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Resumo

Usamos as regras de soma da QQCD para obter a massa dos pentaquarks ©7(1540)
e Z77(1862), a largura de decaimento da ©F e a constante de acoplamento e fator de
forma presentes no vértice J/1)DD*.

No estudo dos pentaquarks, usamos dois tipos de campos interpolantes contendo
dois diquarks altamente correlacionados. Obtemos as massas consistentes com os dados
experimentais, porém esta regra de soma tém uma grande contribuicao do continuo e
a OPE nao é muito boa. Obtivemos uma largura de decaimento compativel com os
valores experimentais desde que sejam subtraidos diagramas que representam a ©F
como um estado ligado K — n.

No estudo do vértice J/¢ D D* calculamos o fator de forma e a constante de acopla-
mento, considerando trés casos: D off-shell, D* off-shell e J /v off-shell. A constante
de acoplamento é a mesma nesses trés casos, porém o fator de forma depende da es-
colha da particula off-shell, onde para a J/1 off-shell o fator de forma é bem mais
duro que o fator de forma obtido para os outros casos. Também comparamos os nossos
resultados com outros métodos: o modelo de quark méson constituintes e o modelo de

quarks relativisticos constituintes.



Abstract

We use the QCD sum rules to obtain the masses of the pentaquarks ©%(1540) and
=77(1862), ©F decay width and the coupling constant and the form factor for the
J/YDD* vertex.

In the study of the pentaquarks, we use two kinds of interpolating fields, containing
two highly correlated diquarks. We get the masses in a good agreement with the experi-
mental value, but this sum rule has a large continuuum contribution and the OPE
convergence is not so good. We get the decay width compatible with the experimental
value, since we subtract the diagrams that represent ©7 as a K — n bound state.

In the study of J/¥DD* vertex, we calculate the form factor and the coupling
constant considering three cases: D off-shell, D* off-shell and J/v off-shell. The
coupling constant is the same in those three cases, however the form factor depends
on the choice of the particle off-shell, where for the J/v¢ off-shell the form factor is
much harder than the form factor obtained for the other cases. We also compare our
results with other methods: the constituent quark meson model and the relativistic

constituent quark model.
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Capitulo 1

Introducao

Em 1997, Diakonov, Petrov e Polyakov, usando um modelo de sélitons quirais [1],
previram a existéncia de um bérion com spin 1/2, isospin 0 carga +1 e estranheza
+1. O fato da estranheza desse barion ser +1, garante que seu conteiiddo minimo de
quarks seja ududs, ou seja, um pentaquark. A previsao para a massa desse barion foi
de m = 1530 MeV e a sua largura foi de 15MeV.

Até 2003, ainda nao tinha sido observado nenhuma particula que fosse compativel
com essa previsao tedrica. As evidéncias para essa particula sé surgiram recentemente
com os experimentos [2, 3], onde foi observado o pentaquark ©%(1540), com massa e
largura de decaimento compativeis com as previsoes de Diakonov et al.. O fato dessa
particula nao ter sido observada anteriormente foi explicada pela sua largura muito
estreita, que deixou essa particula invisivel aos antigos dados [4]. Outros pentaquarks
também foram posteriormente observados: ==~ (1862) [5] e a ©%(3099) [6], porém com
uma evidéncia bem mais fraca que a ©7F.

O fato de vérios experimentos recentes nao terem observado esses pentaquarks [7],
deixa claro que a existéncia dos pentaquarks ainda nao estd completamente consoli-
dada. Dzierba et. al. [8] usa esses resultados, sobre a ndo observagao dos pentaquarks,
para defender a inexisténcia dessas particulas. Por outro lado, Kabana [9] apresenta
varias explicacoes para esses resultados nulos para a observagao dos pentaquarks.

Uma propriedade interessante desses pentaquarks é a sua largura de decaimento

muito pequena, que sugere que os pentaquarks possuem uma estrutura interna muito
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estavel. Atualmente existe uma grande quantidade de estimativas para a largura de
decaimento da ©F, recentemente catalogadas no Particle Data Group [10].

Um modelo interessante para a estrutura dos pentaquarks é o estado diquark-
diquark-antiquark proposto por Jaffe e Wilczek (JW) [11]. Em JW, cada par de
diquark possui spin zero e o estado resultante dessa combinagao é um antidecupleto
Ef e um octeto 8¢ fig. 1.1, em SU(3) de sabor, que consegue acomodar os pentaquarks
©7(1540) e ==7(1862), além da ressonancia Roper N(1440), que é o primeiro estado

excitado do nucleon.

O lludf's>

hipercarga

3 lisuf's>

=7 |[sdfu>

Projecao |, para o Isospin

Figura 1.1: Os pentaquarks representantes do modelo de Jaffe e Wilczek.

O valor da massa do ==~ (1862) nesse modelo de quarks é aproxidamente 100 MeV
menor do que o observado experimentalmente. A extensao desse modelo para incluir
a ©2(3099) fornece um desvio maior de 400MeV [11].

Uma abordagem para o estudo dos pentaquarks consiste em usar métodos nao-
perturbativos da cromodinamica quantica (QCD), onde destacamos o uso das Regras
de Soma da QCD (QCDSR). Vérios grupos tém usado as QCDSR para o estudo
da ©7(1540) [12, 13, 14, 15, 16, 17], =~ (1862) [18] e ©%(3099) [19]. Nosso grupo

[1]

desenvolveu trabalhos para dois desses pentaquarks, a ©1(1540) [17] e 0 =7 (1862)
[18], usando dois tipos de corrente para os pentaquarks, motivadas na proposta de JW.

Todos esses trabalhos em regras de soma da QCD se limitaram em obter a massa dos

pentaquarks. Entretanto, no trabalho da Ref.[13], foi feita a primeira previsao para a



paridade da ©" em QCDSR.

O entendimento da largura de decaimento tao pequena da ©1(1540) tem se mostrado
um grande desafio tedrico. Recentemente, Jaffe [20] mostrou que a largura obtida pelo
método de sdlitons quirais é o dobro do valor previsto por Diakonov et al. [1], que nos
leva a sérias duvidas sobre a confiabilidade deste método para a obtencao da largura

de decaimento.

Usando as QCDSR, Oganesian [15] sugeriu uma explicacgdo qualitativa para a
largura da ©T. Ele partiu de observacoes simples a respeito das simetrias das cor-
rentes que descrevem os hadrons no decaimento, e as propriedades do diagrama basico
do decaimento no lado tedrico da regra de soma. As andlises apresentadas em [15] sdo
apenas qualitativas, mas chega-se a conclusao de que a largura de decaimento seria
proporcional a a?(gq)?, devido a necessidade de troca de gluons para se obter estados
finais singletos de cor, a partir de um pentaquark que tem uma estrutura de cor nao

trivial.

Num trabalho recente, Diakonov [21] apresenta uma outra interpretacdo para a
largura estreita da ©T. Nesse trabalho se considera que o nucleon produzido no de-
caimento estd num estado de cinco quarks. Assim a largura de decaimento estreita
da ©F ¢ explicada qualitativamente pela baixa superposicao entre o nucleon e a sua

componente de cinco quarks.

A largura de decaimento da ©F foi recentemente estudada pelo nosso grupo [22],
usando as QCDSR. Nossos estudos mostram que a largura de decaimento obtida sé
seria compativel com as observacoes experimentais se a paridade da ©% fosse positiva.
Também exploramos a interpretagao de Kondo et al. [23] para a estrutura interna dos

pentaquarks, através da selecao de diagramas para a nossa funcao de vértice.

Um outro problema atual na fisica de hadrons consiste na busca da evidéncia da
formacao do plasma de quarks e gluons (QGP). A QCD prevé [24] que a densidades

de energia altas, a matéria hadronica sofre uma transicao de fase para um estado
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de quarks e gluons desconfinados, permitindo que uma nova fisica, semelhante aos

instantes iniciais ap6s ao Big Bang, possa ser estudada.

Matsui e Satz [25] mostraram que no QGP, além do desconfinamento ocorre também
a blindagem de cor, em virtude da qual, o potencial entre o quark e o anti-quark se
torna de alcance tao curto que a formacao de um estado ligado se torna bastante
dificil. Assim, uma das assinaturas da formacao do plasma é a supressao na formacao

da particula J/1.

A supressao da J/1 jé foi observada experimentalmente [26] em colisoes de fons
pesados relativisticos p+ A, O + U, S+ U e Pb+ Pb. Para as colisoes p + A, a
supressao observada da J/1¢ e 9’ pode ser explicada pela absor¢do de um precursor
comum, provavelmente um estado nao ressonante octeto de cor nos quarks ((cc)sg),
pelos nucleons [27]. Esta explicagao pode ser extendida para colisoes do tipo O + U
e S+ U para a J/¢, mas nao para a ¢, onde uma supressao adicional é observada.
Nas colisbes Pb + Pb também se observou uma supressao adicional para a J/¢, que
poderia ser interpretada como um sinal da formacao do QGP. Entretanto, existem
outros mecanismos, além da formacao do QGP, que poderiam explicar a supressao

observada.

Portanto, enquanto existem sugestoes de que a supressao anomala evidencia a
formacao do QGP, outros mecanismos mais convencionais, baseados na reagao da J/1
com os fragmentos da colisao, ainda devem ser considerados, antes de termos uma

conclusao acerca do QGP.

O principal ingrediente nos célculos baseados na dissociagao hadronica da J/¢ é a
segao de choque de absorgao da J/v pelos hadrons. Estimativas usando QCD pertur-
bativa dao valores muito pequenos para explicar a supressao observada. Por exemplo,
para explicar a supressdo da J/v observada nas colisoes p+ A precisa-se de uma segao
de choque de absorgao de ~ 7.5mb [27, 28], enquanto que a QCD perturbativa fornece

~ 2 — 3mb. Essa secao de choque tem sido investigada usando varios métodos, em



particular, pelas teorias hadronicas baseadas em lagrangianas efetivas [29, 30, 31].

O problema desses modelos baseados em lagrangianas efetivas é que eles depen-
dem de constantes de acoplamento e fatores de forma que nao sao fenomenologicamente
conhecidos e raramente podem ser obtidas de dados experimentais. Os varios céalculos
feitos com lagrangianas efetivas diferem devido aos métodos usados para estimar essas
constantes, e principalmente pela escolha dos fatores de forma nos vértices, que re-
duzem drasticamente a segdo de choque de dissociagao [29].

Nos trabalhos mais antigos, em geral se assume um fator de forma de monopdlo nos
vértices hadronicos, que introduz um outro parametro desconhecido, o cutoff. Além
disso, usa-se as rela¢oes de SU(4) e o método da dominancia do méson vetorial, que sao
aproximacoes questionaveis, para estimar as constantes de acoplamento. Por exemplo,
as relagoes de SU(4) colocam num mesmo multipleto o quark pesado ¢ e outros quarks
leves. Como os resultados obtidos para as secoes de choque sao muito sensiveis com
a escolha das constantes de acoplamento e dos fatores de forma, isso nos mostra a
importancia de se ter um calculo confiavel para obter os fatores de forma e constantes
de acoplamento.

As QCDSR vem sendo utilizadas no calculo das constantes de acoplamento e fatores
de forma nesses vértices hadronicos [32, 33, 34, 35, 36, 37]. Nés mostramos aqui o
célculo do fator de forma e constante de acoplamento no vértice J/¢ D D*.

Este trabalho esta organizado da seguinte maneira. No capitulo 2, apresentamos o
método das QCDSR e o formalismo para o calculo das fungoes de correlagao de dois e
trés pontos. No capitulo 3, aplicamos as QCDSR para calcular a massa e a paridade
dos pentaquarks ©F ¢ Z7~. No capitulo 4, apresentamos o cdlculo para a largura de
decaimento da ©7 e a teoria de conecxao de cores. No capitulo 5, mostramos o estudo
do vértice J/wDD*, onde calculamos o acoplamento e o seu fator de forma, além de
comparar nossos resultados com outros trabalhos recentes. Concluimos, entao, com

um resumo dos principais resultados obtidos e as perspectivas futuras deste trabalho.



Capitulo 2

Método das Regras de Soma da
QCD

O método das regras de soma da QCD tem sido usado com bastante sucesso na des-
crigdo das propriedades hadronicas (massas, constantes de acoplamento, larguras de
decaimentos, fatores de forma) a partir de parametros da QCD. O método foi origi-
nalmente introduzido por Shifman, Vainshtein e Zakharov em 1979 [38] para descrever
propriedades mesonicas. A extensao para béarions foi feita por loffe [39] (ver também

[40]). Existem vdrias revisoes detalhadas sobre o assunto [41, 42, 43, 44].

O método das regras de soma da QCD se baseia no cédlculo de fungoes de correlagao
(também chamadas de correlatores) de operadores locais compostos. Cada operador
composto é construido usando campos de quarks e/ou gluons, de tal forma a possuirem
0s mesmos numeros quanticos do hadron que queremos estudar. Em geral esses opera-
dores sao chamados de campos interpolantes. A suposicao fundamental do método das
QCDSR ¢ o principio da dualidade, que assume que um hadron pode ser equivalente-
mente descrito em termos dos graus de liberdade hadronicos e em termos dos graus de
liberdade da QCD. Assim, o procedimento basico do método das QCDSR consiste de
trés pontos: 1) calcula-se a fungao de correlagdo em termos dos graus de liberdade da
QCD, empregando-se a expansao no produto de operadores (OPE) de Wilson [45], 2)
calcula-se a mesma funcao de correlacao em termos de estados intermediarios fisicos

empregando-se relagoes de dispersao [46] que incorporam um ansatz simples para a

6



densidade espectral e 3) compara-se, através de um procedimento adequado, essas duas
descricoes para se extair informagoes sobre as propriedades hadronicas em termos das

quantidades fundamentais do vacuo da QCD.

A esséncia da OPE é a separagao de todas flutuacoes de campos em escalas: peque-
nas e grandes distancias ou, no espago dos momentos, grandes e pequenos momentos
(tipo espago). Na QCD essa separacao quase sempre corresponde a separagao entre a
fisica perturbativa e a nao-perturbativa. Assim, na OPE, os coeficientes da expansao
sao calculados a partir da QCD usando-se a teoria de perturbacao, e portanto possuem
informagao sobre a fisica de pequenas distancias (ou grandes momentos) enquanto que
a fisica nao perturbativa é parametrizada através dos elementos de matriz de uma
série de operadores locais: os condensados. Em principio, os condensados sao cal-
culdveis diretamente da QCD (usando-se, por exemplo, simula¢oes na rede), mas na
pratica eles sao usualmente determinados fenomenoldgicamente a partir de uma série
de regras de soma, e aplicados em outras. Conseqiientemente, o sucesso do método
depende crucialmente do fato de ser possivel truncar essa série infinita num ntmero

finito e pequeno de termos.

Apesar dos condensados conterem informacoes nao perturbativas, a OPE é basi-
camente uma expansao em curtas distancias, e numa ordem finita sé pode descrever
precisamente a func¢ao de correlagdo se os momentos (tipo espago) forem suficiente-
mente grandes. Por outro lado, nds queremos obter informacoes sobre as excitacgoes
de mais baixa energia da densidade espectral, que sabemos dominar a funcao de cor-
relacao somente para momentos pequenos. Como serd entao possivel comparar essas
duas descrigoes 7 O segredo esta na aplicagao da transformada de Borel a essas duas
representagoes [38]. As QCDSR sdo o resultado da identificacdo da transformada
de Borel da fungao de correlagao calculada na OPE com a transformada de Borel da
funcao de correlagao fenomenoldgica. A transformada de Borel melhora a convergéncia

da OPE suprimindo a contribui¢ao dos condensados de dimensoes mais altas. No lado
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fenomenoldgico a transformada de Borel muda a supressao dos estados excitados de
uma lei de poténcia para uma lei exponencial, além de eliminar os polinémios de
subtracao presentes na representacao espectral do correlator.

E importante enfatizar que o método das QCDSR é aproximado. Ele requer uma
certa quantidade de andlise e nao pode ser formalizado da mesma forma que, por
exemplo, a solugao da equacao de Shrodinger. Por outro lado, ele ndao é um modelo.
Qualquer modelo requer necessariamente suposicoes ad hoc, e a precisao das pre-
visoes correspondentes nao pode ser controlada de dentro do modelo. No método das
QCDSR, uma vez que os valores dos condensados forem estabelecidos, nao existe mais
nenhuma liberdade; eles préprios nos contam se este ou aquele problema em particular
é soluvel. A virtude do método é que ele é analitico, simples e aberto para analises

qualitativas onde se pode facilmente ver o que se relaciona com o que.

2.1 Funcao de correlacao de dois pontos

A funcao de correlacao de dois pontos é usada, nas regra de soma, para a obtencao
da massa e da constante de acoplamento entre o campo interpolante e o hadron con-
siderado. Para mésons vetoriais descarregados, podemos relacionar diretamente essa
constante de acoplamento com a largura de decaimento desses mésons no par elétron-
positron.

A funcao de correlagao de dois pontos é definida por:

Mlg) = i [ d'e™ (0|7 {j(x);'(0)}[0), (2.1)

onde |0) é o vacuo da QCD, T' ¢é o operador de ordenagao temporal e j(x) é a corrente
(ou campo interpolante) do hadron.

O campo interpolante é construido a partir dos operadores de campos dos quarks,
combinados de forma a obtermos os mesmos numeros quanticos da particula em

questao. No caso dos mésons, o D* por exemplo, o campo interpolante tem a forma:

Ju() = qa()ucal@) , (2.2)
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onde ¢(x) e ¢(x) sdo operadores de campo de um quark leve (u ou d) e do quark charme
respectivamente, com o indice de cor a. A matriz v, representa a matriz de Dirac, que
dé o caracter vetorial a corrente na Eq. (2.2). Para um méson pseudoescalar, o méson

D por exemplo, a corrente é dada por:
j5(SL’) = iq—a(x)fyl")ca(x> : (23>
2.1.1 Lado Fenomenolégico

No lado fenomenoldgico da regra de soma, a funcao de correlacao pode ser avaliada
pela insercao de uma série completa de estados fisicos hadronicos intermediarios, que

se acoplam com a corrente considerada, cujo espectro estd representado na Fig.(2.1).

inicio dos estados do
continuo

estado fundamental

m,

Figura 2.1: Estados ressonantes de um sistema qq.

