
= T − P, (3.35)

onde T é o correlator total,

T =
∫ ∞

0
ds
ρQCDq (s)

s− q2
. (3.36)

Uma corrente é considerada boa, quando a contribuição do pólo for da ordem de

50% do correlator total. A importância desse critério se deve ao desejo de suprimir a

contribuição das altas ressonâncias na regra de soma.

3.3 Lado da QCD

3.3.1 Corrente da Eq.(3.16)

Inserindo a nossa corrente Eq.(3.16) no funcional de correlação, obtemos,

< 0|T{η(x)η̄(0)}|0 >= t2Π11(x) + t(Π12 + Π21) + Π22, (3.37)



22 CAPÍTULO 3. REGRA DE SOMA PARA Θ(1540) E Ξ(1862)

onde genericamente podemos definir,

ΠRR′(x) =< 0|T{θR(x)θ̄R′(0)}|0 >, (3.38)

com R,R′ = 1, 2 e

θR(x) = εabc[uTa (x)CΓRdb(x)][u
T
c (x)CΓRde(x)]Cs̄

T
e (x),

θ̄R′(0) = εabcsTe (0)C[d̄e(0)ΓR′CūTc (0)][d̄b(0)ΓR′CūTa (0)]. (3.39)

Assim obtemos:

[ΠRR′(x)]mp = εabcεa,b,c,(CΓR)ij(CΓR)klCmnCop(ΓR′C)qr(ΓR′C)svG(x),

onde G(x) é dado por

G(x) =< 0|T{uai (x)dbj(x)uck(x)del (x)s̄en(x)se
,

o (0)d̄e
,

q (0)ūc
,

r (0)d̄b
,

s (0)ūa
,

v (0)}|0 > . (3.40)

Para avaliar a função G(x) o procedimento usual consiste em usar o Teorema de Wick,

onde os condensados de quarks surgem nos termos que possuem os produtos normal

da expansão. A aplicação desse procedimento para um produto de 10 campos tornaria

o cálculo extremamente longo. Neste trabalho usamos o prinćıpio da fatorização para

os condensados de quarks, assim usando esse prinćıpio conseguimos gerar os múltiplos

condensados de quarks apenas utilizando a expansão perturbativa, onde devemos in-

serir no propagador de quarks uma componente não perturbativa:

Sab(x) = 〈0|T{qa(x)q̄b(0)}|0〉 = SPertab (x) + 〈0| : qa(x)q̄b(0) : |0〉. (3.41)

Desse modo, obtemos

G(x) = −Se,eon (−x,ms) [Scc
,

kr (x,mu)S
aa,

iv (x,mu) − Sac
,

ir (x,mu)S
ca,

kv (x,mu)]

×
[
See

,

lq (x,md)S
bb,

js (x,md) − Sbe
,

jq (x,md)S
eb,

ls (x,md)
]
. (3.42)

Portanto temos finalmente a matriz,
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< 0|T{θR(x)θ̄R′(0)}|0 >= −CSTe,e(−x,ms)Cεabcεa,b,c,
4∑

j=1

Πj(x), (3.43)

com

Π1(x) = Tr[CΓRSee,(x,md)ΓR′CSTcc,(x,mu)] × Tr[CΓRSbb,(x,md)ΓR′CSTaa,(x,mu)],

Π2(x) = Tr[CΓRSbe,(x,md)ΓR′CSTac,(x,mu)] × Tr[CΓRSeb,(x,md)ΓR′CSTca,(x,mu)],

Π3(x) = −Tr[CΓRSbe,(x,md)ΓR′CSTcc,(x,mu)CΓRSeb,(x,md)ΓR′CSTaa,(x,mu)],

Π4(x) = −Tr[CΓRSbb,(x,md)ΓR′CSTac,(x,mu)CΓRSee,(x,md)ΓR′CSTac,(x,mu)]. (3.44)

Inserindo esse propagador de quarks “cheio”dado no apêndice D no correlator, cal-

culando as transformadas de Fourier de cada diagrama, e tomando a parte imaginária

do correlator Π(q2) para q2 = s > 0, obtemos as densidades espectrais ρ(s) = 1
π
ImΠ(s),

fornecendo as regras de soma nas Eqs.(3.32) e (3.33).

Neste trabalho consideramos a OPE até dimensão 6. Além disso, trabalhamos no

limite de SU(2) simétrico e tomamos mu = md = 0 e 〈ūu〉 = 〈d̄d〉.

Para a Θ+, as densidades espectrais, até dimensão 6 são dadas por

ρq = c1
s5

5!5!2137π8
+ c1

s3

5!3!211π6
ms < s̄s > +c2

s3

5!3!214π6
<
αs
π
G2 >

− c1
s2

4!3!212π6
ms < s̄gsσ.Gs > +c3

s2

4!3!27π4
< q̄q >2, (3.45)

ρ1 = c1
s5

5!5!213π8
ms − c1

s4

5!4!210π6
< s̄s >

+ c1
s3

4!3!212π6
< s̄gsσ.Gs > +c2

s3

4!3!214π6
ms <

αs
π
G2 >, (3.46)

onde c1 = 5t2 + 2t+ 5, c2 = (1 − t)2 and c3 = 7t2 − 2t− 5.

Para Ξ−− obtemos

ρΞ
q = c1

s5

5!5!2137π8
+ c4

s3

5!211π6
ms < s̄s > −c5

s3

5!29π6
ms < q̄q >

+ c2
s3

5!3!214π6
<
αs
π
G2 > +7c5

s2

217π6
ms < q̄gsσ.Gq >



24 CAPÍTULO 3. REGRA DE SOMA PARA Θ(1540) E Ξ(1862)

− c5
s2

4!214π6
ms < q̄gsσ.Gq >

[
6ln

(
s

Λ2
QCD

)
− 43

2

]

+ c2
s2

32212π4

(
< s̄s >2 + < q̄q >2

)
+ c5

s2

3!29π4
< s̄s >< q̄q >

− c6
s2

4!3!212π6
ms < s̄gsσ.Gs >, (3.47)

ρΞ
1 = −c1

s4

5!4!210π6
< q̄q > +c1

s3

4!3!212π6
< q̄gsσ.Gq >, (3.48)

onde c4 = (t+ 1)2, c5 = t2 − 1, c6 = t2 + 22t+ 1.

3.3.2 Corrente da Eq.(3.15)

Procedendo de maneira análoga ao caso anterior e usando a corrente dada na Eq.(3.15),

obtemos o correlator,

< 0|T{η(x)η̄(0)}|0 >= CSTe,e(−x,ms)Cεabcεdefεcfgεa,b,c,εd,e,f ,εc,f ,g,
4∑

j=1

Πj(x), (3.49)

onde,

Π1(x) = Tr[CSbb,(x,md)CS
T
aa,(x,mu)] × Tr[Cγ5See,(x,md)γ5CS

T
dd,(x,mu)],

Π2(x) = Tr[CSbe,(x,md)γ5CS
T
ad,(x,mu)] × Tr[Cγ5Seb,(x,md)CS

T
da,(x,mu)],

Π3(x) = −Tr[CSbe,(x,md)γ5CS
T
dd,(x,mu)Cγ5Seb,(x,md)CS

T
aa,(x,mu)],

Π4(x) = −Tr[CSbb,(x,md)CS
T
da,(x,mu)Cγ5See,(x,md)γ5CS

T
ad,(x,mu)]. (3.50)

Uma propriedade interessante dessa corrente é o fato de que os termos que possuem

no traço os 4 propagadores, Π3 e Π4, não contribuirem para os casos Θ+ e Ξ−−, tanto

para a estrutura δab quanto para τAab do propagador de quarks, gerando uma grande

supressão de gráficos. O cancelamento desses termos se deve a uma ação combinada

do traço e da contração dos fatores de cor caracteŕısticos dessa corrente.

Procedendo da mesma forma já mencionada, obtemos para as densidades espectrais

até dimensão 6 para a Θ+:

ρq =
s5

5!5!2107π8
+

s3

5!3!28π6
ms < s̄s > +

s3

5!3!210π6
<
αs
π
G2 >

− s2

4!3!29π6
ms < s̄gsσ.Gs >, (3.51)
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ρ1 =
s5

5!5!210π8
ms −

s4

5!4!27π6
< s̄s >

+
s3

4!3!29π6
< s̄gsσ.Gs > +

s3

4!3!210π6
ms <

αs
π
G2 >, (3.52)

e para a Ξ−−:

ρΞ
q =

s5

5!5!2107π8
+

s3

5!3!27π6
ms < s̄s > +

s3

5!3!210π6
<
αs
π
G2 >

+
s2

4!3!29π6
ms < s̄gsσ.Gs >, (3.53)

ρΞ
1 = − s4

5!4!27π6
< q̄q > +

s3

4!3!29π6
< q̄gsσ.Gq > . (3.54)

3.4 Resultados

Usamos neste trabalho os valores: ΛQCD = 100MeV,ms = 0.10GeV, 〈q̄q〉 = −(0.23)3GeV3,

〈s̄s〉 = 0.8〈q̄q〉, 〈s̄gsσ.Gs〉 = 〈s̄s〉m2
0 com m2

0 = 0.8GeV2 e 〈αs
π
G2〉 = (0.33)4GeV4, além

da definição para o limiar do cont́ınuo para os pentaquarks,

s0P = (mP + ∆P )2.

Fazendo a transformada de Borel das Eqs.(3.32) e (3.33) temos as regras de soma,

λ2
±e

−
m2

±

M2 =
∫ s0±

0
dsρQCDq (s)e−

s
M2 , (3.55)

±m±λ
2
±e

−
m2

±

M2 =
∫ s0±

0
dsρQCD1 (s)e−

s
M2 , (3.56)

Para extrair a massa do pentaquark podemos usar dois procedimentos. Como as regras

de soma são independentes, podemos derivar a equação da regra de soma Eqs.(3.55)

e (3.56) com respeito a M2 e dividirmos por ela mesma, eliminando a dependência

no acoplamento λ±. Outro procedimento consiste apenas em dividir a Eq.(3.55) pela

Eq.(3.56).

O método de divisão de estruturas se mostrou bastante instável para ambos os

casos: Θ+ e Ξ−−, para ambas as correntes. A regra de soma que usamos nos trabalhos

apresentados nas Refs.[17, 18] considera apenas a estrutura 6 q. Um dos motivos para
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usar esse tipo de regra de soma, é o fato de que a estrutura-1 é mais instável com

relação a variação do limiar do cont́ınuo, além disso, não conseguimos encontrar um

valor para ∆ capaz de reproduzir o valor da massa experimental do pentaquark. Na

Fig. 3.1 mostramos a curva da massa para a Θ+ de isospin zero calculado nessa

estrutura Eq.(3.56). Ao contrário da regra de soma na estrutura 6 q, o aumento no

limiar do cont́ınuo não fornece um valor maior para a massa e para valores maiores

de ∆ > 0.5GeV a curva da massa é instável. Assim, não é posśıvel obter a massa

experimental da Θ+ através dessa regra de soma.

Neste trabalho usamos a regra de soma na estrutura 6 q, pois além de ser mais

estável ela possui mais termos da OPE até dimensão 6, o que a torna mais confiável.

Para estimarmos o valor do acoplamento da corrente com o estado fundamental,

λ, usamos a massa experimental dos pentaquarks. A paridade é obtida pela análise do

sinal do lado direito da Eq.(3.56). Em todos os casos, foi obtido um sinal negativo o que

nos leva a paridade negativa para as part́ıculas que se acoplam com a corrente Eq.(3.15)

e paridade positiva para as part́ıculas que se acoplam com a corrente Eq.(3.16). Por

outro lado, esse sinal pode ser mudado com a inclusão de novos termos na OPE, pois

o valor absoluto do correlator total é bem inferior ao valor absoluto da componente

de dimensão 5. Assim, mesmo que o próximo termo da OPE seja bem menor que o

termo de dimensão 5, o sinal pode mudar, e portanto, desse modo, a paridade prevista

pela regra de soma não é um resultado confiável.

3.4.1 Regra de soma para a Θ+ com I=0

Como já foi comentado no caṕıtulo 2, na regra de soma dos hádrons usuais, usa-se para

o limiar do cont́ınuo um salto ∆ = 0.5GeV. Essa escolha permite obter a maioria das

massas hadrônicas e constantes de decaimento que estão muito próximas dos dados

experimentais.

Em muitos casos o conhecimento do primeiro estado excitado é obtido experimen-

talmente, por outro lado, para os pentaquarks não existe nenhum dado sobre s0, assim
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Figura 3.1: Curva da massa para a Θ+ com I=0 na estrutura 1, linha sólida ∆Θ =
0.3GeV, linha pontilhada ∆Θ = 0.4GeV, linha tracejada ∆Θ = 0.5GeV.

adotamos a postura de escolher o limiar do cont́ınuo de modo a reproduzir a massa

observada experimentalmente.

Apresentamos na Fig. 3.2 o estudo da estabilidade da massa da Θ+ de isospin zero

em função da massa de Borel, para um intervalo do limiar do cont́ınuo em torno do

valor que melhor se ajustou com a massa experimental da Θ, ∆ = 0.26GeV. Vemos

que a regra de soma possui uma boa estabilidade com respeito a massa de Borel e

que o erro gerado pela variação do limiar do cont́ınuo de 0.16 < ∆ < 0.36GeV é de

≈ 100MeV. Para M2 = 1GeV2, temos

mΘ = 1.5 ± 0.1GeV.

Nas regras de soma para os hádrons usuais o intervalo para a massa de Borel é

escolhido de modo a possuir uma boa convergência para a OPE e que a contribuição do

cont́ınuo não seja muito grande. A análise da convergência do lado direito da Eq.(3.55)

é apresentada na Fig. 3.3 para ∆ = 0.26GeV, onde são analisados os termos da OPE

em valor absoluto. Infelizmente obtivermos um ordenamento bastante não usual para

a OPE no domı́nio M2 < 4GeV2. Um outro sério problema aparece no estudo da

contribuição do pólo Fig. 3.4. Como podemos ver a contribuição do pólo só alcança
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Figura 3.2: Curva da massa para a Θ+ com I=0 na estrutura 6 q, linha sólida ∆Θ =
0.26GeV, linha pontilhada ∆Θ = 0.16GeV, linha tracejada ∆Θ = 0.36GeV.

50% para valores de M2 menores que 1GeV2. Esse é um sério problema, pois nesse

domı́nio o ordenamento da OPE é muito ruim. Assim justificamos o uso da janela de

Borel para analisarmos a massa e o seu acoplamento, para 1 < M2 < 4GeV2, onde no

limite inferior fornece um boa contribuição do pólo e no limite superior a convergência

da OPE aceitável.
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Figura 3.3: Termos da OPE, linha sólida termo perturbativo, linha pontilhada opera-
dores de dimensão 4, linha tracejada operadores de dimensão 6.

Na Fig. 3.5 mostramos o estudo da estabilidade do acoplamento λ. Esse acoplameto

não pode ser medido experimentalmente, por outro lado, esse acoplamento será usado

no cálculo da largura de decaimento da Θ+ que é o tema do nosso próximo caṕıtulo.
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Figura 3.4: Linha sólida contribuição do pólo, linha pontilhada contribuição da res-
sonância.

Para M2 = 1GeV2, temos

λΘ = (2.4 ± 0.3) × 10−5GeV6.
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Figura 3.5: Curva do acoplamento da Θ+ com I=0, linha sólida ∆Θ = 0.26GeV, linha
pontilhada ∆Θ = 0.16GeV, linha tracejada ∆Θ = 0.36GeV.