As propriedades analiticas da funcao de correlacao podem ser obtidas através de

uma representacao espectral,

/ ds—q e T (2.4)

onde p(s, q) é a densidade espectral, que contém as propriedades espectrais dos hddrons
e as reticéncias representam os termos de subtragao (polinémios em ¢* com coeficientes
desconhecidos) que asseguram que a contribui¢ao do contorno de integracao no infinito
se anula.

Nas QCDSR, o modelo adotado para a densidade espectral é

p(s,q) = pr(s,q)0(s —mg) + p°(s,4)O(s —m™), (2.5)
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onde pp(s,q) = (0]j|q){q|iT|0) (ver apéndice A).

A informacao sobre p“(s,q) vird do lado tedrico da QCD via uso da dualidade
quark-hadron: p®(s,q) = p?“P (s, q).

Na Ref.[10] podemos observar que o espectro medido para a maioria dos hadrons
obedece aproximadamente ao esbogo da Fig.(2.1), mas com um pequeno ntmero de
estados excitados medidos. A J/1 é uma das particulas com o maior nimero de
estados excitados medidos, e comparando a diferenga entre as massas da J/v¢ e da 9/
obtemos A = 589MeV. Para as particulas DY e D* ainda nao foram medidos seus
estados ressonantes.

Nesta situacao de completa ignorancia sobre os estados excitados, uma postura
utilizada nas QCDSR [47] consiste em ajustar o valor do parametro A, representado
na Fig.(2.1), de tal forma a reproduzir a massa experimental dos hadrons. Na Ref.[43]

usa-se teoricamente um valor comum para todos os hadrons que é A ~ 500MeV.

2.2 Funcao de correlacao de trés pontos

A fungao de correlacao de trés pontos nos permite estudar vértices, como o mostrado
na Fig. 2.2, que nos fornecera informagoes sobre as constantes de acoplamento entre

as particulas, e sobre seus fatores de forma.

M

2) (3)

Figura 2.2: Vértice de trés particulas.
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A funcao de correlagao de trés pontos é definida por:
D(p.pf) = [ d'ad'ye @ =e=(0|T{ja(x)j} ()i} (0)}[0). (2:6)
2.2.1 Lado Fenomenolégico

No caso da funcao de correlacao de trés pontos, o lado fenomenolégico da regra de
soma também pode ser avaliada pela insercao de séries completas dos estados fisicos
hadronicos intermedidrios. Assim, saturando a fungao de trés pontos na Eq.(2.6) com

os estados que representam as particulas 1,2 e 3 na Fig. 2.2 obtemos (ver apéndice B):

(0175]3)V (p, p') (2]33]0) (1] 5] |0)

T(p,p) = :
PP) = Gt i@ — B+ i~ 10

(2.7)

Além da contribuicao dos pélos, dada na Eq.(2.7), devemos incluir também a con-
tribuicao dos estados excitados, e isso pode ser feito expressando a funcao de trés
pontos através de uma relagao de dispersao dupla. loffe e Smilga [48] propuseram o

seguinte modelo para a parte invariante do lado fenomenolégico da funcao de vértice

Eq.(2.6):
L(p? p?) = / (gf’;’ﬁfsﬁ) o (2.8)
onde,
p(s,u, %) = p™(s,u,4%) + pP(s,u,¢%) + p% (5,4, ¢°), (2.9)
Ccom
(s, u,4%) = a(g?)d(s — mP)d(u —m3), (2.10)

que dé a contribuicao dos pélos, fornecida na Eq.(2.7),
B, o .2\ _ 2 2 2 2
p7(s,s",p%) = bi(u,q")d(s — m7)O(u — u,) + ba(s,q°)0(u —m3)O(s — s0), (2.11)

que fornece a contribuicao de transicoes envolvendo um polo e estados excitados, onde

ug € Sg fornecem os limiares do continuo, e

p% (s,u,q*) = CO(s,u,¢*)O(s — 50)O(u — up), (2.12)



12 CAPITULO 2. METODO DAS REGRAS DE SOMA DA QCD

que d4 a contribuigao dos estados no continuo. Na Eq.(2.8), as reticéncias representam
novamente os termos de subtragao, que asseguram que a contribuicao do contorno de

integracao no infinito se anula.
Comparando as Eqs.(2.7), (2.8) e (2.10) podemos identificar a(g*) como

(055]3)V (¢%)(2133]0) (1]1]0)
(¢> —m3)

a(q®) =

. (2.13)

Um problema deste modelo, para a inclusao da contribui¢ao dos estados excitados
na regra de soma de trés pontos, esta relacionado com a regiao de integracao na
Eq.(2.8). Ioffe e Smilga [49] consideraram a regra de soma considerando apenas as
regioes de integracao I e II na Fig. 2.3. Nesse modelo, a regiao I, que é a regiao
onde os seus lados sao os limiares do continuo, representa a contribuicao dos estados
fundamentais, Eq.(2.10). A regidao II, representaria a contribuicao dos estados no
continuo, Eq.(2.12), que podemos aproximar pela expressao obtida no lado da QCD,
via uso da dualidade quark-hadron. As regioes III nao sao muito bem entendidas e,
segundo loffe e Smilga, a contribuicao dessas regioes seria pequena. Eles estudaram
o caso onde uma pequena parte da regiao III é considerada, dominio triangular Fig.
2.3, e observaram que o efeito dessa mudanga nao foi significativo. Na Ref.[50] foi

analisado efeitos importantes da regiao III.

Num outro trabalho [48], loffe e Smilga consideram o efeito da regiao III, através
da contribuigao das transi¢oes pdlo continuo Eq.(2.11).

Em todos nossos trabalhos usamos o modelo de Ioffe: consideramos a contribuicao
das transicoes polo-continuo, e a regiao retangular II para a contribuicao dos estados
no continuo.

Seguindo a prescricao descrita acima, e transferindo a contribuicao dos estados no
continuo para o lado direito da regra de soma, obtemos:

QP (s, u, %)
—p*)(u—p?)’

sO  pu0
Cep(p?,0?) + Tper (P, 0) + Croa(p?, p*) = /0 /0 dsdu( P (2.14)
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| S 1

S, s

Figura 2.3: Regiao de integracao s,u.

onde

0l7alp")V (p, ') {q]33]0) (p| 5110

FPP(p,p,) — 5 <2‘j3| > g )g |.]2‘ ></2‘j1‘ >2 . , (215)
(p2 — m?2 +i€)(q? — m3 +ie)(p'2 — m3 + ie)

1 < by(u,q?)
T por (9%, p%) = / du 2L 2.16
PCl(p p ) m%_pg o U—p/2 ( )

1 < by(s,q?)
Prea@,p?) = ——— [ ds=2L2, 2.17
PC2(p P ) mg_p,g s S s—p2 ( )

2.3 Transformada de Borel

Com o objetivo de suprimir a contribuicao dos estados excitados no lado fenomenolégico
e reduzir a contribuicao dos operadores de dimensoes mais altas na OPE, utilizamos

a transformada de Borel na regra de soma. A transformada de Borel é definida por:

D@ ( d ) F@Q) = FO), (2.18)

n! dQ)?
onde Q? = —¢?, e M?, finito, é definido por,

Q2

n

M2

n—00,Q2—00
Definindo a operagao transformada de Borel por: B[f(Q?)] = fi (M?), podemos mostrar

facilmente que,

1 _m?
B [m] =€ M2, (219)
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B[In(Q*)] = —M?, (2.20)
1
B l@l = 1. (2.21)

Transformadas de Borel de funcoes do tipo 1/(Q* + m?)¥, podem ser obtidas pela
aplicacao o operador % na Eq.(2.19). Pela definigdo na Eq.(2.18), vemos claramente
que a transformada de Borel de qualquer polinémio é zero. E esse fato que nos permite
nao nos preocuparmos com os termos de subtracao nas Eqgs. (2.4) e (2.8).

O ideal, no formalismo das QCDSR, seria encontrar uma regiao de M? em que
ocorresse tanto a supressao dos operadores de ordem mais alta, quanto uma melhor
descricao do estado fundamental. Isso resultaria numa boa superposicao entre os
lados fenomenoldgico e da QCD. De uma forma ainda mais ideal, o resultado deveria
ser independente de M?2. Na verdade, estamos a procura de um resultado, o mais
independente possivel de M?, que forneca uma comparacao razodvel entre os dois

lados das regras de soma.



Capitulo 3

Regra de Soma para O(1540) e
=(1862)

3.1 O campo interpolante dos pentaquarks

Ao contrario dos mésons !, o campo interpolante que descreve um bérion nao ¢ tnico
e, no caso dos pentaquarks, as possibilidades sao ainda maiores do que para estados
de trés quarks. Até o presente momento foram usadas véarias propostas de campos
interpolantes nas QCDSR [12, 13, 14, 15, 16, 17, 18]. A primeira corrente usada
foi a de Zhu [12], que se baseou num esquema de estado ligado X' —n. Uma outra
possibilidade seria seguir a sugestdo dada por JW na Ref.[11], de que o pentaquark
possui uma estrutura diquark-diquark-antiquark. Assim, nosso primeiro passo sera o
da construcao da corrente para um diquark.

Um diquark é simplesmente a combinacao de dois quarks. Portanto o campo
interpolante para um diquark deve ser semelhante ao campo interpolante de um méson,

que é da forma:
jmeson = qF(L (31)
onde I' é uma matriz de Dirac. Por simplicidade nao estamos considerando graus de

liberdade de isospin e cor. Para construir o campo de um diquark temos apenas que

trocar o ¢ em J,eson POr seu analogo na conjugacao de carga. O andlogo na conjugacao

1S4 existe uma tnica corrente para o méson vetorial e para o méson pseudoescalar existe duas
correntes que se acoplam com esse estado: a corrente axial vetorial e a corrente pseudoescalar.

15
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de carga de um campo de quark é dado por:
¢ =96Cq", (3.2)

onde C' = i7?4° é a matriz conjugacao de carga e § é uma fase arbitraria. Da Eq.(3.3)
é facil ver que

= 6q'C. (3.3)

Assim, tomando § = 1, o campo interpolante de um diquark é dado genericamente

por:

jdiquark = QTCTQ (34)

JW propoe que os diquarks dos pentaquarks no antidecupleto da Fig. 1.1 tenham
spin zero e estejam na representacao 3 de cor e sabor. Assim, no caso de diquarks ud

temos

jcud = eabcuZCde, (35)

onde I' = 1 ou =5 para diquarks com spin zero. Em particular, o diquark na Eq.(3.5)

possui isopin zero. Isso pode ser mostrado usando-se as relagoes de isospin dadas pela

algebra de SU(2) [47],

1 1
[31,6 = §u, [3d = _§d7 (36)

I.d=wu,I_u=d,
Liu=1d=0, (3.7)

onde [ = llg—ﬂz, representam os operadores de nivel que transformam os quarks u e

d. Em termos dos operadores I3, I, e I_ o operador de isospin é definido como:
2 2 1
I“ =15 + 5 (I I +11,), (3.8)

onde

Ly = Ix(1) + 1(2), (3.9)
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onde I;(n) age no quark nimero n. Assim, obtemos de imediato 3¢ = 0. Por outro
lado temos,

15" = egpeul CTuy, (3.10)
I_7" = €,ed? CTd, (3.11)

Como esses diquarks possuem spin zero, temos que a parte de spin de sua funcao de

onda ¢ antissimétrica pela troca de particulas, logo temos a propriedade,
da (1)CTqy(2) = —qq (2)CTqs(1), (3.12)

onde estamos usando genericamente a letra ¢ para designar qualquer um dos quarks u
ou d, e usamos os nimeros (1) e (2) para deixar explicita a troca nos quarks. Usando o
fato de que a corrente do diquark é um nimero, temos que ;%4 = jé‘dT, assim obtemos
a relacao,

(42 (1)CTqy(2))" = g4 (1)CTq(2) = —g; (2)CTaa(1), (3.13)
jaque I'T =T, [I',C] = 0 para I’ = 1,75, e CT = —C. Portanto, contraindo com o

tensor antissimétrico €4 as Eqs.(3.12) e (3.13), vemos que:
T _ T _
€abcUy, C’Fub = Eabcda C’de =0. (314)

Assim, I, 5% = I_j'l = (0, que nos fornece isospin zero para o diquark na Eq.(3.8).

A corrente do pentaquark que obedece a uma estrutura diquark-diquark-antiquark
pode ter isospin zero somente se for construida com dois diquarks diferentes, ja que dois
diquarks iguais se comportam como bésons idénticos, e se sao antisimétricos na cor,
o estado final tem que ser simétrico em isospin. Assim, a corrente para o pentaquark
OT construida a partir de dois diquarks ud que tenham spin e isospin zero e estejam

na representacao 3 de cor é dada por [13]:
ma(w) = e el ug () Cdy ()] [ug (2)Crsde ()] C5g (), (3.15)

como cada diquark na Eq.(3.15) tem isospin zero, fica direta a demostragao de que a

corrente na Eq.(3.15) tem também isospin zero.
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Por outro lado, podemos construir uma corrente para a ©% com dois diquarks
iguais, se permitirmos que o estado representado tenha isospin 1. Apesar de haver
uma forte indicagao experimental de que o estado de pentaquark observado possui
isospin zero [3], nds iremos considerar também o caso de uma corrente com isospin 1.
Assim temos [17]:

n(x) = th(z) + O2(z), (3.16)

onde,

0, () = e lul (2)OT,dy(2)][ul (2)CT nd,(2)]C5T (z), n=1,2,

onde t é um parametro arbitrario, e I'y = 75, I's, = 1. No apéndice C mostramos
explicitamente que o isospin dessa corrente é 1.
Podemos obter a corrente para o pentaquark ==~ através da troca u = s, como

podemos ver na Fig. 1.1. Assim obtemos das correntes nas Eqs.(3.16) e (3.15):
0o = te™[sT Cysdy) [sF Crysd,]Cul 4 ¢¢[sT Cdy)[sT Cd,)Cul (3.17)
ng = el e lI[sTOdy) [siCysdc)Cul . (3.18)
No apéndice C mostramos explicitamente que o isospin dessas correntes é I = 3/2.

3.1.1 Calculo da paridade para as correntes

Para férimons a transformacao de paridade é definida por,

Y (=7,t) = (7, 1), (3.19)

onde a paridade é positiva se £ = 1 e negativa se £ = —1.
Por outro lado, a conjugacao de carga de 1 definida por ¢ = C9T, se transforma

via,

onde usando a Eq.(3.19), obtemos

¢C’(—Fa t) = _5707#0(7?7 t) (320)
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Assim, vemos que os campos 1) e ¥ possuem paridade oposta.

Para bodsons a transformacao de paridade é dada por:
¢7(_F> t) = €¢(F> t)v (321)

onde novamente a paridade é positiva se & = 1 e negativa se £ = —1.

Para calcular a paridade dos diquarks,

P(z) = e®ul(z)Cdy (),

a

S¢(x) = eteuT () Crysds(2), (3.22)

a

usamos a defini¢ao na Eq.(3.19). Assim, para o diquark P¢(z) obtemos,

Pe(=7,t) = euT (=7, t)Cdy(—7,t) = e ul (7, 1)y Cyody(7, 1) = —e™ul (2)Cdy(2),

(3.23)

onde usamos o fato de que, por definicao, todos os quarks possuem paridade positiva.

Assim, vemos que o diquark P¢(z) tem paridade negativa, ou seja, é um pseudoescalar.

Usando o mesmo procedimento, obtemos que o diquark S¢(z) tem paridade positiva,
ou seja, ¢ um escalar.

A corrente Eq.(3.16) é composta de dois diquarks iguais e um spinor de conjugagao

de carga, assim a paridade da nossa corrente é negativa. Para a corrente na Eq.(3.15)

temos dois diquarks de paridades diferentes, o que fornece paridade positiva. Assim:
m(=7,t) = =om (7, 1),
(=7, 1) = +y0m2(7 £). (3.24)
3.2 Lado Fenomenolégico

Como ja vimos no capitulo 2, o correlator fenomenoldgico para os barions é dado por:

<0|ja|qa S><Q>$|jﬁ|0>
aﬁ(Q) S q® — m? + ie ( )
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Considere uma corrente de paridade positiva, se o barion com o qual ela se acopla

possui também paridade positiva, temos a regra fenomenoldgica,

(07a(0)]g, s)+ = AUz (a), (3.26)

onde A\ é o parametro que fornece o acoplamento da corrente com o pentaquark.
Entretanto, essa corrente pode também se acoplar com um barion de paridade

negativa [40, 51]. No tratamento do lado fenomenolégico é importante considerar o

fato, de que nao sabemos a paridade do pentaquark e portanto temos que considerar

também a possibilidade do pentaquark ter paridade negativa. Assim

(057a(0)]g, s)- = A-Ug(a),

multiplicando por ~; obtemos,

(017a(0)lg, s)— = A_vsU5(a), (3.27)

que é uma equagao equivalente a Eq.(3.26).
Inserindo as relagoes nas Eqs.(3.26) e (3.27) na Eq.(3.25), obtemos para os dois

casos

)\gn s [ 7S
m _21:2 Ua(@)Us(a); (3.28)

07 (g) = o, (}:US ) s (3.29)

q m2 —l—ze s=1,2

05 (@) = —

Sabendo que,
> Ua(@)Us(a) = (4 + m)ap, (3.30)

s=1,2

temos dois tipos de correlatores para o lado fenomenolégico, dados por,

0= e, (331

Escrevendo o lado da QCD em termos de uma relacao de dispersao e passando a

contribuicao dos estados do continuo para o lado tedrico da regra de soma obtemos:

QCD
_ _/ dsPe 2 (3.32)
mi — ¢ s — q*
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22 S0+ QRCD
TR b PG w G} (3.33)
m3 —(q 0 S —(q

Onde, podemos notar por essas equacoes que a paridade sé pode ser determinada
através da regra de soma na estrutura 1, devido a mudanca do sinal do correlator
para os casos de paridade positiva ou negativa. Para o caso de uma corrente com
paridade positiva o aparecimento de um fator —1 na Eq.(3.33) indica que a paridade
da particula é negativa, por outro lado, se a paridade da corrente for negativa o sinal
—1 indica que a particula possui paridade positiva. Nas Refs.[13, 23, 51] é usado um
tratamento alternativo para o lado fenomenoldgico, que considera simultaneamente as
particulas de paridade positiva e negativa.

Um importante estudo para a corrente dos pentaquarks é a a andlise do acopla-
mento da corrente com o pélo P. As defini¢oes das contribuicbes do pélo e da res-

sonancia R, na estrutura lI,; sao:

)\2

P=—=_ 3.34
QCD

R= / dsPe—22 1 _p (3.35)

s — q*

onde T é o correlator total,
pQCD
T = / dsPe ) (3.36)
s —q?

Uma corrente é considerada boa, quando a contribuicao do pélo for da ordem de
50% do correlator total. A importancia desse critério se deve ao desejo de suprimir a

contribui¢ao das altas ressonancias na regra de soma.

3.3 Lado da QCD

3.3.1 Corrente da Eq.(3.16)

Inserindo a nossa corrente Eq.(3.16) no funcional de correla¢ao, obtemos,

< O‘T{T](LL’)T_](O)}‘O >= t2H11(l’) + t(ng + Hgl) + Hgg, (337)
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onde genericamente podemos definir,
Hrr () =< 0| T{0r(2)0r (0)}0 >, (3.38)
com R.R=12e¢
Or(z) = e"ug (r)CT rdy(2)]ug (2)CT rde(2)]C5¢ (2),
O (0) = s (0)C[de (0)T e Cig (0)][dy(0)T  C'tig (0))]. (3.39)
Assim obtemos:
Hrr (2)lmp = €abefabe (CTR)ii (CTR)CrmnCop(Lr C)gr(I'r C) 0 G (),
onde G(x) é dado por
G(x) =< 0|7 {uf (2)d;(w)uf,(x)df (x)3;,(x)s; (0)d (0)a; (0)dy (0)@y (0)}0 > . (3.40)

Para avaliar a fun¢ao G(z) o procedimento usual consiste em usar o Teorema de Wick,
onde os condensados de quarks surgem nos termos que possuem os produtos normal
da expansao. A aplicagao desse procedimento para um produto de 10 campos tornaria
o calculo extremamente longo. Neste trabalho usamos o principio da fatorizagao para
os condensados de quarks, assim usando esse principio conseguimos gerar os multiplos
condensados de quarks apenas utilizando a expansao perturbativa, onde devemos in-

serir no propagador de quarks uma componente nao perturbativa:
San() = (017 {4u(2)G(0)}0) = Sgp™ () + (0] : ¢a ()G (0) : 10). (3.41)
Desse modo, obtemos
G(x) = =557 (=, ms) [Sg7 (,ma) SR (2, ma) — S57 (2, ma) Sy (2, m)]

X | St (2, ma) U (2, ma) =SB (2, ma) S (2, ma)| (3.42)

Portanto temos finalmente a matriz,
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4
< 0|T{0r(x)0r (0)}|0 >= —CS! (=2, ms)Céapceape > (), (3.43)

j=1

co1m

H1 (LL’) = Tr[CTRSee, (LL’, md)FR/CSZC, (SL’, mu)] X TI[CFRSbb, (LL’, md)FR/CSZ;, (SL’, mu)],

Hg (LL’) = TI[CFRSbe, (LL’, md)FRrC'Sgc, (LL’, mu)] X TI[CFRSd,, (SL’, md)FR/CSCj;, (SL’, mu)],

Hg(l’) = —TI[CFRSbe, (LL’, md)FR/CSZC, (LL’, mu)CFRSeb, (SL’, md)FR/CSaTa, (LL’, mu)],

H4(SL’) = —TI[CFRSbb, (S(Z,md)FR/CSZ;, (x,mu)CTRSee, (S(Z,md)FR/CSZ;, (x,mu)] (344)

Inserindo esse propagador de quarks “cheio”dado no apéndice D no correlator, cal-
culando as transformadas de Fourier de cada diagrama, e tomando a parte imaginéria
do correlator I1(¢%) para ¢*> = s > 0, obtemos as densidades espectrais p(s) = LImII(s),

fornecendo as regras de soma nas Eqs.(3.32) e (3.33).

Neste trabalho consideramos a OPE até dimensao 6. Além disso, trabalhamos no

limite de SU(2) simétrico e tomamos m, = mg = 0 e (@u) = (dd).

Para a ©%, as densidades espectrais, até dimensao 6 sao dadas por

3

_ s 53 B s Qs o
Po = CgiEgisrs T Oggaie s <582 Tgppne < 0T
52 _ s _ 2
Clmms < SQSU.GS > +03m <qq >7, (345)
B s° st -
Pro= CgEREs s T Aggpiogs <087
3 3 a
< 2G? >, (3.46)

_ S
t Cmpizge < 906G > T gms <

onde ¢; = 5t2 +2t +5, co = (1 — t)* and ¢3 = Tt2 — 2t — 5.

Para ==~ obtemos
3

5 3
= S S _ ) _
Pi = CpppnTgs T gptige s S 0T T gpegts < 462
s3 Qs 12 52 c0.0.C
+ CQW < ? > +7C5mms < qgs0.Gqg >
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2

c5ﬁ4ﬂ6ms < qgs0.Gq > |6In (Ki*l)) — 4—23]
52 s*
+ Gz (< 5s >2 4+ < qq >2)+C5W < §s >< q4q >
2
CGWW% < 5¢50.Gs >, (3.47)
- st s3
pT = —CL 9106 < qq > +01W < qgs0.Gq >, (3.48)

onde ¢y = (t+1)% c5 =1 — 1, cg = t* + 22t + 1.
3.3.2 Corrente da Eq.(3.15)

Procedendo de maneira andloga ao caso anterior e usando a corrente dada na Eq.(3.15),

obtemos o correlator,

4
< O[T {n(@)(0)}]0 >= CST, (~2,m.) Ceuscbuercsgbab i copg Y 1(x), (3.49)

Jj=1

onde,
I, (z) = Tr[C Sy (2, mq)CSE (2,m4)] X Tr[C5See. (2, ma)ysC Sy (2, m0)],

y(x) = Tr[CShe. (2, ma)ysC S, (2, my)] X Tr[CysSey (2, mg)C ST (2, my,)],
II5(z) = —=Tr[CSpe. (x, md)%CSgd, (x,my)Cy5Sep (, md)C’Sg;, (x,my,)],
4 (z) = —Tr[CS. (z,mq)CSh, (2, M) CV5See. (2, ma) ysC Sy, (2, my,)]. (3.50)

Uma propriedade interessante dessa corrente é o fato de que os termos que possuem
no traco os 4 propagadores, Il3 e Il;, nao contribuirem para os casos ©1 e =77, tanto
para a estrutura d,, quanto para 7 do propagador de quarks, gerando uma grande
supressao de graficos. O cancelamento desses termos se deve a uma agao combinada
do trago e da contracao dos fatores de cor caracteristicos dessa corrente.

Procedendo da mesma forma ja mencionada, obtemos para as densidades espectrais

até dimensao 6 para a ©%:

B s? s> ~ s> Qs 12
Pe = Si507,5 131280 e S %5 7 Tegpios < L0 7
2
i ms < 59;0.Gs >, (3.51)

41312976
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s° st -
PLo= Bi5i0s e T BiRias 007
550G A, < Yo 3.52
RETET S TET T L (3.52)
e para a =~ :
= s° s3 _ 53 Oést
Pi = Bi51l07.s T pIlTae e <5 Thgnioe < ¢ 7
2
s _
+ mms < SgsO'.GS >, (353)
= 54 _ 83 _

3.4 Resultados

Usamos neste trabalho os valores: Agep = 100MeV, m, = 0.10GeV, (gq) = —(0.23)*GeV?,
(3s) = 0.8(qq), (5950.Gs) = (ss)m? com m3 = 0.8GeV? e (22G?) = (0.33)*GeV", além

da definicao para o limiar do continuo para os pentaquarks,
Sop = (mp + Ap)2.

Fazendo a transformada de Borel das Eqgs.(3.32) e (3.33) temos as regras de soma,

m2 S0+ o
)\ie_ﬁ = [ dsp?°P (s)e™ a2, (3.55)
0
m2 S0+ s
:I:mi)\ie_M_ﬁzE = [ dsp?P (s)e 7, (3.56)
0

Para extrair a massa do pentaquark podemos usar dois procedimentos. Como as regras
de soma sao independentes, podemos derivar a equacao da regra de soma Eqs.(3.55)
e (3.56) com respeito a M? e dividirmos por ela mesma, eliminando a dependéncia
no acoplamento Ar. Outro procedimento consiste apenas em dividir a Eq.(3.55) pela
Eq.(3.56).

O método de divisao de estruturas se mostrou bastante instavel para ambos os
casos: ©1 e 277, para ambas as correntes. A regra de soma que usamos nos trabalhos

apresentados nas Refs.[17, 18] considera apenas a estrutura ¢. Um dos motivos para
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usar esse tipo de regra de soma, é o fato de que a estrutura-1 é mais instavel com
relagao a variacao do limiar do continuo, além disso, nao conseguimos encontrar um
valor para A capaz de reproduzir o valor da massa experimental do pentaquark. Na
Fig. 3.1 mostramos a curva da massa para a ©7 de isospin zero calculado nessa
estrutura Eq.(3.56). Ao contrario da regra de soma na estrutura 4, o aumento no
limiar do continuo nao fornece um valor maior para a massa e para valores maiores
de A > 0.5GeV a curva da massa é instavel. Assim, nao é possivel obter a massa
experimental da ©% através dessa regra de soma.

Neste trabalho usamos a regra de soma na estrutura A, pois além de ser mais
estavel ela possui mais termos da OPE até dimensao 6, o que a torna mais confiavel.

Para estimarmos o valor do acoplamento da corrente com o estado fundamental,
A, usamos a massa experimental dos pentaquarks. A paridade é obtida pela analise do
sinal do lado direito da Eq.(3.56). Em todos os casos, foi obtido um sinal negativo o que
nos leva a paridade negativa para as particulas que se acoplam com a corrente Eq.(3.15)
e paridade positiva para as particulas que se acoplam com a corrente Eq.(3.16). Por
outro lado, esse sinal pode ser mudado com a inclusao de novos termos na OPE, pois
o valor absoluto do correlator total é bem inferior ao valor absoluto da componente
de dimensao 5. Assim, mesmo que o préximo termo da OPE seja bem menor que o
termo de dimensao 5, o sinal pode mudar, e portanto, desse modo, a paridade prevista

pela regra de soma nao é um resultado confiavel.

3.4.1 Regra de soma para a O com I=0

Como ja foi comentado no capitulo 2, na regra de soma dos hadrons usuais, usa-se para
o limiar do continuo um salto A = 0.5GeV. Essa escolha permite obter a maioria das
massas hadronicas e constantes de decaimento que estao muito proximas dos dados
experimentais.

Em muitos casos o conhecimento do primeiro estado excitado é obtido experimen-

talmente, por outro lado, para os pentaquarks nao existe nenhum dado sobre sg, assim
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Figura 3.1: Curva da massa para a ©% com I=0 na estrutura 1, linha sélida Ag =
0.3GeV, linha pontilhada Ag = 0.4GeV, linha tracejada Ag = 0.5GeV.

adotamos a postura de escolher o limiar do continuo de modo a reproduzir a massa
observada experimentalmente.

Apresentamos na Fig. 3.2 o estudo da estabilidade da massa da ©" de isospin zero
em funcao da massa de Borel, para um intervalo do limiar do continuo em torno do
valor que melhor se ajustou com a massa experimental da ©, A = 0.26GeV. Vemos
que a regra de soma possui uma boa estabilidade com respeito a massa de Borel e
que o erro gerado pela variacao do limiar do continuo de 0.16 < A < 0.36GeV ¢é de

~ 100MeV. Para M? = 1GeV?, temos

me = 1.5 £ 0.1GeV.

Nas regras de soma para os hadrons usuais o intervalo para a massa de Borel é
escolhido de modo a possuir uma boa convergeéncia para a OPE e que a contribuicao do
continuo nao seja muito grande. A anélise da convergéncia do lado direito da Eq.(3.55)
é apresentada na Fig. 3.3 para A = 0.26GeV, onde sao analisados os termos da OPE
em valor absoluto. Infelizmente obtivermos um ordenamento bastante nao usual para
a OPE no dominio M? < 4GeV?. Um outro sério problema aparece no estudo da

contribui¢ao do pélo Fig. 3.4. Como podemos ver a contribuicao do pdlo s6 alcanca
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1 14 18 22 26 3 34 38
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Figura 3.2: Curva da massa para a ©7 com I=0 na estrutura g, linha sélida Ag =
0.26GeV, linha pontilhada Ag = 0.16GeV, linha tracejada Ag = 0.36GeV.

50% para valores de M? menores que 1GeV?. Esse é um sério problema, pois nesse
dominio o ordenamento da OPE ¢ muito ruim. Assim justificamos o uso da janela de
Borel para analisarmos a massa e o seu acoplamento, para 1 < M? < 4GeV?, onde no

limite inferior fornece um boa contribuicao do pélo e no limite superior a convergéncia

da OPE aceitavel.

0.8 -

OPE (107°GeV"®)

o
o

1N
»

02}~

1 14 18 22 26 3 34 38
M*(GeV)”

Figura 3.3: Termos da OPE, linha sélida termo perturbativo, linha pontilhada opera-
dores de dimensao 4, linha tracejada operadores de dimensao 6.

Na Fig. 3.5 mostramos o estudo da estabilidade do acoplamento A. Esse acoplameto
nao pode ser medido experimentalmente, por outro lado, esse acoplamento sera usado

no célculo da largura de decaimento da ©% que é o tema do nosso préximo capitulo.
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Figura 3.4: Linha sélida contribuicao do pdlo, linha pontilhada contribuicao da res-
sonancia.

Para M? = 1GeV?, temos

o = (2.4 £0.3) x 107°GeV®.

1 1.4 1.8 2.2 2.6 3 3.4 3.8
M’ (GeV)?

Figura 3.5: Curva do acoplamento da ©F com I=0, linha sélida Ag = 0.26GeV, linha
pontilhada Ag = 0.16GeV, linha tracejada Ag = 0.36GeV.

3.4.2 Regra de soma para a O com I=1

Para a ©7 de isospin 1 com a corrente dada pela Eq.(3.16), vemos que a mesma

possui um parametro livre ¢. Estudando o comportamento dos termos da OPE com a
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variacao de t, observamos que para t = 1 obtemos uma melhor convergéncia da OPE,
que é mostrado na Fig. 3.6. Mesmo obtendo uma boa organizacao dos termos da
OPE, podemos notar que a convergéncia é muito lenta, o que mostra que essa corrente
também possui problemas. A contribuicao do pélo para esse valor de t continua sendo
muito pequena (Fig. 3.7) e o valor de sy coincidiu com o valor utilizado para a ©7
de isospin zero no ajuste para a obtencao da massa experimental da ©F Fig. 3.8.
Vemos nessa figura que a curva da massa é muito estavel com a massa de Borel. Para

3
28 L
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22 [
2 |-
18
16
14 F
12 [
1 |-
08
06|
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02 [
0

OPE(10"°GeV'"?)

1 1.4 1.8 2.2 2.6 3 3.4 3.8
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Figura 3.6: Termos da OPE, linha solida termo perturbativo, linha pontilhada opera-
dores de dimensao 4, linha tracejada operadores de dimensao 6.
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Figura 3.7: Linha sélida contribuicao do pdlo, linha pontilhada contribuicao da res-
sonancia.
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M? = 1GeV?, temos
me = 1.5 £ 0.1GeV.

1 14 18 22 26 3 34 38
M*(GeV)

Figura 3.8: Curva da massa para a ©7 com I=1 na estrutura g, linha sélida Ag =
0.26GeV, linha pontilhada Ag = 0.16GeV, linha tracejada Ag = 0.36GeV.

3.4.3 Regra de soma para a =~ da Eq.(3.15)

Para a Z~~ temos duas opgoes de corrente para isospin 3/2 que sdo as Egs.(3.15) e
(3.16). Coincidentemente o valor de sg que ajustou melhor a massa experimental da
=7~ da Eq.(3.15), Fig. 3.9, foi com A = 0.26GeV, por outro lado o erro da massa
gerado pela variagao do limiar do continuo de 0.16 < A < 0.36GeV é de =~ 60MeV, que
¢ menor que o erro da massa da O calculado anteriormente. A analise da convergéncia
da OPE se mostrou equivalente as melhores regras de soma existentes para hadrons
usuais, Fig. 3.10. Por outro lado, a contribuicao do pélo continua sendo menor que
50%, Fig. 3.11.

Para M? = 1GeV?, temos

mz = 1.88 £ 0.06GeV.
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Figura 3.9: Curva da massa para a = no campo da Eq.(3.15) na estrutura ¢, linha sélida
A= = 0.26GeV, linha pontilhada Az = 0.16GeV, linha tracejada Az = 0.36GeV.

1 1.4 1.8 22 2.6 3 3.4 3.8

2
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Figura 3.10: Termos da OPE, linha solida termo perturbativo, linha pontilhada opera-
dores de dimensao 4, linha tracejada operadores de dimensao 6.

3.4.4 Regra de soma para a =~ da Eq.(3.16)

Novamente o valor de t que fornece a melhor organizacao diagramal é t = 1. O valor
de so que ajustou melhor a massa experimental da ==~ da Eq.(3.16), Fig. 3.12, é
de A = 0.44GeV. A anélise da convergencia da OPE se mostrou equivalente a da
regra de soma da ==~ da Eq.(3.15), Fig. 3.13. Esse valor mais realista para o limiar
do continuo forneceu uma maior contribuicao do pdlo, Fig. 3.14. A estabilidade da
massa em fungao da massa de Borel nao é tao boa, como pode ser visto pela Fig.