3.4.2 Regra de soma para a Θ+ com I=1

Para a Θ+ de isospin 1 com a corrente dada pela Eq.(3.16), vemos que a mesma

possui um parâmetro livre t. Estudando o comportamento dos termos da OPE com a
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variação de t, observamos que para t = 1 obtemos uma melhor convergência da OPE,

que é mostrado na Fig. 3.6. Mesmo obtendo uma boa organização dos termos da

OPE, podemos notar que a convergência é muito lenta, o que mostra que essa corrente

também possui problemas. A contribuição do pólo para esse valor de t continua sendo

muito pequena (Fig. 3.7) e o valor de s0 coincidiu com o valor utilizado para a Θ+

de isospin zero no ajuste para a obtenção da massa experimental da Θ+ Fig. 3.8.

Vemos nessa figura que a curva da massa é muito estável com a massa de Borel. Para
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Figura 3.6: Termos da OPE, linha sólida termo perturbativo, linha pontilhada opera-
dores de dimensão 4, linha tracejada operadores de dimensão 6.
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Figura 3.7: Linha sólida contribuição do pólo, linha pontilhada contribuição da res-
sonância.
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M2 = 1GeV2, temos

mΘ = 1.5 ± 0.1GeV.

1 1.4 1.8 2.2 2.6 3 3.4 3.8

M
2
(GeV)

2

1

1.2

1.4

1.6

1.8

2

m
Θ
(G

eV
)

Figura 3.8: Curva da massa para a Θ+ com I=1 na estrutura 6 q, linha sólida ∆Θ =
0.26GeV, linha pontilhada ∆Θ = 0.16GeV, linha tracejada ∆Θ = 0.36GeV.

3.4.3 Regra de soma para a Ξ−− da Eq.(3.15)

Para a Ξ−− temos duas opções de corrente para isospin 3/2 que são as Eqs.(3.15) e

(3.16). Coincidentemente o valor de s0 que ajustou melhor a massa experimental da

Ξ−− da Eq.(3.15), Fig. 3.9, foi com ∆ = 0.26GeV, por outro lado o erro da massa

gerado pela variação do limiar do cont́ınuo de 0.16 < ∆ < 0.36GeV é de ≈ 60MeV, que

é menor que o erro da massa da Θ+ calculado anteriormente. A análise da convergência

da OPE se mostrou equivalente às melhores regras de soma existentes para hádrons

usuais, Fig. 3.10. Por outro lado, a contribuição do pólo continua sendo menor que

50%, Fig. 3.11.

Para M2 = 1GeV2, temos

mΞ = 1.88 ± 0.06GeV.
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Figura 3.9: Curva da massa para a Ξ no campo da Eq.(3.15) na estrutura 6q, linha sólida
∆Ξ = 0.26GeV, linha pontilhada ∆Ξ = 0.16GeV, linha tracejada ∆Ξ = 0.36GeV.
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Figura 3.10: Termos da OPE, linha sólida termo perturbativo, linha pontilhada opera-
dores de dimensão 4, linha tracejada operadores de dimensão 6.

3.4.4 Regra de soma para a Ξ−− da Eq.(3.16)

Novamente o valor de t que fornece a melhor organização diagramal é t = 1. O valor

de s0 que ajustou melhor a massa experimental da Ξ−− da Eq.(3.16), Fig. 3.12, é

de ∆ = 0.44GeV. A análise da convergência da OPE se mostrou equivalente a da

regra de soma da Ξ−− da Eq.(3.15), Fig. 3.13. Esse valor mais realista para o limiar

do cont́ınuo forneceu uma maior contribuição do pólo, Fig. 3.14. A estabilidade da

massa em função da massa de Borel não é tão boa, como pode ser visto pela Fig.

3.12 e o ajuste foi feito para M2 = 1GeV2. O erro da massa gerado pela variação do
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Figura 3.11: Linha sólida contribuição do pólo, linha pontilhada contribuição da res-
sonância.

limiar do cont́ınuo de 0.34 < ∆ < 0.54GeV é de ≈ 100MeV. Para ∆ = 0.54GeV a

estrutura 1 possui uma inversão de sinal para M2 ≈ 2GeV2. Esse fato nos leva a uma

indeterminação da paridade para altos valores do limiar do cont́ınuo.

Para M2 = 1GeV2, temos

mΞ = 1.9 ± 0.1GeV.
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Figura 3.12: Curva da massa para a Ξ no campo da Eq.(3.16) na estrutura 6 q,
linha sólida ∆Ξ = 0.44GeV, linha pontilhada ∆Ξ = 0.34GeV, linha tracejada
∆Ξ = 0.54GeV.
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Figura 3.13: Termos da OPE, linha sólida termo perturbativo, linha pontilhada opera-
dores de dimensão 4, linha tracejada operadores de dimensão 6.
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Figura 3.14: Linha sólida contribuição do pólo, linha pontilhada contribuição da res-
sonância.



Caṕıtulo 4

O vértice ΘnK

O cálculo da constante de acoplamento gΘnK permite a obtenção da largura de decai-

mento do processo:

Θ+ → nK+.

O primeiro cálculo desta constante de acoplamento, foi realizado em 1997 por Diakonov

et al.[1] usando o modelo de sólitons quirais (QSM), para uma Θ+ de paridade positiva

e considerando o kaon como uma part́ıcula pseudoescalar, obtendo gΘnK = 4.1, que

fornece a largura de decaimento ΓΘ = 18MeV 1.

Nós fizemos um cálculo da constante de acoplamento gΘnK usando as as QCDSR

[22], num tratamento distinto do proposto na Ref.[15], onde não consideramos as

correções radiativas.

4.1 Lado fenomenológico

A lagrangeana que dá a constante de acoplamento do vértice ΘnK [52], considerando

o kaon como uma part́ıcula pseudoescalar é:

L = igΘnKΘ̄Kn, (4.1)

para a paridade negativa da Θ. Para a paridade positiva a lagrangeana efetiva é obtida

via adição de γ5 nessa lagrangeana [1].

1Usando mΘ = 1530MeV obtemos ΓΘ = 16MeV.

35
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No caṕıtulo 3, estudamos a paridade da Θ+ através da análise da estrutura 1,

onde obtivemos um ind́ıcio de que a paridade dessa part́ıcula é negativa. Na Ref.[13]

é usado uma outra parametrização para o lado fenomenológico, onde a estrutura 1

está misturada com a estrutura 6q. Neste caso, só é posśıvel obter uma regra de soma

estável para uma Θ+ de paridade negativa.

Analogamente ao tratamento dado no caṕıtulo 2, a função de três pontos para o

vértice ΘnK é dada por

Γ(p, p,) =
∫
d4xd4ye−iqyeip

,xΓ(x, y), (4.2)

Γ(x, y) = 〈0|T{ηn(x)jK(y)η̄Θ(0)}|0〉. (4.3)

Usando a Eq.(2.7), obtemos:

Γ(p, p,) =
∑

s,s,

〈0|ηn|p,, s,〉V (p, p,)〈q|jK |0〉〈p, s|n̄Θ|0〉
(p,2 −m2

n)(q
2 −m2

K)(p2 −m2
Θ)

, (4.4)

onde,

V (p, p,) = Ūs,(p,)igΘnKU
s(p),

〈0|ηn|p, s〉 = λnU
s(p), (4.5)

〈p, s|η̄Θ|0〉 = −λΘŪ
s(p)γ5, (4.6)

〈q|jK|0〉 = λK . (4.7)

Os acoplamentos λn e λΘ só podem ser obtidos através das QCDSR. Por outro

lado, λK pode ser determinado através da relação com a sua constante de decaimento

[53],

λK =
fKm

2
k

mu +ms
. (4.8)

Assim ficamos com a expressão para o correlator,

Γ(p, p,) = −igΘnKλΘλnλK
( 6p, +mn)( 6p+mΘ)γ5

(p,2 −m2
n)(q

2 −m2
K)(p2 −m2

Θ)
. (4.9)

Expressando esse correlator numa base ortogonal para os momentos q e p′, obtemos,

Γ(p, p,) =
−gΘnKλΘλnλK

(p,2 −m2
n)(q

2 −m2
K)(p2 −m2

Θ)
ΓE,
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ΓE = σµνγ5qµp
,
ν − imn 6qγ5 + i(mΘ +mn) 6p,γ5 + i(p,2 +mΘmn − qp,)γ5. (4.10)

Neste trabalho iremos considerar apenas a estrutura σµνγ5qµp
,
ν . Essa estrutura têm

a vantagem de ser indiferente da paridade da Θ+ e principalmente ser independente

das massas das part́ıculas. No estudo do vértice J/ψDD [34, 36] observamos que

essas estruturas com massa são mais instáveis que as estruturas sem massa, o mesmo

acontecendo com a regra de soma de dois pontos para os pentaquarks, onde observamos

que a estrutura 1 é mais instável que a estrutura 6q com a variação do limiar do cont́ınuo.

4.2 Lado da QCD

No lado da QCD consideraremos as correntes [53, 54, 13],

jK(y) = s̄(y)iγ5u(y), (4.11)

ηn(x) = εabc(dTa (x)Cγµdb(x))γ5γ
µuc(x), (4.12)

η̄Θ(0) = −εabcεdef εcfgsTg (0)C[d̄e(0)γ5Cū
T
d (0)][d̄b(0)CūTa (0)]. (4.13)

Inserindo as correntes na função de vértice Eq.(4.3), obtemos o correlator escrito

na forma,

Γ(x, y) = 2iεabcεdef εcfgεa
′b′c′Γ̃(x, y),

Γ̃(x, y) = [N2(x) −N1(x)]K(y) (4.14)

onde

N1(x) = γ5γ
βSc′d(x)CS

T
a′e(x)CγβSb′b(x)γ5,

N2(x) = γ5γ
βSc′d(x)γ5CS

T
a′e(x)CγβSb′b(x),

K(y) = CSTha(y)Cγ5CS
T
gh(−y,ms). (4.15)

Procedendo de maneira análoga ao caṕıtulo 3, onde inserimos o propagador de

quarks cheio nas Eqs.(4.15), obtemos a parte invariante da função de vértice Eq.(4.14)

escrita na forma:

Γ(x2, y2) = H(x2)L(y2). (4.16)
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Θ(p)

K(q)

n(p’)

Figura 4.1: Diagrama que representa o correlator escrito em um produto das matrizes
N(x)K(y).

A transformada de Fourier, Eq.(4.2), age separadamente nas funções H(x2) e L(y2),

tornando o cálculo muito simples e obtemos a função de vértice dependente de apenas

dois momentos,

Γ(p′2, q2) = H̃(p′2)L̃(q2). (4.17)

Para os diagramas onde é posśıvel escrever uma relação de dispersão simples para

cada função H̃(p′2) e L̃(q2), podemos escrever a função de vértice numa relação de

dispersão dupla:

Γdupla(p′2, q2) =
1

π2

∫ ∞

0

∫ ∞

0
dsdu

ImH̃(s)ImL̃(u)

(s− p′2)(u− q2)
. (4.18)

Como foi visto no caṕıtulo 2, a relação de dispersão dupla permite descontarmos

as contribuições do cont́ınuo, por outro lado, uma parcela do diagrama (f), Fig. 4.2,

não possui uma parte imaginária bem definida (ver apêndice F).

Assim temos a função de vértice para a estrutura σµνγ5qµp
,
ν após a subtração dos

estados do cont́ınuo,

ΓQCD(p′2, q2) =
∫ s0

0

∫ u0

0
dsdu

ρQCD(s, u)

(s− p′2)(u− q2)
+
∫ s0

0

∫ ∞

0
dsdu

φQCDf2 (s, u)

(s− p′2)(u− q2)2

(4.19)

onde,

ρa(s, u) = − ms

π6211
s2
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ρb(s, u) =
〈s̄s〉 + 〈q̄q〉
π43!26

s2δ(u)

ρc(s, u) = −ms〈g2
sG

2〉
π6212

ρd(s, u) =
3〈q̄gsσ.Gq〉 − 〈s̄gsσ.Gs〉

π43227
sδ(u)

ρe(s, u) = −ms
〈g2
sG

2〉
π632210

sδ(u)

ρf1(s, u) = −ms
〈g2
sG

2〉
π632210

sδ(u)

φf2(s, u) = ms
〈g2
sG

2〉
π632211

sln(u/Λ2
QCD) (4.20)

(a) (b) (c)

(d) (e) (f)

Figura 4.2: Diagramas efetivos para o vértice ΘnK.

4.3 Regra de soma na estrutura σµνγ5qµp
,
ν

Usando o modelo para as excitações pólo-cont́ınuo discutidas no caṕıtulo 2, temos:

ΓPP (p2, p′2, q2) + ΓPC1(p
2, p′2, q2) + ΓPC2(p

2, p′2, q2) = ΓQCD(p′2, q2) (4.21)

onde,

ΓPP (p2, p′2, q2) =
G

(p′2 −m2
n)(q

2 −m2
K)(p2 −m2

Θ)
, (4.22)

ΓPC1(p
2, p′2, q2) =

1

m2
N − p′2

∫ ∞

m∗2
K

du
b2(u, p

2)

u− q2
, (4.23)
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ΓPC2(p
2, p′2, q2) =

1

m2
K − q2

∫ ∞

m∗2
N

ds
b1(s, p

2)

s− p′2
, (4.24)

e G = −gΘnKλΘλNλK .

4.3.1 Modelos para o acoplamento pólo cont́ınuo

Como podemos notar na regra de soma da Eq.(4.21), o lado direito dessa equação

só depende de dois momentos, enquanto o lado esquerdo depende de três momentos.

Neste trabalho seguimos o tratamento proposto na Ref.[55], que consiste em estabelecer

um v́ınculo entre os momentos, tornando posśıvel a relação entre os dois lados da regra

de soma.

Devido ao fato de que a massa do nucleon é próxima da massa da Θ+, optamos

pela escolha,

p2 = p′2.

Este v́ınculo entre os momentos nos leva a uma regra de soma onde as contribuições das

transições pólo-cont́ınuo não são suprimidas, tornando o termo pólo-pólo misturado a

essas contribuições. Além disso, essas contribuições envolvem funções completamente

desconhecidas b1(s, p
2) e b2(u, p

2), que representam respectivamente as contribuições

do cont́ınuo do nucleon e do kaon.

Assim precisamos de um modelo para essas funções, e consideramos o seguinte

modelo para as Eqs.(4.23) e (4.24):

b1(s, p
2) = δ(s−m∗2

n )
∫ ∞

m2
Θ

dw
b1(w)

w − p2
, (4.25)

b2(u, p
2) = b̃2(u)

∫ ∞

m2
Θ

dw
b2(w)

w − p2
. (4.26)

Esse modelo pode ser interpretado como a transição de todas as Θ+ em todos os

kaons, mas saturamos a contribuição dos nucleons no seu primeiro estado excitado,

a ressonância Roper, N(1440). Essa assimetria pode ser justificada pelo fato que o

primeiro estado excitado do kaon ainda não está completamente estabelecido [10].
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Inserindo as Eqs.(4.25) e (4.26) nas Eqs.(4.23) e (4.24), temos:

ΓPC1(p
2, p′2, q2) =

∫ ∞

m∗2
K

du
b̃2(u)

u− q2

∫ ∞

m2
Θ

dw
b2(w)

(m2
N − p2)(w − p2)

, (4.27)

ΓPC2(p
2, p′2, q2) =

1

m2
K − q2

∫ ∞

m2
Θ

dw
b1(w)

(m∗2
n − p2)(w − p2)

. (4.28)

4.3.2 Regra de soma no pólo do kaon

Na regra de soma no pólo do kaon fazemos a aproximação mK = 0, assim obtemos

uma dependência 1/q2 para a Eq.(4.21). Nesse tipo de regra de soma fazemos q2 → 0,

onde só os diagramas proporcionais a 1/q2 contribuem do lado da QCD [56]. Assim

na Fig. 4.2 iremos excluir os diagramas (a), (c) e a parte logaŕıtmica de (f).

O uso desta regra de soma, nos fornece também uma supressão da contribuição

ΓPC1, Eq.(4.27). Assim fazendo a transformada de Borel em p2 na Eq.(4.28) e elimi-

nando os termos que são suprimidos exponencialmente, temos a contribuição do pólo-

cont́ınuo nessa regra de soma:

ΓPC(q2,M2) =
A

−q2
e−

m∗2
N

M2 , (4.29)

onde,

A =
∫ ∞

m2
Θ

dw
b1(w)

w −m∗2
n

. (4.30)

Assim obtemos:

G
e−

m2
Θ

M2 − e−
m2
n

M2

m2
Θ −m2

N

+ Ae−
m∗2
n

M2 =
∫ s0

0
dsρpolo(s)e

− s
M2 , (4.31)

onde,

ρpolo(s) =
〈s̄s〉 + 〈q̄q〉
π43!27

s2 +
3〈q̄Gq〉 − 〈s̄Gs〉

π43228
s−ms

〈g2
sG

2〉
π632210

s. (4.32)

Para eliminar o acoplamento fenomenológico, A, da Eq.(4.31) geramos uma nova

regra de soma via derivação dessa equação com relação a M2, obtendo um sistema de

duas equações com duas incógnitas (G e A) que pode ser facilmente resolvido.



42 CAPÍTULO 4. O VÉRTICE ΘNK

4.3.3 Regra de soma via dupla transformada de Borel

Na regra de soma via dupla transformada de Borel em q2 e p2, temos todos os diagramas

da Fig. 4.2 contribuindo, e neste caso a contribuição ΓPC1 é suprimida exponencial-

mente. A parcela ΓPC2 é semelhante a regra de soma no pólo do kaon, exceto pela

transformada de Borel na parcela que depende de q2. Assim temos:

Ge
−−m2

K

M
′2
e−

m2
Θ

M2 − e−
m2
n

M2

m2
Θ −m2

N

+ Ae
−−m2

K

M
′2 e−

m∗2
n

M2 =
∫ s0

0
dsρdupla(s)e

− s
M2 , (4.33)

onde,

ρdupla(s) = ρpolo(s) + ρa+c(s) + ρf2(s). (4.34)

A função ρpolo(s) é a mesma da Eq.(4.32). Para as outras densidades espectrais temos:

ρa+c(s) = M ′2(1 − e−
u0

M′2 )

(
− ms

π6211
s2 − ms〈g2

sG
2〉

π6212

)
, (4.35)

ρf2(s) = ln(M ′2/Λ̃2)ms
〈g2
sG

2〉
π632211

s, (4.36)

onde Λ̃ = e
γE
2 ΛQCD.

Um fato interessante nessa regra de soma é que se mK = 0 e usando o resultado

que ρpolo é o termo dominante da Eq.(4.34), temos que a regra de soma via dupla

relação se torna idêntica a regra de soma no pólo do kaon.

4.3.4 Regra de soma via três momentos iguais

Na Ref.[55] Narison estudou o decaimento de mésons exóticos formados de quatro

quarks, que apresenta essa mesma necessidade de vincular os momentos. Nessa Ref.[55]

o procedimento adotado foi igualar todos os momentos e fazer uma única transformada

de Borel. Seguindo Narison nós tomamos p′2 = p2 = q2 e fizemos uma única transfor-

mada de Borel nas Eqs.(4.27) e (4.28), obtendo:

ΓPC(M2) = Ã
e−

m∗2
N

M2 − e−
m2
K

M2

m∗2
N −m2

K

+ B̃e−
m2
N

M2 , (4.37)

onde,

Ã = −
∫ ∞

m2
Θ

dw
b1(w)

w −m2
K

, (4.38)
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B̃ =
∫ ∞

m2
Θ

dw
b2(w)

w −m2
n

∫ ∞

m∗2
K

ds
b̃2(s)

s−m2
n

, (4.39)

uma vez que

∣∣∣∣∣
1

m2
j −m∗2

i

∫ ∞

m2
Θ

dw
bi(w)

w −m2
j

∣∣∣∣∣�
∣∣∣∣∣

∫ ∞

m2
Θ

dw
bi(w)

(w −m∗2
i )(w −m2

j )

∣∣∣∣∣ . (4.40)

Neste caso, a integral dupla do lado da QCD não pode ser fatorada em duas

integrais independentes, assim obtemos a seguinte regra de soma

G

m2
Θ −m2

K



e−

m2
Θ

M2 − e−
m2
N

M2

m2
N −m2

Θ

+
e−

m2
N

M2 − e−
m2
K

M2

m2
N −m2

K


+ Ã

e−
m∗2
N

M2 − e−
m2
K

M2

m∗2
N −m2

K

+ B̃e−
m2
N

M2 =

−
∫ u0

0

∫ s0

0
dudsρQCD(s, u)F (s, u) +

∫ s0

0

∫ ∞

0
dudsφQCDf2 (s, u)G(s, u) (4.41)

onde F (s, u) = e
−

s
M2 −e−

u
M2

s−u e G(s, u) = ∂
∂u
F (s, u).

4.4 Resultados

Neste trabalho usamos os parâmetros apresentados no caṕıtulo 3 junto com os valores

das massas mK = 0.493GeV, mn = 0.938GeV, mΘ = 1.54GeV, m∗
n = 1.44GeV, além

da definição para o limiar do cont́ınuo para o nucleon e para o kaon:

s0 = (m+ ∆)2.

Os acoplamentos λΘ e λn foram obtidos das respectivas regras de soma de dois pontos

na estrutura 6q. A regra de soma da Θ+ foi estudada no caṕıtulo 3 e a regra de soma

do nucleon pode ser vista no trabalho [57], onde usamos ∆n = 0.5GeV. Os valores

numéricos são:

λn = 2.4 × 10−2GeV3, λΘ = 2.4 × 10−5GeV6.

Para o acoplamento λK , Eq.(4.8), usamos o valor experimental para a constante de

decaimento fK = 160MeV [53], e para a massa do quark leve usamos a relação de

Gell-Mann-Oakes-Renner [58] para mu = md, obtendo mu = 6.7MeV e

λK = 0.36GeV2.
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A regra de soma com todos os momentos iguais possui uma contribuição do cont́ınuo

muito grande, tornando essa regra de soma pouco confiável. Para a regra de soma no

pólo do kaon, estudamos a influência do cont́ınuo na mesma, através da região III

na Fig. 2.3. Mesmo não possuindo uma interpretação clara sobre o significado f́ısico

dessa região, o fato dessa região ser importante é um forte fator de incerteza nessa

regra de soma. Os resultados mostraram que a regiao III contribui com mais de 60%

do total, que é um resultado muito ruim, pois o modelo de Ioffe despreza essa região.

Para a regra de soma via dupla transformada de Borel, a região III continua com essa

contribuição de 60% do total, por outro lado, a região II só possui uma contribuição

da ordem da região I para valores da massa de Borel M2 > 2GeV2.

Obtivermos para gΘnK , nos três tipos de regras de soma, um valor bastante ele-

vado e incompat́ıvel com a observação de uma largura menor que 1MeV para a Θ+,

mesmo para o caso que a Θ+ possua paridade positiva. Numa interpretação mais

conservadora, esse fato pode indicar que a corrente da Eq.(4.13) não descreve a Θ+ ou

que os problemas gerados pela presença dominante da região III tornou inválida essa

regra de soma.

Uma outra interpretação para este resultado ruim, consiste no fato que muitos

dos diagramas da Fig. 4.2 representam um estado ligado K − n e não um autêntico

pentaquark. Assim a corrente da Θ+ [13], possui uma componente similar a uma

molécula K−n que não representa o pentaquark e que deve ser subtráıda da regra de

soma 2.

Podemos ver na Fig. 4.1, o decaimento da Θ+ em duas “pétalas”, uma associada

com o kaon e outra associada com o nucleon. Podemos interpretar na Fig. 4.2 a parcela

relacionada com o estado ligado K − n os diagramas (a)+(b)+(c), pois a estrutura

de cor que liga as “pétalas” é uma delta, tornado esses estados com uma estrutura de

cor semelhante a um estado final contendo dois singletos de cor, que pode ser inter-

2Na Ref.[23] foi apresentada pela primeira vez a idéia que as correntes existentes para a Θ+

[12, 13, 17] possuem uma grande componente de estados K − n.
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pretado como sendo um estado ligado K − n. Para os diagramas (d)+(e)+(f), temos

uma troca de cor entre as “pétalas”, que pode ser interpretado como um autêntico

pentaquark. Chamamos de diagramas conectados na cor (CC), quando estamos

apenas considerando os diagramas: (d)+(e)+(f).

Em todos os nossos resultados usamos apenas os diagramas CC e obtivemos, para

todos os casos, um valor negativo para a constante de acoplamento.

4.4.1 Regra de soma no pólo do kaon

Apresentamos na Fig. 4.3 o estudo da estabilidade da constante de acoplamento em

função da massa de Borel, para um intervalo do limiar do cont́ınuo do nucleon em

torno do valor usado na função de dois pontos, ∆N = 0.5GeV. Escolhemos a massa

de Borel no intervalo 1 < M2 < 2GeV2, pois nesse intervalo a OPE é mais confiável e

o efeito da região III não excedeu 70% do total, como pode ser visto na Fig. 4.4.

Vemos que a regra de soma possui uma boa estabilidade com respeito a massa de

Borel e que o erro gerado pela variação do cont́ınuo é muito pequeno. Para M2 =

1GeV2, temos:

|gΘnK| = 0.80 ± 0.01
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Figura 4.3: Acoplamento |gΘnK |: linha sólida ∆N = 0.5GeV, linha pontilhada ∆N =
0.4GeV, linha-traço ∆N = 0.6GeV.
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Figura 4.4: Análise das contribuições do cont́ınuo para ∆N = 0.5GeV; linha sólida
contribuição do pólo, linha pontilhada contribuição do pólo-cont́ınuo, linha-traço con-
tribuição da região III.

4.4.2 Regra de soma via dupla transformada de Borel

Apresentamos na Fig. 4.5 o estudo da estabilidade da constante de acoplamento em

função da massa de Borel. A estabilidade da constante de acoplamento é muito estável

em M ′2, e como observamos que na teoria completa o uso de M ′2 = 1GeV2 diminui

a contribuição do cont́ınuo-cont́ınuo, optamos por usar esse valor também no método

CC. A curva das contribuições do cont́ınuo é semelhante ao obtido na regra de soma

no pólo do kaon, justificando novamente o uso do intervalo 1 < M2 < 2GeV2.

Vemos que a regra de soma é bem semelhante com a regra de soma no pólo do kaon

e que o erro da constante de acoplamento é igualmente pequeno. Para M2 = 1GeV2,

temos:

|gΘnK | = 0.91 ± 0.01.
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Figura 4.5: Acoplamento |gΘnK| para M ′2 = 1GeV2: linha sólida ∆N = 0.5GeV, linha
pontilhada ∆N = 0.4GeV, linha-traço ∆N = 0.6GeV.

4.4.3 Largura de decaimento

A largura de decaimento da Θ+, ΓΘ, considerando o caso mais geral, onde desco-

nhecemos a paridade desse pentaquark é dada por [59]:

ΓΘ±
=

1

8πm3
Θ

g2
ΘnK [(mn ∓mΘ)2 −m2

K ]
√
λ(m2

Θ, m
2
n, m

2
K), (4.42)

onde ΓΘ+
(ΓΘ−

) é a largura de decaimento para a Θ+ de paridade positiva (negativa)

e

λ(m2
Θ, m

2
n, m

2
K) = (m2

Θ +m2
n −m2

K)2 − 4m2
Θm

2
n.

Os experimentos mais recentes [10] indicam que ΓΘ < 1MeV. Nosso resultado

mostrado na Tabela 4.1 é incompat́ıvel com a Θ+ de paridade negativa.

Tabela 4.1: Acoplamento e largura de decaimento nos diagramas CC.

pólo do kaon dupla Borel
|gΘnK | 0.80 ± 0.01 0.91 ± 0.01
ΓΘ+

(MeV) 0.70 ± 0.02 0.90 ± 0.02
ΓΘ−

(MeV) 34.4 ± 1 44.6 ± 1

A teoria total fornece uma largura muito grande para uma Θ+ de paridade negativa,

por outro lado, a teoria total para uma Θ+ de paridade positiva fornece uma largura
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compat́ıvel com o modelo de sólitons quirais [1]. Na Tabela 4.2 são apresentados

os resultados com a teoria total, onde no método da dupla transformada de Borel,

consideramos a variação do limiar do cont́ınuo do kaon em torno de ∆K = (0.5 ±

0.1)GeV .

Tabela 4.2: Acoplamento e largura de decaimento com todos os diagramas.

pólo do kaon dupla Borel
|gΘnK | 2.71 ± 0.05 3.89 ± 0.08
ΓΘ+

(MeV) 8.31 ± 0.3 16.5 ± 0.7
ΓΘ−

(MeV) 396.0 ± 14.6 816.0 ± 33.5



Caṕıtulo 5

O vértice J/ψDD∗

O cálculo das constantes de acoplamento gJ/ψDD, gJ/ψDD∗ e gJ/ψD∗D∗ possibilitam o

estudo do processo de dissociação da J/ψ por ṕıons,

π + J/ψ → D(∗)D̄(∗).

Estas constantes de acoplamento têm sido estimados por três diferentes métodos: mo-

delo de quark méson constituintes (CQMM) [60], pelo modelo relativ́ıstico de quarks

constituintes (RCQM) [61] e pelas QCDSR [34, 35, 36, 37].

A constante de acoplamento gJ/ψDD∗ aparece em 5 diagramas do processo de disso-

ciação da J/ψ por ṕıons [60]. Em particular temos os processos da Fig. 5.1.

J/ψπ

D*

D D

J/ψπ

D*

DD*

J/ψπ

D

D*D*

Figura 5.1: Diagramas do processo de dissociação da J/ψ por ṕıons, onde aparece a
constante de acoplamento gJ/ψDD∗ .

49
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5.1 Lado da Fenomenologia

A lagrangeana de interação, Ref.[62], que descreve a interação das part́ıculas: J/ψ, D∗

e D, é dada por,

LψDD∗ = gψDD∗εµναβψµ(∂νD̄∂βD
∗
α + ∂νD∂βD̄

∗
α). (5.1)

Usando as regras de Feynman, o vértice da interação J/ψDD∗ Fig. 5.2, com p1, p2

e p3 sendo os quadrimomentos das part́ıculas J/ψ, D∗ e D respectivamente, é dado

por:

J/ψ(p
1
)

D
*
(p

2
)

D(p
3
)

Figura 5.2: Vértice J/ψDD∗.

iVλ,λ,(p1, p2, p3) = igψDD∗εαβγδελα(p1)ε
λ,

γ (p2)p3βp2δ. (5.2)

Para o caso da D∗ saindo e da D entrando no vértice, podemos obter esse novo

vértice através da transformação no tensor de polarização do méson D∗, ελ
,

γ (p2) →

ε∗λ
,

γ (p2), aplicada ao vértice Eq.(5.2).