3.12 e o ajuste foi feito para M? = 1GeV?. O erro da massa gerado pela variaciao do
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Figura 3.11: Linha sélida contribuicao do pélo, linha pontilhada contribuicao da res-
sonancia.

limiar do continuo de 0.34 < A < 0.54GeV é de ~ 100MeV. Para A = 0.54GeV a
estrutura 1 possui uma inversao de sinal para M? ~ 2GeV?. Esse fato nos leva a uma

indeterminacao da paridade para altos valores do limiar do continuo.

Para M? = 1GeV?, temos

m= = 1.9+ 0.1GeV.

24

22

m_(GeV)

1 14 18 22 26 3 34 38
M*(GeV)”

Figura 3.12: Curva da massa para a = no campo da Eq.(3.16) na estrutura /4,
linha sélida Az = 0.44GeV, linha pontilhada Az = 0.34GeV, linha tracejada
Az = 0.54GeV.
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Figura 3.13: Termos da OPE, linha sélida termo perturbativo, linha pontilhada opera-
dores de dimensao 4, linha tracejada operadores de dimensao 6.
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Figura 3.14: Linha sélida contribuicao do pélo, linha pontilhada contribuicao da res-
sonancia.



Capitulo 4

O vértice OnKkK

O calculo da constante de acoplamento ge,x permite a obtengao da largura de decai-

mento do processo:

0" - nKT.

O primeiro calculo desta constante de acoplamento, foi realizado em 1997 por Diakonov
et al.[1] usando o modelo de sélitons quirais (QSM), para uma ©% de paridade positiva
e considerando o kaon como uma particula pseudoescalar, obtendo gg,x = 4.1, que
fornece a largura de decaimento I'g = 18MeV .

Nos fizemos um célculo da constante de acoplamento ge,x usando as as QCDSR
[22], num tratamento distinto do proposto na Ref.[15], onde nado consideramos as

correcoes radiativas.

4.1 Lado fenomenolégico

A lagrangeana que da a constante de acoplamento do vértice OnK [52], considerando

o kaon como uma particula pseudoescalar é:
L= ig@nK@Kn, (41)

para a paridade negativa da ©. Para a paridade positiva a lagrangeana efetiva é obtida

via adigao de 5 nessa lagrangeana [1].

1Usando me = 1530MeV obtemos I'g = 16MeV.

35



36 CAPITULO 4. O VERTICE ONK

No capitulo 3, estudamos a paridade da ©T através da andlise da estrutura 1,
onde obtivemos um indicio de que a paridade dessa particula é negativa. Na Ref.[13]
é usado uma outra parametrizacao para o lado fenomenolégico, onde a estrutura 1
estd misturada com a estrutura ¢. Neste caso, sé é possivel obter uma regra de soma
estdvel para uma ©* de paridade negativa.

Analogamente ao tratamento dado no capitulo 2, a funcao de trés pontos para o

vértice OnK é dada por
Dp.p) = [ dnd'ye 0 Tz, y), (12)

Iz, y) = (01T{nn(x)jx (y)70(0)}]0). (4.3)
Usando a Eq.(2.7), obtemos:

N = Olmalp, s)V(p, p){qlix|0){p, s|nel0)
PeP) = 2 =0 ) —mi) P —nd) (44

onde,

Vip,p) = U (p)igencU*(p),

(Onalp, s) = AU (p), (4.5)
(p,s|76]0) = =XeU* (p)7s, (4.6)
(qljx|0) = Ak. (4.7)

Os acoplamentos A, e A\g s6 podem ser obtidos através das QCDSR. Por outro
lado, Ax pode ser determinado através da relacao com a sua constante de decaimento

[53],
fxmj
Apg = ———=—. 4.
K My + Mg ( 8)

Assim ficamos com a expressao para o correlator,

(F +ma)(F+ molis w9)

L(p,p) = —igonx Ao AnAk
T (p? = m2)(g* = mE) (0P — md)
Expressando esse correlator numa base ortogonal para os momentos ¢ e p’, obtemos,

_anK)\@)\n)\K
(p? —m2)(q® — m%)(p* — m@)

Lp,p) = I'g,
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Tg = 0" v5q.p, — imn ¢vs + i(me +my,) ¥ys +i(p? + mem, —qp)vys.  (4.10)

Neste trabalho iremos considerar apenas a estrutura c*"vsq,p;,. Essa estrutura tém
a vantagem de ser indiferente da paridade da ©% e principalmente ser independente
das massas das particulas. No estudo do vértice J/¢¥ DD [34, 36] observamos que
essas estruturas com massa sao mais instaveis que as estruturas sem massa, 0 mesmo
acontecendo com a regra de soma de dois pontos para os pentaquarks, onde observamos

que a estrutura 1 é mais instavel que a estrutura ¢ com a variacao do limiar do continuo.

4.2 Lado da QCD

No lado da QCD consideraremos as correntes [53, 54, 13],

Ik () = 3(y)ivsu(y), (4.11)
() = €(dl () Crypdy () 157 ue(), (4.12)
7o (0) = —e*e™ €957 (0)C[d.(0)v5Cig (0)][dy(0)Cis (0))]. (4.13)

Inserindo as correntes na funcao de vértice Eq.(4.3), obtemos o correlator escrito

na forma,
[(z,y) = 2ie“bcedefecfge“/blclf(x, Y),

[z, y) = [Na(z) — Ni(2)][ K (y) (4.14)
onde
Ni(2) = 7577 Swa(r)CSge(x)CyaSyu() s,
Na() = 757" Sea(2)715C Sge()Cp Sy (@),
K(y) = CS),(y)CvsCS,, (—y, msy). (4.15)

Procedendo de maneira analoga ao capitulo 3, onde inserimos o propagador de
quarks cheio nas Eqgs.(4.15), obtemos a parte invariante da fungao de vértice Eq.(4.14)

escrita na formas

P(a*,y*) = H(2®)L(y*). (4.16)
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K(q)

O(p)

n(p’)

Figura 4.1: Diagrama que representa o correlator escrito em um produto das matrizes
Nx)K(y).

A transformada de Fourier, Eq.(4.2), age separadamente nas fungoes H(z?) e L(y?),
tornando o calculo muito simples e obtemos a funcao de vértice dependente de apenas

dois momentos,
L(p®, ¢*) = Hp®)L(¢*). (4.17)

Para os diagramas onde é possivel escrever uma relagao de dispersao simples para
cada funcdo H(p”?) e L(q¢?), podemos escrever a funcio de vértice numa relagao de

dispersao dupla:

qupla

)= / / ImH ,2;21%(32)). (4.18)

Como foi visto no capitulo 2, a relacao de dispersao dupla permite descontarmos
as contribuigoes do continuo, por outro lado, uma parcela do diagrama (f), Fig. 4.2,
nao possui uma parte imaginaria bem definida (ver apéndice F).

Assim temos a funcao de vértice para a estrutura o*”7sq,p; apds a subtracao dos
estados do continuo,

50 chD ) 50 QCD(S,U)
Cocp(?, ¢%) / / dsdu D) +/ / dsdu =) (u = )

(4.19)

onde,

Pals,u) = T 6911
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po(s,u) = % “0(u)
pe(s,u) = %
pals,u) = 3<qgsa’G23;2<7§gsa'GS> s0(u)
pe(s,u) = —m ;gif;% 50(u)
(93G°)

pri(s,u) = —mswﬂs(u)

G
bpa(s.u) = m LD ity o) (1.20

L&

(d) (e) (U]

(LN ]

Figura 4.2: Diagramas efetivos para o vértice OnK.

4.3 Regra de soma na estrutura o""vsq,p,

Usando o modelo para as excitagoes polo-continuo discutidas no capitulo 2, temos:

Tpp(p%, 02, ¢%) + Trer (0%, 0% ¢%) + Dpea(p?, %, ¢%) = TP (p, ¢*) (4.21)
onde,
Cep(p®,p? ") = ¢ (4.22)
o (p? — )(q —mi)(p? —m@)’
% by(u,p?)
r / d , 493
PCl(P ,p"” q m%[ D2 S U u— g ( )
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1 < by(s,p?)

r 2’22:7/ ds—2r 7 4.24

po2(p™, 0", 47) el B (4.24)

e G = —gonk Ao AN K.

4.3.1 Modelos para o acoplamento pdlo continuo

Como podemos notar na regra de soma da Eq.(4.21), o lado direito dessa equagao
s6 depende de dois momentos, enquanto o lado esquerdo depende de trés momentos.
Neste trabalho seguimos o tratamento proposto na Ref.[55], que consiste em estabelecer
um vinculo entre os momentos, tornando possivel a relagao entre os dois lados da regra
de soma.

Devido ao fato de que a massa do nucleon é préxima da massa da ©T, optamos

pela escolha,

Este vinculo entre os momentos nos leva a uma regra de soma onde as contribuicoes das
transicoes polo-continuo nao sao suprimidas, tornando o termo pélo-pélo misturado a
essas contribuigoes. Além disso, essas contribuigoes envolvem fung¢oes completamente
desconhecidas by (s, p?) e ba(u,p?), que representam respectivamente as contribuigoes
do continuo do nucleon e do kaon.

Assim precisamos de um modelo para essas funcgoes, e consideramos o seguinte

modelo para as Eqs.(4.23) e (4.24):

bi(s,p?) = 6(s — m*?) mo: dwsliwp)y (4.25)
o, 1) = o) [ w22 (4.26)

Esse modelo pode ser interpretado como a transicao de todas as O em todos os
kaons, mas saturamos a contribuicao dos nucleons no seu primeiro estado excitado,
a ressonancia Roper, N(1440). Essa assimetria pode ser justificada pelo fato que o

primeiro estado excitado do kaon ainda nao esta completamente estabelecido [10].
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Inserindo as Eqs.(4.25) e (4.26) nas Eqs.(4.23) e (4.24), temos:

Crert ) = [ a2 [ oy P (4.27)

miz u—q?Jmy (m} — p?)(w —p?)’

1 o0 bi(w)
Tpea(p®, 0%, ¢%) = 7/ dw ' e

4.3.2 Regra de soma no pélo do kaon

Na regra de soma no pélo do kaon fazemos a aproximacao my = 0, assim obtemos
uma dependéncia 1/¢? para a Eq.(4.21). Nesse tipo de regra de soma fazemos ¢* — 0,
onde s6 os diagramas proporcionais a 1/¢* contribuem do lado da QCD [56]. Assim
na Fig. 4.2 iremos excluir os diagramas (a), (c) e a parte logaritmica de (f).

O uso desta regra de soma, nos fornece também uma supressao da contribuigao
[peo1, Eq.(4.27). Assim fazendo a transformada de Borel em p? na Eq.(4.28) e elimi-
nando os termos que sao suprimidos exponencialmente, temos a contribui¢ao do polo-

continuo nessa regra de soma:

A _m¥

FPC(q2, M2) — __(]26— M2 , (429)
onde,
oo b
A= [ dw 1(“’)*2 (4.30)
meg w —m,,
Assim obtemos:
mg mp
GE T L g = [ dspoa(s)e T (4.31)
M —_= M .
-y e | dsppato(s)e 7,
onde,
(ss) +(aq) » , 3(aGq) — (5Gs) (926%)
Ppolo(8) = 43197 43298 57 Ms” 5329107 (4.32)

Para eliminar o acoplamento fenomenoldgico, A, da Eq.(4.31) geramos uma nova
regra de soma via derivacao dessa equacao com relacio a M2, obtendo um sistema de

duas equagoes com duas incégnitas (G e A) que pode ser facilmente resolvido.
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4.3.3 Regra de soma via dupla transformada de Borel

Na regra de soma via dupla transformada de Borel em ¢? e p?, temos todos os diagramas
da Fig. 4.2 contribuindo, e neste caso a contribuicao I'pc € suprimida exponencial-
mente. A parcela I'poo é semelhante a regra de soma no pélo do kaon, exceto pela

transformada de Borel na parcela que depende de ¢?. Assim temos:

m2, m%
G _7772{ e_ﬁog — e_m _I_A _% _mff; /SOd ( ) _iz (4 33)
e M2 ——— e M2 e MZ = S$Pdupla(S)Ee M2, .
mé —mai o oPdurt
onde,
Pdupla(8) = Ppolo(8) + Pate(s) + pra(s). (4.34)

A fungao ppoio(s) ¢ a mesma da Eq.(4.32). Para as outras densidades espectrais temos:

am w0 ms o me(g>G?)
Pate(s) = M®(1— e ar72) <_7r62118 T T 6oz | (4.35)
i, (95G7)
pra(s) = ln(M’z/Az)m8W63221ls, (4.36)

onde A = e % AQCD'
Um fato interessante nessa regra de soma é que se my = 0 e usando o resultado
que Ppoio ¢ 0 termo dominante da Eq.(4.34), temos que a regra de soma via dupla

relacao se torna idéntica a regra de soma no pélo do kaon.
4.3.4 Regra de soma via trés momentos iguais

Na Ref.[55] Narison estudou o decaimento de mésons exéticos formados de quatro
quarks, que apresenta essa mesma necessidade de vincular os momentos. Nessa Ref.[55]
o procedimento adotado foi igualar todos os momentos e fazer uma tnica transformada
de Borel. Seguindo Narison nés tomamos p”? = p? = ¢* e fizemos uma tnica transfor-

mada de Borel nas Eqgs.(4.27) e (4.28), obtendo:

my M

T M2 — T M2 . m2
rPe(M2) = A° nfﬁ - fn%: "4 Be (4.37)
onde,
A-— /oo de:z)?’ (4.38)
mg w— My
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B = d d 4.39
m2, ww—m% mi2 Ss—mfl’ (4:39)
uma vez que
mi—mi Jmz  w—mj m2 (W —m)(w—m3)

Neste caso, a integral dupla do lado da QCD nao pode ser fatorada em duas

integrais independentes, assim obtemos a seguinte regra de soma

_my _my _m} _mi _my _mi )
G e M2 —e M2 e M2 —e Mm? ~e M2 —e M? ~ _Mmy
2 2 2 ;7 2 2 2 o T Be v =
ug S0 sg  [o0
—/0 /0 dudsp®©P (s,u)F(s,u) —I—/O /0 dudsgzﬁ?QCD(s,u)G(s,u) (4.41)
- __u
onde F(s,u) = “22=¢ 2 ¢ G(s,u) = 2 F(s,u).

4.4 Resultados

Neste trabalho usamos os parametros apresentados no capitulo 3 junto com os valores
das massas myx = 0.493GeV, m,, = 0.938GeV, mg = 1.54GeV, m; = 1.44GeV, além

da definicao para o limiar do continuo para o nucleon e para o kaon:
s0=(m+ A)%

Os acoplamentos \g e A\, foram obtidos das respectivas regras de soma de dois pontos
na estrutura ¢. A regra de soma da ©7 foi estudada no capitulo 3 e a regra de soma
do nucleon pode ser vista no trabalho [57], onde usamos A, = 0.5GeV. Os valores
numéricos sao:

A = 2.4 % 1072GeV3, Xg = 2.4 x 107°Ge V.

Para o acoplamento A, Eq.(4.8), usamos o valor experimental para a constante de
decaimento fr = 160MeV [53], e para a massa do quark leve usamos a relagao de

Gell-Mann-Oakes-Renner [58] para m, = my, obtendo m, = 6.7MeV e

Ak = 0.36GeV?2.
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A regra de soma com todos os momentos iguais possui uma contribuicao do continuo
muito grande, tornando essa regra de soma pouco confiavel. Para a regra de soma no
polo do kaon, estudamos a influéncia do continuo na mesma, através da regiao III
na Fig. 2.3. Mesmo nao possuindo uma interpretacao clara sobre o significado fisico
dessa regiao, o fato dessa regiao ser importante é um forte fator de incerteza nessa
regra de soma. Os resultados mostraram que a regiao III contribui com mais de 60%
do total, que é um resultado muito ruim, pois o modelo de loffe despreza essa regiao.
Para a regra de soma via dupla transformada de Borel, a regiao III continua com essa
contribuicao de 60% do total, por outro lado, a regido II sé possui uma contribuicao
da ordem da regido I para valores da massa de Borel M? > 2GeV?.

Obtivermos para ge,x, nos trés tipos de regras de soma, um valor bastante ele-
vado e incompativel com a observacao de uma largura menor que 1MeV para a ©F,
mesmo para o caso que a O7 possua paridade positiva. Numa interpretacdo mais
conservadora, esse fato pode indicar que a corrente da Eq.(4.13) nao descreve a ©F ou
que os problemas gerados pela presenca dominante da regiao III tornou invalida essa
regra de soma.

Uma outra interpretacao para este resultado ruim, consiste no fato que muitos
dos diagramas da Fig. 4.2 representam um estado ligado K — n e nao um auténtico
pentaquark. Assim a corrente da O [13], possui uma componente similar a uma
molécula K —n que nao representa o pentaquark e que deve ser subtraida da regra de
soma 2.

Podemos ver na Fig. 4.1, o decaimento da ©F em duas “pétalas’, uma associada
com o kaon e outra associada com o nucleon. Podemos interpretar na Fig. 4.2 a parcela
relacionada com o estado ligado K — n os diagramas (a)+(b)-+(c), pois a estrutura
de cor que liga as “pétalas” é uma delta, tornado esses estados com uma estrutura de

cor semelhante a um estado final contendo dois singletos de cor, que pode ser inter-

2Na Ref.[23] foi apresentada pela primeira vez a idéia que as correntes existentes para a OF
[12, 13, 17] possuem uma grande componente de estados K — n.
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pretado como sendo um estado ligado K — n. Para os diagramas (d)+(e)+(f), temos
uma troca de cor entre as “pétalas”, que pode ser interpretado como um auténtico
pentaquark. Chamamos de diagramas conectados na cor (CC), quando estamos
apenas considerando os diagramas: (d)+(e)+(f).