Analogamente ao tratamento dado no caṕıtulo 2, a função de três pontos para o

vértice Fig. 5.2 é dada por

Γ(p, p,) =
∫
d4xd4ye−i(p

,−p)yeip
,xΓ(x, y), (5.3)

Γ(x, y) = 〈0|T{j3(x)j†2(y)j†1(0)}|0〉. (5.4)

Usando a Eq.(2.7), obtemos as seguintes regras, para os vários tipos de vértices:
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• Para o caso J/ψ off-shell, usando p1 = q, p2 = p e p3 = p, com q = p, − p, onde

Γψµν(x, y) = 〈0|T{j(D)(x)j†(J/ψ)
µ (y)j†(D

∗)
ν (0)}|0〉, (5.5)

temos:

Γψµν(p, p
,) =

∑

λ,λ,

〈0|j(D)(0)|p,〉V ψ
λ,λ,(p, p

,)〈q, λ|j†(J/ψ)
µ (0)|0〉〈p, λ,|j†(D∗)

ν (0)|0〉
(p,2 −m2

D + iε)(q2 −m2
ψ + iε)(p2 −m2

D∗ + iε)
,

(5.6)

onde,

V ψ
λ,λ,(p, p

,) = gψDD∗εγδαβελγ(q)ε
λ,

α (p)p,δpβ, (5.7)

〈0|J (J/ψ)
µ (0)|J/ψ(p)〉 = mJ/ψfJ/ψε

(J/ψ)
µ (p),

〈0|J (D∗)
µ (0)|D∗(p)〉 = mD∗fD∗εD

∗

µ (p),

〈0|J (D)(0)|D(p)〉 =
m2
DfD

mc +mq
. (5.8)

Desse modo ficamos com o correlator escrito na forma,

Γψµν(p, p
,) = Fµν

gψDD∗

m2
DfD
mc

mJ/ψfJ/ψmD∗fD∗

(p,2 −m2
D + iε)(q2 −m2

ψ + iε)(p2 −m2
D∗ + iε)

, (5.9)

onde,

Fµν = εγδαβp,δpβ
∑

λ,λ,
ε∗λµ (q)ελγ(q)ε

∗λ,
ν (p)ελ

,

α (p). (5.10)

Inserindo a relação,

3∑

λ=1

ε(λ)
µ (q)ε(∗)(λ)

ν (q) =
qµqν
m2

− gµν , (5.11)

obtemos quatro termos para o correlator fenomenológico. Entretanto, como a

contração de um tensor anti-simétrico por um simétrico é zero, ficamos apenas

com um único termo:

Fµν = εαβµνp
αp,β. (5.12)

• Para o caso D∗ off-shell, usando p1 = p, p2 = q e p3 = p,, onde

ΓD
∗

µν (x, y) = 〈0|T{j(D)(x)j†(D
∗)

ν (y)j†(J/ψ)
µ (0)}|0〉, (5.13)
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temos:

ΓD
∗

µν (p, p,) =
∑

λ,λ,

〈0|j(D)(0)|p,〉V D∗

λ,λ,(p, p
,)〈q, λ,|j†(D∗)

ν (0)|0〉〈p, λ|j†(J/ψ)
µ (0)|0〉

(p,2 −m2
D + iε)(q2 −m2

D∗ + iε)(p2 −m2
ψ + iε)

,

(5.14)

com

V D∗

λ,λ,(p, p
,) = gψDD∗εγδαβελγ(p)ε

λ,

α (q)p,δqβ . (5.15)

Procedendo de modo análogo ao caso anterior, temos:

ΓD
∗

µν (p, p,) = −εαβµνpαp,β
gψDD∗

m2
DfD
mc

mJ/ψfJ/ψmD∗fD∗

(p,2 −m2
D + iε)(q2 −m2

D∗ + iε)(p2 −m2
ψ + iε)

. (5.16)

• Para o caso D off-shell, usando p1 = p, p2 = p, e p3 = q, onde

ΓDµν(x, y) = 〈0|T{j(D∗)
ν (x)j†(D)(y)j†(J/ψ)

µ (0)}|0〉, (5.17)

temos:

ΓDµν(p, p
,) =

∑

λ,λ,

〈0|j(D∗)
ν (0)|p,, λ,〉V D

λ,λ,(p, p
,)〈q|j†(D)(0)|0〉〈p, λ|j†(J/ψ)

µ (0)|0〉
(p,2 −m2

D∗ + iε)(q2 −m2
D + iε)(p2 −m2

ψ + iε)
,

(5.18)

onde,

V D
λ,λ,(p, p

,) = gψDD∗εabαβελa(p)ε
∗λ,
α (p,)qbp

,
β.

Procedendo da mesma forma, obtemos:

ΓDµν(p, p
,) = εαβµνp

αp,β
gψDD∗

m2
DfD
mc

mJ/ψfJ/ψmD∗fD∗

(p,2 −m2
D∗ + iε)(q2 −m2

D + iε)(p2 −m2
ψ + iε)

. (5.19)

5.2 Lado da QCD

Vimos no estudo do lado fenomenológico que os correlatores são diferentes para cada

caso, isto possibilita calcularmos a constante de acoplamento, gψDD∗ , por três formas

distintas.

No lado da QCD, iremos trabalhar diretamente com as correntes

J (J/ψ)
µ (x) = c̄(x)γµc(x), (5.20)
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J (D∗)
ν (x) = q̄(x)γνc(x), (5.21)

J (D)(x) = q̄(x)iγ5c(x). (5.22)

5.2.1 Tratamento genérico para D e D∗ off-shell

Considere os correlatores definidos nas Eqs.(5.17) e (5.13), que diferem apenas pela

troca das part́ıculas D e D∗, que possuem o mesmo conteúdo de quarks. Isso nos

permite trabalhar com uma função de correlação genérica dada por

ΓGµ (x, y) = 〈0|T{j(D1)(x)j†(D2)(y)j†(J/ψ)
µ (0)}|0〉, (5.23)

onde

J (Di) = q̄Dic,

assim Di = γν para D∗ e iγ5 para D, assim o produto das correntes nos fornece

j(D1)(x)j†(D2)(y)j†(J/ψ)
µ (0) = δaa,δbb,δff ,(D1)β1α1

(D2)β2α2
(γµ)β3α3

q̄aβ1
(x)ca

,

α1
(x)c̄bβ2

(y)qb
,

α2
(y)c̄fβ3

(0)cf
,

α3
(0). (5.24)

O produto temporalmente ordenado só irá atuar no termo,

GD(x, y) =< 0|T{q̄aβ1
(x)ca

,

α1
(x)c̄bβ2

(y)qb
,

α2
(y)c̄fβ3

(0)cf
,

α3
(0)}|0 > . (5.25)

Essa função GD(x, y) é comum para os casos: D e D∗ off-shell e também para os

vértices J/ψDD e J/ψD∗D∗ [34, 37].

Iremos calcular a função GD(x, y) em ordem mais baixa na OPE, onde os diagra-

mas não perturbativos se limitam ao condensados de quarks. Uma justificativa para

nos limitar nessa ordem consite no fato que a regra de soma de dois pontos dos mésons

D e D∗ possuem, como termos dominantes, apenas esses dois termos. Na Ref.[36] foi

introduzido o condensado de gluons nas funções de três pontos, cuja contribuição se

mostrou quase nula. Por outro lado, na regra de soma da J/ψ [43], as correções radiati-

vas se mostraram importantes contribuindo com quase 50% do diagrama perturbativo.
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Entretanto acreditamos que nas funções de três pontos a dependência das correções

radiativas não sejam importantes. Na Ref.[33] foram calculadas as correções radiativas

para a constante de acoplamento gD∗Dπ [32], e a correção encontrada foi menor que o

erro da regra de soma sem correções radiativas. Assim motivamos o nosso formalismo,

nessa ordem mais baixa na OPE.

O correlator total Eq.(5.23) avaliado nessa ordem da OPE é dado por:

ΓGµ (x, y) = ΓPertµ (x, y) + Γq̄qµ (x, y),

que, no espaço dos momentos, corresponde aos diagramas Figs. 5.3 e 5.4.

ΓPertµ (x, y) = −3Tr [S(−y,mc)D2S(y − x,mq)D1S(x,mc)γµ] . (5.26)

Γq̄qµ (x, y) =
< q̄q >

4
Tr [S(−y,mc)D2D1S(x,mc)γµ] . (5.27)

Neste trabalho além de usarmos mq = mu = md = 0 e < ūu >=< d̄d >, usamos o

fato que o quark pesado possui < c̄c >= 0.

Assim o correlator genérico no espaço dos momentos é dado por

ΓPertµ (p, p,) = 3i
∫

d4k

(2π)4

Tr [( 6k− 6p) +mc)D2( 6k− 6p,)D1( 6k +mc)γµ]

((p− k)2 −m2
c + iε)((k − p,)2 + iε)(k2 −m2

c + iε)
. (5.28)

Γq̄qµ (p, p,) = −< q̄q >

4

Tr [( 6q +mc)D2D1( 6p, +mc)γµ]

(q2 −m2
c + iε)(p,2 −m2

c + iε)
, (5.29)

onde q = p, − p.

(k)

(k−p

D
2

D
1

γµ

J/ψ

c

c(
k−

p)

q )p
p

q

Figura 5.3: Diagrama perturbativo.



5.2. LADO DA QCD 55

(p )

c(
q)

D
2

D
1

γµ

J/ψ

c

p
p

q

Figura 5.4: Diagrama não-perturbativo < q̄q >.

Podemos ver que o diagrama não perturbativo independe do momento p. Como ire-

mos fazer uma transformada de Borel nesse momento, esse diagrama não contribuirá.

Portanto, para essa famı́lia de diagramas, teremos apenas a contribuição perturbativa.

5.2.2 D off-shell

Para o caso do D off-shell, temos o traço perturbativo Eq.(5.28),

T Pertµν (k, p, p,) = Tr [(6k− 6p) +mc)iγ5( 6k− 6p,)γν( 6k +mc)γµ] (5.30)

Onde obtemos com a ajuda da Ref.[63],

T Pertµν (k, p, p,) = 4mcεαβµν(p
αp,β − pαkβ), (5.31)

e ficamos com

ΓPertµν (p, p,) = 12mcεαβµνp
αp,βΘ(q, p,, p) − 12mcεαβµνp

αΠβ(q, p, p,), (5.32)

Πβ(q, p, p,) = i
∫

d4k

(2π)4

kβ

((p− k)2 −m2
c + iε)((k − p,)2 + iε)(k2 −m2

c + iε)
, (5.33)

Θ(q, p,, p) = i
∫

d4k

(2π)4

1

((p− k)2 −m2
c + iε)((k − p,)2 + iε)(k2 −m2

c + iε)
. (5.34)

O uso das regras de Cutkosky, permite escrever o correlator através de uma relação

de dispersão dupla (ver apêndice H):

ΓPertµν (p, p,) = εαβµνp
αp,β

1

4π2

∫ ∞

4m2
c

∫ umax

umin
dsdu

ρPert(D)(u, s, t)

(s− p2)(u− p,2)
, (5.35)
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onde

ρPert(D)(u, s, t) =
3mc√
λ

(
1 +

sλ2

λ

)
, (5.36)

λ = (u+ s− t)2 − 4us, (5.37)

λ2 = u+ t− s+ 2m2
c , (5.38)

umaxmin =
1

2m2
c

[
−st+m2

c(s+ 2t) ±
√
s(s− 4m2

c)(t−m2
c)

2

]
. (5.39)

5.2.3 D∗ off-shell

Para o D∗ off-shell, temos o correlator definido em Eq.(5.13),

ΓD
∗

µν (x, y) =< 0|T{j(D)(x)j†(D
∗)

ν (y)j†(J/ψ)
µ (0)}|0 > . (5.40)

O traço perturbativo Eq.(5.28) é dado por

T Pertµν (k, p, p,) = Tr ((6k− 6p) +mc)γν( 6k− 6p,)iγ5( 6k +mc)γµ) , (5.41)

onde por simples álgebra, temos que esse traço é

T Pert(D
∗)

µν (k, p, p,) = −T Pert(D)
µν (k, p, p,), (5.42)

logo obtemos:

ΓPertµν (p, p,) = −εαβµνpαp,β
1

4π2

∫ ∞

4m2
c

∫ umax

umin
dsdu

ρPert(D
∗)(u, s, t)

(s− p2)(u− p,2)
, (5.43)

onde, ρPert(D
∗)(u, s, t) = ρPert(D)(u, s, t).

Analisando os correlatores do lado fenomenológico Eqs.(5.16) e (5.19), vemos também

o efeito da mudança de sinal.

5.2.4 J/ψ off-shell

Considere o correlator definido em Eq.(5.5),

Γψµν(x, y) = 〈0|T{j(D)(x)j†(J/ψ)
µ (y)j†(D

∗)
ν (0)}|0〉. (5.44)
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Procedendo da mesma maneira realizada nos casos anteriores, temos o correlator:

ΓJ/ψµν (x, y) = ΓPertµν (x, y) + Γq̄qµν(x, y),

que corresponde aos diagramas Figs. 5.5 e 5.6,

ΓPertµν (x, y) = −3Tr [S(y,mc)γνS(−x)iγ5S(x− y,mc)γµ] . (5.45)

Γq̄qµν(x, y) =
< q̄q >

4
Tr [S(y,mc)γνiγ5S(x− y,mc)γµ] . (5.46)

O correlator no espaço dos momentos, via transformada de Fourier, Eq.(5.3), é

dado por

ΓPertµν (p, p,) = 3i
∫

d4k

(2π)4

Tr [( 6p− 6k) +mc)γν(− 6k)iγ5( 6p,− 6k +mc)γµ]

((p− k)2 −m2
c + iε)(k2 + iε)((p, − k)2 −m2

c + iε)
. (5.47)

Γq̄qµν(p, p
,) = −< q̄q >

4

Tr [( 6p+mc)γνiγ5( 6p, +mc)γµ]

(p2 −m2
c + iε)(p,2 −m2

c + iε)
. (5.48)

Procedendo da mesma forma anterior, ficamos com

q(−k)

q

p

D
*

γν

γµ

J/ψ

c(p−k)c(
p−

k)

D

iγ5

p

Figura 5.5: Diagrama perturbativo para J/ψ off-shell.

Γµν(p, p
,) = εαβµνp

αp,β
(
ΠPert(p2, p,2) + Πq̄q(p2, p,2)

)
. (5.49)

Agrupando o termo não-perturbativo, obtemos,

Γµν(p, p
,) = εαβµνp

αp,β
1

4π2

∫ ∞

m2
c

∫ umax

umin
dsdu

ρ(J/ψ)(u, s, t)

(s− p2)(u− p,2)
(5.50)
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q

q

p

D
*

γν

γµ

J/ψ

c(p )

D

iγ5

p

c(
p)

Figura 5.6: Diagrama não-perturbativo < q̄q > para J/ψ off-shell.

com

ρ(J/ψ)(u, s, t) =
3mc

λ3/2

[
(u− s)2 − t(u+ s− 2m2

c)
]
− 16π2 < q̄q > δ(s−m2

c)δ(u− umin).

(5.51)

Neste caso obtemos,

umaxmin =
1

2m2
c

[
−st+m2

c(2s+ t) ±
√
t(t− 4m2

c)(s−m2
c)

2

]
. (5.52)

5.3 Resultados

Usamos os mesmos parâmetros utilizados no caṕıtulo 3 e para a massa do quark c,

usamos o valor mc = 1.3GeV.

Para a massa dos mésons, usamos os valores mJ/ψ = 3.1GeV, mD = 1.87GeV e

mD∗ = 2.01GeV. Na constante de decaimento da J/ψ usamos o valor experimental

fJ/ψ = 405MeV e para os outros constante de acoplamento usamos os valores extráıdos

via QCDSR [32], fD = 170MeV e fD∗ = 240MeV, pois os dados experimentais [10]

fornecem uma grande margem de erro para fD e nenhuma informação sobre fD∗ .

Também usamos a definição para o limiar do cont́ınuo para esses mésons,

s0M = (mM + ∆M )2.

Fazendo uma transformada de Borel dupla nos momentos p2 e p′2, temos que as con-

tribuições pólo-cont́ınuo são suprimidas. Assim não temos o problema de considerar
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modelos para ΓPC como foi mostrado no caṕıtulo 4.

Transferindo a contribuição dos estados no cont́ınuo para o lado da QCD, ficamos

com as regras de soma:

• Para o caso D off-shell,

gψDD∗

(t−m2
D)
Ae−

m2
D∗

M′2 e−
m2
ψ

M2 =
1

4π2

∫ s0

4m2
c

∫ umax

umin
dsduρPert(D)(u, s, t)e−

s
M2 e−

u
M′2 Θ(u0−u),

onde,

A =
m2
DfD
mc

mJ/ψfJ/ψmD∗fD∗ .

• Caso D∗ off-shell,

gψDD∗

(t−m2
D∗)

Ae−
m2
D

M′2 e−
m2
ψ

M2 =
1

4π2

∫ s0

4m2
c

∫ umax

umin
dsduρPert(D

∗)(u, s, t)e−
s
M2 e−

u
M′2 Θ(u0−u).

• Caso J/ψ off-shell,

gψDD∗

(t−m2
ψ)
Ae−

m2
D

M′2 e−
m2
D∗

M2 =
1

4π2

∫ s0

m2
c

∫ umax

umin
dsduρ(J/ψ)(u, s, t)e−

s
M2 e−

u
M′2 Θ(u0 − u).

Vemos que gψDD∗ < 0 para todos os casos. Neste trabalho iremos considerar o valor

absoluto do constante de acoplamento.

Nosso tratamento fornece o fator de forma gψDD∗(t,M2,M ′2). Para obtermos a

constante de acoplamento é necessário extrapolar o fator de forma para um valor de t

igual a massa da part́ıcula off-shell.

Na Fig. 5.7 mostramos a estabilidade do fator de forma, para valores fixos de

t = −Q2, em função da massa de Borel considerando, por simplicidade, as duas massas

de Borel relacionadas por:

M ′2 = M2 m
2
D

m2
J/ψ

.

Na Fig. 5.8 mostramos o caso onde as massas de Borel não estão vinculadas.

A estabilidade para os casos D e J/ψ off-shell é semelhante.

Escolhendo os limiares do cont́ınuo como sendo: ∆ψ = ∆D∗ = ∆D = 0.5GeV e

fixando os valores das massas de Borel em M2 = m2
ψ e M ′2 = m2

D∗ , podemos estudar
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Figura 5.7: Estabilidade para o caso D∗ off-shell usando M ′2 = M2 m2
D

m2
J/ψ

e ∆ψ = ∆D =

0.5GeV .

Figura 5.8: Estabilidade para o caso D∗ off-shell para Q2 = 0 e ∆ψ = ∆D = 0.5GeV.

o comportamento do fator de forma, para o caso D off-shell, como função de Q2. Para

os outros dois casos, J/ψ off-shell e D∗ off-shell, escolhemos as massas de Borel por

esse mesmo critério de fixar a massa de Borel nas respectivas massas das part́ıculas

on-shell. Nossos resultados são mostrados pelos pontos na Fig. 5.9 para os três casos

considerados.

Esses pontos podem ser fitados pelas seguintes expressões:

g
(J/ψ)
ψDD∗(Q2) =

199.2

Q2 + 56.8
,

g
(D∗)
ψDD∗(Q2) = 19.9exp

[
−(Q2 + 27)2

345

]
,
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Figura 5.9: Fator de Forma para as três psrt́ıculas off-shell.

g
(D)
ψDD∗(Q2) = 12.7exp

[
−(Q2 + 25.8)2

450

]
.

Essas expressões podem ser usadas para estimarmos o valor da constante de constante

de acoplamento gψDD∗ , definida como gψDD∗ = g
(M)
ψDD∗(Q2 = −m2

M). Os valores obtidos

estão representados pelos pontos vazados na Fig. 5.9 e podemos observar que os três

casos considerados nos levam a um mesmo valor da constante de acoplamento:

gψDD∗ ' 4.2GeV−1.

Isso pode ser interpretado como uma grande “vitória” do nosso método. A análise

de erros é mostrada na Fig. 5.10, da onde podemos estimar a incerteza no valor da

constante de acoplamento.

Fizemos também a comparação com outros métodos, que mostramos na Tabela 5.1.

Nas Refs.[60, 61] a constante de acoplamento é extráıda em Q2 = −2GeV2, pois nessas

referências não foram realizadas extrapolações, e esse é o momento máximo onde os

cálculos são confiáveis. Observamos um acordo muito bom entre nosso resultado e o

resultado da Ref.[60].
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Figura 5.10: linha sólida ∆ψ = 0.5GeV, linha-ponto ∆ψ = 0.6GeV e linha tracejada
∆ψ = 0.4GeV. Os três ńıveis, foram gerados pela variação ∆D∗ = 0.4..0.6GeV.

Tabela 5.1: Acoplamento em diferentes métodos.

Nosso Ref.[60] Ref.[61]

gψDD∗(GeV−1) 4.0 ± 0.6 4.05 ± 0.25 3.0



Caṕıtulo 6

Conclusão

No presente trabalho usamos as QCDSR para estudar dois importantes problemas da

f́ısica hadrônica atual: o estudo dos pentaquarks, Θ+ e Ξ−−, e a obtenção da constante

de acoplamento gJ/ψDD∗ que podem ser usada em cálculos da dissociação hadrônica

da J/ψ em colisões de ı́ons pesados relativ́ısticos.

No caṕıtulo 3, apresentamos o estudo dos pentaquarks Θ+ e Ξ−−, baseados na

regra de soma para funções de dois pontos, onde incluimos todos os diagramas até

dimensão 6. Obtivemos essas massas e estudamos a paridade e as contribuições do

pólo, usando dois tipos de campos interpolantes inspirados no arranjo diquark-diquark-

antiquark. Nossos resultados forneceram valores das massas compat́ıveis com os dados

experimentais, porém mostramos que a regra de soma dos pentaquarks não possui uma

janela de Borel onde sejam satisfeitas simultaneamente um bom ordenamento da OPE

e uma boa contribuição do pólo. Além disso, mostramos que a estrutura que fornece

a paridade é instável, o que torna a regra de soma para a obtenção das paridades não

confiável.

No caṕıtulo 4, apresentamos o estudo da largura de decaimento da Θ+, baseados

no cálculo da função de três pontos, onde incluimos todos os diagramas até dimensão

5. Esse estudo do decaimento da Θ+ em n + K, revelou que só é posśıvel obter uma

largura compat́ıvel com os valores experimentais, se considerarmos que a corrente

usada para a Θ+ [13] possui uma grande componente de estados ligados K − n fato

que já tinha sido mencionado na Ref.[23], no contexto das funções de dois pontos.
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Mostramos que a obtenção de uma largura menor que um 1MeV só é compat́ıvel para

uma Θ+ de paridade positiva e que não possua contribuições de estados ligados K−n.

A verificação dessa componente K − n no campo interpolante da Θ+ forneceu uma

maior compreensão do que é um pentaquark, considerando os resultados do caṕıtulo

4, sugerimos que uma boa corrente para a Θ+ deva ter uma componente nula para os

diagramas K − n (Fig. 4.2).

No caṕıtulo 5, estudamos o vértice J/ψDD∗ em QCDSR envolvendo o quark pe-

sado charme. Como o condensado de quarks charmosos é muito pequeno, os efeitos

não perturbativos envolvendo o quark c são gerados, em ordem mais baixa, pelos con-

densados de gluons, que na maioria das regras de soma, são suprimidos. No nosso

cálculo consideramos apenas uma componente não perturbativa originada pelo con-

densado de quarks leve. Para calcular a função de vértice em termos de uma relação

de dispersão dupla, usamos as regras de Cutkosky, que forneceu o fator de forma, num

domı́nio de Q2, onde a regra de soma é confiável. Fazendo um ajuste do fator de

forma obtido pela QCDSR, por curvas tipicamente usadas para descrever fatores de

forma (monopólo, gaussiana e exponencial), obtivemos o comportamento do fator de

forma no domı́nio Q2 � 0, onde a QCDSR não pode ser aplicada. É neste domı́nio

que encontramos a constante de acoplamento gJ/ψDD∗ . Nós analisamos três casos: i)

D off-shell, ii) D∗ off-shell e iii) J/ψ off-shell. Para a J/ψ off-shell o fator de forma é

bem mais “duro” que o fator de forma obtido para os outros casos, que sugere que a

part́ıcula mais pesada no vértice vê as outras part́ıculas como pontuais, enquanto as

part́ıculas leves vêm a J/ψ com um certo tamanho.

Nossos resultados mostraram que o valor da constante de acoplamento é indepen-

dente da escolha da part́ıcula off-shell e que o erro gerado pela variação no limiar do

cont́ınuo é da ordem de 15%. Nossos resultados são compat́ıveis com outros métodos:

modelo de quark méson constituintes [60] e com modelo de quarks relativ́ısticos [61].



Apêndice A

Funcional Fenomenológico de dois
pontos

O funcional fenomenológico de dois pontos é definido por:

Π(q) = i
∫
d4xeiqxΠ(x), (A.1)

onde

Π(x) = 〈0|T{jS(x)j†S(0)}|0〉. (A.2)

A corrente do méson de massa m obedece a relações :

j(x) = eiPxj(0)e−iPx, (A.3)

e a relação de completeza

1 =
1

(2π)3

∫ d3~q

2q0
|q〉〈q|. (A.4)

Usando a definição do produto temporalmente ordenado temos:

Π(x) = 〈0|jS(x)j†S(0)|0〉θ(x0) + 〈0|j†S(0)jS(x)|0〉θ(−x0). (A.5)

Inserindo as Eqs.(A.3) e (A.4) em Eq.(A.5), temos:

Π(x) =
1

(2π)3

∫
d3q

2q0

(
e−iqxθ(x0) + eiqxθ(−x0)

)
〈0|jS(0)|q〉〈q|j†S(0)|0〉. (A.6)

Usando a relação

1

(2π)3

∫ d3~q

2q0

(
e−iqxθ(x0) + eiqxθ(−x0)

)
F (q) = i

∫ d4p

(2π)4

e−ipx

p2 −m2 + iε
F (p), (A.7)
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66 APÊNDICE A. FUNCIONAL FENOMENOLÓGICO DE DOIS PONTOS

no nosso correlator Eq.(A.6) temos de imediato,

Π(x) = i
∫

d4p

(2π)4

e−ipx

p2 −m2 + iε
〈0|jS(0)|p〉〈p|j†S(0)|0〉. (A.8)

Assim o correlator no espaço dos momentos Eq.(A.1) é

Πm(q) = −〈0|jS(0)|q〉〈q|j†S(0)|0〉
q2 −m2 + iε

. (A.9)

Como já comentamos no caṕıtulo 2, a corrente se acopla também com as res-

sonâncias, assim podemos escrever o correlator Eq.(A.9), numa relação de dispersão,

Π(q) =
∫ ∞

0
ds

ρ(s, q)

s− q2 − iε
, (A.10)

onde ρ(s, q) = ρP (s, q)δ(s−m2
0) + ρC(s, q)Θ(s−m∗2) e ρP (s, q) = 〈0|jM |q〉〈q|j†M |0〉.

Para o cálculo do correlator para mésons vetoriais, o procedimento é análogo ao

caso anterior, onde neste caso introduzimos um ı́ndice de polarização para os estados.

No caso dos bárions, inserimos nos estados um ı́ndice de spin.



Apêndice B

Funcional Fenomenológico de três
pontos

As fórmulas de redução de Lehman, Symanzik e Zimmermann (LSZ) fornecem a

seguinte relação para o vértice da Fig. 2.2,

< S3(p,)|S2(q)S1(p) >= i3
∫
D12Xe−i(qx2+px1)eip

,x3
2X < 0|T{φ(x3)φ

†(x2)φ
†(x1)}|0 >,

(B.1)

onde D12X = d4x1d
4x2d

4x3, 2X = (2x1
+m2)(2x2

+m2)(2x2
+m2), e φ representa o

campo associado a cada uma das part́ıculas: S1,S2 e S3, consideradas como idênticas.

A função de Green de 3-pontos para esse processo é definida por

G(x1, x2, x3) =< 0|T{φ(x3)φ
†(x2)φ

†(x1)}|0 >, (B.2)

e obdece a propriedade de invariança translacional:

G(x1, x2, x3) = G(0, x2 − x1, x3 − x1). (B.3)

Executando as transformações,

y = x2 − x1, x = x3 − x1, x1 = x1, (B.4)

cujo jacobiano da transformação é 1 e transformando o operador 2X , para essas novas

variáveis, obtemos:

2X = (2y +m2)(2x +m2)(2y + 2x + 22xy +m2), (B.5)

67
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onde 2xy = ∂2

∂x0∂y0
− ∂2

∂~x∂~y
.

Dessa forma ficamos com a fórmula de redução dependente de apenas duas variáveis:

< S3(p,)|S2(q)S1(p) >= i3N
∫
D8Xe−iqyeip

,x
2X < 0|T{φ(x)φ†(y)φ†(0)}|0 >, (B.6)

com

N = (2π)4δ4(p, − (p+ q)) e D8X = d4xd4y.

Obtemos a importante delta de conservação de energia-momento do vértice, de-

duzido aqui, via hipótese da invariança translacional para a função de Green Eq.(B.3).

Assim a função de Green desse problema é,

G(x, y, 0) =< 0|T{φ(x)φ†(y)φ†(0)}|0 >, (B.7)

que pode ser reescrita em termos da transformada de Fourier da função de Green no

espaço dos momentos como:

G(x, y, 0) =
∫

d4p̄

(2π)4

d4p̄,

(2π)4
ei(p̄

,−p̄)ye−ip̄
,xG(p̄, p̄,). (B.8)

Inserindo a Eq.(B.8) na Eq.(B.6), obtemos a relação que conecta a função de Green

ao vértice:

(2π)4δ4(p, − (p+ q))G(p, p,) = i3
< S3(p,)|S2(q)S1(p) >

(q2 −m2)(p,2 −m2)(p2 −m2)
. (B.9)

No lado fenomenológico das QCDSR, as correntes são identificadas com os oper-

adores de campo. Assim, comparando a função de correlação de três pontos:

Γ(p, p,) =
∫
d4xd4ye−i(p

,−p)yeip
,xΓ(x, y), (B.10)

onde

Γ(x, y) =< 0|T{jS3(x)j
†
S2(y)j

†
S1(0)}|0 >, (B.11)

com a Eq. (B.7) vemos que Γ(x, y) = G(x, y, 0).

Usando a definição do produto temporalmente ordenado, podemos escrever:

Γ(x, y) =< 0|j3(x)j†2(y)j†1(0)|0 > θ(x0−y0)θ(y0)+ < 0|j3(x)j†1(0)j†2(y)|0 > θ(x0)θ(−y0)+
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+ < 0|j†1(0)j3(x)j
†
2(y)|0 > θ(−x0)θ(x0 − y0)+

+ < 0|j†1(0)j†2(y)j3(x)|0 > θ(−y0)θ(y0 − x0)+ < 0|j†2(y)j†1(0)j3(x)|0 > θ(y0)θ(−x0)+

+ < 0|j†2(y)j3(x)j†1(0)|0 > θ(y0 − x0)θ(x0). (B.12)

Aplicando a evolução dos operadores, já discutida,

j(x) = eiPxj(0)e−iPx, (B.13)

mais a definição do vácuo, P |0 >= 0|0 >, podemos reescrever a Eq.(B.12), na forma,

Γ(x, y) =< 0|j3(0)eiP (y−x)j†2(0)e−iPyj†1(0)|0 > θ(x0 − y0)θ(y0)+

+ < 0|j3(0)e−iPxj†1(0)eiPyj†2(0)|0 > θ(x0)θ(−y0)+

+ < 0|j†1(0)eiPxj3(0)eiP (y−x)j†2(0)|0 > θ(−x0)θ(x0 − y0)+

+ < 0|j†1(0)eiPyj†2(0)eiP (x−y)j3(0)|0 > θ(−y0)θ(y0 − x0)+

+ < 0|j†2(0)e−iPyj†1(0)eiPxj3(0)|0 > θ(y0)θ(−x0)+

+ < 0|j†2(0)eiP (x−y)j3(0)e−iPxj†1(0)|0 > θ(y0 − x0)θ(x0). (B.14)

Definindo a relação de completeza para os vários estados por

1i =
∫
Dpi|pi >< pi|, (B.15)

onde Dpi = d3~pi
2p0i (2π)3

, e inserindo essas relações de completeza na Eq.(B.14), obtemos

para o primeiro termo do lado direito da Eq.(B.14):

Γ1(x, y) = θ(x0 − y0)θ(y0)
∫ ∫

Dp1Dp3e
ip3(y−x)e−ip1yρ1(p3, p1), (B.16)

onde ρ1(p3, p1) =< 0|j3(0)|p3 >< p3|j†2(0)|p1 >< p1|j†1(0)|0 >.