Em todos os nossos resultados usamos apenas os diagramas CC e obtivemos, para

todos os casos, um valor negativo para a constante de acoplamento.
4.4.1 Regra de soma no pélo do kaon

Apresentamos na Fig. 4.3 o estudo da estabilidade da constante de acoplamento em
funcao da massa de Borel, para um intervalo do limiar do continuo do nucleon em
torno do valor usado na funcao de dois pontos, Ay = 0.5GeV. Escolhemos a massa
de Borel no intervalo 1 < M? < 2GeV?, pois nesse intervalo a OPE é mais confidvel e
o efeito da regiao III ndo excedeu 70% do total, como pode ser visto na Fig. 4.4.

Vemos que a regra de soma possui uma boa estabilidade com respeito a massa de
Borel e que o erro gerado pela variacdo do continuo é muito pequeno. Para M? =
1GeV?, temos:

|gons| = 0.80 & 0.01

0.9 |

0.7 |

0.6 |

0.5

Figura 4.3: Acoplamento |ge,x|: linha sélida Ay = 0.5GeV, linha pontilhada Ay =
0.4GeV, linha-trago Ay = 0.6GeV.
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Figura 4.4: Analise das contribuigdes do continuo para Ay = 0.5GeV; linha sélida
contribui¢ao do pélo, linha pontilhada contribui¢ao do pélo-continuo, linha-traco con-
tribuigao da regiao III.

4.4.2 Regra de soma via dupla transformada de Borel

Apresentamos na Fig. 4.5 o estudo da estabilidade da constante de acoplamento em
funcao da massa de Borel. A estabilidade da constante de acoplamento é muito estavel
em M, e como observamos que na teoria completa o uso de M2 = 1GeV? diminui
a contribuicao do continuo-continuo, optamos por usar esse valor também no método
CC. A curva das contribuigoes do continuo é semelhante ao obtido na regra de soma

no pélo do kaon, justificando novamente o uso do intervalo 1 < M? < 2GeV2.

Vemos que a regra de soma é bem semelhante com a regra de soma no polo do kaon
e que o erro da constante de acoplamento é igualmente pequeno. Para M? = 1GeV?,

temos:

|gonx| = 0.91 £ 0.01.
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0.8 |

Yonk

0.7 |

0.6 |

0.5

M*(GeV?)
Figura 4.5: Acoplamento |gonx| para M"? = 1GeV?: linha sélida Ay = 0.5GeV, linha
pontilhada Ay = 0.4GeV, linha-traco Ay = 0.6GeV.

4.4.3 Largura de decaimento

A largura de decaimento da ©7, I'g, considerando o caso mais geral, onde desco-

nhecemos a paridade desse pentaquark é dada por [59]:

1
St (0 F 10)” — i) VA3, m2, m%), (4.42)

Lo, = 8m™m

onde I'g, (I'e_) € a largura de decaimento para a ©F de paridade positiva (negativa)
e

Mmg, m2,m3) = (mg +m2 —m¥)* — dmgm?.
Os experimentos mais recentes [10] indicam que I'e < 1MeV. Nosso resultado

mostrado na Tabela 4.1 é incompativel com a ©7 de paridade negativa.

Tabela 4.1: Acoplamento e largura de decaimento nos diagramas CC.

polo do kaon dupla Borel

[gonk] 0.80 £0.01 0.91+0.01
To,(MeV)  0.70£0.02  0.90 4 0.02
I'o_(MeV) 34441 44.6 + 1

A teoria total fornece uma largura muito grande para uma ©% de paridade negativa,

por outro lado, a teoria total para uma ©7 de paridade positiva fornece uma largura
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compativel com o modelo de sélitons quirais [1]. Na Tabela 4.2 sdo apresentados
os resultados com a teoria total, onde no método da dupla transformada de Borel,
consideramos a variagdo do limiar do continuo do kaon em torno de Ax = (0.5 £

0.1)GeV .

Tabela 4.2: Acoplamento e largura de decaimento com todos os diagramas.

polo do kaon  dupla Borel
lgonk]| 2.71+£0.05 3.894+0.08
I'e, (MeV) 8.314+0.3 16.5+£0.7
Fe_(MeV) 396.0+14.6 816.0+33.5




Capitulo 5

O vértice J/yYDD*

O célculo das constantes de acoplamento ¢;/ypp, 9s/wpD* € gj/wp=p+ Possibilitam o

estudo do processo de dissociagao da J/v por pions,
T+ J/1h — DWDM.

Estas constantes de acoplamento tém sido estimados por trés diferentes métodos: mo-
delo de quark méson constituintes (CQMM) [60], pelo modelo relativistico de quarks
constituintes (RCQM) [61] e pelas QCDSR [34, 35, 36, 37].

A constante de acoplamento g;/4pp+ aparece em 5 diagramas do processo de disso-

ciagao da J/1 por pions [60]. Em particular temos os processos da Fig. 5.1.

oo L[ Ty

Figura 5.1: Diagramas do processo de dissociacao da .J/1 por pions, onde aparece a
constante de acoplamento g;/,pp-.

49
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5.1 Lado da Fenomenologia

A lagrangeana de interagao, Ref.[62], que descreve a interacao das particulas: J/¢, D*

e D, é dada por,
Lypp- = gppp-€*1,(0,D03D}, + 9,D3D%). (5.1)

Usando as regras de Feynman, o vértice da interacao J/¢»DD* Fig. 5.2, com py, ps
e p3 sendo os quadrimomentos das particulas J/v, D* e D respectivamente, é dado

por:

Jp(p))

Figura 5.2: Vértice J/¢DD*.

WV (p1,p2,p3) = 19yDD* 60‘6“/553 (pl)ei’ (p2)P36p26- (5.2)

Para o caso da D* saindo e da D entrando no vértice, podemos obter esse novo
vértice através da transformacao no tensor de polarizacao do méson D*, e,)y" (p2) —
E:X(pg), aplicada ao vértice Eq.(5.2).

Analogamente ao tratamento dado no capitulo 2, a funcao de trés pontos para o

vértice Fig. 5.2 é dada por
L(p,p) = / d*xdtye” TPV (2, y), (5.3)

[(z,y) = (0|T{j3(z)5}(y)51(0)}]0). (5.4)

Usando a Eq.(2.7), obtemos as seguintes regras, para os varios tipos de vértices:
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e Para o caso J/1 off-shell, usando p; = ¢, po = p e p3 = p com ¢ = p — p, onde

T, (,y) = O[T {7 ()51 (9)3]P7(0) }0), (5.5)
temos
= 01PN [p)V (0, ) g, Al (0)10) (p, M55 (0)[0)
Fw (p7p7) - - I
v Y (p? —mp +i€)(¢* — m3, + ie)(p* — mp. + ic)
(5.6)
onde,
Vi (0.p) = gupp- €€ (9)€) (p)psps, (5.7)
LI O/ ) = mapw fapses!™ (),
(O[TP(0)|D*(p)) = mp- fo-€” (p),
2
07D O)D(p)) = "2ID_ 5.8
O OID(p) = R (58)
Desse modo ficamos com o correlator escrito na forma,
Qf
9y DD* my zpr me*fD*
F:f,,(p,p’) = F/u/ B / / 3 2 N (59)
(07 = i + )@ — 3 + i) — 1 1 10
onde,
Foy = € pipg Z M)y (@)er (p)e) (p)- (5.10)
Inserindo a relagao,
& qud
S eV (@)l M) = L5 = g, (5.11)
A=1 m

obtemos quatro termos para o correlator fenomenolégico. Entretanto, como a
contracao de um tensor anti-simétrico por um simétrico é zero, ficamos apenas

com um unico termo:

F;w = €a6;wpap76- (512)

e Para o caso D* off-shell, usando p; = p, po = q e p3 = p, onde

Lo (,y) = 01T {5 (2)3]77) ()37 (0)}0). (5.13)
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temos
D" (pp) = (0[5 0)[p) VX (0, ) (g, X757 (0)]0) (p, Al (0)]0)
A ™Y (p? —m}, + i€)(q* — mp. +i€)(p? — mj, + ie) ’
(5.14)
com
V2 (0, p) = gupp-€* P (p)ex (a)p3as. (5.15)
Procedendo de modo analogo ao caso anterior, temos:
9y DD* b My fJ/zme* fp+
FD* ) = —€asun a0 Me . (5.16
w (P:P) Cabul P (p? —mh +ie)(¢> — mp. + i€e)(p? — m3, + ie) (5.16)
e Para o caso D off-shell, usando p; = p, po = p e p3 = ¢, onde
D _ (D* (D (/)
o (,y) = T {557 ()77 ()1 (0)}0), (5.17)
temos:
_y OIJV ( ), MV (0, p){al77)(0)]0) (p, Al7i¥(0)]0)
¥ 2 —mp. +i€)(q> —mp +ie)(p* —m3, + ie) ’
(5.18)
onde,
VO (0.0) = gupp-ePe;(p)e (0 aupjs-
Procedendo da mesma forma, obtemos:
Lo (0,p) = €apup®p” DD " To: —. (5.19)
# (p?2 —m3. +i€)(q? — m3 + i€)(p? —mfb+ze)

5.2 Lado da QCD

Vimos no estudo do lado fenomenolégico que os correlatores sao diferentes para cada
caso, isto possibilita calcularmos a constante de acoplamento, g,pp+, por trés formas
distintas.

No lado da QCD, iremos trabalhar diretamente com as correntes

I (@) = e@)e(), (520)
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TP (@) = qz)ye(z), (5.21)
JDP) () = q(x)ivse(z). (5.22)
5.2.1 Tratamento genérico para D e D* off-shell

Considere os correlatores definidos nas Eqs.(5.17) e (5.13), que diferem apenas pela
troca das particulas D e D*, que possuem o mesmo conteudo de quarks. Isso nos

permite trabalhar com uma funcao de correlacao genérica dada por
G _ (Dy +(D F(T )
T (2, y) = O T{5P) ()72 ()19 (0)}0), (5.23)

onde

J(Dz) = CjDiC,

assim D; = v, para D* e iy5 para D, assim o produto das correntes nos fornece
3P (@)1 () 177(0) = Saa O O (D1) g1 (D2) s (Vi) rces

a5, (@)ct, ()2, (v)a%, (y)&5,(0)cL, (0). (5.24)

O produto temporalmente ordenado s6 ird atuar no termo,

GP(x,y) =< 0|T{gs, ()<, (2)2, (y)da, (4)25, (0)ch, (0)}0 > . (5.25)

Essa funcio GP(z,y) é comum para os casos: D e D* off-shell e também para os
vértices J/WYDD e J/yD*D* [34, 37].

Iremos calcular a funcio GP(z,y) em ordem mais baixa na OPE, onde os diagra-
mas nao perturbativos se limitam ao condensados de quarks. Uma justificativa para
nos limitar nessa ordem consite no fato que a regra de soma de dois pontos dos mésons
D e D* possuem, como termos dominantes, apenas esses dois termos. Na Ref.[36] foi
introduzido o condensado de gluons nas fungoes de trés pontos, cuja contribuicao se
mostrou quase nula. Por outro lado, na regra de soma da .J/1 [43], as corregoes radiati-

vas se mostraram importantes contribuindo com quase 50% do diagrama perturbativo.
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Entretanto acreditamos que nas funcoes de trés pontos a dependéncia das corregoes
radiativas ndo sejam importantes. Na Ref.[33] foram calculadas as corregoes radiativas
para a constante de acoplamento gp«pr [32], e a corre¢ao encontrada foi menor que o
erro da regra de soma sem correcoes radiativas. Assim motivamos o nosso formalismo,
nessa ordem mais baixa na OPE.

O correlator total Eq.(5.23) avaliado nessa ordem da OPE é dado por:
G _ 1 Pert q
Pu($7y) _Fu (x,y)+FZq(:c,y),

que, no espaco dos momentos, corresponde aos diagramas Figs. 5.3 e 5.4.

Ffjm(x, y) = =3Tr [S(—y, me)D2S(y — x,mg)D1S(z, mc)v,)] - (5.26)
= < qq >
Dff(2,y) = =2 Te [S(=y,me) DaDi S, me)] (5.27)

Neste trabalho além de usarmos my; = m, = mq = 0 e < wu >=< dd >, usamos o
fato que o quark pesado possui < ¢c >= 0.

Assim o correlator genérico no espago dos momentos é dado por

d'k Tr[(f= §) + me)Da(f= ¢)Di(¥ +me)v,
2m)* (p— k)2 — m2 +ie)((k — p )2 + ie) (k2 — m2 + ie)

Pert N\ s
L, (p,p)—?n/ (5.28)

. q T ) Do D1 (9 c
qu(p’p,) — _< qq > r[(q_l_m ) 2 1(% _I_m )T}/N]’ (529)
#” 4 (¢ —m?2 +ie)(p? — m?2 + ie)

onde ¢ =p — p.

Figura 5.3: Diagrama perturbativo.
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Figura 5.4: Diagrama nao-perturbativo < gqq >.

Podemos ver que o diagrama nao perturbativo independe do momento p. Como ire-
mos fazer uma transformada de Borel nesse momento, esse diagrama nao contribuira.

Portanto, para essa familia de diagramas, teremos apenas a contribuicao perturbativa.
5.2.2 D off-shell
Para o caso do D off-shell, temos o trago perturbativo Eq.(5.28),

T (kypop) = Te (K= #) + me)ivs(k— #) (K +me)v,] (5.30)

Onde obtemos com a ajuda da Ref.[63],

T (k,p,p) = dmeeasu (0°p” — p*k7), (5.31)
e ficamos com
T (p,p) = 12meeaguwp P’ O(¢, ', p) — 12me€asup™ (¢, p, 1), (5.32)
d*k LB
1%(g,p,p) =i / 5.33
(¢,p,p) =i (27) ((p—k)2—m3+i€)((k—p’)z+i€)(k‘2—m§+z'e)’ ( )
d*k 1

O(q.p,p) = 2/ (5.34)

2m)4 ((p — k)2 —m2 +ie)((k — p)2 + i) (k2 — m2 + ie)’
O uso das regras de Cutkosky, permite escrever o correlator através de uma relagao
de dispersao dupla (ver apéndice H):

Pert(D) (u’ s, t)

]_ oo Umazx p
Pert N\ o, B =
F;w (pvp) - Eaﬁ;wp p 471‘2 /llmg /q;mm dsdu( (535)

s = p)(u—p?)’
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onde

VA A

A= (u+s—1t)*—4dus,

3m, A
pPert(D)(u’S’t) _ L <1 + 2) ,

Ao =u+1t— s+ 2m?2,

1
Ui = gz |5t T m2(s +2t) £ /s(s — 4m2)(t — m2)?

5.2.3 D* off-shell

Para o D* off-shell, temos o correlator definido em Eq.(5.13),
T (@,y) =< 0|T{j ()] ()i (0)}0 > .
O trago perturbativo Eq.(5.28) é dado por
T (k,p, ) = Tr (K= #) +me) v (K= #)ivs (K +me)v)
onde por simples algebra, temos que esse tracgo é
Ther' ) (k,p,p) = =TL" P (k,p, p),

logo obtemos:

1 umax Pert(D )(u S t)
FPert ’ — By a B - / / ) ’
(p p ) Bu pp 471'2 4m2 i —p )(u _ p72)

onde, pPr' P (y, s,t) = pPertD)(u, s,t).

(5.36)
(5.37)
(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

Analisando os correlatores do lado fenomenoldgico Egs.(5.16) e (5.19), vemos também

o efeito da mudanca de sinal.

5.2.4 J/i off-shell

Considere o correlator definido em Eq.(5.5),

Ly (@, y) = O {5 (2)17 ()77 (0)}[0).-

(5.44)
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Procedendo da mesma maneira realizada nos casos anteriores, temos o correlator:
J/ __ 1mPert qq
P;w ($7 y) - P;w (ZIZ’, y) + Puu(Iv y)a

que corresponde aos diagramas Figs. 5.5 e 5.6,

P;ijrt($v y) = —3Tr [S(y> mc)%s(—x)WsS(I - Y mc),}/u] : (545)
5 < qq > .
Lo (2,y) = =TT [S(y, me)yins S = yome)l (5.46)

O correlator no espago dos momentos, via transformada de Fourier, Eq.(5.3), é

dado por
d4k T - c) v\ ) = c
Fp,frt(p,p’) _ 37,/ r [(ﬁ k) + m» )7 ( %)1’75(ﬁ k +m )’Yu]. . (547)
a (2m)* ((p — k)2 — m2 + ie) (k2 + ie)((p — k)% — m2 + ie)
] < qq >Tr [( + me)vivs (P +me)y,
I (p.p) = — 5 2). f 2>fl (5.48)
4 (p*—m?2 +ie)(p? — m2 + ie)
Procedendo da mesma forma anterior, ficamos com
Figura 5.5: Diagrama perturbativo para J/1 off-shell.
(D, 7)) = €apup®p” (T77 (0%, p%) + T1(p%, p)) . (5.49)
Agrupando o termo nao-perturbativo, obtemos,
1 o0 fUmaz p(J/w) (u S t)
(0 1) = €0 Vaﬂ——/ / dsd .5 5.50
wlp?) =l VG o S B Pw—py O)
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Figura 5.6: Diagrama nao-perturbativo < gq > para .J/1 off-shell.

Ccom
U10) (5, £) = I 2 ¢ om?)| — 1672 < Gg > 6 2)5
P (u, s, )—W{(u—s) —t(u+ s —2m?)| — 167 < qg > 5(s — M2 (U — tpmin)-
(5.51)
Neste caso obtemos,
1
0= [_st 2 (28 + ) £ \JH(E — 4m2)(s — m2)?] . (5.52)

5.3 Resultados

Usamos os mesmos parametros utilizados no capitulo 3 e para a massa do quark c,
usamos o valor m, = 1.3GeV.