De forma análoga obtemos para os demais termos:

Γ2(x, y) = θ(x0)θ(−y0)
∫ ∫

Dp2Dp3e
−ip3xeip2yρ2(p3, p2), (B.17)

onde ρ2(p3, p2) =< 0|j3(0)|p3 >< p3|j†1(0)|p2 >< p2|j†2(0)|0 >.
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Γ3(x, y) = θ(−x0)θ(x0 − y0)
∫ ∫

Dp1Dp2e
ip1xeip2(y−x)ρ3(p1, p2), (B.18)

onde ρ3(p1, p2) =< 0|j†1(0)|p1 >< p1|j3(0)|p2 >< p2|j†2(0)|0 >.

Γ4(x, y) = θ(−y0)θ(y0 − x0)
∫ ∫

Dp1Dp3e
ip1yeip3(x−y)ρ4(p1, p3), (B.19)

onde ρ4(p1, p3) =< 0|j†1(0)|p1 >< p1|j†2(0)|p3 >< p3|j3(0)|0 >.

Γ5(x, y) = θ(y0)θ(−x0)
∫ ∫

Dp2Dp3e
−ip2yeip3xρ5(p2, p3), (B.20)

onde ρ5(p2, p3) =< 0|j†2(0)|p2 >< p2|j†1(0)|p3 >< p3|j3(0)|0 >.

Γ6(x, y) = θ(y0 − x0)θ(x0)
∫ ∫

Dp1Dp2e
ip2(x−y)e−ip1xρ6(p2, p1), (B.21)

onde ρ6(p2, p1) =< 0|j†2(0)|p2 >< p2|j3(0)|p1 >< p1|j†1(0)|0 >.

Para as funções de vértice, observamos que em geral temos

< pi|j†k(0)|pj >=< pj|j†k(0)|pi >, (B.22)

e, portanto, obtemos:

ρ1(p3, p1) = ρ4(p1, p3),

ρ2(p3, p2) = ρ5(p2, p3), (B.23)

ρ3(p1, p2) = ρ6(p2, p1),

o que nos permite reescrever o correlator na Eq.(B.14), na forma,

Γ(x, y) = (B.24)

∫ ∫
Dp1Dp3ρ1(p3, p1)

[
eip3(y−x)e−ip1yθ(x0 − y0)θ(y0) + eip1yeip3(x−y)θ(−y0)θ(y0 − x0)

]
+

+
∫ ∫

Dp1Dp2ρ3(p1, p2)
[
ei(p1−p2)xeip2yθ(−x0)θ(x0 − y0) + e−ip2ye−i(p1−p2)xθ(y0 − x0)θ(x0)

]
+

+
∫ ∫

Dp2Dp3ρ2(p3, p2)
[
e−ip3xeip2yθ(x0)θ(−y0) + e−ip2yeip3xθ(y0)θ(−x0)

]
.
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Considerando ainda que

θ(x0 − y0)θ(−y0) = θ(x0 − y0)θ(−x0) + θ(x0)θ(−y0), (B.25)

θ(y0 − x0)θ(y0) = θ(y0 − x0)θ(x0) + θ(y0)θ(−x0),

e que

p2 = p1 + p3, (B.26)

obtemos

ρ3(p1, p1 + p3) = ρ2(p3, p1 + p3) = ρ1(p3, p1). (B.27)

Assim, o correlator na Eq.(B.24) pode ser escrito numa integral dupla apenas nas

variáveis p1 e p3:

Γ(x, y) =
∫ ∫

Dp1Dp3ρ1(p3, p1)× (B.28)

×
[
eip3(y−x)e−ip1yθ(x0 − y0)θ(y0) + eip1yeip3(x−y)θ(−y0)θ(y0 − x0)+

+eip3(y−x)eip1yθ(x0 − y0)θ(−y0) + e−ip1yeip3(x−y)θ(y0)θ(y0 − x0)
]
.

Usando a relação

1

(2π)3

∫
d3~q

2q0

(
e−iqxθ(x0) + eiqxθ(−x0)

)
F (q) = i

∫
d4p

(2π)4

e−ipx

p2 −m2 + iε
F (p), (B.29)

e definindo

gi(q, x) =
(
e−iqxθ(x0) + eiqxθ(−x0)

)
Fi(q), (B.30)

observamos que o integrando da Eq.(B.28) pode ser reescrito como o produto de

g1(p3, y − x) × g2(p1, y) onde

g1(p3, y − x) =
(
eip3(y−x)θ(x0 − y0) + eip3(x−y)θ(y0 − x0)

)
F1(p3), (B.31)

g2(p1, y) =
(
e−ip1yθ(y0) + eip1yθ(−y0)

)
F2(p1),

com

ρ1(p3, p1) = F1(p3)F2(p1). (B.32)
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Portanto obtemos finalmente

Γ(x, y) = −
∫ ∫ d4p1

(2π)4

d4p3

(2π)4
ρ1(p3, p1)

eip3xe−i(p1+p3)y

(p2
3 −m2

3 + iε)(p2
1 −m2

1 + iε)
. (B.33)

Fazendo a transformada de Fourier da Eq.(B.10), temos:

Γ(p, p,) = − ρ1(−p,, p)
(p,2 −m2

3 + iε)(p2 −m2
1 + iε)

, (B.34)

onde

ρ1(−p,, p) =< 0|j3(0)| − p, >< −p,|j†2(0)|p >< p|j†1(0)|0 > . (B.35)

Os elementos de matriz entre a part́ıcula e o vácuo são conhecidos. Para avaliar

< −p,|j†2(0)|p >, podemos usar a propriedade de Crossing symmetry e escrever:

< −p,|j†2(0)|p >=< −p,−p,|j†2(0)|0 > . (B.36)

Usando a relação

1

(2π)3

∫
d3~q

2q0
F (q) = i

∫
d4q

(2π)4

F (q)

q2 −m2 + iε
, (B.37)

e introduzindo um conjunto completo de estados |q > obtemos:

< −p,−p,|j†2(0)|0 >= i
∫ D4q

(2π)4

< −p,−p,|q >< q|j†2(0)|0 >
q2 −m2

2 + iε
. (B.38)

Definindo,

< −p,−p,|q >= i(2π)4δ4(p, − (p+ q))V (p, p,), (B.39)

onde V (p, p,) é independente de correntes, ficamos com:

< −p,−p,|j†2(0)|0 >= −V (p, p,) < q|j†2(0)|0 >
q2 −m2

2 + iε
, (B.40)

onde q = p, − p. Portanto a expressão final para o lado fenomenológico da função de

correlação é:

Γ(p, p,) =
< 0|j3(0)| − p, > V (p, p,) < q|j†2(0)|0 >< p|j†1(0)|0 >

(q2 −m2
2 + iε)(p,2 −m2

3 + iε)(p2 −m2
1 + iε)

. (B.41)

Comparando as Eqs.(B.9) e (B.41) vemos que podemos interpretar iV (p, p,) como

o vértice da interação.



Apêndice C

Cálculo do Isospin para a Θ e Ξ

Como já vimos no caṕıtulo 3 a corrente da Eq.(3.15) não pode descrever um estado com

dois diquarks iguais. Assim só uma corrente de isospin 1 pode descrever esse estado.

Para provar essas duas propriedades, considere a forma mais geral da Eq.(3.15),

ηG(x) = εabcεdef εcfgQ1
abQ

2
deCs̄

T
g (x), (C.1)

onde Qi
ab é o diquark,

Qi
ab = uTa (x)CΓidb(x).

Usando a relação,

εabcεdec = δadδbe − δaeδbd, (C.2)

na Eq.(C.1), obtemos,

ηG(x) = εabcQ1
ab

(
Q2
gc −Q2

cg

)
Cs̄Tg (x). (C.3)

Por outro lado escolhendo, uma outra possibilidade de contração entre os tensores de

cor na Eq.(C.1), obtemos,

ηG(x) = −εdefQ2
de

(
Q1
gf −Q1

fg

)
Cs̄Tg (x), (C.4)

onde para o caso de dois diquarks iguais Q2 = Q1, obtemos ηG(x) = −ηG(x) via

Eqs.(C.3) e (C.4). Logo, para o caso de dois diquarks iguais ηG(x) = 0, como discutido

no caṕıtulo 3.
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Logo temos a propriedade para ηG(x) = 0,

εabcuTa (x)CΓdb(x)[u
T
g (x)CΓdc(x)]Cs̄

T
g (x) = εabcuTa (x)CΓdb(x)[u

T
c (x)CΓdg(x)]Cs̄

T
g (x).

(C.5)

C.1 Isospin para a Θ da Eq.(3.16)

Usando o mesmo procedimento realizado nas Eqs.(3.12) e (3.13), temos a propriedade,

dTc (3)CΓue(4) = uTe (3)CΓdc(4). (C.6)

Inserindo essa propriedade na Eq.(C.5), podemos escrever a corrente da Eq.(3.16) em

duas partes iguais da forma,

θn(x) =
1

2
εabc[uTa (1)CΓndb(2)]

(
[uTc (3)CΓnde(4)] + [dTc (3)CΓnue(4)]

)
Cs̄Te (5). (C.7)

Como o quark s não pertence ao multipleto de isospin, podemos consider apenas 4

componentes para os operadores de isospin:

Ik = Ik(1) + Ik(2) + Ik(3) + Ik(4). (C.8)

Inserindo essas componentes no operador de isospin,

I2 = I2
3 +

1

2
(I+I− + I−I+) , (C.9)

obtemos,

I2 = I2
12 + I2

34 +M2, (C.10)

onde, Iij é o operador de isospin que age apenas nos quarks (i) e (j), M2 é um operador

de mistura dado por,

M2 = I34
− I

12
+ + I34

+ I
12
− . (C.11)

Para o diquark 1,2 temos que: I12
+ θn(x) = I12

− θn(x) = 0, como mostrado na

Eq.(3.14). Logo M2θn(x) = 0.

No caṕıtulo 3 mostramos que o diquark formado pelos quarks (1) e (2), possui

isospin zero, logo I2
12θn(x) = 0. Assim o nosso problema consiste em calcular I2

34.
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Considere o diquark composto pelos quarks (3) e (4) da Eq.(C.7),

ηce = [uTc (3)CΓde(4)] + [dTc (3)CΓue(4)]. (C.12)

Obtemos de imediato I3η
ce = 0 e

I+η
ce = 2[uTc (3)CΓue(4)], (C.13)

I−η
ce = 2[dTc (3)CΓde(4)], (C.14)

I+I−η
ce(x) = I−I+η

ce(x) = 2ηce(x), (C.15)

Assim obtemos diretamente da Eq.(C.9),

I2
34η

ce = 2ηce. (C.16)

que fornece I = 1, para esse diquark e também para a corrente da Eq.(C.7).

C.2 Isospin para a Ξ

Como já vimos no caṕıtulo 3, as correntes da Ξ−− são:

ηΞ
1 (x) = εabc[sTa (1)CΓdb(2)][sTc (3)CΓde(4)]CūTe (5), (C.17)

ηΞ
2 (x) = εabcεdef εcfg[sTa (x)Cdb(x)][s

T
d (x)Cγ5de(x)]Cū

T
g (x). (C.18)

Para este caso iremos acrescentar na álgebra dada nas Eqs.(3.6) e (3.7), as novas

equações,

I3ū = −1

2
ū, I3d̄ =

1

2
d̄, (C.19)

I+ū = −d̄, I−d̄ = −ū,

I−ū = I+d̄ = 0. (C.20)

Assim obtemos para as correntes Eqs.(C.17) e (C.18),

I3η
Ξ
i (x) = −3

2
ηΞ
i (x), (C.21)

I−η
Ξ
i (x) = 0, (C.22)
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I−I+η
Ξ
i (x) = 3ηΞ

i (x), (C.23)

logo calculamos de imediato o autovalor das correntes ηΞ
i (x), via Eq.(C.9), resultando,

I2ηΞ
i (x) =

15

4
ηΞ
i (x), (C.24)

ou seja I = 3/2.



Apêndice D

propagador de quarks “cheio”

O propagador de quarks “cheio” é dado por:

Scheioab (x) = S0
ab(x) + 〈0| : qa(x)q̄b(0) : |0〉. (D.1)

D.1 Parcela perturbativa

Numa teoria onde os quarks estão interagindo, o cálculo do propagador em termos do

vácuo perturbativo, definido por |0p〉, é dado pela fórmula de Gell-Mann Low,

S0
ab(x) = 〈0p|T{qa(x)q̄b(0)ei

∫
d4zLQCD(z)}|0p〉, (D.2)

a lagrangeana do acoplamento quark-gluon da QCD é

LQCD = gsq̄a[γµB
AµτAab]qb, (D.3)

onde gs é a constante de acoplamento da QCD, τAab são as matrizes de Gell-Mann,

BAµ(x) é o campo do gluon e A é um ı́ndice que varia de 1 a 8.

Assim temos a expansão,

S0
ab(x) = 〈0p|T{qa(x)q̄b(0)}|0p〉 + i

∫
d4z〈0p|T{qa(x)q̄b(0)LQCD(z)}|0p〉 + · · · . (D.4)

O primeiro termo dessa expansão é o propagador de quarks livres,

〈0p|T{qa(x)q̄b(0)}|0p〉 = iδab

∫
d4p

(2π)4
e−ipx

6p+mq

p2 −m2
q + iε

. (D.5)
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Na regra de soma, consideramos que o gluon possui uma componente de campo

clássico, chamado de condensado de gluons, assim o segundo termo da expansão

Eq.(D.4) é não nulo.

No gauge do ponto fixo, o campo clássico gluônico é dado por

BA
µ (x) = −1

2
GA
µν(0)xν , (D.6)

onde GA
µν = ∂µB

A
ν − ∂νB

A
µ + gsfABCB

B
µ B

C
ν , que é um tensor antissimétrico.

Definindo SIIab (x) = i
∫
d4z〈0p|T{qa(x)q̄b(0)LQCD(z)}|0p〉, temos,

SIIab (x) = igsτ
A
a′b′

∫
d4zBAµ(z)〈0p|T{qa(x)q̄b(0)q̄a′(z)γµqb′(z)}|0p〉. (D.7)

Aplicando o Teorema de Wick, obtemos,

SIIab (x) =
∫
d4zSaa′(x− z)[iγµgsτ

A
a′b′B

Aµ(z)]Sb′b(z), (D.8)

chamamos Sab(x) = 〈0p|T{qa(x)q̄b(0)}|0p〉.

Inserindo a expressão do propagador de quarks, Eq.(D.5), e a transformada de

Fourier para o campo do gluon, definida por:

BAµ(z) =
∫

d4q

(2π)4
e−iqzBAµ(q), (D.9)

na Eq.(D.8), ficamos com a expressão:

SIIab (x) = −igsτAab
∫ d4p

(2π)4
e−ipx

6p +mq

p2 −m2
q + iε

F (p), (D.10)

onde,

F (p) =
∫

d4q

(2π)4
[γµB

Aµ(q)]
6p− 6q +mq

(p− q)2 −m2
q + iε

. (D.11)

A transformada de Fourier do campo gluônico Eq.(D.6) é dada por:

BA
µ (q) = i(2π)41

2
GA
µν(0)∂νδ4(q). (D.12)

Assim temos a expressão para F (p),

F (p) = −i1
2
GA
µν(0)γµ

∂

∂qν

6p− 6q +mq

(p− q)2 −m2
q + iε

∣∣∣∣∣
q=0

, (D.13)
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obtemos,

F (p) = i
1

2
GA
µν(0)γµ

(
γν

p2 −m2
q + iε

− 2pν
6p+mq

(p2 −m2
q + iε)2

)
. (D.14)

Assim ficamos com a expressão para o propagador Eq.(D.10) no espaço dos mo-

mentos:

S(p) =
1

2
gsτ

A
abG

A
µν(0)

6p +mq

p2 −m2
q + iε

(
γµγν

p2 −m2
q + iε

− 2γµpν
6p+mq

(p2 −m2
q + iε)2

)
. (D.15)

Usando a relação

( 6p+mq)γ
µpν( 6p+mq) = −γµpν(p2 −m2) + 2pµpν( 6p+mq),

no segundo termo da Eq.(D.15), temos em um dos termos uma contração entre o

tensor simétrico, pµpν , pelo tensor antissimétrico, GA
µν(0), assim temos a expressão

mais simplificada:

S(p) =
gsτ

A
abG

A
µν(0)

2(p2 −m2
q + iε)2

[( 6p+mq)γ
µγν + 2γµpν ] . (D.16)

Podemos decompor o tensor γµpν em dois tensores: um tensor antissimétrico e um

tensor simétrico. Devido a presença do tensor antissimétrico, GA
µν(0), temos que apenas

a parcela antissimétrica irá contribuir, logo podemos realizar a troca,

2γµpν → γµpν − γνpµ.

Usando a relação

2(γµpν − γνpµ) = γµγν 6p− 6pγµγν ,

temos

4γµpν → γµγν 6p− 6pγµγν . (D.17)

O tensor γµγν contráıdo com o tensor GA
µν(0), pode ser efetivamente trocado por,

γµγν → −iσµν . (D.18)
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Inserindo as Eqs.(D.18) e (D.17)em Eq.(D.16) e aplicando a transformada de Fourier,

temos:

SIIab (x) =
−i
4
gsτ

A
abG

A
µν(0)

∫
d4p

(2π)4
e−ipx

σµν 6p+ 6pσµν + 2mqσ
µν

(p2 −m2
q + iε)2

. (D.19)

Nos caṕıtulos 3 e 4 trabalhamos com quarks leves, portanto podemos trabalhar no

espaço das configurações considerando uma expansão em primeira ordem na massa do

quark. Assim temos a expansão da Eq.(D.5) até primeira ordem na massa do quark:

〈0p|T{qa(x)q̄b(0)}|0p〉 = iδab

∫
d4p

(2π)4
e−ipx

6p+mq

p2 + iε
. (D.20)

Usando as transformadas de Fourier (ver apêndice E),

∫
d4xe−ipx

6p
p2 + iε

= 6x8π2

x4
, (D.21)

∫
d4p

e−ipx

p2 + iε
= i

4π2

x2
, (D.22)

obtemos:

〈0p|T{qa(x)q̄b(0)}|0p〉 = δab

(
i

2π2x4
6x− mq

4π2x2

)
. (D.23)

Para a Eq.(D.19), temos a expansão para quarks leves:

SIIab (x) =
−i
4
gsτ

A
abG

A
µν(0)

∫
d4p

(2π)4
e−ipx

σµν 6p+ 6pσµν + 2mqσ
µν

(p2 + iε)2
. (D.24)

Usando as transformadas de Fourier,

∫
d4xe−ipx

6p
(p2 + iε)2

= 6x2π2

x2
, (D.25)

∫
d4p

e−ipx

(p2 + iε)2
= −iπ2ln(−x2), (D.26)

obtemos:

SIIab (x) = −τAab
i

32π2x2
gsG

A
µν(0)(6xσµν + σµν 6x) − τAab

mq

32π2
gsG

A
µν(0)σµν ln(−x2). (D.27)

Desse modo temos o propagador de quarks leves em primeira ordem na constante na

constante de acoplamento,

S0
ab(x) = δab

(
i

2π2x4
6x− mq

4π2x2

)
− τAab

i

32π2x2
gsG

A
µν(0)(6xσµν + σµν 6x)

− τAab
mq

32π2
gsG

A
µν(0)σµν ln(−x2). (D.28)
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Podemos ver no final desse apêndice um novo termo para o propagador de quarks, ger-

ado pelo segundo termo da expansão Eq.(D.4). Este novo termo, possui uma dimensão

elevada e só contribui no vértice ΘnK.

D.2 Parcela não perturbativa

Podemos relacionar a parcela não perturbativa para o propagador de quarks Eq.(D.1)

com um singleto de cor:

〈0| : q̄β(0)qα(x) : |0〉 = −δab〈0| : qaα(x)q̄
b
β(0) : |0〉. (D.29)

Considerando que:

〈0| : qaα(x)q̄
b
β(0) : |0〉 = δab∆αβ(x), (D.30)

temos,

∆αβ(x) = −1

3
〈0| : q̄β(0)qα(x) : |0〉. (D.31)

Para obter esse propagador em termos de parâmetros do vácuo da QCD o pro-

cedimento consiste em fazer a expansão numa série de Taylor do campo qα(x), assim

temos:

qα(x) = qα(0)+ xµ∂µqα(x)|x=0 +
1

2
xµxν∂µ∂νqα(x)|x=0 +

1

6
xµxνxρ∂µ∂ν∂ρqα(x)|x=0 + ...,

que pode ser reescrito como

〈0| : q̄β(0)qα(x) : |0〉 = [A1]αβ + xµ[A2µ]αβ +
1

2
xµxν [A3µν ]αβ +

1

6
xµxνxρ[A4µνρ]αβ + ...,

(D.32)

onde,

[A1]αβ = 〈0| : q̄β(0)qα(0) : |0〉, (D.33)

[A2µ]αβ = 〈0| : q̄β(0) ∂µqα(x)|x=0 : |0〉, (D.34)

[A3µν ]αβ = 〈0| : q̄β(0) ∂µ∂νqα(x)|x=0 : |0〉, (D.35)

[A4µνρ]αβ = 〈0| : q̄β(0) ∂µ∂ν∂ρqα(x)|x=0 : |0〉. (D.36)
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O condensado de quarks se relaciona com [A1]αβ através de:

〈q̄q〉 = δβα[A1]αβ . (D.37)

Considerando que:

[A1]αβ = δαβN1, (D.38)

temos,

N1 =
〈q̄q〉
4
, (D.39)

ou seja, 〈0| : qa(0)q̄b(0) : |0〉 = − 〈q̄q〉
12
δab.

Para avaliar o coeficiente [A2µ]αβ usamos o fato que os os quarks obedecem a

equação de movimento,

6Dq(x) = −imqq(x), (D.40)

onde Dµ = ∂µ − igsτ
ABA

µ (x). Aplicando o gauge do ponto fixo, podemos trocar a

derivada usual pela derivada covariante em todos os termos da expansão Eq.(D.32),

assim temos a relação para o coeficiente [A2µ]αβ ,

γµβα[A2µ]αβ = 〈0| : q̄(0) 6Dq(x)|x=0 : |0〉 = −imq〈q̄q〉. (D.41)

Considerando que:

[A2µ]αβ = [γµ]αβN2, (D.42)

temos,

N2 =
−imq〈q̄q〉

16
. (D.43)

Para avaliar o coeficiente [A3µν ]αβ usamos uma nova equação de movimento válida

para quarks leves,

D2q(x) =
1

2
gsσ.G(x)q(x), (D.44)

onde σ.G(x) = σµντ
AGAµν(x).

Assim ficamos com a relação:

gµνδβα[A3µν ]αβ = 〈0| : q̄(0) D2q(x)
∣∣∣
x=0

: |0〉 =
1

2
〈q̄gsσ.Gq〉. (D.45)
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Considerando que:

[A3µν ]αβ = gµνδαβN3, (D.46)

temos,

N3 =
〈q̄gsσ.Gq〉

25
. (D.47)

Para avaliar o coeficiente [A4µνρ]αβ usamos as duas equações de movimento Eqs.(D.40)

e (D.44), assim ficamos com a relação:

gµν [γρ]βα[A4µνρ]αβ = 〈0| : q̄(0) D2 6Dq(x)
∣∣∣
x=0

: |0〉 =
−imq

2
〈q̄gsσ.Gq〉. (D.48)

Considerando a estrutura simétrica:

[A4µνρ]αβ = [gµνγρ + gρνγµ + gρµγν ]αβ N4, (D.49)

temos,

N4 =
−imq〈q̄gsσ.Gq〉

263
. (D.50)

Assim temos o propagador de quarks Eq.(D.30) até dimensão 6.

〈0| : qa(x)q̄b(0) : |0〉 = δab

(
−〈q̄q〉

12
+
imq〈q̄q〉

48
6x− x2

263
〈q̄gsσ.Gq〉 +

ix2mq

2732
〈q̄gsσ.Gq〉 6x

)

(D.51)

D.3 Parcela não fatorável

Na regra de soma existe a formação de novos termos para o propagador que estão rela-

cionados ao valor esperado 〈qa(x)gsGA
µν(0)q̄b(0)〉, que aparece no produto dos propa-

gadores Eq.(D.19) e Eq.(D.30). Podemos relacionar essa parcela não fatorável para o

propagador de quarks com um singleto de cor:

〈0| : q̄β(0)gsG
A
µν(0)qα(x) : |0〉 = −τAba〈0| : qaα(x)gsG

A
µν(0)q̄bβ(0) : |0〉. (D.52)

Considerando que:

〈0| : qaα(x)gsG
A
µν(0)q̄bβ(0) : |0〉 = τAab[∆αβ(x)]µν , (D.53)



84 APÊNDICE D. PROPAGADOR DE QUARKS “CHEIO”

temos,

[∆αβ(x)]µν = −1

4
〈0| : q̄β(0)gsG

A
µν(0)qα(x) : |0〉. (D.54)

Fazendo a expansão do campo qα(x) e aplicando o gauge do ponto fixo, temos a

expansão para o propagador de quarks não fatorável até dimensão 6,

〈0| : q̄β(0)gsG
A
µν(0)qα(x) : |0〉 = [A1µν ]αβ + xρ[A2ρµν ]αβ. (D.55)

onde,

[A1µν ]αβ = 〈0| : q̄β(0)gsG
A
µν(0)qα(0) : |0〉, (D.56)

[A2ρµν ]αβ = 〈0| : q̄β(0)gsG
A
µν(0) Dρqα(x)|x=0 : |0〉, (D.57)

Considerando a forma antissimétrica:

[A1µν ]αβ = [σµν ]αβN1, (D.58)

temos o valor de N1 através da contração da Eq.(D.56) por σµν ,

N1 =
〈q̄gsσ.Gq〉

243
. (D.59)

Considerando a forma antissimétrica em µν:

[A2ρµν ]αβ = [σµνγρ + γρσµν ]αβN2, (D.60)

temos o valor de N2 através da contração da Eq.(D.57) por σµνγρ,

N2 =
−imq〈q̄gsσ.Gq〉

263
. (D.61)

Assim a componente não fatorável para o propagador de quarks até dimensão 6.

〈qa(x)gsGA
µν q̄b(0)〉 = −τAab

(
1

263
〈q̄gsσ.Gq〉σµν −

i

283
mq〈q̄gsσ.Gq〉( 6xσµν + σµν 6x)

)
.

(D.62)

Desse modo, temos finalmente o propagador de quarks “cheio”, Eqs.(D.1,D.62),

escrito com duas estruturas de cor,

Sab(x) = δabSI(x) + τabSII(x). (D.63)
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D.4 Propagador de quarks leves no espaço das con-

figurações

Resumindo os cálculos realizados neste apêndice, temos o propagador de quarks no

espaço das configurações até dimensão 6.

δab
i

2π2x4
6x

−δab
mq

4π2x2

−τAab
i

32π2x2
gsG

A
µν(0)(6xσµν + σµν 6x)

−δab
< q̄q >

12

−τAab
mq

32π2
gsG

A
µν(0)σµν ln(−x2)

δab
imq < q̄q >

48
6x

−δab
x2

263
< q̄gsσ.Gq >
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−δab
mq < g2

sG
2 >

293π2
x2ln(−x2)

−τAab
1

263
< q̄gsσ.Gq > σµν

−τAab
i

283
mq < q̄gsσ.Gq > ( 6xσµν + σµν 6x)

δab
ix2mq

2732
< q̄gsσ.Gq > 6x



Apêndice E

Transformadas de Fourier para
quarks leves

E.1
∫
d4x eiqx

(x2−iε)n

Considere a integral,

In =
∫
d4x

eiqx

(x2 − iε)n
, (E.1)

para ε > 0. Usando a identidade,

1

(x2 − iε)n
=

1

(−i)n(n− 1)!

∫ ∞

0
dααn−1e−iα(x2−iε), (E.2)

na integral Eq.(E.1), obtemos:

In =
1

(−i)n(n− 1)!

∫ ∞

0
dααn−1e−αε

∫
d4xeiqxe−iαx

2

. (E.3)

Transformando a função eiqxe−iαx
2

numa gaussiana e usando a fórmula da integral

gaussiana complexa [64, 65],

∫ ∞

−∞
dke−iαk

2

= e−i
π
4

√
π

α
, (E.4)

onde para a integral
∫∞
−∞ dkeiαk

2

o procedimento consite em operar o conjugado com-

plexo na Eq.(E.4), obtemos:

∫
d4xeiqxe−iαx

2

= i
π2

α2
ei

q2

4α . (E.5)

Inserindo a Eq.(E.5) e fazendo uma mudança de variáveis, u = 1
α
, e aplicando o

limite ε→ 0, podemos expressar a integral da Eq.(E.3) na forma:

In =
iπ2

(−i)n(n− 1)!

∫ ∞

0
du

ei
q2

4u

un−1
, (E.6)
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Na QCDSR os processos ocorrem para q2 < 0, portanto devemos escolher a parte de

baixo de um semi-ćırculo de integração complexa, assim transformamos essa integral

complexa numa integral real, do tipo,

∫ ∞

0
du

ei
q2

4u

un−1
=

1

(−i)n−2

∫ ∞

0
dz
e
q2

4
z

zn−1
. (E.7)

Usando a identidade,

1

zn−1
=

1

(n− 2)!

∫ ∞

0
dααn−2e−αz, (E.8)

na Eq.(E.7), obtemos a integral:

∫ ∞

0
dz
e
q2

4
z

zn−1
=

1

(n− 2)!

∫ ∞

0
dα

αn−2

α− q2

4

. (E.9)

A integral
∫∞
0 dα αn−2

α− q2

4

é divergente. Controlamos essa divergência através do método

de regularização do cut-off, onde substituimos o infinito pelo parâmetro de regular-

ização Λ, assim temos:

∫ Λ

0
dα

αn−2

α− q2

4

= (q2/4)n−2ln(−q2/4) + Polinômios Reais(q2,Λ). (E.10)

onde os coeficientes polinomiais divergem para o limite Λ → ∞.

Os polinômios são eliminados pela transformada de Borel, assim para a QCDSR

ficamos com a integral através das Eqs.(E.6),(E.7), (E.9) e (E.10),

∫
d4x

eiqx

(x2)n
=

iπ2(−1)n24−2n

(n− 1)!(n− 2)!
(q2)n−2ln


 −q2

Λ2
QCD


 , (E.11)

válido para n ≥ 2.

Na Ref.[66] essa integral é obtida por regularização dimensional.

Para o caso, n = 1, obtemos facilmente a integral da Eq.(E.7) sem usar a regulari-

zação do cut-off, assim através das Eqs.(E.6) e (E.7), temos:

∫
d4x

eiqx

x2
= i

4π2

−q2
. (E.12)

Uma generalização imediata dessas fórmulas, consiste na aplicação do operador,

∂

∂qµ
= 2qµ

∂

∂q2
. (E.13)



E.2.
∫
D4Q E−IQX

(Q2+Iε)N
89

Assim obtemos as fórmulas,

∫
d4xeiqx

6x
(x2)n

= 6q π2(−1)n25−2n

(n− 1)!(n− 2)!
(q2)n−3


1 + (n− 2)ln


 −q2

Λ2
QCD




 . (E.14)

∫
d4xeiqx

6x
x2

= 6q8π2

q4
. (E.15)

E.2
∫
d4q e−iqx

(q2+iε)n

Neste caso, o cálculo da transformada de Fourier é idêntico ao procedimento anterior,

onde devemos usar uma outra identidade,

1

(q2 + iε)n
=

1

(i)n(n− 1)!