Para a massa dos mésons, usamos os valores mj, = 3.1GeV, mp = 1.87GeV e
mp- = 2.01GeV. Na constante de decaimento da .J/1¢ usamos o valor experimental
f1/¢ = 405MeV e para os outros constante de acoplamento usamos os valores extraidos
via QCDSR [32], fp = 170MeV e fp- = 240MeV, pois os dados experimentais [10]
fornecem uma grande margem de erro para fp e nenhuma informacao sobre fp-.

Também usamos a definicao para o limiar do continuo para esses mésons,
2
Som = (mM + AM) .

Fazendo uma transformada de Borel dupla nos momentos p? e p?, temos que as con-

tribuigoes pélo-continuo sao suprimidas. Assim nao temos o problema de considerar
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modelos para I'po como foi mostrado no capitulo 4.
Transferindo a contribuicao dos estados no continuo para o lado da QCD, ficamos

com as regras de soma:

e Para o caso D off-shell,

2 m2

gyDD* _"px My 1 S0 fUmac s __u_

_TPD"_ Ao~ e T = 2 dsdup”"P)(u, s, t)e 12 ¢~ 37 O(ug—u),
T Jam?2 Jumin

(t —mp)
onde,
m; Jp
A=—L=m s frwmpfp-.
e Caso D* off-shell,
m2 ﬁ 1 S0 u
% mp max * S _ U
(tngD2 )Ae_ MZe M2 = A2 / 2 dsdup”" ") (u, s, t)e” uTe” 07 O(ug—u).
- mD* ™ Amg JSumin
e Caso J/1 off-shell,
2
. m M« 1 S0 Umazx s __u_
7(tg¢DD2)Ae_ﬂ'%e__MD2_ =57/ / dsdup’¥) (u, s, t)e 3% e~ 27 O(ug — u).
—m 7I m Ui
w c min

Vemos que gypp+ < 0 para todos os casos. Neste trabalho iremos considerar o valor
absoluto do constante de acoplamento.

Nosso tratamento fornece o fator de forma gypp-(t, M?, M'?). Para obtermos a
constante de acoplamento é necessario extrapolar o fator de forma para um valor de ¢
igual a massa da particula off-shell.

Na Fig. 5.7 mostramos a estabilidade do fator de forma, para valores fixos de
t = —(Q?, em funcao da massa de Borel considerando, por simplicidade, as duas massas
de Borel relacionadas por:

mi

M/2 — M2

L
UL

Na Fig. 5.8 mostramos o caso onde as massas de Borel nao estao vinculadas.
A estabilidade para os casos D e J/1 off-shell é semelhante.
Escolhendo os limiares do continuo como sendo: Ay = Ap« = Ap = 0.5GeV e

fixando os valores das massas de Borel em M? = mj, e M" = mj,., podemos estudar
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Figura 5.7: Estabilidade para o caso D* off-shell usando M"? = M2QQL e Ay =Ap =
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Figura 5.8: Estabilidade para o caso D* off-shell para Q* =0 e Ay = Ap = 0.5GeV.

o comportamento do fator de forma, para o caso D off-shell, como funcao de Q2. Para

os outros dois casos, J/1 off-shell e D* off-shell, escolhemos as massas de Borel por

esse mesmo critério de fixar a massa de Borel nas respectivas massas das particulas

on-shell. Nossos resultados sao mostrados pelos pontos na Fig. 5.9 para os trés casos

considerados.

Esses pontos podem ser fitados pelas seguintes expressoes:

U)o 1992
QMWJQ)'_Q2+56$
(@ +27)°

(D*) 2
g * (;2 = 19.9ex
YvDD ( ) exXp 345 )
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Figura 5.9: Fator de Forma para as trés psrticulas off-shell.

9D (@%) = 12.Texp l— w] .

450

Essas expressoes podem ser usadas para estimarmos o valor da constante de constante
de acoplamento gy pp-+, definida como gypp+ = g%g* (Q? = —m?,). Os valores obtidos
estao representados pelos pontos vazados na Fig. 5.9 e podemos observar que os trés

casos considerados nos levam a um mesmo valor da constante de acoplamento:
gy DD ~ 4.2GeV_1.

Isso pode ser interpretado como uma grande “vitéria” do nosso método. A andlise
de erros é mostrada na Fig. 5.10, da onde podemos estimar a incerteza no valor da
constante de acoplamento.

Fizemos também a comparagao com outros métodos, que mostramos na Tabela 5.1.
Nas Refs.[60, 61] a constante de acoplamento é extraida em Q? = —2GeV?, pois nessas
referéncias nao foram realizadas extrapolacoes, e esse é o momento maximo onde os

calculos sao confidveis. Observamos um acordo muito bom entre nosso resultado e o

resultado da Ref.[60].
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Figura 5.10: linha sélida A, = 0.5GeV, linha-ponto A, = 0.6GeV e linha tracejada
Ay = 0.4GeV. Os trés niveis, foram gerados pela variacao Ap~ = 0.4..0.6GeV.

Tabela 5.1: Acoplamento em diferentes métodos.

Nosso Ref.[60] Ref.[61]

gypp-(GeV™) 4.0£0.6 4.05+0.25 3.0




Capitulo 6

Conclusao

No presente trabalho usamos as QCDSR para estudar dois importantes problemas da
fisica hadronica atual: o estudo dos pentaquarks, ©F e 277, e a obtencao da constante
de acoplamento gj/ypp+ que podem ser usada em calculos da dissociagao hadronica
da J/1¢ em colisoes de fons pesados relativisticos.

No capitulo 3, apresentamos o estudo dos pentaquarks ©% e Z~~, baseados na
regra de soma para fungoes de dois pontos, onde incluimos todos os diagramas até
dimensao 6. Obtivemos essas massas e estudamos a paridade e as contribuigoes do
polo, usando dois tipos de campos interpolantes inspirados no arranjo diquark-diquark-
antiquark. Nossos resultados forneceram valores das massas compativeis com os dados
experimentais, porém mostramos que a regra de soma dos pentaquarks nao possui uma
janela de Borel onde sejam satisfeitas simultaneamente um bom ordenamento da OPE
e uma boa contribui¢ao do polo. Além disso, mostramos que a estrutura que fornece
a paridade ¢ instavel, o que torna a regra de soma para a obtencao das paridades nao
confiavel.

No capitulo 4, apresentamos o estudo da largura de decaimento da ©%, baseados
no calculo da funcao de trés pontos, onde incluimos todos os diagramas até dimensao
5. Esse estudo do decaimento da ©F em n + K, revelou que s6 é possivel obter uma
largura compativel com os valores experimentais, se considerarmos que a corrente
usada para a ©F [13] possui uma grande componente de estados ligados K — n fato

que ja tinha sido mencionado na Ref.[23], no contexto das fungdes de dois pontos.

63
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Mostramos que a obtencao de uma largura menor que um 1MeV sé é compativel para
uma O7 de paridade positiva e que nao possua contribuicoes de estados ligados K —n.
A verificacao dessa componente K — n no campo interpolante da ©% forneceu uma
maior compreensao do que é um pentaquark, considerando os resultados do capitulo
4, sugerimos que uma boa corrente para a © deva ter uma componente nula para os
diagramas K — n (Fig. 4.2).

No capitulo 5, estudamos o vértice J/pDD* em QCDSR envolvendo o quark pe-
sado charme. Como o condensado de quarks charmosos é muito pequeno, os efeitos
nao perturbativos envolvendo o quark ¢ sao gerados, em ordem mais baixa, pelos con-
densados de gluons, que na maioria das regras de soma, sao suprimidos. No nosso
calculo consideramos apenas uma componente nao perturbativa originada pelo con-
densado de quarks leve. Para calcular a funcao de vértice em termos de uma relagao
de dispersao dupla, usamos as regras de Cutkosky, que forneceu o fator de forma, num
dominio de %, onde a regra de soma é confidvel. Fazendo um ajuste do fator de
forma obtido pela QCDSR, por curvas tipicamente usadas para descrever fatores de
forma (monopdlo, gaussiana e exponencial), obtivemos o comportamento do fator de
forma no dominio Q? < 0, onde a QCDSR nao pode ser aplicada. E neste dominio
que encontramos a constante de acoplamento g;/,pp+. N6s analisamos trés casos: i)
D off-shell, ii) D* off-shell e iii) J/1 off-shell. Para a J/v¢ off-shell o fator de forma é
bem mais “duro” que o fator de forma obtido para os outros casos, que sugere que a
particula mais pesada no vértice vé as outras particulas como pontuais, enquanto as
particulas leves vém a J/1¢ com um certo tamanho.

Nossos resultados mostraram que o valor da constante de acoplamento é indepen-
dente da escolha da particula off-shell e que o erro gerado pela variacao no limiar do
continuo é da ordem de 15%. Nossos resultados sao compativeis com outros métodos:

modelo de quark méson constituintes [60] e com modelo de quarks relativisticos [61].



Apeéendice A

Funcional Fenomenolégico de dois

pontos

O funcional fenomenolégico de dois pontos é definido por:
II(q) = i/d4xeiqxﬂ(x),
onde

I(z) = (0T {js(2)j5(0)}/0).

A corrente do méson de massa m obedece a relacoes :
j(x) = j(0)e™",

e a relacao de completeza
1 d3q

(271')3 ﬁ|Q><Q|

Usando a definicao do produto temporalmente ordenado temos:

() = (0]s(2)5(0)]0)8(x0) + (0175(0)js()0)8(—o).

Inserindo as Eqs.(A.3) e (A.4) em Eq.(A.5), temos:

M(z) = ﬁ ;l—qq (e7"0(wo) + €76(—10) ) (0]15(0)]q) (gl 55(0)]0)-

Usando a relagao

L g
(2m)% J 2qo

d*p e

(7 0(0) + €*0(~20)) Fla) = |
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no nosso correlator Eq.(A.6) temos de imediato,

d4p e—ipx

() = [ Gyi s 3 Os Ol pl70)10) (A8)

Assim o correlator no espa¢o dos momentos Eq.(A.1) é

(01s(0)lg)(gls& (0 )10) (A.9)

" (q) = - q> — m? + ie

Como ja comentamos no capitulo 2, a corrente se acopla também com as res-

sonancias, assim podemos escrever o correlator Eq.(A.9), numa relacao de dispersao,

/ dss_q L (A.10)

onde p(s,q) = pp(s, )0(s —m3) + p°(s,q)0(s —m*2) e pp(s,q) = (0]jarlq) (ali}]0)-
Para o calculo do correlator para mésons vetoriais, o procedimento é analogo ao
caso anterior, onde neste caso introduzimos um indice de polarizacao para os estados.

No caso dos barions, inserimos nos estados um indice de spin.



Apeéendice B

Funcional Fenomenoldgico de trés
pontos

As férmulas de reducdo de Lehman, Symanzik e Zimmermann (LSZ) fornecem a

seguinte relacao para o vértice da Fig. 2.2

< S3(p)|S2A0)S1(p) =¥ [ DEXT @Dy < O[T {0(s)6 (22)6(20)}0 >

(B.1)
onde DX = d*zid*xodzs, Ox = (O, + m?)(0y, + m?)(0,, + m?), e ¢ representa o
campo associado a cada uma das particulas: S1,52 e S3, consideradas como idénticas.

A funcao de Green de 3-pontos para esse processo é definida por
G(21, 29, 73) =< O|T{(w3)0" (22)9" (1) }]0 >, (B.2)
e obdece a propriedade de invarianca translacional:
G(x1, 29, 23) = G(0, 29 — 21,3 — T7). (B.3)
Executando as transformacoes,
Y =Ty —T1,T =T3— T1,T1 = T, (B.4)

cujo jacobiano da transformacao é 1 e transformando o operador Oy, para essas novas

variaveis, obtemos:

Ox = (0, + m?) (3, +m?) (0, + O, + 20,, + m?), (B.5)

67



68 APENDICE B. FUNCIONAL FENOMENOLOGICO DE TRES PONTOS

92 92
dz00yo  0TOT"

onde O, =

Dessa forma ficamos com a formula de reducao dependente de apenas duas variaveis:
< S3(p)|52(q)S1(p) >=i*N / D¥Xe " We®* Oy < 0[T{p(x)9' (y)6'(0)}0 >, (B.6)

com
N = (2n)*%0*(p — (p+ q)) e D’X = d*zd*y.
Obtemos a importante delta de conservagao de energia-momento do vértice, de-
duzido aqui, via hipdtese da invarianca translacional para a fun¢ao de Green Eq.(B.3).

Assim a funcao de Green desse problema é,
G(z,y,0) =< 0]T{g(x)¢'(y)6(0)}|0 >, (B.7)

que pode ser reescrita em termos da transformada de Fourier da fungao de Green no

espaco dos momentos como:

d4]3 d4]5’ i(p—D)y ,—ip'x = =
G(x,y,O)Z/(27T>4 (2@46(” PWe= T G(p, p). (B.8)

Inserindo a Eq.(B.8) na Eq.(B.6), obtemos a relacao que conecta a fungao de Green

ao vértice:

< S3(p)|S2(q)S1(p) >
(> = m?)(p? —m?)(p* — m?)’

(2m)'0(p — (p+ )G (p,p) =i (B.9)

No lado fenomenoldgico das QCDSR, as correntes sao identificadas com os oper-

adores de campo. Assim, comparando a fungao de correlacao de trés pontos:
L(p,p) = / d'zdtye” P TPWEPIT (2, y), (B.10)

onde
[(w,y) =< O[T {Jsa(x)jE>(y) 5 (0)}]0 >, (B.11)
com a Eq. (B.7) vemos que I'(z,y) = G(z,y,0).

Usando a definicao do produto temporalmente ordenado, podemos escrever:

[(2,y) =< 01j3(2) 73 (y)71(0)]0 > 8(zo—10)8(yo)+ < 01ja(2)71(0)73(y)]0 > O(w0)8(—yo)+
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+ < 0[1(0) ()3 ()]0 > O(—=w0)0(x0 — yo)+
+ < 0131(0) 75 ()3 ()]0 > 6(—y0)B(yo — x0)+ < 01i3(y)1(0)s(x)|0 > O(yo)B(—0)+
+ < 03(y)ja(2)1(0)[0 > O(yo — x0)0 (o). (B.12)
Aplicando a evolugao dos operadores, ja discutida,
j(z) = 5(0)e ", (B.13)
mais a definicdo do vacuo, P|0 >= 0|0 >, podemos reescrever a Eq.(B.12), na forma,
[(z,y) =< 0]j3(0)e "= 3 (0)e71(0)[0 > (0 — y0)8(yo)+
+ < 0la(0)e™1(0)e™55(0)]0 > 0(x0)0(—yo)+
+ < 0171 (0)e j5(0)e V=) i1(0)]0 > 6(—x0)0(x0 — yo)+
+ < 05 (0)e 73(0)e™ ) j5(0)[0 > O(~y0)0(yo — wo)+
+ < 0[53(0)e™1(0)e* 45(0)|0 > 6(yo)6(—0)+
+ < 035(0)eFCY 53(0)e =751 (0)[0 > (yo — 20)0(20)- (B.14)
Definindo a relacao de completeza para os varios estados por

1, = /Dpi|p,~ >< i, (B.15)

onde Dp; = ﬁg—;);, e inserindo essas relagdes de completeza na Eq.(B.14), obtemos

i

para o primeiro termo do lado direito da Eq.(B.14):
Du(,y) = 00 = 0)0(wo) | | DpiDpse™ e 9 p, (g, ), (B.16)

onde py(ps, p1) =< 0[53(0)|ps >< ps|j2(0)|p1 >< pu]71(0)]0 >.

De forma anéloga obtemos para os demais termos:
Pa(w,y) = 6(20)6(=90) [ [ DpaDpse ™7™ py(py, pa), (B.17)

onde p(ps, p2) =< 0[53(0)|ps >< ps|j1(0)|pa >< palj(0)]0 >.
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Py(,y) = 0(=20)8(x0 — o) | [ DpiDpac™ e 2py(pyp),  (B.1S)

onde ps(p1, p2) =< 0[] (0)[p1 >< p1]js(0)|p2 >< palj(0)]0 >.

Pa(w,5) = 0(—0)0(y0 — 20) | [ DonDpse™ e, (py, py), (B.19)

onde py(p1,ps) =< 0[51(0)|p1 >< p1]j3(0)|ps >< p3j3(0)]0 >.
Is(2,y) = 9(?}0)9(—5170)//Dp2Dp3€_ip2y€ip3x,05(P2,P3)a (B.20)

onde ps(ps, ps) =< 0[55(0)[p2 >< pa|j](0)|ps >< p33(0)]0 >.
Po(w.y) = 0 — 20)0(z0) | [ DprDpae™ e 0e= 7%y, ), (B.21)

onde pg(pa, p1) =< 0[55(0)|pa >< paljs(0)[p1 >< p1]](0)]0 >.