∫ ∞

0
dααn−1eiα(q2+iε). (E.16)

Seguindo os mesmos passos descritos na seção anterior e considerando que os pro-

cessos da QCDSR ocorrem para x2 < 0, obtemos:

∫
d4q

e−iqx

(q2)n
=
iπ2(−1)n+124−2n

(n− 1)!(n− 2)!
(x2)n−2ln


 −x2

Λ2
QCD


 , (E.17)

∫
d4q

e−iqx

q2
= i

4π2

x2
, (E.18)

∫
d4qe−iqx

6q
(q2)n

= 6x π2(−1)n25−2n

(n− 1)!(n− 2)!
(x2)n−3


1 + (n− 2)ln


 −x2

Λ2
QCD




 , (E.19)

∫
d4qe−iqx

6q
q2

= 6x8π2

x4
. (E.20)

E.3
∫
d4x eiqx

(x2−iε)n ln(−x2)

Definimos:

In =
∫
d4x

eiqx

(x2 − iε)n
ln(−x

2

µ
).

Usando n=2 na Eq.(E.17), temos:

ln(−x
2

µ
) =

i

π2

∫
d4p

e−ipx

(p2 + iε)2
, (E.21)
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onde de imediato temos a transformada de Fourier,

I0 =
∫
d4xeiqxln(−x

2

µ
) = i

16π2

q4
. (E.22)

Agora queremos calcular a integral desconhecida,

I1 =
∫
d4x

eiqx

x2
ln(−x

2

µ
), (E.23)

onde aplicando o operador, ficamos com a equação diferencial,

∂

∂qα∂qα
I1 = −I0

∂

∂qα∂qα
= 4q2 ∂

2

∂q4
+ 8

∂

∂q2
. (E.24)

Assim ficamos com uma equação diferencial, cuja solução que não interfere com a

solução homogênia dessa equação é:

I1 = i
4π2

q2
ln

(
−q2

µ

)
. (E.25)

Para obter I2, geramos novamente a equação diferencial que conecta essa nova

solução com a solução anterior, escrita na forma:

∂

∂qα∂qα
In = −In−1.

Assim por esse método iterativo, temos as novas integrais, despresando as termos

polinomiais:

I2 = −iπ
2

2

[
ln2

(
−q2

µ

)
− 2ln

(
−q2

µ

)]
. (E.26)

I3 = i
π2q2

16

[
ln2

(
−q2

µ

)
− 5ln

(
−q2

µ

)]
. (E.27)

I4 = −iπ
2q4

273

[
ln2

(
−q2

µ

)
− 20

3
ln

(
−q2

µ

)]
. (E.28)

I5 = i
π2q6

21132

[
ln2

(
−q2

µ

)
− 47

6
ln

(
−q2

µ

)]
. (E.29)

Para o Ξ−− na nossa corrente, caṕıtulo 3, a transformada de Fourier que estávamos

interessado é dada pela integral I5. Aplicando novamente o operador Eq.(E.13), temos:

∫
d4xeiqx

6x
x10

ln(−x2) = 6q π2

21032
q4

[
3ln2

(
−q2

Λ2
QCD

)
− 43

2
ln

(
−q2

Λ2
QCD

)]
. (E.30)



E.3.
∫
D4X EIQX

(X2−Iε)N LN(−X2) 91

Para o vértice ΘnK, caṕıtulo 4, usamos a transformada de Fourier de I2, assim

temos:
∫
d4xeiqx

6x
x4

ln(−x2) = 6q2π2

q2

[
1 − ln

(
−q2

Λ2
QCD

)]
. (E.31)



Apêndice F

Relação de dispersão

Considere uma função invariante, escrita numa relação de dispersão,

Π(q2) =
∫ ∞

0
ds

ρ(s)

s− q2 − iε
. (F.1)

Usando a relação para ε > 0,

1

s− q2 − iε
= iπδ(s− q2) + ∆(s− q2), (F.2)

onde,

∆(s− q2) =
s− q2

(s− q2)2 + ε2
, (F.3)

temos que a função Eq.(F.1) é dada por:

Π(q2) = iπρ(q2) + parte real. (F.4)

Assim obtemos a bem conhecida relação de dispersão,

Π(q2) =
1

π

∫ ∞

0
ds

ImΠ(s)

s− q2 − iε
. (F.5)

Para esse tipo de função onde conhecemos a sua parte imaginária, a transformada

de Borel em Q2 = −q2 é imediata, pois o operador diferencial Eq.(2.18) só atua na

parcela que depente de Q2, logo temos:

B[Π(Q2)] =
1

π

∫ ∞

0
dsImΠ(s)e−s/M

2

. (F.6)

No apêndice E, obtemos algumas formas funcionais para os correlatores, por ex-

emplo:

Π(Q2) = ln(Q2)Q2k, (F.7)
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onde no domı́nio q2 = s > 0, geramos uma parte imaginária para o logaritmo, via:

ln(Q2) = ln(−s) = ln(−1) + ln(s), (F.8)

Onde para que a relação de dispersão Eq.(F.5) seja válida para ε > 0, temos que

considerar,

ln(−1) = −iπ. (F.9)

Assim temos de imediato a parte imaginária da Eq.(F.7), dada por:

ImΠ(s)

π
= (−1)k+1sk. (F.10)

Assim temos a transformada de Borel,

B[ln(Q2)Q2k] = (−1)k+1
∫ ∞

0
dse−s/M

2

sk = (−1)k+1k!(M2)k+1. (F.11)

Podemos ver que para k = 0, temos o mesmo valor que do método derivativo Eq.(2.20).

Na maioria dos casos o uso de uma relação de dispersão permite um cálculo bem mais

simples para a transformada de Borel que o uso da sua forma derivativa.

Existe alguns correlatores onde o uso da relação de dispersão Eq.(F.5) não fornece

uma expressão simples para a transformada de Borel, por exemplo:

Π(q2) =
ln(−q2)

q2 + iε
, (F.12)

onde a sua parte imaginária é:

ImΠ(s)

π
= −1

s
− 2δ(s) ln(

s

µ
). (F.13)

O uso da relação de dispersão Eq.(F.5) e da transformada de Borel fornece termos

divergentes, que são controlados se adimitirmos que os infinitos se cancelem. Para o

correlator ln(−q2)
(q2+iε)2

, a situação é bem mais complicada e não temos como controlar essas

divergências.

Assim a nossa postura, consiste em escrever esses correlatores através da identidade,

ln(Q
2

µ
)

Q2
=
∫ ∞

0
ds

ln( s
µ
)

(s+Q2)2
, (F.14)
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onde neste caso não temos termos de subtração.

Para provar essa identidade, fazemos a transformação s = Q2λ, no lado direito da

equação Eq.(F.14), obtendo,

∫ ∞

0
ds

ln( s
µ
)

(s+Q2)2
=

1

Q2

∫ ∞

0
dλ

ln(λ)

(1 + λ)2
+

ln(Q
2

µ
)

Q2

∫ ∞

0
dλ

1

(1 + λ)2
,

onde a primeira integral é zero e a segunda é 1.

Uma outra relação pode ser constrúıderivando em Q2 a Eq.(F.14), obtendo,

ln(Q
2

µ
)

Q4
= 2

∫ ∞

0
ds

ln( es
µ
)

(s+Q2)3
. (F.15)

Desse modo podemos construir relações para o caso mais geral
ln(Q

2

µ
)

Q2n .

F.1 Transformada de Borel para
ln(Q2

µ )

Q2n

Considere a transformada de Borel em Eq.(F.14),

B


 ln(Q

2

µ
)

Q2


 =

∫ ∞

0
dsln

(
s

µ

)
e−s/M

2

M2
, (F.16)

onde fazendo a transformação s = M2λ, ficamos com a transformada de Borel,

B




ln(Q
2

µ
)

Q2


 = −γE + ln

(
M2

µ

)
, (F.17)

onde γE = − ∫∞0 dλln(λ)e−λ = 0.5772 . . ..

Analogamente, temos, para a Eq.(F.15):

B


 ln(Q

2

µ
)

Q4


 =

1 − γE
M2

+
ln
(
M2

µ

)

M2
. (F.18)



Apêndice G

Fórmulas úteis para as QCDSR

G.1 Algebra das matrizes de Gell-Mann

Destacamos as seguintes propriedades para as matrizes de Gell-Mann,

τAaa = 0, (G.1)

τAabτ
B
ba =

1

2
δAB, (G.2)

τAabτ
A
cd =

1

2

[
δadδbc −

1

3
δabδcd

]
. (G.3)

G.2 Algebra das matrizes de Dirac

Temos as seguintes definições:

C = iγ2γ0, (G.4)

σµν = iγµγν − igµν , (G.5)

γ5 = iγ0γ1γ2γ3. (G.6)

Essas matrizes obedecem as seguintes propriedades,

C−1 = CT = C† = −C, (G.7)

CγTµC = γµ, (G.8)

CσTµνC = σµν , (G.9)

chamando

T µν(x) = 6xσµν + σµν 6x, (G.10)
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obtemos

CT µν(x)TC = −T µν(x), (G.11)

T µν(x)Tµν(x) = 24x2, (G.12)

γµγ
µ = 4, (G.13)

σµνσ
µν = 12, (G.14)

γ†0 = γT0 = γ0, (G.15)

γ†5 = γT5 = γ5, (G.16)

{γ5, γµ} = 0, (G.17)

σµνγασ
µν = 0, (G.18)

γµσαβγ
µ = 0, (G.19)

6x 6y = − 6y 6x+ 2xy, (G.20)

6xT µν(x) = T µν(x) 6x, (G.21)

γα 6xσµν 6xγασµν = 0, (G.22)

γασµν 6xγασµν = 24 6x, (G.23)

γα 6xσµν 6xγα 6x 6yσµν = 0, (G.24)

γα 6xσµν 6xγα 6xσµν 6y = 0, (G.25)

T µν(x) 6yσµν = −4 6x 6y + 16xy, (G.26)

T µν(x)σµν 6y = 12 6x 6y. (G.27)

Para maiores detalhes Ref.[67].



Apêndice H

Regras de Cutkosky

O uso das regras de Cutkosky [49] possibilita escrever uma integral do tipo:

F (q2, p,2, p2) = i
∫ d4k

(2π)4

ρ(k, q2, p,2, p2)

((p− k)2 −m2 + iε)((k − p,)2 + iε)(k2 −m2 + iε)
, (H.1)

através de uma dupla relação de dispersão,

F (p2, p,2, q2) = − 1

4π2

∫ ∞

0

∫ ∞

0
dsdu

DD.F (s, u, q2)

(s− p2)(u− p,2)
, (H.2)

onde DD.F é a dupla descontinuidade de F dada por

Através da regra de Cutkosky,

1

p2 −m2 + iε
→ −2πiδ(p2 −m2)θ(p0), (H.3)

aplicada a todos os denominadores da Eq.(H.1), temos a dupla descontinuidade de F ,

DD.F (q2, p,2, p2) = −
∫
d4kfC(p2, p,2, k)ρ(k, q2, p,2, p2), (H.4)

onde,

fC(p2, p,2, k) =
1

2π
δ[(p−k)2−m2]δ[(k−p,)2]δ[k2−m2]θ(p0−k0)θ(p,0−k0)θ(k0). (H.5)

Definindo o referencial:

pµ = (p0,~0),

p,µ = (p,0, 0, 0, p3). (H.6)

97



98 APÊNDICE H. REGRAS DE CUTKOSKY

Podemos expressar os parâmetros p0, p,0 e p3 em termos dos invariantes,





u = p,2,
s = p2,
t = (p, − p)2,

(H.7)

obtendo:

p0 =
√
s

p,0 =
u+ s− t

2
√
s

p3 =

√
λ

2
√
s
,

onde,

λ = (u+ s− t)2 − 4us. (H.8)

Assim podemos expressar as funções delta na forma:

δ[k2 −m2] = δ[k2
0 −m2 − ~k2], (H.9)

δ[(p− k)2 −m2] = δ[p2 − 2p0k0 + (k2 −m2)] = δ[s− 2
√
sk0], (H.10)

δ[(k − p,)2] = δ[k2 − 2(p′0k0 − p′3k3) + p′2] = δ[(m2 − 2p′0k0 + u) + 2p′3k3]. (H.11)

Na Eq.(H.10), podemos ver que a função delta depende apenas de k0,

δ[(p− k)2 −m2] =
1

2
√
s
δ[k0 − k̄0], (H.12)

onde k̄0 =
√
s

2
. Efetuando uma integração em k0, temos que a função delta Eq.(H.9)

dependente apenas de ~k2. Efetuando uma integração em ~k2, temos para a função delta

Eq.(H.11) uma dependência em k3. Adotando o sistema de coordenadas esféricas na

integração da Eq.(H.4), onde k3 =

√
~̄k2cos(Θ), podemos expressar a Eq.(H.11) na

forma,

δ[(k − p,)2] =

√
s

√
λ

√
~̄k2

δ[cos(Θ) − cos(Θ̄)], (H.13)

onde ~̄k2 = k̄2
0 −m2 e

cos(Θ̄) = − λ2

√
s

2
√
λ

√
~̄k2

,
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onde,

λ2 = u+ t− s+ 2m2. (H.14)

Para que as funções θ da Eq.(H.5) sejam diferentes de zero e que a dupla descon-

tinuidade seja uma função cont́ınua em u e s, temos: s > 4m2 e u > t. Desse modo

ficamos com a expressão para a dupla descontinuidade,

DD.F (t, u, s) = − 1

4
√
λ

∫ ∞

−∞
dk0

∫ ∞

0
dR

∫ 1

−1
dwδ[k0 − k̄0]δ[R− ~̄k2]δ[w − cos(Θ̄)]

× ρ(k0, R, w, t, u, s) = − 1

4
√
λ
ρ(k̄0, ~̄k2, cos(Θ̄), t, u, s). (H.15)

Para ρ = 1 e m = mc, temos a dupla descontinuidade da Eq.(5.34) do caṕıtulo 5,

DD.Θ(u, s, t) = − 1

4
√
λ
. (H.16)

Para que a dupla descontinuidade seja não nula, temos que −1 < cos(Θ̄) < 1. Assim os

valores máximos e mı́nimos de u são obtidos para cos(Θ̄)2 = 1, que fornece a equação

s(u+ t− s+ 2m2)2 = [(u+ s− t)2 − 4us](s− 4m2), (H.17)

onde os valores máximos e mı́nimos de u são:

umaxmin =
1

2m2

[
−st+m2(s+ 2t) ±

√
s(s− 4m2)(t−m2)2

]
, (H.18)

com s > 4m2.

Para que u > t, temos que umin > t, assim temos que t < m2.

Para calcular a dupla descontinuidade da Eq.(5.33), usamos o fato que podemos

expressar a Eq.(5.33) em termos de duas estruturas invariantes,

Πβ(q, p, p′) = F1(q
2, p2, p′2)pβ + F2(q

2, p2, p′2)p′β (H.19)

onde no referencial Eq.(H.7), temos a sua dupla descontinuidade,




DD.Π0(q, p, p′) = [DD.F1(q
2, p2, p′2)]p0 + [DD.F2(q

2, p2, p′2)]p′0,
DD.Π1(q, p, p′) = DD.Π2(q, p, p′) = 0,
DD.Π3(q, p, p′) = [DD.F2(q

2, p2, p′2)]p3.
(H.20)

Usando a expressão Eq.(H.15), podemos obter facilmenteDD.Π0(q, p, p′) eDD.Π3(q, p, p′).

Usando os valores de p0, p′0 e t = q2, obtemos a dupla descontinuidade:

DD.Πβ(u, s, t) = − 1

8λ3/2

{
[λ+ λ2(u+ s− t)]pβ − 2sλ2p

,β
}
. (H.21)
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