Para as funcoes de vértice, observamos que em geral temos

< pilib(0)|p; >=< p;1ji(0)[p: >, (B.22)

e, portanto, obtemos:

p1(p3; p1) = pa(p1, p3),
p2(P3; p2) = p5(p2: p3), (B.23)
p3(p1, p2) = ps(P2; P1),

0 que nos permite reescrever o correlator na Eq.(B.14), na forma,

I'(z,y) = (B.24)

//Dplespl (3, p1) {eim(y_m)e_imy@(ﬁo — 40)0(yo) + €TV (—yo)0(yo — $0)} +
+ / / Dp1Dpaps(pr, p2) [P 77ePV0(~20)0(x0 — yo) + e~ Ve PP (yy — a0)0(o) | +

+//Dp2Dp3p2(p3,p2) {e_ip?’meimyﬁ(xo)Q(—yo) + 6_ip2yeip3$9(yo)9(—xo)} )
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Considerando ainda que
0(zo — y0)0(—vo) = O(x0 — y0)0(—20) + 0(70)0(—0), (B.25)

0(yo — 0)0(y0) = 0(yo — 0)0(0) + 0(y0)0(—0),
e que
P2 = p1+ D3, (B.26)
obtemos
p3(p1,p1 + p3) = pa(p3, 1 + p3) = p1(p3, p1).- (B.27)
Assim, o correlator na Eq.(B.24) pode ser escrito numa integral dupla apenas nas

variaveis p; e ps:

I(z,y) = //Dple?)/?l (p3, p1) X (B.28)
x |30 e (10 — 40)0(yo) + P Ve P @I —y0)0(yo — )+
+e P =D PG (10 — y0)0(—yo) + e P e (yo)0(yo — xo)} :
Usando a relacao

1 d3q

s | o (¢ 0lan) + 0l —r) Flo) = [ i

(2m)* p? — m? + e

F(p), (B.29)

e definindo
gi(q,7) = (7 0(wo) + € 0(—10)) Filg), (B.30)
observamos que o integrando da Eq.(B.28) pode ser reescrito como o produto de

91(p3,y — ) X g2(p1, y) onde
91(ps,y — x) = (MY 20(z0 — yo) + ™0 (yo — x0) ) Fi(ps), (B.31)

92(p1,y) = (7"0(yo) + €0(—yo)) Fa(p),

com

p1(ps, p1) = Fi(p3) Fa(p1). (B.32)
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Portanto obtemos finalmente

4 4 p3T ,—i(P1+Pp3
- | [ e e G B
Fazendo a transformada de Fourier da Eq.(B.10), temos:
I'(p,p) =~ iy —, (B.34)
(p? = m3 + i€)(p? — mi + ie)
onde
p1(=p',p) =< 0]j3(0)| —p >< —p|j(0)[p >< pl5{(0)]0 > . (B.35)

Os elementos de matriz entre a particula e o vacuo sao conhecidos. Para avaliar

< —p P (0)|p >, podemos usar a propriedade de Crossing symmetry e escrever:

< =p|3(0)[p >=< —p, —p|j3(0)|0 > . (B.36)
Usando a relacao
L rdq d'q¢  F(qg)
Ty = i / B.37
(2m)3 ) 2qo (q) =i (2m)* ¢% — m? + i€’ ( )

e introduzindo um conjunto completo de estados |¢ > obtemos:

D'q < —p,—p'lq >< q|53(0)[0 >
e _ ) 2 B
<—p.-pliO)0 >=i o e C (Bas)
Definindo,
< —p,—plg >=i2m)'5 (p = (p+ )V (p. p), (B.39)
onde V(p,p) é independente de correntes, ficamos com:
‘ Vip,p) < qljh(0)]0 >
< —p,—pj5(0)|0 >= — 0.p) < 4liz(0) , (B.40)

g% — m3 + ie
onde ¢ = p — p. Portanto a expressao final para o lado fenomenolégico da fungao de

correlacao é:

)= = 0lj3(0)| = p > Vi(p,p) < glib(0)]0 >< p\Jl( o>

r
(p,p (q2 — m3 +ie)(p? — m3 +i€)(p? — m? + ie)

(B.41)

Comparando as Egs.(B.9) e (B.41) vemos que podemos interpretar iV (p, p’) como

o vértice da interagao.



Apéndice C

Calculo do Isospin para a © e =

Como ja vimos no capitulo 3 a corrente da Eq.(3.15) ndo pode descrever um estado com
dois diquarks iguais. Assim sé uma corrente de isospin 1 pode descrever esse estado.

Para provar essas duas propriedades, considere a forma mais geral da Eq.(3.15),
na(x) = e e 19Q,Q5,C5] (x), (C.1)

onde @', é o diquark,

Q. = ul (2)CTdy(z).

Usando a relagao,

€abc€dec = 6ad6be - 5a66bd7 (02)

na Eq.(C.1), obtemos,

n(x) = eQy, (Q2. — Q%) Cs) (v). (C.3)

Por outro lado escolhendo, uma outra possibilidade de contragao entre os tensores de

cor na Eq.(C.1), obtemos,

na(x) = = Q5 (Qy; — Q) Csy (@), (C4)

onde para o caso de dois diquarks iguais Q* = Q!, obtemos ng(x) = —ng(x) via
Egs.(C.3) e (C.4). Logo, para o caso de dois diquarks iguais n¢(z) = 0, como discutido

no capitulo 3.
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Logo temos a propriedade para ng(z) = 0,

a a

eyl (2)CTdy(x) [uZ(:z:)Cch(x)]C%Z(a:) = e“bCuT(x)Cde(x)[uf(a:)Cng(:E)]ngT(:c).
(C.5)

C.1 Isospin para a © da Eq.(3.16)

Usando o mesmo procedimento realizado nas Eqs.(3.12) e (3.13), temos a propriedade,
d¥(3)CTu,(4) = ul (3)CTd.(4). (C.6)

Inserindo essa propriedade na Eq.(C.5), podemos escrever a corrente da Eq.(3.16) em
duas partes iguais da forma,

O () = %Eabc[uaT(l)CFndb@)] ([wf (3)CTd.(4)] + [dF (3)CTouc(4)]) CSL(5).  (C.7)

Como o quark s nao pertence ao multipleto de isospin, podemos consider apenas 4

componentes para os operadores de isospin:
I = I (1) + I (2) + 1x(3) + 1(4). (C.8)
Inserindo essas componentes no operador de isospin,
2 p 1
I :[3 +§ (I+[_+[_[+>, (Cg>

obtemos,
P =13+ I3, + M?, (C.10)
onde, I;; é o operador de isospin que age apenas nos quarks (i) e (j), M? é um operador

de mistura dado por,

M? = IMI2 + 19T (C.11)
Para o diquark 1,2 temos que: [}*0,(x) = I?6,(x) = 0, como mostrado na

Eq.(3.14). Logo M?0,(x) = 0.
No capitulo 3 mostramos que o diquark formado pelos quarks (1) e (2), possui

isospin zero, logo 12,0, () = 0. Assim o nosso problema consiste em calcular I2,.
’ 12 34
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Considere o diquark composto pelos quarks (3) e (4) da Eq.(C.7),
1% = [ul (3)CTde(4)] + [df (3)CTuc(4)]. (C.12)

Obtemos de imediato I3n“ =0 e

Lon® = 2[ug (3)CTuc(4)], (C.13)
I_n* = 2[d*(3)CTd.(4)], (C.14)
LI n™(z) = I_Ln*(x) = 2n*(), (C.15)

Assim obtemos diretamente da Eq.(C.9),

Lyyn™ = 2n°. (C.16)
que fornece I = 1, para esse diquark e também para a corrente da Eq.(C.7).
C.2 Isospin para a =

Como ja vimos no capitulo 3, as correntes da ==~ sao:

|

1 () = €™[sq (1)CTdy(2)][s7 (3)CTd.(4)|Cul (5), (C.17)
05 (x) = e*beedel el [sf(x)C’db(x)][sdT(x)C'vg,de(x)]CﬂgT(x). (C.18)

Para este caso iremos acrescentar na dlgebra dada nas Egs.(3.6) e (3.7), as novas
equagoes,

_ 1
@, Id = 5d. (C.19)

[a=1I.d=0. (C.20)

Ly (x) = — ;- (@), (C.21)

I_n7(x) =0, (C.22)



76 APENDICE C. CALCULO DO ISOSPIN PARA A® E =

I Iyn7(x) = 307 (x), (C.23)

Py (r) = (), (C24)

ou seja [ = 3/2.



Apeéendice D

propagador de quarks ‘“cheio”

O propagador de quarks “cheio” é dado por:
Sep () = Sgp() + (0] : qa(2)3(0)  |0). (D.1)

D.1 Parcela perturbativa

Numa teoria onde os quarks estao interagindo, o calculo do propagador em termos do

véacuo perturbativo, definido por |0,), é dado pela férmula de Gell-Mann Low,
Sub (@) = (05| T{4a(2)3,(0)e' | "Fc2 @}, ), (D2)
a lagrangeana do acoplamento quark-gluon da QCD ¢é

‘CQCD = gs@a[’yuBAMTtﬁ)]qba (Dg)

onde g, é a constante de acoplamento da QCD, 77 sdo as matrizes de Gell-Mann,
BA#(x) é o campo do gluon e A é um indice que varia de 1 a 8.

Assim temos a expansao,

San(®) = (0,|T{qa ()3 (0)}[0,) +i/d42<0pIT{qa(SE)CIb(O)ﬁQCD(Z)}|0p> +oo (D4

O primeiro termo dessa expansao € o propagador de quarks livres,

4
d p e—z’pm ﬂ_l_ Mg

(0p| T{qa(2)@(0) }0p) = i (2m)* m.

77
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Na regra de soma, consideramos que o gluon possui uma componente de campo
classico, chamado de condensado de gluons, assim o segundo termo da expansao
Eq.(D.4) é nao nulo.

No gauge do ponto fixo, o campo classico gluonico é dado por

B(x) = —%Gf}u(o)x”, (D.6)

A . A A B C 7 . . 7 .
onde GW = 0,B] — 0,,BM + gszBCBM B}, que é um tensor antissimétrico.

Definindo S!f(x) =i [ d*2(0,|T{q.(%)3(0)Locp(2) }H0,), temos,

Sap () = Z’gsﬂff‘bf/d4zBA“(Z)<0p|T{qa($)§b(0)§af(Z)Mb'(Z)}IOp>- (D.7)

Aplicando o Teorema de Wick, obtemos,
S @) = [ 'S0 (@ = 2)[7u0.7 BY (2)]Sa(2), (D3)

chamamos Sup(z) = (0,|7{q.(2)3(0)}|0,).
Inserindo a expressao do propagador de quarks, Eq.(D.5), e a transformada de

Fourier para o campo do gluon, definida por:

B(z) = | %e—w%), (D.9)

na Eq.(D.8), ficamos com a expressao:

d* .
Sip () = —igsTay / (2;))46‘”’””1)2 f;ﬁ”bj —F(p), (D.10)
onde,
_ [ dq p b d+m,
Fo)= | B @l (D.11)

A transformada de Fourier do campo gluénico Eq.(D.6) é dada por:

Big) = i(2n)* 3G 005" (). (D.12)

Assim temos a expressao para F'(p),

F(p) = ~i2 G (0 LA

D.13
g )T 8q,,(p—q)2—m2—|—z'eq:’ ( )
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obtemos,

1 v p+m
Fp)=i-G* (0" —L1— — 2 4 ) D.14
) = 3G O0 (L P )

Assim ficamos com a expressao para o propagador Eq.(D.10) no espago dos mo-

mentos:

L 4 p+m " p+m
S(p) = =g9s7,G,., (0 1 — 2yHp” 1 . (D.15
(p) 29 ab W( )p2—m3—i—ie pz—mg—l—ie 7 (p? —m?]+ie)2 ( )

Usando a relagao

(P + m)V'p" (B + my) = —+"p"(p* — m?) + 2p"p" (¥ + my),

no segundo termo da Eq.(D.15), temos em um dos termos uma contragao entre o
tensor simétrico, ptp”, pelo tensor antissimétrico, G4 (0), assim temos a expressio
7 p p ) p ) nv Y p

mais simplificada:

gSTtﬁ)Gﬁy(O)
2(p? — m2 +ie)?

S(p) = (B4 mg)y"'y" + 29"p"]. (D.16)

Podemos decompor o tensor v#p” em dois tensores: um tensor antissimétrico e um
tensor simétrico. Devido a presenca do tensor antissimétrico, Gf}l, (0), temos que apenas

a parcela antissimétrica ira contribuir, logo podemos realizar a troca,
2p” = 4" =Pt

Usando a relagao

v

200"p" = 4"P) =" = MY

temos
Ayip? —s APy e i (D.17)

O tensor 7,7, contraido com o tensor Gﬁ‘y (0), pode ser efetivamente trocado por,

YV — _io-,uu- (D18>
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Inserindo as Eqgs.(D.18) e (D.17)em Eq.(D.16) e aplicando a transformada de Fourier,
temos:

— dp _. oM g+ pot + 2my ot
SII — _7' s AGA 0 / —ipx q )
ab (:L’) 1 9sTap W( ) (271‘)4 (p2 _ mg + i€)2

(D.19)

Nos capitulos 3 e 4 trabalhamos com quarks leves, portanto podemos trabalhar no
espaco das configuragoes considerando uma expansao em primeira ordem na massa do

quark. Assim temos a expansao da Eq.(D.5) até primeira ordem na massa do quark:

4
d p e—ipmﬁ_l_ mq

T{q.(x)q = 10,4 —. D.2
OIT{au@a0}0,) = id [ e e BT (D.20)
Usando as transformadas de Fourier (ver apéndice E),
i o—ipw P _ 8m?
—sz 471'2
4 .
/d p tie a2 (D-22)
obtemos:
T _ _5 { my D
OIT (@) O} 0) = b (555 # ~ 155 ) (D.23)
Para a Eq.(D.19), temos a expansao para quarks leves:
s 4 ny n Nz
11 — _Z A A / d D _ipx¥ ﬂ_‘_ ﬁo’ + le]U D.24
Sy (x) 1 9sTap G, (0) (2ﬂ)4e TEERE : (D.24)
Usando as transformadas de Fourier,
4., —ipz Y _ 27
, e . 9 2
/d pm = —IT 11’1(—:1}' ), (D26)

obtemos:

) m
S () = ~Th = GG () (™ + 0 ) — T2, Gil (0)0™ (). (D.27)

Desse modo temos o propagador de quarks leves em primeira ordem na constante na

constante de acoplamento,

22yt 422

A m A v 2
Tab32;2gsGW(0)0” In(—az°). (D.28)

$0) = 0 (s #— paly) — g GO (™ o
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Podemos ver no final desse apéndice um novo termo para o propagador de quarks, ger-
ado pelo segundo termo da expansao Eq.(D.4). Este novo termo, possui uma dimensao

elevada e s6 contribui no vértice OnkK.

D.2 Parcela nao perturbativa

Podemos relacionar a parcela nao perturbativa para o propagador de quarks Eq.(D.1)

com um singleto de cor:

(0] : @5(0)ga () = 10) = =0 (0] : g5 (x)q5(0) : |0). (D.29)
Considerando que:
(0] g3(2)g5(0) = 0) = 6" Agp(2), (D.30)
temos,
Bas(r) =~ (0] d(0)aa(r) : [0). (D31)

Para obter esse propagador em termos de parametros do vacuo da QCD o pro-
cedimento consiste em fazer a expansao numa série de Taylor do campo g, (), assim

temos:

= o, 1“”88 1””p888
4a(7) = ¢a(0) + 2" 0uqa ()|, + 5 "0, Lo ()] g + G L'’ 2" 0.0, Qe (T)] g+ s
que pode ser reescrito como

1 1
(0] : @3(0)qa() : 10) = [Ai]ap + 2 [Azylap + §$“93V[A3uu]aﬁ + gi'fui'fyx’)[A4uup]aﬁ + .

(D.32)
onde,

[A1]as = (0] : §5(0)ga(0) : [0), (D.33)

[A2ulas = (0] = 45(0) Duga()],—, : 10), (D.34)

[Asu]as = (0 : 45(0) 400 4a()],—, : 0), (D.35)

[A4u1/p]aﬁ = (0] : gs(0) 8“8,,8pqa(x)\x:0 1 10). (D.36)
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O condensado de quarks se relaciona com [A],s através de:

(qq) = 6°[Ar]ag. (D.37)
Considerando que:
[A1]ap = dap N1, (D.38)
temos,
Ny = %, (D.39)

ou seja, (0] : ¢(0)g*(0) : [0) = — 45,
Para avaliar o coeficiente [Ay,]as usamos o fato que os os quarks obedecem a

equacao de movimento,
Pq(x) = —imyq(z), (D.40)

onde D, = 0, — z'gsTAB;j‘(x). Aplicando o gauge do ponto fixo, podemos trocar a
derivada usual pela derivada covariante em todos os termos da expansao Eq.(D.32),

assim temos a relagdo para o coeficiente [As,]ag,

VsalAzulap = (0] : 4(0) Py(x)|,—q : 10) = —imqy(qq). (D.41)

Considerando que:

[Asp]as = [VulasNo, (D.42)
temos,
Ny = 7_Z”;‘é<qq>. (D.43)

Para avaliar o coeficiente [As3,,]q3 Usamos uma nova equagao de movimento vélida

para quarks leves,
1

D?*q(x) = §gSJ.G(5L’)q(x), (D.44)

onde 0.G(z) = 0, TAG (z).

Assim ficamos com a relacao:

¢ Agulas = (0] 4(0) D(x)_ < |0) = 3 (ag.0.CGa). (D5)

z=0
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Considerando que:

[A3W]a6 = Gu0ap N3, (D.46)
temos,
(q9s0.Gq)

Para avaliar o coeficiente [Ay,,,|qas usamos as duas equacoes de movimento Eqgs.(D.40)

e (D.44), assim ficamos com a relagao:

9" Ao = {01 1(0) D* Pao)|_ - 10) = —2"{gg.0.Ga). (D.49)
Considerando a estrutura simétrica:
[Aspwplas = (90 + 9o Vu + GouVolag Nas (D.49)
temos,
—img(q9s0.Gq)

N, = (D.50)

263
Assim temos o propagador de quarks Eq.(D.30) até dimensao 6.

2 T2

_ 1M,
(ags0.Ga) + —755"

(0] : qu(2)3(0) : [0) = 8y <_ <‘113> n imiéqq> iz

(q9s0.Gq) Vé)
(D.51)

D.3 Parcela nao fatoravel

Na regra de soma existe a formacao de novos termos para o propagador que estao rela-
cionados ao valor esperado <qa(x)gsGﬁ,,(0)cjb(0)), que aparece no produto dos propa-
gadores Eq.(D.19) e Eq.(D.30). Podemos relacionar essa parcela nao fatoravel para o

propagador de quarks com um singleto de cor:

(0] + 45(0)95G}, (0)ga(w) : 0) = —752(0] + 42 ()95 G}, (0)g5(0) : [0). (D.52)
Considerando que:

(0] + g4 (2)gsG, (0)G5(0) = 10) = T4 [As (2)] v, (D.53)
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temos,
1 _
[Bap(@)]w = =7 {0]: 75(0)95G1,,(0)ga() : |0). (D.54)
Fazendo a expansao do campo ¢,(z) e aplicando o gauge do ponto fixo, temos a

expansao para o propagador de quarks nao fatoravel até dimensao 6,

(0] 45(0)95G1,(0)ga (@) : 10) = [Arw]ap + 2 [Azpyu]ap. (D.55)

onde,
[A1a)ap = (0] : 35(0)95G7,,(0)4a (0) : 10), (D.56)
[Azpmag = (0] = 45(0)gsG1, (0) Dygal()],—y : 10), (D.57)

Considerando a forma antissimétrica:

[Al,uz/]aﬁ = [Juu]a,@Nh (D58>
temos o valor de N; através da contragao da Eq.(D.56) por o,

_ (q9s0.Gq)
M= (D.59)

Considerando a forma antissimétrica em pv:

[A2puvlap = (0w + V0] asNe, (D.60)

temos o valor de N, através da contragao da Eq.(D.57) por o#~*,

—imy(Ggs0.Gq)

N, =
2 263

(D.61)

Assim a componente nao fatoravel para o propagador de quarks até dimensao 6.

_ 1 ) -
<Qa(x>gsGﬁVQb(0)> = _7—;%) <@<QQSU-GQ>UW/ - QTqu<qgsa-GQ>(¢a,uu + O ¢)> .
(D.62)
Desse modo, temos finalmente o propagador de quarks “cheio”, Egs.(D.1,D.62),

escrito com duas estruturas de cor,

Sab(l’) = 5abS](£L’) + TabSH(ZL'). (D63)
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D.4 Propagador de quarks leves no espaco das con-
figuracoes

Resumindo os calculos realizados neste apéndice, temos o propagador de quarks no

espaco das configuragoes até dimensao 6.

47292

z» é

ab32 2 295 ;u/( )(¢UW/+0’MV¢)

—5ab< qq >
12
A A v 2 E
ab32 QQSG ( )UM ln( )
my, < >
5ab . 48qq ¢ <

2
x
—Oap—= < qgs0.Gq > Q/Q/QQQ

963
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2,2
my < g:G >9:21n

2
~Oa 29372 (=)
al 00.G E
_Tab% < q9s0.&aq > 0y
{ _
_T£2T3mq < q9s0.Gq > (fou + o i) >E

.2
m
Sops Ma G9s0.Gq > # 9%



Apeéendice E

Transformadas de Fourier para
quarks leves

1qx

E.]_ fd4x(_x26—ZW

Considere a integral,

L= [dta (E.1)
(2?2 —ie)n

para € > 0. Usando a identidade,

(@2 _1¢€)n B <_¢>n<2 )y daar e, (E.2)
na integral Eq.(E.1), obtemos:
I, = ;/m daa"‘le_o‘g/d4xeiqxe_io‘x2. (E.3)
(—i)"(n — 1) Jo

Transformando a funcao 117 e nyuma gaussiana e usando a féormula da integral

gaussiana complexa [64, 65],

/wdm4wa:(%¢T7 (E.4)
—00 «

. ; 2 . . .
onde para a integral [*_ dke’* o procedimento consite em operar o conjugado com-

plexo na Eq.(E.4), obtemos:

, ) w2 2
/ dwerremion — ;T gifa. (E.5)
(6%

Inserindo a Eq.(E.5) e fazendo uma mudanga de varidveis, u = i, e aplicando o

limite ¢ — 0, podemos expressar a integral da Eq.(E.3) na forma:

2

2
s © ity
Iy=— / du-— E.6
(Cirn— 1)1 Jo Tyn (E)

87
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Na QCDSR os processos ocorrem para ¢ < 0, portanto devemos escolher a parte de
baixo de um semi-circulo de integracao complexa, assim transformamos essa integral

complexa numa integral real, do tipo,

2 2

o el 1 o T
d - / Az E.7
/0 uun—l (_Z’)n—2 0 Zzn—l ( )

Usando a identidade,
1 1 00
— d n—2_—az E.

2l (n—2)! /0 ar e (E8)

na Eq.(E.7), obtemos a integral:

2
< ef? 1 o 2
| ate = (n_Q)!/O do g (E.9)

é divergente. Controlamos essa divergéncia através do método

—2

A integral [3° da 2™

el
1

de regularizacao do cut-off, onde substituimos o infinito pelo parametro de regular-

izagao A, assim temos:

A n—2

/ da—= a2 = (¢*/4)"*In(—¢*/4) + Polinomios Reais(¢*, A). (E.10)
0 o — =
4

onde os coeficientes polinomiais divergem para o limite A — oc.
Os polinomios sao eliminados pela transformada de Borel, assim para a QCDSR
ficamos com a integral através das Eqs.(E.6),(E.7), (E.9) e (E.10),

Z'ﬂ_2(_1)n24—2n

4:6 ela® _ P ) _q2
/d (z2)n (n—l)!(n—Q)!(q> : (A%QCD)’ (E.11)

valido para n > 2.

Na Ref.[66] essa integral é obtida por regularizagdo dimensional.
Para o caso, n = 1, obtemos facilmente a integral da Eq.(E.7) sem usar a regulari-

zagao do cut-off, assim através das Egs.(E.6) e (E.7), temos:

eiqx .471.2
/d4:c T it (E.12)

Uma generalizacao imediata dessas formulas, consiste na aplicacao do operador,

0 0
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Assim obtemos as férmulas,

Lpett d = 7T2(_1)n25_2n 2\n—3 n— —¢°
/d%eiqxx—ﬁ = 8—712. (E.15)
4 e—iq:v
E.2 /d I rion

Neste caso, o calculo da transformada de Fourier é idéntico ao procedimento anterior,

onde devemos usar uma outra identidade,

1
_ d n—1 za(q +ze) E.16
@+ ()" (n—l / ad (E-16)

Seguindo os mesmos passos descritos na se¢ao anterior e considerando que os pro-

cessos da QCDSR ocorrem para 22 < 0, obtemos:

—iqx 2 1 n+124—2n 2
/d4 e _im(=1) (*)"2In (2—9“") (E.17)

(n—1)l(n—2)! AQCD
G —iqx » 2
/ o z?, (E.18)
. 2 1)n25—2n —1'2
d*qe " d =4 (= )" 1+ (n—2)n , E.19
e Gy =y <n—2>'< N Py L R
/d4qe_“1x = SL (E.20)
1qx
E.3 fd4a:(x§_—i€>nln(—a:2)
Definimos:
2
x
I, _/d4 g )
Usando n=2 na Eq.(E.17), temos:
—sz
7r2/ p (p? + i€)? (E.21)
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onde de imediato temos a transformada de Fourier,

) x2 1672
I = / daein(— Ly = 22
0 ( 1 ) q4

(E.22)

Agora queremos calcular a integral desconhecida,

B . eiqx LE‘2
I = /d P, (E.23)

onde aplicando o operador, ficamos com a equagao diferencial,

0
4% — + 8——. (E.24)
q q
Assim ficamos com uma equacao diferencial, cuja solucao que nao interfere com a
solugao homogénia dessa equacgao é:

4 2 42
I = i—In <—q> . (E.25)
q 7

Para obter Iy, geramos novamente a equacao diferencial que conecta essa nova

solucao com a solugao anterior, escrita na forma:

0
I, =
0q*0qq

—1Ih1.

Assim por esse método iterativo, temos as novas integrais, despresando as termos

polinomiais:

2
12 = —1—

q
. E.2
| ( ] (B.26)
2.2 7T 9
Iy = i”lg _1n2 (%) —5ln ]
72t | q 20, (—q
2 6 2 2
=it d [1112 (_Q) A, (i)] . (E.20)
213 W 6 7

Para o =7~ na nossa corrente, capitulo 3, a transformada de Fourier que estdvamos

(E.27)

I =

interessado é dada pela integral I5. Aplicando novamente o operador Eq.(E.13), temos:

2 2 2
i gz F N _ T 4 2 —4 43 —q
/d xe' 10 In(—2z7) —4—21032q [3111 ( ) o) In < )] . (E.30)

2 2
AQCD AQCD
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Para o vértice OnK, capitulo 4, usamos a transformada de Fourier de I, assim

temos:

/ d4:ceiqxx—€ln( 2) = q—2 [1—111( ¢ )] (E.31)

AQCD



Apeéndice F

Relacao de dispersao

Considere uma funcao invariante, escrita numa relagao de dispersao,

:/OodS%.
0 s —q* — i€

Usando a relacao para € > 0,

1 . 2 2
73—(12—@'6_“"5(5 )+ Als = q),
onde,
2
Als =) = —

G-arre
temos que a funcao Eq.(F.1) é dada por:

I1(¢*) = imp(q?) + parte real.

Assim obtemos a bem conhecida relagao de dispersao,

/ gsToIl(s) ImII(s
s —q? — i€

(F.4)

(F.5)

Para esse tipo de funcao onde conhecemos a sua parte imaginaria, a transformada

de Borel em Q% = —¢? é imediata, pois o operador diferencial Eq.(2.18) s6 atua na

parcela que depente de Q?, logo temos:

BITI(QY)] = % [ dstmti(s)e.

(F.6)

No apéndice E, obtemos algumas formas funcionais para os correlatores, por ex-

emplo:
(Q?) = In(Q*)Q™,

92

(F.7)
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onde no dominio ¢?> = s > 0, geramos uma parte imagindria para o logaritmo, via:
In(Q?*) = In(—s) = In(—1) + In(s), (F.8)

Onde para que a relagao de dispersao Eq.(F.5) seja vélida para € > 0, temos que
considerar,

In(—1) = —ir. (F.9)

Assim temos de imediato a parte imaginaria da Eq.(F.7), dada por:

ImlII
mlls) _pyeenge (F.10)
T
Assim temos a transformada de Borel,
BlIn(Q*)Q*] = (—1)*+! / T dses M gk — (1)L (M2, (F.11)
0

Podemos ver que para k& = 0, temos o mesmo valor que do método derivativo Eq.(2.20).
Na maioria dos casos o uso de uma relacao de dispersao permite um calculo bem mais
simples para a transformada de Borel que o uso da sua forma derivativa.

Existe alguns correlatores onde o uso da relagao de dispersao Eq.(F.5) nao fornece

uma expressao simples para a transformada de Borel, por exemplo:

(F.12)

onde a sua parte imagindria é:

Iml;(s) - —é — 26(s) In.). (F.13)

V)

O uso da relacao de dispersao Eq.(F.5) e da transformada de Borel fornece termos

divergentes, que sao controlados se adimitirmos que os infinitos se cancelem. Para o

In(—¢?

R situacao ¢ bem mais complicada e nao temos como controlar essas

correlator

divergéncias.

Assim a nossa postura, consiste em escrever esses correlatores através da identidade,

() [ T n,) (F.14)

T+
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onde neste caso nao temos termos de subtracao.
Para provar essa identidade, fazemos a transformacao s = Q*), no lado direito da
equagao Eq.(F.14), obtendo,
00 In(2 1 foo In(\ (L) oo 1
i dsﬁz—/ LG (“)/ A\
o (s+@)* @ (1+A? @ Jo o (1+A)?

onde a primeira integral é zero e a segunda ¢é 1.

Uma outra relagao pode ser construiderivando em Q? a Eq.(F.14), obtendo,

(L) e In(2)

2
: . : In(<)
Desse modo podemos construir relagoes para o caso mais geral P

Q?
F.1  Transformada de Borel para 1%25—)

Considere a transformada de Borel em Eq.(F.14),

In(%) o s\ e /M
B {Q—g — /0 dsln (ﬁ) s (F.16)
onde fazendo a transformacao s = M?)\, ficamos com a transformada de Borel,
hl(Q_z) M2

onde v = — [°dAIn(N)e™ = 0.5772.. ..
Analogamente, temos, para a Eq.(F.15):

2 2
()] 1-9p ()
Q4 o M?2 + M2

B (F.18)




Apeéendice G

Formulas uteis para as QCDSR

G.1 Algebra das matrizes de Gell-Mann

Destacamos as seguintes propriedades para as matrizes de Gell-Mann,

7';2 =0,
1
T(;%Tlﬁ = 55,43,
1 1
ToTa = 5 0adObe — §5ab5cd -

G.2 Algebra das matrizes de Dirac

Temos as seguintes definigoes:
C =iy,
Ouy = 'L.'Vu%/ - 'L.g/wa
7 ="'
Essas matrizes obedecem as seguintes propriedades,
cl=cT=ct=-c¢,
CriC =y,
T
CUWC = O,
chamando
ij(x) :¢Uuu + o 7z
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obtemos

CT™ (2)TC = =T (),
T (2) T, () = 2427,
MW =4,

p
oot =12,

fyg = ’Vg = "0,
fyg = f}/g =75,
{75>7u} = 0,

Yoo =0,
YuTap¥* = 0,
ry=—y g+ 2y,

g (x) =T () #,

v " Eyaouw =0,
Yo" EVaow = 24 &,
v #oM fva # Yo =0,
VM e fow Y =0,
T (2) Yo, = —4 § ¥ + 16wy,
T (x)ouw ¥ =12 £ 4.

Para maiores detalhes Ref.[67].

(G.11)
(G.12)
(G.13)
(G.14)
(G.15)
(G.16)
(G.17)
(G.18)
(G.19)
(G.20)
(G.21)
(G.22)
(G.23)
(G.24)
(G.25)
(G.26)

(G.27)



Apéendice H

Regras de Cutkosky

O uso das regras de Cutkosky [49] possibilita escrever uma integral do tipo:

d'k p(k, ¢*,p? p?)
F2,22:~/ o8 H.1
@) =i | e = r i =P+ =i Y
através de uma dupla relacao de dispersao,
DD F(s u, q°)
F / / dsdu , H.2
* p* ) e ) — p2) (H.2)
onde DD.F' é a dupla descontinuidade de F' dada por
Através da regra de Cutkosky;,
1
— —2mid(p® — m?)0(p°), (H.3)

p? —m?2 + e

aplicada a todos os denominadores da Eq.(H.1), temos a dupla descontinuidade de F,

DD.F(¢*, p?p°) /dkfcp 0% k)p(k, ¢, p*,p%), (H.4)

onde,

5= k)? o [(k—p 101K (" — K)B(p" — KO)B(KY). (H.5)

2 ’2]{7 —
fe®@®,p? k) 5

Definindo o referencial:
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Podemos expressar os parametros p°, p® e p3 em termos dos invariantes,
u =p?
s =p (H.7)
t

obtendo:

o _uts—t
VA
p3_2\/§>

onde,

A= (u+s—1t)* —4dus. (H.8)

Assim podemos expressar as funcoes delta na forma:
S[k? —m?) = 6[k2 — m?® — K], (H.9)

§[(p — k)* — m?] = 0[p® — 2poko + (k* — m?)] = &[s — 2v/skol, (H.10)
O[(k —p)?] = 0[k* — 2(phko — Pska) + P = 6[(m* — 2ppko + u) + 2p3ks).  (H.11)
Na Eq.(H.10), podemos ver que a funcao delta depende apenas de ky,

5l(p — k)2 — m?] = Qiﬁawco R (H.12)

N

onde ky = ¥, Efetuando uma integracao em ko, temos que a funcao delta Eq.(H.9)

dependente apenas de k2. Efetuando uma integracao em E2, temos para a funcao delta
Eq.(H.11) uma dependéncia em k3. Adotando o sistema de coordenadas esféricas na
integragao da Eq.(H.4), onde k3 = \//?2003(@), podemos expressar a Eq.(H.11) na
forma,

Vs

S[(k—p)? = —0[cos(0) — cos(0)], (H.13)

=

VAV k2

onde k2 = k2 —m? e

_ Aor/3
cos(0) = ————,
2/ R
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onde,
Ay = u+t—s+2m? (H.14)
Para que as fungoes 6 da Eq.(H.5) sejam diferentes de zero e que a dupla descon-
tinuidade seja uma funcao continua em u e s, temos: s > 4m? e u > t. Desse modo

ficamos com a expressao para a dupla descontinuidade,

DD.F(t,u,s) = —ﬁ /_ o; dko /0 TR /_ 11 dws[ko — kol0[R — k26w — cos(©))]
1
/A

Para p = 1 e m = m,, temos a dupla descontinuidade da Eq.(5.34) do capitulo 5,

DD.O(u, 5,1) = —ﬁ. (H.16)

Para que a dupla descontinuidade seja nao nula, temos que —1 < cos(©) < 1. Assim os

< plko, Ryw, t,u, s) = ———p(ko, k2, cos(©), t,u, ). (H.15)

valores maximos e mfnimos de u sdo obtidos para cos(©)? = 1, que fornece a equagao
s(u+t—s+2m?)?* =[(u+s—1t)? - dus|(s — 4m?), (H.17)

onde os valores maximos e minimos de u sao:

max 1 2
U = Py —st +m*(s+ 2t) + \/s(s —4m?2)(t — m?)?|, (H.18)

com s > 4m?.
Para que v > t, temos que Uy, > t, assim temos que t < m?.
Para calcular a dupla descontinuidade da Eq.(5.33), usamos o fato que podemos

expressar a Eq.(5.33) em termos de duas estruturas invariantes,

11°(q,p, ) = Fi(¢*, 0%, p)p° + Fald®, p*, p*)p"” (H.19)

onde no referencial Eq.(H.7), temos a sua dupla descontinuidade,

DD.II%q,p,p') = [DD.Fi(¢* p* p?)p° + [DD.Fy (g%, p*, p)]p"°,
DD.Hl(q,p,p’) = DD.H2(q,p,p’) =0, (H.20)
DD.I(q,p,p") = [DD.Fy(¢* p* p”)]ps-

Usando a expressao Eq.(H.15), podemos obter facilmente DD.I1%(q, p,p’) e DD.IT3(q, p, p').

Usando os valores de p°, p° e t = ¢%, obtemos a dupla descontinuidade:

DD.I1P(u, s,t) = [N+ Xalu+ s = )]p” — 25)0p 7} (H.21)

1
© 8)\3/2
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